xref: /linux/kernel/events/core.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		bool dec = true;
2288 
2289 		event->pending_sigtrap = 0;
2290 		if (state != PERF_EVENT_STATE_OFF &&
2291 		    !event->pending_work) {
2292 			event->pending_work = 1;
2293 			dec = false;
2294 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295 			task_work_add(current, &event->pending_task, TWA_RESUME);
2296 		}
2297 		if (dec)
2298 			local_dec(&event->ctx->nr_pending);
2299 	}
2300 
2301 	perf_event_set_state(event, state);
2302 
2303 	if (!is_software_event(event))
2304 		cpc->active_oncpu--;
2305 	if (event->attr.freq && event->attr.sample_freq) {
2306 		ctx->nr_freq--;
2307 		epc->nr_freq--;
2308 	}
2309 	if (event->attr.exclusive || !cpc->active_oncpu)
2310 		cpc->exclusive = 0;
2311 
2312 	perf_pmu_enable(event->pmu);
2313 }
2314 
2315 static void
2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2317 {
2318 	struct perf_event *event;
2319 
2320 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 		return;
2322 
2323 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2324 
2325 	event_sched_out(group_event, ctx);
2326 
2327 	/*
2328 	 * Schedule out siblings (if any):
2329 	 */
2330 	for_each_sibling_event(event, group_event)
2331 		event_sched_out(event, ctx);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 #define DETACH_DEAD	0x04UL
2337 
2338 /*
2339  * Cross CPU call to remove a performance event
2340  *
2341  * We disable the event on the hardware level first. After that we
2342  * remove it from the context list.
2343  */
2344 static void
2345 __perf_remove_from_context(struct perf_event *event,
2346 			   struct perf_cpu_context *cpuctx,
2347 			   struct perf_event_context *ctx,
2348 			   void *info)
2349 {
2350 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2351 	unsigned long flags = (unsigned long)info;
2352 
2353 	if (ctx->is_active & EVENT_TIME) {
2354 		update_context_time(ctx);
2355 		update_cgrp_time_from_cpuctx(cpuctx, false);
2356 	}
2357 
2358 	/*
2359 	 * Ensure event_sched_out() switches to OFF, at the very least
2360 	 * this avoids raising perf_pending_task() at this time.
2361 	 */
2362 	if (flags & DETACH_DEAD)
2363 		event->pending_disable = 1;
2364 	event_sched_out(event, ctx);
2365 	if (flags & DETACH_GROUP)
2366 		perf_group_detach(event);
2367 	if (flags & DETACH_CHILD)
2368 		perf_child_detach(event);
2369 	list_del_event(event, ctx);
2370 	if (flags & DETACH_DEAD)
2371 		event->state = PERF_EVENT_STATE_DEAD;
2372 
2373 	if (!pmu_ctx->nr_events) {
2374 		pmu_ctx->rotate_necessary = 0;
2375 
2376 		if (ctx->task && ctx->is_active) {
2377 			struct perf_cpu_pmu_context *cpc;
2378 
2379 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381 			cpc->task_epc = NULL;
2382 		}
2383 	}
2384 
2385 	if (!ctx->nr_events && ctx->is_active) {
2386 		if (ctx == &cpuctx->ctx)
2387 			update_cgrp_time_from_cpuctx(cpuctx, true);
2388 
2389 		ctx->is_active = 0;
2390 		if (ctx->task) {
2391 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392 			cpuctx->task_ctx = NULL;
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Remove the event from a task's (or a CPU's) list of events.
2399  *
2400  * If event->ctx is a cloned context, callers must make sure that
2401  * every task struct that event->ctx->task could possibly point to
2402  * remains valid.  This is OK when called from perf_release since
2403  * that only calls us on the top-level context, which can't be a clone.
2404  * When called from perf_event_exit_task, it's OK because the
2405  * context has been detached from its task.
2406  */
2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2408 {
2409 	struct perf_event_context *ctx = event->ctx;
2410 
2411 	lockdep_assert_held(&ctx->mutex);
2412 
2413 	/*
2414 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2416 	 * event_function_call() user.
2417 	 */
2418 	raw_spin_lock_irq(&ctx->lock);
2419 	if (!ctx->is_active) {
2420 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2421 					   ctx, (void *)flags);
2422 		raw_spin_unlock_irq(&ctx->lock);
2423 		return;
2424 	}
2425 	raw_spin_unlock_irq(&ctx->lock);
2426 
2427 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2428 }
2429 
2430 /*
2431  * Cross CPU call to disable a performance event
2432  */
2433 static void __perf_event_disable(struct perf_event *event,
2434 				 struct perf_cpu_context *cpuctx,
2435 				 struct perf_event_context *ctx,
2436 				 void *info)
2437 {
2438 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2439 		return;
2440 
2441 	if (ctx->is_active & EVENT_TIME) {
2442 		update_context_time(ctx);
2443 		update_cgrp_time_from_event(event);
2444 	}
2445 
2446 	perf_pmu_disable(event->pmu_ctx->pmu);
2447 
2448 	if (event == event->group_leader)
2449 		group_sched_out(event, ctx);
2450 	else
2451 		event_sched_out(event, ctx);
2452 
2453 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2454 	perf_cgroup_event_disable(event, ctx);
2455 
2456 	perf_pmu_enable(event->pmu_ctx->pmu);
2457 }
2458 
2459 /*
2460  * Disable an event.
2461  *
2462  * If event->ctx is a cloned context, callers must make sure that
2463  * every task struct that event->ctx->task could possibly point to
2464  * remains valid.  This condition is satisfied when called through
2465  * perf_event_for_each_child or perf_event_for_each because they
2466  * hold the top-level event's child_mutex, so any descendant that
2467  * goes to exit will block in perf_event_exit_event().
2468  *
2469  * When called from perf_pending_irq it's OK because event->ctx
2470  * is the current context on this CPU and preemption is disabled,
2471  * hence we can't get into perf_event_task_sched_out for this context.
2472  */
2473 static void _perf_event_disable(struct perf_event *event)
2474 {
2475 	struct perf_event_context *ctx = event->ctx;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	if (event->state <= PERF_EVENT_STATE_OFF) {
2479 		raw_spin_unlock_irq(&ctx->lock);
2480 		return;
2481 	}
2482 	raw_spin_unlock_irq(&ctx->lock);
2483 
2484 	event_function_call(event, __perf_event_disable, NULL);
2485 }
2486 
2487 void perf_event_disable_local(struct perf_event *event)
2488 {
2489 	event_function_local(event, __perf_event_disable, NULL);
2490 }
2491 
2492 /*
2493  * Strictly speaking kernel users cannot create groups and therefore this
2494  * interface does not need the perf_event_ctx_lock() magic.
2495  */
2496 void perf_event_disable(struct perf_event *event)
2497 {
2498 	struct perf_event_context *ctx;
2499 
2500 	ctx = perf_event_ctx_lock(event);
2501 	_perf_event_disable(event);
2502 	perf_event_ctx_unlock(event, ctx);
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_disable);
2505 
2506 void perf_event_disable_inatomic(struct perf_event *event)
2507 {
2508 	event->pending_disable = 1;
2509 	irq_work_queue(&event->pending_irq);
2510 }
2511 
2512 #define MAX_INTERRUPTS (~0ULL)
2513 
2514 static void perf_log_throttle(struct perf_event *event, int enable);
2515 static void perf_log_itrace_start(struct perf_event *event);
2516 
2517 static int
2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2519 {
2520 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2521 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2522 	int ret = 0;
2523 
2524 	WARN_ON_ONCE(event->ctx != ctx);
2525 
2526 	lockdep_assert_held(&ctx->lock);
2527 
2528 	if (event->state <= PERF_EVENT_STATE_OFF)
2529 		return 0;
2530 
2531 	WRITE_ONCE(event->oncpu, smp_processor_id());
2532 	/*
2533 	 * Order event::oncpu write to happen before the ACTIVE state is
2534 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2535 	 * ->oncpu if it sees ACTIVE.
2536 	 */
2537 	smp_wmb();
2538 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2539 
2540 	/*
2541 	 * Unthrottle events, since we scheduled we might have missed several
2542 	 * ticks already, also for a heavily scheduling task there is little
2543 	 * guarantee it'll get a tick in a timely manner.
2544 	 */
2545 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546 		perf_log_throttle(event, 1);
2547 		event->hw.interrupts = 0;
2548 	}
2549 
2550 	perf_pmu_disable(event->pmu);
2551 
2552 	perf_log_itrace_start(event);
2553 
2554 	if (event->pmu->add(event, PERF_EF_START)) {
2555 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2556 		event->oncpu = -1;
2557 		ret = -EAGAIN;
2558 		goto out;
2559 	}
2560 
2561 	if (!is_software_event(event))
2562 		cpc->active_oncpu++;
2563 	if (event->attr.freq && event->attr.sample_freq) {
2564 		ctx->nr_freq++;
2565 		epc->nr_freq++;
2566 	}
2567 	if (event->attr.exclusive)
2568 		cpc->exclusive = 1;
2569 
2570 out:
2571 	perf_pmu_enable(event->pmu);
2572 
2573 	return ret;
2574 }
2575 
2576 static int
2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2578 {
2579 	struct perf_event *event, *partial_group = NULL;
2580 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2581 
2582 	if (group_event->state == PERF_EVENT_STATE_OFF)
2583 		return 0;
2584 
2585 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2586 
2587 	if (event_sched_in(group_event, ctx))
2588 		goto error;
2589 
2590 	/*
2591 	 * Schedule in siblings as one group (if any):
2592 	 */
2593 	for_each_sibling_event(event, group_event) {
2594 		if (event_sched_in(event, ctx)) {
2595 			partial_group = event;
2596 			goto group_error;
2597 		}
2598 	}
2599 
2600 	if (!pmu->commit_txn(pmu))
2601 		return 0;
2602 
2603 group_error:
2604 	/*
2605 	 * Groups can be scheduled in as one unit only, so undo any
2606 	 * partial group before returning:
2607 	 * The events up to the failed event are scheduled out normally.
2608 	 */
2609 	for_each_sibling_event(event, group_event) {
2610 		if (event == partial_group)
2611 			break;
2612 
2613 		event_sched_out(event, ctx);
2614 	}
2615 	event_sched_out(group_event, ctx);
2616 
2617 error:
2618 	pmu->cancel_txn(pmu);
2619 	return -EAGAIN;
2620 }
2621 
2622 /*
2623  * Work out whether we can put this event group on the CPU now.
2624  */
2625 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2626 {
2627 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2628 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629 
2630 	/*
2631 	 * Groups consisting entirely of software events can always go on.
2632 	 */
2633 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2634 		return 1;
2635 	/*
2636 	 * If an exclusive group is already on, no other hardware
2637 	 * events can go on.
2638 	 */
2639 	if (cpc->exclusive)
2640 		return 0;
2641 	/*
2642 	 * If this group is exclusive and there are already
2643 	 * events on the CPU, it can't go on.
2644 	 */
2645 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2646 		return 0;
2647 	/*
2648 	 * Otherwise, try to add it if all previous groups were able
2649 	 * to go on.
2650 	 */
2651 	return can_add_hw;
2652 }
2653 
2654 static void add_event_to_ctx(struct perf_event *event,
2655 			       struct perf_event_context *ctx)
2656 {
2657 	list_add_event(event, ctx);
2658 	perf_group_attach(event);
2659 }
2660 
2661 static void task_ctx_sched_out(struct perf_event_context *ctx,
2662 				enum event_type_t event_type)
2663 {
2664 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665 
2666 	if (!cpuctx->task_ctx)
2667 		return;
2668 
2669 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670 		return;
2671 
2672 	ctx_sched_out(ctx, event_type);
2673 }
2674 
2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2676 				struct perf_event_context *ctx)
2677 {
2678 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2679 	if (ctx)
2680 		 ctx_sched_in(ctx, EVENT_PINNED);
2681 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2682 	if (ctx)
2683 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2684 }
2685 
2686 /*
2687  * We want to maintain the following priority of scheduling:
2688  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689  *  - task pinned (EVENT_PINNED)
2690  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691  *  - task flexible (EVENT_FLEXIBLE).
2692  *
2693  * In order to avoid unscheduling and scheduling back in everything every
2694  * time an event is added, only do it for the groups of equal priority and
2695  * below.
2696  *
2697  * This can be called after a batch operation on task events, in which case
2698  * event_type is a bit mask of the types of events involved. For CPU events,
2699  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700  */
2701 /*
2702  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703  * event to the context or enabling existing event in the context. We can
2704  * probably optimize it by rescheduling only affected pmu_ctx.
2705  */
2706 static void ctx_resched(struct perf_cpu_context *cpuctx,
2707 			struct perf_event_context *task_ctx,
2708 			enum event_type_t event_type)
2709 {
2710 	bool cpu_event = !!(event_type & EVENT_CPU);
2711 
2712 	/*
2713 	 * If pinned groups are involved, flexible groups also need to be
2714 	 * scheduled out.
2715 	 */
2716 	if (event_type & EVENT_PINNED)
2717 		event_type |= EVENT_FLEXIBLE;
2718 
2719 	event_type &= EVENT_ALL;
2720 
2721 	perf_ctx_disable(&cpuctx->ctx, false);
2722 	if (task_ctx) {
2723 		perf_ctx_disable(task_ctx, false);
2724 		task_ctx_sched_out(task_ctx, event_type);
2725 	}
2726 
2727 	/*
2728 	 * Decide which cpu ctx groups to schedule out based on the types
2729 	 * of events that caused rescheduling:
2730 	 *  - EVENT_CPU: schedule out corresponding groups;
2731 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732 	 *  - otherwise, do nothing more.
2733 	 */
2734 	if (cpu_event)
2735 		ctx_sched_out(&cpuctx->ctx, event_type);
2736 	else if (event_type & EVENT_PINNED)
2737 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2738 
2739 	perf_event_sched_in(cpuctx, task_ctx);
2740 
2741 	perf_ctx_enable(&cpuctx->ctx, false);
2742 	if (task_ctx)
2743 		perf_ctx_enable(task_ctx, false);
2744 }
2745 
2746 void perf_pmu_resched(struct pmu *pmu)
2747 {
2748 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2749 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750 
2751 	perf_ctx_lock(cpuctx, task_ctx);
2752 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753 	perf_ctx_unlock(cpuctx, task_ctx);
2754 }
2755 
2756 /*
2757  * Cross CPU call to install and enable a performance event
2758  *
2759  * Very similar to remote_function() + event_function() but cannot assume that
2760  * things like ctx->is_active and cpuctx->task_ctx are set.
2761  */
2762 static int  __perf_install_in_context(void *info)
2763 {
2764 	struct perf_event *event = info;
2765 	struct perf_event_context *ctx = event->ctx;
2766 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2767 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2768 	bool reprogram = true;
2769 	int ret = 0;
2770 
2771 	raw_spin_lock(&cpuctx->ctx.lock);
2772 	if (ctx->task) {
2773 		raw_spin_lock(&ctx->lock);
2774 		task_ctx = ctx;
2775 
2776 		reprogram = (ctx->task == current);
2777 
2778 		/*
2779 		 * If the task is running, it must be running on this CPU,
2780 		 * otherwise we cannot reprogram things.
2781 		 *
2782 		 * If its not running, we don't care, ctx->lock will
2783 		 * serialize against it becoming runnable.
2784 		 */
2785 		if (task_curr(ctx->task) && !reprogram) {
2786 			ret = -ESRCH;
2787 			goto unlock;
2788 		}
2789 
2790 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2791 	} else if (task_ctx) {
2792 		raw_spin_lock(&task_ctx->lock);
2793 	}
2794 
2795 #ifdef CONFIG_CGROUP_PERF
2796 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2797 		/*
2798 		 * If the current cgroup doesn't match the event's
2799 		 * cgroup, we should not try to schedule it.
2800 		 */
2801 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803 					event->cgrp->css.cgroup);
2804 	}
2805 #endif
2806 
2807 	if (reprogram) {
2808 		ctx_sched_out(ctx, EVENT_TIME);
2809 		add_event_to_ctx(event, ctx);
2810 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2811 	} else {
2812 		add_event_to_ctx(event, ctx);
2813 	}
2814 
2815 unlock:
2816 	perf_ctx_unlock(cpuctx, task_ctx);
2817 
2818 	return ret;
2819 }
2820 
2821 static bool exclusive_event_installable(struct perf_event *event,
2822 					struct perf_event_context *ctx);
2823 
2824 /*
2825  * Attach a performance event to a context.
2826  *
2827  * Very similar to event_function_call, see comment there.
2828  */
2829 static void
2830 perf_install_in_context(struct perf_event_context *ctx,
2831 			struct perf_event *event,
2832 			int cpu)
2833 {
2834 	struct task_struct *task = READ_ONCE(ctx->task);
2835 
2836 	lockdep_assert_held(&ctx->mutex);
2837 
2838 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839 
2840 	if (event->cpu != -1)
2841 		WARN_ON_ONCE(event->cpu != cpu);
2842 
2843 	/*
2844 	 * Ensures that if we can observe event->ctx, both the event and ctx
2845 	 * will be 'complete'. See perf_iterate_sb_cpu().
2846 	 */
2847 	smp_store_release(&event->ctx, ctx);
2848 
2849 	/*
2850 	 * perf_event_attr::disabled events will not run and can be initialized
2851 	 * without IPI. Except when this is the first event for the context, in
2852 	 * that case we need the magic of the IPI to set ctx->is_active.
2853 	 *
2854 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2855 	 * event will issue the IPI and reprogram the hardware.
2856 	 */
2857 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858 	    ctx->nr_events && !is_cgroup_event(event)) {
2859 		raw_spin_lock_irq(&ctx->lock);
2860 		if (ctx->task == TASK_TOMBSTONE) {
2861 			raw_spin_unlock_irq(&ctx->lock);
2862 			return;
2863 		}
2864 		add_event_to_ctx(event, ctx);
2865 		raw_spin_unlock_irq(&ctx->lock);
2866 		return;
2867 	}
2868 
2869 	if (!task) {
2870 		cpu_function_call(cpu, __perf_install_in_context, event);
2871 		return;
2872 	}
2873 
2874 	/*
2875 	 * Should not happen, we validate the ctx is still alive before calling.
2876 	 */
2877 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878 		return;
2879 
2880 	/*
2881 	 * Installing events is tricky because we cannot rely on ctx->is_active
2882 	 * to be set in case this is the nr_events 0 -> 1 transition.
2883 	 *
2884 	 * Instead we use task_curr(), which tells us if the task is running.
2885 	 * However, since we use task_curr() outside of rq::lock, we can race
2886 	 * against the actual state. This means the result can be wrong.
2887 	 *
2888 	 * If we get a false positive, we retry, this is harmless.
2889 	 *
2890 	 * If we get a false negative, things are complicated. If we are after
2891 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892 	 * value must be correct. If we're before, it doesn't matter since
2893 	 * perf_event_context_sched_in() will program the counter.
2894 	 *
2895 	 * However, this hinges on the remote context switch having observed
2896 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2897 	 * ctx::lock in perf_event_context_sched_in().
2898 	 *
2899 	 * We do this by task_function_call(), if the IPI fails to hit the task
2900 	 * we know any future context switch of task must see the
2901 	 * perf_event_ctpx[] store.
2902 	 */
2903 
2904 	/*
2905 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906 	 * task_cpu() load, such that if the IPI then does not find the task
2907 	 * running, a future context switch of that task must observe the
2908 	 * store.
2909 	 */
2910 	smp_mb();
2911 again:
2912 	if (!task_function_call(task, __perf_install_in_context, event))
2913 		return;
2914 
2915 	raw_spin_lock_irq(&ctx->lock);
2916 	task = ctx->task;
2917 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2918 		/*
2919 		 * Cannot happen because we already checked above (which also
2920 		 * cannot happen), and we hold ctx->mutex, which serializes us
2921 		 * against perf_event_exit_task_context().
2922 		 */
2923 		raw_spin_unlock_irq(&ctx->lock);
2924 		return;
2925 	}
2926 	/*
2927 	 * If the task is not running, ctx->lock will avoid it becoming so,
2928 	 * thus we can safely install the event.
2929 	 */
2930 	if (task_curr(task)) {
2931 		raw_spin_unlock_irq(&ctx->lock);
2932 		goto again;
2933 	}
2934 	add_event_to_ctx(event, ctx);
2935 	raw_spin_unlock_irq(&ctx->lock);
2936 }
2937 
2938 /*
2939  * Cross CPU call to enable a performance event
2940  */
2941 static void __perf_event_enable(struct perf_event *event,
2942 				struct perf_cpu_context *cpuctx,
2943 				struct perf_event_context *ctx,
2944 				void *info)
2945 {
2946 	struct perf_event *leader = event->group_leader;
2947 	struct perf_event_context *task_ctx;
2948 
2949 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950 	    event->state <= PERF_EVENT_STATE_ERROR)
2951 		return;
2952 
2953 	if (ctx->is_active)
2954 		ctx_sched_out(ctx, EVENT_TIME);
2955 
2956 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2957 	perf_cgroup_event_enable(event, ctx);
2958 
2959 	if (!ctx->is_active)
2960 		return;
2961 
2962 	if (!event_filter_match(event)) {
2963 		ctx_sched_in(ctx, EVENT_TIME);
2964 		return;
2965 	}
2966 
2967 	/*
2968 	 * If the event is in a group and isn't the group leader,
2969 	 * then don't put it on unless the group is on.
2970 	 */
2971 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2972 		ctx_sched_in(ctx, EVENT_TIME);
2973 		return;
2974 	}
2975 
2976 	task_ctx = cpuctx->task_ctx;
2977 	if (ctx->task)
2978 		WARN_ON_ONCE(task_ctx != ctx);
2979 
2980 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2981 }
2982 
2983 /*
2984  * Enable an event.
2985  *
2986  * If event->ctx is a cloned context, callers must make sure that
2987  * every task struct that event->ctx->task could possibly point to
2988  * remains valid.  This condition is satisfied when called through
2989  * perf_event_for_each_child or perf_event_for_each as described
2990  * for perf_event_disable.
2991  */
2992 static void _perf_event_enable(struct perf_event *event)
2993 {
2994 	struct perf_event_context *ctx = event->ctx;
2995 
2996 	raw_spin_lock_irq(&ctx->lock);
2997 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998 	    event->state <  PERF_EVENT_STATE_ERROR) {
2999 out:
3000 		raw_spin_unlock_irq(&ctx->lock);
3001 		return;
3002 	}
3003 
3004 	/*
3005 	 * If the event is in error state, clear that first.
3006 	 *
3007 	 * That way, if we see the event in error state below, we know that it
3008 	 * has gone back into error state, as distinct from the task having
3009 	 * been scheduled away before the cross-call arrived.
3010 	 */
3011 	if (event->state == PERF_EVENT_STATE_ERROR) {
3012 		/*
3013 		 * Detached SIBLING events cannot leave ERROR state.
3014 		 */
3015 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016 		    event->group_leader == event)
3017 			goto out;
3018 
3019 		event->state = PERF_EVENT_STATE_OFF;
3020 	}
3021 	raw_spin_unlock_irq(&ctx->lock);
3022 
3023 	event_function_call(event, __perf_event_enable, NULL);
3024 }
3025 
3026 /*
3027  * See perf_event_disable();
3028  */
3029 void perf_event_enable(struct perf_event *event)
3030 {
3031 	struct perf_event_context *ctx;
3032 
3033 	ctx = perf_event_ctx_lock(event);
3034 	_perf_event_enable(event);
3035 	perf_event_ctx_unlock(event, ctx);
3036 }
3037 EXPORT_SYMBOL_GPL(perf_event_enable);
3038 
3039 struct stop_event_data {
3040 	struct perf_event	*event;
3041 	unsigned int		restart;
3042 };
3043 
3044 static int __perf_event_stop(void *info)
3045 {
3046 	struct stop_event_data *sd = info;
3047 	struct perf_event *event = sd->event;
3048 
3049 	/* if it's already INACTIVE, do nothing */
3050 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 		return 0;
3052 
3053 	/* matches smp_wmb() in event_sched_in() */
3054 	smp_rmb();
3055 
3056 	/*
3057 	 * There is a window with interrupts enabled before we get here,
3058 	 * so we need to check again lest we try to stop another CPU's event.
3059 	 */
3060 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3061 		return -EAGAIN;
3062 
3063 	event->pmu->stop(event, PERF_EF_UPDATE);
3064 
3065 	/*
3066 	 * May race with the actual stop (through perf_pmu_output_stop()),
3067 	 * but it is only used for events with AUX ring buffer, and such
3068 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3069 	 * see comments in perf_aux_output_begin().
3070 	 *
3071 	 * Since this is happening on an event-local CPU, no trace is lost
3072 	 * while restarting.
3073 	 */
3074 	if (sd->restart)
3075 		event->pmu->start(event, 0);
3076 
3077 	return 0;
3078 }
3079 
3080 static int perf_event_stop(struct perf_event *event, int restart)
3081 {
3082 	struct stop_event_data sd = {
3083 		.event		= event,
3084 		.restart	= restart,
3085 	};
3086 	int ret = 0;
3087 
3088 	do {
3089 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090 			return 0;
3091 
3092 		/* matches smp_wmb() in event_sched_in() */
3093 		smp_rmb();
3094 
3095 		/*
3096 		 * We only want to restart ACTIVE events, so if the event goes
3097 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3098 		 * fall through with ret==-ENXIO.
3099 		 */
3100 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3101 					__perf_event_stop, &sd);
3102 	} while (ret == -EAGAIN);
3103 
3104 	return ret;
3105 }
3106 
3107 /*
3108  * In order to contain the amount of racy and tricky in the address filter
3109  * configuration management, it is a two part process:
3110  *
3111  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112  *      we update the addresses of corresponding vmas in
3113  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3114  * (p2) when an event is scheduled in (pmu::add), it calls
3115  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116  *      if the generation has changed since the previous call.
3117  *
3118  * If (p1) happens while the event is active, we restart it to force (p2).
3119  *
3120  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3122  *     ioctl;
3123  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3124  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3125  *     for reading;
3126  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127  *     of exec.
3128  */
3129 void perf_event_addr_filters_sync(struct perf_event *event)
3130 {
3131 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132 
3133 	if (!has_addr_filter(event))
3134 		return;
3135 
3136 	raw_spin_lock(&ifh->lock);
3137 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138 		event->pmu->addr_filters_sync(event);
3139 		event->hw.addr_filters_gen = event->addr_filters_gen;
3140 	}
3141 	raw_spin_unlock(&ifh->lock);
3142 }
3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144 
3145 static int _perf_event_refresh(struct perf_event *event, int refresh)
3146 {
3147 	/*
3148 	 * not supported on inherited events
3149 	 */
3150 	if (event->attr.inherit || !is_sampling_event(event))
3151 		return -EINVAL;
3152 
3153 	atomic_add(refresh, &event->event_limit);
3154 	_perf_event_enable(event);
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * See perf_event_disable()
3161  */
3162 int perf_event_refresh(struct perf_event *event, int refresh)
3163 {
3164 	struct perf_event_context *ctx;
3165 	int ret;
3166 
3167 	ctx = perf_event_ctx_lock(event);
3168 	ret = _perf_event_refresh(event, refresh);
3169 	perf_event_ctx_unlock(event, ctx);
3170 
3171 	return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(perf_event_refresh);
3174 
3175 static int perf_event_modify_breakpoint(struct perf_event *bp,
3176 					 struct perf_event_attr *attr)
3177 {
3178 	int err;
3179 
3180 	_perf_event_disable(bp);
3181 
3182 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3183 
3184 	if (!bp->attr.disabled)
3185 		_perf_event_enable(bp);
3186 
3187 	return err;
3188 }
3189 
3190 /*
3191  * Copy event-type-independent attributes that may be modified.
3192  */
3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194 					const struct perf_event_attr *from)
3195 {
3196 	to->sig_data = from->sig_data;
3197 }
3198 
3199 static int perf_event_modify_attr(struct perf_event *event,
3200 				  struct perf_event_attr *attr)
3201 {
3202 	int (*func)(struct perf_event *, struct perf_event_attr *);
3203 	struct perf_event *child;
3204 	int err;
3205 
3206 	if (event->attr.type != attr->type)
3207 		return -EINVAL;
3208 
3209 	switch (event->attr.type) {
3210 	case PERF_TYPE_BREAKPOINT:
3211 		func = perf_event_modify_breakpoint;
3212 		break;
3213 	default:
3214 		/* Place holder for future additions. */
3215 		return -EOPNOTSUPP;
3216 	}
3217 
3218 	WARN_ON_ONCE(event->ctx->parent_ctx);
3219 
3220 	mutex_lock(&event->child_mutex);
3221 	/*
3222 	 * Event-type-independent attributes must be copied before event-type
3223 	 * modification, which will validate that final attributes match the
3224 	 * source attributes after all relevant attributes have been copied.
3225 	 */
3226 	perf_event_modify_copy_attr(&event->attr, attr);
3227 	err = func(event, attr);
3228 	if (err)
3229 		goto out;
3230 	list_for_each_entry(child, &event->child_list, child_list) {
3231 		perf_event_modify_copy_attr(&child->attr, attr);
3232 		err = func(child, attr);
3233 		if (err)
3234 			goto out;
3235 	}
3236 out:
3237 	mutex_unlock(&event->child_mutex);
3238 	return err;
3239 }
3240 
3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242 				enum event_type_t event_type)
3243 {
3244 	struct perf_event_context *ctx = pmu_ctx->ctx;
3245 	struct perf_event *event, *tmp;
3246 	struct pmu *pmu = pmu_ctx->pmu;
3247 
3248 	if (ctx->task && !ctx->is_active) {
3249 		struct perf_cpu_pmu_context *cpc;
3250 
3251 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253 		cpc->task_epc = NULL;
3254 	}
3255 
3256 	if (!event_type)
3257 		return;
3258 
3259 	perf_pmu_disable(pmu);
3260 	if (event_type & EVENT_PINNED) {
3261 		list_for_each_entry_safe(event, tmp,
3262 					 &pmu_ctx->pinned_active,
3263 					 active_list)
3264 			group_sched_out(event, ctx);
3265 	}
3266 
3267 	if (event_type & EVENT_FLEXIBLE) {
3268 		list_for_each_entry_safe(event, tmp,
3269 					 &pmu_ctx->flexible_active,
3270 					 active_list)
3271 			group_sched_out(event, ctx);
3272 		/*
3273 		 * Since we cleared EVENT_FLEXIBLE, also clear
3274 		 * rotate_necessary, is will be reset by
3275 		 * ctx_flexible_sched_in() when needed.
3276 		 */
3277 		pmu_ctx->rotate_necessary = 0;
3278 	}
3279 	perf_pmu_enable(pmu);
3280 }
3281 
3282 static void
3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284 {
3285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286 	struct perf_event_pmu_context *pmu_ctx;
3287 	int is_active = ctx->is_active;
3288 	bool cgroup = event_type & EVENT_CGROUP;
3289 
3290 	event_type &= ~EVENT_CGROUP;
3291 
3292 	lockdep_assert_held(&ctx->lock);
3293 
3294 	if (likely(!ctx->nr_events)) {
3295 		/*
3296 		 * See __perf_remove_from_context().
3297 		 */
3298 		WARN_ON_ONCE(ctx->is_active);
3299 		if (ctx->task)
3300 			WARN_ON_ONCE(cpuctx->task_ctx);
3301 		return;
3302 	}
3303 
3304 	/*
3305 	 * Always update time if it was set; not only when it changes.
3306 	 * Otherwise we can 'forget' to update time for any but the last
3307 	 * context we sched out. For example:
3308 	 *
3309 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3311 	 *
3312 	 * would only update time for the pinned events.
3313 	 */
3314 	if (is_active & EVENT_TIME) {
3315 		/* update (and stop) ctx time */
3316 		update_context_time(ctx);
3317 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318 		/*
3319 		 * CPU-release for the below ->is_active store,
3320 		 * see __load_acquire() in perf_event_time_now()
3321 		 */
3322 		barrier();
3323 	}
3324 
3325 	ctx->is_active &= ~event_type;
3326 	if (!(ctx->is_active & EVENT_ALL))
3327 		ctx->is_active = 0;
3328 
3329 	if (ctx->task) {
3330 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331 		if (!ctx->is_active)
3332 			cpuctx->task_ctx = NULL;
3333 	}
3334 
3335 	is_active ^= ctx->is_active; /* changed bits */
3336 
3337 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338 		if (cgroup && !pmu_ctx->nr_cgroups)
3339 			continue;
3340 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3341 	}
3342 }
3343 
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353 			 struct perf_event_context *ctx2)
3354 {
3355 	lockdep_assert_held(&ctx1->lock);
3356 	lockdep_assert_held(&ctx2->lock);
3357 
3358 	/* Pinning disables the swap optimization */
3359 	if (ctx1->pin_count || ctx2->pin_count)
3360 		return 0;
3361 
3362 	/* If ctx1 is the parent of ctx2 */
3363 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 		return 1;
3365 
3366 	/* If ctx2 is the parent of ctx1 */
3367 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 		return 1;
3369 
3370 	/*
3371 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 	 * hierarchy, see perf_event_init_context().
3373 	 */
3374 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 			ctx1->parent_gen == ctx2->parent_gen)
3376 		return 1;
3377 
3378 	/* Unmatched */
3379 	return 0;
3380 }
3381 
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383 				     struct perf_event *next_event)
3384 {
3385 	u64 value;
3386 
3387 	if (!event->attr.inherit_stat)
3388 		return;
3389 
3390 	/*
3391 	 * Update the event value, we cannot use perf_event_read()
3392 	 * because we're in the middle of a context switch and have IRQs
3393 	 * disabled, which upsets smp_call_function_single(), however
3394 	 * we know the event must be on the current CPU, therefore we
3395 	 * don't need to use it.
3396 	 */
3397 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3398 		event->pmu->read(event);
3399 
3400 	perf_event_update_time(event);
3401 
3402 	/*
3403 	 * In order to keep per-task stats reliable we need to flip the event
3404 	 * values when we flip the contexts.
3405 	 */
3406 	value = local64_read(&next_event->count);
3407 	value = local64_xchg(&event->count, value);
3408 	local64_set(&next_event->count, value);
3409 
3410 	swap(event->total_time_enabled, next_event->total_time_enabled);
3411 	swap(event->total_time_running, next_event->total_time_running);
3412 
3413 	/*
3414 	 * Since we swizzled the values, update the user visible data too.
3415 	 */
3416 	perf_event_update_userpage(event);
3417 	perf_event_update_userpage(next_event);
3418 }
3419 
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 				   struct perf_event_context *next_ctx)
3422 {
3423 	struct perf_event *event, *next_event;
3424 
3425 	if (!ctx->nr_stat)
3426 		return;
3427 
3428 	update_context_time(ctx);
3429 
3430 	event = list_first_entry(&ctx->event_list,
3431 				   struct perf_event, event_entry);
3432 
3433 	next_event = list_first_entry(&next_ctx->event_list,
3434 					struct perf_event, event_entry);
3435 
3436 	while (&event->event_entry != &ctx->event_list &&
3437 	       &next_event->event_entry != &next_ctx->event_list) {
3438 
3439 		__perf_event_sync_stat(event, next_event);
3440 
3441 		event = list_next_entry(event, event_entry);
3442 		next_event = list_next_entry(next_event, event_entry);
3443 	}
3444 }
3445 
3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3447 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3448 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3449 	     !list_entry_is_head(pos1, head1, member) &&		\
3450 	     !list_entry_is_head(pos2, head2, member);			\
3451 	     pos1 = list_next_entry(pos1, member),			\
3452 	     pos2 = list_next_entry(pos2, member))
3453 
3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455 					  struct perf_event_context *next_ctx)
3456 {
3457 	struct perf_event_pmu_context *prev_epc, *next_epc;
3458 
3459 	if (!prev_ctx->nr_task_data)
3460 		return;
3461 
3462 	double_list_for_each_entry(prev_epc, next_epc,
3463 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464 				   pmu_ctx_entry) {
3465 
3466 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467 			continue;
3468 
3469 		/*
3470 		 * PMU specific parts of task perf context can require
3471 		 * additional synchronization. As an example of such
3472 		 * synchronization see implementation details of Intel
3473 		 * LBR call stack data profiling;
3474 		 */
3475 		if (prev_epc->pmu->swap_task_ctx)
3476 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477 		else
3478 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479 	}
3480 }
3481 
3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483 {
3484 	struct perf_event_pmu_context *pmu_ctx;
3485 	struct perf_cpu_pmu_context *cpc;
3486 
3487 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489 
3490 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492 	}
3493 }
3494 
3495 static void
3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3497 {
3498 	struct perf_event_context *ctx = task->perf_event_ctxp;
3499 	struct perf_event_context *next_ctx;
3500 	struct perf_event_context *parent, *next_parent;
3501 	int do_switch = 1;
3502 
3503 	if (likely(!ctx))
3504 		return;
3505 
3506 	rcu_read_lock();
3507 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3508 	if (!next_ctx)
3509 		goto unlock;
3510 
3511 	parent = rcu_dereference(ctx->parent_ctx);
3512 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3513 
3514 	/* If neither context have a parent context; they cannot be clones. */
3515 	if (!parent && !next_parent)
3516 		goto unlock;
3517 
3518 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3519 		/*
3520 		 * Looks like the two contexts are clones, so we might be
3521 		 * able to optimize the context switch.  We lock both
3522 		 * contexts and check that they are clones under the
3523 		 * lock (including re-checking that neither has been
3524 		 * uncloned in the meantime).  It doesn't matter which
3525 		 * order we take the locks because no other cpu could
3526 		 * be trying to lock both of these tasks.
3527 		 */
3528 		raw_spin_lock(&ctx->lock);
3529 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3530 		if (context_equiv(ctx, next_ctx)) {
3531 
3532 			perf_ctx_disable(ctx, false);
3533 
3534 			/* PMIs are disabled; ctx->nr_pending is stable. */
3535 			if (local_read(&ctx->nr_pending) ||
3536 			    local_read(&next_ctx->nr_pending)) {
3537 				/*
3538 				 * Must not swap out ctx when there's pending
3539 				 * events that rely on the ctx->task relation.
3540 				 */
3541 				raw_spin_unlock(&next_ctx->lock);
3542 				rcu_read_unlock();
3543 				goto inside_switch;
3544 			}
3545 
3546 			WRITE_ONCE(ctx->task, next);
3547 			WRITE_ONCE(next_ctx->task, task);
3548 
3549 			perf_ctx_sched_task_cb(ctx, false);
3550 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3551 
3552 			perf_ctx_enable(ctx, false);
3553 
3554 			/*
3555 			 * RCU_INIT_POINTER here is safe because we've not
3556 			 * modified the ctx and the above modification of
3557 			 * ctx->task and ctx->task_ctx_data are immaterial
3558 			 * since those values are always verified under
3559 			 * ctx->lock which we're now holding.
3560 			 */
3561 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3563 
3564 			do_switch = 0;
3565 
3566 			perf_event_sync_stat(ctx, next_ctx);
3567 		}
3568 		raw_spin_unlock(&next_ctx->lock);
3569 		raw_spin_unlock(&ctx->lock);
3570 	}
3571 unlock:
3572 	rcu_read_unlock();
3573 
3574 	if (do_switch) {
3575 		raw_spin_lock(&ctx->lock);
3576 		perf_ctx_disable(ctx, false);
3577 
3578 inside_switch:
3579 		perf_ctx_sched_task_cb(ctx, false);
3580 		task_ctx_sched_out(ctx, EVENT_ALL);
3581 
3582 		perf_ctx_enable(ctx, false);
3583 		raw_spin_unlock(&ctx->lock);
3584 	}
3585 }
3586 
3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3589 
3590 void perf_sched_cb_dec(struct pmu *pmu)
3591 {
3592 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3593 
3594 	this_cpu_dec(perf_sched_cb_usages);
3595 	barrier();
3596 
3597 	if (!--cpc->sched_cb_usage)
3598 		list_del(&cpc->sched_cb_entry);
3599 }
3600 
3601 
3602 void perf_sched_cb_inc(struct pmu *pmu)
3603 {
3604 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3605 
3606 	if (!cpc->sched_cb_usage++)
3607 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3608 
3609 	barrier();
3610 	this_cpu_inc(perf_sched_cb_usages);
3611 }
3612 
3613 /*
3614  * This function provides the context switch callback to the lower code
3615  * layer. It is invoked ONLY when the context switch callback is enabled.
3616  *
3617  * This callback is relevant even to per-cpu events; for example multi event
3618  * PEBS requires this to provide PID/TID information. This requires we flush
3619  * all queued PEBS records before we context switch to a new task.
3620  */
3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3622 {
3623 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3624 	struct pmu *pmu;
3625 
3626 	pmu = cpc->epc.pmu;
3627 
3628 	/* software PMUs will not have sched_task */
3629 	if (WARN_ON_ONCE(!pmu->sched_task))
3630 		return;
3631 
3632 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633 	perf_pmu_disable(pmu);
3634 
3635 	pmu->sched_task(cpc->task_epc, sched_in);
3636 
3637 	perf_pmu_enable(pmu);
3638 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639 }
3640 
3641 static void perf_pmu_sched_task(struct task_struct *prev,
3642 				struct task_struct *next,
3643 				bool sched_in)
3644 {
3645 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646 	struct perf_cpu_pmu_context *cpc;
3647 
3648 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649 	if (prev == next || cpuctx->task_ctx)
3650 		return;
3651 
3652 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653 		__perf_pmu_sched_task(cpc, sched_in);
3654 }
3655 
3656 static void perf_event_switch(struct task_struct *task,
3657 			      struct task_struct *next_prev, bool sched_in);
3658 
3659 /*
3660  * Called from scheduler to remove the events of the current task,
3661  * with interrupts disabled.
3662  *
3663  * We stop each event and update the event value in event->count.
3664  *
3665  * This does not protect us against NMI, but disable()
3666  * sets the disabled bit in the control field of event _before_
3667  * accessing the event control register. If a NMI hits, then it will
3668  * not restart the event.
3669  */
3670 void __perf_event_task_sched_out(struct task_struct *task,
3671 				 struct task_struct *next)
3672 {
3673 	if (__this_cpu_read(perf_sched_cb_usages))
3674 		perf_pmu_sched_task(task, next, false);
3675 
3676 	if (atomic_read(&nr_switch_events))
3677 		perf_event_switch(task, next, false);
3678 
3679 	perf_event_context_sched_out(task, next);
3680 
3681 	/*
3682 	 * if cgroup events exist on this CPU, then we need
3683 	 * to check if we have to switch out PMU state.
