1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 void perf_pmu_resched(struct pmu *pmu) 2482 { 2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2484 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2485 2486 perf_ctx_lock(cpuctx, task_ctx); 2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2488 perf_ctx_unlock(cpuctx, task_ctx); 2489 } 2490 2491 /* 2492 * Cross CPU call to install and enable a performance event 2493 * 2494 * Very similar to remote_function() + event_function() but cannot assume that 2495 * things like ctx->is_active and cpuctx->task_ctx are set. 2496 */ 2497 static int __perf_install_in_context(void *info) 2498 { 2499 struct perf_event *event = info; 2500 struct perf_event_context *ctx = event->ctx; 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2503 bool reprogram = true; 2504 int ret = 0; 2505 2506 raw_spin_lock(&cpuctx->ctx.lock); 2507 if (ctx->task) { 2508 raw_spin_lock(&ctx->lock); 2509 task_ctx = ctx; 2510 2511 reprogram = (ctx->task == current); 2512 2513 /* 2514 * If the task is running, it must be running on this CPU, 2515 * otherwise we cannot reprogram things. 2516 * 2517 * If its not running, we don't care, ctx->lock will 2518 * serialize against it becoming runnable. 2519 */ 2520 if (task_curr(ctx->task) && !reprogram) { 2521 ret = -ESRCH; 2522 goto unlock; 2523 } 2524 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2526 } else if (task_ctx) { 2527 raw_spin_lock(&task_ctx->lock); 2528 } 2529 2530 #ifdef CONFIG_CGROUP_PERF 2531 if (is_cgroup_event(event)) { 2532 /* 2533 * If the current cgroup doesn't match the event's 2534 * cgroup, we should not try to schedule it. 2535 */ 2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2538 event->cgrp->css.cgroup); 2539 } 2540 #endif 2541 2542 if (reprogram) { 2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2544 add_event_to_ctx(event, ctx); 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2546 } else { 2547 add_event_to_ctx(event, ctx); 2548 } 2549 2550 unlock: 2551 perf_ctx_unlock(cpuctx, task_ctx); 2552 2553 return ret; 2554 } 2555 2556 /* 2557 * Attach a performance event to a context. 2558 * 2559 * Very similar to event_function_call, see comment there. 2560 */ 2561 static void 2562 perf_install_in_context(struct perf_event_context *ctx, 2563 struct perf_event *event, 2564 int cpu) 2565 { 2566 struct task_struct *task = READ_ONCE(ctx->task); 2567 2568 lockdep_assert_held(&ctx->mutex); 2569 2570 if (event->cpu != -1) 2571 event->cpu = cpu; 2572 2573 /* 2574 * Ensures that if we can observe event->ctx, both the event and ctx 2575 * will be 'complete'. See perf_iterate_sb_cpu(). 2576 */ 2577 smp_store_release(&event->ctx, ctx); 2578 2579 if (!task) { 2580 cpu_function_call(cpu, __perf_install_in_context, event); 2581 return; 2582 } 2583 2584 /* 2585 * Should not happen, we validate the ctx is still alive before calling. 2586 */ 2587 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2588 return; 2589 2590 /* 2591 * Installing events is tricky because we cannot rely on ctx->is_active 2592 * to be set in case this is the nr_events 0 -> 1 transition. 2593 * 2594 * Instead we use task_curr(), which tells us if the task is running. 2595 * However, since we use task_curr() outside of rq::lock, we can race 2596 * against the actual state. This means the result can be wrong. 2597 * 2598 * If we get a false positive, we retry, this is harmless. 2599 * 2600 * If we get a false negative, things are complicated. If we are after 2601 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2602 * value must be correct. If we're before, it doesn't matter since 2603 * perf_event_context_sched_in() will program the counter. 2604 * 2605 * However, this hinges on the remote context switch having observed 2606 * our task->perf_event_ctxp[] store, such that it will in fact take 2607 * ctx::lock in perf_event_context_sched_in(). 2608 * 2609 * We do this by task_function_call(), if the IPI fails to hit the task 2610 * we know any future context switch of task must see the 2611 * perf_event_ctpx[] store. 2612 */ 2613 2614 /* 2615 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2616 * task_cpu() load, such that if the IPI then does not find the task 2617 * running, a future context switch of that task must observe the 2618 * store. 2619 */ 2620 smp_mb(); 2621 again: 2622 if (!task_function_call(task, __perf_install_in_context, event)) 2623 return; 2624 2625 raw_spin_lock_irq(&ctx->lock); 2626 task = ctx->task; 2627 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2628 /* 2629 * Cannot happen because we already checked above (which also 2630 * cannot happen), and we hold ctx->mutex, which serializes us 2631 * against perf_event_exit_task_context(). 2632 */ 2633 raw_spin_unlock_irq(&ctx->lock); 2634 return; 2635 } 2636 /* 2637 * If the task is not running, ctx->lock will avoid it becoming so, 2638 * thus we can safely install the event. 2639 */ 2640 if (task_curr(task)) { 2641 raw_spin_unlock_irq(&ctx->lock); 2642 goto again; 2643 } 2644 add_event_to_ctx(event, ctx); 2645 raw_spin_unlock_irq(&ctx->lock); 2646 } 2647 2648 /* 2649 * Cross CPU call to enable a performance event 2650 */ 2651 static void __perf_event_enable(struct perf_event *event, 2652 struct perf_cpu_context *cpuctx, 2653 struct perf_event_context *ctx, 2654 void *info) 2655 { 2656 struct perf_event *leader = event->group_leader; 2657 struct perf_event_context *task_ctx; 2658 2659 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2660 event->state <= PERF_EVENT_STATE_ERROR) 2661 return; 2662 2663 if (ctx->is_active) 2664 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2665 2666 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2667 2668 if (!ctx->is_active) 2669 return; 2670 2671 if (!event_filter_match(event)) { 2672 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2673 return; 2674 } 2675 2676 /* 2677 * If the event is in a group and isn't the group leader, 2678 * then don't put it on unless the group is on. 2679 */ 2680 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2681 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2682 return; 2683 } 2684 2685 task_ctx = cpuctx->task_ctx; 2686 if (ctx->task) 2687 WARN_ON_ONCE(task_ctx != ctx); 2688 2689 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2690 } 2691 2692 /* 2693 * Enable an event. 2694 * 2695 * If event->ctx is a cloned context, callers must make sure that 2696 * every task struct that event->ctx->task could possibly point to 2697 * remains valid. This condition is satisfied when called through 2698 * perf_event_for_each_child or perf_event_for_each as described 2699 * for perf_event_disable. 2700 */ 2701 static void _perf_event_enable(struct perf_event *event) 2702 { 2703 struct perf_event_context *ctx = event->ctx; 2704 2705 raw_spin_lock_irq(&ctx->lock); 2706 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2707 event->state < PERF_EVENT_STATE_ERROR) { 2708 raw_spin_unlock_irq(&ctx->lock); 2709 return; 2710 } 2711 2712 /* 2713 * If the event is in error state, clear that first. 2714 * 2715 * That way, if we see the event in error state below, we know that it 2716 * has gone back into error state, as distinct from the task having 2717 * been scheduled away before the cross-call arrived. 2718 */ 2719 if (event->state == PERF_EVENT_STATE_ERROR) 2720 event->state = PERF_EVENT_STATE_OFF; 2721 raw_spin_unlock_irq(&ctx->lock); 2722 2723 event_function_call(event, __perf_event_enable, NULL); 2724 } 2725 2726 /* 2727 * See perf_event_disable(); 2728 */ 2729 void perf_event_enable(struct perf_event *event) 2730 { 2731 struct perf_event_context *ctx; 2732 2733 ctx = perf_event_ctx_lock(event); 2734 _perf_event_enable(event); 2735 perf_event_ctx_unlock(event, ctx); 2736 } 2737 EXPORT_SYMBOL_GPL(perf_event_enable); 2738 2739 struct stop_event_data { 2740 struct perf_event *event; 2741 unsigned int restart; 2742 }; 2743 2744 static int __perf_event_stop(void *info) 2745 { 2746 struct stop_event_data *sd = info; 2747 struct perf_event *event = sd->event; 2748 2749 /* if it's already INACTIVE, do nothing */ 2750 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2751 return 0; 2752 2753 /* matches smp_wmb() in event_sched_in() */ 2754 smp_rmb(); 2755 2756 /* 2757 * There is a window with interrupts enabled before we get here, 2758 * so we need to check again lest we try to stop another CPU's event. 2759 */ 2760 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2761 return -EAGAIN; 2762 2763 event->pmu->stop(event, PERF_EF_UPDATE); 2764 2765 /* 2766 * May race with the actual stop (through perf_pmu_output_stop()), 2767 * but it is only used for events with AUX ring buffer, and such 2768 * events will refuse to restart because of rb::aux_mmap_count==0, 2769 * see comments in perf_aux_output_begin(). 2770 * 2771 * Since this is happening on an event-local CPU, no trace is lost 2772 * while restarting. 2773 */ 2774 if (sd->restart) 2775 event->pmu->start(event, 0); 2776 2777 return 0; 2778 } 2779 2780 static int perf_event_stop(struct perf_event *event, int restart) 2781 { 2782 struct stop_event_data sd = { 2783 .event = event, 2784 .restart = restart, 2785 }; 2786 int ret = 0; 2787 2788 do { 2789 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2790 return 0; 2791 2792 /* matches smp_wmb() in event_sched_in() */ 2793 smp_rmb(); 2794 2795 /* 2796 * We only want to restart ACTIVE events, so if the event goes 2797 * inactive here (event->oncpu==-1), there's nothing more to do; 2798 * fall through with ret==-ENXIO. 2799 */ 2800 ret = cpu_function_call(READ_ONCE(event->oncpu), 2801 __perf_event_stop, &sd); 2802 } while (ret == -EAGAIN); 2803 2804 return ret; 2805 } 2806 2807 /* 2808 * In order to contain the amount of racy and tricky in the address filter 2809 * configuration management, it is a two part process: 2810 * 2811 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2812 * we update the addresses of corresponding vmas in 2813 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2814 * (p2) when an event is scheduled in (pmu::add), it calls 2815 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2816 * if the generation has changed since the previous call. 2817 * 2818 * If (p1) happens while the event is active, we restart it to force (p2). 2819 * 2820 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2821 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2822 * ioctl; 2823 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2824 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2825 * for reading; 2826 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2827 * of exec. 2828 */ 2829 void perf_event_addr_filters_sync(struct perf_event *event) 2830 { 2831 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2832 2833 if (!has_addr_filter(event)) 2834 return; 2835 2836 raw_spin_lock(&ifh->lock); 2837 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2838 event->pmu->addr_filters_sync(event); 2839 event->hw.addr_filters_gen = event->addr_filters_gen; 2840 } 2841 raw_spin_unlock(&ifh->lock); 2842 } 2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2844 2845 static int _perf_event_refresh(struct perf_event *event, int refresh) 2846 { 2847 /* 2848 * not supported on inherited events 2849 */ 2850 if (event->attr.inherit || !is_sampling_event(event)) 2851 return -EINVAL; 2852 2853 atomic_add(refresh, &event->event_limit); 2854 _perf_event_enable(event); 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * See perf_event_disable() 2861 */ 2862 int perf_event_refresh(struct perf_event *event, int refresh) 2863 { 2864 struct perf_event_context *ctx; 2865 int ret; 2866 2867 ctx = perf_event_ctx_lock(event); 2868 ret = _perf_event_refresh(event, refresh); 2869 perf_event_ctx_unlock(event, ctx); 2870 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(perf_event_refresh); 2874 2875 static int perf_event_modify_breakpoint(struct perf_event *bp, 2876 struct perf_event_attr *attr) 2877 { 2878 int err; 2879 2880 _perf_event_disable(bp); 2881 2882 err = modify_user_hw_breakpoint_check(bp, attr, true); 2883 2884 if (!bp->attr.disabled) 2885 _perf_event_enable(bp); 2886 2887 return err; 2888 } 2889 2890 static int perf_event_modify_attr(struct perf_event *event, 2891 struct perf_event_attr *attr) 2892 { 2893 if (event->attr.type != attr->type) 2894 return -EINVAL; 2895 2896 switch (event->attr.type) { 2897 case PERF_TYPE_BREAKPOINT: 2898 return perf_event_modify_breakpoint(event, attr); 2899 default: 2900 /* Place holder for future additions. */ 2901 return -EOPNOTSUPP; 2902 } 2903 } 2904 2905 static void ctx_sched_out(struct perf_event_context *ctx, 2906 struct perf_cpu_context *cpuctx, 2907 enum event_type_t event_type) 2908 { 2909 struct perf_event *event, *tmp; 2910 int is_active = ctx->is_active; 2911 2912 lockdep_assert_held(&ctx->lock); 2913 2914 if (likely(!ctx->nr_events)) { 2915 /* 2916 * See __perf_remove_from_context(). 2917 */ 2918 WARN_ON_ONCE(ctx->is_active); 2919 if (ctx->task) 2920 WARN_ON_ONCE(cpuctx->task_ctx); 2921 return; 2922 } 2923 2924 ctx->is_active &= ~event_type; 2925 if (!(ctx->is_active & EVENT_ALL)) 2926 ctx->is_active = 0; 2927 2928 if (ctx->task) { 2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2930 if (!ctx->is_active) 2931 cpuctx->task_ctx = NULL; 2932 } 2933 2934 /* 2935 * Always update time if it was set; not only when it changes. 2936 * Otherwise we can 'forget' to update time for any but the last 2937 * context we sched out. For example: 2938 * 2939 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2940 * ctx_sched_out(.event_type = EVENT_PINNED) 2941 * 2942 * would only update time for the pinned events. 2943 */ 2944 if (is_active & EVENT_TIME) { 2945 /* update (and stop) ctx time */ 2946 update_context_time(ctx); 2947 update_cgrp_time_from_cpuctx(cpuctx); 2948 } 2949 2950 is_active ^= ctx->is_active; /* changed bits */ 2951 2952 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2953 return; 2954 2955 perf_pmu_disable(ctx->pmu); 2956 if (is_active & EVENT_PINNED) { 2957 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2958 group_sched_out(event, cpuctx, ctx); 2959 } 2960 2961 if (is_active & EVENT_FLEXIBLE) { 2962 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2963 group_sched_out(event, cpuctx, ctx); 2964 } 2965 perf_pmu_enable(ctx->pmu); 2966 } 2967 2968 /* 2969 * Test whether two contexts are equivalent, i.e. whether they have both been 2970 * cloned from the same version of the same context. 2971 * 2972 * Equivalence is measured using a generation number in the context that is 2973 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2974 * and list_del_event(). 2975 */ 2976 static int context_equiv(struct perf_event_context *ctx1, 2977 struct perf_event_context *ctx2) 2978 { 2979 lockdep_assert_held(&ctx1->lock); 2980 lockdep_assert_held(&ctx2->lock); 2981 2982 /* Pinning disables the swap optimization */ 2983 if (ctx1->pin_count || ctx2->pin_count) 2984 return 0; 2985 2986 /* If ctx1 is the parent of ctx2 */ 2987 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2988 return 1; 2989 2990 /* If ctx2 is the parent of ctx1 */ 2991 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2992 return 1; 2993 2994 /* 2995 * If ctx1 and ctx2 have the same parent; we flatten the parent 2996 * hierarchy, see perf_event_init_context(). 2997 */ 2998 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2999 ctx1->parent_gen == ctx2->parent_gen) 3000 return 1; 3001 3002 /* Unmatched */ 3003 return 0; 3004 } 3005 3006 static void __perf_event_sync_stat(struct perf_event *event, 3007 struct perf_event *next_event) 3008 { 3009 u64 value; 3010 3011 if (!event->attr.inherit_stat) 3012 return; 3013 3014 /* 3015 * Update the event value, we cannot use perf_event_read() 3016 * because we're in the middle of a context switch and have IRQs 3017 * disabled, which upsets smp_call_function_single(), however 3018 * we know the event must be on the current CPU, therefore we 3019 * don't need to use it. 3020 */ 3021 if (event->state == PERF_EVENT_STATE_ACTIVE) 3022 event->pmu->read(event); 3023 3024 perf_event_update_time(event); 3025 3026 /* 3027 * In order to keep per-task stats reliable we need to flip the event 3028 * values when we flip the contexts. 3029 */ 3030 value = local64_read(&next_event->count); 3031 value = local64_xchg(&event->count, value); 3032 local64_set(&next_event->count, value); 3033 3034 swap(event->total_time_enabled, next_event->total_time_enabled); 3035 swap(event->total_time_running, next_event->total_time_running); 3036 3037 /* 3038 * Since we swizzled the values, update the user visible data too. 3039 */ 3040 perf_event_update_userpage(event); 3041 perf_event_update_userpage(next_event); 3042 } 3043 3044 static void perf_event_sync_stat(struct perf_event_context *ctx, 3045 struct perf_event_context *next_ctx) 3046 { 3047 struct perf_event *event, *next_event; 3048 3049 if (!ctx->nr_stat) 3050 return; 3051 3052 update_context_time(ctx); 3053 3054 event = list_first_entry(&ctx->event_list, 3055 struct perf_event, event_entry); 3056 3057 next_event = list_first_entry(&next_ctx->event_list, 3058 struct perf_event, event_entry); 3059 3060 while (&event->event_entry != &ctx->event_list && 3061 &next_event->event_entry != &next_ctx->event_list) { 3062 3063 __perf_event_sync_stat(event, next_event); 3064 3065 event = list_next_entry(event, event_entry); 3066 next_event = list_next_entry(next_event, event_entry); 3067 } 3068 } 3069 3070 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3071 struct task_struct *next) 3072 { 3073 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3074 struct perf_event_context *next_ctx; 3075 struct perf_event_context *parent, *next_parent; 3076 struct perf_cpu_context *cpuctx; 3077 int do_switch = 1; 3078 3079 if (likely(!ctx)) 3080 return; 3081 3082 cpuctx = __get_cpu_context(ctx); 3083 if (!cpuctx->task_ctx) 3084 return; 3085 3086 rcu_read_lock(); 3087 next_ctx = next->perf_event_ctxp[ctxn]; 3088 if (!next_ctx) 3089 goto unlock; 3090 3091 parent = rcu_dereference(ctx->parent_ctx); 3092 next_parent = rcu_dereference(next_ctx->parent_ctx); 3093 3094 /* If neither context have a parent context; they cannot be clones. */ 3095 if (!parent && !next_parent) 3096 goto unlock; 3097 3098 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3099 /* 3100 * Looks like the two contexts are clones, so we might be 3101 * able to optimize the context switch. We lock both 3102 * contexts and check that they are clones under the 3103 * lock (including re-checking that neither has been 3104 * uncloned in the meantime). It doesn't matter which 3105 * order we take the locks because no other cpu could 3106 * be trying to lock both of these tasks. 3107 */ 3108 raw_spin_lock(&ctx->lock); 3109 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3110 if (context_equiv(ctx, next_ctx)) { 3111 WRITE_ONCE(ctx->task, next); 3112 WRITE_ONCE(next_ctx->task, task); 3113 3114 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3115 3116 /* 3117 * RCU_INIT_POINTER here is safe because we've not 3118 * modified the ctx and the above modification of 3119 * ctx->task and ctx->task_ctx_data are immaterial 3120 * since those values are always verified under 3121 * ctx->lock which we're now holding. 3122 */ 3123 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3124 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3125 3126 do_switch = 0; 3127 3128 perf_event_sync_stat(ctx, next_ctx); 3129 } 3130 raw_spin_unlock(&next_ctx->lock); 3131 raw_spin_unlock(&ctx->lock); 3132 } 3133 unlock: 3134 rcu_read_unlock(); 3135 3136 if (do_switch) { 3137 raw_spin_lock(&ctx->lock); 3138 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3139 raw_spin_unlock(&ctx->lock); 3140 } 3141 } 3142 3143 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3144 3145 void perf_sched_cb_dec(struct pmu *pmu) 3146 { 3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3148 3149 this_cpu_dec(perf_sched_cb_usages); 3150 3151 if (!--cpuctx->sched_cb_usage) 3152 list_del(&cpuctx->sched_cb_entry); 3153 } 3154 3155 3156 void perf_sched_cb_inc(struct pmu *pmu) 3157 { 3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3159 3160 if (!cpuctx->sched_cb_usage++) 3161 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3162 3163 this_cpu_inc(perf_sched_cb_usages); 3164 } 3165 3166 /* 3167 * This function provides the context switch callback to the lower code 3168 * layer. It is invoked ONLY when the context switch callback is enabled. 3169 * 3170 * This callback is relevant even to per-cpu events; for example multi event 3171 * PEBS requires this to provide PID/TID information. This requires we flush 3172 * all queued PEBS records before we context switch to a new task. 3173 */ 3174 static void perf_pmu_sched_task(struct task_struct *prev, 3175 struct task_struct *next, 3176 bool sched_in) 3177 { 3178 struct perf_cpu_context *cpuctx; 3179 struct pmu *pmu; 3180 3181 if (prev == next) 3182 return; 3183 3184 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3185 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3186 3187 if (WARN_ON_ONCE(!pmu->sched_task)) 3188 continue; 3189 3190 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3191 perf_pmu_disable(pmu); 3192 3193 pmu->sched_task(cpuctx->task_ctx, sched_in); 3194 3195 perf_pmu_enable(pmu); 3196 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3197 } 3198 } 3199 3200 static void perf_event_switch(struct task_struct *task, 3201 struct task_struct *next_prev, bool sched_in); 3202 3203 #define for_each_task_context_nr(ctxn) \ 3204 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3205 3206 /* 3207 * Called from scheduler to remove the events of the current task, 3208 * with interrupts disabled. 3209 * 3210 * We stop each event and update the event value in event->count. 3211 * 3212 * This does not protect us against NMI, but disable() 3213 * sets the disabled bit in the control field of event _before_ 3214 * accessing the event control register. If a NMI hits, then it will 3215 * not restart the event. 3216 */ 3217 void __perf_event_task_sched_out(struct task_struct *task, 3218 struct task_struct *next) 3219 { 3220 int ctxn; 3221 3222 if (__this_cpu_read(perf_sched_cb_usages)) 3223 perf_pmu_sched_task(task, next, false); 3224 3225 if (atomic_read(&nr_switch_events)) 3226 perf_event_switch(task, next, false); 3227 3228 for_each_task_context_nr(ctxn) 3229 perf_event_context_sched_out(task, ctxn, next); 3230 3231 /* 3232 * if cgroup events exist on this CPU, then we need 3233 * to check if we have to switch out PMU state. 3234 * cgroup event are system-wide mode only 3235 */ 3236 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3237 perf_cgroup_sched_out(task, next); 3238 } 3239 3240 /* 3241 * Called with IRQs disabled 3242 */ 3243 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3244 enum event_type_t event_type) 3245 { 3246 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3247 } 3248 3249 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3250 int (*func)(struct perf_event *, void *), void *data) 3251 { 3252 struct perf_event **evt, *evt1, *evt2; 3253 int ret; 3254 3255 evt1 = perf_event_groups_first(groups, -1); 3256 evt2 = perf_event_groups_first(groups, cpu); 3257 3258 while (evt1 || evt2) { 3259 if (evt1 && evt2) { 3260 if (evt1->group_index < evt2->group_index) 3261 evt = &evt1; 3262 else 3263 evt = &evt2; 3264 } else if (evt1) { 3265 evt = &evt1; 3266 } else { 3267 evt = &evt2; 3268 } 3269 3270 ret = func(*evt, data); 3271 if (ret) 3272 return ret; 3273 3274 *evt = perf_event_groups_next(*evt); 3275 } 3276 3277 return 0; 3278 } 3279 3280 struct sched_in_data { 3281 struct perf_event_context *ctx; 3282 struct perf_cpu_context *cpuctx; 3283 int can_add_hw; 3284 }; 3285 3286 static int pinned_sched_in(struct perf_event *event, void *data) 3287 { 3288 struct sched_in_data *sid = data; 3289 3290 if (event->state <= PERF_EVENT_STATE_OFF) 3291 return 0; 3292 3293 if (!event_filter_match(event)) 3294 return 0; 3295 3296 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3297 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3298 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3299 } 3300 3301 /* 3302 * If this pinned group hasn't been scheduled, 3303 * put it in error state. 3304 */ 3305 if (event->state == PERF_EVENT_STATE_INACTIVE) 3306 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3307 3308 return 0; 3309 } 3310 3311 static int flexible_sched_in(struct perf_event *event, void *data) 3312 { 3313 struct sched_in_data *sid = data; 3314 3315 if (event->state <= PERF_EVENT_STATE_OFF) 3316 return 0; 3317 3318 if (!event_filter_match(event)) 3319 return 0; 3320 3321 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3322 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3323 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3324 else 3325 sid->can_add_hw = 0; 3326 } 3327 3328 return 0; 3329 } 3330 3331 static void 3332 ctx_pinned_sched_in(struct perf_event_context *ctx, 3333 struct perf_cpu_context *cpuctx) 3334 { 3335 struct sched_in_data sid = { 3336 .ctx = ctx, 3337 .cpuctx = cpuctx, 3338 .can_add_hw = 1, 3339 }; 3340 3341 visit_groups_merge(&ctx->pinned_groups, 3342 smp_processor_id(), 3343 pinned_sched_in, &sid); 3344 } 3345 3346 static void 3347 ctx_flexible_sched_in(struct perf_event_context *ctx, 3348 struct perf_cpu_context *cpuctx) 3349 { 3350 struct sched_in_data sid = { 3351 .ctx = ctx, 3352 .cpuctx = cpuctx, 3353 .can_add_hw = 1, 3354 }; 3355 3356 visit_groups_merge(&ctx->flexible_groups, 3357 smp_processor_id(), 3358 flexible_sched_in, &sid); 3359 } 3360 3361 static void 3362 ctx_sched_in(struct perf_event_context *ctx, 3363 struct perf_cpu_context *cpuctx, 3364 enum event_type_t event_type, 3365 struct task_struct *task) 3366 { 3367 int is_active = ctx->is_active; 3368 u64 now; 3369 3370 lockdep_assert_held(&ctx->lock); 3371 3372 if (likely(!ctx->nr_events)) 3373 return; 3374 3375 ctx->is_active |= (event_type | EVENT_TIME); 3376 if (ctx->task) { 3377 if (!is_active) 3378 cpuctx->task_ctx = ctx; 3379 else 3380 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3381 } 3382 3383 is_active ^= ctx->is_active; /* changed bits */ 3384 3385 if (is_active & EVENT_TIME) { 3386 /* start ctx time */ 3387 now = perf_clock(); 3388 ctx->timestamp = now; 3389 perf_cgroup_set_timestamp(task, ctx); 3390 } 3391 3392 /* 3393 * First go through the list and put on any pinned groups 3394 * in order to give them the best chance of going on. 3395 */ 3396 if (is_active & EVENT_PINNED) 3397 ctx_pinned_sched_in(ctx, cpuctx); 3398 3399 /* Then walk through the lower prio flexible groups */ 3400 if (is_active & EVENT_FLEXIBLE) 3401 ctx_flexible_sched_in(ctx, cpuctx); 3402 } 3403 3404 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3405 enum event_type_t event_type, 3406 struct task_struct *task) 3407 { 3408 struct perf_event_context *ctx = &cpuctx->ctx; 3409 3410 ctx_sched_in(ctx, cpuctx, event_type, task); 3411 } 3412 3413 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3414 struct task_struct *task) 3415 { 3416 struct perf_cpu_context *cpuctx; 3417 3418 cpuctx = __get_cpu_context(ctx); 3419 if (cpuctx->task_ctx == ctx) 3420 return; 3421 3422 perf_ctx_lock(cpuctx, ctx); 3423 /* 3424 * We must check ctx->nr_events while holding ctx->lock, such 3425 * that we serialize against perf_install_in_context(). 3426 */ 3427 if (!ctx->nr_events) 3428 goto unlock; 3429 3430 perf_pmu_disable(ctx->pmu); 3431 /* 3432 * We want to keep the following priority order: 3433 * cpu pinned (that don't need to move), task pinned, 3434 * cpu flexible, task flexible. 3435 * 3436 * However, if task's ctx is not carrying any pinned 3437 * events, no need to flip the cpuctx's events around. 3438 */ 3439 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3440 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3441 perf_event_sched_in(cpuctx, ctx, task); 3442 perf_pmu_enable(ctx->pmu); 3443 3444 unlock: 3445 perf_ctx_unlock(cpuctx, ctx); 3446 } 3447 3448 /* 3449 * Called from scheduler to add the events of the current task 3450 * with interrupts disabled. 3451 * 3452 * We restore the event value and then enable it. 3453 * 3454 * This does not protect us against NMI, but enable() 3455 * sets the enabled bit in the control field of event _before_ 3456 * accessing the event control register. If a NMI hits, then it will 3457 * keep the event running. 3458 */ 3459 void __perf_event_task_sched_in(struct task_struct *prev, 3460 struct task_struct *task) 3461 { 3462 struct perf_event_context *ctx; 3463 int ctxn; 3464 3465 /* 3466 * If cgroup events exist on this CPU, then we need to check if we have 3467 * to switch in PMU state; cgroup event are system-wide mode only. 3468 * 3469 * Since cgroup events are CPU events, we must schedule these in before 3470 * we schedule in the task events. 3471 */ 3472 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3473 perf_cgroup_sched_in(prev, task); 3474 3475 for_each_task_context_nr(ctxn) { 3476 ctx = task->perf_event_ctxp[ctxn]; 3477 if (likely(!ctx)) 3478 continue; 3479 3480 perf_event_context_sched_in(ctx, task); 3481 } 3482 3483 if (atomic_read(&nr_switch_events)) 3484 perf_event_switch(task, prev, true); 3485 3486 if (__this_cpu_read(perf_sched_cb_usages)) 3487 perf_pmu_sched_task(prev, task, true); 3488 } 3489 3490 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3491 { 3492 u64 frequency = event->attr.sample_freq; 3493 u64 sec = NSEC_PER_SEC; 3494 u64 divisor, dividend; 3495 3496 int count_fls, nsec_fls, frequency_fls, sec_fls; 3497 3498 count_fls = fls64(count); 3499 nsec_fls = fls64(nsec); 3500 frequency_fls = fls64(frequency); 3501 sec_fls = 30; 3502 3503 /* 3504 * We got @count in @nsec, with a target of sample_freq HZ 3505 * the target period becomes: 3506 * 3507 * @count * 10^9 3508 * period = ------------------- 3509 * @nsec * sample_freq 3510 * 3511 */ 3512 3513 /* 3514 * Reduce accuracy by one bit such that @a and @b converge 3515 * to a similar magnitude. 3516 */ 3517 #define REDUCE_FLS(a, b) \ 3518 do { \ 3519 if (a##_fls > b##_fls) { \ 3520 a >>= 1; \ 3521 a##_fls--; \ 3522 } else { \ 3523 b >>= 1; \ 3524 b##_fls--; \ 3525 } \ 3526 } while (0) 3527 3528 /* 3529 * Reduce accuracy until either term fits in a u64, then proceed with 3530 * the other, so that finally we can do a u64/u64 division. 3531 */ 3532 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3533 REDUCE_FLS(nsec, frequency); 3534 REDUCE_FLS(sec, count); 3535 } 3536 3537 if (count_fls + sec_fls > 64) { 3538 divisor = nsec * frequency; 3539 3540 while (count_fls + sec_fls > 64) { 3541 REDUCE_FLS(count, sec); 3542 divisor >>= 1; 3543 } 3544 3545 dividend = count * sec; 3546 } else { 3547 dividend = count * sec; 3548 3549 while (nsec_fls + frequency_fls > 64) { 3550 REDUCE_FLS(nsec, frequency); 3551 dividend >>= 1; 3552 } 3553 3554 divisor = nsec * frequency; 3555 } 3556 3557 if (!divisor) 3558 return dividend; 3559 3560 return div64_u64(dividend, divisor); 3561 } 3562 3563 static DEFINE_PER_CPU(int, perf_throttled_count); 3564 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3565 3566 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3567 { 3568 struct hw_perf_event *hwc = &event->hw; 3569 s64 period, sample_period; 3570 s64 delta; 3571 3572 period = perf_calculate_period(event, nsec, count); 3573 3574 delta = (s64)(period - hwc->sample_period); 3575 delta = (delta + 7) / 8; /* low pass filter */ 3576 3577 sample_period = hwc->sample_period + delta; 3578 3579 if (!sample_period) 3580 sample_period = 1; 3581 3582 hwc->sample_period = sample_period; 3583 3584 if (local64_read(&hwc->period_left) > 8*sample_period) { 3585 if (disable) 3586 event->pmu->stop(event, PERF_EF_UPDATE); 3587 3588 local64_set(&hwc->period_left, 0); 3589 3590 if (disable) 3591 event->pmu->start(event, PERF_EF_RELOAD); 3592 } 3593 } 3594 3595 /* 3596 * combine freq adjustment with unthrottling to avoid two passes over the 3597 * events. At the same time, make sure, having freq events does not change 3598 * the rate of unthrottling as that would introduce bias. 3599 */ 3600 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3601 int needs_unthr) 3602 { 3603 struct perf_event *event; 3604 struct hw_perf_event *hwc; 3605 u64 now, period = TICK_NSEC; 3606 s64 delta; 3607 3608 /* 3609 * only need to iterate over all events iff: 3610 * - context have events in frequency mode (needs freq adjust) 3611 * - there are events to unthrottle on this cpu 3612 */ 3613 if (!