1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 906 /* 907 * cpuctx->cgrp is NULL until a cgroup event is sched in or 908 * ctx->nr_cgroup == 0 . 909 */ 910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp) 911 cpuctx->cgrp = event->cgrp; 912 else if (!add) 913 cpuctx->cgrp = NULL; 914 } 915 916 #else /* !CONFIG_CGROUP_PERF */ 917 918 static inline bool 919 perf_cgroup_match(struct perf_event *event) 920 { 921 return true; 922 } 923 924 static inline void perf_detach_cgroup(struct perf_event *event) 925 {} 926 927 static inline int is_cgroup_event(struct perf_event *event) 928 { 929 return 0; 930 } 931 932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 933 { 934 return 0; 935 } 936 937 static inline void update_cgrp_time_from_event(struct perf_event *event) 938 { 939 } 940 941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 942 { 943 } 944 945 static inline void perf_cgroup_sched_out(struct task_struct *task, 946 struct task_struct *next) 947 { 948 } 949 950 static inline void perf_cgroup_sched_in(struct task_struct *prev, 951 struct task_struct *task) 952 { 953 } 954 955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 956 struct perf_event_attr *attr, 957 struct perf_event *group_leader) 958 { 959 return -EINVAL; 960 } 961 962 static inline void 963 perf_cgroup_set_timestamp(struct task_struct *task, 964 struct perf_event_context *ctx) 965 { 966 } 967 968 void 969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 970 { 971 } 972 973 static inline void 974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 975 { 976 } 977 978 static inline u64 perf_cgroup_event_time(struct perf_event *event) 979 { 980 return 0; 981 } 982 983 static inline void 984 perf_cgroup_defer_enabled(struct perf_event *event) 985 { 986 } 987 988 static inline void 989 perf_cgroup_mark_enabled(struct perf_event *event, 990 struct perf_event_context *ctx) 991 { 992 } 993 994 static inline void 995 list_update_cgroup_event(struct perf_event *event, 996 struct perf_event_context *ctx, bool add) 997 { 998 } 999 1000 #endif 1001 1002 /* 1003 * set default to be dependent on timer tick just 1004 * like original code 1005 */ 1006 #define PERF_CPU_HRTIMER (1000 / HZ) 1007 /* 1008 * function must be called with interrupts disbled 1009 */ 1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1011 { 1012 struct perf_cpu_context *cpuctx; 1013 int rotations = 0; 1014 1015 WARN_ON(!irqs_disabled()); 1016 1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1018 rotations = perf_rotate_context(cpuctx); 1019 1020 raw_spin_lock(&cpuctx->hrtimer_lock); 1021 if (rotations) 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1023 else 1024 cpuctx->hrtimer_active = 0; 1025 raw_spin_unlock(&cpuctx->hrtimer_lock); 1026 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1028 } 1029 1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1031 { 1032 struct hrtimer *timer = &cpuctx->hrtimer; 1033 struct pmu *pmu = cpuctx->ctx.pmu; 1034 u64 interval; 1035 1036 /* no multiplexing needed for SW PMU */ 1037 if (pmu->task_ctx_nr == perf_sw_context) 1038 return; 1039 1040 /* 1041 * check default is sane, if not set then force to 1042 * default interval (1/tick) 1043 */ 1044 interval = pmu->hrtimer_interval_ms; 1045 if (interval < 1) 1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1047 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1049 1050 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1052 timer->function = perf_mux_hrtimer_handler; 1053 } 1054 1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1056 { 1057 struct hrtimer *timer = &cpuctx->hrtimer; 1058 struct pmu *pmu = cpuctx->ctx.pmu; 1059 unsigned long flags; 1060 1061 /* not for SW PMU */ 1062 if (pmu->task_ctx_nr == perf_sw_context) 1063 return 0; 1064 1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1066 if (!cpuctx->hrtimer_active) { 1067 cpuctx->hrtimer_active = 1; 1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1070 } 1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 void perf_pmu_disable(struct pmu *pmu) 1077 { 1078 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1079 if (!(*count)++) 1080 pmu->pmu_disable(pmu); 1081 } 1082 1083 void perf_pmu_enable(struct pmu *pmu) 1084 { 1085 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1086 if (!--(*count)) 1087 pmu->pmu_enable(pmu); 1088 } 1089 1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1091 1092 /* 1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1094 * perf_event_task_tick() are fully serialized because they're strictly cpu 1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1096 * disabled, while perf_event_task_tick is called from IRQ context. 1097 */ 1098 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1099 { 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1101 1102 WARN_ON(!irqs_disabled()); 1103 1104 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1105 1106 list_add(&ctx->active_ctx_list, head); 1107 } 1108 1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1110 { 1111 WARN_ON(!irqs_disabled()); 1112 1113 WARN_ON(list_empty(&ctx->active_ctx_list)); 1114 1115 list_del_init(&ctx->active_ctx_list); 1116 } 1117 1118 static void get_ctx(struct perf_event_context *ctx) 1119 { 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1121 } 1122 1123 static void free_ctx(struct rcu_head *head) 1124 { 1125 struct perf_event_context *ctx; 1126 1127 ctx = container_of(head, struct perf_event_context, rcu_head); 1128 kfree(ctx->task_ctx_data); 1129 kfree(ctx); 1130 } 1131 1132 static void put_ctx(struct perf_event_context *ctx) 1133 { 1134 if (atomic_dec_and_test(&ctx->refcount)) { 1135 if (ctx->parent_ctx) 1136 put_ctx(ctx->parent_ctx); 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1138 put_task_struct(ctx->task); 1139 call_rcu(&ctx->rcu_head, free_ctx); 1140 } 1141 } 1142 1143 /* 1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1145 * perf_pmu_migrate_context() we need some magic. 1146 * 1147 * Those places that change perf_event::ctx will hold both 1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1149 * 1150 * Lock ordering is by mutex address. There are two other sites where 1151 * perf_event_context::mutex nests and those are: 1152 * 1153 * - perf_event_exit_task_context() [ child , 0 ] 1154 * perf_event_exit_event() 1155 * put_event() [ parent, 1 ] 1156 * 1157 * - perf_event_init_context() [ parent, 0 ] 1158 * inherit_task_group() 1159 * inherit_group() 1160 * inherit_event() 1161 * perf_event_alloc() 1162 * perf_init_event() 1163 * perf_try_init_event() [ child , 1 ] 1164 * 1165 * While it appears there is an obvious deadlock here -- the parent and child 1166 * nesting levels are inverted between the two. This is in fact safe because 1167 * life-time rules separate them. That is an exiting task cannot fork, and a 1168 * spawning task cannot (yet) exit. 1169 * 1170 * But remember that that these are parent<->child context relations, and 1171 * migration does not affect children, therefore these two orderings should not 1172 * interact. 1173 * 1174 * The change in perf_event::ctx does not affect children (as claimed above) 1175 * because the sys_perf_event_open() case will install a new event and break 1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1177 * concerned with cpuctx and that doesn't have children. 1178 * 1179 * The places that change perf_event::ctx will issue: 1180 * 1181 * perf_remove_from_context(); 1182 * synchronize_rcu(); 1183 * perf_install_in_context(); 1184 * 1185 * to affect the change. The remove_from_context() + synchronize_rcu() should 1186 * quiesce the event, after which we can install it in the new location. This 1187 * means that only external vectors (perf_fops, prctl) can perturb the event 1188 * while in transit. Therefore all such accessors should also acquire 1189 * perf_event_context::mutex to serialize against this. 1190 * 1191 * However; because event->ctx can change while we're waiting to acquire 1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1193 * function. 1194 * 1195 * Lock order: 1196 * cred_guard_mutex 1197 * task_struct::perf_event_mutex 1198 * perf_event_context::mutex 1199 * perf_event::child_mutex; 1200 * perf_event_context::lock 1201 * perf_event::mmap_mutex 1202 * mmap_sem 1203 */ 1204 static struct perf_event_context * 1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1206 { 1207 struct perf_event_context *ctx; 1208 1209 again: 1210 rcu_read_lock(); 1211 ctx = ACCESS_ONCE(event->ctx); 1212 if (!atomic_inc_not_zero(&ctx->refcount)) { 1213 rcu_read_unlock(); 1214 goto again; 1215 } 1216 rcu_read_unlock(); 1217 1218 mutex_lock_nested(&ctx->mutex, nesting); 1219 if (event->ctx != ctx) { 1220 mutex_unlock(&ctx->mutex); 1221 put_ctx(ctx); 1222 goto again; 1223 } 1224 1225 return ctx; 1226 } 1227 1228 static inline struct perf_event_context * 1229 perf_event_ctx_lock(struct perf_event *event) 1230 { 1231 return perf_event_ctx_lock_nested(event, 0); 1232 } 1233 1234 static void perf_event_ctx_unlock(struct perf_event *event, 1235 struct perf_event_context *ctx) 1236 { 1237 mutex_unlock(&ctx->mutex); 1238 put_ctx(ctx); 1239 } 1240 1241 /* 1242 * This must be done under the ctx->lock, such as to serialize against 1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1244 * calling scheduler related locks and ctx->lock nests inside those. 1245 */ 1246 static __must_check struct perf_event_context * 1247 unclone_ctx(struct perf_event_context *ctx) 1248 { 1249 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1250 1251 lockdep_assert_held(&ctx->lock); 1252 1253 if (parent_ctx) 1254 ctx->parent_ctx = NULL; 1255 ctx->generation++; 1256 1257 return parent_ctx; 1258 } 1259 1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1261 { 1262 /* 1263 * only top level events have the pid namespace they were created in 1264 */ 1265 if (event->parent) 1266 event = event->parent; 1267 1268 return task_tgid_nr_ns(p, event->ns); 1269 } 1270 1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1272 { 1273 /* 1274 * only top level events have the pid namespace they were created in 1275 */ 1276 if (event->parent) 1277 event = event->parent; 1278 1279 return task_pid_nr_ns(p, event->ns); 1280 } 1281 1282 /* 1283 * If we inherit events we want to return the parent event id 1284 * to userspace. 1285 */ 1286 static u64 primary_event_id(struct perf_event *event) 1287 { 1288 u64 id = event->id; 1289 1290 if (event->parent) 1291 id = event->parent->id; 1292 1293 return id; 1294 } 1295 1296 /* 1297 * Get the perf_event_context for a task and lock it. 1298 * 1299 * This has to cope with with the fact that until it is locked, 1300 * the context could get moved to another task. 1301 */ 1302 static struct perf_event_context * 1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1304 { 1305 struct perf_event_context *ctx; 1306 1307 retry: 1308 /* 1309 * One of the few rules of preemptible RCU is that one cannot do 1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1311 * part of the read side critical section was irqs-enabled -- see 1312 * rcu_read_unlock_special(). 1313 * 1314 * Since ctx->lock nests under rq->lock we must ensure the entire read 1315 * side critical section has interrupts disabled. 1316 */ 1317 local_irq_save(*flags); 1318 rcu_read_lock(); 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1320 if (ctx) { 1321 /* 1322 * If this context is a clone of another, it might 1323 * get swapped for another underneath us by 1324 * perf_event_task_sched_out, though the 1325 * rcu_read_lock() protects us from any context 1326 * getting freed. Lock the context and check if it 1327 * got swapped before we could get the lock, and retry 1328 * if so. If we locked the right context, then it 1329 * can't get swapped on us any more. 1330 */ 1331 raw_spin_lock(&ctx->lock); 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1333 raw_spin_unlock(&ctx->lock); 1334 rcu_read_unlock(); 1335 local_irq_restore(*flags); 1336 goto retry; 1337 } 1338 1339 if (ctx->task == TASK_TOMBSTONE || 1340 !atomic_inc_not_zero(&ctx->refcount)) { 1341 raw_spin_unlock(&ctx->lock); 1342 ctx = NULL; 1343 } else { 1344 WARN_ON_ONCE(ctx->task != task); 1345 } 1346 } 1347 rcu_read_unlock(); 1348 if (!ctx) 1349 local_irq_restore(*flags); 1350 return ctx; 1351 } 1352 1353 /* 1354 * Get the context for a task and increment its pin_count so it 1355 * can't get swapped to another task. This also increments its 1356 * reference count so that the context can't get freed. 1357 */ 1358 static struct perf_event_context * 1359 perf_pin_task_context(struct task_struct *task, int ctxn) 1360 { 1361 struct perf_event_context *ctx; 1362 unsigned long flags; 1363 1364 ctx = perf_lock_task_context(task, ctxn, &flags); 1365 if (ctx) { 1366 ++ctx->pin_count; 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1368 } 1369 return ctx; 1370 } 1371 1372 static void perf_unpin_context(struct perf_event_context *ctx) 1373 { 1374 unsigned long flags; 1375 1376 raw_spin_lock_irqsave(&ctx->lock, flags); 1377 --ctx->pin_count; 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1379 } 1380 1381 /* 1382 * Update the record of the current time in a context. 1383 */ 1384 static void update_context_time(struct perf_event_context *ctx) 1385 { 1386 u64 now = perf_clock(); 1387 1388 ctx->time += now - ctx->timestamp; 1389 ctx->timestamp = now; 1390 } 1391 1392 static u64 perf_event_time(struct perf_event *event) 1393 { 1394 struct perf_event_context *ctx = event->ctx; 1395 1396 if (is_cgroup_event(event)) 1397 return perf_cgroup_event_time(event); 1398 1399 return ctx ? ctx->time : 0; 1400 } 1401 1402 /* 1403 * Update the total_time_enabled and total_time_running fields for a event. 1404 */ 1405 static void update_event_times(struct perf_event *event) 1406 { 1407 struct perf_event_context *ctx = event->ctx; 1408 u64 run_end; 1409 1410 lockdep_assert_held(&ctx->lock); 1411 1412 if (event->state < PERF_EVENT_STATE_INACTIVE || 1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1414 return; 1415 1416 /* 1417 * in cgroup mode, time_enabled represents 1418 * the time the event was enabled AND active 1419 * tasks were in the monitored cgroup. This is 1420 * independent of the activity of the context as 1421 * there may be a mix of cgroup and non-cgroup events. 1422 * 1423 * That is why we treat cgroup events differently 1424 * here. 1425 */ 1426 if (is_cgroup_event(event)) 1427 run_end = perf_cgroup_event_time(event); 1428 else if (ctx->is_active) 1429 run_end = ctx->time; 1430 else 1431 run_end = event->tstamp_stopped; 1432 1433 event->total_time_enabled = run_end - event->tstamp_enabled; 1434 1435 if (event->state == PERF_EVENT_STATE_INACTIVE) 1436 run_end = event->tstamp_stopped; 1437 else 1438 run_end = perf_event_time(event); 1439 1440 event->total_time_running = run_end - event->tstamp_running; 1441 1442 } 1443 1444 /* 1445 * Update total_time_enabled and total_time_running for all events in a group. 1446 */ 1447 static void update_group_times(struct perf_event *leader) 1448 { 1449 struct perf_event *event; 1450 1451 update_event_times(leader); 1452 list_for_each_entry(event, &leader->sibling_list, group_entry) 1453 update_event_times(event); 1454 } 1455 1456 static struct list_head * 1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1458 { 1459 if (event->attr.pinned) 1460 return &ctx->pinned_groups; 1461 else 1462 return &ctx->flexible_groups; 1463 } 1464 1465 /* 1466 * Add a event from the lists for its context. 1467 * Must be called with ctx->mutex and ctx->lock held. 1468 */ 1469 static void 1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 1473 lockdep_assert_held(&ctx->lock); 1474 1475 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1476 event->attach_state |= PERF_ATTACH_CONTEXT; 1477 1478 /* 1479 * If we're a stand alone event or group leader, we go to the context 1480 * list, group events are kept attached to the group so that 1481 * perf_group_detach can, at all times, locate all siblings. 1482 */ 1483 if (event->group_leader == event) { 1484 struct list_head *list; 1485 1486 event->group_caps = event->event_caps; 1487 1488 list = ctx_group_list(event, ctx); 1489 list_add_tail(&event->group_entry, list); 1490 } 1491 1492 list_update_cgroup_event(event, ctx, true); 1493 1494 list_add_rcu(&event->event_entry, &ctx->event_list); 1495 ctx->nr_events++; 1496 if (event->attr.inherit_stat) 1497 ctx->nr_stat++; 1498 1499 ctx->generation++; 1500 } 1501 1502 /* 1503 * Initialize event state based on the perf_event_attr::disabled. 1504 */ 1505 static inline void perf_event__state_init(struct perf_event *event) 1506 { 1507 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1508 PERF_EVENT_STATE_INACTIVE; 1509 } 1510 1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1512 { 1513 int entry = sizeof(u64); /* value */ 1514 int size = 0; 1515 int nr = 1; 1516 1517 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1518 size += sizeof(u64); 1519 1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1521 size += sizeof(u64); 1522 1523 if (event->attr.read_format & PERF_FORMAT_ID) 1524 entry += sizeof(u64); 1525 1526 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1527 nr += nr_siblings; 1528 size += sizeof(u64); 1529 } 1530 1531 size += entry * nr; 1532 event->read_size = size; 1533 } 1534 1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1536 { 1537 struct perf_sample_data *data; 1538 u16 size = 0; 1539 1540 if (sample_type & PERF_SAMPLE_IP) 1541 size += sizeof(data->ip); 1542 1543 if (sample_type & PERF_SAMPLE_ADDR) 1544 size += sizeof(data->addr); 1545 1546 if (sample_type & PERF_SAMPLE_PERIOD) 1547 size += sizeof(data->period); 1548 1549 if (sample_type & PERF_SAMPLE_WEIGHT) 1550 size += sizeof(data->weight); 1551 1552 if (sample_type & PERF_SAMPLE_READ) 1553 size += event->read_size; 1554 1555 if (sample_type & PERF_SAMPLE_DATA_SRC) 1556 size += sizeof(data->data_src.val); 1557 1558 if (sample_type & PERF_SAMPLE_TRANSACTION) 1559 size += sizeof(data->txn); 1560 1561 event->header_size = size; 1562 } 1563 1564 /* 1565 * Called at perf_event creation and when events are attached/detached from a 1566 * group. 1567 */ 1568 static void perf_event__header_size(struct perf_event *event) 1569 { 1570 __perf_event_read_size(event, 1571 event->group_leader->nr_siblings); 1572 __perf_event_header_size(event, event->attr.sample_type); 1573 } 1574 1575 static void perf_event__id_header_size(struct perf_event *event) 1576 { 1577 struct perf_sample_data *data; 1578 u64 sample_type = event->attr.sample_type; 1579 u16 size = 0; 1580 1581 if (sample_type & PERF_SAMPLE_TID) 1582 size += sizeof(data->tid_entry); 1583 1584 if (sample_type & PERF_SAMPLE_TIME) 1585 size += sizeof(data->time); 1586 1587 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1588 size += sizeof(data->id); 1589 1590 if (sample_type & PERF_SAMPLE_ID) 1591 size += sizeof(data->id); 1592 1593 if (sample_type & PERF_SAMPLE_STREAM_ID) 1594 size += sizeof(data->stream_id); 1595 1596 if (sample_type & PERF_SAMPLE_CPU) 1597 size += sizeof(data->cpu_entry); 1598 1599 event->id_header_size = size; 1600 } 1601 1602 static bool perf_event_validate_size(struct perf_event *event) 1603 { 1604 /* 1605 * The values computed here will be over-written when we actually 1606 * attach the event. 1607 */ 1608 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1609 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1610 perf_event__id_header_size(event); 1611 1612 /* 1613 * Sum the lot; should not exceed the 64k limit we have on records. 1614 * Conservative limit to allow for callchains and other variable fields. 1615 */ 1616 if (event->read_size + event->header_size + 1617 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1618 return false; 1619 1620 return true; 1621 } 1622 1623 static void perf_group_attach(struct perf_event *event) 1624 { 1625 struct perf_event *group_leader = event->group_leader, *pos; 1626 1627 /* 1628 * We can have double attach due to group movement in perf_event_open. 1629 */ 1630 if (event->attach_state & PERF_ATTACH_GROUP) 1631 return; 1632 1633 event->attach_state |= PERF_ATTACH_GROUP; 1634 1635 if (group_leader == event) 1636 return; 1637 1638 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1639 1640 group_leader->group_caps &= event->event_caps; 1641 1642 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1643 group_leader->nr_siblings++; 1644 1645 perf_event__header_size(group_leader); 1646 1647 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1648 perf_event__header_size(pos); 1649 } 1650 1651 /* 1652 * Remove a event from the lists for its context. 1653 * Must be called with ctx->mutex and ctx->lock held. 1654 */ 1655 static void 1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1657 { 1658 WARN_ON_ONCE(event->ctx != ctx); 1659 lockdep_assert_held(&ctx->lock); 1660 1661 /* 1662 * We can have double detach due to exit/hot-unplug + close. 1663 */ 1664 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1665 return; 1666 1667 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1668 1669 list_update_cgroup_event(event, ctx, false); 1670 1671 ctx->nr_events--; 1672 if (event->attr.inherit_stat) 1673 ctx->nr_stat--; 1674 1675 list_del_rcu(&event->event_entry); 1676 1677 if (event->group_leader == event) 1678 list_del_init(&event->group_entry); 1679 1680 update_group_times(event); 1681 1682 /* 1683 * If event was in error state, then keep it 1684 * that way, otherwise bogus counts will be 1685 * returned on read(). The only way to get out 1686 * of error state is by explicit re-enabling 1687 * of the event 1688 */ 1689 if (event->state > PERF_EVENT_STATE_OFF) 1690 event->state = PERF_EVENT_STATE_OFF; 1691 1692 ctx->generation++; 1693 } 1694 1695 static void perf_group_detach(struct perf_event *event) 1696 { 1697 struct perf_event *sibling, *tmp; 1698 struct list_head *list = NULL; 1699 1700 /* 1701 * We can have double detach due to exit/hot-unplug + close. 1702 */ 1703 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1704 return; 1705 1706 event->attach_state &= ~PERF_ATTACH_GROUP; 1707 1708 /* 1709 * If this is a sibling, remove it from its group. 1710 */ 1711 if (event->group_leader != event) { 1712 list_del_init(&event->group_entry); 1713 event->group_leader->nr_siblings--; 1714 goto out; 1715 } 1716 1717 if (!list_empty(&event->group_entry)) 1718 list = &event->group_entry; 1719 1720 /* 1721 * If this was a group event with sibling events then 1722 * upgrade the siblings to singleton events by adding them 1723 * to whatever list we are on. 1724 */ 1725 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1726 if (list) 1727 list_move_tail(&sibling->group_entry, list); 1728 sibling->group_leader = sibling; 1729 1730 /* Inherit group flags from the previous leader */ 1731 sibling->group_caps = event->group_caps; 1732 1733 WARN_ON_ONCE(sibling->ctx != event->ctx); 1734 } 1735 1736 out: 1737 perf_event__header_size(event->group_leader); 1738 1739 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1740 perf_event__header_size(tmp); 1741 } 1742 1743 static bool is_orphaned_event(struct perf_event *event) 1744 { 1745 return event->state == PERF_EVENT_STATE_DEAD; 1746 } 1747 1748 static inline int __pmu_filter_match(struct perf_event *event) 1749 { 1750 struct pmu *pmu = event->pmu; 1751 return pmu->filter_match ? pmu->filter_match(event) : 1; 1752 } 1753 1754 /* 1755 * Check whether we should attempt to schedule an event group based on 1756 * PMU-specific filtering. An event group can consist of HW and SW events, 1757 * potentially with a SW leader, so we must check all the filters, to 1758 * determine whether a group is schedulable: 1759 */ 1760 static inline int pmu_filter_match(struct perf_event *event) 1761 { 1762 struct perf_event *child; 1763 1764 if (!__pmu_filter_match(event)) 1765 return 0; 1766 1767 list_for_each_entry(child, &event->sibling_list, group_entry) { 1768 if (!__pmu_filter_match(child)) 1769 return 0; 1770 } 1771 1772 return 1; 1773 } 1774 1775 static inline int 1776 event_filter_match(struct perf_event *event) 1777 { 1778 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1779 perf_cgroup_match(event) && pmu_filter_match(event); 1780 } 1781 1782 static void 1783 event_sched_out(struct perf_event *event, 1784 struct perf_cpu_context *cpuctx, 1785 struct perf_event_context *ctx) 1786 { 1787 u64 tstamp = perf_event_time(event); 1788 u64 delta; 1789 1790 WARN_ON_ONCE(event->ctx != ctx); 1791 lockdep_assert_held(&ctx->lock); 1792 1793 /* 1794 * An event which could not be activated because of 1795 * filter mismatch still needs to have its timings 1796 * maintained, otherwise bogus information is return 1797 * via read() for time_enabled, time_running: 1798 */ 1799 if (event->state == PERF_EVENT_STATE_INACTIVE && 1800 !event_filter_match(event)) { 1801 delta = tstamp - event->tstamp_stopped; 1802 event->tstamp_running += delta; 1803 event->tstamp_stopped = tstamp; 1804 } 1805 1806 if (event->state != PERF_EVENT_STATE_ACTIVE) 1807 return; 1808 1809 perf_pmu_disable(event->pmu); 1810 1811 event->tstamp_stopped = tstamp; 1812 event->pmu->del(event, 0); 1813 event->oncpu = -1; 1814 event->state = PERF_EVENT_STATE_INACTIVE; 1815 if (event->pending_disable) { 1816 event->pending_disable = 0; 1817 event->state = PERF_EVENT_STATE_OFF; 1818 } 1819 1820 if (!is_software_event(event)) 1821 cpuctx->active_oncpu--; 1822 if (!--ctx->nr_active) 1823 perf_event_ctx_deactivate(ctx); 1824 if (event->attr.freq && event->attr.sample_freq) 1825 ctx->nr_freq--; 1826 if (event->attr.exclusive || !cpuctx->active_oncpu) 1827 cpuctx->exclusive = 0; 1828 1829 perf_pmu_enable(event->pmu); 1830 } 1831 1832 static void 1833 group_sched_out(struct perf_event *group_event, 1834 struct perf_cpu_context *cpuctx, 1835 struct perf_event_context *ctx) 1836 { 1837 struct perf_event *event; 1838 int state = group_event->state; 1839 1840 perf_pmu_disable(ctx->pmu); 1841 1842 event_sched_out(group_event, cpuctx, ctx); 1843 1844 /* 1845 * Schedule out siblings (if any): 1846 */ 1847 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1848 event_sched_out(event, cpuctx, ctx); 1849 1850 perf_pmu_enable(ctx->pmu); 1851 1852 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1853 cpuctx->exclusive = 0; 1854 } 1855 1856 #define DETACH_GROUP 0x01UL 1857 1858 /* 1859 * Cross CPU call to remove a performance event 1860 * 1861 * We disable the event on the hardware level first. After that we 1862 * remove it from the context list. 1863 */ 1864 static void 1865 __perf_remove_from_context(struct perf_event *event, 1866 struct perf_cpu_context *cpuctx, 1867 struct perf_event_context *ctx, 1868 void *info) 1869 { 1870 unsigned long flags = (unsigned long)info; 1871 1872 event_sched_out(event, cpuctx, ctx); 1873 if (flags & DETACH_GROUP) 1874 perf_group_detach(event); 1875 list_del_event(event, ctx); 1876 1877 if (!ctx->nr_events && ctx->is_active) { 1878 ctx->is_active = 0; 1879 if (ctx->task) { 1880 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1881 cpuctx->task_ctx = NULL; 1882 } 1883 } 1884 } 1885 1886 /* 1887 * Remove the event from a task's (or a CPU's) list of events. 1888 * 1889 * If event->ctx is a cloned context, callers must make sure that 1890 * every task struct that event->ctx->task could possibly point to 1891 * remains valid. This is OK when called from perf_release since 1892 * that only calls us on the top-level context, which can't be a clone. 1893 * When called from perf_event_exit_task, it's OK because the 1894 * context has been detached from its task. 1895 */ 1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1897 { 1898 lockdep_assert_held(&event->ctx->mutex); 1899 1900 event_function_call(event, __perf_remove_from_context, (void *)flags); 1901 } 1902 1903 /* 1904 * Cross CPU call to disable a performance event 1905 */ 1906 static void __perf_event_disable(struct perf_event *event, 1907 struct perf_cpu_context *cpuctx, 1908 struct perf_event_context *ctx, 1909 void *info) 1910 { 1911 if (event->state < PERF_EVENT_STATE_INACTIVE) 1912 return; 1913 1914 update_context_time(ctx); 1915 update_cgrp_time_from_event(event); 1916 update_group_times(event); 1917 if (event == event->group_leader) 1918 group_sched_out(event, cpuctx, ctx); 1919 else 1920 event_sched_out(event, cpuctx, ctx); 1921 event->state = PERF_EVENT_STATE_OFF; 1922 } 1923 1924 /* 1925 * Disable a event. 1926 * 1927 * If event->ctx is a cloned context, callers must make sure that 1928 * every task struct that event->ctx->task could possibly point to 1929 * remains valid. This condition is satisifed when called through 1930 * perf_event_for_each_child or perf_event_for_each because they 1931 * hold the top-level event's child_mutex, so any descendant that 1932 * goes to exit will block in perf_event_exit_event(). 1933 * 1934 * When called from perf_pending_event it's OK because event->ctx 1935 * is the current context on this CPU and preemption is disabled, 1936 * hence we can't get into perf_event_task_sched_out for this context. 1937 */ 1938 static void _perf_event_disable(struct perf_event *event) 1939 { 1940 struct perf_event_context *ctx = event->ctx; 1941 1942 raw_spin_lock_irq(&ctx->lock); 1943 if (event->state <= PERF_EVENT_STATE_OFF) { 1944 raw_spin_unlock_irq(&ctx->lock); 1945 return; 1946 } 1947 raw_spin_unlock_irq(&ctx->lock); 1948 1949 event_function_call(event, __perf_event_disable, NULL); 1950 } 1951 1952 void perf_event_disable_local(struct perf_event *event) 1953 { 1954 event_function_local(event, __perf_event_disable, NULL); 1955 } 1956 1957 /* 1958 * Strictly speaking kernel users cannot create groups and therefore this 1959 * interface does not need the perf_event_ctx_lock() magic. 1960 */ 1961 void perf_event_disable(struct perf_event *event) 1962 { 1963 struct perf_event_context *ctx; 1964 1965 ctx = perf_event_ctx_lock(event); 1966 _perf_event_disable(event); 1967 perf_event_ctx_unlock(event, ctx); 1968 } 1969 EXPORT_SYMBOL_GPL(perf_event_disable); 1970 1971 void perf_event_disable_inatomic(struct perf_event *event) 1972 { 1973 event->pending_disable = 1; 1974 irq_work_queue(&event->pending); 1975 } 1976 1977 static void perf_set_shadow_time(struct perf_event *event, 1978 struct perf_event_context *ctx, 1979 u64 tstamp) 1980 { 1981 /* 1982 * use the correct time source for the time snapshot 1983 * 1984 * We could get by without this by leveraging the 1985 * fact that to get to this function, the caller 1986 * has most likely already called update_context_time() 1987 * and update_cgrp_time_xx() and thus both timestamp 1988 * are identical (or very close). Given that tstamp is, 1989 * already adjusted for cgroup, we could say that: 1990 * tstamp - ctx->timestamp 1991 * is equivalent to 1992 * tstamp - cgrp->timestamp. 1993 * 1994 * Then, in perf_output_read(), the calculation would 1995 * work with no changes because: 1996 * - event is guaranteed scheduled in 1997 * - no scheduled out in between 1998 * - thus the timestamp would be the same 1999 * 2000 * But this is a bit hairy. 2001 * 2002 * So instead, we have an explicit cgroup call to remain 2003 * within the time time source all along. We believe it 2004 * is cleaner and simpler to understand. 2005 */ 2006 if (is_cgroup_event(event)) 2007 perf_cgroup_set_shadow_time(event, tstamp); 2008 else 2009 event->shadow_ctx_time = tstamp - ctx->timestamp; 2010 } 2011 2012 #define MAX_INTERRUPTS (~0ULL) 2013 2014 static void perf_log_throttle(struct perf_event *event, int enable); 2015 static void perf_log_itrace_start(struct perf_event *event); 2016 2017 static int 2018 event_sched_in(struct perf_event *event, 2019 struct perf_cpu_context *cpuctx, 2020 struct perf_event_context *ctx) 2021 { 2022 u64 tstamp = perf_event_time(event); 2023 int ret = 0; 2024 2025 lockdep_assert_held(&ctx->lock); 2026 2027 if (event->state <= PERF_EVENT_STATE_OFF) 2028 return 0; 2029 2030 WRITE_ONCE(event->oncpu, smp_processor_id()); 2031 /* 2032 * Order event::oncpu write to happen before the ACTIVE state 2033 * is visible. 2034 */ 2035 smp_wmb(); 2036 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2037 2038 /* 2039 * Unthrottle events, since we scheduled we might have missed several 2040 * ticks already, also for a heavily scheduling task there is little 2041 * guarantee it'll get a tick in a timely manner. 2042 */ 2043 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2044 perf_log_throttle(event, 1); 2045 event->hw.interrupts = 0; 2046 } 2047 2048 /* 2049 * The new state must be visible before we turn it on in the hardware: 2050 */ 2051 smp_wmb(); 2052 2053 perf_pmu_disable(event->pmu); 2054 2055 perf_set_shadow_time(event, ctx, tstamp); 2056 2057 perf_log_itrace_start(event); 2058 2059 if (event->pmu->add(event, PERF_EF_START)) { 2060 event->state = PERF_EVENT_STATE_INACTIVE; 2061 event->oncpu = -1; 2062 ret = -EAGAIN; 2063 goto out; 2064 } 2065 2066 event->tstamp_running += tstamp - event->tstamp_stopped; 2067 2068 if (!is_software_event(event)) 2069 cpuctx->active_oncpu++; 2070 if (!ctx->nr_active++) 2071 perf_event_ctx_activate(ctx); 2072 if (event->attr.freq && event->attr.sample_freq) 2073 ctx->nr_freq++; 2074 2075 if (event->attr.exclusive) 2076 cpuctx->exclusive = 1; 2077 2078 out: 2079 perf_pmu_enable(event->pmu); 2080 2081 return ret; 2082 } 2083 2084 static int 2085 group_sched_in(struct perf_event *group_event, 2086 struct perf_cpu_context *cpuctx, 2087 struct perf_event_context *ctx) 2088 { 2089 struct perf_event *event, *partial_group = NULL; 2090 struct pmu *pmu = ctx->pmu; 2091 u64 now = ctx->time; 2092 bool simulate = false; 2093 2094 if (group_event->state == PERF_EVENT_STATE_OFF) 2095 return 0; 2096 2097 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2098 2099 if (event_sched_in(group_event, cpuctx, ctx)) { 2100 pmu->cancel_txn(pmu); 2101 perf_mux_hrtimer_restart(cpuctx); 2102 return -EAGAIN; 2103 } 2104 2105 /* 2106 * Schedule in siblings as one group (if any): 2107 */ 2108 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2109 if (event_sched_in(event, cpuctx, ctx)) { 2110 partial_group = event; 2111 goto group_error; 2112 } 2113 } 2114 2115 if (!pmu->commit_txn(pmu)) 2116 return 0; 2117 2118 group_error: 2119 /* 2120 * Groups can be scheduled in as one unit only, so undo any 2121 * partial group before returning: 2122 * The events up to the failed event are scheduled out normally, 2123 * tstamp_stopped will be updated. 