3684 	 * cgroup event are system-wide mode only
3685 	 */
3686 	perf_cgroup_switch(next);
3687 }
3688 
3689 static bool perf_less_group_idx(const void *l, const void *r)
3690 {
3691 	const struct perf_event *le = *(const struct perf_event **)l;
3692 	const struct perf_event *re = *(const struct perf_event **)r;
3693 
3694 	return le->group_index < re->group_index;
3695 }
3696 
3697 static void swap_ptr(void *l, void *r)
3698 {
3699 	void **lp = l, **rp = r;
3700 
3701 	swap(*lp, *rp);
3702 }
3703 
3704 static const struct min_heap_callbacks perf_min_heap = {
3705 	.elem_size = sizeof(struct perf_event *),
3706 	.less = perf_less_group_idx,
3707 	.swp = swap_ptr,
3708 };
3709 
3710 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711 {
3712 	struct perf_event **itrs = heap->data;
3713 
3714 	if (event) {
3715 		itrs[heap->nr] = event;
3716 		heap->nr++;
3717 	}
3718 }
3719 
3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721 {
3722 	struct perf_cpu_pmu_context *cpc;
3723 
3724 	if (!pmu_ctx->ctx->task)
3725 		return;
3726 
3727 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729 	cpc->task_epc = pmu_ctx;
3730 }
3731 
3732 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3733 				struct perf_event_groups *groups, int cpu,
3734 				struct pmu *pmu,
3735 				int (*func)(struct perf_event *, void *),
3736 				void *data)
3737 {
3738 #ifdef CONFIG_CGROUP_PERF
3739 	struct cgroup_subsys_state *css = NULL;
3740 #endif
3741 	struct perf_cpu_context *cpuctx = NULL;
3742 	/* Space for per CPU and/or any CPU event iterators. */
3743 	struct perf_event *itrs[2];
3744 	struct min_heap event_heap;
3745 	struct perf_event **evt;
3746 	int ret;
3747 
3748 	if (pmu->filter && pmu->filter(pmu, cpu))
3749 		return 0;
3750 
3751 	if (!ctx->task) {
3752 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3753 		event_heap = (struct min_heap){
3754 			.data = cpuctx->heap,
3755 			.nr = 0,
3756 			.size = cpuctx->heap_size,
3757 		};
3758 
3759 		lockdep_assert_held(&cpuctx->ctx.lock);
3760 
3761 #ifdef CONFIG_CGROUP_PERF
3762 		if (cpuctx->cgrp)
3763 			css = &cpuctx->cgrp->css;
3764 #endif
3765 	} else {
3766 		event_heap = (struct min_heap){
3767 			.data = itrs,
3768 			.nr = 0,
3769 			.size = ARRAY_SIZE(itrs),
3770 		};
3771 		/* Events not within a CPU context may be on any CPU. */
3772 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3773 	}
3774 	evt = event_heap.data;
3775 
3776 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3777 
3778 #ifdef CONFIG_CGROUP_PERF
3779 	for (; css; css = css->parent)
3780 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3781 #endif
3782 
3783 	if (event_heap.nr) {
3784 		__link_epc((*evt)->pmu_ctx);
3785 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786 	}
3787 
3788 	min_heapify_all(&event_heap, &perf_min_heap);
3789 
3790 	while (event_heap.nr) {
3791 		ret = func(*evt, data);
3792 		if (ret)
3793 			return ret;
3794 
3795 		*evt = perf_event_groups_next(*evt, pmu);
3796 		if (*evt)
3797 			min_heapify(&event_heap, 0, &perf_min_heap);
3798 		else
3799 			min_heap_pop(&event_heap, &perf_min_heap);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 /*
3806  * Because the userpage is strictly per-event (there is no concept of context,
3807  * so there cannot be a context indirection), every userpage must be updated
3808  * when context time starts :-(
3809  *
3810  * IOW, we must not miss EVENT_TIME edges.
3811  */
3812 static inline bool event_update_userpage(struct perf_event *event)
3813 {
3814 	if (likely(!atomic_read(&event->mmap_count)))
3815 		return false;
3816 
3817 	perf_event_update_time(event);
3818 	perf_event_update_userpage(event);
3819 
3820 	return true;
3821 }
3822 
3823 static inline void group_update_userpage(struct perf_event *group_event)
3824 {
3825 	struct perf_event *event;
3826 
3827 	if (!event_update_userpage(group_event))
3828 		return;
3829 
3830 	for_each_sibling_event(event, group_event)
3831 		event_update_userpage(event);
3832 }
3833 
3834 static int merge_sched_in(struct perf_event *event, void *data)
3835 {
3836 	struct perf_event_context *ctx = event->ctx;
3837 	int *can_add_hw = data;
3838 
3839 	if (event->state <= PERF_EVENT_STATE_OFF)
3840 		return 0;
3841 
3842 	if (!event_filter_match(event))
3843 		return 0;
3844 
3845 	if (group_can_go_on(event, *can_add_hw)) {
3846 		if (!group_sched_in(event, ctx))
3847 			list_add_tail(&event->active_list, get_event_list(event));
3848 	}
3849 
3850 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3851 		*can_add_hw = 0;
3852 		if (event->attr.pinned) {
3853 			perf_cgroup_event_disable(event, ctx);
3854 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3855 		} else {
3856 			struct perf_cpu_pmu_context *cpc;
3857 
3858 			event->pmu_ctx->rotate_necessary = 1;
3859 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860 			perf_mux_hrtimer_restart(cpc);
3861 			group_update_userpage(event);
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869 				struct perf_event_groups *groups,
3870 				struct pmu *pmu)
3871 {
3872 	int can_add_hw = 1;
3873 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874 			   merge_sched_in, &can_add_hw);
3875 }
3876 
3877 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878 				struct perf_event_groups *groups,
3879 				bool cgroup)
3880 {
3881 	struct perf_event_pmu_context *pmu_ctx;
3882 
3883 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884 		if (cgroup && !pmu_ctx->nr_cgroups)
3885 			continue;
3886 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3887 	}
3888 }
3889 
3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891 			       struct pmu *pmu)
3892 {
3893 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3894 }
3895 
3896 static void
3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3898 {
3899 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3900 	int is_active = ctx->is_active;
3901 	bool cgroup = event_type & EVENT_CGROUP;
3902 
3903 	event_type &= ~EVENT_CGROUP;
3904 
3905 	lockdep_assert_held(&ctx->lock);
3906 
3907 	if (likely(!ctx->nr_events))
3908 		return;
3909 
3910 	if (!(is_active & EVENT_TIME)) {
3911 		/* start ctx time */
3912 		__update_context_time(ctx, false);
3913 		perf_cgroup_set_timestamp(cpuctx);
3914 		/*
3915 		 * CPU-release for the below ->is_active store,
3916 		 * see __load_acquire() in perf_event_time_now()
3917 		 */
3918 		barrier();
3919 	}
3920 
3921 	ctx->is_active |= (event_type | EVENT_TIME);
3922 	if (ctx->task) {
3923 		if (!is_active)
3924 			cpuctx->task_ctx = ctx;
3925 		else
3926 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927 	}
3928 
3929 	is_active ^= ctx->is_active; /* changed bits */
3930 
3931 	/*
3932 	 * First go through the list and put on any pinned groups
3933 	 * in order to give them the best chance of going on.
3934 	 */
3935 	if (is_active & EVENT_PINNED)
3936 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3937 
3938 	/* Then walk through the lower prio flexible groups */
3939 	if (is_active & EVENT_FLEXIBLE)
3940 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3941 }
3942 
3943 static void perf_event_context_sched_in(struct task_struct *task)
3944 {
3945 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946 	struct perf_event_context *ctx;
3947 
3948 	rcu_read_lock();
3949 	ctx = rcu_dereference(task->perf_event_ctxp);
3950 	if (!ctx)
3951 		goto rcu_unlock;
3952 
3953 	if (cpuctx->task_ctx == ctx) {
3954 		perf_ctx_lock(cpuctx, ctx);
3955 		perf_ctx_disable(ctx, false);
3956 
3957 		perf_ctx_sched_task_cb(ctx, true);
3958 
3959 		perf_ctx_enable(ctx, false);
3960 		perf_ctx_unlock(cpuctx, ctx);
3961 		goto rcu_unlock;
3962 	}
3963 
3964 	perf_ctx_lock(cpuctx, ctx);
3965 	/*
3966 	 * We must check ctx->nr_events while holding ctx->lock, such
3967 	 * that we serialize against perf_install_in_context().
3968 	 */
3969 	if (!ctx->nr_events)
3970 		goto unlock;
3971 
3972 	perf_ctx_disable(ctx, false);
3973 	/*
3974 	 * We want to keep the following priority order:
3975 	 * cpu pinned (that don't need to move), task pinned,
3976 	 * cpu flexible, task flexible.
3977 	 *
3978 	 * However, if task's ctx is not carrying any pinned
3979 	 * events, no need to flip the cpuctx's events around.
3980 	 */
3981 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3982 		perf_ctx_disable(&cpuctx->ctx, false);
3983 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984 	}
3985 
3986 	perf_event_sched_in(cpuctx, ctx);
3987 
3988 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3989 
3990 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3991 		perf_ctx_enable(&cpuctx->ctx, false);
3992 
3993 	perf_ctx_enable(ctx, false);
3994 
3995 unlock:
3996 	perf_ctx_unlock(cpuctx, ctx);
3997 rcu_unlock:
3998 	rcu_read_unlock();
3999 }
4000 
4001 /*
4002  * Called from scheduler to add the events of the current task
4003  * with interrupts disabled.
4004  *
4005  * We restore the event value and then enable it.
4006  *
4007  * This does not protect us against NMI, but enable()
4008  * sets the enabled bit in the control field of event _before_
4009  * accessing the event control register. If a NMI hits, then it will
4010  * keep the event running.
4011  */
4012 void __perf_event_task_sched_in(struct task_struct *prev,
4013 				struct task_struct *task)
4014 {
4015 	perf_event_context_sched_in(task);
4016 
4017 	if (atomic_read(&nr_switch_events))
4018 		perf_event_switch(task, prev, true);
4019 
4020 	if (__this_cpu_read(perf_sched_cb_usages))
4021 		perf_pmu_sched_task(prev, task, true);
4022 }
4023 
4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025 {
4026 	u64 frequency = event->attr.sample_freq;
4027 	u64 sec = NSEC_PER_SEC;
4028 	u64 divisor, dividend;
4029 
4030 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4031 
4032 	count_fls = fls64(count);
4033 	nsec_fls = fls64(nsec);
4034 	frequency_fls = fls64(frequency);
4035 	sec_fls = 30;
4036 
4037 	/*
4038 	 * We got @count in @nsec, with a target of sample_freq HZ
4039 	 * the target period becomes:
4040 	 *
4041 	 *             @count * 10^9
4042 	 * period = -------------------
4043 	 *          @nsec * sample_freq
4044 	 *
4045 	 */
4046 
4047 	/*
4048 	 * Reduce accuracy by one bit such that @a and @b converge
4049 	 * to a similar magnitude.
4050 	 */
4051 #define REDUCE_FLS(a, b)		\
4052 do {					\
4053 	if (a##_fls > b##_fls) {	\
4054 		a >>= 1;		\
4055 		a##_fls--;		\
4056 	} else {			\
4057 		b >>= 1;		\
4058 		b##_fls--;		\
4059 	}				\
4060 } while (0)
4061 
4062 	/*
4063 	 * Reduce accuracy until either term fits in a u64, then proceed with
4064 	 * the other, so that finally we can do a u64/u64 division.
4065 	 */
4066 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067 		REDUCE_FLS(nsec, frequency);
4068 		REDUCE_FLS(sec, count);
4069 	}
4070 
4071 	if (count_fls + sec_fls > 64) {
4072 		divisor = nsec * frequency;
4073 
4074 		while (count_fls + sec_fls > 64) {
4075 			REDUCE_FLS(count, sec);
4076 			divisor >>= 1;
4077 		}
4078 
4079 		dividend = count * sec;
4080 	} else {
4081 		dividend = count * sec;
4082 
4083 		while (nsec_fls + frequency_fls > 64) {
4084 			REDUCE_FLS(nsec, frequency);
4085 			dividend >>= 1;
4086 		}
4087 
4088 		divisor = nsec * frequency;
4089 	}
4090 
4091 	if (!divisor)
4092 		return dividend;
4093 
4094 	return div64_u64(dividend, divisor);
4095 }
4096 
4097 static DEFINE_PER_CPU(int, perf_throttled_count);
4098 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099 
4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4101 {
4102 	struct hw_perf_event *hwc = &event->hw;
4103 	s64 period, sample_period;
4104 	s64 delta;
4105 
4106 	period = perf_calculate_period(event, nsec, count);
4107 
4108 	delta = (s64)(period - hwc->sample_period);
4109 	delta = (delta + 7) / 8; /* low pass filter */
4110 
4111 	sample_period = hwc->sample_period + delta;
4112 
4113 	if (!sample_period)
4114 		sample_period = 1;
4115 
4116 	hwc->sample_period = sample_period;
4117 
4118 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4119 		if (disable)
4120 			event->pmu->stop(event, PERF_EF_UPDATE);
4121 
4122 		local64_set(&hwc->period_left, 0);
4123 
4124 		if (disable)
4125 			event->pmu->start(event, PERF_EF_RELOAD);
4126 	}
4127 }
4128 
4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4130 {
4131 	struct perf_event *event;
4132 	struct hw_perf_event *hwc;
4133 	u64 now, period = TICK_NSEC;
4134 	s64 delta;
4135 
4136 	list_for_each_entry(event, event_list, active_list) {
4137 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4138 			continue;
4139 
4140 		// XXX use visit thingy to avoid the -1,cpu match
4141 		if (!event_filter_match(event))
4142 			continue;
4143 
4144 		hwc = &event->hw;
4145 
4146 		if (hwc->interrupts == MAX_INTERRUPTS) {
4147 			hwc->interrupts = 0;
4148 			perf_log_throttle(event, 1);
4149 			if (!event->attr.freq || !event->attr.sample_freq)
4150 				event->pmu->start(event, 0);
4151 		}
4152 
4153 		if (!event->attr.freq || !event->attr.sample_freq)
4154 			continue;
4155 
4156 		/*
4157 		 * stop the event and update event->count
4158 		 */
4159 		event->pmu->stop(event, PERF_EF_UPDATE);
4160 
4161 		now = local64_read(&event->count);
4162 		delta = now - hwc->freq_count_stamp;
4163 		hwc->freq_count_stamp = now;
4164 
4165 		/*
4166 		 * restart the event
4167 		 * reload only if value has changed
4168 		 * we have stopped the event so tell that
4169 		 * to perf_adjust_period() to avoid stopping it
4170 		 * twice.
4171 		 */
4172 		if (delta > 0)
4173 			perf_adjust_period(event, period, delta, false);
4174 
4175 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4176 	}
4177 }
4178 
4179 /*
4180  * combine freq adjustment with unthrottling to avoid two passes over the
4181  * events. At the same time, make sure, having freq events does not change
4182  * the rate of unthrottling as that would introduce bias.
4183  */
4184 static void
4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186 {
4187 	struct perf_event_pmu_context *pmu_ctx;
4188 
4189 	/*
4190 	 * only need to iterate over all events iff:
4191 	 * - context have events in frequency mode (needs freq adjust)
4192 	 * - there are events to unthrottle on this cpu
4193 	 */
4194 	if (!(ctx->nr_freq || unthrottle))
4195 		return;
4196 
4197 	raw_spin_lock(&ctx->lock);
4198 
4199 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200 		if (!(pmu_ctx->nr_freq || unthrottle))
4201 			continue;
4202 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4203 			continue;
4204 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205 			continue;
4206 
4207 		perf_pmu_disable(pmu_ctx->pmu);
4208 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210 		perf_pmu_enable(pmu_ctx->pmu);
4211 	}
4212 
4213 	raw_spin_unlock(&ctx->lock);
4214 }
4215 
4216 /*
4217  * Move @event to the tail of the @ctx's elegible events.
4218  */
4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4220 {
4221 	/*
4222 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 	 * disabled by the inheritance code.
4224 	 */
4225 	if (ctx->rotate_disable)
4226 		return;
4227 
4228 	perf_event_groups_delete(&ctx->flexible_groups, event);
4229 	perf_event_groups_insert(&ctx->flexible_groups, event);
4230 }
4231 
4232 /* pick an event from the flexible_groups to rotate */
4233 static inline struct perf_event *
4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4235 {
4236 	struct perf_event *event;
4237 	struct rb_node *node;
4238 	struct rb_root *tree;
4239 	struct __group_key key = {
4240 		.pmu = pmu_ctx->pmu,
4241 	};
4242 
4243 	/* pick the first active flexible event */
4244 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4245 					 struct perf_event, active_list);
4246 	if (event)
4247 		goto out;
4248 
4249 	/* if no active flexible event, pick the first event */
4250 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4251 
4252 	if (!pmu_ctx->ctx->task) {
4253 		key.cpu = smp_processor_id();
4254 
4255 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 		if (node)
4257 			event = __node_2_pe(node);
4258 		goto out;
4259 	}
4260 
4261 	key.cpu = -1;
4262 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263 	if (node) {
4264 		event = __node_2_pe(node);
4265 		goto out;
4266 	}
4267 
4268 	key.cpu = smp_processor_id();
4269 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270 	if (node)
4271 		event = __node_2_pe(node);
4272 
4273 out:
4274 	/*
4275 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276 	 * finds there are unschedulable events, it will set it again.
4277 	 */
4278 	pmu_ctx->rotate_necessary = 0;
4279 
4280 	return event;
4281 }
4282 
4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4284 {
4285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4287 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4288 	int cpu_rotate, task_rotate;
4289 	struct pmu *pmu;
4290 
4291 	/*
4292 	 * Since we run this from IRQ context, nobody can install new
4293 	 * events, thus the event count values are stable.
4294 	 */
4295 
4296 	cpu_epc = &cpc->epc;
4297 	pmu = cpu_epc->pmu;
4298 	task_epc = cpc->task_epc;
4299 
4300 	cpu_rotate = cpu_epc->rotate_necessary;
4301 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4302 
4303 	if (!(cpu_rotate || task_rotate))
4304 		return false;
4305 
4306 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4307 	perf_pmu_disable(pmu);
4308 
4309 	if (task_rotate)
4310 		task_event = ctx_event_to_rotate(task_epc);
4311 	if (cpu_rotate)
4312 		cpu_event = ctx_event_to_rotate(cpu_epc);
4313 
4314 	/*
4315 	 * As per the order given at ctx_resched() first 'pop' task flexible
4316 	 * and then, if needed CPU flexible.
4317 	 */
4318 	if (task_event || (task_epc && cpu_event)) {
4319 		update_context_time(task_epc->ctx);
4320 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321 	}
4322 
4323 	if (cpu_event) {
4324 		update_context_time(&cpuctx->ctx);
4325 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4326 		rotate_ctx(&cpuctx->ctx, cpu_event);
4327 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328 	}
4329 
4330 	if (task_event)
4331 		rotate_ctx(task_epc->ctx, task_event);
4332 
4333 	if (task_event || (task_epc && cpu_event))
4334 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4335 
4336 	perf_pmu_enable(pmu);
4337 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4338 
4339 	return true;
4340 }
4341 
4342 void perf_event_task_tick(void)
4343 {
4344 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345 	struct perf_event_context *ctx;
4346 	int throttled;
4347 
4348 	lockdep_assert_irqs_disabled();
4349 
4350 	__this_cpu_inc(perf_throttled_seq);
4351 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4352 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4353 
4354 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355 
4356 	rcu_read_lock();
4357 	ctx = rcu_dereference(current->perf_event_ctxp);
4358 	if (ctx)
4359 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4360 	rcu_read_unlock();
4361 }
4362 
4363 static int event_enable_on_exec(struct perf_event *event,
4364 				struct perf_event_context *ctx)
4365 {
4366 	if (!event->attr.enable_on_exec)
4367 		return 0;
4368 
4369 	event->attr.enable_on_exec = 0;
4370 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371 		return 0;
4372 
4373 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4374 
4375 	return 1;
4376 }
4377 
4378 /*
4379  * Enable all of a task's events that have been marked enable-on-exec.
4380  * This expects task == current.
4381  */
4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4383 {
4384 	struct perf_event_context *clone_ctx = NULL;
4385 	enum event_type_t event_type = 0;
4386 	struct perf_cpu_context *cpuctx;
4387 	struct perf_event *event;
4388 	unsigned long flags;
4389 	int enabled = 0;
4390 
4391 	local_irq_save(flags);
4392 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393 		goto out;
4394 
4395 	if (!ctx->nr_events)
4396 		goto out;
4397 
4398 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4399 	perf_ctx_lock(cpuctx, ctx);
4400 	ctx_sched_out(ctx, EVENT_TIME);
4401 
4402 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4403 		enabled |= event_enable_on_exec(event, ctx);
4404 		event_type |= get_event_type(event);
4405 	}
4406 
4407 	/*
4408 	 * Unclone and reschedule this context if we enabled any event.
4409 	 */
4410 	if (enabled) {
4411 		clone_ctx = unclone_ctx(ctx);
4412 		ctx_resched(cpuctx, ctx, event_type);
4413 	} else {
4414 		ctx_sched_in(ctx, EVENT_TIME);
4415 	}
4416 	perf_ctx_unlock(cpuctx, ctx);
4417 
4418 out:
4419 	local_irq_restore(flags);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 static void perf_remove_from_owner(struct perf_event *event);
4426 static void perf_event_exit_event(struct perf_event *event,
4427 				  struct perf_event_context *ctx);
4428 
4429 /*
4430  * Removes all events from the current task that have been marked
4431  * remove-on-exec, and feeds their values back to parent events.
4432  */
4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4434 {
4435 	struct perf_event_context *clone_ctx = NULL;
4436 	struct perf_event *event, *next;
4437 	unsigned long flags;
4438 	bool modified = false;
4439 
4440 	mutex_lock(&ctx->mutex);
4441 
4442 	if (WARN_ON_ONCE(ctx->task != current))
4443 		goto unlock;
4444 
4445 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446 		if (!event->attr.remove_on_exec)
4447 			continue;
4448 
4449 		if (!is_kernel_event(event))
4450 			perf_remove_from_owner(event);
4451 
4452 		modified = true;
4453 
4454 		perf_event_exit_event(event, ctx);
4455 	}
4456 
4457 	raw_spin_lock_irqsave(&ctx->lock, flags);
4458 	if (modified)
4459 		clone_ctx = unclone_ctx(ctx);
4460 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461 
4462 unlock:
4463 	mutex_unlock(&ctx->mutex);
4464 
4465 	if (clone_ctx)
4466 		put_ctx(clone_ctx);
4467 }
4468 
4469 struct perf_read_data {
4470 	struct perf_event *event;
4471 	bool group;
4472 	int ret;
4473 };
4474 
4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4476 {
4477 	u16 local_pkg, event_pkg;
4478 
4479 	if ((unsigned)event_cpu >= nr_cpu_ids)
4480 		return event_cpu;
4481 
4482 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4483 		int local_cpu = smp_processor_id();
4484 
4485 		event_pkg = topology_physical_package_id(event_cpu);
4486 		local_pkg = topology_physical_package_id(local_cpu);
4487 
4488 		if (event_pkg == local_pkg)
4489 			return local_cpu;
4490 	}
4491 
4492 	return event_cpu;
4493 }
4494 
4495 /*
4496  * Cross CPU call to read the hardware event
4497  */
4498 static void __perf_event_read(void *info)
4499 {
4500 	struct perf_read_data *data = info;
4501 	struct perf_event *sub, *event = data->event;
4502 	struct perf_event_context *ctx = event->ctx;
4503 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4504 	struct pmu *pmu = event->pmu;
4505 
4506 	/*
4507 	 * If this is a task context, we need to check whether it is
4508 	 * the current task context of this cpu.  If not it has been
4509 	 * scheduled out before the smp call arrived.  In that case
4510 	 * event->count would have been updated to a recent sample
4511 	 * when the event was scheduled out.
4512 	 */
4513 	if (ctx->task && cpuctx->task_ctx != ctx)
4514 		return;
4515 
4516 	raw_spin_lock(&ctx->lock);
4517 	if (ctx->is_active & EVENT_TIME) {
4518 		update_context_time(ctx);
4519 		update_cgrp_time_from_event(event);
4520 	}
4521 
4522 	perf_event_update_time(event);
4523 	if (data->group)
4524 		perf_event_update_sibling_time(event);
4525 
4526 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4527 		goto unlock;
4528 
4529 	if (!data->group) {
4530 		pmu->read(event);
4531 		data->ret = 0;
4532 		goto unlock;
4533 	}
4534 
4535 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536 
4537 	pmu->read(event);
4538 
4539 	for_each_sibling_event(sub, event) {
4540 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541 			/*
4542 			 * Use sibling's PMU rather than @event's since
4543 			 * sibling could be on different (eg: software) PMU.
4544 			 */
4545 			sub->pmu->read(sub);
4546 		}
4547 	}
4548 
4549 	data->ret = pmu->commit_txn(pmu);
4550 
4551 unlock:
4552 	raw_spin_unlock(&ctx->lock);
4553 }
4554 
4555 static inline u64 perf_event_count(struct perf_event *event)
4556 {
4557 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4558 }
4559 
4560 static void calc_timer_values(struct perf_event *event,
4561 				u64 *now,
4562 				u64 *enabled,
4563 				u64 *running)
4564 {
4565 	u64 ctx_time;
4566 
4567 	*now = perf_clock();
4568 	ctx_time = perf_event_time_now(event, *now);
4569 	__perf_update_times(event, ctx_time, enabled, running);
4570 }
4571 
4572 /*
4573  * NMI-safe method to read a local event, that is an event that
4574  * is:
4575  *   - either for the current task, or for this CPU
4576  *   - does not have inherit set, for inherited task events
4577  *     will not be local and we cannot read them atomically
4578  *   - must not have a pmu::count method
4579  */
4580 int perf_event_read_local(struct perf_event *event, u64 *value,
4581 			  u64 *enabled, u64 *running)
4582 {
4583 	unsigned long flags;
4584 	int event_oncpu;
4585 	int event_cpu;
4586 	int ret = 0;
4587 
4588 	/*
4589 	 * Disabling interrupts avoids all counter scheduling (context
4590 	 * switches, timer based rotation and IPIs).
4591 	 */
4592 	local_irq_save(flags);
4593 
4594 	/*
4595 	 * It must not be an event with inherit set, we cannot read
4596 	 * all child counters from atomic context.
4597 	 */
4598 	if (event->attr.inherit) {
4599 		ret = -EOPNOTSUPP;
4600 		goto out;
4601 	}
4602 
4603 	/* If this is a per-task event, it must be for current */
4604 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4605 	    event->hw.target != current) {
4606 		ret = -EINVAL;
4607 		goto out;
4608 	}
4609 
4610 	/*
4611 	 * Get the event CPU numbers, and adjust them to local if the event is
4612 	 * a per-package event that can be read locally
4613 	 */
4614 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4616 
4617 	/* If this is a per-CPU event, it must be for this CPU */
4618 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4619 	    event_cpu != smp_processor_id()) {
4620 		ret = -EINVAL;
4621 		goto out;
4622 	}
4623 
4624 	/* If this is a pinned event it must be running on this CPU */
4625 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4626 		ret = -EBUSY;
4627 		goto out;
4628 	}
4629 
4630 	/*
4631 	 * If the event is currently on this CPU, its either a per-task event,
4632 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633 	 * oncpu == -1).
4634 	 */
4635 	if (event_oncpu == smp_processor_id())
4636 		event->pmu->read(event);
4637 
4638 	*value = local64_read(&event->count);
4639 	if (enabled || running) {
4640 		u64 __enabled, __running, __now;
4641 
4642 		calc_timer_values(event, &__now, &__enabled, &__running);
4643 		if (enabled)
4644 			*enabled = __enabled;
4645 		if (running)
4646 			*running = __running;
4647 	}
4648 out:
4649 	local_irq_restore(flags);
4650 
4651 	return ret;
4652 }
4653 
4654 static int perf_event_read(struct perf_event *event, bool group)
4655 {
4656 	enum perf_event_state state = READ_ONCE(event->state);
4657 	int event_cpu, ret = 0;
4658 
4659 	/*
4660 	 * If event is enabled and currently active on a CPU, update the
4661 	 * value in the event structure:
4662 	 */
4663 again:
4664 	if (state == PERF_EVENT_STATE_ACTIVE) {
4665 		struct perf_read_data data;
4666 
4667 		/*
4668 		 * Orders the ->state and ->oncpu loads such that if we see
4669 		 * ACTIVE we must also see the right ->oncpu.
4670 		 *
4671 		 * Matches the smp_wmb() from event_sched_in().
4672 		 */
4673 		smp_rmb();
4674 
4675 		event_cpu = READ_ONCE(event->oncpu);
4676 		if ((unsigned)event_cpu >= nr_cpu_ids)
4677 			return 0;
4678 
4679 		data = (struct perf_read_data){
4680 			.event = event,
4681 			.group = group,
4682 			.ret = 0,
4683 		};
4684 
4685 		preempt_disable();
4686 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4687 
4688 		/*
4689 		 * Purposely ignore the smp_call_function_single() return
4690 		 * value.
4691 		 *
4692 		 * If event_cpu isn't a valid CPU it means the event got
4693 		 * scheduled out and that will have updated the event count.
4694 		 *
4695 		 * Therefore, either way, we'll have an up-to-date event count
4696 		 * after this.
4697 		 */
4698 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699 		preempt_enable();
4700 		ret = data.ret;
4701 
4702 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4703 		struct perf_event_context *ctx = event->ctx;
4704 		unsigned long flags;
4705 
4706 		raw_spin_lock_irqsave(&ctx->lock, flags);
4707 		state = event->state;
4708 		if (state != PERF_EVENT_STATE_INACTIVE) {
4709 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 			goto again;
4711 		}
4712 
4713 		/*
4714 		 * May read while context is not active (e.g., thread is
4715 		 * blocked), in that case we cannot update context time
4716 		 */
4717 		if (ctx->is_active & EVENT_TIME) {
4718 			update_context_time(ctx);
4719 			update_cgrp_time_from_event(event);
4720 		}
4721 
4722 		perf_event_update_time(event);
4723 		if (group)
4724 			perf_event_update_sibling_time(event);
4725 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4726 	}
4727 
4728 	return ret;
4729 }
4730 
4731 /*
4732  * Initialize the perf_event context in a task_struct:
4733  */
4734 static void __perf_event_init_context(struct perf_event_context *ctx)
4735 {
4736 	raw_spin_lock_init(&ctx->lock);
4737 	mutex_init(&ctx->mutex);
4738 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4739 	perf_event_groups_init(&ctx->pinned_groups);
4740 	perf_event_groups_init(&ctx->flexible_groups);
4741 	INIT_LIST_HEAD(&ctx->event_list);
4742 	refcount_set(&ctx->refcount, 1);
4743 }
4744 
4745 static void
4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747 {
4748 	epc->pmu = pmu;
4749 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750 	INIT_LIST_HEAD(&epc->pinned_active);
4751 	INIT_LIST_HEAD(&epc->flexible_active);
4752 	atomic_set(&epc->refcount, 1);
4753 }
4754 
4755 static struct perf_event_context *
4756 alloc_perf_context(struct task_struct *task)
4757 {
4758 	struct perf_event_context *ctx;
4759 
4760 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761 	if (!ctx)
4762 		return NULL;
4763 
4764 	__perf_event_init_context(ctx);
4765 	if (task)
4766 		ctx->task = get_task_struct(task);
4767 
4768 	return ctx;
4769 }
4770 
4771 static struct task_struct *
4772 find_lively_task_by_vpid(pid_t vpid)
4773 {
4774 	struct task_struct *task;
4775 
4776 	rcu_read_lock();
4777 	if (!vpid)
4778 		task = current;
4779 	else
4780 		task = find_task_by_vpid(vpid);
4781 	if (task)
4782 		get_task_struct(task);
4783 	rcu_read_unlock();
4784 
4785 	if (!task)
4786 		return ERR_PTR(-ESRCH);
4787 
4788 	return task;
4789 }
4790 
4791 /*
4792  * Returns a matching context with refcount and pincount.
4793  */
4794 static struct perf_event_context *
4795 find_get_context(struct task_struct *task, struct perf_event *event)
4796 {
4797 	struct perf_event_context *ctx, *clone_ctx = NULL;
4798 	struct perf_cpu_context *cpuctx;
4799 	unsigned long flags;
4800 	int err;
4801 
4802 	if (!task) {
4803 		/* Must be root to operate on a CPU event: */
4804 		err = perf_allow_cpu(&event->attr);
4805 		if (err)
4806 			return ERR_PTR(err);
4807 
4808 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4809 		ctx = &cpuctx->ctx;
4810 		get_ctx(ctx);
4811 		raw_spin_lock_irqsave(&ctx->lock, flags);
4812 		++ctx->pin_count;
4813 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4814 
4815 		return ctx;
4816 	}
4817 
4818 	err = -EINVAL;
4819 retry:
4820 	ctx = perf_lock_task_context(task, &flags);
4821 	if (ctx) {
4822 		clone_ctx = unclone_ctx(ctx);
4823 		++ctx->pin_count;
4824 
4825 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4826 
4827 		if (clone_ctx)
4828 			put_ctx(clone_ctx);
4829 	} else {
4830 		ctx = alloc_perf_context(task);
4831 		err = -ENOMEM;
4832 		if (!ctx)
4833 			goto errout;
4834 
4835 		err = 0;
4836 		mutex_lock(&task->perf_event_mutex);
4837 		/*
4838 		 * If it has already passed perf_event_exit_task().
4839 		 * we must see PF_EXITING, it takes this mutex too.
4840 		 */
4841 		if (task->flags & PF_EXITING)
4842 			err = -ESRCH;
4843 		else if (task->perf_event_ctxp)
4844 			err = -EAGAIN;
4845 		else {
4846 			get_ctx(ctx);
4847 			++ctx->pin_count;
4848 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4849 		}
4850 		mutex_unlock(&task->perf_event_mutex);
4851 
4852 		if (unlikely(err)) {
4853 			put_ctx(ctx);
4854 
4855 			if (err == -EAGAIN)
4856 				goto retry;
4857 			goto errout;
4858 		}
4859 	}
4860 
4861 	return ctx;
4862 
4863 errout:
4864 	return ERR_PTR(err);
4865 }
4866 
4867 static struct perf_event_pmu_context *
4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869 		     struct perf_event *event)
4870 {
4871 	struct perf_event_pmu_context *new = NULL, *epc;
4872 	void *task_ctx_data = NULL;
4873 
4874 	if (!ctx->task) {
4875 		/*
4876 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877 		 * relies on the fact that find_get_pmu_context() cannot fail
4878 		 * for CPU contexts.
4879 		 */
4880 		struct perf_cpu_pmu_context *cpc;
4881 
4882 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883 		epc = &cpc->epc;
4884 		raw_spin_lock_irq(&ctx->lock);
4885 		if (!epc->ctx) {
4886 			atomic_set(&epc->refcount, 1);
4887 			epc->embedded = 1;
4888 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889 			epc->ctx = ctx;
4890 		} else {
4891 			WARN_ON_ONCE(epc->ctx != ctx);
4892 			atomic_inc(&epc->refcount);
4893 		}
4894 		raw_spin_unlock_irq(&ctx->lock);
4895 		return epc;
4896 	}
4897 
4898 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899 	if (!new)
4900 		return ERR_PTR(-ENOMEM);
4901 
4902 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903 		task_ctx_data = alloc_task_ctx_data(pmu);
4904 		if (!task_ctx_data) {
4905 			kfree(new);
4906 			return ERR_PTR(-ENOMEM);
4907 		}
4908 	}
4909 
4910 	__perf_init_event_pmu_context(new, pmu);
4911 
4912 	/*
4913 	 * XXX
4914 	 *
4915 	 * lockdep_assert_held(&ctx->mutex);
4916 	 *
4917 	 * can't because perf_event_init_task() doesn't actually hold the
4918 	 * child_ctx->mutex.
4919 	 */
4920 
4921 	raw_spin_lock_irq(&ctx->lock);
4922 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923 		if (epc->pmu == pmu) {
4924 			WARN_ON_ONCE(epc->ctx != ctx);
4925 			atomic_inc(&epc->refcount);
4926 			goto found_epc;
4927 		}
4928 	}
4929 
4930 	epc = new;
4931 	new = NULL;
4932 
4933 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934 	epc->ctx = ctx;
4935 
4936 found_epc:
4937 	if (task_ctx_data && !epc->task_ctx_data) {
4938 		epc->task_ctx_data = task_ctx_data;
4939 		task_ctx_data = NULL;
4940 		ctx->nr_task_data++;
4941 	}
4942 	raw_spin_unlock_irq(&ctx->lock);
4943 
4944 	free_task_ctx_data(pmu, task_ctx_data);
4945 	kfree(new);
4946 
4947 	return epc;
4948 }
4949 
4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951 {
4952 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953 }
4954 
4955 static void free_epc_rcu(struct rcu_head *head)
4956 {
4957 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958 
4959 	kfree(epc->task_ctx_data);
4960 	kfree(epc);
4961 }
4962 
4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964 {
4965 	struct perf_event_context *ctx = epc->ctx;
4966 	unsigned long flags;
4967 
4968 	/*
4969 	 * XXX
4970 	 *
4971 	 * lockdep_assert_held(&ctx->mutex);
4972 	 *
4973 	 * can't because of the call-site in _free_event()/put_event()
4974 	 * which isn't always called under ctx->mutex.
4975 	 */
4976 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4977 		return;
4978 
4979 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4980 
4981 	list_del_init(&epc->pmu_ctx_entry);
4982 	epc->ctx = NULL;
4983 
4984 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986 
4987 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988 
4989 	if (epc->embedded)
4990 		return;
4991 
4992 	call_rcu(&epc->rcu_head, free_epc_rcu);
4993 }
4994 
4995 static void perf_event_free_filter(struct perf_event *event);
4996 
4997 static void free_event_rcu(struct rcu_head *head)
4998 {
4999 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5000 
5001 	if (event->ns)
5002 		put_pid_ns(event->ns);
5003 	perf_event_free_filter(event);
5004 	kmem_cache_free(perf_event_cache, event);
5005 }
5006 
5007 static void ring_buffer_attach(struct perf_event *event,
5008 			       struct perf_buffer *rb);
5009 
5010 static void detach_sb_event(struct perf_event *event)
5011 {
5012 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013 
5014 	raw_spin_lock(&pel->lock);
5015 	list_del_rcu(&event->sb_list);
5016 	raw_spin_unlock(&pel->lock);
5017 }
5018 
5019 static bool is_sb_event(struct perf_event *event)
5020 {
5021 	struct perf_event_attr *attr = &event->attr;
5022 
5023 	if (event->parent)
5024 		return false;
5025 
5026 	if (event->attach_state & PERF_ATTACH_TASK)
5027 		return false;
5028 
5029 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030 	    attr->comm || attr->comm_exec ||
5031 	    attr->task || attr->ksymbol ||
5032 	    attr->context_switch || attr->text_poke ||
5033 	    attr->bpf_event)
5034 		return true;
5035 	return false;
5036 }
5037 
5038 static void unaccount_pmu_sb_event(struct perf_event *event)
5039 {
5040 	if (is_sb_event(event))
5041 		detach_sb_event(event);
5042 }
5043 
5044 #ifdef CONFIG_NO_HZ_FULL
5045 static DEFINE_SPINLOCK(nr_freq_lock);
5046 #endif
5047 
5048 static void unaccount_freq_event_nohz(void)
5049 {
5050 #ifdef CONFIG_NO_HZ_FULL
5051 	spin_lock(&nr_freq_lock);
5052 	if (atomic_dec_and_test(&nr_freq_events))
5053 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054 	spin_unlock(&nr_freq_lock);
5055 #endif
5056 }
5057 
5058 static void unaccount_freq_event(void)
5059 {
5060 	if (tick_nohz_full_enabled())
5061 		unaccount_freq_event_nohz();
5062 	else
5063 		atomic_dec(&nr_freq_events);
5064 }
5065 
5066 static void unaccount_event(struct perf_event *event)
5067 {
5068 	bool dec = false;
5069 
5070 	if (event->parent)
5071 		return;
5072 
5073 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5074 		dec = true;
5075 	if (event->attr.mmap || event->attr.mmap_data)
5076 		atomic_dec(&nr_mmap_events);
5077 	if (event->attr.build_id)
5078 		atomic_dec(&nr_build_id_events);
5079 	if (event->attr.comm)
5080 		atomic_dec(&nr_comm_events);
5081 	if (event->attr.namespaces)
5082 		atomic_dec(&nr_namespaces_events);
5083 	if (event->attr.cgroup)
5084 		atomic_dec(&nr_cgroup_events);
5085 	if (event->attr.task)
5086 		atomic_dec(&nr_task_events);
5087 	if (event->attr.freq)
5088 		unaccount_freq_event();
5089 	if (event->attr.context_switch) {
5090 		dec = true;
5091 		atomic_dec(&nr_switch_events);
5092 	}
5093 	if (is_cgroup_event(event))
5094 		dec = true;
5095 	if (has_branch_stack(event))
5096 		dec = true;
5097 	if (event->attr.ksymbol)
5098 		atomic_dec(&nr_ksymbol_events);
5099 	if (event->attr.bpf_event)
5100 		atomic_dec(&nr_bpf_events);
5101 	if (event->attr.text_poke)
5102 		atomic_dec(&nr_text_poke_events);
5103 
5104 	if (dec) {
5105 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106 			schedule_delayed_work(&perf_sched_work, HZ);
5107 	}
5108 
5109 	unaccount_pmu_sb_event(event);
5110 }
5111 
5112 static void perf_sched_delayed(struct work_struct *work)
5113 {
5114 	mutex_lock(&perf_sched_mutex);
5115 	if (atomic_dec_and_test(&perf_sched_count))
5116 		static_branch_disable(&perf_sched_events);
5117 	mutex_unlock(&perf_sched_mutex);
5118 }
5119 
5120 /*
5121  * The following implement mutual exclusion of events on "exclusive" pmus
5122  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123  * at a time, so we disallow creating events that might conflict, namely:
5124  *
5125  *  1) cpu-wide events in the presence of per-task events,
5126  *  2) per-task events in the presence of cpu-wide events,
5127  *  3) two matching events on the same perf_event_context.
5128  *
5129  * The former two cases are handled in the allocation path (perf_event_alloc(),
5130  * _free_event()), the latter -- before the first perf_install_in_context().
5131  */
5132 static int exclusive_event_init(struct perf_event *event)
5133 {
5134 	struct pmu *pmu = event->pmu;
5135 
5136 	if (!is_exclusive_pmu(pmu))
5137 		return 0;
5138 
5139 	/*
5140 	 * Prevent co-existence of per-task and cpu-wide events on the
5141 	 * same exclusive pmu.
5142 	 *
5143 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5144 	 * events on this "exclusive" pmu, positive means there are
5145 	 * per-task events.
5146 	 *
5147 	 * Since this is called in perf_event_alloc() path, event::ctx
5148 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149 	 * to mean "per-task event", because unlike other attach states it
5150 	 * never gets cleared.
5151 	 */
5152 	if (event->attach_state & PERF_ATTACH_TASK) {
5153 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154 			return -EBUSY;
5155 	} else {
5156 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157 			return -EBUSY;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static void exclusive_event_destroy(struct perf_event *event)
5164 {
5165 	struct pmu *pmu = event->pmu;
5166 
5167 	if (!is_exclusive_pmu(pmu))
5168 		return;
5169 
5170 	/* see comment in exclusive_event_init() */
5171 	if (event->attach_state & PERF_ATTACH_TASK)
5172 		atomic_dec(&pmu->exclusive_cnt);
5173 	else
5174 		atomic_inc(&pmu->exclusive_cnt);
5175 }
5176 
5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178 {
5179 	if ((e1->pmu == e2->pmu) &&
5180 	    (e1->cpu == e2->cpu ||
5181 	     e1->cpu == -1 ||
5182 	     e2->cpu == -1))
5183 		return true;
5184 	return false;
5185 }
5186 
5187 static bool exclusive_event_installable(struct perf_event *event,
5188 					struct perf_event_context *ctx)
5189 {
5190 	struct perf_event *iter_event;
5191 	struct pmu *pmu = event->pmu;
5192 
5193 	lockdep_assert_held(&ctx->mutex);
5194 
5195 	if (!is_exclusive_pmu(pmu))
5196 		return true;
5197 
5198 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199 		if (exclusive_event_match(iter_event, event))
5200 			return false;
5201 	}
5202 
5203 	return true;
5204 }
5205 
5206 static void perf_addr_filters_splice(struct perf_event *event,
5207 				       struct list_head *head);
5208 
5209 static void _free_event(struct perf_event *event)
5210 {
5211 	irq_work_sync(&event->pending_irq);
5212 
5213 	unaccount_event(event);
5214 
5215 	security_perf_event_free(event);
5216 
5217 	if (event->rb) {
5218 		/*
5219 		 * Can happen when we close an event with re-directed output.