(ctx->nr_freq || needs_unthr)) 3614 return; 3615 3616 raw_spin_lock(&ctx->lock); 3617 perf_pmu_disable(ctx->pmu); 3618 3619 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3620 if (event->state != PERF_EVENT_STATE_ACTIVE) 3621 continue; 3622 3623 if (!event_filter_match(event)) 3624 continue; 3625 3626 perf_pmu_disable(event->pmu); 3627 3628 hwc = &event->hw; 3629 3630 if (hwc->interrupts == MAX_INTERRUPTS) { 3631 hwc->interrupts = 0; 3632 perf_log_throttle(event, 1); 3633 event->pmu->start(event, 0); 3634 } 3635 3636 if (!event->attr.freq || !event->attr.sample_freq) 3637 goto next; 3638 3639 /* 3640 * stop the event and update event->count 3641 */ 3642 event->pmu->stop(event, PERF_EF_UPDATE); 3643 3644 now = local64_read(&event->count); 3645 delta = now - hwc->freq_count_stamp; 3646 hwc->freq_count_stamp = now; 3647 3648 /* 3649 * restart the event 3650 * reload only if value has changed 3651 * we have stopped the event so tell that 3652 * to perf_adjust_period() to avoid stopping it 3653 * twice. 3654 */ 3655 if (delta > 0) 3656 perf_adjust_period(event, period, delta, false); 3657 3658 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3659 next: 3660 perf_pmu_enable(event->pmu); 3661 } 3662 3663 perf_pmu_enable(ctx->pmu); 3664 raw_spin_unlock(&ctx->lock); 3665 } 3666 3667 /* 3668 * Move @event to the tail of the @ctx's elegible events. 3669 */ 3670 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3671 { 3672 /* 3673 * Rotate the first entry last of non-pinned groups. Rotation might be 3674 * disabled by the inheritance code. 3675 */ 3676 if (ctx->rotate_disable) 3677 return; 3678 3679 perf_event_groups_delete(&ctx->flexible_groups, event); 3680 perf_event_groups_insert(&ctx->flexible_groups, event); 3681 } 3682 3683 static inline struct perf_event * 3684 ctx_first_active(struct perf_event_context *ctx) 3685 { 3686 return list_first_entry_or_null(&ctx->flexible_active, 3687 struct perf_event, active_list); 3688 } 3689 3690 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3691 { 3692 struct perf_event *cpu_event = NULL, *task_event = NULL; 3693 bool cpu_rotate = false, task_rotate = false; 3694 struct perf_event_context *ctx = NULL; 3695 3696 /* 3697 * Since we run this from IRQ context, nobody can install new 3698 * events, thus the event count values are stable. 3699 */ 3700 3701 if (cpuctx->ctx.nr_events) { 3702 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3703 cpu_rotate = true; 3704 } 3705 3706 ctx = cpuctx->task_ctx; 3707 if (ctx && ctx->nr_events) { 3708 if (ctx->nr_events != ctx->nr_active) 3709 task_rotate = true; 3710 } 3711 3712 if (!(cpu_rotate || task_rotate)) 3713 return false; 3714 3715 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3716 perf_pmu_disable(cpuctx->ctx.pmu); 3717 3718 if (task_rotate) 3719 task_event = ctx_first_active(ctx); 3720 if (cpu_rotate) 3721 cpu_event = ctx_first_active(&cpuctx->ctx); 3722 3723 /* 3724 * As per the order given at ctx_resched() first 'pop' task flexible 3725 * and then, if needed CPU flexible. 3726 */ 3727 if (task_event || (ctx && cpu_event)) 3728 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3729 if (cpu_event) 3730 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3731 3732 if (task_event) 3733 rotate_ctx(ctx, task_event); 3734 if (cpu_event) 3735 rotate_ctx(&cpuctx->ctx, cpu_event); 3736 3737 perf_event_sched_in(cpuctx, ctx, current); 3738 3739 perf_pmu_enable(cpuctx->ctx.pmu); 3740 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3741 3742 return true; 3743 } 3744 3745 void perf_event_task_tick(void) 3746 { 3747 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3748 struct perf_event_context *ctx, *tmp; 3749 int throttled; 3750 3751 lockdep_assert_irqs_disabled(); 3752 3753 __this_cpu_inc(perf_throttled_seq); 3754 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3755 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3756 3757 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3758 perf_adjust_freq_unthr_context(ctx, throttled); 3759 } 3760 3761 static int event_enable_on_exec(struct perf_event *event, 3762 struct perf_event_context *ctx) 3763 { 3764 if (!event->attr.enable_on_exec) 3765 return 0; 3766 3767 event->attr.enable_on_exec = 0; 3768 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3769 return 0; 3770 3771 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3772 3773 return 1; 3774 } 3775 3776 /* 3777 * Enable all of a task's events that have been marked enable-on-exec. 3778 * This expects task == current. 3779 */ 3780 static void perf_event_enable_on_exec(int ctxn) 3781 { 3782 struct perf_event_context *ctx, *clone_ctx = NULL; 3783 enum event_type_t event_type = 0; 3784 struct perf_cpu_context *cpuctx; 3785 struct perf_event *event; 3786 unsigned long flags; 3787 int enabled = 0; 3788 3789 local_irq_save(flags); 3790 ctx = current->perf_event_ctxp[ctxn]; 3791 if (!ctx || !ctx->nr_events) 3792 goto out; 3793 3794 cpuctx = __get_cpu_context(ctx); 3795 perf_ctx_lock(cpuctx, ctx); 3796 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3797 list_for_each_entry(event, &ctx->event_list, event_entry) { 3798 enabled |= event_enable_on_exec(event, ctx); 3799 event_type |= get_event_type(event); 3800 } 3801 3802 /* 3803 * Unclone and reschedule this context if we enabled any event. 3804 */ 3805 if (enabled) { 3806 clone_ctx = unclone_ctx(ctx); 3807 ctx_resched(cpuctx, ctx, event_type); 3808 } else { 3809 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3810 } 3811 perf_ctx_unlock(cpuctx, ctx); 3812 3813 out: 3814 local_irq_restore(flags); 3815 3816 if (clone_ctx) 3817 put_ctx(clone_ctx); 3818 } 3819 3820 struct perf_read_data { 3821 struct perf_event *event; 3822 bool group; 3823 int ret; 3824 }; 3825 3826 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3827 { 3828 u16 local_pkg, event_pkg; 3829 3830 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3831 int local_cpu = smp_processor_id(); 3832 3833 event_pkg = topology_physical_package_id(event_cpu); 3834 local_pkg = topology_physical_package_id(local_cpu); 3835 3836 if (event_pkg == local_pkg) 3837 return local_cpu; 3838 } 3839 3840 return event_cpu; 3841 } 3842 3843 /* 3844 * Cross CPU call to read the hardware event 3845 */ 3846 static void __perf_event_read(void *info) 3847 { 3848 struct perf_read_data *data = info; 3849 struct perf_event *sub, *event = data->event; 3850 struct perf_event_context *ctx = event->ctx; 3851 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3852 struct pmu *pmu = event->pmu; 3853 3854 /* 3855 * If this is a task context, we need to check whether it is 3856 * the current task context of this cpu. If not it has been 3857 * scheduled out before the smp call arrived. In that case 3858 * event->count would have been updated to a recent sample 3859 * when the event was scheduled out. 3860 */ 3861 if (ctx->task && cpuctx->task_ctx != ctx) 3862 return; 3863 3864 raw_spin_lock(&ctx->lock); 3865 if (ctx->is_active & EVENT_TIME) { 3866 update_context_time(ctx); 3867 update_cgrp_time_from_event(event); 3868 } 3869 3870 perf_event_update_time(event); 3871 if (data->group) 3872 perf_event_update_sibling_time(event); 3873 3874 if (event->state != PERF_EVENT_STATE_ACTIVE) 3875 goto unlock; 3876 3877 if (!data->group) { 3878 pmu->read(event); 3879 data->ret = 0; 3880 goto unlock; 3881 } 3882 3883 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3884 3885 pmu->read(event); 3886 3887 for_each_sibling_event(sub, event) { 3888 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3889 /* 3890 * Use sibling's PMU rather than @event's since 3891 * sibling could be on different (eg: software) PMU. 3892 */ 3893 sub->pmu->read(sub); 3894 } 3895 } 3896 3897 data->ret = pmu->commit_txn(pmu); 3898 3899 unlock: 3900 raw_spin_unlock(&ctx->lock); 3901 } 3902 3903 static inline u64 perf_event_count(struct perf_event *event) 3904 { 3905 return local64_read(&event->count) + atomic64_read(&event->child_count); 3906 } 3907 3908 /* 3909 * NMI-safe method to read a local event, that is an event that 3910 * is: 3911 * - either for the current task, or for this CPU 3912 * - does not have inherit set, for inherited task events 3913 * will not be local and we cannot read them atomically 3914 * - must not have a pmu::count method 3915 */ 3916 int perf_event_read_local(struct perf_event *event, u64 *value, 3917 u64 *enabled, u64 *running) 3918 { 3919 unsigned long flags; 3920 int ret = 0; 3921 3922 /* 3923 * Disabling interrupts avoids all counter scheduling (context 3924 * switches, timer based rotation and IPIs). 3925 */ 3926 local_irq_save(flags); 3927 3928 /* 3929 * It must not be an event with inherit set, we cannot read 3930 * all child counters from atomic context. 3931 */ 3932 if (event->attr.inherit) { 3933 ret = -EOPNOTSUPP; 3934 goto out; 3935 } 3936 3937 /* If this is a per-task event, it must be for current */ 3938 if ((event->attach_state & PERF_ATTACH_TASK) && 3939 event->hw.target != current) { 3940 ret = -EINVAL; 3941 goto out; 3942 } 3943 3944 /* If this is a per-CPU event, it must be for this CPU */ 3945 if (!(event->attach_state & PERF_ATTACH_TASK) && 3946 event->cpu != smp_processor_id()) { 3947 ret = -EINVAL; 3948 goto out; 3949 } 3950 3951 /* If this is a pinned event it must be running on this CPU */ 3952 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3953 ret = -EBUSY; 3954 goto out; 3955 } 3956 3957 /* 3958 * If the event is currently on this CPU, its either a per-task event, 3959 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3960 * oncpu == -1). 3961 */ 3962 if (event->oncpu == smp_processor_id()) 3963 event->pmu->read(event); 3964 3965 *value = local64_read(&event->count); 3966 if (enabled || running) { 3967 u64 now = event->shadow_ctx_time + perf_clock(); 3968 u64 __enabled, __running; 3969 3970 __perf_update_times(event, now, &__enabled, &__running); 3971 if (enabled) 3972 *enabled = __enabled; 3973 if (running) 3974 *running = __running; 3975 } 3976 out: 3977 local_irq_restore(flags); 3978 3979 return ret; 3980 } 3981 3982 static int perf_event_read(struct perf_event *event, bool group) 3983 { 3984 enum perf_event_state state = READ_ONCE(event->state); 3985 int event_cpu, ret = 0; 3986 3987 /* 3988 * If event is enabled and currently active on a CPU, update the 3989 * value in the event structure: 3990 */ 3991 again: 3992 if (state == PERF_EVENT_STATE_ACTIVE) { 3993 struct perf_read_data data; 3994 3995 /* 3996 * Orders the ->state and ->oncpu loads such that if we see 3997 * ACTIVE we must also see the right ->oncpu. 3998 * 3999 * Matches the smp_wmb() from event_sched_in(). 4000 */ 4001 smp_rmb(); 4002 4003 event_cpu = READ_ONCE(event->oncpu); 4004 if ((unsigned)event_cpu >= nr_cpu_ids) 4005 return 0; 4006 4007 data = (struct perf_read_data){ 4008 .event = event, 4009 .group = group, 4010 .ret = 0, 4011 }; 4012 4013 preempt_disable(); 4014 event_cpu = __perf_event_read_cpu(event, event_cpu); 4015 4016 /* 4017 * Purposely ignore the smp_call_function_single() return 4018 * value. 4019 * 4020 * If event_cpu isn't a valid CPU it means the event got 4021 * scheduled out and that will have updated the event count. 4022 * 4023 * Therefore, either way, we'll have an up-to-date event count 4024 * after this. 4025 */ 4026 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4027 preempt_enable(); 4028 ret = data.ret; 4029 4030 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4031 struct perf_event_context *ctx = event->ctx; 4032 unsigned long flags; 4033 4034 raw_spin_lock_irqsave(&ctx->lock, flags); 4035 state = event->state; 4036 if (state != PERF_EVENT_STATE_INACTIVE) { 4037 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4038 goto again; 4039 } 4040 4041 /* 4042 * May read while context is not active (e.g., thread is 4043 * blocked), in that case we cannot update context time 4044 */ 4045 if (ctx->is_active & EVENT_TIME) { 4046 update_context_time(ctx); 4047 update_cgrp_time_from_event(event); 4048 } 4049 4050 perf_event_update_time(event); 4051 if (group) 4052 perf_event_update_sibling_time(event); 4053 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4054 } 4055 4056 return ret; 4057 } 4058 4059 /* 4060 * Initialize the perf_event context in a task_struct: 4061 */ 4062 static void __perf_event_init_context(struct perf_event_context *ctx) 4063 { 4064 raw_spin_lock_init(&ctx->lock); 4065 mutex_init(&ctx->mutex); 4066 INIT_LIST_HEAD(&ctx->active_ctx_list); 4067 perf_event_groups_init(&ctx->pinned_groups); 4068 perf_event_groups_init(&ctx->flexible_groups); 4069 INIT_LIST_HEAD(&ctx->event_list); 4070 INIT_LIST_HEAD(&ctx->pinned_active); 4071 INIT_LIST_HEAD(&ctx->flexible_active); 4072 refcount_set(&ctx->refcount, 1); 4073 } 4074 4075 static struct perf_event_context * 4076 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4077 { 4078 struct perf_event_context *ctx; 4079 4080 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4081 if (!ctx) 4082 return NULL; 4083 4084 __perf_event_init_context(ctx); 4085 if (task) { 4086 ctx->task = task; 4087 get_task_struct(task); 4088 } 4089 ctx->pmu = pmu; 4090 4091 return ctx; 4092 } 4093 4094 static struct task_struct * 4095 find_lively_task_by_vpid(pid_t vpid) 4096 { 4097 struct task_struct *task; 4098 4099 rcu_read_lock(); 4100 if (!vpid) 4101 task = current; 4102 else 4103 task = find_task_by_vpid(vpid); 4104 if (task) 4105 get_task_struct(task); 4106 rcu_read_unlock(); 4107 4108 if (!task) 4109 return ERR_PTR(-ESRCH); 4110 4111 return task; 4112 } 4113 4114 /* 4115 * Returns a matching context with refcount and pincount. 4116 */ 4117 static struct perf_event_context * 4118 find_get_context(struct pmu *pmu, struct task_struct *task, 4119 struct perf_event *event) 4120 { 4121 struct perf_event_context *ctx, *clone_ctx = NULL; 4122 struct perf_cpu_context *cpuctx; 4123 void *task_ctx_data = NULL; 4124 unsigned long flags; 4125 int ctxn, err; 4126 int cpu = event->cpu; 4127 4128 if (!task) { 4129 /* Must be root to operate on a CPU event: */ 4130 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4131 return ERR_PTR(-EACCES); 4132 4133 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4134 ctx = &cpuctx->ctx; 4135 get_ctx(ctx); 4136 ++ctx->pin_count; 4137 4138 return ctx; 4139 } 4140 4141 err = -EINVAL; 4142 ctxn = pmu->task_ctx_nr; 4143 if (ctxn < 0) 4144 goto errout; 4145 4146 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4147 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4148 if (!task_ctx_data) { 4149 err = -ENOMEM; 4150 goto errout; 4151 } 4152 } 4153 4154 retry: 4155 ctx = perf_lock_task_context(task, ctxn, &flags); 4156 if (ctx) { 4157 clone_ctx = unclone_ctx(ctx); 4158 ++ctx->pin_count; 4159 4160 if (task_ctx_data && !ctx->task_ctx_data) { 4161 ctx->task_ctx_data = task_ctx_data; 4162 task_ctx_data = NULL; 4163 } 4164 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4165 4166 if (clone_ctx) 4167 put_ctx(clone_ctx); 4168 } else { 4169 ctx = alloc_perf_context(pmu, task); 4170 err = -ENOMEM; 4171 if (!ctx) 4172 goto errout; 4173 4174 if (task_ctx_data) { 4175 ctx->task_ctx_data = task_ctx_data; 4176 task_ctx_data = NULL; 4177 } 4178 4179 err = 0; 4180 mutex_lock(&task->perf_event_mutex); 4181 /* 4182 * If it has already passed perf_event_exit_task(). 4183 * we must see PF_EXITING, it takes this mutex too. 4184 */ 4185 if (task->flags & PF_EXITING) 4186 err = -ESRCH; 4187 else if (task->perf_event_ctxp[ctxn]) 4188 err = -EAGAIN; 4189 else { 4190 get_ctx(ctx); 4191 ++ctx->pin_count; 4192 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4193 } 4194 mutex_unlock(&task->perf_event_mutex); 4195 4196 if (unlikely(err)) { 4197 put_ctx(ctx); 4198 4199 if (err == -EAGAIN) 4200 goto retry; 4201 goto errout; 4202 } 4203 } 4204 4205 kfree(task_ctx_data); 4206 return ctx; 4207 4208 errout: 4209 kfree(task_ctx_data); 4210 return ERR_PTR(err); 4211 } 4212 4213 static void perf_event_free_filter(struct perf_event *event); 4214 static void perf_event_free_bpf_prog(struct perf_event *event); 4215 4216 static void free_event_rcu(struct rcu_head *head) 4217 { 4218 struct perf_event *event; 4219 4220 event = container_of(head, struct perf_event, rcu_head); 4221 if (event->ns) 4222 put_pid_ns(event->ns); 4223 perf_event_free_filter(event); 4224 kfree(event); 4225 } 4226 4227 static void ring_buffer_attach(struct perf_event *event, 4228 struct ring_buffer *rb); 4229 4230 static void detach_sb_event(struct perf_event *event) 4231 { 4232 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4233 4234 raw_spin_lock(&pel->lock); 4235 list_del_rcu(&event->sb_list); 4236 raw_spin_unlock(&pel->lock); 4237 } 4238 4239 static bool is_sb_event(struct perf_event *event) 4240 { 4241 struct perf_event_attr *attr = &event->attr; 4242 4243 if (event->parent) 4244 return false; 4245 4246 if (event->attach_state & PERF_ATTACH_TASK) 4247 return false; 4248 4249 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4250 attr->comm || attr->comm_exec || 4251 attr->task || attr->ksymbol || 4252 attr->context_switch || 4253 attr->bpf_event) 4254 return true; 4255 return false; 4256 } 4257 4258 static void unaccount_pmu_sb_event(struct perf_event *event) 4259 { 4260 if (is_sb_event(event)) 4261 detach_sb_event(event); 4262 } 4263 4264 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4265 { 4266 if (event->parent) 4267 return; 4268 4269 if (is_cgroup_event(event)) 4270 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4271 } 4272 4273 #ifdef CONFIG_NO_HZ_FULL 4274 static DEFINE_SPINLOCK(nr_freq_lock); 4275 #endif 4276 4277 static void unaccount_freq_event_nohz(void) 4278 { 4279 #ifdef CONFIG_NO_HZ_FULL 4280 spin_lock(&nr_freq_lock); 4281 if (atomic_dec_and_test(&nr_freq_events)) 4282 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4283 spin_unlock(&nr_freq_lock); 4284 #endif 4285 } 4286 4287 static void unaccount_freq_event(void) 4288 { 4289 if (tick_nohz_full_enabled()) 4290 unaccount_freq_event_nohz(); 4291 else 4292 atomic_dec(&nr_freq_events); 4293 } 4294 4295 static void unaccount_event(struct perf_event *event) 4296 { 4297 bool dec = false; 4298 4299 if (event->parent) 4300 return; 4301 4302 if (event->attach_state & PERF_ATTACH_TASK) 4303 dec = true; 4304 if (event->attr.mmap || event->attr.mmap_data) 4305 atomic_dec(&nr_mmap_events); 4306 if (event->attr.comm) 4307 atomic_dec(&nr_comm_events); 4308 if (event->attr.namespaces) 4309 atomic_dec(&nr_namespaces_events); 4310 if (event->attr.task) 4311 atomic_dec(&nr_task_events); 4312 if (event->attr.freq) 4313 unaccount_freq_event(); 4314 if (event->attr.context_switch) { 4315 dec = true; 4316 atomic_dec(&nr_switch_events); 4317 } 4318 if (is_cgroup_event(event)) 4319 dec = true; 4320 if (has_branch_stack(event)) 4321 dec = true; 4322 if (event->attr.ksymbol) 4323 atomic_dec(&nr_ksymbol_events); 4324 if (event->attr.bpf_event) 4325 atomic_dec(&nr_bpf_events); 4326 4327 if (dec) { 4328 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4329 schedule_delayed_work(&perf_sched_work, HZ); 4330 } 4331 4332 unaccount_event_cpu(event, event->cpu); 4333 4334 unaccount_pmu_sb_event(event); 4335 } 4336 4337 static void perf_sched_delayed(struct work_struct *work) 4338 { 4339 mutex_lock(&perf_sched_mutex); 4340 if (atomic_dec_and_test(&perf_sched_count)) 4341 static_branch_disable(&perf_sched_events); 4342 mutex_unlock(&perf_sched_mutex); 4343 } 4344 4345 /* 4346 * The following implement mutual exclusion of events on "exclusive" pmus 4347 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4348 * at a time, so we disallow creating events that might conflict, namely: 4349 * 4350 * 1) cpu-wide events in the presence of per-task events, 4351 * 2) per-task events in the presence of cpu-wide events, 4352 * 3) two matching events on the same context. 4353 * 4354 * The former two cases are handled in the allocation path (perf_event_alloc(), 4355 * _free_event()), the latter -- before the first perf_install_in_context(). 4356 */ 4357 static int exclusive_event_init(struct perf_event *event) 4358 { 4359 struct pmu *pmu = event->pmu; 4360 4361 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4362 return 0; 4363 4364 /* 4365 * Prevent co-existence of per-task and cpu-wide events on the 4366 * same exclusive pmu. 4367 * 4368 * Negative pmu::exclusive_cnt means there are cpu-wide 4369 * events on this "exclusive" pmu, positive means there are 4370 * per-task events. 4371 * 4372 * Since this is called in perf_event_alloc() path, event::ctx 4373 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4374 * to mean "per-task event", because unlike other attach states it 4375 * never gets cleared. 4376 */ 4377 if (event->attach_state & PERF_ATTACH_TASK) { 4378 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4379 return -EBUSY; 4380 } else { 4381 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4382 return -EBUSY; 4383 } 4384 4385 return 0; 4386 } 4387 4388 static void exclusive_event_destroy(struct perf_event *event) 4389 { 4390 struct pmu *pmu = event->pmu; 4391 4392 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4393 return; 4394 4395 /* see comment in exclusive_event_init() */ 4396 if (event->attach_state & PERF_ATTACH_TASK) 4397 atomic_dec(&pmu->exclusive_cnt); 4398 else 4399 atomic_inc(&pmu->exclusive_cnt); 4400 } 4401 4402 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4403 { 4404 if ((e1->pmu == e2->pmu) && 4405 (e1->cpu == e2->cpu || 4406 e1->cpu == -1 || 4407 e2->cpu == -1)) 4408 return true; 4409 return false; 4410 } 4411 4412 /* Called under the same ctx::mutex as perf_install_in_context() */ 4413 static bool exclusive_event_installable(struct perf_event *event, 4414 struct perf_event_context *ctx) 4415 { 4416 struct perf_event *iter_event; 4417 struct pmu *pmu = event->pmu; 4418 4419 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4420 return true; 4421 4422 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4423 if (exclusive_event_match(iter_event, event)) 4424 return false; 4425 } 4426 4427 return true; 4428 } 4429 4430 static void perf_addr_filters_splice(struct perf_event *event, 4431 struct list_head *head); 4432 4433 static void _free_event(struct perf_event *event) 4434 { 4435 irq_work_sync(&event->pending); 4436 4437 unaccount_event(event); 4438 4439 if (event->rb) { 4440 /* 4441 * Can happen when we close an event with re-directed output. 4442 * 4443 * Since we have a 0 refcount, perf_mmap_close() will skip 4444 * over us; possibly making our ring_buffer_put() the last. 4445 */ 4446 mutex_lock(&event->mmap_mutex); 4447 ring_buffer_attach(event, NULL); 4448 mutex_unlock(&event->mmap_mutex); 4449 } 4450 4451 if (is_cgroup_event(event)) 4452 perf_detach_cgroup(event); 4453 4454 if (!event->parent) { 4455 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4456 put_callchain_buffers(); 4457 } 4458 4459 perf_event_free_bpf_prog(event); 4460 perf_addr_filters_splice(event, NULL); 4461 kfree(event->addr_filter_ranges); 4462 4463 if (event->destroy) 4464 event->destroy(event); 4465 4466 if (event->ctx) 4467 put_ctx(event->ctx); 4468 4469 if (event->hw.target) 4470 put_task_struct(event->hw.target); 4471 4472 exclusive_event_destroy(event); 4473 module_put(event->pmu->module); 4474 4475 call_rcu(&event->rcu_head, free_event_rcu); 4476 } 4477 4478 /* 4479 * Used to free events which have a known refcount of 1, such as in error paths 4480 * where the event isn't exposed yet and inherited events. 4481 */ 4482 static void free_event(struct perf_event *event) 4483 { 4484 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4485 "unexpected event refcount: %ld; ptr=%p\n", 4486 atomic_long_read(&event->refcount), event)) { 4487 /* leak to avoid use-after-free */ 4488 return; 4489 } 4490 4491 _free_event(event); 4492 } 4493 4494 /* 4495 * Remove user event from the owner task. 4496 */ 4497 static void perf_remove_from_owner(struct perf_event *event) 4498 { 4499 struct task_struct *owner; 4500 4501 rcu_read_lock(); 4502 /* 4503 * Matches the smp_store_release() in perf_event_exit_task(). If we 4504 * observe !owner it means the list deletion is complete and we can 4505 * indeed free this event, otherwise we need to serialize on 4506 * owner->perf_event_mutex. 4507 */ 4508 owner = READ_ONCE(event->owner); 4509 if (owner) { 4510 /* 4511 * Since delayed_put_task_struct() also drops the last 4512 * task reference we can safely take a new reference 4513 * while holding the rcu_read_lock(). 4514 */ 4515 get_task_struct(owner); 4516 } 4517 rcu_read_unlock(); 4518 4519 if (owner) { 4520 /* 4521 * If we're here through perf_event_exit_task() we're already 4522 * holding ctx->mutex which would be an inversion wrt. the 4523 * normal lock order. 4524 * 4525 * However we can safely take this lock because its the child 4526 * ctx->mutex. 4527 */ 4528 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4529 4530 /* 4531 * We have to re-check the event->owner field, if it is cleared 4532 * we raced with perf_event_exit_task(), acquiring the mutex 4533 * ensured they're done, and we can proceed with freeing the 4534 * event. 4535 */ 4536 if (event->owner) { 4537 list_del_init(&event->owner_entry); 4538 smp_store_release(&event->owner, NULL); 4539 } 4540 mutex_unlock(&owner->perf_event_mutex); 4541 put_task_struct(owner); 4542 } 4543 } 4544 4545 static void put_event(struct perf_event *event) 4546 { 4547 if (!atomic_long_dec_and_test(&event->refcount)) 4548 return; 4549 4550 _free_event(event); 4551 } 4552 4553 /* 4554 * Kill an event dead; while event:refcount will preserve the event 4555 * object, it will not preserve its functionality. Once the last 'user' 4556 * gives up the object, we'll destroy the thing. 4557 */ 4558 int perf_event_release_kernel(struct perf_event *event) 4559 { 4560 struct perf_event_context *ctx = event->ctx; 4561 struct perf_event *child, *tmp; 4562 LIST_HEAD(free_list); 4563 4564 /* 4565 * If we got here through err_file: fput(event_file); we will not have 4566 * attached to a context yet. 4567 */ 4568 if (!ctx) { 4569 WARN_ON_ONCE(event->attach_state & 4570 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4571 goto no_ctx; 4572 } 4573 4574 if (!is_kernel_event(event)) 4575 perf_remove_from_owner(event); 4576 4577 ctx = perf_event_ctx_lock(event); 4578 WARN_ON_ONCE(ctx->parent_ctx); 4579 perf_remove_from_context(event, DETACH_GROUP); 4580 4581 raw_spin_lock_irq(&ctx->lock); 4582 /* 4583 * Mark this event as STATE_DEAD, there is no external reference to it 4584 * anymore. 4585 * 4586 * Anybody acquiring event->child_mutex after the below loop _must_ 4587 * also see this, most importantly inherit_event() which will avoid 4588 * placing more children on the list. 4589 * 4590 * Thus this guarantees that we will in fact observe and kill _ALL_ 4591 * child events. 4592 */ 4593 event->state = PERF_EVENT_STATE_DEAD; 4594 raw_spin_unlock_irq(&ctx->lock); 4595 4596 perf_event_ctx_unlock(event, ctx); 4597 4598 again: 4599 mutex_lock(&event->child_mutex); 4600 list_for_each_entry(child, &event->child_list, child_list) { 4601 4602 /* 4603 * Cannot change, child events are not migrated, see the 4604 * comment with perf_event_ctx_lock_nested(). 4605 */ 4606 ctx = READ_ONCE(child->ctx); 4607 /* 4608 * Since child_mutex nests inside ctx::mutex, we must jump 4609 * through hoops. We start by grabbing a reference on the ctx. 4610 * 4611 * Since the event cannot get freed while we hold the 4612 * child_mutex, the context must also exist and have a !0 4613 * reference count. 4614 */ 4615 get_ctx(ctx); 4616 4617 /* 4618 * Now that we have a ctx ref, we can drop child_mutex, and 4619 * acquire ctx::mutex without fear of it going away. Then we 4620 * can re-acquire child_mutex. 4621 */ 4622 mutex_unlock(&event->child_mutex); 4623 mutex_lock(&ctx->mutex); 4624 mutex_lock(&event->child_mutex); 4625 4626 /* 4627 * Now that we hold ctx::mutex and child_mutex, revalidate our 4628 * state, if child is still the first entry, it didn't get freed 4629 * and we can continue doing so. 4630 */ 4631 tmp = list_first_entry_or_null(&event->child_list, 4632 struct perf_event, child_list); 4633 if (tmp == child) { 4634 perf_remove_from_context(child, DETACH_GROUP); 4635 list_move(&child->child_list, &free_list); 4636 /* 4637 * This matches the refcount bump in inherit_event(); 4638 * this can't be the last reference. 4639 */ 4640 put_event(event); 4641 } 4642 4643 mutex_unlock(&event->child_mutex); 4644 mutex_unlock(&ctx->mutex); 4645 put_ctx(ctx); 4646 goto again; 4647 } 4648 mutex_unlock(&event->child_mutex); 4649 4650 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4651 list_del(&child->child_list); 4652 free_event(child); 4653 } 4654 4655 no_ctx: 4656 put_event(event); /* Must be the 'last' reference */ 4657 return 0; 4658 } 4659 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4660 4661 /* 4662 * Called when the last reference to the file is gone. 4663 */ 4664 static int perf_release(struct inode *inode, struct file *file) 4665 { 4666 perf_event_release_kernel(file->private_data); 4667 return 0; 4668 } 4669 4670 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4671 { 4672 struct perf_event *child; 4673 u64 total = 0; 4674 4675 *enabled = 0; 4676 *running = 0; 4677 4678 mutex_lock(&event->child_mutex); 4679 4680 (void)perf_event_read(event, false); 4681 total += perf_event_count(event); 4682 4683 *enabled += event->total_time_enabled + 4684 atomic64_read(&event->child_total_time_enabled); 4685 *running += event->total_time_running + 4686 atomic64_read(&event->child_total_time_running); 4687 4688 list_for_each_entry(child, &event->child_list, child_list) { 4689 (void)perf_event_read(child, false); 4690 total += perf_event_count(child); 4691 *enabled += child->total_time_enabled; 4692 *running += child->total_time_running; 4693 } 4694 mutex_unlock(&event->child_mutex); 4695 4696 return total; 4697 } 4698 4699 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4700 { 4701 struct perf_event_context *ctx; 4702 u64 count; 4703 4704 ctx = perf_event_ctx_lock(event); 4705 count = __perf_event_read_value(event, enabled, running); 4706 perf_event_ctx_unlock(event, ctx); 4707 4708 return count; 4709 } 4710 EXPORT_SYMBOL_GPL(perf_event_read_value); 4711 4712 static int __perf_read_group_add(struct perf_event *leader, 4713 u64 read_format, u64 *values) 4714 { 4715 struct perf_event_context *ctx = leader->ctx; 4716 struct perf_event *sub; 4717 unsigned long flags; 4718 int n = 1; /* skip @nr */ 4719 int ret; 4720 4721 ret = perf_event_read(leader, true); 4722 if (ret) 4723 return ret; 4724 4725 raw_spin_lock_irqsave(&ctx->lock, flags); 4726 4727 /* 4728 * Since we co-schedule groups, {enabled,running} times of siblings 4729 * will be identical to those of the leader, so we only publish one 4730 * set. 4731 */ 4732 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4733 values[n++] += leader->total_time_enabled + 4734 atomic64_read(&leader->child_total_time_enabled); 4735 } 4736 4737 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4738 values[n++] += leader->total_time_running + 4739 atomic64_read(&leader->child_total_time_running); 4740 } 4741 4742 /* 4743 * Write {count,id} tuples for every sibling. 4744 */ 4745 values[n++] += perf_event_count(leader); 4746 if (read_format & PERF_FORMAT_ID) 4747 values[n++] = primary_event_id(leader); 4748 4749 for_each_sibling_event(sub, leader) { 4750 values[n++] += perf_event_count(sub); 4751 if (read_format & PERF_FORMAT_ID) 4752 values[n++] = primary_event_id(sub); 4753 } 4754 4755 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4756 return 0; 4757 } 4758 4759 static int perf_read_group(struct perf_event *event, 4760 u64 read_format, char __user *buf) 4761 { 4762 struct perf_event *leader = event->group_leader, *child; 4763 struct perf_event_context *ctx = leader->ctx; 4764 int ret; 4765 u64 *values; 4766 4767 lockdep_assert_held(&ctx->mutex); 4768 4769 values = kzalloc(event->read_size, GFP_KERNEL); 4770 if (!values) 4771 return -ENOMEM; 4772 4773 values[0] = 1 + leader->nr_siblings; 4774 4775 /* 4776 * By locking the child_mutex of the leader we effectively 4777 * lock the child list of all siblings.. XXX explain how. 4778 */ 4779 mutex_lock(&leader->child_mutex); 4780 4781 ret = __perf_read_group_add(leader, read_format, values); 4782 if (ret) 4783 goto unlock; 4784 4785 list_for_each_entry(child, &leader->child_list, child_list) { 4786 ret = __perf_read_group_add(child, read_format, values); 4787 if (ret) 4788 goto unlock; 4789 } 4790 4791 mutex_unlock(&leader->child_mutex); 4792 4793 ret = event->read_size; 4794 if (copy_to_user(buf, values, event->read_size)) 4795 ret = -EFAULT; 4796 goto out; 4797 4798 unlock: 4799 mutex_unlock(&leader->child_mutex); 4800 out: 4801 kfree(values); 4802 return ret; 4803 } 4804 4805 static int perf_read_one(struct perf_event *event, 4806 u64 read_format, char __user *buf) 4807 { 4808 u64 enabled, running; 4809 u64 values[4]; 4810 int n = 0; 4811 4812 values[n++] = __perf_event_read_value(event, &enabled, &running); 4813 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4814 values[n++] = enabled; 4815 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4816 values[n++] = running; 4817 if (read_format & PERF_FORMAT_ID) 4818 values[n++] = primary_event_id(event); 4819 4820 if (copy_to_user(buf, values, n * sizeof(u64))) 4821 return -EFAULT; 4822 4823 return n * sizeof(u64); 4824 } 4825 4826 static bool is_event_hup(struct perf_event *event) 4827 { 4828 bool no_children; 4829 4830 if (event->state > PERF_EVENT_STATE_EXIT) 4831 return false; 4832 4833 mutex_lock(&event->child_mutex); 4834 no_children = list_empty(&event->child_list); 4835 mutex_unlock(&event->child_mutex); 4836 return no_children; 4837 } 4838 4839 /* 4840 * Read the performance event - simple non blocking version for now 4841 */ 4842 static ssize_t 4843 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4844 { 4845 u64 read_format = event->attr.read_format; 4846 int ret; 4847 4848 /* 4849 * Return end-of-file for a read on an event that is in 4850 * error state (i.e. because it was pinned but it couldn't be 4851 * scheduled on to the CPU at some point). 