1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 /* 678 * UP store-release, load-acquire 679 */ 680 681 #define __store_release(ptr, val) \ 682 do { \ 683 barrier(); \ 684 WRITE_ONCE(*(ptr), (val)); \ 685 } while (0) 686 687 #define __load_acquire(ptr) \ 688 ({ \ 689 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 690 barrier(); \ 691 ___p; \ 692 }) 693 694 #ifdef CONFIG_CGROUP_PERF 695 696 static inline bool 697 perf_cgroup_match(struct perf_event *event) 698 { 699 struct perf_event_context *ctx = event->ctx; 700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 701 702 /* @event doesn't care about cgroup */ 703 if (!event->cgrp) 704 return true; 705 706 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 707 if (!cpuctx->cgrp) 708 return false; 709 710 /* 711 * Cgroup scoping is recursive. An event enabled for a cgroup is 712 * also enabled for all its descendant cgroups. If @cpuctx's 713 * cgroup is a descendant of @event's (the test covers identity 714 * case), it's a match. 715 */ 716 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 717 event->cgrp->css.cgroup); 718 } 719 720 static inline void perf_detach_cgroup(struct perf_event *event) 721 { 722 css_put(&event->cgrp->css); 723 event->cgrp = NULL; 724 } 725 726 static inline int is_cgroup_event(struct perf_event *event) 727 { 728 return event->cgrp != NULL; 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 struct perf_cgroup_info *t; 734 735 t = per_cpu_ptr(event->cgrp->info, event->cpu); 736 return t->time; 737 } 738 739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 740 { 741 struct perf_cgroup_info *t; 742 743 t = per_cpu_ptr(event->cgrp->info, event->cpu); 744 if (!__load_acquire(&t->active)) 745 return t->time; 746 now += READ_ONCE(t->timeoffset); 747 return now; 748 } 749 750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 751 { 752 if (adv) 753 info->time += now - info->timestamp; 754 info->timestamp = now; 755 /* 756 * see update_context_time() 757 */ 758 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 759 } 760 761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 762 { 763 struct perf_cgroup *cgrp = cpuctx->cgrp; 764 struct cgroup_subsys_state *css; 765 struct perf_cgroup_info *info; 766 767 if (cgrp) { 768 u64 now = perf_clock(); 769 770 for (css = &cgrp->css; css; css = css->parent) { 771 cgrp = container_of(css, struct perf_cgroup, css); 772 info = this_cpu_ptr(cgrp->info); 773 774 __update_cgrp_time(info, now, true); 775 if (final) 776 __store_release(&info->active, 0); 777 } 778 } 779 } 780 781 static inline void update_cgrp_time_from_event(struct perf_event *event) 782 { 783 struct perf_cgroup_info *info; 784 struct perf_cgroup *cgrp; 785 786 /* 787 * ensure we access cgroup data only when needed and 788 * when we know the cgroup is pinned (css_get) 789 */ 790 if (!is_cgroup_event(event)) 791 return; 792 793 cgrp = perf_cgroup_from_task(current, event->ctx); 794 /* 795 * Do not update time when cgroup is not active 796 */ 797 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) { 798 info = this_cpu_ptr(event->cgrp->info); 799 __update_cgrp_time(info, perf_clock(), true); 800 } 801 } 802 803 static inline void 804 perf_cgroup_set_timestamp(struct task_struct *task, 805 struct perf_event_context *ctx) 806 { 807 struct perf_cgroup *cgrp; 808 struct perf_cgroup_info *info; 809 struct cgroup_subsys_state *css; 810 811 /* 812 * ctx->lock held by caller 813 * ensure we do not access cgroup data 814 * unless we have the cgroup pinned (css_get) 815 */ 816 if (!task || !ctx->nr_cgroups) 817 return; 818 819 cgrp = perf_cgroup_from_task(task, ctx); 820 821 for (css = &cgrp->css; css; css = css->parent) { 822 cgrp = container_of(css, struct perf_cgroup, css); 823 info = this_cpu_ptr(cgrp->info); 824 __update_cgrp_time(info, ctx->timestamp, false); 825 __store_release(&info->active, 1); 826 } 827 } 828 829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 830 831 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 832 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 833 834 /* 835 * reschedule events based on the cgroup constraint of task. 836 * 837 * mode SWOUT : schedule out everything 838 * mode SWIN : schedule in based on cgroup for next 839 */ 840 static void perf_cgroup_switch(struct task_struct *task, int mode) 841 { 842 struct perf_cpu_context *cpuctx; 843 struct list_head *list; 844 unsigned long flags; 845 846 /* 847 * Disable interrupts and preemption to avoid this CPU's 848 * cgrp_cpuctx_entry to change under us. 849 */ 850 local_irq_save(flags); 851 852 list = this_cpu_ptr(&cgrp_cpuctx_list); 853 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 854 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 855 856 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 857 perf_pmu_disable(cpuctx->ctx.pmu); 858 859 if (mode & PERF_CGROUP_SWOUT) { 860 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 861 /* 862 * must not be done before ctxswout due 863 * to event_filter_match() in event_sched_out() 864 */ 865 cpuctx->cgrp = NULL; 866 } 867 868 if (mode & PERF_CGROUP_SWIN) { 869 WARN_ON_ONCE(cpuctx->cgrp); 870 /* 871 * set cgrp before ctxsw in to allow 872 * event_filter_match() to not have to pass 873 * task around 874 * we pass the cpuctx->ctx to perf_cgroup_from_task() 875 * because cgorup events are only per-cpu 876 */ 877 cpuctx->cgrp = perf_cgroup_from_task(task, 878 &cpuctx->ctx); 879 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 880 } 881 perf_pmu_enable(cpuctx->ctx.pmu); 882 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 883 } 884 885 local_irq_restore(flags); 886 } 887 888 static inline void perf_cgroup_sched_out(struct task_struct *task, 889 struct task_struct *next) 890 { 891 struct perf_cgroup *cgrp1; 892 struct perf_cgroup *cgrp2 = NULL; 893 894 rcu_read_lock(); 895 /* 896 * we come here when we know perf_cgroup_events > 0 897 * we do not need to pass the ctx here because we know 898 * we are holding the rcu lock 899 */ 900 cgrp1 = perf_cgroup_from_task(task, NULL); 901 cgrp2 = perf_cgroup_from_task(next, NULL); 902 903 /* 904 * only schedule out current cgroup events if we know 905 * that we are switching to a different cgroup. Otherwise, 906 * do no touch the cgroup events. 907 */ 908 if (cgrp1 != cgrp2) 909 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 910 911 rcu_read_unlock(); 912 } 913 914 static inline void perf_cgroup_sched_in(struct task_struct *prev, 915 struct task_struct *task) 916 { 917 struct perf_cgroup *cgrp1; 918 struct perf_cgroup *cgrp2 = NULL; 919 920 rcu_read_lock(); 921 /* 922 * we come here when we know perf_cgroup_events > 0 923 * we do not need to pass the ctx here because we know 924 * we are holding the rcu lock 925 */ 926 cgrp1 = perf_cgroup_from_task(task, NULL); 927 cgrp2 = perf_cgroup_from_task(prev, NULL); 928 929 /* 930 * only need to schedule in cgroup events if we are changing 931 * cgroup during ctxsw. Cgroup events were not scheduled 932 * out of ctxsw out if that was not the case. 933 */ 934 if (cgrp1 != cgrp2) 935 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 936 937 rcu_read_unlock(); 938 } 939 940 static int perf_cgroup_ensure_storage(struct perf_event *event, 941 struct cgroup_subsys_state *css) 942 { 943 struct perf_cpu_context *cpuctx; 944 struct perf_event **storage; 945 int cpu, heap_size, ret = 0; 946 947 /* 948 * Allow storage to have sufficent space for an iterator for each 949 * possibly nested cgroup plus an iterator for events with no cgroup. 950 */ 951 for (heap_size = 1; css; css = css->parent) 952 heap_size++; 953 954 for_each_possible_cpu(cpu) { 955 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 956 if (heap_size <= cpuctx->heap_size) 957 continue; 958 959 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 960 GFP_KERNEL, cpu_to_node(cpu)); 961 if (!storage) { 962 ret = -ENOMEM; 963 break; 964 } 965 966 raw_spin_lock_irq(&cpuctx->ctx.lock); 967 if (cpuctx->heap_size < heap_size) { 968 swap(cpuctx->heap, storage); 969 if (storage == cpuctx->heap_default) 970 storage = NULL; 971 cpuctx->heap_size = heap_size; 972 } 973 raw_spin_unlock_irq(&cpuctx->ctx.lock); 974 975 kfree(storage); 976 } 977 978 return ret; 979 } 980 981 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 982 struct perf_event_attr *attr, 983 struct perf_event *group_leader) 984 { 985 struct perf_cgroup *cgrp; 986 struct cgroup_subsys_state *css; 987 struct fd f = fdget(fd); 988 int ret = 0; 989 990 if (!f.file) 991 return -EBADF; 992 993 css = css_tryget_online_from_dir(f.file->f_path.dentry, 994 &perf_event_cgrp_subsys); 995 if (IS_ERR(css)) { 996 ret = PTR_ERR(css); 997 goto out; 998 } 999 1000 ret = perf_cgroup_ensure_storage(event, css); 1001 if (ret) 1002 goto out; 1003 1004 cgrp = container_of(css, struct perf_cgroup, css); 1005 event->cgrp = cgrp; 1006 1007 /* 1008 * all events in a group must monitor 1009 * the same cgroup because a task belongs 1010 * to only one perf cgroup at a time 1011 */ 1012 if (group_leader && group_leader->cgrp != cgrp) { 1013 perf_detach_cgroup(event); 1014 ret = -EINVAL; 1015 } 1016 out: 1017 fdput(f); 1018 return ret; 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 /* 1030 * Because cgroup events are always per-cpu events, 1031 * @ctx == &cpuctx->ctx. 1032 */ 1033 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1034 1035 /* 1036 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1037 * matching the event's cgroup, we must do this for every new event, 1038 * because if the first would mismatch, the second would not try again 1039 * and we would leave cpuctx->cgrp unset. 