5220 		 *
5221 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 		 * over us; possibly making our ring_buffer_put() the last.
5223 		 */
5224 		mutex_lock(&event->mmap_mutex);
5225 		ring_buffer_attach(event, NULL);
5226 		mutex_unlock(&event->mmap_mutex);
5227 	}
5228 
5229 	if (is_cgroup_event(event))
5230 		perf_detach_cgroup(event);
5231 
5232 	if (!event->parent) {
5233 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 			put_callchain_buffers();
5235 	}
5236 
5237 	perf_event_free_bpf_prog(event);
5238 	perf_addr_filters_splice(event, NULL);
5239 	kfree(event->addr_filter_ranges);
5240 
5241 	if (event->destroy)
5242 		event->destroy(event);
5243 
5244 	/*
5245 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 	 * hw.target.
5247 	 */
5248 	if (event->hw.target)
5249 		put_task_struct(event->hw.target);
5250 
5251 	if (event->pmu_ctx)
5252 		put_pmu_ctx(event->pmu_ctx);
5253 
5254 	/*
5255 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 	 * all task references must be cleaned up.
5257 	 */
5258 	if (event->ctx)
5259 		put_ctx(event->ctx);
5260 
5261 	exclusive_event_destroy(event);
5262 	module_put(event->pmu->module);
5263 
5264 	call_rcu(&event->rcu_head, free_event_rcu);
5265 }
5266 
5267 /*
5268  * Used to free events which have a known refcount of 1, such as in error paths
5269  * where the event isn't exposed yet and inherited events.
5270  */
5271 static void free_event(struct perf_event *event)
5272 {
5273 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 				"unexpected event refcount: %ld; ptr=%p\n",
5275 				atomic_long_read(&event->refcount), event)) {
5276 		/* leak to avoid use-after-free */
5277 		return;
5278 	}
5279 
5280 	_free_event(event);
5281 }
5282 
5283 /*
5284  * Remove user event from the owner task.
5285  */
5286 static void perf_remove_from_owner(struct perf_event *event)
5287 {
5288 	struct task_struct *owner;
5289 
5290 	rcu_read_lock();
5291 	/*
5292 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 	 * observe !owner it means the list deletion is complete and we can
5294 	 * indeed free this event, otherwise we need to serialize on
5295 	 * owner->perf_event_mutex.
5296 	 */
5297 	owner = READ_ONCE(event->owner);
5298 	if (owner) {
5299 		/*
5300 		 * Since delayed_put_task_struct() also drops the last
5301 		 * task reference we can safely take a new reference
5302 		 * while holding the rcu_read_lock().
5303 		 */
5304 		get_task_struct(owner);
5305 	}
5306 	rcu_read_unlock();
5307 
5308 	if (owner) {
5309 		/*
5310 		 * If we're here through perf_event_exit_task() we're already
5311 		 * holding ctx->mutex which would be an inversion wrt. the
5312 		 * normal lock order.
5313 		 *
5314 		 * However we can safely take this lock because its the child
5315 		 * ctx->mutex.
5316 		 */
5317 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318 
5319 		/*
5320 		 * We have to re-check the event->owner field, if it is cleared
5321 		 * we raced with perf_event_exit_task(), acquiring the mutex
5322 		 * ensured they're done, and we can proceed with freeing the
5323 		 * event.
5324 		 */
5325 		if (event->owner) {
5326 			list_del_init(&event->owner_entry);
5327 			smp_store_release(&event->owner, NULL);
5328 		}
5329 		mutex_unlock(&owner->perf_event_mutex);
5330 		put_task_struct(owner);
5331 	}
5332 }
5333 
5334 static void put_event(struct perf_event *event)
5335 {
5336 	if (!atomic_long_dec_and_test(&event->refcount))
5337 		return;
5338 
5339 	_free_event(event);
5340 }
5341 
5342 /*
5343  * Kill an event dead; while event:refcount will preserve the event
5344  * object, it will not preserve its functionality. Once the last 'user'
5345  * gives up the object, we'll destroy the thing.
5346  */
5347 int perf_event_release_kernel(struct perf_event *event)
5348 {
5349 	struct perf_event_context *ctx = event->ctx;
5350 	struct perf_event *child, *tmp;
5351 	LIST_HEAD(free_list);
5352 
5353 	/*
5354 	 * If we got here through err_alloc: free_event(event); we will not
5355 	 * have attached to a context yet.
5356 	 */
5357 	if (!ctx) {
5358 		WARN_ON_ONCE(event->attach_state &
5359 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 		goto no_ctx;
5361 	}
5362 
5363 	if (!is_kernel_event(event))
5364 		perf_remove_from_owner(event);
5365 
5366 	ctx = perf_event_ctx_lock(event);
5367 	WARN_ON_ONCE(ctx->parent_ctx);
5368 
5369 	/*
5370 	 * Mark this event as STATE_DEAD, there is no external reference to it
5371 	 * anymore.
5372 	 *
5373 	 * Anybody acquiring event->child_mutex after the below loop _must_
5374 	 * also see this, most importantly inherit_event() which will avoid
5375 	 * placing more children on the list.
5376 	 *
5377 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 	 * child events.
5379 	 */
5380 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5381 
5382 	perf_event_ctx_unlock(event, ctx);
5383 
5384 again:
5385 	mutex_lock(&event->child_mutex);
5386 	list_for_each_entry(child, &event->child_list, child_list) {
5387 
5388 		/*
5389 		 * Cannot change, child events are not migrated, see the
5390 		 * comment with perf_event_ctx_lock_nested().
5391 		 */
5392 		ctx = READ_ONCE(child->ctx);
5393 		/*
5394 		 * Since child_mutex nests inside ctx::mutex, we must jump
5395 		 * through hoops. We start by grabbing a reference on the ctx.
5396 		 *
5397 		 * Since the event cannot get freed while we hold the
5398 		 * child_mutex, the context must also exist and have a !0
5399 		 * reference count.
5400 		 */
5401 		get_ctx(ctx);
5402 
5403 		/*
5404 		 * Now that we have a ctx ref, we can drop child_mutex, and
5405 		 * acquire ctx::mutex without fear of it going away. Then we
5406 		 * can re-acquire child_mutex.
5407 		 */
5408 		mutex_unlock(&event->child_mutex);
5409 		mutex_lock(&ctx->mutex);
5410 		mutex_lock(&event->child_mutex);
5411 
5412 		/*
5413 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5414 		 * state, if child is still the first entry, it didn't get freed
5415 		 * and we can continue doing so.
5416 		 */
5417 		tmp = list_first_entry_or_null(&event->child_list,
5418 					       struct perf_event, child_list);
5419 		if (tmp == child) {
5420 			perf_remove_from_context(child, DETACH_GROUP);
5421 			list_move(&child->child_list, &free_list);
5422 			/*
5423 			 * This matches the refcount bump in inherit_event();
5424 			 * this can't be the last reference.
5425 			 */
5426 			put_event(event);
5427 		}
5428 
5429 		mutex_unlock(&event->child_mutex);
5430 		mutex_unlock(&ctx->mutex);
5431 		put_ctx(ctx);
5432 		goto again;
5433 	}
5434 	mutex_unlock(&event->child_mutex);
5435 
5436 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5437 		void *var = &child->ctx->refcount;
5438 
5439 		list_del(&child->child_list);
5440 		free_event(child);
5441 
5442 		/*
5443 		 * Wake any perf_event_free_task() waiting for this event to be
5444 		 * freed.
5445 		 */
5446 		smp_mb(); /* pairs with wait_var_event() */
5447 		wake_up_var(var);
5448 	}
5449 
5450 no_ctx:
5451 	put_event(event); /* Must be the 'last' reference */
5452 	return 0;
5453 }
5454 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5455 
5456 /*
5457  * Called when the last reference to the file is gone.
5458  */
5459 static int perf_release(struct inode *inode, struct file *file)
5460 {
5461 	perf_event_release_kernel(file->private_data);
5462 	return 0;
5463 }
5464 
5465 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5466 {
5467 	struct perf_event *child;
5468 	u64 total = 0;
5469 
5470 	*enabled = 0;
5471 	*running = 0;
5472 
5473 	mutex_lock(&event->child_mutex);
5474 
5475 	(void)perf_event_read(event, false);
5476 	total += perf_event_count(event);
5477 
5478 	*enabled += event->total_time_enabled +
5479 			atomic64_read(&event->child_total_time_enabled);
5480 	*running += event->total_time_running +
5481 			atomic64_read(&event->child_total_time_running);
5482 
5483 	list_for_each_entry(child, &event->child_list, child_list) {
5484 		(void)perf_event_read(child, false);
5485 		total += perf_event_count(child);
5486 		*enabled += child->total_time_enabled;
5487 		*running += child->total_time_running;
5488 	}
5489 	mutex_unlock(&event->child_mutex);
5490 
5491 	return total;
5492 }
5493 
5494 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5495 {
5496 	struct perf_event_context *ctx;
5497 	u64 count;
5498 
5499 	ctx = perf_event_ctx_lock(event);
5500 	count = __perf_event_read_value(event, enabled, running);
5501 	perf_event_ctx_unlock(event, ctx);
5502 
5503 	return count;
5504 }
5505 EXPORT_SYMBOL_GPL(perf_event_read_value);
5506 
5507 static int __perf_read_group_add(struct perf_event *leader,
5508 					u64 read_format, u64 *values)
5509 {
5510 	struct perf_event_context *ctx = leader->ctx;
5511 	struct perf_event *sub, *parent;
5512 	unsigned long flags;
5513 	int n = 1; /* skip @nr */
5514 	int ret;
5515 
5516 	ret = perf_event_read(leader, true);
5517 	if (ret)
5518 		return ret;
5519 
5520 	raw_spin_lock_irqsave(&ctx->lock, flags);
5521 	/*
5522 	 * Verify the grouping between the parent and child (inherited)
5523 	 * events is still in tact.
5524 	 *
5525 	 * Specifically:
5526 	 *  - leader->ctx->lock pins leader->sibling_list
5527 	 *  - parent->child_mutex pins parent->child_list
5528 	 *  - parent->ctx->mutex pins parent->sibling_list
5529 	 *
5530 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5531 	 * ctx->mutex), group destruction is not atomic between children, also
5532 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5533 	 * group.
5534 	 *
5535 	 * Therefore it is possible to have parent and child groups in a
5536 	 * different configuration and summing over such a beast makes no sense
5537 	 * what so ever.
5538 	 *
5539 	 * Reject this.
5540 	 */
5541 	parent = leader->parent;
5542 	if (parent &&
5543 	    (parent->group_generation != leader->group_generation ||
5544 	     parent->nr_siblings != leader->nr_siblings)) {
5545 		ret = -ECHILD;
5546 		goto unlock;
5547 	}
5548 
5549 	/*
5550 	 * Since we co-schedule groups, {enabled,running} times of siblings
5551 	 * will be identical to those of the leader, so we only publish one
5552 	 * set.
5553 	 */
5554 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5555 		values[n++] += leader->total_time_enabled +
5556 			atomic64_read(&leader->child_total_time_enabled);
5557 	}
5558 
5559 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5560 		values[n++] += leader->total_time_running +
5561 			atomic64_read(&leader->child_total_time_running);
5562 	}
5563 
5564 	/*
5565 	 * Write {count,id} tuples for every sibling.
5566 	 */
5567 	values[n++] += perf_event_count(leader);
5568 	if (read_format & PERF_FORMAT_ID)
5569 		values[n++] = primary_event_id(leader);
5570 	if (read_format & PERF_FORMAT_LOST)
5571 		values[n++] = atomic64_read(&leader->lost_samples);
5572 
5573 	for_each_sibling_event(sub, leader) {
5574 		values[n++] += perf_event_count(sub);
5575 		if (read_format & PERF_FORMAT_ID)
5576 			values[n++] = primary_event_id(sub);
5577 		if (read_format & PERF_FORMAT_LOST)
5578 			values[n++] = atomic64_read(&sub->lost_samples);
5579 	}
5580 
5581 unlock:
5582 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5583 	return ret;
5584 }
5585 
5586 static int perf_read_group(struct perf_event *event,
5587 				   u64 read_format, char __user *buf)
5588 {
5589 	struct perf_event *leader = event->group_leader, *child;
5590 	struct perf_event_context *ctx = leader->ctx;
5591 	int ret;
5592 	u64 *values;
5593 
5594 	lockdep_assert_held(&ctx->mutex);
5595 
5596 	values = kzalloc(event->read_size, GFP_KERNEL);
5597 	if (!values)
5598 		return -ENOMEM;
5599 
5600 	values[0] = 1 + leader->nr_siblings;
5601 
5602 	mutex_lock(&leader->child_mutex);
5603 
5604 	ret = __perf_read_group_add(leader, read_format, values);
5605 	if (ret)
5606 		goto unlock;
5607 
5608 	list_for_each_entry(child, &leader->child_list, child_list) {
5609 		ret = __perf_read_group_add(child, read_format, values);
5610 		if (ret)
5611 			goto unlock;
5612 	}
5613 
5614 	mutex_unlock(&leader->child_mutex);
5615 
5616 	ret = event->read_size;
5617 	if (copy_to_user(buf, values, event->read_size))
5618 		ret = -EFAULT;
5619 	goto out;
5620 
5621 unlock:
5622 	mutex_unlock(&leader->child_mutex);
5623 out:
5624 	kfree(values);
5625 	return ret;
5626 }
5627 
5628 static int perf_read_one(struct perf_event *event,
5629 				 u64 read_format, char __user *buf)
5630 {
5631 	u64 enabled, running;
5632 	u64 values[5];
5633 	int n = 0;
5634 
5635 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5636 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5637 		values[n++] = enabled;
5638 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639 		values[n++] = running;
5640 	if (read_format & PERF_FORMAT_ID)
5641 		values[n++] = primary_event_id(event);
5642 	if (read_format & PERF_FORMAT_LOST)
5643 		values[n++] = atomic64_read(&event->lost_samples);
5644 
5645 	if (copy_to_user(buf, values, n * sizeof(u64)))
5646 		return -EFAULT;
5647 
5648 	return n * sizeof(u64);
5649 }
5650 
5651 static bool is_event_hup(struct perf_event *event)
5652 {
5653 	bool no_children;
5654 
5655 	if (event->state > PERF_EVENT_STATE_EXIT)
5656 		return false;
5657 
5658 	mutex_lock(&event->child_mutex);
5659 	no_children = list_empty(&event->child_list);
5660 	mutex_unlock(&event->child_mutex);
5661 	return no_children;
5662 }
5663 
5664 /*
5665  * Read the performance event - simple non blocking version for now
5666  */
5667 static ssize_t
5668 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5669 {
5670 	u64 read_format = event->attr.read_format;
5671 	int ret;
5672 
5673 	/*
5674 	 * Return end-of-file for a read on an event that is in
5675 	 * error state (i.e. because it was pinned but it couldn't be
5676 	 * scheduled on to the CPU at some point).
5677 	 */
5678 	if (event->state == PERF_EVENT_STATE_ERROR)
5679 		return 0;
5680 
5681 	if (count < event->read_size)
5682 		return -ENOSPC;
5683 
5684 	WARN_ON_ONCE(event->ctx->parent_ctx);
5685 	if (read_format & PERF_FORMAT_GROUP)
5686 		ret = perf_read_group(event, read_format, buf);
5687 	else
5688 		ret = perf_read_one(event, read_format, buf);
5689 
5690 	return ret;
5691 }
5692 
5693 static ssize_t
5694 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5695 {
5696 	struct perf_event *event = file->private_data;
5697 	struct perf_event_context *ctx;
5698 	int ret;
5699 
5700 	ret = security_perf_event_read(event);
5701 	if (ret)
5702 		return ret;
5703 
5704 	ctx = perf_event_ctx_lock(event);
5705 	ret = __perf_read(event, buf, count);
5706 	perf_event_ctx_unlock(event, ctx);
5707 
5708 	return ret;
5709 }
5710 
5711 static __poll_t perf_poll(struct file *file, poll_table *wait)
5712 {
5713 	struct perf_event *event = file->private_data;
5714 	struct perf_buffer *rb;
5715 	__poll_t events = EPOLLHUP;
5716 
5717 	poll_wait(file, &event->waitq, wait);
5718 
5719 	if (is_event_hup(event))
5720 		return events;
5721 
5722 	/*
5723 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5724 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5725 	 */
5726 	mutex_lock(&event->mmap_mutex);
5727 	rb = event->rb;
5728 	if (rb)
5729 		events = atomic_xchg(&rb->poll, 0);
5730 	mutex_unlock(&event->mmap_mutex);
5731 	return events;
5732 }
5733 
5734 static void _perf_event_reset(struct perf_event *event)
5735 {
5736 	(void)perf_event_read(event, false);
5737 	local64_set(&event->count, 0);
5738 	perf_event_update_userpage(event);
5739 }
5740 
5741 /* Assume it's not an event with inherit set. */
5742 u64 perf_event_pause(struct perf_event *event, bool reset)
5743 {
5744 	struct perf_event_context *ctx;
5745 	u64 count;
5746 
5747 	ctx = perf_event_ctx_lock(event);
5748 	WARN_ON_ONCE(event->attr.inherit);
5749 	_perf_event_disable(event);
5750 	count = local64_read(&event->count);
5751 	if (reset)
5752 		local64_set(&event->count, 0);
5753 	perf_event_ctx_unlock(event, ctx);
5754 
5755 	return count;
5756 }
5757 EXPORT_SYMBOL_GPL(perf_event_pause);
5758 
5759 /*
5760  * Holding the top-level event's child_mutex means that any
5761  * descendant process that has inherited this event will block
5762  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5763  * task existence requirements of perf_event_enable/disable.
5764  */
5765 static void perf_event_for_each_child(struct perf_event *event,
5766 					void (*func)(struct perf_event *))
5767 {
5768 	struct perf_event *child;
5769 
5770 	WARN_ON_ONCE(event->ctx->parent_ctx);
5771 
5772 	mutex_lock(&event->child_mutex);
5773 	func(event);
5774 	list_for_each_entry(child, &event->child_list, child_list)
5775 		func(child);
5776 	mutex_unlock(&event->child_mutex);
5777 }
5778 
5779 static void perf_event_for_each(struct perf_event *event,
5780 				  void (*func)(struct perf_event *))
5781 {
5782 	struct perf_event_context *ctx = event->ctx;
5783 	struct perf_event *sibling;
5784 
5785 	lockdep_assert_held(&ctx->mutex);
5786 
5787 	event = event->group_leader;
5788 
5789 	perf_event_for_each_child(event, func);
5790 	for_each_sibling_event(sibling, event)
5791 		perf_event_for_each_child(sibling, func);
5792 }
5793 
5794 static void __perf_event_period(struct perf_event *event,
5795 				struct perf_cpu_context *cpuctx,
5796 				struct perf_event_context *ctx,
5797 				void *info)
5798 {
5799 	u64 value = *((u64 *)info);
5800 	bool active;
5801 
5802 	if (event->attr.freq) {
5803 		event->attr.sample_freq = value;
5804 	} else {
5805 		event->attr.sample_period = value;
5806 		event->hw.sample_period = value;
5807 	}
5808 
5809 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5810 	if (active) {
5811 		perf_pmu_disable(event->pmu);
5812 		/*
5813 		 * We could be throttled; unthrottle now to avoid the tick
5814 		 * trying to unthrottle while we already re-started the event.
5815 		 */
5816 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5817 			event->hw.interrupts = 0;
5818 			perf_log_throttle(event, 1);
5819 		}
5820 		event->pmu->stop(event, PERF_EF_UPDATE);
5821 	}
5822 
5823 	local64_set(&event->hw.period_left, 0);
5824 
5825 	if (active) {
5826 		event->pmu->start(event, PERF_EF_RELOAD);
5827 		perf_pmu_enable(event->pmu);
5828 	}
5829 }
5830 
5831 static int perf_event_check_period(struct perf_event *event, u64 value)
5832 {
5833 	return event->pmu->check_period(event, value);
5834 }
5835 
5836 static int _perf_event_period(struct perf_event *event, u64 value)
5837 {
5838 	if (!is_sampling_event(event))
5839 		return -EINVAL;
5840 
5841 	if (!value)
5842 		return -EINVAL;
5843 
5844 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5845 		return -EINVAL;
5846 
5847 	if (perf_event_check_period(event, value))
5848 		return -EINVAL;
5849 
5850 	if (!event->attr.freq && (value & (1ULL << 63)))
5851 		return -EINVAL;
5852 
5853 	event_function_call(event, __perf_event_period, &value);
5854 
5855 	return 0;
5856 }
5857 
5858 int perf_event_period(struct perf_event *event, u64 value)
5859 {
5860 	struct perf_event_context *ctx;
5861 	int ret;
5862 
5863 	ctx = perf_event_ctx_lock(event);
5864 	ret = _perf_event_period(event, value);
5865 	perf_event_ctx_unlock(event, ctx);
5866 
5867 	return ret;
5868 }
5869 EXPORT_SYMBOL_GPL(perf_event_period);
5870 
5871 static const struct file_operations perf_fops;
5872 
5873 static inline int perf_fget_light(int fd, struct fd *p)
5874 {
5875 	struct fd f = fdget(fd);
5876 	if (!f.file)
5877 		return -EBADF;
5878 
5879 	if (f.file->f_op != &perf_fops) {
5880 		fdput(f);
5881 		return -EBADF;
5882 	}
5883 	*p = f;
5884 	return 0;
5885 }
5886 
5887 static int perf_event_set_output(struct perf_event *event,
5888 				 struct perf_event *output_event);
5889 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5890 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5891 			  struct perf_event_attr *attr);
5892 
5893 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5894 {
5895 	void (*func)(struct perf_event *);
5896 	u32 flags = arg;
5897 
5898 	switch (cmd) {
5899 	case PERF_EVENT_IOC_ENABLE:
5900 		func = _perf_event_enable;
5901 		break;
5902 	case PERF_EVENT_IOC_DISABLE:
5903 		func = _perf_event_disable;
5904 		break;
5905 	case PERF_EVENT_IOC_RESET:
5906 		func = _perf_event_reset;
5907 		break;
5908 
5909 	case PERF_EVENT_IOC_REFRESH:
5910 		return _perf_event_refresh(event, arg);
5911 
5912 	case PERF_EVENT_IOC_PERIOD:
5913 	{
5914 		u64 value;
5915 
5916 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5917 			return -EFAULT;
5918 
5919 		return _perf_event_period(event, value);
5920 	}
5921 	case PERF_EVENT_IOC_ID:
5922 	{
5923 		u64 id = primary_event_id(event);
5924 
5925 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5926 			return -EFAULT;
5927 		return 0;
5928 	}
5929 
5930 	case PERF_EVENT_IOC_SET_OUTPUT:
5931 	{
5932 		int ret;
5933 		if (arg != -1) {
5934 			struct perf_event *output_event;
5935 			struct fd output;
5936 			ret = perf_fget_light(arg, &output);
5937 			if (ret)
5938 				return ret;
5939 			output_event = output.file->private_data;
5940 			ret = perf_event_set_output(event, output_event);
5941 			fdput(output);
5942 		} else {
5943 			ret = perf_event_set_output(event, NULL);
5944 		}
5945 		return ret;
5946 	}
5947 
5948 	case PERF_EVENT_IOC_SET_FILTER:
5949 		return perf_event_set_filter(event, (void __user *)arg);
5950 
5951 	case PERF_EVENT_IOC_SET_BPF:
5952 	{
5953 		struct bpf_prog *prog;
5954 		int err;
5955 
5956 		prog = bpf_prog_get(arg);
5957 		if (IS_ERR(prog))
5958 			return PTR_ERR(prog);
5959 
5960 		err = perf_event_set_bpf_prog(event, prog, 0);
5961 		if (err) {
5962 			bpf_prog_put(prog);
5963 			return err;
5964 		}
5965 
5966 		return 0;
5967 	}
5968 
5969 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5970 		struct perf_buffer *rb;
5971 
5972 		rcu_read_lock();
5973 		rb = rcu_dereference(event->rb);
5974 		if (!rb || !rb->nr_pages) {
5975 			rcu_read_unlock();
5976 			return -EINVAL;
5977 		}
5978 		rb_toggle_paused(rb, !!arg);
5979 		rcu_read_unlock();
5980 		return 0;
5981 	}
5982 
5983 	case PERF_EVENT_IOC_QUERY_BPF:
5984 		return perf_event_query_prog_array(event, (void __user *)arg);
5985 
5986 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5987 		struct perf_event_attr new_attr;
5988 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5989 					 &new_attr);
5990 
5991 		if (err)
5992 			return err;
5993 
5994 		return perf_event_modify_attr(event,  &new_attr);
5995 	}
5996 	default:
5997 		return -ENOTTY;
5998 	}
5999 
6000 	if (flags & PERF_IOC_FLAG_GROUP)
6001 		perf_event_for_each(event, func);
6002 	else
6003 		perf_event_for_each_child(event, func);
6004 
6005 	return 0;
6006 }
6007 
6008 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6009 {
6010 	struct perf_event *event = file->private_data;
6011 	struct perf_event_context *ctx;
6012 	long ret;
6013 
6014 	/* Treat ioctl like writes as it is likely a mutating operation. */
6015 	ret = security_perf_event_write(event);
6016 	if (ret)
6017 		return ret;
6018 
6019 	ctx = perf_event_ctx_lock(event);
6020 	ret = _perf_ioctl(event, cmd, arg);
6021 	perf_event_ctx_unlock(event, ctx);
6022 
6023 	return ret;
6024 }
6025 
6026 #ifdef CONFIG_COMPAT
6027 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6028 				unsigned long arg)
6029 {
6030 	switch (_IOC_NR(cmd)) {
6031 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6032 	case _IOC_NR(PERF_EVENT_IOC_ID):
6033 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6034 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6035 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6036 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6037 			cmd &= ~IOCSIZE_MASK;
6038 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6039 		}
6040 		break;
6041 	}
6042 	return perf_ioctl(file, cmd, arg);
6043 }
6044 #else
6045 # define perf_compat_ioctl NULL
6046 #endif
6047 
6048 int perf_event_task_enable(void)
6049 {
6050 	struct perf_event_context *ctx;
6051 	struct perf_event *event;
6052 
6053 	mutex_lock(&current->perf_event_mutex);
6054 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6055 		ctx = perf_event_ctx_lock(event);
6056 		perf_event_for_each_child(event, _perf_event_enable);
6057 		perf_event_ctx_unlock(event, ctx);
6058 	}
6059 	mutex_unlock(&current->perf_event_mutex);
6060 
6061 	return 0;
6062 }
6063 
6064 int perf_event_task_disable(void)
6065 {
6066 	struct perf_event_context *ctx;
6067 	struct perf_event *event;
6068 
6069 	mutex_lock(&current->perf_event_mutex);
6070 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6071 		ctx = perf_event_ctx_lock(event);
6072 		perf_event_for_each_child(event, _perf_event_disable);
6073 		perf_event_ctx_unlock(event, ctx);
6074 	}
6075 	mutex_unlock(&current->perf_event_mutex);
6076 
6077 	return 0;
6078 }
6079 
6080 static int perf_event_index(struct perf_event *event)
6081 {
6082 	if (event->hw.state & PERF_HES_STOPPED)
6083 		return 0;
6084 
6085 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6086 		return 0;
6087 
6088 	return event->pmu->event_idx(event);
6089 }
6090 
6091 static void perf_event_init_userpage(struct perf_event *event)
6092 {
6093 	struct perf_event_mmap_page *userpg;
6094 	struct perf_buffer *rb;
6095 
6096 	rcu_read_lock();
6097 	rb = rcu_dereference(event->rb);
6098 	if (!rb)
6099 		goto unlock;
6100 
6101 	userpg = rb->user_page;
6102 
6103 	/* Allow new userspace to detect that bit 0 is deprecated */
6104 	userpg->cap_bit0_is_deprecated = 1;
6105 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6106 	userpg->data_offset = PAGE_SIZE;
6107 	userpg->data_size = perf_data_size(rb);
6108 
6109 unlock:
6110 	rcu_read_unlock();
6111 }
6112 
6113 void __weak arch_perf_update_userpage(
6114 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6115 {
6116 }
6117 
6118 /*
6119  * Callers need to ensure there can be no nesting of this function, otherwise
6120  * the seqlock logic goes bad. We can not serialize this because the arch
6121  * code calls this from NMI context.
6122  */
6123 void perf_event_update_userpage(struct perf_event *event)
6124 {
6125 	struct perf_event_mmap_page *userpg;
6126 	struct perf_buffer *rb;
6127 	u64 enabled, running, now;
6128 
6129 	rcu_read_lock();
6130 	rb = rcu_dereference(event->rb);
6131 	if (!rb)
6132 		goto unlock;
6133 
6134 	/*
6135 	 * compute total_time_enabled, total_time_running
6136 	 * based on snapshot values taken when the event
6137 	 * was last scheduled in.
6138 	 *
6139 	 * we cannot simply called update_context_time()
6140 	 * because of locking issue as we can be called in
6141 	 * NMI context
6142 	 */
6143 	calc_timer_values(event, &now, &enabled, &running);
6144 
6145 	userpg = rb->user_page;
6146 	/*
6147 	 * Disable preemption to guarantee consistent time stamps are stored to
6148 	 * the user page.
6149 	 */
6150 	preempt_disable();
6151 	++userpg->lock;
6152 	barrier();
6153 	userpg->index = perf_event_index(event);
6154 	userpg->offset = perf_event_count(event);
6155 	if (userpg->index)
6156 		userpg->offset -= local64_read(&event->hw.prev_count);
6157 
6158 	userpg->time_enabled = enabled +
6159 			atomic64_read(&event->child_total_time_enabled);
6160 
6161 	userpg->time_running = running +
6162 			atomic64_read(&event->child_total_time_running);
6163 
6164 	arch_perf_update_userpage(event, userpg, now);
6165 
6166 	barrier();
6167 	++userpg->lock;
6168 	preempt_enable();
6169 unlock:
6170 	rcu_read_unlock();
6171 }
6172 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6173 
6174 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6175 {
6176 	struct perf_event *event = vmf->vma->vm_file->private_data;
6177 	struct perf_buffer *rb;
6178 	vm_fault_t ret = VM_FAULT_SIGBUS;
6179 
6180 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6181 		if (vmf->pgoff == 0)
6182 			ret = 0;
6183 		return ret;
6184 	}
6185 
6186 	rcu_read_lock();
6187 	rb = rcu_dereference(event->rb);
6188 	if (!rb)
6189 		goto unlock;
6190 
6191 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6192 		goto unlock;
6193 
6194 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6195 	if (!vmf->page)
6196 		goto unlock;
6197 
6198 	get_page(vmf->page);
6199 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6200 	vmf->page->index   = vmf->pgoff;
6201 
6202 	ret = 0;
6203 unlock:
6204 	rcu_read_unlock();
6205 
6206 	return ret;
6207 }
6208 
6209 static void ring_buffer_attach(struct perf_event *event,
6210 			       struct perf_buffer *rb)
6211 {
6212 	struct perf_buffer *old_rb = NULL;
6213 	unsigned long flags;
6214 
6215 	WARN_ON_ONCE(event->parent);
6216 
6217 	if (event->rb) {
6218 		/*
6219 		 * Should be impossible, we set this when removing
6220 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6221 		 */
6222 		WARN_ON_ONCE(event->rcu_pending);
6223 
6224 		old_rb = event->rb;
6225 		spin_lock_irqsave(&old_rb->event_lock, flags);
6226 		list_del_rcu(&event->rb_entry);
6227 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6228 
6229 		event->rcu_batches = get_state_synchronize_rcu();
6230 		event->rcu_pending = 1;
6231 	}
6232 
6233 	if (rb) {
6234 		if (event->rcu_pending) {
6235 			cond_synchronize_rcu(event->rcu_batches);
6236 			event->rcu_pending = 0;
6237 		}
6238 
6239 		spin_lock_irqsave(&rb->event_lock, flags);
6240 		list_add_rcu(&event->rb_entry, &rb->event_list);
6241 		spin_unlock_irqrestore(&rb->event_lock, flags);
6242 	}
6243 
6244 	/*
6245 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6246 	 * before swizzling the event::rb pointer; if it's getting
6247 	 * unmapped, its aux_mmap_count will be 0 and it won't
6248 	 * restart. See the comment in __perf_pmu_output_stop().
6249 	 *
6250 	 * Data will inevitably be lost when set_output is done in
6251 	 * mid-air, but then again, whoever does it like this is
6252 	 * not in for the data anyway.
6253 	 */
6254 	if (has_aux(event))
6255 		perf_event_stop(event, 0);
6256 
6257 	rcu_assign_pointer(event->rb, rb);
6258 
6259 	if (old_rb) {
6260 		ring_buffer_put(old_rb);
6261 		/*
6262 		 * Since we detached before setting the new rb, so that we
6263 		 * could attach the new rb, we could have missed a wakeup.
6264 		 * Provide it now.
6265 		 */
6266 		wake_up_all(&event->waitq);
6267 	}
6268 }
6269 
6270 static void ring_buffer_wakeup(struct perf_event *event)
6271 {
6272 	struct perf_buffer *rb;
6273 
6274 	if (event->parent)
6275 		event = event->parent;
6276 
6277 	rcu_read_lock();
6278 	rb = rcu_dereference(event->rb);
6279 	if (rb) {
6280 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6281 			wake_up_all(&event->waitq);
6282 	}
6283 	rcu_read_unlock();
6284 }
6285 
6286 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6287 {
6288 	struct perf_buffer *rb;
6289 
6290 	if (event->parent)
6291 		event = event->parent;
6292 
6293 	rcu_read_lock();
6294 	rb = rcu_dereference(event->rb);
6295 	if (rb) {
6296 		if (!refcount_inc_not_zero(&rb->refcount))
6297 			rb = NULL;
6298 	}
6299 	rcu_read_unlock();
6300 
6301 	return rb;
6302 }
6303 
6304 void ring_buffer_put(struct perf_buffer *rb)
6305 {
6306 	if (!refcount_dec_and_test(&rb->refcount))
6307 		return;
6308 
6309 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6310 
6311 	call_rcu(&rb->rcu_head, rb_free_rcu);
6312 }
6313 
6314 static void perf_mmap_open(struct vm_area_struct *vma)
6315 {
6316 	struct perf_event *event = vma->vm_file->private_data;
6317 
6318 	atomic_inc(&event->mmap_count);
6319 	atomic_inc(&event->rb->mmap_count);
6320 
6321 	if (vma->vm_pgoff)
6322 		atomic_inc(&event->rb->aux_mmap_count);
6323 
6324 	if (event->pmu->event_mapped)
6325 		event->pmu->event_mapped(event, vma->vm_mm);
6326 }
6327 
6328 static void perf_pmu_output_stop(struct perf_event *event);
6329 
6330 /*
6331  * A buffer can be mmap()ed multiple times; either directly through the same
6332  * event, or through other events by use of perf_event_set_output().
6333  *
6334  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6335  * the buffer here, where we still have a VM context. This means we need
6336  * to detach all events redirecting to us.
6337  */
6338 static void perf_mmap_close(struct vm_area_struct *vma)
6339 {
6340 	struct perf_event *event = vma->vm_file->private_data;
6341 	struct perf_buffer *rb = ring_buffer_get(event);
6342 	struct user_struct *mmap_user = rb->mmap_user;
6343 	int mmap_locked = rb->mmap_locked;
6344 	unsigned long size = perf_data_size(rb);
6345 	bool detach_rest = false;
6346 
6347 	if (event->pmu->event_unmapped)
6348 		event->pmu->event_unmapped(event, vma->vm_mm);
6349 
6350 	/*
6351 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6352 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6353 	 * serialize with perf_mmap here.
6354 	 */
6355 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6356 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6357 		/*
6358 		 * Stop all AUX events that are writing to this buffer,
6359 		 * so that we can free its AUX pages and corresponding PMU
6360 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6361 		 * they won't start any more (see perf_aux_output_begin()).
6362 		 */
6363 		perf_pmu_output_stop(event);
6364 
6365 		/* now it's safe to free the pages */
6366 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6367 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6368 
6369 		/* this has to be the last one */
6370 		rb_free_aux(rb);
6371 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6372 
6373 		mutex_unlock(&event->mmap_mutex);
6374 	}
6375 
6376 	if (atomic_dec_and_test(&rb->mmap_count))
6377 		detach_rest = true;
6378 
6379 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6380 		goto out_put;
6381 
6382 	ring_buffer_attach(event, NULL);
6383 	mutex_unlock(&event->mmap_mutex);
6384 
6385 	/* If there's still other mmap()s of this buffer, we're done. */
6386 	if (!detach_rest)
6387 		goto out_put;
6388 
6389 	/*
6390 	 * No other mmap()s, detach from all other events that might redirect
6391 	 * into the now unreachable buffer. Somewhat complicated by the
6392 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6393 	 */
6394 again:
6395 	rcu_read_lock();
6396 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6397 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6398 			/*
6399 			 * This event is en-route to free_event() which will
6400 			 * detach it and remove it from the list.
6401 			 */
6402 			continue;
6403 		}
6404 		rcu_read_unlock();
6405 
6406 		mutex_lock(&event->mmap_mutex);
6407 		/*
6408 		 * Check we didn't race with perf_event_set_output() which can
6409 		 * swizzle the rb from under us while we were waiting to
6410 		 * acquire mmap_mutex.
6411 		 *
6412 		 * If we find a different rb; ignore this event, a next
6413 		 * iteration will no longer find it on the list. We have to
6414 		 * still restart the iteration to make sure we're not now
6415 		 * iterating the wrong list.
6416 		 */
6417 		if (event->rb == rb)
6418 			ring_buffer_attach(event, NULL);
6419 
6420 		mutex_unlock(&event->mmap_mutex);
6421 		put_event(event);
6422 
6423 		/*
6424 		 * Restart the iteration; either we're on the wrong list or
6425 		 * destroyed its integrity by doing a deletion.
6426 		 */
6427 		goto again;
6428 	}
6429 	rcu_read_unlock();
6430 
6431 	/*
6432 	 * It could be there's still a few 0-ref events on the list; they'll
6433 	 * get cleaned up by free_event() -- they'll also still have their
6434 	 * ref on the rb and will free it whenever they are done with it.
6435 	 *
6436 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6437 	 * undo the VM accounting.
6438 	 */
6439 
6440 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6441 			&mmap_user->locked_vm);
6442 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6443 	free_uid(mmap_user);
6444 
6445 out_put:
6446 	ring_buffer_put(rb); /* could be last */
6447 }
6448 
6449 static const struct vm_operations_struct perf_mmap_vmops = {
6450 	.open		= perf_mmap_open,
6451 	.close		= perf_mmap_close, /* non mergeable */
6452 	.fault		= perf_mmap_fault,
6453 	.page_mkwrite	= perf_mmap_fault,
6454 };
6455 
6456 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6457 {
6458 	struct perf_event *event = file->private_data;
6459 	unsigned long user_locked, user_lock_limit;
6460 	struct user_struct *user = current_user();
6461 	struct perf_buffer *rb = NULL;
6462 	unsigned long locked, lock_limit;
6463 	unsigned long vma_size;
6464 	unsigned long nr_pages;
6465 	long user_extra = 0, extra = 0;
6466 	int ret = 0, flags = 0;
6467 
6468 	/*
6469 	 * Don't allow mmap() of inherited per-task counters. This would
6470 	 * create a performance issue due to all children writing to the
6471 	 * same rb.
6472 	 */
6473 	if (event->cpu == -1 && event->attr.inherit)
6474 		return -EINVAL;
6475 
6476 	if (!(vma->vm_flags & VM_SHARED))
6477 		return -EINVAL;
6478 
6479 	ret = security_perf_event_read(event);
6480 	if (ret)
6481 		return ret;
6482 
6483 	vma_size = vma->vm_end - vma->vm_start;
6484 
6485 	if (vma->vm_pgoff == 0) {
6486 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6487 	} else {
6488 		/*
6489 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6490 		 * mapped, all subsequent mappings should have the same size
6491 		 * and offset. Must be above the normal perf buffer.
6492 		 */
6493 		u64 aux_offset, aux_size;
6494 
6495 		if (!event->rb)
6496 			return -EINVAL;
6497 
6498 		nr_pages = vma_size / PAGE_SIZE;
6499 
6500 		mutex_lock(&event->mmap_mutex);
6501 		ret = -EINVAL;
6502 
6503 		rb = event->rb;
6504 		if (!rb)
6505 			goto aux_unlock;
6506 
6507 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6508 		aux_size = READ_ONCE(rb->user_page->aux_size);
6509 
6510 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6511 			goto aux_unlock;
6512 
6513 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6514 			goto aux_unlock;
6515 
6516 		/* already mapped with a different offset */
6517 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6518 			goto aux_unlock;
6519 
6520 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6521 			goto aux_unlock;
6522 
6523 		/* already mapped with a different size */
6524 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6525 			goto aux_unlock;
6526 
6527 		if (!is_power_of_2(nr_pages))
6528 			goto aux_unlock;
6529 
6530 		if (!atomic_inc_not_zero(&rb->mmap_count))
6531 			goto aux_unlock;
6532 
6533 		if (rb_has_aux(rb)) {
6534 			atomic_inc(&rb->aux_mmap_count);
6535 			ret = 0;
6536 			goto unlock;
6537 		}
6538 
6539 		atomic_set(&rb->aux_mmap_count, 1);
6540 		user_extra = nr_pages;
6541 
6542 		goto accounting;
6543 	}
6544 
6545 	/*
6546 	 * If we have rb pages ensure they're a power-of-two number, so we
6547 	 * can do bitmasks instead of modulo.
6548 	 */
6549 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6550 		return -EINVAL;
6551 
6552 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6553 		return -EINVAL;
6554 
6555 	WARN_ON_ONCE(event->ctx->parent_ctx);
6556 again:
6557 	mutex_lock(&event->mmap_mutex);
6558 	if (event->rb) {
6559 		if (data_page_nr(event->rb) != nr_pages) {
6560 			ret = -EINVAL;
6561 			goto unlock;
6562 		}
6563 
6564 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6565 			/*
6566 			 * Raced against perf_mmap_close(); remove the
6567 			 * event and try again.
6568 			 */
6569 			ring_buffer_attach(event, NULL);
6570 			mutex_unlock(&event->mmap_mutex);
6571 			goto again;
6572 		}
6573 
6574 		goto unlock;
6575 	}
6576 
6577 	user_extra = nr_pages + 1;
6578 
6579 accounting:
6580 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6581 
6582 	/*
6583 	 * Increase the limit linearly with more CPUs:
6584 	 */
6585 	user_lock_limit *= num_online_cpus();
6586 
6587 	user_locked = atomic_long_read(&user->locked_vm);
6588 
6589 	/*
6590 	 * sysctl_perf_event_mlock may have changed, so that
6591 	 *     user->locked_vm > user_lock_limit
6592 	 */
6593 	if (user_locked > user_lock_limit)
6594 		user_locked = user_lock_limit;
6595 	user_locked += user_extra;
6596 
6597 	if (user_locked > user_lock_limit) {
6598 		/*
6599 		 * charge locked_vm until it hits user_lock_limit;
6600 		 * charge the rest from pinned_vm
6601 		 */
6602 		extra = user_locked - user_lock_limit;
6603 		user_extra -= extra;
6604 	}
6605 
6606 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6607 	lock_limit >>= PAGE_SHIFT;
6608 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6609 
6610 	if ((locked > lock_limit) && perf_is_paranoid() &&
6611 		!capable(CAP_IPC_LOCK)) {
6612 		ret = -EPERM;
6613 		goto unlock;
6614 	}
6615 
6616 	WARN_ON(!rb && event->rb);
6617 
6618 	if (vma->vm_flags & VM_WRITE)
6619 		flags |= RING_BUFFER_WRITABLE;
6620 
6621 	if (!rb) {
6622 		rb = rb_alloc(nr_pages,
6623 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6624 			      event->cpu, flags);
6625 
6626 		if (!rb) {
6627 			ret = -ENOMEM;
6628 			goto unlock;
6629 		}
6630 
6631 		atomic_set(&rb->mmap_count, 1);
6632 		rb->mmap_user = get_current_user();
6633 		rb->mmap_locked = extra;
6634 
6635 		ring_buffer_attach(event, rb);
6636 
6637 		perf_event_update_time(event);
6638 		perf_event_init_userpage(event);
6639 		perf_event_update_userpage(event);
6640 	} else {
6641 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6642 				   event->attr.aux_watermark, flags);
6643 		if (!ret)
6644 			rb->aux_mmap_locked = extra;
6645 	}
6646 
6647 unlock:
6648 	if (!ret) {
6649 		atomic_long_add(user_extra, &user->locked_vm);
6650 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6651 
6652 		atomic_inc(&event->mmap_count);
6653 	} else if (rb) {
6654 		atomic_dec(&rb->mmap_count);
6655 	}
6656 aux_unlock:
6657 	mutex_unlock(&event->mmap_mutex);
6658 
6659 	/*
6660 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6661 	 * vma.