4852 */ 4853 if (event->state == PERF_EVENT_STATE_ERROR) 4854 return 0; 4855 4856 if (count < event->read_size) 4857 return -ENOSPC; 4858 4859 WARN_ON_ONCE(event->ctx->parent_ctx); 4860 if (read_format & PERF_FORMAT_GROUP) 4861 ret = perf_read_group(event, read_format, buf); 4862 else 4863 ret = perf_read_one(event, read_format, buf); 4864 4865 return ret; 4866 } 4867 4868 static ssize_t 4869 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4870 { 4871 struct perf_event *event = file->private_data; 4872 struct perf_event_context *ctx; 4873 int ret; 4874 4875 ctx = perf_event_ctx_lock(event); 4876 ret = __perf_read(event, buf, count); 4877 perf_event_ctx_unlock(event, ctx); 4878 4879 return ret; 4880 } 4881 4882 static __poll_t perf_poll(struct file *file, poll_table *wait) 4883 { 4884 struct perf_event *event = file->private_data; 4885 struct ring_buffer *rb; 4886 __poll_t events = EPOLLHUP; 4887 4888 poll_wait(file, &event->waitq, wait); 4889 4890 if (is_event_hup(event)) 4891 return events; 4892 4893 /* 4894 * Pin the event->rb by taking event->mmap_mutex; otherwise 4895 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4896 */ 4897 mutex_lock(&event->mmap_mutex); 4898 rb = event->rb; 4899 if (rb) 4900 events = atomic_xchg(&rb->poll, 0); 4901 mutex_unlock(&event->mmap_mutex); 4902 return events; 4903 } 4904 4905 static void _perf_event_reset(struct perf_event *event) 4906 { 4907 (void)perf_event_read(event, false); 4908 local64_set(&event->count, 0); 4909 perf_event_update_userpage(event); 4910 } 4911 4912 /* 4913 * Holding the top-level event's child_mutex means that any 4914 * descendant process that has inherited this event will block 4915 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4916 * task existence requirements of perf_event_enable/disable. 4917 */ 4918 static void perf_event_for_each_child(struct perf_event *event, 4919 void (*func)(struct perf_event *)) 4920 { 4921 struct perf_event *child; 4922 4923 WARN_ON_ONCE(event->ctx->parent_ctx); 4924 4925 mutex_lock(&event->child_mutex); 4926 func(event); 4927 list_for_each_entry(child, &event->child_list, child_list) 4928 func(child); 4929 mutex_unlock(&event->child_mutex); 4930 } 4931 4932 static void perf_event_for_each(struct perf_event *event, 4933 void (*func)(struct perf_event *)) 4934 { 4935 struct perf_event_context *ctx = event->ctx; 4936 struct perf_event *sibling; 4937 4938 lockdep_assert_held(&ctx->mutex); 4939 4940 event = event->group_leader; 4941 4942 perf_event_for_each_child(event, func); 4943 for_each_sibling_event(sibling, event) 4944 perf_event_for_each_child(sibling, func); 4945 } 4946 4947 static void __perf_event_period(struct perf_event *event, 4948 struct perf_cpu_context *cpuctx, 4949 struct perf_event_context *ctx, 4950 void *info) 4951 { 4952 u64 value = *((u64 *)info); 4953 bool active; 4954 4955 if (event->attr.freq) { 4956 event->attr.sample_freq = value; 4957 } else { 4958 event->attr.sample_period = value; 4959 event->hw.sample_period = value; 4960 } 4961 4962 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4963 if (active) { 4964 perf_pmu_disable(ctx->pmu); 4965 /* 4966 * We could be throttled; unthrottle now to avoid the tick 4967 * trying to unthrottle while we already re-started the event. 4968 */ 4969 if (event->hw.interrupts == MAX_INTERRUPTS) { 4970 event->hw.interrupts = 0; 4971 perf_log_throttle(event, 1); 4972 } 4973 event->pmu->stop(event, PERF_EF_UPDATE); 4974 } 4975 4976 local64_set(&event->hw.period_left, 0); 4977 4978 if (active) { 4979 event->pmu->start(event, PERF_EF_RELOAD); 4980 perf_pmu_enable(ctx->pmu); 4981 } 4982 } 4983 4984 static int perf_event_check_period(struct perf_event *event, u64 value) 4985 { 4986 return event->pmu->check_period(event, value); 4987 } 4988 4989 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4990 { 4991 u64 value; 4992 4993 if (!is_sampling_event(event)) 4994 return -EINVAL; 4995 4996 if (copy_from_user(&value, arg, sizeof(value))) 4997 return -EFAULT; 4998 4999 if (!value) 5000 return -EINVAL; 5001 5002 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5003 return -EINVAL; 5004 5005 if (perf_event_check_period(event, value)) 5006 return -EINVAL; 5007 5008 if (!event->attr.freq && (value & (1ULL << 63))) 5009 return -EINVAL; 5010 5011 event_function_call(event, __perf_event_period, &value); 5012 5013 return 0; 5014 } 5015 5016 static const struct file_operations perf_fops; 5017 5018 static inline int perf_fget_light(int fd, struct fd *p) 5019 { 5020 struct fd f = fdget(fd); 5021 if (!f.file) 5022 return -EBADF; 5023 5024 if (f.file->f_op != &perf_fops) { 5025 fdput(f); 5026 return -EBADF; 5027 } 5028 *p = f; 5029 return 0; 5030 } 5031 5032 static int perf_event_set_output(struct perf_event *event, 5033 struct perf_event *output_event); 5034 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5035 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5036 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5037 struct perf_event_attr *attr); 5038 5039 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5040 { 5041 void (*func)(struct perf_event *); 5042 u32 flags = arg; 5043 5044 switch (cmd) { 5045 case PERF_EVENT_IOC_ENABLE: 5046 func = _perf_event_enable; 5047 break; 5048 case PERF_EVENT_IOC_DISABLE: 5049 func = _perf_event_disable; 5050 break; 5051 case PERF_EVENT_IOC_RESET: 5052 func = _perf_event_reset; 5053 break; 5054 5055 case PERF_EVENT_IOC_REFRESH: 5056 return _perf_event_refresh(event, arg); 5057 5058 case PERF_EVENT_IOC_PERIOD: 5059 return perf_event_period(event, (u64 __user *)arg); 5060 5061 case PERF_EVENT_IOC_ID: 5062 { 5063 u64 id = primary_event_id(event); 5064 5065 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5066 return -EFAULT; 5067 return 0; 5068 } 5069 5070 case PERF_EVENT_IOC_SET_OUTPUT: 5071 { 5072 int ret; 5073 if (arg != -1) { 5074 struct perf_event *output_event; 5075 struct fd output; 5076 ret = perf_fget_light(arg, &output); 5077 if (ret) 5078 return ret; 5079 output_event = output.file->private_data; 5080 ret = perf_event_set_output(event, output_event); 5081 fdput(output); 5082 } else { 5083 ret = perf_event_set_output(event, NULL); 5084 } 5085 return ret; 5086 } 5087 5088 case PERF_EVENT_IOC_SET_FILTER: 5089 return perf_event_set_filter(event, (void __user *)arg); 5090 5091 case PERF_EVENT_IOC_SET_BPF: 5092 return perf_event_set_bpf_prog(event, arg); 5093 5094 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5095 struct ring_buffer *rb; 5096 5097 rcu_read_lock(); 5098 rb = rcu_dereference(event->rb); 5099 if (!rb || !rb->nr_pages) { 5100 rcu_read_unlock(); 5101 return -EINVAL; 5102 } 5103 rb_toggle_paused(rb, !!arg); 5104 rcu_read_unlock(); 5105 return 0; 5106 } 5107 5108 case PERF_EVENT_IOC_QUERY_BPF: 5109 return perf_event_query_prog_array(event, (void __user *)arg); 5110 5111 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5112 struct perf_event_attr new_attr; 5113 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5114 &new_attr); 5115 5116 if (err) 5117 return err; 5118 5119 return perf_event_modify_attr(event, &new_attr); 5120 } 5121 default: 5122 return -ENOTTY; 5123 } 5124 5125 if (flags & PERF_IOC_FLAG_GROUP) 5126 perf_event_for_each(event, func); 5127 else 5128 perf_event_for_each_child(event, func); 5129 5130 return 0; 5131 } 5132 5133 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5134 { 5135 struct perf_event *event = file->private_data; 5136 struct perf_event_context *ctx; 5137 long ret; 5138 5139 ctx = perf_event_ctx_lock(event); 5140 ret = _perf_ioctl(event, cmd, arg); 5141 perf_event_ctx_unlock(event, ctx); 5142 5143 return ret; 5144 } 5145 5146 #ifdef CONFIG_COMPAT 5147 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5148 unsigned long arg) 5149 { 5150 switch (_IOC_NR(cmd)) { 5151 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5152 case _IOC_NR(PERF_EVENT_IOC_ID): 5153 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5154 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5155 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5156 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5157 cmd &= ~IOCSIZE_MASK; 5158 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5159 } 5160 break; 5161 } 5162 return perf_ioctl(file, cmd, arg); 5163 } 5164 #else 5165 # define perf_compat_ioctl NULL 5166 #endif 5167 5168 int perf_event_task_enable(void) 5169 { 5170 struct perf_event_context *ctx; 5171 struct perf_event *event; 5172 5173 mutex_lock(¤t->perf_event_mutex); 5174 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5175 ctx = perf_event_ctx_lock(event); 5176 perf_event_for_each_child(event, _perf_event_enable); 5177 perf_event_ctx_unlock(event, ctx); 5178 } 5179 mutex_unlock(¤t->perf_event_mutex); 5180 5181 return 0; 5182 } 5183 5184 int perf_event_task_disable(void) 5185 { 5186 struct perf_event_context *ctx; 5187 struct perf_event *event; 5188 5189 mutex_lock(¤t->perf_event_mutex); 5190 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5191 ctx = perf_event_ctx_lock(event); 5192 perf_event_for_each_child(event, _perf_event_disable); 5193 perf_event_ctx_unlock(event, ctx); 5194 } 5195 mutex_unlock(¤t->perf_event_mutex); 5196 5197 return 0; 5198 } 5199 5200 static int perf_event_index(struct perf_event *event) 5201 { 5202 if (event->hw.state & PERF_HES_STOPPED) 5203 return 0; 5204 5205 if (event->state != PERF_EVENT_STATE_ACTIVE) 5206 return 0; 5207 5208 return event->pmu->event_idx(event); 5209 } 5210 5211 static void calc_timer_values(struct perf_event *event, 5212 u64 *now, 5213 u64 *enabled, 5214 u64 *running) 5215 { 5216 u64 ctx_time; 5217 5218 *now = perf_clock(); 5219 ctx_time = event->shadow_ctx_time + *now; 5220 __perf_update_times(event, ctx_time, enabled, running); 5221 } 5222 5223 static void perf_event_init_userpage(struct perf_event *event) 5224 { 5225 struct perf_event_mmap_page *userpg; 5226 struct ring_buffer *rb; 5227 5228 rcu_read_lock(); 5229 rb = rcu_dereference(event->rb); 5230 if (!rb) 5231 goto unlock; 5232 5233 userpg = rb->user_page; 5234 5235 /* Allow new userspace to detect that bit 0 is deprecated */ 5236 userpg->cap_bit0_is_deprecated = 1; 5237 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5238 userpg->data_offset = PAGE_SIZE; 5239 userpg->data_size = perf_data_size(rb); 5240 5241 unlock: 5242 rcu_read_unlock(); 5243 } 5244 5245 void __weak arch_perf_update_userpage( 5246 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5247 { 5248 } 5249 5250 /* 5251 * Callers need to ensure there can be no nesting of this function, otherwise 5252 * the seqlock logic goes bad. We can not serialize this because the arch 5253 * code calls this from NMI context. 5254 */ 5255 void perf_event_update_userpage(struct perf_event *event) 5256 { 5257 struct perf_event_mmap_page *userpg; 5258 struct ring_buffer *rb; 5259 u64 enabled, running, now; 5260 5261 rcu_read_lock(); 5262 rb = rcu_dereference(event->rb); 5263 if (!rb) 5264 goto unlock; 5265 5266 /* 5267 * compute total_time_enabled, total_time_running 5268 * based on snapshot values taken when the event 5269 * was last scheduled in. 5270 * 5271 * we cannot simply called update_context_time() 5272 * because of locking issue as we can be called in 5273 * NMI context 5274 */ 5275 calc_timer_values(event, &now, &enabled, &running); 5276 5277 userpg = rb->user_page; 5278 /* 5279 * Disable preemption to guarantee consistent time stamps are stored to 5280 * the user page. 5281 */ 5282 preempt_disable(); 5283 ++userpg->lock; 5284 barrier(); 5285 userpg->index = perf_event_index(event); 5286 userpg->offset = perf_event_count(event); 5287 if (userpg->index) 5288 userpg->offset -= local64_read(&event->hw.prev_count); 5289 5290 userpg->time_enabled = enabled + 5291 atomic64_read(&event->child_total_time_enabled); 5292 5293 userpg->time_running = running + 5294 atomic64_read(&event->child_total_time_running); 5295 5296 arch_perf_update_userpage(event, userpg, now); 5297 5298 barrier(); 5299 ++userpg->lock; 5300 preempt_enable(); 5301 unlock: 5302 rcu_read_unlock(); 5303 } 5304 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5305 5306 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5307 { 5308 struct perf_event *event = vmf->vma->vm_file->private_data; 5309 struct ring_buffer *rb; 5310 vm_fault_t ret = VM_FAULT_SIGBUS; 5311 5312 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5313 if (vmf->pgoff == 0) 5314 ret = 0; 5315 return ret; 5316 } 5317 5318 rcu_read_lock(); 5319 rb = rcu_dereference(event->rb); 5320 if (!rb) 5321 goto unlock; 5322 5323 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5324 goto unlock; 5325 5326 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5327 if (!vmf->page) 5328 goto unlock; 5329 5330 get_page(vmf->page); 5331 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5332 vmf->page->index = vmf->pgoff; 5333 5334 ret = 0; 5335 unlock: 5336 rcu_read_unlock(); 5337 5338 return ret; 5339 } 5340 5341 static void ring_buffer_attach(struct perf_event *event, 5342 struct ring_buffer *rb) 5343 { 5344 struct ring_buffer *old_rb = NULL; 5345 unsigned long flags; 5346 5347 if (event->rb) { 5348 /* 5349 * Should be impossible, we set this when removing 5350 * event->rb_entry and wait/clear when adding event->rb_entry. 5351 */ 5352 WARN_ON_ONCE(event->rcu_pending); 5353 5354 old_rb = event->rb; 5355 spin_lock_irqsave(&old_rb->event_lock, flags); 5356 list_del_rcu(&event->rb_entry); 5357 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5358 5359 event->rcu_batches = get_state_synchronize_rcu(); 5360 event->rcu_pending = 1; 5361 } 5362 5363 if (rb) { 5364 if (event->rcu_pending) { 5365 cond_synchronize_rcu(event->rcu_batches); 5366 event->rcu_pending = 0; 5367 } 5368 5369 spin_lock_irqsave(&rb->event_lock, flags); 5370 list_add_rcu(&event->rb_entry, &rb->event_list); 5371 spin_unlock_irqrestore(&rb->event_lock, flags); 5372 } 5373 5374 /* 5375 * Avoid racing with perf_mmap_close(AUX): stop the event 5376 * before swizzling the event::rb pointer; if it's getting 5377 * unmapped, its aux_mmap_count will be 0 and it won't 5378 * restart. See the comment in __perf_pmu_output_stop(). 5379 * 5380 * Data will inevitably be lost when set_output is done in 5381 * mid-air, but then again, whoever does it like this is 5382 * not in for the data anyway. 5383 */ 5384 if (has_aux(event)) 5385 perf_event_stop(event, 0); 5386 5387 rcu_assign_pointer(event->rb, rb); 5388 5389 if (old_rb) { 5390 ring_buffer_put(old_rb); 5391 /* 5392 * Since we detached before setting the new rb, so that we 5393 * could attach the new rb, we could have missed a wakeup. 5394 * Provide it now. 5395 */ 5396 wake_up_all(&event->waitq); 5397 } 5398 } 5399 5400 static void ring_buffer_wakeup(struct perf_event *event) 5401 { 5402 struct ring_buffer *rb; 5403 5404 rcu_read_lock(); 5405 rb = rcu_dereference(event->rb); 5406 if (rb) { 5407 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5408 wake_up_all(&event->waitq); 5409 } 5410 rcu_read_unlock(); 5411 } 5412 5413 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5414 { 5415 struct ring_buffer *rb; 5416 5417 rcu_read_lock(); 5418 rb = rcu_dereference(event->rb); 5419 if (rb) { 5420 if (!refcount_inc_not_zero(&rb->refcount)) 5421 rb = NULL; 5422 } 5423 rcu_read_unlock(); 5424 5425 return rb; 5426 } 5427 5428 void ring_buffer_put(struct ring_buffer *rb) 5429 { 5430 if (!refcount_dec_and_test(&rb->refcount)) 5431 return; 5432 5433 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5434 5435 call_rcu(&rb->rcu_head, rb_free_rcu); 5436 } 5437 5438 static void perf_mmap_open(struct vm_area_struct *vma) 5439 { 5440 struct perf_event *event = vma->vm_file->private_data; 5441 5442 atomic_inc(&event->mmap_count); 5443 atomic_inc(&event->rb->mmap_count); 5444 5445 if (vma->vm_pgoff) 5446 atomic_inc(&event->rb->aux_mmap_count); 5447 5448 if (event->pmu->event_mapped) 5449 event->pmu->event_mapped(event, vma->vm_mm); 5450 } 5451 5452 static void perf_pmu_output_stop(struct perf_event *event); 5453 5454 /* 5455 * A buffer can be mmap()ed multiple times; either directly through the same 5456 * event, or through other events by use of perf_event_set_output(). 5457 * 5458 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5459 * the buffer here, where we still have a VM context. This means we need 5460 * to detach all events redirecting to us. 5461 */ 5462 static void perf_mmap_close(struct vm_area_struct *vma) 5463 { 5464 struct perf_event *event = vma->vm_file->private_data; 5465 5466 struct ring_buffer *rb = ring_buffer_get(event); 5467 struct user_struct *mmap_user = rb->mmap_user; 5468 int mmap_locked = rb->mmap_locked; 5469 unsigned long size = perf_data_size(rb); 5470 5471 if (event->pmu->event_unmapped) 5472 event->pmu->event_unmapped(event, vma->vm_mm); 5473 5474 /* 5475 * rb->aux_mmap_count will always drop before rb->mmap_count and 5476 * event->mmap_count, so it is ok to use event->mmap_mutex to 5477 * serialize with perf_mmap here. 5478 */ 5479 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5480 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5481 /* 5482 * Stop all AUX events that are writing to this buffer, 5483 * so that we can free its AUX pages and corresponding PMU 5484 * data. Note that after rb::aux_mmap_count dropped to zero, 5485 * they won't start any more (see perf_aux_output_begin()). 5486 */ 5487 perf_pmu_output_stop(event); 5488 5489 /* now it's safe to free the pages */ 5490 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5491 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5492 5493 /* this has to be the last one */ 5494 rb_free_aux(rb); 5495 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5496 5497 mutex_unlock(&event->mmap_mutex); 5498 } 5499 5500 atomic_dec(&rb->mmap_count); 5501 5502 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5503 goto out_put; 5504 5505 ring_buffer_attach(event, NULL); 5506 mutex_unlock(&event->mmap_mutex); 5507 5508 /* If there's still other mmap()s of this buffer, we're done. */ 5509 if (atomic_read(&rb->mmap_count)) 5510 goto out_put; 5511 5512 /* 5513 * No other mmap()s, detach from all other events that might redirect 5514 * into the now unreachable buffer. Somewhat complicated by the 5515 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5516 */ 5517 again: 5518 rcu_read_lock(); 5519 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5520 if (!atomic_long_inc_not_zero(&event->refcount)) { 5521 /* 5522 * This event is en-route to free_event() which will 5523 * detach it and remove it from the list. 5524 */ 5525 continue; 5526 } 5527 rcu_read_unlock(); 5528 5529 mutex_lock(&event->mmap_mutex); 5530 /* 5531 * Check we didn't race with perf_event_set_output() which can 5532 * swizzle the rb from under us while we were waiting to 5533 * acquire mmap_mutex. 5534 * 5535 * If we find a different rb; ignore this event, a next 5536 * iteration will no longer find it on the list. We have to 5537 * still restart the iteration to make sure we're not now 5538 * iterating the wrong list. 5539 */ 5540 if (event->rb == rb) 5541 ring_buffer_attach(event, NULL); 5542 5543 mutex_unlock(&event->mmap_mutex); 5544 put_event(event); 5545 5546 /* 5547 * Restart the iteration; either we're on the wrong list or 5548 * destroyed its integrity by doing a deletion. 5549 */ 5550 goto again; 5551 } 5552 rcu_read_unlock(); 5553 5554 /* 5555 * It could be there's still a few 0-ref events on the list; they'll 5556 * get cleaned up by free_event() -- they'll also still have their 5557 * ref on the rb and will free it whenever they are done with it. 5558 * 5559 * Aside from that, this buffer is 'fully' detached and unmapped, 5560 * undo the VM accounting. 5561 */ 5562 5563 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5564 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5565 free_uid(mmap_user); 5566 5567 out_put: 5568 ring_buffer_put(rb); /* could be last */ 5569 } 5570 5571 static const struct vm_operations_struct perf_mmap_vmops = { 5572 .open = perf_mmap_open, 5573 .close = perf_mmap_close, /* non mergeable */ 5574 .fault = perf_mmap_fault, 5575 .page_mkwrite = perf_mmap_fault, 5576 }; 5577 5578 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5579 { 5580 struct perf_event *event = file->private_data; 5581 unsigned long user_locked, user_lock_limit; 5582 struct user_struct *user = current_user(); 5583 unsigned long locked, lock_limit; 5584 struct ring_buffer *rb = NULL; 5585 unsigned long vma_size; 5586 unsigned long nr_pages; 5587 long user_extra = 0, extra = 0; 5588 int ret = 0, flags = 0; 5589 5590 /* 5591 * Don't allow mmap() of inherited per-task counters. This would 5592 * create a performance issue due to all children writing to the 5593 * same rb. 5594 */ 5595 if (event->cpu == -1 && event->attr.inherit) 5596 return -EINVAL; 5597 5598 if (!(vma->vm_flags & VM_SHARED)) 5599 return -EINVAL; 5600 5601 vma_size = vma->vm_end - vma->vm_start; 5602 5603 if (vma->vm_pgoff == 0) { 5604 nr_pages = (vma_size / PAGE_SIZE) - 1; 5605 } else { 5606 /* 5607 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5608 * mapped, all subsequent mappings should have the same size 5609 * and offset. Must be above the normal perf buffer. 5610 */ 5611 u64 aux_offset, aux_size; 5612 5613 if (!event->rb) 5614 return -EINVAL; 5615 5616 nr_pages = vma_size / PAGE_SIZE; 5617 5618 mutex_lock(&event->mmap_mutex); 5619 ret = -EINVAL; 5620 5621 rb = event->rb; 5622 if (!rb) 5623 goto aux_unlock; 5624 5625 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5626 aux_size = READ_ONCE(rb->user_page->aux_size); 5627 5628 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5629 goto aux_unlock; 5630 5631 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5632 goto aux_unlock; 5633 5634 /* already mapped with a different offset */ 5635 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5636 goto aux_unlock; 5637 5638 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5639 goto aux_unlock; 5640 5641 /* already mapped with a different size */ 5642 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5643 goto aux_unlock; 5644 5645 if (!is_power_of_2(nr_pages)) 5646 goto aux_unlock; 5647 5648 if (!atomic_inc_not_zero(&rb->mmap_count)) 5649 goto aux_unlock; 5650 5651 if (rb_has_aux(rb)) { 5652 atomic_inc(&rb->aux_mmap_count); 5653 ret = 0; 5654 goto unlock; 5655 } 5656 5657 atomic_set(&rb->aux_mmap_count, 1); 5658 user_extra = nr_pages; 5659 5660 goto accounting; 5661 } 5662 5663 /* 5664 * If we have rb pages ensure they're a power-of-two number, so we 5665 * can do bitmasks instead of modulo. 5666 */ 5667 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5668 return -EINVAL; 5669 5670 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5671 return -EINVAL; 5672 5673 WARN_ON_ONCE(event->ctx->parent_ctx); 5674 again: 5675 mutex_lock(&event->mmap_mutex); 5676 if (event->rb) { 5677 if (event->rb->nr_pages != nr_pages) { 5678 ret = -EINVAL; 5679 goto unlock; 5680 } 5681 5682 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5683 /* 5684 * Raced against perf_mmap_close() through 5685 * perf_event_set_output(). Try again, hope for better 5686 * luck. 5687 */ 5688 mutex_unlock(&event->mmap_mutex); 5689 goto again; 5690 } 5691 5692 goto unlock; 5693 } 5694 5695 user_extra = nr_pages + 1; 5696 5697 accounting: 5698 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5699 5700 /* 5701 * Increase the limit linearly with more CPUs: 5702 */ 5703 user_lock_limit *= num_online_cpus(); 5704 5705 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5706 5707 if (user_locked > user_lock_limit) 5708 extra = user_locked - user_lock_limit; 5709 5710 lock_limit = rlimit(RLIMIT_MEMLOCK); 5711 lock_limit >>= PAGE_SHIFT; 5712 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5713 5714 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5715 !capable(CAP_IPC_LOCK)) { 5716 ret = -EPERM; 5717 goto unlock; 5718 } 5719 5720 WARN_ON(!rb && event->rb); 5721 5722 if (vma->vm_flags & VM_WRITE) 5723 flags |= RING_BUFFER_WRITABLE; 5724 5725 if (!rb) { 5726 rb = rb_alloc(nr_pages, 5727 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5728 event->cpu, flags); 5729 5730 if (!rb) { 5731 ret = -ENOMEM; 5732 goto unlock; 5733 } 5734 5735 atomic_set(&rb->mmap_count, 1); 5736 rb->mmap_user = get_current_user(); 5737 rb->mmap_locked = extra; 5738 5739 ring_buffer_attach(event, rb); 5740 5741 perf_event_init_userpage(event); 5742 perf_event_update_userpage(event); 5743 } else { 5744 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5745 event->attr.aux_watermark, flags); 5746 if (!ret) 5747 rb->aux_mmap_locked = extra; 5748 } 5749 5750 unlock: 5751 if (!ret) { 5752 atomic_long_add(user_extra, &user->locked_vm); 5753 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5754 5755 atomic_inc(&event->mmap_count); 5756 } else if (rb) { 5757 atomic_dec(&rb->mmap_count); 5758 } 5759 aux_unlock: 5760 mutex_unlock(&event->mmap_mutex); 5761 5762 /* 5763 * Since pinned accounting is per vm we cannot allow fork() to copy our 5764 * vma. 5765 */ 5766 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5767 vma->vm_ops = &perf_mmap_vmops; 5768 5769 if (event->pmu->event_mapped) 5770 event->pmu->event_mapped(event, vma->vm_mm); 5771 5772 return ret; 5773 } 5774 5775 static int perf_fasync(int fd, struct file *filp, int on) 5776 { 5777 struct inode *inode = file_inode(filp); 5778 struct perf_event *event = filp->private_data; 5779 int retval; 5780 5781 inode_lock(inode); 5782 retval = fasync_helper(fd, filp, on, &event->fasync); 5783 inode_unlock(inode); 5784 5785 if (retval < 0) 5786 return retval; 5787 5788 return 0; 5789 } 5790 5791 static const struct file_operations perf_fops = { 5792 .llseek = no_llseek, 5793 .release = perf_release, 5794 .read = perf_read, 5795 .poll = perf_poll, 5796 .unlocked_ioctl = perf_ioctl, 5797 .compat_ioctl = perf_compat_ioctl, 5798 .mmap = perf_mmap, 5799 .fasync = perf_fasync, 5800 }; 5801 5802 /* 5803 * Perf event wakeup 5804 * 5805 * If there's data, ensure we set the poll() state and publish everything 5806 * to user-space before waking everybody up. 5807 */ 5808 5809 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5810 { 5811 /* only the parent has fasync state */ 5812 if (event->parent) 5813 event = event->parent; 5814 return &event->fasync; 5815 } 5816 5817 void perf_event_wakeup(struct perf_event *event) 5818 { 5819 ring_buffer_wakeup(event); 5820 5821 if (event->pending_kill) { 5822 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5823 event->pending_kill = 0; 5824 } 5825 } 5826 5827 static void perf_pending_event_disable(struct perf_event *event) 5828 { 5829 int cpu = READ_ONCE(event->pending_disable); 5830 5831 if (cpu < 0) 5832 return; 5833 5834 if (cpu == smp_processor_id()) { 5835 WRITE_ONCE(event->pending_disable, -1); 5836 perf_event_disable_local(event); 5837 return; 5838 } 5839 5840 /* 5841 * CPU-A CPU-B 5842 * 5843 * perf_event_disable_inatomic() 5844 * @pending_disable = CPU-A; 5845 * irq_work_queue(); 5846 * 5847 * sched-out 5848 * @pending_disable = -1; 5849 * 5850 * sched-in 5851 * perf_event_disable_inatomic() 5852 * @pending_disable = CPU-B; 5853 * irq_work_queue(); // FAILS 5854 * 5855 * irq_work_run() 5856 * perf_pending_event() 5857 * 5858 * But the event runs on CPU-B and wants disabling there. 5859 */ 5860 irq_work_queue_on(&event->pending, cpu); 5861 } 5862 5863 static void perf_pending_event(struct irq_work *entry) 5864 { 5865 struct perf_event *event = container_of(entry, struct perf_event, pending); 5866 int rctx; 5867 5868 rctx = perf_swevent_get_recursion_context(); 5869 /* 5870 * If we 'fail' here, that's OK, it means recursion is already disabled 5871 * and we won't recurse 'further'. 5872 */ 5873 5874 perf_pending_event_disable(event); 5875 5876 if (event->pending_wakeup) { 5877 event->pending_wakeup = 0; 5878 perf_event_wakeup(event); 5879 } 5880 5881 if (rctx >= 0) 5882 perf_swevent_put_recursion_context(rctx); 5883 } 5884 5885 /* 5886 * We assume there is only KVM supporting the callbacks. 5887 * Later on, we might change it to a list if there is 5888 * another virtualization implementation supporting the callbacks. 5889 */ 5890 struct perf_guest_info_callbacks *perf_guest_cbs; 5891 5892 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5893 { 5894 perf_guest_cbs = cbs; 5895 return 0; 5896 } 5897 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5898 5899 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5900 { 5901 perf_guest_cbs = NULL; 5902 return 0; 5903 } 5904 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5905 5906 static void 5907 perf_output_sample_regs(struct perf_output_handle *handle, 5908 struct pt_regs *regs, u64 mask) 5909 { 5910 int bit; 5911 DECLARE_BITMAP(_mask, 64); 5912 5913 bitmap_from_u64(_mask, mask); 5914 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5915 u64 val; 5916 5917 val = perf_reg_value(regs, bit); 5918 perf_output_put(handle, val); 5919 } 5920 } 5921 5922 static void perf_sample_regs_user(struct perf_regs *regs_user, 5923 struct pt_regs *regs, 5924 struct pt_regs *regs_user_copy) 5925 { 5926 if (user_mode(regs)) { 5927 regs_user->abi = perf_reg_abi(current); 5928 regs_user->regs = regs; 5929 } else if (!(current->flags & PF_KTHREAD)) { 5930 perf_get_regs_user(regs_user, regs, regs_user_copy); 5931 } else { 5932 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5933 regs_user->regs = NULL; 5934 } 5935 } 5936 5937 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5938 struct pt_regs *regs) 5939 { 5940 regs_intr->regs = regs; 5941 regs_intr->abi = perf_reg_abi(current); 5942 } 5943 5944 5945 /* 5946 * Get remaining task size from user stack pointer. 5947 * 5948 * It'd be better to take stack vma map and limit this more 5949 * precisly, but there's no way to get it safely under interrupt, 5950 * so using TASK_SIZE as limit. 