1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 /* 122 * branch priv levels that need permission checks 123 */ 124 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 125 (PERF_SAMPLE_BRANCH_KERNEL |\ 126 PERF_SAMPLE_BRANCH_HV) 127 128 enum event_type_t { 129 EVENT_FLEXIBLE = 0x1, 130 EVENT_PINNED = 0x2, 131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 132 }; 133 134 /* 135 * perf_sched_events : >0 events exist 136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 137 */ 138 struct static_key_deferred perf_sched_events __read_mostly; 139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 141 142 static atomic_t nr_mmap_events __read_mostly; 143 static atomic_t nr_comm_events __read_mostly; 144 static atomic_t nr_task_events __read_mostly; 145 146 static LIST_HEAD(pmus); 147 static DEFINE_MUTEX(pmus_lock); 148 static struct srcu_struct pmus_srcu; 149 150 /* 151 * perf event paranoia level: 152 * -1 - not paranoid at all 153 * 0 - disallow raw tracepoint access for unpriv 154 * 1 - disallow cpu events for unpriv 155 * 2 - disallow kernel profiling for unpriv 156 */ 157 int sysctl_perf_event_paranoid __read_mostly = 1; 158 159 /* Minimum for 512 kiB + 1 user control page */ 160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 161 162 /* 163 * max perf event sample rate 164 */ 165 #define DEFAULT_MAX_SAMPLE_RATE 100000 166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 167 static int max_samples_per_tick __read_mostly = 168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 169 170 int perf_proc_update_handler(struct ctl_table *table, int write, 171 void __user *buffer, size_t *lenp, 172 loff_t *ppos) 173 { 174 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 175 176 if (ret || !write) 177 return ret; 178 179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 180 181 return 0; 182 } 183 184 static atomic64_t perf_event_id; 185 186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 187 enum event_type_t event_type); 188 189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 190 enum event_type_t event_type, 191 struct task_struct *task); 192 193 static void update_context_time(struct perf_event_context *ctx); 194 static u64 perf_event_time(struct perf_event *event); 195 196 static void ring_buffer_attach(struct perf_event *event, 197 struct ring_buffer *rb); 198 199 void __weak perf_event_print_debug(void) { } 200 201 extern __weak const char *perf_pmu_name(void) 202 { 203 return "pmu"; 204 } 205 206 static inline u64 perf_clock(void) 207 { 208 return local_clock(); 209 } 210 211 static inline struct perf_cpu_context * 212 __get_cpu_context(struct perf_event_context *ctx) 213 { 214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 215 } 216 217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 raw_spin_lock(&cpuctx->ctx.lock); 221 if (ctx) 222 raw_spin_lock(&ctx->lock); 223 } 224 225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 226 struct perf_event_context *ctx) 227 { 228 if (ctx) 229 raw_spin_unlock(&ctx->lock); 230 raw_spin_unlock(&cpuctx->ctx.lock); 231 } 232 233 #ifdef CONFIG_CGROUP_PERF 234 235 /* 236 * Must ensure cgroup is pinned (css_get) before calling 237 * this function. In other words, we cannot call this function 238 * if there is no cgroup event for the current CPU context. 239 */ 240 static inline struct perf_cgroup * 241 perf_cgroup_from_task(struct task_struct *task) 242 { 243 return container_of(task_subsys_state(task, perf_subsys_id), 244 struct perf_cgroup, css); 245 } 246 247 static inline bool 248 perf_cgroup_match(struct perf_event *event) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 252 253 return !event->cgrp || event->cgrp == cpuctx->cgrp; 254 } 255 256 static inline bool perf_tryget_cgroup(struct perf_event *event) 257 { 258 return css_tryget(&event->cgrp->css); 259 } 260 261 static inline void perf_put_cgroup(struct perf_event *event) 262 { 263 css_put(&event->cgrp->css); 264 } 265 266 static inline void perf_detach_cgroup(struct perf_event *event) 267 { 268 perf_put_cgroup(event); 269 event->cgrp = NULL; 270 } 271 272 static inline int is_cgroup_event(struct perf_event *event) 273 { 274 return event->cgrp != NULL; 275 } 276 277 static inline u64 perf_cgroup_event_time(struct perf_event *event) 278 { 279 struct perf_cgroup_info *t; 280 281 t = per_cpu_ptr(event->cgrp->info, event->cpu); 282 return t->time; 283 } 284 285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 286 { 287 struct perf_cgroup_info *info; 288 u64 now; 289 290 now = perf_clock(); 291 292 info = this_cpu_ptr(cgrp->info); 293 294 info->time += now - info->timestamp; 295 info->timestamp = now; 296 } 297 298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 299 { 300 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 301 if (cgrp_out) 302 __update_cgrp_time(cgrp_out); 303 } 304 305 static inline void update_cgrp_time_from_event(struct perf_event *event) 306 { 307 struct perf_cgroup *cgrp; 308 309 /* 310 * ensure we access cgroup data only when needed and 311 * when we know the cgroup is pinned (css_get) 312 */ 313 if (!is_cgroup_event(event)) 314 return; 315 316 cgrp = perf_cgroup_from_task(current); 317 /* 318 * Do not update time when cgroup is not active 319 */ 320 if (cgrp == event->cgrp) 321 __update_cgrp_time(event->cgrp); 322 } 323 324 static inline void 325 perf_cgroup_set_timestamp(struct task_struct *task, 326 struct perf_event_context *ctx) 327 { 328 struct perf_cgroup *cgrp; 329 struct perf_cgroup_info *info; 330 331 /* 332 * ctx->lock held by caller 333 * ensure we do not access cgroup data 334 * unless we have the cgroup pinned (css_get) 335 */ 336 if (!task || !ctx->nr_cgroups) 337 return; 338 339 cgrp = perf_cgroup_from_task(task); 340 info = this_cpu_ptr(cgrp->info); 341 info->timestamp = ctx->timestamp; 342 } 343 344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 346 347 /* 348 * reschedule events based on the cgroup constraint of task. 349 * 350 * mode SWOUT : schedule out everything 351 * mode SWIN : schedule in based on cgroup for next 352 */ 353 void perf_cgroup_switch(struct task_struct *task, int mode) 354 { 355 struct perf_cpu_context *cpuctx; 356 struct pmu *pmu; 357 unsigned long flags; 358 359 /* 360 * disable interrupts to avoid geting nr_cgroup 361 * changes via __perf_event_disable(). Also 362 * avoids preemption. 363 */ 364 local_irq_save(flags); 365 366 /* 367 * we reschedule only in the presence of cgroup 368 * constrained events. 369 */ 370 rcu_read_lock(); 371 372 list_for_each_entry_rcu(pmu, &pmus, entry) { 373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 374 375 /* 376 * perf_cgroup_events says at least one 377 * context on this CPU has cgroup events. 378 * 379 * ctx->nr_cgroups reports the number of cgroup 380 * events for a context. 381 */ 382 if (cpuctx->ctx.nr_cgroups > 0) { 383 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 384 perf_pmu_disable(cpuctx->ctx.pmu); 385 386 if (mode & PERF_CGROUP_SWOUT) { 387 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 388 /* 389 * must not be done before ctxswout due 390 * to event_filter_match() in event_sched_out() 391 */ 392 cpuctx->cgrp = NULL; 393 } 394 395 if (mode & PERF_CGROUP_SWIN) { 396 WARN_ON_ONCE(cpuctx->cgrp); 397 /* set cgrp before ctxsw in to 398 * allow event_filter_match() to not 399 * have to pass task around 400 */ 401 cpuctx->cgrp = perf_cgroup_from_task(task); 402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 403 } 404 perf_pmu_enable(cpuctx->ctx.pmu); 405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 406 } 407 } 408 409 rcu_read_unlock(); 410 411 local_irq_restore(flags); 412 } 413 414 static inline void perf_cgroup_sched_out(struct task_struct *task, 415 struct task_struct *next) 416 { 417 struct perf_cgroup *cgrp1; 418 struct perf_cgroup *cgrp2 = NULL; 419 420 /* 421 * we come here when we know perf_cgroup_events > 0 422 */ 423 cgrp1 = perf_cgroup_from_task(task); 424 425 /* 426 * next is NULL when called from perf_event_enable_on_exec() 427 * that will systematically cause a cgroup_switch() 428 */ 429 if (next) 430 cgrp2 = perf_cgroup_from_task(next); 431 432 /* 433 * only schedule out current cgroup events if we know 434 * that we are switching to a different cgroup. Otherwise, 435 * do no touch the cgroup events. 436 */ 437 if (cgrp1 != cgrp2) 438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 439 } 440 441 static inline void perf_cgroup_sched_in(struct task_struct *prev, 442 struct task_struct *task) 443 { 444 struct perf_cgroup *cgrp1; 445 struct perf_cgroup *cgrp2 = NULL; 446 447 /* 448 * we come here when we know perf_cgroup_events > 0 449 */ 450 cgrp1 = perf_cgroup_from_task(task); 451 452 /* prev can never be NULL */ 453 cgrp2 = perf_cgroup_from_task(prev); 454 455 /* 456 * only need to schedule in cgroup events if we are changing 457 * cgroup during ctxsw. Cgroup events were not scheduled 458 * out of ctxsw out if that was not the case. 459 */ 460 if (cgrp1 != cgrp2) 461 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 462 } 463 464 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 465 struct perf_event_attr *attr, 466 struct perf_event *group_leader) 467 { 468 struct perf_cgroup *cgrp; 469 struct cgroup_subsys_state *css; 470 struct file *file; 471 int ret = 0, fput_needed; 472 473 file = fget_light(fd, &fput_needed); 474 if (!file) 475 return -EBADF; 476 477 css = cgroup_css_from_dir(file, perf_subsys_id); 478 if (IS_ERR(css)) { 479 ret = PTR_ERR(css); 480 goto out; 481 } 482 483 cgrp = container_of(css, struct perf_cgroup, css); 484 event->cgrp = cgrp; 485 486 /* must be done before we fput() the file */ 487 if (!perf_tryget_cgroup(event)) { 488 event->cgrp = NULL; 489 ret = -ENOENT; 490 goto out; 491 } 492 493 /* 494 * all events in a group must monitor 495 * the same cgroup because a task belongs 496 * to only one perf cgroup at a time 497 */ 498 if (group_leader && group_leader->cgrp != cgrp) { 499 perf_detach_cgroup(event); 500 ret = -EINVAL; 501 } 502 out: 503 fput_light(file, fput_needed); 504 return ret; 505 } 506 507 static inline void 508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 509 { 510 struct perf_cgroup_info *t; 511 t = per_cpu_ptr(event->cgrp->info, event->cpu); 512 event->shadow_ctx_time = now - t->timestamp; 513 } 514 515 static inline void 516 perf_cgroup_defer_enabled(struct perf_event *event) 517 { 518 /* 519 * when the current task's perf cgroup does not match 520 * the event's, we need to remember to call the 521 * perf_mark_enable() function the first time a task with 522 * a matching perf cgroup is scheduled in. 523 */ 524 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 525 event->cgrp_defer_enabled = 1; 526 } 527 528 static inline void 529 perf_cgroup_mark_enabled(struct perf_event *event, 530 struct perf_event_context *ctx) 531 { 532 struct perf_event *sub; 533 u64 tstamp = perf_event_time(event); 534 535 if (!event->cgrp_defer_enabled) 536 return; 537 538 event->cgrp_defer_enabled = 0; 539 540 event->tstamp_enabled = tstamp - event->total_time_enabled; 541 list_for_each_entry(sub, &event->sibling_list, group_entry) { 542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 543 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 544 sub->cgrp_defer_enabled = 0; 545 } 546 } 547 } 548 #else /* !CONFIG_CGROUP_PERF */ 549 550 static inline bool 551 perf_cgroup_match(struct perf_event *event) 552 { 553 return true; 554 } 555 556 static inline void perf_detach_cgroup(struct perf_event *event) 557 {} 558 559 static inline int is_cgroup_event(struct perf_event *event) 560 { 561 return 0; 562 } 563 564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 565 { 566 return 0; 567 } 568 569 static inline void update_cgrp_time_from_event(struct perf_event *event) 570 { 571 } 572 573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 574 { 575 } 576 577 static inline void perf_cgroup_sched_out(struct task_struct *task, 578 struct task_struct *next) 579 { 580 } 581 582 static inline void perf_cgroup_sched_in(struct task_struct *prev, 583 struct task_struct *task) 584 { 585 } 586 587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 588 struct perf_event_attr *attr, 589 struct perf_event *group_leader) 590 { 591 return -EINVAL; 592 } 593 594 static inline void 595 perf_cgroup_set_timestamp(struct task_struct *task, 596 struct perf_event_context *ctx) 597 { 598 } 599 600 void 601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 602 { 603 } 604 605 static inline void 606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 607 { 608 } 609 610 static inline u64 perf_cgroup_event_time(struct perf_event *event) 611 { 612 return 0; 613 } 614 615 static inline void 616 perf_cgroup_defer_enabled(struct perf_event *event) 617 { 618 } 619 620 static inline void 621 perf_cgroup_mark_enabled(struct perf_event *event, 622 struct perf_event_context *ctx) 623 { 624 } 625 #endif 626 627 void perf_pmu_disable(struct pmu *pmu) 628 { 629 int *count = this_cpu_ptr(pmu->pmu_disable_count); 630 if (!(*count)++) 631 pmu->pmu_disable(pmu); 632 } 633 634 void perf_pmu_enable(struct pmu *pmu) 635 { 636 int *count = this_cpu_ptr(pmu->pmu_disable_count); 637 if (!--(*count)) 638 pmu->pmu_enable(pmu); 639 } 640 641 static DEFINE_PER_CPU(struct list_head, rotation_list); 642 643 /* 644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 645 * because they're strictly cpu affine and rotate_start is called with IRQs 646 * disabled, while rotate_context is called from IRQ context. 647 */ 648 static void perf_pmu_rotate_start(struct pmu *pmu) 649 { 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 651 struct list_head *head = &__get_cpu_var(rotation_list); 652 653 WARN_ON(!irqs_disabled()); 654 655 if (list_empty(&cpuctx->rotation_list)) 656 list_add(&cpuctx->rotation_list, head); 657 } 658 659 static void get_ctx(struct perf_event_context *ctx) 660 { 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 662 } 663 664 static void put_ctx(struct perf_event_context *ctx) 665 { 666 if (atomic_dec_and_test(&ctx->refcount)) { 667 if (ctx->parent_ctx) 668 put_ctx(ctx->parent_ctx); 669 if (ctx->task) 670 put_task_struct(ctx->task); 671 kfree_rcu(ctx, rcu_head); 672 } 673 } 674 675 static void unclone_ctx(struct perf_event_context *ctx) 676 { 677 if (ctx->parent_ctx) { 678 put_ctx(ctx->parent_ctx); 679 ctx->parent_ctx = NULL; 680 } 681 } 682 683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 684 { 685 /* 686 * only top level events have the pid namespace they were created in 687 */ 688 if (event->parent) 689 event = event->parent; 690 691 return task_tgid_nr_ns(p, event->ns); 692 } 693 694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 695 { 696 /* 697 * only top level events have the pid namespace they were created in 698 */ 699 if (event->parent) 700 event = event->parent; 701 702 return task_pid_nr_ns(p, event->ns); 703 } 704 705 /* 706 * If we inherit events we want to return the parent event id 707 * to userspace. 708 */ 709 static u64 primary_event_id(struct perf_event *event) 710 { 711 u64 id = event->id; 712 713 if (event->parent) 714 id = event->parent->id; 715 716 return id; 717 } 718 719 /* 720 * Get the perf_event_context for a task and lock it. 721 * This has to cope with with the fact that until it is locked, 722 * the context could get moved to another task. 723 */ 724 static struct perf_event_context * 725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 726 { 727 struct perf_event_context *ctx; 728 729 rcu_read_lock(); 730 retry: 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 732 if (ctx) { 733 /* 734 * If this context is a clone of another, it might 735 * get swapped for another underneath us by 736 * perf_event_task_sched_out, though the 737 * rcu_read_lock() protects us from any context 738 * getting freed. Lock the context and check if it 739 * got swapped before we could get the lock, and retry 740 * if so. If we locked the right context, then it 741 * can't get swapped on us any more. 742 */ 743 raw_spin_lock_irqsave(&ctx->lock, *flags); 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 746 goto retry; 747 } 748 749 if (!atomic_inc_not_zero(&ctx->refcount)) { 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 751 ctx = NULL; 752 } 753 } 754 rcu_read_unlock(); 755 return ctx; 756 } 757 758 /* 759 * Get the context for a task and increment its pin_count so it 760 * can't get swapped to another task. This also increments its 761 * reference count so that the context can't get freed. 762 */ 763 static struct perf_event_context * 764 perf_pin_task_context(struct task_struct *task, int ctxn) 765 { 766 struct perf_event_context *ctx; 767 unsigned long flags; 768 769 ctx = perf_lock_task_context(task, ctxn, &flags); 770 if (ctx) { 771 ++ctx->pin_count; 772 raw_spin_unlock_irqrestore(&ctx->lock, flags); 773 } 774 return ctx; 775 } 776 777 static void perf_unpin_context(struct perf_event_context *ctx) 778 { 779 unsigned long flags; 780 781 raw_spin_lock_irqsave(&ctx->lock, flags); 782 --ctx->pin_count; 783 raw_spin_unlock_irqrestore(&ctx->lock, flags); 784 } 785 786 /* 787 * Update the record of the current time in a context. 788 */ 789 static void update_context_time(struct perf_event_context *ctx) 790 { 791 u64 now = perf_clock(); 792 793 ctx->time += now - ctx->timestamp; 794 ctx->timestamp = now; 795 } 796 797 static u64 perf_event_time(struct perf_event *event) 798 { 799 struct perf_event_context *ctx = event->ctx; 800 801 if (is_cgroup_event(event)) 802 return perf_cgroup_event_time(event); 803 804 return ctx ? ctx->time : 0; 805 } 806 807 /* 808 * Update the total_time_enabled and total_time_running fields for a event. 809 * The caller of this function needs to hold the ctx->lock. 810 */ 811 static void update_event_times(struct perf_event *event) 812 { 813 struct perf_event_context *ctx = event->ctx; 814 u64 run_end; 815 816 if (event->state < PERF_EVENT_STATE_INACTIVE || 817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 818 return; 819 /* 820 * in cgroup mode, time_enabled represents 821 * the time the event was enabled AND active 822 * tasks were in the monitored cgroup. This is 823 * independent of the activity of the context as 824 * there may be a mix of cgroup and non-cgroup events. 825 * 826 * That is why we treat cgroup events differently 827 * here. 828 */ 829 if (is_cgroup_event(event)) 830 run_end = perf_cgroup_event_time(event); 831 else if (ctx->is_active) 832 run_end = ctx->time; 833 else 834 run_end = event->tstamp_stopped; 835 836 event->total_time_enabled = run_end - event->tstamp_enabled; 837 838 if (event->state == PERF_EVENT_STATE_INACTIVE) 839 run_end = event->tstamp_stopped; 840 else 841 run_end = perf_event_time(event); 842 843 event->total_time_running = run_end - event->tstamp_running; 844 845 } 846 847 /* 848 * Update total_time_enabled and total_time_running for all events in a group. 849 */ 850 static void update_group_times(struct perf_event *leader) 851 { 852 struct perf_event *event; 853 854 update_event_times(leader); 855 list_for_each_entry(event, &leader->sibling_list, group_entry) 856 update_event_times(event); 857 } 858 859 static struct list_head * 860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 861 { 862 if (event->attr.pinned) 863 return &ctx->pinned_groups; 864 else 865 return &ctx->flexible_groups; 866 } 867 868 /* 869 * Add a event from the lists for its context. 870 * Must be called with ctx->mutex and ctx->lock held. 871 */ 872 static void 873 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 874 { 875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 876 event->attach_state |= PERF_ATTACH_CONTEXT; 877 878 /* 879 * If we're a stand alone event or group leader, we go to the context 880 * list, group events are kept attached to the group so that 881 * perf_group_detach can, at all times, locate all siblings. 882 */ 883 if (event->group_leader == event) { 884 struct list_head *list; 885 886 if (is_software_event(event)) 887 event->group_flags |= PERF_GROUP_SOFTWARE; 888 889 list = ctx_group_list(event, ctx); 890 list_add_tail(&event->group_entry, list); 891 } 892 893 if (is_cgroup_event(event)) 894 ctx->nr_cgroups++; 895 896 if (has_branch_stack(event)) 897 ctx->nr_branch_stack++; 898 899 list_add_rcu(&event->event_entry, &ctx->event_list); 900 if (!ctx->nr_events) 901 perf_pmu_rotate_start(ctx->pmu); 902 ctx->nr_events++; 903 if (event->attr.inherit_stat) 904 ctx->nr_stat++; 905 } 906 907 /* 908 * Called at perf_event creation and when events are attached/detached from a 909 * group. 910 */ 911 static void perf_event__read_size(struct perf_event *event) 912 { 913 int entry = sizeof(u64); /* value */ 914 int size = 0; 915 int nr = 1; 916 917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 918 size += sizeof(u64); 919 920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 921 size += sizeof(u64); 922 923 if (event->attr.read_format & PERF_FORMAT_ID) 924 entry += sizeof(u64); 925 926 if (event->attr.read_format & PERF_FORMAT_GROUP) { 927 nr += event->group_leader->nr_siblings; 928 size += sizeof(u64); 929 } 930 931 size += entry * nr; 932 event->read_size = size; 933 } 934 935 static void perf_event__header_size(struct perf_event *event) 936 { 937 struct perf_sample_data *data; 938 u64 sample_type = event->attr.sample_type; 939 u16 size = 0; 940 941 perf_event__read_size(event); 942 943 if (sample_type & PERF_SAMPLE_IP) 944 size += sizeof(data->ip); 945 946 if (sample_type & PERF_SAMPLE_ADDR) 947 size += sizeof(data->addr); 948 949 if (sample_type & PERF_SAMPLE_PERIOD) 950 size += sizeof(data->period); 951 952 if (sample_type & PERF_SAMPLE_READ) 953 size += event->read_size; 954 955 event->header_size = size; 956 } 957 958 static void perf_event__id_header_size(struct perf_event *event) 959 { 960 struct perf_sample_data *data; 961 u64 sample_type = event->attr.sample_type; 962 u16 size = 0; 963 964 if (sample_type & PERF_SAMPLE_TID) 965 size += sizeof(data->tid_entry); 966 967 if (sample_type & PERF_SAMPLE_TIME) 968 size += sizeof(data->time); 969 970 if (sample_type & PERF_SAMPLE_ID) 971 size += sizeof(data->id); 972 973 if (sample_type & PERF_SAMPLE_STREAM_ID) 974 size += sizeof(data->stream_id); 975 976 if (sample_type & PERF_SAMPLE_CPU) 977 size += sizeof(data->cpu_entry); 978 979 event->id_header_size = size; 980 } 981 982 static void perf_group_attach(struct perf_event *event) 983 { 984 struct perf_event *group_leader = event->group_leader, *pos; 985 986 /* 987 * We can have double attach due to group movement in perf_event_open. 988 */ 989 if (event->attach_state & PERF_ATTACH_GROUP) 990 return; 991 992 event->attach_state |= PERF_ATTACH_GROUP; 993 994 if (group_leader == event) 995 return; 996 997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 998 !is_software_event(event)) 999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1000 1001 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1002 group_leader->nr_siblings++; 1003 1004 perf_event__header_size(group_leader); 1005 1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1007 perf_event__header_size(pos); 1008 } 1009 1010 /* 1011 * Remove a event from the lists for its context. 1012 * Must be called with ctx->mutex and ctx->lock held. 1013 */ 1014 static void 1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1016 { 1017 struct perf_cpu_context *cpuctx; 1018 /* 1019 * We can have double detach due to exit/hot-unplug + close. 