6662 	 */
6663 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6664 	vma->vm_ops = &perf_mmap_vmops;
6665 
6666 	if (event->pmu->event_mapped)
6667 		event->pmu->event_mapped(event, vma->vm_mm);
6668 
6669 	return ret;
6670 }
6671 
6672 static int perf_fasync(int fd, struct file *filp, int on)
6673 {
6674 	struct inode *inode = file_inode(filp);
6675 	struct perf_event *event = filp->private_data;
6676 	int retval;
6677 
6678 	inode_lock(inode);
6679 	retval = fasync_helper(fd, filp, on, &event->fasync);
6680 	inode_unlock(inode);
6681 
6682 	if (retval < 0)
6683 		return retval;
6684 
6685 	return 0;
6686 }
6687 
6688 static const struct file_operations perf_fops = {
6689 	.llseek			= no_llseek,
6690 	.release		= perf_release,
6691 	.read			= perf_read,
6692 	.poll			= perf_poll,
6693 	.unlocked_ioctl		= perf_ioctl,
6694 	.compat_ioctl		= perf_compat_ioctl,
6695 	.mmap			= perf_mmap,
6696 	.fasync			= perf_fasync,
6697 };
6698 
6699 /*
6700  * Perf event wakeup
6701  *
6702  * If there's data, ensure we set the poll() state and publish everything
6703  * to user-space before waking everybody up.
6704  */
6705 
6706 void perf_event_wakeup(struct perf_event *event)
6707 {
6708 	ring_buffer_wakeup(event);
6709 
6710 	if (event->pending_kill) {
6711 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6712 		event->pending_kill = 0;
6713 	}
6714 }
6715 
6716 static void perf_sigtrap(struct perf_event *event)
6717 {
6718 	/*
6719 	 * We'd expect this to only occur if the irq_work is delayed and either
6720 	 * ctx->task or current has changed in the meantime. This can be the
6721 	 * case on architectures that do not implement arch_irq_work_raise().
6722 	 */
6723 	if (WARN_ON_ONCE(event->ctx->task != current))
6724 		return;
6725 
6726 	/*
6727 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6728 	 * task exiting.
6729 	 */
6730 	if (current->flags & PF_EXITING)
6731 		return;
6732 
6733 	send_sig_perf((void __user *)event->pending_addr,
6734 		      event->orig_type, event->attr.sig_data);
6735 }
6736 
6737 /*
6738  * Deliver the pending work in-event-context or follow the context.
6739  */
6740 static void __perf_pending_irq(struct perf_event *event)
6741 {
6742 	int cpu = READ_ONCE(event->oncpu);
6743 
6744 	/*
6745 	 * If the event isn't running; we done. event_sched_out() will have
6746 	 * taken care of things.
6747 	 */
6748 	if (cpu < 0)
6749 		return;
6750 
6751 	/*
6752 	 * Yay, we hit home and are in the context of the event.
6753 	 */
6754 	if (cpu == smp_processor_id()) {
6755 		if (event->pending_sigtrap) {
6756 			event->pending_sigtrap = 0;
6757 			perf_sigtrap(event);
6758 			local_dec(&event->ctx->nr_pending);
6759 		}
6760 		if (event->pending_disable) {
6761 			event->pending_disable = 0;
6762 			perf_event_disable_local(event);
6763 		}
6764 		return;
6765 	}
6766 
6767 	/*
6768 	 *  CPU-A			CPU-B
6769 	 *
6770 	 *  perf_event_disable_inatomic()
6771 	 *    @pending_disable = CPU-A;
6772 	 *    irq_work_queue();
6773 	 *
6774 	 *  sched-out
6775 	 *    @pending_disable = -1;
6776 	 *
6777 	 *				sched-in
6778 	 *				perf_event_disable_inatomic()
6779 	 *				  @pending_disable = CPU-B;
6780 	 *				  irq_work_queue(); // FAILS
6781 	 *
6782 	 *  irq_work_run()
6783 	 *    perf_pending_irq()
6784 	 *
6785 	 * But the event runs on CPU-B and wants disabling there.
6786 	 */
6787 	irq_work_queue_on(&event->pending_irq, cpu);
6788 }
6789 
6790 static void perf_pending_irq(struct irq_work *entry)
6791 {
6792 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6793 	int rctx;
6794 
6795 	/*
6796 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6797 	 * and we won't recurse 'further'.
6798 	 */
6799 	rctx = perf_swevent_get_recursion_context();
6800 
6801 	/*
6802 	 * The wakeup isn't bound to the context of the event -- it can happen
6803 	 * irrespective of where the event is.
6804 	 */
6805 	if (event->pending_wakeup) {
6806 		event->pending_wakeup = 0;
6807 		perf_event_wakeup(event);
6808 	}
6809 
6810 	__perf_pending_irq(event);
6811 
6812 	if (rctx >= 0)
6813 		perf_swevent_put_recursion_context(rctx);
6814 }
6815 
6816 static void perf_pending_task(struct callback_head *head)
6817 {
6818 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6819 	int rctx;
6820 
6821 	/*
6822 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6823 	 * and we won't recurse 'further'.
6824 	 */
6825 	preempt_disable_notrace();
6826 	rctx = perf_swevent_get_recursion_context();
6827 
6828 	if (event->pending_work) {
6829 		event->pending_work = 0;
6830 		perf_sigtrap(event);
6831 		local_dec(&event->ctx->nr_pending);
6832 	}
6833 
6834 	if (rctx >= 0)
6835 		perf_swevent_put_recursion_context(rctx);
6836 	preempt_enable_notrace();
6837 
6838 	put_event(event);
6839 }
6840 
6841 #ifdef CONFIG_GUEST_PERF_EVENTS
6842 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6843 
6844 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6845 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6846 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6847 
6848 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6849 {
6850 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6851 		return;
6852 
6853 	rcu_assign_pointer(perf_guest_cbs, cbs);
6854 	static_call_update(__perf_guest_state, cbs->state);
6855 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6856 
6857 	/* Implementing ->handle_intel_pt_intr is optional. */
6858 	if (cbs->handle_intel_pt_intr)
6859 		static_call_update(__perf_guest_handle_intel_pt_intr,
6860 				   cbs->handle_intel_pt_intr);
6861 }
6862 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6863 
6864 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6865 {
6866 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6867 		return;
6868 
6869 	rcu_assign_pointer(perf_guest_cbs, NULL);
6870 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6871 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6872 	static_call_update(__perf_guest_handle_intel_pt_intr,
6873 			   (void *)&__static_call_return0);
6874 	synchronize_rcu();
6875 }
6876 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6877 #endif
6878 
6879 static void
6880 perf_output_sample_regs(struct perf_output_handle *handle,
6881 			struct pt_regs *regs, u64 mask)
6882 {
6883 	int bit;
6884 	DECLARE_BITMAP(_mask, 64);
6885 
6886 	bitmap_from_u64(_mask, mask);
6887 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6888 		u64 val;
6889 
6890 		val = perf_reg_value(regs, bit);
6891 		perf_output_put(handle, val);
6892 	}
6893 }
6894 
6895 static void perf_sample_regs_user(struct perf_regs *regs_user,
6896 				  struct pt_regs *regs)
6897 {
6898 	if (user_mode(regs)) {
6899 		regs_user->abi = perf_reg_abi(current);
6900 		regs_user->regs = regs;
6901 	} else if (!(current->flags & PF_KTHREAD)) {
6902 		perf_get_regs_user(regs_user, regs);
6903 	} else {
6904 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6905 		regs_user->regs = NULL;
6906 	}
6907 }
6908 
6909 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6910 				  struct pt_regs *regs)
6911 {
6912 	regs_intr->regs = regs;
6913 	regs_intr->abi  = perf_reg_abi(current);
6914 }
6915 
6916 
6917 /*
6918  * Get remaining task size from user stack pointer.
6919  *
6920  * It'd be better to take stack vma map and limit this more
6921  * precisely, but there's no way to get it safely under interrupt,
6922  * so using TASK_SIZE as limit.
6923  */
6924 static u64 perf_ustack_task_size(struct pt_regs *regs)
6925 {
6926 	unsigned long addr = perf_user_stack_pointer(regs);
6927 
6928 	if (!addr || addr >= TASK_SIZE)
6929 		return 0;
6930 
6931 	return TASK_SIZE - addr;
6932 }
6933 
6934 static u16
6935 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6936 			struct pt_regs *regs)
6937 {
6938 	u64 task_size;
6939 
6940 	/* No regs, no stack pointer, no dump. */
6941 	if (!regs)
6942 		return 0;
6943 
6944 	/*
6945 	 * Check if we fit in with the requested stack size into the:
6946 	 * - TASK_SIZE
6947 	 *   If we don't, we limit the size to the TASK_SIZE.
6948 	 *
6949 	 * - remaining sample size
6950 	 *   If we don't, we customize the stack size to
6951 	 *   fit in to the remaining sample size.
6952 	 */
6953 
6954 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6955 	stack_size = min(stack_size, (u16) task_size);
6956 
6957 	/* Current header size plus static size and dynamic size. */
6958 	header_size += 2 * sizeof(u64);
6959 
6960 	/* Do we fit in with the current stack dump size? */
6961 	if ((u16) (header_size + stack_size) < header_size) {
6962 		/*
6963 		 * If we overflow the maximum size for the sample,
6964 		 * we customize the stack dump size to fit in.
6965 		 */
6966 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6967 		stack_size = round_up(stack_size, sizeof(u64));
6968 	}
6969 
6970 	return stack_size;
6971 }
6972 
6973 static void
6974 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6975 			  struct pt_regs *regs)
6976 {
6977 	/* Case of a kernel thread, nothing to dump */
6978 	if (!regs) {
6979 		u64 size = 0;
6980 		perf_output_put(handle, size);
6981 	} else {
6982 		unsigned long sp;
6983 		unsigned int rem;
6984 		u64 dyn_size;
6985 
6986 		/*
6987 		 * We dump:
6988 		 * static size
6989 		 *   - the size requested by user or the best one we can fit
6990 		 *     in to the sample max size
6991 		 * data
6992 		 *   - user stack dump data
6993 		 * dynamic size
6994 		 *   - the actual dumped size
6995 		 */
6996 
6997 		/* Static size. */
6998 		perf_output_put(handle, dump_size);
6999 
7000 		/* Data. */
7001 		sp = perf_user_stack_pointer(regs);
7002 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7003 		dyn_size = dump_size - rem;
7004 
7005 		perf_output_skip(handle, rem);
7006 
7007 		/* Dynamic size. */
7008 		perf_output_put(handle, dyn_size);
7009 	}
7010 }
7011 
7012 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7013 					  struct perf_sample_data *data,
7014 					  size_t size)
7015 {
7016 	struct perf_event *sampler = event->aux_event;
7017 	struct perf_buffer *rb;
7018 
7019 	data->aux_size = 0;
7020 
7021 	if (!sampler)
7022 		goto out;
7023 
7024 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7025 		goto out;
7026 
7027 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7028 		goto out;
7029 
7030 	rb = ring_buffer_get(sampler);
7031 	if (!rb)
7032 		goto out;
7033 
7034 	/*
7035 	 * If this is an NMI hit inside sampling code, don't take
7036 	 * the sample. See also perf_aux_sample_output().
7037 	 */
7038 	if (READ_ONCE(rb->aux_in_sampling)) {
7039 		data->aux_size = 0;
7040 	} else {
7041 		size = min_t(size_t, size, perf_aux_size(rb));
7042 		data->aux_size = ALIGN(size, sizeof(u64));
7043 	}
7044 	ring_buffer_put(rb);
7045 
7046 out:
7047 	return data->aux_size;
7048 }
7049 
7050 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7051                                  struct perf_event *event,
7052                                  struct perf_output_handle *handle,
7053                                  unsigned long size)
7054 {
7055 	unsigned long flags;
7056 	long ret;
7057 
7058 	/*
7059 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7060 	 * paths. If we start calling them in NMI context, they may race with
7061 	 * the IRQ ones, that is, for example, re-starting an event that's just
7062 	 * been stopped, which is why we're using a separate callback that
7063 	 * doesn't change the event state.
7064 	 *
7065 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7066 	 */
7067 	local_irq_save(flags);
7068 	/*
7069 	 * Guard against NMI hits inside the critical section;
7070 	 * see also perf_prepare_sample_aux().
7071 	 */
7072 	WRITE_ONCE(rb->aux_in_sampling, 1);
7073 	barrier();
7074 
7075 	ret = event->pmu->snapshot_aux(event, handle, size);
7076 
7077 	barrier();
7078 	WRITE_ONCE(rb->aux_in_sampling, 0);
7079 	local_irq_restore(flags);
7080 
7081 	return ret;
7082 }
7083 
7084 static void perf_aux_sample_output(struct perf_event *event,
7085 				   struct perf_output_handle *handle,
7086 				   struct perf_sample_data *data)
7087 {
7088 	struct perf_event *sampler = event->aux_event;
7089 	struct perf_buffer *rb;
7090 	unsigned long pad;
7091 	long size;
7092 
7093 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7094 		return;
7095 
7096 	rb = ring_buffer_get(sampler);
7097 	if (!rb)
7098 		return;
7099 
7100 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7101 
7102 	/*
7103 	 * An error here means that perf_output_copy() failed (returned a
7104 	 * non-zero surplus that it didn't copy), which in its current
7105 	 * enlightened implementation is not possible. If that changes, we'd
7106 	 * like to know.
7107 	 */
7108 	if (WARN_ON_ONCE(size < 0))
7109 		goto out_put;
7110 
7111 	/*
7112 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7113 	 * perf_prepare_sample_aux(), so should not be more than that.
7114 	 */
7115 	pad = data->aux_size - size;
7116 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7117 		pad = 8;
7118 
7119 	if (pad) {
7120 		u64 zero = 0;
7121 		perf_output_copy(handle, &zero, pad);
7122 	}
7123 
7124 out_put:
7125 	ring_buffer_put(rb);
7126 }
7127 
7128 /*
7129  * A set of common sample data types saved even for non-sample records
7130  * when event->attr.sample_id_all is set.
7131  */
7132 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7133 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7134 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7135 
7136 static void __perf_event_header__init_id(struct perf_sample_data *data,
7137 					 struct perf_event *event,
7138 					 u64 sample_type)
7139 {
7140 	data->type = event->attr.sample_type;
7141 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7142 
7143 	if (sample_type & PERF_SAMPLE_TID) {
7144 		/* namespace issues */
7145 		data->tid_entry.pid = perf_event_pid(event, current);
7146 		data->tid_entry.tid = perf_event_tid(event, current);
7147 	}
7148 
7149 	if (sample_type & PERF_SAMPLE_TIME)
7150 		data->time = perf_event_clock(event);
7151 
7152 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7153 		data->id = primary_event_id(event);
7154 
7155 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7156 		data->stream_id = event->id;
7157 
7158 	if (sample_type & PERF_SAMPLE_CPU) {
7159 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7160 		data->cpu_entry.reserved = 0;
7161 	}
7162 }
7163 
7164 void perf_event_header__init_id(struct perf_event_header *header,
7165 				struct perf_sample_data *data,
7166 				struct perf_event *event)
7167 {
7168 	if (event->attr.sample_id_all) {
7169 		header->size += event->id_header_size;
7170 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7171 	}
7172 }
7173 
7174 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7175 					   struct perf_sample_data *data)
7176 {
7177 	u64 sample_type = data->type;
7178 
7179 	if (sample_type & PERF_SAMPLE_TID)
7180 		perf_output_put(handle, data->tid_entry);
7181 
7182 	if (sample_type & PERF_SAMPLE_TIME)
7183 		perf_output_put(handle, data->time);
7184 
7185 	if (sample_type & PERF_SAMPLE_ID)
7186 		perf_output_put(handle, data->id);
7187 
7188 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7189 		perf_output_put(handle, data->stream_id);
7190 
7191 	if (sample_type & PERF_SAMPLE_CPU)
7192 		perf_output_put(handle, data->cpu_entry);
7193 
7194 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7195 		perf_output_put(handle, data->id);
7196 }
7197 
7198 void perf_event__output_id_sample(struct perf_event *event,
7199 				  struct perf_output_handle *handle,
7200 				  struct perf_sample_data *sample)
7201 {
7202 	if (event->attr.sample_id_all)
7203 		__perf_event__output_id_sample(handle, sample);
7204 }
7205 
7206 static void perf_output_read_one(struct perf_output_handle *handle,
7207 				 struct perf_event *event,
7208 				 u64 enabled, u64 running)
7209 {
7210 	u64 read_format = event->attr.read_format;
7211 	u64 values[5];
7212 	int n = 0;
7213 
7214 	values[n++] = perf_event_count(event);
7215 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7216 		values[n++] = enabled +
7217 			atomic64_read(&event->child_total_time_enabled);
7218 	}
7219 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7220 		values[n++] = running +
7221 			atomic64_read(&event->child_total_time_running);
7222 	}
7223 	if (read_format & PERF_FORMAT_ID)
7224 		values[n++] = primary_event_id(event);
7225 	if (read_format & PERF_FORMAT_LOST)
7226 		values[n++] = atomic64_read(&event->lost_samples);
7227 
7228 	__output_copy(handle, values, n * sizeof(u64));
7229 }
7230 
7231 static void perf_output_read_group(struct perf_output_handle *handle,
7232 			    struct perf_event *event,
7233 			    u64 enabled, u64 running)
7234 {
7235 	struct perf_event *leader = event->group_leader, *sub;
7236 	u64 read_format = event->attr.read_format;
7237 	unsigned long flags;
7238 	u64 values[6];
7239 	int n = 0;
7240 
7241 	/*
7242 	 * Disabling interrupts avoids all counter scheduling
7243 	 * (context switches, timer based rotation and IPIs).
7244 	 */
7245 	local_irq_save(flags);
7246 
7247 	values[n++] = 1 + leader->nr_siblings;
7248 
7249 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7250 		values[n++] = enabled;
7251 
7252 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7253 		values[n++] = running;
7254 
7255 	if ((leader != event) &&
7256 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7257 		leader->pmu->read(leader);
7258 
7259 	values[n++] = perf_event_count(leader);
7260 	if (read_format & PERF_FORMAT_ID)
7261 		values[n++] = primary_event_id(leader);
7262 	if (read_format & PERF_FORMAT_LOST)
7263 		values[n++] = atomic64_read(&leader->lost_samples);
7264 
7265 	__output_copy(handle, values, n * sizeof(u64));
7266 
7267 	for_each_sibling_event(sub, leader) {
7268 		n = 0;
7269 
7270 		if ((sub != event) &&
7271 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7272 			sub->pmu->read(sub);
7273 
7274 		values[n++] = perf_event_count(sub);
7275 		if (read_format & PERF_FORMAT_ID)
7276 			values[n++] = primary_event_id(sub);
7277 		if (read_format & PERF_FORMAT_LOST)
7278 			values[n++] = atomic64_read(&sub->lost_samples);
7279 
7280 		__output_copy(handle, values, n * sizeof(u64));
7281 	}
7282 
7283 	local_irq_restore(flags);
7284 }
7285 
7286 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7287 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7288 
7289 /*
7290  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7291  *
7292  * The problem is that its both hard and excessively expensive to iterate the
7293  * child list, not to mention that its impossible to IPI the children running
7294  * on another CPU, from interrupt/NMI context.
7295  */
7296 static void perf_output_read(struct perf_output_handle *handle,
7297 			     struct perf_event *event)
7298 {
7299 	u64 enabled = 0, running = 0, now;
7300 	u64 read_format = event->attr.read_format;
7301 
7302 	/*
7303 	 * compute total_time_enabled, total_time_running
7304 	 * based on snapshot values taken when the event
7305 	 * was last scheduled in.
7306 	 *
7307 	 * we cannot simply called update_context_time()
7308 	 * because of locking issue as we are called in
7309 	 * NMI context
7310 	 */
7311 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7312 		calc_timer_values(event, &now, &enabled, &running);
7313 
7314 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7315 		perf_output_read_group(handle, event, enabled, running);
7316 	else
7317 		perf_output_read_one(handle, event, enabled, running);
7318 }
7319 
7320 void perf_output_sample(struct perf_output_handle *handle,
7321 			struct perf_event_header *header,
7322 			struct perf_sample_data *data,
7323 			struct perf_event *event)
7324 {
7325 	u64 sample_type = data->type;
7326 
7327 	perf_output_put(handle, *header);
7328 
7329 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7330 		perf_output_put(handle, data->id);
7331 
7332 	if (sample_type & PERF_SAMPLE_IP)
7333 		perf_output_put(handle, data->ip);
7334 
7335 	if (sample_type & PERF_SAMPLE_TID)
7336 		perf_output_put(handle, data->tid_entry);
7337 
7338 	if (sample_type & PERF_SAMPLE_TIME)
7339 		perf_output_put(handle, data->time);
7340 
7341 	if (sample_type & PERF_SAMPLE_ADDR)
7342 		perf_output_put(handle, data->addr);
7343 
7344 	if (sample_type & PERF_SAMPLE_ID)
7345 		perf_output_put(handle, data->id);
7346 
7347 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7348 		perf_output_put(handle, data->stream_id);
7349 
7350 	if (sample_type & PERF_SAMPLE_CPU)
7351 		perf_output_put(handle, data->cpu_entry);
7352 
7353 	if (sample_type & PERF_SAMPLE_PERIOD)
7354 		perf_output_put(handle, data->period);
7355 
7356 	if (sample_type & PERF_SAMPLE_READ)
7357 		perf_output_read(handle, event);
7358 
7359 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7360 		int size = 1;
7361 
7362 		size += data->callchain->nr;
7363 		size *= sizeof(u64);
7364 		__output_copy(handle, data->callchain, size);
7365 	}
7366 
7367 	if (sample_type & PERF_SAMPLE_RAW) {
7368 		struct perf_raw_record *raw = data->raw;
7369 
7370 		if (raw) {
7371 			struct perf_raw_frag *frag = &raw->frag;
7372 
7373 			perf_output_put(handle, raw->size);
7374 			do {
7375 				if (frag->copy) {
7376 					__output_custom(handle, frag->copy,
7377 							frag->data, frag->size);
7378 				} else {
7379 					__output_copy(handle, frag->data,
7380 						      frag->size);
7381 				}
7382 				if (perf_raw_frag_last(frag))
7383 					break;
7384 				frag = frag->next;
7385 			} while (1);
7386 			if (frag->pad)
7387 				__output_skip(handle, NULL, frag->pad);
7388 		} else {
7389 			struct {
7390 				u32	size;
7391 				u32	data;
7392 			} raw = {
7393 				.size = sizeof(u32),
7394 				.data = 0,
7395 			};
7396 			perf_output_put(handle, raw);
7397 		}
7398 	}
7399 
7400 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7401 		if (data->br_stack) {
7402 			size_t size;
7403 
7404 			size = data->br_stack->nr
7405 			     * sizeof(struct perf_branch_entry);
7406 
7407 			perf_output_put(handle, data->br_stack->nr);
7408 			if (branch_sample_hw_index(event))
7409 				perf_output_put(handle, data->br_stack->hw_idx);
7410 			perf_output_copy(handle, data->br_stack->entries, size);
7411 			/*
7412 			 * Add the extension space which is appended
7413 			 * right after the struct perf_branch_stack.
7414 			 */
7415 			if (data->br_stack_cntr) {
7416 				size = data->br_stack->nr * sizeof(u64);
7417 				perf_output_copy(handle, data->br_stack_cntr, size);
7418 			}
7419 		} else {
7420 			/*
7421 			 * we always store at least the value of nr
7422 			 */
7423 			u64 nr = 0;
7424 			perf_output_put(handle, nr);
7425 		}
7426 	}
7427 
7428 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7429 		u64 abi = data->regs_user.abi;
7430 
7431 		/*
7432 		 * If there are no regs to dump, notice it through
7433 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434 		 */
7435 		perf_output_put(handle, abi);
7436 
7437 		if (abi) {
7438 			u64 mask = event->attr.sample_regs_user;
7439 			perf_output_sample_regs(handle,
7440 						data->regs_user.regs,
7441 						mask);
7442 		}
7443 	}
7444 
7445 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7446 		perf_output_sample_ustack(handle,
7447 					  data->stack_user_size,
7448 					  data->regs_user.regs);
7449 	}
7450 
7451 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7452 		perf_output_put(handle, data->weight.full);
7453 
7454 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7455 		perf_output_put(handle, data->data_src.val);
7456 
7457 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7458 		perf_output_put(handle, data->txn);
7459 
7460 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7461 		u64 abi = data->regs_intr.abi;
7462 		/*
7463 		 * If there are no regs to dump, notice it through
7464 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7465 		 */
7466 		perf_output_put(handle, abi);
7467 
7468 		if (abi) {
7469 			u64 mask = event->attr.sample_regs_intr;
7470 
7471 			perf_output_sample_regs(handle,
7472 						data->regs_intr.regs,
7473 						mask);
7474 		}
7475 	}
7476 
7477 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7478 		perf_output_put(handle, data->phys_addr);
7479 
7480 	if (sample_type & PERF_SAMPLE_CGROUP)
7481 		perf_output_put(handle, data->cgroup);
7482 
7483 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7484 		perf_output_put(handle, data->data_page_size);
7485 
7486 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7487 		perf_output_put(handle, data->code_page_size);
7488 
7489 	if (sample_type & PERF_SAMPLE_AUX) {
7490 		perf_output_put(handle, data->aux_size);
7491 
7492 		if (data->aux_size)
7493 			perf_aux_sample_output(event, handle, data);
7494 	}
7495 
7496 	if (!event->attr.watermark) {
7497 		int wakeup_events = event->attr.wakeup_events;
7498 
7499 		if (wakeup_events) {
7500 			struct perf_buffer *rb = handle->rb;
7501 			int events = local_inc_return(&rb->events);
7502 
7503 			if (events >= wakeup_events) {
7504 				local_sub(wakeup_events, &rb->events);
7505 				local_inc(&rb->wakeup);
7506 			}
7507 		}
7508 	}
7509 }
7510 
7511 static u64 perf_virt_to_phys(u64 virt)
7512 {
7513 	u64 phys_addr = 0;
7514 
7515 	if (!virt)
7516 		return 0;
7517 
7518 	if (virt >= TASK_SIZE) {
7519 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7520 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7521 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7522 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7523 	} else {
7524 		/*
7525 		 * Walking the pages tables for user address.
7526 		 * Interrupts are disabled, so it prevents any tear down
7527 		 * of the page tables.
7528 		 * Try IRQ-safe get_user_page_fast_only first.
7529 		 * If failed, leave phys_addr as 0.
7530 		 */
7531 		if (current->mm != NULL) {
7532 			struct page *p;
7533 
7534 			pagefault_disable();
7535 			if (get_user_page_fast_only(virt, 0, &p)) {
7536 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7537 				put_page(p);
7538 			}
7539 			pagefault_enable();
7540 		}
7541 	}
7542 
7543 	return phys_addr;
7544 }
7545 
7546 /*
7547  * Return the pagetable size of a given virtual address.
7548  */
7549 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7550 {
7551 	u64 size = 0;
7552 
7553 #ifdef CONFIG_HAVE_GUP_FAST
7554 	pgd_t *pgdp, pgd;
7555 	p4d_t *p4dp, p4d;
7556 	pud_t *pudp, pud;
7557 	pmd_t *pmdp, pmd;
7558 	pte_t *ptep, pte;
7559 
7560 	pgdp = pgd_offset(mm, addr);
7561 	pgd = READ_ONCE(*pgdp);
7562 	if (pgd_none(pgd))
7563 		return 0;
7564 
7565 	if (pgd_leaf(pgd))
7566 		return pgd_leaf_size(pgd);
7567 
7568 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7569 	p4d = READ_ONCE(*p4dp);
7570 	if (!p4d_present(p4d))
7571 		return 0;
7572 
7573 	if (p4d_leaf(p4d))
7574 		return p4d_leaf_size(p4d);
7575 
7576 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7577 	pud = READ_ONCE(*pudp);
7578 	if (!pud_present(pud))
7579 		return 0;
7580 
7581 	if (pud_leaf(pud))
7582 		return pud_leaf_size(pud);
7583 
7584 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7585 again:
7586 	pmd = pmdp_get_lockless(pmdp);
7587 	if (!pmd_present(pmd))
7588 		return 0;
7589 
7590 	if (pmd_leaf(pmd))
7591 		return pmd_leaf_size(pmd);
7592 
7593 	ptep = pte_offset_map(&pmd, addr);
7594 	if (!ptep)
7595 		goto again;
7596 
7597 	pte = ptep_get_lockless(ptep);
7598 	if (pte_present(pte))
7599 		size = pte_leaf_size(pte);
7600 	pte_unmap(ptep);
7601 #endif /* CONFIG_HAVE_GUP_FAST */
7602 
7603 	return size;
7604 }
7605 
7606 static u64 perf_get_page_size(unsigned long addr)
7607 {
7608 	struct mm_struct *mm;
7609 	unsigned long flags;
7610 	u64 size;
7611 
7612 	if (!addr)
7613 		return 0;
7614 
7615 	/*
7616 	 * Software page-table walkers must disable IRQs,
7617 	 * which prevents any tear down of the page tables.
7618 	 */
7619 	local_irq_save(flags);
7620 
7621 	mm = current->mm;
7622 	if (!mm) {
7623 		/*
7624 		 * For kernel threads and the like, use init_mm so that
7625 		 * we can find kernel memory.
7626 		 */
7627 		mm = &init_mm;
7628 	}
7629 
7630 	size = perf_get_pgtable_size(mm, addr);
7631 
7632 	local_irq_restore(flags);
7633 
7634 	return size;
7635 }
7636 
7637 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7638 
7639 struct perf_callchain_entry *
7640 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7641 {
7642 	bool kernel = !event->attr.exclude_callchain_kernel;
7643 	bool user   = !event->attr.exclude_callchain_user;
7644 	/* Disallow cross-task user callchains. */
7645 	bool crosstask = event->ctx->task && event->ctx->task != current;
7646 	const u32 max_stack = event->attr.sample_max_stack;
7647 	struct perf_callchain_entry *callchain;
7648 
7649 	if (!kernel && !user)
7650 		return &__empty_callchain;
7651 
7652 	callchain = get_perf_callchain(regs, 0, kernel, user,
7653 				       max_stack, crosstask, true);
7654 	return callchain ?: &__empty_callchain;
7655 }
7656 
7657 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7658 {
7659 	return d * !!(flags & s);
7660 }
7661 
7662 void perf_prepare_sample(struct perf_sample_data *data,
7663 			 struct perf_event *event,
7664 			 struct pt_regs *regs)
7665 {
7666 	u64 sample_type = event->attr.sample_type;
7667 	u64 filtered_sample_type;
7668 
7669 	/*
7670 	 * Add the sample flags that are dependent to others.  And clear the
7671 	 * sample flags that have already been done by the PMU driver.
7672 	 */
7673 	filtered_sample_type = sample_type;
7674 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7675 					   PERF_SAMPLE_IP);
7676 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7677 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7678 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7679 					   PERF_SAMPLE_REGS_USER);
7680 	filtered_sample_type &= ~data->sample_flags;
7681 
7682 	if (filtered_sample_type == 0) {
7683 		/* Make sure it has the correct data->type for output */
7684 		data->type = event->attr.sample_type;
7685 		return;
7686 	}
7687 
7688 	__perf_event_header__init_id(data, event, filtered_sample_type);
7689 
7690 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7691 		data->ip = perf_instruction_pointer(regs);
7692 		data->sample_flags |= PERF_SAMPLE_IP;
7693 	}
7694 
7695 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7696 		perf_sample_save_callchain(data, event, regs);
7697 
7698 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7699 		data->raw = NULL;
7700 		data->dyn_size += sizeof(u64);
7701 		data->sample_flags |= PERF_SAMPLE_RAW;
7702 	}
7703 
7704 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7705 		data->br_stack = NULL;
7706 		data->dyn_size += sizeof(u64);
7707 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7708 	}
7709 
7710 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7711 		perf_sample_regs_user(&data->regs_user, regs);
7712 
7713 	/*
7714 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7715 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7716 	 * the dyn_size if it's not requested by users.
7717 	 */
7718 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7719 		/* regs dump ABI info */
7720 		int size = sizeof(u64);
7721 
7722 		if (data->regs_user.regs) {
7723 			u64 mask = event->attr.sample_regs_user;
7724 			size += hweight64(mask) * sizeof(u64);
7725 		}
7726 
7727 		data->dyn_size += size;
7728 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7729 	}
7730 
7731 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7732 		/*
7733 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7734 		 * processed as the last one or have additional check added
7735 		 * in case new sample type is added, because we could eat
7736 		 * up the rest of the sample size.
7737 		 */
7738 		u16 stack_size = event->attr.sample_stack_user;
7739 		u16 header_size = perf_sample_data_size(data, event);
7740 		u16 size = sizeof(u64);
7741 
7742 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7743 						     data->regs_user.regs);
7744 
7745 		/*
7746 		 * If there is something to dump, add space for the dump
7747 		 * itself and for the field that tells the dynamic size,
7748 		 * which is how many have been actually dumped.
7749 		 */
7750 		if (stack_size)
7751 			size += sizeof(u64) + stack_size;
7752 
7753 		data->stack_user_size = stack_size;
7754 		data->dyn_size += size;
7755 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7756 	}
7757 
7758 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7759 		data->weight.full = 0;
7760 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7761 	}
7762 
7763 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7764 		data->data_src.val = PERF_MEM_NA;
7765 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7766 	}
7767 
7768 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7769 		data->txn = 0;
7770 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7771 	}
7772 
7773 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7774 		data->addr = 0;
7775 		data->sample_flags |= PERF_SAMPLE_ADDR;
7776 	}
7777 
7778 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7779 		/* regs dump ABI info */
7780 		int size = sizeof(u64);
7781 
7782 		perf_sample_regs_intr(&data->regs_intr, regs);
7783 
7784 		if (data->regs_intr.regs) {
7785 			u64 mask = event->attr.sample_regs_intr;
7786 
7787 			size += hweight64(mask) * sizeof(u64);
7788 		}
7789 
7790 		data->dyn_size += size;
7791 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7792 	}
7793 
7794 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7795 		data->phys_addr = perf_virt_to_phys(data->addr);
7796 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7797 	}
7798 
7799 #ifdef CONFIG_CGROUP_PERF
7800 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7801 		struct cgroup *cgrp;
7802 
7803 		/* protected by RCU */
7804 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7805 		data->cgroup = cgroup_id(cgrp);
7806 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7807 	}
7808 #endif
7809 
7810 	/*
7811 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7812 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7813 	 * but the value will not dump to the userspace.
7814 	 */
7815 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7816 		data->data_page_size = perf_get_page_size(data->addr);
7817 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7818 	}
7819 
7820 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7821 		data->code_page_size = perf_get_page_size(data->ip);
7822 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7823 	}
7824 
7825 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7826 		u64 size;
7827 		u16 header_size = perf_sample_data_size(data, event);
7828 
7829 		header_size += sizeof(u64); /* size */
7830 
7831 		/*
7832 		 * Given the 16bit nature of header::size, an AUX sample can
7833 		 * easily overflow it, what with all the preceding sample bits.
7834 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7835 		 * per sample in total (rounded down to 8 byte boundary).
7836 		 */
7837 		size = min_t(size_t, U16_MAX - header_size,
7838 			     event->attr.aux_sample_size);
7839 		size = rounddown(size, 8);
7840 		size = perf_prepare_sample_aux(event, data, size);
7841 
7842 		WARN_ON_ONCE(size + header_size > U16_MAX);
7843 		data->dyn_size += size + sizeof(u64); /* size above */
7844 		data->sample_flags |= PERF_SAMPLE_AUX;
7845 	}
7846 }
7847 
7848 void perf_prepare_header(struct perf_event_header *header,
7849 			 struct perf_sample_data *data,
7850 			 struct perf_event *event,
7851 			 struct pt_regs *regs)
7852 {
7853 	header->type = PERF_RECORD_SAMPLE;
7854 	header->size = perf_sample_data_size(data, event);
7855 	header->misc = perf_misc_flags(regs);
7856 
7857 	/*
7858 	 * If you're adding more sample types here, you likely need to do
7859 	 * something about the overflowing header::size, like repurpose the
7860 	 * lowest 3 bits of size, which should be always zero at the moment.
7861 	 * This raises a more important question, do we really need 512k sized
7862 	 * samples and why, so good argumentation is in order for whatever you
7863 	 * do here next.
7864 	 */
7865 	WARN_ON_ONCE(header->size & 7);
7866 }
7867 
7868 static __always_inline int
7869 __perf_event_output(struct perf_event *event,
7870 		    struct perf_sample_data *data,
7871 		    struct pt_regs *regs,
7872 		    int (*output_begin)(struct perf_output_handle *,
7873 					struct perf_sample_data *,
7874 					struct perf_event *,
7875 					unsigned int))
7876 {
7877 	struct perf_output_handle handle;
7878 	struct perf_event_header header;
7879 	int err;
7880 
7881 	/* protect the callchain buffers */
7882 	rcu_read_lock();
7883 
7884 	perf_prepare_sample(data, event, regs);
7885 	perf_prepare_header(&header, data, event, regs);
7886 
7887 	err = output_begin(&handle, data, event, header.size);
7888 	if (err)
7889 		goto exit;
7890 
7891 	perf_output_sample(&handle, &header, data, event);
7892 
7893 	perf_output_end(&handle);
7894 
7895 exit:
7896 	rcu_read_unlock();
7897 	return err;
7898 }
7899 
7900 void
7901 perf_event_output_forward(struct perf_event *event,
7902 			 struct perf_sample_data *data,
7903 			 struct pt_regs *regs)
7904 {
7905 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7906 }
7907 
7908 void
7909 perf_event_output_backward(struct perf_event *event,
7910 			   struct perf_sample_data *data,
7911 			   struct pt_regs *regs)
7912 {
7913 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7914 }
7915 
7916 int
7917 perf_event_output(struct perf_event *event,
7918 		  struct perf_sample_data *data,
7919 		  struct pt_regs *regs)
7920 {
7921 	return __perf_event_output(event, data, regs, perf_output_begin);
7922 }
7923 
7924 /*
7925  * read event_id
7926  */
7927 
7928 struct perf_read_event {
7929 	struct perf_event_header	header;
7930 
7931 	u32				pid;
7932 	u32				tid;
7933 };
7934 
7935 static void
7936 perf_event_read_event(struct perf_event *event,
7937 			struct task_struct *task)
7938 {
7939 	struct perf_output_handle handle;
7940 	struct perf_sample_data sample;
7941 	struct perf_read_event read_event = {
7942 		.header = {
7943 			.type = PERF_RECORD_READ,
7944 			.misc = 0,
7945 			.size = sizeof(read_event) + event->read_size,
7946 		},
7947 		.pid = perf_event_pid(event, task),
7948 		.tid = perf_event_tid(event, task),
7949 	};
7950 	int ret;
7951 
7952 	perf_event_header__init_id(&read_event.header, &sample, event);
7953 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7954 	if (ret)
7955 		return;
7956 
7957 	perf_output_put(&handle, read_event);
7958 	perf_output_read(&handle, event);
7959 	perf_event__output_id_sample(event, &handle, &sample);
7960 
7961 	perf_output_end(&handle);
7962 }
7963 
7964 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7965 
7966 static void
7967 perf_iterate_ctx(struct perf_event_context *ctx,
7968 		   perf_iterate_f output,
7969 		   void *data, bool all)
7970 {
7971 	struct perf_event *event;
7972 
7973 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7974 		if (!all) {
7975 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7976 				continue;
7977 			if (!event_filter_match(event))
7978 				continue;
7979 		}
7980 
7981 		output(event, data);
7982 	}
7983 }
7984 
7985 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7986 {
7987 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7988 	struct perf_event *event;
7989 
7990 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7991 		/*
7992 		 * Skip events that are not fully formed yet; ensure that
7993 		 * if we observe event->ctx, both event and ctx will be
7994 		 * complete enough. See perf_install_in_context().
7995 		 */
7996 		if (!smp_load_acquire(&event->ctx))
7997 			continue;
7998 
7999 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8000 			continue;
8001 		if (!event_filter_match(event))
8002 			continue;
8003 		output(event, data);
8004 	}
8005 }
8006 
8007 /*
8008  * Iterate all events that need to receive side-band events.
8009  *
8010  * For new callers; ensure that account_pmu_sb_event() includes
8011  * your event, otherwise it might not get delivered.
8012  */
8013 static void
8014 perf_iterate_sb(perf_iterate_f output, void *data,
8015 	       struct perf_event_context *task_ctx)
8016 {
8017 	struct perf_event_context *ctx;
8018 
8019 	rcu_read_lock();
8020 	preempt_disable();
8021 
8022 	/*
8023 	 * If we have task_ctx != NULL we only notify the task context itself.
8024 	 * The task_ctx is set only for EXIT events before releasing task
8025 	 * context.
8026 	 */
8027 	if (task_ctx) {
8028 		perf_iterate_ctx(task_ctx, output, data, false);
8029 		goto done;
8030 	}
8031 
8032 	perf_iterate_sb_cpu(output, data);
8033 
8034 	ctx = rcu_dereference(current->perf_event_ctxp);
8035 	if (ctx)
8036 		perf_iterate_ctx(ctx, output, data, false);
8037 done:
8038 	preempt_enable();
8039 	rcu_read_unlock();
8040 }
8041 
8042 /*
8043  * Clear all file-based filters at exec, they'll have to be
8044  * re-instated when/if these objects are mmapped again.