1040 */ 1041 if (ctx->is_active && !cpuctx->cgrp) { 1042 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1043 1044 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1045 cpuctx->cgrp = cgrp; 1046 } 1047 1048 if (ctx->nr_cgroups++) 1049 return; 1050 1051 list_add(&cpuctx->cgrp_cpuctx_entry, 1052 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1053 } 1054 1055 static inline void 1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1057 { 1058 struct perf_cpu_context *cpuctx; 1059 1060 if (!is_cgroup_event(event)) 1061 return; 1062 1063 /* 1064 * Because cgroup events are always per-cpu events, 1065 * @ctx == &cpuctx->ctx. 1066 */ 1067 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1068 1069 if (--ctx->nr_cgroups) 1070 return; 1071 1072 if (ctx->is_active && cpuctx->cgrp) 1073 cpuctx->cgrp = NULL; 1074 1075 list_del(&cpuctx->cgrp_cpuctx_entry); 1076 } 1077 1078 #else /* !CONFIG_CGROUP_PERF */ 1079 1080 static inline bool 1081 perf_cgroup_match(struct perf_event *event) 1082 { 1083 return true; 1084 } 1085 1086 static inline void perf_detach_cgroup(struct perf_event *event) 1087 {} 1088 1089 static inline int is_cgroup_event(struct perf_event *event) 1090 { 1091 return 0; 1092 } 1093 1094 static inline void update_cgrp_time_from_event(struct perf_event *event) 1095 { 1096 } 1097 1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1099 bool final) 1100 { 1101 } 1102 1103 static inline void perf_cgroup_sched_out(struct task_struct *task, 1104 struct task_struct *next) 1105 { 1106 } 1107 1108 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1109 struct task_struct *task) 1110 { 1111 } 1112 1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1114 struct perf_event_attr *attr, 1115 struct perf_event *group_leader) 1116 { 1117 return -EINVAL; 1118 } 1119 1120 static inline void 1121 perf_cgroup_set_timestamp(struct task_struct *task, 1122 struct perf_event_context *ctx) 1123 { 1124 } 1125 1126 static inline void 1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1128 { 1129 } 1130 1131 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1132 { 1133 return 0; 1134 } 1135 1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1137 { 1138 return 0; 1139 } 1140 1141 static inline void 1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1143 { 1144 } 1145 1146 static inline void 1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1148 { 1149 } 1150 #endif 1151 1152 /* 1153 * set default to be dependent on timer tick just 1154 * like original code 1155 */ 1156 #define PERF_CPU_HRTIMER (1000 / HZ) 1157 /* 1158 * function must be called with interrupts disabled 1159 */ 1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1161 { 1162 struct perf_cpu_context *cpuctx; 1163 bool rotations; 1164 1165 lockdep_assert_irqs_disabled(); 1166 1167 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1168 rotations = perf_rotate_context(cpuctx); 1169 1170 raw_spin_lock(&cpuctx->hrtimer_lock); 1171 if (rotations) 1172 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1173 else 1174 cpuctx->hrtimer_active = 0; 1175 raw_spin_unlock(&cpuctx->hrtimer_lock); 1176 1177 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1178 } 1179 1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1181 { 1182 struct hrtimer *timer = &cpuctx->hrtimer; 1183 struct pmu *pmu = cpuctx->ctx.pmu; 1184 u64 interval; 1185 1186 /* no multiplexing needed for SW PMU */ 1187 if (pmu->task_ctx_nr == perf_sw_context) 1188 return; 1189 1190 /* 1191 * check default is sane, if not set then force to 1192 * default interval (1/tick) 1193 */ 1194 interval = pmu->hrtimer_interval_ms; 1195 if (interval < 1) 1196 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1197 1198 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1199 1200 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1201 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1202 timer->function = perf_mux_hrtimer_handler; 1203 } 1204 1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1206 { 1207 struct hrtimer *timer = &cpuctx->hrtimer; 1208 struct pmu *pmu = cpuctx->ctx.pmu; 1209 unsigned long flags; 1210 1211 /* not for SW PMU */ 1212 if (pmu->task_ctx_nr == perf_sw_context) 1213 return 0; 1214 1215 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1216 if (!cpuctx->hrtimer_active) { 1217 cpuctx->hrtimer_active = 1; 1218 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1219 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1220 } 1221 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1222 1223 return 0; 1224 } 1225 1226 void perf_pmu_disable(struct pmu *pmu) 1227 { 1228 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1229 if (!(*count)++) 1230 pmu->pmu_disable(pmu); 1231 } 1232 1233 void perf_pmu_enable(struct pmu *pmu) 1234 { 1235 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1236 if (!--(*count)) 1237 pmu->pmu_enable(pmu); 1238 } 1239 1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1241 1242 /* 1243 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1244 * perf_event_task_tick() are fully serialized because they're strictly cpu 1245 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1246 * disabled, while perf_event_task_tick is called from IRQ context. 1247 */ 1248 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1249 { 1250 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1251 1252 lockdep_assert_irqs_disabled(); 1253 1254 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1255 1256 list_add(&ctx->active_ctx_list, head); 1257 } 1258 1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1260 { 1261 lockdep_assert_irqs_disabled(); 1262 1263 WARN_ON(list_empty(&ctx->active_ctx_list)); 1264 1265 list_del_init(&ctx->active_ctx_list); 1266 } 1267 1268 static void get_ctx(struct perf_event_context *ctx) 1269 { 1270 refcount_inc(&ctx->refcount); 1271 } 1272 1273 static void *alloc_task_ctx_data(struct pmu *pmu) 1274 { 1275 if (pmu->task_ctx_cache) 1276 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1277 1278 return NULL; 1279 } 1280 1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1282 { 1283 if (pmu->task_ctx_cache && task_ctx_data) 1284 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1285 } 1286 1287 static void free_ctx(struct rcu_head *head) 1288 { 1289 struct perf_event_context *ctx; 1290 1291 ctx = container_of(head, struct perf_event_context, rcu_head); 1292 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1293 kfree(ctx); 1294 } 1295 1296 static void put_ctx(struct perf_event_context *ctx) 1297 { 1298 if (refcount_dec_and_test(&ctx->refcount)) { 1299 if (ctx->parent_ctx) 1300 put_ctx(ctx->parent_ctx); 1301 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1302 put_task_struct(ctx->task); 1303 call_rcu(&ctx->rcu_head, free_ctx); 1304 } 1305 } 1306 1307 /* 1308 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1309 * perf_pmu_migrate_context() we need some magic. 1310 * 1311 * Those places that change perf_event::ctx will hold both 1312 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1313 * 1314 * Lock ordering is by mutex address. There are two other sites where 1315 * perf_event_context::mutex nests and those are: 1316 * 1317 * - perf_event_exit_task_context() [ child , 0 ] 1318 * perf_event_exit_event() 1319 * put_event() [ parent, 1 ] 1320 * 1321 * - perf_event_init_context() [ parent, 0 ] 1322 * inherit_task_group() 1323 * inherit_group() 1324 * inherit_event() 1325 * perf_event_alloc() 1326 * perf_init_event() 1327 * perf_try_init_event() [ child , 1 ] 1328 * 1329 * While it appears there is an obvious deadlock here -- the parent and child 1330 * nesting levels are inverted between the two. This is in fact safe because 1331 * life-time rules separate them. That is an exiting task cannot fork, and a 1332 * spawning task cannot (yet) exit. 1333 * 1334 * But remember that these are parent<->child context relations, and 1335 * migration does not affect children, therefore these two orderings should not 1336 * interact. 