1020 */ 1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1022 return; 1023 1024 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1025 1026 if (is_cgroup_event(event)) { 1027 ctx->nr_cgroups--; 1028 cpuctx = __get_cpu_context(ctx); 1029 /* 1030 * if there are no more cgroup events 1031 * then cler cgrp to avoid stale pointer 1032 * in update_cgrp_time_from_cpuctx() 1033 */ 1034 if (!ctx->nr_cgroups) 1035 cpuctx->cgrp = NULL; 1036 } 1037 1038 if (has_branch_stack(event)) 1039 ctx->nr_branch_stack--; 1040 1041 ctx->nr_events--; 1042 if (event->attr.inherit_stat) 1043 ctx->nr_stat--; 1044 1045 list_del_rcu(&event->event_entry); 1046 1047 if (event->group_leader == event) 1048 list_del_init(&event->group_entry); 1049 1050 update_group_times(event); 1051 1052 /* 1053 * If event was in error state, then keep it 1054 * that way, otherwise bogus counts will be 1055 * returned on read(). The only way to get out 1056 * of error state is by explicit re-enabling 1057 * of the event 1058 */ 1059 if (event->state > PERF_EVENT_STATE_OFF) 1060 event->state = PERF_EVENT_STATE_OFF; 1061 } 1062 1063 static void perf_group_detach(struct perf_event *event) 1064 { 1065 struct perf_event *sibling, *tmp; 1066 struct list_head *list = NULL; 1067 1068 /* 1069 * We can have double detach due to exit/hot-unplug + close. 1070 */ 1071 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1072 return; 1073 1074 event->attach_state &= ~PERF_ATTACH_GROUP; 1075 1076 /* 1077 * If this is a sibling, remove it from its group. 1078 */ 1079 if (event->group_leader != event) { 1080 list_del_init(&event->group_entry); 1081 event->group_leader->nr_siblings--; 1082 goto out; 1083 } 1084 1085 if (!list_empty(&event->group_entry)) 1086 list = &event->group_entry; 1087 1088 /* 1089 * If this was a group event with sibling events then 1090 * upgrade the siblings to singleton events by adding them 1091 * to whatever list we are on. 1092 */ 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1094 if (list) 1095 list_move_tail(&sibling->group_entry, list); 1096 sibling->group_leader = sibling; 1097 1098 /* Inherit group flags from the previous leader */ 1099 sibling->group_flags = event->group_flags; 1100 } 1101 1102 out: 1103 perf_event__header_size(event->group_leader); 1104 1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1106 perf_event__header_size(tmp); 1107 } 1108 1109 static inline int 1110 event_filter_match(struct perf_event *event) 1111 { 1112 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1113 && perf_cgroup_match(event); 1114 } 1115 1116 static void 1117 event_sched_out(struct perf_event *event, 1118 struct perf_cpu_context *cpuctx, 1119 struct perf_event_context *ctx) 1120 { 1121 u64 tstamp = perf_event_time(event); 1122 u64 delta; 1123 /* 1124 * An event which could not be activated because of 1125 * filter mismatch still needs to have its timings 1126 * maintained, otherwise bogus information is return 1127 * via read() for time_enabled, time_running: 1128 */ 1129 if (event->state == PERF_EVENT_STATE_INACTIVE 1130 && !event_filter_match(event)) { 1131 delta = tstamp - event->tstamp_stopped; 1132 event->tstamp_running += delta; 1133 event->tstamp_stopped = tstamp; 1134 } 1135 1136 if (event->state != PERF_EVENT_STATE_ACTIVE) 1137 return; 1138 1139 event->state = PERF_EVENT_STATE_INACTIVE; 1140 if (event->pending_disable) { 1141 event->pending_disable = 0; 1142 event->state = PERF_EVENT_STATE_OFF; 1143 } 1144 event->tstamp_stopped = tstamp; 1145 event->pmu->del(event, 0); 1146 event->oncpu = -1; 1147 1148 if (!is_software_event(event)) 1149 cpuctx->active_oncpu--; 1150 ctx->nr_active--; 1151 if (event->attr.freq && event->attr.sample_freq) 1152 ctx->nr_freq--; 1153 if (event->attr.exclusive || !cpuctx->active_oncpu) 1154 cpuctx->exclusive = 0; 1155 } 1156 1157 static void 1158 group_sched_out(struct perf_event *group_event, 1159 struct perf_cpu_context *cpuctx, 1160 struct perf_event_context *ctx) 1161 { 1162 struct perf_event *event; 1163 int state = group_event->state; 1164 1165 event_sched_out(group_event, cpuctx, ctx); 1166 1167 /* 1168 * Schedule out siblings (if any): 1169 */ 1170 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1171 event_sched_out(event, cpuctx, ctx); 1172 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1174 cpuctx->exclusive = 0; 1175 } 1176 1177 /* 1178 * Cross CPU call to remove a performance event 1179 * 1180 * We disable the event on the hardware level first. After that we 1181 * remove it from the context list. 1182 */ 1183 static int __perf_remove_from_context(void *info) 1184 { 1185 struct perf_event *event = info; 1186 struct perf_event_context *ctx = event->ctx; 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1188 1189 raw_spin_lock(&ctx->lock); 1190 event_sched_out(event, cpuctx, ctx); 1191 list_del_event(event, ctx); 1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1193 ctx->is_active = 0; 1194 cpuctx->task_ctx = NULL; 1195 } 1196 raw_spin_unlock(&ctx->lock); 1197 1198 return 0; 1199 } 1200 1201 1202 /* 1203 * Remove the event from a task's (or a CPU's) list of events. 1204 * 1205 * CPU events are removed with a smp call. For task events we only 1206 * call when the task is on a CPU. 1207 * 1208 * If event->ctx is a cloned context, callers must make sure that 1209 * every task struct that event->ctx->task could possibly point to 1210 * remains valid. This is OK when called from perf_release since 1211 * that only calls us on the top-level context, which can't be a clone. 1212 * When called from perf_event_exit_task, it's OK because the 1213 * context has been detached from its task. 1214 */ 1215 static void perf_remove_from_context(struct perf_event *event) 1216 { 1217 struct perf_event_context *ctx = event->ctx; 1218 struct task_struct *task = ctx->task; 1219 1220 lockdep_assert_held(&ctx->mutex); 1221 1222 if (!task) { 1223 /* 1224 * Per cpu events are removed via an smp call and 1225 * the removal is always successful. 1226 */ 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1228 return; 1229 } 1230 1231 retry: 1232 if (!task_function_call(task, __perf_remove_from_context, event)) 1233 return; 1234 1235 raw_spin_lock_irq(&ctx->lock); 1236 /* 1237 * If we failed to find a running task, but find the context active now 1238 * that we've acquired the ctx->lock, retry. 1239 */ 1240 if (ctx->is_active) { 1241 raw_spin_unlock_irq(&ctx->lock); 1242 goto retry; 1243 } 1244 1245 /* 1246 * Since the task isn't running, its safe to remove the event, us 1247 * holding the ctx->lock ensures the task won't get scheduled in. 1248 */ 1249 list_del_event(event, ctx); 1250 raw_spin_unlock_irq(&ctx->lock); 1251 } 1252 1253 /* 1254 * Cross CPU call to disable a performance event 1255 */ 1256 static int __perf_event_disable(void *info) 1257 { 1258 struct perf_event *event = info; 1259 struct perf_event_context *ctx = event->ctx; 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1261 1262 /* 1263 * If this is a per-task event, need to check whether this 1264 * event's task is the current task on this cpu. 1265 * 1266 * Can trigger due to concurrent perf_event_context_sched_out() 1267 * flipping contexts around. 1268 */ 1269 if (ctx->task && cpuctx->task_ctx != ctx) 1270 return -EINVAL; 1271 1272 raw_spin_lock(&ctx->lock); 1273 1274 /* 1275 * If the event is on, turn it off. 1276 * If it is in error state, leave it in error state. 1277 */ 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1279 update_context_time(ctx); 1280 update_cgrp_time_from_event(event); 1281 update_group_times(event); 1282 if (event == event->group_leader) 1283 group_sched_out(event, cpuctx, ctx); 1284 else 1285 event_sched_out(event, cpuctx, ctx); 1286 event->state = PERF_EVENT_STATE_OFF; 1287 } 1288 1289 raw_spin_unlock(&ctx->lock); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Disable a event. 1296 * 1297 * If event->ctx is a cloned context, callers must make sure that 1298 * every task struct that event->ctx->task could possibly point to 1299 * remains valid. This condition is satisifed when called through 1300 * perf_event_for_each_child or perf_event_for_each because they 1301 * hold the top-level event's child_mutex, so any descendant that 1302 * goes to exit will block in sync_child_event. 1303 * When called from perf_pending_event it's OK because event->ctx 1304 * is the current context on this CPU and preemption is disabled, 1305 * hence we can't get into perf_event_task_sched_out for this context. 1306 */ 1307 void perf_event_disable(struct perf_event *event) 1308 { 1309 struct perf_event_context *ctx = event->ctx; 1310 struct task_struct *task = ctx->task; 1311 1312 if (!task) { 1313 /* 1314 * Disable the event on the cpu that it's on 1315 */ 1316 cpu_function_call(event->cpu, __perf_event_disable, event); 1317 return; 1318 } 1319 1320 retry: 1321 if (!task_function_call(task, __perf_event_disable, event)) 1322 return; 1323 1324 raw_spin_lock_irq(&ctx->lock); 1325 /* 1326 * If the event is still active, we need to retry the cross-call. 1327 */ 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1329 raw_spin_unlock_irq(&ctx->lock); 1330 /* 1331 * Reload the task pointer, it might have been changed by 1332 * a concurrent perf_event_context_sched_out(). 1333 */ 1334 task = ctx->task; 1335 goto retry; 1336 } 1337 1338 /* 1339 * Since we have the lock this context can't be scheduled 1340 * in, so we can change the state safely. 1341 */ 1342 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1343 update_group_times(event); 1344 event->state = PERF_EVENT_STATE_OFF; 1345 } 1346 raw_spin_unlock_irq(&ctx->lock); 1347 } 1348 EXPORT_SYMBOL_GPL(perf_event_disable); 1349 1350 static void perf_set_shadow_time(struct perf_event *event, 1351 struct perf_event_context *ctx, 1352 u64 tstamp) 1353 { 1354 /* 1355 * use the correct time source for the time snapshot 1356 * 1357 * We could get by without this by leveraging the 1358 * fact that to get to this function, the caller 1359 * has most likely already called update_context_time() 1360 * and update_cgrp_time_xx() and thus both timestamp 1361 * are identical (or very close). Given that tstamp is, 1362 * already adjusted for cgroup, we could say that: 1363 * tstamp - ctx->timestamp 1364 * is equivalent to 1365 * tstamp - cgrp->timestamp. 1366 * 1367 * Then, in perf_output_read(), the calculation would 1368 * work with no changes because: 1369 * - event is guaranteed scheduled in 1370 * - no scheduled out in between 1371 * - thus the timestamp would be the same 1372 * 1373 * But this is a bit hairy. 1374 * 1375 * So instead, we have an explicit cgroup call to remain 1376 * within the time time source all along. We believe it 1377 * is cleaner and simpler to understand. 1378 */ 1379 if (is_cgroup_event(event)) 1380 perf_cgroup_set_shadow_time(event, tstamp); 1381 else 1382 event->shadow_ctx_time = tstamp - ctx->timestamp; 1383 } 1384 1385 #define MAX_INTERRUPTS (~0ULL) 1386 1387 static void perf_log_throttle(struct perf_event *event, int enable); 1388 1389 static int 1390 event_sched_in(struct perf_event *event, 1391 struct perf_cpu_context *cpuctx, 1392 struct perf_event_context *ctx) 1393 { 1394 u64 tstamp = perf_event_time(event); 1395 1396 if (event->state <= PERF_EVENT_STATE_OFF) 1397 return 0; 1398 1399 event->state = PERF_EVENT_STATE_ACTIVE; 1400 event->oncpu = smp_processor_id(); 1401 1402 /* 1403 * Unthrottle events, since we scheduled we might have missed several 1404 * ticks already, also for a heavily scheduling task there is little 1405 * guarantee it'll get a tick in a timely manner. 1406 */ 1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1408 perf_log_throttle(event, 1); 1409 event->hw.interrupts = 0; 1410 } 1411 1412 /* 1413 * The new state must be visible before we turn it on in the hardware: 1414 */ 1415 smp_wmb(); 1416 1417 if (event->pmu->add(event, PERF_EF_START)) { 1418 event->state = PERF_EVENT_STATE_INACTIVE; 1419 event->oncpu = -1; 1420 return -EAGAIN; 1421 } 1422 1423 event->tstamp_running += tstamp - event->tstamp_stopped; 1424 1425 perf_set_shadow_time(event, ctx, tstamp); 1426 1427 if (!is_software_event(event)) 1428 cpuctx->active_oncpu++; 1429 ctx->nr_active++; 1430 if (event->attr.freq && event->attr.sample_freq) 1431 ctx->nr_freq++; 1432 1433 if (event->attr.exclusive) 1434 cpuctx->exclusive = 1; 1435 1436 return 0; 1437 } 1438 1439 static int 1440 group_sched_in(struct perf_event *group_event, 1441 struct perf_cpu_context *cpuctx, 1442 struct perf_event_context *ctx) 1443 { 1444 struct perf_event *event, *partial_group = NULL; 1445 struct pmu *pmu = group_event->pmu; 1446 u64 now = ctx->time; 1447 bool simulate = false; 1448 1449 if (group_event->state == PERF_EVENT_STATE_OFF) 1450 return 0; 1451 1452 pmu->start_txn(pmu); 1453 1454 if (event_sched_in(group_event, cpuctx, ctx)) { 1455 pmu->cancel_txn(pmu); 1456 return -EAGAIN; 1457 } 1458 1459 /* 1460 * Schedule in siblings as one group (if any): 1461 */ 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1463 if (event_sched_in(event, cpuctx, ctx)) { 1464 partial_group = event; 1465 goto group_error; 1466 } 1467 } 1468 1469 if (!pmu->commit_txn(pmu)) 1470 return 0; 1471 1472 group_error: 1473 /* 1474 * Groups can be scheduled in as one unit only, so undo any 1475 * partial group before returning: 1476 * The events up to the failed event are scheduled out normally, 1477 * tstamp_stopped will be updated. 1478 * 1479 * The failed events and the remaining siblings need to have 1480 * their timings updated as if they had gone thru event_sched_in() 1481 * and event_sched_out(). This is required to get consistent timings 1482 * across the group. This also takes care of the case where the group 1483 * could never be scheduled by ensuring tstamp_stopped is set to mark 1484 * the time the event was actually stopped, such that time delta 1485 * calculation in update_event_times() is correct. 1486 */ 1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1488 if (event == partial_group) 1489 simulate = true; 1490 1491 if (simulate) { 1492 event->tstamp_running += now - event->tstamp_stopped; 1493 event->tstamp_stopped = now; 1494 } else { 1495 event_sched_out(event, cpuctx, ctx); 1496 } 1497 } 1498 event_sched_out(group_event, cpuctx, ctx); 1499 1500 pmu->cancel_txn(pmu); 1501 1502 return -EAGAIN; 1503 } 1504 1505 /* 1506 * Work out whether we can put this event group on the CPU now. 1507 */ 1508 static int group_can_go_on(struct perf_event *event, 1509 struct perf_cpu_context *cpuctx, 1510 int can_add_hw) 1511 { 1512 /* 1513 * Groups consisting entirely of software events can always go on. 1514 */ 1515 if (event->group_flags & PERF_GROUP_SOFTWARE) 1516 return 1; 1517 /* 1518 * If an exclusive group is already on, no other hardware 1519 * events can go on. 1520 */ 1521 if (cpuctx->exclusive) 1522 return 0; 1523 /* 1524 * If this group is exclusive and there are already 1525 * events on the CPU, it can't go on. 1526 */ 1527 if (event->attr.exclusive && cpuctx->active_oncpu) 1528 return 0; 1529 /* 1530 * Otherwise, try to add it if all previous groups were able 1531 * to go on. 1532 */ 1533 return can_add_hw; 1534 } 1535 1536 static void add_event_to_ctx(struct perf_event *event, 1537 struct perf_event_context *ctx) 1538 { 1539 u64 tstamp = perf_event_time(event); 1540 1541 list_add_event(event, ctx); 1542 perf_group_attach(event); 1543 event->tstamp_enabled = tstamp; 1544 event->tstamp_running = tstamp; 1545 event->tstamp_stopped = tstamp; 1546 } 1547 1548 static void task_ctx_sched_out(struct perf_event_context *ctx); 1549 static void 1550 ctx_sched_in(struct perf_event_context *ctx, 1551 struct perf_cpu_context *cpuctx, 1552 enum event_type_t event_type, 1553 struct task_struct *task); 1554 1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1556 struct perf_event_context *ctx, 1557 struct task_struct *task) 1558 { 1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1560 if (ctx) 1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1563 if (ctx) 1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1565 } 1566 1567 /* 1568 * Cross CPU call to install and enable a performance event 1569 * 1570 * Must be called with ctx->mutex held 1571 */ 1572 static int __perf_install_in_context(void *info) 1573 { 1574 struct perf_event *event = info; 1575 struct perf_event_context *ctx = event->ctx; 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1577 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1578 struct task_struct *task = current; 1579 1580 perf_ctx_lock(cpuctx, task_ctx); 1581 perf_pmu_disable(cpuctx->ctx.pmu); 1582 1583 /* 1584 * If there was an active task_ctx schedule it out. 1585 */ 1586 if (task_ctx) 1587 task_ctx_sched_out(task_ctx); 1588 1589 /* 1590 * If the context we're installing events in is not the 1591 * active task_ctx, flip them. 1592 */ 1593 if (ctx->task && task_ctx != ctx) { 1594 if (task_ctx) 1595 raw_spin_unlock(&task_ctx->lock); 1596 raw_spin_lock(&ctx->lock); 1597 task_ctx = ctx; 1598 } 1599 1600 if (task_ctx) { 1601 cpuctx->task_ctx = task_ctx; 1602 task = task_ctx->task; 1603 } 1604 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1606 1607 update_context_time(ctx); 1608 /* 1609 * update cgrp time only if current cgrp 1610 * matches event->cgrp. Must be done before 1611 * calling add_event_to_ctx() 1612 */ 1613 update_cgrp_time_from_event(event); 1614 1615 add_event_to_ctx(event, ctx); 1616 1617 /* 1618 * Schedule everything back in 1619 */ 1620 perf_event_sched_in(cpuctx, task_ctx, task); 1621 1622 perf_pmu_enable(cpuctx->ctx.pmu); 1623 perf_ctx_unlock(cpuctx, task_ctx); 1624 1625 return 0; 1626 } 1627 1628 /* 1629 * Attach a performance event to a context 1630 * 1631 * First we add the event to the list with the hardware enable bit 1632 * in event->hw_config cleared. 1633 * 1634 * If the event is attached to a task which is on a CPU we use a smp 1635 * call to enable it in the task context. The task might have been 1636 * scheduled away, but we check this in the smp call again. 1637 */ 1638 static void 1639 perf_install_in_context(struct perf_event_context *ctx, 1640 struct perf_event *event, 1641 int cpu) 1642 { 1643 struct task_struct *task = ctx->task; 1644 1645 lockdep_assert_held(&ctx->mutex); 1646 1647 event->ctx = ctx; 1648 1649 if (!task) { 1650 /* 1651 * Per cpu events are installed via an smp call and 1652 * the install is always successful. 1653 */ 1654 cpu_function_call(cpu, __perf_install_in_context, event); 1655 return; 1656 } 1657 1658 retry: 1659 if (!task_function_call(task, __perf_install_in_context, event)) 1660 return; 1661 1662 raw_spin_lock_irq(&ctx->lock); 1663 /* 1664 * If we failed to find a running task, but find the context active now 1665 * that we've acquired the ctx->lock, retry. 1666 */ 1667 if (ctx->is_active) { 1668 raw_spin_unlock_irq(&ctx->lock); 1669 goto retry; 1670 } 1671 1672 /* 1673 * Since the task isn't running, its safe to add the event, us holding 1674 * the ctx->lock ensures the task won't get scheduled in. 1675 */ 1676 add_event_to_ctx(event, ctx); 1677 raw_spin_unlock_irq(&ctx->lock); 1678 } 1679 1680 /* 1681 * Put a event into inactive state and update time fields. 1682 * Enabling the leader of a group effectively enables all 1683 * the group members that aren't explicitly disabled, so we 1684 * have to update their ->tstamp_enabled also. 1685 * Note: this works for group members as well as group leaders 1686 * since the non-leader members' sibling_lists will be empty. 1687 */ 1688 static void __perf_event_mark_enabled(struct perf_event *event) 1689 { 1690 struct perf_event *sub; 1691 u64 tstamp = perf_event_time(event); 1692 1693 event->state = PERF_EVENT_STATE_INACTIVE; 1694 event->tstamp_enabled = tstamp - event->total_time_enabled; 1695 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1696 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1697 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1698 } 1699 } 1700 1701 /* 1702 * Cross CPU call to enable a performance event 1703 */ 1704 static int __perf_event_enable(void *info) 1705 { 1706 struct perf_event *event = info; 1707 struct perf_event_context *ctx = event->ctx; 1708 struct perf_event *leader = event->group_leader; 1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1710 int err; 1711 1712 if (WARN_ON_ONCE(!ctx->is_active)) 1713 return -EINVAL; 1714 1715 raw_spin_lock(&ctx->lock); 1716 update_context_time(ctx); 1717 1718 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1719 goto unlock; 1720 1721 /* 1722 * set current task's cgroup time reference point 1723 */ 1724 perf_cgroup_set_timestamp(current, ctx); 1725 1726 __perf_event_mark_enabled(event); 1727 1728 if (!event_filter_match(event)) { 1729 if (is_cgroup_event(event)) 1730 perf_cgroup_defer_enabled(event); 1731 goto unlock; 1732 } 1733 1734 /* 1735 * If the event is in a group and isn't the group leader, 1736 * then don't put it on unless the group is on. 1737 */ 1738 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1739 goto unlock; 1740 1741 if (!group_can_go_on(event, cpuctx, 1)) { 1742 err = -EEXIST; 1743 } else { 1744 if (event == leader) 1745 err = group_sched_in(event, cpuctx, ctx); 1746 else 1747 err = event_sched_in(event, cpuctx, ctx); 1748 } 1749 1750 if (err) { 1751 /* 1752 * If this event can't go on and it's part of a 1753 * group, then the whole group has to come off. 1754 */ 1755 if (leader != event) 1756 group_sched_out(leader, cpuctx, ctx); 1757 if (leader->attr.pinned) { 1758 update_group_times(leader); 1759 leader->state = PERF_EVENT_STATE_ERROR; 1760 } 1761 } 1762 1763 unlock: 1764 raw_spin_unlock(&ctx->lock); 1765 1766 return 0; 1767 } 1768 1769 /* 1770 * Enable a event. 1771 * 1772 * If event->ctx is a cloned context, callers must make sure that 1773 * every task struct that event->ctx->task could possibly point to 1774 * remains valid. This condition is satisfied when called through 1775 * perf_event_for_each_child or perf_event_for_each as described 1776 * for perf_event_disable. 1777 */ 1778 void perf_event_enable(struct perf_event *event) 1779 { 1780 struct perf_event_context *ctx = event->ctx; 1781 struct task_struct *task = ctx->task; 1782 1783 if (!task) { 1784 /* 1785 * Enable the event on the cpu that it's on 1786 */ 1787 cpu_function_call(event->cpu, __perf_event_enable, event); 1788 return; 1789 } 1790 1791 raw_spin_lock_irq(&ctx->lock); 1792 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1793 goto out; 1794 1795 /* 1796 * If the event is in error state, clear that first. 1797 * That way, if we see the event in error state below, we 1798 * know that it has gone back into error state, as distinct 1799 * from the task having been scheduled away before the 1800 * cross-call arrived. 1801 */ 1802 if (event->state == PERF_EVENT_STATE_ERROR) 1803 event->state = PERF_EVENT_STATE_OFF; 1804 1805 retry: 1806 if (!ctx->is_active) { 1807 __perf_event_mark_enabled(event); 1808 goto out; 1809 } 1810 1811 raw_spin_unlock_irq(&ctx->lock); 1812 1813 if (!task_function_call(task, __perf_event_enable, event)) 1814 return; 1815 1816 raw_spin_lock_irq(&ctx->lock); 1817 1818 /* 1819 * If the context is active and the event is still off, 1820 * we need to retry the cross-call. 1821 */ 1822 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1823 /* 1824 * task could have been flipped by a concurrent 1825 * perf_event_context_sched_out() 1826 */ 1827 task = ctx->task; 1828 goto retry; 1829 } 1830 1831 out: 1832 raw_spin_unlock_irq(&ctx->lock); 1833 } 1834 EXPORT_SYMBOL_GPL(perf_event_enable); 1835 1836 int perf_event_refresh(struct perf_event *event, int refresh) 1837 { 1838 /* 1839 * not supported on inherited events 1840 */ 1841 if (event->attr.inherit || !is_sampling_event(event)) 1842 return -EINVAL; 1843 1844 atomic_add(refresh, &event->event_limit); 1845 perf_event_enable(event); 1846 1847 return 0; 1848 } 1849 EXPORT_SYMBOL_GPL(perf_event_refresh); 1850 1851 static void ctx_sched_out(struct perf_event_context *ctx, 1852 struct perf_cpu_context *cpuctx, 1853 enum event_type_t event_type) 1854 { 1855 struct perf_event *event; 1856 int is_active = ctx->is_active; 1857 1858 ctx->is_active &= ~event_type; 1859 if (likely(!ctx->nr_events)) 1860 return; 1861 1862 update_context_time(ctx); 1863 update_cgrp_time_from_cpuctx(cpuctx); 1864 if (!ctx->nr_active) 1865 return; 1866 1867 perf_pmu_disable(ctx->pmu); 1868 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1869 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1870 group_sched_out(event, cpuctx, ctx); 1871 } 1872 1873 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1874 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1875 group_sched_out(event, cpuctx, ctx); 1876 } 1877 perf_pmu_enable(ctx->pmu); 1878 } 1879 1880 /* 1881 * Test whether two contexts are equivalent, i.e. whether they 1882 * have both been cloned from the same version of the same context 1883 * and they both have the same number of enabled events. 