5951 */ 5952 static u64 perf_ustack_task_size(struct pt_regs *regs) 5953 { 5954 unsigned long addr = perf_user_stack_pointer(regs); 5955 5956 if (!addr || addr >= TASK_SIZE) 5957 return 0; 5958 5959 return TASK_SIZE - addr; 5960 } 5961 5962 static u16 5963 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5964 struct pt_regs *regs) 5965 { 5966 u64 task_size; 5967 5968 /* No regs, no stack pointer, no dump. */ 5969 if (!regs) 5970 return 0; 5971 5972 /* 5973 * Check if we fit in with the requested stack size into the: 5974 * - TASK_SIZE 5975 * If we don't, we limit the size to the TASK_SIZE. 5976 * 5977 * - remaining sample size 5978 * If we don't, we customize the stack size to 5979 * fit in to the remaining sample size. 5980 */ 5981 5982 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5983 stack_size = min(stack_size, (u16) task_size); 5984 5985 /* Current header size plus static size and dynamic size. */ 5986 header_size += 2 * sizeof(u64); 5987 5988 /* Do we fit in with the current stack dump size? */ 5989 if ((u16) (header_size + stack_size) < header_size) { 5990 /* 5991 * If we overflow the maximum size for the sample, 5992 * we customize the stack dump size to fit in. 5993 */ 5994 stack_size = USHRT_MAX - header_size - sizeof(u64); 5995 stack_size = round_up(stack_size, sizeof(u64)); 5996 } 5997 5998 return stack_size; 5999 } 6000 6001 static void 6002 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6003 struct pt_regs *regs) 6004 { 6005 /* Case of a kernel thread, nothing to dump */ 6006 if (!regs) { 6007 u64 size = 0; 6008 perf_output_put(handle, size); 6009 } else { 6010 unsigned long sp; 6011 unsigned int rem; 6012 u64 dyn_size; 6013 mm_segment_t fs; 6014 6015 /* 6016 * We dump: 6017 * static size 6018 * - the size requested by user or the best one we can fit 6019 * in to the sample max size 6020 * data 6021 * - user stack dump data 6022 * dynamic size 6023 * - the actual dumped size 6024 */ 6025 6026 /* Static size. */ 6027 perf_output_put(handle, dump_size); 6028 6029 /* Data. */ 6030 sp = perf_user_stack_pointer(regs); 6031 fs = get_fs(); 6032 set_fs(USER_DS); 6033 rem = __output_copy_user(handle, (void *) sp, dump_size); 6034 set_fs(fs); 6035 dyn_size = dump_size - rem; 6036 6037 perf_output_skip(handle, rem); 6038 6039 /* Dynamic size. */ 6040 perf_output_put(handle, dyn_size); 6041 } 6042 } 6043 6044 static void __perf_event_header__init_id(struct perf_event_header *header, 6045 struct perf_sample_data *data, 6046 struct perf_event *event) 6047 { 6048 u64 sample_type = event->attr.sample_type; 6049 6050 data->type = sample_type; 6051 header->size += event->id_header_size; 6052 6053 if (sample_type & PERF_SAMPLE_TID) { 6054 /* namespace issues */ 6055 data->tid_entry.pid = perf_event_pid(event, current); 6056 data->tid_entry.tid = perf_event_tid(event, current); 6057 } 6058 6059 if (sample_type & PERF_SAMPLE_TIME) 6060 data->time = perf_event_clock(event); 6061 6062 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6063 data->id = primary_event_id(event); 6064 6065 if (sample_type & PERF_SAMPLE_STREAM_ID) 6066 data->stream_id = event->id; 6067 6068 if (sample_type & PERF_SAMPLE_CPU) { 6069 data->cpu_entry.cpu = raw_smp_processor_id(); 6070 data->cpu_entry.reserved = 0; 6071 } 6072 } 6073 6074 void perf_event_header__init_id(struct perf_event_header *header, 6075 struct perf_sample_data *data, 6076 struct perf_event *event) 6077 { 6078 if (event->attr.sample_id_all) 6079 __perf_event_header__init_id(header, data, event); 6080 } 6081 6082 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6083 struct perf_sample_data *data) 6084 { 6085 u64 sample_type = data->type; 6086 6087 if (sample_type & PERF_SAMPLE_TID) 6088 perf_output_put(handle, data->tid_entry); 6089 6090 if (sample_type & PERF_SAMPLE_TIME) 6091 perf_output_put(handle, data->time); 6092 6093 if (sample_type & PERF_SAMPLE_ID) 6094 perf_output_put(handle, data->id); 6095 6096 if (sample_type & PERF_SAMPLE_STREAM_ID) 6097 perf_output_put(handle, data->stream_id); 6098 6099 if (sample_type & PERF_SAMPLE_CPU) 6100 perf_output_put(handle, data->cpu_entry); 6101 6102 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6103 perf_output_put(handle, data->id); 6104 } 6105 6106 void perf_event__output_id_sample(struct perf_event *event, 6107 struct perf_output_handle *handle, 6108 struct perf_sample_data *sample) 6109 { 6110 if (event->attr.sample_id_all) 6111 __perf_event__output_id_sample(handle, sample); 6112 } 6113 6114 static void perf_output_read_one(struct perf_output_handle *handle, 6115 struct perf_event *event, 6116 u64 enabled, u64 running) 6117 { 6118 u64 read_format = event->attr.read_format; 6119 u64 values[4]; 6120 int n = 0; 6121 6122 values[n++] = perf_event_count(event); 6123 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6124 values[n++] = enabled + 6125 atomic64_read(&event->child_total_time_enabled); 6126 } 6127 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6128 values[n++] = running + 6129 atomic64_read(&event->child_total_time_running); 6130 } 6131 if (read_format & PERF_FORMAT_ID) 6132 values[n++] = primary_event_id(event); 6133 6134 __output_copy(handle, values, n * sizeof(u64)); 6135 } 6136 6137 static void perf_output_read_group(struct perf_output_handle *handle, 6138 struct perf_event *event, 6139 u64 enabled, u64 running) 6140 { 6141 struct perf_event *leader = event->group_leader, *sub; 6142 u64 read_format = event->attr.read_format; 6143 u64 values[5]; 6144 int n = 0; 6145 6146 values[n++] = 1 + leader->nr_siblings; 6147 6148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6149 values[n++] = enabled; 6150 6151 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6152 values[n++] = running; 6153 6154 if ((leader != event) && 6155 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6156 leader->pmu->read(leader); 6157 6158 values[n++] = perf_event_count(leader); 6159 if (read_format & PERF_FORMAT_ID) 6160 values[n++] = primary_event_id(leader); 6161 6162 __output_copy(handle, values, n * sizeof(u64)); 6163 6164 for_each_sibling_event(sub, leader) { 6165 n = 0; 6166 6167 if ((sub != event) && 6168 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6169 sub->pmu->read(sub); 6170 6171 values[n++] = perf_event_count(sub); 6172 if (read_format & PERF_FORMAT_ID) 6173 values[n++] = primary_event_id(sub); 6174 6175 __output_copy(handle, values, n * sizeof(u64)); 6176 } 6177 } 6178 6179 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6180 PERF_FORMAT_TOTAL_TIME_RUNNING) 6181 6182 /* 6183 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6184 * 6185 * The problem is that its both hard and excessively expensive to iterate the 6186 * child list, not to mention that its impossible to IPI the children running 6187 * on another CPU, from interrupt/NMI context. 6188 */ 6189 static void perf_output_read(struct perf_output_handle *handle, 6190 struct perf_event *event) 6191 { 6192 u64 enabled = 0, running = 0, now; 6193 u64 read_format = event->attr.read_format; 6194 6195 /* 6196 * compute total_time_enabled, total_time_running 6197 * based on snapshot values taken when the event 6198 * was last scheduled in. 6199 * 6200 * we cannot simply called update_context_time() 6201 * because of locking issue as we are called in 6202 * NMI context 6203 */ 6204 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6205 calc_timer_values(event, &now, &enabled, &running); 6206 6207 if (event->attr.read_format & PERF_FORMAT_GROUP) 6208 perf_output_read_group(handle, event, enabled, running); 6209 else 6210 perf_output_read_one(handle, event, enabled, running); 6211 } 6212 6213 void perf_output_sample(struct perf_output_handle *handle, 6214 struct perf_event_header *header, 6215 struct perf_sample_data *data, 6216 struct perf_event *event) 6217 { 6218 u64 sample_type = data->type; 6219 6220 perf_output_put(handle, *header); 6221 6222 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6223 perf_output_put(handle, data->id); 6224 6225 if (sample_type & PERF_SAMPLE_IP) 6226 perf_output_put(handle, data->ip); 6227 6228 if (sample_type & PERF_SAMPLE_TID) 6229 perf_output_put(handle, data->tid_entry); 6230 6231 if (sample_type & PERF_SAMPLE_TIME) 6232 perf_output_put(handle, data->time); 6233 6234 if (sample_type & PERF_SAMPLE_ADDR) 6235 perf_output_put(handle, data->addr); 6236 6237 if (sample_type & PERF_SAMPLE_ID) 6238 perf_output_put(handle, data->id); 6239 6240 if (sample_type & PERF_SAMPLE_STREAM_ID) 6241 perf_output_put(handle, data->stream_id); 6242 6243 if (sample_type & PERF_SAMPLE_CPU) 6244 perf_output_put(handle, data->cpu_entry); 6245 6246 if (sample_type & PERF_SAMPLE_PERIOD) 6247 perf_output_put(handle, data->period); 6248 6249 if (sample_type & PERF_SAMPLE_READ) 6250 perf_output_read(handle, event); 6251 6252 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6253 int size = 1; 6254 6255 size += data->callchain->nr; 6256 size *= sizeof(u64); 6257 __output_copy(handle, data->callchain, size); 6258 } 6259 6260 if (sample_type & PERF_SAMPLE_RAW) { 6261 struct perf_raw_record *raw = data->raw; 6262 6263 if (raw) { 6264 struct perf_raw_frag *frag = &raw->frag; 6265 6266 perf_output_put(handle, raw->size); 6267 do { 6268 if (frag->copy) { 6269 __output_custom(handle, frag->copy, 6270 frag->data, frag->size); 6271 } else { 6272 __output_copy(handle, frag->data, 6273 frag->size); 6274 } 6275 if (perf_raw_frag_last(frag)) 6276 break; 6277 frag = frag->next; 6278 } while (1); 6279 if (frag->pad) 6280 __output_skip(handle, NULL, frag->pad); 6281 } else { 6282 struct { 6283 u32 size; 6284 u32 data; 6285 } raw = { 6286 .size = sizeof(u32), 6287 .data = 0, 6288 }; 6289 perf_output_put(handle, raw); 6290 } 6291 } 6292 6293 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6294 if (data->br_stack) { 6295 size_t size; 6296 6297 size = data->br_stack->nr 6298 * sizeof(struct perf_branch_entry); 6299 6300 perf_output_put(handle, data->br_stack->nr); 6301 perf_output_copy(handle, data->br_stack->entries, size); 6302 } else { 6303 /* 6304 * we always store at least the value of nr 6305 */ 6306 u64 nr = 0; 6307 perf_output_put(handle, nr); 6308 } 6309 } 6310 6311 if (sample_type & PERF_SAMPLE_REGS_USER) { 6312 u64 abi = data->regs_user.abi; 6313 6314 /* 6315 * If there are no regs to dump, notice it through 6316 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6317 */ 6318 perf_output_put(handle, abi); 6319 6320 if (abi) { 6321 u64 mask = event->attr.sample_regs_user; 6322 perf_output_sample_regs(handle, 6323 data->regs_user.regs, 6324 mask); 6325 } 6326 } 6327 6328 if (sample_type & PERF_SAMPLE_STACK_USER) { 6329 perf_output_sample_ustack(handle, 6330 data->stack_user_size, 6331 data->regs_user.regs); 6332 } 6333 6334 if (sample_type & PERF_SAMPLE_WEIGHT) 6335 perf_output_put(handle, data->weight); 6336 6337 if (sample_type & PERF_SAMPLE_DATA_SRC) 6338 perf_output_put(handle, data->data_src.val); 6339 6340 if (sample_type & PERF_SAMPLE_TRANSACTION) 6341 perf_output_put(handle, data->txn); 6342 6343 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6344 u64 abi = data->regs_intr.abi; 6345 /* 6346 * If there are no regs to dump, notice it through 6347 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6348 */ 6349 perf_output_put(handle, abi); 6350 6351 if (abi) { 6352 u64 mask = event->attr.sample_regs_intr; 6353 6354 perf_output_sample_regs(handle, 6355 data->regs_intr.regs, 6356 mask); 6357 } 6358 } 6359 6360 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6361 perf_output_put(handle, data->phys_addr); 6362 6363 if (!event->attr.watermark) { 6364 int wakeup_events = event->attr.wakeup_events; 6365 6366 if (wakeup_events) { 6367 struct ring_buffer *rb = handle->rb; 6368 int events = local_inc_return(&rb->events); 6369 6370 if (events >= wakeup_events) { 6371 local_sub(wakeup_events, &rb->events); 6372 local_inc(&rb->wakeup); 6373 } 6374 } 6375 } 6376 } 6377 6378 static u64 perf_virt_to_phys(u64 virt) 6379 { 6380 u64 phys_addr = 0; 6381 struct page *p = NULL; 6382 6383 if (!virt) 6384 return 0; 6385 6386 if (virt >= TASK_SIZE) { 6387 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6388 if (virt_addr_valid((void *)(uintptr_t)virt) && 6389 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6390 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6391 } else { 6392 /* 6393 * Walking the pages tables for user address. 6394 * Interrupts are disabled, so it prevents any tear down 6395 * of the page tables. 6396 * Try IRQ-safe __get_user_pages_fast first. 6397 * If failed, leave phys_addr as 0. 6398 */ 6399 if ((current->mm != NULL) && 6400 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6401 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6402 6403 if (p) 6404 put_page(p); 6405 } 6406 6407 return phys_addr; 6408 } 6409 6410 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6411 6412 struct perf_callchain_entry * 6413 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6414 { 6415 bool kernel = !event->attr.exclude_callchain_kernel; 6416 bool user = !event->attr.exclude_callchain_user; 6417 /* Disallow cross-task user callchains. */ 6418 bool crosstask = event->ctx->task && event->ctx->task != current; 6419 const u32 max_stack = event->attr.sample_max_stack; 6420 struct perf_callchain_entry *callchain; 6421 6422 if (!kernel && !user) 6423 return &__empty_callchain; 6424 6425 callchain = get_perf_callchain(regs, 0, kernel, user, 6426 max_stack, crosstask, true); 6427 return callchain ?: &__empty_callchain; 6428 } 6429 6430 void perf_prepare_sample(struct perf_event_header *header, 6431 struct perf_sample_data *data, 6432 struct perf_event *event, 6433 struct pt_regs *regs) 6434 { 6435 u64 sample_type = event->attr.sample_type; 6436 6437 header->type = PERF_RECORD_SAMPLE; 6438 header->size = sizeof(*header) + event->header_size; 6439 6440 header->misc = 0; 6441 header->misc |= perf_misc_flags(regs); 6442 6443 __perf_event_header__init_id(header, data, event); 6444 6445 if (sample_type & PERF_SAMPLE_IP) 6446 data->ip = perf_instruction_pointer(regs); 6447 6448 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6449 int size = 1; 6450 6451 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6452 data->callchain = perf_callchain(event, regs); 6453 6454 size += data->callchain->nr; 6455 6456 header->size += size * sizeof(u64); 6457 } 6458 6459 if (sample_type & PERF_SAMPLE_RAW) { 6460 struct perf_raw_record *raw = data->raw; 6461 int size; 6462 6463 if (raw) { 6464 struct perf_raw_frag *frag = &raw->frag; 6465 u32 sum = 0; 6466 6467 do { 6468 sum += frag->size; 6469 if (perf_raw_frag_last(frag)) 6470 break; 6471 frag = frag->next; 6472 } while (1); 6473 6474 size = round_up(sum + sizeof(u32), sizeof(u64)); 6475 raw->size = size - sizeof(u32); 6476 frag->pad = raw->size - sum; 6477 } else { 6478 size = sizeof(u64); 6479 } 6480 6481 header->size += size; 6482 } 6483 6484 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6485 int size = sizeof(u64); /* nr */ 6486 if (data->br_stack) { 6487 size += data->br_stack->nr 6488 * sizeof(struct perf_branch_entry); 6489 } 6490 header->size += size; 6491 } 6492 6493 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6494 perf_sample_regs_user(&data->regs_user, regs, 6495 &data->regs_user_copy); 6496 6497 if (sample_type & PERF_SAMPLE_REGS_USER) { 6498 /* regs dump ABI info */ 6499 int size = sizeof(u64); 6500 6501 if (data->regs_user.regs) { 6502 u64 mask = event->attr.sample_regs_user; 6503 size += hweight64(mask) * sizeof(u64); 6504 } 6505 6506 header->size += size; 6507 } 6508 6509 if (sample_type & PERF_SAMPLE_STACK_USER) { 6510 /* 6511 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6512 * processed as the last one or have additional check added 6513 * in case new sample type is added, because we could eat 6514 * up the rest of the sample size. 6515 */ 6516 u16 stack_size = event->attr.sample_stack_user; 6517 u16 size = sizeof(u64); 6518 6519 stack_size = perf_sample_ustack_size(stack_size, header->size, 6520 data->regs_user.regs); 6521 6522 /* 6523 * If there is something to dump, add space for the dump 6524 * itself and for the field that tells the dynamic size, 6525 * which is how many have been actually dumped. 6526 */ 6527 if (stack_size) 6528 size += sizeof(u64) + stack_size; 6529 6530 data->stack_user_size = stack_size; 6531 header->size += size; 6532 } 6533 6534 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6535 /* regs dump ABI info */ 6536 int size = sizeof(u64); 6537 6538 perf_sample_regs_intr(&data->regs_intr, regs); 6539 6540 if (data->regs_intr.regs) { 6541 u64 mask = event->attr.sample_regs_intr; 6542 6543 size += hweight64(mask) * sizeof(u64); 6544 } 6545 6546 header->size += size; 6547 } 6548 6549 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6550 data->phys_addr = perf_virt_to_phys(data->addr); 6551 } 6552 6553 static __always_inline int 6554 __perf_event_output(struct perf_event *event, 6555 struct perf_sample_data *data, 6556 struct pt_regs *regs, 6557 int (*output_begin)(struct perf_output_handle *, 6558 struct perf_event *, 6559 unsigned int)) 6560 { 6561 struct perf_output_handle handle; 6562 struct perf_event_header header; 6563 int err; 6564 6565 /* protect the callchain buffers */ 6566 rcu_read_lock(); 6567 6568 perf_prepare_sample(&header, data, event, regs); 6569 6570 err = output_begin(&handle, event, header.size); 6571 if (err) 6572 goto exit; 6573 6574 perf_output_sample(&handle, &header, data, event); 6575 6576 perf_output_end(&handle); 6577 6578 exit: 6579 rcu_read_unlock(); 6580 return err; 6581 } 6582 6583 void 6584 perf_event_output_forward(struct perf_event *event, 6585 struct perf_sample_data *data, 6586 struct pt_regs *regs) 6587 { 6588 __perf_event_output(event, data, regs, perf_output_begin_forward); 6589 } 6590 6591 void 6592 perf_event_output_backward(struct perf_event *event, 6593 struct perf_sample_data *data, 6594 struct pt_regs *regs) 6595 { 6596 __perf_event_output(event, data, regs, perf_output_begin_backward); 6597 } 6598 6599 int 6600 perf_event_output(struct perf_event *event, 6601 struct perf_sample_data *data, 6602 struct pt_regs *regs) 6603 { 6604 return __perf_event_output(event, data, regs, perf_output_begin); 6605 } 6606 6607 /* 6608 * read event_id 6609 */ 6610 6611 struct perf_read_event { 6612 struct perf_event_header header; 6613 6614 u32 pid; 6615 u32 tid; 6616 }; 6617 6618 static void 6619 perf_event_read_event(struct perf_event *event, 6620 struct task_struct *task) 6621 { 6622 struct perf_output_handle handle; 6623 struct perf_sample_data sample; 6624 struct perf_read_event read_event = { 6625 .header = { 6626 .type = PERF_RECORD_READ, 6627 .misc = 0, 6628 .size = sizeof(read_event) + event->read_size, 6629 }, 6630 .pid = perf_event_pid(event, task), 6631 .tid = perf_event_tid(event, task), 6632 }; 6633 int ret; 6634 6635 perf_event_header__init_id(&read_event.header, &sample, event); 6636 ret = perf_output_begin(&handle, event, read_event.header.size); 6637 if (ret) 6638 return; 6639 6640 perf_output_put(&handle, read_event); 6641 perf_output_read(&handle, event); 6642 perf_event__output_id_sample(event, &handle, &sample); 6643 6644 perf_output_end(&handle); 6645 } 6646 6647 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6648 6649 static void 6650 perf_iterate_ctx(struct perf_event_context *ctx, 6651 perf_iterate_f output, 6652 void *data, bool all) 6653 { 6654 struct perf_event *event; 6655 6656 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6657 if (!all) { 6658 if (event->state < PERF_EVENT_STATE_INACTIVE) 6659 continue; 6660 if (!event_filter_match(event)) 6661 continue; 6662 } 6663 6664 output(event, data); 6665 } 6666 } 6667 6668 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6669 { 6670 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6671 struct perf_event *event; 6672 6673 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6674 /* 6675 * Skip events that are not fully formed yet; ensure that 6676 * if we observe event->ctx, both event and ctx will be 6677 * complete enough. See perf_install_in_context(). 6678 */ 6679 if (!smp_load_acquire(&event->ctx)) 6680 continue; 6681 6682 if (event->state < PERF_EVENT_STATE_INACTIVE) 6683 continue; 6684 if (!event_filter_match(event)) 6685 continue; 6686 output(event, data); 6687 } 6688 } 6689 6690 /* 6691 * Iterate all events that need to receive side-band events. 6692 * 6693 * For new callers; ensure that account_pmu_sb_event() includes 6694 * your event, otherwise it might not get delivered. 6695 */ 6696 static void 6697 perf_iterate_sb(perf_iterate_f output, void *data, 6698 struct perf_event_context *task_ctx) 6699 { 6700 struct perf_event_context *ctx; 6701 int ctxn; 6702 6703 rcu_read_lock(); 6704 preempt_disable(); 6705 6706 /* 6707 * If we have task_ctx != NULL we only notify the task context itself. 6708 * The task_ctx is set only for EXIT events before releasing task 6709 * context. 6710 */ 6711 if (task_ctx) { 6712 perf_iterate_ctx(task_ctx, output, data, false); 6713 goto done; 6714 } 6715 6716 perf_iterate_sb_cpu(output, data); 6717 6718 for_each_task_context_nr(ctxn) { 6719 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6720 if (ctx) 6721 perf_iterate_ctx(ctx, output, data, false); 6722 } 6723 done: 6724 preempt_enable(); 6725 rcu_read_unlock(); 6726 } 6727 6728 /* 6729 * Clear all file-based filters at exec, they'll have to be 6730 * re-instated when/if these objects are mmapped again. 6731 */ 6732 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6733 { 6734 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6735 struct perf_addr_filter *filter; 6736 unsigned int restart = 0, count = 0; 6737 unsigned long flags; 6738 6739 if (!has_addr_filter(event)) 6740 return; 6741 6742 raw_spin_lock_irqsave(&ifh->lock, flags); 6743 list_for_each_entry(filter, &ifh->list, entry) { 6744 if (filter->path.dentry) { 6745 event->addr_filter_ranges[count].start = 0; 6746 event->addr_filter_ranges[count].size = 0; 6747 restart++; 6748 } 6749 6750 count++; 6751 } 6752 6753 if (restart) 6754 event->addr_filters_gen++; 6755 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6756 6757 if (restart) 6758 perf_event_stop(event, 1); 6759 } 6760 6761 void perf_event_exec(void) 6762 { 6763 struct perf_event_context *ctx; 6764 int ctxn; 6765 6766 rcu_read_lock(); 6767 for_each_task_context_nr(ctxn) { 6768 ctx = current->perf_event_ctxp[ctxn]; 6769 if (!ctx) 6770 continue; 6771 6772 perf_event_enable_on_exec(ctxn); 6773 6774 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6775 true); 6776 } 6777 rcu_read_unlock(); 6778 } 6779 6780 struct remote_output { 6781 struct ring_buffer *rb; 6782 int err; 6783 }; 6784 6785 static void __perf_event_output_stop(struct perf_event *event, void *data) 6786 { 6787 struct perf_event *parent = event->parent; 6788 struct remote_output *ro = data; 6789 struct ring_buffer *rb = ro->rb; 6790 struct stop_event_data sd = { 6791 .event = event, 6792 }; 6793 6794 if (!has_aux(event)) 6795 return; 6796 6797 if (!parent) 6798 parent = event; 6799 6800 /* 6801 * In case of inheritance, it will be the parent that links to the 6802 * ring-buffer, but it will be the child that's actually using it. 6803 * 6804 * We are using event::rb to determine if the event should be stopped, 6805 * however this may race with ring_buffer_attach() (through set_output), 6806 * which will make us skip the event that actually needs to be stopped. 6807 * So ring_buffer_attach() has to stop an aux event before re-assigning 6808 * its rb pointer. 6809 */ 6810 if (rcu_dereference(parent->rb) == rb) 6811 ro->err = __perf_event_stop(&sd); 6812 } 6813 6814 static int __perf_pmu_output_stop(void *info) 6815 { 6816 struct perf_event *event = info; 6817 struct pmu *pmu = event->pmu; 6818 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6819 struct remote_output ro = { 6820 .rb = event->rb, 6821 }; 6822 6823 rcu_read_lock(); 6824 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6825 if (cpuctx->task_ctx) 6826 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6827 &ro, false); 6828 rcu_read_unlock(); 6829 6830 return ro.err; 6831 } 6832 6833 static void perf_pmu_output_stop(struct perf_event *event) 6834 { 6835 struct perf_event *iter; 6836 int err, cpu; 6837 6838 restart: 6839 rcu_read_lock(); 6840 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6841 /* 6842 * For per-CPU events, we need to make sure that neither they 6843 * nor their children are running; for cpu==-1 events it's 6844 * sufficient to stop the event itself if it's active, since 6845 * it can't have children. 6846 */ 6847 cpu = iter->cpu; 6848 if (cpu == -1) 6849 cpu = READ_ONCE(iter->oncpu); 6850 6851 if (cpu == -1) 6852 continue; 6853 6854 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6855 if (err == -EAGAIN) { 6856 rcu_read_unlock(); 6857 goto restart; 6858 } 6859 } 6860 rcu_read_unlock(); 6861 } 6862 6863 /* 6864 * task tracking -- fork/exit 6865 * 6866 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6867 */ 6868 6869 struct perf_task_event { 6870 struct task_struct *task; 6871 struct perf_event_context *task_ctx; 6872 6873 struct { 6874 struct perf_event_header header; 6875 6876 u32 pid; 6877 u32 ppid; 6878 u32 tid; 6879 u32 ptid; 6880 u64 time; 6881 } event_id; 6882 }; 6883 6884 static int perf_event_task_match(struct perf_event *event) 6885 { 6886 return event->attr.comm || event->attr.mmap || 6887 event->attr.mmap2 || event->attr.mmap_data || 6888 event->attr.task; 6889 } 6890 6891 static void perf_event_task_output(struct perf_event *event, 6892 void *data) 6893 { 6894 struct perf_task_event *task_event = data; 6895 struct perf_output_handle handle; 6896 struct perf_sample_data sample; 6897 struct task_struct *task = task_event->task; 6898 int ret, size = task_event->event_id.header.size; 6899 6900 if (!perf_event_task_match(event)) 6901 return; 6902 6903 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6904 6905 ret = perf_output_begin(&handle, event, 6906 task_event->event_id.header.size); 6907 if (ret) 6908 goto out; 6909 6910 task_event->event_id.pid = perf_event_pid(event, task); 6911 task_event->event_id.ppid = perf_event_pid(event, current); 6912 6913 task_event->event_id.tid = perf_event_tid(event, task); 6914 task_event->event_id.ptid = perf_event_tid(event, current); 6915 6916 task_event->event_id.time = perf_event_clock(event); 6917 6918 perf_output_put(&handle, task_event->event_id); 6919 6920 perf_event__output_id_sample(event, &handle, &sample); 6921 6922 perf_output_end(&handle); 6923 out: 6924 task_event->event_id.header.size = size; 6925 } 6926 6927 static void perf_event_task(struct task_struct *task, 6928 struct perf_event_context *task_ctx, 6929 int new) 6930 { 6931 struct perf_task_event task_event; 6932 6933 if (!atomic_read(&nr_comm_events) && 6934 !atomic_read(&nr_mmap_events) && 6935 !atomic_read(&nr_task_events)) 6936 return; 6937 6938 task_event = (struct perf_task_event){ 6939 .task = task, 6940 .task_ctx = task_ctx, 6941 .event_id = { 6942 .header = { 6943 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6944 .misc = 0, 6945 .size = sizeof(task_event.event_id), 6946 }, 6947 /* .pid */ 6948 /* .ppid */ 6949 /* .tid */ 6950 /* .ptid */ 6951 /* .time */ 6952 }, 6953 }; 6954 6955 perf_iterate_sb(perf_event_task_output, 6956 &task_event, 6957 task_ctx); 6958 } 6959 6960 void perf_event_fork(struct task_struct *task) 6961 { 6962 perf_event_task(task, NULL, 1); 6963 perf_event_namespaces(task); 6964 } 6965 6966 /* 6967 * comm tracking 6968 */ 6969 6970 struct perf_comm_event { 6971 struct task_struct *task; 6972 char *comm; 6973 int comm_size; 6974 6975 struct { 6976 struct perf_event_header header; 6977 6978 u32 pid; 6979 u32 tid; 6980 } event_id; 6981 }; 6982 6983 static int perf_event_comm_match(struct perf_event *event) 6984 { 6985 return event->attr.comm; 6986 } 6987 6988 static void perf_event_comm_output(struct perf_event *event, 6989 void *data) 6990 { 6991 struct perf_comm_event *comm_event = data; 6992 struct perf_output_handle handle; 6993 struct perf_sample_data sample; 6994 int size = comm_event->event_id.header.size; 6995 int ret; 6996 6997 if (!perf_event_comm_match(event)) 6998 return; 6999 7000 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7001 ret = perf_output_begin(&handle, event, 7002 comm_event->event_id.header.size); 7003 7004 if (ret) 7005 goto out; 7006 7007 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7008 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7009 7010 perf_output_put(&handle, comm_event->event_id); 7011 __output_copy(&handle, comm_event->comm, 7012 comm_event->comm_size); 7013 7014 perf_event__output_id_sample(event, &handle, &sample); 7015 7016 perf_output_end(&handle); 7017 out: 7018 comm_event->event_id.header.size = size; 7019 } 7020 7021 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7022 { 7023 char comm[TASK_COMM_LEN]; 7024 unsigned int size; 7025 7026 memset(comm, 0, sizeof(comm)); 7027 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7028 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7029 7030 comm_event->comm = comm; 7031 comm_event->comm_size = size; 7032 7033 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7034 7035 perf_iterate_sb(perf_event_comm_output, 7036 comm_event, 7037 NULL); 7038 } 7039 7040 void perf_event_comm(struct task_struct *task, bool exec) 7041 { 7042 struct perf_comm_event comm_event; 7043 7044 if (!atomic_read(&nr_comm_events)) 7045 return; 7046 7047 comm_event = (struct perf_comm_event){ 7048 .task = task, 7049 /* .comm */ 7050 /* .comm_size */ 7051 .event_id = { 7052 .header = { 7053 .type = PERF_RECORD_COMM, 7054 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7055 /* .size */ 7056 }, 7057 /* .pid */ 7058 /* .tid */ 7059 }, 7060 }; 7061 7062 perf_event_comm_event(&comm_event); 7063 } 7064 7065 /* 7066 * namespaces tracking 7067 */ 7068 7069 struct perf_namespaces_event { 7070 struct task_struct *task; 7071 7072 struct { 7073 struct perf_event_header header; 7074 7075 u32 pid; 7076 u32 tid; 7077 u64 nr_namespaces; 7078 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7079 } event_id; 7080 }; 7081 7082 static int perf_event_namespaces_match(struct perf_event *event) 7083 { 7084 return event->attr.namespaces; 7085 } 7086 7087 static void perf_event_namespaces_output(struct perf_event *event, 7088 void *data) 7089 { 7090 struct perf_namespaces_event *namespaces_event = data; 7091 struct perf_output_handle handle; 7092 struct perf_sample_data sample; 7093 u16 header_size = namespaces_event->event_id.header.size; 7094 int ret; 7095 7096 if (!perf_event_namespaces_match(event)) 7097 return; 7098 7099 perf_event_header__init_id(&namespaces_event->event_id.header, 7100 &sample, event); 7101 ret = perf_output_begin(&handle, event, 7102 namespaces_event->event_id.header.size); 7103 if (ret) 7104 goto out; 7105 7106 namespaces_event->event_id.pid = perf_event_pid(event, 7107 namespaces_event->task); 7108 namespaces_event->event_id.tid = perf_event_tid(event, 7109 namespaces_event->task); 7110 7111 perf_output_put(&handle, namespaces_event->event_id); 7112 7113 perf_event__output_id_sample(event, &handle, &sample); 7114 7115 perf_output_end(&handle); 7116 out: 7117 namespaces_event->event_id.header.size = header_size; 7118 } 7119 7120 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7121 struct task_struct *task, 7122 const struct proc_ns_operations *ns_ops) 7123 { 7124 struct path ns_path; 7125 struct inode *ns_inode; 7126 void *error; 7127 7128 error = ns_get_path(&ns_path, task, ns_ops); 7129 if (!error) { 7130 ns_inode = ns_path.dentry->d_inode; 7131 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7132 ns_link_info->ino = ns_inode->i_ino; 7133 path_put(&ns_path); 7134 } 7135 } 7136 7137 void perf_event_namespaces(struct task_struct *task) 7138 { 7139 struct perf_namespaces_event namespaces_event; 7140 struct perf_ns_link_info *ns_link_info; 7141 7142 if (!atomic_read(&nr_namespaces_events)) 7143 return; 7144 7145 namespaces_event = (struct perf_namespaces_event){ 7146 .task = task, 7147 .event_id = { 7148 .header = { 7149 .type = PERF_RECORD_NAMESPACES, 7150 .misc = 0, 7151 .size = sizeof(namespaces_event.event_id), 7152 }, 7153 /* .pid */ 7154 /* .tid */ 7155 .nr_namespaces = NR_NAMESPACES, 7156 /* .link_info[NR_NAMESPACES] */ 7157 }, 7158 }; 7159 7160 ns_link_info = namespaces_event.event_id.link_info; 7161 7162 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7163 task, &mntns_operations); 7164 7165 #ifdef CONFIG_USER_NS 7166 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7167 task, &userns_operations); 7168 #endif 7169 #ifdef CONFIG_NET_NS 7170 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7171 task, &netns_operations); 7172 #endif 7173 #ifdef CONFIG_UTS_NS 7174 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7175 task, &utsns_operations); 7176 #endif 7177 #ifdef CONFIG_IPC_NS 7178 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7179 task, &ipcns_operations); 7180 #endif 7181 #ifdef CONFIG_PID_NS 7182 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7183 task, &pidns_operations); 7184 #endif 7185 #ifdef CONFIG_CGROUPS 7186 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7187 task, &cgroupns_operations); 7188 #endif 7189 7190 perf_iterate_sb(perf_event_namespaces_output, 7191 &namespaces_event, 7192 NULL); 7193 } 7194 7195 /* 7196 * mmap tracking 7197 */ 7198 7199 struct perf_mmap_event { 7200 struct vm_area_struct *vma; 7201 7202 const char *file_name; 7203 int file_size; 7204 int maj, min; 7205 u64 ino; 7206 u64 ino_generation; 7207 u32 prot, flags; 7208 7209 struct { 7210 struct perf_event_header header; 7211 7212 u32 pid; 7213 u32 tid; 7214 u64 start; 7215 u64 len; 7216 u64 pgoff; 7217 } event_id; 7218 }; 7219 7220 static int perf_event_mmap_match(struct perf_event *event, 7221 void *data) 7222 { 7223 struct perf_mmap_event *mmap_event = data; 7224 struct vm_area_struct *vma = mmap_event->vma; 7225 int executable = vma->vm_flags & VM_EXEC; 7226 7227 return (!executable && event->attr.mmap_data) || 7228 (executable && (event->attr.mmap || event->attr.mmap2)); 7229 } 7230 7231 static void perf_event_mmap_output(struct perf_event *event, 7232 void *data) 7233 { 7234 struct perf_mmap_event *mmap_event = data; 7235 struct perf_output_handle handle; 7236 struct perf_sample_data sample; 7237 int size = mmap_event->event_id.header.size; 7238 u32 type = mmap_event->event_id.header.type; 7239 int ret; 7240 7241 if (!perf_event_mmap_match(event, data)) 7242 return; 7243 7244 if (event->attr.mmap2) { 7245 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7246 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7247 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7248 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7249 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7250 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7251 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7252 } 7253 7254 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7255 ret = perf_output_begin(&handle, event, 7256 mmap_event->event_id.header.size); 7257 if (ret) 7258 goto out; 7259 7260 mmap_event->event_id.pid = perf_event_pid(event, current); 7261 mmap_event->event_id.tid = perf_event_tid(event, current); 7262 7263 perf_output_put(&handle, mmap_event->event_id); 7264 7265 if (event->attr.mmap2) { 7266 perf_output_put(&handle, mmap_event->maj); 7267 perf_output_put(&handle, mmap_event->min); 7268 perf_output_put(&handle, mmap_event->ino); 7269 perf_output_put(&handle, mmap_event->ino_generation); 7270 perf_output_put(&handle, mmap_event->prot); 7271 perf_output_put(&handle, mmap_event->flags); 7272 } 7273 7274 __output_copy(&handle, mmap_event->file_name, 7275 mmap_event->file_size); 7276 7277 perf_event__output_id_sample(event, &handle, &sample); 7278 7279 perf_output_end(&handle); 7280 out: 7281 mmap_event->event_id.header.size = size; 7282 mmap_event->event_id.header.type = type; 7283 } 7284 7285 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7286 { 7287 struct vm_area_struct *vma = mmap_event->vma; 7288 struct file *file = vma->vm_file; 7289 int maj = 0, min = 0; 7290 u64 ino = 0, gen = 0; 7291 u32 prot = 0, flags = 0; 7292 unsigned int size; 7293 char tmp[16]; 7294 char *buf = NULL; 7295 char *name; 7296 7297 if (vma->vm_flags & VM_READ) 7298 prot |= PROT_READ; 7299 if (vma->vm_flags & VM_WRITE) 7300 prot |= PROT_WRITE; 7301 if (vma->vm_flags & VM_EXEC) 7302 prot |= PROT_EXEC; 7303 7304 if (vma->vm_flags & VM_MAYSHARE) 7305 flags = MAP_SHARED; 7306 else 7307 flags = MAP_PRIVATE; 7308 7309 if (vma->vm_flags & VM_DENYWRITE) 7310 flags |= MAP_DENYWRITE; 7311 if (vma->vm_flags & VM_MAYEXEC) 7312 flags |= MAP_EXECUTABLE; 7313 if (vma->vm_flags & VM_LOCKED) 7314 flags |= MAP_LOCKED; 7315 if (vma->vm_flags & VM_HUGETLB) 7316 flags |= MAP_HUGETLB; 7317 7318 if (file) { 7319 struct inode *inode; 7320 dev_t dev; 7321 7322 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7323 if (!buf) { 7324 name = "//enomem"; 7325 goto cpy_name; 7326 } 7327 /* 7328 * d_path() works from the end of the rb backwards, so we 7329 * need to add enough zero bytes after the string to handle 7330 * the 64bit alignment we do later. 