2124 * 2125 * The failed events and the remaining siblings need to have 2126 * their timings updated as if they had gone thru event_sched_in() 2127 * and event_sched_out(). This is required to get consistent timings 2128 * across the group. This also takes care of the case where the group 2129 * could never be scheduled by ensuring tstamp_stopped is set to mark 2130 * the time the event was actually stopped, such that time delta 2131 * calculation in update_event_times() is correct. 2132 */ 2133 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2134 if (event == partial_group) 2135 simulate = true; 2136 2137 if (simulate) { 2138 event->tstamp_running += now - event->tstamp_stopped; 2139 event->tstamp_stopped = now; 2140 } else { 2141 event_sched_out(event, cpuctx, ctx); 2142 } 2143 } 2144 event_sched_out(group_event, cpuctx, ctx); 2145 2146 pmu->cancel_txn(pmu); 2147 2148 perf_mux_hrtimer_restart(cpuctx); 2149 2150 return -EAGAIN; 2151 } 2152 2153 /* 2154 * Work out whether we can put this event group on the CPU now. 2155 */ 2156 static int group_can_go_on(struct perf_event *event, 2157 struct perf_cpu_context *cpuctx, 2158 int can_add_hw) 2159 { 2160 /* 2161 * Groups consisting entirely of software events can always go on. 2162 */ 2163 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2164 return 1; 2165 /* 2166 * If an exclusive group is already on, no other hardware 2167 * events can go on. 2168 */ 2169 if (cpuctx->exclusive) 2170 return 0; 2171 /* 2172 * If this group is exclusive and there are already 2173 * events on the CPU, it can't go on. 2174 */ 2175 if (event->attr.exclusive && cpuctx->active_oncpu) 2176 return 0; 2177 /* 2178 * Otherwise, try to add it if all previous groups were able 2179 * to go on. 2180 */ 2181 return can_add_hw; 2182 } 2183 2184 static void add_event_to_ctx(struct perf_event *event, 2185 struct perf_event_context *ctx) 2186 { 2187 u64 tstamp = perf_event_time(event); 2188 2189 list_add_event(event, ctx); 2190 perf_group_attach(event); 2191 event->tstamp_enabled = tstamp; 2192 event->tstamp_running = tstamp; 2193 event->tstamp_stopped = tstamp; 2194 } 2195 2196 static void ctx_sched_out(struct perf_event_context *ctx, 2197 struct perf_cpu_context *cpuctx, 2198 enum event_type_t event_type); 2199 static void 2200 ctx_sched_in(struct perf_event_context *ctx, 2201 struct perf_cpu_context *cpuctx, 2202 enum event_type_t event_type, 2203 struct task_struct *task); 2204 2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2206 struct perf_event_context *ctx) 2207 { 2208 if (!cpuctx->task_ctx) 2209 return; 2210 2211 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2212 return; 2213 2214 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2215 } 2216 2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2218 struct perf_event_context *ctx, 2219 struct task_struct *task) 2220 { 2221 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2222 if (ctx) 2223 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2224 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2225 if (ctx) 2226 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2227 } 2228 2229 static void ctx_resched(struct perf_cpu_context *cpuctx, 2230 struct perf_event_context *task_ctx) 2231 { 2232 perf_pmu_disable(cpuctx->ctx.pmu); 2233 if (task_ctx) 2234 task_ctx_sched_out(cpuctx, task_ctx); 2235 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2236 perf_event_sched_in(cpuctx, task_ctx, current); 2237 perf_pmu_enable(cpuctx->ctx.pmu); 2238 } 2239 2240 /* 2241 * Cross CPU call to install and enable a performance event 2242 * 2243 * Very similar to remote_function() + event_function() but cannot assume that 2244 * things like ctx->is_active and cpuctx->task_ctx are set. 2245 */ 2246 static int __perf_install_in_context(void *info) 2247 { 2248 struct perf_event *event = info; 2249 struct perf_event_context *ctx = event->ctx; 2250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2251 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2252 bool activate = true; 2253 int ret = 0; 2254 2255 raw_spin_lock(&cpuctx->ctx.lock); 2256 if (ctx->task) { 2257 raw_spin_lock(&ctx->lock); 2258 task_ctx = ctx; 2259 2260 /* If we're on the wrong CPU, try again */ 2261 if (task_cpu(ctx->task) != smp_processor_id()) { 2262 ret = -ESRCH; 2263 goto unlock; 2264 } 2265 2266 /* 2267 * If we're on the right CPU, see if the task we target is 2268 * current, if not we don't have to activate the ctx, a future 2269 * context switch will do that for us. 2270 */ 2271 if (ctx->task != current) 2272 activate = false; 2273 else 2274 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2275 2276 } else if (task_ctx) { 2277 raw_spin_lock(&task_ctx->lock); 2278 } 2279 2280 if (activate) { 2281 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2282 add_event_to_ctx(event, ctx); 2283 ctx_resched(cpuctx, task_ctx); 2284 } else { 2285 add_event_to_ctx(event, ctx); 2286 } 2287 2288 unlock: 2289 perf_ctx_unlock(cpuctx, task_ctx); 2290 2291 return ret; 2292 } 2293 2294 /* 2295 * Attach a performance event to a context. 2296 * 2297 * Very similar to event_function_call, see comment there. 2298 */ 2299 static void 2300 perf_install_in_context(struct perf_event_context *ctx, 2301 struct perf_event *event, 2302 int cpu) 2303 { 2304 struct task_struct *task = READ_ONCE(ctx->task); 2305 2306 lockdep_assert_held(&ctx->mutex); 2307 2308 if (event->cpu != -1) 2309 event->cpu = cpu; 2310 2311 /* 2312 * Ensures that if we can observe event->ctx, both the event and ctx 2313 * will be 'complete'. See perf_iterate_sb_cpu(). 2314 */ 2315 smp_store_release(&event->ctx, ctx); 2316 2317 if (!task) { 2318 cpu_function_call(cpu, __perf_install_in_context, event); 2319 return; 2320 } 2321 2322 /* 2323 * Should not happen, we validate the ctx is still alive before calling. 2324 */ 2325 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2326 return; 2327 2328 /* 2329 * Installing events is tricky because we cannot rely on ctx->is_active 2330 * to be set in case this is the nr_events 0 -> 1 transition. 2331 */ 2332 again: 2333 /* 2334 * Cannot use task_function_call() because we need to run on the task's 2335 * CPU regardless of whether its current or not. 2336 */ 2337 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2338 return; 2339 2340 raw_spin_lock_irq(&ctx->lock); 2341 task = ctx->task; 2342 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2343 /* 2344 * Cannot happen because we already checked above (which also 2345 * cannot happen), and we hold ctx->mutex, which serializes us 2346 * against perf_event_exit_task_context(). 2347 */ 2348 raw_spin_unlock_irq(&ctx->lock); 2349 return; 2350 } 2351 raw_spin_unlock_irq(&ctx->lock); 2352 /* 2353 * Since !ctx->is_active doesn't mean anything, we must IPI 2354 * unconditionally. 2355 */ 2356 goto again; 2357 } 2358 2359 /* 2360 * Put a event into inactive state and update time fields. 2361 * Enabling the leader of a group effectively enables all 2362 * the group members that aren't explicitly disabled, so we 2363 * have to update their ->tstamp_enabled also. 2364 * Note: this works for group members as well as group leaders 2365 * since the non-leader members' sibling_lists will be empty. 2366 */ 2367 static void __perf_event_mark_enabled(struct perf_event *event) 2368 { 2369 struct perf_event *sub; 2370 u64 tstamp = perf_event_time(event); 2371 2372 event->state = PERF_EVENT_STATE_INACTIVE; 2373 event->tstamp_enabled = tstamp - event->total_time_enabled; 2374 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2375 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2376 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2377 } 2378 } 2379 2380 /* 2381 * Cross CPU call to enable a performance event 2382 */ 2383 static void __perf_event_enable(struct perf_event *event, 2384 struct perf_cpu_context *cpuctx, 2385 struct perf_event_context *ctx, 2386 void *info) 2387 { 2388 struct perf_event *leader = event->group_leader; 2389 struct perf_event_context *task_ctx; 2390 2391 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2392 event->state <= PERF_EVENT_STATE_ERROR) 2393 return; 2394 2395 if (ctx->is_active) 2396 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2397 2398 __perf_event_mark_enabled(event); 2399 2400 if (!ctx->is_active) 2401 return; 2402 2403 if (!event_filter_match(event)) { 2404 if (is_cgroup_event(event)) 2405 perf_cgroup_defer_enabled(event); 2406 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2407 return; 2408 } 2409 2410 /* 2411 * If the event is in a group and isn't the group leader, 2412 * then don't put it on unless the group is on. 2413 */ 2414 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2415 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2416 return; 2417 } 2418 2419 task_ctx = cpuctx->task_ctx; 2420 if (ctx->task) 2421 WARN_ON_ONCE(task_ctx != ctx); 2422 2423 ctx_resched(cpuctx, task_ctx); 2424 } 2425 2426 /* 2427 * Enable a event. 2428 * 2429 * If event->ctx is a cloned context, callers must make sure that 2430 * every task struct that event->ctx->task could possibly point to 2431 * remains valid. This condition is satisfied when called through 2432 * perf_event_for_each_child or perf_event_for_each as described 2433 * for perf_event_disable. 2434 */ 2435 static void _perf_event_enable(struct perf_event *event) 2436 { 2437 struct perf_event_context *ctx = event->ctx; 2438 2439 raw_spin_lock_irq(&ctx->lock); 2440 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2441 event->state < PERF_EVENT_STATE_ERROR) { 2442 raw_spin_unlock_irq(&ctx->lock); 2443 return; 2444 } 2445 2446 /* 2447 * If the event is in error state, clear that first. 2448 * 2449 * That way, if we see the event in error state below, we know that it 2450 * has gone back into error state, as distinct from the task having 2451 * been scheduled away before the cross-call arrived. 2452 */ 2453 if (event->state == PERF_EVENT_STATE_ERROR) 2454 event->state = PERF_EVENT_STATE_OFF; 2455 raw_spin_unlock_irq(&ctx->lock); 2456 2457 event_function_call(event, __perf_event_enable, NULL); 2458 } 2459 2460 /* 2461 * See perf_event_disable(); 2462 */ 2463 void perf_event_enable(struct perf_event *event) 2464 { 2465 struct perf_event_context *ctx; 2466 2467 ctx = perf_event_ctx_lock(event); 2468 _perf_event_enable(event); 2469 perf_event_ctx_unlock(event, ctx); 2470 } 2471 EXPORT_SYMBOL_GPL(perf_event_enable); 2472 2473 struct stop_event_data { 2474 struct perf_event *event; 2475 unsigned int restart; 2476 }; 2477 2478 static int __perf_event_stop(void *info) 2479 { 2480 struct stop_event_data *sd = info; 2481 struct perf_event *event = sd->event; 2482 2483 /* if it's already INACTIVE, do nothing */ 2484 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2485 return 0; 2486 2487 /* matches smp_wmb() in event_sched_in() */ 2488 smp_rmb(); 2489 2490 /* 2491 * There is a window with interrupts enabled before we get here, 2492 * so we need to check again lest we try to stop another CPU's event. 2493 */ 2494 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2495 return -EAGAIN; 2496 2497 event->pmu->stop(event, PERF_EF_UPDATE); 2498 2499 /* 2500 * May race with the actual stop (through perf_pmu_output_stop()), 2501 * but it is only used for events with AUX ring buffer, and such 2502 * events will refuse to restart because of rb::aux_mmap_count==0, 2503 * see comments in perf_aux_output_begin(). 2504 * 2505 * Since this is happening on a event-local CPU, no trace is lost 2506 * while restarting. 2507 */ 2508 if (sd->restart) 2509 event->pmu->start(event, 0); 2510 2511 return 0; 2512 } 2513 2514 static int perf_event_stop(struct perf_event *event, int restart) 2515 { 2516 struct stop_event_data sd = { 2517 .event = event, 2518 .restart = restart, 2519 }; 2520 int ret = 0; 2521 2522 do { 2523 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2524 return 0; 2525 2526 /* matches smp_wmb() in event_sched_in() */ 2527 smp_rmb(); 2528 2529 /* 2530 * We only want to restart ACTIVE events, so if the event goes 2531 * inactive here (event->oncpu==-1), there's nothing more to do; 2532 * fall through with ret==-ENXIO. 2533 */ 2534 ret = cpu_function_call(READ_ONCE(event->oncpu), 2535 __perf_event_stop, &sd); 2536 } while (ret == -EAGAIN); 2537 2538 return ret; 2539 } 2540 2541 /* 2542 * In order to contain the amount of racy and tricky in the address filter 2543 * configuration management, it is a two part process: 2544 * 2545 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2546 * we update the addresses of corresponding vmas in 2547 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2548 * (p2) when an event is scheduled in (pmu::add), it calls 2549 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2550 * if the generation has changed since the previous call. 2551 * 2552 * If (p1) happens while the event is active, we restart it to force (p2). 2553 * 2554 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2555 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2556 * ioctl; 2557 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2558 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2559 * for reading; 2560 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2561 * of exec. 2562 */ 2563 void perf_event_addr_filters_sync(struct perf_event *event) 2564 { 2565 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2566 2567 if (!has_addr_filter(event)) 2568 return; 2569 2570 raw_spin_lock(&ifh->lock); 2571 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2572 event->pmu->addr_filters_sync(event); 2573 event->hw.addr_filters_gen = event->addr_filters_gen; 2574 } 2575 raw_spin_unlock(&ifh->lock); 2576 } 2577 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2578 2579 static int _perf_event_refresh(struct perf_event *event, int refresh) 2580 { 2581 /* 2582 * not supported on inherited events 2583 */ 2584 if (event->attr.inherit || !is_sampling_event(event)) 2585 return -EINVAL; 2586 2587 atomic_add(refresh, &event->event_limit); 2588 _perf_event_enable(event); 2589 2590 return 0; 2591 } 2592 2593 /* 2594 * See perf_event_disable() 2595 */ 2596 int perf_event_refresh(struct perf_event *event, int refresh) 2597 { 2598 struct perf_event_context *ctx; 2599 int ret; 2600 2601 ctx = perf_event_ctx_lock(event); 2602 ret = _perf_event_refresh(event, refresh); 2603 perf_event_ctx_unlock(event, ctx); 2604 2605 return ret; 2606 } 2607 EXPORT_SYMBOL_GPL(perf_event_refresh); 2608 2609 static void ctx_sched_out(struct perf_event_context *ctx, 2610 struct perf_cpu_context *cpuctx, 2611 enum event_type_t event_type) 2612 { 2613 int is_active = ctx->is_active; 2614 struct perf_event *event; 2615 2616 lockdep_assert_held(&ctx->lock); 2617 2618 if (likely(!ctx->nr_events)) { 2619 /* 2620 * See __perf_remove_from_context(). 2621 */ 2622 WARN_ON_ONCE(ctx->is_active); 2623 if (ctx->task) 2624 WARN_ON_ONCE(cpuctx->task_ctx); 2625 return; 2626 } 2627 2628 ctx->is_active &= ~event_type; 2629 if (!(ctx->is_active & EVENT_ALL)) 2630 ctx->is_active = 0; 2631 2632 if (ctx->task) { 2633 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2634 if (!ctx->is_active) 2635 cpuctx->task_ctx = NULL; 2636 } 2637 2638 /* 2639 * Always update time if it was set; not only when it changes. 2640 * Otherwise we can 'forget' to update time for any but the last 2641 * context we sched out. For example: 2642 * 2643 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2644 * ctx_sched_out(.event_type = EVENT_PINNED) 2645 * 2646 * would only update time for the pinned events. 2647 */ 2648 if (is_active & EVENT_TIME) { 2649 /* update (and stop) ctx time */ 2650 update_context_time(ctx); 2651 update_cgrp_time_from_cpuctx(cpuctx); 2652 } 2653 2654 is_active ^= ctx->is_active; /* changed bits */ 2655 2656 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2657 return; 2658 2659 perf_pmu_disable(ctx->pmu); 2660 if (is_active & EVENT_PINNED) { 2661 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2662 group_sched_out(event, cpuctx, ctx); 2663 } 2664 2665 if (is_active & EVENT_FLEXIBLE) { 2666 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2667 group_sched_out(event, cpuctx, ctx); 2668 } 2669 perf_pmu_enable(ctx->pmu); 2670 } 2671 2672 /* 2673 * Test whether two contexts are equivalent, i.e. whether they have both been 2674 * cloned from the same version of the same context. 2675 * 2676 * Equivalence is measured using a generation number in the context that is 2677 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2678 * and list_del_event(). 2679 */ 2680 static int context_equiv(struct perf_event_context *ctx1, 2681 struct perf_event_context *ctx2) 2682 { 2683 lockdep_assert_held(&ctx1->lock); 2684 lockdep_assert_held(&ctx2->lock); 2685 2686 /* Pinning disables the swap optimization */ 2687 if (ctx1->pin_count || ctx2->pin_count) 2688 return 0; 2689 2690 /* If ctx1 is the parent of ctx2 */ 2691 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2692 return 1; 2693 2694 /* If ctx2 is the parent of ctx1 */ 2695 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2696 return 1; 2697 2698 /* 2699 * If ctx1 and ctx2 have the same parent; we flatten the parent 2700 * hierarchy, see perf_event_init_context(). 2701 */ 2702 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2703 ctx1->parent_gen == ctx2->parent_gen) 2704 return 1; 2705 2706 /* Unmatched */ 2707 return 0; 2708 } 2709 2710 static void __perf_event_sync_stat(struct perf_event *event, 2711 struct perf_event *next_event) 2712 { 2713 u64 value; 2714 2715 if (!event->attr.inherit_stat) 2716 return; 2717 2718 /* 2719 * Update the event value, we cannot use perf_event_read() 2720 * because we're in the middle of a context switch and have IRQs 2721 * disabled, which upsets smp_call_function_single(), however 2722 * we know the event must be on the current CPU, therefore we 2723 * don't need to use it. 2724 */ 2725 switch (event->state) { 2726 case PERF_EVENT_STATE_ACTIVE: 2727 event->pmu->read(event); 2728 /* fall-through */ 2729 2730 case PERF_EVENT_STATE_INACTIVE: 2731 update_event_times(event); 2732 break; 2733 2734 default: 2735 break; 2736 } 2737 2738 /* 2739 * In order to keep per-task stats reliable we need to flip the event 2740 * values when we flip the contexts. 2741 */ 2742 value = local64_read(&next_event->count); 2743 value = local64_xchg(&event->count, value); 2744 local64_set(&next_event->count, value); 2745 2746 swap(event->total_time_enabled, next_event->total_time_enabled); 2747 swap(event->total_time_running, next_event->total_time_running); 2748 2749 /* 2750 * Since we swizzled the values, update the user visible data too. 2751 */ 2752 perf_event_update_userpage(event); 2753 perf_event_update_userpage(next_event); 2754 } 2755 2756 static void perf_event_sync_stat(struct perf_event_context *ctx, 2757 struct perf_event_context *next_ctx) 2758 { 2759 struct perf_event *event, *next_event; 2760 2761 if (!ctx->nr_stat) 2762 return; 2763 2764 update_context_time(ctx); 2765 2766 event = list_first_entry(&ctx->event_list, 2767 struct perf_event, event_entry); 2768 2769 next_event = list_first_entry(&next_ctx->event_list, 2770 struct perf_event, event_entry); 2771 2772 while (&event->event_entry != &ctx->event_list && 2773 &next_event->event_entry != &next_ctx->event_list) { 2774 2775 __perf_event_sync_stat(event, next_event); 2776 2777 event = list_next_entry(event, event_entry); 2778 next_event = list_next_entry(next_event, event_entry); 2779 } 2780 } 2781 2782 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2783 struct task_struct *next) 2784 { 2785 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2786 struct perf_event_context *next_ctx; 2787 struct perf_event_context *parent, *next_parent; 2788 struct perf_cpu_context *cpuctx; 2789 int do_switch = 1; 2790 2791 if (likely(!ctx)) 2792 return; 2793 2794 cpuctx = __get_cpu_context(ctx); 2795 if (!cpuctx->task_ctx) 2796 return; 2797 2798 rcu_read_lock(); 2799 next_ctx = next->perf_event_ctxp[ctxn]; 2800 if (!next_ctx) 2801 goto unlock; 2802 2803 parent = rcu_dereference(ctx->parent_ctx); 2804 next_parent = rcu_dereference(next_ctx->parent_ctx); 2805 2806 /* If neither context have a parent context; they cannot be clones. */ 2807 if (!parent && !next_parent) 2808 goto unlock; 2809 2810 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2811 /* 2812 * Looks like the two contexts are clones, so we might be 2813 * able to optimize the context switch. We lock both 2814 * contexts and check that they are clones under the 2815 * lock (including re-checking that neither has been 2816 * uncloned in the meantime). It doesn't matter which 2817 * order we take the locks because no other cpu could 2818 * be trying to lock both of these tasks. 2819 */ 2820 raw_spin_lock(&ctx->lock); 2821 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2822 if (context_equiv(ctx, next_ctx)) { 2823 WRITE_ONCE(ctx->task, next); 2824 WRITE_ONCE(next_ctx->task, task); 2825 2826 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2827 2828 /* 2829 * RCU_INIT_POINTER here is safe because we've not 2830 * modified the ctx and the above modification of 2831 * ctx->task and ctx->task_ctx_data are immaterial 2832 * since those values are always verified under 2833 * ctx->lock which we're now holding. 2834 */ 2835 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2836 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2837 2838 do_switch = 0; 2839 2840 perf_event_sync_stat(ctx, next_ctx); 2841 } 2842 raw_spin_unlock(&next_ctx->lock); 2843 raw_spin_unlock(&ctx->lock); 2844 } 2845 unlock: 2846 rcu_read_unlock(); 2847 2848 if (do_switch) { 2849 raw_spin_lock(&ctx->lock); 2850 task_ctx_sched_out(cpuctx, ctx); 2851 raw_spin_unlock(&ctx->lock); 2852 } 2853 } 2854 2855 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2856 2857 void perf_sched_cb_dec(struct pmu *pmu) 2858 { 2859 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2860 2861 this_cpu_dec(perf_sched_cb_usages); 2862 2863 if (!--cpuctx->sched_cb_usage) 2864 list_del(&cpuctx->sched_cb_entry); 2865 } 2866 2867 2868 void perf_sched_cb_inc(struct pmu *pmu) 2869 { 2870 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2871 2872 if (!cpuctx->sched_cb_usage++) 2873 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2874 2875 this_cpu_inc(perf_sched_cb_usages); 2876 } 2877 2878 /* 2879 * This function provides the context switch callback to the lower code 2880 * layer. It is invoked ONLY when the context switch callback is enabled. 2881 * 2882 * This callback is relevant even to per-cpu events; for example multi event 2883 * PEBS requires this to provide PID/TID information. This requires we flush 2884 * all queued PEBS records before we context switch to a new task. 2885 */ 2886 static void perf_pmu_sched_task(struct task_struct *prev, 2887 struct task_struct *next, 2888 bool sched_in) 2889 { 2890 struct perf_cpu_context *cpuctx; 2891 struct pmu *pmu; 2892 2893 if (prev == next) 2894 return; 2895 2896 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2897 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */ 2898 2899 if (WARN_ON_ONCE(!pmu->sched_task)) 2900 continue; 2901 2902 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2903 perf_pmu_disable(pmu); 2904 2905 pmu->sched_task(cpuctx->task_ctx, sched_in); 2906 2907 perf_pmu_enable(pmu); 2908 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2909 } 2910 } 2911 2912 static void perf_event_switch(struct task_struct *task, 2913 struct task_struct *next_prev, bool sched_in); 2914 2915 #define for_each_task_context_nr(ctxn) \ 2916 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2917 2918 /* 2919 * Called from scheduler to remove the events of the current task, 2920 * with interrupts disabled. 2921 * 2922 * We stop each event and update the event value in event->count. 2923 * 2924 * This does not protect us against NMI, but disable() 2925 * sets the disabled bit in the control field of event _before_ 2926 * accessing the event control register. If a NMI hits, then it will 2927 * not restart the event. 2928 */ 2929 void __perf_event_task_sched_out(struct task_struct *task, 2930 struct task_struct *next) 2931 { 2932 int ctxn; 2933 2934 if (__this_cpu_read(perf_sched_cb_usages)) 2935 perf_pmu_sched_task(task, next, false); 2936 2937 if (atomic_read(&nr_switch_events)) 2938 perf_event_switch(task, next, false); 2939 2940 for_each_task_context_nr(ctxn) 2941 perf_event_context_sched_out(task, ctxn, next); 2942 2943 /* 2944 * if cgroup events exist on this CPU, then we need 2945 * to check if we have to switch out PMU state. 2946 * cgroup event are system-wide mode only 2947 */ 2948 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2949 perf_cgroup_sched_out(task, next); 2950 } 2951 2952 /* 2953 * Called with IRQs disabled 2954 */ 2955 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2956 enum event_type_t event_type) 2957 { 2958 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2959 } 2960 2961 static void 2962 ctx_pinned_sched_in(struct perf_event_context *ctx, 2963 struct perf_cpu_context *cpuctx) 2964 { 2965 struct perf_event *event; 2966 2967 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2968 if (event->state <= PERF_EVENT_STATE_OFF) 2969 continue; 2970 if (!event_filter_match(event)) 2971 continue; 2972 2973 /* may need to reset tstamp_enabled */ 2974 if (is_cgroup_event(event)) 2975 perf_cgroup_mark_enabled(event, ctx); 2976 2977 if (group_can_go_on(event, cpuctx, 1)) 2978 group_sched_in(event, cpuctx, ctx); 2979 2980 /* 2981 * If this pinned group hasn't been scheduled, 2982 * put it in error state. 2983 */ 2984 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2985 update_group_times(event); 2986 event->state = PERF_EVENT_STATE_ERROR; 2987 } 2988 } 2989 } 2990 2991 static void 2992 ctx_flexible_sched_in(struct perf_event_context *ctx, 2993 struct perf_cpu_context *cpuctx) 2994 { 2995 struct perf_event *event; 2996 int can_add_hw = 1; 2997 2998 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2999 /* Ignore events in OFF or ERROR state */ 3000 if (event->state <= PERF_EVENT_STATE_OFF) 3001 continue; 3002 /* 3003 * Listen to the 'cpu' scheduling filter constraint 3004 * of events: 3005 */ 3006 if (!event_filter_match(event)) 3007 continue; 3008 3009 /* may need to reset tstamp_enabled */ 3010 if (is_cgroup_event(event)) 3011 perf_cgroup_mark_enabled(event, ctx); 3012 3013 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3014 if (group_sched_in(event, cpuctx, ctx)) 3015 can_add_hw = 0; 3016 } 3017 } 3018 } 3019 3020 static void 3021 ctx_sched_in(struct perf_event_context *ctx, 3022 struct perf_cpu_context *cpuctx, 3023 enum event_type_t event_type, 3024 struct task_struct *task) 3025 { 3026 int is_active = ctx->is_active; 3027 u64 now; 3028 3029 lockdep_assert_held(&ctx->lock); 3030 3031 if (likely(!ctx->nr_events)) 3032 return; 3033 3034 ctx->is_active |= (event_type | EVENT_TIME); 3035 if (ctx->task) { 3036 if (!is_active) 3037 cpuctx->task_ctx = ctx; 3038 else 3039 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3040 } 3041 3042 is_active ^= ctx->is_active; /* changed bits */ 3043 3044 if (is_active & EVENT_TIME) { 3045 /* start ctx time */ 3046 now = perf_clock(); 3047 ctx->timestamp = now; 3048 perf_cgroup_set_timestamp(task, ctx); 3049 } 3050 3051 /* 3052 * First go through the list and put on any pinned groups 3053 * in order to give them the best chance of going on. 3054 */ 3055 if (is_active & EVENT_PINNED) 3056 ctx_pinned_sched_in(ctx, cpuctx); 3057 3058 /* Then walk through the lower prio flexible groups */ 3059 if (is_active & EVENT_FLEXIBLE) 3060 ctx_flexible_sched_in(ctx, cpuctx); 3061 } 3062 3063 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3064 enum event_type_t event_type, 3065 struct task_struct *task) 3066 { 3067 struct perf_event_context *ctx = &cpuctx->ctx; 3068 3069 ctx_sched_in(ctx, cpuctx, event_type, task); 3070 } 3071 3072 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3073 struct task_struct *task) 3074 { 3075 struct perf_cpu_context *cpuctx; 3076 3077 cpuctx = __get_cpu_context(ctx); 3078 if (cpuctx->task_ctx == ctx) 3079 return; 3080 3081 perf_ctx_lock(cpuctx, ctx); 3082 perf_pmu_disable(ctx->pmu); 3083 /* 3084 * We want to keep the following priority order: 3085 * cpu pinned (that don't need to move), task pinned, 3086 * cpu flexible, task flexible. 3087 */ 3088 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3089 perf_event_sched_in(cpuctx, ctx, task); 3090 perf_pmu_enable(ctx->pmu); 3091 perf_ctx_unlock(cpuctx, ctx); 3092 } 3093 3094 /* 3095 * Called from scheduler to add the events of the current task 3096 * with interrupts disabled. 3097 * 3098 * We restore the event value and then enable it. 3099 * 3100 * This does not protect us against NMI, but enable() 3101 * sets the enabled bit in the control field of event _before_ 3102 * accessing the event control register. If a NMI hits, then it will 3103 * keep the event running. 3104 */ 3105 void __perf_event_task_sched_in(struct task_struct *prev, 3106 struct task_struct *task) 3107 { 3108 struct perf_event_context *ctx; 3109 int ctxn; 3110 3111 /* 3112 * If cgroup events exist on this CPU, then we need to check if we have 3113 * to switch in PMU state; cgroup event are system-wide mode only. 3114 * 3115 * Since cgroup events are CPU events, we must schedule these in before 3116 * we schedule in the task events. 3117 */ 3118 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3119 perf_cgroup_sched_in(prev, task); 3120 3121 for_each_task_context_nr(ctxn) { 3122 ctx = task->perf_event_ctxp[ctxn]; 3123 if (likely(!ctx)) 3124 continue; 3125 3126 perf_event_context_sched_in(ctx, task); 3127 } 3128 3129 if (atomic_read(&nr_switch_events)) 3130 perf_event_switch(task, prev, true); 3131 3132 if (__this_cpu_read(perf_sched_cb_usages)) 3133 perf_pmu_sched_task(prev, task, true); 3134 } 3135 3136 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3137 { 3138 u64 frequency = event->attr.sample_freq; 3139 u64 sec = NSEC_PER_SEC; 3140 u64 divisor, dividend; 3141 3142 int count_fls, nsec_fls, frequency_fls, sec_fls; 3143 3144 count_fls = fls64(count); 3145 nsec_fls = fls64(nsec); 3146 frequency_fls = fls64(frequency); 3147 sec_fls = 30; 3148 3149 /* 3150 * We got @count in @nsec, with a target of sample_freq HZ 3151 * the target period becomes: 3152 * 3153 * @count * 10^9 3154 * period = ------------------- 3155 * @nsec * sample_freq 3156 * 3157 */ 3158 3159 /* 3160 * Reduce accuracy by one bit such that @a and @b converge 3161 * to a similar magnitude. 3162 */ 3163 #define REDUCE_FLS(a, b) \ 3164 do { \ 3165 if (a##_fls > b##_fls) { \ 3166 a >>= 1; \ 3167 a##_fls--; \ 3168 } else { \ 3169 b >>= 1; \ 3170 b##_fls--; \ 3171 } \ 3172 } while (0) 3173 3174 /* 3175 * Reduce accuracy until either term fits in a u64, then proceed with 3176 * the other, so that finally we can do a u64/u64 division. 3177 */ 3178 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3179 REDUCE_FLS(nsec, frequency); 3180 REDUCE_FLS(sec, count); 3181 } 3182 3183 if (count_fls + sec_fls > 64) { 3184 divisor = nsec * frequency; 3185 3186 while (count_fls + sec_fls > 64) { 3187 REDUCE_FLS(count, sec); 3188 divisor >>= 1; 3189 } 3190 3191 dividend = count * sec; 3192 } else { 3193 dividend = count * sec; 3194 3195 while (nsec_fls + frequency_fls > 64) { 3196 REDUCE_FLS(nsec, frequency); 3197 dividend >>= 1; 3198 } 3199 3200 divisor = nsec * frequency; 3201 } 3202 3203 if (!divisor) 3204 return dividend; 3205 3206 return div64_u64(dividend, divisor); 3207 } 3208 3209 static DEFINE_PER_CPU(int, perf_throttled_count); 3210 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3211 3212 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3213 { 3214 struct hw_perf_event *hwc = &event->hw; 3215 s64 period, sample_period; 3216 s64 delta; 3217 3218 period = perf_calculate_period(event, nsec, count); 3219 3220 delta = (s64)(period - hwc->sample_period); 3221 delta = (delta + 7) / 8; /* low pass filter */ 3222 3223 sample_period = hwc->sample_period + delta; 3224 3225 if (!sample_period) 3226 sample_period = 1; 3227 3228 hwc->sample_period = sample_period; 3229 3230 if (local64_read(&hwc->period_left) > 8*sample_period) { 3231 if (disable) 3232 event->pmu->stop(event, PERF_EF_UPDATE); 3233 3234 local64_set(&hwc->period_left, 0); 3235 3236 if (disable) 3237 event->pmu->start(event, PERF_EF_RELOAD); 3238 } 3239 } 3240 3241 /* 3242 * combine freq adjustment with unthrottling to avoid two passes over the 3243 * events. At the same time, make sure, having freq events does not change 3244 * the rate of unthrottling as that would introduce bias. 3245 */ 3246 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3247 int needs_unthr) 3248 { 3249 struct perf_event *event; 3250 struct hw_perf_event *hwc; 3251 u64 now, period = TICK_NSEC; 3252 s64 delta; 3253 3254 /* 3255 * only need to iterate over all events iff: 3256 * - context have events in frequency mode (needs freq adjust) 3257 * - there are events to unthrottle on this cpu 3258 */ 3259 if (!