1884 * If the number of enabled events is the same, then the set 1885 * of enabled events should be the same, because these are both 1886 * inherited contexts, therefore we can't access individual events 1887 * in them directly with an fd; we can only enable/disable all 1888 * events via prctl, or enable/disable all events in a family 1889 * via ioctl, which will have the same effect on both contexts. 1890 */ 1891 static int context_equiv(struct perf_event_context *ctx1, 1892 struct perf_event_context *ctx2) 1893 { 1894 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1895 && ctx1->parent_gen == ctx2->parent_gen 1896 && !ctx1->pin_count && !ctx2->pin_count; 1897 } 1898 1899 static void __perf_event_sync_stat(struct perf_event *event, 1900 struct perf_event *next_event) 1901 { 1902 u64 value; 1903 1904 if (!event->attr.inherit_stat) 1905 return; 1906 1907 /* 1908 * Update the event value, we cannot use perf_event_read() 1909 * because we're in the middle of a context switch and have IRQs 1910 * disabled, which upsets smp_call_function_single(), however 1911 * we know the event must be on the current CPU, therefore we 1912 * don't need to use it. 1913 */ 1914 switch (event->state) { 1915 case PERF_EVENT_STATE_ACTIVE: 1916 event->pmu->read(event); 1917 /* fall-through */ 1918 1919 case PERF_EVENT_STATE_INACTIVE: 1920 update_event_times(event); 1921 break; 1922 1923 default: 1924 break; 1925 } 1926 1927 /* 1928 * In order to keep per-task stats reliable we need to flip the event 1929 * values when we flip the contexts. 1930 */ 1931 value = local64_read(&next_event->count); 1932 value = local64_xchg(&event->count, value); 1933 local64_set(&next_event->count, value); 1934 1935 swap(event->total_time_enabled, next_event->total_time_enabled); 1936 swap(event->total_time_running, next_event->total_time_running); 1937 1938 /* 1939 * Since we swizzled the values, update the user visible data too. 1940 */ 1941 perf_event_update_userpage(event); 1942 perf_event_update_userpage(next_event); 1943 } 1944 1945 #define list_next_entry(pos, member) \ 1946 list_entry(pos->member.next, typeof(*pos), member) 1947 1948 static void perf_event_sync_stat(struct perf_event_context *ctx, 1949 struct perf_event_context *next_ctx) 1950 { 1951 struct perf_event *event, *next_event; 1952 1953 if (!ctx->nr_stat) 1954 return; 1955 1956 update_context_time(ctx); 1957 1958 event = list_first_entry(&ctx->event_list, 1959 struct perf_event, event_entry); 1960 1961 next_event = list_first_entry(&next_ctx->event_list, 1962 struct perf_event, event_entry); 1963 1964 while (&event->event_entry != &ctx->event_list && 1965 &next_event->event_entry != &next_ctx->event_list) { 1966 1967 __perf_event_sync_stat(event, next_event); 1968 1969 event = list_next_entry(event, event_entry); 1970 next_event = list_next_entry(next_event, event_entry); 1971 } 1972 } 1973 1974 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1975 struct task_struct *next) 1976 { 1977 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1978 struct perf_event_context *next_ctx; 1979 struct perf_event_context *parent; 1980 struct perf_cpu_context *cpuctx; 1981 int do_switch = 1; 1982 1983 if (likely(!ctx)) 1984 return; 1985 1986 cpuctx = __get_cpu_context(ctx); 1987 if (!cpuctx->task_ctx) 1988 return; 1989 1990 rcu_read_lock(); 1991 parent = rcu_dereference(ctx->parent_ctx); 1992 next_ctx = next->perf_event_ctxp[ctxn]; 1993 if (parent && next_ctx && 1994 rcu_dereference(next_ctx->parent_ctx) == parent) { 1995 /* 1996 * Looks like the two contexts are clones, so we might be 1997 * able to optimize the context switch. We lock both 1998 * contexts and check that they are clones under the 1999 * lock (including re-checking that neither has been 2000 * uncloned in the meantime). It doesn't matter which 2001 * order we take the locks because no other cpu could 2002 * be trying to lock both of these tasks. 2003 */ 2004 raw_spin_lock(&ctx->lock); 2005 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2006 if (context_equiv(ctx, next_ctx)) { 2007 /* 2008 * XXX do we need a memory barrier of sorts 2009 * wrt to rcu_dereference() of perf_event_ctxp 2010 */ 2011 task->perf_event_ctxp[ctxn] = next_ctx; 2012 next->perf_event_ctxp[ctxn] = ctx; 2013 ctx->task = next; 2014 next_ctx->task = task; 2015 do_switch = 0; 2016 2017 perf_event_sync_stat(ctx, next_ctx); 2018 } 2019 raw_spin_unlock(&next_ctx->lock); 2020 raw_spin_unlock(&ctx->lock); 2021 } 2022 rcu_read_unlock(); 2023 2024 if (do_switch) { 2025 raw_spin_lock(&ctx->lock); 2026 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2027 cpuctx->task_ctx = NULL; 2028 raw_spin_unlock(&ctx->lock); 2029 } 2030 } 2031 2032 #define for_each_task_context_nr(ctxn) \ 2033 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2034 2035 /* 2036 * Called from scheduler to remove the events of the current task, 2037 * with interrupts disabled. 2038 * 2039 * We stop each event and update the event value in event->count. 2040 * 2041 * This does not protect us against NMI, but disable() 2042 * sets the disabled bit in the control field of event _before_ 2043 * accessing the event control register. If a NMI hits, then it will 2044 * not restart the event. 2045 */ 2046 void __perf_event_task_sched_out(struct task_struct *task, 2047 struct task_struct *next) 2048 { 2049 int ctxn; 2050 2051 for_each_task_context_nr(ctxn) 2052 perf_event_context_sched_out(task, ctxn, next); 2053 2054 /* 2055 * if cgroup events exist on this CPU, then we need 2056 * to check if we have to switch out PMU state. 2057 * cgroup event are system-wide mode only 2058 */ 2059 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2060 perf_cgroup_sched_out(task, next); 2061 } 2062 2063 static void task_ctx_sched_out(struct perf_event_context *ctx) 2064 { 2065 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2066 2067 if (!cpuctx->task_ctx) 2068 return; 2069 2070 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2071 return; 2072 2073 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2074 cpuctx->task_ctx = NULL; 2075 } 2076 2077 /* 2078 * Called with IRQs disabled 2079 */ 2080 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2081 enum event_type_t event_type) 2082 { 2083 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2084 } 2085 2086 static void 2087 ctx_pinned_sched_in(struct perf_event_context *ctx, 2088 struct perf_cpu_context *cpuctx) 2089 { 2090 struct perf_event *event; 2091 2092 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2093 if (event->state <= PERF_EVENT_STATE_OFF) 2094 continue; 2095 if (!event_filter_match(event)) 2096 continue; 2097 2098 /* may need to reset tstamp_enabled */ 2099 if (is_cgroup_event(event)) 2100 perf_cgroup_mark_enabled(event, ctx); 2101 2102 if (group_can_go_on(event, cpuctx, 1)) 2103 group_sched_in(event, cpuctx, ctx); 2104 2105 /* 2106 * If this pinned group hasn't been scheduled, 2107 * put it in error state. 2108 */ 2109 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2110 update_group_times(event); 2111 event->state = PERF_EVENT_STATE_ERROR; 2112 } 2113 } 2114 } 2115 2116 static void 2117 ctx_flexible_sched_in(struct perf_event_context *ctx, 2118 struct perf_cpu_context *cpuctx) 2119 { 2120 struct perf_event *event; 2121 int can_add_hw = 1; 2122 2123 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2124 /* Ignore events in OFF or ERROR state */ 2125 if (event->state <= PERF_EVENT_STATE_OFF) 2126 continue; 2127 /* 2128 * Listen to the 'cpu' scheduling filter constraint 2129 * of events: 2130 */ 2131 if (!event_filter_match(event)) 2132 continue; 2133 2134 /* may need to reset tstamp_enabled */ 2135 if (is_cgroup_event(event)) 2136 perf_cgroup_mark_enabled(event, ctx); 2137 2138 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2139 if (group_sched_in(event, cpuctx, ctx)) 2140 can_add_hw = 0; 2141 } 2142 } 2143 } 2144 2145 static void 2146 ctx_sched_in(struct perf_event_context *ctx, 2147 struct perf_cpu_context *cpuctx, 2148 enum event_type_t event_type, 2149 struct task_struct *task) 2150 { 2151 u64 now; 2152 int is_active = ctx->is_active; 2153 2154 ctx->is_active |= event_type; 2155 if (likely(!ctx->nr_events)) 2156 return; 2157 2158 now = perf_clock(); 2159 ctx->timestamp = now; 2160 perf_cgroup_set_timestamp(task, ctx); 2161 /* 2162 * First go through the list and put on any pinned groups 2163 * in order to give them the best chance of going on. 2164 */ 2165 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2166 ctx_pinned_sched_in(ctx, cpuctx); 2167 2168 /* Then walk through the lower prio flexible groups */ 2169 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2170 ctx_flexible_sched_in(ctx, cpuctx); 2171 } 2172 2173 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2174 enum event_type_t event_type, 2175 struct task_struct *task) 2176 { 2177 struct perf_event_context *ctx = &cpuctx->ctx; 2178 2179 ctx_sched_in(ctx, cpuctx, event_type, task); 2180 } 2181 2182 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2183 struct task_struct *task) 2184 { 2185 struct perf_cpu_context *cpuctx; 2186 2187 cpuctx = __get_cpu_context(ctx); 2188 if (cpuctx->task_ctx == ctx) 2189 return; 2190 2191 perf_ctx_lock(cpuctx, ctx); 2192 perf_pmu_disable(ctx->pmu); 2193 /* 2194 * We want to keep the following priority order: 2195 * cpu pinned (that don't need to move), task pinned, 2196 * cpu flexible, task flexible. 2197 */ 2198 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2199 2200 if (ctx->nr_events) 2201 cpuctx->task_ctx = ctx; 2202 2203 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2204 2205 perf_pmu_enable(ctx->pmu); 2206 perf_ctx_unlock(cpuctx, ctx); 2207 2208 /* 2209 * Since these rotations are per-cpu, we need to ensure the 2210 * cpu-context we got scheduled on is actually rotating. 2211 */ 2212 perf_pmu_rotate_start(ctx->pmu); 2213 } 2214 2215 /* 2216 * When sampling the branck stack in system-wide, it may be necessary 2217 * to flush the stack on context switch. This happens when the branch 2218 * stack does not tag its entries with the pid of the current task. 2219 * Otherwise it becomes impossible to associate a branch entry with a 2220 * task. This ambiguity is more likely to appear when the branch stack 2221 * supports priv level filtering and the user sets it to monitor only 2222 * at the user level (which could be a useful measurement in system-wide 2223 * mode). In that case, the risk is high of having a branch stack with 2224 * branch from multiple tasks. Flushing may mean dropping the existing 2225 * entries or stashing them somewhere in the PMU specific code layer. 2226 * 2227 * This function provides the context switch callback to the lower code 2228 * layer. It is invoked ONLY when there is at least one system-wide context 2229 * with at least one active event using taken branch sampling. 2230 */ 2231 static void perf_branch_stack_sched_in(struct task_struct *prev, 2232 struct task_struct *task) 2233 { 2234 struct perf_cpu_context *cpuctx; 2235 struct pmu *pmu; 2236 unsigned long flags; 2237 2238 /* no need to flush branch stack if not changing task */ 2239 if (prev == task) 2240 return; 2241 2242 local_irq_save(flags); 2243 2244 rcu_read_lock(); 2245 2246 list_for_each_entry_rcu(pmu, &pmus, entry) { 2247 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2248 2249 /* 2250 * check if the context has at least one 2251 * event using PERF_SAMPLE_BRANCH_STACK 2252 */ 2253 if (cpuctx->ctx.nr_branch_stack > 0 2254 && pmu->flush_branch_stack) { 2255 2256 pmu = cpuctx->ctx.pmu; 2257 2258 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2259 2260 perf_pmu_disable(pmu); 2261 2262 pmu->flush_branch_stack(); 2263 2264 perf_pmu_enable(pmu); 2265 2266 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2267 } 2268 } 2269 2270 rcu_read_unlock(); 2271 2272 local_irq_restore(flags); 2273 } 2274 2275 /* 2276 * Called from scheduler to add the events of the current task 2277 * with interrupts disabled. 2278 * 2279 * We restore the event value and then enable it. 2280 * 2281 * This does not protect us against NMI, but enable() 2282 * sets the enabled bit in the control field of event _before_ 2283 * accessing the event control register. If a NMI hits, then it will 2284 * keep the event running. 2285 */ 2286 void __perf_event_task_sched_in(struct task_struct *prev, 2287 struct task_struct *task) 2288 { 2289 struct perf_event_context *ctx; 2290 int ctxn; 2291 2292 for_each_task_context_nr(ctxn) { 2293 ctx = task->perf_event_ctxp[ctxn]; 2294 if (likely(!ctx)) 2295 continue; 2296 2297 perf_event_context_sched_in(ctx, task); 2298 } 2299 /* 2300 * if cgroup events exist on this CPU, then we need 2301 * to check if we have to switch in PMU state. 2302 * cgroup event are system-wide mode only 2303 */ 2304 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2305 perf_cgroup_sched_in(prev, task); 2306 2307 /* check for system-wide branch_stack events */ 2308 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2309 perf_branch_stack_sched_in(prev, task); 2310 } 2311 2312 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2313 { 2314 u64 frequency = event->attr.sample_freq; 2315 u64 sec = NSEC_PER_SEC; 2316 u64 divisor, dividend; 2317 2318 int count_fls, nsec_fls, frequency_fls, sec_fls; 2319 2320 count_fls = fls64(count); 2321 nsec_fls = fls64(nsec); 2322 frequency_fls = fls64(frequency); 2323 sec_fls = 30; 2324 2325 /* 2326 * We got @count in @nsec, with a target of sample_freq HZ 2327 * the target period becomes: 2328 * 2329 * @count * 10^9 2330 * period = ------------------- 2331 * @nsec * sample_freq 2332 * 2333 */ 2334 2335 /* 2336 * Reduce accuracy by one bit such that @a and @b converge 2337 * to a similar magnitude. 2338 */ 2339 #define REDUCE_FLS(a, b) \ 2340 do { \ 2341 if (a##_fls > b##_fls) { \ 2342 a >>= 1; \ 2343 a##_fls--; \ 2344 } else { \ 2345 b >>= 1; \ 2346 b##_fls--; \ 2347 } \ 2348 } while (0) 2349 2350 /* 2351 * Reduce accuracy until either term fits in a u64, then proceed with 2352 * the other, so that finally we can do a u64/u64 division. 2353 */ 2354 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2355 REDUCE_FLS(nsec, frequency); 2356 REDUCE_FLS(sec, count); 2357 } 2358 2359 if (count_fls + sec_fls > 64) { 2360 divisor = nsec * frequency; 2361 2362 while (count_fls + sec_fls > 64) { 2363 REDUCE_FLS(count, sec); 2364 divisor >>= 1; 2365 } 2366 2367 dividend = count * sec; 2368 } else { 2369 dividend = count * sec; 2370 2371 while (nsec_fls + frequency_fls > 64) { 2372 REDUCE_FLS(nsec, frequency); 2373 dividend >>= 1; 2374 } 2375 2376 divisor = nsec * frequency; 2377 } 2378 2379 if (!divisor) 2380 return dividend; 2381 2382 return div64_u64(dividend, divisor); 2383 } 2384 2385 static DEFINE_PER_CPU(int, perf_throttled_count); 2386 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2387 2388 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2389 { 2390 struct hw_perf_event *hwc = &event->hw; 2391 s64 period, sample_period; 2392 s64 delta; 2393 2394 period = perf_calculate_period(event, nsec, count); 2395 2396 delta = (s64)(period - hwc->sample_period); 2397 delta = (delta + 7) / 8; /* low pass filter */ 2398 2399 sample_period = hwc->sample_period + delta; 2400 2401 if (!sample_period) 2402 sample_period = 1; 2403 2404 hwc->sample_period = sample_period; 2405 2406 if (local64_read(&hwc->period_left) > 8*sample_period) { 2407 if (disable) 2408 event->pmu->stop(event, PERF_EF_UPDATE); 2409 2410 local64_set(&hwc->period_left, 0); 2411 2412 if (disable) 2413 event->pmu->start(event, PERF_EF_RELOAD); 2414 } 2415 } 2416 2417 /* 2418 * combine freq adjustment with unthrottling to avoid two passes over the 2419 * events. At the same time, make sure, having freq events does not change 2420 * the rate of unthrottling as that would introduce bias. 2421 */ 2422 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2423 int needs_unthr) 2424 { 2425 struct perf_event *event; 2426 struct hw_perf_event *hwc; 2427 u64 now, period = TICK_NSEC; 2428 s64 delta; 2429 2430 /* 2431 * only need to iterate over all events iff: 2432 * - context have events in frequency mode (needs freq adjust) 2433 * - there are events to unthrottle on this cpu 2434 */ 2435 if (!(ctx->nr_freq || needs_unthr)) 2436 return; 2437 2438 raw_spin_lock(&ctx->lock); 2439 perf_pmu_disable(ctx->pmu); 2440 2441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2442 if (event->state != PERF_EVENT_STATE_ACTIVE) 2443 continue; 2444 2445 if (!event_filter_match(event)) 2446 continue; 2447 2448 hwc = &event->hw; 2449 2450 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2451 hwc->interrupts = 0; 2452 perf_log_throttle(event, 1); 2453 event->pmu->start(event, 0); 2454 } 2455 2456 if (!event->attr.freq || !event->attr.sample_freq) 2457 continue; 2458 2459 /* 2460 * stop the event and update event->count 2461 */ 2462 event->pmu->stop(event, PERF_EF_UPDATE); 2463 2464 now = local64_read(&event->count); 2465 delta = now - hwc->freq_count_stamp; 2466 hwc->freq_count_stamp = now; 2467 2468 /* 2469 * restart the event 2470 * reload only if value has changed 2471 * we have stopped the event so tell that 2472 * to perf_adjust_period() to avoid stopping it 2473 * twice. 2474 */ 2475 if (delta > 0) 2476 perf_adjust_period(event, period, delta, false); 2477 2478 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2479 } 2480 2481 perf_pmu_enable(ctx->pmu); 2482 raw_spin_unlock(&ctx->lock); 2483 } 2484 2485 /* 2486 * Round-robin a context's events: 2487 */ 2488 static void rotate_ctx(struct perf_event_context *ctx) 2489 { 2490 /* 2491 * Rotate the first entry last of non-pinned groups. Rotation might be 2492 * disabled by the inheritance code. 2493 */ 2494 if (!ctx->rotate_disable) 2495 list_rotate_left(&ctx->flexible_groups); 2496 } 2497 2498 /* 2499 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2500 * because they're strictly cpu affine and rotate_start is called with IRQs 2501 * disabled, while rotate_context is called from IRQ context. 2502 */ 2503 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2504 { 2505 struct perf_event_context *ctx = NULL; 2506 int rotate = 0, remove = 1; 2507 2508 if (cpuctx->ctx.nr_events) { 2509 remove = 0; 2510 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2511 rotate = 1; 2512 } 2513 2514 ctx = cpuctx->task_ctx; 2515 if (ctx && ctx->nr_events) { 2516 remove = 0; 2517 if (ctx->nr_events != ctx->nr_active) 2518 rotate = 1; 2519 } 2520 2521 if (!rotate) 2522 goto done; 2523 2524 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2525 perf_pmu_disable(cpuctx->ctx.pmu); 2526 2527 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2528 if (ctx) 2529 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2530 2531 rotate_ctx(&cpuctx->ctx); 2532 if (ctx) 2533 rotate_ctx(ctx); 2534 2535 perf_event_sched_in(cpuctx, ctx, current); 2536 2537 perf_pmu_enable(cpuctx->ctx.pmu); 2538 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2539 done: 2540 if (remove) 2541 list_del_init(&cpuctx->rotation_list); 2542 } 2543 2544 void perf_event_task_tick(void) 2545 { 2546 struct list_head *head = &__get_cpu_var(rotation_list); 2547 struct perf_cpu_context *cpuctx, *tmp; 2548 struct perf_event_context *ctx; 2549 int throttled; 2550 2551 WARN_ON(!irqs_disabled()); 2552 2553 __this_cpu_inc(perf_throttled_seq); 2554 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2555 2556 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2557 ctx = &cpuctx->ctx; 2558 perf_adjust_freq_unthr_context(ctx, throttled); 2559 2560 ctx = cpuctx->task_ctx; 2561 if (ctx) 2562 perf_adjust_freq_unthr_context(ctx, throttled); 2563 2564 if (cpuctx->jiffies_interval == 1 || 2565 !(jiffies % cpuctx->jiffies_interval)) 2566 perf_rotate_context(cpuctx); 2567 } 2568 } 2569 2570 static int event_enable_on_exec(struct perf_event *event, 2571 struct perf_event_context *ctx) 2572 { 2573 if (!event->attr.enable_on_exec) 2574 return 0; 2575 2576 event->attr.enable_on_exec = 0; 2577 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2578 return 0; 2579 2580 __perf_event_mark_enabled(event); 2581 2582 return 1; 2583 } 2584 2585 /* 2586 * Enable all of a task's events that have been marked enable-on-exec. 2587 * This expects task == current. 2588 */ 2589 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2590 { 2591 struct perf_event *event; 2592 unsigned long flags; 2593 int enabled = 0; 2594 int ret; 2595 2596 local_irq_save(flags); 2597 if (!ctx || !ctx->nr_events) 2598 goto out; 2599 2600 /* 2601 * We must ctxsw out cgroup events to avoid conflict 2602 * when invoking perf_task_event_sched_in() later on 2603 * in this function. Otherwise we end up trying to 2604 * ctxswin cgroup events which are already scheduled 2605 * in. 2606 */ 2607 perf_cgroup_sched_out(current, NULL); 2608 2609 raw_spin_lock(&ctx->lock); 2610 task_ctx_sched_out(ctx); 2611 2612 list_for_each_entry(event, &ctx->event_list, event_entry) { 2613 ret = event_enable_on_exec(event, ctx); 2614 if (ret) 2615 enabled = 1; 2616 } 2617 2618 /* 2619 * Unclone this context if we enabled any event. 