xref: /linux/kernel/events/core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 /*
122  * branch priv levels that need permission checks
123  */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 	(PERF_SAMPLE_BRANCH_KERNEL |\
126 	 PERF_SAMPLE_BRANCH_HV)
127 
128 enum event_type_t {
129 	EVENT_FLEXIBLE = 0x1,
130 	EVENT_PINNED = 0x2,
131 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133 
134 /*
135  * perf_sched_events : >0 events exist
136  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137  */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141 
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145 
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149 
150 /*
151  * perf event paranoia level:
152  *  -1 - not paranoid at all
153  *   0 - disallow raw tracepoint access for unpriv
154  *   1 - disallow cpu events for unpriv
155  *   2 - disallow kernel profiling for unpriv
156  */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158 
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161 
162 /*
163  * max perf event sample rate
164  */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169 
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 		void __user *buffer, size_t *lenp,
172 		loff_t *ppos)
173 {
174 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175 
176 	if (ret || !write)
177 		return ret;
178 
179 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180 
181 	return 0;
182 }
183 
184 static atomic64_t perf_event_id;
185 
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 			      enum event_type_t event_type);
188 
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 			     enum event_type_t event_type,
191 			     struct task_struct *task);
192 
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195 
196 static void ring_buffer_attach(struct perf_event *event,
197 			       struct ring_buffer *rb);
198 
199 void __weak perf_event_print_debug(void)	{ }
200 
201 extern __weak const char *perf_pmu_name(void)
202 {
203 	return "pmu";
204 }
205 
206 static inline u64 perf_clock(void)
207 {
208 	return local_clock();
209 }
210 
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216 
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 			  struct perf_event_context *ctx)
219 {
220 	raw_spin_lock(&cpuctx->ctx.lock);
221 	if (ctx)
222 		raw_spin_lock(&ctx->lock);
223 }
224 
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 			    struct perf_event_context *ctx)
227 {
228 	if (ctx)
229 		raw_spin_unlock(&ctx->lock);
230 	raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232 
233 #ifdef CONFIG_CGROUP_PERF
234 
235 /*
236  * Must ensure cgroup is pinned (css_get) before calling
237  * this function. In other words, we cannot call this function
238  * if there is no cgroup event for the current CPU context.
239  */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 	return container_of(task_subsys_state(task, perf_subsys_id),
244 			struct perf_cgroup, css);
245 }
246 
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252 
253 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255 
256 static inline bool perf_tryget_cgroup(struct perf_event *event)
257 {
258 	return css_tryget(&event->cgrp->css);
259 }
260 
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 	css_put(&event->cgrp->css);
264 }
265 
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 	perf_put_cgroup(event);
269 	event->cgrp = NULL;
270 }
271 
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 	return event->cgrp != NULL;
275 }
276 
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 	struct perf_cgroup_info *t;
280 
281 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 	return t->time;
283 }
284 
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 	struct perf_cgroup_info *info;
288 	u64 now;
289 
290 	now = perf_clock();
291 
292 	info = this_cpu_ptr(cgrp->info);
293 
294 	info->time += now - info->timestamp;
295 	info->timestamp = now;
296 }
297 
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 	if (cgrp_out)
302 		__update_cgrp_time(cgrp_out);
303 }
304 
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 	struct perf_cgroup *cgrp;
308 
309 	/*
310 	 * ensure we access cgroup data only when needed and
311 	 * when we know the cgroup is pinned (css_get)
312 	 */
313 	if (!is_cgroup_event(event))
314 		return;
315 
316 	cgrp = perf_cgroup_from_task(current);
317 	/*
318 	 * Do not update time when cgroup is not active
319 	 */
320 	if (cgrp == event->cgrp)
321 		__update_cgrp_time(event->cgrp);
322 }
323 
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 			  struct perf_event_context *ctx)
327 {
328 	struct perf_cgroup *cgrp;
329 	struct perf_cgroup_info *info;
330 
331 	/*
332 	 * ctx->lock held by caller
333 	 * ensure we do not access cgroup data
334 	 * unless we have the cgroup pinned (css_get)
335 	 */
336 	if (!task || !ctx->nr_cgroups)
337 		return;
338 
339 	cgrp = perf_cgroup_from_task(task);
340 	info = this_cpu_ptr(cgrp->info);
341 	info->timestamp = ctx->timestamp;
342 }
343 
344 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
346 
347 /*
348  * reschedule events based on the cgroup constraint of task.
349  *
350  * mode SWOUT : schedule out everything
351  * mode SWIN : schedule in based on cgroup for next
352  */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 	struct perf_cpu_context *cpuctx;
356 	struct pmu *pmu;
357 	unsigned long flags;
358 
359 	/*
360 	 * disable interrupts to avoid geting nr_cgroup
361 	 * changes via __perf_event_disable(). Also
362 	 * avoids preemption.
363 	 */
364 	local_irq_save(flags);
365 
366 	/*
367 	 * we reschedule only in the presence of cgroup
368 	 * constrained events.
369 	 */
370 	rcu_read_lock();
371 
372 	list_for_each_entry_rcu(pmu, &pmus, entry) {
373 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374 
375 		/*
376 		 * perf_cgroup_events says at least one
377 		 * context on this CPU has cgroup events.
378 		 *
379 		 * ctx->nr_cgroups reports the number of cgroup
380 		 * events for a context.
381 		 */
382 		if (cpuctx->ctx.nr_cgroups > 0) {
383 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 			perf_pmu_disable(cpuctx->ctx.pmu);
385 
386 			if (mode & PERF_CGROUP_SWOUT) {
387 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 				/*
389 				 * must not be done before ctxswout due
390 				 * to event_filter_match() in event_sched_out()
391 				 */
392 				cpuctx->cgrp = NULL;
393 			}
394 
395 			if (mode & PERF_CGROUP_SWIN) {
396 				WARN_ON_ONCE(cpuctx->cgrp);
397 				/* set cgrp before ctxsw in to
398 				 * allow event_filter_match() to not
399 				 * have to pass task around
400 				 */
401 				cpuctx->cgrp = perf_cgroup_from_task(task);
402 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 			}
404 			perf_pmu_enable(cpuctx->ctx.pmu);
405 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 		}
407 	}
408 
409 	rcu_read_unlock();
410 
411 	local_irq_restore(flags);
412 }
413 
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 					 struct task_struct *next)
416 {
417 	struct perf_cgroup *cgrp1;
418 	struct perf_cgroup *cgrp2 = NULL;
419 
420 	/*
421 	 * we come here when we know perf_cgroup_events > 0
422 	 */
423 	cgrp1 = perf_cgroup_from_task(task);
424 
425 	/*
426 	 * next is NULL when called from perf_event_enable_on_exec()
427 	 * that will systematically cause a cgroup_switch()
428 	 */
429 	if (next)
430 		cgrp2 = perf_cgroup_from_task(next);
431 
432 	/*
433 	 * only schedule out current cgroup events if we know
434 	 * that we are switching to a different cgroup. Otherwise,
435 	 * do no touch the cgroup events.
436 	 */
437 	if (cgrp1 != cgrp2)
438 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440 
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 					struct task_struct *task)
443 {
444 	struct perf_cgroup *cgrp1;
445 	struct perf_cgroup *cgrp2 = NULL;
446 
447 	/*
448 	 * we come here when we know perf_cgroup_events > 0
449 	 */
450 	cgrp1 = perf_cgroup_from_task(task);
451 
452 	/* prev can never be NULL */
453 	cgrp2 = perf_cgroup_from_task(prev);
454 
455 	/*
456 	 * only need to schedule in cgroup events if we are changing
457 	 * cgroup during ctxsw. Cgroup events were not scheduled
458 	 * out of ctxsw out if that was not the case.
459 	 */
460 	if (cgrp1 != cgrp2)
461 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463 
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 				      struct perf_event_attr *attr,
466 				      struct perf_event *group_leader)
467 {
468 	struct perf_cgroup *cgrp;
469 	struct cgroup_subsys_state *css;
470 	struct file *file;
471 	int ret = 0, fput_needed;
472 
473 	file = fget_light(fd, &fput_needed);
474 	if (!file)
475 		return -EBADF;
476 
477 	css = cgroup_css_from_dir(file, perf_subsys_id);
478 	if (IS_ERR(css)) {
479 		ret = PTR_ERR(css);
480 		goto out;
481 	}
482 
483 	cgrp = container_of(css, struct perf_cgroup, css);
484 	event->cgrp = cgrp;
485 
486 	/* must be done before we fput() the file */
487 	if (!perf_tryget_cgroup(event)) {
488 		event->cgrp = NULL;
489 		ret = -ENOENT;
490 		goto out;
491 	}
492 
493 	/*
494 	 * all events in a group must monitor
495 	 * the same cgroup because a task belongs
496 	 * to only one perf cgroup at a time
497 	 */
498 	if (group_leader && group_leader->cgrp != cgrp) {
499 		perf_detach_cgroup(event);
500 		ret = -EINVAL;
501 	}
502 out:
503 	fput_light(file, fput_needed);
504 	return ret;
505 }
506 
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 	struct perf_cgroup_info *t;
511 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 	event->shadow_ctx_time = now - t->timestamp;
513 }
514 
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 	/*
519 	 * when the current task's perf cgroup does not match
520 	 * the event's, we need to remember to call the
521 	 * perf_mark_enable() function the first time a task with
522 	 * a matching perf cgroup is scheduled in.
523 	 */
524 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 		event->cgrp_defer_enabled = 1;
526 }
527 
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 			 struct perf_event_context *ctx)
531 {
532 	struct perf_event *sub;
533 	u64 tstamp = perf_event_time(event);
534 
535 	if (!event->cgrp_defer_enabled)
536 		return;
537 
538 	event->cgrp_defer_enabled = 0;
539 
540 	event->tstamp_enabled = tstamp - event->total_time_enabled;
541 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 			sub->cgrp_defer_enabled = 0;
545 		}
546 	}
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549 
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 	return true;
554 }
555 
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558 
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 	return 0;
562 }
563 
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 	return 0;
567 }
568 
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572 
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576 
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 					 struct task_struct *next)
579 {
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 }
586 
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 				      struct perf_event_attr *attr,
589 				      struct perf_event *group_leader)
590 {
591 	return -EINVAL;
592 }
593 
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 			  struct perf_event_context *ctx)
597 {
598 }
599 
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604 
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609 
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 	return 0;
613 }
614 
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619 
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 			 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626 
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 	if (!(*count)++)
631 		pmu->pmu_disable(pmu);
632 }
633 
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 	if (!--(*count))
638 		pmu->pmu_enable(pmu);
639 }
640 
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642 
643 /*
644  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645  * because they're strictly cpu affine and rotate_start is called with IRQs
646  * disabled, while rotate_context is called from IRQ context.
647  */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 	struct list_head *head = &__get_cpu_var(rotation_list);
652 
653 	WARN_ON(!irqs_disabled());
654 
655 	if (list_empty(&cpuctx->rotation_list))
656 		list_add(&cpuctx->rotation_list, head);
657 }
658 
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663 
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 	if (atomic_dec_and_test(&ctx->refcount)) {
667 		if (ctx->parent_ctx)
668 			put_ctx(ctx->parent_ctx);
669 		if (ctx->task)
670 			put_task_struct(ctx->task);
671 		kfree_rcu(ctx, rcu_head);
672 	}
673 }
674 
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 	if (ctx->parent_ctx) {
678 		put_ctx(ctx->parent_ctx);
679 		ctx->parent_ctx = NULL;
680 	}
681 }
682 
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 	/*
686 	 * only top level events have the pid namespace they were created in
687 	 */
688 	if (event->parent)
689 		event = event->parent;
690 
691 	return task_tgid_nr_ns(p, event->ns);
692 }
693 
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 	/*
697 	 * only top level events have the pid namespace they were created in
698 	 */
699 	if (event->parent)
700 		event = event->parent;
701 
702 	return task_pid_nr_ns(p, event->ns);
703 }
704 
705 /*
706  * If we inherit events we want to return the parent event id
707  * to userspace.
708  */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 	u64 id = event->id;
712 
713 	if (event->parent)
714 		id = event->parent->id;
715 
716 	return id;
717 }
718 
719 /*
720  * Get the perf_event_context for a task and lock it.
721  * This has to cope with with the fact that until it is locked,
722  * the context could get moved to another task.
723  */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 	struct perf_event_context *ctx;
728 
729 	rcu_read_lock();
730 retry:
731 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 	if (ctx) {
733 		/*
734 		 * If this context is a clone of another, it might
735 		 * get swapped for another underneath us by
736 		 * perf_event_task_sched_out, though the
737 		 * rcu_read_lock() protects us from any context
738 		 * getting freed.  Lock the context and check if it
739 		 * got swapped before we could get the lock, and retry
740 		 * if so.  If we locked the right context, then it
741 		 * can't get swapped on us any more.
742 		 */
743 		raw_spin_lock_irqsave(&ctx->lock, *flags);
744 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 			goto retry;
747 		}
748 
749 		if (!atomic_inc_not_zero(&ctx->refcount)) {
750 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 			ctx = NULL;
752 		}
753 	}
754 	rcu_read_unlock();
755 	return ctx;
756 }
757 
758 /*
759  * Get the context for a task and increment its pin_count so it
760  * can't get swapped to another task.  This also increments its
761  * reference count so that the context can't get freed.
762  */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 	struct perf_event_context *ctx;
767 	unsigned long flags;
768 
769 	ctx = perf_lock_task_context(task, ctxn, &flags);
770 	if (ctx) {
771 		++ctx->pin_count;
772 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 	}
774 	return ctx;
775 }
776 
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 	unsigned long flags;
780 
781 	raw_spin_lock_irqsave(&ctx->lock, flags);
782 	--ctx->pin_count;
783 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785 
786 /*
787  * Update the record of the current time in a context.
788  */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 	u64 now = perf_clock();
792 
793 	ctx->time += now - ctx->timestamp;
794 	ctx->timestamp = now;
795 }
796 
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 	struct perf_event_context *ctx = event->ctx;
800 
801 	if (is_cgroup_event(event))
802 		return perf_cgroup_event_time(event);
803 
804 	return ctx ? ctx->time : 0;
805 }
806 
807 /*
808  * Update the total_time_enabled and total_time_running fields for a event.
809  * The caller of this function needs to hold the ctx->lock.
810  */
811 static void update_event_times(struct perf_event *event)
812 {
813 	struct perf_event_context *ctx = event->ctx;
814 	u64 run_end;
815 
816 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 		return;
819 	/*
820 	 * in cgroup mode, time_enabled represents
821 	 * the time the event was enabled AND active
822 	 * tasks were in the monitored cgroup. This is
823 	 * independent of the activity of the context as
824 	 * there may be a mix of cgroup and non-cgroup events.
825 	 *
826 	 * That is why we treat cgroup events differently
827 	 * here.
828 	 */
829 	if (is_cgroup_event(event))
830 		run_end = perf_cgroup_event_time(event);
831 	else if (ctx->is_active)
832 		run_end = ctx->time;
833 	else
834 		run_end = event->tstamp_stopped;
835 
836 	event->total_time_enabled = run_end - event->tstamp_enabled;
837 
838 	if (event->state == PERF_EVENT_STATE_INACTIVE)
839 		run_end = event->tstamp_stopped;
840 	else
841 		run_end = perf_event_time(event);
842 
843 	event->total_time_running = run_end - event->tstamp_running;
844 
845 }
846 
847 /*
848  * Update total_time_enabled and total_time_running for all events in a group.
849  */
850 static void update_group_times(struct perf_event *leader)
851 {
852 	struct perf_event *event;
853 
854 	update_event_times(leader);
855 	list_for_each_entry(event, &leader->sibling_list, group_entry)
856 		update_event_times(event);
857 }
858 
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 	if (event->attr.pinned)
863 		return &ctx->pinned_groups;
864 	else
865 		return &ctx->flexible_groups;
866 }
867 
868 /*
869  * Add a event from the lists for its context.
870  * Must be called with ctx->mutex and ctx->lock held.
871  */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 	event->attach_state |= PERF_ATTACH_CONTEXT;
877 
878 	/*
879 	 * If we're a stand alone event or group leader, we go to the context
880 	 * list, group events are kept attached to the group so that
881 	 * perf_group_detach can, at all times, locate all siblings.
882 	 */
883 	if (event->group_leader == event) {
884 		struct list_head *list;
885 
886 		if (is_software_event(event))
887 			event->group_flags |= PERF_GROUP_SOFTWARE;
888 
889 		list = ctx_group_list(event, ctx);
890 		list_add_tail(&event->group_entry, list);
891 	}
892 
893 	if (is_cgroup_event(event))
894 		ctx->nr_cgroups++;
895 
896 	if (has_branch_stack(event))
897 		ctx->nr_branch_stack++;
898 
899 	list_add_rcu(&event->event_entry, &ctx->event_list);
900 	if (!ctx->nr_events)
901 		perf_pmu_rotate_start(ctx->pmu);
902 	ctx->nr_events++;
903 	if (event->attr.inherit_stat)
904 		ctx->nr_stat++;
905 }
906 
907 /*
908  * Called at perf_event creation and when events are attached/detached from a
909  * group.
910  */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 	int entry = sizeof(u64); /* value */
914 	int size = 0;
915 	int nr = 1;
916 
917 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 		size += sizeof(u64);
919 
920 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 		size += sizeof(u64);
922 
923 	if (event->attr.read_format & PERF_FORMAT_ID)
924 		entry += sizeof(u64);
925 
926 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 		nr += event->group_leader->nr_siblings;
928 		size += sizeof(u64);
929 	}
930 
931 	size += entry * nr;
932 	event->read_size = size;
933 }
934 
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 	struct perf_sample_data *data;
938 	u64 sample_type = event->attr.sample_type;
939 	u16 size = 0;
940 
941 	perf_event__read_size(event);
942 
943 	if (sample_type & PERF_SAMPLE_IP)
944 		size += sizeof(data->ip);
945 
946 	if (sample_type & PERF_SAMPLE_ADDR)
947 		size += sizeof(data->addr);
948 
949 	if (sample_type & PERF_SAMPLE_PERIOD)
950 		size += sizeof(data->period);
951 
952 	if (sample_type & PERF_SAMPLE_READ)
953 		size += event->read_size;
954 
955 	event->header_size = size;
956 }
957 
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 	struct perf_sample_data *data;
961 	u64 sample_type = event->attr.sample_type;
962 	u16 size = 0;
963 
964 	if (sample_type & PERF_SAMPLE_TID)
965 		size += sizeof(data->tid_entry);
966 
967 	if (sample_type & PERF_SAMPLE_TIME)
968 		size += sizeof(data->time);
969 
970 	if (sample_type & PERF_SAMPLE_ID)
971 		size += sizeof(data->id);
972 
973 	if (sample_type & PERF_SAMPLE_STREAM_ID)
974 		size += sizeof(data->stream_id);
975 
976 	if (sample_type & PERF_SAMPLE_CPU)
977 		size += sizeof(data->cpu_entry);
978 
979 	event->id_header_size = size;
980 }
981 
982 static void perf_group_attach(struct perf_event *event)
983 {
984 	struct perf_event *group_leader = event->group_leader, *pos;
985 
986 	/*
987 	 * We can have double attach due to group movement in perf_event_open.
988 	 */
989 	if (event->attach_state & PERF_ATTACH_GROUP)
990 		return;
991 
992 	event->attach_state |= PERF_ATTACH_GROUP;
993 
994 	if (group_leader == event)
995 		return;
996 
997 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 			!is_software_event(event))
999 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000 
1001 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 	group_leader->nr_siblings++;
1003 
1004 	perf_event__header_size(group_leader);
1005 
1006 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 		perf_event__header_size(pos);
1008 }
1009 
1010 /*
1011  * Remove a event from the lists for its context.
1012  * Must be called with ctx->mutex and ctx->lock held.
1013  */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 	struct perf_cpu_context *cpuctx;
1018 	/*
1019 	 * We can have double detach due to exit/hot-unplug + close.
1020 	 */
1021 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 		return;
1023 
1024 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025 
1026 	if (is_cgroup_event(event)) {
1027 		ctx->nr_cgroups--;
1028 		cpuctx = __get_cpu_context(ctx);
1029 		/*
1030 		 * if there are no more cgroup events
1031 		 * then cler cgrp to avoid stale pointer
1032 		 * in update_cgrp_time_from_cpuctx()
1033 		 */
1034 		if (!ctx->nr_cgroups)
1035 			cpuctx->cgrp = NULL;
1036 	}
1037 
1038 	if (has_branch_stack(event))
1039 		ctx->nr_branch_stack--;
1040 
1041 	ctx->nr_events--;
1042 	if (event->attr.inherit_stat)
1043 		ctx->nr_stat--;
1044 
1045 	list_del_rcu(&event->event_entry);
1046 
1047 	if (event->group_leader == event)
1048 		list_del_init(&event->group_entry);
1049 
1050 	update_group_times(event);
1051 
1052 	/*
1053 	 * If event was in error state, then keep it
1054 	 * that way, otherwise bogus counts will be
1055 	 * returned on read(). The only way to get out
1056 	 * of error state is by explicit re-enabling
1057 	 * of the event
1058 	 */
1059 	if (event->state > PERF_EVENT_STATE_OFF)
1060 		event->state = PERF_EVENT_STATE_OFF;
1061 }
1062 
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 	struct perf_event *sibling, *tmp;
1066 	struct list_head *list = NULL;
1067 
1068 	/*
1069 	 * We can have double detach due to exit/hot-unplug + close.
1070 	 */
1071 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 		return;
1073 
1074 	event->attach_state &= ~PERF_ATTACH_GROUP;
1075 
1076 	/*
1077 	 * If this is a sibling, remove it from its group.
1078 	 */
1079 	if (event->group_leader != event) {
1080 		list_del_init(&event->group_entry);
1081 		event->group_leader->nr_siblings--;
1082 		goto out;
1083 	}
1084 
1085 	if (!list_empty(&event->group_entry))
1086 		list = &event->group_entry;
1087 
1088 	/*
1089 	 * If this was a group event with sibling events then
1090 	 * upgrade the siblings to singleton events by adding them
1091 	 * to whatever list we are on.
1092 	 */
1093 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 		if (list)
1095 			list_move_tail(&sibling->group_entry, list);
1096 		sibling->group_leader = sibling;
1097 
1098 		/* Inherit group flags from the previous leader */
1099 		sibling->group_flags = event->group_flags;
1100 	}
1101 
1102 out:
1103 	perf_event__header_size(event->group_leader);
1104 
1105 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 		perf_event__header_size(tmp);
1107 }
1108 
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 	    && perf_cgroup_match(event);
1114 }
1115 
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 		  struct perf_cpu_context *cpuctx,
1119 		  struct perf_event_context *ctx)
1120 {
1121 	u64 tstamp = perf_event_time(event);
1122 	u64 delta;
1123 	/*
1124 	 * An event which could not be activated because of
1125 	 * filter mismatch still needs to have its timings
1126 	 * maintained, otherwise bogus information is return
1127 	 * via read() for time_enabled, time_running:
1128 	 */
1129 	if (event->state == PERF_EVENT_STATE_INACTIVE
1130 	    && !event_filter_match(event)) {
1131 		delta = tstamp - event->tstamp_stopped;
1132 		event->tstamp_running += delta;
1133 		event->tstamp_stopped = tstamp;
1134 	}
1135 
1136 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 		return;
1138 
1139 	event->state = PERF_EVENT_STATE_INACTIVE;
1140 	if (event->pending_disable) {
1141 		event->pending_disable = 0;
1142 		event->state = PERF_EVENT_STATE_OFF;
1143 	}
1144 	event->tstamp_stopped = tstamp;
1145 	event->pmu->del(event, 0);
1146 	event->oncpu = -1;
1147 
1148 	if (!is_software_event(event))
1149 		cpuctx->active_oncpu--;
1150 	ctx->nr_active--;
1151 	if (event->attr.freq && event->attr.sample_freq)
1152 		ctx->nr_freq--;
1153 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 		cpuctx->exclusive = 0;
1155 }
1156 
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 		struct perf_cpu_context *cpuctx,
1160 		struct perf_event_context *ctx)
1161 {
1162 	struct perf_event *event;
1163 	int state = group_event->state;
1164 
1165 	event_sched_out(group_event, cpuctx, ctx);
1166 
1167 	/*
1168 	 * Schedule out siblings (if any):
1169 	 */
1170 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 		event_sched_out(event, cpuctx, ctx);
1172 
1173 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 		cpuctx->exclusive = 0;
1175 }
1176 
1177 /*
1178  * Cross CPU call to remove a performance event
1179  *
1180  * We disable the event on the hardware level first. After that we
1181  * remove it from the context list.
1182  */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 	struct perf_event *event = info;
1186 	struct perf_event_context *ctx = event->ctx;
1187 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 
1189 	raw_spin_lock(&ctx->lock);
1190 	event_sched_out(event, cpuctx, ctx);
1191 	list_del_event(event, ctx);
1192 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 		ctx->is_active = 0;
1194 		cpuctx->task_ctx = NULL;
1195 	}
1196 	raw_spin_unlock(&ctx->lock);
1197 
1198 	return 0;
1199 }
1200 
1201 
1202 /*
1203  * Remove the event from a task's (or a CPU's) list of events.
1204  *
1205  * CPU events are removed with a smp call. For task events we only
1206  * call when the task is on a CPU.
1207  *
1208  * If event->ctx is a cloned context, callers must make sure that
1209  * every task struct that event->ctx->task could possibly point to
1210  * remains valid.  This is OK when called from perf_release since
1211  * that only calls us on the top-level context, which can't be a clone.
1212  * When called from perf_event_exit_task, it's OK because the
1213  * context has been detached from its task.
1214  */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 	struct perf_event_context *ctx = event->ctx;
1218 	struct task_struct *task = ctx->task;
1219 
1220 	lockdep_assert_held(&ctx->mutex);
1221 
1222 	if (!task) {
1223 		/*
1224 		 * Per cpu events are removed via an smp call and
1225 		 * the removal is always successful.
1226 		 */
1227 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 		return;
1229 	}
1230 
1231 retry:
1232 	if (!task_function_call(task, __perf_remove_from_context, event))
1233 		return;
1234 
1235 	raw_spin_lock_irq(&ctx->lock);
1236 	/*
1237 	 * If we failed to find a running task, but find the context active now
1238 	 * that we've acquired the ctx->lock, retry.