8045  */
8046 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8047 {
8048 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8049 	struct perf_addr_filter *filter;
8050 	unsigned int restart = 0, count = 0;
8051 	unsigned long flags;
8052 
8053 	if (!has_addr_filter(event))
8054 		return;
8055 
8056 	raw_spin_lock_irqsave(&ifh->lock, flags);
8057 	list_for_each_entry(filter, &ifh->list, entry) {
8058 		if (filter->path.dentry) {
8059 			event->addr_filter_ranges[count].start = 0;
8060 			event->addr_filter_ranges[count].size = 0;
8061 			restart++;
8062 		}
8063 
8064 		count++;
8065 	}
8066 
8067 	if (restart)
8068 		event->addr_filters_gen++;
8069 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070 
8071 	if (restart)
8072 		perf_event_stop(event, 1);
8073 }
8074 
8075 void perf_event_exec(void)
8076 {
8077 	struct perf_event_context *ctx;
8078 
8079 	ctx = perf_pin_task_context(current);
8080 	if (!ctx)
8081 		return;
8082 
8083 	perf_event_enable_on_exec(ctx);
8084 	perf_event_remove_on_exec(ctx);
8085 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8086 
8087 	perf_unpin_context(ctx);
8088 	put_ctx(ctx);
8089 }
8090 
8091 struct remote_output {
8092 	struct perf_buffer	*rb;
8093 	int			err;
8094 };
8095 
8096 static void __perf_event_output_stop(struct perf_event *event, void *data)
8097 {
8098 	struct perf_event *parent = event->parent;
8099 	struct remote_output *ro = data;
8100 	struct perf_buffer *rb = ro->rb;
8101 	struct stop_event_data sd = {
8102 		.event	= event,
8103 	};
8104 
8105 	if (!has_aux(event))
8106 		return;
8107 
8108 	if (!parent)
8109 		parent = event;
8110 
8111 	/*
8112 	 * In case of inheritance, it will be the parent that links to the
8113 	 * ring-buffer, but it will be the child that's actually using it.
8114 	 *
8115 	 * We are using event::rb to determine if the event should be stopped,
8116 	 * however this may race with ring_buffer_attach() (through set_output),
8117 	 * which will make us skip the event that actually needs to be stopped.
8118 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8119 	 * its rb pointer.
8120 	 */
8121 	if (rcu_dereference(parent->rb) == rb)
8122 		ro->err = __perf_event_stop(&sd);
8123 }
8124 
8125 static int __perf_pmu_output_stop(void *info)
8126 {
8127 	struct perf_event *event = info;
8128 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8129 	struct remote_output ro = {
8130 		.rb	= event->rb,
8131 	};
8132 
8133 	rcu_read_lock();
8134 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8135 	if (cpuctx->task_ctx)
8136 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8137 				   &ro, false);
8138 	rcu_read_unlock();
8139 
8140 	return ro.err;
8141 }
8142 
8143 static void perf_pmu_output_stop(struct perf_event *event)
8144 {
8145 	struct perf_event *iter;
8146 	int err, cpu;
8147 
8148 restart:
8149 	rcu_read_lock();
8150 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8151 		/*
8152 		 * For per-CPU events, we need to make sure that neither they
8153 		 * nor their children are running; for cpu==-1 events it's
8154 		 * sufficient to stop the event itself if it's active, since
8155 		 * it can't have children.
8156 		 */
8157 		cpu = iter->cpu;
8158 		if (cpu == -1)
8159 			cpu = READ_ONCE(iter->oncpu);
8160 
8161 		if (cpu == -1)
8162 			continue;
8163 
8164 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8165 		if (err == -EAGAIN) {
8166 			rcu_read_unlock();
8167 			goto restart;
8168 		}
8169 	}
8170 	rcu_read_unlock();
8171 }
8172 
8173 /*
8174  * task tracking -- fork/exit
8175  *
8176  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8177  */
8178 
8179 struct perf_task_event {
8180 	struct task_struct		*task;
8181 	struct perf_event_context	*task_ctx;
8182 
8183 	struct {
8184 		struct perf_event_header	header;
8185 
8186 		u32				pid;
8187 		u32				ppid;
8188 		u32				tid;
8189 		u32				ptid;
8190 		u64				time;
8191 	} event_id;
8192 };
8193 
8194 static int perf_event_task_match(struct perf_event *event)
8195 {
8196 	return event->attr.comm  || event->attr.mmap ||
8197 	       event->attr.mmap2 || event->attr.mmap_data ||
8198 	       event->attr.task;
8199 }
8200 
8201 static void perf_event_task_output(struct perf_event *event,
8202 				   void *data)
8203 {
8204 	struct perf_task_event *task_event = data;
8205 	struct perf_output_handle handle;
8206 	struct perf_sample_data	sample;
8207 	struct task_struct *task = task_event->task;
8208 	int ret, size = task_event->event_id.header.size;
8209 
8210 	if (!perf_event_task_match(event))
8211 		return;
8212 
8213 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8214 
8215 	ret = perf_output_begin(&handle, &sample, event,
8216 				task_event->event_id.header.size);
8217 	if (ret)
8218 		goto out;
8219 
8220 	task_event->event_id.pid = perf_event_pid(event, task);
8221 	task_event->event_id.tid = perf_event_tid(event, task);
8222 
8223 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8224 		task_event->event_id.ppid = perf_event_pid(event,
8225 							task->real_parent);
8226 		task_event->event_id.ptid = perf_event_pid(event,
8227 							task->real_parent);
8228 	} else {  /* PERF_RECORD_FORK */
8229 		task_event->event_id.ppid = perf_event_pid(event, current);
8230 		task_event->event_id.ptid = perf_event_tid(event, current);
8231 	}
8232 
8233 	task_event->event_id.time = perf_event_clock(event);
8234 
8235 	perf_output_put(&handle, task_event->event_id);
8236 
8237 	perf_event__output_id_sample(event, &handle, &sample);
8238 
8239 	perf_output_end(&handle);
8240 out:
8241 	task_event->event_id.header.size = size;
8242 }
8243 
8244 static void perf_event_task(struct task_struct *task,
8245 			      struct perf_event_context *task_ctx,
8246 			      int new)
8247 {
8248 	struct perf_task_event task_event;
8249 
8250 	if (!atomic_read(&nr_comm_events) &&
8251 	    !atomic_read(&nr_mmap_events) &&
8252 	    !atomic_read(&nr_task_events))
8253 		return;
8254 
8255 	task_event = (struct perf_task_event){
8256 		.task	  = task,
8257 		.task_ctx = task_ctx,
8258 		.event_id    = {
8259 			.header = {
8260 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8261 				.misc = 0,
8262 				.size = sizeof(task_event.event_id),
8263 			},
8264 			/* .pid  */
8265 			/* .ppid */
8266 			/* .tid  */
8267 			/* .ptid */
8268 			/* .time */
8269 		},
8270 	};
8271 
8272 	perf_iterate_sb(perf_event_task_output,
8273 		       &task_event,
8274 		       task_ctx);
8275 }
8276 
8277 void perf_event_fork(struct task_struct *task)
8278 {
8279 	perf_event_task(task, NULL, 1);
8280 	perf_event_namespaces(task);
8281 }
8282 
8283 /*
8284  * comm tracking
8285  */
8286 
8287 struct perf_comm_event {
8288 	struct task_struct	*task;
8289 	char			*comm;
8290 	int			comm_size;
8291 
8292 	struct {
8293 		struct perf_event_header	header;
8294 
8295 		u32				pid;
8296 		u32				tid;
8297 	} event_id;
8298 };
8299 
8300 static int perf_event_comm_match(struct perf_event *event)
8301 {
8302 	return event->attr.comm;
8303 }
8304 
8305 static void perf_event_comm_output(struct perf_event *event,
8306 				   void *data)
8307 {
8308 	struct perf_comm_event *comm_event = data;
8309 	struct perf_output_handle handle;
8310 	struct perf_sample_data sample;
8311 	int size = comm_event->event_id.header.size;
8312 	int ret;
8313 
8314 	if (!perf_event_comm_match(event))
8315 		return;
8316 
8317 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8318 	ret = perf_output_begin(&handle, &sample, event,
8319 				comm_event->event_id.header.size);
8320 
8321 	if (ret)
8322 		goto out;
8323 
8324 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8325 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8326 
8327 	perf_output_put(&handle, comm_event->event_id);
8328 	__output_copy(&handle, comm_event->comm,
8329 				   comm_event->comm_size);
8330 
8331 	perf_event__output_id_sample(event, &handle, &sample);
8332 
8333 	perf_output_end(&handle);
8334 out:
8335 	comm_event->event_id.header.size = size;
8336 }
8337 
8338 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8339 {
8340 	char comm[TASK_COMM_LEN];
8341 	unsigned int size;
8342 
8343 	memset(comm, 0, sizeof(comm));
8344 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8345 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8346 
8347 	comm_event->comm = comm;
8348 	comm_event->comm_size = size;
8349 
8350 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8351 
8352 	perf_iterate_sb(perf_event_comm_output,
8353 		       comm_event,
8354 		       NULL);
8355 }
8356 
8357 void perf_event_comm(struct task_struct *task, bool exec)
8358 {
8359 	struct perf_comm_event comm_event;
8360 
8361 	if (!atomic_read(&nr_comm_events))
8362 		return;
8363 
8364 	comm_event = (struct perf_comm_event){
8365 		.task	= task,
8366 		/* .comm      */
8367 		/* .comm_size */
8368 		.event_id  = {
8369 			.header = {
8370 				.type = PERF_RECORD_COMM,
8371 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8372 				/* .size */
8373 			},
8374 			/* .pid */
8375 			/* .tid */
8376 		},
8377 	};
8378 
8379 	perf_event_comm_event(&comm_event);
8380 }
8381 
8382 /*
8383  * namespaces tracking
8384  */
8385 
8386 struct perf_namespaces_event {
8387 	struct task_struct		*task;
8388 
8389 	struct {
8390 		struct perf_event_header	header;
8391 
8392 		u32				pid;
8393 		u32				tid;
8394 		u64				nr_namespaces;
8395 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8396 	} event_id;
8397 };
8398 
8399 static int perf_event_namespaces_match(struct perf_event *event)
8400 {
8401 	return event->attr.namespaces;
8402 }
8403 
8404 static void perf_event_namespaces_output(struct perf_event *event,
8405 					 void *data)
8406 {
8407 	struct perf_namespaces_event *namespaces_event = data;
8408 	struct perf_output_handle handle;
8409 	struct perf_sample_data sample;
8410 	u16 header_size = namespaces_event->event_id.header.size;
8411 	int ret;
8412 
8413 	if (!perf_event_namespaces_match(event))
8414 		return;
8415 
8416 	perf_event_header__init_id(&namespaces_event->event_id.header,
8417 				   &sample, event);
8418 	ret = perf_output_begin(&handle, &sample, event,
8419 				namespaces_event->event_id.header.size);
8420 	if (ret)
8421 		goto out;
8422 
8423 	namespaces_event->event_id.pid = perf_event_pid(event,
8424 							namespaces_event->task);
8425 	namespaces_event->event_id.tid = perf_event_tid(event,
8426 							namespaces_event->task);
8427 
8428 	perf_output_put(&handle, namespaces_event->event_id);
8429 
8430 	perf_event__output_id_sample(event, &handle, &sample);
8431 
8432 	perf_output_end(&handle);
8433 out:
8434 	namespaces_event->event_id.header.size = header_size;
8435 }
8436 
8437 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8438 				   struct task_struct *task,
8439 				   const struct proc_ns_operations *ns_ops)
8440 {
8441 	struct path ns_path;
8442 	struct inode *ns_inode;
8443 	int error;
8444 
8445 	error = ns_get_path(&ns_path, task, ns_ops);
8446 	if (!error) {
8447 		ns_inode = ns_path.dentry->d_inode;
8448 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8449 		ns_link_info->ino = ns_inode->i_ino;
8450 		path_put(&ns_path);
8451 	}
8452 }
8453 
8454 void perf_event_namespaces(struct task_struct *task)
8455 {
8456 	struct perf_namespaces_event namespaces_event;
8457 	struct perf_ns_link_info *ns_link_info;
8458 
8459 	if (!atomic_read(&nr_namespaces_events))
8460 		return;
8461 
8462 	namespaces_event = (struct perf_namespaces_event){
8463 		.task	= task,
8464 		.event_id  = {
8465 			.header = {
8466 				.type = PERF_RECORD_NAMESPACES,
8467 				.misc = 0,
8468 				.size = sizeof(namespaces_event.event_id),
8469 			},
8470 			/* .pid */
8471 			/* .tid */
8472 			.nr_namespaces = NR_NAMESPACES,
8473 			/* .link_info[NR_NAMESPACES] */
8474 		},
8475 	};
8476 
8477 	ns_link_info = namespaces_event.event_id.link_info;
8478 
8479 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8480 			       task, &mntns_operations);
8481 
8482 #ifdef CONFIG_USER_NS
8483 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8484 			       task, &userns_operations);
8485 #endif
8486 #ifdef CONFIG_NET_NS
8487 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8488 			       task, &netns_operations);
8489 #endif
8490 #ifdef CONFIG_UTS_NS
8491 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8492 			       task, &utsns_operations);
8493 #endif
8494 #ifdef CONFIG_IPC_NS
8495 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8496 			       task, &ipcns_operations);
8497 #endif
8498 #ifdef CONFIG_PID_NS
8499 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8500 			       task, &pidns_operations);
8501 #endif
8502 #ifdef CONFIG_CGROUPS
8503 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8504 			       task, &cgroupns_operations);
8505 #endif
8506 
8507 	perf_iterate_sb(perf_event_namespaces_output,
8508 			&namespaces_event,
8509 			NULL);
8510 }
8511 
8512 /*
8513  * cgroup tracking
8514  */
8515 #ifdef CONFIG_CGROUP_PERF
8516 
8517 struct perf_cgroup_event {
8518 	char				*path;
8519 	int				path_size;
8520 	struct {
8521 		struct perf_event_header	header;
8522 		u64				id;
8523 		char				path[];
8524 	} event_id;
8525 };
8526 
8527 static int perf_event_cgroup_match(struct perf_event *event)
8528 {
8529 	return event->attr.cgroup;
8530 }
8531 
8532 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8533 {
8534 	struct perf_cgroup_event *cgroup_event = data;
8535 	struct perf_output_handle handle;
8536 	struct perf_sample_data sample;
8537 	u16 header_size = cgroup_event->event_id.header.size;
8538 	int ret;
8539 
8540 	if (!perf_event_cgroup_match(event))
8541 		return;
8542 
8543 	perf_event_header__init_id(&cgroup_event->event_id.header,
8544 				   &sample, event);
8545 	ret = perf_output_begin(&handle, &sample, event,
8546 				cgroup_event->event_id.header.size);
8547 	if (ret)
8548 		goto out;
8549 
8550 	perf_output_put(&handle, cgroup_event->event_id);
8551 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8552 
8553 	perf_event__output_id_sample(event, &handle, &sample);
8554 
8555 	perf_output_end(&handle);
8556 out:
8557 	cgroup_event->event_id.header.size = header_size;
8558 }
8559 
8560 static void perf_event_cgroup(struct cgroup *cgrp)
8561 {
8562 	struct perf_cgroup_event cgroup_event;
8563 	char path_enomem[16] = "//enomem";
8564 	char *pathname;
8565 	size_t size;
8566 
8567 	if (!atomic_read(&nr_cgroup_events))
8568 		return;
8569 
8570 	cgroup_event = (struct perf_cgroup_event){
8571 		.event_id  = {
8572 			.header = {
8573 				.type = PERF_RECORD_CGROUP,
8574 				.misc = 0,
8575 				.size = sizeof(cgroup_event.event_id),
8576 			},
8577 			.id = cgroup_id(cgrp),
8578 		},
8579 	};
8580 
8581 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8582 	if (pathname == NULL) {
8583 		cgroup_event.path = path_enomem;
8584 	} else {
8585 		/* just to be sure to have enough space for alignment */
8586 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8587 		cgroup_event.path = pathname;
8588 	}
8589 
8590 	/*
8591 	 * Since our buffer works in 8 byte units we need to align our string
8592 	 * size to a multiple of 8. However, we must guarantee the tail end is
8593 	 * zero'd out to avoid leaking random bits to userspace.
8594 	 */
8595 	size = strlen(cgroup_event.path) + 1;
8596 	while (!IS_ALIGNED(size, sizeof(u64)))
8597 		cgroup_event.path[size++] = '\0';
8598 
8599 	cgroup_event.event_id.header.size += size;
8600 	cgroup_event.path_size = size;
8601 
8602 	perf_iterate_sb(perf_event_cgroup_output,
8603 			&cgroup_event,
8604 			NULL);
8605 
8606 	kfree(pathname);
8607 }
8608 
8609 #endif
8610 
8611 /*
8612  * mmap tracking
8613  */
8614 
8615 struct perf_mmap_event {
8616 	struct vm_area_struct	*vma;
8617 
8618 	const char		*file_name;
8619 	int			file_size;
8620 	int			maj, min;
8621 	u64			ino;
8622 	u64			ino_generation;
8623 	u32			prot, flags;
8624 	u8			build_id[BUILD_ID_SIZE_MAX];
8625 	u32			build_id_size;
8626 
8627 	struct {
8628 		struct perf_event_header	header;
8629 
8630 		u32				pid;
8631 		u32				tid;
8632 		u64				start;
8633 		u64				len;
8634 		u64				pgoff;
8635 	} event_id;
8636 };
8637 
8638 static int perf_event_mmap_match(struct perf_event *event,
8639 				 void *data)
8640 {
8641 	struct perf_mmap_event *mmap_event = data;
8642 	struct vm_area_struct *vma = mmap_event->vma;
8643 	int executable = vma->vm_flags & VM_EXEC;
8644 
8645 	return (!executable && event->attr.mmap_data) ||
8646 	       (executable && (event->attr.mmap || event->attr.mmap2));
8647 }
8648 
8649 static void perf_event_mmap_output(struct perf_event *event,
8650 				   void *data)
8651 {
8652 	struct perf_mmap_event *mmap_event = data;
8653 	struct perf_output_handle handle;
8654 	struct perf_sample_data sample;
8655 	int size = mmap_event->event_id.header.size;
8656 	u32 type = mmap_event->event_id.header.type;
8657 	bool use_build_id;
8658 	int ret;
8659 
8660 	if (!perf_event_mmap_match(event, data))
8661 		return;
8662 
8663 	if (event->attr.mmap2) {
8664 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8665 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8666 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8667 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8668 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8669 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8670 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8671 	}
8672 
8673 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8674 	ret = perf_output_begin(&handle, &sample, event,
8675 				mmap_event->event_id.header.size);
8676 	if (ret)
8677 		goto out;
8678 
8679 	mmap_event->event_id.pid = perf_event_pid(event, current);
8680 	mmap_event->event_id.tid = perf_event_tid(event, current);
8681 
8682 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8683 
8684 	if (event->attr.mmap2 && use_build_id)
8685 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8686 
8687 	perf_output_put(&handle, mmap_event->event_id);
8688 
8689 	if (event->attr.mmap2) {
8690 		if (use_build_id) {
8691 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8692 
8693 			__output_copy(&handle, size, 4);
8694 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8695 		} else {
8696 			perf_output_put(&handle, mmap_event->maj);
8697 			perf_output_put(&handle, mmap_event->min);
8698 			perf_output_put(&handle, mmap_event->ino);
8699 			perf_output_put(&handle, mmap_event->ino_generation);
8700 		}
8701 		perf_output_put(&handle, mmap_event->prot);
8702 		perf_output_put(&handle, mmap_event->flags);
8703 	}
8704 
8705 	__output_copy(&handle, mmap_event->file_name,
8706 				   mmap_event->file_size);
8707 
8708 	perf_event__output_id_sample(event, &handle, &sample);
8709 
8710 	perf_output_end(&handle);
8711 out:
8712 	mmap_event->event_id.header.size = size;
8713 	mmap_event->event_id.header.type = type;
8714 }
8715 
8716 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8717 {
8718 	struct vm_area_struct *vma = mmap_event->vma;
8719 	struct file *file = vma->vm_file;
8720 	int maj = 0, min = 0;
8721 	u64 ino = 0, gen = 0;
8722 	u32 prot = 0, flags = 0;
8723 	unsigned int size;
8724 	char tmp[16];
8725 	char *buf = NULL;
8726 	char *name = NULL;
8727 
8728 	if (vma->vm_flags & VM_READ)
8729 		prot |= PROT_READ;
8730 	if (vma->vm_flags & VM_WRITE)
8731 		prot |= PROT_WRITE;
8732 	if (vma->vm_flags & VM_EXEC)
8733 		prot |= PROT_EXEC;
8734 
8735 	if (vma->vm_flags & VM_MAYSHARE)
8736 		flags = MAP_SHARED;
8737 	else
8738 		flags = MAP_PRIVATE;
8739 
8740 	if (vma->vm_flags & VM_LOCKED)
8741 		flags |= MAP_LOCKED;
8742 	if (is_vm_hugetlb_page(vma))
8743 		flags |= MAP_HUGETLB;
8744 
8745 	if (file) {
8746 		struct inode *inode;
8747 		dev_t dev;
8748 
8749 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8750 		if (!buf) {
8751 			name = "//enomem";
8752 			goto cpy_name;
8753 		}
8754 		/*
8755 		 * d_path() works from the end of the rb backwards, so we
8756 		 * need to add enough zero bytes after the string to handle
8757 		 * the 64bit alignment we do later.
8758 		 */
8759 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8760 		if (IS_ERR(name)) {
8761 			name = "//toolong";
8762 			goto cpy_name;
8763 		}
8764 		inode = file_inode(vma->vm_file);
8765 		dev = inode->i_sb->s_dev;
8766 		ino = inode->i_ino;
8767 		gen = inode->i_generation;
8768 		maj = MAJOR(dev);
8769 		min = MINOR(dev);
8770 
8771 		goto got_name;
8772 	} else {
8773 		if (vma->vm_ops && vma->vm_ops->name)
8774 			name = (char *) vma->vm_ops->name(vma);
8775 		if (!name)
8776 			name = (char *)arch_vma_name(vma);
8777 		if (!name) {
8778 			if (vma_is_initial_heap(vma))
8779 				name = "[heap]";
8780 			else if (vma_is_initial_stack(vma))
8781 				name = "[stack]";
8782 			else
8783 				name = "//anon";
8784 		}
8785 	}
8786 
8787 cpy_name:
8788 	strscpy(tmp, name, sizeof(tmp));
8789 	name = tmp;
8790 got_name:
8791 	/*
8792 	 * Since our buffer works in 8 byte units we need to align our string
8793 	 * size to a multiple of 8. However, we must guarantee the tail end is
8794 	 * zero'd out to avoid leaking random bits to userspace.
8795 	 */
8796 	size = strlen(name)+1;
8797 	while (!IS_ALIGNED(size, sizeof(u64)))
8798 		name[size++] = '\0';
8799 
8800 	mmap_event->file_name = name;
8801 	mmap_event->file_size = size;
8802 	mmap_event->maj = maj;
8803 	mmap_event->min = min;
8804 	mmap_event->ino = ino;
8805 	mmap_event->ino_generation = gen;
8806 	mmap_event->prot = prot;
8807 	mmap_event->flags = flags;
8808 
8809 	if (!(vma->vm_flags & VM_EXEC))
8810 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8811 
8812 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8813 
8814 	if (atomic_read(&nr_build_id_events))
8815 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8816 
8817 	perf_iterate_sb(perf_event_mmap_output,
8818 		       mmap_event,
8819 		       NULL);
8820 
8821 	kfree(buf);
8822 }
8823 
8824 /*
8825  * Check whether inode and address range match filter criteria.
8826  */
8827 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8828 				     struct file *file, unsigned long offset,
8829 				     unsigned long size)
8830 {
8831 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8832 	if (!filter->path.dentry)
8833 		return false;
8834 
8835 	if (d_inode(filter->path.dentry) != file_inode(file))
8836 		return false;
8837 
8838 	if (filter->offset > offset + size)
8839 		return false;
8840 
8841 	if (filter->offset + filter->size < offset)
8842 		return false;
8843 
8844 	return true;
8845 }
8846 
8847 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8848 					struct vm_area_struct *vma,
8849 					struct perf_addr_filter_range *fr)
8850 {
8851 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8852 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8853 	struct file *file = vma->vm_file;
8854 
8855 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8856 		return false;
8857 
8858 	if (filter->offset < off) {
8859 		fr->start = vma->vm_start;
8860 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8861 	} else {
8862 		fr->start = vma->vm_start + filter->offset - off;
8863 		fr->size = min(vma->vm_end - fr->start, filter->size);
8864 	}
8865 
8866 	return true;
8867 }
8868 
8869 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8870 {
8871 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8872 	struct vm_area_struct *vma = data;
8873 	struct perf_addr_filter *filter;
8874 	unsigned int restart = 0, count = 0;
8875 	unsigned long flags;
8876 
8877 	if (!has_addr_filter(event))
8878 		return;
8879 
8880 	if (!vma->vm_file)
8881 		return;
8882 
8883 	raw_spin_lock_irqsave(&ifh->lock, flags);
8884 	list_for_each_entry(filter, &ifh->list, entry) {
8885 		if (perf_addr_filter_vma_adjust(filter, vma,
8886 						&event->addr_filter_ranges[count]))
8887 			restart++;
8888 
8889 		count++;
8890 	}
8891 
8892 	if (restart)
8893 		event->addr_filters_gen++;
8894 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8895 
8896 	if (restart)
8897 		perf_event_stop(event, 1);
8898 }
8899 
8900 /*
8901  * Adjust all task's events' filters to the new vma
8902  */
8903 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8904 {
8905 	struct perf_event_context *ctx;
8906 
8907 	/*
8908 	 * Data tracing isn't supported yet and as such there is no need
8909 	 * to keep track of anything that isn't related to executable code:
8910 	 */
8911 	if (!(vma->vm_flags & VM_EXEC))
8912 		return;
8913 
8914 	rcu_read_lock();
8915 	ctx = rcu_dereference(current->perf_event_ctxp);
8916 	if (ctx)
8917 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8918 	rcu_read_unlock();
8919 }
8920 
8921 void perf_event_mmap(struct vm_area_struct *vma)
8922 {
8923 	struct perf_mmap_event mmap_event;
8924 
8925 	if (!atomic_read(&nr_mmap_events))
8926 		return;
8927 
8928 	mmap_event = (struct perf_mmap_event){
8929 		.vma	= vma,
8930 		/* .file_name */
8931 		/* .file_size */
8932 		.event_id  = {
8933 			.header = {
8934 				.type = PERF_RECORD_MMAP,
8935 				.misc = PERF_RECORD_MISC_USER,
8936 				/* .size */
8937 			},
8938 			/* .pid */
8939 			/* .tid */
8940 			.start  = vma->vm_start,
8941 			.len    = vma->vm_end - vma->vm_start,
8942 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8943 		},
8944 		/* .maj (attr_mmap2 only) */
8945 		/* .min (attr_mmap2 only) */
8946 		/* .ino (attr_mmap2 only) */
8947 		/* .ino_generation (attr_mmap2 only) */
8948 		/* .prot (attr_mmap2 only) */
8949 		/* .flags (attr_mmap2 only) */
8950 	};
8951 
8952 	perf_addr_filters_adjust(vma);
8953 	perf_event_mmap_event(&mmap_event);
8954 }
8955 
8956 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8957 			  unsigned long size, u64 flags)
8958 {
8959 	struct perf_output_handle handle;
8960 	struct perf_sample_data sample;
8961 	struct perf_aux_event {
8962 		struct perf_event_header	header;
8963 		u64				offset;
8964 		u64				size;
8965 		u64				flags;
8966 	} rec = {
8967 		.header = {
8968 			.type = PERF_RECORD_AUX,
8969 			.misc = 0,
8970 			.size = sizeof(rec),
8971 		},
8972 		.offset		= head,
8973 		.size		= size,
8974 		.flags		= flags,
8975 	};
8976 	int ret;
8977 
8978 	perf_event_header__init_id(&rec.header, &sample, event);
8979 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8980 
8981 	if (ret)
8982 		return;
8983 
8984 	perf_output_put(&handle, rec);
8985 	perf_event__output_id_sample(event, &handle, &sample);
8986 
8987 	perf_output_end(&handle);
8988 }
8989 
8990 /*
8991  * Lost/dropped samples logging
8992  */
8993 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8994 {
8995 	struct perf_output_handle handle;
8996 	struct perf_sample_data sample;
8997 	int ret;
8998 
8999 	struct {
9000 		struct perf_event_header	header;
9001 		u64				lost;
9002 	} lost_samples_event = {
9003 		.header = {
9004 			.type = PERF_RECORD_LOST_SAMPLES,
9005 			.misc = 0,
9006 			.size = sizeof(lost_samples_event),
9007 		},
9008 		.lost		= lost,
9009 	};
9010 
9011 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9012 
9013 	ret = perf_output_begin(&handle, &sample, event,
9014 				lost_samples_event.header.size);
9015 	if (ret)
9016 		return;
9017 
9018 	perf_output_put(&handle, lost_samples_event);
9019 	perf_event__output_id_sample(event, &handle, &sample);
9020 	perf_output_end(&handle);
9021 }
9022 
9023 /*
9024  * context_switch tracking
9025  */
9026 
9027 struct perf_switch_event {
9028 	struct task_struct	*task;
9029 	struct task_struct	*next_prev;
9030 
9031 	struct {
9032 		struct perf_event_header	header;
9033 		u32				next_prev_pid;
9034 		u32				next_prev_tid;
9035 	} event_id;
9036 };
9037 
9038 static int perf_event_switch_match(struct perf_event *event)
9039 {
9040 	return event->attr.context_switch;
9041 }
9042 
9043 static void perf_event_switch_output(struct perf_event *event, void *data)
9044 {
9045 	struct perf_switch_event *se = data;
9046 	struct perf_output_handle handle;
9047 	struct perf_sample_data sample;
9048 	int ret;
9049 
9050 	if (!perf_event_switch_match(event))
9051 		return;
9052 
9053 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9054 	if (event->ctx->task) {
9055 		se->event_id.header.type = PERF_RECORD_SWITCH;
9056 		se->event_id.header.size = sizeof(se->event_id.header);
9057 	} else {
9058 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9059 		se->event_id.header.size = sizeof(se->event_id);
9060 		se->event_id.next_prev_pid =
9061 					perf_event_pid(event, se->next_prev);
9062 		se->event_id.next_prev_tid =
9063 					perf_event_tid(event, se->next_prev);
9064 	}
9065 
9066 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9067 
9068 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9069 	if (ret)
9070 		return;
9071 
9072 	if (event->ctx->task)
9073 		perf_output_put(&handle, se->event_id.header);
9074 	else
9075 		perf_output_put(&handle, se->event_id);
9076 
9077 	perf_event__output_id_sample(event, &handle, &sample);
9078 
9079 	perf_output_end(&handle);
9080 }
9081 
9082 static void perf_event_switch(struct task_struct *task,
9083 			      struct task_struct *next_prev, bool sched_in)
9084 {
9085 	struct perf_switch_event switch_event;
9086 
9087 	/* N.B. caller checks nr_switch_events != 0 */
9088 
9089 	switch_event = (struct perf_switch_event){
9090 		.task		= task,
9091 		.next_prev	= next_prev,
9092 		.event_id	= {
9093 			.header = {
9094 				/* .type */
9095 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9096 				/* .size */
9097 			},
9098 			/* .next_prev_pid */
9099 			/* .next_prev_tid */
9100 		},
9101 	};
9102 
9103 	if (!sched_in && task->on_rq) {
9104 		switch_event.event_id.header.misc |=
9105 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9106 	}
9107 
9108 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9109 }
9110 
9111 /*
9112  * IRQ throttle logging
9113  */
9114 
9115 static void perf_log_throttle(struct perf_event *event, int enable)
9116 {
9117 	struct perf_output_handle handle;
9118 	struct perf_sample_data sample;
9119 	int ret;
9120 
9121 	struct {
9122 		struct perf_event_header	header;
9123 		u64				time;
9124 		u64				id;
9125 		u64				stream_id;
9126 	} throttle_event = {
9127 		.header = {
9128 			.type = PERF_RECORD_THROTTLE,
9129 			.misc = 0,
9130 			.size = sizeof(throttle_event),
9131 		},
9132 		.time		= perf_event_clock(event),
9133 		.id		= primary_event_id(event),
9134 		.stream_id	= event->id,
9135 	};
9136 
9137 	if (enable)
9138 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9139 
9140 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9141 
9142 	ret = perf_output_begin(&handle, &sample, event,
9143 				throttle_event.header.size);
9144 	if (ret)
9145 		return;
9146 
9147 	perf_output_put(&handle, throttle_event);
9148 	perf_event__output_id_sample(event, &handle, &sample);
9149 	perf_output_end(&handle);
9150 }
9151 
9152 /*
9153  * ksymbol register/unregister tracking
9154  */
9155 
9156 struct perf_ksymbol_event {
9157 	const char	*name;
9158 	int		name_len;
9159 	struct {
9160 		struct perf_event_header        header;
9161 		u64				addr;
9162 		u32				len;
9163 		u16				ksym_type;
9164 		u16				flags;
9165 	} event_id;
9166 };
9167 
9168 static int perf_event_ksymbol_match(struct perf_event *event)
9169 {
9170 	return event->attr.ksymbol;
9171 }
9172 
9173 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9174 {
9175 	struct perf_ksymbol_event *ksymbol_event = data;
9176 	struct perf_output_handle handle;
9177 	struct perf_sample_data sample;
9178 	int ret;
9179 
9180 	if (!perf_event_ksymbol_match(event))
9181 		return;
9182 
9183 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9184 				   &sample, event);
9185 	ret = perf_output_begin(&handle, &sample, event,
9186 				ksymbol_event->event_id.header.size);
9187 	if (ret)
9188 		return;
9189 
9190 	perf_output_put(&handle, ksymbol_event->event_id);
9191 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9192 	perf_event__output_id_sample(event, &handle, &sample);
9193 
9194 	perf_output_end(&handle);
9195 }
9196 
9197 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9198 			const char *sym)
9199 {
9200 	struct perf_ksymbol_event ksymbol_event;
9201 	char name[KSYM_NAME_LEN];
9202 	u16 flags = 0;
9203 	int name_len;
9204 
9205 	if (!atomic_read(&nr_ksymbol_events))
9206 		return;
9207 
9208 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9209 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9210 		goto err;
9211 
9212 	strscpy(name, sym, KSYM_NAME_LEN);
9213 	name_len = strlen(name) + 1;
9214 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9215 		name[name_len++] = '\0';
9216 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9217 
9218 	if (unregister)
9219 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9220 
9221 	ksymbol_event = (struct perf_ksymbol_event){
9222 		.name = name,
9223 		.name_len = name_len,
9224 		.event_id = {
9225 			.header = {
9226 				.type = PERF_RECORD_KSYMBOL,
9227 				.size = sizeof(ksymbol_event.event_id) +
9228 					name_len,
9229 			},
9230 			.addr = addr,
9231 			.len = len,
9232 			.ksym_type = ksym_type,
9233 			.flags = flags,
9234 		},
9235 	};
9236 
9237 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9238 	return;
9239 err:
9240 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9241 }
9242 
9243 /*
9244  * bpf program load/unload tracking
9245  */
9246 
9247 struct perf_bpf_event {
9248 	struct bpf_prog	*prog;
9249 	struct {
9250 		struct perf_event_header        header;
9251 		u16				type;
9252 		u16				flags;
9253 		u32				id;
9254 		u8				tag[BPF_TAG_SIZE];
9255 	} event_id;
9256 };
9257 
9258 static int perf_event_bpf_match(struct perf_event *event)
9259 {
9260 	return event->attr.bpf_event;
9261 }
9262 
9263 static void perf_event_bpf_output(struct perf_event *event, void *data)
9264 {
9265 	struct perf_bpf_event *bpf_event = data;
9266 	struct perf_output_handle handle;
9267 	struct perf_sample_data sample;
9268 	int ret;
9269 
9270 	if (!perf_event_bpf_match(event))
9271 		return;
9272 
9273 	perf_event_header__init_id(&bpf_event->event_id.header,
9274 				   &sample, event);
9275 	ret = perf_output_begin(&handle, &sample, event,
9276 				bpf_event->event_id.header.size);
9277 	if (ret)
9278 		return;
9279 
9280 	perf_output_put(&handle, bpf_event->event_id);
9281 	perf_event__output_id_sample(event, &handle, &sample);
9282 
9283 	perf_output_end(&handle);
9284 }
9285 
9286 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9287 					 enum perf_bpf_event_type type)
9288 {
9289 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9290 	int i;
9291 
9292 	if (prog->aux->func_cnt == 0) {
9293 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9294 				   (u64)(unsigned long)prog->bpf_func,
9295 				   prog->jited_len, unregister,
9296 				   prog->aux->ksym.name);
9297 	} else {
9298 		for (i = 0; i < prog->aux->func_cnt; i++) {
9299 			struct bpf_prog *subprog = prog->aux->func[i];
9300 
9301 			perf_event_ksymbol(
9302 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9303 				(u64)(unsigned long)subprog->bpf_func,
9304 				subprog->jited_len, unregister,
9305 				subprog->aux->ksym.name);
9306 		}
9307 	}
9308 }
9309 
9310 void perf_event_bpf_event(struct bpf_prog *prog,
9311 			  enum perf_bpf_event_type type,
9312 			  u16 flags)
9313 {
9314 	struct perf_bpf_event bpf_event;
9315 
9316 	switch (type) {
9317 	case PERF_BPF_EVENT_PROG_LOAD:
9318 	case PERF_BPF_EVENT_PROG_UNLOAD:
9319 		if (atomic_read(&nr_ksymbol_events))
9320 			perf_event_bpf_emit_ksymbols(prog, type);
9321 		break;
9322 	default:
9323 		return;
9324 	}
9325 
9326 	if (!atomic_read(&nr_bpf_events))
9327 		return;
9328 
9329 	bpf_event = (struct perf_bpf_event){
9330 		.prog = prog,
9331 		.event_id = {
9332 			.header = {
9333 				.type = PERF_RECORD_BPF_EVENT,
9334 				.size = sizeof(bpf_event.event_id),
9335 			},
9336 			.type = type,
9337 			.flags = flags,
9338 			.id = prog->aux->id,
9339 		},
9340 	};
9341 
9342 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9343 
9344 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9345 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9346 }
9347 
9348 struct perf_text_poke_event {
9349 	const void		*old_bytes;
9350 	const void		*new_bytes;
9351 	size_t			pad;
9352 	u16			old_len;
9353 	u16			new_len;
9354 
9355 	struct {
9356 		struct perf_event_header	header;
9357 
9358 		u64				addr;
9359 	} event_id;
9360 };
9361 
9362 static int perf_event_text_poke_match(struct perf_event *event)
9363 {
9364 	return event->attr.text_poke;
9365 }
9366 
9367 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9368 {
9369 	struct perf_text_poke_event *text_poke_event = data;
9370 	struct perf_output_handle handle;
9371 	struct perf_sample_data sample;
9372 	u64 padding = 0;
9373 	int ret;
9374 
9375 	if (!perf_event_text_poke_match(event))
9376 		return;
9377 
9378 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9379 
9380 	ret = perf_output_begin(&handle, &sample, event,
9381 				text_poke_event->event_id.header.size);
9382 	if (ret)
9383 		return;
9384 
9385 	perf_output_put(&handle, text_poke_event->event_id);
9386 	perf_output_put(&handle, text_poke_event->old_len);
9387 	perf_output_put(&handle, text_poke_event->new_len);
9388 
9389 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9390 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9391 
9392 	if (text_poke_event->pad)
9393 		__output_copy(&handle, &padding, text_poke_event->pad);
9394 
9395 	perf_event__output_id_sample(event, &handle, &sample);
9396 
9397 	perf_output_end(&handle);
9398 }
9399 
9400 void perf_event_text_poke(const void *addr, const void *old_bytes,
9401 			  size_t old_len, const void *new_bytes, size_t new_len)
9402 {
9403 	struct perf_text_poke_event text_poke_event;
9404 	size_t tot, pad;
9405 
9406 	if (!atomic_read(&nr_text_poke_events))
9407 		return;
9408 
9409 	tot  = sizeof(text_poke_event.old_len) + old_len;
9410 	tot += sizeof(text_poke_event.new_len) + new_len;
9411 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9412 
9413 	text_poke_event = (struct perf_text_poke_event){
9414 		.old_bytes    = old_bytes,
9415 		.new_bytes    = new_bytes,
9416 		.pad          = pad,
9417 		.old_len      = old_len,
9418 		.new_len      = new_len,
9419 		.event_id  = {
9420 			.header = {
9421 				.type = PERF_RECORD_TEXT_POKE,
9422 				.misc = PERF_RECORD_MISC_KERNEL,
9423 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9424 			},
9425 			.addr = (unsigned long)addr,
9426 		},
9427 	};
9428 
9429 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9430 }
9431 
9432 void perf_event_itrace_started(struct perf_event *event)
9433 {
9434 	event->attach_state |= PERF_ATTACH_ITRACE;
9435 }
9436 
9437 static void perf_log_itrace_start(struct perf_event *event)
9438 {
9439 	struct perf_output_handle handle;
9440 	struct perf_sample_data sample;
9441 	struct perf_aux_event {
9442 		struct perf_event_header        header;
9443 		u32				pid;
9444 		u32				tid;
9445 	} rec;
9446 	int ret;
9447 
9448 	if (event->parent)
9449 		event = event->parent;
9450 
9451 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9452 	    event->attach_state & PERF_ATTACH_ITRACE)
9453 		return;
9454 
9455 	rec.header.type	= PERF_RECORD_ITRACE_START;
9456 	rec.header.misc	= 0;
9457 	rec.header.size	= sizeof(rec);
9458 	rec.pid	= perf_event_pid(event, current);
9459 	rec.tid	= perf_event_tid(event, current);
9460 
9461 	perf_event_header__init_id(&rec.header, &sample, event);
9462 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9463 
9464 	if (ret)
9465 		return;
9466 
9467 	perf_output_put(&handle, rec);
9468 	perf_event__output_id_sample(event, &handle, &sample);
9469 
9470 	perf_output_end(&handle);
9471 }
9472 
9473 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9474 {
9475 	struct perf_output_handle handle;
9476 	struct perf_sample_data sample;
9477 	struct perf_aux_event {
9478 		struct perf_event_header        header;
9479 		u64				hw_id;
9480 	} rec;
9481 	int ret;
9482 
9483 	if (event->parent)
9484 		event = event->parent;
9485 
9486 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9487 	rec.header.misc	= 0;
9488 	rec.header.size	= sizeof(rec);
9489 	rec.hw_id	= hw_id;
9490 
9491 	perf_event_header__init_id(&rec.header, &sample, event);
9492 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9493 
9494 	if (ret)
9495 		return;
9496 
9497 	perf_output_put(&handle, rec);
9498 	perf_event__output_id_sample(event, &handle, &sample);
9499 
9500 	perf_output_end(&handle);
9501 }
9502 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9503 
9504 static int
9505 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9506 {
9507 	struct hw_perf_event *hwc = &event->hw;
9508 	int ret = 0;
9509 	u64 seq;
9510 
9511 	seq = __this_cpu_read(perf_throttled_seq);
9512 	if (seq != hwc->interrupts_seq) {
9513 		hwc->interrupts_seq = seq;
9514 		hwc->interrupts = 1;
9515 	} else {
9516 		hwc->interrupts++;
9517 		if (unlikely(throttle &&
9518 			     hwc->interrupts > max_samples_per_tick)) {
9519 			__this_cpu_inc(perf_throttled_count);
9520 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9521 			hwc->interrupts = MAX_INTERRUPTS;
9522 			perf_log_throttle(event, 0);
9523 			ret = 1;
9524 		}
9525 	}
9526 
9527 	if (event->attr.freq) {
9528 		u64 now = perf_clock();
9529 		s64 delta = now - hwc->freq_time_stamp;
9530 
9531 		hwc->freq_time_stamp = now;
9532 
9533 		if (delta > 0 && delta < 2*TICK_NSEC)
9534 			perf_adjust_period(event, delta, hwc->last_period, true);
9535 	}
9536 
9537 	return ret;
9538 }
9539 
9540 int perf_event_account_interrupt(struct perf_event *event)
9541 {
9542 	return __perf_event_account_interrupt(event, 1);
9543 }
9544 
9545 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9546 {
9547 	/*
9548 	 * Due to interrupt latency (AKA "skid"), we may enter the
9549 	 * kernel before taking an overflow, even if the PMU is only
9550 	 * counting user events.