2620 */ 2621 if (enabled) 2622 unclone_ctx(ctx); 2623 2624 raw_spin_unlock(&ctx->lock); 2625 2626 /* 2627 * Also calls ctxswin for cgroup events, if any: 2628 */ 2629 perf_event_context_sched_in(ctx, ctx->task); 2630 out: 2631 local_irq_restore(flags); 2632 } 2633 2634 /* 2635 * Cross CPU call to read the hardware event 2636 */ 2637 static void __perf_event_read(void *info) 2638 { 2639 struct perf_event *event = info; 2640 struct perf_event_context *ctx = event->ctx; 2641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2642 2643 /* 2644 * If this is a task context, we need to check whether it is 2645 * the current task context of this cpu. If not it has been 2646 * scheduled out before the smp call arrived. In that case 2647 * event->count would have been updated to a recent sample 2648 * when the event was scheduled out. 2649 */ 2650 if (ctx->task && cpuctx->task_ctx != ctx) 2651 return; 2652 2653 raw_spin_lock(&ctx->lock); 2654 if (ctx->is_active) { 2655 update_context_time(ctx); 2656 update_cgrp_time_from_event(event); 2657 } 2658 update_event_times(event); 2659 if (event->state == PERF_EVENT_STATE_ACTIVE) 2660 event->pmu->read(event); 2661 raw_spin_unlock(&ctx->lock); 2662 } 2663 2664 static inline u64 perf_event_count(struct perf_event *event) 2665 { 2666 return local64_read(&event->count) + atomic64_read(&event->child_count); 2667 } 2668 2669 static u64 perf_event_read(struct perf_event *event) 2670 { 2671 /* 2672 * If event is enabled and currently active on a CPU, update the 2673 * value in the event structure: 2674 */ 2675 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2676 smp_call_function_single(event->oncpu, 2677 __perf_event_read, event, 1); 2678 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2679 struct perf_event_context *ctx = event->ctx; 2680 unsigned long flags; 2681 2682 raw_spin_lock_irqsave(&ctx->lock, flags); 2683 /* 2684 * may read while context is not active 2685 * (e.g., thread is blocked), in that case 2686 * we cannot update context time 2687 */ 2688 if (ctx->is_active) { 2689 update_context_time(ctx); 2690 update_cgrp_time_from_event(event); 2691 } 2692 update_event_times(event); 2693 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2694 } 2695 2696 return perf_event_count(event); 2697 } 2698 2699 /* 2700 * Initialize the perf_event context in a task_struct: 2701 */ 2702 static void __perf_event_init_context(struct perf_event_context *ctx) 2703 { 2704 raw_spin_lock_init(&ctx->lock); 2705 mutex_init(&ctx->mutex); 2706 INIT_LIST_HEAD(&ctx->pinned_groups); 2707 INIT_LIST_HEAD(&ctx->flexible_groups); 2708 INIT_LIST_HEAD(&ctx->event_list); 2709 atomic_set(&ctx->refcount, 1); 2710 } 2711 2712 static struct perf_event_context * 2713 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2714 { 2715 struct perf_event_context *ctx; 2716 2717 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2718 if (!ctx) 2719 return NULL; 2720 2721 __perf_event_init_context(ctx); 2722 if (task) { 2723 ctx->task = task; 2724 get_task_struct(task); 2725 } 2726 ctx->pmu = pmu; 2727 2728 return ctx; 2729 } 2730 2731 static struct task_struct * 2732 find_lively_task_by_vpid(pid_t vpid) 2733 { 2734 struct task_struct *task; 2735 int err; 2736 2737 rcu_read_lock(); 2738 if (!vpid) 2739 task = current; 2740 else 2741 task = find_task_by_vpid(vpid); 2742 if (task) 2743 get_task_struct(task); 2744 rcu_read_unlock(); 2745 2746 if (!task) 2747 return ERR_PTR(-ESRCH); 2748 2749 /* Reuse ptrace permission checks for now. */ 2750 err = -EACCES; 2751 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2752 goto errout; 2753 2754 return task; 2755 errout: 2756 put_task_struct(task); 2757 return ERR_PTR(err); 2758 2759 } 2760 2761 /* 2762 * Returns a matching context with refcount and pincount. 2763 */ 2764 static struct perf_event_context * 2765 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2766 { 2767 struct perf_event_context *ctx; 2768 struct perf_cpu_context *cpuctx; 2769 unsigned long flags; 2770 int ctxn, err; 2771 2772 if (!task) { 2773 /* Must be root to operate on a CPU event: */ 2774 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2775 return ERR_PTR(-EACCES); 2776 2777 /* 2778 * We could be clever and allow to attach a event to an 2779 * offline CPU and activate it when the CPU comes up, but 2780 * that's for later. 2781 */ 2782 if (!cpu_online(cpu)) 2783 return ERR_PTR(-ENODEV); 2784 2785 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2786 ctx = &cpuctx->ctx; 2787 get_ctx(ctx); 2788 ++ctx->pin_count; 2789 2790 return ctx; 2791 } 2792 2793 err = -EINVAL; 2794 ctxn = pmu->task_ctx_nr; 2795 if (ctxn < 0) 2796 goto errout; 2797 2798 retry: 2799 ctx = perf_lock_task_context(task, ctxn, &flags); 2800 if (ctx) { 2801 unclone_ctx(ctx); 2802 ++ctx->pin_count; 2803 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2804 } else { 2805 ctx = alloc_perf_context(pmu, task); 2806 err = -ENOMEM; 2807 if (!ctx) 2808 goto errout; 2809 2810 err = 0; 2811 mutex_lock(&task->perf_event_mutex); 2812 /* 2813 * If it has already passed perf_event_exit_task(). 2814 * we must see PF_EXITING, it takes this mutex too. 2815 */ 2816 if (task->flags & PF_EXITING) 2817 err = -ESRCH; 2818 else if (task->perf_event_ctxp[ctxn]) 2819 err = -EAGAIN; 2820 else { 2821 get_ctx(ctx); 2822 ++ctx->pin_count; 2823 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2824 } 2825 mutex_unlock(&task->perf_event_mutex); 2826 2827 if (unlikely(err)) { 2828 put_ctx(ctx); 2829 2830 if (err == -EAGAIN) 2831 goto retry; 2832 goto errout; 2833 } 2834 } 2835 2836 return ctx; 2837 2838 errout: 2839 return ERR_PTR(err); 2840 } 2841 2842 static void perf_event_free_filter(struct perf_event *event); 2843 2844 static void free_event_rcu(struct rcu_head *head) 2845 { 2846 struct perf_event *event; 2847 2848 event = container_of(head, struct perf_event, rcu_head); 2849 if (event->ns) 2850 put_pid_ns(event->ns); 2851 perf_event_free_filter(event); 2852 kfree(event); 2853 } 2854 2855 static void ring_buffer_put(struct ring_buffer *rb); 2856 2857 static void free_event(struct perf_event *event) 2858 { 2859 irq_work_sync(&event->pending); 2860 2861 if (!event->parent) { 2862 if (event->attach_state & PERF_ATTACH_TASK) 2863 static_key_slow_dec_deferred(&perf_sched_events); 2864 if (event->attr.mmap || event->attr.mmap_data) 2865 atomic_dec(&nr_mmap_events); 2866 if (event->attr.comm) 2867 atomic_dec(&nr_comm_events); 2868 if (event->attr.task) 2869 atomic_dec(&nr_task_events); 2870 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2871 put_callchain_buffers(); 2872 if (is_cgroup_event(event)) { 2873 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2874 static_key_slow_dec_deferred(&perf_sched_events); 2875 } 2876 2877 if (has_branch_stack(event)) { 2878 static_key_slow_dec_deferred(&perf_sched_events); 2879 /* is system-wide event */ 2880 if (!(event->attach_state & PERF_ATTACH_TASK)) 2881 atomic_dec(&per_cpu(perf_branch_stack_events, 2882 event->cpu)); 2883 } 2884 } 2885 2886 if (event->rb) { 2887 ring_buffer_put(event->rb); 2888 event->rb = NULL; 2889 } 2890 2891 if (is_cgroup_event(event)) 2892 perf_detach_cgroup(event); 2893 2894 if (event->destroy) 2895 event->destroy(event); 2896 2897 if (event->ctx) 2898 put_ctx(event->ctx); 2899 2900 call_rcu(&event->rcu_head, free_event_rcu); 2901 } 2902 2903 int perf_event_release_kernel(struct perf_event *event) 2904 { 2905 struct perf_event_context *ctx = event->ctx; 2906 2907 WARN_ON_ONCE(ctx->parent_ctx); 2908 /* 2909 * There are two ways this annotation is useful: 2910 * 2911 * 1) there is a lock recursion from perf_event_exit_task 2912 * see the comment there. 2913 * 2914 * 2) there is a lock-inversion with mmap_sem through 2915 * perf_event_read_group(), which takes faults while 2916 * holding ctx->mutex, however this is called after 2917 * the last filedesc died, so there is no possibility 2918 * to trigger the AB-BA case. 2919 */ 2920 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2921 raw_spin_lock_irq(&ctx->lock); 2922 perf_group_detach(event); 2923 raw_spin_unlock_irq(&ctx->lock); 2924 perf_remove_from_context(event); 2925 mutex_unlock(&ctx->mutex); 2926 2927 free_event(event); 2928 2929 return 0; 2930 } 2931 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2932 2933 /* 2934 * Called when the last reference to the file is gone. 2935 */ 2936 static int perf_release(struct inode *inode, struct file *file) 2937 { 2938 struct perf_event *event = file->private_data; 2939 struct task_struct *owner; 2940 2941 file->private_data = NULL; 2942 2943 rcu_read_lock(); 2944 owner = ACCESS_ONCE(event->owner); 2945 /* 2946 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2947 * !owner it means the list deletion is complete and we can indeed 2948 * free this event, otherwise we need to serialize on 2949 * owner->perf_event_mutex. 2950 */ 2951 smp_read_barrier_depends(); 2952 if (owner) { 2953 /* 2954 * Since delayed_put_task_struct() also drops the last 2955 * task reference we can safely take a new reference 2956 * while holding the rcu_read_lock(). 2957 */ 2958 get_task_struct(owner); 2959 } 2960 rcu_read_unlock(); 2961 2962 if (owner) { 2963 mutex_lock(&owner->perf_event_mutex); 2964 /* 2965 * We have to re-check the event->owner field, if it is cleared 2966 * we raced with perf_event_exit_task(), acquiring the mutex 2967 * ensured they're done, and we can proceed with freeing the 2968 * event. 2969 */ 2970 if (event->owner) 2971 list_del_init(&event->owner_entry); 2972 mutex_unlock(&owner->perf_event_mutex); 2973 put_task_struct(owner); 2974 } 2975 2976 return perf_event_release_kernel(event); 2977 } 2978 2979 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2980 { 2981 struct perf_event *child; 2982 u64 total = 0; 2983 2984 *enabled = 0; 2985 *running = 0; 2986 2987 mutex_lock(&event->child_mutex); 2988 total += perf_event_read(event); 2989 *enabled += event->total_time_enabled + 2990 atomic64_read(&event->child_total_time_enabled); 2991 *running += event->total_time_running + 2992 atomic64_read(&event->child_total_time_running); 2993 2994 list_for_each_entry(child, &event->child_list, child_list) { 2995 total += perf_event_read(child); 2996 *enabled += child->total_time_enabled; 2997 *running += child->total_time_running; 2998 } 2999 mutex_unlock(&event->child_mutex); 3000 3001 return total; 3002 } 3003 EXPORT_SYMBOL_GPL(perf_event_read_value); 3004 3005 static int perf_event_read_group(struct perf_event *event, 3006 u64 read_format, char __user *buf) 3007 { 3008 struct perf_event *leader = event->group_leader, *sub; 3009 int n = 0, size = 0, ret = -EFAULT; 3010 struct perf_event_context *ctx = leader->ctx; 3011 u64 values[5]; 3012 u64 count, enabled, running; 3013 3014 mutex_lock(&ctx->mutex); 3015 count = perf_event_read_value(leader, &enabled, &running); 3016 3017 values[n++] = 1 + leader->nr_siblings; 3018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3019 values[n++] = enabled; 3020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3021 values[n++] = running; 3022 values[n++] = count; 3023 if (read_format & PERF_FORMAT_ID) 3024 values[n++] = primary_event_id(leader); 3025 3026 size = n * sizeof(u64); 3027 3028 if (copy_to_user(buf, values, size)) 3029 goto unlock; 3030 3031 ret = size; 3032 3033 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3034 n = 0; 3035 3036 values[n++] = perf_event_read_value(sub, &enabled, &running); 3037 if (read_format & PERF_FORMAT_ID) 3038 values[n++] = primary_event_id(sub); 3039 3040 size = n * sizeof(u64); 3041 3042 if (copy_to_user(buf + ret, values, size)) { 3043 ret = -EFAULT; 3044 goto unlock; 3045 } 3046 3047 ret += size; 3048 } 3049 unlock: 3050 mutex_unlock(&ctx->mutex); 3051 3052 return ret; 3053 } 3054 3055 static int perf_event_read_one(struct perf_event *event, 3056 u64 read_format, char __user *buf) 3057 { 3058 u64 enabled, running; 3059 u64 values[4]; 3060 int n = 0; 3061 3062 values[n++] = perf_event_read_value(event, &enabled, &running); 3063 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3064 values[n++] = enabled; 3065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3066 values[n++] = running; 3067 if (read_format & PERF_FORMAT_ID) 3068 values[n++] = primary_event_id(event); 3069 3070 if (copy_to_user(buf, values, n * sizeof(u64))) 3071 return -EFAULT; 3072 3073 return n * sizeof(u64); 3074 } 3075 3076 /* 3077 * Read the performance event - simple non blocking version for now 3078 */ 3079 static ssize_t 3080 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3081 { 3082 u64 read_format = event->attr.read_format; 3083 int ret; 3084 3085 /* 3086 * Return end-of-file for a read on a event that is in 3087 * error state (i.e. because it was pinned but it couldn't be 3088 * scheduled on to the CPU at some point). 3089 */ 3090 if (event->state == PERF_EVENT_STATE_ERROR) 3091 return 0; 3092 3093 if (count < event->read_size) 3094 return -ENOSPC; 3095 3096 WARN_ON_ONCE(event->ctx->parent_ctx); 3097 if (read_format & PERF_FORMAT_GROUP) 3098 ret = perf_event_read_group(event, read_format, buf); 3099 else 3100 ret = perf_event_read_one(event, read_format, buf); 3101 3102 return ret; 3103 } 3104 3105 static ssize_t 3106 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3107 { 3108 struct perf_event *event = file->private_data; 3109 3110 return perf_read_hw(event, buf, count); 3111 } 3112 3113 static unsigned int perf_poll(struct file *file, poll_table *wait) 3114 { 3115 struct perf_event *event = file->private_data; 3116 struct ring_buffer *rb; 3117 unsigned int events = POLL_HUP; 3118 3119 /* 3120 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3121 * grabs the rb reference but perf_event_set_output() overrides it. 3122 * Here is the timeline for two threads T1, T2: 3123 * t0: T1, rb = rcu_dereference(event->rb) 3124 * t1: T2, old_rb = event->rb 3125 * t2: T2, event->rb = new rb 3126 * t3: T2, ring_buffer_detach(old_rb) 3127 * t4: T1, ring_buffer_attach(rb1) 3128 * t5: T1, poll_wait(event->waitq) 3129 * 3130 * To avoid this problem, we grab mmap_mutex in perf_poll() 3131 * thereby ensuring that the assignment of the new ring buffer 3132 * and the detachment of the old buffer appear atomic to perf_poll() 3133 */ 3134 mutex_lock(&event->mmap_mutex); 3135 3136 rcu_read_lock(); 3137 rb = rcu_dereference(event->rb); 3138 if (rb) { 3139 ring_buffer_attach(event, rb); 3140 events = atomic_xchg(&rb->poll, 0); 3141 } 3142 rcu_read_unlock(); 3143 3144 mutex_unlock(&event->mmap_mutex); 3145 3146 poll_wait(file, &event->waitq, wait); 3147 3148 return events; 3149 } 3150 3151 static void perf_event_reset(struct perf_event *event) 3152 { 3153 (void)perf_event_read(event); 3154 local64_set(&event->count, 0); 3155 perf_event_update_userpage(event); 3156 } 3157 3158 /* 3159 * Holding the top-level event's child_mutex means that any 3160 * descendant process that has inherited this event will block 3161 * in sync_child_event if it goes to exit, thus satisfying the 3162 * task existence requirements of perf_event_enable/disable. 3163 */ 3164 static void perf_event_for_each_child(struct perf_event *event, 3165 void (*func)(struct perf_event *)) 3166 { 3167 struct perf_event *child; 3168 3169 WARN_ON_ONCE(event->ctx->parent_ctx); 3170 mutex_lock(&event->child_mutex); 3171 func(event); 3172 list_for_each_entry(child, &event->child_list, child_list) 3173 func(child); 3174 mutex_unlock(&event->child_mutex); 3175 } 3176 3177 static void perf_event_for_each(struct perf_event *event, 3178 void (*func)(struct perf_event *)) 3179 { 3180 struct perf_event_context *ctx = event->ctx; 3181 struct perf_event *sibling; 3182 3183 WARN_ON_ONCE(ctx->parent_ctx); 3184 mutex_lock(&ctx->mutex); 3185 event = event->group_leader; 3186 3187 perf_event_for_each_child(event, func); 3188 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3189 perf_event_for_each_child(sibling, func); 3190 mutex_unlock(&ctx->mutex); 3191 } 3192 3193 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3194 { 3195 struct perf_event_context *ctx = event->ctx; 3196 int ret = 0; 3197 u64 value; 3198 3199 if (!is_sampling_event(event)) 3200 return -EINVAL; 3201 3202 if (copy_from_user(&value, arg, sizeof(value))) 3203 return -EFAULT; 3204 3205 if (!value) 3206 return -EINVAL; 3207 3208 raw_spin_lock_irq(&ctx->lock); 3209 if (event->attr.freq) { 3210 if (value > sysctl_perf_event_sample_rate) { 3211 ret = -EINVAL; 3212 goto unlock; 3213 } 3214 3215 event->attr.sample_freq = value; 3216 } else { 3217 event->attr.sample_period = value; 3218 event->hw.sample_period = value; 3219 } 3220 unlock: 3221 raw_spin_unlock_irq(&ctx->lock); 3222 3223 return ret; 3224 } 3225 3226 static const struct file_operations perf_fops; 3227 3228 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3229 { 3230 struct file *file; 3231 3232 file = fget_light(fd, fput_needed); 3233 if (!file) 3234 return ERR_PTR(-EBADF); 3235 3236 if (file->f_op != &perf_fops) { 3237 fput_light(file, *fput_needed); 3238 *fput_needed = 0; 3239 return ERR_PTR(-EBADF); 3240 } 3241 3242 return file->private_data; 3243 } 3244 3245 static int perf_event_set_output(struct perf_event *event, 3246 struct perf_event *output_event); 3247 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3248 3249 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3250 { 3251 struct perf_event *event = file->private_data; 3252 void (*func)(struct perf_event *); 3253 u32 flags = arg; 3254 3255 switch (cmd) { 3256 case PERF_EVENT_IOC_ENABLE: 3257 func = perf_event_enable; 3258 break; 3259 case PERF_EVENT_IOC_DISABLE: 3260 func = perf_event_disable; 3261 break; 3262 case PERF_EVENT_IOC_RESET: 3263 func = perf_event_reset; 3264 break; 3265 3266 case PERF_EVENT_IOC_REFRESH: 3267 return perf_event_refresh(event, arg); 3268 3269 case PERF_EVENT_IOC_PERIOD: 3270 return perf_event_period(event, (u64 __user *)arg); 3271 3272 case PERF_EVENT_IOC_SET_OUTPUT: 3273 { 3274 struct perf_event *output_event = NULL; 3275 int fput_needed = 0; 3276 int ret; 3277 3278 if (arg != -1) { 3279 output_event = perf_fget_light(arg, &fput_needed); 3280 if (IS_ERR(output_event)) 3281 return PTR_ERR(output_event); 3282 } 3283 3284 ret = perf_event_set_output(event, output_event); 3285 if (output_event) 3286 fput_light(output_event->filp, fput_needed); 3287 3288 return ret; 3289 } 3290 3291 case PERF_EVENT_IOC_SET_FILTER: 3292 return perf_event_set_filter(event, (void __user *)arg); 3293 3294 default: 3295 return -ENOTTY; 3296 } 3297 3298 if (flags & PERF_IOC_FLAG_GROUP) 3299 perf_event_for_each(event, func); 3300 else 3301 perf_event_for_each_child(event, func); 3302 3303 return 0; 3304 } 3305 3306 int perf_event_task_enable(void) 3307 { 3308 struct perf_event *event; 3309 3310 mutex_lock(¤t->perf_event_mutex); 3311 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3312 perf_event_for_each_child(event, perf_event_enable); 3313 mutex_unlock(¤t->perf_event_mutex); 3314 3315 return 0; 3316 } 3317 3318 int perf_event_task_disable(void) 3319 { 3320 struct perf_event *event; 3321 3322 mutex_lock(¤t->perf_event_mutex); 3323 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3324 perf_event_for_each_child(event, perf_event_disable); 3325 mutex_unlock(¤t->perf_event_mutex); 3326 3327 return 0; 3328 } 3329 3330 static int perf_event_index(struct perf_event *event) 3331 { 3332 if (event->hw.state & PERF_HES_STOPPED) 3333 return 0; 3334 3335 if (event->state != PERF_EVENT_STATE_ACTIVE) 3336 return 0; 3337 3338 return event->pmu->event_idx(event); 3339 } 3340 3341 static void calc_timer_values(struct perf_event *event, 3342 u64 *now, 3343 u64 *enabled, 3344 u64 *running) 3345 { 3346 u64 ctx_time; 3347 3348 *now = perf_clock(); 3349 ctx_time = event->shadow_ctx_time + *now; 3350 *enabled = ctx_time - event->tstamp_enabled; 3351 *running = ctx_time - event->tstamp_running; 3352 } 3353 3354 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3355 { 3356 } 3357 3358 /* 3359 * Callers need to ensure there can be no nesting of this function, otherwise 3360 * the seqlock logic goes bad. We can not serialize this because the arch 3361 * code calls this from NMI context. 3362 */ 3363 void perf_event_update_userpage(struct perf_event *event) 3364 { 3365 struct perf_event_mmap_page *userpg; 3366 struct ring_buffer *rb; 3367 u64 enabled, running, now; 3368 3369 rcu_read_lock(); 3370 /* 3371 * compute total_time_enabled, total_time_running 3372 * based on snapshot values taken when the event 3373 * was last scheduled in. 3374 * 3375 * we cannot simply called update_context_time() 3376 * because of locking issue as we can be called in 3377 * NMI context 3378 */ 3379 calc_timer_values(event, &now, &enabled, &running); 3380 rb = rcu_dereference(event->rb); 3381 if (!rb) 3382 goto unlock; 3383 3384 userpg = rb->user_page; 3385 3386 /* 3387 * Disable preemption so as to not let the corresponding user-space 3388 * spin too long if we get preempted. 3389 */ 3390 preempt_disable(); 3391 ++userpg->lock; 3392 barrier(); 3393 userpg->index = perf_event_index(event); 3394 userpg->offset = perf_event_count(event); 3395 if (userpg->index) 3396 userpg->offset -= local64_read(&event->hw.prev_count); 3397 3398 userpg->time_enabled = enabled + 3399 atomic64_read(&event->child_total_time_enabled); 3400 3401 userpg->time_running = running + 3402 atomic64_read(&event->child_total_time_running); 3403 3404 arch_perf_update_userpage(userpg, now); 3405 3406 barrier(); 3407 ++userpg->lock; 3408 preempt_enable(); 3409 unlock: 3410 rcu_read_unlock(); 3411 } 3412 3413 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3414 { 3415 struct perf_event *event = vma->vm_file->private_data; 3416 struct ring_buffer *rb; 3417 int ret = VM_FAULT_SIGBUS; 3418 3419 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3420 if (vmf->pgoff == 0) 3421 ret = 0; 3422 return ret; 3423 } 3424 3425 rcu_read_lock(); 3426 rb = rcu_dereference(event->rb); 3427 if (!rb) 3428 goto unlock; 3429 3430 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3431 goto unlock; 3432 3433 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3434 if (!vmf->page) 3435 goto unlock; 3436 3437 get_page(vmf->page); 3438 vmf->page->mapping = vma->vm_file->f_mapping; 3439 vmf->page->index = vmf->pgoff; 3440 3441 ret = 0; 3442 unlock: 3443 rcu_read_unlock(); 3444 3445 return ret; 3446 } 3447 3448 static void ring_buffer_attach(struct perf_event *event, 3449 struct ring_buffer *rb) 3450 { 3451 unsigned long flags; 3452 3453 if (!list_empty(&event->rb_entry)) 3454 return; 3455 3456 spin_lock_irqsave(&rb->event_lock, flags); 3457 if (!list_empty(&event->rb_entry)) 3458 goto unlock; 3459 3460 list_add(&event->rb_entry, &rb->event_list); 3461 unlock: 3462 spin_unlock_irqrestore(&rb->event_lock, flags); 3463 } 3464 3465 static void ring_buffer_detach(struct perf_event *event, 3466 struct ring_buffer *rb) 3467 { 3468 unsigned long flags; 3469 3470 if (list_empty(&event->rb_entry)) 3471 return; 3472 3473 spin_lock_irqsave(&rb->event_lock, flags); 3474 list_del_init(&event->rb_entry); 3475 wake_up_all(&event->waitq); 3476 spin_unlock_irqrestore(&rb->event_lock, flags); 3477 } 3478 3479 static void ring_buffer_wakeup(struct perf_event *event) 3480 { 3481 struct ring_buffer *rb; 3482 3483 rcu_read_lock(); 3484 rb = rcu_dereference(event->rb); 3485 if (!rb) 3486 goto unlock; 3487 3488 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3489 wake_up_all(&event->waitq); 3490 3491 unlock: 3492 rcu_read_unlock(); 3493 } 3494 3495 static void rb_free_rcu(struct rcu_head *rcu_head) 3496 { 3497 struct ring_buffer *rb; 3498 3499 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3500 rb_free(rb); 3501 } 3502 3503 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3504 { 3505 struct ring_buffer *rb; 3506 3507 rcu_read_lock(); 3508 rb = rcu_dereference(event->rb); 3509 if (rb) { 3510 if (!atomic_inc_not_zero(&rb->refcount)) 3511 rb = NULL; 3512 } 3513 rcu_read_unlock(); 3514 3515 return rb; 3516 } 3517 3518 static void ring_buffer_put(struct ring_buffer *rb) 3519 { 3520 struct perf_event *event, *n; 3521 unsigned long flags; 3522 3523 if (!atomic_dec_and_test(&rb->refcount)) 3524 return; 3525 3526 spin_lock_irqsave(&rb->event_lock, flags); 3527 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3528 list_del_init(&event->rb_entry); 3529 wake_up_all(&event->waitq); 3530 } 3531 spin_unlock_irqrestore(&rb->event_lock, flags); 3532 3533 call_rcu(&rb->rcu_head, rb_free_rcu); 3534 } 3535 3536 static void perf_mmap_open(struct vm_area_struct *vma) 3537 { 3538 struct perf_event *event = vma->vm_file->private_data; 3539 3540 atomic_inc(&event->mmap_count); 3541 } 3542 3543 static void perf_mmap_close(struct vm_area_struct *vma) 3544 { 3545 struct perf_event *event = vma->vm_file->private_data; 3546 3547 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3548 unsigned long size = perf_data_size(event->rb); 3549 struct user_struct *user = event->mmap_user; 3550 struct ring_buffer *rb = event->rb; 3551 3552 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3553 vma->vm_mm->pinned_vm -= event->mmap_locked; 3554 rcu_assign_pointer(event->rb, NULL); 3555 ring_buffer_detach(event, rb); 3556 mutex_unlock(&event->mmap_mutex); 3557 3558 ring_buffer_put(rb); 3559 free_uid(user); 3560 } 3561 } 3562 3563 static const struct vm_operations_struct perf_mmap_vmops = { 3564 .open = perf_mmap_open, 3565 .close = perf_mmap_close, 3566 .fault = perf_mmap_fault, 3567 .page_mkwrite = perf_mmap_fault, 3568 }; 3569 3570 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3571 { 3572 struct perf_event *event = file->private_data; 3573 unsigned long user_locked, user_lock_limit; 3574 struct user_struct *user = current_user(); 3575 unsigned long locked, lock_limit; 3576 struct ring_buffer *rb; 3577 unsigned long vma_size; 3578 unsigned long nr_pages; 3579 long user_extra, extra; 3580 int ret = 0, flags = 0; 3581 3582 /* 3583 * Don't allow mmap() of inherited per-task counters. This would 3584 * create a performance issue due to all children writing to the 3585 * same rb. 3586 */ 3587 if (event->cpu == -1 && event->attr.inherit) 3588 return -EINVAL; 3589 3590 if (!