(ctx->nr_freq || needs_unthr)) 3260 return; 3261 3262 raw_spin_lock(&ctx->lock); 3263 perf_pmu_disable(ctx->pmu); 3264 3265 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3266 if (event->state != PERF_EVENT_STATE_ACTIVE) 3267 continue; 3268 3269 if (!event_filter_match(event)) 3270 continue; 3271 3272 perf_pmu_disable(event->pmu); 3273 3274 hwc = &event->hw; 3275 3276 if (hwc->interrupts == MAX_INTERRUPTS) { 3277 hwc->interrupts = 0; 3278 perf_log_throttle(event, 1); 3279 event->pmu->start(event, 0); 3280 } 3281 3282 if (!event->attr.freq || !event->attr.sample_freq) 3283 goto next; 3284 3285 /* 3286 * stop the event and update event->count 3287 */ 3288 event->pmu->stop(event, PERF_EF_UPDATE); 3289 3290 now = local64_read(&event->count); 3291 delta = now - hwc->freq_count_stamp; 3292 hwc->freq_count_stamp = now; 3293 3294 /* 3295 * restart the event 3296 * reload only if value has changed 3297 * we have stopped the event so tell that 3298 * to perf_adjust_period() to avoid stopping it 3299 * twice. 3300 */ 3301 if (delta > 0) 3302 perf_adjust_period(event, period, delta, false); 3303 3304 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3305 next: 3306 perf_pmu_enable(event->pmu); 3307 } 3308 3309 perf_pmu_enable(ctx->pmu); 3310 raw_spin_unlock(&ctx->lock); 3311 } 3312 3313 /* 3314 * Round-robin a context's events: 3315 */ 3316 static void rotate_ctx(struct perf_event_context *ctx) 3317 { 3318 /* 3319 * Rotate the first entry last of non-pinned groups. Rotation might be 3320 * disabled by the inheritance code. 3321 */ 3322 if (!ctx->rotate_disable) 3323 list_rotate_left(&ctx->flexible_groups); 3324 } 3325 3326 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3327 { 3328 struct perf_event_context *ctx = NULL; 3329 int rotate = 0; 3330 3331 if (cpuctx->ctx.nr_events) { 3332 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3333 rotate = 1; 3334 } 3335 3336 ctx = cpuctx->task_ctx; 3337 if (ctx && ctx->nr_events) { 3338 if (ctx->nr_events != ctx->nr_active) 3339 rotate = 1; 3340 } 3341 3342 if (!rotate) 3343 goto done; 3344 3345 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3346 perf_pmu_disable(cpuctx->ctx.pmu); 3347 3348 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3349 if (ctx) 3350 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3351 3352 rotate_ctx(&cpuctx->ctx); 3353 if (ctx) 3354 rotate_ctx(ctx); 3355 3356 perf_event_sched_in(cpuctx, ctx, current); 3357 3358 perf_pmu_enable(cpuctx->ctx.pmu); 3359 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3360 done: 3361 3362 return rotate; 3363 } 3364 3365 void perf_event_task_tick(void) 3366 { 3367 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3368 struct perf_event_context *ctx, *tmp; 3369 int throttled; 3370 3371 WARN_ON(!irqs_disabled()); 3372 3373 __this_cpu_inc(perf_throttled_seq); 3374 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3375 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3376 3377 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3378 perf_adjust_freq_unthr_context(ctx, throttled); 3379 } 3380 3381 static int event_enable_on_exec(struct perf_event *event, 3382 struct perf_event_context *ctx) 3383 { 3384 if (!event->attr.enable_on_exec) 3385 return 0; 3386 3387 event->attr.enable_on_exec = 0; 3388 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3389 return 0; 3390 3391 __perf_event_mark_enabled(event); 3392 3393 return 1; 3394 } 3395 3396 /* 3397 * Enable all of a task's events that have been marked enable-on-exec. 3398 * This expects task == current. 3399 */ 3400 static void perf_event_enable_on_exec(int ctxn) 3401 { 3402 struct perf_event_context *ctx, *clone_ctx = NULL; 3403 struct perf_cpu_context *cpuctx; 3404 struct perf_event *event; 3405 unsigned long flags; 3406 int enabled = 0; 3407 3408 local_irq_save(flags); 3409 ctx = current->perf_event_ctxp[ctxn]; 3410 if (!ctx || !ctx->nr_events) 3411 goto out; 3412 3413 cpuctx = __get_cpu_context(ctx); 3414 perf_ctx_lock(cpuctx, ctx); 3415 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3416 list_for_each_entry(event, &ctx->event_list, event_entry) 3417 enabled |= event_enable_on_exec(event, ctx); 3418 3419 /* 3420 * Unclone and reschedule this context if we enabled any event. 3421 */ 3422 if (enabled) { 3423 clone_ctx = unclone_ctx(ctx); 3424 ctx_resched(cpuctx, ctx); 3425 } 3426 perf_ctx_unlock(cpuctx, ctx); 3427 3428 out: 3429 local_irq_restore(flags); 3430 3431 if (clone_ctx) 3432 put_ctx(clone_ctx); 3433 } 3434 3435 struct perf_read_data { 3436 struct perf_event *event; 3437 bool group; 3438 int ret; 3439 }; 3440 3441 static int find_cpu_to_read(struct perf_event *event, int local_cpu) 3442 { 3443 int event_cpu = event->oncpu; 3444 u16 local_pkg, event_pkg; 3445 3446 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3447 event_pkg = topology_physical_package_id(event_cpu); 3448 local_pkg = topology_physical_package_id(local_cpu); 3449 3450 if (event_pkg == local_pkg) 3451 return local_cpu; 3452 } 3453 3454 return event_cpu; 3455 } 3456 3457 /* 3458 * Cross CPU call to read the hardware event 3459 */ 3460 static void __perf_event_read(void *info) 3461 { 3462 struct perf_read_data *data = info; 3463 struct perf_event *sub, *event = data->event; 3464 struct perf_event_context *ctx = event->ctx; 3465 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3466 struct pmu *pmu = event->pmu; 3467 3468 /* 3469 * If this is a task context, we need to check whether it is 3470 * the current task context of this cpu. If not it has been 3471 * scheduled out before the smp call arrived. In that case 3472 * event->count would have been updated to a recent sample 3473 * when the event was scheduled out. 3474 */ 3475 if (ctx->task && cpuctx->task_ctx != ctx) 3476 return; 3477 3478 raw_spin_lock(&ctx->lock); 3479 if (ctx->is_active) { 3480 update_context_time(ctx); 3481 update_cgrp_time_from_event(event); 3482 } 3483 3484 update_event_times(event); 3485 if (event->state != PERF_EVENT_STATE_ACTIVE) 3486 goto unlock; 3487 3488 if (!data->group) { 3489 pmu->read(event); 3490 data->ret = 0; 3491 goto unlock; 3492 } 3493 3494 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3495 3496 pmu->read(event); 3497 3498 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3499 update_event_times(sub); 3500 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3501 /* 3502 * Use sibling's PMU rather than @event's since 3503 * sibling could be on different (eg: software) PMU. 3504 */ 3505 sub->pmu->read(sub); 3506 } 3507 } 3508 3509 data->ret = pmu->commit_txn(pmu); 3510 3511 unlock: 3512 raw_spin_unlock(&ctx->lock); 3513 } 3514 3515 static inline u64 perf_event_count(struct perf_event *event) 3516 { 3517 if (event->pmu->count) 3518 return event->pmu->count(event); 3519 3520 return __perf_event_count(event); 3521 } 3522 3523 /* 3524 * NMI-safe method to read a local event, that is an event that 3525 * is: 3526 * - either for the current task, or for this CPU 3527 * - does not have inherit set, for inherited task events 3528 * will not be local and we cannot read them atomically 3529 * - must not have a pmu::count method 3530 */ 3531 u64 perf_event_read_local(struct perf_event *event) 3532 { 3533 unsigned long flags; 3534 u64 val; 3535 3536 /* 3537 * Disabling interrupts avoids all counter scheduling (context 3538 * switches, timer based rotation and IPIs). 3539 */ 3540 local_irq_save(flags); 3541 3542 /* If this is a per-task event, it must be for current */ 3543 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3544 event->hw.target != current); 3545 3546 /* If this is a per-CPU event, it must be for this CPU */ 3547 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3548 event->cpu != smp_processor_id()); 3549 3550 /* 3551 * It must not be an event with inherit set, we cannot read 3552 * all child counters from atomic context. 3553 */ 3554 WARN_ON_ONCE(event->attr.inherit); 3555 3556 /* 3557 * It must not have a pmu::count method, those are not 3558 * NMI safe. 3559 */ 3560 WARN_ON_ONCE(event->pmu->count); 3561 3562 /* 3563 * If the event is currently on this CPU, its either a per-task event, 3564 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3565 * oncpu == -1). 3566 */ 3567 if (event->oncpu == smp_processor_id()) 3568 event->pmu->read(event); 3569 3570 val = local64_read(&event->count); 3571 local_irq_restore(flags); 3572 3573 return val; 3574 } 3575 3576 static int perf_event_read(struct perf_event *event, bool group) 3577 { 3578 int ret = 0, cpu_to_read, local_cpu; 3579 3580 /* 3581 * If event is enabled and currently active on a CPU, update the 3582 * value in the event structure: 3583 */ 3584 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3585 struct perf_read_data data = { 3586 .event = event, 3587 .group = group, 3588 .ret = 0, 3589 }; 3590 3591 local_cpu = get_cpu(); 3592 cpu_to_read = find_cpu_to_read(event, local_cpu); 3593 put_cpu(); 3594 3595 /* 3596 * Purposely ignore the smp_call_function_single() return 3597 * value. 3598 * 3599 * If event->oncpu isn't a valid CPU it means the event got 3600 * scheduled out and that will have updated the event count. 3601 * 3602 * Therefore, either way, we'll have an up-to-date event count 3603 * after this. 3604 */ 3605 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1); 3606 ret = data.ret; 3607 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3608 struct perf_event_context *ctx = event->ctx; 3609 unsigned long flags; 3610 3611 raw_spin_lock_irqsave(&ctx->lock, flags); 3612 /* 3613 * may read while context is not active 3614 * (e.g., thread is blocked), in that case 3615 * we cannot update context time 3616 */ 3617 if (ctx->is_active) { 3618 update_context_time(ctx); 3619 update_cgrp_time_from_event(event); 3620 } 3621 if (group) 3622 update_group_times(event); 3623 else 3624 update_event_times(event); 3625 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3626 } 3627 3628 return ret; 3629 } 3630 3631 /* 3632 * Initialize the perf_event context in a task_struct: 3633 */ 3634 static void __perf_event_init_context(struct perf_event_context *ctx) 3635 { 3636 raw_spin_lock_init(&ctx->lock); 3637 mutex_init(&ctx->mutex); 3638 INIT_LIST_HEAD(&ctx->active_ctx_list); 3639 INIT_LIST_HEAD(&ctx->pinned_groups); 3640 INIT_LIST_HEAD(&ctx->flexible_groups); 3641 INIT_LIST_HEAD(&ctx->event_list); 3642 atomic_set(&ctx->refcount, 1); 3643 } 3644 3645 static struct perf_event_context * 3646 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3647 { 3648 struct perf_event_context *ctx; 3649 3650 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3651 if (!ctx) 3652 return NULL; 3653 3654 __perf_event_init_context(ctx); 3655 if (task) { 3656 ctx->task = task; 3657 get_task_struct(task); 3658 } 3659 ctx->pmu = pmu; 3660 3661 return ctx; 3662 } 3663 3664 static struct task_struct * 3665 find_lively_task_by_vpid(pid_t vpid) 3666 { 3667 struct task_struct *task; 3668 3669 rcu_read_lock(); 3670 if (!vpid) 3671 task = current; 3672 else 3673 task = find_task_by_vpid(vpid); 3674 if (task) 3675 get_task_struct(task); 3676 rcu_read_unlock(); 3677 3678 if (!task) 3679 return ERR_PTR(-ESRCH); 3680 3681 return task; 3682 } 3683 3684 /* 3685 * Returns a matching context with refcount and pincount. 3686 */ 3687 static struct perf_event_context * 3688 find_get_context(struct pmu *pmu, struct task_struct *task, 3689 struct perf_event *event) 3690 { 3691 struct perf_event_context *ctx, *clone_ctx = NULL; 3692 struct perf_cpu_context *cpuctx; 3693 void *task_ctx_data = NULL; 3694 unsigned long flags; 3695 int ctxn, err; 3696 int cpu = event->cpu; 3697 3698 if (!task) { 3699 /* Must be root to operate on a CPU event: */ 3700 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3701 return ERR_PTR(-EACCES); 3702 3703 /* 3704 * We could be clever and allow to attach a event to an 3705 * offline CPU and activate it when the CPU comes up, but 3706 * that's for later. 3707 */ 3708 if (!cpu_online(cpu)) 3709 return ERR_PTR(-ENODEV); 3710 3711 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3712 ctx = &cpuctx->ctx; 3713 get_ctx(ctx); 3714 ++ctx->pin_count; 3715 3716 return ctx; 3717 } 3718 3719 err = -EINVAL; 3720 ctxn = pmu->task_ctx_nr; 3721 if (ctxn < 0) 3722 goto errout; 3723 3724 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3725 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3726 if (!task_ctx_data) { 3727 err = -ENOMEM; 3728 goto errout; 3729 } 3730 } 3731 3732 retry: 3733 ctx = perf_lock_task_context(task, ctxn, &flags); 3734 if (ctx) { 3735 clone_ctx = unclone_ctx(ctx); 3736 ++ctx->pin_count; 3737 3738 if (task_ctx_data && !ctx->task_ctx_data) { 3739 ctx->task_ctx_data = task_ctx_data; 3740 task_ctx_data = NULL; 3741 } 3742 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3743 3744 if (clone_ctx) 3745 put_ctx(clone_ctx); 3746 } else { 3747 ctx = alloc_perf_context(pmu, task); 3748 err = -ENOMEM; 3749 if (!ctx) 3750 goto errout; 3751 3752 if (task_ctx_data) { 3753 ctx->task_ctx_data = task_ctx_data; 3754 task_ctx_data = NULL; 3755 } 3756 3757 err = 0; 3758 mutex_lock(&task->perf_event_mutex); 3759 /* 3760 * If it has already passed perf_event_exit_task(). 3761 * we must see PF_EXITING, it takes this mutex too. 3762 */ 3763 if (task->flags & PF_EXITING) 3764 err = -ESRCH; 3765 else if (task->perf_event_ctxp[ctxn]) 3766 err = -EAGAIN; 3767 else { 3768 get_ctx(ctx); 3769 ++ctx->pin_count; 3770 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3771 } 3772 mutex_unlock(&task->perf_event_mutex); 3773 3774 if (unlikely(err)) { 3775 put_ctx(ctx); 3776 3777 if (err == -EAGAIN) 3778 goto retry; 3779 goto errout; 3780 } 3781 } 3782 3783 kfree(task_ctx_data); 3784 return ctx; 3785 3786 errout: 3787 kfree(task_ctx_data); 3788 return ERR_PTR(err); 3789 } 3790 3791 static void perf_event_free_filter(struct perf_event *event); 3792 static void perf_event_free_bpf_prog(struct perf_event *event); 3793 3794 static void free_event_rcu(struct rcu_head *head) 3795 { 3796 struct perf_event *event; 3797 3798 event = container_of(head, struct perf_event, rcu_head); 3799 if (event->ns) 3800 put_pid_ns(event->ns); 3801 perf_event_free_filter(event); 3802 kfree(event); 3803 } 3804 3805 static void ring_buffer_attach(struct perf_event *event, 3806 struct ring_buffer *rb); 3807 3808 static void detach_sb_event(struct perf_event *event) 3809 { 3810 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3811 3812 raw_spin_lock(&pel->lock); 3813 list_del_rcu(&event->sb_list); 3814 raw_spin_unlock(&pel->lock); 3815 } 3816 3817 static bool is_sb_event(struct perf_event *event) 3818 { 3819 struct perf_event_attr *attr = &event->attr; 3820 3821 if (event->parent) 3822 return false; 3823 3824 if (event->attach_state & PERF_ATTACH_TASK) 3825 return false; 3826 3827 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3828 attr->comm || attr->comm_exec || 3829 attr->task || 3830 attr->context_switch) 3831 return true; 3832 return false; 3833 } 3834 3835 static void unaccount_pmu_sb_event(struct perf_event *event) 3836 { 3837 if (is_sb_event(event)) 3838 detach_sb_event(event); 3839 } 3840 3841 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3842 { 3843 if (event->parent) 3844 return; 3845 3846 if (is_cgroup_event(event)) 3847 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3848 } 3849 3850 #ifdef CONFIG_NO_HZ_FULL 3851 static DEFINE_SPINLOCK(nr_freq_lock); 3852 #endif 3853 3854 static void unaccount_freq_event_nohz(void) 3855 { 3856 #ifdef CONFIG_NO_HZ_FULL 3857 spin_lock(&nr_freq_lock); 3858 if (atomic_dec_and_test(&nr_freq_events)) 3859 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3860 spin_unlock(&nr_freq_lock); 3861 #endif 3862 } 3863 3864 static void unaccount_freq_event(void) 3865 { 3866 if (tick_nohz_full_enabled()) 3867 unaccount_freq_event_nohz(); 3868 else 3869 atomic_dec(&nr_freq_events); 3870 } 3871 3872 static void unaccount_event(struct perf_event *event) 3873 { 3874 bool dec = false; 3875 3876 if (event->parent) 3877 return; 3878 3879 if (event->attach_state & PERF_ATTACH_TASK) 3880 dec = true; 3881 if (event->attr.mmap || event->attr.mmap_data) 3882 atomic_dec(&nr_mmap_events); 3883 if (event->attr.comm) 3884 atomic_dec(&nr_comm_events); 3885 if (event->attr.task) 3886 atomic_dec(&nr_task_events); 3887 if (event->attr.freq) 3888 unaccount_freq_event(); 3889 if (event->attr.context_switch) { 3890 dec = true; 3891 atomic_dec(&nr_switch_events); 3892 } 3893 if (is_cgroup_event(event)) 3894 dec = true; 3895 if (has_branch_stack(event)) 3896 dec = true; 3897 3898 if (dec) { 3899 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3900 schedule_delayed_work(&perf_sched_work, HZ); 3901 } 3902 3903 unaccount_event_cpu(event, event->cpu); 3904 3905 unaccount_pmu_sb_event(event); 3906 } 3907 3908 static void perf_sched_delayed(struct work_struct *work) 3909 { 3910 mutex_lock(&perf_sched_mutex); 3911 if (atomic_dec_and_test(&perf_sched_count)) 3912 static_branch_disable(&perf_sched_events); 3913 mutex_unlock(&perf_sched_mutex); 3914 } 3915 3916 /* 3917 * The following implement mutual exclusion of events on "exclusive" pmus 3918 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3919 * at a time, so we disallow creating events that might conflict, namely: 3920 * 3921 * 1) cpu-wide events in the presence of per-task events, 3922 * 2) per-task events in the presence of cpu-wide events, 3923 * 3) two matching events on the same context. 3924 * 3925 * The former two cases are handled in the allocation path (perf_event_alloc(), 3926 * _free_event()), the latter -- before the first perf_install_in_context(). 3927 */ 3928 static int exclusive_event_init(struct perf_event *event) 3929 { 3930 struct pmu *pmu = event->pmu; 3931 3932 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3933 return 0; 3934 3935 /* 3936 * Prevent co-existence of per-task and cpu-wide events on the 3937 * same exclusive pmu. 3938 * 3939 * Negative pmu::exclusive_cnt means there are cpu-wide 3940 * events on this "exclusive" pmu, positive means there are 3941 * per-task events. 3942 * 3943 * Since this is called in perf_event_alloc() path, event::ctx 3944 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3945 * to mean "per-task event", because unlike other attach states it 3946 * never gets cleared. 3947 */ 3948 if (event->attach_state & PERF_ATTACH_TASK) { 3949 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3950 return -EBUSY; 3951 } else { 3952 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3953 return -EBUSY; 3954 } 3955 3956 return 0; 3957 } 3958 3959 static void exclusive_event_destroy(struct perf_event *event) 3960 { 3961 struct pmu *pmu = event->pmu; 3962 3963 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3964 return; 3965 3966 /* see comment in exclusive_event_init() */ 3967 if (event->attach_state & PERF_ATTACH_TASK) 3968 atomic_dec(&pmu->exclusive_cnt); 3969 else 3970 atomic_inc(&pmu->exclusive_cnt); 3971 } 3972 3973 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3974 { 3975 if ((e1->pmu == e2->pmu) && 3976 (e1->cpu == e2->cpu || 3977 e1->cpu == -1 || 3978 e2->cpu == -1)) 3979 return true; 3980 return false; 3981 } 3982 3983 /* Called under the same ctx::mutex as perf_install_in_context() */ 3984 static bool exclusive_event_installable(struct perf_event *event, 3985 struct perf_event_context *ctx) 3986 { 3987 struct perf_event *iter_event; 3988 struct pmu *pmu = event->pmu; 3989 3990 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3991 return true; 3992 3993 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3994 if (exclusive_event_match(iter_event, event)) 3995 return false; 3996 } 3997 3998 return true; 3999 } 4000 4001 static void perf_addr_filters_splice(struct perf_event *event, 4002 struct list_head *head); 4003 4004 static void _free_event(struct perf_event *event) 4005 { 4006 irq_work_sync(&event->pending); 4007 4008 unaccount_event(event); 4009 4010 if (event->rb) { 4011 /* 4012 * Can happen when we close an event with re-directed output. 4013 * 4014 * Since we have a 0 refcount, perf_mmap_close() will skip 4015 * over us; possibly making our ring_buffer_put() the last. 4016 */ 4017 mutex_lock(&event->mmap_mutex); 4018 ring_buffer_attach(event, NULL); 4019 mutex_unlock(&event->mmap_mutex); 4020 } 4021 4022 if (is_cgroup_event(event)) 4023 perf_detach_cgroup(event); 4024 4025 if (!event->parent) { 4026 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4027 put_callchain_buffers(); 4028 } 4029 4030 perf_event_free_bpf_prog(event); 4031 perf_addr_filters_splice(event, NULL); 4032 kfree(event->addr_filters_offs); 4033 4034 if (event->destroy) 4035 event->destroy(event); 4036 4037 if (event->ctx) 4038 put_ctx(event->ctx); 4039 4040 exclusive_event_destroy(event); 4041 module_put(event->pmu->module); 4042 4043 call_rcu(&event->rcu_head, free_event_rcu); 4044 } 4045 4046 /* 4047 * Used to free events which have a known refcount of 1, such as in error paths 4048 * where the event isn't exposed yet and inherited events. 4049 */ 4050 static void free_event(struct perf_event *event) 4051 { 4052 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4053 "unexpected event refcount: %ld; ptr=%p\n", 4054 atomic_long_read(&event->refcount), event)) { 4055 /* leak to avoid use-after-free */ 4056 return; 4057 } 4058 4059 _free_event(event); 4060 } 4061 4062 /* 4063 * Remove user event from the owner task. 4064 */ 4065 static void perf_remove_from_owner(struct perf_event *event) 4066 { 4067 struct task_struct *owner; 4068 4069 rcu_read_lock(); 4070 /* 4071 * Matches the smp_store_release() in perf_event_exit_task(). If we 4072 * observe !owner it means the list deletion is complete and we can 4073 * indeed free this event, otherwise we need to serialize on 4074 * owner->perf_event_mutex. 4075 */ 4076 owner = lockless_dereference(event->owner); 4077 if (owner) { 4078 /* 4079 * Since delayed_put_task_struct() also drops the last 4080 * task reference we can safely take a new reference 4081 * while holding the rcu_read_lock(). 4082 */ 4083 get_task_struct(owner); 4084 } 4085 rcu_read_unlock(); 4086 4087 if (owner) { 4088 /* 4089 * If we're here through perf_event_exit_task() we're already 4090 * holding ctx->mutex which would be an inversion wrt. the 4091 * normal lock order. 4092 * 4093 * However we can safely take this lock because its the child 4094 * ctx->mutex. 4095 */ 4096 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4097 4098 /* 4099 * We have to re-check the event->owner field, if it is cleared 4100 * we raced with perf_event_exit_task(), acquiring the mutex 4101 * ensured they're done, and we can proceed with freeing the 4102 * event. 4103 */ 4104 if (event->owner) { 4105 list_del_init(&event->owner_entry); 4106 smp_store_release(&event->owner, NULL); 4107 } 4108 mutex_unlock(&owner->perf_event_mutex); 4109 put_task_struct(owner); 4110 } 4111 } 4112 4113 static void put_event(struct perf_event *event) 4114 { 4115 if (!atomic_long_dec_and_test(&event->refcount)) 4116 return; 4117 4118 _free_event(event); 4119 } 4120 4121 /* 4122 * Kill an event dead; while event:refcount will preserve the event 4123 * object, it will not preserve its functionality. Once the last 'user' 4124 * gives up the object, we'll destroy the thing. 4125 */ 4126 int perf_event_release_kernel(struct perf_event *event) 4127 { 4128 struct perf_event_context *ctx = event->ctx; 4129 struct perf_event *child, *tmp; 4130 4131 /* 4132 * If we got here through err_file: fput(event_file); we will not have 4133 * attached to a context yet. 4134 */ 4135 if (!ctx) { 4136 WARN_ON_ONCE(event->attach_state & 4137 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4138 goto no_ctx; 4139 } 4140 4141 if (!is_kernel_event(event)) 4142 perf_remove_from_owner(event); 4143 4144 ctx = perf_event_ctx_lock(event); 4145 WARN_ON_ONCE(ctx->parent_ctx); 4146 perf_remove_from_context(event, DETACH_GROUP); 4147 4148 raw_spin_lock_irq(&ctx->lock); 4149 /* 4150 * Mark this even as STATE_DEAD, there is no external reference to it 4151 * anymore. 4152 * 4153 * Anybody acquiring event->child_mutex after the below loop _must_ 4154 * also see this, most importantly inherit_event() which will avoid 4155 * placing more children on the list. 4156 * 4157 * Thus this guarantees that we will in fact observe and kill _ALL_ 4158 * child events. 4159 */ 4160 event->state = PERF_EVENT_STATE_DEAD; 4161 raw_spin_unlock_irq(&ctx->lock); 4162 4163 perf_event_ctx_unlock(event, ctx); 4164 4165 again: 4166 mutex_lock(&event->child_mutex); 4167 list_for_each_entry(child, &event->child_list, child_list) { 4168 4169 /* 4170 * Cannot change, child events are not migrated, see the 4171 * comment with perf_event_ctx_lock_nested(). 4172 */ 4173 ctx = lockless_dereference(child->ctx); 4174 /* 4175 * Since child_mutex nests inside ctx::mutex, we must jump 4176 * through hoops. We start by grabbing a reference on the ctx. 4177 * 4178 * Since the event cannot get freed while we hold the 4179 * child_mutex, the context must also exist and have a !0 4180 * reference count. 4181 */ 4182 get_ctx(ctx); 4183 4184 /* 4185 * Now that we have a ctx ref, we can drop child_mutex, and 4186 * acquire ctx::mutex without fear of it going away. Then we 4187 * can re-acquire child_mutex. 4188 */ 4189 mutex_unlock(&event->child_mutex); 4190 mutex_lock(&ctx->mutex); 4191 mutex_lock(&event->child_mutex); 4192 4193 /* 4194 * Now that we hold ctx::mutex and child_mutex, revalidate our 4195 * state, if child is still the first entry, it didn't get freed 4196 * and we can continue doing so. 4197 */ 4198 tmp = list_first_entry_or_null(&event->child_list, 4199 struct perf_event, child_list); 4200 if (tmp == child) { 4201 perf_remove_from_context(child, DETACH_GROUP); 4202 list_del(&child->child_list); 4203 free_event(child); 4204 /* 4205 * This matches the refcount bump in inherit_event(); 4206 * this can't be the last reference. 4207 */ 4208 put_event(event); 4209 } 4210 4211 mutex_unlock(&event->child_mutex); 4212 mutex_unlock(&ctx->mutex); 4213 put_ctx(ctx); 4214 goto again; 4215 } 4216 mutex_unlock(&event->child_mutex); 4217 4218 no_ctx: 4219 put_event(event); /* Must be the 'last' reference */ 4220 return 0; 4221 } 4222 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4223 4224 /* 4225 * Called when the last reference to the file is gone. 4226 */ 4227 static int perf_release(struct inode *inode, struct file *file) 4228 { 4229 perf_event_release_kernel(file->private_data); 4230 return 0; 4231 } 4232 4233 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4234 { 4235 struct perf_event *child; 4236 u64 total = 0; 4237 4238 *enabled = 0; 4239 *running = 0; 4240 4241 mutex_lock(&event->child_mutex); 4242 4243 (void)perf_event_read(event, false); 4244 total += perf_event_count(event); 4245 4246 *enabled += event->total_time_enabled + 4247 atomic64_read(&event->child_total_time_enabled); 4248 *running += event->total_time_running + 4249 atomic64_read(&event->child_total_time_running); 4250 4251 list_for_each_entry(child, &event->child_list, child_list) { 4252 (void)perf_event_read(child, false); 4253 total += perf_event_count(child); 4254 *enabled += child->total_time_enabled; 4255 *running += child->total_time_running; 4256 } 4257 mutex_unlock(&event->child_mutex); 4258 4259 return total; 4260 } 4261 EXPORT_SYMBOL_GPL(perf_event_read_value); 4262 4263 static int __perf_read_group_add(struct perf_event *leader, 4264 u64 read_format, u64 *values) 4265 { 4266 struct perf_event *sub; 4267 int n = 1; /* skip @nr */ 4268 int ret; 4269 4270 ret = perf_event_read(leader, true); 4271 if (ret) 4272 return ret; 4273 4274 /* 4275 * Since we co-schedule groups, {enabled,running} times of siblings 4276 * will be identical to those of the leader, so we only publish one 4277 * set. 4278 */ 4279 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4280 values[n++] += leader->total_time_enabled + 4281 atomic64_read(&leader->child_total_time_enabled); 4282 } 4283 4284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4285 values[n++] += leader->total_time_running + 4286 atomic64_read(&leader->child_total_time_running); 4287 } 4288 4289 /* 4290 * Write {count,id} tuples for every sibling. 4291 */ 4292 values[n++] += perf_event_count(leader); 4293 if (read_format & PERF_FORMAT_ID) 4294 values[n++] = primary_event_id(leader); 4295 4296 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4297 values[n++] += perf_event_count(sub); 4298 if (read_format & PERF_FORMAT_ID) 4299 values[n++] = primary_event_id(sub); 4300 } 4301 4302 return 0; 4303 } 4304 4305 static int perf_read_group(struct perf_event *event, 4306 u64 read_format, char __user *buf) 4307 { 4308 struct perf_event *leader = event->group_leader, *child; 4309 struct perf_event_context *ctx = leader->ctx; 4310 int ret; 4311 u64 *values; 4312 4313 lockdep_assert_held(&ctx->mutex); 4314 4315 values = kzalloc(event->read_size, GFP_KERNEL); 4316 if (!values) 4317 return -ENOMEM; 4318 4319 values[0] = 1 + leader->nr_siblings; 4320 4321 /* 4322 * By locking the child_mutex of the leader we effectively 4323 * lock the child list of all siblings.. XXX explain how. 4324 */ 4325 mutex_lock(&leader->child_mutex); 4326 4327 ret = __perf_read_group_add(leader, read_format, values); 4328 if (ret) 4329 goto unlock; 4330 4331 list_for_each_entry(child, &leader->child_list, child_list) { 4332 ret = __perf_read_group_add(child, read_format, values); 4333 if (ret) 4334 goto unlock; 4335 } 4336 4337 mutex_unlock(&leader->child_mutex); 4338 4339 ret = event->read_size; 4340 if (copy_to_user(buf, values, event->read_size)) 4341 ret = -EFAULT; 4342 goto out; 4343 4344 unlock: 4345 mutex_unlock(&leader->child_mutex); 4346 out: 4347 kfree(values); 4348 return ret; 4349 } 4350 4351 static int perf_read_one(struct perf_event *event, 4352 u64 read_format, char __user *buf) 4353 { 4354 u64 enabled, running; 4355 u64 values[4]; 4356 int n = 0; 4357 4358 values[n++] = perf_event_read_value(event, &enabled, &running); 4359 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4360 values[n++] = enabled; 4361 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4362 values[n++] = running; 4363 if (read_format & PERF_FORMAT_ID) 4364 values[n++] = primary_event_id(event); 4365 4366 if (copy_to_user(buf, values, n * sizeof(u64))) 4367 return -EFAULT; 4368 4369 return n * sizeof(u64); 4370 } 4371 4372 static bool is_event_hup(struct perf_event *event) 4373 { 4374 bool no_children; 4375 4376 if (event->state > PERF_EVENT_STATE_EXIT) 4377 return false; 4378 4379 mutex_lock(&event->child_mutex); 4380 no_children = list_empty(&event->child_list); 4381 mutex_unlock(&event->child_mutex); 4382 return no_children; 4383 } 4384 4385 /* 4386 * Read the performance event - simple non blocking version for now 4387 */ 4388 static ssize_t 4389 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4390 { 4391 u64 read_format = event->attr.read_format; 4392 int ret; 4393 4394 /* 4395 * Return end-of-file for a read on a event that is in 4396 * error state (i.e. because it was pinned but it couldn't be 4397 * scheduled on to the CPU at some point). 4398 */ 4399 if (event->state == PERF_EVENT_STATE_ERROR) 4400 return 0; 4401 4402 if (count < event->read_size) 4403 return -ENOSPC; 4404 4405 WARN_ON_ONCE(event->ctx->parent_ctx); 4406 if (read_format & PERF_FORMAT_GROUP) 4407 ret = perf_read_group(event, read_format, buf); 4408 else 4409 ret = perf_read_one(event, read_format, buf); 4410 4411 return ret; 4412 } 4413 4414 static ssize_t 4415 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4416 { 4417 struct perf_event *event = file->private_data; 4418 struct perf_event_context *ctx; 4419 int ret; 4420 4421 ctx = perf_event_ctx_lock(event); 4422 ret = __perf_read(event, buf, count); 4423 perf_event_ctx_unlock(event, ctx); 4424 4425 return ret; 4426 } 4427 4428 static unsigned int perf_poll(struct file *file, poll_table *wait) 4429 { 4430 struct perf_event *event = file->private_data; 4431 struct ring_buffer *rb; 4432 unsigned int events = POLLHUP; 4433 4434 poll_wait(file, &event->waitq, wait); 4435 4436 if (is_event_hup(event)) 4437 return events; 4438 4439 /* 4440 * Pin the event->rb by taking event->mmap_mutex; otherwise 4441 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4442 */ 4443 mutex_lock(&event->mmap_mutex); 4444 rb = event->rb; 4445 if (rb) 4446 events = atomic_xchg(&rb->poll, 0); 4447 mutex_unlock(&event->mmap_mutex); 4448 return events; 4449 } 4450 4451 static void _perf_event_reset(struct perf_event *event) 4452 { 4453 (void)perf_event_read(event, false); 4454 local64_set(&event->count, 0); 4455 perf_event_update_userpage(event); 4456 } 4457 4458 /* 4459 * Holding the top-level event's child_mutex means that any 4460 * descendant process that has inherited this event will block 4461 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4462 * task existence requirements of perf_event_enable/disable. 