7331 */ 7332 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7333 if (IS_ERR(name)) { 7334 name = "//toolong"; 7335 goto cpy_name; 7336 } 7337 inode = file_inode(vma->vm_file); 7338 dev = inode->i_sb->s_dev; 7339 ino = inode->i_ino; 7340 gen = inode->i_generation; 7341 maj = MAJOR(dev); 7342 min = MINOR(dev); 7343 7344 goto got_name; 7345 } else { 7346 if (vma->vm_ops && vma->vm_ops->name) { 7347 name = (char *) vma->vm_ops->name(vma); 7348 if (name) 7349 goto cpy_name; 7350 } 7351 7352 name = (char *)arch_vma_name(vma); 7353 if (name) 7354 goto cpy_name; 7355 7356 if (vma->vm_start <= vma->vm_mm->start_brk && 7357 vma->vm_end >= vma->vm_mm->brk) { 7358 name = "[heap]"; 7359 goto cpy_name; 7360 } 7361 if (vma->vm_start <= vma->vm_mm->start_stack && 7362 vma->vm_end >= vma->vm_mm->start_stack) { 7363 name = "[stack]"; 7364 goto cpy_name; 7365 } 7366 7367 name = "//anon"; 7368 goto cpy_name; 7369 } 7370 7371 cpy_name: 7372 strlcpy(tmp, name, sizeof(tmp)); 7373 name = tmp; 7374 got_name: 7375 /* 7376 * Since our buffer works in 8 byte units we need to align our string 7377 * size to a multiple of 8. However, we must guarantee the tail end is 7378 * zero'd out to avoid leaking random bits to userspace. 7379 */ 7380 size = strlen(name)+1; 7381 while (!IS_ALIGNED(size, sizeof(u64))) 7382 name[size++] = '\0'; 7383 7384 mmap_event->file_name = name; 7385 mmap_event->file_size = size; 7386 mmap_event->maj = maj; 7387 mmap_event->min = min; 7388 mmap_event->ino = ino; 7389 mmap_event->ino_generation = gen; 7390 mmap_event->prot = prot; 7391 mmap_event->flags = flags; 7392 7393 if (!(vma->vm_flags & VM_EXEC)) 7394 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7395 7396 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7397 7398 perf_iterate_sb(perf_event_mmap_output, 7399 mmap_event, 7400 NULL); 7401 7402 kfree(buf); 7403 } 7404 7405 /* 7406 * Check whether inode and address range match filter criteria. 7407 */ 7408 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7409 struct file *file, unsigned long offset, 7410 unsigned long size) 7411 { 7412 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7413 if (!filter->path.dentry) 7414 return false; 7415 7416 if (d_inode(filter->path.dentry) != file_inode(file)) 7417 return false; 7418 7419 if (filter->offset > offset + size) 7420 return false; 7421 7422 if (filter->offset + filter->size < offset) 7423 return false; 7424 7425 return true; 7426 } 7427 7428 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7429 struct vm_area_struct *vma, 7430 struct perf_addr_filter_range *fr) 7431 { 7432 unsigned long vma_size = vma->vm_end - vma->vm_start; 7433 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7434 struct file *file = vma->vm_file; 7435 7436 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7437 return false; 7438 7439 if (filter->offset < off) { 7440 fr->start = vma->vm_start; 7441 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7442 } else { 7443 fr->start = vma->vm_start + filter->offset - off; 7444 fr->size = min(vma->vm_end - fr->start, filter->size); 7445 } 7446 7447 return true; 7448 } 7449 7450 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7451 { 7452 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7453 struct vm_area_struct *vma = data; 7454 struct perf_addr_filter *filter; 7455 unsigned int restart = 0, count = 0; 7456 unsigned long flags; 7457 7458 if (!has_addr_filter(event)) 7459 return; 7460 7461 if (!vma->vm_file) 7462 return; 7463 7464 raw_spin_lock_irqsave(&ifh->lock, flags); 7465 list_for_each_entry(filter, &ifh->list, entry) { 7466 if (perf_addr_filter_vma_adjust(filter, vma, 7467 &event->addr_filter_ranges[count])) 7468 restart++; 7469 7470 count++; 7471 } 7472 7473 if (restart) 7474 event->addr_filters_gen++; 7475 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7476 7477 if (restart) 7478 perf_event_stop(event, 1); 7479 } 7480 7481 /* 7482 * Adjust all task's events' filters to the new vma 7483 */ 7484 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7485 { 7486 struct perf_event_context *ctx; 7487 int ctxn; 7488 7489 /* 7490 * Data tracing isn't supported yet and as such there is no need 7491 * to keep track of anything that isn't related to executable code: 7492 */ 7493 if (!(vma->vm_flags & VM_EXEC)) 7494 return; 7495 7496 rcu_read_lock(); 7497 for_each_task_context_nr(ctxn) { 7498 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7499 if (!ctx) 7500 continue; 7501 7502 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7503 } 7504 rcu_read_unlock(); 7505 } 7506 7507 void perf_event_mmap(struct vm_area_struct *vma) 7508 { 7509 struct perf_mmap_event mmap_event; 7510 7511 if (!atomic_read(&nr_mmap_events)) 7512 return; 7513 7514 mmap_event = (struct perf_mmap_event){ 7515 .vma = vma, 7516 /* .file_name */ 7517 /* .file_size */ 7518 .event_id = { 7519 .header = { 7520 .type = PERF_RECORD_MMAP, 7521 .misc = PERF_RECORD_MISC_USER, 7522 /* .size */ 7523 }, 7524 /* .pid */ 7525 /* .tid */ 7526 .start = vma->vm_start, 7527 .len = vma->vm_end - vma->vm_start, 7528 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7529 }, 7530 /* .maj (attr_mmap2 only) */ 7531 /* .min (attr_mmap2 only) */ 7532 /* .ino (attr_mmap2 only) */ 7533 /* .ino_generation (attr_mmap2 only) */ 7534 /* .prot (attr_mmap2 only) */ 7535 /* .flags (attr_mmap2 only) */ 7536 }; 7537 7538 perf_addr_filters_adjust(vma); 7539 perf_event_mmap_event(&mmap_event); 7540 } 7541 7542 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7543 unsigned long size, u64 flags) 7544 { 7545 struct perf_output_handle handle; 7546 struct perf_sample_data sample; 7547 struct perf_aux_event { 7548 struct perf_event_header header; 7549 u64 offset; 7550 u64 size; 7551 u64 flags; 7552 } rec = { 7553 .header = { 7554 .type = PERF_RECORD_AUX, 7555 .misc = 0, 7556 .size = sizeof(rec), 7557 }, 7558 .offset = head, 7559 .size = size, 7560 .flags = flags, 7561 }; 7562 int ret; 7563 7564 perf_event_header__init_id(&rec.header, &sample, event); 7565 ret = perf_output_begin(&handle, event, rec.header.size); 7566 7567 if (ret) 7568 return; 7569 7570 perf_output_put(&handle, rec); 7571 perf_event__output_id_sample(event, &handle, &sample); 7572 7573 perf_output_end(&handle); 7574 } 7575 7576 /* 7577 * Lost/dropped samples logging 7578 */ 7579 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7580 { 7581 struct perf_output_handle handle; 7582 struct perf_sample_data sample; 7583 int ret; 7584 7585 struct { 7586 struct perf_event_header header; 7587 u64 lost; 7588 } lost_samples_event = { 7589 .header = { 7590 .type = PERF_RECORD_LOST_SAMPLES, 7591 .misc = 0, 7592 .size = sizeof(lost_samples_event), 7593 }, 7594 .lost = lost, 7595 }; 7596 7597 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7598 7599 ret = perf_output_begin(&handle, event, 7600 lost_samples_event.header.size); 7601 if (ret) 7602 return; 7603 7604 perf_output_put(&handle, lost_samples_event); 7605 perf_event__output_id_sample(event, &handle, &sample); 7606 perf_output_end(&handle); 7607 } 7608 7609 /* 7610 * context_switch tracking 7611 */ 7612 7613 struct perf_switch_event { 7614 struct task_struct *task; 7615 struct task_struct *next_prev; 7616 7617 struct { 7618 struct perf_event_header header; 7619 u32 next_prev_pid; 7620 u32 next_prev_tid; 7621 } event_id; 7622 }; 7623 7624 static int perf_event_switch_match(struct perf_event *event) 7625 { 7626 return event->attr.context_switch; 7627 } 7628 7629 static void perf_event_switch_output(struct perf_event *event, void *data) 7630 { 7631 struct perf_switch_event *se = data; 7632 struct perf_output_handle handle; 7633 struct perf_sample_data sample; 7634 int ret; 7635 7636 if (!perf_event_switch_match(event)) 7637 return; 7638 7639 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7640 if (event->ctx->task) { 7641 se->event_id.header.type = PERF_RECORD_SWITCH; 7642 se->event_id.header.size = sizeof(se->event_id.header); 7643 } else { 7644 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7645 se->event_id.header.size = sizeof(se->event_id); 7646 se->event_id.next_prev_pid = 7647 perf_event_pid(event, se->next_prev); 7648 se->event_id.next_prev_tid = 7649 perf_event_tid(event, se->next_prev); 7650 } 7651 7652 perf_event_header__init_id(&se->event_id.header, &sample, event); 7653 7654 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7655 if (ret) 7656 return; 7657 7658 if (event->ctx->task) 7659 perf_output_put(&handle, se->event_id.header); 7660 else 7661 perf_output_put(&handle, se->event_id); 7662 7663 perf_event__output_id_sample(event, &handle, &sample); 7664 7665 perf_output_end(&handle); 7666 } 7667 7668 static void perf_event_switch(struct task_struct *task, 7669 struct task_struct *next_prev, bool sched_in) 7670 { 7671 struct perf_switch_event switch_event; 7672 7673 /* N.B. caller checks nr_switch_events != 0 */ 7674 7675 switch_event = (struct perf_switch_event){ 7676 .task = task, 7677 .next_prev = next_prev, 7678 .event_id = { 7679 .header = { 7680 /* .type */ 7681 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7682 /* .size */ 7683 }, 7684 /* .next_prev_pid */ 7685 /* .next_prev_tid */ 7686 }, 7687 }; 7688 7689 if (!sched_in && task->state == TASK_RUNNING) 7690 switch_event.event_id.header.misc |= 7691 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7692 7693 perf_iterate_sb(perf_event_switch_output, 7694 &switch_event, 7695 NULL); 7696 } 7697 7698 /* 7699 * IRQ throttle logging 7700 */ 7701 7702 static void perf_log_throttle(struct perf_event *event, int enable) 7703 { 7704 struct perf_output_handle handle; 7705 struct perf_sample_data sample; 7706 int ret; 7707 7708 struct { 7709 struct perf_event_header header; 7710 u64 time; 7711 u64 id; 7712 u64 stream_id; 7713 } throttle_event = { 7714 .header = { 7715 .type = PERF_RECORD_THROTTLE, 7716 .misc = 0, 7717 .size = sizeof(throttle_event), 7718 }, 7719 .time = perf_event_clock(event), 7720 .id = primary_event_id(event), 7721 .stream_id = event->id, 7722 }; 7723 7724 if (enable) 7725 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7726 7727 perf_event_header__init_id(&throttle_event.header, &sample, event); 7728 7729 ret = perf_output_begin(&handle, event, 7730 throttle_event.header.size); 7731 if (ret) 7732 return; 7733 7734 perf_output_put(&handle, throttle_event); 7735 perf_event__output_id_sample(event, &handle, &sample); 7736 perf_output_end(&handle); 7737 } 7738 7739 /* 7740 * ksymbol register/unregister tracking 7741 */ 7742 7743 struct perf_ksymbol_event { 7744 const char *name; 7745 int name_len; 7746 struct { 7747 struct perf_event_header header; 7748 u64 addr; 7749 u32 len; 7750 u16 ksym_type; 7751 u16 flags; 7752 } event_id; 7753 }; 7754 7755 static int perf_event_ksymbol_match(struct perf_event *event) 7756 { 7757 return event->attr.ksymbol; 7758 } 7759 7760 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7761 { 7762 struct perf_ksymbol_event *ksymbol_event = data; 7763 struct perf_output_handle handle; 7764 struct perf_sample_data sample; 7765 int ret; 7766 7767 if (!perf_event_ksymbol_match(event)) 7768 return; 7769 7770 perf_event_header__init_id(&ksymbol_event->event_id.header, 7771 &sample, event); 7772 ret = perf_output_begin(&handle, event, 7773 ksymbol_event->event_id.header.size); 7774 if (ret) 7775 return; 7776 7777 perf_output_put(&handle, ksymbol_event->event_id); 7778 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7779 perf_event__output_id_sample(event, &handle, &sample); 7780 7781 perf_output_end(&handle); 7782 } 7783 7784 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7785 const char *sym) 7786 { 7787 struct perf_ksymbol_event ksymbol_event; 7788 char name[KSYM_NAME_LEN]; 7789 u16 flags = 0; 7790 int name_len; 7791 7792 if (!atomic_read(&nr_ksymbol_events)) 7793 return; 7794 7795 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7796 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7797 goto err; 7798 7799 strlcpy(name, sym, KSYM_NAME_LEN); 7800 name_len = strlen(name) + 1; 7801 while (!IS_ALIGNED(name_len, sizeof(u64))) 7802 name[name_len++] = '\0'; 7803 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7804 7805 if (unregister) 7806 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7807 7808 ksymbol_event = (struct perf_ksymbol_event){ 7809 .name = name, 7810 .name_len = name_len, 7811 .event_id = { 7812 .header = { 7813 .type = PERF_RECORD_KSYMBOL, 7814 .size = sizeof(ksymbol_event.event_id) + 7815 name_len, 7816 }, 7817 .addr = addr, 7818 .len = len, 7819 .ksym_type = ksym_type, 7820 .flags = flags, 7821 }, 7822 }; 7823 7824 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7825 return; 7826 err: 7827 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7828 } 7829 7830 /* 7831 * bpf program load/unload tracking 7832 */ 7833 7834 struct perf_bpf_event { 7835 struct bpf_prog *prog; 7836 struct { 7837 struct perf_event_header header; 7838 u16 type; 7839 u16 flags; 7840 u32 id; 7841 u8 tag[BPF_TAG_SIZE]; 7842 } event_id; 7843 }; 7844 7845 static int perf_event_bpf_match(struct perf_event *event) 7846 { 7847 return event->attr.bpf_event; 7848 } 7849 7850 static void perf_event_bpf_output(struct perf_event *event, void *data) 7851 { 7852 struct perf_bpf_event *bpf_event = data; 7853 struct perf_output_handle handle; 7854 struct perf_sample_data sample; 7855 int ret; 7856 7857 if (!perf_event_bpf_match(event)) 7858 return; 7859 7860 perf_event_header__init_id(&bpf_event->event_id.header, 7861 &sample, event); 7862 ret = perf_output_begin(&handle, event, 7863 bpf_event->event_id.header.size); 7864 if (ret) 7865 return; 7866 7867 perf_output_put(&handle, bpf_event->event_id); 7868 perf_event__output_id_sample(event, &handle, &sample); 7869 7870 perf_output_end(&handle); 7871 } 7872 7873 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7874 enum perf_bpf_event_type type) 7875 { 7876 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7877 char sym[KSYM_NAME_LEN]; 7878 int i; 7879 7880 if (prog->aux->func_cnt == 0) { 7881 bpf_get_prog_name(prog, sym); 7882 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7883 (u64)(unsigned long)prog->bpf_func, 7884 prog->jited_len, unregister, sym); 7885 } else { 7886 for (i = 0; i < prog->aux->func_cnt; i++) { 7887 struct bpf_prog *subprog = prog->aux->func[i]; 7888 7889 bpf_get_prog_name(subprog, sym); 7890 perf_event_ksymbol( 7891 PERF_RECORD_KSYMBOL_TYPE_BPF, 7892 (u64)(unsigned long)subprog->bpf_func, 7893 subprog->jited_len, unregister, sym); 7894 } 7895 } 7896 } 7897 7898 void perf_event_bpf_event(struct bpf_prog *prog, 7899 enum perf_bpf_event_type type, 7900 u16 flags) 7901 { 7902 struct perf_bpf_event bpf_event; 7903 7904 if (type <= PERF_BPF_EVENT_UNKNOWN || 7905 type >= PERF_BPF_EVENT_MAX) 7906 return; 7907 7908 switch (type) { 7909 case PERF_BPF_EVENT_PROG_LOAD: 7910 case PERF_BPF_EVENT_PROG_UNLOAD: 7911 if (atomic_read(&nr_ksymbol_events)) 7912 perf_event_bpf_emit_ksymbols(prog, type); 7913 break; 7914 default: 7915 break; 7916 } 7917 7918 if (!atomic_read(&nr_bpf_events)) 7919 return; 7920 7921 bpf_event = (struct perf_bpf_event){ 7922 .prog = prog, 7923 .event_id = { 7924 .header = { 7925 .type = PERF_RECORD_BPF_EVENT, 7926 .size = sizeof(bpf_event.event_id), 7927 }, 7928 .type = type, 7929 .flags = flags, 7930 .id = prog->aux->id, 7931 }, 7932 }; 7933 7934 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7935 7936 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7937 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7938 } 7939 7940 void perf_event_itrace_started(struct perf_event *event) 7941 { 7942 event->attach_state |= PERF_ATTACH_ITRACE; 7943 } 7944 7945 static void perf_log_itrace_start(struct perf_event *event) 7946 { 7947 struct perf_output_handle handle; 7948 struct perf_sample_data sample; 7949 struct perf_aux_event { 7950 struct perf_event_header header; 7951 u32 pid; 7952 u32 tid; 7953 } rec; 7954 int ret; 7955 7956 if (event->parent) 7957 event = event->parent; 7958 7959 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7960 event->attach_state & PERF_ATTACH_ITRACE) 7961 return; 7962 7963 rec.header.type = PERF_RECORD_ITRACE_START; 7964 rec.header.misc = 0; 7965 rec.header.size = sizeof(rec); 7966 rec.pid = perf_event_pid(event, current); 7967 rec.tid = perf_event_tid(event, current); 7968 7969 perf_event_header__init_id(&rec.header, &sample, event); 7970 ret = perf_output_begin(&handle, event, rec.header.size); 7971 7972 if (ret) 7973 return; 7974 7975 perf_output_put(&handle, rec); 7976 perf_event__output_id_sample(event, &handle, &sample); 7977 7978 perf_output_end(&handle); 7979 } 7980 7981 static int 7982 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7983 { 7984 struct hw_perf_event *hwc = &event->hw; 7985 int ret = 0; 7986 u64 seq; 7987 7988 seq = __this_cpu_read(perf_throttled_seq); 7989 if (seq != hwc->interrupts_seq) { 7990 hwc->interrupts_seq = seq; 7991 hwc->interrupts = 1; 7992 } else { 7993 hwc->interrupts++; 7994 if (unlikely(throttle 7995 && hwc->interrupts >= max_samples_per_tick)) { 7996 __this_cpu_inc(perf_throttled_count); 7997 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7998 hwc->interrupts = MAX_INTERRUPTS; 7999 perf_log_throttle(event, 0); 8000 ret = 1; 8001 } 8002 } 8003 8004 if (event->attr.freq) { 8005 u64 now = perf_clock(); 8006 s64 delta = now - hwc->freq_time_stamp; 8007 8008 hwc->freq_time_stamp = now; 8009 8010 if (delta > 0 && delta < 2*TICK_NSEC) 8011 perf_adjust_period(event, delta, hwc->last_period, true); 8012 } 8013 8014 return ret; 8015 } 8016 8017 int perf_event_account_interrupt(struct perf_event *event) 8018 { 8019 return __perf_event_account_interrupt(event, 1); 8020 } 8021 8022 /* 8023 * Generic event overflow handling, sampling. 8024 */ 8025 8026 static int __perf_event_overflow(struct perf_event *event, 8027 int throttle, struct perf_sample_data *data, 8028 struct pt_regs *regs) 8029 { 8030 int events = atomic_read(&event->event_limit); 8031 int ret = 0; 8032 8033 /* 8034 * Non-sampling counters might still use the PMI to fold short 8035 * hardware counters, ignore those. 8036 */ 8037 if (unlikely(!is_sampling_event(event))) 8038 return 0; 8039 8040 ret = __perf_event_account_interrupt(event, throttle); 8041 8042 /* 8043 * XXX event_limit might not quite work as expected on inherited 8044 * events 8045 */ 8046 8047 event->pending_kill = POLL_IN; 8048 if (events && atomic_dec_and_test(&event->event_limit)) { 8049 ret = 1; 8050 event->pending_kill = POLL_HUP; 8051 8052 perf_event_disable_inatomic(event); 8053 } 8054 8055 READ_ONCE(event->overflow_handler)(event, data, regs); 8056 8057 if (*perf_event_fasync(event) && event->pending_kill) { 8058 event->pending_wakeup = 1; 8059 irq_work_queue(&event->pending); 8060 } 8061 8062 return ret; 8063 } 8064 8065 int perf_event_overflow(struct perf_event *event, 8066 struct perf_sample_data *data, 8067 struct pt_regs *regs) 8068 { 8069 return __perf_event_overflow(event, 1, data, regs); 8070 } 8071 8072 /* 8073 * Generic software event infrastructure 8074 */ 8075 8076 struct swevent_htable { 8077 struct swevent_hlist *swevent_hlist; 8078 struct mutex hlist_mutex; 8079 int hlist_refcount; 8080 8081 /* Recursion avoidance in each contexts */ 8082 int recursion[PERF_NR_CONTEXTS]; 8083 }; 8084 8085 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8086 8087 /* 8088 * We directly increment event->count and keep a second value in 8089 * event->hw.period_left to count intervals. This period event 8090 * is kept in the range [-sample_period, 0] so that we can use the 8091 * sign as trigger. 8092 */ 8093 8094 u64 perf_swevent_set_period(struct perf_event *event) 8095 { 8096 struct hw_perf_event *hwc = &event->hw; 8097 u64 period = hwc->last_period; 8098 u64 nr, offset; 8099 s64 old, val; 8100 8101 hwc->last_period = hwc->sample_period; 8102 8103 again: 8104 old = val = local64_read(&hwc->period_left); 8105 if (val < 0) 8106 return 0; 8107 8108 nr = div64_u64(period + val, period); 8109 offset = nr * period; 8110 val -= offset; 8111 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8112 goto again; 8113 8114 return nr; 8115 } 8116 8117 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8118 struct perf_sample_data *data, 8119 struct pt_regs *regs) 8120 { 8121 struct hw_perf_event *hwc = &event->hw; 8122 int throttle = 0; 8123 8124 if (!overflow) 8125 overflow = perf_swevent_set_period(event); 8126 8127 if (hwc->interrupts == MAX_INTERRUPTS) 8128 return; 8129 8130 for (; overflow; overflow--) { 8131 if (__perf_event_overflow(event, throttle, 8132 data, regs)) { 8133 /* 8134 * We inhibit the overflow from happening when 8135 * hwc->interrupts == MAX_INTERRUPTS. 8136 */ 8137 break; 8138 } 8139 throttle = 1; 8140 } 8141 } 8142 8143 static void perf_swevent_event(struct perf_event *event, u64 nr, 8144 struct perf_sample_data *data, 8145 struct pt_regs *regs) 8146 { 8147 struct hw_perf_event *hwc = &event->hw; 8148 8149 local64_add(nr, &event->count); 8150 8151 if (!regs) 8152 return; 8153 8154 if (!is_sampling_event(event)) 8155 return; 8156 8157 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8158 data->period = nr; 8159 return perf_swevent_overflow(event, 1, data, regs); 8160 } else 8161 data->period = event->hw.last_period; 8162 8163 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8164 return perf_swevent_overflow(event, 1, data, regs); 8165 8166 if (local64_add_negative(nr, &hwc->period_left)) 8167 return; 8168 8169 perf_swevent_overflow(event, 0, data, regs); 8170 } 8171 8172 static int perf_exclude_event(struct perf_event *event, 8173 struct pt_regs *regs) 8174 { 8175 if (event->hw.state & PERF_HES_STOPPED) 8176 return 1; 8177 8178 if (regs) { 8179 if (event->attr.exclude_user && user_mode(regs)) 8180 return 1; 8181 8182 if (event->attr.exclude_kernel && !user_mode(regs)) 8183 return 1; 8184 } 8185 8186 return 0; 8187 } 8188 8189 static int perf_swevent_match(struct perf_event *event, 8190 enum perf_type_id type, 8191 u32 event_id, 8192 struct perf_sample_data *data, 8193 struct pt_regs *regs) 8194 { 8195 if (event->attr.type != type) 8196 return 0; 8197 8198 if (event->attr.config != event_id) 8199 return 0; 8200 8201 if (perf_exclude_event(event, regs)) 8202 return 0; 8203 8204 return 1; 8205 } 8206 8207 static inline u64 swevent_hash(u64 type, u32 event_id) 8208 { 8209 u64 val = event_id | (type << 32); 8210 8211 return hash_64(val, SWEVENT_HLIST_BITS); 8212 } 8213 8214 static inline struct hlist_head * 8215 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8216 { 8217 u64 hash = swevent_hash(type, event_id); 8218 8219 return &hlist->heads[hash]; 8220 } 8221 8222 /* For the read side: events when they trigger */ 8223 static inline struct hlist_head * 8224 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8225 { 8226 struct swevent_hlist *hlist; 8227 8228 hlist = rcu_dereference(swhash->swevent_hlist); 8229 if (!hlist) 8230 return NULL; 8231 8232 return __find_swevent_head(hlist, type, event_id); 8233 } 8234 8235 /* For the event head insertion and removal in the hlist */ 8236 static inline struct hlist_head * 8237 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8238 { 8239 struct swevent_hlist *hlist; 8240 u32 event_id = event->attr.config; 8241 u64 type = event->attr.type; 8242 8243 /* 8244 * Event scheduling is always serialized against hlist allocation 8245 * and release. Which makes the protected version suitable here. 8246 * The context lock guarantees that. 8247 */ 8248 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8249 lockdep_is_held(&event->ctx->lock)); 8250 if (!hlist) 8251 return NULL; 8252 8253 return __find_swevent_head(hlist, type, event_id); 8254 } 8255 8256 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8257 u64 nr, 8258 struct perf_sample_data *data, 8259 struct pt_regs *regs) 8260 { 8261 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8262 struct perf_event *event; 8263 struct hlist_head *head; 8264 8265 rcu_read_lock(); 8266 head = find_swevent_head_rcu(swhash, type, event_id); 8267 if (!head) 8268 goto end; 8269 8270 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8271 if (perf_swevent_match(event, type, event_id, data, regs)) 8272 perf_swevent_event(event, nr, data, regs); 8273 } 8274 end: 8275 rcu_read_unlock(); 8276 } 8277 8278 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8279 8280 int perf_swevent_get_recursion_context(void) 8281 { 8282 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8283 8284 return get_recursion_context(swhash->recursion); 8285 } 8286 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8287 8288 void perf_swevent_put_recursion_context(int rctx) 8289 { 8290 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8291 8292 put_recursion_context(swhash->recursion, rctx); 8293 } 8294 8295 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8296 { 8297 struct perf_sample_data data; 8298 8299 if (WARN_ON_ONCE(!regs)) 8300 return; 8301 8302 perf_sample_data_init(&data, addr, 0); 8303 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8304 } 8305 8306 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8307 { 8308 int rctx; 8309 8310 preempt_disable_notrace(); 8311 rctx = perf_swevent_get_recursion_context(); 8312 if (unlikely(rctx < 0)) 8313 goto fail; 8314 8315 ___perf_sw_event(event_id, nr, regs, addr); 8316 8317 perf_swevent_put_recursion_context(rctx); 8318 fail: 8319 preempt_enable_notrace(); 8320 } 8321 8322 static void perf_swevent_read(struct perf_event *event) 8323 { 8324 } 8325 8326 static int perf_swevent_add(struct perf_event *event, int flags) 8327 { 8328 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8329 struct hw_perf_event *hwc = &event->hw; 8330 struct hlist_head *head; 8331 8332 if (is_sampling_event(event)) { 8333 hwc->last_period = hwc->sample_period; 8334 perf_swevent_set_period(event); 8335 } 8336 8337 hwc->state = !(flags & PERF_EF_START); 8338 8339 head = find_swevent_head(swhash, event); 8340 if (WARN_ON_ONCE(!head)) 8341 return -EINVAL; 8342 8343 hlist_add_head_rcu(&event->hlist_entry, head); 8344 perf_event_update_userpage(event); 8345 8346 return 0; 8347 } 8348 8349 static void perf_swevent_del(struct perf_event *event, int flags) 8350 { 8351 hlist_del_rcu(&event->hlist_entry); 8352 } 8353 8354 static void perf_swevent_start(struct perf_event *event, int flags) 8355 { 8356 event->hw.state = 0; 8357 } 8358 8359 static void perf_swevent_stop(struct perf_event *event, int flags) 8360 { 8361 event->hw.state = PERF_HES_STOPPED; 8362 } 8363 8364 /* Deref the hlist from the update side */ 8365 static inline struct swevent_hlist * 8366 swevent_hlist_deref(struct swevent_htable *swhash) 8367 { 8368 return rcu_dereference_protected(swhash->swevent_hlist, 8369 lockdep_is_held(&swhash->hlist_mutex)); 8370 } 8371 8372 static void swevent_hlist_release(struct swevent_htable *swhash) 8373 { 8374 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8375 8376 if (!hlist) 8377 return; 8378 8379 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8380 kfree_rcu(hlist, rcu_head); 8381 } 8382 8383 static void swevent_hlist_put_cpu(int cpu) 8384 { 8385 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8386 8387 mutex_lock(&swhash->hlist_mutex); 8388 8389 if (!--swhash->hlist_refcount) 8390 swevent_hlist_release(swhash); 8391 8392 mutex_unlock(&swhash->hlist_mutex); 8393 } 8394 8395 static void swevent_hlist_put(void) 8396 { 8397 int cpu; 8398 8399 for_each_possible_cpu(cpu) 8400 swevent_hlist_put_cpu(cpu); 8401 } 8402 8403 static int swevent_hlist_get_cpu(int cpu) 8404 { 8405 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8406 int err = 0; 8407 8408 mutex_lock(&swhash->hlist_mutex); 8409 if (!swevent_hlist_deref(swhash) && 8410 cpumask_test_cpu(cpu, perf_online_mask)) { 8411 struct swevent_hlist *hlist; 8412 8413 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8414 if (!hlist) { 8415 err = -ENOMEM; 8416 goto exit; 8417 } 8418 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8419 } 8420 swhash->hlist_refcount++; 8421 exit: 8422 mutex_unlock(&swhash->hlist_mutex); 8423 8424 return err; 8425 } 8426 8427 static int swevent_hlist_get(void) 8428 { 8429 int err, cpu, failed_cpu; 8430 8431 mutex_lock(&pmus_lock); 8432 for_each_possible_cpu(cpu) { 8433 err = swevent_hlist_get_cpu(cpu); 8434 if (err) { 8435 failed_cpu = cpu; 8436 goto fail; 8437 } 8438 } 8439 mutex_unlock(&pmus_lock); 8440 return 0; 8441 fail: 8442 for_each_possible_cpu(cpu) { 8443 if (cpu == failed_cpu) 8444 break; 8445 swevent_hlist_put_cpu(cpu); 8446 } 8447 mutex_unlock(&pmus_lock); 8448 return err; 8449 } 8450 8451 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8452 8453 static void sw_perf_event_destroy(struct perf_event *event) 8454 { 8455 u64 event_id = event->attr.config; 8456 8457 WARN_ON(event->parent); 8458 8459 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8460 swevent_hlist_put(); 8461 } 8462 8463 static int perf_swevent_init(struct perf_event *event) 8464 { 8465 u64 event_id = event->attr.config; 8466 8467 if (event->attr.type != PERF_TYPE_SOFTWARE) 8468 return -ENOENT; 8469 8470 /* 8471 * no branch sampling for software events 8472 */ 8473 if (has_branch_stack(event)) 8474 return -EOPNOTSUPP; 8475 8476 switch (event_id) { 8477 case PERF_COUNT_SW_CPU_CLOCK: 8478 case PERF_COUNT_SW_TASK_CLOCK: 8479 return -ENOENT; 8480 8481 default: 8482 break; 8483 } 8484 8485 if (event_id >= PERF_COUNT_SW_MAX) 8486 return -ENOENT; 8487 8488 if (!event->parent) { 8489 int err; 8490 8491 err = swevent_hlist_get(); 8492 if (err) 8493 return err; 8494 8495 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8496 event->destroy = sw_perf_event_destroy; 8497 } 8498 8499 return 0; 8500 } 8501 8502 static struct pmu perf_swevent = { 8503 .task_ctx_nr = perf_sw_context, 8504 8505 .capabilities = PERF_PMU_CAP_NO_NMI, 8506 8507 .event_init = perf_swevent_init, 8508 .add = perf_swevent_add, 8509 .del = perf_swevent_del, 8510 .start = perf_swevent_start, 8511 .stop = perf_swevent_stop, 8512 .read = perf_swevent_read, 8513 }; 8514 8515 #ifdef CONFIG_EVENT_TRACING 8516 8517 static int perf_tp_filter_match(struct perf_event *event, 8518 struct perf_sample_data *data) 8519 { 8520 void *record = data->raw->frag.data; 8521 8522 /* only top level events have filters set */ 8523 if (event->parent) 8524 event = event->parent; 8525 8526 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8527 return 1; 8528 return 0; 8529 } 8530 8531 static int perf_tp_event_match(struct perf_event *event, 8532 struct perf_sample_data *data, 8533 struct pt_regs *regs) 8534 { 8535 if (event->hw.state & PERF_HES_STOPPED) 8536 return 0; 8537 /* 8538 * All tracepoints are from kernel-space. 