(vma->vm_flags & VM_SHARED)) 3591 return -EINVAL; 3592 3593 vma_size = vma->vm_end - vma->vm_start; 3594 nr_pages = (vma_size / PAGE_SIZE) - 1; 3595 3596 /* 3597 * If we have rb pages ensure they're a power-of-two number, so we 3598 * can do bitmasks instead of modulo. 3599 */ 3600 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3601 return -EINVAL; 3602 3603 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3604 return -EINVAL; 3605 3606 if (vma->vm_pgoff != 0) 3607 return -EINVAL; 3608 3609 WARN_ON_ONCE(event->ctx->parent_ctx); 3610 mutex_lock(&event->mmap_mutex); 3611 if (event->rb) { 3612 if (event->rb->nr_pages == nr_pages) 3613 atomic_inc(&event->rb->refcount); 3614 else 3615 ret = -EINVAL; 3616 goto unlock; 3617 } 3618 3619 user_extra = nr_pages + 1; 3620 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3621 3622 /* 3623 * Increase the limit linearly with more CPUs: 3624 */ 3625 user_lock_limit *= num_online_cpus(); 3626 3627 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3628 3629 extra = 0; 3630 if (user_locked > user_lock_limit) 3631 extra = user_locked - user_lock_limit; 3632 3633 lock_limit = rlimit(RLIMIT_MEMLOCK); 3634 lock_limit >>= PAGE_SHIFT; 3635 locked = vma->vm_mm->pinned_vm + extra; 3636 3637 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3638 !capable(CAP_IPC_LOCK)) { 3639 ret = -EPERM; 3640 goto unlock; 3641 } 3642 3643 WARN_ON(event->rb); 3644 3645 if (vma->vm_flags & VM_WRITE) 3646 flags |= RING_BUFFER_WRITABLE; 3647 3648 rb = rb_alloc(nr_pages, 3649 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3650 event->cpu, flags); 3651 3652 if (!rb) { 3653 ret = -ENOMEM; 3654 goto unlock; 3655 } 3656 rcu_assign_pointer(event->rb, rb); 3657 3658 atomic_long_add(user_extra, &user->locked_vm); 3659 event->mmap_locked = extra; 3660 event->mmap_user = get_current_user(); 3661 vma->vm_mm->pinned_vm += event->mmap_locked; 3662 3663 perf_event_update_userpage(event); 3664 3665 unlock: 3666 if (!ret) 3667 atomic_inc(&event->mmap_count); 3668 mutex_unlock(&event->mmap_mutex); 3669 3670 vma->vm_flags |= VM_RESERVED; 3671 vma->vm_ops = &perf_mmap_vmops; 3672 3673 return ret; 3674 } 3675 3676 static int perf_fasync(int fd, struct file *filp, int on) 3677 { 3678 struct inode *inode = filp->f_path.dentry->d_inode; 3679 struct perf_event *event = filp->private_data; 3680 int retval; 3681 3682 mutex_lock(&inode->i_mutex); 3683 retval = fasync_helper(fd, filp, on, &event->fasync); 3684 mutex_unlock(&inode->i_mutex); 3685 3686 if (retval < 0) 3687 return retval; 3688 3689 return 0; 3690 } 3691 3692 static const struct file_operations perf_fops = { 3693 .llseek = no_llseek, 3694 .release = perf_release, 3695 .read = perf_read, 3696 .poll = perf_poll, 3697 .unlocked_ioctl = perf_ioctl, 3698 .compat_ioctl = perf_ioctl, 3699 .mmap = perf_mmap, 3700 .fasync = perf_fasync, 3701 }; 3702 3703 /* 3704 * Perf event wakeup 3705 * 3706 * If there's data, ensure we set the poll() state and publish everything 3707 * to user-space before waking everybody up. 3708 */ 3709 3710 void perf_event_wakeup(struct perf_event *event) 3711 { 3712 ring_buffer_wakeup(event); 3713 3714 if (event->pending_kill) { 3715 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3716 event->pending_kill = 0; 3717 } 3718 } 3719 3720 static void perf_pending_event(struct irq_work *entry) 3721 { 3722 struct perf_event *event = container_of(entry, 3723 struct perf_event, pending); 3724 3725 if (event->pending_disable) { 3726 event->pending_disable = 0; 3727 __perf_event_disable(event); 3728 } 3729 3730 if (event->pending_wakeup) { 3731 event->pending_wakeup = 0; 3732 perf_event_wakeup(event); 3733 } 3734 } 3735 3736 /* 3737 * We assume there is only KVM supporting the callbacks. 3738 * Later on, we might change it to a list if there is 3739 * another virtualization implementation supporting the callbacks. 3740 */ 3741 struct perf_guest_info_callbacks *perf_guest_cbs; 3742 3743 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3744 { 3745 perf_guest_cbs = cbs; 3746 return 0; 3747 } 3748 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3749 3750 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3751 { 3752 perf_guest_cbs = NULL; 3753 return 0; 3754 } 3755 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3756 3757 static void __perf_event_header__init_id(struct perf_event_header *header, 3758 struct perf_sample_data *data, 3759 struct perf_event *event) 3760 { 3761 u64 sample_type = event->attr.sample_type; 3762 3763 data->type = sample_type; 3764 header->size += event->id_header_size; 3765 3766 if (sample_type & PERF_SAMPLE_TID) { 3767 /* namespace issues */ 3768 data->tid_entry.pid = perf_event_pid(event, current); 3769 data->tid_entry.tid = perf_event_tid(event, current); 3770 } 3771 3772 if (sample_type & PERF_SAMPLE_TIME) 3773 data->time = perf_clock(); 3774 3775 if (sample_type & PERF_SAMPLE_ID) 3776 data->id = primary_event_id(event); 3777 3778 if (sample_type & PERF_SAMPLE_STREAM_ID) 3779 data->stream_id = event->id; 3780 3781 if (sample_type & PERF_SAMPLE_CPU) { 3782 data->cpu_entry.cpu = raw_smp_processor_id(); 3783 data->cpu_entry.reserved = 0; 3784 } 3785 } 3786 3787 void perf_event_header__init_id(struct perf_event_header *header, 3788 struct perf_sample_data *data, 3789 struct perf_event *event) 3790 { 3791 if (event->attr.sample_id_all) 3792 __perf_event_header__init_id(header, data, event); 3793 } 3794 3795 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3796 struct perf_sample_data *data) 3797 { 3798 u64 sample_type = data->type; 3799 3800 if (sample_type & PERF_SAMPLE_TID) 3801 perf_output_put(handle, data->tid_entry); 3802 3803 if (sample_type & PERF_SAMPLE_TIME) 3804 perf_output_put(handle, data->time); 3805 3806 if (sample_type & PERF_SAMPLE_ID) 3807 perf_output_put(handle, data->id); 3808 3809 if (sample_type & PERF_SAMPLE_STREAM_ID) 3810 perf_output_put(handle, data->stream_id); 3811 3812 if (sample_type & PERF_SAMPLE_CPU) 3813 perf_output_put(handle, data->cpu_entry); 3814 } 3815 3816 void perf_event__output_id_sample(struct perf_event *event, 3817 struct perf_output_handle *handle, 3818 struct perf_sample_data *sample) 3819 { 3820 if (event->attr.sample_id_all) 3821 __perf_event__output_id_sample(handle, sample); 3822 } 3823 3824 static void perf_output_read_one(struct perf_output_handle *handle, 3825 struct perf_event *event, 3826 u64 enabled, u64 running) 3827 { 3828 u64 read_format = event->attr.read_format; 3829 u64 values[4]; 3830 int n = 0; 3831 3832 values[n++] = perf_event_count(event); 3833 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3834 values[n++] = enabled + 3835 atomic64_read(&event->child_total_time_enabled); 3836 } 3837 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3838 values[n++] = running + 3839 atomic64_read(&event->child_total_time_running); 3840 } 3841 if (read_format & PERF_FORMAT_ID) 3842 values[n++] = primary_event_id(event); 3843 3844 __output_copy(handle, values, n * sizeof(u64)); 3845 } 3846 3847 /* 3848 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3849 */ 3850 static void perf_output_read_group(struct perf_output_handle *handle, 3851 struct perf_event *event, 3852 u64 enabled, u64 running) 3853 { 3854 struct perf_event *leader = event->group_leader, *sub; 3855 u64 read_format = event->attr.read_format; 3856 u64 values[5]; 3857 int n = 0; 3858 3859 values[n++] = 1 + leader->nr_siblings; 3860 3861 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3862 values[n++] = enabled; 3863 3864 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3865 values[n++] = running; 3866 3867 if (leader != event) 3868 leader->pmu->read(leader); 3869 3870 values[n++] = perf_event_count(leader); 3871 if (read_format & PERF_FORMAT_ID) 3872 values[n++] = primary_event_id(leader); 3873 3874 __output_copy(handle, values, n * sizeof(u64)); 3875 3876 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3877 n = 0; 3878 3879 if (sub != event) 3880 sub->pmu->read(sub); 3881 3882 values[n++] = perf_event_count(sub); 3883 if (read_format & PERF_FORMAT_ID) 3884 values[n++] = primary_event_id(sub); 3885 3886 __output_copy(handle, values, n * sizeof(u64)); 3887 } 3888 } 3889 3890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3891 PERF_FORMAT_TOTAL_TIME_RUNNING) 3892 3893 static void perf_output_read(struct perf_output_handle *handle, 3894 struct perf_event *event) 3895 { 3896 u64 enabled = 0, running = 0, now; 3897 u64 read_format = event->attr.read_format; 3898 3899 /* 3900 * compute total_time_enabled, total_time_running 3901 * based on snapshot values taken when the event 3902 * was last scheduled in. 3903 * 3904 * we cannot simply called update_context_time() 3905 * because of locking issue as we are called in 3906 * NMI context 3907 */ 3908 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3909 calc_timer_values(event, &now, &enabled, &running); 3910 3911 if (event->attr.read_format & PERF_FORMAT_GROUP) 3912 perf_output_read_group(handle, event, enabled, running); 3913 else 3914 perf_output_read_one(handle, event, enabled, running); 3915 } 3916 3917 void perf_output_sample(struct perf_output_handle *handle, 3918 struct perf_event_header *header, 3919 struct perf_sample_data *data, 3920 struct perf_event *event) 3921 { 3922 u64 sample_type = data->type; 3923 3924 perf_output_put(handle, *header); 3925 3926 if (sample_type & PERF_SAMPLE_IP) 3927 perf_output_put(handle, data->ip); 3928 3929 if (sample_type & PERF_SAMPLE_TID) 3930 perf_output_put(handle, data->tid_entry); 3931 3932 if (sample_type & PERF_SAMPLE_TIME) 3933 perf_output_put(handle, data->time); 3934 3935 if (sample_type & PERF_SAMPLE_ADDR) 3936 perf_output_put(handle, data->addr); 3937 3938 if (sample_type & PERF_SAMPLE_ID) 3939 perf_output_put(handle, data->id); 3940 3941 if (sample_type & PERF_SAMPLE_STREAM_ID) 3942 perf_output_put(handle, data->stream_id); 3943 3944 if (sample_type & PERF_SAMPLE_CPU) 3945 perf_output_put(handle, data->cpu_entry); 3946 3947 if (sample_type & PERF_SAMPLE_PERIOD) 3948 perf_output_put(handle, data->period); 3949 3950 if (sample_type & PERF_SAMPLE_READ) 3951 perf_output_read(handle, event); 3952 3953 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3954 if (data->callchain) { 3955 int size = 1; 3956 3957 if (data->callchain) 3958 size += data->callchain->nr; 3959 3960 size *= sizeof(u64); 3961 3962 __output_copy(handle, data->callchain, size); 3963 } else { 3964 u64 nr = 0; 3965 perf_output_put(handle, nr); 3966 } 3967 } 3968 3969 if (sample_type & PERF_SAMPLE_RAW) { 3970 if (data->raw) { 3971 perf_output_put(handle, data->raw->size); 3972 __output_copy(handle, data->raw->data, 3973 data->raw->size); 3974 } else { 3975 struct { 3976 u32 size; 3977 u32 data; 3978 } raw = { 3979 .size = sizeof(u32), 3980 .data = 0, 3981 }; 3982 perf_output_put(handle, raw); 3983 } 3984 } 3985 3986 if (!event->attr.watermark) { 3987 int wakeup_events = event->attr.wakeup_events; 3988 3989 if (wakeup_events) { 3990 struct ring_buffer *rb = handle->rb; 3991 int events = local_inc_return(&rb->events); 3992 3993 if (events >= wakeup_events) { 3994 local_sub(wakeup_events, &rb->events); 3995 local_inc(&rb->wakeup); 3996 } 3997 } 3998 } 3999 4000 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4001 if (data->br_stack) { 4002 size_t size; 4003 4004 size = data->br_stack->nr 4005 * sizeof(struct perf_branch_entry); 4006 4007 perf_output_put(handle, data->br_stack->nr); 4008 perf_output_copy(handle, data->br_stack->entries, size); 4009 } else { 4010 /* 4011 * we always store at least the value of nr 4012 */ 4013 u64 nr = 0; 4014 perf_output_put(handle, nr); 4015 } 4016 } 4017 } 4018 4019 void perf_prepare_sample(struct perf_event_header *header, 4020 struct perf_sample_data *data, 4021 struct perf_event *event, 4022 struct pt_regs *regs) 4023 { 4024 u64 sample_type = event->attr.sample_type; 4025 4026 header->type = PERF_RECORD_SAMPLE; 4027 header->size = sizeof(*header) + event->header_size; 4028 4029 header->misc = 0; 4030 header->misc |= perf_misc_flags(regs); 4031 4032 __perf_event_header__init_id(header, data, event); 4033 4034 if (sample_type & PERF_SAMPLE_IP) 4035 data->ip = perf_instruction_pointer(regs); 4036 4037 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4038 int size = 1; 4039 4040 data->callchain = perf_callchain(regs); 4041 4042 if (data->callchain) 4043 size += data->callchain->nr; 4044 4045 header->size += size * sizeof(u64); 4046 } 4047 4048 if (sample_type & PERF_SAMPLE_RAW) { 4049 int size = sizeof(u32); 4050 4051 if (data->raw) 4052 size += data->raw->size; 4053 else 4054 size += sizeof(u32); 4055 4056 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4057 header->size += size; 4058 } 4059 4060 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4061 int size = sizeof(u64); /* nr */ 4062 if (data->br_stack) { 4063 size += data->br_stack->nr 4064 * sizeof(struct perf_branch_entry); 4065 } 4066 header->size += size; 4067 } 4068 } 4069 4070 static void perf_event_output(struct perf_event *event, 4071 struct perf_sample_data *data, 4072 struct pt_regs *regs) 4073 { 4074 struct perf_output_handle handle; 4075 struct perf_event_header header; 4076 4077 /* protect the callchain buffers */ 4078 rcu_read_lock(); 4079 4080 perf_prepare_sample(&header, data, event, regs); 4081 4082 if (perf_output_begin(&handle, event, header.size)) 4083 goto exit; 4084 4085 perf_output_sample(&handle, &header, data, event); 4086 4087 perf_output_end(&handle); 4088 4089 exit: 4090 rcu_read_unlock(); 4091 } 4092 4093 /* 4094 * read event_id 4095 */ 4096 4097 struct perf_read_event { 4098 struct perf_event_header header; 4099 4100 u32 pid; 4101 u32 tid; 4102 }; 4103 4104 static void 4105 perf_event_read_event(struct perf_event *event, 4106 struct task_struct *task) 4107 { 4108 struct perf_output_handle handle; 4109 struct perf_sample_data sample; 4110 struct perf_read_event read_event = { 4111 .header = { 4112 .type = PERF_RECORD_READ, 4113 .misc = 0, 4114 .size = sizeof(read_event) + event->read_size, 4115 }, 4116 .pid = perf_event_pid(event, task), 4117 .tid = perf_event_tid(event, task), 4118 }; 4119 int ret; 4120 4121 perf_event_header__init_id(&read_event.header, &sample, event); 4122 ret = perf_output_begin(&handle, event, read_event.header.size); 4123 if (ret) 4124 return; 4125 4126 perf_output_put(&handle, read_event); 4127 perf_output_read(&handle, event); 4128 perf_event__output_id_sample(event, &handle, &sample); 4129 4130 perf_output_end(&handle); 4131 } 4132 4133 /* 4134 * task tracking -- fork/exit 4135 * 4136 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4137 */ 4138 4139 struct perf_task_event { 4140 struct task_struct *task; 4141 struct perf_event_context *task_ctx; 4142 4143 struct { 4144 struct perf_event_header header; 4145 4146 u32 pid; 4147 u32 ppid; 4148 u32 tid; 4149 u32 ptid; 4150 u64 time; 4151 } event_id; 4152 }; 4153 4154 static void perf_event_task_output(struct perf_event *event, 4155 struct perf_task_event *task_event) 4156 { 4157 struct perf_output_handle handle; 4158 struct perf_sample_data sample; 4159 struct task_struct *task = task_event->task; 4160 int ret, size = task_event->event_id.header.size; 4161 4162 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4163 4164 ret = perf_output_begin(&handle, event, 4165 task_event->event_id.header.size); 4166 if (ret) 4167 goto out; 4168 4169 task_event->event_id.pid = perf_event_pid(event, task); 4170 task_event->event_id.ppid = perf_event_pid(event, current); 4171 4172 task_event->event_id.tid = perf_event_tid(event, task); 4173 task_event->event_id.ptid = perf_event_tid(event, current); 4174 4175 perf_output_put(&handle, task_event->event_id); 4176 4177 perf_event__output_id_sample(event, &handle, &sample); 4178 4179 perf_output_end(&handle); 4180 out: 4181 task_event->event_id.header.size = size; 4182 } 4183 4184 static int perf_event_task_match(struct perf_event *event) 4185 { 4186 if (event->state < PERF_EVENT_STATE_INACTIVE) 4187 return 0; 4188 4189 if (!event_filter_match(event)) 4190 return 0; 4191 4192 if (event->attr.comm || event->attr.mmap || 4193 event->attr.mmap_data || event->attr.task) 4194 return 1; 4195 4196 return 0; 4197 } 4198 4199 static void perf_event_task_ctx(struct perf_event_context *ctx, 4200 struct perf_task_event *task_event) 4201 { 4202 struct perf_event *event; 4203 4204 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4205 if (perf_event_task_match(event)) 4206 perf_event_task_output(event, task_event); 4207 } 4208 } 4209 4210 static void perf_event_task_event(struct perf_task_event *task_event) 4211 { 4212 struct perf_cpu_context *cpuctx; 4213 struct perf_event_context *ctx; 4214 struct pmu *pmu; 4215 int ctxn; 4216 4217 rcu_read_lock(); 4218 list_for_each_entry_rcu(pmu, &pmus, entry) { 4219 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4220 if (cpuctx->active_pmu != pmu) 4221 goto next; 4222 perf_event_task_ctx(&cpuctx->ctx, task_event); 4223 4224 ctx = task_event->task_ctx; 4225 if (!ctx) { 4226 ctxn = pmu->task_ctx_nr; 4227 if (ctxn < 0) 4228 goto next; 4229 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4230 } 4231 if (ctx) 4232 perf_event_task_ctx(ctx, task_event); 4233 next: 4234 put_cpu_ptr(pmu->pmu_cpu_context); 4235 } 4236 rcu_read_unlock(); 4237 } 4238 4239 static void perf_event_task(struct task_struct *task, 4240 struct perf_event_context *task_ctx, 4241 int new) 4242 { 4243 struct perf_task_event task_event; 4244 4245 if (!atomic_read(&nr_comm_events) && 4246 !atomic_read(&nr_mmap_events) && 4247 !atomic_read(&nr_task_events)) 4248 return; 4249 4250 task_event = (struct perf_task_event){ 4251 .task = task, 4252 .task_ctx = task_ctx, 4253 .event_id = { 4254 .header = { 4255 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4256 .misc = 0, 4257 .size = sizeof(task_event.event_id), 4258 }, 4259 /* .pid */ 4260 /* .ppid */ 4261 /* .tid */ 4262 /* .ptid */ 4263 .time = perf_clock(), 4264 }, 4265 }; 4266 4267 perf_event_task_event(&task_event); 4268 } 4269 4270 void perf_event_fork(struct task_struct *task) 4271 { 4272 perf_event_task(task, NULL, 1); 4273 } 4274 4275 /* 4276 * comm tracking 4277 */ 4278 4279 struct perf_comm_event { 4280 struct task_struct *task; 4281 char *comm; 4282 int comm_size; 4283 4284 struct { 4285 struct perf_event_header header; 4286 4287 u32 pid; 4288 u32 tid; 4289 } event_id; 4290 }; 4291 4292 static void perf_event_comm_output(struct perf_event *event, 4293 struct perf_comm_event *comm_event) 4294 { 4295 struct perf_output_handle handle; 4296 struct perf_sample_data sample; 4297 int size = comm_event->event_id.header.size; 4298 int ret; 4299 4300 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4301 ret = perf_output_begin(&handle, event, 4302 comm_event->event_id.header.size); 4303 4304 if (ret) 4305 goto out; 4306 4307 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4308 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4309 4310 perf_output_put(&handle, comm_event->event_id); 4311 __output_copy(&handle, comm_event->comm, 4312 comm_event->comm_size); 4313 4314 perf_event__output_id_sample(event, &handle, &sample); 4315 4316 perf_output_end(&handle); 4317 out: 4318 comm_event->event_id.header.size = size; 4319 } 4320 4321 static int perf_event_comm_match(struct perf_event *event) 4322 { 4323 if (event->state < PERF_EVENT_STATE_INACTIVE) 4324 return 0; 4325 4326 if (!event_filter_match(event)) 4327 return 0; 4328 4329 if (event->attr.comm) 4330 return 1; 4331 4332 return 0; 4333 } 4334 4335 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4336 struct perf_comm_event *comm_event) 4337 { 4338 struct perf_event *event; 4339 4340 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4341 if (perf_event_comm_match(event)) 4342 perf_event_comm_output(event, comm_event); 4343 } 4344 } 4345 4346 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4347 { 4348 struct perf_cpu_context *cpuctx; 4349 struct perf_event_context *ctx; 4350 char comm[TASK_COMM_LEN]; 4351 unsigned int size; 4352 struct pmu *pmu; 4353 int ctxn; 4354 4355 memset(comm, 0, sizeof(comm)); 4356 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4357 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4358 4359 comm_event->comm = comm; 4360 comm_event->comm_size = size; 4361 4362 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4363 rcu_read_lock(); 4364 list_for_each_entry_rcu(pmu, &pmus, entry) { 4365 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4366 if (cpuctx->active_pmu != pmu) 4367 goto next; 4368 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4369 4370 ctxn = pmu->task_ctx_nr; 4371 if (ctxn < 0) 4372 goto next; 4373 4374 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4375 if (ctx) 4376 perf_event_comm_ctx(ctx, comm_event); 4377 next: 4378 put_cpu_ptr(pmu->pmu_cpu_context); 4379 } 4380 rcu_read_unlock(); 4381 } 4382 4383 void perf_event_comm(struct task_struct *task) 4384 { 4385 struct perf_comm_event comm_event; 4386 struct perf_event_context *ctx; 4387 int ctxn; 4388 4389 for_each_task_context_nr(ctxn) { 4390 ctx = task->perf_event_ctxp[ctxn]; 4391 if (!ctx) 4392 continue; 4393 4394 perf_event_enable_on_exec(ctx); 4395 } 4396 4397 if (!atomic_read(&nr_comm_events)) 4398 return; 4399 4400 comm_event = (struct perf_comm_event){ 4401 .task = task, 4402 /* .comm */ 4403 /* .comm_size */ 4404 .event_id = { 4405 .header = { 4406 .type = PERF_RECORD_COMM, 4407 .misc = 0, 4408 /* .size */ 4409 }, 4410 /* .pid */ 4411 /* .tid */ 4412 }, 4413 }; 4414 4415 perf_event_comm_event(&comm_event); 4416 } 4417 4418 /* 4419 * mmap tracking 4420 */ 4421 4422 struct perf_mmap_event { 4423 struct vm_area_struct *vma; 4424 4425 const char *file_name; 4426 int file_size; 4427 4428 struct { 4429 struct perf_event_header header; 4430 4431 u32 pid; 4432 u32 tid; 4433 u64 start; 4434 u64 len; 4435 u64 pgoff; 4436 } event_id; 4437 }; 4438 4439 static void perf_event_mmap_output(struct perf_event *event, 4440 struct perf_mmap_event *mmap_event) 4441 { 4442 struct perf_output_handle handle; 4443 struct perf_sample_data sample; 4444 int size = mmap_event->event_id.header.size; 4445 int ret; 4446 4447 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4448 ret = perf_output_begin(&handle, event, 4449 mmap_event->event_id.header.size); 4450 if (ret) 4451 goto out; 4452 4453 mmap_event->event_id.pid = perf_event_pid(event, current); 4454 mmap_event->event_id.tid = perf_event_tid(event, current); 4455 4456 perf_output_put(&handle, mmap_event->event_id); 4457 __output_copy(&handle, mmap_event->file_name, 4458 mmap_event->file_size); 4459 4460 perf_event__output_id_sample(event, &handle, &sample); 4461 4462 perf_output_end(&handle); 4463 out: 4464 mmap_event->event_id.header.size = size; 4465 } 4466 4467 static int perf_event_mmap_match(struct perf_event *event, 4468 struct perf_mmap_event *mmap_event, 4469 int executable) 4470 { 4471 if (event->state < PERF_EVENT_STATE_INACTIVE) 4472 return 0; 4473 4474 if (!event_filter_match(event)) 4475 return 0; 4476 4477 if ((!executable && event->attr.mmap_data) || 4478 (executable && event->attr.mmap)) 4479 return 1; 4480 4481 return 0; 4482 } 4483 4484 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4485 struct perf_mmap_event *mmap_event, 4486 int executable) 4487 { 4488 struct perf_event *event; 4489 4490 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4491 if (perf_event_mmap_match(event, mmap_event, executable)) 4492 perf_event_mmap_output(event, mmap_event); 4493 } 4494 } 4495 4496 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4497 { 4498 struct perf_cpu_context *cpuctx; 4499 struct perf_event_context *ctx; 4500 struct vm_area_struct *vma = mmap_event->vma; 4501 struct file *file = vma->vm_file; 4502 unsigned int size; 4503 char tmp[16]; 4504 char *buf = NULL; 4505 const char *name; 4506 struct pmu *pmu; 4507 int ctxn; 4508 4509 memset(tmp, 0, sizeof(tmp)); 4510 4511 if (file) { 4512 /* 4513 * d_path works from the end of the rb backwards, so we 4514 * need to add enough zero bytes after the string to handle 4515 * the 64bit alignment we do later. 