9551 	 */
9552 	if (event->attr.exclude_kernel && !user_mode(regs))
9553 		return false;
9554 
9555 	return true;
9556 }
9557 
9558 #ifdef CONFIG_BPF_SYSCALL
9559 static int bpf_overflow_handler(struct perf_event *event,
9560 				struct perf_sample_data *data,
9561 				struct pt_regs *regs)
9562 {
9563 	struct bpf_perf_event_data_kern ctx = {
9564 		.data = data,
9565 		.event = event,
9566 	};
9567 	struct bpf_prog *prog;
9568 	int ret = 0;
9569 
9570 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9571 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9572 		goto out;
9573 	rcu_read_lock();
9574 	prog = READ_ONCE(event->prog);
9575 	if (prog) {
9576 		perf_prepare_sample(data, event, regs);
9577 		ret = bpf_prog_run(prog, &ctx);
9578 	}
9579 	rcu_read_unlock();
9580 out:
9581 	__this_cpu_dec(bpf_prog_active);
9582 
9583 	return ret;
9584 }
9585 
9586 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9587 					     struct bpf_prog *prog,
9588 					     u64 bpf_cookie)
9589 {
9590 	if (event->overflow_handler_context)
9591 		/* hw breakpoint or kernel counter */
9592 		return -EINVAL;
9593 
9594 	if (event->prog)
9595 		return -EEXIST;
9596 
9597 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9598 		return -EINVAL;
9599 
9600 	if (event->attr.precise_ip &&
9601 	    prog->call_get_stack &&
9602 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9603 	     event->attr.exclude_callchain_kernel ||
9604 	     event->attr.exclude_callchain_user)) {
9605 		/*
9606 		 * On perf_event with precise_ip, calling bpf_get_stack()
9607 		 * may trigger unwinder warnings and occasional crashes.
9608 		 * bpf_get_[stack|stackid] works around this issue by using
9609 		 * callchain attached to perf_sample_data. If the
9610 		 * perf_event does not full (kernel and user) callchain
9611 		 * attached to perf_sample_data, do not allow attaching BPF
9612 		 * program that calls bpf_get_[stack|stackid].
9613 		 */
9614 		return -EPROTO;
9615 	}
9616 
9617 	event->prog = prog;
9618 	event->bpf_cookie = bpf_cookie;
9619 	return 0;
9620 }
9621 
9622 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9623 {
9624 	struct bpf_prog *prog = event->prog;
9625 
9626 	if (!prog)
9627 		return;
9628 
9629 	event->prog = NULL;
9630 	bpf_prog_put(prog);
9631 }
9632 #else
9633 static inline int bpf_overflow_handler(struct perf_event *event,
9634 				       struct perf_sample_data *data,
9635 				       struct pt_regs *regs)
9636 {
9637 	return 1;
9638 }
9639 
9640 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9641 					     struct bpf_prog *prog,
9642 					     u64 bpf_cookie)
9643 {
9644 	return -EOPNOTSUPP;
9645 }
9646 
9647 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9648 {
9649 }
9650 #endif
9651 
9652 /*
9653  * Generic event overflow handling, sampling.
9654  */
9655 
9656 static int __perf_event_overflow(struct perf_event *event,
9657 				 int throttle, struct perf_sample_data *data,
9658 				 struct pt_regs *regs)
9659 {
9660 	int events = atomic_read(&event->event_limit);
9661 	int ret = 0;
9662 
9663 	/*
9664 	 * Non-sampling counters might still use the PMI to fold short
9665 	 * hardware counters, ignore those.
9666 	 */
9667 	if (unlikely(!is_sampling_event(event)))
9668 		return 0;
9669 
9670 	ret = __perf_event_account_interrupt(event, throttle);
9671 
9672 	if (event->prog && !bpf_overflow_handler(event, data, regs))
9673 		return ret;
9674 
9675 	/*
9676 	 * XXX event_limit might not quite work as expected on inherited
9677 	 * events
9678 	 */
9679 
9680 	event->pending_kill = POLL_IN;
9681 	if (events && atomic_dec_and_test(&event->event_limit)) {
9682 		ret = 1;
9683 		event->pending_kill = POLL_HUP;
9684 		perf_event_disable_inatomic(event);
9685 	}
9686 
9687 	if (event->attr.sigtrap) {
9688 		/*
9689 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9690 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9691 		 * it is the first event, on the other hand, we should also not
9692 		 * trigger the WARN or override the data address.
9693 		 */
9694 		bool valid_sample = sample_is_allowed(event, regs);
9695 		unsigned int pending_id = 1;
9696 
9697 		if (regs)
9698 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9699 		if (!event->pending_sigtrap) {
9700 			event->pending_sigtrap = pending_id;
9701 			local_inc(&event->ctx->nr_pending);
9702 		} else if (event->attr.exclude_kernel && valid_sample) {
9703 			/*
9704 			 * Should not be able to return to user space without
9705 			 * consuming pending_sigtrap; with exceptions:
9706 			 *
9707 			 *  1. Where !exclude_kernel, events can overflow again
9708 			 *     in the kernel without returning to user space.
9709 			 *
9710 			 *  2. Events that can overflow again before the IRQ-
9711 			 *     work without user space progress (e.g. hrtimer).
9712 			 *     To approximate progress (with false negatives),
9713 			 *     check 32-bit hash of the current IP.
9714 			 */
9715 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9716 		}
9717 
9718 		event->pending_addr = 0;
9719 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9720 			event->pending_addr = data->addr;
9721 		irq_work_queue(&event->pending_irq);
9722 	}
9723 
9724 	READ_ONCE(event->overflow_handler)(event, data, regs);
9725 
9726 	if (*perf_event_fasync(event) && event->pending_kill) {
9727 		event->pending_wakeup = 1;
9728 		irq_work_queue(&event->pending_irq);
9729 	}
9730 
9731 	return ret;
9732 }
9733 
9734 int perf_event_overflow(struct perf_event *event,
9735 			struct perf_sample_data *data,
9736 			struct pt_regs *regs)
9737 {
9738 	return __perf_event_overflow(event, 1, data, regs);
9739 }
9740 
9741 /*
9742  * Generic software event infrastructure
9743  */
9744 
9745 struct swevent_htable {
9746 	struct swevent_hlist		*swevent_hlist;
9747 	struct mutex			hlist_mutex;
9748 	int				hlist_refcount;
9749 
9750 	/* Recursion avoidance in each contexts */
9751 	int				recursion[PERF_NR_CONTEXTS];
9752 };
9753 
9754 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9755 
9756 /*
9757  * We directly increment event->count and keep a second value in
9758  * event->hw.period_left to count intervals. This period event
9759  * is kept in the range [-sample_period, 0] so that we can use the
9760  * sign as trigger.
9761  */
9762 
9763 u64 perf_swevent_set_period(struct perf_event *event)
9764 {
9765 	struct hw_perf_event *hwc = &event->hw;
9766 	u64 period = hwc->last_period;
9767 	u64 nr, offset;
9768 	s64 old, val;
9769 
9770 	hwc->last_period = hwc->sample_period;
9771 
9772 	old = local64_read(&hwc->period_left);
9773 	do {
9774 		val = old;
9775 		if (val < 0)
9776 			return 0;
9777 
9778 		nr = div64_u64(period + val, period);
9779 		offset = nr * period;
9780 		val -= offset;
9781 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9782 
9783 	return nr;
9784 }
9785 
9786 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9787 				    struct perf_sample_data *data,
9788 				    struct pt_regs *regs)
9789 {
9790 	struct hw_perf_event *hwc = &event->hw;
9791 	int throttle = 0;
9792 
9793 	if (!overflow)
9794 		overflow = perf_swevent_set_period(event);
9795 
9796 	if (hwc->interrupts == MAX_INTERRUPTS)
9797 		return;
9798 
9799 	for (; overflow; overflow--) {
9800 		if (__perf_event_overflow(event, throttle,
9801 					    data, regs)) {
9802 			/*
9803 			 * We inhibit the overflow from happening when
9804 			 * hwc->interrupts == MAX_INTERRUPTS.
9805 			 */
9806 			break;
9807 		}
9808 		throttle = 1;
9809 	}
9810 }
9811 
9812 static void perf_swevent_event(struct perf_event *event, u64 nr,
9813 			       struct perf_sample_data *data,
9814 			       struct pt_regs *regs)
9815 {
9816 	struct hw_perf_event *hwc = &event->hw;
9817 
9818 	local64_add(nr, &event->count);
9819 
9820 	if (!regs)
9821 		return;
9822 
9823 	if (!is_sampling_event(event))
9824 		return;
9825 
9826 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9827 		data->period = nr;
9828 		return perf_swevent_overflow(event, 1, data, regs);
9829 	} else
9830 		data->period = event->hw.last_period;
9831 
9832 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9833 		return perf_swevent_overflow(event, 1, data, regs);
9834 
9835 	if (local64_add_negative(nr, &hwc->period_left))
9836 		return;
9837 
9838 	perf_swevent_overflow(event, 0, data, regs);
9839 }
9840 
9841 static int perf_exclude_event(struct perf_event *event,
9842 			      struct pt_regs *regs)
9843 {
9844 	if (event->hw.state & PERF_HES_STOPPED)
9845 		return 1;
9846 
9847 	if (regs) {
9848 		if (event->attr.exclude_user && user_mode(regs))
9849 			return 1;
9850 
9851 		if (event->attr.exclude_kernel && !user_mode(regs))
9852 			return 1;
9853 	}
9854 
9855 	return 0;
9856 }
9857 
9858 static int perf_swevent_match(struct perf_event *event,
9859 				enum perf_type_id type,
9860 				u32 event_id,
9861 				struct perf_sample_data *data,
9862 				struct pt_regs *regs)
9863 {
9864 	if (event->attr.type != type)
9865 		return 0;
9866 
9867 	if (event->attr.config != event_id)
9868 		return 0;
9869 
9870 	if (perf_exclude_event(event, regs))
9871 		return 0;
9872 
9873 	return 1;
9874 }
9875 
9876 static inline u64 swevent_hash(u64 type, u32 event_id)
9877 {
9878 	u64 val = event_id | (type << 32);
9879 
9880 	return hash_64(val, SWEVENT_HLIST_BITS);
9881 }
9882 
9883 static inline struct hlist_head *
9884 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9885 {
9886 	u64 hash = swevent_hash(type, event_id);
9887 
9888 	return &hlist->heads[hash];
9889 }
9890 
9891 /* For the read side: events when they trigger */
9892 static inline struct hlist_head *
9893 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9894 {
9895 	struct swevent_hlist *hlist;
9896 
9897 	hlist = rcu_dereference(swhash->swevent_hlist);
9898 	if (!hlist)
9899 		return NULL;
9900 
9901 	return __find_swevent_head(hlist, type, event_id);
9902 }
9903 
9904 /* For the event head insertion and removal in the hlist */
9905 static inline struct hlist_head *
9906 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9907 {
9908 	struct swevent_hlist *hlist;
9909 	u32 event_id = event->attr.config;
9910 	u64 type = event->attr.type;
9911 
9912 	/*
9913 	 * Event scheduling is always serialized against hlist allocation
9914 	 * and release. Which makes the protected version suitable here.
9915 	 * The context lock guarantees that.
9916 	 */
9917 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9918 					  lockdep_is_held(&event->ctx->lock));
9919 	if (!hlist)
9920 		return NULL;
9921 
9922 	return __find_swevent_head(hlist, type, event_id);
9923 }
9924 
9925 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9926 				    u64 nr,
9927 				    struct perf_sample_data *data,
9928 				    struct pt_regs *regs)
9929 {
9930 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9931 	struct perf_event *event;
9932 	struct hlist_head *head;
9933 
9934 	rcu_read_lock();
9935 	head = find_swevent_head_rcu(swhash, type, event_id);
9936 	if (!head)
9937 		goto end;
9938 
9939 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9940 		if (perf_swevent_match(event, type, event_id, data, regs))
9941 			perf_swevent_event(event, nr, data, regs);
9942 	}
9943 end:
9944 	rcu_read_unlock();
9945 }
9946 
9947 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9948 
9949 int perf_swevent_get_recursion_context(void)
9950 {
9951 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9952 
9953 	return get_recursion_context(swhash->recursion);
9954 }
9955 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9956 
9957 void perf_swevent_put_recursion_context(int rctx)
9958 {
9959 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9960 
9961 	put_recursion_context(swhash->recursion, rctx);
9962 }
9963 
9964 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9965 {
9966 	struct perf_sample_data data;
9967 
9968 	if (WARN_ON_ONCE(!regs))
9969 		return;
9970 
9971 	perf_sample_data_init(&data, addr, 0);
9972 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9973 }
9974 
9975 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9976 {
9977 	int rctx;
9978 
9979 	preempt_disable_notrace();
9980 	rctx = perf_swevent_get_recursion_context();
9981 	if (unlikely(rctx < 0))
9982 		goto fail;
9983 
9984 	___perf_sw_event(event_id, nr, regs, addr);
9985 
9986 	perf_swevent_put_recursion_context(rctx);
9987 fail:
9988 	preempt_enable_notrace();
9989 }
9990 
9991 static void perf_swevent_read(struct perf_event *event)
9992 {
9993 }
9994 
9995 static int perf_swevent_add(struct perf_event *event, int flags)
9996 {
9997 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9998 	struct hw_perf_event *hwc = &event->hw;
9999 	struct hlist_head *head;
10000 
10001 	if (is_sampling_event(event)) {
10002 		hwc->last_period = hwc->sample_period;
10003 		perf_swevent_set_period(event);
10004 	}
10005 
10006 	hwc->state = !(flags & PERF_EF_START);
10007 
10008 	head = find_swevent_head(swhash, event);
10009 	if (WARN_ON_ONCE(!head))
10010 		return -EINVAL;
10011 
10012 	hlist_add_head_rcu(&event->hlist_entry, head);
10013 	perf_event_update_userpage(event);
10014 
10015 	return 0;
10016 }
10017 
10018 static void perf_swevent_del(struct perf_event *event, int flags)
10019 {
10020 	hlist_del_rcu(&event->hlist_entry);
10021 }
10022 
10023 static void perf_swevent_start(struct perf_event *event, int flags)
10024 {
10025 	event->hw.state = 0;
10026 }
10027 
10028 static void perf_swevent_stop(struct perf_event *event, int flags)
10029 {
10030 	event->hw.state = PERF_HES_STOPPED;
10031 }
10032 
10033 /* Deref the hlist from the update side */
10034 static inline struct swevent_hlist *
10035 swevent_hlist_deref(struct swevent_htable *swhash)
10036 {
10037 	return rcu_dereference_protected(swhash->swevent_hlist,
10038 					 lockdep_is_held(&swhash->hlist_mutex));
10039 }
10040 
10041 static void swevent_hlist_release(struct swevent_htable *swhash)
10042 {
10043 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10044 
10045 	if (!hlist)
10046 		return;
10047 
10048 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10049 	kfree_rcu(hlist, rcu_head);
10050 }
10051 
10052 static void swevent_hlist_put_cpu(int cpu)
10053 {
10054 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10055 
10056 	mutex_lock(&swhash->hlist_mutex);
10057 
10058 	if (!--swhash->hlist_refcount)
10059 		swevent_hlist_release(swhash);
10060 
10061 	mutex_unlock(&swhash->hlist_mutex);
10062 }
10063 
10064 static void swevent_hlist_put(void)
10065 {
10066 	int cpu;
10067 
10068 	for_each_possible_cpu(cpu)
10069 		swevent_hlist_put_cpu(cpu);
10070 }
10071 
10072 static int swevent_hlist_get_cpu(int cpu)
10073 {
10074 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10075 	int err = 0;
10076 
10077 	mutex_lock(&swhash->hlist_mutex);
10078 	if (!swevent_hlist_deref(swhash) &&
10079 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10080 		struct swevent_hlist *hlist;
10081 
10082 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10083 		if (!hlist) {
10084 			err = -ENOMEM;
10085 			goto exit;
10086 		}
10087 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10088 	}
10089 	swhash->hlist_refcount++;
10090 exit:
10091 	mutex_unlock(&swhash->hlist_mutex);
10092 
10093 	return err;
10094 }
10095 
10096 static int swevent_hlist_get(void)
10097 {
10098 	int err, cpu, failed_cpu;
10099 
10100 	mutex_lock(&pmus_lock);
10101 	for_each_possible_cpu(cpu) {
10102 		err = swevent_hlist_get_cpu(cpu);
10103 		if (err) {
10104 			failed_cpu = cpu;
10105 			goto fail;
10106 		}
10107 	}
10108 	mutex_unlock(&pmus_lock);
10109 	return 0;
10110 fail:
10111 	for_each_possible_cpu(cpu) {
10112 		if (cpu == failed_cpu)
10113 			break;
10114 		swevent_hlist_put_cpu(cpu);
10115 	}
10116 	mutex_unlock(&pmus_lock);
10117 	return err;
10118 }
10119 
10120 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10121 
10122 static void sw_perf_event_destroy(struct perf_event *event)
10123 {
10124 	u64 event_id = event->attr.config;
10125 
10126 	WARN_ON(event->parent);
10127 
10128 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10129 	swevent_hlist_put();
10130 }
10131 
10132 static struct pmu perf_cpu_clock; /* fwd declaration */
10133 static struct pmu perf_task_clock;
10134 
10135 static int perf_swevent_init(struct perf_event *event)
10136 {
10137 	u64 event_id = event->attr.config;
10138 
10139 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10140 		return -ENOENT;
10141 
10142 	/*
10143 	 * no branch sampling for software events
10144 	 */
10145 	if (has_branch_stack(event))
10146 		return -EOPNOTSUPP;
10147 
10148 	switch (event_id) {
10149 	case PERF_COUNT_SW_CPU_CLOCK:
10150 		event->attr.type = perf_cpu_clock.type;
10151 		return -ENOENT;
10152 	case PERF_COUNT_SW_TASK_CLOCK:
10153 		event->attr.type = perf_task_clock.type;
10154 		return -ENOENT;
10155 
10156 	default:
10157 		break;
10158 	}
10159 
10160 	if (event_id >= PERF_COUNT_SW_MAX)
10161 		return -ENOENT;
10162 
10163 	if (!event->parent) {
10164 		int err;
10165 
10166 		err = swevent_hlist_get();
10167 		if (err)
10168 			return err;
10169 
10170 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10171 		event->destroy = sw_perf_event_destroy;
10172 	}
10173 
10174 	return 0;
10175 }
10176 
10177 static struct pmu perf_swevent = {
10178 	.task_ctx_nr	= perf_sw_context,
10179 
10180 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10181 
10182 	.event_init	= perf_swevent_init,
10183 	.add		= perf_swevent_add,
10184 	.del		= perf_swevent_del,
10185 	.start		= perf_swevent_start,
10186 	.stop		= perf_swevent_stop,
10187 	.read		= perf_swevent_read,
10188 };
10189 
10190 #ifdef CONFIG_EVENT_TRACING
10191 
10192 static void tp_perf_event_destroy(struct perf_event *event)
10193 {
10194 	perf_trace_destroy(event);
10195 }
10196 
10197 static int perf_tp_event_init(struct perf_event *event)
10198 {
10199 	int err;
10200 
10201 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10202 		return -ENOENT;
10203 
10204 	/*
10205 	 * no branch sampling for tracepoint events
10206 	 */
10207 	if (has_branch_stack(event))
10208 		return -EOPNOTSUPP;
10209 
10210 	err = perf_trace_init(event);
10211 	if (err)
10212 		return err;
10213 
10214 	event->destroy = tp_perf_event_destroy;
10215 
10216 	return 0;
10217 }
10218 
10219 static struct pmu perf_tracepoint = {
10220 	.task_ctx_nr	= perf_sw_context,
10221 
10222 	.event_init	= perf_tp_event_init,
10223 	.add		= perf_trace_add,
10224 	.del		= perf_trace_del,
10225 	.start		= perf_swevent_start,
10226 	.stop		= perf_swevent_stop,
10227 	.read		= perf_swevent_read,
10228 };
10229 
10230 static int perf_tp_filter_match(struct perf_event *event,
10231 				struct perf_sample_data *data)
10232 {
10233 	void *record = data->raw->frag.data;
10234 
10235 	/* only top level events have filters set */
10236 	if (event->parent)
10237 		event = event->parent;
10238 
10239 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10240 		return 1;
10241 	return 0;
10242 }
10243 
10244 static int perf_tp_event_match(struct perf_event *event,
10245 				struct perf_sample_data *data,
10246 				struct pt_regs *regs)
10247 {
10248 	if (event->hw.state & PERF_HES_STOPPED)
10249 		return 0;
10250 	/*
10251 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10252 	 */
10253 	if (event->attr.exclude_kernel && !user_mode(regs))
10254 		return 0;
10255 
10256 	if (!perf_tp_filter_match(event, data))
10257 		return 0;
10258 
10259 	return 1;
10260 }
10261 
10262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10263 			       struct trace_event_call *call, u64 count,
10264 			       struct pt_regs *regs, struct hlist_head *head,
10265 			       struct task_struct *task)
10266 {
10267 	if (bpf_prog_array_valid(call)) {
10268 		*(struct pt_regs **)raw_data = regs;
10269 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10270 			perf_swevent_put_recursion_context(rctx);
10271 			return;
10272 		}
10273 	}
10274 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10275 		      rctx, task);
10276 }
10277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10278 
10279 static void __perf_tp_event_target_task(u64 count, void *record,
10280 					struct pt_regs *regs,
10281 					struct perf_sample_data *data,
10282 					struct perf_event *event)
10283 {
10284 	struct trace_entry *entry = record;
10285 
10286 	if (event->attr.config != entry->type)
10287 		return;
10288 	/* Cannot deliver synchronous signal to other task. */
10289 	if (event->attr.sigtrap)
10290 		return;
10291 	if (perf_tp_event_match(event, data, regs))
10292 		perf_swevent_event(event, count, data, regs);
10293 }
10294 
10295 static void perf_tp_event_target_task(u64 count, void *record,
10296 				      struct pt_regs *regs,
10297 				      struct perf_sample_data *data,
10298 				      struct perf_event_context *ctx)
10299 {
10300 	unsigned int cpu = smp_processor_id();
10301 	struct pmu *pmu = &perf_tracepoint;
10302 	struct perf_event *event, *sibling;
10303 
10304 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10305 		__perf_tp_event_target_task(count, record, regs, data, event);
10306 		for_each_sibling_event(sibling, event)
10307 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10308 	}
10309 
10310 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10311 		__perf_tp_event_target_task(count, record, regs, data, event);
10312 		for_each_sibling_event(sibling, event)
10313 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10314 	}
10315 }
10316 
10317 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10318 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10319 		   struct task_struct *task)
10320 {
10321 	struct perf_sample_data data;
10322 	struct perf_event *event;
10323 
10324 	struct perf_raw_record raw = {
10325 		.frag = {
10326 			.size = entry_size,
10327 			.data = record,
10328 		},
10329 	};
10330 
10331 	perf_sample_data_init(&data, 0, 0);
10332 	perf_sample_save_raw_data(&data, &raw);
10333 
10334 	perf_trace_buf_update(record, event_type);
10335 
10336 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10337 		if (perf_tp_event_match(event, &data, regs)) {
10338 			perf_swevent_event(event, count, &data, regs);
10339 
10340 			/*
10341 			 * Here use the same on-stack perf_sample_data,
10342 			 * some members in data are event-specific and
10343 			 * need to be re-computed for different sweveents.
10344 			 * Re-initialize data->sample_flags safely to avoid
10345 			 * the problem that next event skips preparing data
10346 			 * because data->sample_flags is set.
10347 			 */
10348 			perf_sample_data_init(&data, 0, 0);
10349 			perf_sample_save_raw_data(&data, &raw);
10350 		}
10351 	}
10352 
10353 	/*
10354 	 * If we got specified a target task, also iterate its context and
10355 	 * deliver this event there too.
10356 	 */
10357 	if (task && task != current) {
10358 		struct perf_event_context *ctx;
10359 
10360 		rcu_read_lock();
10361 		ctx = rcu_dereference(task->perf_event_ctxp);
10362 		if (!ctx)
10363 			goto unlock;
10364 
10365 		raw_spin_lock(&ctx->lock);
10366 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10367 		raw_spin_unlock(&ctx->lock);
10368 unlock:
10369 		rcu_read_unlock();
10370 	}
10371 
10372 	perf_swevent_put_recursion_context(rctx);
10373 }
10374 EXPORT_SYMBOL_GPL(perf_tp_event);
10375 
10376 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10377 /*
10378  * Flags in config, used by dynamic PMU kprobe and uprobe
10379  * The flags should match following PMU_FORMAT_ATTR().
10380  *
10381  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10382  *                               if not set, create kprobe/uprobe
10383  *
10384  * The following values specify a reference counter (or semaphore in the
10385  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10386  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10387  *
10388  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10389  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10390  */
10391 enum perf_probe_config {
10392 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10393 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10394 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10395 };
10396 
10397 PMU_FORMAT_ATTR(retprobe, "config:0");
10398 #endif
10399 
10400 #ifdef CONFIG_KPROBE_EVENTS
10401 static struct attribute *kprobe_attrs[] = {
10402 	&format_attr_retprobe.attr,
10403 	NULL,
10404 };
10405 
10406 static struct attribute_group kprobe_format_group = {
10407 	.name = "format",
10408 	.attrs = kprobe_attrs,
10409 };
10410 
10411 static const struct attribute_group *kprobe_attr_groups[] = {
10412 	&kprobe_format_group,
10413 	NULL,
10414 };
10415 
10416 static int perf_kprobe_event_init(struct perf_event *event);
10417 static struct pmu perf_kprobe = {
10418 	.task_ctx_nr	= perf_sw_context,
10419 	.event_init	= perf_kprobe_event_init,
10420 	.add		= perf_trace_add,
10421 	.del		= perf_trace_del,
10422 	.start		= perf_swevent_start,
10423 	.stop		= perf_swevent_stop,
10424 	.read		= perf_swevent_read,
10425 	.attr_groups	= kprobe_attr_groups,
10426 };
10427 
10428 static int perf_kprobe_event_init(struct perf_event *event)
10429 {
10430 	int err;
10431 	bool is_retprobe;
10432 
10433 	if (event->attr.type != perf_kprobe.type)
10434 		return -ENOENT;
10435 
10436 	if (!perfmon_capable())
10437 		return -EACCES;
10438 
10439 	/*
10440 	 * no branch sampling for probe events
10441 	 */
10442 	if (has_branch_stack(event))
10443 		return -EOPNOTSUPP;
10444 
10445 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10446 	err = perf_kprobe_init(event, is_retprobe);
10447 	if (err)
10448 		return err;
10449 
10450 	event->destroy = perf_kprobe_destroy;
10451 
10452 	return 0;
10453 }
10454 #endif /* CONFIG_KPROBE_EVENTS */
10455 
10456 #ifdef CONFIG_UPROBE_EVENTS
10457 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10458 
10459 static struct attribute *uprobe_attrs[] = {
10460 	&format_attr_retprobe.attr,
10461 	&format_attr_ref_ctr_offset.attr,
10462 	NULL,
10463 };
10464 
10465 static struct attribute_group uprobe_format_group = {
10466 	.name = "format",
10467 	.attrs = uprobe_attrs,
10468 };
10469 
10470 static const struct attribute_group *uprobe_attr_groups[] = {
10471 	&uprobe_format_group,
10472 	NULL,
10473 };
10474 
10475 static int perf_uprobe_event_init(struct perf_event *event);
10476 static struct pmu perf_uprobe = {
10477 	.task_ctx_nr	= perf_sw_context,
10478 	.event_init	= perf_uprobe_event_init,
10479 	.add		= perf_trace_add,
10480 	.del		= perf_trace_del,
10481 	.start		= perf_swevent_start,
10482 	.stop		= perf_swevent_stop,
10483 	.read		= perf_swevent_read,
10484 	.attr_groups	= uprobe_attr_groups,
10485 };
10486 
10487 static int perf_uprobe_event_init(struct perf_event *event)
10488 {
10489 	int err;
10490 	unsigned long ref_ctr_offset;
10491 	bool is_retprobe;
10492 
10493 	if (event->attr.type != perf_uprobe.type)
10494 		return -ENOENT;
10495 
10496 	if (!perfmon_capable())
10497 		return -EACCES;
10498 
10499 	/*
10500 	 * no branch sampling for probe events
10501 	 */
10502 	if (has_branch_stack(event))
10503 		return -EOPNOTSUPP;
10504 
10505 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10506 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10507 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10508 	if (err)
10509 		return err;
10510 
10511 	event->destroy = perf_uprobe_destroy;
10512 
10513 	return 0;
10514 }
10515 #endif /* CONFIG_UPROBE_EVENTS */
10516 
10517 static inline void perf_tp_register(void)
10518 {
10519 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10520 #ifdef CONFIG_KPROBE_EVENTS
10521 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10522 #endif
10523 #ifdef CONFIG_UPROBE_EVENTS
10524 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10525 #endif
10526 }
10527 
10528 static void perf_event_free_filter(struct perf_event *event)
10529 {
10530 	ftrace_profile_free_filter(event);
10531 }
10532 
10533 /*
10534  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10535  * with perf_event_open()
10536  */
10537 static inline bool perf_event_is_tracing(struct perf_event *event)
10538 {
10539 	if (event->pmu == &perf_tracepoint)
10540 		return true;
10541 #ifdef CONFIG_KPROBE_EVENTS
10542 	if (event->pmu == &perf_kprobe)
10543 		return true;
10544 #endif
10545 #ifdef CONFIG_UPROBE_EVENTS
10546 	if (event->pmu == &perf_uprobe)
10547 		return true;
10548 #endif
10549 	return false;
10550 }
10551 
10552 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10553 			    u64 bpf_cookie)
10554 {
10555 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10556 
10557 	if (!perf_event_is_tracing(event))
10558 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10559 
10560 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10561 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10562 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10563 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10564 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10565 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10566 		return -EINVAL;
10567 
10568 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10569 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10570 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10571 		return -EINVAL;
10572 
10573 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10574 		/* only uprobe programs are allowed to be sleepable */
10575 		return -EINVAL;
10576 
10577 	/* Kprobe override only works for kprobes, not uprobes. */
10578 	if (prog->kprobe_override && !is_kprobe)
10579 		return -EINVAL;
10580 
10581 	if (is_tracepoint || is_syscall_tp) {
10582 		int off = trace_event_get_offsets(event->tp_event);
10583 
10584 		if (prog->aux->max_ctx_offset > off)
10585 			return -EACCES;
10586 	}
10587 
10588 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10589 }
10590 
10591 void perf_event_free_bpf_prog(struct perf_event *event)
10592 {
10593 	if (!perf_event_is_tracing(event)) {
10594 		perf_event_free_bpf_handler(event);
10595 		return;
10596 	}
10597 	perf_event_detach_bpf_prog(event);
10598 }
10599 
10600 #else
10601 
10602 static inline void perf_tp_register(void)
10603 {
10604 }
10605 
10606 static void perf_event_free_filter(struct perf_event *event)
10607 {
10608 }
10609 
10610 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10611 			    u64 bpf_cookie)
10612 {
10613 	return -ENOENT;
10614 }
10615 
10616 void perf_event_free_bpf_prog(struct perf_event *event)
10617 {
10618 }
10619 #endif /* CONFIG_EVENT_TRACING */
10620 
10621 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10622 void perf_bp_event(struct perf_event *bp, void *data)
10623 {
10624 	struct perf_sample_data sample;
10625 	struct pt_regs *regs = data;
10626 
10627 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10628 
10629 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10630 		perf_swevent_event(bp, 1, &sample, regs);
10631 }
10632 #endif
10633 
10634 /*
10635  * Allocate a new address filter
10636  */
10637 static struct perf_addr_filter *
10638 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10639 {
10640 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10641 	struct perf_addr_filter *filter;
10642 
10643 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10644 	if (!filter)
10645 		return NULL;
10646 
10647 	INIT_LIST_HEAD(&filter->entry);
10648 	list_add_tail(&filter->entry, filters);
10649 
10650 	return filter;
10651 }
10652 
10653 static void free_filters_list(struct list_head *filters)
10654 {
10655 	struct perf_addr_filter *filter, *iter;
10656 
10657 	list_for_each_entry_safe(filter, iter, filters, entry) {
10658 		path_put(&filter->path);
10659 		list_del(&filter->entry);
10660 		kfree(filter);
10661 	}
10662 }
10663 
10664 /*
10665  * Free existing address filters and optionally install new ones
10666  */
10667 static void perf_addr_filters_splice(struct perf_event *event,
10668 				     struct list_head *head)
10669 {
10670 	unsigned long flags;
10671 	LIST_HEAD(list);
10672 
10673 	if (!has_addr_filter(event))
10674 		return;
10675 
10676 	/* don't bother with children, they don't have their own filters */
10677 	if (event->parent)
10678 		return;
10679 
10680 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10681 
10682 	list_splice_init(&event->addr_filters.list, &list);
10683 	if (head)
10684 		list_splice(head, &event->addr_filters.list);
10685 
10686 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10687 
10688 	free_filters_list(&list);
10689 }
10690 
10691 /*
10692  * Scan through mm's vmas and see if one of them matches the
10693  * @filter; if so, adjust filter's address range.
10694  * Called with mm::mmap_lock down for reading.
10695  */
10696 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10697 				   struct mm_struct *mm,
10698 				   struct perf_addr_filter_range *fr)
10699 {
10700 	struct vm_area_struct *vma;
10701 	VMA_ITERATOR(vmi, mm, 0);
10702 
10703 	for_each_vma(vmi, vma) {
10704 		if (!vma->vm_file)
10705 			continue;
10706 
10707 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10708 			return;
10709 	}
10710 }
10711 
10712 /*
10713  * Update event's address range filters based on the
10714  * task's existing mappings, if any.
10715  */
10716 static void perf_event_addr_filters_apply(struct perf_event *event)
10717 {
10718 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10719 	struct task_struct *task = READ_ONCE(event->ctx->task);
10720 	struct perf_addr_filter *filter;
10721 	struct mm_struct *mm = NULL;
10722 	unsigned int count = 0;
10723 	unsigned long flags;
10724 
10725 	/*
10726 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10727 	 * will stop on the parent's child_mutex that our caller is also holding
10728 	 */
10729 	if (task == TASK_TOMBSTONE)
10730 		return;
10731 
10732 	if (ifh->nr_file_filters) {
10733 		mm = get_task_mm(task);
10734 		if (!mm)
10735 			goto restart;
10736 
10737 		mmap_read_lock(mm);
10738 	}
10739 
10740 	raw_spin_lock_irqsave(&ifh->lock, flags);
10741 	list_for_each_entry(filter, &ifh->list, entry) {
10742 		if (filter->path.dentry) {
10743 			/*
10744 			 * Adjust base offset if the filter is associated to a
10745 			 * binary that needs to be mapped:
10746 			 */
10747 			event->addr_filter_ranges[count].start = 0;
10748 			event->addr_filter_ranges[count].size = 0;
10749 
10750 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10751 		} else {
10752 			event->addr_filter_ranges[count].start = filter->offset;
10753 			event->addr_filter_ranges[count].size  = filter->size;
10754 		}
10755 
10756 		count++;
10757 	}
10758 
10759 	event->addr_filters_gen++;
10760 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10761 
10762 	if (ifh->nr_file_filters) {
10763 		mmap_read_unlock(mm);
10764 
10765 		mmput(mm);
10766 	}
10767 
10768 restart:
10769 	perf_event_stop(event, 1);
10770 }
10771 
10772 /*
10773  * Address range filtering: limiting the data to certain
10774  * instruction address ranges. Filters are ioctl()ed to us from
10775  * userspace as ascii strings.
10776  *
10777  * Filter string format:
10778  *
10779  * ACTION RANGE_SPEC
10780  * where ACTION is one of the
10781  *  * "filter": limit the trace to this region
10782  *  * "start": start tracing from this address
10783  *  * "stop": stop tracing at this address/region;
10784  * RANGE_SPEC is
10785  *  * for kernel addresses: <start address>[/<size>]
10786  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10787  *
10788  * if <size> is not specified or is zero, the range is treated as a single
10789  * address; not valid for ACTION=="filter".
10790  */
10791 enum {
10792 	IF_ACT_NONE = -1,
10793 	IF_ACT_FILTER,
10794 	IF_ACT_START,
10795 	IF_ACT_STOP,
10796 	IF_SRC_FILE,
10797 	IF_SRC_KERNEL,
10798 	IF_SRC_FILEADDR,
10799 	IF_SRC_KERNELADDR,
10800 };
10801 
10802 enum {
10803 	IF_STATE_ACTION = 0,
10804 	IF_STATE_SOURCE,
10805 	IF_STATE_END,
10806 };
10807 
10808 static const match_table_t if_tokens = {
10809 	{ IF_ACT_FILTER,	"filter" },
10810 	{ IF_ACT_START,		"start" },
10811 	{ IF_ACT_STOP,		"stop" },
10812 	{ IF_SRC_FILE,		"%u/%u@%s" },
10813 	{ IF_SRC_KERNEL,	"%u/%u" },
10814 	{ IF_SRC_FILEADDR,	"%u@%s" },
10815 	{ IF_SRC_KERNELADDR,	"%u" },
10816 	{ IF_ACT_NONE,		NULL },
10817 };
10818 
10819 /*
10820  * Address filter string parser
10821  */
10822 static int
10823 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10824 			     struct list_head *filters)
10825 {
10826 	struct perf_addr_filter *filter = NULL;
10827 	char *start, *orig, *filename = NULL;
10828 	substring_t args[MAX_OPT_ARGS];
10829 	int state = IF_STATE_ACTION, token;
10830 	unsigned int kernel = 0;
10831 	int ret = -EINVAL;
10832 
10833 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10834 	if (!fstr)
10835 		return -ENOMEM;
10836 
10837 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10838 		static const enum perf_addr_filter_action_t actions[] = {
10839 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10840 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10841 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10842 		};
10843 		ret = -EINVAL;
10844 
10845 		if (!*start)
10846 			continue;
10847 
10848 		/* filter definition begins */
10849 		if (state == IF_STATE_ACTION) {
10850 			filter = perf_addr_filter_new(event, filters);
10851 			if (!filter)
10852 				goto fail;
10853 		}
10854 
10855 		token = match_token(start, if_tokens, args);
10856 		switch (token) {
10857 		case IF_ACT_FILTER:
10858 		case IF_ACT_START:
10859 		case IF_ACT_STOP:
10860 			if (state != IF_STATE_ACTION)
10861 				goto fail;
10862 
10863 			filter->action = actions[token];
10864 			state = IF_STATE_SOURCE;
10865 			break;
10866 
10867 		case IF_SRC_KERNELADDR:
10868 		case IF_SRC_KERNEL:
10869 			kernel = 1;
10870 			fallthrough;
10871 
10872 		case IF_SRC_FILEADDR:
10873 		case IF_SRC_FILE:
10874 			if (state != IF_STATE_SOURCE)
10875 				goto fail;
10876 
10877 			*args[0].to = 0;
10878 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10879 			if (ret)
10880 				goto fail;
10881 
10882 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10883 				*args[1].to = 0;
10884 				ret = kstrtoul(args[1].from, 0, &filter->size);
10885 				if (ret)
10886 					goto fail;
10887 			}
10888 
10889 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10890 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10891 
10892 				kfree(filename);
10893 				filename = match_strdup(&args[fpos]);
10894 				if (!filename) {
10895 					ret = -ENOMEM;
10896 					goto fail;
10897 				}
10898 			}
10899 
10900 			state = IF_STATE_END;
10901 			break;
10902 
10903 		default:
10904 			goto fail;
10905 		}
10906 
10907 		/*
10908 		 * Filter definition is fully parsed, validate and install it.
10909 		 * Make sure that it doesn't contradict itself or the event's
10910 		 * attribute.
10911 		 */
10912 		if (state == IF_STATE_END) {
10913 			ret = -EINVAL;
10914 
10915 			/*
10916 			 * ACTION "filter" must have a non-zero length region
10917 			 * specified.
10918 			 */
10919 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10920 			    !filter->size)
10921 				goto fail;
10922 
10923 			if (!kernel) {
10924 				if (!filename)
10925 					goto fail;
10926 
10927 				/*
10928 				 * For now, we only support file-based filters
10929 				 * in per-task events; doing so for CPU-wide
10930 				 * events requires additional context switching
10931 				 * trickery, since same object code will be
10932 				 * mapped at different virtual addresses in
10933 				 * different processes.
10934 				 */
10935 				ret = -EOPNOTSUPP;
10936 				if (!event->ctx->task)
10937 					goto fail;
10938 
10939 				/* look up the path and grab its inode */
10940 				ret = kern_path(filename, LOOKUP_FOLLOW,
10941 						&filter->path);
10942 				if (ret)
10943 					goto fail;
10944 
10945 				ret = -EINVAL;
10946 				if (!filter->path.dentry ||
10947 				    !S_ISREG(d_inode(filter->path.dentry)
10948 					     ->i_mode))
10949 					goto fail;
10950 
10951 				event->addr_filters.nr_file_filters++;
10952 			}
10953 
10954 			/* ready to consume more filters */
10955 			kfree(filename);
10956 			filename = NULL;
10957 			state = IF_STATE_ACTION;
10958 			filter = NULL;
10959 			kernel = 0;
10960 		}
10961 	}
10962 
10963 	if (state != IF_STATE_ACTION)
10964 		goto fail;
10965 
10966 	kfree(filename);
10967 	kfree(orig);
10968 
10969 	return 0;
10970 
10971 fail:
10972 	kfree(filename);
10973 	free_filters_list(filters);
10974 	kfree(orig);
10975 
10976 	return ret;
10977 }
10978 
10979 static int
10980 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10981 {
10982 	LIST_HEAD(filters);
10983 	int ret;
10984 
10985 	/*
10986 	 * Since this is called in perf_ioctl() path, we're already holding
10987 	 * ctx::mutex.
10988 	 */
10989 	lockdep_assert_held(&event->ctx->mutex);
10990 
10991 	if (WARN_ON_ONCE(event->parent))
10992 		return -EINVAL;
10993 
10994 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10995 	if (ret)
10996 		goto fail_clear_files;
10997 
10998 	ret = event->pmu->addr_filters_validate(&filters);
10999 	if (ret)
11000 		goto fail_free_filters;
11001 
11002 	/* remove existing filters, if any */
11003 	perf_addr_filters_splice(event, &filters);
11004 
11005 	/* install new filters */
11006 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11007 
11008 	return ret;
11009 
11010 fail_free_filters:
11011 	free_filters_list(&filters);
11012 
11013 fail_clear_files:
11014 	event->addr_filters.nr_file_filters = 0;
11015 
11016 	return ret;
11017 }
11018 
11019 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11020 {
11021 	int ret = -EINVAL;
11022 	char *filter_str;
11023 
11024 	filter_str = strndup_user(arg, PAGE_SIZE);
11025 	if (IS_ERR(filter_str))
11026 		return PTR_ERR(filter_str);
11027 
11028 #ifdef CONFIG_EVENT_TRACING
11029 	if (perf_event_is_tracing(event)) {
11030 		struct perf_event_context *ctx = event->ctx;
11031 
11032 		/*
11033 		 * Beware, here be dragons!!
11034 		 *
11035 		 * the tracepoint muck will deadlock against ctx->mutex, but
11036 		 * the tracepoint stuff does not actually need it. So
11037 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11038 		 * already have a reference on ctx.
11039 		 *
11040 		 * This can result in event getting moved to a different ctx,
11041 		 * but that does not affect the tracepoint state.