1337 * 1338 * The change in perf_event::ctx does not affect children (as claimed above) 1339 * because the sys_perf_event_open() case will install a new event and break 1340 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1341 * concerned with cpuctx and that doesn't have children. 1342 * 1343 * The places that change perf_event::ctx will issue: 1344 * 1345 * perf_remove_from_context(); 1346 * synchronize_rcu(); 1347 * perf_install_in_context(); 1348 * 1349 * to affect the change. The remove_from_context() + synchronize_rcu() should 1350 * quiesce the event, after which we can install it in the new location. This 1351 * means that only external vectors (perf_fops, prctl) can perturb the event 1352 * while in transit. Therefore all such accessors should also acquire 1353 * perf_event_context::mutex to serialize against this. 1354 * 1355 * However; because event->ctx can change while we're waiting to acquire 1356 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1357 * function. 1358 * 1359 * Lock order: 1360 * exec_update_lock 1361 * task_struct::perf_event_mutex 1362 * perf_event_context::mutex 1363 * perf_event::child_mutex; 1364 * perf_event_context::lock 1365 * perf_event::mmap_mutex 1366 * mmap_lock 1367 * perf_addr_filters_head::lock 1368 * 1369 * cpu_hotplug_lock 1370 * pmus_lock 1371 * cpuctx->mutex / perf_event_context::mutex 1372 */ 1373 static struct perf_event_context * 1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1375 { 1376 struct perf_event_context *ctx; 1377 1378 again: 1379 rcu_read_lock(); 1380 ctx = READ_ONCE(event->ctx); 1381 if (!refcount_inc_not_zero(&ctx->refcount)) { 1382 rcu_read_unlock(); 1383 goto again; 1384 } 1385 rcu_read_unlock(); 1386 1387 mutex_lock_nested(&ctx->mutex, nesting); 1388 if (event->ctx != ctx) { 1389 mutex_unlock(&ctx->mutex); 1390 put_ctx(ctx); 1391 goto again; 1392 } 1393 1394 return ctx; 1395 } 1396 1397 static inline struct perf_event_context * 1398 perf_event_ctx_lock(struct perf_event *event) 1399 { 1400 return perf_event_ctx_lock_nested(event, 0); 1401 } 1402 1403 static void perf_event_ctx_unlock(struct perf_event *event, 1404 struct perf_event_context *ctx) 1405 { 1406 mutex_unlock(&ctx->mutex); 1407 put_ctx(ctx); 1408 } 1409 1410 /* 1411 * This must be done under the ctx->lock, such as to serialize against 1412 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1413 * calling scheduler related locks and ctx->lock nests inside those. 1414 */ 1415 static __must_check struct perf_event_context * 1416 unclone_ctx(struct perf_event_context *ctx) 1417 { 1418 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1419 1420 lockdep_assert_held(&ctx->lock); 1421 1422 if (parent_ctx) 1423 ctx->parent_ctx = NULL; 1424 ctx->generation++; 1425 1426 return parent_ctx; 1427 } 1428 1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1430 enum pid_type type) 1431 { 1432 u32 nr; 1433 /* 1434 * only top level events have the pid namespace they were created in 1435 */ 1436 if (event->parent) 1437 event = event->parent; 1438 1439 nr = __task_pid_nr_ns(p, type, event->ns); 1440 /* avoid -1 if it is idle thread or runs in another ns */ 1441 if (!nr && !pid_alive(p)) 1442 nr = -1; 1443 return nr; 1444 } 1445 1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1447 { 1448 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1449 } 1450 1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1452 { 1453 return perf_event_pid_type(event, p, PIDTYPE_PID); 1454 } 1455 1456 /* 1457 * If we inherit events we want to return the parent event id 1458 * to userspace. 1459 */ 1460 static u64 primary_event_id(struct perf_event *event) 1461 { 1462 u64 id = event->id; 1463 1464 if (event->parent) 1465 id = event->parent->id; 1466 1467 return id; 1468 } 1469 1470 /* 1471 * Get the perf_event_context for a task and lock it. 1472 * 1473 * This has to cope with the fact that until it is locked, 1474 * the context could get moved to another task. 1475 */ 1476 static struct perf_event_context * 1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1478 { 1479 struct perf_event_context *ctx; 1480 1481 retry: 1482 /* 1483 * One of the few rules of preemptible RCU is that one cannot do 1484 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1485 * part of the read side critical section was irqs-enabled -- see 1486 * rcu_read_unlock_special(). 1487 * 1488 * Since ctx->lock nests under rq->lock we must ensure the entire read 1489 * side critical section has interrupts disabled. 1490 */ 1491 local_irq_save(*flags); 1492 rcu_read_lock(); 1493 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1494 if (ctx) { 1495 /* 1496 * If this context is a clone of another, it might 1497 * get swapped for another underneath us by 1498 * perf_event_task_sched_out, though the 1499 * rcu_read_lock() protects us from any context 1500 * getting freed. Lock the context and check if it 1501 * got swapped before we could get the lock, and retry 1502 * if so. If we locked the right context, then it 1503 * can't get swapped on us any more. 1504 */ 1505 raw_spin_lock(&ctx->lock); 1506 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1507 raw_spin_unlock(&ctx->lock); 1508 rcu_read_unlock(); 1509 local_irq_restore(*flags); 1510 goto retry; 1511 } 1512 1513 if (ctx->task == TASK_TOMBSTONE || 1514 !refcount_inc_not_zero(&ctx->refcount)) { 1515 raw_spin_unlock(&ctx->lock); 1516 ctx = NULL; 1517 } else { 1518 WARN_ON_ONCE(ctx->task != task); 1519 } 1520 } 1521 rcu_read_unlock(); 1522 if (!ctx) 1523 local_irq_restore(*flags); 1524 return ctx; 1525 } 1526 1527 /* 1528 * Get the context for a task and increment its pin_count so it 1529 * can't get swapped to another task. This also increments its 1530 * reference count so that the context can't get freed. 1531 */ 1532 static struct perf_event_context * 1533 perf_pin_task_context(struct task_struct *task, int ctxn) 1534 { 1535 struct perf_event_context *ctx; 1536 unsigned long flags; 1537 1538 ctx = perf_lock_task_context(task, ctxn, &flags); 1539 if (ctx) { 1540 ++ctx->pin_count; 1541 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1542 } 1543 return ctx; 1544 } 1545 1546 static void perf_unpin_context(struct perf_event_context *ctx) 1547 { 1548 unsigned long flags; 1549 1550 raw_spin_lock_irqsave(&ctx->lock, flags); 1551 --ctx->pin_count; 1552 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1553 } 1554 1555 /* 1556 * Update the record of the current time in a context. 1557 */ 1558 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1559 { 1560 u64 now = perf_clock(); 1561 1562 if (adv) 1563 ctx->time += now - ctx->timestamp; 1564 ctx->timestamp = now; 1565 1566 /* 1567 * The above: time' = time + (now - timestamp), can be re-arranged 1568 * into: time` = now + (time - timestamp), which gives a single value 1569 * offset to compute future time without locks on. 1570 * 1571 * See perf_event_time_now(), which can be used from NMI context where 1572 * it's (obviously) not possible to acquire ctx->lock in order to read 1573 * both the above values in a consistent manner. 1574 */ 1575 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1576 } 1577 1578 static void update_context_time(struct perf_event_context *ctx) 1579 { 1580 __update_context_time(ctx, true); 1581 } 1582 1583 static u64 perf_event_time(struct perf_event *event) 1584 { 1585 struct perf_event_context *ctx = event->ctx; 1586 1587 if (unlikely(!ctx)) 1588 return 0; 1589 1590 if (is_cgroup_event(event)) 1591 return perf_cgroup_event_time(event); 1592 1593 return ctx->time; 1594 } 1595 1596 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1597 { 1598 struct perf_event_context *ctx = event->ctx; 1599 1600 if (unlikely(!ctx)) 1601 return 0; 1602 1603 if (is_cgroup_event(event)) 1604 return perf_cgroup_event_time_now(event, now); 1605 1606 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1607 return ctx->time; 1608 1609 now += READ_ONCE(ctx->timeoffset); 1610 return now; 1611 } 1612 1613 static enum event_type_t get_event_type(struct perf_event *event) 1614 { 1615 struct perf_event_context *ctx = event->ctx; 1616 enum event_type_t event_type; 1617 1618 lockdep_assert_held(&ctx->lock); 1619 1620 /* 1621 * It's 'group type', really, because if our group leader is 1622 * pinned, so are we. 1623 */ 1624 if (event->group_leader != event) 1625 event = event->group_leader; 1626 1627 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1628 if (!ctx->task) 1629 event_type |= EVENT_CPU; 1630 1631 return event_type; 1632 } 1633 1634 /* 1635 * Helper function to initialize event group nodes. 