4516 */ 4517 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4518 if (!buf) { 4519 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4520 goto got_name; 4521 } 4522 name = d_path(&file->f_path, buf, PATH_MAX); 4523 if (IS_ERR(name)) { 4524 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4525 goto got_name; 4526 } 4527 } else { 4528 if (arch_vma_name(mmap_event->vma)) { 4529 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4530 sizeof(tmp)); 4531 goto got_name; 4532 } 4533 4534 if (!vma->vm_mm) { 4535 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4536 goto got_name; 4537 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4538 vma->vm_end >= vma->vm_mm->brk) { 4539 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4540 goto got_name; 4541 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4542 vma->vm_end >= vma->vm_mm->start_stack) { 4543 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4544 goto got_name; 4545 } 4546 4547 name = strncpy(tmp, "//anon", sizeof(tmp)); 4548 goto got_name; 4549 } 4550 4551 got_name: 4552 size = ALIGN(strlen(name)+1, sizeof(u64)); 4553 4554 mmap_event->file_name = name; 4555 mmap_event->file_size = size; 4556 4557 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4558 4559 rcu_read_lock(); 4560 list_for_each_entry_rcu(pmu, &pmus, entry) { 4561 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4562 if (cpuctx->active_pmu != pmu) 4563 goto next; 4564 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4565 vma->vm_flags & VM_EXEC); 4566 4567 ctxn = pmu->task_ctx_nr; 4568 if (ctxn < 0) 4569 goto next; 4570 4571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4572 if (ctx) { 4573 perf_event_mmap_ctx(ctx, mmap_event, 4574 vma->vm_flags & VM_EXEC); 4575 } 4576 next: 4577 put_cpu_ptr(pmu->pmu_cpu_context); 4578 } 4579 rcu_read_unlock(); 4580 4581 kfree(buf); 4582 } 4583 4584 void perf_event_mmap(struct vm_area_struct *vma) 4585 { 4586 struct perf_mmap_event mmap_event; 4587 4588 if (!atomic_read(&nr_mmap_events)) 4589 return; 4590 4591 mmap_event = (struct perf_mmap_event){ 4592 .vma = vma, 4593 /* .file_name */ 4594 /* .file_size */ 4595 .event_id = { 4596 .header = { 4597 .type = PERF_RECORD_MMAP, 4598 .misc = PERF_RECORD_MISC_USER, 4599 /* .size */ 4600 }, 4601 /* .pid */ 4602 /* .tid */ 4603 .start = vma->vm_start, 4604 .len = vma->vm_end - vma->vm_start, 4605 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4606 }, 4607 }; 4608 4609 perf_event_mmap_event(&mmap_event); 4610 } 4611 4612 /* 4613 * IRQ throttle logging 4614 */ 4615 4616 static void perf_log_throttle(struct perf_event *event, int enable) 4617 { 4618 struct perf_output_handle handle; 4619 struct perf_sample_data sample; 4620 int ret; 4621 4622 struct { 4623 struct perf_event_header header; 4624 u64 time; 4625 u64 id; 4626 u64 stream_id; 4627 } throttle_event = { 4628 .header = { 4629 .type = PERF_RECORD_THROTTLE, 4630 .misc = 0, 4631 .size = sizeof(throttle_event), 4632 }, 4633 .time = perf_clock(), 4634 .id = primary_event_id(event), 4635 .stream_id = event->id, 4636 }; 4637 4638 if (enable) 4639 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4640 4641 perf_event_header__init_id(&throttle_event.header, &sample, event); 4642 4643 ret = perf_output_begin(&handle, event, 4644 throttle_event.header.size); 4645 if (ret) 4646 return; 4647 4648 perf_output_put(&handle, throttle_event); 4649 perf_event__output_id_sample(event, &handle, &sample); 4650 perf_output_end(&handle); 4651 } 4652 4653 /* 4654 * Generic event overflow handling, sampling. 4655 */ 4656 4657 static int __perf_event_overflow(struct perf_event *event, 4658 int throttle, struct perf_sample_data *data, 4659 struct pt_regs *regs) 4660 { 4661 int events = atomic_read(&event->event_limit); 4662 struct hw_perf_event *hwc = &event->hw; 4663 u64 seq; 4664 int ret = 0; 4665 4666 /* 4667 * Non-sampling counters might still use the PMI to fold short 4668 * hardware counters, ignore those. 4669 */ 4670 if (unlikely(!is_sampling_event(event))) 4671 return 0; 4672 4673 seq = __this_cpu_read(perf_throttled_seq); 4674 if (seq != hwc->interrupts_seq) { 4675 hwc->interrupts_seq = seq; 4676 hwc->interrupts = 1; 4677 } else { 4678 hwc->interrupts++; 4679 if (unlikely(throttle 4680 && hwc->interrupts >= max_samples_per_tick)) { 4681 __this_cpu_inc(perf_throttled_count); 4682 hwc->interrupts = MAX_INTERRUPTS; 4683 perf_log_throttle(event, 0); 4684 ret = 1; 4685 } 4686 } 4687 4688 if (event->attr.freq) { 4689 u64 now = perf_clock(); 4690 s64 delta = now - hwc->freq_time_stamp; 4691 4692 hwc->freq_time_stamp = now; 4693 4694 if (delta > 0 && delta < 2*TICK_NSEC) 4695 perf_adjust_period(event, delta, hwc->last_period, true); 4696 } 4697 4698 /* 4699 * XXX event_limit might not quite work as expected on inherited 4700 * events 4701 */ 4702 4703 event->pending_kill = POLL_IN; 4704 if (events && atomic_dec_and_test(&event->event_limit)) { 4705 ret = 1; 4706 event->pending_kill = POLL_HUP; 4707 event->pending_disable = 1; 4708 irq_work_queue(&event->pending); 4709 } 4710 4711 if (event->overflow_handler) 4712 event->overflow_handler(event, data, regs); 4713 else 4714 perf_event_output(event, data, regs); 4715 4716 if (event->fasync && event->pending_kill) { 4717 event->pending_wakeup = 1; 4718 irq_work_queue(&event->pending); 4719 } 4720 4721 return ret; 4722 } 4723 4724 int perf_event_overflow(struct perf_event *event, 4725 struct perf_sample_data *data, 4726 struct pt_regs *regs) 4727 { 4728 return __perf_event_overflow(event, 1, data, regs); 4729 } 4730 4731 /* 4732 * Generic software event infrastructure 4733 */ 4734 4735 struct swevent_htable { 4736 struct swevent_hlist *swevent_hlist; 4737 struct mutex hlist_mutex; 4738 int hlist_refcount; 4739 4740 /* Recursion avoidance in each contexts */ 4741 int recursion[PERF_NR_CONTEXTS]; 4742 }; 4743 4744 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4745 4746 /* 4747 * We directly increment event->count and keep a second value in 4748 * event->hw.period_left to count intervals. This period event 4749 * is kept in the range [-sample_period, 0] so that we can use the 4750 * sign as trigger. 4751 */ 4752 4753 static u64 perf_swevent_set_period(struct perf_event *event) 4754 { 4755 struct hw_perf_event *hwc = &event->hw; 4756 u64 period = hwc->last_period; 4757 u64 nr, offset; 4758 s64 old, val; 4759 4760 hwc->last_period = hwc->sample_period; 4761 4762 again: 4763 old = val = local64_read(&hwc->period_left); 4764 if (val < 0) 4765 return 0; 4766 4767 nr = div64_u64(period + val, period); 4768 offset = nr * period; 4769 val -= offset; 4770 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4771 goto again; 4772 4773 return nr; 4774 } 4775 4776 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4777 struct perf_sample_data *data, 4778 struct pt_regs *regs) 4779 { 4780 struct hw_perf_event *hwc = &event->hw; 4781 int throttle = 0; 4782 4783 if (!overflow) 4784 overflow = perf_swevent_set_period(event); 4785 4786 if (hwc->interrupts == MAX_INTERRUPTS) 4787 return; 4788 4789 for (; overflow; overflow--) { 4790 if (__perf_event_overflow(event, throttle, 4791 data, regs)) { 4792 /* 4793 * We inhibit the overflow from happening when 4794 * hwc->interrupts == MAX_INTERRUPTS. 4795 */ 4796 break; 4797 } 4798 throttle = 1; 4799 } 4800 } 4801 4802 static void perf_swevent_event(struct perf_event *event, u64 nr, 4803 struct perf_sample_data *data, 4804 struct pt_regs *regs) 4805 { 4806 struct hw_perf_event *hwc = &event->hw; 4807 4808 local64_add(nr, &event->count); 4809 4810 if (!regs) 4811 return; 4812 4813 if (!is_sampling_event(event)) 4814 return; 4815 4816 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4817 data->period = nr; 4818 return perf_swevent_overflow(event, 1, data, regs); 4819 } else 4820 data->period = event->hw.last_period; 4821 4822 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4823 return perf_swevent_overflow(event, 1, data, regs); 4824 4825 if (local64_add_negative(nr, &hwc->period_left)) 4826 return; 4827 4828 perf_swevent_overflow(event, 0, data, regs); 4829 } 4830 4831 static int perf_exclude_event(struct perf_event *event, 4832 struct pt_regs *regs) 4833 { 4834 if (event->hw.state & PERF_HES_STOPPED) 4835 return 1; 4836 4837 if (regs) { 4838 if (event->attr.exclude_user && user_mode(regs)) 4839 return 1; 4840 4841 if (event->attr.exclude_kernel && !user_mode(regs)) 4842 return 1; 4843 } 4844 4845 return 0; 4846 } 4847 4848 static int perf_swevent_match(struct perf_event *event, 4849 enum perf_type_id type, 4850 u32 event_id, 4851 struct perf_sample_data *data, 4852 struct pt_regs *regs) 4853 { 4854 if (event->attr.type != type) 4855 return 0; 4856 4857 if (event->attr.config != event_id) 4858 return 0; 4859 4860 if (perf_exclude_event(event, regs)) 4861 return 0; 4862 4863 return 1; 4864 } 4865 4866 static inline u64 swevent_hash(u64 type, u32 event_id) 4867 { 4868 u64 val = event_id | (type << 32); 4869 4870 return hash_64(val, SWEVENT_HLIST_BITS); 4871 } 4872 4873 static inline struct hlist_head * 4874 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4875 { 4876 u64 hash = swevent_hash(type, event_id); 4877 4878 return &hlist->heads[hash]; 4879 } 4880 4881 /* For the read side: events when they trigger */ 4882 static inline struct hlist_head * 4883 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4884 { 4885 struct swevent_hlist *hlist; 4886 4887 hlist = rcu_dereference(swhash->swevent_hlist); 4888 if (!hlist) 4889 return NULL; 4890 4891 return __find_swevent_head(hlist, type, event_id); 4892 } 4893 4894 /* For the event head insertion and removal in the hlist */ 4895 static inline struct hlist_head * 4896 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4897 { 4898 struct swevent_hlist *hlist; 4899 u32 event_id = event->attr.config; 4900 u64 type = event->attr.type; 4901 4902 /* 4903 * Event scheduling is always serialized against hlist allocation 4904 * and release. Which makes the protected version suitable here. 4905 * The context lock guarantees that. 4906 */ 4907 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4908 lockdep_is_held(&event->ctx->lock)); 4909 if (!hlist) 4910 return NULL; 4911 4912 return __find_swevent_head(hlist, type, event_id); 4913 } 4914 4915 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4916 u64 nr, 4917 struct perf_sample_data *data, 4918 struct pt_regs *regs) 4919 { 4920 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4921 struct perf_event *event; 4922 struct hlist_node *node; 4923 struct hlist_head *head; 4924 4925 rcu_read_lock(); 4926 head = find_swevent_head_rcu(swhash, type, event_id); 4927 if (!head) 4928 goto end; 4929 4930 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4931 if (perf_swevent_match(event, type, event_id, data, regs)) 4932 perf_swevent_event(event, nr, data, regs); 4933 } 4934 end: 4935 rcu_read_unlock(); 4936 } 4937 4938 int perf_swevent_get_recursion_context(void) 4939 { 4940 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4941 4942 return get_recursion_context(swhash->recursion); 4943 } 4944 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4945 4946 inline void perf_swevent_put_recursion_context(int rctx) 4947 { 4948 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4949 4950 put_recursion_context(swhash->recursion, rctx); 4951 } 4952 4953 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4954 { 4955 struct perf_sample_data data; 4956 int rctx; 4957 4958 preempt_disable_notrace(); 4959 rctx = perf_swevent_get_recursion_context(); 4960 if (rctx < 0) 4961 return; 4962 4963 perf_sample_data_init(&data, addr, 0); 4964 4965 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4966 4967 perf_swevent_put_recursion_context(rctx); 4968 preempt_enable_notrace(); 4969 } 4970 4971 static void perf_swevent_read(struct perf_event *event) 4972 { 4973 } 4974 4975 static int perf_swevent_add(struct perf_event *event, int flags) 4976 { 4977 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4978 struct hw_perf_event *hwc = &event->hw; 4979 struct hlist_head *head; 4980 4981 if (is_sampling_event(event)) { 4982 hwc->last_period = hwc->sample_period; 4983 perf_swevent_set_period(event); 4984 } 4985 4986 hwc->state = !(flags & PERF_EF_START); 4987 4988 head = find_swevent_head(swhash, event); 4989 if (WARN_ON_ONCE(!head)) 4990 return -EINVAL; 4991 4992 hlist_add_head_rcu(&event->hlist_entry, head); 4993 4994 return 0; 4995 } 4996 4997 static void perf_swevent_del(struct perf_event *event, int flags) 4998 { 4999 hlist_del_rcu(&event->hlist_entry); 5000 } 5001 5002 static void perf_swevent_start(struct perf_event *event, int flags) 5003 { 5004 event->hw.state = 0; 5005 } 5006 5007 static void perf_swevent_stop(struct perf_event *event, int flags) 5008 { 5009 event->hw.state = PERF_HES_STOPPED; 5010 } 5011 5012 /* Deref the hlist from the update side */ 5013 static inline struct swevent_hlist * 5014 swevent_hlist_deref(struct swevent_htable *swhash) 5015 { 5016 return rcu_dereference_protected(swhash->swevent_hlist, 5017 lockdep_is_held(&swhash->hlist_mutex)); 5018 } 5019 5020 static void swevent_hlist_release(struct swevent_htable *swhash) 5021 { 5022 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5023 5024 if (!hlist) 5025 return; 5026 5027 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5028 kfree_rcu(hlist, rcu_head); 5029 } 5030 5031 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5032 { 5033 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5034 5035 mutex_lock(&swhash->hlist_mutex); 5036 5037 if (!--swhash->hlist_refcount) 5038 swevent_hlist_release(swhash); 5039 5040 mutex_unlock(&swhash->hlist_mutex); 5041 } 5042 5043 static void swevent_hlist_put(struct perf_event *event) 5044 { 5045 int cpu; 5046 5047 if (event->cpu != -1) { 5048 swevent_hlist_put_cpu(event, event->cpu); 5049 return; 5050 } 5051 5052 for_each_possible_cpu(cpu) 5053 swevent_hlist_put_cpu(event, cpu); 5054 } 5055 5056 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5057 { 5058 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5059 int err = 0; 5060 5061 mutex_lock(&swhash->hlist_mutex); 5062 5063 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5064 struct swevent_hlist *hlist; 5065 5066 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5067 if (!hlist) { 5068 err = -ENOMEM; 5069 goto exit; 5070 } 5071 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5072 } 5073 swhash->hlist_refcount++; 5074 exit: 5075 mutex_unlock(&swhash->hlist_mutex); 5076 5077 return err; 5078 } 5079 5080 static int swevent_hlist_get(struct perf_event *event) 5081 { 5082 int err; 5083 int cpu, failed_cpu; 5084 5085 if (event->cpu != -1) 5086 return swevent_hlist_get_cpu(event, event->cpu); 5087 5088 get_online_cpus(); 5089 for_each_possible_cpu(cpu) { 5090 err = swevent_hlist_get_cpu(event, cpu); 5091 if (err) { 5092 failed_cpu = cpu; 5093 goto fail; 5094 } 5095 } 5096 put_online_cpus(); 5097 5098 return 0; 5099 fail: 5100 for_each_possible_cpu(cpu) { 5101 if (cpu == failed_cpu) 5102 break; 5103 swevent_hlist_put_cpu(event, cpu); 5104 } 5105 5106 put_online_cpus(); 5107 return err; 5108 } 5109 5110 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5111 5112 static void sw_perf_event_destroy(struct perf_event *event) 5113 { 5114 u64 event_id = event->attr.config; 5115 5116 WARN_ON(event->parent); 5117 5118 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5119 swevent_hlist_put(event); 5120 } 5121 5122 static int perf_swevent_init(struct perf_event *event) 5123 { 5124 int event_id = event->attr.config; 5125 5126 if (event->attr.type != PERF_TYPE_SOFTWARE) 5127 return -ENOENT; 5128 5129 /* 5130 * no branch sampling for software events 5131 */ 5132 if (has_branch_stack(event)) 5133 return -EOPNOTSUPP; 5134 5135 switch (event_id) { 5136 case PERF_COUNT_SW_CPU_CLOCK: 5137 case PERF_COUNT_SW_TASK_CLOCK: 5138 return -ENOENT; 5139 5140 default: 5141 break; 5142 } 5143 5144 if (event_id >= PERF_COUNT_SW_MAX) 5145 return -ENOENT; 5146 5147 if (!event->parent) { 5148 int err; 5149 5150 err = swevent_hlist_get(event); 5151 if (err) 5152 return err; 5153 5154 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5155 event->destroy = sw_perf_event_destroy; 5156 } 5157 5158 return 0; 5159 } 5160 5161 static int perf_swevent_event_idx(struct perf_event *event) 5162 { 5163 return 0; 5164 } 5165 5166 static struct pmu perf_swevent = { 5167 .task_ctx_nr = perf_sw_context, 5168 5169 .event_init = perf_swevent_init, 5170 .add = perf_swevent_add, 5171 .del = perf_swevent_del, 5172 .start = perf_swevent_start, 5173 .stop = perf_swevent_stop, 5174 .read = perf_swevent_read, 5175 5176 .event_idx = perf_swevent_event_idx, 5177 }; 5178 5179 #ifdef CONFIG_EVENT_TRACING 5180 5181 static int perf_tp_filter_match(struct perf_event *event, 5182 struct perf_sample_data *data) 5183 { 5184 void *record = data->raw->data; 5185 5186 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5187 return 1; 5188 return 0; 5189 } 5190 5191 static int perf_tp_event_match(struct perf_event *event, 5192 struct perf_sample_data *data, 5193 struct pt_regs *regs) 5194 { 5195 if (event->hw.state & PERF_HES_STOPPED) 5196 return 0; 5197 /* 5198 * All tracepoints are from kernel-space. 5199 */ 5200 if (event->attr.exclude_kernel) 5201 return 0; 5202 5203 if (!perf_tp_filter_match(event, data)) 5204 return 0; 5205 5206 return 1; 5207 } 5208 5209 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5210 struct pt_regs *regs, struct hlist_head *head, int rctx) 5211 { 5212 struct perf_sample_data data; 5213 struct perf_event *event; 5214 struct hlist_node *node; 5215 5216 struct perf_raw_record raw = { 5217 .size = entry_size, 5218 .data = record, 5219 }; 5220 5221 perf_sample_data_init(&data, addr, 0); 5222 data.raw = &raw; 5223 5224 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5225 if (perf_tp_event_match(event, &data, regs)) 5226 perf_swevent_event(event, count, &data, regs); 5227 } 5228 5229 perf_swevent_put_recursion_context(rctx); 5230 } 5231 EXPORT_SYMBOL_GPL(perf_tp_event); 5232 5233 static void tp_perf_event_destroy(struct perf_event *event) 5234 { 5235 perf_trace_destroy(event); 5236 } 5237 5238 static int perf_tp_event_init(struct perf_event *event) 5239 { 5240 int err; 5241 5242 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5243 return -ENOENT; 5244 5245 /* 5246 * no branch sampling for tracepoint events 5247 */ 5248 if (has_branch_stack(event)) 5249 return -EOPNOTSUPP; 5250 5251 err = perf_trace_init(event); 5252 if (err) 5253 return err; 5254 5255 event->destroy = tp_perf_event_destroy; 5256 5257 return 0; 5258 } 5259 5260 static struct pmu perf_tracepoint = { 5261 .task_ctx_nr = perf_sw_context, 5262 5263 .event_init = perf_tp_event_init, 5264 .add = perf_trace_add, 5265 .del = perf_trace_del, 5266 .start = perf_swevent_start, 5267 .stop = perf_swevent_stop, 5268 .read = perf_swevent_read, 5269 5270 .event_idx = perf_swevent_event_idx, 5271 }; 5272 5273 static inline void perf_tp_register(void) 5274 { 5275 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5276 } 5277 5278 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5279 { 5280 char *filter_str; 5281 int ret; 5282 5283 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5284 return -EINVAL; 5285 5286 filter_str = strndup_user(arg, PAGE_SIZE); 5287 if (IS_ERR(filter_str)) 5288 return PTR_ERR(filter_str); 5289 5290 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5291 5292 kfree(filter_str); 5293 return ret; 5294 } 5295 5296 static void perf_event_free_filter(struct perf_event *event) 5297 { 5298 ftrace_profile_free_filter(event); 5299 } 5300 5301 #else 5302 5303 static inline void perf_tp_register(void) 5304 { 5305 } 5306 5307 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5308 { 5309 return -ENOENT; 5310 } 5311 5312 static void perf_event_free_filter(struct perf_event *event) 5313 { 5314 } 5315 5316 #endif /* CONFIG_EVENT_TRACING */ 5317 5318 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5319 void perf_bp_event(struct perf_event *bp, void *data) 5320 { 5321 struct perf_sample_data sample; 5322 struct pt_regs *regs = data; 5323 5324 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5325 5326 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5327 perf_swevent_event(bp, 1, &sample, regs); 5328 } 5329 #endif 5330 5331 /* 5332 * hrtimer based swevent callback 5333 */ 5334 5335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5336 { 5337 enum hrtimer_restart ret = HRTIMER_RESTART; 5338 struct perf_sample_data data; 5339 struct pt_regs *regs; 5340 struct perf_event *event; 5341 u64 period; 5342 5343 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5344 5345 if (event->state != PERF_EVENT_STATE_ACTIVE) 5346 return HRTIMER_NORESTART; 5347 5348 event->pmu->read(event); 5349 5350 perf_sample_data_init(&data, 0, event->hw.last_period); 5351 regs = get_irq_regs(); 5352 5353 if (regs && !perf_exclude_event(event, regs)) { 5354 if (!(event->attr.exclude_idle && is_idle_task(current))) 5355 if (__perf_event_overflow(event, 1, &data, regs)) 5356 ret = HRTIMER_NORESTART; 5357 } 5358 5359 period = max_t(u64, 10000, event->hw.sample_period); 5360 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5361 5362 return ret; 5363 } 5364 5365 static void perf_swevent_start_hrtimer(struct perf_event *event) 5366 { 5367 struct hw_perf_event *hwc = &event->hw; 5368 s64 period; 5369 5370 if (!is_sampling_event(event)) 5371 return; 5372 5373 period = local64_read(&hwc->period_left); 5374 if (period) { 5375 if (period < 0) 5376 period = 10000; 5377 5378 local64_set(&hwc->period_left, 0); 5379 } else { 5380 period = max_t(u64, 10000, hwc->sample_period); 5381 } 5382 __hrtimer_start_range_ns(&hwc->hrtimer, 5383 ns_to_ktime(period), 0, 5384 HRTIMER_MODE_REL_PINNED, 0); 5385 } 5386 5387 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5388 { 5389 struct hw_perf_event *hwc = &event->hw; 5390 5391 if (is_sampling_event(event)) { 5392 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5393 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5394 5395 hrtimer_cancel(&hwc->hrtimer); 5396 } 5397 } 5398 5399 static void perf_swevent_init_hrtimer(struct perf_event *event) 5400 { 5401 struct hw_perf_event *hwc = &event->hw; 5402 5403 if (!is_sampling_event(event)) 5404 return; 5405 5406 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5407 hwc->hrtimer.function = perf_swevent_hrtimer; 5408 5409 /* 5410 * Since hrtimers have a fixed rate, we can do a static freq->period 5411 * mapping and avoid the whole period adjust feedback stuff. 