8539 */ 8540 if (event->attr.exclude_kernel) 8541 return 0; 8542 8543 if (!perf_tp_filter_match(event, data)) 8544 return 0; 8545 8546 return 1; 8547 } 8548 8549 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8550 struct trace_event_call *call, u64 count, 8551 struct pt_regs *regs, struct hlist_head *head, 8552 struct task_struct *task) 8553 { 8554 if (bpf_prog_array_valid(call)) { 8555 *(struct pt_regs **)raw_data = regs; 8556 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8557 perf_swevent_put_recursion_context(rctx); 8558 return; 8559 } 8560 } 8561 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8562 rctx, task); 8563 } 8564 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8565 8566 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8567 struct pt_regs *regs, struct hlist_head *head, int rctx, 8568 struct task_struct *task) 8569 { 8570 struct perf_sample_data data; 8571 struct perf_event *event; 8572 8573 struct perf_raw_record raw = { 8574 .frag = { 8575 .size = entry_size, 8576 .data = record, 8577 }, 8578 }; 8579 8580 perf_sample_data_init(&data, 0, 0); 8581 data.raw = &raw; 8582 8583 perf_trace_buf_update(record, event_type); 8584 8585 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8586 if (perf_tp_event_match(event, &data, regs)) 8587 perf_swevent_event(event, count, &data, regs); 8588 } 8589 8590 /* 8591 * If we got specified a target task, also iterate its context and 8592 * deliver this event there too. 8593 */ 8594 if (task && task != current) { 8595 struct perf_event_context *ctx; 8596 struct trace_entry *entry = record; 8597 8598 rcu_read_lock(); 8599 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8600 if (!ctx) 8601 goto unlock; 8602 8603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8604 if (event->cpu != smp_processor_id()) 8605 continue; 8606 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8607 continue; 8608 if (event->attr.config != entry->type) 8609 continue; 8610 if (perf_tp_event_match(event, &data, regs)) 8611 perf_swevent_event(event, count, &data, regs); 8612 } 8613 unlock: 8614 rcu_read_unlock(); 8615 } 8616 8617 perf_swevent_put_recursion_context(rctx); 8618 } 8619 EXPORT_SYMBOL_GPL(perf_tp_event); 8620 8621 static void tp_perf_event_destroy(struct perf_event *event) 8622 { 8623 perf_trace_destroy(event); 8624 } 8625 8626 static int perf_tp_event_init(struct perf_event *event) 8627 { 8628 int err; 8629 8630 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8631 return -ENOENT; 8632 8633 /* 8634 * no branch sampling for tracepoint events 8635 */ 8636 if (has_branch_stack(event)) 8637 return -EOPNOTSUPP; 8638 8639 err = perf_trace_init(event); 8640 if (err) 8641 return err; 8642 8643 event->destroy = tp_perf_event_destroy; 8644 8645 return 0; 8646 } 8647 8648 static struct pmu perf_tracepoint = { 8649 .task_ctx_nr = perf_sw_context, 8650 8651 .event_init = perf_tp_event_init, 8652 .add = perf_trace_add, 8653 .del = perf_trace_del, 8654 .start = perf_swevent_start, 8655 .stop = perf_swevent_stop, 8656 .read = perf_swevent_read, 8657 }; 8658 8659 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8660 /* 8661 * Flags in config, used by dynamic PMU kprobe and uprobe 8662 * The flags should match following PMU_FORMAT_ATTR(). 8663 * 8664 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8665 * if not set, create kprobe/uprobe 8666 * 8667 * The following values specify a reference counter (or semaphore in the 8668 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8669 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8670 * 8671 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8672 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8673 */ 8674 enum perf_probe_config { 8675 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8676 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8677 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8678 }; 8679 8680 PMU_FORMAT_ATTR(retprobe, "config:0"); 8681 #endif 8682 8683 #ifdef CONFIG_KPROBE_EVENTS 8684 static struct attribute *kprobe_attrs[] = { 8685 &format_attr_retprobe.attr, 8686 NULL, 8687 }; 8688 8689 static struct attribute_group kprobe_format_group = { 8690 .name = "format", 8691 .attrs = kprobe_attrs, 8692 }; 8693 8694 static const struct attribute_group *kprobe_attr_groups[] = { 8695 &kprobe_format_group, 8696 NULL, 8697 }; 8698 8699 static int perf_kprobe_event_init(struct perf_event *event); 8700 static struct pmu perf_kprobe = { 8701 .task_ctx_nr = perf_sw_context, 8702 .event_init = perf_kprobe_event_init, 8703 .add = perf_trace_add, 8704 .del = perf_trace_del, 8705 .start = perf_swevent_start, 8706 .stop = perf_swevent_stop, 8707 .read = perf_swevent_read, 8708 .attr_groups = kprobe_attr_groups, 8709 }; 8710 8711 static int perf_kprobe_event_init(struct perf_event *event) 8712 { 8713 int err; 8714 bool is_retprobe; 8715 8716 if (event->attr.type != perf_kprobe.type) 8717 return -ENOENT; 8718 8719 if (!capable(CAP_SYS_ADMIN)) 8720 return -EACCES; 8721 8722 /* 8723 * no branch sampling for probe events 8724 */ 8725 if (has_branch_stack(event)) 8726 return -EOPNOTSUPP; 8727 8728 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8729 err = perf_kprobe_init(event, is_retprobe); 8730 if (err) 8731 return err; 8732 8733 event->destroy = perf_kprobe_destroy; 8734 8735 return 0; 8736 } 8737 #endif /* CONFIG_KPROBE_EVENTS */ 8738 8739 #ifdef CONFIG_UPROBE_EVENTS 8740 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8741 8742 static struct attribute *uprobe_attrs[] = { 8743 &format_attr_retprobe.attr, 8744 &format_attr_ref_ctr_offset.attr, 8745 NULL, 8746 }; 8747 8748 static struct attribute_group uprobe_format_group = { 8749 .name = "format", 8750 .attrs = uprobe_attrs, 8751 }; 8752 8753 static const struct attribute_group *uprobe_attr_groups[] = { 8754 &uprobe_format_group, 8755 NULL, 8756 }; 8757 8758 static int perf_uprobe_event_init(struct perf_event *event); 8759 static struct pmu perf_uprobe = { 8760 .task_ctx_nr = perf_sw_context, 8761 .event_init = perf_uprobe_event_init, 8762 .add = perf_trace_add, 8763 .del = perf_trace_del, 8764 .start = perf_swevent_start, 8765 .stop = perf_swevent_stop, 8766 .read = perf_swevent_read, 8767 .attr_groups = uprobe_attr_groups, 8768 }; 8769 8770 static int perf_uprobe_event_init(struct perf_event *event) 8771 { 8772 int err; 8773 unsigned long ref_ctr_offset; 8774 bool is_retprobe; 8775 8776 if (event->attr.type != perf_uprobe.type) 8777 return -ENOENT; 8778 8779 if (!capable(CAP_SYS_ADMIN)) 8780 return -EACCES; 8781 8782 /* 8783 * no branch sampling for probe events 8784 */ 8785 if (has_branch_stack(event)) 8786 return -EOPNOTSUPP; 8787 8788 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8789 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8790 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8791 if (err) 8792 return err; 8793 8794 event->destroy = perf_uprobe_destroy; 8795 8796 return 0; 8797 } 8798 #endif /* CONFIG_UPROBE_EVENTS */ 8799 8800 static inline void perf_tp_register(void) 8801 { 8802 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8803 #ifdef CONFIG_KPROBE_EVENTS 8804 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8805 #endif 8806 #ifdef CONFIG_UPROBE_EVENTS 8807 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8808 #endif 8809 } 8810 8811 static void perf_event_free_filter(struct perf_event *event) 8812 { 8813 ftrace_profile_free_filter(event); 8814 } 8815 8816 #ifdef CONFIG_BPF_SYSCALL 8817 static void bpf_overflow_handler(struct perf_event *event, 8818 struct perf_sample_data *data, 8819 struct pt_regs *regs) 8820 { 8821 struct bpf_perf_event_data_kern ctx = { 8822 .data = data, 8823 .event = event, 8824 }; 8825 int ret = 0; 8826 8827 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8828 preempt_disable(); 8829 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8830 goto out; 8831 rcu_read_lock(); 8832 ret = BPF_PROG_RUN(event->prog, &ctx); 8833 rcu_read_unlock(); 8834 out: 8835 __this_cpu_dec(bpf_prog_active); 8836 preempt_enable(); 8837 if (!ret) 8838 return; 8839 8840 event->orig_overflow_handler(event, data, regs); 8841 } 8842 8843 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8844 { 8845 struct bpf_prog *prog; 8846 8847 if (event->overflow_handler_context) 8848 /* hw breakpoint or kernel counter */ 8849 return -EINVAL; 8850 8851 if (event->prog) 8852 return -EEXIST; 8853 8854 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8855 if (IS_ERR(prog)) 8856 return PTR_ERR(prog); 8857 8858 event->prog = prog; 8859 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8860 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8861 return 0; 8862 } 8863 8864 static void perf_event_free_bpf_handler(struct perf_event *event) 8865 { 8866 struct bpf_prog *prog = event->prog; 8867 8868 if (!prog) 8869 return; 8870 8871 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8872 event->prog = NULL; 8873 bpf_prog_put(prog); 8874 } 8875 #else 8876 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8877 { 8878 return -EOPNOTSUPP; 8879 } 8880 static void perf_event_free_bpf_handler(struct perf_event *event) 8881 { 8882 } 8883 #endif 8884 8885 /* 8886 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8887 * with perf_event_open() 8888 */ 8889 static inline bool perf_event_is_tracing(struct perf_event *event) 8890 { 8891 if (event->pmu == &perf_tracepoint) 8892 return true; 8893 #ifdef CONFIG_KPROBE_EVENTS 8894 if (event->pmu == &perf_kprobe) 8895 return true; 8896 #endif 8897 #ifdef CONFIG_UPROBE_EVENTS 8898 if (event->pmu == &perf_uprobe) 8899 return true; 8900 #endif 8901 return false; 8902 } 8903 8904 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8905 { 8906 bool is_kprobe, is_tracepoint, is_syscall_tp; 8907 struct bpf_prog *prog; 8908 int ret; 8909 8910 if (!perf_event_is_tracing(event)) 8911 return perf_event_set_bpf_handler(event, prog_fd); 8912 8913 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8914 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8915 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8916 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8917 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8918 return -EINVAL; 8919 8920 prog = bpf_prog_get(prog_fd); 8921 if (IS_ERR(prog)) 8922 return PTR_ERR(prog); 8923 8924 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8925 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8926 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8927 /* valid fd, but invalid bpf program type */ 8928 bpf_prog_put(prog); 8929 return -EINVAL; 8930 } 8931 8932 /* Kprobe override only works for kprobes, not uprobes. */ 8933 if (prog->kprobe_override && 8934 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8935 bpf_prog_put(prog); 8936 return -EINVAL; 8937 } 8938 8939 if (is_tracepoint || is_syscall_tp) { 8940 int off = trace_event_get_offsets(event->tp_event); 8941 8942 if (prog->aux->max_ctx_offset > off) { 8943 bpf_prog_put(prog); 8944 return -EACCES; 8945 } 8946 } 8947 8948 ret = perf_event_attach_bpf_prog(event, prog); 8949 if (ret) 8950 bpf_prog_put(prog); 8951 return ret; 8952 } 8953 8954 static void perf_event_free_bpf_prog(struct perf_event *event) 8955 { 8956 if (!perf_event_is_tracing(event)) { 8957 perf_event_free_bpf_handler(event); 8958 return; 8959 } 8960 perf_event_detach_bpf_prog(event); 8961 } 8962 8963 #else 8964 8965 static inline void perf_tp_register(void) 8966 { 8967 } 8968 8969 static void perf_event_free_filter(struct perf_event *event) 8970 { 8971 } 8972 8973 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8974 { 8975 return -ENOENT; 8976 } 8977 8978 static void perf_event_free_bpf_prog(struct perf_event *event) 8979 { 8980 } 8981 #endif /* CONFIG_EVENT_TRACING */ 8982 8983 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8984 void perf_bp_event(struct perf_event *bp, void *data) 8985 { 8986 struct perf_sample_data sample; 8987 struct pt_regs *regs = data; 8988 8989 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8990 8991 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8992 perf_swevent_event(bp, 1, &sample, regs); 8993 } 8994 #endif 8995 8996 /* 8997 * Allocate a new address filter 8998 */ 8999 static struct perf_addr_filter * 9000 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9001 { 9002 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9003 struct perf_addr_filter *filter; 9004 9005 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9006 if (!filter) 9007 return NULL; 9008 9009 INIT_LIST_HEAD(&filter->entry); 9010 list_add_tail(&filter->entry, filters); 9011 9012 return filter; 9013 } 9014 9015 static void free_filters_list(struct list_head *filters) 9016 { 9017 struct perf_addr_filter *filter, *iter; 9018 9019 list_for_each_entry_safe(filter, iter, filters, entry) { 9020 path_put(&filter->path); 9021 list_del(&filter->entry); 9022 kfree(filter); 9023 } 9024 } 9025 9026 /* 9027 * Free existing address filters and optionally install new ones 9028 */ 9029 static void perf_addr_filters_splice(struct perf_event *event, 9030 struct list_head *head) 9031 { 9032 unsigned long flags; 9033 LIST_HEAD(list); 9034 9035 if (!has_addr_filter(event)) 9036 return; 9037 9038 /* don't bother with children, they don't have their own filters */ 9039 if (event->parent) 9040 return; 9041 9042 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9043 9044 list_splice_init(&event->addr_filters.list, &list); 9045 if (head) 9046 list_splice(head, &event->addr_filters.list); 9047 9048 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9049 9050 free_filters_list(&list); 9051 } 9052 9053 /* 9054 * Scan through mm's vmas and see if one of them matches the 9055 * @filter; if so, adjust filter's address range. 9056 * Called with mm::mmap_sem down for reading. 9057 */ 9058 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9059 struct mm_struct *mm, 9060 struct perf_addr_filter_range *fr) 9061 { 9062 struct vm_area_struct *vma; 9063 9064 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9065 if (!vma->vm_file) 9066 continue; 9067 9068 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9069 return; 9070 } 9071 } 9072 9073 /* 9074 * Update event's address range filters based on the 9075 * task's existing mappings, if any. 9076 */ 9077 static void perf_event_addr_filters_apply(struct perf_event *event) 9078 { 9079 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9080 struct task_struct *task = READ_ONCE(event->ctx->task); 9081 struct perf_addr_filter *filter; 9082 struct mm_struct *mm = NULL; 9083 unsigned int count = 0; 9084 unsigned long flags; 9085 9086 /* 9087 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9088 * will stop on the parent's child_mutex that our caller is also holding 9089 */ 9090 if (task == TASK_TOMBSTONE) 9091 return; 9092 9093 if (ifh->nr_file_filters) { 9094 mm = get_task_mm(event->ctx->task); 9095 if (!mm) 9096 goto restart; 9097 9098 down_read(&mm->mmap_sem); 9099 } 9100 9101 raw_spin_lock_irqsave(&ifh->lock, flags); 9102 list_for_each_entry(filter, &ifh->list, entry) { 9103 if (filter->path.dentry) { 9104 /* 9105 * Adjust base offset if the filter is associated to a 9106 * binary that needs to be mapped: 9107 */ 9108 event->addr_filter_ranges[count].start = 0; 9109 event->addr_filter_ranges[count].size = 0; 9110 9111 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9112 } else { 9113 event->addr_filter_ranges[count].start = filter->offset; 9114 event->addr_filter_ranges[count].size = filter->size; 9115 } 9116 9117 count++; 9118 } 9119 9120 event->addr_filters_gen++; 9121 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9122 9123 if (ifh->nr_file_filters) { 9124 up_read(&mm->mmap_sem); 9125 9126 mmput(mm); 9127 } 9128 9129 restart: 9130 perf_event_stop(event, 1); 9131 } 9132 9133 /* 9134 * Address range filtering: limiting the data to certain 9135 * instruction address ranges. Filters are ioctl()ed to us from 9136 * userspace as ascii strings. 9137 * 9138 * Filter string format: 9139 * 9140 * ACTION RANGE_SPEC 9141 * where ACTION is one of the 9142 * * "filter": limit the trace to this region 9143 * * "start": start tracing from this address 9144 * * "stop": stop tracing at this address/region; 9145 * RANGE_SPEC is 9146 * * for kernel addresses: <start address>[/<size>] 9147 * * for object files: <start address>[/<size>]@</path/to/object/file> 9148 * 9149 * if <size> is not specified or is zero, the range is treated as a single 9150 * address; not valid for ACTION=="filter". 9151 */ 9152 enum { 9153 IF_ACT_NONE = -1, 9154 IF_ACT_FILTER, 9155 IF_ACT_START, 9156 IF_ACT_STOP, 9157 IF_SRC_FILE, 9158 IF_SRC_KERNEL, 9159 IF_SRC_FILEADDR, 9160 IF_SRC_KERNELADDR, 9161 }; 9162 9163 enum { 9164 IF_STATE_ACTION = 0, 9165 IF_STATE_SOURCE, 9166 IF_STATE_END, 9167 }; 9168 9169 static const match_table_t if_tokens = { 9170 { IF_ACT_FILTER, "filter" }, 9171 { IF_ACT_START, "start" }, 9172 { IF_ACT_STOP, "stop" }, 9173 { IF_SRC_FILE, "%u/%u@%s" }, 9174 { IF_SRC_KERNEL, "%u/%u" }, 9175 { IF_SRC_FILEADDR, "%u@%s" }, 9176 { IF_SRC_KERNELADDR, "%u" }, 9177 { IF_ACT_NONE, NULL }, 9178 }; 9179 9180 /* 9181 * Address filter string parser 9182 */ 9183 static int 9184 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9185 struct list_head *filters) 9186 { 9187 struct perf_addr_filter *filter = NULL; 9188 char *start, *orig, *filename = NULL; 9189 substring_t args[MAX_OPT_ARGS]; 9190 int state = IF_STATE_ACTION, token; 9191 unsigned int kernel = 0; 9192 int ret = -EINVAL; 9193 9194 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9195 if (!fstr) 9196 return -ENOMEM; 9197 9198 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9199 static const enum perf_addr_filter_action_t actions[] = { 9200 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9201 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9202 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9203 }; 9204 ret = -EINVAL; 9205 9206 if (!*start) 9207 continue; 9208 9209 /* filter definition begins */ 9210 if (state == IF_STATE_ACTION) { 9211 filter = perf_addr_filter_new(event, filters); 9212 if (!filter) 9213 goto fail; 9214 } 9215 9216 token = match_token(start, if_tokens, args); 9217 switch (token) { 9218 case IF_ACT_FILTER: 9219 case IF_ACT_START: 9220 case IF_ACT_STOP: 9221 if (state != IF_STATE_ACTION) 9222 goto fail; 9223 9224 filter->action = actions[token]; 9225 state = IF_STATE_SOURCE; 9226 break; 9227 9228 case IF_SRC_KERNELADDR: 9229 case IF_SRC_KERNEL: 9230 kernel = 1; 9231 /* fall through */ 9232 9233 case IF_SRC_FILEADDR: 9234 case IF_SRC_FILE: 9235 if (state != IF_STATE_SOURCE) 9236 goto fail; 9237 9238 *args[0].to = 0; 9239 ret = kstrtoul(args[0].from, 0, &filter->offset); 9240 if (ret) 9241 goto fail; 9242 9243 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9244 *args[1].to = 0; 9245 ret = kstrtoul(args[1].from, 0, &filter->size); 9246 if (ret) 9247 goto fail; 9248 } 9249 9250 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9251 int fpos = token == IF_SRC_FILE ? 2 : 1; 9252 9253 filename = match_strdup(&args[fpos]); 9254 if (!filename) { 9255 ret = -ENOMEM; 9256 goto fail; 9257 } 9258 } 9259 9260 state = IF_STATE_END; 9261 break; 9262 9263 default: 9264 goto fail; 9265 } 9266 9267 /* 9268 * Filter definition is fully parsed, validate and install it. 9269 * Make sure that it doesn't contradict itself or the event's 9270 * attribute. 9271 */ 9272 if (state == IF_STATE_END) { 9273 ret = -EINVAL; 9274 if (kernel && event->attr.exclude_kernel) 9275 goto fail; 9276 9277 /* 9278 * ACTION "filter" must have a non-zero length region 9279 * specified. 9280 */ 9281 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9282 !filter->size) 9283 goto fail; 9284 9285 if (!kernel) { 9286 if (!filename) 9287 goto fail; 9288 9289 /* 9290 * For now, we only support file-based filters 9291 * in per-task events; doing so for CPU-wide 9292 * events requires additional context switching 9293 * trickery, since same object code will be 9294 * mapped at different virtual addresses in 9295 * different processes. 9296 */ 9297 ret = -EOPNOTSUPP; 9298 if (!event->ctx->task) 9299 goto fail_free_name; 9300 9301 /* look up the path and grab its inode */ 9302 ret = kern_path(filename, LOOKUP_FOLLOW, 9303 &filter->path); 9304 if (ret) 9305 goto fail_free_name; 9306 9307 kfree(filename); 9308 filename = NULL; 9309 9310 ret = -EINVAL; 9311 if (!filter->path.dentry || 9312 !S_ISREG(d_inode(filter->path.dentry) 9313 ->i_mode)) 9314 goto fail; 9315 9316 event->addr_filters.nr_file_filters++; 9317 } 9318 9319 /* ready to consume more filters */ 9320 state = IF_STATE_ACTION; 9321 filter = NULL; 9322 } 9323 } 9324 9325 if (state != IF_STATE_ACTION) 9326 goto fail; 9327 9328 kfree(orig); 9329 9330 return 0; 9331 9332 fail_free_name: 9333 kfree(filename); 9334 fail: 9335 free_filters_list(filters); 9336 kfree(orig); 9337 9338 return ret; 9339 } 9340 9341 static int 9342 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9343 { 9344 LIST_HEAD(filters); 9345 int ret; 9346 9347 /* 9348 * Since this is called in perf_ioctl() path, we're already holding 9349 * ctx::mutex. 9350 */ 9351 lockdep_assert_held(&event->ctx->mutex); 9352 9353 if (WARN_ON_ONCE(event->parent)) 9354 return -EINVAL; 9355 9356 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9357 if (ret) 9358 goto fail_clear_files; 9359 9360 ret = event->pmu->addr_filters_validate(&filters); 9361 if (ret) 9362 goto fail_free_filters; 9363 9364 /* remove existing filters, if any */ 9365 perf_addr_filters_splice(event, &filters); 9366 9367 /* install new filters */ 9368 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9369 9370 return ret; 9371 9372 fail_free_filters: 9373 free_filters_list(&filters); 9374 9375 fail_clear_files: 9376 event->addr_filters.nr_file_filters = 0; 9377 9378 return ret; 9379 } 9380 9381 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9382 { 9383 int ret = -EINVAL; 9384 char *filter_str; 9385 9386 filter_str = strndup_user(arg, PAGE_SIZE); 9387 if (IS_ERR(filter_str)) 9388 return PTR_ERR(filter_str); 9389 9390 #ifdef CONFIG_EVENT_TRACING 9391 if (perf_event_is_tracing(event)) { 9392 struct perf_event_context *ctx = event->ctx; 9393 9394 /* 9395 * Beware, here be dragons!! 9396 * 9397 * the tracepoint muck will deadlock against ctx->mutex, but 9398 * the tracepoint stuff does not actually need it. So 9399 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9400 * already have a reference on ctx. 9401 * 9402 * This can result in event getting moved to a different ctx, 9403 * but that does not affect the tracepoint state. 9404 */ 9405 mutex_unlock(&ctx->mutex); 9406 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9407 mutex_lock(&ctx->mutex); 9408 } else 9409 #endif 9410 if (has_addr_filter(event)) 9411 ret = perf_event_set_addr_filter(event, filter_str); 9412 9413 kfree(filter_str); 9414 return ret; 9415 } 9416 9417 /* 9418 * hrtimer based swevent callback 9419 */ 9420 9421 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9422 { 9423 enum hrtimer_restart ret = HRTIMER_RESTART; 9424 struct perf_sample_data data; 9425 struct pt_regs *regs; 9426 struct perf_event *event; 9427 u64 period; 9428 9429 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9430 9431 if (event->state != PERF_EVENT_STATE_ACTIVE) 9432 return HRTIMER_NORESTART; 9433 9434 event->pmu->read(event); 9435 9436 perf_sample_data_init(&data, 0, event->hw.last_period); 9437 regs = get_irq_regs(); 9438 9439 if (regs && !perf_exclude_event(event, regs)) { 9440 if (!(event->attr.exclude_idle && is_idle_task(current))) 9441 if (__perf_event_overflow(event, 1, &data, regs)) 9442 ret = HRTIMER_NORESTART; 9443 } 9444 9445 period = max_t(u64, 10000, event->hw.sample_period); 9446 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9447 9448 return ret; 9449 } 9450 9451 static void perf_swevent_start_hrtimer(struct perf_event *event) 9452 { 9453 struct hw_perf_event *hwc = &event->hw; 9454 s64 period; 9455 9456 if (!is_sampling_event(event)) 9457 return; 9458 9459 period = local64_read(&hwc->period_left); 9460 if (period) { 9461 if (period < 0) 9462 period = 10000; 9463 9464 local64_set(&hwc->period_left, 0); 9465 } else { 9466 period = max_t(u64, 10000, hwc->sample_period); 9467 } 9468 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9469 HRTIMER_MODE_REL_PINNED); 9470 } 9471 9472 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9473 { 9474 struct hw_perf_event *hwc = &event->hw; 9475 9476 if (is_sampling_event(event)) { 9477 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9478 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9479 9480 hrtimer_cancel(&hwc->hrtimer); 9481 } 9482 } 9483 9484 static void perf_swevent_init_hrtimer(struct perf_event *event) 9485 { 9486 struct hw_perf_event *hwc = &event->hw; 9487 9488 if (!is_sampling_event(event)) 9489 return; 9490 9491 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9492 hwc->hrtimer.function = perf_swevent_hrtimer; 9493 9494 /* 9495 * Since hrtimers have a fixed rate, we can do a static freq->period 9496 * mapping and avoid the whole period adjust feedback stuff. 9497 */ 9498 if (event->attr.freq) { 9499 long freq = event->attr.sample_freq; 9500 9501 event->attr.sample_period = NSEC_PER_SEC / freq; 9502 hwc->sample_period = event->attr.sample_period; 9503 local64_set(&hwc->period_left, hwc->sample_period); 9504 hwc->last_period = hwc->sample_period; 9505 event->attr.freq = 0; 9506 } 9507 } 9508 9509 /* 9510 * Software event: cpu wall time clock 9511 */ 9512 9513 static void cpu_clock_event_update(struct perf_event *event) 9514 { 9515 s64 prev; 9516 u64 now; 9517 9518 now = local_clock(); 9519 prev = local64_xchg(&event->hw.prev_count, now); 9520 local64_add(now - prev, &event->count); 9521 } 9522 9523 static void cpu_clock_event_start(struct perf_event *event, int flags) 9524 { 9525 local64_set(&event->hw.prev_count, local_clock()); 9526 perf_swevent_start_hrtimer(event); 9527 } 9528 9529 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9530 { 9531 perf_swevent_cancel_hrtimer(event); 9532 cpu_clock_event_update(event); 9533 } 9534 9535 static int cpu_clock_event_add(struct perf_event *event, int flags) 9536 { 9537 if (flags & PERF_EF_START) 9538 cpu_clock_event_start(event, flags); 9539 perf_event_update_userpage(event); 9540 9541 return 0; 9542 } 9543 9544 static void cpu_clock_event_del(struct perf_event *event, int flags) 9545 { 9546 cpu_clock_event_stop(event, flags); 9547 } 9548 9549 static void cpu_clock_event_read(struct perf_event *event) 9550 { 9551 cpu_clock_event_update(event); 9552 } 9553 9554 static int cpu_clock_event_init(struct perf_event *event) 9555 { 9556 if (event->attr.type != PERF_TYPE_SOFTWARE) 9557 return -ENOENT; 9558 9559 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9560 return -ENOENT; 9561 9562 /* 9563 * no branch sampling for software events 9564 */ 9565 if (has_branch_stack(event)) 9566 return -EOPNOTSUPP; 9567 9568 perf_swevent_init_hrtimer(event); 9569 9570 return 0; 9571 } 9572 9573 static struct pmu perf_cpu_clock = { 9574 .task_ctx_nr = perf_sw_context, 9575 9576 .capabilities = PERF_PMU_CAP_NO_NMI, 9577 9578 .event_init = cpu_clock_event_init, 9579 .add = cpu_clock_event_add, 9580 .del = cpu_clock_event_del, 9581 .start = cpu_clock_event_start, 9582 .stop = cpu_clock_event_stop, 9583 .read = cpu_clock_event_read, 9584 }; 9585 9586 /* 9587 * Software event: task time clock 9588 */ 9589 9590 static void task_clock_event_update(struct perf_event *event, u64 now) 9591 { 9592 u64 prev; 9593 s64 delta; 9594 9595 prev = local64_xchg(&event->hw.prev_count, now); 9596 delta = now - prev; 9597 local64_add(delta, &event->count); 9598 } 9599 9600 static void task_clock_event_start(struct perf_event *event, int flags) 9601 { 9602 local64_set(&event->hw.prev_count, event->ctx->time); 9603 perf_swevent_start_hrtimer(event); 9604 } 9605 9606 static void task_clock_event_stop(struct perf_event *event, int flags) 9607 { 9608 perf_swevent_cancel_hrtimer(event); 9609 task_clock_event_update(event, event->ctx->time); 9610 } 9611 9612 static int task_clock_event_add(struct perf_event *event, int flags) 9613 { 9614 if (flags & PERF_EF_START) 9615 task_clock_event_start(event, flags); 9616 perf_event_update_userpage(event); 9617 9618 return 0; 9619 } 9620 9621 static void task_clock_event_del(struct perf_event *event, int flags) 9622 { 9623 task_clock_event_stop(event, PERF_EF_UPDATE); 9624 } 9625 9626 static void task_clock_event_read(struct perf_event *event) 9627 { 9628 u64 now = perf_clock(); 9629 u64 delta = now - event->ctx->timestamp; 9630 u64 time = event->ctx->time + delta; 9631 9632 task_clock_event_update(event, time); 9633 } 9634 9635 static int task_clock_event_init(struct perf_event *event) 9636 { 9637 if (event->attr.type != PERF_TYPE_SOFTWARE) 9638 return -ENOENT; 9639 9640 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9641 return -ENOENT; 9642 9643 /* 9644 * no branch sampling for software events 9645 */ 9646 if (has_branch_stack(event)) 9647 return -EOPNOTSUPP; 9648 9649 perf_swevent_init_hrtimer(event); 9650 9651 return 0; 9652 } 9653 9654 static struct pmu perf_task_clock = { 9655 .task_ctx_nr = perf_sw_context, 9656 9657 .capabilities = PERF_PMU_CAP_NO_NMI, 9658 9659 .event_init = task_clock_event_init, 9660 .add = task_clock_event_add, 9661 .del = task_clock_event_del, 9662 .start = task_clock_event_start, 9663 .stop = task_clock_event_stop, 9664 .read = task_clock_event_read, 9665 }; 9666 9667 static void perf_pmu_nop_void(struct pmu *pmu) 9668 { 9669 } 9670 9671 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9672 { 9673 } 9674 9675 static int perf_pmu_nop_int(struct pmu *pmu) 9676 { 9677 return 0; 9678 } 9679 9680 static int perf_event_nop_int(struct perf_event *event, u64 value) 9681 { 9682 return 0; 9683 } 9684 9685 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9686 9687 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9688 { 9689 __this_cpu_write(nop_txn_flags, flags); 9690 9691 if (flags & ~PERF_PMU_TXN_ADD) 9692 return; 9693 9694 perf_pmu_disable(pmu); 9695 } 9696 9697 static int perf_pmu_commit_txn(struct pmu *pmu) 9698 { 9699 unsigned int flags = __this_cpu_read(nop_txn_flags); 9700 9701 __this_cpu_write(nop_txn_flags, 0); 9702 9703 if (flags & ~PERF_PMU_TXN_ADD) 9704 return 0; 9705 9706 perf_pmu_enable(pmu); 9707 return 0; 9708 } 9709 9710 static void perf_pmu_cancel_txn(struct pmu *pmu) 9711 { 9712 unsigned int flags = __this_cpu_read(nop_txn_flags); 9713 9714 __this_cpu_write(nop_txn_flags, 0); 9715 9716 if (flags & ~PERF_PMU_TXN_ADD) 9717 return; 9718 9719 perf_pmu_enable(pmu); 9720 } 9721 9722 static int perf_event_idx_default(struct perf_event *event) 9723 { 9724 return 0; 9725 } 9726 9727 /* 9728 * Ensures all contexts with the same task_ctx_nr have the same 9729 * pmu_cpu_context too. 9730 */ 9731 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9732 { 9733 struct pmu *pmu; 9734 9735 if (ctxn < 0) 9736 return NULL; 9737 9738 list_for_each_entry(pmu, &pmus, entry) { 9739 if (pmu->task_ctx_nr == ctxn) 9740 return pmu->pmu_cpu_context; 9741 } 9742 9743 return NULL; 9744 } 9745 9746 static void free_pmu_context(struct pmu *pmu) 9747 { 9748 /* 9749 * Static contexts such as perf_sw_context have a global lifetime 9750 * and may be shared between different PMUs. Avoid freeing them 9751 * when a single PMU is going away. 9752 */ 9753 if (pmu->task_ctx_nr > perf_invalid_context) 9754 return; 9755 9756 free_percpu(pmu->pmu_cpu_context); 9757 } 9758 9759 /* 9760 * Let userspace know that this PMU supports address range filtering: 9761 */ 9762 static ssize_t nr_addr_filters_show(struct device *dev, 9763 struct device_attribute *attr, 9764 char *page) 9765 { 9766 struct pmu *pmu = dev_get_drvdata(dev); 9767 9768 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9769 } 9770 DEVICE_ATTR_RO(nr_addr_filters); 9771 9772 static struct idr pmu_idr; 9773 9774 static ssize_t 9775 type_show(struct device *dev, struct device_attribute *attr, char *page) 9776 { 9777 struct pmu *pmu = dev_get_drvdata(dev); 9778 9779 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9780 } 9781 static DEVICE_ATTR_RO(type); 9782 9783 static ssize_t 9784 perf_event_mux_interval_ms_show(struct device *dev, 9785 struct device_attribute *attr, 9786 char *page) 9787 { 9788 struct pmu *pmu = dev_get_drvdata(dev); 9789 9790 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9791 } 9792 9793 static DEFINE_MUTEX(mux_interval_mutex); 9794 9795 static ssize_t 9796 perf_event_mux_interval_ms_store(struct device *dev, 9797 struct device_attribute *attr, 9798 const char *buf, size_t count) 9799 { 9800 struct pmu *pmu = dev_get_drvdata(dev); 9801 int timer, cpu, ret; 9802 9803 ret = kstrtoint(buf, 0, &timer); 9804 if (ret) 9805 return ret; 9806 9807 if (timer < 1) 9808 return -EINVAL; 9809 9810 /* same value, noting to do */ 9811 if (timer == pmu->hrtimer_interval_ms) 9812 return count; 9813 9814 mutex_lock(&mux_interval_mutex); 9815 pmu->hrtimer_interval_ms = timer; 9816 9817 /* update all cpuctx for this PMU */ 9818 cpus_read_lock(); 9819 for_each_online_cpu(cpu) { 9820 struct perf_cpu_context *cpuctx; 9821 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9823 9824 cpu_function_call(cpu, 9825 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9826 } 9827 cpus_read_unlock(); 9828 mutex_unlock(&mux_interval_mutex); 9829 9830 return count; 9831 } 9832 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9833 9834 static struct attribute *pmu_dev_attrs[] = { 9835 &dev_attr_type.attr, 9836 &dev_attr_perf_event_mux_interval_ms.attr, 9837 NULL, 9838 }; 9839 ATTRIBUTE_GROUPS(pmu_dev); 9840 9841 static int pmu_bus_running; 9842 static struct bus_type pmu_bus = { 9843 .name = "event_source", 9844 .dev_groups = pmu_dev_groups, 9845 }; 9846 9847 static void pmu_dev_release(struct device *dev) 9848 { 9849 kfree(dev); 9850 } 9851 9852 static int pmu_dev_alloc(struct pmu *pmu) 9853 { 9854 int ret = -ENOMEM; 9855 9856 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9857 if (!pmu->dev) 9858 goto out; 9859 9860 pmu->dev->groups = pmu->attr_groups; 9861 device_initialize(pmu->dev); 9862 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9863 if (ret) 9864 goto free_dev; 9865 9866 dev_set_drvdata(pmu->dev, pmu); 9867 pmu->dev->bus = &pmu_bus; 9868 pmu->dev->release = pmu_dev_release; 9869 ret = device_add(pmu->dev); 9870 if (ret) 9871 goto free_dev; 9872 9873 /* For PMUs with address filters, throw in an extra attribute: */ 9874 if (pmu->nr_addr_filters) 9875 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9876 9877 if (ret) 9878 goto del_dev; 9879 9880 out: 9881 return ret; 9882 9883 del_dev: 9884 device_del(pmu->dev); 9885 9886 free_dev: 9887 put_device(pmu->dev); 9888 goto out; 9889 } 9890 9891 static struct lock_class_key cpuctx_mutex; 9892 static struct lock_class_key cpuctx_lock; 9893 9894 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9895 { 9896 int cpu, ret; 9897 9898 mutex_lock(&pmus_lock); 9899 ret = -ENOMEM; 9900 pmu->pmu_disable_count = alloc_percpu(int); 9901 if (!pmu->pmu_disable_count) 9902 goto unlock; 9903 9904 pmu->type = -1; 9905 if (!name) 9906 goto skip_type; 9907 pmu->name = name; 9908 9909 if (type < 0) { 9910 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9911 if (type < 0) { 9912 ret = type; 9913 goto free_pdc; 9914 } 9915 } 9916 pmu->type = type; 9917 9918 if (pmu_bus_running) { 9919 ret = pmu_dev_alloc(pmu); 9920 if (ret) 9921 goto free_idr; 9922 } 9923 9924 skip_type: 9925 if (pmu->task_ctx_nr == perf_hw_context) { 9926 static int hw_context_taken = 0; 9927 9928 /* 9929 * Other than systems with heterogeneous CPUs, it never makes 9930 * sense for two PMUs to share perf_hw_context. PMUs which are 9931 * uncore must use perf_invalid_context. 