11042 		 */
11043 		mutex_unlock(&ctx->mutex);
11044 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11045 		mutex_lock(&ctx->mutex);
11046 	} else
11047 #endif
11048 	if (has_addr_filter(event))
11049 		ret = perf_event_set_addr_filter(event, filter_str);
11050 
11051 	kfree(filter_str);
11052 	return ret;
11053 }
11054 
11055 /*
11056  * hrtimer based swevent callback
11057  */
11058 
11059 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11060 {
11061 	enum hrtimer_restart ret = HRTIMER_RESTART;
11062 	struct perf_sample_data data;
11063 	struct pt_regs *regs;
11064 	struct perf_event *event;
11065 	u64 period;
11066 
11067 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11068 
11069 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11070 		return HRTIMER_NORESTART;
11071 
11072 	event->pmu->read(event);
11073 
11074 	perf_sample_data_init(&data, 0, event->hw.last_period);
11075 	regs = get_irq_regs();
11076 
11077 	if (regs && !perf_exclude_event(event, regs)) {
11078 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11079 			if (__perf_event_overflow(event, 1, &data, regs))
11080 				ret = HRTIMER_NORESTART;
11081 	}
11082 
11083 	period = max_t(u64, 10000, event->hw.sample_period);
11084 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11085 
11086 	return ret;
11087 }
11088 
11089 static void perf_swevent_start_hrtimer(struct perf_event *event)
11090 {
11091 	struct hw_perf_event *hwc = &event->hw;
11092 	s64 period;
11093 
11094 	if (!is_sampling_event(event))
11095 		return;
11096 
11097 	period = local64_read(&hwc->period_left);
11098 	if (period) {
11099 		if (period < 0)
11100 			period = 10000;
11101 
11102 		local64_set(&hwc->period_left, 0);
11103 	} else {
11104 		period = max_t(u64, 10000, hwc->sample_period);
11105 	}
11106 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11107 		      HRTIMER_MODE_REL_PINNED_HARD);
11108 }
11109 
11110 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11111 {
11112 	struct hw_perf_event *hwc = &event->hw;
11113 
11114 	if (is_sampling_event(event)) {
11115 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11116 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11117 
11118 		hrtimer_cancel(&hwc->hrtimer);
11119 	}
11120 }
11121 
11122 static void perf_swevent_init_hrtimer(struct perf_event *event)
11123 {
11124 	struct hw_perf_event *hwc = &event->hw;
11125 
11126 	if (!is_sampling_event(event))
11127 		return;
11128 
11129 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11130 	hwc->hrtimer.function = perf_swevent_hrtimer;
11131 
11132 	/*
11133 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11134 	 * mapping and avoid the whole period adjust feedback stuff.
11135 	 */
11136 	if (event->attr.freq) {
11137 		long freq = event->attr.sample_freq;
11138 
11139 		event->attr.sample_period = NSEC_PER_SEC / freq;
11140 		hwc->sample_period = event->attr.sample_period;
11141 		local64_set(&hwc->period_left, hwc->sample_period);
11142 		hwc->last_period = hwc->sample_period;
11143 		event->attr.freq = 0;
11144 	}
11145 }
11146 
11147 /*
11148  * Software event: cpu wall time clock
11149  */
11150 
11151 static void cpu_clock_event_update(struct perf_event *event)
11152 {
11153 	s64 prev;
11154 	u64 now;
11155 
11156 	now = local_clock();
11157 	prev = local64_xchg(&event->hw.prev_count, now);
11158 	local64_add(now - prev, &event->count);
11159 }
11160 
11161 static void cpu_clock_event_start(struct perf_event *event, int flags)
11162 {
11163 	local64_set(&event->hw.prev_count, local_clock());
11164 	perf_swevent_start_hrtimer(event);
11165 }
11166 
11167 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11168 {
11169 	perf_swevent_cancel_hrtimer(event);
11170 	cpu_clock_event_update(event);
11171 }
11172 
11173 static int cpu_clock_event_add(struct perf_event *event, int flags)
11174 {
11175 	if (flags & PERF_EF_START)
11176 		cpu_clock_event_start(event, flags);
11177 	perf_event_update_userpage(event);
11178 
11179 	return 0;
11180 }
11181 
11182 static void cpu_clock_event_del(struct perf_event *event, int flags)
11183 {
11184 	cpu_clock_event_stop(event, flags);
11185 }
11186 
11187 static void cpu_clock_event_read(struct perf_event *event)
11188 {
11189 	cpu_clock_event_update(event);
11190 }
11191 
11192 static int cpu_clock_event_init(struct perf_event *event)
11193 {
11194 	if (event->attr.type != perf_cpu_clock.type)
11195 		return -ENOENT;
11196 
11197 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11198 		return -ENOENT;
11199 
11200 	/*
11201 	 * no branch sampling for software events
11202 	 */
11203 	if (has_branch_stack(event))
11204 		return -EOPNOTSUPP;
11205 
11206 	perf_swevent_init_hrtimer(event);
11207 
11208 	return 0;
11209 }
11210 
11211 static struct pmu perf_cpu_clock = {
11212 	.task_ctx_nr	= perf_sw_context,
11213 
11214 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11215 	.dev		= PMU_NULL_DEV,
11216 
11217 	.event_init	= cpu_clock_event_init,
11218 	.add		= cpu_clock_event_add,
11219 	.del		= cpu_clock_event_del,
11220 	.start		= cpu_clock_event_start,
11221 	.stop		= cpu_clock_event_stop,
11222 	.read		= cpu_clock_event_read,
11223 };
11224 
11225 /*
11226  * Software event: task time clock
11227  */
11228 
11229 static void task_clock_event_update(struct perf_event *event, u64 now)
11230 {
11231 	u64 prev;
11232 	s64 delta;
11233 
11234 	prev = local64_xchg(&event->hw.prev_count, now);
11235 	delta = now - prev;
11236 	local64_add(delta, &event->count);
11237 }
11238 
11239 static void task_clock_event_start(struct perf_event *event, int flags)
11240 {
11241 	local64_set(&event->hw.prev_count, event->ctx->time);
11242 	perf_swevent_start_hrtimer(event);
11243 }
11244 
11245 static void task_clock_event_stop(struct perf_event *event, int flags)
11246 {
11247 	perf_swevent_cancel_hrtimer(event);
11248 	task_clock_event_update(event, event->ctx->time);
11249 }
11250 
11251 static int task_clock_event_add(struct perf_event *event, int flags)
11252 {
11253 	if (flags & PERF_EF_START)
11254 		task_clock_event_start(event, flags);
11255 	perf_event_update_userpage(event);
11256 
11257 	return 0;
11258 }
11259 
11260 static void task_clock_event_del(struct perf_event *event, int flags)
11261 {
11262 	task_clock_event_stop(event, PERF_EF_UPDATE);
11263 }
11264 
11265 static void task_clock_event_read(struct perf_event *event)
11266 {
11267 	u64 now = perf_clock();
11268 	u64 delta = now - event->ctx->timestamp;
11269 	u64 time = event->ctx->time + delta;
11270 
11271 	task_clock_event_update(event, time);
11272 }
11273 
11274 static int task_clock_event_init(struct perf_event *event)
11275 {
11276 	if (event->attr.type != perf_task_clock.type)
11277 		return -ENOENT;
11278 
11279 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11280 		return -ENOENT;
11281 
11282 	/*
11283 	 * no branch sampling for software events
11284 	 */
11285 	if (has_branch_stack(event))
11286 		return -EOPNOTSUPP;
11287 
11288 	perf_swevent_init_hrtimer(event);
11289 
11290 	return 0;
11291 }
11292 
11293 static struct pmu perf_task_clock = {
11294 	.task_ctx_nr	= perf_sw_context,
11295 
11296 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11297 	.dev		= PMU_NULL_DEV,
11298 
11299 	.event_init	= task_clock_event_init,
11300 	.add		= task_clock_event_add,
11301 	.del		= task_clock_event_del,
11302 	.start		= task_clock_event_start,
11303 	.stop		= task_clock_event_stop,
11304 	.read		= task_clock_event_read,
11305 };
11306 
11307 static void perf_pmu_nop_void(struct pmu *pmu)
11308 {
11309 }
11310 
11311 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11312 {
11313 }
11314 
11315 static int perf_pmu_nop_int(struct pmu *pmu)
11316 {
11317 	return 0;
11318 }
11319 
11320 static int perf_event_nop_int(struct perf_event *event, u64 value)
11321 {
11322 	return 0;
11323 }
11324 
11325 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11326 
11327 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11328 {
11329 	__this_cpu_write(nop_txn_flags, flags);
11330 
11331 	if (flags & ~PERF_PMU_TXN_ADD)
11332 		return;
11333 
11334 	perf_pmu_disable(pmu);
11335 }
11336 
11337 static int perf_pmu_commit_txn(struct pmu *pmu)
11338 {
11339 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11340 
11341 	__this_cpu_write(nop_txn_flags, 0);
11342 
11343 	if (flags & ~PERF_PMU_TXN_ADD)
11344 		return 0;
11345 
11346 	perf_pmu_enable(pmu);
11347 	return 0;
11348 }
11349 
11350 static void perf_pmu_cancel_txn(struct pmu *pmu)
11351 {
11352 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11353 
11354 	__this_cpu_write(nop_txn_flags, 0);
11355 
11356 	if (flags & ~PERF_PMU_TXN_ADD)
11357 		return;
11358 
11359 	perf_pmu_enable(pmu);
11360 }
11361 
11362 static int perf_event_idx_default(struct perf_event *event)
11363 {
11364 	return 0;
11365 }
11366 
11367 static void free_pmu_context(struct pmu *pmu)
11368 {
11369 	free_percpu(pmu->cpu_pmu_context);
11370 }
11371 
11372 /*
11373  * Let userspace know that this PMU supports address range filtering:
11374  */
11375 static ssize_t nr_addr_filters_show(struct device *dev,
11376 				    struct device_attribute *attr,
11377 				    char *page)
11378 {
11379 	struct pmu *pmu = dev_get_drvdata(dev);
11380 
11381 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11382 }
11383 DEVICE_ATTR_RO(nr_addr_filters);
11384 
11385 static struct idr pmu_idr;
11386 
11387 static ssize_t
11388 type_show(struct device *dev, struct device_attribute *attr, char *page)
11389 {
11390 	struct pmu *pmu = dev_get_drvdata(dev);
11391 
11392 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11393 }
11394 static DEVICE_ATTR_RO(type);
11395 
11396 static ssize_t
11397 perf_event_mux_interval_ms_show(struct device *dev,
11398 				struct device_attribute *attr,
11399 				char *page)
11400 {
11401 	struct pmu *pmu = dev_get_drvdata(dev);
11402 
11403 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11404 }
11405 
11406 static DEFINE_MUTEX(mux_interval_mutex);
11407 
11408 static ssize_t
11409 perf_event_mux_interval_ms_store(struct device *dev,
11410 				 struct device_attribute *attr,
11411 				 const char *buf, size_t count)
11412 {
11413 	struct pmu *pmu = dev_get_drvdata(dev);
11414 	int timer, cpu, ret;
11415 
11416 	ret = kstrtoint(buf, 0, &timer);
11417 	if (ret)
11418 		return ret;
11419 
11420 	if (timer < 1)
11421 		return -EINVAL;
11422 
11423 	/* same value, noting to do */
11424 	if (timer == pmu->hrtimer_interval_ms)
11425 		return count;
11426 
11427 	mutex_lock(&mux_interval_mutex);
11428 	pmu->hrtimer_interval_ms = timer;
11429 
11430 	/* update all cpuctx for this PMU */
11431 	cpus_read_lock();
11432 	for_each_online_cpu(cpu) {
11433 		struct perf_cpu_pmu_context *cpc;
11434 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11435 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11436 
11437 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11438 	}
11439 	cpus_read_unlock();
11440 	mutex_unlock(&mux_interval_mutex);
11441 
11442 	return count;
11443 }
11444 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11445 
11446 static struct attribute *pmu_dev_attrs[] = {
11447 	&dev_attr_type.attr,
11448 	&dev_attr_perf_event_mux_interval_ms.attr,
11449 	&dev_attr_nr_addr_filters.attr,
11450 	NULL,
11451 };
11452 
11453 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11454 {
11455 	struct device *dev = kobj_to_dev(kobj);
11456 	struct pmu *pmu = dev_get_drvdata(dev);
11457 
11458 	if (n == 2 && !pmu->nr_addr_filters)
11459 		return 0;
11460 
11461 	return a->mode;
11462 }
11463 
11464 static struct attribute_group pmu_dev_attr_group = {
11465 	.is_visible = pmu_dev_is_visible,
11466 	.attrs = pmu_dev_attrs,
11467 };
11468 
11469 static const struct attribute_group *pmu_dev_groups[] = {
11470 	&pmu_dev_attr_group,
11471 	NULL,
11472 };
11473 
11474 static int pmu_bus_running;
11475 static struct bus_type pmu_bus = {
11476 	.name		= "event_source",
11477 	.dev_groups	= pmu_dev_groups,
11478 };
11479 
11480 static void pmu_dev_release(struct device *dev)
11481 {
11482 	kfree(dev);
11483 }
11484 
11485 static int pmu_dev_alloc(struct pmu *pmu)
11486 {
11487 	int ret = -ENOMEM;
11488 
11489 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11490 	if (!pmu->dev)
11491 		goto out;
11492 
11493 	pmu->dev->groups = pmu->attr_groups;
11494 	device_initialize(pmu->dev);
11495 
11496 	dev_set_drvdata(pmu->dev, pmu);
11497 	pmu->dev->bus = &pmu_bus;
11498 	pmu->dev->parent = pmu->parent;
11499 	pmu->dev->release = pmu_dev_release;
11500 
11501 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11502 	if (ret)
11503 		goto free_dev;
11504 
11505 	ret = device_add(pmu->dev);
11506 	if (ret)
11507 		goto free_dev;
11508 
11509 	if (pmu->attr_update) {
11510 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11511 		if (ret)
11512 			goto del_dev;
11513 	}
11514 
11515 out:
11516 	return ret;
11517 
11518 del_dev:
11519 	device_del(pmu->dev);
11520 
11521 free_dev:
11522 	put_device(pmu->dev);
11523 	goto out;
11524 }
11525 
11526 static struct lock_class_key cpuctx_mutex;
11527 static struct lock_class_key cpuctx_lock;
11528 
11529 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11530 {
11531 	int cpu, ret, max = PERF_TYPE_MAX;
11532 
11533 	mutex_lock(&pmus_lock);
11534 	ret = -ENOMEM;
11535 	pmu->pmu_disable_count = alloc_percpu(int);
11536 	if (!pmu->pmu_disable_count)
11537 		goto unlock;
11538 
11539 	pmu->type = -1;
11540 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11541 		ret = -EINVAL;
11542 		goto free_pdc;
11543 	}
11544 
11545 	pmu->name = name;
11546 
11547 	if (type >= 0)
11548 		max = type;
11549 
11550 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11551 	if (ret < 0)
11552 		goto free_pdc;
11553 
11554 	WARN_ON(type >= 0 && ret != type);
11555 
11556 	type = ret;
11557 	pmu->type = type;
11558 
11559 	if (pmu_bus_running && !pmu->dev) {
11560 		ret = pmu_dev_alloc(pmu);
11561 		if (ret)
11562 			goto free_idr;
11563 	}
11564 
11565 	ret = -ENOMEM;
11566 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11567 	if (!pmu->cpu_pmu_context)
11568 		goto free_dev;
11569 
11570 	for_each_possible_cpu(cpu) {
11571 		struct perf_cpu_pmu_context *cpc;
11572 
11573 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11574 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11575 		__perf_mux_hrtimer_init(cpc, cpu);
11576 	}
11577 
11578 	if (!pmu->start_txn) {
11579 		if (pmu->pmu_enable) {
11580 			/*
11581 			 * If we have pmu_enable/pmu_disable calls, install
11582 			 * transaction stubs that use that to try and batch
11583 			 * hardware accesses.
11584 			 */
11585 			pmu->start_txn  = perf_pmu_start_txn;
11586 			pmu->commit_txn = perf_pmu_commit_txn;
11587 			pmu->cancel_txn = perf_pmu_cancel_txn;
11588 		} else {
11589 			pmu->start_txn  = perf_pmu_nop_txn;
11590 			pmu->commit_txn = perf_pmu_nop_int;
11591 			pmu->cancel_txn = perf_pmu_nop_void;
11592 		}
11593 	}
11594 
11595 	if (!pmu->pmu_enable) {
11596 		pmu->pmu_enable  = perf_pmu_nop_void;
11597 		pmu->pmu_disable = perf_pmu_nop_void;
11598 	}
11599 
11600 	if (!pmu->check_period)
11601 		pmu->check_period = perf_event_nop_int;
11602 
11603 	if (!pmu->event_idx)
11604 		pmu->event_idx = perf_event_idx_default;
11605 
11606 	list_add_rcu(&pmu->entry, &pmus);
11607 	atomic_set(&pmu->exclusive_cnt, 0);
11608 	ret = 0;
11609 unlock:
11610 	mutex_unlock(&pmus_lock);
11611 
11612 	return ret;
11613 
11614 free_dev:
11615 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11616 		device_del(pmu->dev);
11617 		put_device(pmu->dev);
11618 	}
11619 
11620 free_idr:
11621 	idr_remove(&pmu_idr, pmu->type);
11622 
11623 free_pdc:
11624 	free_percpu(pmu->pmu_disable_count);
11625 	goto unlock;
11626 }
11627 EXPORT_SYMBOL_GPL(perf_pmu_register);
11628 
11629 void perf_pmu_unregister(struct pmu *pmu)
11630 {
11631 	mutex_lock(&pmus_lock);
11632 	list_del_rcu(&pmu->entry);
11633 
11634 	/*
11635 	 * We dereference the pmu list under both SRCU and regular RCU, so
11636 	 * synchronize against both of those.
11637 	 */
11638 	synchronize_srcu(&pmus_srcu);
11639 	synchronize_rcu();
11640 
11641 	free_percpu(pmu->pmu_disable_count);
11642 	idr_remove(&pmu_idr, pmu->type);
11643 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11644 		if (pmu->nr_addr_filters)
11645 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11646 		device_del(pmu->dev);
11647 		put_device(pmu->dev);
11648 	}
11649 	free_pmu_context(pmu);
11650 	mutex_unlock(&pmus_lock);
11651 }
11652 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11653 
11654 static inline bool has_extended_regs(struct perf_event *event)
11655 {
11656 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11657 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11658 }
11659 
11660 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11661 {
11662 	struct perf_event_context *ctx = NULL;
11663 	int ret;
11664 
11665 	if (!try_module_get(pmu->module))
11666 		return -ENODEV;
11667 
11668 	/*
11669 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11670 	 * for example, validate if the group fits on the PMU. Therefore,
11671 	 * if this is a sibling event, acquire the ctx->mutex to protect
11672 	 * the sibling_list.
11673 	 */
11674 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11675 		/*
11676 		 * This ctx->mutex can nest when we're called through
11677 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11678 		 */
11679 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11680 						 SINGLE_DEPTH_NESTING);
11681 		BUG_ON(!ctx);
11682 	}
11683 
11684 	event->pmu = pmu;
11685 	ret = pmu->event_init(event);
11686 
11687 	if (ctx)
11688 		perf_event_ctx_unlock(event->group_leader, ctx);
11689 
11690 	if (!ret) {
11691 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11692 		    has_extended_regs(event))
11693 			ret = -EOPNOTSUPP;
11694 
11695 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11696 		    event_has_any_exclude_flag(event))
11697 			ret = -EINVAL;
11698 
11699 		if (ret && event->destroy)
11700 			event->destroy(event);
11701 	}
11702 
11703 	if (ret)
11704 		module_put(pmu->module);
11705 
11706 	return ret;
11707 }
11708 
11709 static struct pmu *perf_init_event(struct perf_event *event)
11710 {
11711 	bool extended_type = false;
11712 	int idx, type, ret;
11713 	struct pmu *pmu;
11714 
11715 	idx = srcu_read_lock(&pmus_srcu);
11716 
11717 	/*
11718 	 * Save original type before calling pmu->event_init() since certain
11719 	 * pmus overwrites event->attr.type to forward event to another pmu.
11720 	 */
11721 	event->orig_type = event->attr.type;
11722 
11723 	/* Try parent's PMU first: */
11724 	if (event->parent && event->parent->pmu) {
11725 		pmu = event->parent->pmu;
11726 		ret = perf_try_init_event(pmu, event);
11727 		if (!ret)
11728 			goto unlock;
11729 	}
11730 
11731 	/*
11732 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11733 	 * are often aliases for PERF_TYPE_RAW.
11734 	 */
11735 	type = event->attr.type;
11736 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11737 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11738 		if (!type) {
11739 			type = PERF_TYPE_RAW;
11740 		} else {
11741 			extended_type = true;
11742 			event->attr.config &= PERF_HW_EVENT_MASK;
11743 		}
11744 	}
11745 
11746 again:
11747 	rcu_read_lock();
11748 	pmu = idr_find(&pmu_idr, type);
11749 	rcu_read_unlock();
11750 	if (pmu) {
11751 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11752 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11753 			goto fail;
11754 
11755 		ret = perf_try_init_event(pmu, event);
11756 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11757 			type = event->attr.type;
11758 			goto again;
11759 		}
11760 
11761 		if (ret)
11762 			pmu = ERR_PTR(ret);
11763 
11764 		goto unlock;
11765 	}
11766 
11767 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11768 		ret = perf_try_init_event(pmu, event);
11769 		if (!ret)
11770 			goto unlock;
11771 
11772 		if (ret != -ENOENT) {
11773 			pmu = ERR_PTR(ret);
11774 			goto unlock;
11775 		}
11776 	}
11777 fail:
11778 	pmu = ERR_PTR(-ENOENT);
11779 unlock:
11780 	srcu_read_unlock(&pmus_srcu, idx);
11781 
11782 	return pmu;
11783 }
11784 
11785 static void attach_sb_event(struct perf_event *event)
11786 {
11787 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11788 
11789 	raw_spin_lock(&pel->lock);
11790 	list_add_rcu(&event->sb_list, &pel->list);
11791 	raw_spin_unlock(&pel->lock);
11792 }
11793 
11794 /*
11795  * We keep a list of all !task (and therefore per-cpu) events
11796  * that need to receive side-band records.
11797  *
11798  * This avoids having to scan all the various PMU per-cpu contexts
11799  * looking for them.
11800  */
11801 static void account_pmu_sb_event(struct perf_event *event)
11802 {
11803 	if (is_sb_event(event))
11804 		attach_sb_event(event);
11805 }
11806 
11807 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11808 static void account_freq_event_nohz(void)
11809 {
11810 #ifdef CONFIG_NO_HZ_FULL
11811 	/* Lock so we don't race with concurrent unaccount */
11812 	spin_lock(&nr_freq_lock);
11813 	if (atomic_inc_return(&nr_freq_events) == 1)
11814 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11815 	spin_unlock(&nr_freq_lock);
11816 #endif
11817 }
11818 
11819 static void account_freq_event(void)
11820 {
11821 	if (tick_nohz_full_enabled())
11822 		account_freq_event_nohz();
11823 	else
11824 		atomic_inc(&nr_freq_events);
11825 }
11826 
11827 
11828 static void account_event(struct perf_event *event)
11829 {
11830 	bool inc = false;
11831 
11832 	if (event->parent)
11833 		return;
11834 
11835 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11836 		inc = true;
11837 	if (event->attr.mmap || event->attr.mmap_data)
11838 		atomic_inc(&nr_mmap_events);
11839 	if (event->attr.build_id)
11840 		atomic_inc(&nr_build_id_events);
11841 	if (event->attr.comm)
11842 		atomic_inc(&nr_comm_events);
11843 	if (event->attr.namespaces)
11844 		atomic_inc(&nr_namespaces_events);
11845 	if (event->attr.cgroup)
11846 		atomic_inc(&nr_cgroup_events);
11847 	if (event->attr.task)
11848 		atomic_inc(&nr_task_events);
11849 	if (event->attr.freq)
11850 		account_freq_event();
11851 	if (event->attr.context_switch) {
11852 		atomic_inc(&nr_switch_events);
11853 		inc = true;
11854 	}
11855 	if (has_branch_stack(event))
11856 		inc = true;
11857 	if (is_cgroup_event(event))
11858 		inc = true;
11859 	if (event->attr.ksymbol)
11860 		atomic_inc(&nr_ksymbol_events);
11861 	if (event->attr.bpf_event)
11862 		atomic_inc(&nr_bpf_events);
11863 	if (event->attr.text_poke)
11864 		atomic_inc(&nr_text_poke_events);
11865 
11866 	if (inc) {
11867 		/*
11868 		 * We need the mutex here because static_branch_enable()
11869 		 * must complete *before* the perf_sched_count increment
11870 		 * becomes visible.
11871 		 */
11872 		if (atomic_inc_not_zero(&perf_sched_count))
11873 			goto enabled;
11874 
11875 		mutex_lock(&perf_sched_mutex);
11876 		if (!atomic_read(&perf_sched_count)) {
11877 			static_branch_enable(&perf_sched_events);
11878 			/*
11879 			 * Guarantee that all CPUs observe they key change and
11880 			 * call the perf scheduling hooks before proceeding to
11881 			 * install events that need them.
11882 			 */
11883 			synchronize_rcu();
11884 		}
11885 		/*
11886 		 * Now that we have waited for the sync_sched(), allow further
11887 		 * increments to by-pass the mutex.
11888 		 */
11889 		atomic_inc(&perf_sched_count);
11890 		mutex_unlock(&perf_sched_mutex);
11891 	}
11892 enabled:
11893 
11894 	account_pmu_sb_event(event);
11895 }
11896 
11897 /*
11898  * Allocate and initialize an event structure
11899  */
11900 static struct perf_event *
11901 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11902 		 struct task_struct *task,
11903 		 struct perf_event *group_leader,
11904 		 struct perf_event *parent_event,
11905 		 perf_overflow_handler_t overflow_handler,
11906 		 void *context, int cgroup_fd)
11907 {
11908 	struct pmu *pmu;
11909 	struct perf_event *event;
11910 	struct hw_perf_event *hwc;
11911 	long err = -EINVAL;
11912 	int node;
11913 
11914 	if ((unsigned)cpu >= nr_cpu_ids) {
11915 		if (!task || cpu != -1)
11916 			return ERR_PTR(-EINVAL);
11917 	}
11918 	if (attr->sigtrap && !task) {
11919 		/* Requires a task: avoid signalling random tasks. */
11920 		return ERR_PTR(-EINVAL);
11921 	}
11922 
11923 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11924 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11925 				      node);
11926 	if (!event)
11927 		return ERR_PTR(-ENOMEM);
11928 
11929 	/*
11930 	 * Single events are their own group leaders, with an
11931 	 * empty sibling list:
11932 	 */
11933 	if (!group_leader)
11934 		group_leader = event;
11935 
11936 	mutex_init(&event->child_mutex);
11937 	INIT_LIST_HEAD(&event->child_list);
11938 
11939 	INIT_LIST_HEAD(&event->event_entry);
11940 	INIT_LIST_HEAD(&event->sibling_list);
11941 	INIT_LIST_HEAD(&event->active_list);
11942 	init_event_group(event);
11943 	INIT_LIST_HEAD(&event->rb_entry);
11944 	INIT_LIST_HEAD(&event->active_entry);
11945 	INIT_LIST_HEAD(&event->addr_filters.list);
11946 	INIT_HLIST_NODE(&event->hlist_entry);
11947 
11948 
11949 	init_waitqueue_head(&event->waitq);
11950 	init_irq_work(&event->pending_irq, perf_pending_irq);
11951 	init_task_work(&event->pending_task, perf_pending_task);
11952 
11953 	mutex_init(&event->mmap_mutex);
11954 	raw_spin_lock_init(&event->addr_filters.lock);
11955 
11956 	atomic_long_set(&event->refcount, 1);
11957 	event->cpu		= cpu;
11958 	event->attr		= *attr;
11959 	event->group_leader	= group_leader;
11960 	event->pmu		= NULL;
11961 	event->oncpu		= -1;
11962 
11963 	event->parent		= parent_event;
11964 
11965 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11966 	event->id		= atomic64_inc_return(&perf_event_id);
11967 
11968 	event->state		= PERF_EVENT_STATE_INACTIVE;
11969 
11970 	if (parent_event)
11971 		event->event_caps = parent_event->event_caps;
11972 
11973 	if (task) {
11974 		event->attach_state = PERF_ATTACH_TASK;
11975 		/*
11976 		 * XXX pmu::event_init needs to know what task to account to
11977 		 * and we cannot use the ctx information because we need the
11978 		 * pmu before we get a ctx.
11979 		 */
11980 		event->hw.target = get_task_struct(task);
11981 	}
11982 
11983 	event->clock = &local_clock;
11984 	if (parent_event)
11985 		event->clock = parent_event->clock;
11986 
11987 	if (!overflow_handler && parent_event) {
11988 		overflow_handler = parent_event->overflow_handler;
11989 		context = parent_event->overflow_handler_context;
11990 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11991 		if (parent_event->prog) {
11992 			struct bpf_prog *prog = parent_event->prog;
11993 
11994 			bpf_prog_inc(prog);
11995 			event->prog = prog;
11996 		}
11997 #endif
11998 	}
11999 
12000 	if (overflow_handler) {
12001 		event->overflow_handler	= overflow_handler;
12002 		event->overflow_handler_context = context;
12003 	} else if (is_write_backward(event)){
12004 		event->overflow_handler = perf_event_output_backward;
12005 		event->overflow_handler_context = NULL;
12006 	} else {
12007 		event->overflow_handler = perf_event_output_forward;
12008 		event->overflow_handler_context = NULL;
12009 	}
12010 
12011 	perf_event__state_init(event);
12012 
12013 	pmu = NULL;
12014 
12015 	hwc = &event->hw;
12016 	hwc->sample_period = attr->sample_period;
12017 	if (attr->freq && attr->sample_freq)
12018 		hwc->sample_period = 1;
12019 	hwc->last_period = hwc->sample_period;
12020 
12021 	local64_set(&hwc->period_left, hwc->sample_period);
12022 
12023 	/*
12024 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12025 	 * See perf_output_read().
12026 	 */
12027 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12028 		goto err_ns;
12029 
12030 	if (!has_branch_stack(event))
12031 		event->attr.branch_sample_type = 0;
12032 
12033 	pmu = perf_init_event(event);
12034 	if (IS_ERR(pmu)) {
12035 		err = PTR_ERR(pmu);
12036 		goto err_ns;
12037 	}
12038 
12039 	/*
12040 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12041 	 * events (they don't make sense as the cgroup will be different
12042 	 * on other CPUs in the uncore mask).
12043 	 */
12044 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12045 		err = -EINVAL;
12046 		goto err_pmu;
12047 	}
12048 
12049 	if (event->attr.aux_output &&
12050 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12051 		err = -EOPNOTSUPP;
12052 		goto err_pmu;
12053 	}
12054 
12055 	if (cgroup_fd != -1) {
12056 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12057 		if (err)
12058 			goto err_pmu;
12059 	}
12060 
12061 	err = exclusive_event_init(event);
12062 	if (err)
12063 		goto err_pmu;
12064 
12065 	if (has_addr_filter(event)) {
12066 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12067 						    sizeof(struct perf_addr_filter_range),
12068 						    GFP_KERNEL);
12069 		if (!event->addr_filter_ranges) {
12070 			err = -ENOMEM;
12071 			goto err_per_task;
12072 		}
12073 
12074 		/*
12075 		 * Clone the parent's vma offsets: they are valid until exec()
12076 		 * even if the mm is not shared with the parent.
12077 		 */
12078 		if (event->parent) {
12079 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12080 
12081 			raw_spin_lock_irq(&ifh->lock);
12082 			memcpy(event->addr_filter_ranges,
12083 			       event->parent->addr_filter_ranges,
12084 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12085 			raw_spin_unlock_irq(&ifh->lock);
12086 		}
12087 
12088 		/* force hw sync on the address filters */
12089 		event->addr_filters_gen = 1;
12090 	}
12091 
12092 	if (!event->parent) {
12093 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12094 			err = get_callchain_buffers(attr->sample_max_stack);
12095 			if (err)
12096 				goto err_addr_filters;
12097 		}
12098 	}
12099 
12100 	err = security_perf_event_alloc(event);
12101 	if (err)
12102 		goto err_callchain_buffer;
12103 
12104 	/* symmetric to unaccount_event() in _free_event() */
12105 	account_event(event);
12106 
12107 	return event;
12108 
12109 err_callchain_buffer:
12110 	if (!event->parent) {
12111 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12112 			put_callchain_buffers();
12113 	}
12114 err_addr_filters:
12115 	kfree(event->addr_filter_ranges);
12116 
12117 err_per_task:
12118 	exclusive_event_destroy(event);
12119 
12120 err_pmu:
12121 	if (is_cgroup_event(event))
12122 		perf_detach_cgroup(event);
12123 	if (event->destroy)
12124 		event->destroy(event);
12125 	module_put(pmu->module);
12126 err_ns:
12127 	if (event->hw.target)
12128 		put_task_struct(event->hw.target);
12129 	call_rcu(&event->rcu_head, free_event_rcu);
12130 
12131 	return ERR_PTR(err);
12132 }
12133 
12134 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12135 			  struct perf_event_attr *attr)
12136 {
12137 	u32 size;
12138 	int ret;
12139 
12140 	/* Zero the full structure, so that a short copy will be nice. */
12141 	memset(attr, 0, sizeof(*attr));
12142 
12143 	ret = get_user(size, &uattr->size);
12144 	if (ret)
12145 		return ret;
12146 
12147 	/* ABI compatibility quirk: */
12148 	if (!size)
12149 		size = PERF_ATTR_SIZE_VER0;
12150 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12151 		goto err_size;
12152 
12153 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12154 	if (ret) {
12155 		if (ret == -E2BIG)
12156 			goto err_size;
12157 		return ret;
12158 	}
12159 
12160 	attr->size = size;
12161 
12162 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12163 		return -EINVAL;
12164 
12165 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12166 		return -EINVAL;
12167 
12168 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12169 		return -EINVAL;
12170 
12171 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12172 		u64 mask = attr->branch_sample_type;
12173 
12174 		/* only using defined bits */
12175 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12176 			return -EINVAL;
12177 
12178 		/* at least one branch bit must be set */
12179 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12180 			return -EINVAL;
12181 
12182 		/* propagate priv level, when not set for branch */
12183 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12184 
12185 			/* exclude_kernel checked on syscall entry */
12186 			if (!attr->exclude_kernel)
12187 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12188 
12189 			if (!attr->exclude_user)
12190 				mask |= PERF_SAMPLE_BRANCH_USER;
12191 
12192 			if (!attr->exclude_hv)
12193 				mask |= PERF_SAMPLE_BRANCH_HV;
12194 			/*
12195 			 * adjust user setting (for HW filter setup)
12196 			 */
12197 			attr->branch_sample_type = mask;
12198 		}
12199 		/* privileged levels capture (kernel, hv): check permissions */
12200 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12201 			ret = perf_allow_kernel(attr);
12202 			if (ret)
12203 				return ret;
12204 		}
12205 	}
12206 
12207 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12208 		ret = perf_reg_validate(attr->sample_regs_user);
12209 		if (ret)
12210 			return ret;
12211 	}
12212 
12213 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12214 		if (!arch_perf_have_user_stack_dump())
12215 			return -ENOSYS;
12216 
12217 		/*
12218 		 * We have __u32 type for the size, but so far
12219 		 * we can only use __u16 as maximum due to the
12220 		 * __u16 sample size limit.
12221 		 */
12222 		if (attr->sample_stack_user >= USHRT_MAX)
12223 			return -EINVAL;
12224 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12225 			return -EINVAL;
12226 	}
12227 
12228 	if (!attr->sample_max_stack)
12229 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12230 
12231 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12232 		ret = perf_reg_validate(attr->sample_regs_intr);
12233 
12234 #ifndef CONFIG_CGROUP_PERF
12235 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12236 		return -EINVAL;
12237 #endif
12238 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12239 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12240 		return -EINVAL;
12241 
12242 	if (!attr->inherit && attr->inherit_thread)
12243 		return -EINVAL;
12244 
12245 	if (attr->remove_on_exec && attr->enable_on_exec)
12246 		return -EINVAL;
12247 
12248 	if (attr->sigtrap && !attr->remove_on_exec)
12249 		return -EINVAL;
12250 
12251 out:
12252 	return ret;
12253 
12254 err_size:
12255 	put_user(sizeof(*attr), &uattr->size);
12256 	ret = -E2BIG;
12257 	goto out;
12258 }
12259 
12260 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12261 {
12262 	if (b < a)
12263 		swap(a, b);
12264 
12265 	mutex_lock(a);
12266 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12267 }
12268 
12269 static int
12270 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12271 {
12272 	struct perf_buffer *rb = NULL;
12273 	int ret = -EINVAL;
12274 
12275 	if (!output_event) {
12276 		mutex_lock(&event->mmap_mutex);
12277 		goto set;
12278 	}
12279 
12280 	/* don't allow circular references */
12281 	if (event == output_event)
12282 		goto out;
12283 
12284 	/*
12285 	 * Don't allow cross-cpu buffers
12286 	 */
12287 	if (output_event->cpu != event->cpu)
12288 		goto out;
12289 
12290 	/*
12291 	 * If its not a per-cpu rb, it must be the same task.
12292 	 */
12293 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12294 		goto out;
12295 
12296 	/*
12297 	 * Mixing clocks in the same buffer is trouble you don't need.
12298 	 */
12299 	if (output_event->clock != event->clock)
12300 		goto out;
12301 
12302 	/*
12303 	 * Either writing ring buffer from beginning or from end.
12304 	 * Mixing is not allowed.
12305 	 */
12306 	if (is_write_backward(output_event) != is_write_backward(event))
12307 		goto out;
12308 
12309 	/*
12310 	 * If both events generate aux data, they must be on the same PMU
12311 	 */
12312 	if (has_aux(event) && has_aux(output_event) &&
12313 	    event->pmu != output_event->pmu)
12314 		goto out;
12315 
12316 	/*
12317 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12318 	 * output_event is already on rb->event_list, and the list iteration
12319 	 * restarts after every removal, it is guaranteed this new event is
12320 	 * observed *OR* if output_event is already removed, it's guaranteed we
12321 	 * observe !rb->mmap_count.
12322 	 */
12323 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12324 set:
12325 	/* Can't redirect output if we've got an active mmap() */
12326 	if (atomic_read(&event->mmap_count))
12327 		goto unlock;
12328 
12329 	if (output_event) {
12330 		/* get the rb we want to redirect to */
12331 		rb = ring_buffer_get(output_event);
12332 		if (!rb)
12333 			goto unlock;
12334 
12335 		/* did we race against perf_mmap_close() */
12336 		if (!atomic_read(&rb->mmap_count)) {
12337 			ring_buffer_put(rb);
12338 			goto unlock;
12339 		}
12340 	}
12341 
12342 	ring_buffer_attach(event, rb);
12343 
12344 	ret = 0;
12345 unlock:
12346 	mutex_unlock(&event->mmap_mutex);
12347 	if (output_event)
12348 		mutex_unlock(&output_event->mmap_mutex);
12349 
12350 out:
12351 	return ret;
12352 }
12353 
12354 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12355 {
12356 	bool nmi_safe = false;
12357 
12358 	switch (clk_id) {
12359 	case CLOCK_MONOTONIC:
12360 		event->clock = &ktime_get_mono_fast_ns;
12361 		nmi_safe = true;
12362 		break;
12363 
12364 	case CLOCK_MONOTONIC_RAW:
12365 		event->clock = &ktime_get_raw_fast_ns;
12366 		nmi_safe = true;
12367 		break;
12368 
12369 	case CLOCK_REALTIME:
12370 		event->clock = &ktime_get_real_ns;
12371 		break;
12372 
12373 	case CLOCK_BOOTTIME:
12374 		event->clock = &ktime_get_boottime_ns;
12375 		break;
12376 
12377 	case CLOCK_TAI:
12378 		event->clock = &ktime_get_clocktai_ns;
12379 		break;
12380 
12381 	default:
12382 		return -EINVAL;
12383 	}
12384 
12385 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12386 		return -EINVAL;
12387 
12388 	return 0;
12389 }
12390 
12391 static bool
12392 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12393 {
12394 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12395 	bool is_capable = perfmon_capable();
12396 
12397 	if (attr->sigtrap) {
12398 		/*
12399 		 * perf_event_attr::sigtrap sends signals to the other task.
12400 		 * Require the current task to also have CAP_KILL.
12401 		 */
12402 		rcu_read_lock();
12403 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12404 		rcu_read_unlock();
12405 
12406 		/*
12407 		 * If the required capabilities aren't available, checks for
12408 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12409 		 * can effectively change the target task.
12410 		 */
12411 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12412 	}
12413 
12414 	/*
12415 	 * Preserve ptrace permission check for backwards compatibility. The
12416 	 * ptrace check also includes checks that the current task and other
12417 	 * task have matching uids, and is therefore not done here explicitly.
12418 	 */
12419 	return is_capable || ptrace_may_access(task, ptrace_mode);
12420 }
12421 
12422 /**
12423  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12424  *
12425  * @attr_uptr:	event_id type attributes for monitoring/sampling
12426  * @pid:		target pid
12427  * @cpu:		target cpu
12428  * @group_fd:		group leader event fd
12429  * @flags:		perf event open flags
12430  */
12431 SYSCALL_DEFINE5(perf_event_open,
12432 		struct perf_event_attr __user *, attr_uptr,
12433 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12434 {
12435 	struct perf_event *group_leader = NULL, *output_event = NULL;
12436 	struct perf_event_pmu_context *pmu_ctx;
12437 	struct perf_event *event, *sibling;
12438 	struct perf_event_attr attr;
12439 	struct perf_event_context *ctx;
12440 	struct file *event_file = NULL;
12441 	struct fd group = {NULL, 0};
12442 	struct task_struct *task = NULL;
12443 	struct pmu *pmu;
12444 	int event_fd;
12445 	int move_group = 0;
12446 	int err;
12447 	int f_flags = O_RDWR;
12448 	int cgroup_fd = -1;
12449 
12450 	/* for future expandability... */
12451 	if (flags & ~PERF_FLAG_ALL)
12452 		return -EINVAL;
12453 
12454 	err = perf_copy_attr(attr_uptr, &attr);
12455 	if (err)
12456 		return err;
12457 
12458 	/* Do we allow access to perf_event_open(2) ? */
12459 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12460 	if (err)
12461 		return err;
12462 
12463 	if (!attr.exclude_kernel) {
12464 		err = perf_allow_kernel(&attr);
12465 		if (err)
12466 			return err;
12467 	}
12468 
12469 	if (attr.namespaces) {
12470 		if (!perfmon_capable())
12471 			return -EACCES;
12472 	}
12473 
12474 	if (attr.freq) {
12475 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12476 			return -EINVAL;
12477 	} else {
12478 		if (attr.sample_period & (1ULL << 63))
12479 			return -EINVAL;
12480 	}
12481 
12482 	/* Only privileged users can get physical addresses */
12483 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12484 		err = perf_allow_kernel(&attr);
12485 		if (err)
12486 			return err;
12487 	}
12488 
12489 	/* REGS_INTR can leak data, lockdown must prevent this */
12490 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12491 		err = security_locked_down(LOCKDOWN_PERF);
12492 		if (err)
12493 			return err;
12494 	}
12495 
12496 	/*
12497 	 * In cgroup mode, the pid argument is used to pass the fd
12498 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12499 	 * designates the cpu on which to monitor threads from that
12500 	 * cgroup.