5412 */ 5413 if (event->attr.freq) { 5414 long freq = event->attr.sample_freq; 5415 5416 event->attr.sample_period = NSEC_PER_SEC / freq; 5417 hwc->sample_period = event->attr.sample_period; 5418 local64_set(&hwc->period_left, hwc->sample_period); 5419 event->attr.freq = 0; 5420 } 5421 } 5422 5423 /* 5424 * Software event: cpu wall time clock 5425 */ 5426 5427 static void cpu_clock_event_update(struct perf_event *event) 5428 { 5429 s64 prev; 5430 u64 now; 5431 5432 now = local_clock(); 5433 prev = local64_xchg(&event->hw.prev_count, now); 5434 local64_add(now - prev, &event->count); 5435 } 5436 5437 static void cpu_clock_event_start(struct perf_event *event, int flags) 5438 { 5439 local64_set(&event->hw.prev_count, local_clock()); 5440 perf_swevent_start_hrtimer(event); 5441 } 5442 5443 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5444 { 5445 perf_swevent_cancel_hrtimer(event); 5446 cpu_clock_event_update(event); 5447 } 5448 5449 static int cpu_clock_event_add(struct perf_event *event, int flags) 5450 { 5451 if (flags & PERF_EF_START) 5452 cpu_clock_event_start(event, flags); 5453 5454 return 0; 5455 } 5456 5457 static void cpu_clock_event_del(struct perf_event *event, int flags) 5458 { 5459 cpu_clock_event_stop(event, flags); 5460 } 5461 5462 static void cpu_clock_event_read(struct perf_event *event) 5463 { 5464 cpu_clock_event_update(event); 5465 } 5466 5467 static int cpu_clock_event_init(struct perf_event *event) 5468 { 5469 if (event->attr.type != PERF_TYPE_SOFTWARE) 5470 return -ENOENT; 5471 5472 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5473 return -ENOENT; 5474 5475 /* 5476 * no branch sampling for software events 5477 */ 5478 if (has_branch_stack(event)) 5479 return -EOPNOTSUPP; 5480 5481 perf_swevent_init_hrtimer(event); 5482 5483 return 0; 5484 } 5485 5486 static struct pmu perf_cpu_clock = { 5487 .task_ctx_nr = perf_sw_context, 5488 5489 .event_init = cpu_clock_event_init, 5490 .add = cpu_clock_event_add, 5491 .del = cpu_clock_event_del, 5492 .start = cpu_clock_event_start, 5493 .stop = cpu_clock_event_stop, 5494 .read = cpu_clock_event_read, 5495 5496 .event_idx = perf_swevent_event_idx, 5497 }; 5498 5499 /* 5500 * Software event: task time clock 5501 */ 5502 5503 static void task_clock_event_update(struct perf_event *event, u64 now) 5504 { 5505 u64 prev; 5506 s64 delta; 5507 5508 prev = local64_xchg(&event->hw.prev_count, now); 5509 delta = now - prev; 5510 local64_add(delta, &event->count); 5511 } 5512 5513 static void task_clock_event_start(struct perf_event *event, int flags) 5514 { 5515 local64_set(&event->hw.prev_count, event->ctx->time); 5516 perf_swevent_start_hrtimer(event); 5517 } 5518 5519 static void task_clock_event_stop(struct perf_event *event, int flags) 5520 { 5521 perf_swevent_cancel_hrtimer(event); 5522 task_clock_event_update(event, event->ctx->time); 5523 } 5524 5525 static int task_clock_event_add(struct perf_event *event, int flags) 5526 { 5527 if (flags & PERF_EF_START) 5528 task_clock_event_start(event, flags); 5529 5530 return 0; 5531 } 5532 5533 static void task_clock_event_del(struct perf_event *event, int flags) 5534 { 5535 task_clock_event_stop(event, PERF_EF_UPDATE); 5536 } 5537 5538 static void task_clock_event_read(struct perf_event *event) 5539 { 5540 u64 now = perf_clock(); 5541 u64 delta = now - event->ctx->timestamp; 5542 u64 time = event->ctx->time + delta; 5543 5544 task_clock_event_update(event, time); 5545 } 5546 5547 static int task_clock_event_init(struct perf_event *event) 5548 { 5549 if (event->attr.type != PERF_TYPE_SOFTWARE) 5550 return -ENOENT; 5551 5552 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5553 return -ENOENT; 5554 5555 /* 5556 * no branch sampling for software events 5557 */ 5558 if (has_branch_stack(event)) 5559 return -EOPNOTSUPP; 5560 5561 perf_swevent_init_hrtimer(event); 5562 5563 return 0; 5564 } 5565 5566 static struct pmu perf_task_clock = { 5567 .task_ctx_nr = perf_sw_context, 5568 5569 .event_init = task_clock_event_init, 5570 .add = task_clock_event_add, 5571 .del = task_clock_event_del, 5572 .start = task_clock_event_start, 5573 .stop = task_clock_event_stop, 5574 .read = task_clock_event_read, 5575 5576 .event_idx = perf_swevent_event_idx, 5577 }; 5578 5579 static void perf_pmu_nop_void(struct pmu *pmu) 5580 { 5581 } 5582 5583 static int perf_pmu_nop_int(struct pmu *pmu) 5584 { 5585 return 0; 5586 } 5587 5588 static void perf_pmu_start_txn(struct pmu *pmu) 5589 { 5590 perf_pmu_disable(pmu); 5591 } 5592 5593 static int perf_pmu_commit_txn(struct pmu *pmu) 5594 { 5595 perf_pmu_enable(pmu); 5596 return 0; 5597 } 5598 5599 static void perf_pmu_cancel_txn(struct pmu *pmu) 5600 { 5601 perf_pmu_enable(pmu); 5602 } 5603 5604 static int perf_event_idx_default(struct perf_event *event) 5605 { 5606 return event->hw.idx + 1; 5607 } 5608 5609 /* 5610 * Ensures all contexts with the same task_ctx_nr have the same 5611 * pmu_cpu_context too. 5612 */ 5613 static void *find_pmu_context(int ctxn) 5614 { 5615 struct pmu *pmu; 5616 5617 if (ctxn < 0) 5618 return NULL; 5619 5620 list_for_each_entry(pmu, &pmus, entry) { 5621 if (pmu->task_ctx_nr == ctxn) 5622 return pmu->pmu_cpu_context; 5623 } 5624 5625 return NULL; 5626 } 5627 5628 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5629 { 5630 int cpu; 5631 5632 for_each_possible_cpu(cpu) { 5633 struct perf_cpu_context *cpuctx; 5634 5635 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5636 5637 if (cpuctx->active_pmu == old_pmu) 5638 cpuctx->active_pmu = pmu; 5639 } 5640 } 5641 5642 static void free_pmu_context(struct pmu *pmu) 5643 { 5644 struct pmu *i; 5645 5646 mutex_lock(&pmus_lock); 5647 /* 5648 * Like a real lame refcount. 5649 */ 5650 list_for_each_entry(i, &pmus, entry) { 5651 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5652 update_pmu_context(i, pmu); 5653 goto out; 5654 } 5655 } 5656 5657 free_percpu(pmu->pmu_cpu_context); 5658 out: 5659 mutex_unlock(&pmus_lock); 5660 } 5661 static struct idr pmu_idr; 5662 5663 static ssize_t 5664 type_show(struct device *dev, struct device_attribute *attr, char *page) 5665 { 5666 struct pmu *pmu = dev_get_drvdata(dev); 5667 5668 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5669 } 5670 5671 static struct device_attribute pmu_dev_attrs[] = { 5672 __ATTR_RO(type), 5673 __ATTR_NULL, 5674 }; 5675 5676 static int pmu_bus_running; 5677 static struct bus_type pmu_bus = { 5678 .name = "event_source", 5679 .dev_attrs = pmu_dev_attrs, 5680 }; 5681 5682 static void pmu_dev_release(struct device *dev) 5683 { 5684 kfree(dev); 5685 } 5686 5687 static int pmu_dev_alloc(struct pmu *pmu) 5688 { 5689 int ret = -ENOMEM; 5690 5691 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5692 if (!pmu->dev) 5693 goto out; 5694 5695 pmu->dev->groups = pmu->attr_groups; 5696 device_initialize(pmu->dev); 5697 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5698 if (ret) 5699 goto free_dev; 5700 5701 dev_set_drvdata(pmu->dev, pmu); 5702 pmu->dev->bus = &pmu_bus; 5703 pmu->dev->release = pmu_dev_release; 5704 ret = device_add(pmu->dev); 5705 if (ret) 5706 goto free_dev; 5707 5708 out: 5709 return ret; 5710 5711 free_dev: 5712 put_device(pmu->dev); 5713 goto out; 5714 } 5715 5716 static struct lock_class_key cpuctx_mutex; 5717 static struct lock_class_key cpuctx_lock; 5718 5719 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5720 { 5721 int cpu, ret; 5722 5723 mutex_lock(&pmus_lock); 5724 ret = -ENOMEM; 5725 pmu->pmu_disable_count = alloc_percpu(int); 5726 if (!pmu->pmu_disable_count) 5727 goto unlock; 5728 5729 pmu->type = -1; 5730 if (!name) 5731 goto skip_type; 5732 pmu->name = name; 5733 5734 if (type < 0) { 5735 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5736 if (!err) 5737 goto free_pdc; 5738 5739 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5740 if (err) { 5741 ret = err; 5742 goto free_pdc; 5743 } 5744 } 5745 pmu->type = type; 5746 5747 if (pmu_bus_running) { 5748 ret = pmu_dev_alloc(pmu); 5749 if (ret) 5750 goto free_idr; 5751 } 5752 5753 skip_type: 5754 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5755 if (pmu->pmu_cpu_context) 5756 goto got_cpu_context; 5757 5758 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5759 if (!pmu->pmu_cpu_context) 5760 goto free_dev; 5761 5762 for_each_possible_cpu(cpu) { 5763 struct perf_cpu_context *cpuctx; 5764 5765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5766 __perf_event_init_context(&cpuctx->ctx); 5767 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5768 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5769 cpuctx->ctx.type = cpu_context; 5770 cpuctx->ctx.pmu = pmu; 5771 cpuctx->jiffies_interval = 1; 5772 INIT_LIST_HEAD(&cpuctx->rotation_list); 5773 cpuctx->active_pmu = pmu; 5774 } 5775 5776 got_cpu_context: 5777 if (!pmu->start_txn) { 5778 if (pmu->pmu_enable) { 5779 /* 5780 * If we have pmu_enable/pmu_disable calls, install 5781 * transaction stubs that use that to try and batch 5782 * hardware accesses. 5783 */ 5784 pmu->start_txn = perf_pmu_start_txn; 5785 pmu->commit_txn = perf_pmu_commit_txn; 5786 pmu->cancel_txn = perf_pmu_cancel_txn; 5787 } else { 5788 pmu->start_txn = perf_pmu_nop_void; 5789 pmu->commit_txn = perf_pmu_nop_int; 5790 pmu->cancel_txn = perf_pmu_nop_void; 5791 } 5792 } 5793 5794 if (!pmu->pmu_enable) { 5795 pmu->pmu_enable = perf_pmu_nop_void; 5796 pmu->pmu_disable = perf_pmu_nop_void; 5797 } 5798 5799 if (!pmu->event_idx) 5800 pmu->event_idx = perf_event_idx_default; 5801 5802 list_add_rcu(&pmu->entry, &pmus); 5803 ret = 0; 5804 unlock: 5805 mutex_unlock(&pmus_lock); 5806 5807 return ret; 5808 5809 free_dev: 5810 device_del(pmu->dev); 5811 put_device(pmu->dev); 5812 5813 free_idr: 5814 if (pmu->type >= PERF_TYPE_MAX) 5815 idr_remove(&pmu_idr, pmu->type); 5816 5817 free_pdc: 5818 free_percpu(pmu->pmu_disable_count); 5819 goto unlock; 5820 } 5821 5822 void perf_pmu_unregister(struct pmu *pmu) 5823 { 5824 mutex_lock(&pmus_lock); 5825 list_del_rcu(&pmu->entry); 5826 mutex_unlock(&pmus_lock); 5827 5828 /* 5829 * We dereference the pmu list under both SRCU and regular RCU, so 5830 * synchronize against both of those. 5831 */ 5832 synchronize_srcu(&pmus_srcu); 5833 synchronize_rcu(); 5834 5835 free_percpu(pmu->pmu_disable_count); 5836 if (pmu->type >= PERF_TYPE_MAX) 5837 idr_remove(&pmu_idr, pmu->type); 5838 device_del(pmu->dev); 5839 put_device(pmu->dev); 5840 free_pmu_context(pmu); 5841 } 5842 5843 struct pmu *perf_init_event(struct perf_event *event) 5844 { 5845 struct pmu *pmu = NULL; 5846 int idx; 5847 int ret; 5848 5849 idx = srcu_read_lock(&pmus_srcu); 5850 5851 rcu_read_lock(); 5852 pmu = idr_find(&pmu_idr, event->attr.type); 5853 rcu_read_unlock(); 5854 if (pmu) { 5855 event->pmu = pmu; 5856 ret = pmu->event_init(event); 5857 if (ret) 5858 pmu = ERR_PTR(ret); 5859 goto unlock; 5860 } 5861 5862 list_for_each_entry_rcu(pmu, &pmus, entry) { 5863 event->pmu = pmu; 5864 ret = pmu->event_init(event); 5865 if (!ret) 5866 goto unlock; 5867 5868 if (ret != -ENOENT) { 5869 pmu = ERR_PTR(ret); 5870 goto unlock; 5871 } 5872 } 5873 pmu = ERR_PTR(-ENOENT); 5874 unlock: 5875 srcu_read_unlock(&pmus_srcu, idx); 5876 5877 return pmu; 5878 } 5879 5880 /* 5881 * Allocate and initialize a event structure 5882 */ 5883 static struct perf_event * 5884 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5885 struct task_struct *task, 5886 struct perf_event *group_leader, 5887 struct perf_event *parent_event, 5888 perf_overflow_handler_t overflow_handler, 5889 void *context) 5890 { 5891 struct pmu *pmu; 5892 struct perf_event *event; 5893 struct hw_perf_event *hwc; 5894 long err; 5895 5896 if ((unsigned)cpu >= nr_cpu_ids) { 5897 if (!task || cpu != -1) 5898 return ERR_PTR(-EINVAL); 5899 } 5900 5901 event = kzalloc(sizeof(*event), GFP_KERNEL); 5902 if (!event) 5903 return ERR_PTR(-ENOMEM); 5904 5905 /* 5906 * Single events are their own group leaders, with an 5907 * empty sibling list: 5908 */ 5909 if (!group_leader) 5910 group_leader = event; 5911 5912 mutex_init(&event->child_mutex); 5913 INIT_LIST_HEAD(&event->child_list); 5914 5915 INIT_LIST_HEAD(&event->group_entry); 5916 INIT_LIST_HEAD(&event->event_entry); 5917 INIT_LIST_HEAD(&event->sibling_list); 5918 INIT_LIST_HEAD(&event->rb_entry); 5919 5920 init_waitqueue_head(&event->waitq); 5921 init_irq_work(&event->pending, perf_pending_event); 5922 5923 mutex_init(&event->mmap_mutex); 5924 5925 event->cpu = cpu; 5926 event->attr = *attr; 5927 event->group_leader = group_leader; 5928 event->pmu = NULL; 5929 event->oncpu = -1; 5930 5931 event->parent = parent_event; 5932 5933 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5934 event->id = atomic64_inc_return(&perf_event_id); 5935 5936 event->state = PERF_EVENT_STATE_INACTIVE; 5937 5938 if (task) { 5939 event->attach_state = PERF_ATTACH_TASK; 5940 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5941 /* 5942 * hw_breakpoint is a bit difficult here.. 5943 */ 5944 if (attr->type == PERF_TYPE_BREAKPOINT) 5945 event->hw.bp_target = task; 5946 #endif 5947 } 5948 5949 if (!overflow_handler && parent_event) { 5950 overflow_handler = parent_event->overflow_handler; 5951 context = parent_event->overflow_handler_context; 5952 } 5953 5954 event->overflow_handler = overflow_handler; 5955 event->overflow_handler_context = context; 5956 5957 if (attr->disabled) 5958 event->state = PERF_EVENT_STATE_OFF; 5959 5960 pmu = NULL; 5961 5962 hwc = &event->hw; 5963 hwc->sample_period = attr->sample_period; 5964 if (attr->freq && attr->sample_freq) 5965 hwc->sample_period = 1; 5966 hwc->last_period = hwc->sample_period; 5967 5968 local64_set(&hwc->period_left, hwc->sample_period); 5969 5970 /* 5971 * we currently do not support PERF_FORMAT_GROUP on inherited events 5972 */ 5973 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5974 goto done; 5975 5976 pmu = perf_init_event(event); 5977 5978 done: 5979 err = 0; 5980 if (!pmu) 5981 err = -EINVAL; 5982 else if (IS_ERR(pmu)) 5983 err = PTR_ERR(pmu); 5984 5985 if (err) { 5986 if (event->ns) 5987 put_pid_ns(event->ns); 5988 kfree(event); 5989 return ERR_PTR(err); 5990 } 5991 5992 if (!event->parent) { 5993 if (event->attach_state & PERF_ATTACH_TASK) 5994 static_key_slow_inc(&perf_sched_events.key); 5995 if (event->attr.mmap || event->attr.mmap_data) 5996 atomic_inc(&nr_mmap_events); 5997 if (event->attr.comm) 5998 atomic_inc(&nr_comm_events); 5999 if (event->attr.task) 6000 atomic_inc(&nr_task_events); 6001 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6002 err = get_callchain_buffers(); 6003 if (err) { 6004 free_event(event); 6005 return ERR_PTR(err); 6006 } 6007 } 6008 if (has_branch_stack(event)) { 6009 static_key_slow_inc(&perf_sched_events.key); 6010 if (!(event->attach_state & PERF_ATTACH_TASK)) 6011 atomic_inc(&per_cpu(perf_branch_stack_events, 6012 event->cpu)); 6013 } 6014 } 6015 6016 return event; 6017 } 6018 6019 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6020 struct perf_event_attr *attr) 6021 { 6022 u32 size; 6023 int ret; 6024 6025 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6026 return -EFAULT; 6027 6028 /* 6029 * zero the full structure, so that a short copy will be nice. 6030 */ 6031 memset(attr, 0, sizeof(*attr)); 6032 6033 ret = get_user(size, &uattr->size); 6034 if (ret) 6035 return ret; 6036 6037 if (size > PAGE_SIZE) /* silly large */ 6038 goto err_size; 6039 6040 if (!size) /* abi compat */ 6041 size = PERF_ATTR_SIZE_VER0; 6042 6043 if (size < PERF_ATTR_SIZE_VER0) 6044 goto err_size; 6045 6046 /* 6047 * If we're handed a bigger struct than we know of, 6048 * ensure all the unknown bits are 0 - i.e. new 6049 * user-space does not rely on any kernel feature 6050 * extensions we dont know about yet. 6051 */ 6052 if (size > sizeof(*attr)) { 6053 unsigned char __user *addr; 6054 unsigned char __user *end; 6055 unsigned char val; 6056 6057 addr = (void __user *)uattr + sizeof(*attr); 6058 end = (void __user *)uattr + size; 6059 6060 for (; addr < end; addr++) { 6061 ret = get_user(val, addr); 6062 if (ret) 6063 return ret; 6064 if (val) 6065 goto err_size; 6066 } 6067 size = sizeof(*attr); 6068 } 6069 6070 ret = copy_from_user(attr, uattr, size); 6071 if (ret) 6072 return -EFAULT; 6073 6074 if (attr->__reserved_1) 6075 return -EINVAL; 6076 6077 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6078 return -EINVAL; 6079 6080 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6081 return -EINVAL; 6082 6083 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6084 u64 mask = attr->branch_sample_type; 6085 6086 /* only using defined bits */ 6087 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6088 return -EINVAL; 6089 6090 /* at least one branch bit must be set */ 6091 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6092 return -EINVAL; 6093 6094 /* kernel level capture: check permissions */ 6095 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6096 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6097 return -EACCES; 6098 6099 /* propagate priv level, when not set for branch */ 6100 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6101 6102 /* exclude_kernel checked on syscall entry */ 6103 if (!attr->exclude_kernel) 6104 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6105 6106 if (!attr->exclude_user) 6107 mask |= PERF_SAMPLE_BRANCH_USER; 6108 6109 if (!attr->exclude_hv) 6110 mask |= PERF_SAMPLE_BRANCH_HV; 6111 /* 6112 * adjust user setting (for HW filter setup) 6113 */ 6114 attr->branch_sample_type = mask; 6115 } 6116 } 6117 out: 6118 return ret; 6119 6120 err_size: 6121 put_user(sizeof(*attr), &uattr->size); 6122 ret = -E2BIG; 6123 goto out; 6124 } 6125 6126 static int 6127 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6128 { 6129 struct ring_buffer *rb = NULL, *old_rb = NULL; 6130 int ret = -EINVAL; 6131 6132 if (!output_event) 6133 goto set; 6134 6135 /* don't allow circular references */ 6136 if (event == output_event) 6137 goto out; 6138 6139 /* 6140 * Don't allow cross-cpu buffers 6141 */ 6142 if (output_event->cpu != event->cpu) 6143 goto out; 6144 6145 /* 6146 * If its not a per-cpu rb, it must be the same task. 6147 */ 6148 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6149 goto out; 6150 6151 set: 6152 mutex_lock(&event->mmap_mutex); 6153 /* Can't redirect output if we've got an active mmap() */ 6154 if (atomic_read(&event->mmap_count)) 6155 goto unlock; 6156 6157 if (output_event) { 6158 /* get the rb we want to redirect to */ 6159 rb = ring_buffer_get(output_event); 6160 if (!rb) 6161 goto unlock; 6162 } 6163 6164 old_rb = event->rb; 6165 rcu_assign_pointer(event->rb, rb); 6166 if (old_rb) 6167 ring_buffer_detach(event, old_rb); 6168 ret = 0; 6169 unlock: 6170 mutex_unlock(&event->mmap_mutex); 6171 6172 if (old_rb) 6173 ring_buffer_put(old_rb); 6174 out: 6175 return ret; 6176 } 6177 6178 /** 6179 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6180 * 6181 * @attr_uptr: event_id type attributes for monitoring/sampling 6182 * @pid: target pid 6183 * @cpu: target cpu 6184 * @group_fd: group leader event fd 6185 */ 6186 SYSCALL_DEFINE5(perf_event_open, 6187 struct perf_event_attr __user *, attr_uptr, 6188 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6189 { 6190 struct perf_event *group_leader = NULL, *output_event = NULL; 6191 struct perf_event *event, *sibling; 6192 struct perf_event_attr attr; 6193 struct perf_event_context *ctx; 6194 struct file *event_file = NULL; 6195 struct file *group_file = NULL; 6196 struct task_struct *task = NULL; 6197 struct pmu *pmu; 6198 int event_fd; 6199 int move_group = 0; 6200 int fput_needed = 0; 6201 int err; 6202 6203 /* for future expandability... */ 6204 if (flags & ~PERF_FLAG_ALL) 6205 return -EINVAL; 6206 6207 err = perf_copy_attr(attr_uptr, &attr); 6208 if (err) 6209 return err; 6210 6211 if (!attr.exclude_kernel) { 6212 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6213 return -EACCES; 6214 } 6215 6216 if (attr.freq) { 6217 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6218 return -EINVAL; 6219 } 6220 6221 /* 6222 * In cgroup mode, the pid argument is used to pass the fd 6223 * opened to the cgroup directory in cgroupfs. The cpu argument 6224 * designates the cpu on which to monitor threads from that 6225 * cgroup. 6226 */ 6227 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6228 return -EINVAL; 6229 6230 event_fd = get_unused_fd_flags(O_RDWR); 6231 if (event_fd < 0) 6232 return event_fd; 6233 6234 if (group_fd != -1) { 6235 group_leader = perf_fget_light(group_fd, &fput_needed); 6236 if (IS_ERR(group_leader)) { 6237 err = PTR_ERR(group_leader); 6238 goto err_fd; 6239 } 6240 group_file = group_leader->filp; 6241 if (flags & PERF_FLAG_FD_OUTPUT) 6242 output_event = group_leader; 6243 if (flags & PERF_FLAG_FD_NO_GROUP) 6244 group_leader = NULL; 6245 } 6246 6247 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6248 task = find_lively_task_by_vpid(pid); 6249 if (IS_ERR(task)) { 6250 err = PTR_ERR(task); 6251 goto err_group_fd; 6252 } 6253 } 6254 6255 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6256 NULL, NULL); 6257 if (IS_ERR(event)) { 6258 err = PTR_ERR(event); 6259 goto err_task; 6260 } 6261 6262 if (flags & PERF_FLAG_PID_CGROUP) { 6263 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6264 if (err) 6265 goto err_alloc; 6266 /* 6267 * one more event: 6268 * - that has cgroup constraint on event->cpu 6269 * - that may need work on context switch 6270 */ 6271 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6272 static_key_slow_inc(&perf_sched_events.key); 6273 } 6274 6275 /* 6276 * Special case software events and allow them to be part of 6277 * any hardware group. 6278 */ 6279 pmu = event->pmu; 6280 6281 if (group_leader && 6282 (is_software_event(event) != is_software_event(group_leader))) { 6283 if (is_software_event(event)) { 6284 /* 6285 * If event and group_leader are not both a software 6286 * event, and event is, then group leader is not. 6287 * 6288 * Allow the addition of software events to !software 6289 * groups, this is safe because software events never 6290 * fail to schedule. 6291 */ 6292 pmu = group_leader->pmu; 6293 } else if (is_software_event(group_leader) && 6294 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6295 /* 6296 * In case the group is a pure software group, and we 6297 * try to add a hardware event, move the whole group to 6298 * the hardware context. 6299 */ 6300 move_group = 1; 6301 } 6302 } 6303 6304 /* 6305 * Get the target context (task or percpu): 6306 */ 6307 ctx = find_get_context(pmu, task, cpu); 6308 if (IS_ERR(ctx)) { 6309 err = PTR_ERR(ctx); 6310 goto err_alloc; 6311 } 6312 6313 if (task) { 6314 put_task_struct(task); 6315 task = NULL; 6316 } 6317 6318 /* 6319 * Look up the group leader (we will attach this event to it): 6320 */ 6321 if (group_leader) { 6322 err = -EINVAL; 6323 6324 /* 6325 * Do not allow a recursive hierarchy (this new sibling 6326 * becoming part of another group-sibling): 6327 */ 6328 if (group_leader->group_leader != group_leader) 6329 goto err_context; 6330 /* 6331 * Do not allow to attach to a group in a different 6332 * task or CPU context: 6333 */ 6334 if (move_group) { 6335 if (group_leader->ctx->type != ctx->type) 6336 goto err_context; 6337 } else { 6338 if (group_leader->ctx != ctx) 6339 goto err_context; 6340 } 6341 6342 /* 6343 * Only a group leader can be exclusive or pinned 6344 */ 6345 if (attr.exclusive || attr.pinned) 6346 goto err_context; 6347 } 6348 6349 if (output_event) { 6350 err = perf_event_set_output(event, output_event); 6351 if (err) 6352 goto err_context; 6353 } 6354 6355 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6356 if (IS_ERR(event_file)) { 6357 err = PTR_ERR(event_file); 6358 goto err_context; 6359 } 6360 6361 if (move_group) { 6362 struct perf_event_context *gctx = group_leader->ctx; 6363 6364 mutex_lock(&gctx->mutex); 6365 perf_remove_from_context(group_leader); 6366 list_for_each_entry(sibling, &group_leader->sibling_list, 6367 group_entry) { 6368 perf_remove_from_context(sibling); 6369 put_ctx(gctx); 6370 } 6371 mutex_unlock(&gctx->mutex); 6372 put_ctx(gctx); 6373 } 6374 6375 event->filp = event_file; 6376 WARN_ON_ONCE(ctx->parent_ctx); 6377 mutex_lock(&ctx->mutex); 6378 6379 if (move_group) { 6380 perf_install_in_context(ctx, group_leader, cpu); 6381 get_ctx(ctx); 6382 list_for_each_entry(sibling, &group_leader->sibling_list, 6383 group_entry) { 6384 perf_install_in_context(ctx, sibling, cpu); 6385 get_ctx(ctx); 6386 } 6387 } 6388 6389 perf_install_in_context(ctx, event, cpu); 6390 ++ctx->generation; 6391 perf_unpin_context(ctx); 6392 mutex_unlock(&ctx->mutex); 6393 6394 event->owner = current; 6395 6396 mutex_lock(¤t->perf_event_mutex); 6397 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6398 mutex_unlock(¤t->perf_event_mutex); 6399 6400 /* 6401 * Precalculate sample_data sizes 6402 */ 6403 perf_event__header_size(event); 6404 perf_event__id_header_size(event); 6405 6406 /* 6407 * Drop the reference on the group_event after placing the 6408 * new event on the sibling_list. This ensures destruction 6409 * of the group leader will find the pointer to itself in 6410 * perf_group_detach(). 