4463 */ 4464 static void perf_event_for_each_child(struct perf_event *event, 4465 void (*func)(struct perf_event *)) 4466 { 4467 struct perf_event *child; 4468 4469 WARN_ON_ONCE(event->ctx->parent_ctx); 4470 4471 mutex_lock(&event->child_mutex); 4472 func(event); 4473 list_for_each_entry(child, &event->child_list, child_list) 4474 func(child); 4475 mutex_unlock(&event->child_mutex); 4476 } 4477 4478 static void perf_event_for_each(struct perf_event *event, 4479 void (*func)(struct perf_event *)) 4480 { 4481 struct perf_event_context *ctx = event->ctx; 4482 struct perf_event *sibling; 4483 4484 lockdep_assert_held(&ctx->mutex); 4485 4486 event = event->group_leader; 4487 4488 perf_event_for_each_child(event, func); 4489 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4490 perf_event_for_each_child(sibling, func); 4491 } 4492 4493 static void __perf_event_period(struct perf_event *event, 4494 struct perf_cpu_context *cpuctx, 4495 struct perf_event_context *ctx, 4496 void *info) 4497 { 4498 u64 value = *((u64 *)info); 4499 bool active; 4500 4501 if (event->attr.freq) { 4502 event->attr.sample_freq = value; 4503 } else { 4504 event->attr.sample_period = value; 4505 event->hw.sample_period = value; 4506 } 4507 4508 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4509 if (active) { 4510 perf_pmu_disable(ctx->pmu); 4511 /* 4512 * We could be throttled; unthrottle now to avoid the tick 4513 * trying to unthrottle while we already re-started the event. 4514 */ 4515 if (event->hw.interrupts == MAX_INTERRUPTS) { 4516 event->hw.interrupts = 0; 4517 perf_log_throttle(event, 1); 4518 } 4519 event->pmu->stop(event, PERF_EF_UPDATE); 4520 } 4521 4522 local64_set(&event->hw.period_left, 0); 4523 4524 if (active) { 4525 event->pmu->start(event, PERF_EF_RELOAD); 4526 perf_pmu_enable(ctx->pmu); 4527 } 4528 } 4529 4530 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4531 { 4532 u64 value; 4533 4534 if (!is_sampling_event(event)) 4535 return -EINVAL; 4536 4537 if (copy_from_user(&value, arg, sizeof(value))) 4538 return -EFAULT; 4539 4540 if (!value) 4541 return -EINVAL; 4542 4543 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4544 return -EINVAL; 4545 4546 event_function_call(event, __perf_event_period, &value); 4547 4548 return 0; 4549 } 4550 4551 static const struct file_operations perf_fops; 4552 4553 static inline int perf_fget_light(int fd, struct fd *p) 4554 { 4555 struct fd f = fdget(fd); 4556 if (!f.file) 4557 return -EBADF; 4558 4559 if (f.file->f_op != &perf_fops) { 4560 fdput(f); 4561 return -EBADF; 4562 } 4563 *p = f; 4564 return 0; 4565 } 4566 4567 static int perf_event_set_output(struct perf_event *event, 4568 struct perf_event *output_event); 4569 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4570 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4571 4572 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4573 { 4574 void (*func)(struct perf_event *); 4575 u32 flags = arg; 4576 4577 switch (cmd) { 4578 case PERF_EVENT_IOC_ENABLE: 4579 func = _perf_event_enable; 4580 break; 4581 case PERF_EVENT_IOC_DISABLE: 4582 func = _perf_event_disable; 4583 break; 4584 case PERF_EVENT_IOC_RESET: 4585 func = _perf_event_reset; 4586 break; 4587 4588 case PERF_EVENT_IOC_REFRESH: 4589 return _perf_event_refresh(event, arg); 4590 4591 case PERF_EVENT_IOC_PERIOD: 4592 return perf_event_period(event, (u64 __user *)arg); 4593 4594 case PERF_EVENT_IOC_ID: 4595 { 4596 u64 id = primary_event_id(event); 4597 4598 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4599 return -EFAULT; 4600 return 0; 4601 } 4602 4603 case PERF_EVENT_IOC_SET_OUTPUT: 4604 { 4605 int ret; 4606 if (arg != -1) { 4607 struct perf_event *output_event; 4608 struct fd output; 4609 ret = perf_fget_light(arg, &output); 4610 if (ret) 4611 return ret; 4612 output_event = output.file->private_data; 4613 ret = perf_event_set_output(event, output_event); 4614 fdput(output); 4615 } else { 4616 ret = perf_event_set_output(event, NULL); 4617 } 4618 return ret; 4619 } 4620 4621 case PERF_EVENT_IOC_SET_FILTER: 4622 return perf_event_set_filter(event, (void __user *)arg); 4623 4624 case PERF_EVENT_IOC_SET_BPF: 4625 return perf_event_set_bpf_prog(event, arg); 4626 4627 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4628 struct ring_buffer *rb; 4629 4630 rcu_read_lock(); 4631 rb = rcu_dereference(event->rb); 4632 if (!rb || !rb->nr_pages) { 4633 rcu_read_unlock(); 4634 return -EINVAL; 4635 } 4636 rb_toggle_paused(rb, !!arg); 4637 rcu_read_unlock(); 4638 return 0; 4639 } 4640 default: 4641 return -ENOTTY; 4642 } 4643 4644 if (flags & PERF_IOC_FLAG_GROUP) 4645 perf_event_for_each(event, func); 4646 else 4647 perf_event_for_each_child(event, func); 4648 4649 return 0; 4650 } 4651 4652 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4653 { 4654 struct perf_event *event = file->private_data; 4655 struct perf_event_context *ctx; 4656 long ret; 4657 4658 ctx = perf_event_ctx_lock(event); 4659 ret = _perf_ioctl(event, cmd, arg); 4660 perf_event_ctx_unlock(event, ctx); 4661 4662 return ret; 4663 } 4664 4665 #ifdef CONFIG_COMPAT 4666 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4667 unsigned long arg) 4668 { 4669 switch (_IOC_NR(cmd)) { 4670 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4671 case _IOC_NR(PERF_EVENT_IOC_ID): 4672 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4673 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4674 cmd &= ~IOCSIZE_MASK; 4675 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4676 } 4677 break; 4678 } 4679 return perf_ioctl(file, cmd, arg); 4680 } 4681 #else 4682 # define perf_compat_ioctl NULL 4683 #endif 4684 4685 int perf_event_task_enable(void) 4686 { 4687 struct perf_event_context *ctx; 4688 struct perf_event *event; 4689 4690 mutex_lock(¤t->perf_event_mutex); 4691 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4692 ctx = perf_event_ctx_lock(event); 4693 perf_event_for_each_child(event, _perf_event_enable); 4694 perf_event_ctx_unlock(event, ctx); 4695 } 4696 mutex_unlock(¤t->perf_event_mutex); 4697 4698 return 0; 4699 } 4700 4701 int perf_event_task_disable(void) 4702 { 4703 struct perf_event_context *ctx; 4704 struct perf_event *event; 4705 4706 mutex_lock(¤t->perf_event_mutex); 4707 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4708 ctx = perf_event_ctx_lock(event); 4709 perf_event_for_each_child(event, _perf_event_disable); 4710 perf_event_ctx_unlock(event, ctx); 4711 } 4712 mutex_unlock(¤t->perf_event_mutex); 4713 4714 return 0; 4715 } 4716 4717 static int perf_event_index(struct perf_event *event) 4718 { 4719 if (event->hw.state & PERF_HES_STOPPED) 4720 return 0; 4721 4722 if (event->state != PERF_EVENT_STATE_ACTIVE) 4723 return 0; 4724 4725 return event->pmu->event_idx(event); 4726 } 4727 4728 static void calc_timer_values(struct perf_event *event, 4729 u64 *now, 4730 u64 *enabled, 4731 u64 *running) 4732 { 4733 u64 ctx_time; 4734 4735 *now = perf_clock(); 4736 ctx_time = event->shadow_ctx_time + *now; 4737 *enabled = ctx_time - event->tstamp_enabled; 4738 *running = ctx_time - event->tstamp_running; 4739 } 4740 4741 static void perf_event_init_userpage(struct perf_event *event) 4742 { 4743 struct perf_event_mmap_page *userpg; 4744 struct ring_buffer *rb; 4745 4746 rcu_read_lock(); 4747 rb = rcu_dereference(event->rb); 4748 if (!rb) 4749 goto unlock; 4750 4751 userpg = rb->user_page; 4752 4753 /* Allow new userspace to detect that bit 0 is deprecated */ 4754 userpg->cap_bit0_is_deprecated = 1; 4755 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4756 userpg->data_offset = PAGE_SIZE; 4757 userpg->data_size = perf_data_size(rb); 4758 4759 unlock: 4760 rcu_read_unlock(); 4761 } 4762 4763 void __weak arch_perf_update_userpage( 4764 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4765 { 4766 } 4767 4768 /* 4769 * Callers need to ensure there can be no nesting of this function, otherwise 4770 * the seqlock logic goes bad. We can not serialize this because the arch 4771 * code calls this from NMI context. 4772 */ 4773 void perf_event_update_userpage(struct perf_event *event) 4774 { 4775 struct perf_event_mmap_page *userpg; 4776 struct ring_buffer *rb; 4777 u64 enabled, running, now; 4778 4779 rcu_read_lock(); 4780 rb = rcu_dereference(event->rb); 4781 if (!rb) 4782 goto unlock; 4783 4784 /* 4785 * compute total_time_enabled, total_time_running 4786 * based on snapshot values taken when the event 4787 * was last scheduled in. 4788 * 4789 * we cannot simply called update_context_time() 4790 * because of locking issue as we can be called in 4791 * NMI context 4792 */ 4793 calc_timer_values(event, &now, &enabled, &running); 4794 4795 userpg = rb->user_page; 4796 /* 4797 * Disable preemption so as to not let the corresponding user-space 4798 * spin too long if we get preempted. 4799 */ 4800 preempt_disable(); 4801 ++userpg->lock; 4802 barrier(); 4803 userpg->index = perf_event_index(event); 4804 userpg->offset = perf_event_count(event); 4805 if (userpg->index) 4806 userpg->offset -= local64_read(&event->hw.prev_count); 4807 4808 userpg->time_enabled = enabled + 4809 atomic64_read(&event->child_total_time_enabled); 4810 4811 userpg->time_running = running + 4812 atomic64_read(&event->child_total_time_running); 4813 4814 arch_perf_update_userpage(event, userpg, now); 4815 4816 barrier(); 4817 ++userpg->lock; 4818 preempt_enable(); 4819 unlock: 4820 rcu_read_unlock(); 4821 } 4822 4823 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4824 { 4825 struct perf_event *event = vma->vm_file->private_data; 4826 struct ring_buffer *rb; 4827 int ret = VM_FAULT_SIGBUS; 4828 4829 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4830 if (vmf->pgoff == 0) 4831 ret = 0; 4832 return ret; 4833 } 4834 4835 rcu_read_lock(); 4836 rb = rcu_dereference(event->rb); 4837 if (!rb) 4838 goto unlock; 4839 4840 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4841 goto unlock; 4842 4843 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4844 if (!vmf->page) 4845 goto unlock; 4846 4847 get_page(vmf->page); 4848 vmf->page->mapping = vma->vm_file->f_mapping; 4849 vmf->page->index = vmf->pgoff; 4850 4851 ret = 0; 4852 unlock: 4853 rcu_read_unlock(); 4854 4855 return ret; 4856 } 4857 4858 static void ring_buffer_attach(struct perf_event *event, 4859 struct ring_buffer *rb) 4860 { 4861 struct ring_buffer *old_rb = NULL; 4862 unsigned long flags; 4863 4864 if (event->rb) { 4865 /* 4866 * Should be impossible, we set this when removing 4867 * event->rb_entry and wait/clear when adding event->rb_entry. 4868 */ 4869 WARN_ON_ONCE(event->rcu_pending); 4870 4871 old_rb = event->rb; 4872 spin_lock_irqsave(&old_rb->event_lock, flags); 4873 list_del_rcu(&event->rb_entry); 4874 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4875 4876 event->rcu_batches = get_state_synchronize_rcu(); 4877 event->rcu_pending = 1; 4878 } 4879 4880 if (rb) { 4881 if (event->rcu_pending) { 4882 cond_synchronize_rcu(event->rcu_batches); 4883 event->rcu_pending = 0; 4884 } 4885 4886 spin_lock_irqsave(&rb->event_lock, flags); 4887 list_add_rcu(&event->rb_entry, &rb->event_list); 4888 spin_unlock_irqrestore(&rb->event_lock, flags); 4889 } 4890 4891 /* 4892 * Avoid racing with perf_mmap_close(AUX): stop the event 4893 * before swizzling the event::rb pointer; if it's getting 4894 * unmapped, its aux_mmap_count will be 0 and it won't 4895 * restart. See the comment in __perf_pmu_output_stop(). 4896 * 4897 * Data will inevitably be lost when set_output is done in 4898 * mid-air, but then again, whoever does it like this is 4899 * not in for the data anyway. 4900 */ 4901 if (has_aux(event)) 4902 perf_event_stop(event, 0); 4903 4904 rcu_assign_pointer(event->rb, rb); 4905 4906 if (old_rb) { 4907 ring_buffer_put(old_rb); 4908 /* 4909 * Since we detached before setting the new rb, so that we 4910 * could attach the new rb, we could have missed a wakeup. 4911 * Provide it now. 4912 */ 4913 wake_up_all(&event->waitq); 4914 } 4915 } 4916 4917 static void ring_buffer_wakeup(struct perf_event *event) 4918 { 4919 struct ring_buffer *rb; 4920 4921 rcu_read_lock(); 4922 rb = rcu_dereference(event->rb); 4923 if (rb) { 4924 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4925 wake_up_all(&event->waitq); 4926 } 4927 rcu_read_unlock(); 4928 } 4929 4930 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4931 { 4932 struct ring_buffer *rb; 4933 4934 rcu_read_lock(); 4935 rb = rcu_dereference(event->rb); 4936 if (rb) { 4937 if (!atomic_inc_not_zero(&rb->refcount)) 4938 rb = NULL; 4939 } 4940 rcu_read_unlock(); 4941 4942 return rb; 4943 } 4944 4945 void ring_buffer_put(struct ring_buffer *rb) 4946 { 4947 if (!atomic_dec_and_test(&rb->refcount)) 4948 return; 4949 4950 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4951 4952 call_rcu(&rb->rcu_head, rb_free_rcu); 4953 } 4954 4955 static void perf_mmap_open(struct vm_area_struct *vma) 4956 { 4957 struct perf_event *event = vma->vm_file->private_data; 4958 4959 atomic_inc(&event->mmap_count); 4960 atomic_inc(&event->rb->mmap_count); 4961 4962 if (vma->vm_pgoff) 4963 atomic_inc(&event->rb->aux_mmap_count); 4964 4965 if (event->pmu->event_mapped) 4966 event->pmu->event_mapped(event); 4967 } 4968 4969 static void perf_pmu_output_stop(struct perf_event *event); 4970 4971 /* 4972 * A buffer can be mmap()ed multiple times; either directly through the same 4973 * event, or through other events by use of perf_event_set_output(). 4974 * 4975 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4976 * the buffer here, where we still have a VM context. This means we need 4977 * to detach all events redirecting to us. 4978 */ 4979 static void perf_mmap_close(struct vm_area_struct *vma) 4980 { 4981 struct perf_event *event = vma->vm_file->private_data; 4982 4983 struct ring_buffer *rb = ring_buffer_get(event); 4984 struct user_struct *mmap_user = rb->mmap_user; 4985 int mmap_locked = rb->mmap_locked; 4986 unsigned long size = perf_data_size(rb); 4987 4988 if (event->pmu->event_unmapped) 4989 event->pmu->event_unmapped(event); 4990 4991 /* 4992 * rb->aux_mmap_count will always drop before rb->mmap_count and 4993 * event->mmap_count, so it is ok to use event->mmap_mutex to 4994 * serialize with perf_mmap here. 4995 */ 4996 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4997 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4998 /* 4999 * Stop all AUX events that are writing to this buffer, 5000 * so that we can free its AUX pages and corresponding PMU 5001 * data. Note that after rb::aux_mmap_count dropped to zero, 5002 * they won't start any more (see perf_aux_output_begin()). 5003 */ 5004 perf_pmu_output_stop(event); 5005 5006 /* now it's safe to free the pages */ 5007 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5008 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5009 5010 /* this has to be the last one */ 5011 rb_free_aux(rb); 5012 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5013 5014 mutex_unlock(&event->mmap_mutex); 5015 } 5016 5017 atomic_dec(&rb->mmap_count); 5018 5019 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5020 goto out_put; 5021 5022 ring_buffer_attach(event, NULL); 5023 mutex_unlock(&event->mmap_mutex); 5024 5025 /* If there's still other mmap()s of this buffer, we're done. */ 5026 if (atomic_read(&rb->mmap_count)) 5027 goto out_put; 5028 5029 /* 5030 * No other mmap()s, detach from all other events that might redirect 5031 * into the now unreachable buffer. Somewhat complicated by the 5032 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5033 */ 5034 again: 5035 rcu_read_lock(); 5036 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5037 if (!atomic_long_inc_not_zero(&event->refcount)) { 5038 /* 5039 * This event is en-route to free_event() which will 5040 * detach it and remove it from the list. 5041 */ 5042 continue; 5043 } 5044 rcu_read_unlock(); 5045 5046 mutex_lock(&event->mmap_mutex); 5047 /* 5048 * Check we didn't race with perf_event_set_output() which can 5049 * swizzle the rb from under us while we were waiting to 5050 * acquire mmap_mutex. 5051 * 5052 * If we find a different rb; ignore this event, a next 5053 * iteration will no longer find it on the list. We have to 5054 * still restart the iteration to make sure we're not now 5055 * iterating the wrong list. 5056 */ 5057 if (event->rb == rb) 5058 ring_buffer_attach(event, NULL); 5059 5060 mutex_unlock(&event->mmap_mutex); 5061 put_event(event); 5062 5063 /* 5064 * Restart the iteration; either we're on the wrong list or 5065 * destroyed its integrity by doing a deletion. 5066 */ 5067 goto again; 5068 } 5069 rcu_read_unlock(); 5070 5071 /* 5072 * It could be there's still a few 0-ref events on the list; they'll 5073 * get cleaned up by free_event() -- they'll also still have their 5074 * ref on the rb and will free it whenever they are done with it. 5075 * 5076 * Aside from that, this buffer is 'fully' detached and unmapped, 5077 * undo the VM accounting. 5078 */ 5079 5080 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5081 vma->vm_mm->pinned_vm -= mmap_locked; 5082 free_uid(mmap_user); 5083 5084 out_put: 5085 ring_buffer_put(rb); /* could be last */ 5086 } 5087 5088 static const struct vm_operations_struct perf_mmap_vmops = { 5089 .open = perf_mmap_open, 5090 .close = perf_mmap_close, /* non mergable */ 5091 .fault = perf_mmap_fault, 5092 .page_mkwrite = perf_mmap_fault, 5093 }; 5094 5095 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5096 { 5097 struct perf_event *event = file->private_data; 5098 unsigned long user_locked, user_lock_limit; 5099 struct user_struct *user = current_user(); 5100 unsigned long locked, lock_limit; 5101 struct ring_buffer *rb = NULL; 5102 unsigned long vma_size; 5103 unsigned long nr_pages; 5104 long user_extra = 0, extra = 0; 5105 int ret = 0, flags = 0; 5106 5107 /* 5108 * Don't allow mmap() of inherited per-task counters. This would 5109 * create a performance issue due to all children writing to the 5110 * same rb. 5111 */ 5112 if (event->cpu == -1 && event->attr.inherit) 5113 return -EINVAL; 5114 5115 if (!(vma->vm_flags & VM_SHARED)) 5116 return -EINVAL; 5117 5118 vma_size = vma->vm_end - vma->vm_start; 5119 5120 if (vma->vm_pgoff == 0) { 5121 nr_pages = (vma_size / PAGE_SIZE) - 1; 5122 } else { 5123 /* 5124 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5125 * mapped, all subsequent mappings should have the same size 5126 * and offset. Must be above the normal perf buffer. 5127 */ 5128 u64 aux_offset, aux_size; 5129 5130 if (!event->rb) 5131 return -EINVAL; 5132 5133 nr_pages = vma_size / PAGE_SIZE; 5134 5135 mutex_lock(&event->mmap_mutex); 5136 ret = -EINVAL; 5137 5138 rb = event->rb; 5139 if (!rb) 5140 goto aux_unlock; 5141 5142 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5143 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5144 5145 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5146 goto aux_unlock; 5147 5148 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5149 goto aux_unlock; 5150 5151 /* already mapped with a different offset */ 5152 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5153 goto aux_unlock; 5154 5155 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5156 goto aux_unlock; 5157 5158 /* already mapped with a different size */ 5159 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5160 goto aux_unlock; 5161 5162 if (!is_power_of_2(nr_pages)) 5163 goto aux_unlock; 5164 5165 if (!atomic_inc_not_zero(&rb->mmap_count)) 5166 goto aux_unlock; 5167 5168 if (rb_has_aux(rb)) { 5169 atomic_inc(&rb->aux_mmap_count); 5170 ret = 0; 5171 goto unlock; 5172 } 5173 5174 atomic_set(&rb->aux_mmap_count, 1); 5175 user_extra = nr_pages; 5176 5177 goto accounting; 5178 } 5179 5180 /* 5181 * If we have rb pages ensure they're a power-of-two number, so we 5182 * can do bitmasks instead of modulo. 5183 */ 5184 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5185 return -EINVAL; 5186 5187 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5188 return -EINVAL; 5189 5190 WARN_ON_ONCE(event->ctx->parent_ctx); 5191 again: 5192 mutex_lock(&event->mmap_mutex); 5193 if (event->rb) { 5194 if (event->rb->nr_pages != nr_pages) { 5195 ret = -EINVAL; 5196 goto unlock; 5197 } 5198 5199 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5200 /* 5201 * Raced against perf_mmap_close() through 5202 * perf_event_set_output(). Try again, hope for better 5203 * luck. 5204 */ 5205 mutex_unlock(&event->mmap_mutex); 5206 goto again; 5207 } 5208 5209 goto unlock; 5210 } 5211 5212 user_extra = nr_pages + 1; 5213 5214 accounting: 5215 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5216 5217 /* 5218 * Increase the limit linearly with more CPUs: 5219 */ 5220 user_lock_limit *= num_online_cpus(); 5221 5222 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5223 5224 if (user_locked > user_lock_limit) 5225 extra = user_locked - user_lock_limit; 5226 5227 lock_limit = rlimit(RLIMIT_MEMLOCK); 5228 lock_limit >>= PAGE_SHIFT; 5229 locked = vma->vm_mm->pinned_vm + extra; 5230 5231 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5232 !capable(CAP_IPC_LOCK)) { 5233 ret = -EPERM; 5234 goto unlock; 5235 } 5236 5237 WARN_ON(!rb && event->rb); 5238 5239 if (vma->vm_flags & VM_WRITE) 5240 flags |= RING_BUFFER_WRITABLE; 5241 5242 if (!rb) { 5243 rb = rb_alloc(nr_pages, 5244 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5245 event->cpu, flags); 5246 5247 if (!rb) { 5248 ret = -ENOMEM; 5249 goto unlock; 5250 } 5251 5252 atomic_set(&rb->mmap_count, 1); 5253 rb->mmap_user = get_current_user(); 5254 rb->mmap_locked = extra; 5255 5256 ring_buffer_attach(event, rb); 5257 5258 perf_event_init_userpage(event); 5259 perf_event_update_userpage(event); 5260 } else { 5261 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5262 event->attr.aux_watermark, flags); 5263 if (!ret) 5264 rb->aux_mmap_locked = extra; 5265 } 5266 5267 unlock: 5268 if (!ret) { 5269 atomic_long_add(user_extra, &user->locked_vm); 5270 vma->vm_mm->pinned_vm += extra; 5271 5272 atomic_inc(&event->mmap_count); 5273 } else if (rb) { 5274 atomic_dec(&rb->mmap_count); 5275 } 5276 aux_unlock: 5277 mutex_unlock(&event->mmap_mutex); 5278 5279 /* 5280 * Since pinned accounting is per vm we cannot allow fork() to copy our 5281 * vma. 5282 */ 5283 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5284 vma->vm_ops = &perf_mmap_vmops; 5285 5286 if (event->pmu->event_mapped) 5287 event->pmu->event_mapped(event); 5288 5289 return ret; 5290 } 5291 5292 static int perf_fasync(int fd, struct file *filp, int on) 5293 { 5294 struct inode *inode = file_inode(filp); 5295 struct perf_event *event = filp->private_data; 5296 int retval; 5297 5298 inode_lock(inode); 5299 retval = fasync_helper(fd, filp, on, &event->fasync); 5300 inode_unlock(inode); 5301 5302 if (retval < 0) 5303 return retval; 5304 5305 return 0; 5306 } 5307 5308 static const struct file_operations perf_fops = { 5309 .llseek = no_llseek, 5310 .release = perf_release, 5311 .read = perf_read, 5312 .poll = perf_poll, 5313 .unlocked_ioctl = perf_ioctl, 5314 .compat_ioctl = perf_compat_ioctl, 5315 .mmap = perf_mmap, 5316 .fasync = perf_fasync, 5317 }; 5318 5319 /* 5320 * Perf event wakeup 5321 * 5322 * If there's data, ensure we set the poll() state and publish everything 5323 * to user-space before waking everybody up. 5324 */ 5325 5326 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5327 { 5328 /* only the parent has fasync state */ 5329 if (event->parent) 5330 event = event->parent; 5331 return &event->fasync; 5332 } 5333 5334 void perf_event_wakeup(struct perf_event *event) 5335 { 5336 ring_buffer_wakeup(event); 5337 5338 if (event->pending_kill) { 5339 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5340 event->pending_kill = 0; 5341 } 5342 } 5343 5344 static void perf_pending_event(struct irq_work *entry) 5345 { 5346 struct perf_event *event = container_of(entry, 5347 struct perf_event, pending); 5348 int rctx; 5349 5350 rctx = perf_swevent_get_recursion_context(); 5351 /* 5352 * If we 'fail' here, that's OK, it means recursion is already disabled 5353 * and we won't recurse 'further'. 5354 */ 5355 5356 if (event->pending_disable) { 5357 event->pending_disable = 0; 5358 perf_event_disable_local(event); 5359 } 5360 5361 if (event->pending_wakeup) { 5362 event->pending_wakeup = 0; 5363 perf_event_wakeup(event); 5364 } 5365 5366 if (rctx >= 0) 5367 perf_swevent_put_recursion_context(rctx); 5368 } 5369 5370 /* 5371 * We assume there is only KVM supporting the callbacks. 5372 * Later on, we might change it to a list if there is 5373 * another virtualization implementation supporting the callbacks. 5374 */ 5375 struct perf_guest_info_callbacks *perf_guest_cbs; 5376 5377 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5378 { 5379 perf_guest_cbs = cbs; 5380 return 0; 5381 } 5382 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5383 5384 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5385 { 5386 perf_guest_cbs = NULL; 5387 return 0; 5388 } 5389 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5390 5391 static void 5392 perf_output_sample_regs(struct perf_output_handle *handle, 5393 struct pt_regs *regs, u64 mask) 5394 { 5395 int bit; 5396 DECLARE_BITMAP(_mask, 64); 5397 5398 bitmap_from_u64(_mask, mask); 5399 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5400 u64 val; 5401 5402 val = perf_reg_value(regs, bit); 5403 perf_output_put(handle, val); 5404 } 5405 } 5406 5407 static void perf_sample_regs_user(struct perf_regs *regs_user, 5408 struct pt_regs *regs, 5409 struct pt_regs *regs_user_copy) 5410 { 5411 if (user_mode(regs)) { 5412 regs_user->abi = perf_reg_abi(current); 5413 regs_user->regs = regs; 5414 } else if (current->mm) { 5415 perf_get_regs_user(regs_user, regs, regs_user_copy); 5416 } else { 5417 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5418 regs_user->regs = NULL; 5419 } 5420 } 5421 5422 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5423 struct pt_regs *regs) 5424 { 5425 regs_intr->regs = regs; 5426 regs_intr->abi = perf_reg_abi(current); 5427 } 5428 5429 5430 /* 5431 * Get remaining task size from user stack pointer. 5432 * 5433 * It'd be better to take stack vma map and limit this more 5434 * precisly, but there's no way to get it safely under interrupt, 5435 * so using TASK_SIZE as limit. 5436 */ 5437 static u64 perf_ustack_task_size(struct pt_regs *regs) 5438 { 5439 unsigned long addr = perf_user_stack_pointer(regs); 5440 5441 if (!addr || addr >= TASK_SIZE) 5442 return 0; 5443 5444 return TASK_SIZE - addr; 5445 } 5446 5447 static u16 5448 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5449 struct pt_regs *regs) 5450 { 5451 u64 task_size; 5452 5453 /* No regs, no stack pointer, no dump. */ 5454 if (!regs) 5455 return 0; 5456 5457 /* 5458 * Check if we fit in with the requested stack size into the: 5459 * - TASK_SIZE 5460 * If we don't, we limit the size to the TASK_SIZE. 5461 * 5462 * - remaining sample size 5463 * If we don't, we customize the stack size to 5464 * fit in to the remaining sample size. 5465 */ 5466 5467 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5468 stack_size = min(stack_size, (u16) task_size); 5469 5470 /* Current header size plus static size and dynamic size. */ 5471 header_size += 2 * sizeof(u64); 5472 5473 /* Do we fit in with the current stack dump size? */ 5474 if ((u16) (header_size + stack_size) < header_size) { 5475 /* 5476 * If we overflow the maximum size for the sample, 5477 * we customize the stack dump size to fit in. 5478 */ 5479 stack_size = USHRT_MAX - header_size - sizeof(u64); 5480 stack_size = round_up(stack_size, sizeof(u64)); 5481 } 5482 5483 return stack_size; 5484 } 5485 5486 static void 5487 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5488 struct pt_regs *regs) 5489 { 5490 /* Case of a kernel thread, nothing to dump */ 5491 if (!regs) { 5492 u64 size = 0; 5493 perf_output_put(handle, size); 5494 } else { 5495 unsigned long sp; 5496 unsigned int rem; 5497 u64 dyn_size; 5498 5499 /* 5500 * We dump: 5501 * static size 5502 * - the size requested by user or the best one we can fit 5503 * in to the sample max size 5504 * data 5505 * - user stack dump data 5506 * dynamic size 5507 * - the actual dumped size 5508 */ 5509 5510 /* Static size. */ 5511 perf_output_put(handle, dump_size); 5512 5513 /* Data. */ 5514 sp = perf_user_stack_pointer(regs); 5515 rem = __output_copy_user(handle, (void *) sp, dump_size); 5516 dyn_size = dump_size - rem; 5517 5518 perf_output_skip(handle, rem); 5519 5520 /* Dynamic size. */ 5521 perf_output_put(handle, dyn_size); 5522 } 5523 } 5524 5525 static void __perf_event_header__init_id(struct perf_event_header *header, 5526 struct perf_sample_data *data, 5527 struct perf_event *event) 5528 { 5529 u64 sample_type = event->attr.sample_type; 5530 5531 data->type = sample_type; 5532 header->size += event->id_header_size; 5533 5534 if (sample_type & PERF_SAMPLE_TID) { 5535 /* namespace issues */ 5536 data->tid_entry.pid = perf_event_pid(event, current); 5537 data->tid_entry.tid = perf_event_tid(event, current); 5538 } 5539 5540 if (sample_type & PERF_SAMPLE_TIME) 5541 data->time = perf_event_clock(event); 5542 5543 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5544 data->id = primary_event_id(event); 5545 5546 if (sample_type & PERF_SAMPLE_STREAM_ID) 5547 data->stream_id = event->id; 5548 5549 if (sample_type & PERF_SAMPLE_CPU) { 5550 data->cpu_entry.cpu = raw_smp_processor_id(); 5551 data->cpu_entry.reserved = 0; 5552 } 5553 } 5554 5555 void perf_event_header__init_id(struct perf_event_header *header, 5556 struct perf_sample_data *data, 5557 struct perf_event *event) 5558 { 5559 if (event->attr.sample_id_all) 5560 __perf_event_header__init_id(header, data, event); 5561 } 5562 5563 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5564 struct perf_sample_data *data) 5565 { 5566 u64 sample_type = data->type; 5567 5568 if (sample_type & PERF_SAMPLE_TID) 5569 perf_output_put(handle, data->tid_entry); 5570 5571 if (sample_type & PERF_SAMPLE_TIME) 5572 perf_output_put(handle, data->time); 5573 5574 if (sample_type & PERF_SAMPLE_ID) 5575 perf_output_put(handle, data->id); 5576 5577 if (sample_type & PERF_SAMPLE_STREAM_ID) 5578 perf_output_put(handle, data->stream_id); 5579 5580 if (sample_type & PERF_SAMPLE_CPU) 5581 perf_output_put(handle, data->cpu_entry); 5582 5583 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5584 perf_output_put(handle, data->id); 5585 } 5586 5587 void perf_event__output_id_sample(struct perf_event *event, 5588 struct perf_output_handle *handle, 5589 struct perf_sample_data *sample) 5590 { 5591 if (event->attr.sample_id_all) 5592 __perf_event__output_id_sample(handle, sample); 5593 } 5594 5595 static void perf_output_read_one(struct perf_output_handle *handle, 5596 struct perf_event *event, 5597 u64 enabled, u64 running) 5598 { 5599 u64 read_format = event->attr.read_format; 5600 u64 values[4]; 5601 int n = 0; 5602 5603 values[n++] = perf_event_count(event); 5604 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5605 values[n++] = enabled + 5606 atomic64_read(&event->child_total_time_enabled); 5607 } 5608 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5609 values[n++] = running + 5610 atomic64_read(&event->child_total_time_running); 5611 } 5612 if (read_format & PERF_FORMAT_ID) 5613 values[n++] = primary_event_id(event); 5614 5615 __output_copy(handle, values, n * sizeof(u64)); 5616 } 5617 5618 /* 5619 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5620 */ 5621 static void perf_output_read_group(struct perf_output_handle *handle, 5622 struct perf_event *event, 5623 u64 enabled, u64 running) 5624 { 5625 struct perf_event *leader = event->group_leader, *sub; 5626 u64 read_format = event->attr.read_format; 5627 u64 values[5]; 5628 int n = 0; 5629 5630 values[n++] = 1 + leader->nr_siblings; 5631 5632 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5633 values[n++] = enabled; 5634 5635 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5636 values[n++] = running; 5637 5638 if (leader != event) 5639 leader->pmu->read(leader); 5640 5641 values[n++] = perf_event_count(leader); 5642 if (read_format & PERF_FORMAT_ID) 5643 values[n++] = primary_event_id(leader); 5644 5645 __output_copy(handle, values, n * sizeof(u64)); 5646 5647 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5648 n = 0; 5649 5650 if ((sub != event) && 5651 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5652 sub->pmu->read(sub); 5653 5654 values[n++] = perf_event_count(sub); 5655 if (read_format & PERF_FORMAT_ID) 5656 values[n++] = primary_event_id(sub); 5657 5658 __output_copy(handle, values, n * sizeof(u64)); 5659 } 5660 } 5661 5662 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5663 PERF_FORMAT_TOTAL_TIME_RUNNING) 5664 5665 static void perf_output_read(struct perf_output_handle *handle, 5666 struct perf_event *event) 5667 { 5668 u64 enabled = 0, running = 0, now; 5669 u64 read_format = event->attr.read_format; 5670 5671 /* 5672 * compute total_time_enabled, total_time_running 5673 * based on snapshot values taken when the event 5674 * was last scheduled in. 5675 * 5676 * we cannot simply called update_context_time() 5677 * because of locking issue as we are called in 5678 * NMI context 5679 */ 5680 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5681 calc_timer_values(event, &now, &enabled, &running); 5682 5683 if (event->attr.read_format & PERF_FORMAT_GROUP) 5684 perf_output_read_group(handle, event, enabled, running); 5685 else 5686 perf_output_read_one(handle, event, enabled, running); 