1239 	 */
1240 	if (ctx->is_active) {
1241 		raw_spin_unlock_irq(&ctx->lock);
1242 		goto retry;
1243 	}
1244 
1245 	/*
1246 	 * Since the task isn't running, its safe to remove the event, us
1247 	 * holding the ctx->lock ensures the task won't get scheduled in.
1248 	 */
1249 	list_del_event(event, ctx);
1250 	raw_spin_unlock_irq(&ctx->lock);
1251 }
1252 
1253 /*
1254  * Cross CPU call to disable a performance event
1255  */
1256 static int __perf_event_disable(void *info)
1257 {
1258 	struct perf_event *event = info;
1259 	struct perf_event_context *ctx = event->ctx;
1260 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261 
1262 	/*
1263 	 * If this is a per-task event, need to check whether this
1264 	 * event's task is the current task on this cpu.
1265 	 *
1266 	 * Can trigger due to concurrent perf_event_context_sched_out()
1267 	 * flipping contexts around.
1268 	 */
1269 	if (ctx->task && cpuctx->task_ctx != ctx)
1270 		return -EINVAL;
1271 
1272 	raw_spin_lock(&ctx->lock);
1273 
1274 	/*
1275 	 * If the event is on, turn it off.
1276 	 * If it is in error state, leave it in error state.
1277 	 */
1278 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 		update_context_time(ctx);
1280 		update_cgrp_time_from_event(event);
1281 		update_group_times(event);
1282 		if (event == event->group_leader)
1283 			group_sched_out(event, cpuctx, ctx);
1284 		else
1285 			event_sched_out(event, cpuctx, ctx);
1286 		event->state = PERF_EVENT_STATE_OFF;
1287 	}
1288 
1289 	raw_spin_unlock(&ctx->lock);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Disable a event.
1296  *
1297  * If event->ctx is a cloned context, callers must make sure that
1298  * every task struct that event->ctx->task could possibly point to
1299  * remains valid.  This condition is satisifed when called through
1300  * perf_event_for_each_child or perf_event_for_each because they
1301  * hold the top-level event's child_mutex, so any descendant that
1302  * goes to exit will block in sync_child_event.
1303  * When called from perf_pending_event it's OK because event->ctx
1304  * is the current context on this CPU and preemption is disabled,
1305  * hence we can't get into perf_event_task_sched_out for this context.
1306  */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 	struct perf_event_context *ctx = event->ctx;
1310 	struct task_struct *task = ctx->task;
1311 
1312 	if (!task) {
1313 		/*
1314 		 * Disable the event on the cpu that it's on
1315 		 */
1316 		cpu_function_call(event->cpu, __perf_event_disable, event);
1317 		return;
1318 	}
1319 
1320 retry:
1321 	if (!task_function_call(task, __perf_event_disable, event))
1322 		return;
1323 
1324 	raw_spin_lock_irq(&ctx->lock);
1325 	/*
1326 	 * If the event is still active, we need to retry the cross-call.
1327 	 */
1328 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 		raw_spin_unlock_irq(&ctx->lock);
1330 		/*
1331 		 * Reload the task pointer, it might have been changed by
1332 		 * a concurrent perf_event_context_sched_out().
1333 		 */
1334 		task = ctx->task;
1335 		goto retry;
1336 	}
1337 
1338 	/*
1339 	 * Since we have the lock this context can't be scheduled
1340 	 * in, so we can change the state safely.
1341 	 */
1342 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 		update_group_times(event);
1344 		event->state = PERF_EVENT_STATE_OFF;
1345 	}
1346 	raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349 
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 				 struct perf_event_context *ctx,
1352 				 u64 tstamp)
1353 {
1354 	/*
1355 	 * use the correct time source for the time snapshot
1356 	 *
1357 	 * We could get by without this by leveraging the
1358 	 * fact that to get to this function, the caller
1359 	 * has most likely already called update_context_time()
1360 	 * and update_cgrp_time_xx() and thus both timestamp
1361 	 * are identical (or very close). Given that tstamp is,
1362 	 * already adjusted for cgroup, we could say that:
1363 	 *    tstamp - ctx->timestamp
1364 	 * is equivalent to
1365 	 *    tstamp - cgrp->timestamp.
1366 	 *
1367 	 * Then, in perf_output_read(), the calculation would
1368 	 * work with no changes because:
1369 	 * - event is guaranteed scheduled in
1370 	 * - no scheduled out in between
1371 	 * - thus the timestamp would be the same
1372 	 *
1373 	 * But this is a bit hairy.
1374 	 *
1375 	 * So instead, we have an explicit cgroup call to remain
1376 	 * within the time time source all along. We believe it
1377 	 * is cleaner and simpler to understand.
1378 	 */
1379 	if (is_cgroup_event(event))
1380 		perf_cgroup_set_shadow_time(event, tstamp);
1381 	else
1382 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384 
1385 #define MAX_INTERRUPTS (~0ULL)
1386 
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388 
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 		 struct perf_cpu_context *cpuctx,
1392 		 struct perf_event_context *ctx)
1393 {
1394 	u64 tstamp = perf_event_time(event);
1395 
1396 	if (event->state <= PERF_EVENT_STATE_OFF)
1397 		return 0;
1398 
1399 	event->state = PERF_EVENT_STATE_ACTIVE;
1400 	event->oncpu = smp_processor_id();
1401 
1402 	/*
1403 	 * Unthrottle events, since we scheduled we might have missed several
1404 	 * ticks already, also for a heavily scheduling task there is little
1405 	 * guarantee it'll get a tick in a timely manner.
1406 	 */
1407 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 		perf_log_throttle(event, 1);
1409 		event->hw.interrupts = 0;
1410 	}
1411 
1412 	/*
1413 	 * The new state must be visible before we turn it on in the hardware:
1414 	 */
1415 	smp_wmb();
1416 
1417 	if (event->pmu->add(event, PERF_EF_START)) {
1418 		event->state = PERF_EVENT_STATE_INACTIVE;
1419 		event->oncpu = -1;
1420 		return -EAGAIN;
1421 	}
1422 
1423 	event->tstamp_running += tstamp - event->tstamp_stopped;
1424 
1425 	perf_set_shadow_time(event, ctx, tstamp);
1426 
1427 	if (!is_software_event(event))
1428 		cpuctx->active_oncpu++;
1429 	ctx->nr_active++;
1430 	if (event->attr.freq && event->attr.sample_freq)
1431 		ctx->nr_freq++;
1432 
1433 	if (event->attr.exclusive)
1434 		cpuctx->exclusive = 1;
1435 
1436 	return 0;
1437 }
1438 
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 	       struct perf_cpu_context *cpuctx,
1442 	       struct perf_event_context *ctx)
1443 {
1444 	struct perf_event *event, *partial_group = NULL;
1445 	struct pmu *pmu = group_event->pmu;
1446 	u64 now = ctx->time;
1447 	bool simulate = false;
1448 
1449 	if (group_event->state == PERF_EVENT_STATE_OFF)
1450 		return 0;
1451 
1452 	pmu->start_txn(pmu);
1453 
1454 	if (event_sched_in(group_event, cpuctx, ctx)) {
1455 		pmu->cancel_txn(pmu);
1456 		return -EAGAIN;
1457 	}
1458 
1459 	/*
1460 	 * Schedule in siblings as one group (if any):
1461 	 */
1462 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 		if (event_sched_in(event, cpuctx, ctx)) {
1464 			partial_group = event;
1465 			goto group_error;
1466 		}
1467 	}
1468 
1469 	if (!pmu->commit_txn(pmu))
1470 		return 0;
1471 
1472 group_error:
1473 	/*
1474 	 * Groups can be scheduled in as one unit only, so undo any
1475 	 * partial group before returning:
1476 	 * The events up to the failed event are scheduled out normally,
1477 	 * tstamp_stopped will be updated.
1478 	 *
1479 	 * The failed events and the remaining siblings need to have
1480 	 * their timings updated as if they had gone thru event_sched_in()
1481 	 * and event_sched_out(). This is required to get consistent timings
1482 	 * across the group. This also takes care of the case where the group
1483 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 	 * the time the event was actually stopped, such that time delta
1485 	 * calculation in update_event_times() is correct.
1486 	 */
1487 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 		if (event == partial_group)
1489 			simulate = true;
1490 
1491 		if (simulate) {
1492 			event->tstamp_running += now - event->tstamp_stopped;
1493 			event->tstamp_stopped = now;
1494 		} else {
1495 			event_sched_out(event, cpuctx, ctx);
1496 		}
1497 	}
1498 	event_sched_out(group_event, cpuctx, ctx);
1499 
1500 	pmu->cancel_txn(pmu);
1501 
1502 	return -EAGAIN;
1503 }
1504 
1505 /*
1506  * Work out whether we can put this event group on the CPU now.
1507  */
1508 static int group_can_go_on(struct perf_event *event,
1509 			   struct perf_cpu_context *cpuctx,
1510 			   int can_add_hw)
1511 {
1512 	/*
1513 	 * Groups consisting entirely of software events can always go on.
1514 	 */
1515 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 		return 1;
1517 	/*
1518 	 * If an exclusive group is already on, no other hardware
1519 	 * events can go on.
1520 	 */
1521 	if (cpuctx->exclusive)
1522 		return 0;
1523 	/*
1524 	 * If this group is exclusive and there are already
1525 	 * events on the CPU, it can't go on.
1526 	 */
1527 	if (event->attr.exclusive && cpuctx->active_oncpu)
1528 		return 0;
1529 	/*
1530 	 * Otherwise, try to add it if all previous groups were able
1531 	 * to go on.
1532 	 */
1533 	return can_add_hw;
1534 }
1535 
1536 static void add_event_to_ctx(struct perf_event *event,
1537 			       struct perf_event_context *ctx)
1538 {
1539 	u64 tstamp = perf_event_time(event);
1540 
1541 	list_add_event(event, ctx);
1542 	perf_group_attach(event);
1543 	event->tstamp_enabled = tstamp;
1544 	event->tstamp_running = tstamp;
1545 	event->tstamp_stopped = tstamp;
1546 }
1547 
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 	     struct perf_cpu_context *cpuctx,
1552 	     enum event_type_t event_type,
1553 	     struct task_struct *task);
1554 
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 				struct perf_event_context *ctx,
1557 				struct task_struct *task)
1558 {
1559 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 	if (ctx)
1561 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 	if (ctx)
1564 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566 
1567 /*
1568  * Cross CPU call to install and enable a performance event
1569  *
1570  * Must be called with ctx->mutex held
1571  */
1572 static int  __perf_install_in_context(void *info)
1573 {
1574 	struct perf_event *event = info;
1575 	struct perf_event_context *ctx = event->ctx;
1576 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 	struct task_struct *task = current;
1579 
1580 	perf_ctx_lock(cpuctx, task_ctx);
1581 	perf_pmu_disable(cpuctx->ctx.pmu);
1582 
1583 	/*
1584 	 * If there was an active task_ctx schedule it out.
1585 	 */
1586 	if (task_ctx)
1587 		task_ctx_sched_out(task_ctx);
1588 
1589 	/*
1590 	 * If the context we're installing events in is not the
1591 	 * active task_ctx, flip them.
1592 	 */
1593 	if (ctx->task && task_ctx != ctx) {
1594 		if (task_ctx)
1595 			raw_spin_unlock(&task_ctx->lock);
1596 		raw_spin_lock(&ctx->lock);
1597 		task_ctx = ctx;
1598 	}
1599 
1600 	if (task_ctx) {
1601 		cpuctx->task_ctx = task_ctx;
1602 		task = task_ctx->task;
1603 	}
1604 
1605 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606 
1607 	update_context_time(ctx);
1608 	/*
1609 	 * update cgrp time only if current cgrp
1610 	 * matches event->cgrp. Must be done before
1611 	 * calling add_event_to_ctx()
1612 	 */
1613 	update_cgrp_time_from_event(event);
1614 
1615 	add_event_to_ctx(event, ctx);
1616 
1617 	/*
1618 	 * Schedule everything back in
1619 	 */
1620 	perf_event_sched_in(cpuctx, task_ctx, task);
1621 
1622 	perf_pmu_enable(cpuctx->ctx.pmu);
1623 	perf_ctx_unlock(cpuctx, task_ctx);
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Attach a performance event to a context
1630  *
1631  * First we add the event to the list with the hardware enable bit
1632  * in event->hw_config cleared.
1633  *
1634  * If the event is attached to a task which is on a CPU we use a smp
1635  * call to enable it in the task context. The task might have been
1636  * scheduled away, but we check this in the smp call again.
1637  */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 			struct perf_event *event,
1641 			int cpu)
1642 {
1643 	struct task_struct *task = ctx->task;
1644 
1645 	lockdep_assert_held(&ctx->mutex);
1646 
1647 	event->ctx = ctx;
1648 
1649 	if (!task) {
1650 		/*
1651 		 * Per cpu events are installed via an smp call and
1652 		 * the install is always successful.
1653 		 */
1654 		cpu_function_call(cpu, __perf_install_in_context, event);
1655 		return;
1656 	}
1657 
1658 retry:
1659 	if (!task_function_call(task, __perf_install_in_context, event))
1660 		return;
1661 
1662 	raw_spin_lock_irq(&ctx->lock);
1663 	/*
1664 	 * If we failed to find a running task, but find the context active now
1665 	 * that we've acquired the ctx->lock, retry.
1666 	 */
1667 	if (ctx->is_active) {
1668 		raw_spin_unlock_irq(&ctx->lock);
1669 		goto retry;
1670 	}
1671 
1672 	/*
1673 	 * Since the task isn't running, its safe to add the event, us holding
1674 	 * the ctx->lock ensures the task won't get scheduled in.
1675 	 */
1676 	add_event_to_ctx(event, ctx);
1677 	raw_spin_unlock_irq(&ctx->lock);
1678 }
1679 
1680 /*
1681  * Put a event into inactive state and update time fields.
1682  * Enabling the leader of a group effectively enables all
1683  * the group members that aren't explicitly disabled, so we
1684  * have to update their ->tstamp_enabled also.
1685  * Note: this works for group members as well as group leaders
1686  * since the non-leader members' sibling_lists will be empty.
1687  */
1688 static void __perf_event_mark_enabled(struct perf_event *event)
1689 {
1690 	struct perf_event *sub;
1691 	u64 tstamp = perf_event_time(event);
1692 
1693 	event->state = PERF_EVENT_STATE_INACTIVE;
1694 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1695 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1696 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1697 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1698 	}
1699 }
1700 
1701 /*
1702  * Cross CPU call to enable a performance event
1703  */
1704 static int __perf_event_enable(void *info)
1705 {
1706 	struct perf_event *event = info;
1707 	struct perf_event_context *ctx = event->ctx;
1708 	struct perf_event *leader = event->group_leader;
1709 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 	int err;
1711 
1712 	if (WARN_ON_ONCE(!ctx->is_active))
1713 		return -EINVAL;
1714 
1715 	raw_spin_lock(&ctx->lock);
1716 	update_context_time(ctx);
1717 
1718 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1719 		goto unlock;
1720 
1721 	/*
1722 	 * set current task's cgroup time reference point
1723 	 */
1724 	perf_cgroup_set_timestamp(current, ctx);
1725 
1726 	__perf_event_mark_enabled(event);
1727 
1728 	if (!event_filter_match(event)) {
1729 		if (is_cgroup_event(event))
1730 			perf_cgroup_defer_enabled(event);
1731 		goto unlock;
1732 	}
1733 
1734 	/*
1735 	 * If the event is in a group and isn't the group leader,
1736 	 * then don't put it on unless the group is on.
1737 	 */
1738 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1739 		goto unlock;
1740 
1741 	if (!group_can_go_on(event, cpuctx, 1)) {
1742 		err = -EEXIST;
1743 	} else {
1744 		if (event == leader)
1745 			err = group_sched_in(event, cpuctx, ctx);
1746 		else
1747 			err = event_sched_in(event, cpuctx, ctx);
1748 	}
1749 
1750 	if (err) {
1751 		/*
1752 		 * If this event can't go on and it's part of a
1753 		 * group, then the whole group has to come off.
1754 		 */
1755 		if (leader != event)
1756 			group_sched_out(leader, cpuctx, ctx);
1757 		if (leader->attr.pinned) {
1758 			update_group_times(leader);
1759 			leader->state = PERF_EVENT_STATE_ERROR;
1760 		}
1761 	}
1762 
1763 unlock:
1764 	raw_spin_unlock(&ctx->lock);
1765 
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Enable a event.
1771  *
1772  * If event->ctx is a cloned context, callers must make sure that
1773  * every task struct that event->ctx->task could possibly point to
1774  * remains valid.  This condition is satisfied when called through
1775  * perf_event_for_each_child or perf_event_for_each as described
1776  * for perf_event_disable.
1777  */
1778 void perf_event_enable(struct perf_event *event)
1779 {
1780 	struct perf_event_context *ctx = event->ctx;
1781 	struct task_struct *task = ctx->task;
1782 
1783 	if (!task) {
1784 		/*
1785 		 * Enable the event on the cpu that it's on
1786 		 */
1787 		cpu_function_call(event->cpu, __perf_event_enable, event);
1788 		return;
1789 	}
1790 
1791 	raw_spin_lock_irq(&ctx->lock);
1792 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1793 		goto out;
1794 
1795 	/*
1796 	 * If the event is in error state, clear that first.
1797 	 * That way, if we see the event in error state below, we
1798 	 * know that it has gone back into error state, as distinct
1799 	 * from the task having been scheduled away before the
1800 	 * cross-call arrived.
1801 	 */
1802 	if (event->state == PERF_EVENT_STATE_ERROR)
1803 		event->state = PERF_EVENT_STATE_OFF;
1804 
1805 retry:
1806 	if (!ctx->is_active) {
1807 		__perf_event_mark_enabled(event);
1808 		goto out;
1809 	}
1810 
1811 	raw_spin_unlock_irq(&ctx->lock);
1812 
1813 	if (!task_function_call(task, __perf_event_enable, event))
1814 		return;
1815 
1816 	raw_spin_lock_irq(&ctx->lock);
1817 
1818 	/*
1819 	 * If the context is active and the event is still off,
1820 	 * we need to retry the cross-call.
1821 	 */
1822 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1823 		/*
1824 		 * task could have been flipped by a concurrent
1825 		 * perf_event_context_sched_out()
1826 		 */
1827 		task = ctx->task;
1828 		goto retry;
1829 	}
1830 
1831 out:
1832 	raw_spin_unlock_irq(&ctx->lock);
1833 }
1834 EXPORT_SYMBOL_GPL(perf_event_enable);
1835 
1836 int perf_event_refresh(struct perf_event *event, int refresh)
1837 {
1838 	/*
1839 	 * not supported on inherited events
1840 	 */
1841 	if (event->attr.inherit || !is_sampling_event(event))
1842 		return -EINVAL;
1843 
1844 	atomic_add(refresh, &event->event_limit);
1845 	perf_event_enable(event);
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(perf_event_refresh);
1850 
1851 static void ctx_sched_out(struct perf_event_context *ctx,
1852 			  struct perf_cpu_context *cpuctx,
1853 			  enum event_type_t event_type)
1854 {
1855 	struct perf_event *event;
1856 	int is_active = ctx->is_active;
1857 
1858 	ctx->is_active &= ~event_type;
1859 	if (likely(!ctx->nr_events))
1860 		return;
1861 
1862 	update_context_time(ctx);
1863 	update_cgrp_time_from_cpuctx(cpuctx);
1864 	if (!ctx->nr_active)
1865 		return;
1866 
1867 	perf_pmu_disable(ctx->pmu);
1868 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1869 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1870 			group_sched_out(event, cpuctx, ctx);
1871 	}
1872 
1873 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1874 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1875 			group_sched_out(event, cpuctx, ctx);
1876 	}
1877 	perf_pmu_enable(ctx->pmu);
1878 }
1879 
1880 /*
1881  * Test whether two contexts are equivalent, i.e. whether they
1882  * have both been cloned from the same version of the same context
1883  * and they both have the same number of enabled events.
1884  * If the number of enabled events is the same, then the set
1885  * of enabled events should be the same, because these are both
1886  * inherited contexts, therefore we can't access individual events
1887  * in them directly with an fd; we can only enable/disable all
1888  * events via prctl, or enable/disable all events in a family
1889  * via ioctl, which will have the same effect on both contexts.
1890  */
1891 static int context_equiv(struct perf_event_context *ctx1,
1892 			 struct perf_event_context *ctx2)
1893 {
1894 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1895 		&& ctx1->parent_gen == ctx2->parent_gen
1896 		&& !ctx1->pin_count && !ctx2->pin_count;
1897 }
1898 
1899 static void __perf_event_sync_stat(struct perf_event *event,
1900 				     struct perf_event *next_event)
1901 {
1902 	u64 value;
1903 
1904 	if (!event->attr.inherit_stat)
1905 		return;
1906 
1907 	/*
1908 	 * Update the event value, we cannot use perf_event_read()
1909 	 * because we're in the middle of a context switch and have IRQs
1910 	 * disabled, which upsets smp_call_function_single(), however
1911 	 * we know the event must be on the current CPU, therefore we
1912 	 * don't need to use it.
1913 	 */
1914 	switch (event->state) {
1915 	case PERF_EVENT_STATE_ACTIVE:
1916 		event->pmu->read(event);
1917 		/* fall-through */
1918 
1919 	case PERF_EVENT_STATE_INACTIVE:
1920 		update_event_times(event);
1921 		break;
1922 
1923 	default:
1924 		break;
1925 	}
1926 
1927 	/*
1928 	 * In order to keep per-task stats reliable we need to flip the event
1929 	 * values when we flip the contexts.
1930 	 */
1931 	value = local64_read(&next_event->count);
1932 	value = local64_xchg(&event->count, value);
1933 	local64_set(&next_event->count, value);
1934 
1935 	swap(event->total_time_enabled, next_event->total_time_enabled);
1936 	swap(event->total_time_running, next_event->total_time_running);
1937 
1938 	/*
1939 	 * Since we swizzled the values, update the user visible data too.
1940 	 */
1941 	perf_event_update_userpage(event);
1942 	perf_event_update_userpage(next_event);
1943 }
1944 
1945 #define list_next_entry(pos, member) \
1946 	list_entry(pos->member.next, typeof(*pos), member)
1947 
1948 static void perf_event_sync_stat(struct perf_event_context *ctx,
1949 				   struct perf_event_context *next_ctx)
1950 {
1951 	struct perf_event *event, *next_event;
1952 
1953 	if (!ctx->nr_stat)
1954 		return;
1955 
1956 	update_context_time(ctx);
1957 
1958 	event = list_first_entry(&ctx->event_list,
1959 				   struct perf_event, event_entry);
1960 
1961 	next_event = list_first_entry(&next_ctx->event_list,
1962 					struct perf_event, event_entry);
1963 
1964 	while (&event->event_entry != &ctx->event_list &&
1965 	       &next_event->event_entry != &next_ctx->event_list) {
1966 
1967 		__perf_event_sync_stat(event, next_event);
1968 
1969 		event = list_next_entry(event, event_entry);
1970 		next_event = list_next_entry(next_event, event_entry);
1971 	}
1972 }
1973 
1974 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1975 					 struct task_struct *next)
1976 {
1977 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1978 	struct perf_event_context *next_ctx;
1979 	struct perf_event_context *parent;
1980 	struct perf_cpu_context *cpuctx;
1981 	int do_switch = 1;
1982 
1983 	if (likely(!ctx))
1984 		return;
1985 
1986 	cpuctx = __get_cpu_context(ctx);
1987 	if (!cpuctx->task_ctx)
1988 		return;
1989 
1990 	rcu_read_lock();
1991 	parent = rcu_dereference(ctx->parent_ctx);
1992 	next_ctx = next->perf_event_ctxp[ctxn];
1993 	if (parent && next_ctx &&
1994 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1995 		/*
1996 		 * Looks like the two contexts are clones, so we might be
1997 		 * able to optimize the context switch.  We lock both
1998 		 * contexts and check that they are clones under the
1999 		 * lock (including re-checking that neither has been
2000 		 * uncloned in the meantime).  It doesn't matter which
2001 		 * order we take the locks because no other cpu could
2002 		 * be trying to lock both of these tasks.
2003 		 */
2004 		raw_spin_lock(&ctx->lock);
2005 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2006 		if (context_equiv(ctx, next_ctx)) {
2007 			/*
2008 			 * XXX do we need a memory barrier of sorts
2009 			 * wrt to rcu_dereference() of perf_event_ctxp
2010 			 */
2011 			task->perf_event_ctxp[ctxn] = next_ctx;
2012 			next->perf_event_ctxp[ctxn] = ctx;
2013 			ctx->task = next;
2014 			next_ctx->task = task;
2015 			do_switch = 0;
2016 
2017 			perf_event_sync_stat(ctx, next_ctx);
2018 		}
2019 		raw_spin_unlock(&next_ctx->lock);
2020 		raw_spin_unlock(&ctx->lock);
2021 	}
2022 	rcu_read_unlock();
2023 
2024 	if (do_switch) {
2025 		raw_spin_lock(&ctx->lock);
2026 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2027 		cpuctx->task_ctx = NULL;
2028 		raw_spin_unlock(&ctx->lock);
2029 	}
2030 }
2031 
2032 #define for_each_task_context_nr(ctxn)					\
2033 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2034 
2035 /*
2036  * Called from scheduler to remove the events of the current task,
2037  * with interrupts disabled.
2038  *
2039  * We stop each event and update the event value in event->count.
2040  *
2041  * This does not protect us against NMI, but disable()
2042  * sets the disabled bit in the control field of event _before_
2043  * accessing the event control register. If a NMI hits, then it will
2044  * not restart the event.
2045  */
2046 void __perf_event_task_sched_out(struct task_struct *task,
2047 				 struct task_struct *next)
2048 {
2049 	int ctxn;
2050 
2051 	for_each_task_context_nr(ctxn)
2052 		perf_event_context_sched_out(task, ctxn, next);
2053 
2054 	/*
2055 	 * if cgroup events exist on this CPU, then we need
2056 	 * to check if we have to switch out PMU state.