1636 */ 1637 static void init_event_group(struct perf_event *event) 1638 { 1639 RB_CLEAR_NODE(&event->group_node); 1640 event->group_index = 0; 1641 } 1642 1643 /* 1644 * Extract pinned or flexible groups from the context 1645 * based on event attrs bits. 1646 */ 1647 static struct perf_event_groups * 1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1649 { 1650 if (event->attr.pinned) 1651 return &ctx->pinned_groups; 1652 else 1653 return &ctx->flexible_groups; 1654 } 1655 1656 /* 1657 * Helper function to initializes perf_event_group trees. 1658 */ 1659 static void perf_event_groups_init(struct perf_event_groups *groups) 1660 { 1661 groups->tree = RB_ROOT; 1662 groups->index = 0; 1663 } 1664 1665 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1666 { 1667 struct cgroup *cgroup = NULL; 1668 1669 #ifdef CONFIG_CGROUP_PERF 1670 if (event->cgrp) 1671 cgroup = event->cgrp->css.cgroup; 1672 #endif 1673 1674 return cgroup; 1675 } 1676 1677 /* 1678 * Compare function for event groups; 1679 * 1680 * Implements complex key that first sorts by CPU and then by virtual index 1681 * which provides ordering when rotating groups for the same CPU. 1682 */ 1683 static __always_inline int 1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1685 const u64 left_group_index, const struct perf_event *right) 1686 { 1687 if (left_cpu < right->cpu) 1688 return -1; 1689 if (left_cpu > right->cpu) 1690 return 1; 1691 1692 #ifdef CONFIG_CGROUP_PERF 1693 { 1694 const struct cgroup *right_cgroup = event_cgroup(right); 1695 1696 if (left_cgroup != right_cgroup) { 1697 if (!left_cgroup) { 1698 /* 1699 * Left has no cgroup but right does, no 1700 * cgroups come first. 1701 */ 1702 return -1; 1703 } 1704 if (!right_cgroup) { 1705 /* 1706 * Right has no cgroup but left does, no 1707 * cgroups come first. 1708 */ 1709 return 1; 1710 } 1711 /* Two dissimilar cgroups, order by id. */ 1712 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1713 return -1; 1714 1715 return 1; 1716 } 1717 } 1718 #endif 1719 1720 if (left_group_index < right->group_index) 1721 return -1; 1722 if (left_group_index > right->group_index) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 #define __node_2_pe(node) \ 1729 rb_entry((node), struct perf_event, group_node) 1730 1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1732 { 1733 struct perf_event *e = __node_2_pe(a); 1734 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1735 __node_2_pe(b)) < 0; 1736 } 1737 1738 struct __group_key { 1739 int cpu; 1740 struct cgroup *cgroup; 1741 }; 1742 1743 static inline int __group_cmp(const void *key, const struct rb_node *node) 1744 { 1745 const struct __group_key *a = key; 1746 const struct perf_event *b = __node_2_pe(node); 1747 1748 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1749 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1750 } 1751 1752 /* 1753 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1754 * key (see perf_event_groups_less). This places it last inside the CPU 1755 * subtree. 1756 */ 1757 static void 1758 perf_event_groups_insert(struct perf_event_groups *groups, 1759 struct perf_event *event) 1760 { 1761 event->group_index = ++groups->index; 1762 1763 rb_add(&event->group_node, &groups->tree, __group_less); 1764 } 1765 1766 /* 1767 * Helper function to insert event into the pinned or flexible groups. 1768 */ 1769 static void 1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1771 { 1772 struct perf_event_groups *groups; 1773 1774 groups = get_event_groups(event, ctx); 1775 perf_event_groups_insert(groups, event); 1776 } 1777 1778 /* 1779 * Delete a group from a tree. 1780 */ 1781 static void 1782 perf_event_groups_delete(struct perf_event_groups *groups, 1783 struct perf_event *event) 1784 { 1785 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1786 RB_EMPTY_ROOT(&groups->tree)); 1787 1788 rb_erase(&event->group_node, &groups->tree); 1789 init_event_group(event); 1790 } 1791 1792 /* 1793 * Helper function to delete event from its groups. 1794 */ 1795 static void 1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1797 { 1798 struct perf_event_groups *groups; 1799 1800 groups = get_event_groups(event, ctx); 1801 perf_event_groups_delete(groups, event); 1802 } 1803 1804 /* 1805 * Get the leftmost event in the cpu/cgroup subtree. 1806 */ 1807 static struct perf_event * 1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1809 struct cgroup *cgrp) 1810 { 1811 struct __group_key key = { 1812 .cpu = cpu, 1813 .cgroup = cgrp, 1814 }; 1815 struct rb_node *node; 1816 1817 node = rb_find_first(&key, &groups->tree, __group_cmp); 1818 if (node) 1819 return __node_2_pe(node); 1820 1821 return NULL; 1822 } 1823 1824 /* 1825 * Like rb_entry_next_safe() for the @cpu subtree. 1826 */ 1827 static struct perf_event * 1828 perf_event_groups_next(struct perf_event *event) 1829 { 1830 struct __group_key key = { 1831 .cpu = event->cpu, 1832 .cgroup = event_cgroup(event), 1833 }; 1834 struct rb_node *next; 1835 1836 next = rb_next_match(&key, &event->group_node, __group_cmp); 1837 if (next) 1838 return __node_2_pe(next); 1839 1840 return NULL; 1841 } 1842 1843 /* 1844 * Iterate through the whole groups tree. 1845 */ 1846 #define perf_event_groups_for_each(event, groups) \ 1847 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1848 typeof(*event), group_node); event; \ 1849 event = rb_entry_safe(rb_next(&event->group_node), \ 1850 typeof(*event), group_node)) 1851 1852 /* 1853 * Add an event from the lists for its context. 1854 * Must be called with ctx->mutex and ctx->lock held. 1855 */ 1856 static void 1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1858 { 1859 lockdep_assert_held(&ctx->lock); 1860 1861 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1862 event->attach_state |= PERF_ATTACH_CONTEXT; 1863 1864 event->tstamp = perf_event_time(event); 1865 1866 /* 1867 * If we're a stand alone event or group leader, we go to the context 1868 * list, group events are kept attached to the group so that 1869 * perf_group_detach can, at all times, locate all siblings. 1870 */ 1871 if (event->group_leader == event) { 1872 event->group_caps = event->event_caps; 1873 add_event_to_groups(event, ctx); 1874 } 1875 1876 list_add_rcu(&event->event_entry, &ctx->event_list); 1877 ctx->nr_events++; 1878 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1879 ctx->nr_user++; 1880 if (event->attr.inherit_stat) 1881 ctx->nr_stat++; 1882 1883 if (event->state > PERF_EVENT_STATE_OFF) 1884 perf_cgroup_event_enable(event, ctx); 1885 1886 ctx->generation++; 1887 } 1888 1889 /* 1890 * Initialize event state based on the perf_event_attr::disabled. 1891 */ 1892 static inline void perf_event__state_init(struct perf_event *event) 1893 { 1894 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1895 PERF_EVENT_STATE_INACTIVE; 1896 } 1897 1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1899 { 1900 int entry = sizeof(u64); /* value */ 1901 int size = 0; 1902 int nr = 1; 1903 1904 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1905 size += sizeof(u64); 1906 1907 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1908 size += sizeof(u64); 1909 1910 if (event->attr.read_format & PERF_FORMAT_ID) 1911 entry += sizeof(u64); 1912 1913 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1914 nr += nr_siblings; 1915 size += sizeof(u64); 1916 } 1917 1918 size += entry * nr; 1919 event->read_size = size; 1920 } 1921 1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1923 { 1924 struct perf_sample_data *data; 1925 u16 size = 0; 1926 1927 if (sample_type & PERF_SAMPLE_IP) 1928 size += sizeof(data->ip); 1929 1930 if (sample_type & PERF_SAMPLE_ADDR) 1931 size += sizeof(data->addr); 1932 1933 if (sample_type & PERF_SAMPLE_PERIOD) 1934 size += sizeof(data->period); 1935 1936 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1937 size += sizeof(data->weight.full); 1938 1939 if (sample_type & PERF_SAMPLE_READ) 1940 size += event->read_size; 1941 1942 if (sample_type & PERF_SAMPLE_DATA_SRC) 1943 size += sizeof(data->data_src.val); 1944 1945 if (sample_type & PERF_SAMPLE_TRANSACTION) 1946 size += sizeof(data->txn); 1947 1948 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1949 size += sizeof(data->phys_addr); 1950 1951 if (sample_type & PERF_SAMPLE_CGROUP) 1952 size += sizeof(data->cgroup); 1953 1954 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1955 size += sizeof(data->data_page_size); 1956 1957 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1958 size += sizeof(data->code_page_size); 1959 1960 event->header_size = size; 1961 } 1962 1963 /* 1964 * Called at perf_event creation and when events are attached/detached from a 1965 * group. 