5687 } 5688 5689 void perf_output_sample(struct perf_output_handle *handle, 5690 struct perf_event_header *header, 5691 struct perf_sample_data *data, 5692 struct perf_event *event) 5693 { 5694 u64 sample_type = data->type; 5695 5696 perf_output_put(handle, *header); 5697 5698 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5699 perf_output_put(handle, data->id); 5700 5701 if (sample_type & PERF_SAMPLE_IP) 5702 perf_output_put(handle, data->ip); 5703 5704 if (sample_type & PERF_SAMPLE_TID) 5705 perf_output_put(handle, data->tid_entry); 5706 5707 if (sample_type & PERF_SAMPLE_TIME) 5708 perf_output_put(handle, data->time); 5709 5710 if (sample_type & PERF_SAMPLE_ADDR) 5711 perf_output_put(handle, data->addr); 5712 5713 if (sample_type & PERF_SAMPLE_ID) 5714 perf_output_put(handle, data->id); 5715 5716 if (sample_type & PERF_SAMPLE_STREAM_ID) 5717 perf_output_put(handle, data->stream_id); 5718 5719 if (sample_type & PERF_SAMPLE_CPU) 5720 perf_output_put(handle, data->cpu_entry); 5721 5722 if (sample_type & PERF_SAMPLE_PERIOD) 5723 perf_output_put(handle, data->period); 5724 5725 if (sample_type & PERF_SAMPLE_READ) 5726 perf_output_read(handle, event); 5727 5728 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5729 if (data->callchain) { 5730 int size = 1; 5731 5732 if (data->callchain) 5733 size += data->callchain->nr; 5734 5735 size *= sizeof(u64); 5736 5737 __output_copy(handle, data->callchain, size); 5738 } else { 5739 u64 nr = 0; 5740 perf_output_put(handle, nr); 5741 } 5742 } 5743 5744 if (sample_type & PERF_SAMPLE_RAW) { 5745 struct perf_raw_record *raw = data->raw; 5746 5747 if (raw) { 5748 struct perf_raw_frag *frag = &raw->frag; 5749 5750 perf_output_put(handle, raw->size); 5751 do { 5752 if (frag->copy) { 5753 __output_custom(handle, frag->copy, 5754 frag->data, frag->size); 5755 } else { 5756 __output_copy(handle, frag->data, 5757 frag->size); 5758 } 5759 if (perf_raw_frag_last(frag)) 5760 break; 5761 frag = frag->next; 5762 } while (1); 5763 if (frag->pad) 5764 __output_skip(handle, NULL, frag->pad); 5765 } else { 5766 struct { 5767 u32 size; 5768 u32 data; 5769 } raw = { 5770 .size = sizeof(u32), 5771 .data = 0, 5772 }; 5773 perf_output_put(handle, raw); 5774 } 5775 } 5776 5777 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5778 if (data->br_stack) { 5779 size_t size; 5780 5781 size = data->br_stack->nr 5782 * sizeof(struct perf_branch_entry); 5783 5784 perf_output_put(handle, data->br_stack->nr); 5785 perf_output_copy(handle, data->br_stack->entries, size); 5786 } else { 5787 /* 5788 * we always store at least the value of nr 5789 */ 5790 u64 nr = 0; 5791 perf_output_put(handle, nr); 5792 } 5793 } 5794 5795 if (sample_type & PERF_SAMPLE_REGS_USER) { 5796 u64 abi = data->regs_user.abi; 5797 5798 /* 5799 * If there are no regs to dump, notice it through 5800 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5801 */ 5802 perf_output_put(handle, abi); 5803 5804 if (abi) { 5805 u64 mask = event->attr.sample_regs_user; 5806 perf_output_sample_regs(handle, 5807 data->regs_user.regs, 5808 mask); 5809 } 5810 } 5811 5812 if (sample_type & PERF_SAMPLE_STACK_USER) { 5813 perf_output_sample_ustack(handle, 5814 data->stack_user_size, 5815 data->regs_user.regs); 5816 } 5817 5818 if (sample_type & PERF_SAMPLE_WEIGHT) 5819 perf_output_put(handle, data->weight); 5820 5821 if (sample_type & PERF_SAMPLE_DATA_SRC) 5822 perf_output_put(handle, data->data_src.val); 5823 5824 if (sample_type & PERF_SAMPLE_TRANSACTION) 5825 perf_output_put(handle, data->txn); 5826 5827 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5828 u64 abi = data->regs_intr.abi; 5829 /* 5830 * If there are no regs to dump, notice it through 5831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5832 */ 5833 perf_output_put(handle, abi); 5834 5835 if (abi) { 5836 u64 mask = event->attr.sample_regs_intr; 5837 5838 perf_output_sample_regs(handle, 5839 data->regs_intr.regs, 5840 mask); 5841 } 5842 } 5843 5844 if (!event->attr.watermark) { 5845 int wakeup_events = event->attr.wakeup_events; 5846 5847 if (wakeup_events) { 5848 struct ring_buffer *rb = handle->rb; 5849 int events = local_inc_return(&rb->events); 5850 5851 if (events >= wakeup_events) { 5852 local_sub(wakeup_events, &rb->events); 5853 local_inc(&rb->wakeup); 5854 } 5855 } 5856 } 5857 } 5858 5859 void perf_prepare_sample(struct perf_event_header *header, 5860 struct perf_sample_data *data, 5861 struct perf_event *event, 5862 struct pt_regs *regs) 5863 { 5864 u64 sample_type = event->attr.sample_type; 5865 5866 header->type = PERF_RECORD_SAMPLE; 5867 header->size = sizeof(*header) + event->header_size; 5868 5869 header->misc = 0; 5870 header->misc |= perf_misc_flags(regs); 5871 5872 __perf_event_header__init_id(header, data, event); 5873 5874 if (sample_type & PERF_SAMPLE_IP) 5875 data->ip = perf_instruction_pointer(regs); 5876 5877 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5878 int size = 1; 5879 5880 data->callchain = perf_callchain(event, regs); 5881 5882 if (data->callchain) 5883 size += data->callchain->nr; 5884 5885 header->size += size * sizeof(u64); 5886 } 5887 5888 if (sample_type & PERF_SAMPLE_RAW) { 5889 struct perf_raw_record *raw = data->raw; 5890 int size; 5891 5892 if (raw) { 5893 struct perf_raw_frag *frag = &raw->frag; 5894 u32 sum = 0; 5895 5896 do { 5897 sum += frag->size; 5898 if (perf_raw_frag_last(frag)) 5899 break; 5900 frag = frag->next; 5901 } while (1); 5902 5903 size = round_up(sum + sizeof(u32), sizeof(u64)); 5904 raw->size = size - sizeof(u32); 5905 frag->pad = raw->size - sum; 5906 } else { 5907 size = sizeof(u64); 5908 } 5909 5910 header->size += size; 5911 } 5912 5913 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5914 int size = sizeof(u64); /* nr */ 5915 if (data->br_stack) { 5916 size += data->br_stack->nr 5917 * sizeof(struct perf_branch_entry); 5918 } 5919 header->size += size; 5920 } 5921 5922 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5923 perf_sample_regs_user(&data->regs_user, regs, 5924 &data->regs_user_copy); 5925 5926 if (sample_type & PERF_SAMPLE_REGS_USER) { 5927 /* regs dump ABI info */ 5928 int size = sizeof(u64); 5929 5930 if (data->regs_user.regs) { 5931 u64 mask = event->attr.sample_regs_user; 5932 size += hweight64(mask) * sizeof(u64); 5933 } 5934 5935 header->size += size; 5936 } 5937 5938 if (sample_type & PERF_SAMPLE_STACK_USER) { 5939 /* 5940 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5941 * processed as the last one or have additional check added 5942 * in case new sample type is added, because we could eat 5943 * up the rest of the sample size. 5944 */ 5945 u16 stack_size = event->attr.sample_stack_user; 5946 u16 size = sizeof(u64); 5947 5948 stack_size = perf_sample_ustack_size(stack_size, header->size, 5949 data->regs_user.regs); 5950 5951 /* 5952 * If there is something to dump, add space for the dump 5953 * itself and for the field that tells the dynamic size, 5954 * which is how many have been actually dumped. 5955 */ 5956 if (stack_size) 5957 size += sizeof(u64) + stack_size; 5958 5959 data->stack_user_size = stack_size; 5960 header->size += size; 5961 } 5962 5963 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5964 /* regs dump ABI info */ 5965 int size = sizeof(u64); 5966 5967 perf_sample_regs_intr(&data->regs_intr, regs); 5968 5969 if (data->regs_intr.regs) { 5970 u64 mask = event->attr.sample_regs_intr; 5971 5972 size += hweight64(mask) * sizeof(u64); 5973 } 5974 5975 header->size += size; 5976 } 5977 } 5978 5979 static void __always_inline 5980 __perf_event_output(struct perf_event *event, 5981 struct perf_sample_data *data, 5982 struct pt_regs *regs, 5983 int (*output_begin)(struct perf_output_handle *, 5984 struct perf_event *, 5985 unsigned int)) 5986 { 5987 struct perf_output_handle handle; 5988 struct perf_event_header header; 5989 5990 /* protect the callchain buffers */ 5991 rcu_read_lock(); 5992 5993 perf_prepare_sample(&header, data, event, regs); 5994 5995 if (output_begin(&handle, event, header.size)) 5996 goto exit; 5997 5998 perf_output_sample(&handle, &header, data, event); 5999 6000 perf_output_end(&handle); 6001 6002 exit: 6003 rcu_read_unlock(); 6004 } 6005 6006 void 6007 perf_event_output_forward(struct perf_event *event, 6008 struct perf_sample_data *data, 6009 struct pt_regs *regs) 6010 { 6011 __perf_event_output(event, data, regs, perf_output_begin_forward); 6012 } 6013 6014 void 6015 perf_event_output_backward(struct perf_event *event, 6016 struct perf_sample_data *data, 6017 struct pt_regs *regs) 6018 { 6019 __perf_event_output(event, data, regs, perf_output_begin_backward); 6020 } 6021 6022 void 6023 perf_event_output(struct perf_event *event, 6024 struct perf_sample_data *data, 6025 struct pt_regs *regs) 6026 { 6027 __perf_event_output(event, data, regs, perf_output_begin); 6028 } 6029 6030 /* 6031 * read event_id 6032 */ 6033 6034 struct perf_read_event { 6035 struct perf_event_header header; 6036 6037 u32 pid; 6038 u32 tid; 6039 }; 6040 6041 static void 6042 perf_event_read_event(struct perf_event *event, 6043 struct task_struct *task) 6044 { 6045 struct perf_output_handle handle; 6046 struct perf_sample_data sample; 6047 struct perf_read_event read_event = { 6048 .header = { 6049 .type = PERF_RECORD_READ, 6050 .misc = 0, 6051 .size = sizeof(read_event) + event->read_size, 6052 }, 6053 .pid = perf_event_pid(event, task), 6054 .tid = perf_event_tid(event, task), 6055 }; 6056 int ret; 6057 6058 perf_event_header__init_id(&read_event.header, &sample, event); 6059 ret = perf_output_begin(&handle, event, read_event.header.size); 6060 if (ret) 6061 return; 6062 6063 perf_output_put(&handle, read_event); 6064 perf_output_read(&handle, event); 6065 perf_event__output_id_sample(event, &handle, &sample); 6066 6067 perf_output_end(&handle); 6068 } 6069 6070 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6071 6072 static void 6073 perf_iterate_ctx(struct perf_event_context *ctx, 6074 perf_iterate_f output, 6075 void *data, bool all) 6076 { 6077 struct perf_event *event; 6078 6079 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6080 if (!all) { 6081 if (event->state < PERF_EVENT_STATE_INACTIVE) 6082 continue; 6083 if (!event_filter_match(event)) 6084 continue; 6085 } 6086 6087 output(event, data); 6088 } 6089 } 6090 6091 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6092 { 6093 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6094 struct perf_event *event; 6095 6096 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6097 /* 6098 * Skip events that are not fully formed yet; ensure that 6099 * if we observe event->ctx, both event and ctx will be 6100 * complete enough. See perf_install_in_context(). 6101 */ 6102 if (!smp_load_acquire(&event->ctx)) 6103 continue; 6104 6105 if (event->state < PERF_EVENT_STATE_INACTIVE) 6106 continue; 6107 if (!event_filter_match(event)) 6108 continue; 6109 output(event, data); 6110 } 6111 } 6112 6113 /* 6114 * Iterate all events that need to receive side-band events. 6115 * 6116 * For new callers; ensure that account_pmu_sb_event() includes 6117 * your event, otherwise it might not get delivered. 6118 */ 6119 static void 6120 perf_iterate_sb(perf_iterate_f output, void *data, 6121 struct perf_event_context *task_ctx) 6122 { 6123 struct perf_event_context *ctx; 6124 int ctxn; 6125 6126 rcu_read_lock(); 6127 preempt_disable(); 6128 6129 /* 6130 * If we have task_ctx != NULL we only notify the task context itself. 6131 * The task_ctx is set only for EXIT events before releasing task 6132 * context. 6133 */ 6134 if (task_ctx) { 6135 perf_iterate_ctx(task_ctx, output, data, false); 6136 goto done; 6137 } 6138 6139 perf_iterate_sb_cpu(output, data); 6140 6141 for_each_task_context_nr(ctxn) { 6142 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6143 if (ctx) 6144 perf_iterate_ctx(ctx, output, data, false); 6145 } 6146 done: 6147 preempt_enable(); 6148 rcu_read_unlock(); 6149 } 6150 6151 /* 6152 * Clear all file-based filters at exec, they'll have to be 6153 * re-instated when/if these objects are mmapped again. 6154 */ 6155 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6156 { 6157 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6158 struct perf_addr_filter *filter; 6159 unsigned int restart = 0, count = 0; 6160 unsigned long flags; 6161 6162 if (!has_addr_filter(event)) 6163 return; 6164 6165 raw_spin_lock_irqsave(&ifh->lock, flags); 6166 list_for_each_entry(filter, &ifh->list, entry) { 6167 if (filter->inode) { 6168 event->addr_filters_offs[count] = 0; 6169 restart++; 6170 } 6171 6172 count++; 6173 } 6174 6175 if (restart) 6176 event->addr_filters_gen++; 6177 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6178 6179 if (restart) 6180 perf_event_stop(event, 1); 6181 } 6182 6183 void perf_event_exec(void) 6184 { 6185 struct perf_event_context *ctx; 6186 int ctxn; 6187 6188 rcu_read_lock(); 6189 for_each_task_context_nr(ctxn) { 6190 ctx = current->perf_event_ctxp[ctxn]; 6191 if (!ctx) 6192 continue; 6193 6194 perf_event_enable_on_exec(ctxn); 6195 6196 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6197 true); 6198 } 6199 rcu_read_unlock(); 6200 } 6201 6202 struct remote_output { 6203 struct ring_buffer *rb; 6204 int err; 6205 }; 6206 6207 static void __perf_event_output_stop(struct perf_event *event, void *data) 6208 { 6209 struct perf_event *parent = event->parent; 6210 struct remote_output *ro = data; 6211 struct ring_buffer *rb = ro->rb; 6212 struct stop_event_data sd = { 6213 .event = event, 6214 }; 6215 6216 if (!has_aux(event)) 6217 return; 6218 6219 if (!parent) 6220 parent = event; 6221 6222 /* 6223 * In case of inheritance, it will be the parent that links to the 6224 * ring-buffer, but it will be the child that's actually using it. 6225 * 6226 * We are using event::rb to determine if the event should be stopped, 6227 * however this may race with ring_buffer_attach() (through set_output), 6228 * which will make us skip the event that actually needs to be stopped. 6229 * So ring_buffer_attach() has to stop an aux event before re-assigning 6230 * its rb pointer. 6231 */ 6232 if (rcu_dereference(parent->rb) == rb) 6233 ro->err = __perf_event_stop(&sd); 6234 } 6235 6236 static int __perf_pmu_output_stop(void *info) 6237 { 6238 struct perf_event *event = info; 6239 struct pmu *pmu = event->pmu; 6240 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6241 struct remote_output ro = { 6242 .rb = event->rb, 6243 }; 6244 6245 rcu_read_lock(); 6246 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6247 if (cpuctx->task_ctx) 6248 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6249 &ro, false); 6250 rcu_read_unlock(); 6251 6252 return ro.err; 6253 } 6254 6255 static void perf_pmu_output_stop(struct perf_event *event) 6256 { 6257 struct perf_event *iter; 6258 int err, cpu; 6259 6260 restart: 6261 rcu_read_lock(); 6262 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6263 /* 6264 * For per-CPU events, we need to make sure that neither they 6265 * nor their children are running; for cpu==-1 events it's 6266 * sufficient to stop the event itself if it's active, since 6267 * it can't have children. 6268 */ 6269 cpu = iter->cpu; 6270 if (cpu == -1) 6271 cpu = READ_ONCE(iter->oncpu); 6272 6273 if (cpu == -1) 6274 continue; 6275 6276 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6277 if (err == -EAGAIN) { 6278 rcu_read_unlock(); 6279 goto restart; 6280 } 6281 } 6282 rcu_read_unlock(); 6283 } 6284 6285 /* 6286 * task tracking -- fork/exit 6287 * 6288 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6289 */ 6290 6291 struct perf_task_event { 6292 struct task_struct *task; 6293 struct perf_event_context *task_ctx; 6294 6295 struct { 6296 struct perf_event_header header; 6297 6298 u32 pid; 6299 u32 ppid; 6300 u32 tid; 6301 u32 ptid; 6302 u64 time; 6303 } event_id; 6304 }; 6305 6306 static int perf_event_task_match(struct perf_event *event) 6307 { 6308 return event->attr.comm || event->attr.mmap || 6309 event->attr.mmap2 || event->attr.mmap_data || 6310 event->attr.task; 6311 } 6312 6313 static void perf_event_task_output(struct perf_event *event, 6314 void *data) 6315 { 6316 struct perf_task_event *task_event = data; 6317 struct perf_output_handle handle; 6318 struct perf_sample_data sample; 6319 struct task_struct *task = task_event->task; 6320 int ret, size = task_event->event_id.header.size; 6321 6322 if (!perf_event_task_match(event)) 6323 return; 6324 6325 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6326 6327 ret = perf_output_begin(&handle, event, 6328 task_event->event_id.header.size); 6329 if (ret) 6330 goto out; 6331 6332 task_event->event_id.pid = perf_event_pid(event, task); 6333 task_event->event_id.ppid = perf_event_pid(event, current); 6334 6335 task_event->event_id.tid = perf_event_tid(event, task); 6336 task_event->event_id.ptid = perf_event_tid(event, current); 6337 6338 task_event->event_id.time = perf_event_clock(event); 6339 6340 perf_output_put(&handle, task_event->event_id); 6341 6342 perf_event__output_id_sample(event, &handle, &sample); 6343 6344 perf_output_end(&handle); 6345 out: 6346 task_event->event_id.header.size = size; 6347 } 6348 6349 static void perf_event_task(struct task_struct *task, 6350 struct perf_event_context *task_ctx, 6351 int new) 6352 { 6353 struct perf_task_event task_event; 6354 6355 if (!atomic_read(&nr_comm_events) && 6356 !atomic_read(&nr_mmap_events) && 6357 !atomic_read(&nr_task_events)) 6358 return; 6359 6360 task_event = (struct perf_task_event){ 6361 .task = task, 6362 .task_ctx = task_ctx, 6363 .event_id = { 6364 .header = { 6365 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6366 .misc = 0, 6367 .size = sizeof(task_event.event_id), 6368 }, 6369 /* .pid */ 6370 /* .ppid */ 6371 /* .tid */ 6372 /* .ptid */ 6373 /* .time */ 6374 }, 6375 }; 6376 6377 perf_iterate_sb(perf_event_task_output, 6378 &task_event, 6379 task_ctx); 6380 } 6381 6382 void perf_event_fork(struct task_struct *task) 6383 { 6384 perf_event_task(task, NULL, 1); 6385 } 6386 6387 /* 6388 * comm tracking 6389 */ 6390 6391 struct perf_comm_event { 6392 struct task_struct *task; 6393 char *comm; 6394 int comm_size; 6395 6396 struct { 6397 struct perf_event_header header; 6398 6399 u32 pid; 6400 u32 tid; 6401 } event_id; 6402 }; 6403 6404 static int perf_event_comm_match(struct perf_event *event) 6405 { 6406 return event->attr.comm; 6407 } 6408 6409 static void perf_event_comm_output(struct perf_event *event, 6410 void *data) 6411 { 6412 struct perf_comm_event *comm_event = data; 6413 struct perf_output_handle handle; 6414 struct perf_sample_data sample; 6415 int size = comm_event->event_id.header.size; 6416 int ret; 6417 6418 if (!perf_event_comm_match(event)) 6419 return; 6420 6421 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6422 ret = perf_output_begin(&handle, event, 6423 comm_event->event_id.header.size); 6424 6425 if (ret) 6426 goto out; 6427 6428 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6429 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6430 6431 perf_output_put(&handle, comm_event->event_id); 6432 __output_copy(&handle, comm_event->comm, 6433 comm_event->comm_size); 6434 6435 perf_event__output_id_sample(event, &handle, &sample); 6436 6437 perf_output_end(&handle); 6438 out: 6439 comm_event->event_id.header.size = size; 6440 } 6441 6442 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6443 { 6444 char comm[TASK_COMM_LEN]; 6445 unsigned int size; 6446 6447 memset(comm, 0, sizeof(comm)); 6448 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6449 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6450 6451 comm_event->comm = comm; 6452 comm_event->comm_size = size; 6453 6454 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6455 6456 perf_iterate_sb(perf_event_comm_output, 6457 comm_event, 6458 NULL); 6459 } 6460 6461 void perf_event_comm(struct task_struct *task, bool exec) 6462 { 6463 struct perf_comm_event comm_event; 6464 6465 if (!atomic_read(&nr_comm_events)) 6466 return; 6467 6468 comm_event = (struct perf_comm_event){ 6469 .task = task, 6470 /* .comm */ 6471 /* .comm_size */ 6472 .event_id = { 6473 .header = { 6474 .type = PERF_RECORD_COMM, 6475 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6476 /* .size */ 6477 }, 6478 /* .pid */ 6479 /* .tid */ 6480 }, 6481 }; 6482 6483 perf_event_comm_event(&comm_event); 6484 } 6485 6486 /* 6487 * mmap tracking 6488 */ 6489 6490 struct perf_mmap_event { 6491 struct vm_area_struct *vma; 6492 6493 const char *file_name; 6494 int file_size; 6495 int maj, min; 6496 u64 ino; 6497 u64 ino_generation; 6498 u32 prot, flags; 6499 6500 struct { 6501 struct perf_event_header header; 6502 6503 u32 pid; 6504 u32 tid; 6505 u64 start; 6506 u64 len; 6507 u64 pgoff; 6508 } event_id; 6509 }; 6510 6511 static int perf_event_mmap_match(struct perf_event *event, 6512 void *data) 6513 { 6514 struct perf_mmap_event *mmap_event = data; 6515 struct vm_area_struct *vma = mmap_event->vma; 6516 int executable = vma->vm_flags & VM_EXEC; 6517 6518 return (!executable && event->attr.mmap_data) || 6519 (executable && (event->attr.mmap || event->attr.mmap2)); 6520 } 6521 6522 static void perf_event_mmap_output(struct perf_event *event, 6523 void *data) 6524 { 6525 struct perf_mmap_event *mmap_event = data; 6526 struct perf_output_handle handle; 6527 struct perf_sample_data sample; 6528 int size = mmap_event->event_id.header.size; 6529 int ret; 6530 6531 if (!perf_event_mmap_match(event, data)) 6532 return; 6533 6534 if (event->attr.mmap2) { 6535 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6536 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6537 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6538 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6539 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6540 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6541 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6542 } 6543 6544 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6545 ret = perf_output_begin(&handle, event, 6546 mmap_event->event_id.header.size); 6547 if (ret) 6548 goto out; 6549 6550 mmap_event->event_id.pid = perf_event_pid(event, current); 6551 mmap_event->event_id.tid = perf_event_tid(event, current); 6552 6553 perf_output_put(&handle, mmap_event->event_id); 6554 6555 if (event->attr.mmap2) { 6556 perf_output_put(&handle, mmap_event->maj); 6557 perf_output_put(&handle, mmap_event->min); 6558 perf_output_put(&handle, mmap_event->ino); 6559 perf_output_put(&handle, mmap_event->ino_generation); 6560 perf_output_put(&handle, mmap_event->prot); 6561 perf_output_put(&handle, mmap_event->flags); 6562 } 6563 6564 __output_copy(&handle, mmap_event->file_name, 6565 mmap_event->file_size); 6566 6567 perf_event__output_id_sample(event, &handle, &sample); 6568 6569 perf_output_end(&handle); 6570 out: 6571 mmap_event->event_id.header.size = size; 6572 } 6573 6574 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6575 { 6576 struct vm_area_struct *vma = mmap_event->vma; 6577 struct file *file = vma->vm_file; 6578 int maj = 0, min = 0; 6579 u64 ino = 0, gen = 0; 6580 u32 prot = 0, flags = 0; 6581 unsigned int size; 6582 char tmp[16]; 6583 char *buf = NULL; 6584 char *name; 6585 6586 if (file) { 6587 struct inode *inode; 6588 dev_t dev; 6589 6590 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6591 if (!buf) { 6592 name = "//enomem"; 6593 goto cpy_name; 6594 } 6595 /* 6596 * d_path() works from the end of the rb backwards, so we 6597 * need to add enough zero bytes after the string to handle 6598 * the 64bit alignment we do later. 6599 */ 6600 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6601 if (IS_ERR(name)) { 6602 name = "//toolong"; 6603 goto cpy_name; 6604 } 6605 inode = file_inode(vma->vm_file); 6606 dev = inode->i_sb->s_dev; 6607 ino = inode->i_ino; 6608 gen = inode->i_generation; 6609 maj = MAJOR(dev); 6610 min = MINOR(dev); 6611 6612 if (vma->vm_flags & VM_READ) 6613 prot |= PROT_READ; 6614 if (vma->vm_flags & VM_WRITE) 6615 prot |= PROT_WRITE; 6616 if (vma->vm_flags & VM_EXEC) 6617 prot |= PROT_EXEC; 6618 6619 if (vma->vm_flags & VM_MAYSHARE) 6620 flags = MAP_SHARED; 6621 else 6622 flags = MAP_PRIVATE; 6623 6624 if (vma->vm_flags & VM_DENYWRITE) 6625 flags |= MAP_DENYWRITE; 6626 if (vma->vm_flags & VM_MAYEXEC) 6627 flags |= MAP_EXECUTABLE; 6628 if (vma->vm_flags & VM_LOCKED) 6629 flags |= MAP_LOCKED; 6630 if (vma->vm_flags & VM_HUGETLB) 6631 flags |= MAP_HUGETLB; 6632 6633 goto got_name; 6634 } else { 6635 if (vma->vm_ops && vma->vm_ops->name) { 6636 name = (char *) vma->vm_ops->name(vma); 6637 if (name) 6638 goto cpy_name; 6639 } 6640 6641 name = (char *)arch_vma_name(vma); 6642 if (name) 6643 goto cpy_name; 6644 6645 if (vma->vm_start <= vma->vm_mm->start_brk && 6646 vma->vm_end >= vma->vm_mm->brk) { 6647 name = "[heap]"; 6648 goto cpy_name; 6649 } 6650 if (vma->vm_start <= vma->vm_mm->start_stack && 6651 vma->vm_end >= vma->vm_mm->start_stack) { 6652 name = "[stack]"; 6653 goto cpy_name; 6654 } 6655 6656 name = "//anon"; 6657 goto cpy_name; 6658 } 6659 6660 cpy_name: 6661 strlcpy(tmp, name, sizeof(tmp)); 6662 name = tmp; 6663 got_name: 6664 /* 6665 * Since our buffer works in 8 byte units we need to align our string 6666 * size to a multiple of 8. However, we must guarantee the tail end is 6667 * zero'd out to avoid leaking random bits to userspace. 6668 */ 6669 size = strlen(name)+1; 6670 while (!IS_ALIGNED(size, sizeof(u64))) 6671 name[size++] = '\0'; 6672 6673 mmap_event->file_name = name; 6674 mmap_event->file_size = size; 6675 mmap_event->maj = maj; 6676 mmap_event->min = min; 6677 mmap_event->ino = ino; 6678 mmap_event->ino_generation = gen; 6679 mmap_event->prot = prot; 6680 mmap_event->flags = flags; 6681 6682 if (!(vma->vm_flags & VM_EXEC)) 6683 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6684 6685 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6686 6687 perf_iterate_sb(perf_event_mmap_output, 6688 mmap_event, 6689 NULL); 6690 6691 kfree(buf); 6692 } 6693 6694 /* 6695 * Check whether inode and address range match filter criteria. 6696 */ 6697 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6698 struct file *file, unsigned long offset, 6699 unsigned long size) 6700 { 6701 if (filter->inode != file_inode(file)) 6702 return false; 6703 6704 if (filter->offset > offset + size) 6705 return false; 6706 6707 if (filter->offset + filter->size < offset) 6708 return false; 6709 6710 return true; 6711 } 6712 6713 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6714 { 6715 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6716 struct vm_area_struct *vma = data; 6717 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6718 struct file *file = vma->vm_file; 6719 struct perf_addr_filter *filter; 6720 unsigned int restart = 0, count = 0; 6721 6722 if (!has_addr_filter(event)) 6723 return; 6724 6725 if (!file) 6726 return; 6727 6728 raw_spin_lock_irqsave(&ifh->lock, flags); 6729 list_for_each_entry(filter, &ifh->list, entry) { 6730 if (perf_addr_filter_match(filter, file, off, 6731 vma->vm_end - vma->vm_start)) { 6732 event->addr_filters_offs[count] = vma->vm_start; 6733 restart++; 6734 } 6735 6736 count++; 6737 } 6738 6739 if (restart) 6740 event->addr_filters_gen++; 6741 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6742 6743 if (restart) 6744 perf_event_stop(event, 1); 6745 } 6746 6747 /* 6748 * Adjust all task's events' filters to the new vma 6749 */ 6750 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6751 { 6752 struct perf_event_context *ctx; 6753 int ctxn; 6754 6755 /* 6756 * Data tracing isn't supported yet and as such there is no need 6757 * to keep track of anything that isn't related to executable code: 6758 */ 6759 if (!(vma->vm_flags & VM_EXEC)) 6760 return; 6761 6762 rcu_read_lock(); 6763 for_each_task_context_nr(ctxn) { 6764 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6765 if (!ctx) 6766 continue; 6767 6768 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6769 } 6770 rcu_read_unlock(); 6771 } 6772 6773 void perf_event_mmap(struct vm_area_struct *vma) 6774 { 6775 struct perf_mmap_event mmap_event; 6776 6777 if (!atomic_read(&nr_mmap_events)) 6778 return; 6779 6780 mmap_event = (struct perf_mmap_event){ 6781 .vma = vma, 6782 /* .file_name */ 6783 /* .file_size */ 6784 .event_id = { 6785 .header = { 6786 .type = PERF_RECORD_MMAP, 6787 .misc = PERF_RECORD_MISC_USER, 6788 /* .size */ 6789 }, 6790 /* .pid */ 6791 /* .tid */ 6792 .start = vma->vm_start, 6793 .len = vma->vm_end - vma->vm_start, 6794 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6795 }, 6796 /* .maj (attr_mmap2 only) */ 6797 /* .min (attr_mmap2 only) */ 6798 /* .ino (attr_mmap2 only) */ 6799 /* .ino_generation (attr_mmap2 only) */ 6800 /* .prot (attr_mmap2 only) */ 6801 /* .flags (attr_mmap2 only) */ 6802 }; 6803 6804 perf_addr_filters_adjust(vma); 6805 perf_event_mmap_event(&mmap_event); 6806 } 6807 6808 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6809 unsigned long size, u64 flags) 6810 { 6811 struct perf_output_handle handle; 6812 struct perf_sample_data sample; 6813 struct perf_aux_event { 6814 struct perf_event_header header; 6815 u64 offset; 6816 u64 size; 6817 u64 flags; 6818 } rec = { 6819 .header = { 6820 .type = PERF_RECORD_AUX, 6821 .misc = 0, 6822 .size = sizeof(rec), 6823 }, 6824 .offset = head, 6825 .size = size, 6826 .flags = flags, 6827 }; 6828 int ret; 6829 6830 perf_event_header__init_id(&rec.header, &sample, event); 6831 ret = perf_output_begin(&handle, event, rec.header.size); 6832 6833 if (ret) 6834 return; 6835 6836 perf_output_put(&handle, rec); 6837 perf_event__output_id_sample(event, &handle, &sample); 6838 6839 perf_output_end(&handle); 6840 } 6841 6842 /* 6843 * Lost/dropped samples logging 6844 */ 6845 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6846 { 6847 struct perf_output_handle handle; 6848 struct perf_sample_data sample; 6849 int ret; 6850 6851 struct { 6852 struct perf_event_header header; 6853 u64 lost; 6854 } lost_samples_event = { 6855 .header = { 6856 .type = PERF_RECORD_LOST_SAMPLES, 6857 .misc = 0, 6858 .size = sizeof(lost_samples_event), 6859 }, 6860 .lost = lost, 6861 }; 6862 6863 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6864 6865 ret = perf_output_begin(&handle, event, 6866 lost_samples_event.header.size); 6867 if (ret) 6868 return; 6869 6870 perf_output_put(&handle, lost_samples_event); 6871 perf_event__output_id_sample(event, &handle, &sample); 6872 perf_output_end(&handle); 6873 } 6874 6875 /* 6876 * context_switch tracking 6877 */ 6878 6879 struct perf_switch_event { 6880 struct task_struct *task; 6881 struct task_struct *next_prev; 6882 6883 struct { 6884 struct perf_event_header header; 6885 u32 next_prev_pid; 6886 u32 next_prev_tid; 6887 } event_id; 6888 }; 6889 6890 static int perf_event_switch_match(struct perf_event *event) 6891 { 6892 return event->attr.context_switch; 6893 } 6894 6895 static void perf_event_switch_output(struct perf_event *event, void *data) 6896 { 6897 struct perf_switch_event *se = data; 6898 struct perf_output_handle handle; 6899 struct perf_sample_data sample; 6900 int ret; 6901 6902 if (!perf_event_switch_match(event)) 6903 return; 6904 6905 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6906 if (event->ctx->task) { 6907 se->event_id.header.type = PERF_RECORD_SWITCH; 6908 se->event_id.header.size = sizeof(se->event_id.header); 6909 } else { 6910 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6911 se->event_id.header.size = sizeof(se->event_id); 6912 se->event_id.next_prev_pid = 6913 perf_event_pid(event, se->next_prev); 6914 se->event_id.next_prev_tid = 6915 perf_event_tid(event, se->next_prev); 6916 } 6917 6918 perf_event_header__init_id(&se->event_id.header, &sample, event); 6919 6920 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6921 if (ret) 6922 return; 6923 6924 if (event->ctx->task) 6925 perf_output_put(&handle, se->event_id.header); 6926 else 6927 perf_output_put(&handle, se->event_id); 6928 6929 perf_event__output_id_sample(event, &handle, &sample); 6930 6931 perf_output_end(&handle); 6932 } 6933 6934 static void perf_event_switch(struct task_struct *task, 6935 struct task_struct *next_prev, bool sched_in) 6936 { 6937 struct perf_switch_event switch_event; 6938 6939 /* N.B. caller checks nr_switch_events != 0 */ 6940 6941 switch_event = (struct perf_switch_event){ 6942 .task = task, 6943 .next_prev = next_prev, 6944 .event_id = { 6945 .header = { 6946 /* .type */ 6947 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6948 /* .size */ 6949 }, 6950 /* .next_prev_pid */ 6951 /* .next_prev_tid */ 6952 }, 6953 }; 6954 6955 perf_iterate_sb(perf_event_switch_output, 6956 &switch_event, 6957 NULL); 6958 } 6959 6960 /* 6961 * IRQ throttle logging 6962 */ 6963 6964 static void perf_log_throttle(struct perf_event *event, int enable) 6965 { 6966 struct perf_output_handle handle; 6967 struct perf_sample_data sample; 6968 int ret; 6969 6970 struct { 6971 struct perf_event_header header; 6972 u64 time; 6973 u64 id; 6974 u64 stream_id; 6975 } throttle_event = { 6976 .header = { 6977 .type = PERF_RECORD_THROTTLE, 6978 .misc = 0, 6979 .size = sizeof(throttle_event), 6980 }, 6981 .time = perf_event_clock(event), 6982 .id = primary_event_id(event), 6983 .stream_id = event->id, 6984 }; 6985 6986 if (enable) 6987 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6988 6989 perf_event_header__init_id(&throttle_event.header, &sample, event); 6990 6991 ret = perf_output_begin(&handle, event, 6992 throttle_event.header.size); 6993 if (ret) 6994 return; 6995 6996 perf_output_put(&handle, throttle_event); 6997 perf_event__output_id_sample(event, &handle, &sample); 6998 perf_output_end(&handle); 6999 } 7000 7001 static void perf_log_itrace_start(struct perf_event *event) 7002 { 7003 struct perf_output_handle handle; 7004 struct perf_sample_data sample; 7005 struct perf_aux_event { 7006 struct perf_event_header header; 7007 u32 pid; 7008 u32 tid; 7009 } rec; 7010 int ret; 7011 7012 if (event->parent) 7013 event = event->parent; 7014 7015 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7016 event->hw.itrace_started) 7017 return; 7018 7019 rec.header.type = PERF_RECORD_ITRACE_START; 7020 rec.header.misc = 0; 7021 rec.header.size = sizeof(rec); 7022 rec.pid = perf_event_pid(event, current); 7023 rec.tid = perf_event_tid(event, current); 7024 7025 perf_event_header__init_id(&rec.header, &sample, event); 7026 ret = perf_output_begin(&handle, event, rec.header.size); 7027 7028 if (ret) 7029 return; 7030 7031 perf_output_put(&handle, rec); 7032 perf_event__output_id_sample(event, &handle, &sample); 7033 7034 perf_output_end(&handle); 7035 } 7036 7037 /* 7038 * Generic event overflow handling, sampling. 