2057 	 * cgroup event are system-wide mode only
2058 	 */
2059 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2060 		perf_cgroup_sched_out(task, next);
2061 }
2062 
2063 static void task_ctx_sched_out(struct perf_event_context *ctx)
2064 {
2065 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2066 
2067 	if (!cpuctx->task_ctx)
2068 		return;
2069 
2070 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2071 		return;
2072 
2073 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2074 	cpuctx->task_ctx = NULL;
2075 }
2076 
2077 /*
2078  * Called with IRQs disabled
2079  */
2080 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2081 			      enum event_type_t event_type)
2082 {
2083 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2084 }
2085 
2086 static void
2087 ctx_pinned_sched_in(struct perf_event_context *ctx,
2088 		    struct perf_cpu_context *cpuctx)
2089 {
2090 	struct perf_event *event;
2091 
2092 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2093 		if (event->state <= PERF_EVENT_STATE_OFF)
2094 			continue;
2095 		if (!event_filter_match(event))
2096 			continue;
2097 
2098 		/* may need to reset tstamp_enabled */
2099 		if (is_cgroup_event(event))
2100 			perf_cgroup_mark_enabled(event, ctx);
2101 
2102 		if (group_can_go_on(event, cpuctx, 1))
2103 			group_sched_in(event, cpuctx, ctx);
2104 
2105 		/*
2106 		 * If this pinned group hasn't been scheduled,
2107 		 * put it in error state.
2108 		 */
2109 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2110 			update_group_times(event);
2111 			event->state = PERF_EVENT_STATE_ERROR;
2112 		}
2113 	}
2114 }
2115 
2116 static void
2117 ctx_flexible_sched_in(struct perf_event_context *ctx,
2118 		      struct perf_cpu_context *cpuctx)
2119 {
2120 	struct perf_event *event;
2121 	int can_add_hw = 1;
2122 
2123 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2124 		/* Ignore events in OFF or ERROR state */
2125 		if (event->state <= PERF_EVENT_STATE_OFF)
2126 			continue;
2127 		/*
2128 		 * Listen to the 'cpu' scheduling filter constraint
2129 		 * of events:
2130 		 */
2131 		if (!event_filter_match(event))
2132 			continue;
2133 
2134 		/* may need to reset tstamp_enabled */
2135 		if (is_cgroup_event(event))
2136 			perf_cgroup_mark_enabled(event, ctx);
2137 
2138 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2139 			if (group_sched_in(event, cpuctx, ctx))
2140 				can_add_hw = 0;
2141 		}
2142 	}
2143 }
2144 
2145 static void
2146 ctx_sched_in(struct perf_event_context *ctx,
2147 	     struct perf_cpu_context *cpuctx,
2148 	     enum event_type_t event_type,
2149 	     struct task_struct *task)
2150 {
2151 	u64 now;
2152 	int is_active = ctx->is_active;
2153 
2154 	ctx->is_active |= event_type;
2155 	if (likely(!ctx->nr_events))
2156 		return;
2157 
2158 	now = perf_clock();
2159 	ctx->timestamp = now;
2160 	perf_cgroup_set_timestamp(task, ctx);
2161 	/*
2162 	 * First go through the list and put on any pinned groups
2163 	 * in order to give them the best chance of going on.
2164 	 */
2165 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2166 		ctx_pinned_sched_in(ctx, cpuctx);
2167 
2168 	/* Then walk through the lower prio flexible groups */
2169 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2170 		ctx_flexible_sched_in(ctx, cpuctx);
2171 }
2172 
2173 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2174 			     enum event_type_t event_type,
2175 			     struct task_struct *task)
2176 {
2177 	struct perf_event_context *ctx = &cpuctx->ctx;
2178 
2179 	ctx_sched_in(ctx, cpuctx, event_type, task);
2180 }
2181 
2182 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2183 					struct task_struct *task)
2184 {
2185 	struct perf_cpu_context *cpuctx;
2186 
2187 	cpuctx = __get_cpu_context(ctx);
2188 	if (cpuctx->task_ctx == ctx)
2189 		return;
2190 
2191 	perf_ctx_lock(cpuctx, ctx);
2192 	perf_pmu_disable(ctx->pmu);
2193 	/*
2194 	 * We want to keep the following priority order:
2195 	 * cpu pinned (that don't need to move), task pinned,
2196 	 * cpu flexible, task flexible.
2197 	 */
2198 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2199 
2200 	if (ctx->nr_events)
2201 		cpuctx->task_ctx = ctx;
2202 
2203 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2204 
2205 	perf_pmu_enable(ctx->pmu);
2206 	perf_ctx_unlock(cpuctx, ctx);
2207 
2208 	/*
2209 	 * Since these rotations are per-cpu, we need to ensure the
2210 	 * cpu-context we got scheduled on is actually rotating.
2211 	 */
2212 	perf_pmu_rotate_start(ctx->pmu);
2213 }
2214 
2215 /*
2216  * When sampling the branck stack in system-wide, it may be necessary
2217  * to flush the stack on context switch. This happens when the branch
2218  * stack does not tag its entries with the pid of the current task.
2219  * Otherwise it becomes impossible to associate a branch entry with a
2220  * task. This ambiguity is more likely to appear when the branch stack
2221  * supports priv level filtering and the user sets it to monitor only
2222  * at the user level (which could be a useful measurement in system-wide
2223  * mode). In that case, the risk is high of having a branch stack with
2224  * branch from multiple tasks. Flushing may mean dropping the existing
2225  * entries or stashing them somewhere in the PMU specific code layer.
2226  *
2227  * This function provides the context switch callback to the lower code
2228  * layer. It is invoked ONLY when there is at least one system-wide context
2229  * with at least one active event using taken branch sampling.
2230  */
2231 static void perf_branch_stack_sched_in(struct task_struct *prev,
2232 				       struct task_struct *task)
2233 {
2234 	struct perf_cpu_context *cpuctx;
2235 	struct pmu *pmu;
2236 	unsigned long flags;
2237 
2238 	/* no need to flush branch stack if not changing task */
2239 	if (prev == task)
2240 		return;
2241 
2242 	local_irq_save(flags);
2243 
2244 	rcu_read_lock();
2245 
2246 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2247 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2248 
2249 		/*
2250 		 * check if the context has at least one
2251 		 * event using PERF_SAMPLE_BRANCH_STACK
2252 		 */
2253 		if (cpuctx->ctx.nr_branch_stack > 0
2254 		    && pmu->flush_branch_stack) {
2255 
2256 			pmu = cpuctx->ctx.pmu;
2257 
2258 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2259 
2260 			perf_pmu_disable(pmu);
2261 
2262 			pmu->flush_branch_stack();
2263 
2264 			perf_pmu_enable(pmu);
2265 
2266 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2267 		}
2268 	}
2269 
2270 	rcu_read_unlock();
2271 
2272 	local_irq_restore(flags);
2273 }
2274 
2275 /*
2276  * Called from scheduler to add the events of the current task
2277  * with interrupts disabled.
2278  *
2279  * We restore the event value and then enable it.
2280  *
2281  * This does not protect us against NMI, but enable()
2282  * sets the enabled bit in the control field of event _before_
2283  * accessing the event control register. If a NMI hits, then it will
2284  * keep the event running.
2285  */
2286 void __perf_event_task_sched_in(struct task_struct *prev,
2287 				struct task_struct *task)
2288 {
2289 	struct perf_event_context *ctx;
2290 	int ctxn;
2291 
2292 	for_each_task_context_nr(ctxn) {
2293 		ctx = task->perf_event_ctxp[ctxn];
2294 		if (likely(!ctx))
2295 			continue;
2296 
2297 		perf_event_context_sched_in(ctx, task);
2298 	}
2299 	/*
2300 	 * if cgroup events exist on this CPU, then we need
2301 	 * to check if we have to switch in PMU state.
2302 	 * cgroup event are system-wide mode only
2303 	 */
2304 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2305 		perf_cgroup_sched_in(prev, task);
2306 
2307 	/* check for system-wide branch_stack events */
2308 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2309 		perf_branch_stack_sched_in(prev, task);
2310 }
2311 
2312 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2313 {
2314 	u64 frequency = event->attr.sample_freq;
2315 	u64 sec = NSEC_PER_SEC;
2316 	u64 divisor, dividend;
2317 
2318 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2319 
2320 	count_fls = fls64(count);
2321 	nsec_fls = fls64(nsec);
2322 	frequency_fls = fls64(frequency);
2323 	sec_fls = 30;
2324 
2325 	/*
2326 	 * We got @count in @nsec, with a target of sample_freq HZ
2327 	 * the target period becomes:
2328 	 *
2329 	 *             @count * 10^9
2330 	 * period = -------------------
2331 	 *          @nsec * sample_freq
2332 	 *
2333 	 */
2334 
2335 	/*
2336 	 * Reduce accuracy by one bit such that @a and @b converge
2337 	 * to a similar magnitude.
2338 	 */
2339 #define REDUCE_FLS(a, b)		\
2340 do {					\
2341 	if (a##_fls > b##_fls) {	\
2342 		a >>= 1;		\
2343 		a##_fls--;		\
2344 	} else {			\
2345 		b >>= 1;		\
2346 		b##_fls--;		\
2347 	}				\
2348 } while (0)
2349 
2350 	/*
2351 	 * Reduce accuracy until either term fits in a u64, then proceed with
2352 	 * the other, so that finally we can do a u64/u64 division.
2353 	 */
2354 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2355 		REDUCE_FLS(nsec, frequency);
2356 		REDUCE_FLS(sec, count);
2357 	}
2358 
2359 	if (count_fls + sec_fls > 64) {
2360 		divisor = nsec * frequency;
2361 
2362 		while (count_fls + sec_fls > 64) {
2363 			REDUCE_FLS(count, sec);
2364 			divisor >>= 1;
2365 		}
2366 
2367 		dividend = count * sec;
2368 	} else {
2369 		dividend = count * sec;
2370 
2371 		while (nsec_fls + frequency_fls > 64) {
2372 			REDUCE_FLS(nsec, frequency);
2373 			dividend >>= 1;
2374 		}
2375 
2376 		divisor = nsec * frequency;
2377 	}
2378 
2379 	if (!divisor)
2380 		return dividend;
2381 
2382 	return div64_u64(dividend, divisor);
2383 }
2384 
2385 static DEFINE_PER_CPU(int, perf_throttled_count);
2386 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2387 
2388 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2389 {
2390 	struct hw_perf_event *hwc = &event->hw;
2391 	s64 period, sample_period;
2392 	s64 delta;
2393 
2394 	period = perf_calculate_period(event, nsec, count);
2395 
2396 	delta = (s64)(period - hwc->sample_period);
2397 	delta = (delta + 7) / 8; /* low pass filter */
2398 
2399 	sample_period = hwc->sample_period + delta;
2400 
2401 	if (!sample_period)
2402 		sample_period = 1;
2403 
2404 	hwc->sample_period = sample_period;
2405 
2406 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2407 		if (disable)
2408 			event->pmu->stop(event, PERF_EF_UPDATE);
2409 
2410 		local64_set(&hwc->period_left, 0);
2411 
2412 		if (disable)
2413 			event->pmu->start(event, PERF_EF_RELOAD);
2414 	}
2415 }
2416 
2417 /*
2418  * combine freq adjustment with unthrottling to avoid two passes over the
2419  * events. At the same time, make sure, having freq events does not change
2420  * the rate of unthrottling as that would introduce bias.
2421  */
2422 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2423 					   int needs_unthr)
2424 {
2425 	struct perf_event *event;
2426 	struct hw_perf_event *hwc;
2427 	u64 now, period = TICK_NSEC;
2428 	s64 delta;
2429 
2430 	/*
2431 	 * only need to iterate over all events iff:
2432 	 * - context have events in frequency mode (needs freq adjust)
2433 	 * - there are events to unthrottle on this cpu
2434 	 */
2435 	if (!(ctx->nr_freq || needs_unthr))
2436 		return;
2437 
2438 	raw_spin_lock(&ctx->lock);
2439 	perf_pmu_disable(ctx->pmu);
2440 
2441 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2442 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2443 			continue;
2444 
2445 		if (!event_filter_match(event))
2446 			continue;
2447 
2448 		hwc = &event->hw;
2449 
2450 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2451 			hwc->interrupts = 0;
2452 			perf_log_throttle(event, 1);
2453 			event->pmu->start(event, 0);
2454 		}
2455 
2456 		if (!event->attr.freq || !event->attr.sample_freq)
2457 			continue;
2458 
2459 		/*
2460 		 * stop the event and update event->count
2461 		 */
2462 		event->pmu->stop(event, PERF_EF_UPDATE);
2463 
2464 		now = local64_read(&event->count);
2465 		delta = now - hwc->freq_count_stamp;
2466 		hwc->freq_count_stamp = now;
2467 
2468 		/*
2469 		 * restart the event
2470 		 * reload only if value has changed
2471 		 * we have stopped the event so tell that
2472 		 * to perf_adjust_period() to avoid stopping it
2473 		 * twice.
2474 		 */
2475 		if (delta > 0)
2476 			perf_adjust_period(event, period, delta, false);
2477 
2478 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2479 	}
2480 
2481 	perf_pmu_enable(ctx->pmu);
2482 	raw_spin_unlock(&ctx->lock);
2483 }
2484 
2485 /*
2486  * Round-robin a context's events:
2487  */
2488 static void rotate_ctx(struct perf_event_context *ctx)
2489 {
2490 	/*
2491 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2492 	 * disabled by the inheritance code.
2493 	 */
2494 	if (!ctx->rotate_disable)
2495 		list_rotate_left(&ctx->flexible_groups);
2496 }
2497 
2498 /*
2499  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2500  * because they're strictly cpu affine and rotate_start is called with IRQs
2501  * disabled, while rotate_context is called from IRQ context.
2502  */
2503 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2504 {
2505 	struct perf_event_context *ctx = NULL;
2506 	int rotate = 0, remove = 1;
2507 
2508 	if (cpuctx->ctx.nr_events) {
2509 		remove = 0;
2510 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2511 			rotate = 1;
2512 	}
2513 
2514 	ctx = cpuctx->task_ctx;
2515 	if (ctx && ctx->nr_events) {
2516 		remove = 0;
2517 		if (ctx->nr_events != ctx->nr_active)
2518 			rotate = 1;
2519 	}
2520 
2521 	if (!rotate)
2522 		goto done;
2523 
2524 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2525 	perf_pmu_disable(cpuctx->ctx.pmu);
2526 
2527 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2528 	if (ctx)
2529 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2530 
2531 	rotate_ctx(&cpuctx->ctx);
2532 	if (ctx)
2533 		rotate_ctx(ctx);
2534 
2535 	perf_event_sched_in(cpuctx, ctx, current);
2536 
2537 	perf_pmu_enable(cpuctx->ctx.pmu);
2538 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2539 done:
2540 	if (remove)
2541 		list_del_init(&cpuctx->rotation_list);
2542 }
2543 
2544 void perf_event_task_tick(void)
2545 {
2546 	struct list_head *head = &__get_cpu_var(rotation_list);
2547 	struct perf_cpu_context *cpuctx, *tmp;
2548 	struct perf_event_context *ctx;
2549 	int throttled;
2550 
2551 	WARN_ON(!irqs_disabled());
2552 
2553 	__this_cpu_inc(perf_throttled_seq);
2554 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2555 
2556 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2557 		ctx = &cpuctx->ctx;
2558 		perf_adjust_freq_unthr_context(ctx, throttled);
2559 
2560 		ctx = cpuctx->task_ctx;
2561 		if (ctx)
2562 			perf_adjust_freq_unthr_context(ctx, throttled);
2563 
2564 		if (cpuctx->jiffies_interval == 1 ||
2565 				!(jiffies % cpuctx->jiffies_interval))
2566 			perf_rotate_context(cpuctx);
2567 	}
2568 }
2569 
2570 static int event_enable_on_exec(struct perf_event *event,
2571 				struct perf_event_context *ctx)
2572 {
2573 	if (!event->attr.enable_on_exec)
2574 		return 0;
2575 
2576 	event->attr.enable_on_exec = 0;
2577 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2578 		return 0;
2579 
2580 	__perf_event_mark_enabled(event);
2581 
2582 	return 1;
2583 }
2584 
2585 /*
2586  * Enable all of a task's events that have been marked enable-on-exec.
2587  * This expects task == current.
2588  */
2589 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2590 {
2591 	struct perf_event *event;
2592 	unsigned long flags;
2593 	int enabled = 0;
2594 	int ret;
2595 
2596 	local_irq_save(flags);
2597 	if (!ctx || !ctx->nr_events)
2598 		goto out;
2599 
2600 	/*
2601 	 * We must ctxsw out cgroup events to avoid conflict
2602 	 * when invoking perf_task_event_sched_in() later on
2603 	 * in this function. Otherwise we end up trying to
2604 	 * ctxswin cgroup events which are already scheduled
2605 	 * in.
2606 	 */
2607 	perf_cgroup_sched_out(current, NULL);
2608 
2609 	raw_spin_lock(&ctx->lock);
2610 	task_ctx_sched_out(ctx);
2611 
2612 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2613 		ret = event_enable_on_exec(event, ctx);
2614 		if (ret)
2615 			enabled = 1;
2616 	}
2617 
2618 	/*
2619 	 * Unclone this context if we enabled any event.
2620 	 */
2621 	if (enabled)
2622 		unclone_ctx(ctx);
2623 
2624 	raw_spin_unlock(&ctx->lock);
2625 
2626 	/*
2627 	 * Also calls ctxswin for cgroup events, if any:
2628 	 */
2629 	perf_event_context_sched_in(ctx, ctx->task);
2630 out:
2631 	local_irq_restore(flags);
2632 }
2633 
2634 /*
2635  * Cross CPU call to read the hardware event
2636  */
2637 static void __perf_event_read(void *info)
2638 {
2639 	struct perf_event *event = info;
2640 	struct perf_event_context *ctx = event->ctx;
2641 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2642 
2643 	/*
2644 	 * If this is a task context, we need to check whether it is
2645 	 * the current task context of this cpu.  If not it has been
2646 	 * scheduled out before the smp call arrived.  In that case
2647 	 * event->count would have been updated to a recent sample
2648 	 * when the event was scheduled out.
2649 	 */
2650 	if (ctx->task && cpuctx->task_ctx != ctx)
2651 		return;
2652 
2653 	raw_spin_lock(&ctx->lock);
2654 	if (ctx->is_active) {
2655 		update_context_time(ctx);
2656 		update_cgrp_time_from_event(event);
2657 	}
2658 	update_event_times(event);
2659 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2660 		event->pmu->read(event);
2661 	raw_spin_unlock(&ctx->lock);
2662 }
2663 
2664 static inline u64 perf_event_count(struct perf_event *event)
2665 {
2666 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2667 }
2668 
2669 static u64 perf_event_read(struct perf_event *event)
2670 {
2671 	/*
2672 	 * If event is enabled and currently active on a CPU, update the
2673 	 * value in the event structure:
2674 	 */
2675 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2676 		smp_call_function_single(event->oncpu,
2677 					 __perf_event_read, event, 1);
2678 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2679 		struct perf_event_context *ctx = event->ctx;
2680 		unsigned long flags;
2681 
2682 		raw_spin_lock_irqsave(&ctx->lock, flags);
2683 		/*
2684 		 * may read while context is not active
2685 		 * (e.g., thread is blocked), in that case
2686 		 * we cannot update context time
2687 		 */
2688 		if (ctx->is_active) {
2689 			update_context_time(ctx);
2690 			update_cgrp_time_from_event(event);
2691 		}
2692 		update_event_times(event);
2693 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2694 	}
2695 
2696 	return perf_event_count(event);
2697 }
2698 
2699 /*
2700  * Initialize the perf_event context in a task_struct:
2701  */
2702 static void __perf_event_init_context(struct perf_event_context *ctx)
2703 {
2704 	raw_spin_lock_init(&ctx->lock);
2705 	mutex_init(&ctx->mutex);
2706 	INIT_LIST_HEAD(&ctx->pinned_groups);
2707 	INIT_LIST_HEAD(&ctx->flexible_groups);
2708 	INIT_LIST_HEAD(&ctx->event_list);
2709 	atomic_set(&ctx->refcount, 1);
2710 }
2711 
2712 static struct perf_event_context *
2713 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2714 {
2715 	struct perf_event_context *ctx;
2716 
2717 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2718 	if (!ctx)
2719 		return NULL;
2720 
2721 	__perf_event_init_context(ctx);
2722 	if (task) {
2723 		ctx->task = task;
2724 		get_task_struct(task);
2725 	}
2726 	ctx->pmu = pmu;
2727 
2728 	return ctx;
2729 }
2730 
2731 static struct task_struct *
2732 find_lively_task_by_vpid(pid_t vpid)
2733 {
2734 	struct task_struct *task;
2735 	int err;
2736 
2737 	rcu_read_lock();
2738 	if (!vpid)
2739 		task = current;
2740 	else
2741 		task = find_task_by_vpid(vpid);
2742 	if (task)
2743 		get_task_struct(task);
2744 	rcu_read_unlock();
2745 
2746 	if (!task)
2747 		return ERR_PTR(-ESRCH);
2748 
2749 	/* Reuse ptrace permission checks for now. */
2750 	err = -EACCES;
2751 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2752 		goto errout;
2753 
2754 	return task;
2755 errout:
2756 	put_task_struct(task);
2757 	return ERR_PTR(err);
2758 
2759 }
2760 
2761 /*
2762  * Returns a matching context with refcount and pincount.
2763  */
2764 static struct perf_event_context *
2765 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2766 {
2767 	struct perf_event_context *ctx;
2768 	struct perf_cpu_context *cpuctx;
2769 	unsigned long flags;
2770 	int ctxn, err;
2771 
2772 	if (!task) {
2773 		/* Must be root to operate on a CPU event: */
2774 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2775 			return ERR_PTR(-EACCES);
2776 
2777 		/*
2778 		 * We could be clever and allow to attach a event to an
2779 		 * offline CPU and activate it when the CPU comes up, but
2780 		 * that's for later.
2781 		 */
2782 		if (!cpu_online(cpu))
2783 			return ERR_PTR(-ENODEV);
2784 
2785 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2786 		ctx = &cpuctx->ctx;
2787 		get_ctx(ctx);
2788 		++ctx->pin_count;
2789 
2790 		return ctx;
2791 	}
2792 
2793 	err = -EINVAL;
2794 	ctxn = pmu->task_ctx_nr;
2795 	if (ctxn < 0)
2796 		goto errout;
2797 
2798 retry:
2799 	ctx = perf_lock_task_context(task, ctxn, &flags);
2800 	if (ctx) {
2801 		unclone_ctx(ctx);
2802 		++ctx->pin_count;
2803 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2804 	} else {
2805 		ctx = alloc_perf_context(pmu, task);
2806 		err = -ENOMEM;
2807 		if (!ctx)
2808 			goto errout;
2809 
2810 		err = 0;
2811 		mutex_lock(&task->perf_event_mutex);
2812 		/*
2813 		 * If it has already passed perf_event_exit_task().
2814 		 * we must see PF_EXITING, it takes this mutex too.
2815 		 */
2816 		if (task->flags & PF_EXITING)
2817 			err = -ESRCH;
2818 		else if (task->perf_event_ctxp[ctxn])
2819 			err = -EAGAIN;
2820 		else {
2821 			get_ctx(ctx);
2822 			++ctx->pin_count;
2823 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2824 		}
2825 		mutex_unlock(&task->perf_event_mutex);
2826 
2827 		if (unlikely(err)) {
2828 			put_ctx(ctx);
2829 
2830 			if (err == -EAGAIN)
2831 				goto retry;
2832 			goto errout;
2833 		}
2834 	}
2835 
2836 	return ctx;
2837 
2838 errout:
2839 	return ERR_PTR(err);
2840 }
2841 
2842 static void perf_event_free_filter(struct perf_event *event);
2843 
2844 static void free_event_rcu(struct rcu_head *head)
2845 {
2846 	struct perf_event *event;
2847 
2848 	event = container_of(head, struct perf_event, rcu_head);
2849 	if (event->ns)
2850 		put_pid_ns(event->ns);
2851 	perf_event_free_filter(event);
2852 	kfree(event);
2853 }
2854 
2855 static void ring_buffer_put(struct ring_buffer *rb);
2856 
2857 static void free_event(struct perf_event *event)
2858 {
2859 	irq_work_sync(&event->pending);
2860 
2861 	if (!event->parent) {
2862 		if (event->attach_state & PERF_ATTACH_TASK)
2863 			static_key_slow_dec_deferred(&perf_sched_events);
2864 		if (event->attr.mmap || event->attr.mmap_data)
2865 			atomic_dec(&nr_mmap_events);
2866 		if (event->attr.comm)
2867 			atomic_dec(&nr_comm_events);
2868 		if (event->attr.task)
2869 			atomic_dec(&nr_task_events);
2870 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2871 			put_callchain_buffers();
2872 		if (is_cgroup_event(event)) {
2873 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2874 			static_key_slow_dec_deferred(&perf_sched_events);
2875 		}
2876 
2877 		if (has_branch_stack(event)) {
2878 			static_key_slow_dec_deferred(&perf_sched_events);
2879 			/* is system-wide event */
2880 			if (!(event->attach_state & PERF_ATTACH_TASK))
2881 				atomic_dec(&per_cpu(perf_branch_stack_events,
2882 						    event->cpu));
2883 		}
2884 	}
2885 
2886 	if (event->rb) {
2887 		ring_buffer_put(event->rb);
2888 		event->rb = NULL;
2889 	}
2890 
2891 	if (is_cgroup_event(event))
2892 		perf_detach_cgroup(event);
2893 
2894 	if (event->destroy)
2895 		event->destroy(event);
2896 
2897 	if (event->ctx)
2898 		put_ctx(event->ctx);
2899 
2900 	call_rcu(&event->rcu_head, free_event_rcu);
2901 }
2902 
2903 int perf_event_release_kernel(struct perf_event *event)
2904 {
2905 	struct perf_event_context *ctx = event->ctx;
2906 
2907 	WARN_ON_ONCE(ctx->parent_ctx);
2908 	/*
2909 	 * There are two ways this annotation is useful:
2910 	 *
2911 	 *  1) there is a lock recursion from perf_event_exit_task
2912 	 *     see the comment there.