1966 */ 1967 static void perf_event__header_size(struct perf_event *event) 1968 { 1969 __perf_event_read_size(event, 1970 event->group_leader->nr_siblings); 1971 __perf_event_header_size(event, event->attr.sample_type); 1972 } 1973 1974 static void perf_event__id_header_size(struct perf_event *event) 1975 { 1976 struct perf_sample_data *data; 1977 u64 sample_type = event->attr.sample_type; 1978 u16 size = 0; 1979 1980 if (sample_type & PERF_SAMPLE_TID) 1981 size += sizeof(data->tid_entry); 1982 1983 if (sample_type & PERF_SAMPLE_TIME) 1984 size += sizeof(data->time); 1985 1986 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1987 size += sizeof(data->id); 1988 1989 if (sample_type & PERF_SAMPLE_ID) 1990 size += sizeof(data->id); 1991 1992 if (sample_type & PERF_SAMPLE_STREAM_ID) 1993 size += sizeof(data->stream_id); 1994 1995 if (sample_type & PERF_SAMPLE_CPU) 1996 size += sizeof(data->cpu_entry); 1997 1998 event->id_header_size = size; 1999 } 2000 2001 static bool perf_event_validate_size(struct perf_event *event) 2002 { 2003 /* 2004 * The values computed here will be over-written when we actually 2005 * attach the event. 2006 */ 2007 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 2008 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 2009 perf_event__id_header_size(event); 2010 2011 /* 2012 * Sum the lot; should not exceed the 64k limit we have on records. 2013 * Conservative limit to allow for callchains and other variable fields. 2014 */ 2015 if (event->read_size + event->header_size + 2016 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 static void perf_group_attach(struct perf_event *event) 2023 { 2024 struct perf_event *group_leader = event->group_leader, *pos; 2025 2026 lockdep_assert_held(&event->ctx->lock); 2027 2028 /* 2029 * We can have double attach due to group movement in perf_event_open. 2030 */ 2031 if (event->attach_state & PERF_ATTACH_GROUP) 2032 return; 2033 2034 event->attach_state |= PERF_ATTACH_GROUP; 2035 2036 if (group_leader == event) 2037 return; 2038 2039 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2040 2041 group_leader->group_caps &= event->event_caps; 2042 2043 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2044 group_leader->nr_siblings++; 2045 2046 perf_event__header_size(group_leader); 2047 2048 for_each_sibling_event(pos, group_leader) 2049 perf_event__header_size(pos); 2050 } 2051 2052 /* 2053 * Remove an event from the lists for its context. 2054 * Must be called with ctx->mutex and ctx->lock held. 2055 */ 2056 static void 2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2058 { 2059 WARN_ON_ONCE(event->ctx != ctx); 2060 lockdep_assert_held(&ctx->lock); 2061 2062 /* 2063 * We can have double detach due to exit/hot-unplug + close. 2064 */ 2065 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2066 return; 2067 2068 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2069 2070 ctx->nr_events--; 2071 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2072 ctx->nr_user--; 2073 if (event->attr.inherit_stat) 2074 ctx->nr_stat--; 2075 2076 list_del_rcu(&event->event_entry); 2077 2078 if (event->group_leader == event) 2079 del_event_from_groups(event, ctx); 2080 2081 /* 2082 * If event was in error state, then keep it 2083 * that way, otherwise bogus counts will be 2084 * returned on read(). The only way to get out 2085 * of error state is by explicit re-enabling 2086 * of the event 2087 */ 2088 if (event->state > PERF_EVENT_STATE_OFF) { 2089 perf_cgroup_event_disable(event, ctx); 2090 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2091 } 2092 2093 ctx->generation++; 2094 } 2095 2096 static int 2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2098 { 2099 if (!has_aux(aux_event)) 2100 return 0; 2101 2102 if (!event->pmu->aux_output_match) 2103 return 0; 2104 2105 return event->pmu->aux_output_match(aux_event); 2106 } 2107 2108 static void put_event(struct perf_event *event); 2109 static void event_sched_out(struct perf_event *event, 2110 struct perf_cpu_context *cpuctx, 2111 struct perf_event_context *ctx); 2112 2113 static void perf_put_aux_event(struct perf_event *event) 2114 { 2115 struct perf_event_context *ctx = event->ctx; 2116 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2117 struct perf_event *iter; 2118 2119 /* 2120 * If event uses aux_event tear down the link 2121 */ 2122 if (event->aux_event) { 2123 iter = event->aux_event; 2124 event->aux_event = NULL; 2125 put_event(iter); 2126 return; 2127 } 2128 2129 /* 2130 * If the event is an aux_event, tear down all links to 2131 * it from other events. 2132 */ 2133 for_each_sibling_event(iter, event->group_leader) { 2134 if (iter->aux_event != event) 2135 continue; 2136 2137 iter->aux_event = NULL; 2138 put_event(event); 2139 2140 /* 2141 * If it's ACTIVE, schedule it out and put it into ERROR 2142 * state so that we don't try to schedule it again. Note 2143 * that perf_event_enable() will clear the ERROR status. 2144 */ 2145 event_sched_out(iter, cpuctx, ctx); 2146 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2147 } 2148 } 2149 2150 static bool perf_need_aux_event(struct perf_event *event) 2151 { 2152 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2153 } 2154 2155 static int perf_get_aux_event(struct perf_event *event, 2156 struct perf_event *group_leader) 2157 { 2158 /* 2159 * Our group leader must be an aux event if we want to be 2160 * an aux_output. This way, the aux event will precede its 2161 * aux_output events in the group, and therefore will always 2162 * schedule first. 2163 */ 2164 if (!group_leader) 2165 return 0; 2166 2167 /* 2168 * aux_output and aux_sample_size are mutually exclusive. 2169 */ 2170 if (event->attr.aux_output && event->attr.aux_sample_size) 2171 return 0; 2172 2173 if (event->attr.aux_output && 2174 !perf_aux_output_match(event, group_leader)) 2175 return 0; 2176 2177 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2178 return 0; 2179 2180 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2181 return 0; 2182 2183 /* 2184 * Link aux_outputs to their aux event; this is undone in 2185 * perf_group_detach() by perf_put_aux_event(). When the 2186 * group in torn down, the aux_output events loose their 2187 * link to the aux_event and can't schedule any more. 2188 */ 2189 event->aux_event = group_leader; 2190 2191 return 1; 2192 } 2193 2194 static inline struct list_head *get_event_list(struct perf_event *event) 2195 { 2196 struct perf_event_context *ctx = event->ctx; 2197 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2198 } 2199 2200 /* 2201 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2202 * cannot exist on their own, schedule them out and move them into the ERROR 2203 * state. Also see _perf_event_enable(), it will not be able to recover 2204 * this ERROR state. 2205 */ 2206 static inline void perf_remove_sibling_event(struct perf_event *event) 2207 { 2208 struct perf_event_context *ctx = event->ctx; 2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2210 2211 event_sched_out(event, cpuctx, ctx); 2212 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2213 } 2214 2215 static void perf_group_detach(struct perf_event *event) 2216 { 2217 struct perf_event *leader = event->group_leader; 2218 struct perf_event *sibling, *tmp; 2219 struct perf_event_context *ctx = event->ctx; 2220 2221 lockdep_assert_held(&ctx->lock); 2222 2223 /* 2224 * We can have double detach due to exit/hot-unplug + close. 2225 */ 2226 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2227 return; 2228 2229 event->attach_state &= ~PERF_ATTACH_GROUP; 2230 2231 perf_put_aux_event(event); 2232 2233 /* 2234 * If this is a sibling, remove it from its group. 