12501 	 */
12502 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12503 		return -EINVAL;
12504 
12505 	if (flags & PERF_FLAG_FD_CLOEXEC)
12506 		f_flags |= O_CLOEXEC;
12507 
12508 	event_fd = get_unused_fd_flags(f_flags);
12509 	if (event_fd < 0)
12510 		return event_fd;
12511 
12512 	if (group_fd != -1) {
12513 		err = perf_fget_light(group_fd, &group);
12514 		if (err)
12515 			goto err_fd;
12516 		group_leader = group.file->private_data;
12517 		if (flags & PERF_FLAG_FD_OUTPUT)
12518 			output_event = group_leader;
12519 		if (flags & PERF_FLAG_FD_NO_GROUP)
12520 			group_leader = NULL;
12521 	}
12522 
12523 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12524 		task = find_lively_task_by_vpid(pid);
12525 		if (IS_ERR(task)) {
12526 			err = PTR_ERR(task);
12527 			goto err_group_fd;
12528 		}
12529 	}
12530 
12531 	if (task && group_leader &&
12532 	    group_leader->attr.inherit != attr.inherit) {
12533 		err = -EINVAL;
12534 		goto err_task;
12535 	}
12536 
12537 	if (flags & PERF_FLAG_PID_CGROUP)
12538 		cgroup_fd = pid;
12539 
12540 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12541 				 NULL, NULL, cgroup_fd);
12542 	if (IS_ERR(event)) {
12543 		err = PTR_ERR(event);
12544 		goto err_task;
12545 	}
12546 
12547 	if (is_sampling_event(event)) {
12548 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12549 			err = -EOPNOTSUPP;
12550 			goto err_alloc;
12551 		}
12552 	}
12553 
12554 	/*
12555 	 * Special case software events and allow them to be part of
12556 	 * any hardware group.
12557 	 */
12558 	pmu = event->pmu;
12559 
12560 	if (attr.use_clockid) {
12561 		err = perf_event_set_clock(event, attr.clockid);
12562 		if (err)
12563 			goto err_alloc;
12564 	}
12565 
12566 	if (pmu->task_ctx_nr == perf_sw_context)
12567 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12568 
12569 	if (task) {
12570 		err = down_read_interruptible(&task->signal->exec_update_lock);
12571 		if (err)
12572 			goto err_alloc;
12573 
12574 		/*
12575 		 * We must hold exec_update_lock across this and any potential
12576 		 * perf_install_in_context() call for this new event to
12577 		 * serialize against exec() altering our credentials (and the
12578 		 * perf_event_exit_task() that could imply).
12579 		 */
12580 		err = -EACCES;
12581 		if (!perf_check_permission(&attr, task))
12582 			goto err_cred;
12583 	}
12584 
12585 	/*
12586 	 * Get the target context (task or percpu):
12587 	 */
12588 	ctx = find_get_context(task, event);
12589 	if (IS_ERR(ctx)) {
12590 		err = PTR_ERR(ctx);
12591 		goto err_cred;
12592 	}
12593 
12594 	mutex_lock(&ctx->mutex);
12595 
12596 	if (ctx->task == TASK_TOMBSTONE) {
12597 		err = -ESRCH;
12598 		goto err_locked;
12599 	}
12600 
12601 	if (!task) {
12602 		/*
12603 		 * Check if the @cpu we're creating an event for is online.
12604 		 *
12605 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12606 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12607 		 */
12608 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12609 
12610 		if (!cpuctx->online) {
12611 			err = -ENODEV;
12612 			goto err_locked;
12613 		}
12614 	}
12615 
12616 	if (group_leader) {
12617 		err = -EINVAL;
12618 
12619 		/*
12620 		 * Do not allow a recursive hierarchy (this new sibling
12621 		 * becoming part of another group-sibling):
12622 		 */
12623 		if (group_leader->group_leader != group_leader)
12624 			goto err_locked;
12625 
12626 		/* All events in a group should have the same clock */
12627 		if (group_leader->clock != event->clock)
12628 			goto err_locked;
12629 
12630 		/*
12631 		 * Make sure we're both events for the same CPU;
12632 		 * grouping events for different CPUs is broken; since
12633 		 * you can never concurrently schedule them anyhow.
12634 		 */
12635 		if (group_leader->cpu != event->cpu)
12636 			goto err_locked;
12637 
12638 		/*
12639 		 * Make sure we're both on the same context; either task or cpu.
12640 		 */
12641 		if (group_leader->ctx != ctx)
12642 			goto err_locked;
12643 
12644 		/*
12645 		 * Only a group leader can be exclusive or pinned
12646 		 */
12647 		if (attr.exclusive || attr.pinned)
12648 			goto err_locked;
12649 
12650 		if (is_software_event(event) &&
12651 		    !in_software_context(group_leader)) {
12652 			/*
12653 			 * If the event is a sw event, but the group_leader
12654 			 * is on hw context.
12655 			 *
12656 			 * Allow the addition of software events to hw
12657 			 * groups, this is safe because software events
12658 			 * never fail to schedule.
12659 			 *
12660 			 * Note the comment that goes with struct
12661 			 * perf_event_pmu_context.
12662 			 */
12663 			pmu = group_leader->pmu_ctx->pmu;
12664 		} else if (!is_software_event(event)) {
12665 			if (is_software_event(group_leader) &&
12666 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12667 				/*
12668 				 * In case the group is a pure software group, and we
12669 				 * try to add a hardware event, move the whole group to
12670 				 * the hardware context.
12671 				 */
12672 				move_group = 1;
12673 			}
12674 
12675 			/* Don't allow group of multiple hw events from different pmus */
12676 			if (!in_software_context(group_leader) &&
12677 			    group_leader->pmu_ctx->pmu != pmu)
12678 				goto err_locked;
12679 		}
12680 	}
12681 
12682 	/*
12683 	 * Now that we're certain of the pmu; find the pmu_ctx.
12684 	 */
12685 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12686 	if (IS_ERR(pmu_ctx)) {
12687 		err = PTR_ERR(pmu_ctx);
12688 		goto err_locked;
12689 	}
12690 	event->pmu_ctx = pmu_ctx;
12691 
12692 	if (output_event) {
12693 		err = perf_event_set_output(event, output_event);
12694 		if (err)
12695 			goto err_context;
12696 	}
12697 
12698 	if (!perf_event_validate_size(event)) {
12699 		err = -E2BIG;
12700 		goto err_context;
12701 	}
12702 
12703 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12704 		err = -EINVAL;
12705 		goto err_context;
12706 	}
12707 
12708 	/*
12709 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12710 	 * because we need to serialize with concurrent event creation.
12711 	 */
12712 	if (!exclusive_event_installable(event, ctx)) {
12713 		err = -EBUSY;
12714 		goto err_context;
12715 	}
12716 
12717 	WARN_ON_ONCE(ctx->parent_ctx);
12718 
12719 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12720 	if (IS_ERR(event_file)) {
12721 		err = PTR_ERR(event_file);
12722 		event_file = NULL;
12723 		goto err_context;
12724 	}
12725 
12726 	/*
12727 	 * This is the point on no return; we cannot fail hereafter. This is
12728 	 * where we start modifying current state.
12729 	 */
12730 
12731 	if (move_group) {
12732 		perf_remove_from_context(group_leader, 0);
12733 		put_pmu_ctx(group_leader->pmu_ctx);
12734 
12735 		for_each_sibling_event(sibling, group_leader) {
12736 			perf_remove_from_context(sibling, 0);
12737 			put_pmu_ctx(sibling->pmu_ctx);
12738 		}
12739 
12740 		/*
12741 		 * Install the group siblings before the group leader.
12742 		 *
12743 		 * Because a group leader will try and install the entire group
12744 		 * (through the sibling list, which is still in-tact), we can
12745 		 * end up with siblings installed in the wrong context.
12746 		 *
12747 		 * By installing siblings first we NO-OP because they're not
12748 		 * reachable through the group lists.
12749 		 */
12750 		for_each_sibling_event(sibling, group_leader) {
12751 			sibling->pmu_ctx = pmu_ctx;
12752 			get_pmu_ctx(pmu_ctx);
12753 			perf_event__state_init(sibling);
12754 			perf_install_in_context(ctx, sibling, sibling->cpu);
12755 		}
12756 
12757 		/*
12758 		 * Removing from the context ends up with disabled
12759 		 * event. What we want here is event in the initial
12760 		 * startup state, ready to be add into new context.
12761 		 */
12762 		group_leader->pmu_ctx = pmu_ctx;
12763 		get_pmu_ctx(pmu_ctx);
12764 		perf_event__state_init(group_leader);
12765 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12766 	}
12767 
12768 	/*
12769 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12770 	 * that we're serialized against further additions and before
12771 	 * perf_install_in_context() which is the point the event is active and
12772 	 * can use these values.
12773 	 */
12774 	perf_event__header_size(event);
12775 	perf_event__id_header_size(event);
12776 
12777 	event->owner = current;
12778 
12779 	perf_install_in_context(ctx, event, event->cpu);
12780 	perf_unpin_context(ctx);
12781 
12782 	mutex_unlock(&ctx->mutex);
12783 
12784 	if (task) {
12785 		up_read(&task->signal->exec_update_lock);
12786 		put_task_struct(task);
12787 	}
12788 
12789 	mutex_lock(&current->perf_event_mutex);
12790 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12791 	mutex_unlock(&current->perf_event_mutex);
12792 
12793 	/*
12794 	 * Drop the reference on the group_event after placing the
12795 	 * new event on the sibling_list. This ensures destruction
12796 	 * of the group leader will find the pointer to itself in
12797 	 * perf_group_detach().
12798 	 */
12799 	fdput(group);
12800 	fd_install(event_fd, event_file);
12801 	return event_fd;
12802 
12803 err_context:
12804 	put_pmu_ctx(event->pmu_ctx);
12805 	event->pmu_ctx = NULL; /* _free_event() */
12806 err_locked:
12807 	mutex_unlock(&ctx->mutex);
12808 	perf_unpin_context(ctx);
12809 	put_ctx(ctx);
12810 err_cred:
12811 	if (task)
12812 		up_read(&task->signal->exec_update_lock);
12813 err_alloc:
12814 	free_event(event);
12815 err_task:
12816 	if (task)
12817 		put_task_struct(task);
12818 err_group_fd:
12819 	fdput(group);
12820 err_fd:
12821 	put_unused_fd(event_fd);
12822 	return err;
12823 }
12824 
12825 /**
12826  * perf_event_create_kernel_counter
12827  *
12828  * @attr: attributes of the counter to create
12829  * @cpu: cpu in which the counter is bound
12830  * @task: task to profile (NULL for percpu)
12831  * @overflow_handler: callback to trigger when we hit the event
12832  * @context: context data could be used in overflow_handler callback
12833  */
12834 struct perf_event *
12835 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12836 				 struct task_struct *task,
12837 				 perf_overflow_handler_t overflow_handler,
12838 				 void *context)
12839 {
12840 	struct perf_event_pmu_context *pmu_ctx;
12841 	struct perf_event_context *ctx;
12842 	struct perf_event *event;
12843 	struct pmu *pmu;
12844 	int err;
12845 
12846 	/*
12847 	 * Grouping is not supported for kernel events, neither is 'AUX',
12848 	 * make sure the caller's intentions are adjusted.
12849 	 */
12850 	if (attr->aux_output)
12851 		return ERR_PTR(-EINVAL);
12852 
12853 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12854 				 overflow_handler, context, -1);
12855 	if (IS_ERR(event)) {
12856 		err = PTR_ERR(event);
12857 		goto err;
12858 	}
12859 
12860 	/* Mark owner so we could distinguish it from user events. */
12861 	event->owner = TASK_TOMBSTONE;
12862 	pmu = event->pmu;
12863 
12864 	if (pmu->task_ctx_nr == perf_sw_context)
12865 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12866 
12867 	/*
12868 	 * Get the target context (task or percpu):
12869 	 */
12870 	ctx = find_get_context(task, event);
12871 	if (IS_ERR(ctx)) {
12872 		err = PTR_ERR(ctx);
12873 		goto err_alloc;
12874 	}
12875 
12876 	WARN_ON_ONCE(ctx->parent_ctx);
12877 	mutex_lock(&ctx->mutex);
12878 	if (ctx->task == TASK_TOMBSTONE) {
12879 		err = -ESRCH;
12880 		goto err_unlock;
12881 	}
12882 
12883 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12884 	if (IS_ERR(pmu_ctx)) {
12885 		err = PTR_ERR(pmu_ctx);
12886 		goto err_unlock;
12887 	}
12888 	event->pmu_ctx = pmu_ctx;
12889 
12890 	if (!task) {
12891 		/*
12892 		 * Check if the @cpu we're creating an event for is online.
12893 		 *
12894 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12895 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12896 		 */
12897 		struct perf_cpu_context *cpuctx =
12898 			container_of(ctx, struct perf_cpu_context, ctx);
12899 		if (!cpuctx->online) {
12900 			err = -ENODEV;
12901 			goto err_pmu_ctx;
12902 		}
12903 	}
12904 
12905 	if (!exclusive_event_installable(event, ctx)) {
12906 		err = -EBUSY;
12907 		goto err_pmu_ctx;
12908 	}
12909 
12910 	perf_install_in_context(ctx, event, event->cpu);
12911 	perf_unpin_context(ctx);
12912 	mutex_unlock(&ctx->mutex);
12913 
12914 	return event;
12915 
12916 err_pmu_ctx:
12917 	put_pmu_ctx(pmu_ctx);
12918 	event->pmu_ctx = NULL; /* _free_event() */
12919 err_unlock:
12920 	mutex_unlock(&ctx->mutex);
12921 	perf_unpin_context(ctx);
12922 	put_ctx(ctx);
12923 err_alloc:
12924 	free_event(event);
12925 err:
12926 	return ERR_PTR(err);
12927 }
12928 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12929 
12930 static void __perf_pmu_remove(struct perf_event_context *ctx,
12931 			      int cpu, struct pmu *pmu,
12932 			      struct perf_event_groups *groups,
12933 			      struct list_head *events)
12934 {
12935 	struct perf_event *event, *sibling;
12936 
12937 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12938 		perf_remove_from_context(event, 0);
12939 		put_pmu_ctx(event->pmu_ctx);
12940 		list_add(&event->migrate_entry, events);
12941 
12942 		for_each_sibling_event(sibling, event) {
12943 			perf_remove_from_context(sibling, 0);
12944 			put_pmu_ctx(sibling->pmu_ctx);
12945 			list_add(&sibling->migrate_entry, events);
12946 		}
12947 	}
12948 }
12949 
12950 static void __perf_pmu_install_event(struct pmu *pmu,
12951 				     struct perf_event_context *ctx,
12952 				     int cpu, struct perf_event *event)
12953 {
12954 	struct perf_event_pmu_context *epc;
12955 	struct perf_event_context *old_ctx = event->ctx;
12956 
12957 	get_ctx(ctx); /* normally find_get_context() */
12958 
12959 	event->cpu = cpu;
12960 	epc = find_get_pmu_context(pmu, ctx, event);
12961 	event->pmu_ctx = epc;
12962 
12963 	if (event->state >= PERF_EVENT_STATE_OFF)
12964 		event->state = PERF_EVENT_STATE_INACTIVE;
12965 	perf_install_in_context(ctx, event, cpu);
12966 
12967 	/*
12968 	 * Now that event->ctx is updated and visible, put the old ctx.
12969 	 */
12970 	put_ctx(old_ctx);
12971 }
12972 
12973 static void __perf_pmu_install(struct perf_event_context *ctx,
12974 			       int cpu, struct pmu *pmu, struct list_head *events)
12975 {
12976 	struct perf_event *event, *tmp;
12977 
12978 	/*
12979 	 * Re-instate events in 2 passes.
12980 	 *
12981 	 * Skip over group leaders and only install siblings on this first
12982 	 * pass, siblings will not get enabled without a leader, however a
12983 	 * leader will enable its siblings, even if those are still on the old
12984 	 * context.
12985 	 */
12986 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12987 		if (event->group_leader == event)
12988 			continue;
12989 
12990 		list_del(&event->migrate_entry);
12991 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12992 	}
12993 
12994 	/*
12995 	 * Once all the siblings are setup properly, install the group leaders
12996 	 * to make it go.
12997 	 */
12998 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12999 		list_del(&event->migrate_entry);
13000 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13001 	}
13002 }
13003 
13004 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13005 {
13006 	struct perf_event_context *src_ctx, *dst_ctx;
13007 	LIST_HEAD(events);
13008 
13009 	/*
13010 	 * Since per-cpu context is persistent, no need to grab an extra
13011 	 * reference.
13012 	 */
13013 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13014 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13015 
13016 	/*
13017 	 * See perf_event_ctx_lock() for comments on the details
13018 	 * of swizzling perf_event::ctx.
13019 	 */
13020 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13021 
13022 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13023 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13024 
13025 	if (!list_empty(&events)) {
13026 		/*
13027 		 * Wait for the events to quiesce before re-instating them.
13028 		 */
13029 		synchronize_rcu();
13030 
13031 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13032 	}
13033 
13034 	mutex_unlock(&dst_ctx->mutex);
13035 	mutex_unlock(&src_ctx->mutex);
13036 }
13037 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13038 
13039 static void sync_child_event(struct perf_event *child_event)
13040 {
13041 	struct perf_event *parent_event = child_event->parent;
13042 	u64 child_val;
13043 
13044 	if (child_event->attr.inherit_stat) {
13045 		struct task_struct *task = child_event->ctx->task;
13046 
13047 		if (task && task != TASK_TOMBSTONE)
13048 			perf_event_read_event(child_event, task);
13049 	}
13050 
13051 	child_val = perf_event_count(child_event);
13052 
13053 	/*
13054 	 * Add back the child's count to the parent's count:
13055 	 */
13056 	atomic64_add(child_val, &parent_event->child_count);
13057 	atomic64_add(child_event->total_time_enabled,
13058 		     &parent_event->child_total_time_enabled);
13059 	atomic64_add(child_event->total_time_running,
13060 		     &parent_event->child_total_time_running);
13061 }
13062 
13063 static void
13064 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13065 {
13066 	struct perf_event *parent_event = event->parent;
13067 	unsigned long detach_flags = 0;
13068 
13069 	if (parent_event) {
13070 		/*
13071 		 * Do not destroy the 'original' grouping; because of the
13072 		 * context switch optimization the original events could've
13073 		 * ended up in a random child task.
13074 		 *
13075 		 * If we were to destroy the original group, all group related
13076 		 * operations would cease to function properly after this
13077 		 * random child dies.
13078 		 *
13079 		 * Do destroy all inherited groups, we don't care about those
13080 		 * and being thorough is better.
13081 		 */
13082 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13083 		mutex_lock(&parent_event->child_mutex);
13084 	}
13085 
13086 	perf_remove_from_context(event, detach_flags);
13087 
13088 	raw_spin_lock_irq(&ctx->lock);
13089 	if (event->state > PERF_EVENT_STATE_EXIT)
13090 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13091 	raw_spin_unlock_irq(&ctx->lock);
13092 
13093 	/*
13094 	 * Child events can be freed.
13095 	 */
13096 	if (parent_event) {
13097 		mutex_unlock(&parent_event->child_mutex);
13098 		/*
13099 		 * Kick perf_poll() for is_event_hup();
13100 		 */
13101 		perf_event_wakeup(parent_event);
13102 		free_event(event);
13103 		put_event(parent_event);
13104 		return;
13105 	}
13106 
13107 	/*
13108 	 * Parent events are governed by their filedesc, retain them.
13109 	 */
13110 	perf_event_wakeup(event);
13111 }
13112 
13113 static void perf_event_exit_task_context(struct task_struct *child)
13114 {
13115 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13116 	struct perf_event *child_event, *next;
13117 
13118 	WARN_ON_ONCE(child != current);
13119 
13120 	child_ctx = perf_pin_task_context(child);
13121 	if (!child_ctx)
13122 		return;
13123 
13124 	/*
13125 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13126 	 * ctx::mutex over the entire thing. This serializes against almost
13127 	 * everything that wants to access the ctx.
13128 	 *
13129 	 * The exception is sys_perf_event_open() /
13130 	 * perf_event_create_kernel_count() which does find_get_context()
13131 	 * without ctx::mutex (it cannot because of the move_group double mutex
13132 	 * lock thing). See the comments in perf_install_in_context().
13133 	 */
13134 	mutex_lock(&child_ctx->mutex);
13135 
13136 	/*
13137 	 * In a single ctx::lock section, de-schedule the events and detach the
13138 	 * context from the task such that we cannot ever get it scheduled back
13139 	 * in.
13140 	 */
13141 	raw_spin_lock_irq(&child_ctx->lock);
13142 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13143 
13144 	/*
13145 	 * Now that the context is inactive, destroy the task <-> ctx relation
13146 	 * and mark the context dead.
13147 	 */
13148 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13149 	put_ctx(child_ctx); /* cannot be last */
13150 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13151 	put_task_struct(current); /* cannot be last */
13152 
13153 	clone_ctx = unclone_ctx(child_ctx);
13154 	raw_spin_unlock_irq(&child_ctx->lock);
13155 
13156 	if (clone_ctx)
13157 		put_ctx(clone_ctx);
13158 
13159 	/*
13160 	 * Report the task dead after unscheduling the events so that we
13161 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13162 	 * get a few PERF_RECORD_READ events.
13163 	 */
13164 	perf_event_task(child, child_ctx, 0);
13165 
13166 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13167 		perf_event_exit_event(child_event, child_ctx);
13168 
13169 	mutex_unlock(&child_ctx->mutex);
13170 
13171 	put_ctx(child_ctx);
13172 }
13173 
13174 /*
13175  * When a child task exits, feed back event values to parent events.
13176  *
13177  * Can be called with exec_update_lock held when called from
13178  * setup_new_exec().
13179  */
13180 void perf_event_exit_task(struct task_struct *child)
13181 {
13182 	struct perf_event *event, *tmp;
13183 
13184 	mutex_lock(&child->perf_event_mutex);
13185 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13186 				 owner_entry) {
13187 		list_del_init(&event->owner_entry);
13188 
13189 		/*
13190 		 * Ensure the list deletion is visible before we clear
13191 		 * the owner, closes a race against perf_release() where
13192 		 * we need to serialize on the owner->perf_event_mutex.
13193 		 */
13194 		smp_store_release(&event->owner, NULL);
13195 	}
13196 	mutex_unlock(&child->perf_event_mutex);
13197 
13198 	perf_event_exit_task_context(child);
13199 
13200 	/*
13201 	 * The perf_event_exit_task_context calls perf_event_task
13202 	 * with child's task_ctx, which generates EXIT events for
13203 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13204 	 * At this point we need to send EXIT events to cpu contexts.
13205 	 */
13206 	perf_event_task(child, NULL, 0);
13207 }
13208 
13209 static void perf_free_event(struct perf_event *event,
13210 			    struct perf_event_context *ctx)
13211 {
13212 	struct perf_event *parent = event->parent;
13213 
13214 	if (WARN_ON_ONCE(!parent))
13215 		return;
13216 
13217 	mutex_lock(&parent->child_mutex);
13218 	list_del_init(&event->child_list);
13219 	mutex_unlock(&parent->child_mutex);
13220 
13221 	put_event(parent);
13222 
13223 	raw_spin_lock_irq(&ctx->lock);
13224 	perf_group_detach(event);
13225 	list_del_event(event, ctx);
13226 	raw_spin_unlock_irq(&ctx->lock);
13227 	free_event(event);
13228 }
13229 
13230 /*
13231  * Free a context as created by inheritance by perf_event_init_task() below,
13232  * used by fork() in case of fail.
13233  *
13234  * Even though the task has never lived, the context and events have been
13235  * exposed through the child_list, so we must take care tearing it all down.
13236  */
13237 void perf_event_free_task(struct task_struct *task)
13238 {
13239 	struct perf_event_context *ctx;
13240 	struct perf_event *event, *tmp;
13241 
13242 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13243 	if (!ctx)
13244 		return;
13245 
13246 	mutex_lock(&ctx->mutex);
13247 	raw_spin_lock_irq(&ctx->lock);
13248 	/*
13249 	 * Destroy the task <-> ctx relation and mark the context dead.
13250 	 *
13251 	 * This is important because even though the task hasn't been
13252 	 * exposed yet the context has been (through child_list).
13253 	 */
13254 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13255 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13256 	put_task_struct(task); /* cannot be last */
13257 	raw_spin_unlock_irq(&ctx->lock);
13258 
13259 
13260 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13261 		perf_free_event(event, ctx);
13262 
13263 	mutex_unlock(&ctx->mutex);
13264 
13265 	/*
13266 	 * perf_event_release_kernel() could've stolen some of our
13267 	 * child events and still have them on its free_list. In that
13268 	 * case we must wait for these events to have been freed (in
13269 	 * particular all their references to this task must've been
13270 	 * dropped).
13271 	 *
13272 	 * Without this copy_process() will unconditionally free this
13273 	 * task (irrespective of its reference count) and
13274 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13275 	 * use-after-free.
13276 	 *
13277 	 * Wait for all events to drop their context reference.
13278 	 */
13279 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13280 	put_ctx(ctx); /* must be last */
13281 }
13282 
13283 void perf_event_delayed_put(struct task_struct *task)
13284 {
13285 	WARN_ON_ONCE(task->perf_event_ctxp);
13286 }
13287 
13288 struct file *perf_event_get(unsigned int fd)
13289 {
13290 	struct file *file = fget(fd);
13291 	if (!file)
13292 		return ERR_PTR(-EBADF);
13293 
13294 	if (file->f_op != &perf_fops) {
13295 		fput(file);
13296 		return ERR_PTR(-EBADF);
13297 	}
13298 
13299 	return file;
13300 }
13301 
13302 const struct perf_event *perf_get_event(struct file *file)
13303 {
13304 	if (file->f_op != &perf_fops)
13305 		return ERR_PTR(-EINVAL);
13306 
13307 	return file->private_data;
13308 }
13309 
13310 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13311 {
13312 	if (!event)
13313 		return ERR_PTR(-EINVAL);
13314 
13315 	return &event->attr;
13316 }
13317 
13318 /*
13319  * Inherit an event from parent task to child task.
13320  *
13321  * Returns:
13322  *  - valid pointer on success
13323  *  - NULL for orphaned events
13324  *  - IS_ERR() on error
13325  */
13326 static struct perf_event *
13327 inherit_event(struct perf_event *parent_event,
13328 	      struct task_struct *parent,
13329 	      struct perf_event_context *parent_ctx,
13330 	      struct task_struct *child,
13331 	      struct perf_event *group_leader,
13332 	      struct perf_event_context *child_ctx)
13333 {
13334 	enum perf_event_state parent_state = parent_event->state;
13335 	struct perf_event_pmu_context *pmu_ctx;
13336 	struct perf_event *child_event;
13337 	unsigned long flags;
13338 
13339 	/*
13340 	 * Instead of creating recursive hierarchies of events,
13341 	 * we link inherited events back to the original parent,
13342 	 * which has a filp for sure, which we use as the reference
13343 	 * count:
13344 	 */
13345 	if (parent_event->parent)
13346 		parent_event = parent_event->parent;
13347 
13348 	child_event = perf_event_alloc(&parent_event->attr,
13349 					   parent_event->cpu,
13350 					   child,
13351 					   group_leader, parent_event,
13352 					   NULL, NULL, -1);
13353 	if (IS_ERR(child_event))
13354 		return child_event;
13355 
13356 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13357 	if (IS_ERR(pmu_ctx)) {
13358 		free_event(child_event);
13359 		return ERR_CAST(pmu_ctx);
13360 	}
13361 	child_event->pmu_ctx = pmu_ctx;
13362 
13363 	/*
13364 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13365 	 * must be under the same lock in order to serialize against
13366 	 * perf_event_release_kernel(), such that either we must observe
13367 	 * is_orphaned_event() or they will observe us on the child_list.
13368 	 */
13369 	mutex_lock(&parent_event->child_mutex);
13370 	if (is_orphaned_event(parent_event) ||
13371 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13372 		mutex_unlock(&parent_event->child_mutex);
13373 		/* task_ctx_data is freed with child_ctx */
13374 		free_event(child_event);
13375 		return NULL;
13376 	}
13377 
13378 	get_ctx(child_ctx);
13379 
13380 	/*
13381 	 * Make the child state follow the state of the parent event,
13382 	 * not its attr.disabled bit.  We hold the parent's mutex,
13383 	 * so we won't race with perf_event_{en, dis}able_family.
13384 	 */
13385 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13386 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13387 	else
13388 		child_event->state = PERF_EVENT_STATE_OFF;
13389 
13390 	if (parent_event->attr.freq) {
13391 		u64 sample_period = parent_event->hw.sample_period;
13392 		struct hw_perf_event *hwc = &child_event->hw;
13393 
13394 		hwc->sample_period = sample_period;
13395 		hwc->last_period   = sample_period;
13396 
13397 		local64_set(&hwc->period_left, sample_period);
13398 	}
13399 
13400 	child_event->ctx = child_ctx;
13401 	child_event->overflow_handler = parent_event->overflow_handler;
13402 	child_event->overflow_handler_context
13403 		= parent_event->overflow_handler_context;
13404 
13405 	/*
13406 	 * Precalculate sample_data sizes
13407 	 */
13408 	perf_event__header_size(child_event);
13409 	perf_event__id_header_size(child_event);
13410 
13411 	/*
13412 	 * Link it up in the child's context:
13413 	 */
13414 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13415 	add_event_to_ctx(child_event, child_ctx);
13416 	child_event->attach_state |= PERF_ATTACH_CHILD;
13417 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13418 
13419 	/*
13420 	 * Link this into the parent event's child list
13421 	 */
13422 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13423 	mutex_unlock(&parent_event->child_mutex);
13424 
13425 	return child_event;
13426 }
13427 
13428 /*
13429  * Inherits an event group.
13430  *
13431  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13432  * This matches with perf_event_release_kernel() removing all child events.
13433  *
13434  * Returns:
13435  *  - 0 on success
13436  *  - <0 on error
13437  */
13438 static int inherit_group(struct perf_event *parent_event,
13439 	      struct task_struct *parent,
13440 	      struct perf_event_context *parent_ctx,
13441 	      struct task_struct *child,
13442 	      struct perf_event_context *child_ctx)
13443 {
13444 	struct perf_event *leader;
13445 	struct perf_event *sub;
13446 	struct perf_event *child_ctr;
13447 
13448 	leader = inherit_event(parent_event, parent, parent_ctx,
13449 				 child, NULL, child_ctx);
13450 	if (IS_ERR(leader))
13451 		return PTR_ERR(leader);
13452 	/*
13453 	 * @leader can be NULL here because of is_orphaned_event(). In this
13454 	 * case inherit_event() will create individual events, similar to what
13455 	 * perf_group_detach() would do anyway.
13456 	 */
13457 	for_each_sibling_event(sub, parent_event) {
13458 		child_ctr = inherit_event(sub, parent, parent_ctx,
13459 					    child, leader, child_ctx);
13460 		if (IS_ERR(child_ctr))
13461 			return PTR_ERR(child_ctr);
13462 
13463 		if (sub->aux_event == parent_event && child_ctr &&
13464 		    !perf_get_aux_event(child_ctr, leader))
13465 			return -EINVAL;
13466 	}
13467 	if (leader)
13468 		leader->group_generation = parent_event->group_generation;
13469 	return 0;
13470 }
13471 
13472 /*
13473  * Creates the child task context and tries to inherit the event-group.
13474  *
13475  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13476  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13477  * consistent with perf_event_release_kernel() removing all child events.
13478  *
13479  * Returns:
13480  *  - 0 on success
13481  *  - <0 on error
13482  */
13483 static int
13484 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13485 		   struct perf_event_context *parent_ctx,
13486 		   struct task_struct *child,
13487 		   u64 clone_flags, int *inherited_all)
13488 {
13489 	struct perf_event_context *child_ctx;
13490 	int ret;
13491 
13492 	if (!event->attr.inherit ||
13493 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13494 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13495 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13496 		*inherited_all = 0;
13497 		return 0;
13498 	}
13499 
13500 	child_ctx = child->perf_event_ctxp;
13501 	if (!child_ctx) {
13502 		/*
13503 		 * This is executed from the parent task context, so
13504 		 * inherit events that have been marked for cloning.
13505 		 * First allocate and initialize a context for the
13506 		 * child.
13507 		 */
13508 		child_ctx = alloc_perf_context(child);
13509 		if (!child_ctx)
13510 			return -ENOMEM;
13511 
13512 		child->perf_event_ctxp = child_ctx;
13513 	}
13514 
13515 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13516 	if (ret)
13517 		*inherited_all = 0;
13518 
13519 	return ret;
13520 }
13521 
13522 /*
13523  * Initialize the perf_event context in task_struct
13524  */
13525 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13526 {
13527 	struct perf_event_context *child_ctx, *parent_ctx;
13528 	struct perf_event_context *cloned_ctx;
13529 	struct perf_event *event;
13530 	struct task_struct *parent = current;
13531 	int inherited_all = 1;
13532 	unsigned long flags;
13533 	int ret = 0;
13534 
13535 	if (likely(!parent->perf_event_ctxp))
13536 		return 0;
13537 
13538 	/*
13539 	 * If the parent's context is a clone, pin it so it won't get
13540 	 * swapped under us.
13541 	 */
13542 	parent_ctx = perf_pin_task_context(parent);
13543 	if (!parent_ctx)
13544 		return 0;
13545 
13546 	/*
13547 	 * No need to check if parent_ctx != NULL here; since we saw
13548 	 * it non-NULL earlier, the only reason for it to become NULL
13549 	 * is if we exit, and since we're currently in the middle of
13550 	 * a fork we can't be exiting at the same time.
13551 	 */
13552 
13553 	/*
13554 	 * Lock the parent list. No need to lock the child - not PID
13555 	 * hashed yet and not running, so nobody can access it.
13556 	 */
13557 	mutex_lock(&parent_ctx->mutex);
13558 
13559 	/*
13560 	 * We dont have to disable NMIs - we are only looking at
13561 	 * the list, not manipulating it:
13562 	 */
13563 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13564 		ret = inherit_task_group(event, parent, parent_ctx,
13565 					 child, clone_flags, &inherited_all);
13566 		if (ret)
13567 			goto out_unlock;
13568 	}
13569 
13570 	/*
13571 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13572 	 * to allocations, but we need to prevent rotation because
13573 	 * rotate_ctx() will change the list from interrupt context.
13574 	 */
13575 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13576 	parent_ctx->rotate_disable = 1;
13577 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13578 
13579 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13580 		ret = inherit_task_group(event, parent, parent_ctx,
13581 					 child, clone_flags, &inherited_all);
13582 		if (ret)
13583 			goto out_unlock;
13584 	}
13585 
13586 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13587 	parent_ctx->rotate_disable = 0;
13588 
13589 	child_ctx = child->perf_event_ctxp;
13590 
13591 	if (child_ctx && inherited_all) {
13592 		/*
13593 		 * Mark the child context as a clone of the parent
13594 		 * context, or of whatever the parent is a clone of.
13595 		 *
13596 		 * Note that if the parent is a clone, the holding of
13597 		 * parent_ctx->lock avoids it from being uncloned.
13598 		 */
13599 		cloned_ctx = parent_ctx->parent_ctx;
13600 		if (cloned_ctx) {
13601 			child_ctx->parent_ctx = cloned_ctx;
13602 			child_ctx->parent_gen = parent_ctx->parent_gen;
13603 		} else {
13604 			child_ctx->parent_ctx = parent_ctx;
13605 			child_ctx->parent_gen = parent_ctx->generation;
13606 		}
13607 		get_ctx(child_ctx->parent_ctx);
13608 	}
13609 
13610 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13611 out_unlock:
13612 	mutex_unlock(&parent_ctx->mutex);
13613 
13614 	perf_unpin_context(parent_ctx);
13615 	put_ctx(parent_ctx);
13616 
13617 	return ret;
13618 }
13619 
13620 /*
13621  * Initialize the perf_event context in task_struct
13622  */
13623 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13624 {
13625 	int ret;
13626 
13627 	child->perf_event_ctxp = NULL;
13628 	mutex_init(&child->perf_event_mutex);
13629 	INIT_LIST_HEAD(&child->perf_event_list);
13630 
13631 	ret = perf_event_init_context(child, clone_flags);
13632 	if (ret) {
13633 		perf_event_free_task(child);
13634 		return ret;
13635 	}
13636 
13637 	return 0;
13638 }
13639 
13640 static void __init perf_event_init_all_cpus(void)
13641 {
13642 	struct swevent_htable *swhash;
13643 	struct perf_cpu_context *cpuctx;
13644 	int cpu;
13645 
13646 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13647 
13648 	for_each_possible_cpu(cpu) {
13649 		swhash = &per_cpu(swevent_htable, cpu);
13650 		mutex_init(&swhash->hlist_mutex);
13651 
13652 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13653 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13654 
13655 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13656 
13657 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13658 		__perf_event_init_context(&cpuctx->ctx);
13659 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13660 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13661 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13662 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13663 		cpuctx->heap = cpuctx->heap_default;
13664 	}
13665 }
13666 
13667 static void perf_swevent_init_cpu(unsigned int cpu)
13668 {
13669 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13670 
13671 	mutex_lock(&swhash->hlist_mutex);
13672 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13673 		struct swevent_hlist *hlist;
13674 
13675 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13676 		WARN_ON(!hlist);
13677 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13678 	}
13679 	mutex_unlock(&swhash->hlist_mutex);
13680 }
13681 
13682 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13683 static void __perf_event_exit_context(void *__info)
13684 {
13685 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13686 	struct perf_event_context *ctx = __info;
13687 	struct perf_event *event;
13688 
13689 	raw_spin_lock(&ctx->lock);
13690 	ctx_sched_out(ctx, EVENT_TIME);
13691 	list_for_each_entry(event, &ctx->event_list, event_entry)
13692 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13693 	raw_spin_unlock(&ctx->lock);
13694 }
13695 
13696 static void perf_event_exit_cpu_context(int cpu)
13697 {
13698 	struct perf_cpu_context *cpuctx;
13699 	struct perf_event_context *ctx;
13700 
13701 	// XXX simplify cpuctx->online
13702 	mutex_lock(&pmus_lock);
13703 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13704 	ctx = &cpuctx->ctx;
13705 
13706 	mutex_lock(&ctx->mutex);
13707 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13708 	cpuctx->online = 0;
13709 	mutex_unlock(&ctx->mutex);
13710 	cpumask_clear_cpu(cpu, perf_online_mask);
13711 	mutex_unlock(&pmus_lock);
13712 }
13713 #else
13714 
13715 static void perf_event_exit_cpu_context(int cpu) { }
13716 
13717 #endif
13718 
13719 int perf_event_init_cpu(unsigned int cpu)
13720 {
13721 	struct perf_cpu_context *cpuctx;
13722 	struct perf_event_context *ctx;
13723 
13724 	perf_swevent_init_cpu(cpu);
13725 
13726 	mutex_lock(&pmus_lock);
13727 	cpumask_set_cpu(cpu, perf_online_mask);
13728 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13729 	ctx = &cpuctx->ctx;
13730 
13731 	mutex_lock(&ctx->mutex);
13732 	cpuctx->online = 1;
13733 	mutex_unlock(&ctx->mutex);
13734 	mutex_unlock(&pmus_lock);
13735 
13736 	return 0;
13737 }
13738 
13739 int perf_event_exit_cpu(unsigned int cpu)
13740 {
13741 	perf_event_exit_cpu_context(cpu);
13742 	return 0;
13743 }
13744 
13745 static int
13746 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13747 {
13748 	int cpu;
13749 
13750 	for_each_online_cpu(cpu)
13751 		perf_event_exit_cpu(cpu);
13752 
13753 	return NOTIFY_OK;
13754 }
13755 
13756 /*
13757  * Run the perf reboot notifier at the very last possible moment so that
13758  * the generic watchdog code runs as long as possible.
13759  */
13760 static struct notifier_block perf_reboot_notifier = {
13761 	.notifier_call = perf_reboot,
13762 	.priority = INT_MIN,
13763 };
13764 
13765 void __init perf_event_init(void)
13766 {
13767 	int ret;
13768 
13769 	idr_init(&pmu_idr);
13770 
13771 	perf_event_init_all_cpus();
13772 	init_srcu_struct(&pmus_srcu);
13773 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13774 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13775 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13776 	perf_tp_register();
13777 	perf_event_init_cpu(smp_processor_id());
13778 	register_reboot_notifier(&perf_reboot_notifier);
13779 
13780 	ret = init_hw_breakpoint();
13781 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13782 
13783 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13784 
13785 	/*
13786 	 * Build time assertion that we keep the data_head at the intended
13787 	 * location.  IOW, validation we got the __reserved[] size right.
13788 	 */
13789 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13790 		     != 1024);
13791 }
13792 
13793 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13794 			      char *page)
13795 {
13796 	struct perf_pmu_events_attr *pmu_attr =
13797 		container_of(attr, struct perf_pmu_events_attr, attr);
13798 
13799 	if (pmu_attr->event_str)
13800 		return sprintf(page, "%s\n", pmu_attr->event_str);
13801 
13802 	return 0;
13803 }
13804 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13805 
13806 static int __init perf_event_sysfs_init(void)
13807 {
13808 	struct pmu *pmu;
13809 	int ret;
13810 
13811 	mutex_lock(&pmus_lock);
13812 
13813 	ret = bus_register(&pmu_bus);
13814 	if (ret)
13815 		goto unlock;
13816 
13817 	list_for_each_entry(pmu, &pmus, entry) {
13818 		if (pmu->dev)
13819 			continue;
13820 
13821 		ret = pmu_dev_alloc(pmu);
13822 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13823 	}
13824 	pmu_bus_running = 1;
13825 	ret = 0;
13826 
13827 unlock:
13828 	mutex_unlock(&pmus_lock);
13829 
13830 	return ret;
13831 }
13832 device_initcall(perf_event_sysfs_init);
13833 
13834 #ifdef CONFIG_CGROUP_PERF
13835 static struct cgroup_subsys_state *
13836 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13837 {
13838 	struct perf_cgroup *jc;
13839 
13840 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13841 	if (!jc)
13842 		return ERR_PTR(-ENOMEM);
13843 
13844 	jc->info = alloc_percpu(struct perf_cgroup_info);
13845 	if (!jc->info) {
13846 		kfree(jc);
13847 		return ERR_PTR(-ENOMEM);
13848 	}
13849 
13850 	return &jc->css;
13851 }
13852 
13853 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13854 {
13855 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13856 
13857 	free_percpu(jc->info);
13858 	kfree(jc);
13859 }
13860 
13861 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13862 {
13863 	perf_event_cgroup(css->cgroup);
13864 	return 0;
13865 }
13866 
13867 static int __perf_cgroup_move(void *info)
13868 {
13869 	struct task_struct *task = info;
13870 
13871 	preempt_disable();
13872 	perf_cgroup_switch(task);
13873 	preempt_enable();
13874 
13875 	return 0;
13876 }
13877 
13878 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13879 {
13880 	struct task_struct *task;
13881 	struct cgroup_subsys_state *css;
13882 
13883 	cgroup_taskset_for_each(task, css, tset)
13884 		task_function_call(task, __perf_cgroup_move, task);
13885 }
13886 
13887 struct cgroup_subsys perf_event_cgrp_subsys = {
13888 	.css_alloc	= perf_cgroup_css_alloc,
13889 	.css_free	= perf_cgroup_css_free,
13890 	.css_online	= perf_cgroup_css_online,
13891 	.attach		= perf_cgroup_attach,
13892 	/*
13893 	 * Implicitly enable on dfl hierarchy so that perf events can
13894 	 * always be filtered by cgroup2 path as long as perf_event
13895 	 * controller is not mounted on a legacy hierarchy.
13896 	 */
13897 	.implicit_on_dfl = true,
13898 	.threaded	= true,
13899 };
13900 #endif /* CONFIG_CGROUP_PERF */
13901 
13902 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13903