2913 	 *
2914 	 *  2) there is a lock-inversion with mmap_sem through
2915 	 *     perf_event_read_group(), which takes faults while
2916 	 *     holding ctx->mutex, however this is called after
2917 	 *     the last filedesc died, so there is no possibility
2918 	 *     to trigger the AB-BA case.
2919 	 */
2920 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2921 	raw_spin_lock_irq(&ctx->lock);
2922 	perf_group_detach(event);
2923 	raw_spin_unlock_irq(&ctx->lock);
2924 	perf_remove_from_context(event);
2925 	mutex_unlock(&ctx->mutex);
2926 
2927 	free_event(event);
2928 
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2932 
2933 /*
2934  * Called when the last reference to the file is gone.
2935  */
2936 static int perf_release(struct inode *inode, struct file *file)
2937 {
2938 	struct perf_event *event = file->private_data;
2939 	struct task_struct *owner;
2940 
2941 	file->private_data = NULL;
2942 
2943 	rcu_read_lock();
2944 	owner = ACCESS_ONCE(event->owner);
2945 	/*
2946 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2947 	 * !owner it means the list deletion is complete and we can indeed
2948 	 * free this event, otherwise we need to serialize on
2949 	 * owner->perf_event_mutex.
2950 	 */
2951 	smp_read_barrier_depends();
2952 	if (owner) {
2953 		/*
2954 		 * Since delayed_put_task_struct() also drops the last
2955 		 * task reference we can safely take a new reference
2956 		 * while holding the rcu_read_lock().
2957 		 */
2958 		get_task_struct(owner);
2959 	}
2960 	rcu_read_unlock();
2961 
2962 	if (owner) {
2963 		mutex_lock(&owner->perf_event_mutex);
2964 		/*
2965 		 * We have to re-check the event->owner field, if it is cleared
2966 		 * we raced with perf_event_exit_task(), acquiring the mutex
2967 		 * ensured they're done, and we can proceed with freeing the
2968 		 * event.
2969 		 */
2970 		if (event->owner)
2971 			list_del_init(&event->owner_entry);
2972 		mutex_unlock(&owner->perf_event_mutex);
2973 		put_task_struct(owner);
2974 	}
2975 
2976 	return perf_event_release_kernel(event);
2977 }
2978 
2979 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2980 {
2981 	struct perf_event *child;
2982 	u64 total = 0;
2983 
2984 	*enabled = 0;
2985 	*running = 0;
2986 
2987 	mutex_lock(&event->child_mutex);
2988 	total += perf_event_read(event);
2989 	*enabled += event->total_time_enabled +
2990 			atomic64_read(&event->child_total_time_enabled);
2991 	*running += event->total_time_running +
2992 			atomic64_read(&event->child_total_time_running);
2993 
2994 	list_for_each_entry(child, &event->child_list, child_list) {
2995 		total += perf_event_read(child);
2996 		*enabled += child->total_time_enabled;
2997 		*running += child->total_time_running;
2998 	}
2999 	mutex_unlock(&event->child_mutex);
3000 
3001 	return total;
3002 }
3003 EXPORT_SYMBOL_GPL(perf_event_read_value);
3004 
3005 static int perf_event_read_group(struct perf_event *event,
3006 				   u64 read_format, char __user *buf)
3007 {
3008 	struct perf_event *leader = event->group_leader, *sub;
3009 	int n = 0, size = 0, ret = -EFAULT;
3010 	struct perf_event_context *ctx = leader->ctx;
3011 	u64 values[5];
3012 	u64 count, enabled, running;
3013 
3014 	mutex_lock(&ctx->mutex);
3015 	count = perf_event_read_value(leader, &enabled, &running);
3016 
3017 	values[n++] = 1 + leader->nr_siblings;
3018 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3019 		values[n++] = enabled;
3020 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3021 		values[n++] = running;
3022 	values[n++] = count;
3023 	if (read_format & PERF_FORMAT_ID)
3024 		values[n++] = primary_event_id(leader);
3025 
3026 	size = n * sizeof(u64);
3027 
3028 	if (copy_to_user(buf, values, size))
3029 		goto unlock;
3030 
3031 	ret = size;
3032 
3033 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3034 		n = 0;
3035 
3036 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3037 		if (read_format & PERF_FORMAT_ID)
3038 			values[n++] = primary_event_id(sub);
3039 
3040 		size = n * sizeof(u64);
3041 
3042 		if (copy_to_user(buf + ret, values, size)) {
3043 			ret = -EFAULT;
3044 			goto unlock;
3045 		}
3046 
3047 		ret += size;
3048 	}
3049 unlock:
3050 	mutex_unlock(&ctx->mutex);
3051 
3052 	return ret;
3053 }
3054 
3055 static int perf_event_read_one(struct perf_event *event,
3056 				 u64 read_format, char __user *buf)
3057 {
3058 	u64 enabled, running;
3059 	u64 values[4];
3060 	int n = 0;
3061 
3062 	values[n++] = perf_event_read_value(event, &enabled, &running);
3063 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3064 		values[n++] = enabled;
3065 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3066 		values[n++] = running;
3067 	if (read_format & PERF_FORMAT_ID)
3068 		values[n++] = primary_event_id(event);
3069 
3070 	if (copy_to_user(buf, values, n * sizeof(u64)))
3071 		return -EFAULT;
3072 
3073 	return n * sizeof(u64);
3074 }
3075 
3076 /*
3077  * Read the performance event - simple non blocking version for now
3078  */
3079 static ssize_t
3080 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3081 {
3082 	u64 read_format = event->attr.read_format;
3083 	int ret;
3084 
3085 	/*
3086 	 * Return end-of-file for a read on a event that is in
3087 	 * error state (i.e. because it was pinned but it couldn't be
3088 	 * scheduled on to the CPU at some point).
3089 	 */
3090 	if (event->state == PERF_EVENT_STATE_ERROR)
3091 		return 0;
3092 
3093 	if (count < event->read_size)
3094 		return -ENOSPC;
3095 
3096 	WARN_ON_ONCE(event->ctx->parent_ctx);
3097 	if (read_format & PERF_FORMAT_GROUP)
3098 		ret = perf_event_read_group(event, read_format, buf);
3099 	else
3100 		ret = perf_event_read_one(event, read_format, buf);
3101 
3102 	return ret;
3103 }
3104 
3105 static ssize_t
3106 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3107 {
3108 	struct perf_event *event = file->private_data;
3109 
3110 	return perf_read_hw(event, buf, count);
3111 }
3112 
3113 static unsigned int perf_poll(struct file *file, poll_table *wait)
3114 {
3115 	struct perf_event *event = file->private_data;
3116 	struct ring_buffer *rb;
3117 	unsigned int events = POLL_HUP;
3118 
3119 	/*
3120 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3121 	 * grabs the rb reference but perf_event_set_output() overrides it.
3122 	 * Here is the timeline for two threads T1, T2:
3123 	 * t0: T1, rb = rcu_dereference(event->rb)
3124 	 * t1: T2, old_rb = event->rb
3125 	 * t2: T2, event->rb = new rb
3126 	 * t3: T2, ring_buffer_detach(old_rb)
3127 	 * t4: T1, ring_buffer_attach(rb1)
3128 	 * t5: T1, poll_wait(event->waitq)
3129 	 *
3130 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3131 	 * thereby ensuring that the assignment of the new ring buffer
3132 	 * and the detachment of the old buffer appear atomic to perf_poll()
3133 	 */
3134 	mutex_lock(&event->mmap_mutex);
3135 
3136 	rcu_read_lock();
3137 	rb = rcu_dereference(event->rb);
3138 	if (rb) {
3139 		ring_buffer_attach(event, rb);
3140 		events = atomic_xchg(&rb->poll, 0);
3141 	}
3142 	rcu_read_unlock();
3143 
3144 	mutex_unlock(&event->mmap_mutex);
3145 
3146 	poll_wait(file, &event->waitq, wait);
3147 
3148 	return events;
3149 }
3150 
3151 static void perf_event_reset(struct perf_event *event)
3152 {
3153 	(void)perf_event_read(event);
3154 	local64_set(&event->count, 0);
3155 	perf_event_update_userpage(event);
3156 }
3157 
3158 /*
3159  * Holding the top-level event's child_mutex means that any
3160  * descendant process that has inherited this event will block
3161  * in sync_child_event if it goes to exit, thus satisfying the
3162  * task existence requirements of perf_event_enable/disable.
3163  */
3164 static void perf_event_for_each_child(struct perf_event *event,
3165 					void (*func)(struct perf_event *))
3166 {
3167 	struct perf_event *child;
3168 
3169 	WARN_ON_ONCE(event->ctx->parent_ctx);
3170 	mutex_lock(&event->child_mutex);
3171 	func(event);
3172 	list_for_each_entry(child, &event->child_list, child_list)
3173 		func(child);
3174 	mutex_unlock(&event->child_mutex);
3175 }
3176 
3177 static void perf_event_for_each(struct perf_event *event,
3178 				  void (*func)(struct perf_event *))
3179 {
3180 	struct perf_event_context *ctx = event->ctx;
3181 	struct perf_event *sibling;
3182 
3183 	WARN_ON_ONCE(ctx->parent_ctx);
3184 	mutex_lock(&ctx->mutex);
3185 	event = event->group_leader;
3186 
3187 	perf_event_for_each_child(event, func);
3188 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3189 		perf_event_for_each_child(sibling, func);
3190 	mutex_unlock(&ctx->mutex);
3191 }
3192 
3193 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3194 {
3195 	struct perf_event_context *ctx = event->ctx;
3196 	int ret = 0;
3197 	u64 value;
3198 
3199 	if (!is_sampling_event(event))
3200 		return -EINVAL;
3201 
3202 	if (copy_from_user(&value, arg, sizeof(value)))
3203 		return -EFAULT;
3204 
3205 	if (!value)
3206 		return -EINVAL;
3207 
3208 	raw_spin_lock_irq(&ctx->lock);
3209 	if (event->attr.freq) {
3210 		if (value > sysctl_perf_event_sample_rate) {
3211 			ret = -EINVAL;
3212 			goto unlock;
3213 		}
3214 
3215 		event->attr.sample_freq = value;
3216 	} else {
3217 		event->attr.sample_period = value;
3218 		event->hw.sample_period = value;
3219 	}
3220 unlock:
3221 	raw_spin_unlock_irq(&ctx->lock);
3222 
3223 	return ret;
3224 }
3225 
3226 static const struct file_operations perf_fops;
3227 
3228 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3229 {
3230 	struct file *file;
3231 
3232 	file = fget_light(fd, fput_needed);
3233 	if (!file)
3234 		return ERR_PTR(-EBADF);
3235 
3236 	if (file->f_op != &perf_fops) {
3237 		fput_light(file, *fput_needed);
3238 		*fput_needed = 0;
3239 		return ERR_PTR(-EBADF);
3240 	}
3241 
3242 	return file->private_data;
3243 }
3244 
3245 static int perf_event_set_output(struct perf_event *event,
3246 				 struct perf_event *output_event);
3247 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3248 
3249 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3250 {
3251 	struct perf_event *event = file->private_data;
3252 	void (*func)(struct perf_event *);
3253 	u32 flags = arg;
3254 
3255 	switch (cmd) {
3256 	case PERF_EVENT_IOC_ENABLE:
3257 		func = perf_event_enable;
3258 		break;
3259 	case PERF_EVENT_IOC_DISABLE:
3260 		func = perf_event_disable;
3261 		break;
3262 	case PERF_EVENT_IOC_RESET:
3263 		func = perf_event_reset;
3264 		break;
3265 
3266 	case PERF_EVENT_IOC_REFRESH:
3267 		return perf_event_refresh(event, arg);
3268 
3269 	case PERF_EVENT_IOC_PERIOD:
3270 		return perf_event_period(event, (u64 __user *)arg);
3271 
3272 	case PERF_EVENT_IOC_SET_OUTPUT:
3273 	{
3274 		struct perf_event *output_event = NULL;
3275 		int fput_needed = 0;
3276 		int ret;
3277 
3278 		if (arg != -1) {
3279 			output_event = perf_fget_light(arg, &fput_needed);
3280 			if (IS_ERR(output_event))
3281 				return PTR_ERR(output_event);
3282 		}
3283 
3284 		ret = perf_event_set_output(event, output_event);
3285 		if (output_event)
3286 			fput_light(output_event->filp, fput_needed);
3287 
3288 		return ret;
3289 	}
3290 
3291 	case PERF_EVENT_IOC_SET_FILTER:
3292 		return perf_event_set_filter(event, (void __user *)arg);
3293 
3294 	default:
3295 		return -ENOTTY;
3296 	}
3297 
3298 	if (flags & PERF_IOC_FLAG_GROUP)
3299 		perf_event_for_each(event, func);
3300 	else
3301 		perf_event_for_each_child(event, func);
3302 
3303 	return 0;
3304 }
3305 
3306 int perf_event_task_enable(void)
3307 {
3308 	struct perf_event *event;
3309 
3310 	mutex_lock(&current->perf_event_mutex);
3311 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3312 		perf_event_for_each_child(event, perf_event_enable);
3313 	mutex_unlock(&current->perf_event_mutex);
3314 
3315 	return 0;
3316 }
3317 
3318 int perf_event_task_disable(void)
3319 {
3320 	struct perf_event *event;
3321 
3322 	mutex_lock(&current->perf_event_mutex);
3323 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3324 		perf_event_for_each_child(event, perf_event_disable);
3325 	mutex_unlock(&current->perf_event_mutex);
3326 
3327 	return 0;
3328 }
3329 
3330 static int perf_event_index(struct perf_event *event)
3331 {
3332 	if (event->hw.state & PERF_HES_STOPPED)
3333 		return 0;
3334 
3335 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3336 		return 0;
3337 
3338 	return event->pmu->event_idx(event);
3339 }
3340 
3341 static void calc_timer_values(struct perf_event *event,
3342 				u64 *now,
3343 				u64 *enabled,
3344 				u64 *running)
3345 {
3346 	u64 ctx_time;
3347 
3348 	*now = perf_clock();
3349 	ctx_time = event->shadow_ctx_time + *now;
3350 	*enabled = ctx_time - event->tstamp_enabled;
3351 	*running = ctx_time - event->tstamp_running;
3352 }
3353 
3354 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3355 {
3356 }
3357 
3358 /*
3359  * Callers need to ensure there can be no nesting of this function, otherwise
3360  * the seqlock logic goes bad. We can not serialize this because the arch
3361  * code calls this from NMI context.
3362  */
3363 void perf_event_update_userpage(struct perf_event *event)
3364 {
3365 	struct perf_event_mmap_page *userpg;
3366 	struct ring_buffer *rb;
3367 	u64 enabled, running, now;
3368 
3369 	rcu_read_lock();
3370 	/*
3371 	 * compute total_time_enabled, total_time_running
3372 	 * based on snapshot values taken when the event
3373 	 * was last scheduled in.
3374 	 *
3375 	 * we cannot simply called update_context_time()
3376 	 * because of locking issue as we can be called in
3377 	 * NMI context
3378 	 */
3379 	calc_timer_values(event, &now, &enabled, &running);
3380 	rb = rcu_dereference(event->rb);
3381 	if (!rb)
3382 		goto unlock;
3383 
3384 	userpg = rb->user_page;
3385 
3386 	/*
3387 	 * Disable preemption so as to not let the corresponding user-space
3388 	 * spin too long if we get preempted.
3389 	 */
3390 	preempt_disable();
3391 	++userpg->lock;
3392 	barrier();
3393 	userpg->index = perf_event_index(event);
3394 	userpg->offset = perf_event_count(event);
3395 	if (userpg->index)
3396 		userpg->offset -= local64_read(&event->hw.prev_count);
3397 
3398 	userpg->time_enabled = enabled +
3399 			atomic64_read(&event->child_total_time_enabled);
3400 
3401 	userpg->time_running = running +
3402 			atomic64_read(&event->child_total_time_running);
3403 
3404 	arch_perf_update_userpage(userpg, now);
3405 
3406 	barrier();
3407 	++userpg->lock;
3408 	preempt_enable();
3409 unlock:
3410 	rcu_read_unlock();
3411 }
3412 
3413 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3414 {
3415 	struct perf_event *event = vma->vm_file->private_data;
3416 	struct ring_buffer *rb;
3417 	int ret = VM_FAULT_SIGBUS;
3418 
3419 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3420 		if (vmf->pgoff == 0)
3421 			ret = 0;
3422 		return ret;
3423 	}
3424 
3425 	rcu_read_lock();
3426 	rb = rcu_dereference(event->rb);
3427 	if (!rb)
3428 		goto unlock;
3429 
3430 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3431 		goto unlock;
3432 
3433 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3434 	if (!vmf->page)
3435 		goto unlock;
3436 
3437 	get_page(vmf->page);
3438 	vmf->page->mapping = vma->vm_file->f_mapping;
3439 	vmf->page->index   = vmf->pgoff;
3440 
3441 	ret = 0;
3442 unlock:
3443 	rcu_read_unlock();
3444 
3445 	return ret;
3446 }
3447 
3448 static void ring_buffer_attach(struct perf_event *event,
3449 			       struct ring_buffer *rb)
3450 {
3451 	unsigned long flags;
3452 
3453 	if (!list_empty(&event->rb_entry))
3454 		return;
3455 
3456 	spin_lock_irqsave(&rb->event_lock, flags);
3457 	if (!list_empty(&event->rb_entry))
3458 		goto unlock;
3459 
3460 	list_add(&event->rb_entry, &rb->event_list);
3461 unlock:
3462 	spin_unlock_irqrestore(&rb->event_lock, flags);
3463 }
3464 
3465 static void ring_buffer_detach(struct perf_event *event,
3466 			       struct ring_buffer *rb)
3467 {
3468 	unsigned long flags;
3469 
3470 	if (list_empty(&event->rb_entry))
3471 		return;
3472 
3473 	spin_lock_irqsave(&rb->event_lock, flags);
3474 	list_del_init(&event->rb_entry);
3475 	wake_up_all(&event->waitq);
3476 	spin_unlock_irqrestore(&rb->event_lock, flags);
3477 }
3478 
3479 static void ring_buffer_wakeup(struct perf_event *event)
3480 {
3481 	struct ring_buffer *rb;
3482 
3483 	rcu_read_lock();
3484 	rb = rcu_dereference(event->rb);
3485 	if (!rb)
3486 		goto unlock;
3487 
3488 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3489 		wake_up_all(&event->waitq);
3490 
3491 unlock:
3492 	rcu_read_unlock();
3493 }
3494 
3495 static void rb_free_rcu(struct rcu_head *rcu_head)
3496 {
3497 	struct ring_buffer *rb;
3498 
3499 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3500 	rb_free(rb);
3501 }
3502 
3503 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3504 {
3505 	struct ring_buffer *rb;
3506 
3507 	rcu_read_lock();
3508 	rb = rcu_dereference(event->rb);
3509 	if (rb) {
3510 		if (!atomic_inc_not_zero(&rb->refcount))
3511 			rb = NULL;
3512 	}
3513 	rcu_read_unlock();
3514 
3515 	return rb;
3516 }
3517 
3518 static void ring_buffer_put(struct ring_buffer *rb)
3519 {
3520 	struct perf_event *event, *n;
3521 	unsigned long flags;
3522 
3523 	if (!atomic_dec_and_test(&rb->refcount))
3524 		return;
3525 
3526 	spin_lock_irqsave(&rb->event_lock, flags);
3527 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3528 		list_del_init(&event->rb_entry);
3529 		wake_up_all(&event->waitq);
3530 	}
3531 	spin_unlock_irqrestore(&rb->event_lock, flags);
3532 
3533 	call_rcu(&rb->rcu_head, rb_free_rcu);
3534 }
3535 
3536 static void perf_mmap_open(struct vm_area_struct *vma)
3537 {
3538 	struct perf_event *event = vma->vm_file->private_data;
3539 
3540 	atomic_inc(&event->mmap_count);
3541 }
3542 
3543 static void perf_mmap_close(struct vm_area_struct *vma)
3544 {
3545 	struct perf_event *event = vma->vm_file->private_data;
3546 
3547 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3548 		unsigned long size = perf_data_size(event->rb);
3549 		struct user_struct *user = event->mmap_user;
3550 		struct ring_buffer *rb = event->rb;
3551 
3552 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3553 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3554 		rcu_assign_pointer(event->rb, NULL);
3555 		ring_buffer_detach(event, rb);
3556 		mutex_unlock(&event->mmap_mutex);
3557 
3558 		ring_buffer_put(rb);
3559 		free_uid(user);
3560 	}
3561 }
3562 
3563 static const struct vm_operations_struct perf_mmap_vmops = {
3564 	.open		= perf_mmap_open,
3565 	.close		= perf_mmap_close,
3566 	.fault		= perf_mmap_fault,
3567 	.page_mkwrite	= perf_mmap_fault,
3568 };
3569 
3570 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3571 {
3572 	struct perf_event *event = file->private_data;
3573 	unsigned long user_locked, user_lock_limit;
3574 	struct user_struct *user = current_user();
3575 	unsigned long locked, lock_limit;
3576 	struct ring_buffer *rb;
3577 	unsigned long vma_size;
3578 	unsigned long nr_pages;
3579 	long user_extra, extra;
3580 	int ret = 0, flags = 0;
3581 
3582 	/*
3583 	 * Don't allow mmap() of inherited per-task counters. This would
3584 	 * create a performance issue due to all children writing to the
3585 	 * same rb.
3586 	 */
3587 	if (event->cpu == -1 && event->attr.inherit)
3588 		return -EINVAL;
3589 
3590 	if (!(vma->vm_flags & VM_SHARED))
3591 		return -EINVAL;
3592 
3593 	vma_size = vma->vm_end - vma->vm_start;
3594 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3595 
3596 	/*
3597 	 * If we have rb pages ensure they're a power-of-two number, so we
3598 	 * can do bitmasks instead of modulo.
3599 	 */
3600 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3601 		return -EINVAL;
3602 
3603 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3604 		return -EINVAL;
3605 
3606 	if (vma->vm_pgoff != 0)
3607 		return -EINVAL;
3608 
3609 	WARN_ON_ONCE(event->ctx->parent_ctx);
3610 	mutex_lock(&event->mmap_mutex);
3611 	if (event->rb) {
3612 		if (event->rb->nr_pages == nr_pages)
3613 			atomic_inc(&event->rb->refcount);
3614 		else
3615 			ret = -EINVAL;
3616 		goto unlock;
3617 	}
3618 
3619 	user_extra = nr_pages + 1;
3620 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3621 
3622 	/*
3623 	 * Increase the limit linearly with more CPUs:
3624 	 */
3625 	user_lock_limit *= num_online_cpus();
3626 
3627 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3628 
3629 	extra = 0;
3630 	if (user_locked > user_lock_limit)
3631 		extra = user_locked - user_lock_limit;
3632 
3633 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3634 	lock_limit >>= PAGE_SHIFT;
3635 	locked = vma->vm_mm->pinned_vm + extra;
3636 
3637 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3638 		!capable(CAP_IPC_LOCK)) {
3639 		ret = -EPERM;
3640 		goto unlock;
3641 	}
3642 
3643 	WARN_ON(event->rb);
3644 
3645 	if (vma->vm_flags & VM_WRITE)
3646 		flags |= RING_BUFFER_WRITABLE;
3647 
3648 	rb = rb_alloc(nr_pages,
3649 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3650 		event->cpu, flags);
3651 
3652 	if (!rb) {
3653 		ret = -ENOMEM;
3654 		goto unlock;
3655 	}
3656 	rcu_assign_pointer(event->rb, rb);
3657 
3658 	atomic_long_add(user_extra, &user->locked_vm);
3659 	event->mmap_locked = extra;
3660 	event->mmap_user = get_current_user();
3661 	vma->vm_mm->pinned_vm += event->mmap_locked;
3662 
3663 	perf_event_update_userpage(event);
3664 
3665 unlock:
3666 	if (!ret)
3667 		atomic_inc(&event->mmap_count);
3668 	mutex_unlock(&event->mmap_mutex);
3669 
3670 	vma->vm_flags |= VM_RESERVED;
3671 	vma->vm_ops = &perf_mmap_vmops;
3672 
3673 	return ret;
3674 }
3675 
3676 static int perf_fasync(int fd, struct file *filp, int on)
3677 {
3678 	struct inode *inode = filp->f_path.dentry->d_inode;
3679 	struct perf_event *event = filp->private_data;
3680 	int retval;
3681 
3682 	mutex_lock(&inode->i_mutex);
3683 	retval = fasync_helper(fd, filp, on, &event->fasync);
3684 	mutex_unlock(&inode->i_mutex);
3685 
3686 	if (retval < 0)
3687 		return retval;
3688 
3689 	return 0;
3690 }
3691 
3692 static const struct file_operations perf_fops = {
3693 	.llseek			= no_llseek,
3694 	.release		= perf_release,
3695 	.read			= perf_read,
3696 	.poll			= perf_poll,
3697 	.unlocked_ioctl		= perf_ioctl,
3698 	.compat_ioctl		= perf_ioctl,
3699 	.mmap			= perf_mmap,
3700 	.fasync			= perf_fasync,
3701 };
3702 
3703 /*
3704  * Perf event wakeup
3705  *
3706  * If there's data, ensure we set the poll() state and publish everything
3707  * to user-space before waking everybody up.
3708  */
3709 
3710 void perf_event_wakeup(struct perf_event *event)
3711 {
3712 	ring_buffer_wakeup(event);
3713 
3714 	if (event->pending_kill) {
3715 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3716 		event->pending_kill = 0;
3717 	}
3718 }
3719 
3720 static void perf_pending_event(struct irq_work *entry)
3721 {
3722 	struct perf_event *event = container_of(entry,
3723 			struct perf_event, pending);
3724 
3725 	if (event->pending_disable) {
3726 		event->pending_disable = 0;
3727 		__perf_event_disable(event);
3728 	}
3729 
3730 	if (event->pending_wakeup) {
3731 		event->pending_wakeup = 0;
3732 		perf_event_wakeup(event);
3733 	}
3734 }
3735 
3736 /*
3737  * We assume there is only KVM supporting the callbacks.