6411 */ 6412 fput_light(group_file, fput_needed); 6413 fd_install(event_fd, event_file); 6414 return event_fd; 6415 6416 err_context: 6417 perf_unpin_context(ctx); 6418 put_ctx(ctx); 6419 err_alloc: 6420 free_event(event); 6421 err_task: 6422 if (task) 6423 put_task_struct(task); 6424 err_group_fd: 6425 fput_light(group_file, fput_needed); 6426 err_fd: 6427 put_unused_fd(event_fd); 6428 return err; 6429 } 6430 6431 /** 6432 * perf_event_create_kernel_counter 6433 * 6434 * @attr: attributes of the counter to create 6435 * @cpu: cpu in which the counter is bound 6436 * @task: task to profile (NULL for percpu) 6437 */ 6438 struct perf_event * 6439 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6440 struct task_struct *task, 6441 perf_overflow_handler_t overflow_handler, 6442 void *context) 6443 { 6444 struct perf_event_context *ctx; 6445 struct perf_event *event; 6446 int err; 6447 6448 /* 6449 * Get the target context (task or percpu): 6450 */ 6451 6452 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6453 overflow_handler, context); 6454 if (IS_ERR(event)) { 6455 err = PTR_ERR(event); 6456 goto err; 6457 } 6458 6459 ctx = find_get_context(event->pmu, task, cpu); 6460 if (IS_ERR(ctx)) { 6461 err = PTR_ERR(ctx); 6462 goto err_free; 6463 } 6464 6465 event->filp = NULL; 6466 WARN_ON_ONCE(ctx->parent_ctx); 6467 mutex_lock(&ctx->mutex); 6468 perf_install_in_context(ctx, event, cpu); 6469 ++ctx->generation; 6470 perf_unpin_context(ctx); 6471 mutex_unlock(&ctx->mutex); 6472 6473 return event; 6474 6475 err_free: 6476 free_event(event); 6477 err: 6478 return ERR_PTR(err); 6479 } 6480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6481 6482 static void sync_child_event(struct perf_event *child_event, 6483 struct task_struct *child) 6484 { 6485 struct perf_event *parent_event = child_event->parent; 6486 u64 child_val; 6487 6488 if (child_event->attr.inherit_stat) 6489 perf_event_read_event(child_event, child); 6490 6491 child_val = perf_event_count(child_event); 6492 6493 /* 6494 * Add back the child's count to the parent's count: 6495 */ 6496 atomic64_add(child_val, &parent_event->child_count); 6497 atomic64_add(child_event->total_time_enabled, 6498 &parent_event->child_total_time_enabled); 6499 atomic64_add(child_event->total_time_running, 6500 &parent_event->child_total_time_running); 6501 6502 /* 6503 * Remove this event from the parent's list 6504 */ 6505 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6506 mutex_lock(&parent_event->child_mutex); 6507 list_del_init(&child_event->child_list); 6508 mutex_unlock(&parent_event->child_mutex); 6509 6510 /* 6511 * Release the parent event, if this was the last 6512 * reference to it. 6513 */ 6514 fput(parent_event->filp); 6515 } 6516 6517 static void 6518 __perf_event_exit_task(struct perf_event *child_event, 6519 struct perf_event_context *child_ctx, 6520 struct task_struct *child) 6521 { 6522 if (child_event->parent) { 6523 raw_spin_lock_irq(&child_ctx->lock); 6524 perf_group_detach(child_event); 6525 raw_spin_unlock_irq(&child_ctx->lock); 6526 } 6527 6528 perf_remove_from_context(child_event); 6529 6530 /* 6531 * It can happen that the parent exits first, and has events 6532 * that are still around due to the child reference. These 6533 * events need to be zapped. 6534 */ 6535 if (child_event->parent) { 6536 sync_child_event(child_event, child); 6537 free_event(child_event); 6538 } 6539 } 6540 6541 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6542 { 6543 struct perf_event *child_event, *tmp; 6544 struct perf_event_context *child_ctx; 6545 unsigned long flags; 6546 6547 if (likely(!child->perf_event_ctxp[ctxn])) { 6548 perf_event_task(child, NULL, 0); 6549 return; 6550 } 6551 6552 local_irq_save(flags); 6553 /* 6554 * We can't reschedule here because interrupts are disabled, 6555 * and either child is current or it is a task that can't be 6556 * scheduled, so we are now safe from rescheduling changing 6557 * our context. 6558 */ 6559 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6560 6561 /* 6562 * Take the context lock here so that if find_get_context is 6563 * reading child->perf_event_ctxp, we wait until it has 6564 * incremented the context's refcount before we do put_ctx below. 6565 */ 6566 raw_spin_lock(&child_ctx->lock); 6567 task_ctx_sched_out(child_ctx); 6568 child->perf_event_ctxp[ctxn] = NULL; 6569 /* 6570 * If this context is a clone; unclone it so it can't get 6571 * swapped to another process while we're removing all 6572 * the events from it. 6573 */ 6574 unclone_ctx(child_ctx); 6575 update_context_time(child_ctx); 6576 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6577 6578 /* 6579 * Report the task dead after unscheduling the events so that we 6580 * won't get any samples after PERF_RECORD_EXIT. We can however still 6581 * get a few PERF_RECORD_READ events. 6582 */ 6583 perf_event_task(child, child_ctx, 0); 6584 6585 /* 6586 * We can recurse on the same lock type through: 6587 * 6588 * __perf_event_exit_task() 6589 * sync_child_event() 6590 * fput(parent_event->filp) 6591 * perf_release() 6592 * mutex_lock(&ctx->mutex) 6593 * 6594 * But since its the parent context it won't be the same instance. 6595 */ 6596 mutex_lock(&child_ctx->mutex); 6597 6598 again: 6599 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6600 group_entry) 6601 __perf_event_exit_task(child_event, child_ctx, child); 6602 6603 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6604 group_entry) 6605 __perf_event_exit_task(child_event, child_ctx, child); 6606 6607 /* 6608 * If the last event was a group event, it will have appended all 6609 * its siblings to the list, but we obtained 'tmp' before that which 6610 * will still point to the list head terminating the iteration. 6611 */ 6612 if (!list_empty(&child_ctx->pinned_groups) || 6613 !list_empty(&child_ctx->flexible_groups)) 6614 goto again; 6615 6616 mutex_unlock(&child_ctx->mutex); 6617 6618 put_ctx(child_ctx); 6619 } 6620 6621 /* 6622 * When a child task exits, feed back event values to parent events. 6623 */ 6624 void perf_event_exit_task(struct task_struct *child) 6625 { 6626 struct perf_event *event, *tmp; 6627 int ctxn; 6628 6629 mutex_lock(&child->perf_event_mutex); 6630 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6631 owner_entry) { 6632 list_del_init(&event->owner_entry); 6633 6634 /* 6635 * Ensure the list deletion is visible before we clear 6636 * the owner, closes a race against perf_release() where 6637 * we need to serialize on the owner->perf_event_mutex. 6638 */ 6639 smp_wmb(); 6640 event->owner = NULL; 6641 } 6642 mutex_unlock(&child->perf_event_mutex); 6643 6644 for_each_task_context_nr(ctxn) 6645 perf_event_exit_task_context(child, ctxn); 6646 } 6647 6648 static void perf_free_event(struct perf_event *event, 6649 struct perf_event_context *ctx) 6650 { 6651 struct perf_event *parent = event->parent; 6652 6653 if (WARN_ON_ONCE(!parent)) 6654 return; 6655 6656 mutex_lock(&parent->child_mutex); 6657 list_del_init(&event->child_list); 6658 mutex_unlock(&parent->child_mutex); 6659 6660 fput(parent->filp); 6661 6662 perf_group_detach(event); 6663 list_del_event(event, ctx); 6664 free_event(event); 6665 } 6666 6667 /* 6668 * free an unexposed, unused context as created by inheritance by 6669 * perf_event_init_task below, used by fork() in case of fail. 6670 */ 6671 void perf_event_free_task(struct task_struct *task) 6672 { 6673 struct perf_event_context *ctx; 6674 struct perf_event *event, *tmp; 6675 int ctxn; 6676 6677 for_each_task_context_nr(ctxn) { 6678 ctx = task->perf_event_ctxp[ctxn]; 6679 if (!ctx) 6680 continue; 6681 6682 mutex_lock(&ctx->mutex); 6683 again: 6684 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6685 group_entry) 6686 perf_free_event(event, ctx); 6687 6688 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6689 group_entry) 6690 perf_free_event(event, ctx); 6691 6692 if (!list_empty(&ctx->pinned_groups) || 6693 !list_empty(&ctx->flexible_groups)) 6694 goto again; 6695 6696 mutex_unlock(&ctx->mutex); 6697 6698 put_ctx(ctx); 6699 } 6700 } 6701 6702 void perf_event_delayed_put(struct task_struct *task) 6703 { 6704 int ctxn; 6705 6706 for_each_task_context_nr(ctxn) 6707 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6708 } 6709 6710 /* 6711 * inherit a event from parent task to child task: 6712 */ 6713 static struct perf_event * 6714 inherit_event(struct perf_event *parent_event, 6715 struct task_struct *parent, 6716 struct perf_event_context *parent_ctx, 6717 struct task_struct *child, 6718 struct perf_event *group_leader, 6719 struct perf_event_context *child_ctx) 6720 { 6721 struct perf_event *child_event; 6722 unsigned long flags; 6723 6724 /* 6725 * Instead of creating recursive hierarchies of events, 6726 * we link inherited events back to the original parent, 6727 * which has a filp for sure, which we use as the reference 6728 * count: 6729 */ 6730 if (parent_event->parent) 6731 parent_event = parent_event->parent; 6732 6733 child_event = perf_event_alloc(&parent_event->attr, 6734 parent_event->cpu, 6735 child, 6736 group_leader, parent_event, 6737 NULL, NULL); 6738 if (IS_ERR(child_event)) 6739 return child_event; 6740 get_ctx(child_ctx); 6741 6742 /* 6743 * Make the child state follow the state of the parent event, 6744 * not its attr.disabled bit. We hold the parent's mutex, 6745 * so we won't race with perf_event_{en, dis}able_family. 6746 */ 6747 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6748 child_event->state = PERF_EVENT_STATE_INACTIVE; 6749 else 6750 child_event->state = PERF_EVENT_STATE_OFF; 6751 6752 if (parent_event->attr.freq) { 6753 u64 sample_period = parent_event->hw.sample_period; 6754 struct hw_perf_event *hwc = &child_event->hw; 6755 6756 hwc->sample_period = sample_period; 6757 hwc->last_period = sample_period; 6758 6759 local64_set(&hwc->period_left, sample_period); 6760 } 6761 6762 child_event->ctx = child_ctx; 6763 child_event->overflow_handler = parent_event->overflow_handler; 6764 child_event->overflow_handler_context 6765 = parent_event->overflow_handler_context; 6766 6767 /* 6768 * Precalculate sample_data sizes 6769 */ 6770 perf_event__header_size(child_event); 6771 perf_event__id_header_size(child_event); 6772 6773 /* 6774 * Link it up in the child's context: 6775 */ 6776 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6777 add_event_to_ctx(child_event, child_ctx); 6778 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6779 6780 /* 6781 * Get a reference to the parent filp - we will fput it 6782 * when the child event exits. This is safe to do because 6783 * we are in the parent and we know that the filp still 6784 * exists and has a nonzero count: 6785 */ 6786 atomic_long_inc(&parent_event->filp->f_count); 6787 6788 /* 6789 * Link this into the parent event's child list 6790 */ 6791 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6792 mutex_lock(&parent_event->child_mutex); 6793 list_add_tail(&child_event->child_list, &parent_event->child_list); 6794 mutex_unlock(&parent_event->child_mutex); 6795 6796 return child_event; 6797 } 6798 6799 static int inherit_group(struct perf_event *parent_event, 6800 struct task_struct *parent, 6801 struct perf_event_context *parent_ctx, 6802 struct task_struct *child, 6803 struct perf_event_context *child_ctx) 6804 { 6805 struct perf_event *leader; 6806 struct perf_event *sub; 6807 struct perf_event *child_ctr; 6808 6809 leader = inherit_event(parent_event, parent, parent_ctx, 6810 child, NULL, child_ctx); 6811 if (IS_ERR(leader)) 6812 return PTR_ERR(leader); 6813 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6814 child_ctr = inherit_event(sub, parent, parent_ctx, 6815 child, leader, child_ctx); 6816 if (IS_ERR(child_ctr)) 6817 return PTR_ERR(child_ctr); 6818 } 6819 return 0; 6820 } 6821 6822 static int 6823 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6824 struct perf_event_context *parent_ctx, 6825 struct task_struct *child, int ctxn, 6826 int *inherited_all) 6827 { 6828 int ret; 6829 struct perf_event_context *child_ctx; 6830 6831 if (!event->attr.inherit) { 6832 *inherited_all = 0; 6833 return 0; 6834 } 6835 6836 child_ctx = child->perf_event_ctxp[ctxn]; 6837 if (!child_ctx) { 6838 /* 6839 * This is executed from the parent task context, so 6840 * inherit events that have been marked for cloning. 6841 * First allocate and initialize a context for the 6842 * child. 6843 */ 6844 6845 child_ctx = alloc_perf_context(event->pmu, child); 6846 if (!child_ctx) 6847 return -ENOMEM; 6848 6849 child->perf_event_ctxp[ctxn] = child_ctx; 6850 } 6851 6852 ret = inherit_group(event, parent, parent_ctx, 6853 child, child_ctx); 6854 6855 if (ret) 6856 *inherited_all = 0; 6857 6858 return ret; 6859 } 6860 6861 /* 6862 * Initialize the perf_event context in task_struct 6863 */ 6864 int perf_event_init_context(struct task_struct *child, int ctxn) 6865 { 6866 struct perf_event_context *child_ctx, *parent_ctx; 6867 struct perf_event_context *cloned_ctx; 6868 struct perf_event *event; 6869 struct task_struct *parent = current; 6870 int inherited_all = 1; 6871 unsigned long flags; 6872 int ret = 0; 6873 6874 if (likely(!parent->perf_event_ctxp[ctxn])) 6875 return 0; 6876 6877 /* 6878 * If the parent's context is a clone, pin it so it won't get 6879 * swapped under us. 6880 */ 6881 parent_ctx = perf_pin_task_context(parent, ctxn); 6882 6883 /* 6884 * No need to check if parent_ctx != NULL here; since we saw 6885 * it non-NULL earlier, the only reason for it to become NULL 6886 * is if we exit, and since we're currently in the middle of 6887 * a fork we can't be exiting at the same time. 6888 */ 6889 6890 /* 6891 * Lock the parent list. No need to lock the child - not PID 6892 * hashed yet and not running, so nobody can access it. 6893 */ 6894 mutex_lock(&parent_ctx->mutex); 6895 6896 /* 6897 * We dont have to disable NMIs - we are only looking at 6898 * the list, not manipulating it: 6899 */ 6900 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6901 ret = inherit_task_group(event, parent, parent_ctx, 6902 child, ctxn, &inherited_all); 6903 if (ret) 6904 break; 6905 } 6906 6907 /* 6908 * We can't hold ctx->lock when iterating the ->flexible_group list due 6909 * to allocations, but we need to prevent rotation because 6910 * rotate_ctx() will change the list from interrupt context. 6911 */ 6912 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6913 parent_ctx->rotate_disable = 1; 6914 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6915 6916 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6917 ret = inherit_task_group(event, parent, parent_ctx, 6918 child, ctxn, &inherited_all); 6919 if (ret) 6920 break; 6921 } 6922 6923 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6924 parent_ctx->rotate_disable = 0; 6925 6926 child_ctx = child->perf_event_ctxp[ctxn]; 6927 6928 if (child_ctx && inherited_all) { 6929 /* 6930 * Mark the child context as a clone of the parent 6931 * context, or of whatever the parent is a clone of. 6932 * 6933 * Note that if the parent is a clone, the holding of 6934 * parent_ctx->lock avoids it from being uncloned. 6935 */ 6936 cloned_ctx = parent_ctx->parent_ctx; 6937 if (cloned_ctx) { 6938 child_ctx->parent_ctx = cloned_ctx; 6939 child_ctx->parent_gen = parent_ctx->parent_gen; 6940 } else { 6941 child_ctx->parent_ctx = parent_ctx; 6942 child_ctx->parent_gen = parent_ctx->generation; 6943 } 6944 get_ctx(child_ctx->parent_ctx); 6945 } 6946 6947 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6948 mutex_unlock(&parent_ctx->mutex); 6949 6950 perf_unpin_context(parent_ctx); 6951 put_ctx(parent_ctx); 6952 6953 return ret; 6954 } 6955 6956 /* 6957 * Initialize the perf_event context in task_struct 6958 */ 6959 int perf_event_init_task(struct task_struct *child) 6960 { 6961 int ctxn, ret; 6962 6963 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6964 mutex_init(&child->perf_event_mutex); 6965 INIT_LIST_HEAD(&child->perf_event_list); 6966 6967 for_each_task_context_nr(ctxn) { 6968 ret = perf_event_init_context(child, ctxn); 6969 if (ret) 6970 return ret; 6971 } 6972 6973 return 0; 6974 } 6975 6976 static void __init perf_event_init_all_cpus(void) 6977 { 6978 struct swevent_htable *swhash; 6979 int cpu; 6980 6981 for_each_possible_cpu(cpu) { 6982 swhash = &per_cpu(swevent_htable, cpu); 6983 mutex_init(&swhash->hlist_mutex); 6984 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6985 } 6986 } 6987 6988 static void __cpuinit perf_event_init_cpu(int cpu) 6989 { 6990 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6991 6992 mutex_lock(&swhash->hlist_mutex); 6993 if (swhash->hlist_refcount > 0) { 6994 struct swevent_hlist *hlist; 6995 6996 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6997 WARN_ON(!hlist); 6998 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6999 } 7000 mutex_unlock(&swhash->hlist_mutex); 7001 } 7002 7003 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7004 static void perf_pmu_rotate_stop(struct pmu *pmu) 7005 { 7006 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7007 7008 WARN_ON(!irqs_disabled()); 7009 7010 list_del_init(&cpuctx->rotation_list); 7011 } 7012 7013 static void __perf_event_exit_context(void *__info) 7014 { 7015 struct perf_event_context *ctx = __info; 7016 struct perf_event *event, *tmp; 7017 7018 perf_pmu_rotate_stop(ctx->pmu); 7019 7020 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7021 __perf_remove_from_context(event); 7022 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7023 __perf_remove_from_context(event); 7024 } 7025 7026 static void perf_event_exit_cpu_context(int cpu) 7027 { 7028 struct perf_event_context *ctx; 7029 struct pmu *pmu; 7030 int idx; 7031 7032 idx = srcu_read_lock(&pmus_srcu); 7033 list_for_each_entry_rcu(pmu, &pmus, entry) { 7034 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7035 7036 mutex_lock(&ctx->mutex); 7037 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7038 mutex_unlock(&ctx->mutex); 7039 } 7040 srcu_read_unlock(&pmus_srcu, idx); 7041 } 7042 7043 static void perf_event_exit_cpu(int cpu) 7044 { 7045 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7046 7047 mutex_lock(&swhash->hlist_mutex); 7048 swevent_hlist_release(swhash); 7049 mutex_unlock(&swhash->hlist_mutex); 7050 7051 perf_event_exit_cpu_context(cpu); 7052 } 7053 #else 7054 static inline void perf_event_exit_cpu(int cpu) { } 7055 #endif 7056 7057 static int 7058 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7059 { 7060 int cpu; 7061 7062 for_each_online_cpu(cpu) 7063 perf_event_exit_cpu(cpu); 7064 7065 return NOTIFY_OK; 7066 } 7067 7068 /* 7069 * Run the perf reboot notifier at the very last possible moment so that 7070 * the generic watchdog code runs as long as possible. 7071 */ 7072 static struct notifier_block perf_reboot_notifier = { 7073 .notifier_call = perf_reboot, 7074 .priority = INT_MIN, 7075 }; 7076 7077 static int __cpuinit 7078 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7079 { 7080 unsigned int cpu = (long)hcpu; 7081 7082 switch (action & ~CPU_TASKS_FROZEN) { 7083 7084 case CPU_UP_PREPARE: 7085 case CPU_DOWN_FAILED: 7086 perf_event_init_cpu(cpu); 7087 break; 7088 7089 case CPU_UP_CANCELED: 7090 case CPU_DOWN_PREPARE: 7091 perf_event_exit_cpu(cpu); 7092 break; 7093 7094 default: 7095 break; 7096 } 7097 7098 return NOTIFY_OK; 7099 } 7100 7101 void __init perf_event_init(void) 7102 { 7103 int ret; 7104 7105 idr_init(&pmu_idr); 7106 7107 perf_event_init_all_cpus(); 7108 init_srcu_struct(&pmus_srcu); 7109 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7110 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7111 perf_pmu_register(&perf_task_clock, NULL, -1); 7112 perf_tp_register(); 7113 perf_cpu_notifier(perf_cpu_notify); 7114 register_reboot_notifier(&perf_reboot_notifier); 7115 7116 ret = init_hw_breakpoint(); 7117 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7118 7119 /* do not patch jump label more than once per second */ 7120 jump_label_rate_limit(&perf_sched_events, HZ); 7121 7122 /* 7123 * Build time assertion that we keep the data_head at the intended 7124 * location. IOW, validation we got the __reserved[] size right. 7125 */ 7126 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7127 != 1024); 7128 } 7129 7130 static int __init perf_event_sysfs_init(void) 7131 { 7132 struct pmu *pmu; 7133 int ret; 7134 7135 mutex_lock(&pmus_lock); 7136 7137 ret = bus_register(&pmu_bus); 7138 if (ret) 7139 goto unlock; 7140 7141 list_for_each_entry(pmu, &pmus, entry) { 7142 if (!pmu->name || pmu->type < 0) 7143 continue; 7144 7145 ret = pmu_dev_alloc(pmu); 7146 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7147 } 7148 pmu_bus_running = 1; 7149 ret = 0; 7150 7151 unlock: 7152 mutex_unlock(&pmus_lock); 7153 7154 return ret; 7155 } 7156 device_initcall(perf_event_sysfs_init); 7157 7158 #ifdef CONFIG_CGROUP_PERF 7159 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7160 { 7161 struct perf_cgroup *jc; 7162 7163 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7164 if (!jc) 7165 return ERR_PTR(-ENOMEM); 7166 7167 jc->info = alloc_percpu(struct perf_cgroup_info); 7168 if (!jc->info) { 7169 kfree(jc); 7170 return ERR_PTR(-ENOMEM); 7171 } 7172 7173 return &jc->css; 7174 } 7175 7176 static void perf_cgroup_destroy(struct cgroup *cont) 7177 { 7178 struct perf_cgroup *jc; 7179 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7180 struct perf_cgroup, css); 7181 free_percpu(jc->info); 7182 kfree(jc); 7183 } 7184 7185 static int __perf_cgroup_move(void *info) 7186 { 7187 struct task_struct *task = info; 7188 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7189 return 0; 7190 } 7191 7192 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7193 { 7194 struct task_struct *task; 7195 7196 cgroup_taskset_for_each(task, cgrp, tset) 7197 task_function_call(task, __perf_cgroup_move, task); 7198 } 7199 7200 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7201 struct task_struct *task) 7202 { 7203 /* 7204 * cgroup_exit() is called in the copy_process() failure path. 7205 * Ignore this case since the task hasn't ran yet, this avoids 7206 * trying to poke a half freed task state from generic code. 7207 */ 7208 if (!(task->flags & PF_EXITING)) 7209 return; 7210 7211 task_function_call(task, __perf_cgroup_move, task); 7212 } 7213 7214 struct cgroup_subsys perf_subsys = { 7215 .name = "perf_event", 7216 .subsys_id = perf_subsys_id, 7217 .create = perf_cgroup_create, 7218 .destroy = perf_cgroup_destroy, 7219 .exit = perf_cgroup_exit, 7220 .attach = perf_cgroup_attach, 7221 }; 7222 #endif /* CONFIG_CGROUP_PERF */ 7223