7039 */ 7040 7041 static int __perf_event_overflow(struct perf_event *event, 7042 int throttle, struct perf_sample_data *data, 7043 struct pt_regs *regs) 7044 { 7045 int events = atomic_read(&event->event_limit); 7046 struct hw_perf_event *hwc = &event->hw; 7047 u64 seq; 7048 int ret = 0; 7049 7050 /* 7051 * Non-sampling counters might still use the PMI to fold short 7052 * hardware counters, ignore those. 7053 */ 7054 if (unlikely(!is_sampling_event(event))) 7055 return 0; 7056 7057 seq = __this_cpu_read(perf_throttled_seq); 7058 if (seq != hwc->interrupts_seq) { 7059 hwc->interrupts_seq = seq; 7060 hwc->interrupts = 1; 7061 } else { 7062 hwc->interrupts++; 7063 if (unlikely(throttle 7064 && hwc->interrupts >= max_samples_per_tick)) { 7065 __this_cpu_inc(perf_throttled_count); 7066 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7067 hwc->interrupts = MAX_INTERRUPTS; 7068 perf_log_throttle(event, 0); 7069 ret = 1; 7070 } 7071 } 7072 7073 if (event->attr.freq) { 7074 u64 now = perf_clock(); 7075 s64 delta = now - hwc->freq_time_stamp; 7076 7077 hwc->freq_time_stamp = now; 7078 7079 if (delta > 0 && delta < 2*TICK_NSEC) 7080 perf_adjust_period(event, delta, hwc->last_period, true); 7081 } 7082 7083 /* 7084 * XXX event_limit might not quite work as expected on inherited 7085 * events 7086 */ 7087 7088 event->pending_kill = POLL_IN; 7089 if (events && atomic_dec_and_test(&event->event_limit)) { 7090 ret = 1; 7091 event->pending_kill = POLL_HUP; 7092 7093 perf_event_disable_inatomic(event); 7094 } 7095 7096 READ_ONCE(event->overflow_handler)(event, data, regs); 7097 7098 if (*perf_event_fasync(event) && event->pending_kill) { 7099 event->pending_wakeup = 1; 7100 irq_work_queue(&event->pending); 7101 } 7102 7103 return ret; 7104 } 7105 7106 int perf_event_overflow(struct perf_event *event, 7107 struct perf_sample_data *data, 7108 struct pt_regs *regs) 7109 { 7110 return __perf_event_overflow(event, 1, data, regs); 7111 } 7112 7113 /* 7114 * Generic software event infrastructure 7115 */ 7116 7117 struct swevent_htable { 7118 struct swevent_hlist *swevent_hlist; 7119 struct mutex hlist_mutex; 7120 int hlist_refcount; 7121 7122 /* Recursion avoidance in each contexts */ 7123 int recursion[PERF_NR_CONTEXTS]; 7124 }; 7125 7126 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7127 7128 /* 7129 * We directly increment event->count and keep a second value in 7130 * event->hw.period_left to count intervals. This period event 7131 * is kept in the range [-sample_period, 0] so that we can use the 7132 * sign as trigger. 7133 */ 7134 7135 u64 perf_swevent_set_period(struct perf_event *event) 7136 { 7137 struct hw_perf_event *hwc = &event->hw; 7138 u64 period = hwc->last_period; 7139 u64 nr, offset; 7140 s64 old, val; 7141 7142 hwc->last_period = hwc->sample_period; 7143 7144 again: 7145 old = val = local64_read(&hwc->period_left); 7146 if (val < 0) 7147 return 0; 7148 7149 nr = div64_u64(period + val, period); 7150 offset = nr * period; 7151 val -= offset; 7152 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7153 goto again; 7154 7155 return nr; 7156 } 7157 7158 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7159 struct perf_sample_data *data, 7160 struct pt_regs *regs) 7161 { 7162 struct hw_perf_event *hwc = &event->hw; 7163 int throttle = 0; 7164 7165 if (!overflow) 7166 overflow = perf_swevent_set_period(event); 7167 7168 if (hwc->interrupts == MAX_INTERRUPTS) 7169 return; 7170 7171 for (; overflow; overflow--) { 7172 if (__perf_event_overflow(event, throttle, 7173 data, regs)) { 7174 /* 7175 * We inhibit the overflow from happening when 7176 * hwc->interrupts == MAX_INTERRUPTS. 7177 */ 7178 break; 7179 } 7180 throttle = 1; 7181 } 7182 } 7183 7184 static void perf_swevent_event(struct perf_event *event, u64 nr, 7185 struct perf_sample_data *data, 7186 struct pt_regs *regs) 7187 { 7188 struct hw_perf_event *hwc = &event->hw; 7189 7190 local64_add(nr, &event->count); 7191 7192 if (!regs) 7193 return; 7194 7195 if (!is_sampling_event(event)) 7196 return; 7197 7198 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7199 data->period = nr; 7200 return perf_swevent_overflow(event, 1, data, regs); 7201 } else 7202 data->period = event->hw.last_period; 7203 7204 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7205 return perf_swevent_overflow(event, 1, data, regs); 7206 7207 if (local64_add_negative(nr, &hwc->period_left)) 7208 return; 7209 7210 perf_swevent_overflow(event, 0, data, regs); 7211 } 7212 7213 static int perf_exclude_event(struct perf_event *event, 7214 struct pt_regs *regs) 7215 { 7216 if (event->hw.state & PERF_HES_STOPPED) 7217 return 1; 7218 7219 if (regs) { 7220 if (event->attr.exclude_user && user_mode(regs)) 7221 return 1; 7222 7223 if (event->attr.exclude_kernel && !user_mode(regs)) 7224 return 1; 7225 } 7226 7227 return 0; 7228 } 7229 7230 static int perf_swevent_match(struct perf_event *event, 7231 enum perf_type_id type, 7232 u32 event_id, 7233 struct perf_sample_data *data, 7234 struct pt_regs *regs) 7235 { 7236 if (event->attr.type != type) 7237 return 0; 7238 7239 if (event->attr.config != event_id) 7240 return 0; 7241 7242 if (perf_exclude_event(event, regs)) 7243 return 0; 7244 7245 return 1; 7246 } 7247 7248 static inline u64 swevent_hash(u64 type, u32 event_id) 7249 { 7250 u64 val = event_id | (type << 32); 7251 7252 return hash_64(val, SWEVENT_HLIST_BITS); 7253 } 7254 7255 static inline struct hlist_head * 7256 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7257 { 7258 u64 hash = swevent_hash(type, event_id); 7259 7260 return &hlist->heads[hash]; 7261 } 7262 7263 /* For the read side: events when they trigger */ 7264 static inline struct hlist_head * 7265 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7266 { 7267 struct swevent_hlist *hlist; 7268 7269 hlist = rcu_dereference(swhash->swevent_hlist); 7270 if (!hlist) 7271 return NULL; 7272 7273 return __find_swevent_head(hlist, type, event_id); 7274 } 7275 7276 /* For the event head insertion and removal in the hlist */ 7277 static inline struct hlist_head * 7278 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7279 { 7280 struct swevent_hlist *hlist; 7281 u32 event_id = event->attr.config; 7282 u64 type = event->attr.type; 7283 7284 /* 7285 * Event scheduling is always serialized against hlist allocation 7286 * and release. Which makes the protected version suitable here. 7287 * The context lock guarantees that. 7288 */ 7289 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7290 lockdep_is_held(&event->ctx->lock)); 7291 if (!hlist) 7292 return NULL; 7293 7294 return __find_swevent_head(hlist, type, event_id); 7295 } 7296 7297 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7298 u64 nr, 7299 struct perf_sample_data *data, 7300 struct pt_regs *regs) 7301 { 7302 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7303 struct perf_event *event; 7304 struct hlist_head *head; 7305 7306 rcu_read_lock(); 7307 head = find_swevent_head_rcu(swhash, type, event_id); 7308 if (!head) 7309 goto end; 7310 7311 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7312 if (perf_swevent_match(event, type, event_id, data, regs)) 7313 perf_swevent_event(event, nr, data, regs); 7314 } 7315 end: 7316 rcu_read_unlock(); 7317 } 7318 7319 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7320 7321 int perf_swevent_get_recursion_context(void) 7322 { 7323 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7324 7325 return get_recursion_context(swhash->recursion); 7326 } 7327 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7328 7329 void perf_swevent_put_recursion_context(int rctx) 7330 { 7331 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7332 7333 put_recursion_context(swhash->recursion, rctx); 7334 } 7335 7336 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7337 { 7338 struct perf_sample_data data; 7339 7340 if (WARN_ON_ONCE(!regs)) 7341 return; 7342 7343 perf_sample_data_init(&data, addr, 0); 7344 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7345 } 7346 7347 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7348 { 7349 int rctx; 7350 7351 preempt_disable_notrace(); 7352 rctx = perf_swevent_get_recursion_context(); 7353 if (unlikely(rctx < 0)) 7354 goto fail; 7355 7356 ___perf_sw_event(event_id, nr, regs, addr); 7357 7358 perf_swevent_put_recursion_context(rctx); 7359 fail: 7360 preempt_enable_notrace(); 7361 } 7362 7363 static void perf_swevent_read(struct perf_event *event) 7364 { 7365 } 7366 7367 static int perf_swevent_add(struct perf_event *event, int flags) 7368 { 7369 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7370 struct hw_perf_event *hwc = &event->hw; 7371 struct hlist_head *head; 7372 7373 if (is_sampling_event(event)) { 7374 hwc->last_period = hwc->sample_period; 7375 perf_swevent_set_period(event); 7376 } 7377 7378 hwc->state = !(flags & PERF_EF_START); 7379 7380 head = find_swevent_head(swhash, event); 7381 if (WARN_ON_ONCE(!head)) 7382 return -EINVAL; 7383 7384 hlist_add_head_rcu(&event->hlist_entry, head); 7385 perf_event_update_userpage(event); 7386 7387 return 0; 7388 } 7389 7390 static void perf_swevent_del(struct perf_event *event, int flags) 7391 { 7392 hlist_del_rcu(&event->hlist_entry); 7393 } 7394 7395 static void perf_swevent_start(struct perf_event *event, int flags) 7396 { 7397 event->hw.state = 0; 7398 } 7399 7400 static void perf_swevent_stop(struct perf_event *event, int flags) 7401 { 7402 event->hw.state = PERF_HES_STOPPED; 7403 } 7404 7405 /* Deref the hlist from the update side */ 7406 static inline struct swevent_hlist * 7407 swevent_hlist_deref(struct swevent_htable *swhash) 7408 { 7409 return rcu_dereference_protected(swhash->swevent_hlist, 7410 lockdep_is_held(&swhash->hlist_mutex)); 7411 } 7412 7413 static void swevent_hlist_release(struct swevent_htable *swhash) 7414 { 7415 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7416 7417 if (!hlist) 7418 return; 7419 7420 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7421 kfree_rcu(hlist, rcu_head); 7422 } 7423 7424 static void swevent_hlist_put_cpu(int cpu) 7425 { 7426 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7427 7428 mutex_lock(&swhash->hlist_mutex); 7429 7430 if (!--swhash->hlist_refcount) 7431 swevent_hlist_release(swhash); 7432 7433 mutex_unlock(&swhash->hlist_mutex); 7434 } 7435 7436 static void swevent_hlist_put(void) 7437 { 7438 int cpu; 7439 7440 for_each_possible_cpu(cpu) 7441 swevent_hlist_put_cpu(cpu); 7442 } 7443 7444 static int swevent_hlist_get_cpu(int cpu) 7445 { 7446 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7447 int err = 0; 7448 7449 mutex_lock(&swhash->hlist_mutex); 7450 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7451 struct swevent_hlist *hlist; 7452 7453 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7454 if (!hlist) { 7455 err = -ENOMEM; 7456 goto exit; 7457 } 7458 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7459 } 7460 swhash->hlist_refcount++; 7461 exit: 7462 mutex_unlock(&swhash->hlist_mutex); 7463 7464 return err; 7465 } 7466 7467 static int swevent_hlist_get(void) 7468 { 7469 int err, cpu, failed_cpu; 7470 7471 get_online_cpus(); 7472 for_each_possible_cpu(cpu) { 7473 err = swevent_hlist_get_cpu(cpu); 7474 if (err) { 7475 failed_cpu = cpu; 7476 goto fail; 7477 } 7478 } 7479 put_online_cpus(); 7480 7481 return 0; 7482 fail: 7483 for_each_possible_cpu(cpu) { 7484 if (cpu == failed_cpu) 7485 break; 7486 swevent_hlist_put_cpu(cpu); 7487 } 7488 7489 put_online_cpus(); 7490 return err; 7491 } 7492 7493 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7494 7495 static void sw_perf_event_destroy(struct perf_event *event) 7496 { 7497 u64 event_id = event->attr.config; 7498 7499 WARN_ON(event->parent); 7500 7501 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7502 swevent_hlist_put(); 7503 } 7504 7505 static int perf_swevent_init(struct perf_event *event) 7506 { 7507 u64 event_id = event->attr.config; 7508 7509 if (event->attr.type != PERF_TYPE_SOFTWARE) 7510 return -ENOENT; 7511 7512 /* 7513 * no branch sampling for software events 7514 */ 7515 if (has_branch_stack(event)) 7516 return -EOPNOTSUPP; 7517 7518 switch (event_id) { 7519 case PERF_COUNT_SW_CPU_CLOCK: 7520 case PERF_COUNT_SW_TASK_CLOCK: 7521 return -ENOENT; 7522 7523 default: 7524 break; 7525 } 7526 7527 if (event_id >= PERF_COUNT_SW_MAX) 7528 return -ENOENT; 7529 7530 if (!event->parent) { 7531 int err; 7532 7533 err = swevent_hlist_get(); 7534 if (err) 7535 return err; 7536 7537 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7538 event->destroy = sw_perf_event_destroy; 7539 } 7540 7541 return 0; 7542 } 7543 7544 static struct pmu perf_swevent = { 7545 .task_ctx_nr = perf_sw_context, 7546 7547 .capabilities = PERF_PMU_CAP_NO_NMI, 7548 7549 .event_init = perf_swevent_init, 7550 .add = perf_swevent_add, 7551 .del = perf_swevent_del, 7552 .start = perf_swevent_start, 7553 .stop = perf_swevent_stop, 7554 .read = perf_swevent_read, 7555 }; 7556 7557 #ifdef CONFIG_EVENT_TRACING 7558 7559 static int perf_tp_filter_match(struct perf_event *event, 7560 struct perf_sample_data *data) 7561 { 7562 void *record = data->raw->frag.data; 7563 7564 /* only top level events have filters set */ 7565 if (event->parent) 7566 event = event->parent; 7567 7568 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7569 return 1; 7570 return 0; 7571 } 7572 7573 static int perf_tp_event_match(struct perf_event *event, 7574 struct perf_sample_data *data, 7575 struct pt_regs *regs) 7576 { 7577 if (event->hw.state & PERF_HES_STOPPED) 7578 return 0; 7579 /* 7580 * All tracepoints are from kernel-space. 7581 */ 7582 if (event->attr.exclude_kernel) 7583 return 0; 7584 7585 if (!perf_tp_filter_match(event, data)) 7586 return 0; 7587 7588 return 1; 7589 } 7590 7591 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7592 struct trace_event_call *call, u64 count, 7593 struct pt_regs *regs, struct hlist_head *head, 7594 struct task_struct *task) 7595 { 7596 struct bpf_prog *prog = call->prog; 7597 7598 if (prog) { 7599 *(struct pt_regs **)raw_data = regs; 7600 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7601 perf_swevent_put_recursion_context(rctx); 7602 return; 7603 } 7604 } 7605 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7606 rctx, task); 7607 } 7608 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7609 7610 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7611 struct pt_regs *regs, struct hlist_head *head, int rctx, 7612 struct task_struct *task) 7613 { 7614 struct perf_sample_data data; 7615 struct perf_event *event; 7616 7617 struct perf_raw_record raw = { 7618 .frag = { 7619 .size = entry_size, 7620 .data = record, 7621 }, 7622 }; 7623 7624 perf_sample_data_init(&data, 0, 0); 7625 data.raw = &raw; 7626 7627 perf_trace_buf_update(record, event_type); 7628 7629 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7630 if (perf_tp_event_match(event, &data, regs)) 7631 perf_swevent_event(event, count, &data, regs); 7632 } 7633 7634 /* 7635 * If we got specified a target task, also iterate its context and 7636 * deliver this event there too. 7637 */ 7638 if (task && task != current) { 7639 struct perf_event_context *ctx; 7640 struct trace_entry *entry = record; 7641 7642 rcu_read_lock(); 7643 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7644 if (!ctx) 7645 goto unlock; 7646 7647 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7648 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7649 continue; 7650 if (event->attr.config != entry->type) 7651 continue; 7652 if (perf_tp_event_match(event, &data, regs)) 7653 perf_swevent_event(event, count, &data, regs); 7654 } 7655 unlock: 7656 rcu_read_unlock(); 7657 } 7658 7659 perf_swevent_put_recursion_context(rctx); 7660 } 7661 EXPORT_SYMBOL_GPL(perf_tp_event); 7662 7663 static void tp_perf_event_destroy(struct perf_event *event) 7664 { 7665 perf_trace_destroy(event); 7666 } 7667 7668 static int perf_tp_event_init(struct perf_event *event) 7669 { 7670 int err; 7671 7672 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7673 return -ENOENT; 7674 7675 /* 7676 * no branch sampling for tracepoint events 7677 */ 7678 if (has_branch_stack(event)) 7679 return -EOPNOTSUPP; 7680 7681 err = perf_trace_init(event); 7682 if (err) 7683 return err; 7684 7685 event->destroy = tp_perf_event_destroy; 7686 7687 return 0; 7688 } 7689 7690 static struct pmu perf_tracepoint = { 7691 .task_ctx_nr = perf_sw_context, 7692 7693 .event_init = perf_tp_event_init, 7694 .add = perf_trace_add, 7695 .del = perf_trace_del, 7696 .start = perf_swevent_start, 7697 .stop = perf_swevent_stop, 7698 .read = perf_swevent_read, 7699 }; 7700 7701 static inline void perf_tp_register(void) 7702 { 7703 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7704 } 7705 7706 static void perf_event_free_filter(struct perf_event *event) 7707 { 7708 ftrace_profile_free_filter(event); 7709 } 7710 7711 #ifdef CONFIG_BPF_SYSCALL 7712 static void bpf_overflow_handler(struct perf_event *event, 7713 struct perf_sample_data *data, 7714 struct pt_regs *regs) 7715 { 7716 struct bpf_perf_event_data_kern ctx = { 7717 .data = data, 7718 .regs = regs, 7719 }; 7720 int ret = 0; 7721 7722 preempt_disable(); 7723 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7724 goto out; 7725 rcu_read_lock(); 7726 ret = BPF_PROG_RUN(event->prog, &ctx); 7727 rcu_read_unlock(); 7728 out: 7729 __this_cpu_dec(bpf_prog_active); 7730 preempt_enable(); 7731 if (!ret) 7732 return; 7733 7734 event->orig_overflow_handler(event, data, regs); 7735 } 7736 7737 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7738 { 7739 struct bpf_prog *prog; 7740 7741 if (event->overflow_handler_context) 7742 /* hw breakpoint or kernel counter */ 7743 return -EINVAL; 7744 7745 if (event->prog) 7746 return -EEXIST; 7747 7748 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7749 if (IS_ERR(prog)) 7750 return PTR_ERR(prog); 7751 7752 event->prog = prog; 7753 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7754 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7755 return 0; 7756 } 7757 7758 static void perf_event_free_bpf_handler(struct perf_event *event) 7759 { 7760 struct bpf_prog *prog = event->prog; 7761 7762 if (!prog) 7763 return; 7764 7765 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7766 event->prog = NULL; 7767 bpf_prog_put(prog); 7768 } 7769 #else 7770 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7771 { 7772 return -EOPNOTSUPP; 7773 } 7774 static void perf_event_free_bpf_handler(struct perf_event *event) 7775 { 7776 } 7777 #endif 7778 7779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7780 { 7781 bool is_kprobe, is_tracepoint; 7782 struct bpf_prog *prog; 7783 7784 if (event->attr.type == PERF_TYPE_HARDWARE || 7785 event->attr.type == PERF_TYPE_SOFTWARE) 7786 return perf_event_set_bpf_handler(event, prog_fd); 7787 7788 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7789 return -EINVAL; 7790 7791 if (event->tp_event->prog) 7792 return -EEXIST; 7793 7794 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7795 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7796 if (!is_kprobe && !is_tracepoint) 7797 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7798 return -EINVAL; 7799 7800 prog = bpf_prog_get(prog_fd); 7801 if (IS_ERR(prog)) 7802 return PTR_ERR(prog); 7803 7804 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7805 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7806 /* valid fd, but invalid bpf program type */ 7807 bpf_prog_put(prog); 7808 return -EINVAL; 7809 } 7810 7811 if (is_tracepoint) { 7812 int off = trace_event_get_offsets(event->tp_event); 7813 7814 if (prog->aux->max_ctx_offset > off) { 7815 bpf_prog_put(prog); 7816 return -EACCES; 7817 } 7818 } 7819 event->tp_event->prog = prog; 7820 7821 return 0; 7822 } 7823 7824 static void perf_event_free_bpf_prog(struct perf_event *event) 7825 { 7826 struct bpf_prog *prog; 7827 7828 perf_event_free_bpf_handler(event); 7829 7830 if (!event->tp_event) 7831 return; 7832 7833 prog = event->tp_event->prog; 7834 if (prog) { 7835 event->tp_event->prog = NULL; 7836 bpf_prog_put(prog); 7837 } 7838 } 7839 7840 #else 7841 7842 static inline void perf_tp_register(void) 7843 { 7844 } 7845 7846 static void perf_event_free_filter(struct perf_event *event) 7847 { 7848 } 7849 7850 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7851 { 7852 return -ENOENT; 7853 } 7854 7855 static void perf_event_free_bpf_prog(struct perf_event *event) 7856 { 7857 } 7858 #endif /* CONFIG_EVENT_TRACING */ 7859 7860 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7861 void perf_bp_event(struct perf_event *bp, void *data) 7862 { 7863 struct perf_sample_data sample; 7864 struct pt_regs *regs = data; 7865 7866 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7867 7868 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7869 perf_swevent_event(bp, 1, &sample, regs); 7870 } 7871 #endif 7872 7873 /* 7874 * Allocate a new address filter 7875 */ 7876 static struct perf_addr_filter * 7877 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7878 { 7879 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7880 struct perf_addr_filter *filter; 7881 7882 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7883 if (!filter) 7884 return NULL; 7885 7886 INIT_LIST_HEAD(&filter->entry); 7887 list_add_tail(&filter->entry, filters); 7888 7889 return filter; 7890 } 7891 7892 static void free_filters_list(struct list_head *filters) 7893 { 7894 struct perf_addr_filter *filter, *iter; 7895 7896 list_for_each_entry_safe(filter, iter, filters, entry) { 7897 if (filter->inode) 7898 iput(filter->inode); 7899 list_del(&filter->entry); 7900 kfree(filter); 7901 } 7902 } 7903 7904 /* 7905 * Free existing address filters and optionally install new ones 7906 */ 7907 static void perf_addr_filters_splice(struct perf_event *event, 7908 struct list_head *head) 7909 { 7910 unsigned long flags; 7911 LIST_HEAD(list); 7912 7913 if (!has_addr_filter(event)) 7914 return; 7915 7916 /* don't bother with children, they don't have their own filters */ 7917 if (event->parent) 7918 return; 7919 7920 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7921 7922 list_splice_init(&event->addr_filters.list, &list); 7923 if (head) 7924 list_splice(head, &event->addr_filters.list); 7925 7926 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7927 7928 free_filters_list(&list); 7929 } 7930 7931 /* 7932 * Scan through mm's vmas and see if one of them matches the 7933 * @filter; if so, adjust filter's address range. 7934 * Called with mm::mmap_sem down for reading. 7935 */ 7936 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7937 struct mm_struct *mm) 7938 { 7939 struct vm_area_struct *vma; 7940 7941 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7942 struct file *file = vma->vm_file; 7943 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7944 unsigned long vma_size = vma->vm_end - vma->vm_start; 7945 7946 if (!file) 7947 continue; 7948 7949 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7950 continue; 7951 7952 return vma->vm_start; 7953 } 7954 7955 return 0; 7956 } 7957 7958 /* 7959 * Update event's address range filters based on the 7960 * task's existing mappings, if any. 7961 */ 7962 static void perf_event_addr_filters_apply(struct perf_event *event) 7963 { 7964 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7965 struct task_struct *task = READ_ONCE(event->ctx->task); 7966 struct perf_addr_filter *filter; 7967 struct mm_struct *mm = NULL; 7968 unsigned int count = 0; 7969 unsigned long flags; 7970 7971 /* 7972 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7973 * will stop on the parent's child_mutex that our caller is also holding 7974 */ 7975 if (task == TASK_TOMBSTONE) 7976 return; 7977 7978 mm = get_task_mm(event->ctx->task); 7979 if (!mm) 7980 goto restart; 7981 7982 down_read(&mm->mmap_sem); 7983 7984 raw_spin_lock_irqsave(&ifh->lock, flags); 7985 list_for_each_entry(filter, &ifh->list, entry) { 7986 event->addr_filters_offs[count] = 0; 7987 7988 /* 7989 * Adjust base offset if the filter is associated to a binary 7990 * that needs to be mapped: 7991 */ 7992 if (filter->inode) 7993 event->addr_filters_offs[count] = 7994 perf_addr_filter_apply(filter, mm); 7995 7996 count++; 7997 } 7998 7999 event->addr_filters_gen++; 8000 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8001 8002 up_read(&mm->mmap_sem); 8003 8004 mmput(mm); 8005 8006 restart: 8007 perf_event_stop(event, 1); 8008 } 8009 8010 /* 8011 * Address range filtering: limiting the data to certain 8012 * instruction address ranges. Filters are ioctl()ed to us from 8013 * userspace as ascii strings. 8014 * 8015 * Filter string format: 8016 * 8017 * ACTION RANGE_SPEC 8018 * where ACTION is one of the 8019 * * "filter": limit the trace to this region 8020 * * "start": start tracing from this address 8021 * * "stop": stop tracing at this address/region; 8022 * RANGE_SPEC is 8023 * * for kernel addresses: <start address>[/<size>] 8024 * * for object files: <start address>[/<size>]@</path/to/object/file> 8025 * 8026 * if <size> is not specified, the range is treated as a single address. 8027 */ 8028 enum { 8029 IF_ACT_NONE = -1, 8030 IF_ACT_FILTER, 8031 IF_ACT_START, 8032 IF_ACT_STOP, 8033 IF_SRC_FILE, 8034 IF_SRC_KERNEL, 8035 IF_SRC_FILEADDR, 8036 IF_SRC_KERNELADDR, 8037 }; 8038 8039 enum { 8040 IF_STATE_ACTION = 0, 8041 IF_STATE_SOURCE, 8042 IF_STATE_END, 8043 }; 8044 8045 static const match_table_t if_tokens = { 8046 { IF_ACT_FILTER, "filter" }, 8047 { IF_ACT_START, "start" }, 8048 { IF_ACT_STOP, "stop" }, 8049 { IF_SRC_FILE, "%u/%u@%s" }, 8050 { IF_SRC_KERNEL, "%u/%u" }, 8051 { IF_SRC_FILEADDR, "%u@%s" }, 8052 { IF_SRC_KERNELADDR, "%u" }, 8053 { IF_ACT_NONE, NULL }, 8054 }; 8055 8056 /* 8057 * Address filter string parser 8058 */ 8059 static int 8060 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8061 struct list_head *filters) 8062 { 8063 struct perf_addr_filter *filter = NULL; 8064 char *start, *orig, *filename = NULL; 8065 struct path path; 8066 substring_t args[MAX_OPT_ARGS]; 8067 int state = IF_STATE_ACTION, token; 8068 unsigned int kernel = 0; 8069 int ret = -EINVAL; 8070 8071 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8072 if (!fstr) 8073 return -ENOMEM; 8074 8075 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8076 ret = -EINVAL; 8077 8078 if (!*start) 8079 continue; 8080 8081 /* filter definition begins */ 8082 if (state == IF_STATE_ACTION) { 8083 filter = perf_addr_filter_new(event, filters); 8084 if (!filter) 8085 goto fail; 8086 } 8087 8088 token = match_token(start, if_tokens, args); 8089 switch (token) { 8090 case IF_ACT_FILTER: 8091 case IF_ACT_START: 8092 filter->filter = 1; 8093 8094 case IF_ACT_STOP: 8095 if (state != IF_STATE_ACTION) 8096 goto fail; 8097 8098 state = IF_STATE_SOURCE; 8099 break; 8100 8101 case IF_SRC_KERNELADDR: 8102 case IF_SRC_KERNEL: 8103 kernel = 1; 8104 8105 case IF_SRC_FILEADDR: 8106 case IF_SRC_FILE: 8107 if (state != IF_STATE_SOURCE) 8108 goto fail; 8109 8110 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8111 filter->range = 1; 8112 8113 *args[0].to = 0; 8114 ret = kstrtoul(args[0].from, 0, &filter->offset); 8115 if (ret) 8116 goto fail; 8117 8118 if (filter->range) { 8119 *args[1].to = 0; 8120 ret = kstrtoul(args[1].from, 0, &filter->size); 8121 if (ret) 8122 goto fail; 8123 } 8124 8125 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8126 int fpos = filter->range ? 2 : 1; 8127 8128 filename = match_strdup(&args[fpos]); 8129 if (!filename) { 8130 ret = -ENOMEM; 8131 goto fail; 8132 } 8133 } 8134 8135 state = IF_STATE_END; 8136 break; 8137 8138 default: 8139 goto fail; 8140 } 8141 8142 /* 8143 * Filter definition is fully parsed, validate and install it. 8144 * Make sure that it doesn't contradict itself or the event's 8145 * attribute. 8146 */ 8147 if (state == IF_STATE_END) { 8148 if (kernel && event->attr.exclude_kernel) 8149 goto fail; 8150 8151 if (!kernel) { 8152 if (!filename) 8153 goto fail; 8154 8155 /* look up the path and grab its inode */ 8156 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8157 if (ret) 8158 goto fail_free_name; 8159 8160 filter->inode = igrab(d_inode(path.dentry)); 8161 path_put(&path); 8162 kfree(filename); 8163 filename = NULL; 8164 8165 ret = -EINVAL; 8166 if (!filter->inode || 8167 !S_ISREG(filter->inode->i_mode)) 8168 /* free_filters_list() will iput() */ 8169 goto fail; 8170 } 8171 8172 /* ready to consume more filters */ 8173 state = IF_STATE_ACTION; 8174 filter = NULL; 8175 } 8176 } 8177 8178 if (state != IF_STATE_ACTION) 8179 goto fail; 8180 8181 kfree(orig); 8182 8183 return 0; 8184 8185 fail_free_name: 8186 kfree(filename); 8187 fail: 8188 free_filters_list(filters); 8189 kfree(orig); 8190 8191 return ret; 8192 } 8193 8194 static int 8195 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8196 { 8197 LIST_HEAD(filters); 8198 int ret; 8199 8200 /* 8201 * Since this is called in perf_ioctl() path, we're already holding 8202 * ctx::mutex. 8203 */ 8204 lockdep_assert_held(&event->ctx->mutex); 8205 8206 if (WARN_ON_ONCE(event->parent)) 8207 return -EINVAL; 8208 8209 /* 8210 * For now, we only support filtering in per-task events; doing so 8211 * for CPU-wide events requires additional context switching trickery, 8212 * since same object code will be mapped at different virtual 8213 * addresses in different processes. 8214 */ 8215 if (!event->ctx->task) 8216 return -EOPNOTSUPP; 8217 8218 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8219 if (ret) 8220 return ret; 8221 8222 ret = event->pmu->addr_filters_validate(&filters); 8223 if (ret) { 8224 free_filters_list(&filters); 8225 return ret; 8226 } 8227 8228 /* remove existing filters, if any */ 8229 perf_addr_filters_splice(event, &filters); 8230 8231 /* install new filters */ 8232 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8233 8234 return ret; 8235 } 8236 8237 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8238 { 8239 char *filter_str; 8240 int ret = -EINVAL; 8241 8242 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8243 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8244 !has_addr_filter(event)) 8245 return -EINVAL; 8246 8247 filter_str = strndup_user(arg, PAGE_SIZE); 8248 if (IS_ERR(filter_str)) 8249 return PTR_ERR(filter_str); 8250 8251 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8252 event->attr.type == PERF_TYPE_TRACEPOINT) 8253 ret = ftrace_profile_set_filter(event, event->attr.config, 8254 filter_str); 8255 else if (has_addr_filter(event)) 8256 ret = perf_event_set_addr_filter(event, filter_str); 8257 8258 kfree(filter_str); 8259 return ret; 8260 } 8261 8262 /* 8263 * hrtimer based swevent callback 8264 */ 8265 8266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8267 { 8268 enum hrtimer_restart ret = HRTIMER_RESTART; 8269 struct perf_sample_data data; 8270 struct pt_regs *regs; 8271 struct perf_event *event; 8272 u64 period; 8273 8274 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8275 8276 if (event->state != PERF_EVENT_STATE_ACTIVE) 8277 return HRTIMER_NORESTART; 8278 8279 event->pmu->read(event); 8280 8281 perf_sample_data_init(&data, 0, event->hw.last_period); 8282 regs = get_irq_regs(); 8283 8284 if (regs && !perf_exclude_event(event, regs)) { 8285 if (!(event->attr.exclude_idle && is_idle_task(current))) 8286 if (__perf_event_overflow(event, 1, &data, regs)) 8287 ret = HRTIMER_NORESTART; 8288 } 8289 8290 period = max_t(u64, 10000, event->hw.sample_period); 8291 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8292 8293 return ret; 8294 } 8295 8296 static void perf_swevent_start_hrtimer(struct perf_event *event) 8297 { 8298 struct hw_perf_event *hwc = &event->hw; 8299 s64 period; 8300 8301 if (!is_sampling_event(event)) 8302 return; 8303 8304 period = local64_read(&hwc->period_left); 8305 if (period) { 8306 if (period < 0) 8307 period = 10000; 8308 8309 local64_set(&hwc->period_left, 0); 8310 } else { 8311 period = max_t(u64, 10000, hwc->sample_period); 8312 } 8313 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8314 HRTIMER_MODE_REL_PINNED); 8315 } 8316 8317 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8318 { 8319 struct hw_perf_event *hwc = &event->hw; 8320 8321 if (is_sampling_event(event)) { 8322 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8323 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8324 8325 hrtimer_cancel(&hwc->hrtimer); 8326 } 8327 } 8328 8329 static void perf_swevent_init_hrtimer(struct perf_event *event) 8330 { 8331 struct hw_perf_event *hwc = &event->hw; 8332 8333 if (!is_sampling_event(event)) 8334 return; 8335 8336 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8337 hwc->hrtimer.function = perf_swevent_hrtimer; 8338 8339 /* 8340 * Since hrtimers have a fixed rate, we can do a static freq->period 8341 * mapping and avoid the whole period adjust feedback stuff. 