3738  * Later on, we might change it to a list if there is
3739  * another virtualization implementation supporting the callbacks.
3740  */
3741 struct perf_guest_info_callbacks *perf_guest_cbs;
3742 
3743 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3744 {
3745 	perf_guest_cbs = cbs;
3746 	return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3749 
3750 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3751 {
3752 	perf_guest_cbs = NULL;
3753 	return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3756 
3757 static void __perf_event_header__init_id(struct perf_event_header *header,
3758 					 struct perf_sample_data *data,
3759 					 struct perf_event *event)
3760 {
3761 	u64 sample_type = event->attr.sample_type;
3762 
3763 	data->type = sample_type;
3764 	header->size += event->id_header_size;
3765 
3766 	if (sample_type & PERF_SAMPLE_TID) {
3767 		/* namespace issues */
3768 		data->tid_entry.pid = perf_event_pid(event, current);
3769 		data->tid_entry.tid = perf_event_tid(event, current);
3770 	}
3771 
3772 	if (sample_type & PERF_SAMPLE_TIME)
3773 		data->time = perf_clock();
3774 
3775 	if (sample_type & PERF_SAMPLE_ID)
3776 		data->id = primary_event_id(event);
3777 
3778 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3779 		data->stream_id = event->id;
3780 
3781 	if (sample_type & PERF_SAMPLE_CPU) {
3782 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3783 		data->cpu_entry.reserved = 0;
3784 	}
3785 }
3786 
3787 void perf_event_header__init_id(struct perf_event_header *header,
3788 				struct perf_sample_data *data,
3789 				struct perf_event *event)
3790 {
3791 	if (event->attr.sample_id_all)
3792 		__perf_event_header__init_id(header, data, event);
3793 }
3794 
3795 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3796 					   struct perf_sample_data *data)
3797 {
3798 	u64 sample_type = data->type;
3799 
3800 	if (sample_type & PERF_SAMPLE_TID)
3801 		perf_output_put(handle, data->tid_entry);
3802 
3803 	if (sample_type & PERF_SAMPLE_TIME)
3804 		perf_output_put(handle, data->time);
3805 
3806 	if (sample_type & PERF_SAMPLE_ID)
3807 		perf_output_put(handle, data->id);
3808 
3809 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3810 		perf_output_put(handle, data->stream_id);
3811 
3812 	if (sample_type & PERF_SAMPLE_CPU)
3813 		perf_output_put(handle, data->cpu_entry);
3814 }
3815 
3816 void perf_event__output_id_sample(struct perf_event *event,
3817 				  struct perf_output_handle *handle,
3818 				  struct perf_sample_data *sample)
3819 {
3820 	if (event->attr.sample_id_all)
3821 		__perf_event__output_id_sample(handle, sample);
3822 }
3823 
3824 static void perf_output_read_one(struct perf_output_handle *handle,
3825 				 struct perf_event *event,
3826 				 u64 enabled, u64 running)
3827 {
3828 	u64 read_format = event->attr.read_format;
3829 	u64 values[4];
3830 	int n = 0;
3831 
3832 	values[n++] = perf_event_count(event);
3833 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3834 		values[n++] = enabled +
3835 			atomic64_read(&event->child_total_time_enabled);
3836 	}
3837 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3838 		values[n++] = running +
3839 			atomic64_read(&event->child_total_time_running);
3840 	}
3841 	if (read_format & PERF_FORMAT_ID)
3842 		values[n++] = primary_event_id(event);
3843 
3844 	__output_copy(handle, values, n * sizeof(u64));
3845 }
3846 
3847 /*
3848  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3849  */
3850 static void perf_output_read_group(struct perf_output_handle *handle,
3851 			    struct perf_event *event,
3852 			    u64 enabled, u64 running)
3853 {
3854 	struct perf_event *leader = event->group_leader, *sub;
3855 	u64 read_format = event->attr.read_format;
3856 	u64 values[5];
3857 	int n = 0;
3858 
3859 	values[n++] = 1 + leader->nr_siblings;
3860 
3861 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3862 		values[n++] = enabled;
3863 
3864 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3865 		values[n++] = running;
3866 
3867 	if (leader != event)
3868 		leader->pmu->read(leader);
3869 
3870 	values[n++] = perf_event_count(leader);
3871 	if (read_format & PERF_FORMAT_ID)
3872 		values[n++] = primary_event_id(leader);
3873 
3874 	__output_copy(handle, values, n * sizeof(u64));
3875 
3876 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3877 		n = 0;
3878 
3879 		if (sub != event)
3880 			sub->pmu->read(sub);
3881 
3882 		values[n++] = perf_event_count(sub);
3883 		if (read_format & PERF_FORMAT_ID)
3884 			values[n++] = primary_event_id(sub);
3885 
3886 		__output_copy(handle, values, n * sizeof(u64));
3887 	}
3888 }
3889 
3890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3891 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3892 
3893 static void perf_output_read(struct perf_output_handle *handle,
3894 			     struct perf_event *event)
3895 {
3896 	u64 enabled = 0, running = 0, now;
3897 	u64 read_format = event->attr.read_format;
3898 
3899 	/*
3900 	 * compute total_time_enabled, total_time_running
3901 	 * based on snapshot values taken when the event
3902 	 * was last scheduled in.
3903 	 *
3904 	 * we cannot simply called update_context_time()
3905 	 * because of locking issue as we are called in
3906 	 * NMI context
3907 	 */
3908 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3909 		calc_timer_values(event, &now, &enabled, &running);
3910 
3911 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3912 		perf_output_read_group(handle, event, enabled, running);
3913 	else
3914 		perf_output_read_one(handle, event, enabled, running);
3915 }
3916 
3917 void perf_output_sample(struct perf_output_handle *handle,
3918 			struct perf_event_header *header,
3919 			struct perf_sample_data *data,
3920 			struct perf_event *event)
3921 {
3922 	u64 sample_type = data->type;
3923 
3924 	perf_output_put(handle, *header);
3925 
3926 	if (sample_type & PERF_SAMPLE_IP)
3927 		perf_output_put(handle, data->ip);
3928 
3929 	if (sample_type & PERF_SAMPLE_TID)
3930 		perf_output_put(handle, data->tid_entry);
3931 
3932 	if (sample_type & PERF_SAMPLE_TIME)
3933 		perf_output_put(handle, data->time);
3934 
3935 	if (sample_type & PERF_SAMPLE_ADDR)
3936 		perf_output_put(handle, data->addr);
3937 
3938 	if (sample_type & PERF_SAMPLE_ID)
3939 		perf_output_put(handle, data->id);
3940 
3941 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3942 		perf_output_put(handle, data->stream_id);
3943 
3944 	if (sample_type & PERF_SAMPLE_CPU)
3945 		perf_output_put(handle, data->cpu_entry);
3946 
3947 	if (sample_type & PERF_SAMPLE_PERIOD)
3948 		perf_output_put(handle, data->period);
3949 
3950 	if (sample_type & PERF_SAMPLE_READ)
3951 		perf_output_read(handle, event);
3952 
3953 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3954 		if (data->callchain) {
3955 			int size = 1;
3956 
3957 			if (data->callchain)
3958 				size += data->callchain->nr;
3959 
3960 			size *= sizeof(u64);
3961 
3962 			__output_copy(handle, data->callchain, size);
3963 		} else {
3964 			u64 nr = 0;
3965 			perf_output_put(handle, nr);
3966 		}
3967 	}
3968 
3969 	if (sample_type & PERF_SAMPLE_RAW) {
3970 		if (data->raw) {
3971 			perf_output_put(handle, data->raw->size);
3972 			__output_copy(handle, data->raw->data,
3973 					   data->raw->size);
3974 		} else {
3975 			struct {
3976 				u32	size;
3977 				u32	data;
3978 			} raw = {
3979 				.size = sizeof(u32),
3980 				.data = 0,
3981 			};
3982 			perf_output_put(handle, raw);
3983 		}
3984 	}
3985 
3986 	if (!event->attr.watermark) {
3987 		int wakeup_events = event->attr.wakeup_events;
3988 
3989 		if (wakeup_events) {
3990 			struct ring_buffer *rb = handle->rb;
3991 			int events = local_inc_return(&rb->events);
3992 
3993 			if (events >= wakeup_events) {
3994 				local_sub(wakeup_events, &rb->events);
3995 				local_inc(&rb->wakeup);
3996 			}
3997 		}
3998 	}
3999 
4000 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4001 		if (data->br_stack) {
4002 			size_t size;
4003 
4004 			size = data->br_stack->nr
4005 			     * sizeof(struct perf_branch_entry);
4006 
4007 			perf_output_put(handle, data->br_stack->nr);
4008 			perf_output_copy(handle, data->br_stack->entries, size);
4009 		} else {
4010 			/*
4011 			 * we always store at least the value of nr
4012 			 */
4013 			u64 nr = 0;
4014 			perf_output_put(handle, nr);
4015 		}
4016 	}
4017 }
4018 
4019 void perf_prepare_sample(struct perf_event_header *header,
4020 			 struct perf_sample_data *data,
4021 			 struct perf_event *event,
4022 			 struct pt_regs *regs)
4023 {
4024 	u64 sample_type = event->attr.sample_type;
4025 
4026 	header->type = PERF_RECORD_SAMPLE;
4027 	header->size = sizeof(*header) + event->header_size;
4028 
4029 	header->misc = 0;
4030 	header->misc |= perf_misc_flags(regs);
4031 
4032 	__perf_event_header__init_id(header, data, event);
4033 
4034 	if (sample_type & PERF_SAMPLE_IP)
4035 		data->ip = perf_instruction_pointer(regs);
4036 
4037 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4038 		int size = 1;
4039 
4040 		data->callchain = perf_callchain(regs);
4041 
4042 		if (data->callchain)
4043 			size += data->callchain->nr;
4044 
4045 		header->size += size * sizeof(u64);
4046 	}
4047 
4048 	if (sample_type & PERF_SAMPLE_RAW) {
4049 		int size = sizeof(u32);
4050 
4051 		if (data->raw)
4052 			size += data->raw->size;
4053 		else
4054 			size += sizeof(u32);
4055 
4056 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4057 		header->size += size;
4058 	}
4059 
4060 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4061 		int size = sizeof(u64); /* nr */
4062 		if (data->br_stack) {
4063 			size += data->br_stack->nr
4064 			      * sizeof(struct perf_branch_entry);
4065 		}
4066 		header->size += size;
4067 	}
4068 }
4069 
4070 static void perf_event_output(struct perf_event *event,
4071 				struct perf_sample_data *data,
4072 				struct pt_regs *regs)
4073 {
4074 	struct perf_output_handle handle;
4075 	struct perf_event_header header;
4076 
4077 	/* protect the callchain buffers */
4078 	rcu_read_lock();
4079 
4080 	perf_prepare_sample(&header, data, event, regs);
4081 
4082 	if (perf_output_begin(&handle, event, header.size))
4083 		goto exit;
4084 
4085 	perf_output_sample(&handle, &header, data, event);
4086 
4087 	perf_output_end(&handle);
4088 
4089 exit:
4090 	rcu_read_unlock();
4091 }
4092 
4093 /*
4094  * read event_id
4095  */
4096 
4097 struct perf_read_event {
4098 	struct perf_event_header	header;
4099 
4100 	u32				pid;
4101 	u32				tid;
4102 };
4103 
4104 static void
4105 perf_event_read_event(struct perf_event *event,
4106 			struct task_struct *task)
4107 {
4108 	struct perf_output_handle handle;
4109 	struct perf_sample_data sample;
4110 	struct perf_read_event read_event = {
4111 		.header = {
4112 			.type = PERF_RECORD_READ,
4113 			.misc = 0,
4114 			.size = sizeof(read_event) + event->read_size,
4115 		},
4116 		.pid = perf_event_pid(event, task),
4117 		.tid = perf_event_tid(event, task),
4118 	};
4119 	int ret;
4120 
4121 	perf_event_header__init_id(&read_event.header, &sample, event);
4122 	ret = perf_output_begin(&handle, event, read_event.header.size);
4123 	if (ret)
4124 		return;
4125 
4126 	perf_output_put(&handle, read_event);
4127 	perf_output_read(&handle, event);
4128 	perf_event__output_id_sample(event, &handle, &sample);
4129 
4130 	perf_output_end(&handle);
4131 }
4132 
4133 /*
4134  * task tracking -- fork/exit
4135  *
4136  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4137  */
4138 
4139 struct perf_task_event {
4140 	struct task_struct		*task;
4141 	struct perf_event_context	*task_ctx;
4142 
4143 	struct {
4144 		struct perf_event_header	header;
4145 
4146 		u32				pid;
4147 		u32				ppid;
4148 		u32				tid;
4149 		u32				ptid;
4150 		u64				time;
4151 	} event_id;
4152 };
4153 
4154 static void perf_event_task_output(struct perf_event *event,
4155 				     struct perf_task_event *task_event)
4156 {
4157 	struct perf_output_handle handle;
4158 	struct perf_sample_data	sample;
4159 	struct task_struct *task = task_event->task;
4160 	int ret, size = task_event->event_id.header.size;
4161 
4162 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4163 
4164 	ret = perf_output_begin(&handle, event,
4165 				task_event->event_id.header.size);
4166 	if (ret)
4167 		goto out;
4168 
4169 	task_event->event_id.pid = perf_event_pid(event, task);
4170 	task_event->event_id.ppid = perf_event_pid(event, current);
4171 
4172 	task_event->event_id.tid = perf_event_tid(event, task);
4173 	task_event->event_id.ptid = perf_event_tid(event, current);
4174 
4175 	perf_output_put(&handle, task_event->event_id);
4176 
4177 	perf_event__output_id_sample(event, &handle, &sample);
4178 
4179 	perf_output_end(&handle);
4180 out:
4181 	task_event->event_id.header.size = size;
4182 }
4183 
4184 static int perf_event_task_match(struct perf_event *event)
4185 {
4186 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4187 		return 0;
4188 
4189 	if (!event_filter_match(event))
4190 		return 0;
4191 
4192 	if (event->attr.comm || event->attr.mmap ||
4193 	    event->attr.mmap_data || event->attr.task)
4194 		return 1;
4195 
4196 	return 0;
4197 }
4198 
4199 static void perf_event_task_ctx(struct perf_event_context *ctx,
4200 				  struct perf_task_event *task_event)
4201 {
4202 	struct perf_event *event;
4203 
4204 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4205 		if (perf_event_task_match(event))
4206 			perf_event_task_output(event, task_event);
4207 	}
4208 }
4209 
4210 static void perf_event_task_event(struct perf_task_event *task_event)
4211 {
4212 	struct perf_cpu_context *cpuctx;
4213 	struct perf_event_context *ctx;
4214 	struct pmu *pmu;
4215 	int ctxn;
4216 
4217 	rcu_read_lock();
4218 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4219 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4220 		if (cpuctx->active_pmu != pmu)
4221 			goto next;
4222 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4223 
4224 		ctx = task_event->task_ctx;
4225 		if (!ctx) {
4226 			ctxn = pmu->task_ctx_nr;
4227 			if (ctxn < 0)
4228 				goto next;
4229 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4230 		}
4231 		if (ctx)
4232 			perf_event_task_ctx(ctx, task_event);
4233 next:
4234 		put_cpu_ptr(pmu->pmu_cpu_context);
4235 	}
4236 	rcu_read_unlock();
4237 }
4238 
4239 static void perf_event_task(struct task_struct *task,
4240 			      struct perf_event_context *task_ctx,
4241 			      int new)
4242 {
4243 	struct perf_task_event task_event;
4244 
4245 	if (!atomic_read(&nr_comm_events) &&
4246 	    !atomic_read(&nr_mmap_events) &&
4247 	    !atomic_read(&nr_task_events))
4248 		return;
4249 
4250 	task_event = (struct perf_task_event){
4251 		.task	  = task,
4252 		.task_ctx = task_ctx,
4253 		.event_id    = {
4254 			.header = {
4255 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4256 				.misc = 0,
4257 				.size = sizeof(task_event.event_id),
4258 			},
4259 			/* .pid  */
4260 			/* .ppid */
4261 			/* .tid  */
4262 			/* .ptid */
4263 			.time = perf_clock(),
4264 		},
4265 	};
4266 
4267 	perf_event_task_event(&task_event);
4268 }
4269 
4270 void perf_event_fork(struct task_struct *task)
4271 {
4272 	perf_event_task(task, NULL, 1);
4273 }
4274 
4275 /*
4276  * comm tracking
4277  */
4278 
4279 struct perf_comm_event {
4280 	struct task_struct	*task;
4281 	char			*comm;
4282 	int			comm_size;
4283 
4284 	struct {
4285 		struct perf_event_header	header;
4286 
4287 		u32				pid;
4288 		u32				tid;
4289 	} event_id;
4290 };
4291 
4292 static void perf_event_comm_output(struct perf_event *event,
4293 				     struct perf_comm_event *comm_event)
4294 {
4295 	struct perf_output_handle handle;
4296 	struct perf_sample_data sample;
4297 	int size = comm_event->event_id.header.size;
4298 	int ret;
4299 
4300 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4301 	ret = perf_output_begin(&handle, event,
4302 				comm_event->event_id.header.size);
4303 
4304 	if (ret)
4305 		goto out;
4306 
4307 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4308 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4309 
4310 	perf_output_put(&handle, comm_event->event_id);
4311 	__output_copy(&handle, comm_event->comm,
4312 				   comm_event->comm_size);
4313 
4314 	perf_event__output_id_sample(event, &handle, &sample);
4315 
4316 	perf_output_end(&handle);
4317 out:
4318 	comm_event->event_id.header.size = size;
4319 }
4320 
4321 static int perf_event_comm_match(struct perf_event *event)
4322 {
4323 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4324 		return 0;
4325 
4326 	if (!event_filter_match(event))
4327 		return 0;
4328 
4329 	if (event->attr.comm)
4330 		return 1;
4331 
4332 	return 0;
4333 }
4334 
4335 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4336 				  struct perf_comm_event *comm_event)
4337 {
4338 	struct perf_event *event;
4339 
4340 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4341 		if (perf_event_comm_match(event))
4342 			perf_event_comm_output(event, comm_event);
4343 	}
4344 }
4345 
4346 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4347 {
4348 	struct perf_cpu_context *cpuctx;
4349 	struct perf_event_context *ctx;
4350 	char comm[TASK_COMM_LEN];
4351 	unsigned int size;
4352 	struct pmu *pmu;
4353 	int ctxn;
4354 
4355 	memset(comm, 0, sizeof(comm));
4356 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4357 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4358 
4359 	comm_event->comm = comm;
4360 	comm_event->comm_size = size;
4361 
4362 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4363 	rcu_read_lock();
4364 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4365 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4366 		if (cpuctx->active_pmu != pmu)
4367 			goto next;
4368 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4369 
4370 		ctxn = pmu->task_ctx_nr;
4371 		if (ctxn < 0)
4372 			goto next;
4373 
4374 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4375 		if (ctx)
4376 			perf_event_comm_ctx(ctx, comm_event);
4377 next:
4378 		put_cpu_ptr(pmu->pmu_cpu_context);
4379 	}
4380 	rcu_read_unlock();
4381 }
4382 
4383 void perf_event_comm(struct task_struct *task)
4384 {
4385 	struct perf_comm_event comm_event;
4386 	struct perf_event_context *ctx;
4387 	int ctxn;
4388 
4389 	for_each_task_context_nr(ctxn) {
4390 		ctx = task->perf_event_ctxp[ctxn];
4391 		if (!ctx)
4392 			continue;
4393 
4394 		perf_event_enable_on_exec(ctx);
4395 	}
4396 
4397 	if (!atomic_read(&nr_comm_events))
4398 		return;
4399 
4400 	comm_event = (struct perf_comm_event){
4401 		.task	= task,
4402 		/* .comm      */
4403 		/* .comm_size */
4404 		.event_id  = {
4405 			.header = {
4406 				.type = PERF_RECORD_COMM,
4407 				.misc = 0,
4408 				/* .size */
4409 			},
4410 			/* .pid */
4411 			/* .tid */
4412 		},
4413 	};
4414 
4415 	perf_event_comm_event(&comm_event);
4416 }
4417 
4418 /*
4419  * mmap tracking
4420  */
4421 
4422 struct perf_mmap_event {
4423 	struct vm_area_struct	*vma;
4424 
4425 	const char		*file_name;
4426 	int			file_size;
4427 
4428 	struct {
4429 		struct perf_event_header	header;
4430 
4431 		u32				pid;
4432 		u32				tid;
4433 		u64				start;
4434 		u64				len;
4435 		u64				pgoff;
4436 	} event_id;
4437 };
4438 
4439 static void perf_event_mmap_output(struct perf_event *event,
4440 				     struct perf_mmap_event *mmap_event)
4441 {
4442 	struct perf_output_handle handle;
4443 	struct perf_sample_data sample;
4444 	int size = mmap_event->event_id.header.size;
4445 	int ret;
4446 
4447 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4448 	ret = perf_output_begin(&handle, event,
4449 				mmap_event->event_id.header.size);
4450 	if (ret)
4451 		goto out;
4452 
4453 	mmap_event->event_id.pid = perf_event_pid(event, current);
4454 	mmap_event->event_id.tid = perf_event_tid(event, current);
4455 
4456 	perf_output_put(&handle, mmap_event->event_id);
4457 	__output_copy(&handle, mmap_event->file_name,
4458 				   mmap_event->file_size);
4459 
4460 	perf_event__output_id_sample(event, &handle, &sample);
4461 
4462 	perf_output_end(&handle);
4463 out:
4464 	mmap_event->event_id.header.size = size;
4465 }
4466 
4467 static int perf_event_mmap_match(struct perf_event *event,
4468 				   struct perf_mmap_event *mmap_event,
4469 				   int executable)
4470 {
4471 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4472 		return 0;
4473 
4474 	if (!event_filter_match(event))
4475 		return 0;
4476 
4477 	if ((!executable && event->attr.mmap_data) ||
4478 	    (executable && event->attr.mmap))
4479 		return 1;
4480 
4481 	return 0;
4482 }
4483 
4484 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4485 				  struct perf_mmap_event *mmap_event,
4486 				  int executable)
4487 {
4488 	struct perf_event *event;
4489 
4490 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4491 		if (perf_event_mmap_match(event, mmap_event, executable))
4492 			perf_event_mmap_output(event, mmap_event);
4493 	}
4494 }
4495 
4496 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4497 {
4498 	struct perf_cpu_context *cpuctx;
4499 	struct perf_event_context *ctx;
4500 	struct vm_area_struct *vma = mmap_event->vma;
4501 	struct file *file = vma->vm_file;
4502 	unsigned int size;
4503 	char tmp[16];
4504 	char *buf = NULL;
4505 	const char *name;
4506 	struct pmu *pmu;
4507 	int ctxn;
4508 
4509 	memset(tmp, 0, sizeof(tmp));
4510 
4511 	if (file) {
4512 		/*
4513 		 * d_path works from the end of the rb backwards, so we
4514 		 * need to add enough zero bytes after the string to handle
4515 		 * the 64bit alignment we do later.
4516 		 */
4517 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4518 		if (!buf) {
4519 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4520 			goto got_name;
4521 		}
4522 		name = d_path(&file->f_path, buf, PATH_MAX);
4523 		if (IS_ERR(name)) {
4524 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4525 			goto got_name;
4526 		}
4527 	} else {
4528 		if (arch_vma_name(mmap_event->vma)) {
4529 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4530 				       sizeof(tmp));
4531 			goto got_name;
4532 		}
4533 
4534 		if (!vma->vm_mm) {
4535 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4536 			goto got_name;
4537 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4538 				vma->vm_end >= vma->vm_mm->brk) {
4539 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4540 			goto got_name;
4541 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4542 				vma->vm_end >= vma->vm_mm->start_stack) {
4543 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4544 			goto got_name;
4545 		}
4546 
4547 		name = strncpy(tmp, "//anon", sizeof(tmp));
4548 		goto got_name;
4549 	}
4550 
4551 got_name:
4552 	size = ALIGN(strlen(name)+1, sizeof(u64));
4553 
4554 	mmap_event->file_name = name;
4555 	mmap_event->file_size = size;
4556 
4557 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4558 
4559 	rcu_read_lock();
4560 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4561 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4562 		if (cpuctx->active_pmu != pmu)
4563 			goto next;
4564 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4565 					vma->vm_flags & VM_EXEC);
4566 
4567 		ctxn = pmu->task_ctx_nr;
4568 		if (ctxn < 0)
4569 			goto next;
4570 
4571 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4572 		if (ctx) {
4573 			perf_event_mmap_ctx(ctx, mmap_event,
4574 					vma->vm_flags & VM_EXEC);
4575 		}
4576 next:
4577 		put_cpu_ptr(pmu->pmu_cpu_context);
4578 	}
4579 	rcu_read_unlock();
4580 
4581 	kfree(buf);
4582 }
4583 
4584 void perf_event_mmap(struct vm_area_struct *vma)
4585 {
4586 	struct perf_mmap_event mmap_event;
4587 
4588 	if (!atomic_read(&nr_mmap_events))
4589 		return;
4590 
4591 	mmap_event = (struct perf_mmap_event){
4592 		.vma	= vma,
4593 		/* .file_name */
4594 		/* .file_size */
4595 		.event_id  = {
4596 			.header = {
4597 				.type = PERF_RECORD_MMAP,
4598 				.misc = PERF_RECORD_MISC_USER,
4599 				/* .size */
4600 			},
4601 			/* .pid */
4602 			/* .tid */
4603 			.start  = vma->vm_start,
4604 			.len    = vma->vm_end - vma->vm_start,
4605 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4606 		},
4607 	};
4608 
4609 	perf_event_mmap_event(&mmap_event);
4610 }
4611 
4612 /*
4613  * IRQ throttle logging
4614  */
4615 
4616 static void perf_log_throttle(struct perf_event *event, int enable)
4617 {
4618 	struct perf_output_handle handle;
4619 	struct perf_sample_data sample;
4620 	int ret;
4621 
4622 	struct {
4623 		struct perf_event_header	header;
4624 		u64				time;
4625 		u64				id;
4626 		u64				stream_id;
4627 	} throttle_event = {
4628 		.header = {
4629 			.type = PERF_RECORD_THROTTLE,
4630 			.misc = 0,
4631 			.size = sizeof(throttle_event),
4632 		},
4633 		.time		= perf_clock(),
4634 		.id		= primary_event_id(event),
4635 		.stream_id	= event->id,
4636 	};
4637 
4638 	if (enable)
4639 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4640 
4641 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4642 
4643 	ret = perf_output_begin(&handle, event,
4644 				throttle_event.header.size);
4645 	if (ret)
4646 		return;
4647 
4648 	perf_output_put(&handle, throttle_event);
4649 	perf_event__output_id_sample(event, &handle, &sample);
4650 	perf_output_end(&handle);
4651 }
4652 
4653 /*
4654  * Generic event overflow handling, sampling.