9932 */ 9933 if (WARN_ON_ONCE(hw_context_taken && 9934 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9935 pmu->task_ctx_nr = perf_invalid_context; 9936 9937 hw_context_taken = 1; 9938 } 9939 9940 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9941 if (pmu->pmu_cpu_context) 9942 goto got_cpu_context; 9943 9944 ret = -ENOMEM; 9945 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9946 if (!pmu->pmu_cpu_context) 9947 goto free_dev; 9948 9949 for_each_possible_cpu(cpu) { 9950 struct perf_cpu_context *cpuctx; 9951 9952 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9953 __perf_event_init_context(&cpuctx->ctx); 9954 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9955 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9956 cpuctx->ctx.pmu = pmu; 9957 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9958 9959 __perf_mux_hrtimer_init(cpuctx, cpu); 9960 } 9961 9962 got_cpu_context: 9963 if (!pmu->start_txn) { 9964 if (pmu->pmu_enable) { 9965 /* 9966 * If we have pmu_enable/pmu_disable calls, install 9967 * transaction stubs that use that to try and batch 9968 * hardware accesses. 9969 */ 9970 pmu->start_txn = perf_pmu_start_txn; 9971 pmu->commit_txn = perf_pmu_commit_txn; 9972 pmu->cancel_txn = perf_pmu_cancel_txn; 9973 } else { 9974 pmu->start_txn = perf_pmu_nop_txn; 9975 pmu->commit_txn = perf_pmu_nop_int; 9976 pmu->cancel_txn = perf_pmu_nop_void; 9977 } 9978 } 9979 9980 if (!pmu->pmu_enable) { 9981 pmu->pmu_enable = perf_pmu_nop_void; 9982 pmu->pmu_disable = perf_pmu_nop_void; 9983 } 9984 9985 if (!pmu->check_period) 9986 pmu->check_period = perf_event_nop_int; 9987 9988 if (!pmu->event_idx) 9989 pmu->event_idx = perf_event_idx_default; 9990 9991 list_add_rcu(&pmu->entry, &pmus); 9992 atomic_set(&pmu->exclusive_cnt, 0); 9993 ret = 0; 9994 unlock: 9995 mutex_unlock(&pmus_lock); 9996 9997 return ret; 9998 9999 free_dev: 10000 device_del(pmu->dev); 10001 put_device(pmu->dev); 10002 10003 free_idr: 10004 if (pmu->type >= PERF_TYPE_MAX) 10005 idr_remove(&pmu_idr, pmu->type); 10006 10007 free_pdc: 10008 free_percpu(pmu->pmu_disable_count); 10009 goto unlock; 10010 } 10011 EXPORT_SYMBOL_GPL(perf_pmu_register); 10012 10013 void perf_pmu_unregister(struct pmu *pmu) 10014 { 10015 mutex_lock(&pmus_lock); 10016 list_del_rcu(&pmu->entry); 10017 10018 /* 10019 * We dereference the pmu list under both SRCU and regular RCU, so 10020 * synchronize against both of those. 10021 */ 10022 synchronize_srcu(&pmus_srcu); 10023 synchronize_rcu(); 10024 10025 free_percpu(pmu->pmu_disable_count); 10026 if (pmu->type >= PERF_TYPE_MAX) 10027 idr_remove(&pmu_idr, pmu->type); 10028 if (pmu_bus_running) { 10029 if (pmu->nr_addr_filters) 10030 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10031 device_del(pmu->dev); 10032 put_device(pmu->dev); 10033 } 10034 free_pmu_context(pmu); 10035 mutex_unlock(&pmus_lock); 10036 } 10037 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10038 10039 static inline bool has_extended_regs(struct perf_event *event) 10040 { 10041 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10042 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10043 } 10044 10045 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10046 { 10047 struct perf_event_context *ctx = NULL; 10048 int ret; 10049 10050 if (!try_module_get(pmu->module)) 10051 return -ENODEV; 10052 10053 /* 10054 * A number of pmu->event_init() methods iterate the sibling_list to, 10055 * for example, validate if the group fits on the PMU. Therefore, 10056 * if this is a sibling event, acquire the ctx->mutex to protect 10057 * the sibling_list. 10058 */ 10059 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10060 /* 10061 * This ctx->mutex can nest when we're called through 10062 * inheritance. See the perf_event_ctx_lock_nested() comment. 10063 */ 10064 ctx = perf_event_ctx_lock_nested(event->group_leader, 10065 SINGLE_DEPTH_NESTING); 10066 BUG_ON(!ctx); 10067 } 10068 10069 event->pmu = pmu; 10070 ret = pmu->event_init(event); 10071 10072 if (ctx) 10073 perf_event_ctx_unlock(event->group_leader, ctx); 10074 10075 if (!ret) { 10076 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10077 has_extended_regs(event)) 10078 ret = -EOPNOTSUPP; 10079 10080 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10081 event_has_any_exclude_flag(event)) 10082 ret = -EINVAL; 10083 10084 if (ret && event->destroy) 10085 event->destroy(event); 10086 } 10087 10088 if (ret) 10089 module_put(pmu->module); 10090 10091 return ret; 10092 } 10093 10094 static struct pmu *perf_init_event(struct perf_event *event) 10095 { 10096 struct pmu *pmu; 10097 int idx; 10098 int ret; 10099 10100 idx = srcu_read_lock(&pmus_srcu); 10101 10102 /* Try parent's PMU first: */ 10103 if (event->parent && event->parent->pmu) { 10104 pmu = event->parent->pmu; 10105 ret = perf_try_init_event(pmu, event); 10106 if (!ret) 10107 goto unlock; 10108 } 10109 10110 rcu_read_lock(); 10111 pmu = idr_find(&pmu_idr, event->attr.type); 10112 rcu_read_unlock(); 10113 if (pmu) { 10114 ret = perf_try_init_event(pmu, event); 10115 if (ret) 10116 pmu = ERR_PTR(ret); 10117 goto unlock; 10118 } 10119 10120 list_for_each_entry_rcu(pmu, &pmus, entry) { 10121 ret = perf_try_init_event(pmu, event); 10122 if (!ret) 10123 goto unlock; 10124 10125 if (ret != -ENOENT) { 10126 pmu = ERR_PTR(ret); 10127 goto unlock; 10128 } 10129 } 10130 pmu = ERR_PTR(-ENOENT); 10131 unlock: 10132 srcu_read_unlock(&pmus_srcu, idx); 10133 10134 return pmu; 10135 } 10136 10137 static void attach_sb_event(struct perf_event *event) 10138 { 10139 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10140 10141 raw_spin_lock(&pel->lock); 10142 list_add_rcu(&event->sb_list, &pel->list); 10143 raw_spin_unlock(&pel->lock); 10144 } 10145 10146 /* 10147 * We keep a list of all !task (and therefore per-cpu) events 10148 * that need to receive side-band records. 10149 * 10150 * This avoids having to scan all the various PMU per-cpu contexts 10151 * looking for them. 10152 */ 10153 static void account_pmu_sb_event(struct perf_event *event) 10154 { 10155 if (is_sb_event(event)) 10156 attach_sb_event(event); 10157 } 10158 10159 static void account_event_cpu(struct perf_event *event, int cpu) 10160 { 10161 if (event->parent) 10162 return; 10163 10164 if (is_cgroup_event(event)) 10165 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10166 } 10167 10168 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10169 static void account_freq_event_nohz(void) 10170 { 10171 #ifdef CONFIG_NO_HZ_FULL 10172 /* Lock so we don't race with concurrent unaccount */ 10173 spin_lock(&nr_freq_lock); 10174 if (atomic_inc_return(&nr_freq_events) == 1) 10175 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10176 spin_unlock(&nr_freq_lock); 10177 #endif 10178 } 10179 10180 static void account_freq_event(void) 10181 { 10182 if (tick_nohz_full_enabled()) 10183 account_freq_event_nohz(); 10184 else 10185 atomic_inc(&nr_freq_events); 10186 } 10187 10188 10189 static void account_event(struct perf_event *event) 10190 { 10191 bool inc = false; 10192 10193 if (event->parent) 10194 return; 10195 10196 if (event->attach_state & PERF_ATTACH_TASK) 10197 inc = true; 10198 if (event->attr.mmap || event->attr.mmap_data) 10199 atomic_inc(&nr_mmap_events); 10200 if (event->attr.comm) 10201 atomic_inc(&nr_comm_events); 10202 if (event->attr.namespaces) 10203 atomic_inc(&nr_namespaces_events); 10204 if (event->attr.task) 10205 atomic_inc(&nr_task_events); 10206 if (event->attr.freq) 10207 account_freq_event(); 10208 if (event->attr.context_switch) { 10209 atomic_inc(&nr_switch_events); 10210 inc = true; 10211 } 10212 if (has_branch_stack(event)) 10213 inc = true; 10214 if (is_cgroup_event(event)) 10215 inc = true; 10216 if (event->attr.ksymbol) 10217 atomic_inc(&nr_ksymbol_events); 10218 if (event->attr.bpf_event) 10219 atomic_inc(&nr_bpf_events); 10220 10221 if (inc) { 10222 /* 10223 * We need the mutex here because static_branch_enable() 10224 * must complete *before* the perf_sched_count increment 10225 * becomes visible. 10226 */ 10227 if (atomic_inc_not_zero(&perf_sched_count)) 10228 goto enabled; 10229 10230 mutex_lock(&perf_sched_mutex); 10231 if (!atomic_read(&perf_sched_count)) { 10232 static_branch_enable(&perf_sched_events); 10233 /* 10234 * Guarantee that all CPUs observe they key change and 10235 * call the perf scheduling hooks before proceeding to 10236 * install events that need them. 10237 */ 10238 synchronize_rcu(); 10239 } 10240 /* 10241 * Now that we have waited for the sync_sched(), allow further 10242 * increments to by-pass the mutex. 10243 */ 10244 atomic_inc(&perf_sched_count); 10245 mutex_unlock(&perf_sched_mutex); 10246 } 10247 enabled: 10248 10249 account_event_cpu(event, event->cpu); 10250 10251 account_pmu_sb_event(event); 10252 } 10253 10254 /* 10255 * Allocate and initialize an event structure 10256 */ 10257 static struct perf_event * 10258 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10259 struct task_struct *task, 10260 struct perf_event *group_leader, 10261 struct perf_event *parent_event, 10262 perf_overflow_handler_t overflow_handler, 10263 void *context, int cgroup_fd) 10264 { 10265 struct pmu *pmu; 10266 struct perf_event *event; 10267 struct hw_perf_event *hwc; 10268 long err = -EINVAL; 10269 10270 if ((unsigned)cpu >= nr_cpu_ids) { 10271 if (!task || cpu != -1) 10272 return ERR_PTR(-EINVAL); 10273 } 10274 10275 event = kzalloc(sizeof(*event), GFP_KERNEL); 10276 if (!event) 10277 return ERR_PTR(-ENOMEM); 10278 10279 /* 10280 * Single events are their own group leaders, with an 10281 * empty sibling list: 10282 */ 10283 if (!group_leader) 10284 group_leader = event; 10285 10286 mutex_init(&event->child_mutex); 10287 INIT_LIST_HEAD(&event->child_list); 10288 10289 INIT_LIST_HEAD(&event->event_entry); 10290 INIT_LIST_HEAD(&event->sibling_list); 10291 INIT_LIST_HEAD(&event->active_list); 10292 init_event_group(event); 10293 INIT_LIST_HEAD(&event->rb_entry); 10294 INIT_LIST_HEAD(&event->active_entry); 10295 INIT_LIST_HEAD(&event->addr_filters.list); 10296 INIT_HLIST_NODE(&event->hlist_entry); 10297 10298 10299 init_waitqueue_head(&event->waitq); 10300 event->pending_disable = -1; 10301 init_irq_work(&event->pending, perf_pending_event); 10302 10303 mutex_init(&event->mmap_mutex); 10304 raw_spin_lock_init(&event->addr_filters.lock); 10305 10306 atomic_long_set(&event->refcount, 1); 10307 event->cpu = cpu; 10308 event->attr = *attr; 10309 event->group_leader = group_leader; 10310 event->pmu = NULL; 10311 event->oncpu = -1; 10312 10313 event->parent = parent_event; 10314 10315 event->ns = get_pid_ns(task_active_pid_ns(current)); 10316 event->id = atomic64_inc_return(&perf_event_id); 10317 10318 event->state = PERF_EVENT_STATE_INACTIVE; 10319 10320 if (task) { 10321 event->attach_state = PERF_ATTACH_TASK; 10322 /* 10323 * XXX pmu::event_init needs to know what task to account to 10324 * and we cannot use the ctx information because we need the 10325 * pmu before we get a ctx. 10326 */ 10327 get_task_struct(task); 10328 event->hw.target = task; 10329 } 10330 10331 event->clock = &local_clock; 10332 if (parent_event) 10333 event->clock = parent_event->clock; 10334 10335 if (!overflow_handler && parent_event) { 10336 overflow_handler = parent_event->overflow_handler; 10337 context = parent_event->overflow_handler_context; 10338 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10339 if (overflow_handler == bpf_overflow_handler) { 10340 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10341 10342 if (IS_ERR(prog)) { 10343 err = PTR_ERR(prog); 10344 goto err_ns; 10345 } 10346 event->prog = prog; 10347 event->orig_overflow_handler = 10348 parent_event->orig_overflow_handler; 10349 } 10350 #endif 10351 } 10352 10353 if (overflow_handler) { 10354 event->overflow_handler = overflow_handler; 10355 event->overflow_handler_context = context; 10356 } else if (is_write_backward(event)){ 10357 event->overflow_handler = perf_event_output_backward; 10358 event->overflow_handler_context = NULL; 10359 } else { 10360 event->overflow_handler = perf_event_output_forward; 10361 event->overflow_handler_context = NULL; 10362 } 10363 10364 perf_event__state_init(event); 10365 10366 pmu = NULL; 10367 10368 hwc = &event->hw; 10369 hwc->sample_period = attr->sample_period; 10370 if (attr->freq && attr->sample_freq) 10371 hwc->sample_period = 1; 10372 hwc->last_period = hwc->sample_period; 10373 10374 local64_set(&hwc->period_left, hwc->sample_period); 10375 10376 /* 10377 * We currently do not support PERF_SAMPLE_READ on inherited events. 10378 * See perf_output_read(). 10379 */ 10380 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10381 goto err_ns; 10382 10383 if (!has_branch_stack(event)) 10384 event->attr.branch_sample_type = 0; 10385 10386 if (cgroup_fd != -1) { 10387 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10388 if (err) 10389 goto err_ns; 10390 } 10391 10392 pmu = perf_init_event(event); 10393 if (IS_ERR(pmu)) { 10394 err = PTR_ERR(pmu); 10395 goto err_ns; 10396 } 10397 10398 err = exclusive_event_init(event); 10399 if (err) 10400 goto err_pmu; 10401 10402 if (has_addr_filter(event)) { 10403 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10404 sizeof(struct perf_addr_filter_range), 10405 GFP_KERNEL); 10406 if (!event->addr_filter_ranges) { 10407 err = -ENOMEM; 10408 goto err_per_task; 10409 } 10410 10411 /* 10412 * Clone the parent's vma offsets: they are valid until exec() 10413 * even if the mm is not shared with the parent. 10414 */ 10415 if (event->parent) { 10416 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10417 10418 raw_spin_lock_irq(&ifh->lock); 10419 memcpy(event->addr_filter_ranges, 10420 event->parent->addr_filter_ranges, 10421 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10422 raw_spin_unlock_irq(&ifh->lock); 10423 } 10424 10425 /* force hw sync on the address filters */ 10426 event->addr_filters_gen = 1; 10427 } 10428 10429 if (!event->parent) { 10430 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10431 err = get_callchain_buffers(attr->sample_max_stack); 10432 if (err) 10433 goto err_addr_filters; 10434 } 10435 } 10436 10437 /* symmetric to unaccount_event() in _free_event() */ 10438 account_event(event); 10439 10440 return event; 10441 10442 err_addr_filters: 10443 kfree(event->addr_filter_ranges); 10444 10445 err_per_task: 10446 exclusive_event_destroy(event); 10447 10448 err_pmu: 10449 if (event->destroy) 10450 event->destroy(event); 10451 module_put(pmu->module); 10452 err_ns: 10453 if (is_cgroup_event(event)) 10454 perf_detach_cgroup(event); 10455 if (event->ns) 10456 put_pid_ns(event->ns); 10457 if (event->hw.target) 10458 put_task_struct(event->hw.target); 10459 kfree(event); 10460 10461 return ERR_PTR(err); 10462 } 10463 10464 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10465 struct perf_event_attr *attr) 10466 { 10467 u32 size; 10468 int ret; 10469 10470 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10471 return -EFAULT; 10472 10473 /* 10474 * zero the full structure, so that a short copy will be nice. 10475 */ 10476 memset(attr, 0, sizeof(*attr)); 10477 10478 ret = get_user(size, &uattr->size); 10479 if (ret) 10480 return ret; 10481 10482 if (size > PAGE_SIZE) /* silly large */ 10483 goto err_size; 10484 10485 if (!size) /* abi compat */ 10486 size = PERF_ATTR_SIZE_VER0; 10487 10488 if (size < PERF_ATTR_SIZE_VER0) 10489 goto err_size; 10490 10491 /* 10492 * If we're handed a bigger struct than we know of, 10493 * ensure all the unknown bits are 0 - i.e. new 10494 * user-space does not rely on any kernel feature 10495 * extensions we dont know about yet. 10496 */ 10497 if (size > sizeof(*attr)) { 10498 unsigned char __user *addr; 10499 unsigned char __user *end; 10500 unsigned char val; 10501 10502 addr = (void __user *)uattr + sizeof(*attr); 10503 end = (void __user *)uattr + size; 10504 10505 for (; addr < end; addr++) { 10506 ret = get_user(val, addr); 10507 if (ret) 10508 return ret; 10509 if (val) 10510 goto err_size; 10511 } 10512 size = sizeof(*attr); 10513 } 10514 10515 ret = copy_from_user(attr, uattr, size); 10516 if (ret) 10517 return -EFAULT; 10518 10519 attr->size = size; 10520 10521 if (attr->__reserved_1) 10522 return -EINVAL; 10523 10524 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10525 return -EINVAL; 10526 10527 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10528 return -EINVAL; 10529 10530 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10531 u64 mask = attr->branch_sample_type; 10532 10533 /* only using defined bits */ 10534 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10535 return -EINVAL; 10536 10537 /* at least one branch bit must be set */ 10538 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10539 return -EINVAL; 10540 10541 /* propagate priv level, when not set for branch */ 10542 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10543 10544 /* exclude_kernel checked on syscall entry */ 10545 if (!attr->exclude_kernel) 10546 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10547 10548 if (!attr->exclude_user) 10549 mask |= PERF_SAMPLE_BRANCH_USER; 10550 10551 if (!attr->exclude_hv) 10552 mask |= PERF_SAMPLE_BRANCH_HV; 10553 /* 10554 * adjust user setting (for HW filter setup) 10555 */ 10556 attr->branch_sample_type = mask; 10557 } 10558 /* privileged levels capture (kernel, hv): check permissions */ 10559 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10560 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10561 return -EACCES; 10562 } 10563 10564 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10565 ret = perf_reg_validate(attr->sample_regs_user); 10566 if (ret) 10567 return ret; 10568 } 10569 10570 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10571 if (!arch_perf_have_user_stack_dump()) 10572 return -ENOSYS; 10573 10574 /* 10575 * We have __u32 type for the size, but so far 10576 * we can only use __u16 as maximum due to the 10577 * __u16 sample size limit. 10578 */ 10579 if (attr->sample_stack_user >= USHRT_MAX) 10580 return -EINVAL; 10581 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10582 return -EINVAL; 10583 } 10584 10585 if (!attr->sample_max_stack) 10586 attr->sample_max_stack = sysctl_perf_event_max_stack; 10587 10588 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10589 ret = perf_reg_validate(attr->sample_regs_intr); 10590 out: 10591 return ret; 10592 10593 err_size: 10594 put_user(sizeof(*attr), &uattr->size); 10595 ret = -E2BIG; 10596 goto out; 10597 } 10598 10599 static int 10600 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10601 { 10602 struct ring_buffer *rb = NULL; 10603 int ret = -EINVAL; 10604 10605 if (!output_event) 10606 goto set; 10607 10608 /* don't allow circular references */ 10609 if (event == output_event) 10610 goto out; 10611 10612 /* 10613 * Don't allow cross-cpu buffers 10614 */ 10615 if (output_event->cpu != event->cpu) 10616 goto out; 10617 10618 /* 10619 * If its not a per-cpu rb, it must be the same task. 10620 */ 10621 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10622 goto out; 10623 10624 /* 10625 * Mixing clocks in the same buffer is trouble you don't need. 10626 */ 10627 if (output_event->clock != event->clock) 10628 goto out; 10629 10630 /* 10631 * Either writing ring buffer from beginning or from end. 10632 * Mixing is not allowed. 10633 */ 10634 if (is_write_backward(output_event) != is_write_backward(event)) 10635 goto out; 10636 10637 /* 10638 * If both events generate aux data, they must be on the same PMU 10639 */ 10640 if (has_aux(event) && has_aux(output_event) && 10641 event->pmu != output_event->pmu) 10642 goto out; 10643 10644 set: 10645 mutex_lock(&event->mmap_mutex); 10646 /* Can't redirect output if we've got an active mmap() */ 10647 if (atomic_read(&event->mmap_count)) 10648 goto unlock; 10649 10650 if (output_event) { 10651 /* get the rb we want to redirect to */ 10652 rb = ring_buffer_get(output_event); 10653 if (!rb) 10654 goto unlock; 10655 } 10656 10657 ring_buffer_attach(event, rb); 10658 10659 ret = 0; 10660 unlock: 10661 mutex_unlock(&event->mmap_mutex); 10662 10663 out: 10664 return ret; 10665 } 10666 10667 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10668 { 10669 if (b < a) 10670 swap(a, b); 10671 10672 mutex_lock(a); 10673 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10674 } 10675 10676 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10677 { 10678 bool nmi_safe = false; 10679 10680 switch (clk_id) { 10681 case CLOCK_MONOTONIC: 10682 event->clock = &ktime_get_mono_fast_ns; 10683 nmi_safe = true; 10684 break; 10685 10686 case CLOCK_MONOTONIC_RAW: 10687 event->clock = &ktime_get_raw_fast_ns; 10688 nmi_safe = true; 10689 break; 10690 10691 case CLOCK_REALTIME: 10692 event->clock = &ktime_get_real_ns; 10693 break; 10694 10695 case CLOCK_BOOTTIME: 10696 event->clock = &ktime_get_boot_ns; 10697 break; 10698 10699 case CLOCK_TAI: 10700 event->clock = &ktime_get_tai_ns; 10701 break; 10702 10703 default: 10704 return -EINVAL; 10705 } 10706 10707 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10708 return -EINVAL; 10709 10710 return 0; 10711 } 10712 10713 /* 10714 * Variation on perf_event_ctx_lock_nested(), except we take two context 10715 * mutexes. 10716 */ 10717 static struct perf_event_context * 10718 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10719 struct perf_event_context *ctx) 10720 { 10721 struct perf_event_context *gctx; 10722 10723 again: 10724 rcu_read_lock(); 10725 gctx = READ_ONCE(group_leader->ctx); 10726 if (!refcount_inc_not_zero(&gctx->refcount)) { 10727 rcu_read_unlock(); 10728 goto again; 10729 } 10730 rcu_read_unlock(); 10731 10732 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10733 10734 if (group_leader->ctx != gctx) { 10735 mutex_unlock(&ctx->mutex); 10736 mutex_unlock(&gctx->mutex); 10737 put_ctx(gctx); 10738 goto again; 10739 } 10740 10741 return gctx; 10742 } 10743 10744 /** 10745 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10746 * 10747 * @attr_uptr: event_id type attributes for monitoring/sampling 10748 * @pid: target pid 10749 * @cpu: target cpu 10750 * @group_fd: group leader event fd 10751 */ 10752 SYSCALL_DEFINE5(perf_event_open, 10753 struct perf_event_attr __user *, attr_uptr, 10754 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10755 { 10756 struct perf_event *group_leader = NULL, *output_event = NULL; 10757 struct perf_event *event, *sibling; 10758 struct perf_event_attr attr; 10759 struct perf_event_context *ctx, *uninitialized_var(gctx); 10760 struct file *event_file = NULL; 10761 struct fd group = {NULL, 0}; 10762 struct task_struct *task = NULL; 10763 struct pmu *pmu; 10764 int event_fd; 10765 int move_group = 0; 10766 int err; 10767 int f_flags = O_RDWR; 10768 int cgroup_fd = -1; 10769 10770 /* for future expandability... */ 10771 if (flags & ~PERF_FLAG_ALL) 10772 return -EINVAL; 10773 10774 err = perf_copy_attr(attr_uptr, &attr); 10775 if (err) 10776 return err; 10777 10778 if (!attr.exclude_kernel) { 10779 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10780 return -EACCES; 10781 } 10782 10783 if (attr.namespaces) { 10784 if (!capable(CAP_SYS_ADMIN)) 10785 return -EACCES; 10786 } 10787 10788 if (attr.freq) { 10789 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10790 return -EINVAL; 10791 } else { 10792 if (attr.sample_period & (1ULL << 63)) 10793 return -EINVAL; 10794 } 10795 10796 /* Only privileged users can get physical addresses */ 10797 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10798 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10799 return -EACCES; 10800 10801 /* 10802 * In cgroup mode, the pid argument is used to pass the fd 10803 * opened to the cgroup directory in cgroupfs. The cpu argument 10804 * designates the cpu on which to monitor threads from that 10805 * cgroup. 10806 */ 10807 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10808 return -EINVAL; 10809 10810 if (flags & PERF_FLAG_FD_CLOEXEC) 10811 f_flags |= O_CLOEXEC; 10812 10813 event_fd = get_unused_fd_flags(f_flags); 10814 if (event_fd < 0) 10815 return event_fd; 10816 10817 if (group_fd != -1) { 10818 err = perf_fget_light(group_fd, &group); 10819 if (err) 10820 goto err_fd; 10821 group_leader = group.file->private_data; 10822 if (flags & PERF_FLAG_FD_OUTPUT) 10823 output_event = group_leader; 10824 if (flags & PERF_FLAG_FD_NO_GROUP) 10825 group_leader = NULL; 10826 } 10827 10828 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10829 task = find_lively_task_by_vpid(pid); 10830 if (IS_ERR(task)) { 10831 err = PTR_ERR(task); 10832 goto err_group_fd; 10833 } 10834 } 10835 10836 if (task && group_leader && 10837 group_leader->attr.inherit != attr.inherit) { 10838 err = -EINVAL; 10839 goto err_task; 10840 } 10841 10842 if (task) { 10843 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10844 if (err) 10845 goto err_task; 10846 10847 /* 10848 * Reuse ptrace permission checks for now. 10849 * 10850 * We must hold cred_guard_mutex across this and any potential 10851 * perf_install_in_context() call for this new event to 10852 * serialize against exec() altering our credentials (and the 10853 * perf_event_exit_task() that could imply). 10854 */ 10855 err = -EACCES; 10856 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10857 goto err_cred; 10858 } 10859 10860 if (flags & PERF_FLAG_PID_CGROUP) 10861 cgroup_fd = pid; 10862 10863 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10864 NULL, NULL, cgroup_fd); 10865 if (IS_ERR(event)) { 10866 err = PTR_ERR(event); 10867 goto err_cred; 10868 } 10869 10870 if (is_sampling_event(event)) { 10871 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10872 err = -EOPNOTSUPP; 10873 goto err_alloc; 10874 } 10875 } 10876 10877 /* 10878 * Special case software events and allow them to be part of 10879 * any hardware group. 10880 */ 10881 pmu = event->pmu; 10882 10883 if (attr.use_clockid) { 10884 err = perf_event_set_clock(event, attr.clockid); 10885 if (err) 10886 goto err_alloc; 10887 } 10888 10889 if (pmu->task_ctx_nr == perf_sw_context) 10890 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10891 10892 if (group_leader) { 10893 if (is_software_event(event) && 10894 !in_software_context(group_leader)) { 10895 /* 10896 * If the event is a sw event, but the group_leader 10897 * is on hw context. 10898 * 10899 * Allow the addition of software events to hw 10900 * groups, this is safe because software events 10901 * never fail to schedule. 10902 */ 10903 pmu = group_leader->ctx->pmu; 10904 } else if (!is_software_event(event) && 10905 is_software_event(group_leader) && 10906 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10907 /* 10908 * In case the group is a pure software group, and we 10909 * try to add a hardware event, move the whole group to 10910 * the hardware context. 10911 */ 10912 move_group = 1; 10913 } 10914 } 10915 10916 /* 10917 * Get the target context (task or percpu): 10918 */ 10919 ctx = find_get_context(pmu, task, event); 10920 if (IS_ERR(ctx)) { 10921 err = PTR_ERR(ctx); 10922 goto err_alloc; 10923 } 10924 10925 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10926 err = -EBUSY; 10927 goto err_context; 10928 } 10929 10930 /* 10931 * Look up the group leader (we will attach this event to it): 10932 */ 10933 if (group_leader) { 10934 err = -EINVAL; 10935 10936 /* 10937 * Do not allow a recursive hierarchy (this new sibling 10938 * becoming part of another group-sibling): 10939 */ 10940 if (group_leader->group_leader != group_leader) 10941 goto err_context; 10942 10943 /* All events in a group should have the same clock */ 10944 if (group_leader->clock != event->clock) 10945 goto err_context; 10946 10947 /* 10948 * Make sure we're both events for the same CPU; 10949 * grouping events for different CPUs is broken; since 10950 * you can never concurrently schedule them anyhow. 10951 */ 10952 if (group_leader->cpu != event->cpu) 10953 goto err_context; 10954 10955 /* 10956 * Make sure we're both on the same task, or both 10957 * per-CPU events. 10958 */ 10959 if (group_leader->ctx->task != ctx->task) 10960 goto err_context; 10961 10962 /* 10963 * Do not allow to attach to a group in a different task 10964 * or CPU context. If we're moving SW events, we'll fix 10965 * this up later, so allow that. 10966 */ 10967 if (!move_group && group_leader->ctx != ctx) 10968 goto err_context; 10969 10970 /* 10971 * Only a group leader can be exclusive or pinned 10972 */ 10973 if (attr.exclusive || attr.pinned) 10974 goto err_context; 10975 } 10976 10977 if (output_event) { 10978 err = perf_event_set_output(event, output_event); 10979 if (err) 10980 goto err_context; 10981 } 10982 10983 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10984 f_flags); 10985 if (IS_ERR(event_file)) { 10986 err = PTR_ERR(event_file); 10987 event_file = NULL; 10988 goto err_context; 10989 } 10990 10991 if (move_group) { 10992 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10993 10994 if (gctx->task == TASK_TOMBSTONE) { 10995 err = -ESRCH; 10996 goto err_locked; 10997 } 10998 10999 /* 11000 * Check if we raced against another sys_perf_event_open() call 11001 * moving the software group underneath us. 11002 */ 11003 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11004 /* 11005 * If someone moved the group out from under us, check 11006 * if this new event wound up on the same ctx, if so 11007 * its the regular !move_group case, otherwise fail. 11008 */ 11009 if (gctx != ctx) { 11010 err = -EINVAL; 11011 goto err_locked; 11012 } else { 11013 perf_event_ctx_unlock(group_leader, gctx); 11014 move_group = 0; 11015 } 11016 } 11017 } else { 11018 mutex_lock(&ctx->mutex); 11019 } 11020 11021 if (ctx->task == TASK_TOMBSTONE) { 11022 err = -ESRCH; 11023 goto err_locked; 11024 } 11025 11026 if (!perf_event_validate_size(event)) { 11027 err = -E2BIG; 11028 goto err_locked; 11029 } 11030 11031 if (!task) { 11032 /* 11033 * Check if the @cpu we're creating an event for is online. 11034 * 11035 * We use the perf_cpu_context::ctx::mutex to serialize against 11036 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11037 */ 11038 struct perf_cpu_context *cpuctx = 11039 container_of(ctx, struct perf_cpu_context, ctx); 11040 11041 if (!cpuctx->online) { 11042 err = -ENODEV; 11043 goto err_locked; 11044 } 11045 } 11046 11047 11048 /* 11049 * Must be under the same ctx::mutex as perf_install_in_context(), 11050 * because we need to serialize with concurrent event creation. 11051 */ 11052 if (!exclusive_event_installable(event, ctx)) { 11053 /* exclusive and group stuff are assumed mutually exclusive */ 11054 WARN_ON_ONCE(move_group); 11055 11056 err = -EBUSY; 11057 goto err_locked; 11058 } 11059 11060 WARN_ON_ONCE(ctx->parent_ctx); 11061 11062 /* 11063 * This is the point on no return; we cannot fail hereafter. This is 11064 * where we start modifying current state. 