8342 */ 8343 if (event->attr.freq) { 8344 long freq = event->attr.sample_freq; 8345 8346 event->attr.sample_period = NSEC_PER_SEC / freq; 8347 hwc->sample_period = event->attr.sample_period; 8348 local64_set(&hwc->period_left, hwc->sample_period); 8349 hwc->last_period = hwc->sample_period; 8350 event->attr.freq = 0; 8351 } 8352 } 8353 8354 /* 8355 * Software event: cpu wall time clock 8356 */ 8357 8358 static void cpu_clock_event_update(struct perf_event *event) 8359 { 8360 s64 prev; 8361 u64 now; 8362 8363 now = local_clock(); 8364 prev = local64_xchg(&event->hw.prev_count, now); 8365 local64_add(now - prev, &event->count); 8366 } 8367 8368 static void cpu_clock_event_start(struct perf_event *event, int flags) 8369 { 8370 local64_set(&event->hw.prev_count, local_clock()); 8371 perf_swevent_start_hrtimer(event); 8372 } 8373 8374 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8375 { 8376 perf_swevent_cancel_hrtimer(event); 8377 cpu_clock_event_update(event); 8378 } 8379 8380 static int cpu_clock_event_add(struct perf_event *event, int flags) 8381 { 8382 if (flags & PERF_EF_START) 8383 cpu_clock_event_start(event, flags); 8384 perf_event_update_userpage(event); 8385 8386 return 0; 8387 } 8388 8389 static void cpu_clock_event_del(struct perf_event *event, int flags) 8390 { 8391 cpu_clock_event_stop(event, flags); 8392 } 8393 8394 static void cpu_clock_event_read(struct perf_event *event) 8395 { 8396 cpu_clock_event_update(event); 8397 } 8398 8399 static int cpu_clock_event_init(struct perf_event *event) 8400 { 8401 if (event->attr.type != PERF_TYPE_SOFTWARE) 8402 return -ENOENT; 8403 8404 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8405 return -ENOENT; 8406 8407 /* 8408 * no branch sampling for software events 8409 */ 8410 if (has_branch_stack(event)) 8411 return -EOPNOTSUPP; 8412 8413 perf_swevent_init_hrtimer(event); 8414 8415 return 0; 8416 } 8417 8418 static struct pmu perf_cpu_clock = { 8419 .task_ctx_nr = perf_sw_context, 8420 8421 .capabilities = PERF_PMU_CAP_NO_NMI, 8422 8423 .event_init = cpu_clock_event_init, 8424 .add = cpu_clock_event_add, 8425 .del = cpu_clock_event_del, 8426 .start = cpu_clock_event_start, 8427 .stop = cpu_clock_event_stop, 8428 .read = cpu_clock_event_read, 8429 }; 8430 8431 /* 8432 * Software event: task time clock 8433 */ 8434 8435 static void task_clock_event_update(struct perf_event *event, u64 now) 8436 { 8437 u64 prev; 8438 s64 delta; 8439 8440 prev = local64_xchg(&event->hw.prev_count, now); 8441 delta = now - prev; 8442 local64_add(delta, &event->count); 8443 } 8444 8445 static void task_clock_event_start(struct perf_event *event, int flags) 8446 { 8447 local64_set(&event->hw.prev_count, event->ctx->time); 8448 perf_swevent_start_hrtimer(event); 8449 } 8450 8451 static void task_clock_event_stop(struct perf_event *event, int flags) 8452 { 8453 perf_swevent_cancel_hrtimer(event); 8454 task_clock_event_update(event, event->ctx->time); 8455 } 8456 8457 static int task_clock_event_add(struct perf_event *event, int flags) 8458 { 8459 if (flags & PERF_EF_START) 8460 task_clock_event_start(event, flags); 8461 perf_event_update_userpage(event); 8462 8463 return 0; 8464 } 8465 8466 static void task_clock_event_del(struct perf_event *event, int flags) 8467 { 8468 task_clock_event_stop(event, PERF_EF_UPDATE); 8469 } 8470 8471 static void task_clock_event_read(struct perf_event *event) 8472 { 8473 u64 now = perf_clock(); 8474 u64 delta = now - event->ctx->timestamp; 8475 u64 time = event->ctx->time + delta; 8476 8477 task_clock_event_update(event, time); 8478 } 8479 8480 static int task_clock_event_init(struct perf_event *event) 8481 { 8482 if (event->attr.type != PERF_TYPE_SOFTWARE) 8483 return -ENOENT; 8484 8485 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8486 return -ENOENT; 8487 8488 /* 8489 * no branch sampling for software events 8490 */ 8491 if (has_branch_stack(event)) 8492 return -EOPNOTSUPP; 8493 8494 perf_swevent_init_hrtimer(event); 8495 8496 return 0; 8497 } 8498 8499 static struct pmu perf_task_clock = { 8500 .task_ctx_nr = perf_sw_context, 8501 8502 .capabilities = PERF_PMU_CAP_NO_NMI, 8503 8504 .event_init = task_clock_event_init, 8505 .add = task_clock_event_add, 8506 .del = task_clock_event_del, 8507 .start = task_clock_event_start, 8508 .stop = task_clock_event_stop, 8509 .read = task_clock_event_read, 8510 }; 8511 8512 static void perf_pmu_nop_void(struct pmu *pmu) 8513 { 8514 } 8515 8516 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8517 { 8518 } 8519 8520 static int perf_pmu_nop_int(struct pmu *pmu) 8521 { 8522 return 0; 8523 } 8524 8525 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8526 8527 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8528 { 8529 __this_cpu_write(nop_txn_flags, flags); 8530 8531 if (flags & ~PERF_PMU_TXN_ADD) 8532 return; 8533 8534 perf_pmu_disable(pmu); 8535 } 8536 8537 static int perf_pmu_commit_txn(struct pmu *pmu) 8538 { 8539 unsigned int flags = __this_cpu_read(nop_txn_flags); 8540 8541 __this_cpu_write(nop_txn_flags, 0); 8542 8543 if (flags & ~PERF_PMU_TXN_ADD) 8544 return 0; 8545 8546 perf_pmu_enable(pmu); 8547 return 0; 8548 } 8549 8550 static void perf_pmu_cancel_txn(struct pmu *pmu) 8551 { 8552 unsigned int flags = __this_cpu_read(nop_txn_flags); 8553 8554 __this_cpu_write(nop_txn_flags, 0); 8555 8556 if (flags & ~PERF_PMU_TXN_ADD) 8557 return; 8558 8559 perf_pmu_enable(pmu); 8560 } 8561 8562 static int perf_event_idx_default(struct perf_event *event) 8563 { 8564 return 0; 8565 } 8566 8567 /* 8568 * Ensures all contexts with the same task_ctx_nr have the same 8569 * pmu_cpu_context too. 8570 */ 8571 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8572 { 8573 struct pmu *pmu; 8574 8575 if (ctxn < 0) 8576 return NULL; 8577 8578 list_for_each_entry(pmu, &pmus, entry) { 8579 if (pmu->task_ctx_nr == ctxn) 8580 return pmu->pmu_cpu_context; 8581 } 8582 8583 return NULL; 8584 } 8585 8586 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8587 { 8588 int cpu; 8589 8590 for_each_possible_cpu(cpu) { 8591 struct perf_cpu_context *cpuctx; 8592 8593 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8594 8595 if (cpuctx->unique_pmu == old_pmu) 8596 cpuctx->unique_pmu = pmu; 8597 } 8598 } 8599 8600 static void free_pmu_context(struct pmu *pmu) 8601 { 8602 struct pmu *i; 8603 8604 mutex_lock(&pmus_lock); 8605 /* 8606 * Like a real lame refcount. 8607 */ 8608 list_for_each_entry(i, &pmus, entry) { 8609 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8610 update_pmu_context(i, pmu); 8611 goto out; 8612 } 8613 } 8614 8615 free_percpu(pmu->pmu_cpu_context); 8616 out: 8617 mutex_unlock(&pmus_lock); 8618 } 8619 8620 /* 8621 * Let userspace know that this PMU supports address range filtering: 8622 */ 8623 static ssize_t nr_addr_filters_show(struct device *dev, 8624 struct device_attribute *attr, 8625 char *page) 8626 { 8627 struct pmu *pmu = dev_get_drvdata(dev); 8628 8629 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8630 } 8631 DEVICE_ATTR_RO(nr_addr_filters); 8632 8633 static struct idr pmu_idr; 8634 8635 static ssize_t 8636 type_show(struct device *dev, struct device_attribute *attr, char *page) 8637 { 8638 struct pmu *pmu = dev_get_drvdata(dev); 8639 8640 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8641 } 8642 static DEVICE_ATTR_RO(type); 8643 8644 static ssize_t 8645 perf_event_mux_interval_ms_show(struct device *dev, 8646 struct device_attribute *attr, 8647 char *page) 8648 { 8649 struct pmu *pmu = dev_get_drvdata(dev); 8650 8651 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8652 } 8653 8654 static DEFINE_MUTEX(mux_interval_mutex); 8655 8656 static ssize_t 8657 perf_event_mux_interval_ms_store(struct device *dev, 8658 struct device_attribute *attr, 8659 const char *buf, size_t count) 8660 { 8661 struct pmu *pmu = dev_get_drvdata(dev); 8662 int timer, cpu, ret; 8663 8664 ret = kstrtoint(buf, 0, &timer); 8665 if (ret) 8666 return ret; 8667 8668 if (timer < 1) 8669 return -EINVAL; 8670 8671 /* same value, noting to do */ 8672 if (timer == pmu->hrtimer_interval_ms) 8673 return count; 8674 8675 mutex_lock(&mux_interval_mutex); 8676 pmu->hrtimer_interval_ms = timer; 8677 8678 /* update all cpuctx for this PMU */ 8679 get_online_cpus(); 8680 for_each_online_cpu(cpu) { 8681 struct perf_cpu_context *cpuctx; 8682 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8683 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8684 8685 cpu_function_call(cpu, 8686 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8687 } 8688 put_online_cpus(); 8689 mutex_unlock(&mux_interval_mutex); 8690 8691 return count; 8692 } 8693 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8694 8695 static struct attribute *pmu_dev_attrs[] = { 8696 &dev_attr_type.attr, 8697 &dev_attr_perf_event_mux_interval_ms.attr, 8698 NULL, 8699 }; 8700 ATTRIBUTE_GROUPS(pmu_dev); 8701 8702 static int pmu_bus_running; 8703 static struct bus_type pmu_bus = { 8704 .name = "event_source", 8705 .dev_groups = pmu_dev_groups, 8706 }; 8707 8708 static void pmu_dev_release(struct device *dev) 8709 { 8710 kfree(dev); 8711 } 8712 8713 static int pmu_dev_alloc(struct pmu *pmu) 8714 { 8715 int ret = -ENOMEM; 8716 8717 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8718 if (!pmu->dev) 8719 goto out; 8720 8721 pmu->dev->groups = pmu->attr_groups; 8722 device_initialize(pmu->dev); 8723 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8724 if (ret) 8725 goto free_dev; 8726 8727 dev_set_drvdata(pmu->dev, pmu); 8728 pmu->dev->bus = &pmu_bus; 8729 pmu->dev->release = pmu_dev_release; 8730 ret = device_add(pmu->dev); 8731 if (ret) 8732 goto free_dev; 8733 8734 /* For PMUs with address filters, throw in an extra attribute: */ 8735 if (pmu->nr_addr_filters) 8736 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8737 8738 if (ret) 8739 goto del_dev; 8740 8741 out: 8742 return ret; 8743 8744 del_dev: 8745 device_del(pmu->dev); 8746 8747 free_dev: 8748 put_device(pmu->dev); 8749 goto out; 8750 } 8751 8752 static struct lock_class_key cpuctx_mutex; 8753 static struct lock_class_key cpuctx_lock; 8754 8755 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8756 { 8757 int cpu, ret; 8758 8759 mutex_lock(&pmus_lock); 8760 ret = -ENOMEM; 8761 pmu->pmu_disable_count = alloc_percpu(int); 8762 if (!pmu->pmu_disable_count) 8763 goto unlock; 8764 8765 pmu->type = -1; 8766 if (!name) 8767 goto skip_type; 8768 pmu->name = name; 8769 8770 if (type < 0) { 8771 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8772 if (type < 0) { 8773 ret = type; 8774 goto free_pdc; 8775 } 8776 } 8777 pmu->type = type; 8778 8779 if (pmu_bus_running) { 8780 ret = pmu_dev_alloc(pmu); 8781 if (ret) 8782 goto free_idr; 8783 } 8784 8785 skip_type: 8786 if (pmu->task_ctx_nr == perf_hw_context) { 8787 static int hw_context_taken = 0; 8788 8789 /* 8790 * Other than systems with heterogeneous CPUs, it never makes 8791 * sense for two PMUs to share perf_hw_context. PMUs which are 8792 * uncore must use perf_invalid_context. 8793 */ 8794 if (WARN_ON_ONCE(hw_context_taken && 8795 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8796 pmu->task_ctx_nr = perf_invalid_context; 8797 8798 hw_context_taken = 1; 8799 } 8800 8801 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8802 if (pmu->pmu_cpu_context) 8803 goto got_cpu_context; 8804 8805 ret = -ENOMEM; 8806 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8807 if (!pmu->pmu_cpu_context) 8808 goto free_dev; 8809 8810 for_each_possible_cpu(cpu) { 8811 struct perf_cpu_context *cpuctx; 8812 8813 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8814 __perf_event_init_context(&cpuctx->ctx); 8815 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8816 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8817 cpuctx->ctx.pmu = pmu; 8818 8819 __perf_mux_hrtimer_init(cpuctx, cpu); 8820 8821 cpuctx->unique_pmu = pmu; 8822 } 8823 8824 got_cpu_context: 8825 if (!pmu->start_txn) { 8826 if (pmu->pmu_enable) { 8827 /* 8828 * If we have pmu_enable/pmu_disable calls, install 8829 * transaction stubs that use that to try and batch 8830 * hardware accesses. 8831 */ 8832 pmu->start_txn = perf_pmu_start_txn; 8833 pmu->commit_txn = perf_pmu_commit_txn; 8834 pmu->cancel_txn = perf_pmu_cancel_txn; 8835 } else { 8836 pmu->start_txn = perf_pmu_nop_txn; 8837 pmu->commit_txn = perf_pmu_nop_int; 8838 pmu->cancel_txn = perf_pmu_nop_void; 8839 } 8840 } 8841 8842 if (!pmu->pmu_enable) { 8843 pmu->pmu_enable = perf_pmu_nop_void; 8844 pmu->pmu_disable = perf_pmu_nop_void; 8845 } 8846 8847 if (!pmu->event_idx) 8848 pmu->event_idx = perf_event_idx_default; 8849 8850 list_add_rcu(&pmu->entry, &pmus); 8851 atomic_set(&pmu->exclusive_cnt, 0); 8852 ret = 0; 8853 unlock: 8854 mutex_unlock(&pmus_lock); 8855 8856 return ret; 8857 8858 free_dev: 8859 device_del(pmu->dev); 8860 put_device(pmu->dev); 8861 8862 free_idr: 8863 if (pmu->type >= PERF_TYPE_MAX) 8864 idr_remove(&pmu_idr, pmu->type); 8865 8866 free_pdc: 8867 free_percpu(pmu->pmu_disable_count); 8868 goto unlock; 8869 } 8870 EXPORT_SYMBOL_GPL(perf_pmu_register); 8871 8872 void perf_pmu_unregister(struct pmu *pmu) 8873 { 8874 int remove_device; 8875 8876 mutex_lock(&pmus_lock); 8877 remove_device = pmu_bus_running; 8878 list_del_rcu(&pmu->entry); 8879 mutex_unlock(&pmus_lock); 8880 8881 /* 8882 * We dereference the pmu list under both SRCU and regular RCU, so 8883 * synchronize against both of those. 8884 */ 8885 synchronize_srcu(&pmus_srcu); 8886 synchronize_rcu(); 8887 8888 free_percpu(pmu->pmu_disable_count); 8889 if (pmu->type >= PERF_TYPE_MAX) 8890 idr_remove(&pmu_idr, pmu->type); 8891 if (remove_device) { 8892 if (pmu->nr_addr_filters) 8893 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8894 device_del(pmu->dev); 8895 put_device(pmu->dev); 8896 } 8897 free_pmu_context(pmu); 8898 } 8899 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8900 8901 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8902 { 8903 struct perf_event_context *ctx = NULL; 8904 int ret; 8905 8906 if (!try_module_get(pmu->module)) 8907 return -ENODEV; 8908 8909 if (event->group_leader != event) { 8910 /* 8911 * This ctx->mutex can nest when we're called through 8912 * inheritance. See the perf_event_ctx_lock_nested() comment. 8913 */ 8914 ctx = perf_event_ctx_lock_nested(event->group_leader, 8915 SINGLE_DEPTH_NESTING); 8916 BUG_ON(!ctx); 8917 } 8918 8919 event->pmu = pmu; 8920 ret = pmu->event_init(event); 8921 8922 if (ctx) 8923 perf_event_ctx_unlock(event->group_leader, ctx); 8924 8925 if (ret) 8926 module_put(pmu->module); 8927 8928 return ret; 8929 } 8930 8931 static struct pmu *perf_init_event(struct perf_event *event) 8932 { 8933 struct pmu *pmu = NULL; 8934 int idx; 8935 int ret; 8936 8937 idx = srcu_read_lock(&pmus_srcu); 8938 8939 rcu_read_lock(); 8940 pmu = idr_find(&pmu_idr, event->attr.type); 8941 rcu_read_unlock(); 8942 if (pmu) { 8943 ret = perf_try_init_event(pmu, event); 8944 if (ret) 8945 pmu = ERR_PTR(ret); 8946 goto unlock; 8947 } 8948 8949 list_for_each_entry_rcu(pmu, &pmus, entry) { 8950 ret = perf_try_init_event(pmu, event); 8951 if (!ret) 8952 goto unlock; 8953 8954 if (ret != -ENOENT) { 8955 pmu = ERR_PTR(ret); 8956 goto unlock; 8957 } 8958 } 8959 pmu = ERR_PTR(-ENOENT); 8960 unlock: 8961 srcu_read_unlock(&pmus_srcu, idx); 8962 8963 return pmu; 8964 } 8965 8966 static void attach_sb_event(struct perf_event *event) 8967 { 8968 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8969 8970 raw_spin_lock(&pel->lock); 8971 list_add_rcu(&event->sb_list, &pel->list); 8972 raw_spin_unlock(&pel->lock); 8973 } 8974 8975 /* 8976 * We keep a list of all !task (and therefore per-cpu) events 8977 * that need to receive side-band records. 8978 * 8979 * This avoids having to scan all the various PMU per-cpu contexts 8980 * looking for them. 8981 */ 8982 static void account_pmu_sb_event(struct perf_event *event) 8983 { 8984 if (is_sb_event(event)) 8985 attach_sb_event(event); 8986 } 8987 8988 static void account_event_cpu(struct perf_event *event, int cpu) 8989 { 8990 if (event->parent) 8991 return; 8992 8993 if (is_cgroup_event(event)) 8994 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8995 } 8996 8997 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8998 static void account_freq_event_nohz(void) 8999 { 9000 #ifdef CONFIG_NO_HZ_FULL 9001 /* Lock so we don't race with concurrent unaccount */ 9002 spin_lock(&nr_freq_lock); 9003 if (atomic_inc_return(&nr_freq_events) == 1) 9004 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9005 spin_unlock(&nr_freq_lock); 9006 #endif 9007 } 9008 9009 static void account_freq_event(void) 9010 { 9011 if (tick_nohz_full_enabled()) 9012 account_freq_event_nohz(); 9013 else 9014 atomic_inc(&nr_freq_events); 9015 } 9016 9017 9018 static void account_event(struct perf_event *event) 9019 { 9020 bool inc = false; 9021 9022 if (event->parent) 9023 return; 9024 9025 if (event->attach_state & PERF_ATTACH_TASK) 9026 inc = true; 9027 if (event->attr.mmap || event->attr.mmap_data) 9028 atomic_inc(&nr_mmap_events); 9029 if (event->attr.comm) 9030 atomic_inc(&nr_comm_events); 9031 if (event->attr.task) 9032 atomic_inc(&nr_task_events); 9033 if (event->attr.freq) 9034 account_freq_event(); 9035 if (event->attr.context_switch) { 9036 atomic_inc(&nr_switch_events); 9037 inc = true; 9038 } 9039 if (has_branch_stack(event)) 9040 inc = true; 9041 if (is_cgroup_event(event)) 9042 inc = true; 9043 9044 if (inc) { 9045 if (atomic_inc_not_zero(&perf_sched_count)) 9046 goto enabled; 9047 9048 mutex_lock(&perf_sched_mutex); 9049 if (!atomic_read(&perf_sched_count)) { 9050 static_branch_enable(&perf_sched_events); 9051 /* 9052 * Guarantee that all CPUs observe they key change and 9053 * call the perf scheduling hooks before proceeding to 9054 * install events that need them. 9055 */ 9056 synchronize_sched(); 9057 } 9058 /* 9059 * Now that we have waited for the sync_sched(), allow further 9060 * increments to by-pass the mutex. 9061 */ 9062 atomic_inc(&perf_sched_count); 9063 mutex_unlock(&perf_sched_mutex); 9064 } 9065 enabled: 9066 9067 account_event_cpu(event, event->cpu); 9068 9069 account_pmu_sb_event(event); 9070 } 9071 9072 /* 9073 * Allocate and initialize a event structure 9074 */ 9075 static struct perf_event * 9076 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9077 struct task_struct *task, 9078 struct perf_event *group_leader, 9079 struct perf_event *parent_event, 9080 perf_overflow_handler_t overflow_handler, 9081 void *context, int cgroup_fd) 9082 { 9083 struct pmu *pmu; 9084 struct perf_event *event; 9085 struct hw_perf_event *hwc; 9086 long err = -EINVAL; 9087 9088 if ((unsigned)cpu >= nr_cpu_ids) { 9089 if (!task || cpu != -1) 9090 return ERR_PTR(-EINVAL); 9091 } 9092 9093 event = kzalloc(sizeof(*event), GFP_KERNEL); 9094 if (!event) 9095 return ERR_PTR(-ENOMEM); 9096 9097 /* 9098 * Single events are their own group leaders, with an 9099 * empty sibling list: 9100 */ 9101 if (!group_leader) 9102 group_leader = event; 9103 9104 mutex_init(&event->child_mutex); 9105 INIT_LIST_HEAD(&event->child_list); 9106 9107 INIT_LIST_HEAD(&event->group_entry); 9108 INIT_LIST_HEAD(&event->event_entry); 9109 INIT_LIST_HEAD(&event->sibling_list); 9110 INIT_LIST_HEAD(&event->rb_entry); 9111 INIT_LIST_HEAD(&event->active_entry); 9112 INIT_LIST_HEAD(&event->addr_filters.list); 9113 INIT_HLIST_NODE(&event->hlist_entry); 9114 9115 9116 init_waitqueue_head(&event->waitq); 9117 init_irq_work(&event->pending, perf_pending_event); 9118 9119 mutex_init(&event->mmap_mutex); 9120 raw_spin_lock_init(&event->addr_filters.lock); 9121 9122 atomic_long_set(&event->refcount, 1); 9123 event->cpu = cpu; 9124 event->attr = *attr; 9125 event->group_leader = group_leader; 9126 event->pmu = NULL; 9127 event->oncpu = -1; 9128 9129 event->parent = parent_event; 9130 9131 event->ns = get_pid_ns(task_active_pid_ns(current)); 9132 event->id = atomic64_inc_return(&perf_event_id); 9133 9134 event->state = PERF_EVENT_STATE_INACTIVE; 9135 9136 if (task) { 9137 event->attach_state = PERF_ATTACH_TASK; 9138 /* 9139 * XXX pmu::event_init needs to know what task to account to 9140 * and we cannot use the ctx information because we need the 9141 * pmu before we get a ctx. 9142 */ 9143 event->hw.target = task; 9144 } 9145 9146 event->clock = &local_clock; 9147 if (parent_event) 9148 event->clock = parent_event->clock; 9149 9150 if (!overflow_handler && parent_event) { 9151 overflow_handler = parent_event->overflow_handler; 9152 context = parent_event->overflow_handler_context; 9153 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9154 if (overflow_handler == bpf_overflow_handler) { 9155 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9156 9157 if (IS_ERR(prog)) { 9158 err = PTR_ERR(prog); 9159 goto err_ns; 9160 } 9161 event->prog = prog; 9162 event->orig_overflow_handler = 9163 parent_event->orig_overflow_handler; 9164 } 9165 #endif 9166 } 9167 9168 if (overflow_handler) { 9169 event->overflow_handler = overflow_handler; 9170 event->overflow_handler_context = context; 9171 } else if (is_write_backward(event)){ 9172 event->overflow_handler = perf_event_output_backward; 9173 event->overflow_handler_context = NULL; 9174 } else { 9175 event->overflow_handler = perf_event_output_forward; 9176 event->overflow_handler_context = NULL; 9177 } 9178 9179 perf_event__state_init(event); 9180 9181 pmu = NULL; 9182 9183 hwc = &event->hw; 9184 hwc->sample_period = attr->sample_period; 9185 if (attr->freq && attr->sample_freq) 9186 hwc->sample_period = 1; 9187 hwc->last_period = hwc->sample_period; 9188 9189 local64_set(&hwc->period_left, hwc->sample_period); 9190 9191 /* 9192 * we currently do not support PERF_FORMAT_GROUP on inherited events 9193 */ 9194 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9195 goto err_ns; 9196 9197 if (!has_branch_stack(event)) 9198 event->attr.branch_sample_type = 0; 9199 9200 if (cgroup_fd != -1) { 9201 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9202 if (err) 9203 goto err_ns; 9204 } 9205 9206 pmu = perf_init_event(event); 9207 if (!pmu) 9208 goto err_ns; 9209 else if (IS_ERR(pmu)) { 9210 err = PTR_ERR(pmu); 9211 goto err_ns; 9212 } 9213 9214 err = exclusive_event_init(event); 9215 if (err) 9216 goto err_pmu; 9217 9218 if (has_addr_filter(event)) { 9219 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9220 sizeof(unsigned long), 9221 GFP_KERNEL); 9222 if (!event->addr_filters_offs) 9223 goto err_per_task; 9224 9225 /* force hw sync on the address filters */ 9226 event->addr_filters_gen = 1; 9227 } 9228 9229 if (!event->parent) { 9230 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9231 err = get_callchain_buffers(attr->sample_max_stack); 9232 if (err) 9233 goto err_addr_filters; 9234 } 9235 } 9236 9237 /* symmetric to unaccount_event() in _free_event() */ 9238 account_event(event); 9239 9240 return event; 9241 9242 err_addr_filters: 9243 kfree(event->addr_filters_offs); 9244 9245 err_per_task: 9246 exclusive_event_destroy(event); 9247 9248 err_pmu: 9249 if (event->destroy) 9250 event->destroy(event); 9251 module_put(pmu->module); 9252 err_ns: 9253 if (is_cgroup_event(event)) 9254 perf_detach_cgroup(event); 9255 if (event->ns) 9256 put_pid_ns(event->ns); 9257 kfree(event); 9258 9259 return ERR_PTR(err); 9260 } 9261 9262 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9263 struct perf_event_attr *attr) 9264 { 9265 u32 size; 9266 int ret; 9267 9268 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9269 return -EFAULT; 9270 9271 /* 9272 * zero the full structure, so that a short copy will be nice. 9273 */ 9274 memset(attr, 0, sizeof(*attr)); 9275 9276 ret = get_user(size, &uattr->size); 9277 if (ret) 9278 return ret; 9279 9280 if (size > PAGE_SIZE) /* silly large */ 9281 goto err_size; 9282 9283 if (!size) /* abi compat */ 9284 size = PERF_ATTR_SIZE_VER0; 9285 9286 if (size < PERF_ATTR_SIZE_VER0) 9287 goto err_size; 9288 9289 /* 9290 * If we're handed a bigger struct than we know of, 9291 * ensure all the unknown bits are 0 - i.e. new 9292 * user-space does not rely on any kernel feature 9293 * extensions we dont know about yet. 9294 */ 9295 if (size > sizeof(*attr)) { 9296 unsigned char __user *addr; 9297 unsigned char __user *end; 9298 unsigned char val; 9299 9300 addr = (void __user *)uattr + sizeof(*attr); 9301 end = (void __user *)uattr + size; 9302 9303 for (; addr < end; addr++) { 9304 ret = get_user(val, addr); 9305 if (ret) 9306 return ret; 9307 if (val) 9308 goto err_size; 9309 } 9310 size = sizeof(*attr); 9311 } 9312 9313 ret = copy_from_user(attr, uattr, size); 9314 if (ret) 9315 return -EFAULT; 9316 9317 if (attr->__reserved_1) 9318 return -EINVAL; 9319 9320 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9321 return -EINVAL; 9322 9323 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9324 return -EINVAL; 9325 9326 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9327 u64 mask = attr->branch_sample_type; 9328 9329 /* only using defined bits */ 9330 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9331 return -EINVAL; 9332 9333 /* at least one branch bit must be set */ 9334 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9335 return -EINVAL; 9336 9337 /* propagate priv level, when not set for branch */ 9338 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9339 9340 /* exclude_kernel checked on syscall entry */ 9341 if (!attr->exclude_kernel) 9342 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9343 9344 if (!attr->exclude_user) 9345 mask |= PERF_SAMPLE_BRANCH_USER; 9346 9347 if (!attr->exclude_hv) 9348 mask |= PERF_SAMPLE_BRANCH_HV; 9349 /* 9350 * adjust user setting (for HW filter setup) 9351 */ 9352 attr->branch_sample_type = mask; 9353 } 9354 /* privileged levels capture (kernel, hv): check permissions */ 9355 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9356 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9357 return -EACCES; 9358 } 9359 9360 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9361 ret = perf_reg_validate(attr->sample_regs_user); 9362 if (ret) 9363 return ret; 9364 } 9365 9366 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9367 if (!arch_perf_have_user_stack_dump()) 9368 return -ENOSYS; 9369 9370 /* 9371 * We have __u32 type for the size, but so far 9372 * we can only use __u16 as maximum due to the 9373 * __u16 sample size limit. 9374 */ 9375 if (attr->sample_stack_user >= USHRT_MAX) 9376 ret = -EINVAL; 9377 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9378 ret = -EINVAL; 9379 } 9380 9381 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9382 ret = perf_reg_validate(attr->sample_regs_intr); 9383 out: 9384 return ret; 9385 9386 err_size: 9387 put_user(sizeof(*attr), &uattr->size); 9388 ret = -E2BIG; 9389 goto out; 9390 } 9391 9392 static int 9393 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9394 { 9395 struct ring_buffer *rb = NULL; 9396 int ret = -EINVAL; 9397 9398 if (!output_event) 9399 goto set; 9400 9401 /* don't allow circular references */ 9402 if (event == output_event) 9403 goto out; 9404 9405 /* 9406 * Don't allow cross-cpu buffers 9407 */ 9408 if (output_event->cpu != event->cpu) 9409 goto out; 9410 9411 /* 9412 * If its not a per-cpu rb, it must be the same task. 9413 */ 9414 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9415 goto out; 9416 9417 /* 9418 * Mixing clocks in the same buffer is trouble you don't need. 9419 */ 9420 if (output_event->clock != event->clock) 9421 goto out; 9422 9423 /* 9424 * Either writing ring buffer from beginning or from end. 9425 * Mixing is not allowed. 9426 */ 9427 if (is_write_backward(output_event) != is_write_backward(event)) 9428 goto out; 9429 9430 /* 9431 * If both events generate aux data, they must be on the same PMU 9432 */ 9433 if (has_aux(event) && has_aux(output_event) && 9434 event->pmu != output_event->pmu) 9435 goto out; 9436 9437 set: 9438 mutex_lock(&event->mmap_mutex); 9439 /* Can't redirect output if we've got an active mmap() */ 9440 if (atomic_read(&event->mmap_count)) 9441 goto unlock; 9442 9443 if (output_event) { 9444 /* get the rb we want to redirect to */ 9445 rb = ring_buffer_get(output_event); 9446 if (!rb) 9447 goto unlock; 9448 } 9449 9450 ring_buffer_attach(event, rb); 9451 9452 ret = 0; 9453 unlock: 9454 mutex_unlock(&event->mmap_mutex); 9455 9456 out: 9457 return ret; 9458 } 9459 9460 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9461 { 9462 if (b < a) 9463 swap(a, b); 9464 9465 mutex_lock(a); 9466 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9467 } 9468 9469 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9470 { 9471 bool nmi_safe = false; 9472 9473 switch (clk_id) { 9474 case CLOCK_MONOTONIC: 9475 event->clock = &ktime_get_mono_fast_ns; 9476 nmi_safe = true; 9477 break; 9478 9479 case CLOCK_MONOTONIC_RAW: 9480 event->clock = &ktime_get_raw_fast_ns; 9481 nmi_safe = true; 9482 break; 9483 9484 case CLOCK_REALTIME: 9485 event->clock = &ktime_get_real_ns; 9486 break; 9487 9488 case CLOCK_BOOTTIME: 9489 event->clock = &ktime_get_boot_ns; 9490 break; 9491 9492 case CLOCK_TAI: 9493 event->clock = &ktime_get_tai_ns; 9494 break; 9495 9496 default: 9497 return -EINVAL; 9498 } 9499 9500 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9501 return -EINVAL; 9502 9503 return 0; 9504 } 9505 9506 /** 9507 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9508 * 9509 * @attr_uptr: event_id type attributes for monitoring/sampling 9510 * @pid: target pid 9511 * @cpu: target cpu 9512 * @group_fd: group leader event fd 9513 */ 9514 SYSCALL_DEFINE5(perf_event_open, 9515 struct perf_event_attr __user *, attr_uptr, 9516 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9517 { 9518 struct perf_event *group_leader = NULL, *output_event = NULL; 9519 struct perf_event *event, *sibling; 9520 struct perf_event_attr attr; 9521 struct perf_event_context *ctx, *uninitialized_var(gctx); 9522 struct file *event_file = NULL; 9523 struct fd group = {NULL, 0}; 9524 struct task_struct *task = NULL; 9525 struct pmu *pmu; 9526 int event_fd; 9527 int move_group = 0; 9528 int err; 9529 int f_flags = O_RDWR; 9530 int cgroup_fd = -1; 9531 9532 /* for future expandability... */ 9533 if (flags & ~PERF_FLAG_ALL) 9534 return -EINVAL; 9535 9536 err = perf_copy_attr(attr_uptr, &attr); 9537 if (err) 9538 return err; 9539 9540 if (!attr.exclude_kernel) { 9541 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9542 return -EACCES; 9543 } 9544 9545 if (attr.freq) { 9546 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9547 return -EINVAL; 9548 } else { 9549 if (attr.sample_period & (1ULL << 63)) 9550 return -EINVAL; 9551 } 9552 9553 if (!attr.sample_max_stack) 9554 attr.sample_max_stack = sysctl_perf_event_max_stack; 9555 9556 /* 9557 * In cgroup mode, the pid argument is used to pass the fd 9558 * opened to the cgroup directory in cgroupfs. The cpu argument 9559 * designates the cpu on which to monitor threads from that 9560 * cgroup. 9561 */ 9562 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9563 return -EINVAL; 9564 9565 if (flags & PERF_FLAG_FD_CLOEXEC) 9566 f_flags |= O_CLOEXEC; 9567 9568 event_fd = get_unused_fd_flags(f_flags); 9569 if (event_fd < 0) 9570 return event_fd; 9571 9572 if (group_fd != -1) { 9573 err = perf_fget_light(group_fd, &group); 9574 if (err) 9575 goto err_fd; 9576 group_leader = group.file->private_data; 9577 if (flags & PERF_FLAG_FD_OUTPUT) 9578 output_event = group_leader; 9579 if (flags & PERF_FLAG_FD_NO_GROUP) 9580 group_leader = NULL; 9581 } 9582 9583 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9584 task = find_lively_task_by_vpid(pid); 9585 if (IS_ERR(task)) { 9586 err = PTR_ERR(task); 9587 goto err_group_fd; 9588 } 9589 } 9590 9591 if (task && group_leader && 9592 group_leader->attr.inherit != attr.inherit) { 9593 err = -EINVAL; 9594 goto err_task; 9595 } 9596 9597 get_online_cpus(); 9598 9599 if (task) { 9600 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9601 if (err) 9602 goto err_cpus; 9603 9604 /* 9605 * Reuse ptrace permission checks for now. 9606 * 9607 * We must hold cred_guard_mutex across this and any potential 9608 * perf_install_in_context() call for this new event to 9609 * serialize against exec() altering our credentials (and the 9610 * perf_event_exit_task() that could imply). 9611 */ 9612 err = -EACCES; 9613 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9614 goto err_cred; 9615 } 9616 9617 if (flags & PERF_FLAG_PID_CGROUP) 9618 cgroup_fd = pid; 9619 9620 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9621 NULL, NULL, cgroup_fd); 9622 if (IS_ERR(event)) { 9623 err = PTR_ERR(event); 9624 goto err_cred; 9625 } 9626 9627 if (is_sampling_event(event)) { 9628 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9629 err = -EOPNOTSUPP; 9630 goto err_alloc; 9631 } 9632 } 9633 9634 /* 9635 * Special case software events and allow them to be part of 9636 * any hardware group. 