4655  */
4656 
4657 static int __perf_event_overflow(struct perf_event *event,
4658 				   int throttle, struct perf_sample_data *data,
4659 				   struct pt_regs *regs)
4660 {
4661 	int events = atomic_read(&event->event_limit);
4662 	struct hw_perf_event *hwc = &event->hw;
4663 	u64 seq;
4664 	int ret = 0;
4665 
4666 	/*
4667 	 * Non-sampling counters might still use the PMI to fold short
4668 	 * hardware counters, ignore those.
4669 	 */
4670 	if (unlikely(!is_sampling_event(event)))
4671 		return 0;
4672 
4673 	seq = __this_cpu_read(perf_throttled_seq);
4674 	if (seq != hwc->interrupts_seq) {
4675 		hwc->interrupts_seq = seq;
4676 		hwc->interrupts = 1;
4677 	} else {
4678 		hwc->interrupts++;
4679 		if (unlikely(throttle
4680 			     && hwc->interrupts >= max_samples_per_tick)) {
4681 			__this_cpu_inc(perf_throttled_count);
4682 			hwc->interrupts = MAX_INTERRUPTS;
4683 			perf_log_throttle(event, 0);
4684 			ret = 1;
4685 		}
4686 	}
4687 
4688 	if (event->attr.freq) {
4689 		u64 now = perf_clock();
4690 		s64 delta = now - hwc->freq_time_stamp;
4691 
4692 		hwc->freq_time_stamp = now;
4693 
4694 		if (delta > 0 && delta < 2*TICK_NSEC)
4695 			perf_adjust_period(event, delta, hwc->last_period, true);
4696 	}
4697 
4698 	/*
4699 	 * XXX event_limit might not quite work as expected on inherited
4700 	 * events
4701 	 */
4702 
4703 	event->pending_kill = POLL_IN;
4704 	if (events && atomic_dec_and_test(&event->event_limit)) {
4705 		ret = 1;
4706 		event->pending_kill = POLL_HUP;
4707 		event->pending_disable = 1;
4708 		irq_work_queue(&event->pending);
4709 	}
4710 
4711 	if (event->overflow_handler)
4712 		event->overflow_handler(event, data, regs);
4713 	else
4714 		perf_event_output(event, data, regs);
4715 
4716 	if (event->fasync && event->pending_kill) {
4717 		event->pending_wakeup = 1;
4718 		irq_work_queue(&event->pending);
4719 	}
4720 
4721 	return ret;
4722 }
4723 
4724 int perf_event_overflow(struct perf_event *event,
4725 			  struct perf_sample_data *data,
4726 			  struct pt_regs *regs)
4727 {
4728 	return __perf_event_overflow(event, 1, data, regs);
4729 }
4730 
4731 /*
4732  * Generic software event infrastructure
4733  */
4734 
4735 struct swevent_htable {
4736 	struct swevent_hlist		*swevent_hlist;
4737 	struct mutex			hlist_mutex;
4738 	int				hlist_refcount;
4739 
4740 	/* Recursion avoidance in each contexts */
4741 	int				recursion[PERF_NR_CONTEXTS];
4742 };
4743 
4744 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4745 
4746 /*
4747  * We directly increment event->count and keep a second value in
4748  * event->hw.period_left to count intervals. This period event
4749  * is kept in the range [-sample_period, 0] so that we can use the
4750  * sign as trigger.
4751  */
4752 
4753 static u64 perf_swevent_set_period(struct perf_event *event)
4754 {
4755 	struct hw_perf_event *hwc = &event->hw;
4756 	u64 period = hwc->last_period;
4757 	u64 nr, offset;
4758 	s64 old, val;
4759 
4760 	hwc->last_period = hwc->sample_period;
4761 
4762 again:
4763 	old = val = local64_read(&hwc->period_left);
4764 	if (val < 0)
4765 		return 0;
4766 
4767 	nr = div64_u64(period + val, period);
4768 	offset = nr * period;
4769 	val -= offset;
4770 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4771 		goto again;
4772 
4773 	return nr;
4774 }
4775 
4776 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4777 				    struct perf_sample_data *data,
4778 				    struct pt_regs *regs)
4779 {
4780 	struct hw_perf_event *hwc = &event->hw;
4781 	int throttle = 0;
4782 
4783 	if (!overflow)
4784 		overflow = perf_swevent_set_period(event);
4785 
4786 	if (hwc->interrupts == MAX_INTERRUPTS)
4787 		return;
4788 
4789 	for (; overflow; overflow--) {
4790 		if (__perf_event_overflow(event, throttle,
4791 					    data, regs)) {
4792 			/*
4793 			 * We inhibit the overflow from happening when
4794 			 * hwc->interrupts == MAX_INTERRUPTS.
4795 			 */
4796 			break;
4797 		}
4798 		throttle = 1;
4799 	}
4800 }
4801 
4802 static void perf_swevent_event(struct perf_event *event, u64 nr,
4803 			       struct perf_sample_data *data,
4804 			       struct pt_regs *regs)
4805 {
4806 	struct hw_perf_event *hwc = &event->hw;
4807 
4808 	local64_add(nr, &event->count);
4809 
4810 	if (!regs)
4811 		return;
4812 
4813 	if (!is_sampling_event(event))
4814 		return;
4815 
4816 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4817 		data->period = nr;
4818 		return perf_swevent_overflow(event, 1, data, regs);
4819 	} else
4820 		data->period = event->hw.last_period;
4821 
4822 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4823 		return perf_swevent_overflow(event, 1, data, regs);
4824 
4825 	if (local64_add_negative(nr, &hwc->period_left))
4826 		return;
4827 
4828 	perf_swevent_overflow(event, 0, data, regs);
4829 }
4830 
4831 static int perf_exclude_event(struct perf_event *event,
4832 			      struct pt_regs *regs)
4833 {
4834 	if (event->hw.state & PERF_HES_STOPPED)
4835 		return 1;
4836 
4837 	if (regs) {
4838 		if (event->attr.exclude_user && user_mode(regs))
4839 			return 1;
4840 
4841 		if (event->attr.exclude_kernel && !user_mode(regs))
4842 			return 1;
4843 	}
4844 
4845 	return 0;
4846 }
4847 
4848 static int perf_swevent_match(struct perf_event *event,
4849 				enum perf_type_id type,
4850 				u32 event_id,
4851 				struct perf_sample_data *data,
4852 				struct pt_regs *regs)
4853 {
4854 	if (event->attr.type != type)
4855 		return 0;
4856 
4857 	if (event->attr.config != event_id)
4858 		return 0;
4859 
4860 	if (perf_exclude_event(event, regs))
4861 		return 0;
4862 
4863 	return 1;
4864 }
4865 
4866 static inline u64 swevent_hash(u64 type, u32 event_id)
4867 {
4868 	u64 val = event_id | (type << 32);
4869 
4870 	return hash_64(val, SWEVENT_HLIST_BITS);
4871 }
4872 
4873 static inline struct hlist_head *
4874 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4875 {
4876 	u64 hash = swevent_hash(type, event_id);
4877 
4878 	return &hlist->heads[hash];
4879 }
4880 
4881 /* For the read side: events when they trigger */
4882 static inline struct hlist_head *
4883 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4884 {
4885 	struct swevent_hlist *hlist;
4886 
4887 	hlist = rcu_dereference(swhash->swevent_hlist);
4888 	if (!hlist)
4889 		return NULL;
4890 
4891 	return __find_swevent_head(hlist, type, event_id);
4892 }
4893 
4894 /* For the event head insertion and removal in the hlist */
4895 static inline struct hlist_head *
4896 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4897 {
4898 	struct swevent_hlist *hlist;
4899 	u32 event_id = event->attr.config;
4900 	u64 type = event->attr.type;
4901 
4902 	/*
4903 	 * Event scheduling is always serialized against hlist allocation
4904 	 * and release. Which makes the protected version suitable here.
4905 	 * The context lock guarantees that.
4906 	 */
4907 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4908 					  lockdep_is_held(&event->ctx->lock));
4909 	if (!hlist)
4910 		return NULL;
4911 
4912 	return __find_swevent_head(hlist, type, event_id);
4913 }
4914 
4915 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4916 				    u64 nr,
4917 				    struct perf_sample_data *data,
4918 				    struct pt_regs *regs)
4919 {
4920 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4921 	struct perf_event *event;
4922 	struct hlist_node *node;
4923 	struct hlist_head *head;
4924 
4925 	rcu_read_lock();
4926 	head = find_swevent_head_rcu(swhash, type, event_id);
4927 	if (!head)
4928 		goto end;
4929 
4930 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4931 		if (perf_swevent_match(event, type, event_id, data, regs))
4932 			perf_swevent_event(event, nr, data, regs);
4933 	}
4934 end:
4935 	rcu_read_unlock();
4936 }
4937 
4938 int perf_swevent_get_recursion_context(void)
4939 {
4940 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4941 
4942 	return get_recursion_context(swhash->recursion);
4943 }
4944 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4945 
4946 inline void perf_swevent_put_recursion_context(int rctx)
4947 {
4948 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4949 
4950 	put_recursion_context(swhash->recursion, rctx);
4951 }
4952 
4953 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4954 {
4955 	struct perf_sample_data data;
4956 	int rctx;
4957 
4958 	preempt_disable_notrace();
4959 	rctx = perf_swevent_get_recursion_context();
4960 	if (rctx < 0)
4961 		return;
4962 
4963 	perf_sample_data_init(&data, addr, 0);
4964 
4965 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4966 
4967 	perf_swevent_put_recursion_context(rctx);
4968 	preempt_enable_notrace();
4969 }
4970 
4971 static void perf_swevent_read(struct perf_event *event)
4972 {
4973 }
4974 
4975 static int perf_swevent_add(struct perf_event *event, int flags)
4976 {
4977 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4978 	struct hw_perf_event *hwc = &event->hw;
4979 	struct hlist_head *head;
4980 
4981 	if (is_sampling_event(event)) {
4982 		hwc->last_period = hwc->sample_period;
4983 		perf_swevent_set_period(event);
4984 	}
4985 
4986 	hwc->state = !(flags & PERF_EF_START);
4987 
4988 	head = find_swevent_head(swhash, event);
4989 	if (WARN_ON_ONCE(!head))
4990 		return -EINVAL;
4991 
4992 	hlist_add_head_rcu(&event->hlist_entry, head);
4993 
4994 	return 0;
4995 }
4996 
4997 static void perf_swevent_del(struct perf_event *event, int flags)
4998 {
4999 	hlist_del_rcu(&event->hlist_entry);
5000 }
5001 
5002 static void perf_swevent_start(struct perf_event *event, int flags)
5003 {
5004 	event->hw.state = 0;
5005 }
5006 
5007 static void perf_swevent_stop(struct perf_event *event, int flags)
5008 {
5009 	event->hw.state = PERF_HES_STOPPED;
5010 }
5011 
5012 /* Deref the hlist from the update side */
5013 static inline struct swevent_hlist *
5014 swevent_hlist_deref(struct swevent_htable *swhash)
5015 {
5016 	return rcu_dereference_protected(swhash->swevent_hlist,
5017 					 lockdep_is_held(&swhash->hlist_mutex));
5018 }
5019 
5020 static void swevent_hlist_release(struct swevent_htable *swhash)
5021 {
5022 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5023 
5024 	if (!hlist)
5025 		return;
5026 
5027 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5028 	kfree_rcu(hlist, rcu_head);
5029 }
5030 
5031 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5032 {
5033 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5034 
5035 	mutex_lock(&swhash->hlist_mutex);
5036 
5037 	if (!--swhash->hlist_refcount)
5038 		swevent_hlist_release(swhash);
5039 
5040 	mutex_unlock(&swhash->hlist_mutex);
5041 }
5042 
5043 static void swevent_hlist_put(struct perf_event *event)
5044 {
5045 	int cpu;
5046 
5047 	if (event->cpu != -1) {
5048 		swevent_hlist_put_cpu(event, event->cpu);
5049 		return;
5050 	}
5051 
5052 	for_each_possible_cpu(cpu)
5053 		swevent_hlist_put_cpu(event, cpu);
5054 }
5055 
5056 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5057 {
5058 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5059 	int err = 0;
5060 
5061 	mutex_lock(&swhash->hlist_mutex);
5062 
5063 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5064 		struct swevent_hlist *hlist;
5065 
5066 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5067 		if (!hlist) {
5068 			err = -ENOMEM;
5069 			goto exit;
5070 		}
5071 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5072 	}
5073 	swhash->hlist_refcount++;
5074 exit:
5075 	mutex_unlock(&swhash->hlist_mutex);
5076 
5077 	return err;
5078 }
5079 
5080 static int swevent_hlist_get(struct perf_event *event)
5081 {
5082 	int err;
5083 	int cpu, failed_cpu;
5084 
5085 	if (event->cpu != -1)
5086 		return swevent_hlist_get_cpu(event, event->cpu);
5087 
5088 	get_online_cpus();
5089 	for_each_possible_cpu(cpu) {
5090 		err = swevent_hlist_get_cpu(event, cpu);
5091 		if (err) {
5092 			failed_cpu = cpu;
5093 			goto fail;
5094 		}
5095 	}
5096 	put_online_cpus();
5097 
5098 	return 0;
5099 fail:
5100 	for_each_possible_cpu(cpu) {
5101 		if (cpu == failed_cpu)
5102 			break;
5103 		swevent_hlist_put_cpu(event, cpu);
5104 	}
5105 
5106 	put_online_cpus();
5107 	return err;
5108 }
5109 
5110 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5111 
5112 static void sw_perf_event_destroy(struct perf_event *event)
5113 {
5114 	u64 event_id = event->attr.config;
5115 
5116 	WARN_ON(event->parent);
5117 
5118 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5119 	swevent_hlist_put(event);
5120 }
5121 
5122 static int perf_swevent_init(struct perf_event *event)
5123 {
5124 	int event_id = event->attr.config;
5125 
5126 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5127 		return -ENOENT;
5128 
5129 	/*
5130 	 * no branch sampling for software events
5131 	 */
5132 	if (has_branch_stack(event))
5133 		return -EOPNOTSUPP;
5134 
5135 	switch (event_id) {
5136 	case PERF_COUNT_SW_CPU_CLOCK:
5137 	case PERF_COUNT_SW_TASK_CLOCK:
5138 		return -ENOENT;
5139 
5140 	default:
5141 		break;
5142 	}
5143 
5144 	if (event_id >= PERF_COUNT_SW_MAX)
5145 		return -ENOENT;
5146 
5147 	if (!event->parent) {
5148 		int err;
5149 
5150 		err = swevent_hlist_get(event);
5151 		if (err)
5152 			return err;
5153 
5154 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5155 		event->destroy = sw_perf_event_destroy;
5156 	}
5157 
5158 	return 0;
5159 }
5160 
5161 static int perf_swevent_event_idx(struct perf_event *event)
5162 {
5163 	return 0;
5164 }
5165 
5166 static struct pmu perf_swevent = {
5167 	.task_ctx_nr	= perf_sw_context,
5168 
5169 	.event_init	= perf_swevent_init,
5170 	.add		= perf_swevent_add,
5171 	.del		= perf_swevent_del,
5172 	.start		= perf_swevent_start,
5173 	.stop		= perf_swevent_stop,
5174 	.read		= perf_swevent_read,
5175 
5176 	.event_idx	= perf_swevent_event_idx,
5177 };
5178 
5179 #ifdef CONFIG_EVENT_TRACING
5180 
5181 static int perf_tp_filter_match(struct perf_event *event,
5182 				struct perf_sample_data *data)
5183 {
5184 	void *record = data->raw->data;
5185 
5186 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5187 		return 1;
5188 	return 0;
5189 }
5190 
5191 static int perf_tp_event_match(struct perf_event *event,
5192 				struct perf_sample_data *data,
5193 				struct pt_regs *regs)
5194 {
5195 	if (event->hw.state & PERF_HES_STOPPED)
5196 		return 0;
5197 	/*
5198 	 * All tracepoints are from kernel-space.
5199 	 */
5200 	if (event->attr.exclude_kernel)
5201 		return 0;
5202 
5203 	if (!perf_tp_filter_match(event, data))
5204 		return 0;
5205 
5206 	return 1;
5207 }
5208 
5209 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5210 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5211 {
5212 	struct perf_sample_data data;
5213 	struct perf_event *event;
5214 	struct hlist_node *node;
5215 
5216 	struct perf_raw_record raw = {
5217 		.size = entry_size,
5218 		.data = record,
5219 	};
5220 
5221 	perf_sample_data_init(&data, addr, 0);
5222 	data.raw = &raw;
5223 
5224 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5225 		if (perf_tp_event_match(event, &data, regs))
5226 			perf_swevent_event(event, count, &data, regs);
5227 	}
5228 
5229 	perf_swevent_put_recursion_context(rctx);
5230 }
5231 EXPORT_SYMBOL_GPL(perf_tp_event);
5232 
5233 static void tp_perf_event_destroy(struct perf_event *event)
5234 {
5235 	perf_trace_destroy(event);
5236 }
5237 
5238 static int perf_tp_event_init(struct perf_event *event)
5239 {
5240 	int err;
5241 
5242 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5243 		return -ENOENT;
5244 
5245 	/*
5246 	 * no branch sampling for tracepoint events
5247 	 */
5248 	if (has_branch_stack(event))
5249 		return -EOPNOTSUPP;
5250 
5251 	err = perf_trace_init(event);
5252 	if (err)
5253 		return err;
5254 
5255 	event->destroy = tp_perf_event_destroy;
5256 
5257 	return 0;
5258 }
5259 
5260 static struct pmu perf_tracepoint = {
5261 	.task_ctx_nr	= perf_sw_context,
5262 
5263 	.event_init	= perf_tp_event_init,
5264 	.add		= perf_trace_add,
5265 	.del		= perf_trace_del,
5266 	.start		= perf_swevent_start,
5267 	.stop		= perf_swevent_stop,
5268 	.read		= perf_swevent_read,
5269 
5270 	.event_idx	= perf_swevent_event_idx,
5271 };
5272 
5273 static inline void perf_tp_register(void)
5274 {
5275 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5276 }
5277 
5278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5279 {
5280 	char *filter_str;
5281 	int ret;
5282 
5283 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5284 		return -EINVAL;
5285 
5286 	filter_str = strndup_user(arg, PAGE_SIZE);
5287 	if (IS_ERR(filter_str))
5288 		return PTR_ERR(filter_str);
5289 
5290 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5291 
5292 	kfree(filter_str);
5293 	return ret;
5294 }
5295 
5296 static void perf_event_free_filter(struct perf_event *event)
5297 {
5298 	ftrace_profile_free_filter(event);
5299 }
5300 
5301 #else
5302 
5303 static inline void perf_tp_register(void)
5304 {
5305 }
5306 
5307 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5308 {
5309 	return -ENOENT;
5310 }
5311 
5312 static void perf_event_free_filter(struct perf_event *event)
5313 {
5314 }
5315 
5316 #endif /* CONFIG_EVENT_TRACING */
5317 
5318 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5319 void perf_bp_event(struct perf_event *bp, void *data)
5320 {
5321 	struct perf_sample_data sample;
5322 	struct pt_regs *regs = data;
5323 
5324 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5325 
5326 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5327 		perf_swevent_event(bp, 1, &sample, regs);
5328 }
5329 #endif
5330 
5331 /*
5332  * hrtimer based swevent callback
5333  */
5334 
5335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5336 {
5337 	enum hrtimer_restart ret = HRTIMER_RESTART;
5338 	struct perf_sample_data data;
5339 	struct pt_regs *regs;
5340 	struct perf_event *event;
5341 	u64 period;
5342 
5343 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5344 
5345 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5346 		return HRTIMER_NORESTART;
5347 
5348 	event->pmu->read(event);
5349 
5350 	perf_sample_data_init(&data, 0, event->hw.last_period);
5351 	regs = get_irq_regs();
5352 
5353 	if (regs && !perf_exclude_event(event, regs)) {
5354 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5355 			if (__perf_event_overflow(event, 1, &data, regs))
5356 				ret = HRTIMER_NORESTART;
5357 	}
5358 
5359 	period = max_t(u64, 10000, event->hw.sample_period);
5360 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5361 
5362 	return ret;
5363 }
5364 
5365 static void perf_swevent_start_hrtimer(struct perf_event *event)
5366 {
5367 	struct hw_perf_event *hwc = &event->hw;
5368 	s64 period;
5369 
5370 	if (!is_sampling_event(event))
5371 		return;
5372 
5373 	period = local64_read(&hwc->period_left);
5374 	if (period) {
5375 		if (period < 0)
5376 			period = 10000;
5377 
5378 		local64_set(&hwc->period_left, 0);
5379 	} else {
5380 		period = max_t(u64, 10000, hwc->sample_period);
5381 	}
5382 	__hrtimer_start_range_ns(&hwc->hrtimer,
5383 				ns_to_ktime(period), 0,
5384 				HRTIMER_MODE_REL_PINNED, 0);
5385 }
5386 
5387 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5388 {
5389 	struct hw_perf_event *hwc = &event->hw;
5390 
5391 	if (is_sampling_event(event)) {
5392 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5393 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5394 
5395 		hrtimer_cancel(&hwc->hrtimer);
5396 	}
5397 }
5398 
5399 static void perf_swevent_init_hrtimer(struct perf_event *event)
5400 {
5401 	struct hw_perf_event *hwc = &event->hw;
5402 
5403 	if (!is_sampling_event(event))
5404 		return;
5405 
5406 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5407 	hwc->hrtimer.function = perf_swevent_hrtimer;
5408 
5409 	/*
5410 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5411 	 * mapping and avoid the whole period adjust feedback stuff.
5412 	 */
5413 	if (event->attr.freq) {
5414 		long freq = event->attr.sample_freq;
5415 
5416 		event->attr.sample_period = NSEC_PER_SEC / freq;
5417 		hwc->sample_period = event->attr.sample_period;
5418 		local64_set(&hwc->period_left, hwc->sample_period);
5419 		event->attr.freq = 0;
5420 	}
5421 }
5422 
5423 /*
5424  * Software event: cpu wall time clock
5425  */
5426 
5427 static void cpu_clock_event_update(struct perf_event *event)
5428 {
5429 	s64 prev;
5430 	u64 now;
5431 
5432 	now = local_clock();
5433 	prev = local64_xchg(&event->hw.prev_count, now);
5434 	local64_add(now - prev, &event->count);
5435 }
5436 
5437 static void cpu_clock_event_start(struct perf_event *event, int flags)
5438 {
5439 	local64_set(&event->hw.prev_count, local_clock());
5440 	perf_swevent_start_hrtimer(event);
5441 }
5442 
5443 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5444 {
5445 	perf_swevent_cancel_hrtimer(event);
5446 	cpu_clock_event_update(event);
5447 }
5448 
5449 static int cpu_clock_event_add(struct perf_event *event, int flags)
5450 {
5451 	if (flags & PERF_EF_START)
5452 		cpu_clock_event_start(event, flags);
5453 
5454 	return 0;
5455 }
5456 
5457 static void cpu_clock_event_del(struct perf_event *event, int flags)
5458 {
5459 	cpu_clock_event_stop(event, flags);
5460 }
5461 
5462 static void cpu_clock_event_read(struct perf_event *event)
5463 {
5464 	cpu_clock_event_update(event);
5465 }
5466 
5467 static int cpu_clock_event_init(struct perf_event *event)
5468 {
5469 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5470 		return -ENOENT;
5471 
5472 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5473 		return -ENOENT;
5474 
5475 	/*
5476 	 * no branch sampling for software events
5477 	 */
5478 	if (has_branch_stack(event))
5479 		return -EOPNOTSUPP;
5480 
5481 	perf_swevent_init_hrtimer(event);
5482 
5483 	return 0;
5484 }
5485 
5486 static struct pmu perf_cpu_clock = {
5487 	.task_ctx_nr	= perf_sw_context,
5488 
5489 	.event_init	= cpu_clock_event_init,
5490 	.add		= cpu_clock_event_add,
5491 	.del		= cpu_clock_event_del,
5492 	.start		= cpu_clock_event_start,
5493 	.stop		= cpu_clock_event_stop,
5494 	.read		= cpu_clock_event_read,
5495 
5496 	.event_idx	= perf_swevent_event_idx,
5497 };
5498 
5499 /*
5500  * Software event: task time clock
5501  */
5502 
5503 static void task_clock_event_update(struct perf_event *event, u64 now)
5504 {
5505 	u64 prev;
5506 	s64 delta;
5507 
5508 	prev = local64_xchg(&event->hw.prev_count, now);
5509 	delta = now - prev;
5510 	local64_add(delta, &event->count);
5511 }
5512 
5513 static void task_clock_event_start(struct perf_event *event, int flags)
5514 {
5515 	local64_set(&event->hw.prev_count, event->ctx->time);
5516 	perf_swevent_start_hrtimer(event);
5517 }
5518 
5519 static void task_clock_event_stop(struct perf_event *event, int flags)
5520 {
5521 	perf_swevent_cancel_hrtimer(event);
5522 	task_clock_event_update(event, event->ctx->time);
5523 }
5524 
5525 static int task_clock_event_add(struct perf_event *event, int flags)
5526 {
5527 	if (flags & PERF_EF_START)
5528 		task_clock_event_start(event, flags);
5529 
5530 	return 0;
5531 }
5532 
5533 static void task_clock_event_del(struct perf_event *event, int flags)
5534 {
5535 	task_clock_event_stop(event, PERF_EF_UPDATE);
5536 }
5537 
5538 static void task_clock_event_read(struct perf_event *event)
5539 {
5540 	u64 now = perf_clock();
5541 	u64 delta = now - event->ctx->timestamp;
5542 	u64 time = event->ctx->time + delta;
5543 
5544 	task_clock_event_update(event, time);
5545 }
5546 
5547 static int task_clock_event_init(struct perf_event *event)
5548 {
5549 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5550 		return -ENOENT;
5551 
5552 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5553 		return -ENOENT;
5554 
5555 	/*
5556 	 * no branch sampling for software events
5557 	 */
5558 	if (has_branch_stack(event))
5559 		return -EOPNOTSUPP;
5560 
5561 	perf_swevent_init_hrtimer(event);
5562 
5563 	return 0;
5564 }
5565 
5566 static struct pmu perf_task_clock = {
5567 	.task_ctx_nr	= perf_sw_context,
5568 
5569 	.event_init	= task_clock_event_init,
5570 	.add		= task_clock_event_add,
5571 	.del		= task_clock_event_del,
5572 	.start		= task_clock_event_start,
5573 	.stop		= task_clock_event_stop,
5574 	.read		= task_clock_event_read,
5575 
5576 	.event_idx	= perf_swevent_event_idx,
5577 };
5578 
5579 static void perf_pmu_nop_void(struct pmu *pmu)
5580 {
5581 }
5582 
5583 static int perf_pmu_nop_int(struct pmu *pmu)
5584 {
5585 	return 0;
5586 }
5587 
5588 static void perf_pmu_start_txn(struct pmu *pmu)
5589 {
5590 	perf_pmu_disable(pmu);
5591 }
5592 
5593 static int perf_pmu_commit_txn(struct pmu *pmu)
5594 {
5595 	perf_pmu_enable(pmu);
5596 	return 0;
5597 }
5598 
5599 static void perf_pmu_cancel_txn(struct pmu *pmu)
5600 {
5601 	perf_pmu_enable(pmu);
5602 }
5603 
5604 static int perf_event_idx_default(struct perf_event *event)
5605 {
5606 	return event->hw.idx + 1;
5607 }
5608 
5609 /*
5610  * Ensures all contexts with the same task_ctx_nr have the same
5611  * pmu_cpu_context too.