2235 */ 2236 if (leader != event) { 2237 list_del_init(&event->sibling_list); 2238 event->group_leader->nr_siblings--; 2239 goto out; 2240 } 2241 2242 /* 2243 * If this was a group event with sibling events then 2244 * upgrade the siblings to singleton events by adding them 2245 * to whatever list we are on. 2246 */ 2247 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2248 2249 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2250 perf_remove_sibling_event(sibling); 2251 2252 sibling->group_leader = sibling; 2253 list_del_init(&sibling->sibling_list); 2254 2255 /* Inherit group flags from the previous leader */ 2256 sibling->group_caps = event->group_caps; 2257 2258 if (!RB_EMPTY_NODE(&event->group_node)) { 2259 add_event_to_groups(sibling, event->ctx); 2260 2261 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2262 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2263 } 2264 2265 WARN_ON_ONCE(sibling->ctx != event->ctx); 2266 } 2267 2268 out: 2269 for_each_sibling_event(tmp, leader) 2270 perf_event__header_size(tmp); 2271 2272 perf_event__header_size(leader); 2273 } 2274 2275 static void sync_child_event(struct perf_event *child_event); 2276 2277 static void perf_child_detach(struct perf_event *event) 2278 { 2279 struct perf_event *parent_event = event->parent; 2280 2281 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2282 return; 2283 2284 event->attach_state &= ~PERF_ATTACH_CHILD; 2285 2286 if (WARN_ON_ONCE(!parent_event)) 2287 return; 2288 2289 lockdep_assert_held(&parent_event->child_mutex); 2290 2291 sync_child_event(event); 2292 list_del_init(&event->child_list); 2293 } 2294 2295 static bool is_orphaned_event(struct perf_event *event) 2296 { 2297 return event->state == PERF_EVENT_STATE_DEAD; 2298 } 2299 2300 static inline int __pmu_filter_match(struct perf_event *event) 2301 { 2302 struct pmu *pmu = event->pmu; 2303 return pmu->filter_match ? pmu->filter_match(event) : 1; 2304 } 2305 2306 /* 2307 * Check whether we should attempt to schedule an event group based on 2308 * PMU-specific filtering. An event group can consist of HW and SW events, 2309 * potentially with a SW leader, so we must check all the filters, to 2310 * determine whether a group is schedulable: 2311 */ 2312 static inline int pmu_filter_match(struct perf_event *event) 2313 { 2314 struct perf_event *sibling; 2315 2316 if (!__pmu_filter_match(event)) 2317 return 0; 2318 2319 for_each_sibling_event(sibling, event) { 2320 if (!__pmu_filter_match(sibling)) 2321 return 0; 2322 } 2323 2324 return 1; 2325 } 2326 2327 static inline int 2328 event_filter_match(struct perf_event *event) 2329 { 2330 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2331 perf_cgroup_match(event) && pmu_filter_match(event); 2332 } 2333 2334 static void 2335 event_sched_out(struct perf_event *event, 2336 struct perf_cpu_context *cpuctx, 2337 struct perf_event_context *ctx) 2338 { 2339 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2340 2341 WARN_ON_ONCE(event->ctx != ctx); 2342 lockdep_assert_held(&ctx->lock); 2343 2344 if (event->state != PERF_EVENT_STATE_ACTIVE) 2345 return; 2346 2347 /* 2348 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2349 * we can schedule events _OUT_ individually through things like 2350 * __perf_remove_from_context(). 2351 */ 2352 list_del_init(&event->active_list); 2353 2354 perf_pmu_disable(event->pmu); 2355 2356 event->pmu->del(event, 0); 2357 event->oncpu = -1; 2358 2359 if (READ_ONCE(event->pending_disable) >= 0) { 2360 WRITE_ONCE(event->pending_disable, -1); 2361 perf_cgroup_event_disable(event, ctx); 2362 state = PERF_EVENT_STATE_OFF; 2363 } 2364 perf_event_set_state(event, state); 2365 2366 if (!is_software_event(event)) 2367 cpuctx->active_oncpu--; 2368 if (!--ctx->nr_active) 2369 perf_event_ctx_deactivate(ctx); 2370 if (event->attr.freq && event->attr.sample_freq) 2371 ctx->nr_freq--; 2372 if (event->attr.exclusive || !cpuctx->active_oncpu) 2373 cpuctx->exclusive = 0; 2374 2375 perf_pmu_enable(event->pmu); 2376 } 2377 2378 static void 2379 group_sched_out(struct perf_event *group_event, 2380 struct perf_cpu_context *cpuctx, 2381 struct perf_event_context *ctx) 2382 { 2383 struct perf_event *event; 2384 2385 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2386 return; 2387 2388 perf_pmu_disable(ctx->pmu); 2389 2390 event_sched_out(group_event, cpuctx, ctx); 2391 2392 /* 2393 * Schedule out siblings (if any): 2394 */ 2395 for_each_sibling_event(event, group_event) 2396 event_sched_out(event, cpuctx, ctx); 2397 2398 perf_pmu_enable(ctx->pmu); 2399 } 2400 2401 #define DETACH_GROUP 0x01UL 2402 #define DETACH_CHILD 0x02UL 2403 2404 /* 2405 * Cross CPU call to remove a performance event 2406 * 2407 * We disable the event on the hardware level first. After that we 2408 * remove it from the context list. 2409 */ 2410 static void 2411 __perf_remove_from_context(struct perf_event *event, 2412 struct perf_cpu_context *cpuctx, 2413 struct perf_event_context *ctx, 2414 void *info) 2415 { 2416 unsigned long flags = (unsigned long)info; 2417 2418 if (ctx->is_active & EVENT_TIME) { 2419 update_context_time(ctx); 2420 update_cgrp_time_from_cpuctx(cpuctx, false); 2421 } 2422 2423 event_sched_out(event, cpuctx, ctx); 2424 if (flags & DETACH_GROUP) 2425 perf_group_detach(event); 2426 if (flags & DETACH_CHILD) 2427 perf_child_detach(event); 2428 list_del_event(event, ctx); 2429 2430 if (!ctx->nr_events && ctx->is_active) { 2431 if (ctx == &cpuctx->ctx) 2432 update_cgrp_time_from_cpuctx(cpuctx, true); 2433 2434 ctx->is_active = 0; 2435 ctx->rotate_necessary = 0; 2436 if (ctx->task) { 2437 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2438 cpuctx->task_ctx = NULL; 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Remove the event from a task's (or a CPU's) list of events. 2445 * 2446 * If event->ctx is a cloned context, callers must make sure that 2447 * every task struct that event->ctx->task could possibly point to 2448 * remains valid. This is OK when called from perf_release since 2449 * that only calls us on the top-level context, which can't be a clone. 2450 * When called from perf_event_exit_task, it's OK because the 2451 * context has been detached from its task. 2452 */ 2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2454 { 2455 struct perf_event_context *ctx = event->ctx; 2456 2457 lockdep_assert_held(&ctx->mutex); 2458 2459 /* 2460 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2461 * to work in the face of TASK_TOMBSTONE, unlike every other 2462 * event_function_call() user. 2463 */ 2464 raw_spin_lock_irq(&ctx->lock); 2465 if (!ctx->is_active) { 2466 __perf_remove_from_context(event, __get_cpu_context(ctx), 2467 ctx, (void *)flags); 2468 raw_spin_unlock_irq(&ctx->lock); 2469 return; 2470 } 2471 raw_spin_unlock_irq(&ctx->lock); 2472 2473 event_function_call(event, __perf_remove_from_context, (void *)flags); 2474 } 2475 2476 /* 2477 * Cross CPU call to disable a performance event 2478 */ 2479 static void __perf_event_disable(struct perf_event *event, 2480 struct perf_cpu_context *cpuctx, 2481 struct perf_event_context *ctx, 2482 void *info) 2483 { 2484 if (event->state < PERF_EVENT_STATE_INACTIVE) 2485 return; 2486 2487 if (ctx->is_active & EVENT_TIME) { 2488 update_context_time(ctx); 2489 update_cgrp_time_from_event(event); 2490 } 2491 2492 if (event == event->group_leader) 2493 group_sched_out(event, cpuctx, ctx); 2494 else 2495 event_sched_out(event, cpuctx, ctx); 2496 2497 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2498 perf_cgroup_event_disable(event, ctx); 2499 } 2500 2501 /* 2502 * Disable an event. 2503 * 2504 * If event->ctx is a cloned context, callers must make sure that 2505 * every task struct that event->ctx->task could possibly point to 2506 * remains valid. This condition is satisfied when called through 2507 * perf_event_for_each_child or perf_event_for_each because they 2508 * hold the top-level event's child_mutex, so any descendant that 2509 * goes to exit will block in perf_event_exit_event(). 2510 * 2511 * When called from perf_pending_event it's OK because event->ctx 2512 * is the current context on this CPU and preemption is disabled, 2513 * hence we can't get into perf_event_task_sched_out for this context. 2514 */ 2515 static void _perf_event_disable(struct perf_event *event) 2516 { 2517 struct perf_event_context *ctx = event->ctx; 2518 2519 raw_spin_lock_irq(&ctx->lock); 2520 if (event->state <= PERF_EVENT_STATE_OFF) { 2521 raw_spin_unlock_irq(&ctx->lock); 2522 return; 2523 } 2524 raw_spin_unlock_irq(&ctx->lock); 2525 2526 event_function_call(event, __perf_event_disable, NULL); 2527 } 2528 2529 void perf_event_disable_local(struct perf_event *event) 2530 { 2531 event_function_local(event, __perf_event_disable, NULL); 2532 } 2533 2534 /* 2535 * Strictly speaking kernel users cannot create groups and therefore this 2536 * interface does not need the perf_event_ctx_lock() magic. 2537 */ 2538 void perf_event_disable(struct perf_event *event) 2539 { 2540 struct perf_event_context *ctx; 2541 2542 ctx = perf_event_ctx_lock(event); 2543 _perf_event_disable(event); 2544 perf_event_ctx_unlock(event, ctx); 2545 } 2546 EXPORT_SYMBOL_GPL(perf_event_disable); 2547 2548 void perf_event_disable_inatomic(struct perf_event *event) 2549 { 2550 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2551 /* can fail, see perf_pending_event_disable() */ 2552 irq_work_queue(&event->pending); 2553 } 2554 2555 #define MAX_INTERRUPTS (~0ULL) 2556 2557 static void perf_log_throttle(struct perf_event *event, int enable); 2558 static void perf_log_itrace_start(struct perf_event *event); 2559 2560 static int 2561 event_sched_in(struct perf_event *event, 2562 struct perf_cpu_context *cpuctx, 2563 struct perf_event_context *ctx) 2564 { 2565 int ret = 0; 2566 2567 WARN_ON_ONCE(event->ctx != ctx); 2568 2569 lockdep_assert_held(&ctx->lock); 2570 2571 if (event->state <= PERF_EVENT_STATE_OFF) 2572 return 0; 2573 2574 WRITE_ONCE(event->oncpu, smp_processor_id()); 2575 /* 2576 * Order event::oncpu write to happen before the ACTIVE state is 2577 * visible. This allows perf_event_{stop,read}() to observe the correct 2578 * ->oncpu if it sees ACTIVE. 