11065 */ 11066 11067 if (move_group) { 11068 /* 11069 * See perf_event_ctx_lock() for comments on the details 11070 * of swizzling perf_event::ctx. 11071 */ 11072 perf_remove_from_context(group_leader, 0); 11073 put_ctx(gctx); 11074 11075 for_each_sibling_event(sibling, group_leader) { 11076 perf_remove_from_context(sibling, 0); 11077 put_ctx(gctx); 11078 } 11079 11080 /* 11081 * Wait for everybody to stop referencing the events through 11082 * the old lists, before installing it on new lists. 11083 */ 11084 synchronize_rcu(); 11085 11086 /* 11087 * Install the group siblings before the group leader. 11088 * 11089 * Because a group leader will try and install the entire group 11090 * (through the sibling list, which is still in-tact), we can 11091 * end up with siblings installed in the wrong context. 11092 * 11093 * By installing siblings first we NO-OP because they're not 11094 * reachable through the group lists. 11095 */ 11096 for_each_sibling_event(sibling, group_leader) { 11097 perf_event__state_init(sibling); 11098 perf_install_in_context(ctx, sibling, sibling->cpu); 11099 get_ctx(ctx); 11100 } 11101 11102 /* 11103 * Removing from the context ends up with disabled 11104 * event. What we want here is event in the initial 11105 * startup state, ready to be add into new context. 11106 */ 11107 perf_event__state_init(group_leader); 11108 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11109 get_ctx(ctx); 11110 } 11111 11112 /* 11113 * Precalculate sample_data sizes; do while holding ctx::mutex such 11114 * that we're serialized against further additions and before 11115 * perf_install_in_context() which is the point the event is active and 11116 * can use these values. 11117 */ 11118 perf_event__header_size(event); 11119 perf_event__id_header_size(event); 11120 11121 event->owner = current; 11122 11123 perf_install_in_context(ctx, event, event->cpu); 11124 perf_unpin_context(ctx); 11125 11126 if (move_group) 11127 perf_event_ctx_unlock(group_leader, gctx); 11128 mutex_unlock(&ctx->mutex); 11129 11130 if (task) { 11131 mutex_unlock(&task->signal->cred_guard_mutex); 11132 put_task_struct(task); 11133 } 11134 11135 mutex_lock(¤t->perf_event_mutex); 11136 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11137 mutex_unlock(¤t->perf_event_mutex); 11138 11139 /* 11140 * Drop the reference on the group_event after placing the 11141 * new event on the sibling_list. This ensures destruction 11142 * of the group leader will find the pointer to itself in 11143 * perf_group_detach(). 11144 */ 11145 fdput(group); 11146 fd_install(event_fd, event_file); 11147 return event_fd; 11148 11149 err_locked: 11150 if (move_group) 11151 perf_event_ctx_unlock(group_leader, gctx); 11152 mutex_unlock(&ctx->mutex); 11153 /* err_file: */ 11154 fput(event_file); 11155 err_context: 11156 perf_unpin_context(ctx); 11157 put_ctx(ctx); 11158 err_alloc: 11159 /* 11160 * If event_file is set, the fput() above will have called ->release() 11161 * and that will take care of freeing the event. 11162 */ 11163 if (!event_file) 11164 free_event(event); 11165 err_cred: 11166 if (task) 11167 mutex_unlock(&task->signal->cred_guard_mutex); 11168 err_task: 11169 if (task) 11170 put_task_struct(task); 11171 err_group_fd: 11172 fdput(group); 11173 err_fd: 11174 put_unused_fd(event_fd); 11175 return err; 11176 } 11177 11178 /** 11179 * perf_event_create_kernel_counter 11180 * 11181 * @attr: attributes of the counter to create 11182 * @cpu: cpu in which the counter is bound 11183 * @task: task to profile (NULL for percpu) 11184 */ 11185 struct perf_event * 11186 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11187 struct task_struct *task, 11188 perf_overflow_handler_t overflow_handler, 11189 void *context) 11190 { 11191 struct perf_event_context *ctx; 11192 struct perf_event *event; 11193 int err; 11194 11195 /* 11196 * Get the target context (task or percpu): 11197 */ 11198 11199 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11200 overflow_handler, context, -1); 11201 if (IS_ERR(event)) { 11202 err = PTR_ERR(event); 11203 goto err; 11204 } 11205 11206 /* Mark owner so we could distinguish it from user events. */ 11207 event->owner = TASK_TOMBSTONE; 11208 11209 ctx = find_get_context(event->pmu, task, event); 11210 if (IS_ERR(ctx)) { 11211 err = PTR_ERR(ctx); 11212 goto err_free; 11213 } 11214 11215 WARN_ON_ONCE(ctx->parent_ctx); 11216 mutex_lock(&ctx->mutex); 11217 if (ctx->task == TASK_TOMBSTONE) { 11218 err = -ESRCH; 11219 goto err_unlock; 11220 } 11221 11222 if (!task) { 11223 /* 11224 * Check if the @cpu we're creating an event for is online. 11225 * 11226 * We use the perf_cpu_context::ctx::mutex to serialize against 11227 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11228 */ 11229 struct perf_cpu_context *cpuctx = 11230 container_of(ctx, struct perf_cpu_context, ctx); 11231 if (!cpuctx->online) { 11232 err = -ENODEV; 11233 goto err_unlock; 11234 } 11235 } 11236 11237 if (!exclusive_event_installable(event, ctx)) { 11238 err = -EBUSY; 11239 goto err_unlock; 11240 } 11241 11242 perf_install_in_context(ctx, event, cpu); 11243 perf_unpin_context(ctx); 11244 mutex_unlock(&ctx->mutex); 11245 11246 return event; 11247 11248 err_unlock: 11249 mutex_unlock(&ctx->mutex); 11250 perf_unpin_context(ctx); 11251 put_ctx(ctx); 11252 err_free: 11253 free_event(event); 11254 err: 11255 return ERR_PTR(err); 11256 } 11257 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11258 11259 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11260 { 11261 struct perf_event_context *src_ctx; 11262 struct perf_event_context *dst_ctx; 11263 struct perf_event *event, *tmp; 11264 LIST_HEAD(events); 11265 11266 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11267 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11268 11269 /* 11270 * See perf_event_ctx_lock() for comments on the details 11271 * of swizzling perf_event::ctx. 11272 */ 11273 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11274 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11275 event_entry) { 11276 perf_remove_from_context(event, 0); 11277 unaccount_event_cpu(event, src_cpu); 11278 put_ctx(src_ctx); 11279 list_add(&event->migrate_entry, &events); 11280 } 11281 11282 /* 11283 * Wait for the events to quiesce before re-instating them. 11284 */ 11285 synchronize_rcu(); 11286 11287 /* 11288 * Re-instate events in 2 passes. 11289 * 11290 * Skip over group leaders and only install siblings on this first 11291 * pass, siblings will not get enabled without a leader, however a 11292 * leader will enable its siblings, even if those are still on the old 11293 * context. 11294 */ 11295 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11296 if (event->group_leader == event) 11297 continue; 11298 11299 list_del(&event->migrate_entry); 11300 if (event->state >= PERF_EVENT_STATE_OFF) 11301 event->state = PERF_EVENT_STATE_INACTIVE; 11302 account_event_cpu(event, dst_cpu); 11303 perf_install_in_context(dst_ctx, event, dst_cpu); 11304 get_ctx(dst_ctx); 11305 } 11306 11307 /* 11308 * Once all the siblings are setup properly, install the group leaders 11309 * to make it go. 11310 */ 11311 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11312 list_del(&event->migrate_entry); 11313 if (event->state >= PERF_EVENT_STATE_OFF) 11314 event->state = PERF_EVENT_STATE_INACTIVE; 11315 account_event_cpu(event, dst_cpu); 11316 perf_install_in_context(dst_ctx, event, dst_cpu); 11317 get_ctx(dst_ctx); 11318 } 11319 mutex_unlock(&dst_ctx->mutex); 11320 mutex_unlock(&src_ctx->mutex); 11321 } 11322 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11323 11324 static void sync_child_event(struct perf_event *child_event, 11325 struct task_struct *child) 11326 { 11327 struct perf_event *parent_event = child_event->parent; 11328 u64 child_val; 11329 11330 if (child_event->attr.inherit_stat) 11331 perf_event_read_event(child_event, child); 11332 11333 child_val = perf_event_count(child_event); 11334 11335 /* 11336 * Add back the child's count to the parent's count: 11337 */ 11338 atomic64_add(child_val, &parent_event->child_count); 11339 atomic64_add(child_event->total_time_enabled, 11340 &parent_event->child_total_time_enabled); 11341 atomic64_add(child_event->total_time_running, 11342 &parent_event->child_total_time_running); 11343 } 11344 11345 static void 11346 perf_event_exit_event(struct perf_event *child_event, 11347 struct perf_event_context *child_ctx, 11348 struct task_struct *child) 11349 { 11350 struct perf_event *parent_event = child_event->parent; 11351 11352 /* 11353 * Do not destroy the 'original' grouping; because of the context 11354 * switch optimization the original events could've ended up in a 11355 * random child task. 11356 * 11357 * If we were to destroy the original group, all group related 11358 * operations would cease to function properly after this random 11359 * child dies. 11360 * 11361 * Do destroy all inherited groups, we don't care about those 11362 * and being thorough is better. 11363 */ 11364 raw_spin_lock_irq(&child_ctx->lock); 11365 WARN_ON_ONCE(child_ctx->is_active); 11366 11367 if (parent_event) 11368 perf_group_detach(child_event); 11369 list_del_event(child_event, child_ctx); 11370 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11371 raw_spin_unlock_irq(&child_ctx->lock); 11372 11373 /* 11374 * Parent events are governed by their filedesc, retain them. 11375 */ 11376 if (!parent_event) { 11377 perf_event_wakeup(child_event); 11378 return; 11379 } 11380 /* 11381 * Child events can be cleaned up. 11382 */ 11383 11384 sync_child_event(child_event, child); 11385 11386 /* 11387 * Remove this event from the parent's list 11388 */ 11389 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11390 mutex_lock(&parent_event->child_mutex); 11391 list_del_init(&child_event->child_list); 11392 mutex_unlock(&parent_event->child_mutex); 11393 11394 /* 11395 * Kick perf_poll() for is_event_hup(). 11396 */ 11397 perf_event_wakeup(parent_event); 11398 free_event(child_event); 11399 put_event(parent_event); 11400 } 11401 11402 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11403 { 11404 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11405 struct perf_event *child_event, *next; 11406 11407 WARN_ON_ONCE(child != current); 11408 11409 child_ctx = perf_pin_task_context(child, ctxn); 11410 if (!child_ctx) 11411 return; 11412 11413 /* 11414 * In order to reduce the amount of tricky in ctx tear-down, we hold 11415 * ctx::mutex over the entire thing. This serializes against almost 11416 * everything that wants to access the ctx. 11417 * 11418 * The exception is sys_perf_event_open() / 11419 * perf_event_create_kernel_count() which does find_get_context() 11420 * without ctx::mutex (it cannot because of the move_group double mutex 11421 * lock thing). See the comments in perf_install_in_context(). 11422 */ 11423 mutex_lock(&child_ctx->mutex); 11424 11425 /* 11426 * In a single ctx::lock section, de-schedule the events and detach the 11427 * context from the task such that we cannot ever get it scheduled back 11428 * in. 11429 */ 11430 raw_spin_lock_irq(&child_ctx->lock); 11431 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11432 11433 /* 11434 * Now that the context is inactive, destroy the task <-> ctx relation 11435 * and mark the context dead. 11436 */ 11437 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11438 put_ctx(child_ctx); /* cannot be last */ 11439 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11440 put_task_struct(current); /* cannot be last */ 11441 11442 clone_ctx = unclone_ctx(child_ctx); 11443 raw_spin_unlock_irq(&child_ctx->lock); 11444 11445 if (clone_ctx) 11446 put_ctx(clone_ctx); 11447 11448 /* 11449 * Report the task dead after unscheduling the events so that we 11450 * won't get any samples after PERF_RECORD_EXIT. We can however still 11451 * get a few PERF_RECORD_READ events. 11452 */ 11453 perf_event_task(child, child_ctx, 0); 11454 11455 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11456 perf_event_exit_event(child_event, child_ctx, child); 11457 11458 mutex_unlock(&child_ctx->mutex); 11459 11460 put_ctx(child_ctx); 11461 } 11462 11463 /* 11464 * When a child task exits, feed back event values to parent events. 11465 * 11466 * Can be called with cred_guard_mutex held when called from 11467 * install_exec_creds(). 11468 */ 11469 void perf_event_exit_task(struct task_struct *child) 11470 { 11471 struct perf_event *event, *tmp; 11472 int ctxn; 11473 11474 mutex_lock(&child->perf_event_mutex); 11475 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11476 owner_entry) { 11477 list_del_init(&event->owner_entry); 11478 11479 /* 11480 * Ensure the list deletion is visible before we clear 11481 * the owner, closes a race against perf_release() where 11482 * we need to serialize on the owner->perf_event_mutex. 11483 */ 11484 smp_store_release(&event->owner, NULL); 11485 } 11486 mutex_unlock(&child->perf_event_mutex); 11487 11488 for_each_task_context_nr(ctxn) 11489 perf_event_exit_task_context(child, ctxn); 11490 11491 /* 11492 * The perf_event_exit_task_context calls perf_event_task 11493 * with child's task_ctx, which generates EXIT events for 11494 * child contexts and sets child->perf_event_ctxp[] to NULL. 11495 * At this point we need to send EXIT events to cpu contexts. 11496 */ 11497 perf_event_task(child, NULL, 0); 11498 } 11499 11500 static void perf_free_event(struct perf_event *event, 11501 struct perf_event_context *ctx) 11502 { 11503 struct perf_event *parent = event->parent; 11504 11505 if (WARN_ON_ONCE(!parent)) 11506 return; 11507 11508 mutex_lock(&parent->child_mutex); 11509 list_del_init(&event->child_list); 11510 mutex_unlock(&parent->child_mutex); 11511 11512 put_event(parent); 11513 11514 raw_spin_lock_irq(&ctx->lock); 11515 perf_group_detach(event); 11516 list_del_event(event, ctx); 11517 raw_spin_unlock_irq(&ctx->lock); 11518 free_event(event); 11519 } 11520 11521 /* 11522 * Free an unexposed, unused context as created by inheritance by 11523 * perf_event_init_task below, used by fork() in case of fail. 11524 * 11525 * Not all locks are strictly required, but take them anyway to be nice and 11526 * help out with the lockdep assertions. 11527 */ 11528 void perf_event_free_task(struct task_struct *task) 11529 { 11530 struct perf_event_context *ctx; 11531 struct perf_event *event, *tmp; 11532 int ctxn; 11533 11534 for_each_task_context_nr(ctxn) { 11535 ctx = task->perf_event_ctxp[ctxn]; 11536 if (!ctx) 11537 continue; 11538 11539 mutex_lock(&ctx->mutex); 11540 raw_spin_lock_irq(&ctx->lock); 11541 /* 11542 * Destroy the task <-> ctx relation and mark the context dead. 11543 * 11544 * This is important because even though the task hasn't been 11545 * exposed yet the context has been (through child_list). 11546 */ 11547 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11548 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11549 put_task_struct(task); /* cannot be last */ 11550 raw_spin_unlock_irq(&ctx->lock); 11551 11552 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11553 perf_free_event(event, ctx); 11554 11555 mutex_unlock(&ctx->mutex); 11556 put_ctx(ctx); 11557 } 11558 } 11559 11560 void perf_event_delayed_put(struct task_struct *task) 11561 { 11562 int ctxn; 11563 11564 for_each_task_context_nr(ctxn) 11565 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11566 } 11567 11568 struct file *perf_event_get(unsigned int fd) 11569 { 11570 struct file *file; 11571 11572 file = fget_raw(fd); 11573 if (!file) 11574 return ERR_PTR(-EBADF); 11575 11576 if (file->f_op != &perf_fops) { 11577 fput(file); 11578 return ERR_PTR(-EBADF); 11579 } 11580 11581 return file; 11582 } 11583 11584 const struct perf_event *perf_get_event(struct file *file) 11585 { 11586 if (file->f_op != &perf_fops) 11587 return ERR_PTR(-EINVAL); 11588 11589 return file->private_data; 11590 } 11591 11592 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11593 { 11594 if (!event) 11595 return ERR_PTR(-EINVAL); 11596 11597 return &event->attr; 11598 } 11599 11600 /* 11601 * Inherit an event from parent task to child task. 11602 * 11603 * Returns: 11604 * - valid pointer on success 11605 * - NULL for orphaned events 11606 * - IS_ERR() on error 11607 */ 11608 static struct perf_event * 11609 inherit_event(struct perf_event *parent_event, 11610 struct task_struct *parent, 11611 struct perf_event_context *parent_ctx, 11612 struct task_struct *child, 11613 struct perf_event *group_leader, 11614 struct perf_event_context *child_ctx) 11615 { 11616 enum perf_event_state parent_state = parent_event->state; 11617 struct perf_event *child_event; 11618 unsigned long flags; 11619 11620 /* 11621 * Instead of creating recursive hierarchies of events, 11622 * we link inherited events back to the original parent, 11623 * which has a filp for sure, which we use as the reference 11624 * count: 11625 */ 11626 if (parent_event->parent) 11627 parent_event = parent_event->parent; 11628 11629 child_event = perf_event_alloc(&parent_event->attr, 11630 parent_event->cpu, 11631 child, 11632 group_leader, parent_event, 11633 NULL, NULL, -1); 11634 if (IS_ERR(child_event)) 11635 return child_event; 11636 11637 11638 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11639 !child_ctx->task_ctx_data) { 11640 struct pmu *pmu = child_event->pmu; 11641 11642 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11643 GFP_KERNEL); 11644 if (!child_ctx->task_ctx_data) { 11645 free_event(child_event); 11646 return NULL; 11647 } 11648 } 11649 11650 /* 11651 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11652 * must be under the same lock in order to serialize against 11653 * perf_event_release_kernel(), such that either we must observe 11654 * is_orphaned_event() or they will observe us on the child_list. 11655 */ 11656 mutex_lock(&parent_event->child_mutex); 11657 if (is_orphaned_event(parent_event) || 11658 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11659 mutex_unlock(&parent_event->child_mutex); 11660 /* task_ctx_data is freed with child_ctx */ 11661 free_event(child_event); 11662 return NULL; 11663 } 11664 11665 get_ctx(child_ctx); 11666 11667 /* 11668 * Make the child state follow the state of the parent event, 11669 * not its attr.disabled bit. We hold the parent's mutex, 11670 * so we won't race with perf_event_{en, dis}able_family. 11671 */ 11672 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11673 child_event->state = PERF_EVENT_STATE_INACTIVE; 11674 else 11675 child_event->state = PERF_EVENT_STATE_OFF; 11676 11677 if (parent_event->attr.freq) { 11678 u64 sample_period = parent_event->hw.sample_period; 11679 struct hw_perf_event *hwc = &child_event->hw; 11680 11681 hwc->sample_period = sample_period; 11682 hwc->last_period = sample_period; 11683 11684 local64_set(&hwc->period_left, sample_period); 11685 } 11686 11687 child_event->ctx = child_ctx; 11688 child_event->overflow_handler = parent_event->overflow_handler; 11689 child_event->overflow_handler_context 11690 = parent_event->overflow_handler_context; 11691 11692 /* 11693 * Precalculate sample_data sizes 11694 */ 11695 perf_event__header_size(child_event); 11696 perf_event__id_header_size(child_event); 11697 11698 /* 11699 * Link it up in the child's context: 11700 */ 11701 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11702 add_event_to_ctx(child_event, child_ctx); 11703 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11704 11705 /* 11706 * Link this into the parent event's child list 11707 */ 11708 list_add_tail(&child_event->child_list, &parent_event->child_list); 11709 mutex_unlock(&parent_event->child_mutex); 11710 11711 return child_event; 11712 } 11713 11714 /* 11715 * Inherits an event group. 11716 * 11717 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11718 * This matches with perf_event_release_kernel() removing all child events. 11719 * 11720 * Returns: 11721 * - 0 on success 11722 * - <0 on error 11723 */ 11724 static int inherit_group(struct perf_event *parent_event, 11725 struct task_struct *parent, 11726 struct perf_event_context *parent_ctx, 11727 struct task_struct *child, 11728 struct perf_event_context *child_ctx) 11729 { 11730 struct perf_event *leader; 11731 struct perf_event *sub; 11732 struct perf_event *child_ctr; 11733 11734 leader = inherit_event(parent_event, parent, parent_ctx, 11735 child, NULL, child_ctx); 11736 if (IS_ERR(leader)) 11737 return PTR_ERR(leader); 11738 /* 11739 * @leader can be NULL here because of is_orphaned_event(). In this 11740 * case inherit_event() will create individual events, similar to what 11741 * perf_group_detach() would do anyway. 11742 */ 11743 for_each_sibling_event(sub, parent_event) { 11744 child_ctr = inherit_event(sub, parent, parent_ctx, 11745 child, leader, child_ctx); 11746 if (IS_ERR(child_ctr)) 11747 return PTR_ERR(child_ctr); 11748 } 11749 return 0; 11750 } 11751 11752 /* 11753 * Creates the child task context and tries to inherit the event-group. 11754 * 11755 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11756 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11757 * consistent with perf_event_release_kernel() removing all child events. 11758 * 11759 * Returns: 11760 * - 0 on success 11761 * - <0 on error 11762 */ 11763 static int 11764 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11765 struct perf_event_context *parent_ctx, 11766 struct task_struct *child, int ctxn, 11767 int *inherited_all) 11768 { 11769 int ret; 11770 struct perf_event_context *child_ctx; 11771 11772 if (!event->attr.inherit) { 11773 *inherited_all = 0; 11774 return 0; 11775 } 11776 11777 child_ctx = child->perf_event_ctxp[ctxn]; 11778 if (!child_ctx) { 11779 /* 11780 * This is executed from the parent task context, so 11781 * inherit events that have been marked for cloning. 11782 * First allocate and initialize a context for the 11783 * child. 11784 */ 11785 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11786 if (!child_ctx) 11787 return -ENOMEM; 11788 11789 child->perf_event_ctxp[ctxn] = child_ctx; 11790 } 11791 11792 ret = inherit_group(event, parent, parent_ctx, 11793 child, child_ctx); 11794 11795 if (ret) 11796 *inherited_all = 0; 11797 11798 return ret; 11799 } 11800 11801 /* 11802 * Initialize the perf_event context in task_struct 11803 */ 11804 static int perf_event_init_context(struct task_struct *child, int ctxn) 11805 { 11806 struct perf_event_context *child_ctx, *parent_ctx; 11807 struct perf_event_context *cloned_ctx; 11808 struct perf_event *event; 11809 struct task_struct *parent = current; 11810 int inherited_all = 1; 11811 unsigned long flags; 11812 int ret = 0; 11813 11814 if (likely(!parent->perf_event_ctxp[ctxn])) 11815 return 0; 11816 11817 /* 11818 * If the parent's context is a clone, pin it so it won't get 11819 * swapped under us. 11820 */ 11821 parent_ctx = perf_pin_task_context(parent, ctxn); 11822 if (!parent_ctx) 11823 return 0; 11824 11825 /* 11826 * No need to check if parent_ctx != NULL here; since we saw 11827 * it non-NULL earlier, the only reason for it to become NULL 11828 * is if we exit, and since we're currently in the middle of 11829 * a fork we can't be exiting at the same time. 11830 */ 11831 11832 /* 11833 * Lock the parent list. No need to lock the child - not PID 11834 * hashed yet and not running, so nobody can access it. 11835 */ 11836 mutex_lock(&parent_ctx->mutex); 11837 11838 /* 11839 * We dont have to disable NMIs - we are only looking at 11840 * the list, not manipulating it: 11841 */ 11842 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11843 ret = inherit_task_group(event, parent, parent_ctx, 11844 child, ctxn, &inherited_all); 11845 if (ret) 11846 goto out_unlock; 11847 } 11848 11849 /* 11850 * We can't hold ctx->lock when iterating the ->flexible_group list due 11851 * to allocations, but we need to prevent rotation because 11852 * rotate_ctx() will change the list from interrupt context. 11853 */ 11854 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11855 parent_ctx->rotate_disable = 1; 11856 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11857 11858 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11859 ret = inherit_task_group(event, parent, parent_ctx, 11860 child, ctxn, &inherited_all); 11861 if (ret) 11862 goto out_unlock; 11863 } 11864 11865 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11866 parent_ctx->rotate_disable = 0; 11867 11868 child_ctx = child->perf_event_ctxp[ctxn]; 11869 11870 if (child_ctx && inherited_all) { 11871 /* 11872 * Mark the child context as a clone of the parent 11873 * context, or of whatever the parent is a clone of. 11874 * 11875 * Note that if the parent is a clone, the holding of 11876 * parent_ctx->lock avoids it from being uncloned. 11877 */ 11878 cloned_ctx = parent_ctx->parent_ctx; 11879 if (cloned_ctx) { 11880 child_ctx->parent_ctx = cloned_ctx; 11881 child_ctx->parent_gen = parent_ctx->parent_gen; 11882 } else { 11883 child_ctx->parent_ctx = parent_ctx; 11884 child_ctx->parent_gen = parent_ctx->generation; 11885 } 11886 get_ctx(child_ctx->parent_ctx); 11887 } 11888 11889 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11890 out_unlock: 11891 mutex_unlock(&parent_ctx->mutex); 11892 11893 perf_unpin_context(parent_ctx); 11894 put_ctx(parent_ctx); 11895 11896 return ret; 11897 } 11898 11899 /* 11900 * Initialize the perf_event context in task_struct 11901 */ 11902 int perf_event_init_task(struct task_struct *child) 11903 { 11904 int ctxn, ret; 11905 11906 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11907 mutex_init(&child->perf_event_mutex); 11908 INIT_LIST_HEAD(&child->perf_event_list); 11909 11910 for_each_task_context_nr(ctxn) { 11911 ret = perf_event_init_context(child, ctxn); 11912 if (ret) { 11913 perf_event_free_task(child); 11914 return ret; 11915 } 11916 } 11917 11918 return 0; 11919 } 11920 11921 static void __init perf_event_init_all_cpus(void) 11922 { 11923 struct swevent_htable *swhash; 11924 int cpu; 11925 11926 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11927 11928 for_each_possible_cpu(cpu) { 11929 swhash = &per_cpu(swevent_htable, cpu); 11930 mutex_init(&swhash->hlist_mutex); 11931 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11932 11933 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11934 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11935 11936 #ifdef CONFIG_CGROUP_PERF 11937 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11938 #endif 11939 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11940 } 11941 } 11942 11943 static void perf_swevent_init_cpu(unsigned int cpu) 11944 { 11945 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11946 11947 mutex_lock(&swhash->hlist_mutex); 11948 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11949 struct swevent_hlist *hlist; 11950 11951 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11952 WARN_ON(!hlist); 11953 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11954 } 11955 mutex_unlock(&swhash->hlist_mutex); 11956 } 11957 11958 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11959 static void __perf_event_exit_context(void *__info) 11960 { 11961 struct perf_event_context *ctx = __info; 11962 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11963 struct perf_event *event; 11964 11965 raw_spin_lock(&ctx->lock); 11966 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11967 list_for_each_entry(event, &ctx->event_list, event_entry) 11968 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11969 raw_spin_unlock(&ctx->lock); 11970 } 11971 11972 static void perf_event_exit_cpu_context(int cpu) 11973 { 11974 struct perf_cpu_context *cpuctx; 11975 struct perf_event_context *ctx; 11976 struct pmu *pmu; 11977 11978 mutex_lock(&pmus_lock); 11979 list_for_each_entry(pmu, &pmus, entry) { 11980 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11981 ctx = &cpuctx->ctx; 11982 11983 mutex_lock(&ctx->mutex); 11984 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11985 cpuctx->online = 0; 11986 mutex_unlock(&ctx->mutex); 11987 } 11988 cpumask_clear_cpu(cpu, perf_online_mask); 11989 mutex_unlock(&pmus_lock); 11990 } 11991 #else 11992 11993 static void perf_event_exit_cpu_context(int cpu) { } 11994 11995 #endif 11996 11997 int perf_event_init_cpu(unsigned int cpu) 11998 { 11999 struct perf_cpu_context *cpuctx; 12000 struct perf_event_context *ctx; 12001 struct pmu *pmu; 12002 12003 perf_swevent_init_cpu(cpu); 12004 12005 mutex_lock(&pmus_lock); 12006 cpumask_set_cpu(cpu, perf_online_mask); 12007 list_for_each_entry(pmu, &pmus, entry) { 12008 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12009 ctx = &cpuctx->ctx; 12010 12011 mutex_lock(&ctx->mutex); 12012 cpuctx->online = 1; 12013 mutex_unlock(&ctx->mutex); 12014 } 12015 mutex_unlock(&pmus_lock); 12016 12017 return 0; 12018 } 12019 12020 int perf_event_exit_cpu(unsigned int cpu) 12021 { 12022 perf_event_exit_cpu_context(cpu); 12023 return 0; 12024 } 12025 12026 static int 12027 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12028 { 12029 int cpu; 12030 12031 for_each_online_cpu(cpu) 12032 perf_event_exit_cpu(cpu); 12033 12034 return NOTIFY_OK; 12035 } 12036 12037 /* 12038 * Run the perf reboot notifier at the very last possible moment so that 12039 * the generic watchdog code runs as long as possible. 12040 */ 12041 static struct notifier_block perf_reboot_notifier = { 12042 .notifier_call = perf_reboot, 12043 .priority = INT_MIN, 12044 }; 12045 12046 void __init perf_event_init(void) 12047 { 12048 int ret; 12049 12050 idr_init(&pmu_idr); 12051 12052 perf_event_init_all_cpus(); 12053 init_srcu_struct(&pmus_srcu); 12054 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12055 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12056 perf_pmu_register(&perf_task_clock, NULL, -1); 12057 perf_tp_register(); 12058 perf_event_init_cpu(smp_processor_id()); 12059 register_reboot_notifier(&perf_reboot_notifier); 12060 12061 ret = init_hw_breakpoint(); 12062 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12063 12064 /* 12065 * Build time assertion that we keep the data_head at the intended 12066 * location. IOW, validation we got the __reserved[] size right. 12067 */ 12068 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12069 != 1024); 12070 } 12071 12072 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12073 char *page) 12074 { 12075 struct perf_pmu_events_attr *pmu_attr = 12076 container_of(attr, struct perf_pmu_events_attr, attr); 12077 12078 if (pmu_attr->event_str) 12079 return sprintf(page, "%s\n", pmu_attr->event_str); 12080 12081 return 0; 12082 } 12083 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12084 12085 static int __init perf_event_sysfs_init(void) 12086 { 12087 struct pmu *pmu; 12088 int ret; 12089 12090 mutex_lock(&pmus_lock); 12091 12092 ret = bus_register(&pmu_bus); 12093 if (ret) 12094 goto unlock; 12095 12096 list_for_each_entry(pmu, &pmus, entry) { 12097 if (!pmu->name || pmu->type < 0) 12098 continue; 12099 12100 ret = pmu_dev_alloc(pmu); 12101 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12102 } 12103 pmu_bus_running = 1; 12104 ret = 0; 12105 12106 unlock: 12107 mutex_unlock(&pmus_lock); 12108 12109 return ret; 12110 } 12111 device_initcall(perf_event_sysfs_init); 12112 12113 #ifdef CONFIG_CGROUP_PERF 12114 static struct cgroup_subsys_state * 12115 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12116 { 12117 struct perf_cgroup *jc; 12118 12119 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12120 if (!jc) 12121 return ERR_PTR(-ENOMEM); 12122 12123 jc->info = alloc_percpu(struct perf_cgroup_info); 12124 if (!jc->info) { 12125 kfree(jc); 12126 return ERR_PTR(-ENOMEM); 12127 } 12128 12129 return &jc->css; 12130 } 12131 12132 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12133 { 12134 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12135 12136 free_percpu(jc->info); 12137 kfree(jc); 12138 } 12139 12140 static int __perf_cgroup_move(void *info) 12141 { 12142 struct task_struct *task = info; 12143 rcu_read_lock(); 12144 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12145 rcu_read_unlock(); 12146 return 0; 12147 } 12148 12149 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12150 { 12151 struct task_struct *task; 12152 struct cgroup_subsys_state *css; 12153 12154 cgroup_taskset_for_each(task, css, tset) 12155 task_function_call(task, __perf_cgroup_move, task); 12156 } 12157 12158 struct cgroup_subsys perf_event_cgrp_subsys = { 12159 .css_alloc = perf_cgroup_css_alloc, 12160 .css_free = perf_cgroup_css_free, 12161 .attach = perf_cgroup_attach, 12162 /* 12163 * Implicitly enable on dfl hierarchy so that perf events can 12164 * always be filtered by cgroup2 path as long as perf_event 12165 * controller is not mounted on a legacy hierarchy. 12166 */ 12167 .implicit_on_dfl = true, 12168 .threaded = true, 12169 }; 12170 #endif /* CONFIG_CGROUP_PERF */ 12171