5612  */
5613 static void *find_pmu_context(int ctxn)
5614 {
5615 	struct pmu *pmu;
5616 
5617 	if (ctxn < 0)
5618 		return NULL;
5619 
5620 	list_for_each_entry(pmu, &pmus, entry) {
5621 		if (pmu->task_ctx_nr == ctxn)
5622 			return pmu->pmu_cpu_context;
5623 	}
5624 
5625 	return NULL;
5626 }
5627 
5628 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5629 {
5630 	int cpu;
5631 
5632 	for_each_possible_cpu(cpu) {
5633 		struct perf_cpu_context *cpuctx;
5634 
5635 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5636 
5637 		if (cpuctx->active_pmu == old_pmu)
5638 			cpuctx->active_pmu = pmu;
5639 	}
5640 }
5641 
5642 static void free_pmu_context(struct pmu *pmu)
5643 {
5644 	struct pmu *i;
5645 
5646 	mutex_lock(&pmus_lock);
5647 	/*
5648 	 * Like a real lame refcount.
5649 	 */
5650 	list_for_each_entry(i, &pmus, entry) {
5651 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5652 			update_pmu_context(i, pmu);
5653 			goto out;
5654 		}
5655 	}
5656 
5657 	free_percpu(pmu->pmu_cpu_context);
5658 out:
5659 	mutex_unlock(&pmus_lock);
5660 }
5661 static struct idr pmu_idr;
5662 
5663 static ssize_t
5664 type_show(struct device *dev, struct device_attribute *attr, char *page)
5665 {
5666 	struct pmu *pmu = dev_get_drvdata(dev);
5667 
5668 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5669 }
5670 
5671 static struct device_attribute pmu_dev_attrs[] = {
5672        __ATTR_RO(type),
5673        __ATTR_NULL,
5674 };
5675 
5676 static int pmu_bus_running;
5677 static struct bus_type pmu_bus = {
5678 	.name		= "event_source",
5679 	.dev_attrs	= pmu_dev_attrs,
5680 };
5681 
5682 static void pmu_dev_release(struct device *dev)
5683 {
5684 	kfree(dev);
5685 }
5686 
5687 static int pmu_dev_alloc(struct pmu *pmu)
5688 {
5689 	int ret = -ENOMEM;
5690 
5691 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5692 	if (!pmu->dev)
5693 		goto out;
5694 
5695 	pmu->dev->groups = pmu->attr_groups;
5696 	device_initialize(pmu->dev);
5697 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5698 	if (ret)
5699 		goto free_dev;
5700 
5701 	dev_set_drvdata(pmu->dev, pmu);
5702 	pmu->dev->bus = &pmu_bus;
5703 	pmu->dev->release = pmu_dev_release;
5704 	ret = device_add(pmu->dev);
5705 	if (ret)
5706 		goto free_dev;
5707 
5708 out:
5709 	return ret;
5710 
5711 free_dev:
5712 	put_device(pmu->dev);
5713 	goto out;
5714 }
5715 
5716 static struct lock_class_key cpuctx_mutex;
5717 static struct lock_class_key cpuctx_lock;
5718 
5719 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5720 {
5721 	int cpu, ret;
5722 
5723 	mutex_lock(&pmus_lock);
5724 	ret = -ENOMEM;
5725 	pmu->pmu_disable_count = alloc_percpu(int);
5726 	if (!pmu->pmu_disable_count)
5727 		goto unlock;
5728 
5729 	pmu->type = -1;
5730 	if (!name)
5731 		goto skip_type;
5732 	pmu->name = name;
5733 
5734 	if (type < 0) {
5735 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5736 		if (!err)
5737 			goto free_pdc;
5738 
5739 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5740 		if (err) {
5741 			ret = err;
5742 			goto free_pdc;
5743 		}
5744 	}
5745 	pmu->type = type;
5746 
5747 	if (pmu_bus_running) {
5748 		ret = pmu_dev_alloc(pmu);
5749 		if (ret)
5750 			goto free_idr;
5751 	}
5752 
5753 skip_type:
5754 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5755 	if (pmu->pmu_cpu_context)
5756 		goto got_cpu_context;
5757 
5758 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5759 	if (!pmu->pmu_cpu_context)
5760 		goto free_dev;
5761 
5762 	for_each_possible_cpu(cpu) {
5763 		struct perf_cpu_context *cpuctx;
5764 
5765 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5766 		__perf_event_init_context(&cpuctx->ctx);
5767 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5768 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5769 		cpuctx->ctx.type = cpu_context;
5770 		cpuctx->ctx.pmu = pmu;
5771 		cpuctx->jiffies_interval = 1;
5772 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5773 		cpuctx->active_pmu = pmu;
5774 	}
5775 
5776 got_cpu_context:
5777 	if (!pmu->start_txn) {
5778 		if (pmu->pmu_enable) {
5779 			/*
5780 			 * If we have pmu_enable/pmu_disable calls, install
5781 			 * transaction stubs that use that to try and batch
5782 			 * hardware accesses.
5783 			 */
5784 			pmu->start_txn  = perf_pmu_start_txn;
5785 			pmu->commit_txn = perf_pmu_commit_txn;
5786 			pmu->cancel_txn = perf_pmu_cancel_txn;
5787 		} else {
5788 			pmu->start_txn  = perf_pmu_nop_void;
5789 			pmu->commit_txn = perf_pmu_nop_int;
5790 			pmu->cancel_txn = perf_pmu_nop_void;
5791 		}
5792 	}
5793 
5794 	if (!pmu->pmu_enable) {
5795 		pmu->pmu_enable  = perf_pmu_nop_void;
5796 		pmu->pmu_disable = perf_pmu_nop_void;
5797 	}
5798 
5799 	if (!pmu->event_idx)
5800 		pmu->event_idx = perf_event_idx_default;
5801 
5802 	list_add_rcu(&pmu->entry, &pmus);
5803 	ret = 0;
5804 unlock:
5805 	mutex_unlock(&pmus_lock);
5806 
5807 	return ret;
5808 
5809 free_dev:
5810 	device_del(pmu->dev);
5811 	put_device(pmu->dev);
5812 
5813 free_idr:
5814 	if (pmu->type >= PERF_TYPE_MAX)
5815 		idr_remove(&pmu_idr, pmu->type);
5816 
5817 free_pdc:
5818 	free_percpu(pmu->pmu_disable_count);
5819 	goto unlock;
5820 }
5821 
5822 void perf_pmu_unregister(struct pmu *pmu)
5823 {
5824 	mutex_lock(&pmus_lock);
5825 	list_del_rcu(&pmu->entry);
5826 	mutex_unlock(&pmus_lock);
5827 
5828 	/*
5829 	 * We dereference the pmu list under both SRCU and regular RCU, so
5830 	 * synchronize against both of those.
5831 	 */
5832 	synchronize_srcu(&pmus_srcu);
5833 	synchronize_rcu();
5834 
5835 	free_percpu(pmu->pmu_disable_count);
5836 	if (pmu->type >= PERF_TYPE_MAX)
5837 		idr_remove(&pmu_idr, pmu->type);
5838 	device_del(pmu->dev);
5839 	put_device(pmu->dev);
5840 	free_pmu_context(pmu);
5841 }
5842 
5843 struct pmu *perf_init_event(struct perf_event *event)
5844 {
5845 	struct pmu *pmu = NULL;
5846 	int idx;
5847 	int ret;
5848 
5849 	idx = srcu_read_lock(&pmus_srcu);
5850 
5851 	rcu_read_lock();
5852 	pmu = idr_find(&pmu_idr, event->attr.type);
5853 	rcu_read_unlock();
5854 	if (pmu) {
5855 		event->pmu = pmu;
5856 		ret = pmu->event_init(event);
5857 		if (ret)
5858 			pmu = ERR_PTR(ret);
5859 		goto unlock;
5860 	}
5861 
5862 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5863 		event->pmu = pmu;
5864 		ret = pmu->event_init(event);
5865 		if (!ret)
5866 			goto unlock;
5867 
5868 		if (ret != -ENOENT) {
5869 			pmu = ERR_PTR(ret);
5870 			goto unlock;
5871 		}
5872 	}
5873 	pmu = ERR_PTR(-ENOENT);
5874 unlock:
5875 	srcu_read_unlock(&pmus_srcu, idx);
5876 
5877 	return pmu;
5878 }
5879 
5880 /*
5881  * Allocate and initialize a event structure
5882  */
5883 static struct perf_event *
5884 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5885 		 struct task_struct *task,
5886 		 struct perf_event *group_leader,
5887 		 struct perf_event *parent_event,
5888 		 perf_overflow_handler_t overflow_handler,
5889 		 void *context)
5890 {
5891 	struct pmu *pmu;
5892 	struct perf_event *event;
5893 	struct hw_perf_event *hwc;
5894 	long err;
5895 
5896 	if ((unsigned)cpu >= nr_cpu_ids) {
5897 		if (!task || cpu != -1)
5898 			return ERR_PTR(-EINVAL);
5899 	}
5900 
5901 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5902 	if (!event)
5903 		return ERR_PTR(-ENOMEM);
5904 
5905 	/*
5906 	 * Single events are their own group leaders, with an
5907 	 * empty sibling list:
5908 	 */
5909 	if (!group_leader)
5910 		group_leader = event;
5911 
5912 	mutex_init(&event->child_mutex);
5913 	INIT_LIST_HEAD(&event->child_list);
5914 
5915 	INIT_LIST_HEAD(&event->group_entry);
5916 	INIT_LIST_HEAD(&event->event_entry);
5917 	INIT_LIST_HEAD(&event->sibling_list);
5918 	INIT_LIST_HEAD(&event->rb_entry);
5919 
5920 	init_waitqueue_head(&event->waitq);
5921 	init_irq_work(&event->pending, perf_pending_event);
5922 
5923 	mutex_init(&event->mmap_mutex);
5924 
5925 	event->cpu		= cpu;
5926 	event->attr		= *attr;
5927 	event->group_leader	= group_leader;
5928 	event->pmu		= NULL;
5929 	event->oncpu		= -1;
5930 
5931 	event->parent		= parent_event;
5932 
5933 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5934 	event->id		= atomic64_inc_return(&perf_event_id);
5935 
5936 	event->state		= PERF_EVENT_STATE_INACTIVE;
5937 
5938 	if (task) {
5939 		event->attach_state = PERF_ATTACH_TASK;
5940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5941 		/*
5942 		 * hw_breakpoint is a bit difficult here..
5943 		 */
5944 		if (attr->type == PERF_TYPE_BREAKPOINT)
5945 			event->hw.bp_target = task;
5946 #endif
5947 	}
5948 
5949 	if (!overflow_handler && parent_event) {
5950 		overflow_handler = parent_event->overflow_handler;
5951 		context = parent_event->overflow_handler_context;
5952 	}
5953 
5954 	event->overflow_handler	= overflow_handler;
5955 	event->overflow_handler_context = context;
5956 
5957 	if (attr->disabled)
5958 		event->state = PERF_EVENT_STATE_OFF;
5959 
5960 	pmu = NULL;
5961 
5962 	hwc = &event->hw;
5963 	hwc->sample_period = attr->sample_period;
5964 	if (attr->freq && attr->sample_freq)
5965 		hwc->sample_period = 1;
5966 	hwc->last_period = hwc->sample_period;
5967 
5968 	local64_set(&hwc->period_left, hwc->sample_period);
5969 
5970 	/*
5971 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5972 	 */
5973 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5974 		goto done;
5975 
5976 	pmu = perf_init_event(event);
5977 
5978 done:
5979 	err = 0;
5980 	if (!pmu)
5981 		err = -EINVAL;
5982 	else if (IS_ERR(pmu))
5983 		err = PTR_ERR(pmu);
5984 
5985 	if (err) {
5986 		if (event->ns)
5987 			put_pid_ns(event->ns);
5988 		kfree(event);
5989 		return ERR_PTR(err);
5990 	}
5991 
5992 	if (!event->parent) {
5993 		if (event->attach_state & PERF_ATTACH_TASK)
5994 			static_key_slow_inc(&perf_sched_events.key);
5995 		if (event->attr.mmap || event->attr.mmap_data)
5996 			atomic_inc(&nr_mmap_events);
5997 		if (event->attr.comm)
5998 			atomic_inc(&nr_comm_events);
5999 		if (event->attr.task)
6000 			atomic_inc(&nr_task_events);
6001 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6002 			err = get_callchain_buffers();
6003 			if (err) {
6004 				free_event(event);
6005 				return ERR_PTR(err);
6006 			}
6007 		}
6008 		if (has_branch_stack(event)) {
6009 			static_key_slow_inc(&perf_sched_events.key);
6010 			if (!(event->attach_state & PERF_ATTACH_TASK))
6011 				atomic_inc(&per_cpu(perf_branch_stack_events,
6012 						    event->cpu));
6013 		}
6014 	}
6015 
6016 	return event;
6017 }
6018 
6019 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6020 			  struct perf_event_attr *attr)
6021 {
6022 	u32 size;
6023 	int ret;
6024 
6025 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6026 		return -EFAULT;
6027 
6028 	/*
6029 	 * zero the full structure, so that a short copy will be nice.
6030 	 */
6031 	memset(attr, 0, sizeof(*attr));
6032 
6033 	ret = get_user(size, &uattr->size);
6034 	if (ret)
6035 		return ret;
6036 
6037 	if (size > PAGE_SIZE)	/* silly large */
6038 		goto err_size;
6039 
6040 	if (!size)		/* abi compat */
6041 		size = PERF_ATTR_SIZE_VER0;
6042 
6043 	if (size < PERF_ATTR_SIZE_VER0)
6044 		goto err_size;
6045 
6046 	/*
6047 	 * If we're handed a bigger struct than we know of,
6048 	 * ensure all the unknown bits are 0 - i.e. new
6049 	 * user-space does not rely on any kernel feature
6050 	 * extensions we dont know about yet.
6051 	 */
6052 	if (size > sizeof(*attr)) {
6053 		unsigned char __user *addr;
6054 		unsigned char __user *end;
6055 		unsigned char val;
6056 
6057 		addr = (void __user *)uattr + sizeof(*attr);
6058 		end  = (void __user *)uattr + size;
6059 
6060 		for (; addr < end; addr++) {
6061 			ret = get_user(val, addr);
6062 			if (ret)
6063 				return ret;
6064 			if (val)
6065 				goto err_size;
6066 		}
6067 		size = sizeof(*attr);
6068 	}
6069 
6070 	ret = copy_from_user(attr, uattr, size);
6071 	if (ret)
6072 		return -EFAULT;
6073 
6074 	if (attr->__reserved_1)
6075 		return -EINVAL;
6076 
6077 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6078 		return -EINVAL;
6079 
6080 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6081 		return -EINVAL;
6082 
6083 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6084 		u64 mask = attr->branch_sample_type;
6085 
6086 		/* only using defined bits */
6087 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6088 			return -EINVAL;
6089 
6090 		/* at least one branch bit must be set */
6091 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6092 			return -EINVAL;
6093 
6094 		/* kernel level capture: check permissions */
6095 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6096 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6097 			return -EACCES;
6098 
6099 		/* propagate priv level, when not set for branch */
6100 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6101 
6102 			/* exclude_kernel checked on syscall entry */
6103 			if (!attr->exclude_kernel)
6104 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6105 
6106 			if (!attr->exclude_user)
6107 				mask |= PERF_SAMPLE_BRANCH_USER;
6108 
6109 			if (!attr->exclude_hv)
6110 				mask |= PERF_SAMPLE_BRANCH_HV;
6111 			/*
6112 			 * adjust user setting (for HW filter setup)
6113 			 */
6114 			attr->branch_sample_type = mask;
6115 		}
6116 	}
6117 out:
6118 	return ret;
6119 
6120 err_size:
6121 	put_user(sizeof(*attr), &uattr->size);
6122 	ret = -E2BIG;
6123 	goto out;
6124 }
6125 
6126 static int
6127 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6128 {
6129 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6130 	int ret = -EINVAL;
6131 
6132 	if (!output_event)
6133 		goto set;
6134 
6135 	/* don't allow circular references */
6136 	if (event == output_event)
6137 		goto out;
6138 
6139 	/*
6140 	 * Don't allow cross-cpu buffers
6141 	 */
6142 	if (output_event->cpu != event->cpu)
6143 		goto out;
6144 
6145 	/*
6146 	 * If its not a per-cpu rb, it must be the same task.
6147 	 */
6148 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6149 		goto out;
6150 
6151 set:
6152 	mutex_lock(&event->mmap_mutex);
6153 	/* Can't redirect output if we've got an active mmap() */
6154 	if (atomic_read(&event->mmap_count))
6155 		goto unlock;
6156 
6157 	if (output_event) {
6158 		/* get the rb we want to redirect to */
6159 		rb = ring_buffer_get(output_event);
6160 		if (!rb)
6161 			goto unlock;
6162 	}
6163 
6164 	old_rb = event->rb;
6165 	rcu_assign_pointer(event->rb, rb);
6166 	if (old_rb)
6167 		ring_buffer_detach(event, old_rb);
6168 	ret = 0;
6169 unlock:
6170 	mutex_unlock(&event->mmap_mutex);
6171 
6172 	if (old_rb)
6173 		ring_buffer_put(old_rb);
6174 out:
6175 	return ret;
6176 }
6177 
6178 /**
6179  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6180  *
6181  * @attr_uptr:	event_id type attributes for monitoring/sampling
6182  * @pid:		target pid
6183  * @cpu:		target cpu
6184  * @group_fd:		group leader event fd
6185  */
6186 SYSCALL_DEFINE5(perf_event_open,
6187 		struct perf_event_attr __user *, attr_uptr,
6188 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6189 {
6190 	struct perf_event *group_leader = NULL, *output_event = NULL;
6191 	struct perf_event *event, *sibling;
6192 	struct perf_event_attr attr;
6193 	struct perf_event_context *ctx;
6194 	struct file *event_file = NULL;
6195 	struct file *group_file = NULL;
6196 	struct task_struct *task = NULL;
6197 	struct pmu *pmu;
6198 	int event_fd;
6199 	int move_group = 0;
6200 	int fput_needed = 0;
6201 	int err;
6202 
6203 	/* for future expandability... */
6204 	if (flags & ~PERF_FLAG_ALL)
6205 		return -EINVAL;
6206 
6207 	err = perf_copy_attr(attr_uptr, &attr);
6208 	if (err)
6209 		return err;
6210 
6211 	if (!attr.exclude_kernel) {
6212 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6213 			return -EACCES;
6214 	}
6215 
6216 	if (attr.freq) {
6217 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6218 			return -EINVAL;
6219 	}
6220 
6221 	/*
6222 	 * In cgroup mode, the pid argument is used to pass the fd
6223 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6224 	 * designates the cpu on which to monitor threads from that
6225 	 * cgroup.
6226 	 */
6227 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6228 		return -EINVAL;
6229 
6230 	event_fd = get_unused_fd_flags(O_RDWR);
6231 	if (event_fd < 0)
6232 		return event_fd;
6233 
6234 	if (group_fd != -1) {
6235 		group_leader = perf_fget_light(group_fd, &fput_needed);
6236 		if (IS_ERR(group_leader)) {
6237 			err = PTR_ERR(group_leader);
6238 			goto err_fd;
6239 		}
6240 		group_file = group_leader->filp;
6241 		if (flags & PERF_FLAG_FD_OUTPUT)
6242 			output_event = group_leader;
6243 		if (flags & PERF_FLAG_FD_NO_GROUP)
6244 			group_leader = NULL;
6245 	}
6246 
6247 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6248 		task = find_lively_task_by_vpid(pid);
6249 		if (IS_ERR(task)) {
6250 			err = PTR_ERR(task);
6251 			goto err_group_fd;
6252 		}
6253 	}
6254 
6255 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6256 				 NULL, NULL);
6257 	if (IS_ERR(event)) {
6258 		err = PTR_ERR(event);
6259 		goto err_task;
6260 	}
6261 
6262 	if (flags & PERF_FLAG_PID_CGROUP) {
6263 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6264 		if (err)
6265 			goto err_alloc;
6266 		/*
6267 		 * one more event:
6268 		 * - that has cgroup constraint on event->cpu
6269 		 * - that may need work on context switch
6270 		 */
6271 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6272 		static_key_slow_inc(&perf_sched_events.key);
6273 	}
6274 
6275 	/*
6276 	 * Special case software events and allow them to be part of
6277 	 * any hardware group.
6278 	 */
6279 	pmu = event->pmu;
6280 
6281 	if (group_leader &&
6282 	    (is_software_event(event) != is_software_event(group_leader))) {
6283 		if (is_software_event(event)) {
6284 			/*
6285 			 * If event and group_leader are not both a software
6286 			 * event, and event is, then group leader is not.
6287 			 *
6288 			 * Allow the addition of software events to !software
6289 			 * groups, this is safe because software events never
6290 			 * fail to schedule.
6291 			 */
6292 			pmu = group_leader->pmu;
6293 		} else if (is_software_event(group_leader) &&
6294 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6295 			/*
6296 			 * In case the group is a pure software group, and we
6297 			 * try to add a hardware event, move the whole group to
6298 			 * the hardware context.
6299 			 */
6300 			move_group = 1;
6301 		}
6302 	}
6303 
6304 	/*
6305 	 * Get the target context (task or percpu):
6306 	 */
6307 	ctx = find_get_context(pmu, task, cpu);
6308 	if (IS_ERR(ctx)) {
6309 		err = PTR_ERR(ctx);
6310 		goto err_alloc;
6311 	}
6312 
6313 	if (task) {
6314 		put_task_struct(task);
6315 		task = NULL;
6316 	}
6317 
6318 	/*
6319 	 * Look up the group leader (we will attach this event to it):
6320 	 */
6321 	if (group_leader) {
6322 		err = -EINVAL;
6323 
6324 		/*
6325 		 * Do not allow a recursive hierarchy (this new sibling
6326 		 * becoming part of another group-sibling):
6327 		 */
6328 		if (group_leader->group_leader != group_leader)
6329 			goto err_context;
6330 		/*
6331 		 * Do not allow to attach to a group in a different
6332 		 * task or CPU context:
6333 		 */
6334 		if (move_group) {
6335 			if (group_leader->ctx->type != ctx->type)
6336 				goto err_context;
6337 		} else {
6338 			if (group_leader->ctx != ctx)
6339 				goto err_context;
6340 		}
6341 
6342 		/*
6343 		 * Only a group leader can be exclusive or pinned
6344 		 */
6345 		if (attr.exclusive || attr.pinned)
6346 			goto err_context;
6347 	}
6348 
6349 	if (output_event) {
6350 		err = perf_event_set_output(event, output_event);
6351 		if (err)
6352 			goto err_context;
6353 	}
6354 
6355 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6356 	if (IS_ERR(event_file)) {
6357 		err = PTR_ERR(event_file);
6358 		goto err_context;
6359 	}
6360 
6361 	if (move_group) {
6362 		struct perf_event_context *gctx = group_leader->ctx;
6363 
6364 		mutex_lock(&gctx->mutex);
6365 		perf_remove_from_context(group_leader);
6366 		list_for_each_entry(sibling, &group_leader->sibling_list,
6367 				    group_entry) {
6368 			perf_remove_from_context(sibling);
6369 			put_ctx(gctx);
6370 		}
6371 		mutex_unlock(&gctx->mutex);
6372 		put_ctx(gctx);
6373 	}
6374 
6375 	event->filp = event_file;
6376 	WARN_ON_ONCE(ctx->parent_ctx);
6377 	mutex_lock(&ctx->mutex);
6378 
6379 	if (move_group) {
6380 		perf_install_in_context(ctx, group_leader, cpu);
6381 		get_ctx(ctx);
6382 		list_for_each_entry(sibling, &group_leader->sibling_list,
6383 				    group_entry) {
6384 			perf_install_in_context(ctx, sibling, cpu);
6385 			get_ctx(ctx);
6386 		}
6387 	}
6388 
6389 	perf_install_in_context(ctx, event, cpu);
6390 	++ctx->generation;
6391 	perf_unpin_context(ctx);
6392 	mutex_unlock(&ctx->mutex);
6393 
6394 	event->owner = current;
6395 
6396 	mutex_lock(&current->perf_event_mutex);
6397 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6398 	mutex_unlock(&current->perf_event_mutex);
6399 
6400 	/*
6401 	 * Precalculate sample_data sizes
6402 	 */
6403 	perf_event__header_size(event);
6404 	perf_event__id_header_size(event);
6405 
6406 	/*
6407 	 * Drop the reference on the group_event after placing the
6408 	 * new event on the sibling_list. This ensures destruction
6409 	 * of the group leader will find the pointer to itself in
6410 	 * perf_group_detach().