2579 */ 2580 smp_wmb(); 2581 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2582 2583 /* 2584 * Unthrottle events, since we scheduled we might have missed several 2585 * ticks already, also for a heavily scheduling task there is little 2586 * guarantee it'll get a tick in a timely manner. 2587 */ 2588 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2589 perf_log_throttle(event, 1); 2590 event->hw.interrupts = 0; 2591 } 2592 2593 perf_pmu_disable(event->pmu); 2594 2595 perf_log_itrace_start(event); 2596 2597 if (event->pmu->add(event, PERF_EF_START)) { 2598 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2599 event->oncpu = -1; 2600 ret = -EAGAIN; 2601 goto out; 2602 } 2603 2604 if (!is_software_event(event)) 2605 cpuctx->active_oncpu++; 2606 if (!ctx->nr_active++) 2607 perf_event_ctx_activate(ctx); 2608 if (event->attr.freq && event->attr.sample_freq) 2609 ctx->nr_freq++; 2610 2611 if (event->attr.exclusive) 2612 cpuctx->exclusive = 1; 2613 2614 out: 2615 perf_pmu_enable(event->pmu); 2616 2617 return ret; 2618 } 2619 2620 static int 2621 group_sched_in(struct perf_event *group_event, 2622 struct perf_cpu_context *cpuctx, 2623 struct perf_event_context *ctx) 2624 { 2625 struct perf_event *event, *partial_group = NULL; 2626 struct pmu *pmu = ctx->pmu; 2627 2628 if (group_event->state == PERF_EVENT_STATE_OFF) 2629 return 0; 2630 2631 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2632 2633 if (event_sched_in(group_event, cpuctx, ctx)) 2634 goto error; 2635 2636 /* 2637 * Schedule in siblings as one group (if any): 2638 */ 2639 for_each_sibling_event(event, group_event) { 2640 if (event_sched_in(event, cpuctx, ctx)) { 2641 partial_group = event; 2642 goto group_error; 2643 } 2644 } 2645 2646 if (!pmu->commit_txn(pmu)) 2647 return 0; 2648 2649 group_error: 2650 /* 2651 * Groups can be scheduled in as one unit only, so undo any 2652 * partial group before returning: 2653 * The events up to the failed event are scheduled out normally. 2654 */ 2655 for_each_sibling_event(event, group_event) { 2656 if (event == partial_group) 2657 break; 2658 2659 event_sched_out(event, cpuctx, ctx); 2660 } 2661 event_sched_out(group_event, cpuctx, ctx); 2662 2663 error: 2664 pmu->cancel_txn(pmu); 2665 return -EAGAIN; 2666 } 2667 2668 /* 2669 * Work out whether we can put this event group on the CPU now. 2670 */ 2671 static int group_can_go_on(struct perf_event *event, 2672 struct perf_cpu_context *cpuctx, 2673 int can_add_hw) 2674 { 2675 /* 2676 * Groups consisting entirely of software events can always go on. 2677 */ 2678 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2679 return 1; 2680 /* 2681 * If an exclusive group is already on, no other hardware 2682 * events can go on. 2683 */ 2684 if (cpuctx->exclusive) 2685 return 0; 2686 /* 2687 * If this group is exclusive and there are already 2688 * events on the CPU, it can't go on. 2689 */ 2690 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2691 return 0; 2692 /* 2693 * Otherwise, try to add it if all previous groups were able 2694 * to go on. 2695 */ 2696 return can_add_hw; 2697 } 2698 2699 static void add_event_to_ctx(struct perf_event *event, 2700 struct perf_event_context *ctx) 2701 { 2702 list_add_event(event, ctx); 2703 perf_group_attach(event); 2704 } 2705 2706 static void ctx_sched_out(struct perf_event_context *ctx, 2707 struct perf_cpu_context *cpuctx, 2708 enum event_type_t event_type); 2709 static void 2710 ctx_sched_in(struct perf_event_context *ctx, 2711 struct perf_cpu_context *cpuctx, 2712 enum event_type_t event_type, 2713 struct task_struct *task); 2714 2715 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2716 struct perf_event_context *ctx, 2717 enum event_type_t event_type) 2718 { 2719 if (!cpuctx->task_ctx) 2720 return; 2721 2722 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2723 return; 2724 2725 ctx_sched_out(ctx, cpuctx, event_type); 2726 } 2727 2728 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2729 struct perf_event_context *ctx, 2730 struct task_struct *task) 2731 { 2732 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2733 if (ctx) 2734 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2735 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2736 if (ctx) 2737 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2738 } 2739 2740 /* 2741 * We want to maintain the following priority of scheduling: 2742 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2743 * - task pinned (EVENT_PINNED) 2744 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2745 * - task flexible (EVENT_FLEXIBLE). 2746 * 2747 * In order to avoid unscheduling and scheduling back in everything every 2748 * time an event is added, only do it for the groups of equal priority and 2749 * below. 2750 * 2751 * This can be called after a batch operation on task events, in which case 2752 * event_type is a bit mask of the types of events involved. For CPU events, 2753 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2754 */ 2755 static void ctx_resched(struct perf_cpu_context *cpuctx, 2756 struct perf_event_context *task_ctx, 2757 enum event_type_t event_type) 2758 { 2759 enum event_type_t ctx_event_type; 2760 bool cpu_event = !!(event_type & EVENT_CPU); 2761 2762 /* 2763 * If pinned groups are involved, flexible groups also need to be 2764 * scheduled out. 2765 */ 2766 if (event_type & EVENT_PINNED) 2767 event_type |= EVENT_FLEXIBLE; 2768 2769 ctx_event_type = event_type & EVENT_ALL; 2770 2771 perf_pmu_disable(cpuctx->ctx.pmu); 2772 if (task_ctx) 2773 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2774 2775 /* 2776 * Decide which cpu ctx groups to schedule out based on the types 2777 * of events that caused rescheduling: 2778 * - EVENT_CPU: schedule out corresponding groups; 2779 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2780 * - otherwise, do nothing more. 2781 */ 2782 if (cpu_event) 2783 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2784 else if (ctx_event_type & EVENT_PINNED) 2785 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2786 2787 perf_event_sched_in(cpuctx, task_ctx, current); 2788 perf_pmu_enable(cpuctx->ctx.pmu); 2789 } 2790 2791 void perf_pmu_resched(struct pmu *pmu) 2792 { 2793 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2794 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2795 2796 perf_ctx_lock(cpuctx, task_ctx); 2797 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2798 perf_ctx_unlock(cpuctx, task_ctx); 2799 } 2800 2801 /* 2802 * Cross CPU call to install and enable a performance event 2803 * 2804 * Very similar to remote_function() + event_function() but cannot assume that 2805 * things like ctx->is_active and cpuctx->task_ctx are set. 2806 */ 2807 static int __perf_install_in_context(void *info) 2808 { 2809 struct perf_event *event = info; 2810 struct perf_event_context *ctx = event->ctx; 2811 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2812 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2813 bool reprogram = true; 2814 int ret = 0; 2815 2816 raw_spin_lock(&cpuctx->ctx.lock); 2817 if (ctx->task) { 2818 raw_spin_lock(&ctx->lock); 2819 task_ctx = ctx; 2820 2821 reprogram = (ctx->task == current); 2822 2823 /* 2824 * If the task is running, it must be running on this CPU, 2825 * otherwise we cannot reprogram things. 2826 * 2827 * If its not running, we don't care, ctx->lock will 2828 * serialize against it becoming runnable. 2829 */ 2830 if (task_curr(ctx->task) && !reprogram) { 2831 ret = -ESRCH; 2832 goto unlock; 2833 } 2834 2835 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2836 } else if (task_ctx) { 2837 raw_spin_lock(&task_ctx->lock); 2838 } 2839 2840 #ifdef CONFIG_CGROUP_PERF 2841 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2842 /* 2843 * If the current cgroup doesn't match the event's 2844 * cgroup, we should not try to schedule it. 2845 */ 2846 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2847 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2848 event->cgrp->css.cgroup); 2849 } 2850 #endif 2851 2852 if (reprogram) { 2853 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2854 add_event_to_ctx(event, ctx); 2855 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2856 } else { 2857 add_event_to_ctx(event, ctx); 2858 } 2859 2860 unlock: 2861 perf_ctx_unlock(cpuctx, task_ctx); 2862 2863 return ret; 2864 } 2865 2866 static bool exclusive_event_installable(struct perf_event *event, 2867 struct perf_event_context *ctx); 2868 2869 /* 2870 * Attach a performance event to a context. 