9637 */ 9638 pmu = event->pmu; 9639 9640 if (attr.use_clockid) { 9641 err = perf_event_set_clock(event, attr.clockid); 9642 if (err) 9643 goto err_alloc; 9644 } 9645 9646 if (pmu->task_ctx_nr == perf_sw_context) 9647 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9648 9649 if (group_leader && 9650 (is_software_event(event) != is_software_event(group_leader))) { 9651 if (is_software_event(event)) { 9652 /* 9653 * If event and group_leader are not both a software 9654 * event, and event is, then group leader is not. 9655 * 9656 * Allow the addition of software events to !software 9657 * groups, this is safe because software events never 9658 * fail to schedule. 9659 */ 9660 pmu = group_leader->pmu; 9661 } else if (is_software_event(group_leader) && 9662 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9663 /* 9664 * In case the group is a pure software group, and we 9665 * try to add a hardware event, move the whole group to 9666 * the hardware context. 9667 */ 9668 move_group = 1; 9669 } 9670 } 9671 9672 /* 9673 * Get the target context (task or percpu): 9674 */ 9675 ctx = find_get_context(pmu, task, event); 9676 if (IS_ERR(ctx)) { 9677 err = PTR_ERR(ctx); 9678 goto err_alloc; 9679 } 9680 9681 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9682 err = -EBUSY; 9683 goto err_context; 9684 } 9685 9686 /* 9687 * Look up the group leader (we will attach this event to it): 9688 */ 9689 if (group_leader) { 9690 err = -EINVAL; 9691 9692 /* 9693 * Do not allow a recursive hierarchy (this new sibling 9694 * becoming part of another group-sibling): 9695 */ 9696 if (group_leader->group_leader != group_leader) 9697 goto err_context; 9698 9699 /* All events in a group should have the same clock */ 9700 if (group_leader->clock != event->clock) 9701 goto err_context; 9702 9703 /* 9704 * Do not allow to attach to a group in a different 9705 * task or CPU context: 9706 */ 9707 if (move_group) { 9708 /* 9709 * Make sure we're both on the same task, or both 9710 * per-cpu events. 9711 */ 9712 if (group_leader->ctx->task != ctx->task) 9713 goto err_context; 9714 9715 /* 9716 * Make sure we're both events for the same CPU; 9717 * grouping events for different CPUs is broken; since 9718 * you can never concurrently schedule them anyhow. 9719 */ 9720 if (group_leader->cpu != event->cpu) 9721 goto err_context; 9722 } else { 9723 if (group_leader->ctx != ctx) 9724 goto err_context; 9725 } 9726 9727 /* 9728 * Only a group leader can be exclusive or pinned 9729 */ 9730 if (attr.exclusive || attr.pinned) 9731 goto err_context; 9732 } 9733 9734 if (output_event) { 9735 err = perf_event_set_output(event, output_event); 9736 if (err) 9737 goto err_context; 9738 } 9739 9740 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9741 f_flags); 9742 if (IS_ERR(event_file)) { 9743 err = PTR_ERR(event_file); 9744 event_file = NULL; 9745 goto err_context; 9746 } 9747 9748 if (move_group) { 9749 gctx = group_leader->ctx; 9750 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9751 if (gctx->task == TASK_TOMBSTONE) { 9752 err = -ESRCH; 9753 goto err_locked; 9754 } 9755 } else { 9756 mutex_lock(&ctx->mutex); 9757 } 9758 9759 if (ctx->task == TASK_TOMBSTONE) { 9760 err = -ESRCH; 9761 goto err_locked; 9762 } 9763 9764 if (!perf_event_validate_size(event)) { 9765 err = -E2BIG; 9766 goto err_locked; 9767 } 9768 9769 /* 9770 * Must be under the same ctx::mutex as perf_install_in_context(), 9771 * because we need to serialize with concurrent event creation. 9772 */ 9773 if (!exclusive_event_installable(event, ctx)) { 9774 /* exclusive and group stuff are assumed mutually exclusive */ 9775 WARN_ON_ONCE(move_group); 9776 9777 err = -EBUSY; 9778 goto err_locked; 9779 } 9780 9781 WARN_ON_ONCE(ctx->parent_ctx); 9782 9783 /* 9784 * This is the point on no return; we cannot fail hereafter. This is 9785 * where we start modifying current state. 9786 */ 9787 9788 if (move_group) { 9789 /* 9790 * See perf_event_ctx_lock() for comments on the details 9791 * of swizzling perf_event::ctx. 9792 */ 9793 perf_remove_from_context(group_leader, 0); 9794 9795 list_for_each_entry(sibling, &group_leader->sibling_list, 9796 group_entry) { 9797 perf_remove_from_context(sibling, 0); 9798 put_ctx(gctx); 9799 } 9800 9801 /* 9802 * Wait for everybody to stop referencing the events through 9803 * the old lists, before installing it on new lists. 9804 */ 9805 synchronize_rcu(); 9806 9807 /* 9808 * Install the group siblings before the group leader. 9809 * 9810 * Because a group leader will try and install the entire group 9811 * (through the sibling list, which is still in-tact), we can 9812 * end up with siblings installed in the wrong context. 9813 * 9814 * By installing siblings first we NO-OP because they're not 9815 * reachable through the group lists. 9816 */ 9817 list_for_each_entry(sibling, &group_leader->sibling_list, 9818 group_entry) { 9819 perf_event__state_init(sibling); 9820 perf_install_in_context(ctx, sibling, sibling->cpu); 9821 get_ctx(ctx); 9822 } 9823 9824 /* 9825 * Removing from the context ends up with disabled 9826 * event. What we want here is event in the initial 9827 * startup state, ready to be add into new context. 9828 */ 9829 perf_event__state_init(group_leader); 9830 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9831 get_ctx(ctx); 9832 9833 /* 9834 * Now that all events are installed in @ctx, nothing 9835 * references @gctx anymore, so drop the last reference we have 9836 * on it. 9837 */ 9838 put_ctx(gctx); 9839 } 9840 9841 /* 9842 * Precalculate sample_data sizes; do while holding ctx::mutex such 9843 * that we're serialized against further additions and before 9844 * perf_install_in_context() which is the point the event is active and 9845 * can use these values. 9846 */ 9847 perf_event__header_size(event); 9848 perf_event__id_header_size(event); 9849 9850 event->owner = current; 9851 9852 perf_install_in_context(ctx, event, event->cpu); 9853 perf_unpin_context(ctx); 9854 9855 if (move_group) 9856 mutex_unlock(&gctx->mutex); 9857 mutex_unlock(&ctx->mutex); 9858 9859 if (task) { 9860 mutex_unlock(&task->signal->cred_guard_mutex); 9861 put_task_struct(task); 9862 } 9863 9864 put_online_cpus(); 9865 9866 mutex_lock(¤t->perf_event_mutex); 9867 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9868 mutex_unlock(¤t->perf_event_mutex); 9869 9870 /* 9871 * Drop the reference on the group_event after placing the 9872 * new event on the sibling_list. This ensures destruction 9873 * of the group leader will find the pointer to itself in 9874 * perf_group_detach(). 9875 */ 9876 fdput(group); 9877 fd_install(event_fd, event_file); 9878 return event_fd; 9879 9880 err_locked: 9881 if (move_group) 9882 mutex_unlock(&gctx->mutex); 9883 mutex_unlock(&ctx->mutex); 9884 /* err_file: */ 9885 fput(event_file); 9886 err_context: 9887 perf_unpin_context(ctx); 9888 put_ctx(ctx); 9889 err_alloc: 9890 /* 9891 * If event_file is set, the fput() above will have called ->release() 9892 * and that will take care of freeing the event. 9893 */ 9894 if (!event_file) 9895 free_event(event); 9896 err_cred: 9897 if (task) 9898 mutex_unlock(&task->signal->cred_guard_mutex); 9899 err_cpus: 9900 put_online_cpus(); 9901 err_task: 9902 if (task) 9903 put_task_struct(task); 9904 err_group_fd: 9905 fdput(group); 9906 err_fd: 9907 put_unused_fd(event_fd); 9908 return err; 9909 } 9910 9911 /** 9912 * perf_event_create_kernel_counter 9913 * 9914 * @attr: attributes of the counter to create 9915 * @cpu: cpu in which the counter is bound 9916 * @task: task to profile (NULL for percpu) 9917 */ 9918 struct perf_event * 9919 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9920 struct task_struct *task, 9921 perf_overflow_handler_t overflow_handler, 9922 void *context) 9923 { 9924 struct perf_event_context *ctx; 9925 struct perf_event *event; 9926 int err; 9927 9928 /* 9929 * Get the target context (task or percpu): 9930 */ 9931 9932 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9933 overflow_handler, context, -1); 9934 if (IS_ERR(event)) { 9935 err = PTR_ERR(event); 9936 goto err; 9937 } 9938 9939 /* Mark owner so we could distinguish it from user events. */ 9940 event->owner = TASK_TOMBSTONE; 9941 9942 ctx = find_get_context(event->pmu, task, event); 9943 if (IS_ERR(ctx)) { 9944 err = PTR_ERR(ctx); 9945 goto err_free; 9946 } 9947 9948 WARN_ON_ONCE(ctx->parent_ctx); 9949 mutex_lock(&ctx->mutex); 9950 if (ctx->task == TASK_TOMBSTONE) { 9951 err = -ESRCH; 9952 goto err_unlock; 9953 } 9954 9955 if (!exclusive_event_installable(event, ctx)) { 9956 err = -EBUSY; 9957 goto err_unlock; 9958 } 9959 9960 perf_install_in_context(ctx, event, cpu); 9961 perf_unpin_context(ctx); 9962 mutex_unlock(&ctx->mutex); 9963 9964 return event; 9965 9966 err_unlock: 9967 mutex_unlock(&ctx->mutex); 9968 perf_unpin_context(ctx); 9969 put_ctx(ctx); 9970 err_free: 9971 free_event(event); 9972 err: 9973 return ERR_PTR(err); 9974 } 9975 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9976 9977 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9978 { 9979 struct perf_event_context *src_ctx; 9980 struct perf_event_context *dst_ctx; 9981 struct perf_event *event, *tmp; 9982 LIST_HEAD(events); 9983 9984 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9985 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9986 9987 /* 9988 * See perf_event_ctx_lock() for comments on the details 9989 * of swizzling perf_event::ctx. 9990 */ 9991 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9992 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9993 event_entry) { 9994 perf_remove_from_context(event, 0); 9995 unaccount_event_cpu(event, src_cpu); 9996 put_ctx(src_ctx); 9997 list_add(&event->migrate_entry, &events); 9998 } 9999 10000 /* 10001 * Wait for the events to quiesce before re-instating them. 10002 */ 10003 synchronize_rcu(); 10004 10005 /* 10006 * Re-instate events in 2 passes. 10007 * 10008 * Skip over group leaders and only install siblings on this first 10009 * pass, siblings will not get enabled without a leader, however a 10010 * leader will enable its siblings, even if those are still on the old 10011 * context. 10012 */ 10013 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10014 if (event->group_leader == event) 10015 continue; 10016 10017 list_del(&event->migrate_entry); 10018 if (event->state >= PERF_EVENT_STATE_OFF) 10019 event->state = PERF_EVENT_STATE_INACTIVE; 10020 account_event_cpu(event, dst_cpu); 10021 perf_install_in_context(dst_ctx, event, dst_cpu); 10022 get_ctx(dst_ctx); 10023 } 10024 10025 /* 10026 * Once all the siblings are setup properly, install the group leaders 10027 * to make it go. 10028 */ 10029 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10030 list_del(&event->migrate_entry); 10031 if (event->state >= PERF_EVENT_STATE_OFF) 10032 event->state = PERF_EVENT_STATE_INACTIVE; 10033 account_event_cpu(event, dst_cpu); 10034 perf_install_in_context(dst_ctx, event, dst_cpu); 10035 get_ctx(dst_ctx); 10036 } 10037 mutex_unlock(&dst_ctx->mutex); 10038 mutex_unlock(&src_ctx->mutex); 10039 } 10040 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10041 10042 static void sync_child_event(struct perf_event *child_event, 10043 struct task_struct *child) 10044 { 10045 struct perf_event *parent_event = child_event->parent; 10046 u64 child_val; 10047 10048 if (child_event->attr.inherit_stat) 10049 perf_event_read_event(child_event, child); 10050 10051 child_val = perf_event_count(child_event); 10052 10053 /* 10054 * Add back the child's count to the parent's count: 10055 */ 10056 atomic64_add(child_val, &parent_event->child_count); 10057 atomic64_add(child_event->total_time_enabled, 10058 &parent_event->child_total_time_enabled); 10059 atomic64_add(child_event->total_time_running, 10060 &parent_event->child_total_time_running); 10061 } 10062 10063 static void 10064 perf_event_exit_event(struct perf_event *child_event, 10065 struct perf_event_context *child_ctx, 10066 struct task_struct *child) 10067 { 10068 struct perf_event *parent_event = child_event->parent; 10069 10070 /* 10071 * Do not destroy the 'original' grouping; because of the context 10072 * switch optimization the original events could've ended up in a 10073 * random child task. 10074 * 10075 * If we were to destroy the original group, all group related 10076 * operations would cease to function properly after this random 10077 * child dies. 10078 * 10079 * Do destroy all inherited groups, we don't care about those 10080 * and being thorough is better. 10081 */ 10082 raw_spin_lock_irq(&child_ctx->lock); 10083 WARN_ON_ONCE(child_ctx->is_active); 10084 10085 if (parent_event) 10086 perf_group_detach(child_event); 10087 list_del_event(child_event, child_ctx); 10088 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10089 raw_spin_unlock_irq(&child_ctx->lock); 10090 10091 /* 10092 * Parent events are governed by their filedesc, retain them. 10093 */ 10094 if (!parent_event) { 10095 perf_event_wakeup(child_event); 10096 return; 10097 } 10098 /* 10099 * Child events can be cleaned up. 10100 */ 10101 10102 sync_child_event(child_event, child); 10103 10104 /* 10105 * Remove this event from the parent's list 10106 */ 10107 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10108 mutex_lock(&parent_event->child_mutex); 10109 list_del_init(&child_event->child_list); 10110 mutex_unlock(&parent_event->child_mutex); 10111 10112 /* 10113 * Kick perf_poll() for is_event_hup(). 10114 */ 10115 perf_event_wakeup(parent_event); 10116 free_event(child_event); 10117 put_event(parent_event); 10118 } 10119 10120 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10121 { 10122 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10123 struct perf_event *child_event, *next; 10124 10125 WARN_ON_ONCE(child != current); 10126 10127 child_ctx = perf_pin_task_context(child, ctxn); 10128 if (!child_ctx) 10129 return; 10130 10131 /* 10132 * In order to reduce the amount of tricky in ctx tear-down, we hold 10133 * ctx::mutex over the entire thing. This serializes against almost 10134 * everything that wants to access the ctx. 10135 * 10136 * The exception is sys_perf_event_open() / 10137 * perf_event_create_kernel_count() which does find_get_context() 10138 * without ctx::mutex (it cannot because of the move_group double mutex 10139 * lock thing). See the comments in perf_install_in_context(). 10140 */ 10141 mutex_lock(&child_ctx->mutex); 10142 10143 /* 10144 * In a single ctx::lock section, de-schedule the events and detach the 10145 * context from the task such that we cannot ever get it scheduled back 10146 * in. 10147 */ 10148 raw_spin_lock_irq(&child_ctx->lock); 10149 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10150 10151 /* 10152 * Now that the context is inactive, destroy the task <-> ctx relation 10153 * and mark the context dead. 10154 */ 10155 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10156 put_ctx(child_ctx); /* cannot be last */ 10157 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10158 put_task_struct(current); /* cannot be last */ 10159 10160 clone_ctx = unclone_ctx(child_ctx); 10161 raw_spin_unlock_irq(&child_ctx->lock); 10162 10163 if (clone_ctx) 10164 put_ctx(clone_ctx); 10165 10166 /* 10167 * Report the task dead after unscheduling the events so that we 10168 * won't get any samples after PERF_RECORD_EXIT. We can however still 10169 * get a few PERF_RECORD_READ events. 10170 */ 10171 perf_event_task(child, child_ctx, 0); 10172 10173 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10174 perf_event_exit_event(child_event, child_ctx, child); 10175 10176 mutex_unlock(&child_ctx->mutex); 10177 10178 put_ctx(child_ctx); 10179 } 10180 10181 /* 10182 * When a child task exits, feed back event values to parent events. 10183 * 10184 * Can be called with cred_guard_mutex held when called from 10185 * install_exec_creds(). 10186 */ 10187 void perf_event_exit_task(struct task_struct *child) 10188 { 10189 struct perf_event *event, *tmp; 10190 int ctxn; 10191 10192 mutex_lock(&child->perf_event_mutex); 10193 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10194 owner_entry) { 10195 list_del_init(&event->owner_entry); 10196 10197 /* 10198 * Ensure the list deletion is visible before we clear 10199 * the owner, closes a race against perf_release() where 10200 * we need to serialize on the owner->perf_event_mutex. 10201 */ 10202 smp_store_release(&event->owner, NULL); 10203 } 10204 mutex_unlock(&child->perf_event_mutex); 10205 10206 for_each_task_context_nr(ctxn) 10207 perf_event_exit_task_context(child, ctxn); 10208 10209 /* 10210 * The perf_event_exit_task_context calls perf_event_task 10211 * with child's task_ctx, which generates EXIT events for 10212 * child contexts and sets child->perf_event_ctxp[] to NULL. 10213 * At this point we need to send EXIT events to cpu contexts. 10214 */ 10215 perf_event_task(child, NULL, 0); 10216 } 10217 10218 static void perf_free_event(struct perf_event *event, 10219 struct perf_event_context *ctx) 10220 { 10221 struct perf_event *parent = event->parent; 10222 10223 if (WARN_ON_ONCE(!parent)) 10224 return; 10225 10226 mutex_lock(&parent->child_mutex); 10227 list_del_init(&event->child_list); 10228 mutex_unlock(&parent->child_mutex); 10229 10230 put_event(parent); 10231 10232 raw_spin_lock_irq(&ctx->lock); 10233 perf_group_detach(event); 10234 list_del_event(event, ctx); 10235 raw_spin_unlock_irq(&ctx->lock); 10236 free_event(event); 10237 } 10238 10239 /* 10240 * Free an unexposed, unused context as created by inheritance by 10241 * perf_event_init_task below, used by fork() in case of fail. 10242 * 10243 * Not all locks are strictly required, but take them anyway to be nice and 10244 * help out with the lockdep assertions. 10245 */ 10246 void perf_event_free_task(struct task_struct *task) 10247 { 10248 struct perf_event_context *ctx; 10249 struct perf_event *event, *tmp; 10250 int ctxn; 10251 10252 for_each_task_context_nr(ctxn) { 10253 ctx = task->perf_event_ctxp[ctxn]; 10254 if (!ctx) 10255 continue; 10256 10257 mutex_lock(&ctx->mutex); 10258 again: 10259 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10260 group_entry) 10261 perf_free_event(event, ctx); 10262 10263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10264 group_entry) 10265 perf_free_event(event, ctx); 10266 10267 if (!list_empty(&ctx->pinned_groups) || 10268 !list_empty(&ctx->flexible_groups)) 10269 goto again; 10270 10271 mutex_unlock(&ctx->mutex); 10272 10273 put_ctx(ctx); 10274 } 10275 } 10276 10277 void perf_event_delayed_put(struct task_struct *task) 10278 { 10279 int ctxn; 10280 10281 for_each_task_context_nr(ctxn) 10282 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10283 } 10284 10285 struct file *perf_event_get(unsigned int fd) 10286 { 10287 struct file *file; 10288 10289 file = fget_raw(fd); 10290 if (!file) 10291 return ERR_PTR(-EBADF); 10292 10293 if (file->f_op != &perf_fops) { 10294 fput(file); 10295 return ERR_PTR(-EBADF); 10296 } 10297 10298 return file; 10299 } 10300 10301 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10302 { 10303 if (!event) 10304 return ERR_PTR(-EINVAL); 10305 10306 return &event->attr; 10307 } 10308 10309 /* 10310 * inherit a event from parent task to child task: 10311 */ 10312 static struct perf_event * 10313 inherit_event(struct perf_event *parent_event, 10314 struct task_struct *parent, 10315 struct perf_event_context *parent_ctx, 10316 struct task_struct *child, 10317 struct perf_event *group_leader, 10318 struct perf_event_context *child_ctx) 10319 { 10320 enum perf_event_active_state parent_state = parent_event->state; 10321 struct perf_event *child_event; 10322 unsigned long flags; 10323 10324 /* 10325 * Instead of creating recursive hierarchies of events, 10326 * we link inherited events back to the original parent, 10327 * which has a filp for sure, which we use as the reference 10328 * count: 10329 */ 10330 if (parent_event->parent) 10331 parent_event = parent_event->parent; 10332 10333 child_event = perf_event_alloc(&parent_event->attr, 10334 parent_event->cpu, 10335 child, 10336 group_leader, parent_event, 10337 NULL, NULL, -1); 10338 if (IS_ERR(child_event)) 10339 return child_event; 10340 10341 /* 10342 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10343 * must be under the same lock in order to serialize against 10344 * perf_event_release_kernel(), such that either we must observe 10345 * is_orphaned_event() or they will observe us on the child_list. 10346 */ 10347 mutex_lock(&parent_event->child_mutex); 10348 if (is_orphaned_event(parent_event) || 10349 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10350 mutex_unlock(&parent_event->child_mutex); 10351 free_event(child_event); 10352 return NULL; 10353 } 10354 10355 get_ctx(child_ctx); 10356 10357 /* 10358 * Make the child state follow the state of the parent event, 10359 * not its attr.disabled bit. We hold the parent's mutex, 10360 * so we won't race with perf_event_{en, dis}able_family. 10361 */ 10362 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10363 child_event->state = PERF_EVENT_STATE_INACTIVE; 10364 else 10365 child_event->state = PERF_EVENT_STATE_OFF; 10366 10367 if (parent_event->attr.freq) { 10368 u64 sample_period = parent_event->hw.sample_period; 10369 struct hw_perf_event *hwc = &child_event->hw; 10370 10371 hwc->sample_period = sample_period; 10372 hwc->last_period = sample_period; 10373 10374 local64_set(&hwc->period_left, sample_period); 10375 } 10376 10377 child_event->ctx = child_ctx; 10378 child_event->overflow_handler = parent_event->overflow_handler; 10379 child_event->overflow_handler_context 10380 = parent_event->overflow_handler_context; 10381 10382 /* 10383 * Precalculate sample_data sizes 10384 */ 10385 perf_event__header_size(child_event); 10386 perf_event__id_header_size(child_event); 10387 10388 /* 10389 * Link it up in the child's context: 10390 */ 10391 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10392 add_event_to_ctx(child_event, child_ctx); 10393 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10394 10395 /* 10396 * Link this into the parent event's child list 10397 */ 10398 list_add_tail(&child_event->child_list, &parent_event->child_list); 10399 mutex_unlock(&parent_event->child_mutex); 10400 10401 return child_event; 10402 } 10403 10404 static int inherit_group(struct perf_event *parent_event, 10405 struct task_struct *parent, 10406 struct perf_event_context *parent_ctx, 10407 struct task_struct *child, 10408 struct perf_event_context *child_ctx) 10409 { 10410 struct perf_event *leader; 10411 struct perf_event *sub; 10412 struct perf_event *child_ctr; 10413 10414 leader = inherit_event(parent_event, parent, parent_ctx, 10415 child, NULL, child_ctx); 10416 if (IS_ERR(leader)) 10417 return PTR_ERR(leader); 10418 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10419 child_ctr = inherit_event(sub, parent, parent_ctx, 10420 child, leader, child_ctx); 10421 if (IS_ERR(child_ctr)) 10422 return PTR_ERR(child_ctr); 10423 } 10424 return 0; 10425 } 10426 10427 static int 10428 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10429 struct perf_event_context *parent_ctx, 10430 struct task_struct *child, int ctxn, 10431 int *inherited_all) 10432 { 10433 int ret; 10434 struct perf_event_context *child_ctx; 10435 10436 if (!event->attr.inherit) { 10437 *inherited_all = 0; 10438 return 0; 10439 } 10440 10441 child_ctx = child->perf_event_ctxp[ctxn]; 10442 if (!child_ctx) { 10443 /* 10444 * This is executed from the parent task context, so 10445 * inherit events that have been marked for cloning. 10446 * First allocate and initialize a context for the 10447 * child. 10448 */ 10449 10450 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10451 if (!child_ctx) 10452 return -ENOMEM; 10453 10454 child->perf_event_ctxp[ctxn] = child_ctx; 10455 } 10456 10457 ret = inherit_group(event, parent, parent_ctx, 10458 child, child_ctx); 10459 10460 if (ret) 10461 *inherited_all = 0; 10462 10463 return ret; 10464 } 10465 10466 /* 10467 * Initialize the perf_event context in task_struct 10468 */ 10469 static int perf_event_init_context(struct task_struct *child, int ctxn) 10470 { 10471 struct perf_event_context *child_ctx, *parent_ctx; 10472 struct perf_event_context *cloned_ctx; 10473 struct perf_event *event; 10474 struct task_struct *parent = current; 10475 int inherited_all = 1; 10476 unsigned long flags; 10477 int ret = 0; 10478 10479 if (likely(!parent->perf_event_ctxp[ctxn])) 10480 return 0; 10481 10482 /* 10483 * If the parent's context is a clone, pin it so it won't get 10484 * swapped under us. 10485 */ 10486 parent_ctx = perf_pin_task_context(parent, ctxn); 10487 if (!parent_ctx) 10488 return 0; 10489 10490 /* 10491 * No need to check if parent_ctx != NULL here; since we saw 10492 * it non-NULL earlier, the only reason for it to become NULL 10493 * is if we exit, and since we're currently in the middle of 10494 * a fork we can't be exiting at the same time. 10495 */ 10496 10497 /* 10498 * Lock the parent list. No need to lock the child - not PID 10499 * hashed yet and not running, so nobody can access it. 10500 */ 10501 mutex_lock(&parent_ctx->mutex); 10502 10503 /* 10504 * We dont have to disable NMIs - we are only looking at 10505 * the list, not manipulating it: 10506 */ 10507 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10508 ret = inherit_task_group(event, parent, parent_ctx, 10509 child, ctxn, &inherited_all); 10510 if (ret) 10511 break; 10512 } 10513 10514 /* 10515 * We can't hold ctx->lock when iterating the ->flexible_group list due 10516 * to allocations, but we need to prevent rotation because 10517 * rotate_ctx() will change the list from interrupt context. 10518 */ 10519 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10520 parent_ctx->rotate_disable = 1; 10521 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10522 10523 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10524 ret = inherit_task_group(event, parent, parent_ctx, 10525 child, ctxn, &inherited_all); 10526 if (ret) 10527 break; 10528 } 10529 10530 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10531 parent_ctx->rotate_disable = 0; 10532 10533 child_ctx = child->perf_event_ctxp[ctxn]; 10534 10535 if (child_ctx && inherited_all) { 10536 /* 10537 * Mark the child context as a clone of the parent 10538 * context, or of whatever the parent is a clone of. 10539 * 10540 * Note that if the parent is a clone, the holding of 10541 * parent_ctx->lock avoids it from being uncloned. 10542 */ 10543 cloned_ctx = parent_ctx->parent_ctx; 10544 if (cloned_ctx) { 10545 child_ctx->parent_ctx = cloned_ctx; 10546 child_ctx->parent_gen = parent_ctx->parent_gen; 10547 } else { 10548 child_ctx->parent_ctx = parent_ctx; 10549 child_ctx->parent_gen = parent_ctx->generation; 10550 } 10551 get_ctx(child_ctx->parent_ctx); 10552 } 10553 10554 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10555 mutex_unlock(&parent_ctx->mutex); 10556 10557 perf_unpin_context(parent_ctx); 10558 put_ctx(parent_ctx); 10559 10560 return ret; 10561 } 10562 10563 /* 10564 * Initialize the perf_event context in task_struct 10565 */ 10566 int perf_event_init_task(struct task_struct *child) 10567 { 10568 int ctxn, ret; 10569 10570 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10571 mutex_init(&child->perf_event_mutex); 10572 INIT_LIST_HEAD(&child->perf_event_list); 10573 10574 for_each_task_context_nr(ctxn) { 10575 ret = perf_event_init_context(child, ctxn); 10576 if (ret) { 10577 perf_event_free_task(child); 10578 return ret; 10579 } 10580 } 10581 10582 return 0; 10583 } 10584 10585 static void __init perf_event_init_all_cpus(void) 10586 { 10587 struct swevent_htable *swhash; 10588 int cpu; 10589 10590 for_each_possible_cpu(cpu) { 10591 swhash = &per_cpu(swevent_htable, cpu); 10592 mutex_init(&swhash->hlist_mutex); 10593 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10594 10595 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10596 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10597 10598 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10599 } 10600 } 10601 10602 int perf_event_init_cpu(unsigned int cpu) 10603 { 10604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10605 10606 mutex_lock(&swhash->hlist_mutex); 10607 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10608 struct swevent_hlist *hlist; 10609 10610 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10611 WARN_ON(!hlist); 10612 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10613 } 10614 mutex_unlock(&swhash->hlist_mutex); 10615 return 0; 10616 } 10617 10618 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10619 static void __perf_event_exit_context(void *__info) 10620 { 10621 struct perf_event_context *ctx = __info; 10622 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10623 struct perf_event *event; 10624 10625 raw_spin_lock(&ctx->lock); 10626 list_for_each_entry(event, &ctx->event_list, event_entry) 10627 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10628 raw_spin_unlock(&ctx->lock); 10629 } 10630 10631 static void perf_event_exit_cpu_context(int cpu) 10632 { 10633 struct perf_event_context *ctx; 10634 struct pmu *pmu; 10635 int idx; 10636 10637 idx = srcu_read_lock(&pmus_srcu); 10638 list_for_each_entry_rcu(pmu, &pmus, entry) { 10639 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10640 10641 mutex_lock(&ctx->mutex); 10642 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10643 mutex_unlock(&ctx->mutex); 10644 } 10645 srcu_read_unlock(&pmus_srcu, idx); 10646 } 10647 #else 10648 10649 static void perf_event_exit_cpu_context(int cpu) { } 10650 10651 #endif 10652 10653 int perf_event_exit_cpu(unsigned int cpu) 10654 { 10655 perf_event_exit_cpu_context(cpu); 10656 return 0; 10657 } 10658 10659 static int 10660 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10661 { 10662 int cpu; 10663 10664 for_each_online_cpu(cpu) 10665 perf_event_exit_cpu(cpu); 10666 10667 return NOTIFY_OK; 10668 } 10669 10670 /* 10671 * Run the perf reboot notifier at the very last possible moment so that 10672 * the generic watchdog code runs as long as possible. 10673 */ 10674 static struct notifier_block perf_reboot_notifier = { 10675 .notifier_call = perf_reboot, 10676 .priority = INT_MIN, 10677 }; 10678 10679 void __init perf_event_init(void) 10680 { 10681 int ret; 10682 10683 idr_init(&pmu_idr); 10684 10685 perf_event_init_all_cpus(); 10686 init_srcu_struct(&pmus_srcu); 10687 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10688 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10689 perf_pmu_register(&perf_task_clock, NULL, -1); 10690 perf_tp_register(); 10691 perf_event_init_cpu(smp_processor_id()); 10692 register_reboot_notifier(&perf_reboot_notifier); 10693 10694 ret = init_hw_breakpoint(); 10695 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10696 10697 /* 10698 * Build time assertion that we keep the data_head at the intended 10699 * location. IOW, validation we got the __reserved[] size right. 10700 */ 10701 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10702 != 1024); 10703 } 10704 10705 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10706 char *page) 10707 { 10708 struct perf_pmu_events_attr *pmu_attr = 10709 container_of(attr, struct perf_pmu_events_attr, attr); 10710 10711 if (pmu_attr->event_str) 10712 return sprintf(page, "%s\n", pmu_attr->event_str); 10713 10714 return 0; 10715 } 10716 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10717 10718 static int __init perf_event_sysfs_init(void) 10719 { 10720 struct pmu *pmu; 10721 int ret; 10722 10723 mutex_lock(&pmus_lock); 10724 10725 ret = bus_register(&pmu_bus); 10726 if (ret) 10727 goto unlock; 10728 10729 list_for_each_entry(pmu, &pmus, entry) { 10730 if (!pmu->name || pmu->type < 0) 10731 continue; 10732 10733 ret = pmu_dev_alloc(pmu); 10734 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10735 } 10736 pmu_bus_running = 1; 10737 ret = 0; 10738 10739 unlock: 10740 mutex_unlock(&pmus_lock); 10741 10742 return ret; 10743 } 10744 device_initcall(perf_event_sysfs_init); 10745 10746 #ifdef CONFIG_CGROUP_PERF 10747 static struct cgroup_subsys_state * 10748 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10749 { 10750 struct perf_cgroup *jc; 10751 10752 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10753 if (!jc) 10754 return ERR_PTR(-ENOMEM); 10755 10756 jc->info = alloc_percpu(struct perf_cgroup_info); 10757 if (!jc->info) { 10758 kfree(jc); 10759 return ERR_PTR(-ENOMEM); 10760 } 10761 10762 return &jc->css; 10763 } 10764 10765 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10766 { 10767 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10768 10769 free_percpu(jc->info); 10770 kfree(jc); 10771 } 10772 10773 static int __perf_cgroup_move(void *info) 10774 { 10775 struct task_struct *task = info; 10776 rcu_read_lock(); 10777 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10778 rcu_read_unlock(); 10779 return 0; 10780 } 10781 10782 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10783 { 10784 struct task_struct *task; 10785 struct cgroup_subsys_state *css; 10786 10787 cgroup_taskset_for_each(task, css, tset) 10788 task_function_call(task, __perf_cgroup_move, task); 10789 } 10790 10791 struct cgroup_subsys perf_event_cgrp_subsys = { 10792 .css_alloc = perf_cgroup_css_alloc, 10793 .css_free = perf_cgroup_css_free, 10794 .attach = perf_cgroup_attach, 10795 }; 10796 #endif /* CONFIG_CGROUP_PERF */ 10797