6411 	 */
6412 	fput_light(group_file, fput_needed);
6413 	fd_install(event_fd, event_file);
6414 	return event_fd;
6415 
6416 err_context:
6417 	perf_unpin_context(ctx);
6418 	put_ctx(ctx);
6419 err_alloc:
6420 	free_event(event);
6421 err_task:
6422 	if (task)
6423 		put_task_struct(task);
6424 err_group_fd:
6425 	fput_light(group_file, fput_needed);
6426 err_fd:
6427 	put_unused_fd(event_fd);
6428 	return err;
6429 }
6430 
6431 /**
6432  * perf_event_create_kernel_counter
6433  *
6434  * @attr: attributes of the counter to create
6435  * @cpu: cpu in which the counter is bound
6436  * @task: task to profile (NULL for percpu)
6437  */
6438 struct perf_event *
6439 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6440 				 struct task_struct *task,
6441 				 perf_overflow_handler_t overflow_handler,
6442 				 void *context)
6443 {
6444 	struct perf_event_context *ctx;
6445 	struct perf_event *event;
6446 	int err;
6447 
6448 	/*
6449 	 * Get the target context (task or percpu):
6450 	 */
6451 
6452 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6453 				 overflow_handler, context);
6454 	if (IS_ERR(event)) {
6455 		err = PTR_ERR(event);
6456 		goto err;
6457 	}
6458 
6459 	ctx = find_get_context(event->pmu, task, cpu);
6460 	if (IS_ERR(ctx)) {
6461 		err = PTR_ERR(ctx);
6462 		goto err_free;
6463 	}
6464 
6465 	event->filp = NULL;
6466 	WARN_ON_ONCE(ctx->parent_ctx);
6467 	mutex_lock(&ctx->mutex);
6468 	perf_install_in_context(ctx, event, cpu);
6469 	++ctx->generation;
6470 	perf_unpin_context(ctx);
6471 	mutex_unlock(&ctx->mutex);
6472 
6473 	return event;
6474 
6475 err_free:
6476 	free_event(event);
6477 err:
6478 	return ERR_PTR(err);
6479 }
6480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6481 
6482 static void sync_child_event(struct perf_event *child_event,
6483 			       struct task_struct *child)
6484 {
6485 	struct perf_event *parent_event = child_event->parent;
6486 	u64 child_val;
6487 
6488 	if (child_event->attr.inherit_stat)
6489 		perf_event_read_event(child_event, child);
6490 
6491 	child_val = perf_event_count(child_event);
6492 
6493 	/*
6494 	 * Add back the child's count to the parent's count:
6495 	 */
6496 	atomic64_add(child_val, &parent_event->child_count);
6497 	atomic64_add(child_event->total_time_enabled,
6498 		     &parent_event->child_total_time_enabled);
6499 	atomic64_add(child_event->total_time_running,
6500 		     &parent_event->child_total_time_running);
6501 
6502 	/*
6503 	 * Remove this event from the parent's list
6504 	 */
6505 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6506 	mutex_lock(&parent_event->child_mutex);
6507 	list_del_init(&child_event->child_list);
6508 	mutex_unlock(&parent_event->child_mutex);
6509 
6510 	/*
6511 	 * Release the parent event, if this was the last
6512 	 * reference to it.
6513 	 */
6514 	fput(parent_event->filp);
6515 }
6516 
6517 static void
6518 __perf_event_exit_task(struct perf_event *child_event,
6519 			 struct perf_event_context *child_ctx,
6520 			 struct task_struct *child)
6521 {
6522 	if (child_event->parent) {
6523 		raw_spin_lock_irq(&child_ctx->lock);
6524 		perf_group_detach(child_event);
6525 		raw_spin_unlock_irq(&child_ctx->lock);
6526 	}
6527 
6528 	perf_remove_from_context(child_event);
6529 
6530 	/*
6531 	 * It can happen that the parent exits first, and has events
6532 	 * that are still around due to the child reference. These
6533 	 * events need to be zapped.
6534 	 */
6535 	if (child_event->parent) {
6536 		sync_child_event(child_event, child);
6537 		free_event(child_event);
6538 	}
6539 }
6540 
6541 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6542 {
6543 	struct perf_event *child_event, *tmp;
6544 	struct perf_event_context *child_ctx;
6545 	unsigned long flags;
6546 
6547 	if (likely(!child->perf_event_ctxp[ctxn])) {
6548 		perf_event_task(child, NULL, 0);
6549 		return;
6550 	}
6551 
6552 	local_irq_save(flags);
6553 	/*
6554 	 * We can't reschedule here because interrupts are disabled,
6555 	 * and either child is current or it is a task that can't be
6556 	 * scheduled, so we are now safe from rescheduling changing
6557 	 * our context.
6558 	 */
6559 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6560 
6561 	/*
6562 	 * Take the context lock here so that if find_get_context is
6563 	 * reading child->perf_event_ctxp, we wait until it has
6564 	 * incremented the context's refcount before we do put_ctx below.
6565 	 */
6566 	raw_spin_lock(&child_ctx->lock);
6567 	task_ctx_sched_out(child_ctx);
6568 	child->perf_event_ctxp[ctxn] = NULL;
6569 	/*
6570 	 * If this context is a clone; unclone it so it can't get
6571 	 * swapped to another process while we're removing all
6572 	 * the events from it.
6573 	 */
6574 	unclone_ctx(child_ctx);
6575 	update_context_time(child_ctx);
6576 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6577 
6578 	/*
6579 	 * Report the task dead after unscheduling the events so that we
6580 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6581 	 * get a few PERF_RECORD_READ events.
6582 	 */
6583 	perf_event_task(child, child_ctx, 0);
6584 
6585 	/*
6586 	 * We can recurse on the same lock type through:
6587 	 *
6588 	 *   __perf_event_exit_task()
6589 	 *     sync_child_event()
6590 	 *       fput(parent_event->filp)
6591 	 *         perf_release()
6592 	 *           mutex_lock(&ctx->mutex)
6593 	 *
6594 	 * But since its the parent context it won't be the same instance.
6595 	 */
6596 	mutex_lock(&child_ctx->mutex);
6597 
6598 again:
6599 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6600 				 group_entry)
6601 		__perf_event_exit_task(child_event, child_ctx, child);
6602 
6603 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6604 				 group_entry)
6605 		__perf_event_exit_task(child_event, child_ctx, child);
6606 
6607 	/*
6608 	 * If the last event was a group event, it will have appended all
6609 	 * its siblings to the list, but we obtained 'tmp' before that which
6610 	 * will still point to the list head terminating the iteration.
6611 	 */
6612 	if (!list_empty(&child_ctx->pinned_groups) ||
6613 	    !list_empty(&child_ctx->flexible_groups))
6614 		goto again;
6615 
6616 	mutex_unlock(&child_ctx->mutex);
6617 
6618 	put_ctx(child_ctx);
6619 }
6620 
6621 /*
6622  * When a child task exits, feed back event values to parent events.
6623  */
6624 void perf_event_exit_task(struct task_struct *child)
6625 {
6626 	struct perf_event *event, *tmp;
6627 	int ctxn;
6628 
6629 	mutex_lock(&child->perf_event_mutex);
6630 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6631 				 owner_entry) {
6632 		list_del_init(&event->owner_entry);
6633 
6634 		/*
6635 		 * Ensure the list deletion is visible before we clear
6636 		 * the owner, closes a race against perf_release() where
6637 		 * we need to serialize on the owner->perf_event_mutex.
6638 		 */
6639 		smp_wmb();
6640 		event->owner = NULL;
6641 	}
6642 	mutex_unlock(&child->perf_event_mutex);
6643 
6644 	for_each_task_context_nr(ctxn)
6645 		perf_event_exit_task_context(child, ctxn);
6646 }
6647 
6648 static void perf_free_event(struct perf_event *event,
6649 			    struct perf_event_context *ctx)
6650 {
6651 	struct perf_event *parent = event->parent;
6652 
6653 	if (WARN_ON_ONCE(!parent))
6654 		return;
6655 
6656 	mutex_lock(&parent->child_mutex);
6657 	list_del_init(&event->child_list);
6658 	mutex_unlock(&parent->child_mutex);
6659 
6660 	fput(parent->filp);
6661 
6662 	perf_group_detach(event);
6663 	list_del_event(event, ctx);
6664 	free_event(event);
6665 }
6666 
6667 /*
6668  * free an unexposed, unused context as created by inheritance by
6669  * perf_event_init_task below, used by fork() in case of fail.
6670  */
6671 void perf_event_free_task(struct task_struct *task)
6672 {
6673 	struct perf_event_context *ctx;
6674 	struct perf_event *event, *tmp;
6675 	int ctxn;
6676 
6677 	for_each_task_context_nr(ctxn) {
6678 		ctx = task->perf_event_ctxp[ctxn];
6679 		if (!ctx)
6680 			continue;
6681 
6682 		mutex_lock(&ctx->mutex);
6683 again:
6684 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6685 				group_entry)
6686 			perf_free_event(event, ctx);
6687 
6688 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6689 				group_entry)
6690 			perf_free_event(event, ctx);
6691 
6692 		if (!list_empty(&ctx->pinned_groups) ||
6693 				!list_empty(&ctx->flexible_groups))
6694 			goto again;
6695 
6696 		mutex_unlock(&ctx->mutex);
6697 
6698 		put_ctx(ctx);
6699 	}
6700 }
6701 
6702 void perf_event_delayed_put(struct task_struct *task)
6703 {
6704 	int ctxn;
6705 
6706 	for_each_task_context_nr(ctxn)
6707 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6708 }
6709 
6710 /*
6711  * inherit a event from parent task to child task:
6712  */
6713 static struct perf_event *
6714 inherit_event(struct perf_event *parent_event,
6715 	      struct task_struct *parent,
6716 	      struct perf_event_context *parent_ctx,
6717 	      struct task_struct *child,
6718 	      struct perf_event *group_leader,
6719 	      struct perf_event_context *child_ctx)
6720 {
6721 	struct perf_event *child_event;
6722 	unsigned long flags;
6723 
6724 	/*
6725 	 * Instead of creating recursive hierarchies of events,
6726 	 * we link inherited events back to the original parent,
6727 	 * which has a filp for sure, which we use as the reference
6728 	 * count:
6729 	 */
6730 	if (parent_event->parent)
6731 		parent_event = parent_event->parent;
6732 
6733 	child_event = perf_event_alloc(&parent_event->attr,
6734 					   parent_event->cpu,
6735 					   child,
6736 					   group_leader, parent_event,
6737 				           NULL, NULL);
6738 	if (IS_ERR(child_event))
6739 		return child_event;
6740 	get_ctx(child_ctx);
6741 
6742 	/*
6743 	 * Make the child state follow the state of the parent event,
6744 	 * not its attr.disabled bit.  We hold the parent's mutex,
6745 	 * so we won't race with perf_event_{en, dis}able_family.
6746 	 */
6747 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6748 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6749 	else
6750 		child_event->state = PERF_EVENT_STATE_OFF;
6751 
6752 	if (parent_event->attr.freq) {
6753 		u64 sample_period = parent_event->hw.sample_period;
6754 		struct hw_perf_event *hwc = &child_event->hw;
6755 
6756 		hwc->sample_period = sample_period;
6757 		hwc->last_period   = sample_period;
6758 
6759 		local64_set(&hwc->period_left, sample_period);
6760 	}
6761 
6762 	child_event->ctx = child_ctx;
6763 	child_event->overflow_handler = parent_event->overflow_handler;
6764 	child_event->overflow_handler_context
6765 		= parent_event->overflow_handler_context;
6766 
6767 	/*
6768 	 * Precalculate sample_data sizes
6769 	 */
6770 	perf_event__header_size(child_event);
6771 	perf_event__id_header_size(child_event);
6772 
6773 	/*
6774 	 * Link it up in the child's context:
6775 	 */
6776 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6777 	add_event_to_ctx(child_event, child_ctx);
6778 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6779 
6780 	/*
6781 	 * Get a reference to the parent filp - we will fput it
6782 	 * when the child event exits. This is safe to do because
6783 	 * we are in the parent and we know that the filp still
6784 	 * exists and has a nonzero count:
6785 	 */
6786 	atomic_long_inc(&parent_event->filp->f_count);
6787 
6788 	/*
6789 	 * Link this into the parent event's child list
6790 	 */
6791 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6792 	mutex_lock(&parent_event->child_mutex);
6793 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6794 	mutex_unlock(&parent_event->child_mutex);
6795 
6796 	return child_event;
6797 }
6798 
6799 static int inherit_group(struct perf_event *parent_event,
6800 	      struct task_struct *parent,
6801 	      struct perf_event_context *parent_ctx,
6802 	      struct task_struct *child,
6803 	      struct perf_event_context *child_ctx)
6804 {
6805 	struct perf_event *leader;
6806 	struct perf_event *sub;
6807 	struct perf_event *child_ctr;
6808 
6809 	leader = inherit_event(parent_event, parent, parent_ctx,
6810 				 child, NULL, child_ctx);
6811 	if (IS_ERR(leader))
6812 		return PTR_ERR(leader);
6813 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6814 		child_ctr = inherit_event(sub, parent, parent_ctx,
6815 					    child, leader, child_ctx);
6816 		if (IS_ERR(child_ctr))
6817 			return PTR_ERR(child_ctr);
6818 	}
6819 	return 0;
6820 }
6821 
6822 static int
6823 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6824 		   struct perf_event_context *parent_ctx,
6825 		   struct task_struct *child, int ctxn,
6826 		   int *inherited_all)
6827 {
6828 	int ret;
6829 	struct perf_event_context *child_ctx;
6830 
6831 	if (!event->attr.inherit) {
6832 		*inherited_all = 0;
6833 		return 0;
6834 	}
6835 
6836 	child_ctx = child->perf_event_ctxp[ctxn];
6837 	if (!child_ctx) {
6838 		/*
6839 		 * This is executed from the parent task context, so
6840 		 * inherit events that have been marked for cloning.
6841 		 * First allocate and initialize a context for the
6842 		 * child.
6843 		 */
6844 
6845 		child_ctx = alloc_perf_context(event->pmu, child);
6846 		if (!child_ctx)
6847 			return -ENOMEM;
6848 
6849 		child->perf_event_ctxp[ctxn] = child_ctx;
6850 	}
6851 
6852 	ret = inherit_group(event, parent, parent_ctx,
6853 			    child, child_ctx);
6854 
6855 	if (ret)
6856 		*inherited_all = 0;
6857 
6858 	return ret;
6859 }
6860 
6861 /*
6862  * Initialize the perf_event context in task_struct
6863  */
6864 int perf_event_init_context(struct task_struct *child, int ctxn)
6865 {
6866 	struct perf_event_context *child_ctx, *parent_ctx;
6867 	struct perf_event_context *cloned_ctx;
6868 	struct perf_event *event;
6869 	struct task_struct *parent = current;
6870 	int inherited_all = 1;
6871 	unsigned long flags;
6872 	int ret = 0;
6873 
6874 	if (likely(!parent->perf_event_ctxp[ctxn]))
6875 		return 0;
6876 
6877 	/*
6878 	 * If the parent's context is a clone, pin it so it won't get
6879 	 * swapped under us.
6880 	 */
6881 	parent_ctx = perf_pin_task_context(parent, ctxn);
6882 
6883 	/*
6884 	 * No need to check if parent_ctx != NULL here; since we saw
6885 	 * it non-NULL earlier, the only reason for it to become NULL
6886 	 * is if we exit, and since we're currently in the middle of
6887 	 * a fork we can't be exiting at the same time.
6888 	 */
6889 
6890 	/*
6891 	 * Lock the parent list. No need to lock the child - not PID
6892 	 * hashed yet and not running, so nobody can access it.
6893 	 */
6894 	mutex_lock(&parent_ctx->mutex);
6895 
6896 	/*
6897 	 * We dont have to disable NMIs - we are only looking at
6898 	 * the list, not manipulating it:
6899 	 */
6900 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6901 		ret = inherit_task_group(event, parent, parent_ctx,
6902 					 child, ctxn, &inherited_all);
6903 		if (ret)
6904 			break;
6905 	}
6906 
6907 	/*
6908 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6909 	 * to allocations, but we need to prevent rotation because
6910 	 * rotate_ctx() will change the list from interrupt context.
6911 	 */
6912 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6913 	parent_ctx->rotate_disable = 1;
6914 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6915 
6916 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6917 		ret = inherit_task_group(event, parent, parent_ctx,
6918 					 child, ctxn, &inherited_all);
6919 		if (ret)
6920 			break;
6921 	}
6922 
6923 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6924 	parent_ctx->rotate_disable = 0;
6925 
6926 	child_ctx = child->perf_event_ctxp[ctxn];
6927 
6928 	if (child_ctx && inherited_all) {
6929 		/*
6930 		 * Mark the child context as a clone of the parent
6931 		 * context, or of whatever the parent is a clone of.
6932 		 *
6933 		 * Note that if the parent is a clone, the holding of
6934 		 * parent_ctx->lock avoids it from being uncloned.
6935 		 */
6936 		cloned_ctx = parent_ctx->parent_ctx;
6937 		if (cloned_ctx) {
6938 			child_ctx->parent_ctx = cloned_ctx;
6939 			child_ctx->parent_gen = parent_ctx->parent_gen;
6940 		} else {
6941 			child_ctx->parent_ctx = parent_ctx;
6942 			child_ctx->parent_gen = parent_ctx->generation;
6943 		}
6944 		get_ctx(child_ctx->parent_ctx);
6945 	}
6946 
6947 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6948 	mutex_unlock(&parent_ctx->mutex);
6949 
6950 	perf_unpin_context(parent_ctx);
6951 	put_ctx(parent_ctx);
6952 
6953 	return ret;
6954 }
6955 
6956 /*
6957  * Initialize the perf_event context in task_struct
6958  */
6959 int perf_event_init_task(struct task_struct *child)
6960 {
6961 	int ctxn, ret;
6962 
6963 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6964 	mutex_init(&child->perf_event_mutex);
6965 	INIT_LIST_HEAD(&child->perf_event_list);
6966 
6967 	for_each_task_context_nr(ctxn) {
6968 		ret = perf_event_init_context(child, ctxn);
6969 		if (ret)
6970 			return ret;
6971 	}
6972 
6973 	return 0;
6974 }
6975 
6976 static void __init perf_event_init_all_cpus(void)
6977 {
6978 	struct swevent_htable *swhash;
6979 	int cpu;
6980 
6981 	for_each_possible_cpu(cpu) {
6982 		swhash = &per_cpu(swevent_htable, cpu);
6983 		mutex_init(&swhash->hlist_mutex);
6984 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6985 	}
6986 }
6987 
6988 static void __cpuinit perf_event_init_cpu(int cpu)
6989 {
6990 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6991 
6992 	mutex_lock(&swhash->hlist_mutex);
6993 	if (swhash->hlist_refcount > 0) {
6994 		struct swevent_hlist *hlist;
6995 
6996 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6997 		WARN_ON(!hlist);
6998 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6999 	}
7000 	mutex_unlock(&swhash->hlist_mutex);
7001 }
7002 
7003 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7004 static void perf_pmu_rotate_stop(struct pmu *pmu)
7005 {
7006 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7007 
7008 	WARN_ON(!irqs_disabled());
7009 
7010 	list_del_init(&cpuctx->rotation_list);
7011 }
7012 
7013 static void __perf_event_exit_context(void *__info)
7014 {
7015 	struct perf_event_context *ctx = __info;
7016 	struct perf_event *event, *tmp;
7017 
7018 	perf_pmu_rotate_stop(ctx->pmu);
7019 
7020 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7021 		__perf_remove_from_context(event);
7022 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7023 		__perf_remove_from_context(event);
7024 }
7025 
7026 static void perf_event_exit_cpu_context(int cpu)
7027 {
7028 	struct perf_event_context *ctx;
7029 	struct pmu *pmu;
7030 	int idx;
7031 
7032 	idx = srcu_read_lock(&pmus_srcu);
7033 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7034 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7035 
7036 		mutex_lock(&ctx->mutex);
7037 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7038 		mutex_unlock(&ctx->mutex);
7039 	}
7040 	srcu_read_unlock(&pmus_srcu, idx);
7041 }
7042 
7043 static void perf_event_exit_cpu(int cpu)
7044 {
7045 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7046 
7047 	mutex_lock(&swhash->hlist_mutex);
7048 	swevent_hlist_release(swhash);
7049 	mutex_unlock(&swhash->hlist_mutex);
7050 
7051 	perf_event_exit_cpu_context(cpu);
7052 }
7053 #else
7054 static inline void perf_event_exit_cpu(int cpu) { }
7055 #endif
7056 
7057 static int
7058 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7059 {
7060 	int cpu;
7061 
7062 	for_each_online_cpu(cpu)
7063 		perf_event_exit_cpu(cpu);
7064 
7065 	return NOTIFY_OK;
7066 }
7067 
7068 /*
7069  * Run the perf reboot notifier at the very last possible moment so that
7070  * the generic watchdog code runs as long as possible.
7071  */
7072 static struct notifier_block perf_reboot_notifier = {
7073 	.notifier_call = perf_reboot,
7074 	.priority = INT_MIN,
7075 };
7076 
7077 static int __cpuinit
7078 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7079 {
7080 	unsigned int cpu = (long)hcpu;
7081 
7082 	switch (action & ~CPU_TASKS_FROZEN) {
7083 
7084 	case CPU_UP_PREPARE:
7085 	case CPU_DOWN_FAILED:
7086 		perf_event_init_cpu(cpu);
7087 		break;
7088 
7089 	case CPU_UP_CANCELED:
7090 	case CPU_DOWN_PREPARE:
7091 		perf_event_exit_cpu(cpu);
7092 		break;
7093 
7094 	default:
7095 		break;
7096 	}
7097 
7098 	return NOTIFY_OK;
7099 }
7100 
7101 void __init perf_event_init(void)
7102 {
7103 	int ret;
7104 
7105 	idr_init(&pmu_idr);
7106 
7107 	perf_event_init_all_cpus();
7108 	init_srcu_struct(&pmus_srcu);
7109 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7110 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7111 	perf_pmu_register(&perf_task_clock, NULL, -1);
7112 	perf_tp_register();
7113 	perf_cpu_notifier(perf_cpu_notify);
7114 	register_reboot_notifier(&perf_reboot_notifier);
7115 
7116 	ret = init_hw_breakpoint();
7117 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7118 
7119 	/* do not patch jump label more than once per second */
7120 	jump_label_rate_limit(&perf_sched_events, HZ);
7121 
7122 	/*
7123 	 * Build time assertion that we keep the data_head at the intended
7124 	 * location.  IOW, validation we got the __reserved[] size right.
7125 	 */
7126 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7127 		     != 1024);
7128 }
7129 
7130 static int __init perf_event_sysfs_init(void)
7131 {
7132 	struct pmu *pmu;
7133 	int ret;
7134 
7135 	mutex_lock(&pmus_lock);
7136 
7137 	ret = bus_register(&pmu_bus);
7138 	if (ret)
7139 		goto unlock;
7140 
7141 	list_for_each_entry(pmu, &pmus, entry) {
7142 		if (!pmu->name || pmu->type < 0)
7143 			continue;
7144 
7145 		ret = pmu_dev_alloc(pmu);
7146 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7147 	}
7148 	pmu_bus_running = 1;
7149 	ret = 0;
7150 
7151 unlock:
7152 	mutex_unlock(&pmus_lock);
7153 
7154 	return ret;
7155 }
7156 device_initcall(perf_event_sysfs_init);
7157 
7158 #ifdef CONFIG_CGROUP_PERF
7159 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7160 {
7161 	struct perf_cgroup *jc;
7162 
7163 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7164 	if (!jc)
7165 		return ERR_PTR(-ENOMEM);
7166 
7167 	jc->info = alloc_percpu(struct perf_cgroup_info);
7168 	if (!jc->info) {
7169 		kfree(jc);
7170 		return ERR_PTR(-ENOMEM);
7171 	}
7172 
7173 	return &jc->css;
7174 }
7175 
7176 static void perf_cgroup_destroy(struct cgroup *cont)
7177 {
7178 	struct perf_cgroup *jc;
7179 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7180 			  struct perf_cgroup, css);
7181 	free_percpu(jc->info);
7182 	kfree(jc);
7183 }
7184 
7185 static int __perf_cgroup_move(void *info)
7186 {
7187 	struct task_struct *task = info;
7188 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7189 	return 0;
7190 }
7191 
7192 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7193 {
7194 	struct task_struct *task;
7195 
7196 	cgroup_taskset_for_each(task, cgrp, tset)
7197 		task_function_call(task, __perf_cgroup_move, task);
7198 }
7199 
7200 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7201 			     struct task_struct *task)
7202 {
7203 	/*
7204 	 * cgroup_exit() is called in the copy_process() failure path.
7205 	 * Ignore this case since the task hasn't ran yet, this avoids
7206 	 * trying to poke a half freed task state from generic code.
7207 	 */
7208 	if (!(task->flags & PF_EXITING))
7209 		return;
7210 
7211 	task_function_call(task, __perf_cgroup_move, task);
7212 }
7213 
7214 struct cgroup_subsys perf_subsys = {
7215 	.name		= "perf_event",
7216 	.subsys_id	= perf_subsys_id,
7217 	.create		= perf_cgroup_create,
7218 	.destroy	= perf_cgroup_destroy,
7219 	.exit		= perf_cgroup_exit,
7220 	.attach		= perf_cgroup_attach,
7221 };
7222 #endif /* CONFIG_CGROUP_PERF */
7223