2871 * 2872 * Very similar to event_function_call, see comment there. 2873 */ 2874 static void 2875 perf_install_in_context(struct perf_event_context *ctx, 2876 struct perf_event *event, 2877 int cpu) 2878 { 2879 struct task_struct *task = READ_ONCE(ctx->task); 2880 2881 lockdep_assert_held(&ctx->mutex); 2882 2883 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2884 2885 if (event->cpu != -1) 2886 event->cpu = cpu; 2887 2888 /* 2889 * Ensures that if we can observe event->ctx, both the event and ctx 2890 * will be 'complete'. See perf_iterate_sb_cpu(). 2891 */ 2892 smp_store_release(&event->ctx, ctx); 2893 2894 /* 2895 * perf_event_attr::disabled events will not run and can be initialized 2896 * without IPI. Except when this is the first event for the context, in 2897 * that case we need the magic of the IPI to set ctx->is_active. 2898 * 2899 * The IOC_ENABLE that is sure to follow the creation of a disabled 2900 * event will issue the IPI and reprogram the hardware. 2901 */ 2902 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2903 raw_spin_lock_irq(&ctx->lock); 2904 if (ctx->task == TASK_TOMBSTONE) { 2905 raw_spin_unlock_irq(&ctx->lock); 2906 return; 2907 } 2908 add_event_to_ctx(event, ctx); 2909 raw_spin_unlock_irq(&ctx->lock); 2910 return; 2911 } 2912 2913 if (!task) { 2914 cpu_function_call(cpu, __perf_install_in_context, event); 2915 return; 2916 } 2917 2918 /* 2919 * Should not happen, we validate the ctx is still alive before calling. 2920 */ 2921 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2922 return; 2923 2924 /* 2925 * Installing events is tricky because we cannot rely on ctx->is_active 2926 * to be set in case this is the nr_events 0 -> 1 transition. 2927 * 2928 * Instead we use task_curr(), which tells us if the task is running. 2929 * However, since we use task_curr() outside of rq::lock, we can race 2930 * against the actual state. This means the result can be wrong. 2931 * 2932 * If we get a false positive, we retry, this is harmless. 2933 * 2934 * If we get a false negative, things are complicated. If we are after 2935 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2936 * value must be correct. If we're before, it doesn't matter since 2937 * perf_event_context_sched_in() will program the counter. 2938 * 2939 * However, this hinges on the remote context switch having observed 2940 * our task->perf_event_ctxp[] store, such that it will in fact take 2941 * ctx::lock in perf_event_context_sched_in(). 2942 * 2943 * We do this by task_function_call(), if the IPI fails to hit the task 2944 * we know any future context switch of task must see the 2945 * perf_event_ctpx[] store. 2946 */ 2947 2948 /* 2949 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2950 * task_cpu() load, such that if the IPI then does not find the task 2951 * running, a future context switch of that task must observe the 2952 * store. 2953 */ 2954 smp_mb(); 2955 again: 2956 if (!task_function_call(task, __perf_install_in_context, event)) 2957 return; 2958 2959 raw_spin_lock_irq(&ctx->lock); 2960 task = ctx->task; 2961 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2962 /* 2963 * Cannot happen because we already checked above (which also 2964 * cannot happen), and we hold ctx->mutex, which serializes us 2965 * against perf_event_exit_task_context(). 2966 */ 2967 raw_spin_unlock_irq(&ctx->lock); 2968 return; 2969 } 2970 /* 2971 * If the task is not running, ctx->lock will avoid it becoming so, 2972 * thus we can safely install the event. 2973 */ 2974 if (task_curr(task)) { 2975 raw_spin_unlock_irq(&ctx->lock); 2976 goto again; 2977 } 2978 add_event_to_ctx(event, ctx); 2979 raw_spin_unlock_irq(&ctx->lock); 2980 } 2981 2982 /* 2983 * Cross CPU call to enable a performance event 2984 */ 2985 static void __perf_event_enable(struct perf_event *event, 2986 struct perf_cpu_context *cpuctx, 2987 struct perf_event_context *ctx, 2988 void *info) 2989 { 2990 struct perf_event *leader = event->group_leader; 2991 struct perf_event_context *task_ctx; 2992 2993 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2994 event->state <= PERF_EVENT_STATE_ERROR) 2995 return; 2996 2997 if (ctx->is_active) 2998 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2999 3000 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3001 perf_cgroup_event_enable(event, ctx); 3002 3003 if (!ctx->is_active) 3004 return; 3005 3006 if (!event_filter_match(event)) { 3007 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3008 return; 3009 } 3010 3011 /* 3012 * If the event is in a group and isn't the group leader, 3013 * then don't put it on unless the group is on. 3014 */ 3015 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 3016 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3017 return; 3018 } 3019 3020 task_ctx = cpuctx->task_ctx; 3021 if (ctx->task) 3022 WARN_ON_ONCE(task_ctx != ctx); 3023 3024 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 3025 } 3026 3027 /* 3028 * Enable an event. 3029 * 3030 * If event->ctx is a cloned context, callers must make sure that 3031 * every task struct that event->ctx->task could possibly point to 3032 * remains valid. This condition is satisfied when called through 3033 * perf_event_for_each_child or perf_event_for_each as described 3034 * for perf_event_disable. 3035 */ 3036 static void _perf_event_enable(struct perf_event *event) 3037 { 3038 struct perf_event_context *ctx = event->ctx; 3039 3040 raw_spin_lock_irq(&ctx->lock); 3041 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3042 event->state < PERF_EVENT_STATE_ERROR) { 3043 out: 3044 raw_spin_unlock_irq(&ctx->lock); 3045 return; 3046 } 3047 3048 /* 3049 * If the event is in error state, clear that first. 3050 * 3051 * That way, if we see the event in error state below, we know that it 3052 * has gone back into error state, as distinct from the task having 3053 * been scheduled away before the cross-call arrived. 3054 */ 3055 if (event->state == PERF_EVENT_STATE_ERROR) { 3056 /* 3057 * Detached SIBLING events cannot leave ERROR state. 3058 */ 3059 if (event->event_caps & PERF_EV_CAP_SIBLING && 3060 event->group_leader == event) 3061 goto out; 3062 3063 event->state = PERF_EVENT_STATE_OFF; 3064 } 3065 raw_spin_unlock_irq(&ctx->lock); 3066 3067 event_function_call(event, __perf_event_enable, NULL); 3068 } 3069 3070 /* 3071 * See perf_event_disable(); 3072 */ 3073 void perf_event_enable(struct perf_event *event) 3074 { 3075 struct perf_event_context *ctx; 3076 3077 ctx = perf_event_ctx_lock(event); 3078 _perf_event_enable(event); 3079 perf_event_ctx_unlock(event, ctx); 3080 } 3081 EXPORT_SYMBOL_GPL(perf_event_enable); 3082 3083 struct stop_event_data { 3084 struct perf_event *event; 3085 unsigned int restart; 3086 }; 3087 3088 static int __perf_event_stop(void *info) 3089 { 3090 struct stop_event_data *sd = info; 3091 struct perf_event *event = sd->event; 3092 3093 /* if it's already INACTIVE, do nothing */ 3094 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3095 return 0; 3096 3097 /* matches smp_wmb() in event_sched_in() */ 3098 smp_rmb(); 3099 3100 /* 3101 * There is a window with interrupts enabled before we get here, 3102 * so we need to check again lest we try to stop another CPU's event. 3103 */ 3104 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3105 return -EAGAIN; 3106 3107 event->pmu->stop(event, PERF_EF_UPDATE); 3108 3109 /* 3110 * May race with the actual stop (through perf_pmu_output_stop()), 3111 * but it is only used for events with AUX ring buffer, and such 3112 * events will refuse to restart because of rb::aux_mmap_count==0, 3113 * see comments in perf_aux_output_begin(). 3114 * 3115 * Since this is happening on an event-local CPU, no trace is lost 3116 * while restarting. 3117 */ 3118 if (sd->restart) 3119 event->pmu->start(event, 0); 3120 3121 return 0; 3122 } 3123 3124 static int perf_event_stop(struct perf_event *event, int restart) 3125 { 3126 struct stop_event_data sd = { 3127 .event = event, 3128 .restart = restart, 3129 }; 3130 int ret = 0; 3131 3132 do { 3133 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3134 return 0; 3135 3136 /* matches smp_wmb() in event_sched_in() */ 3137 smp_rmb(); 3138 3139 /* 3140 * We only want to restart ACTIVE events, so if the event goes 3141 * inactive here (event->oncpu==-1), there's nothing more to do; 3142 * fall through with ret==-ENXIO. 3143 */ 3144 ret = cpu_function_call(READ_ONCE(event->oncpu), 3145 __perf_event_stop, &sd); 3146 } while (ret == -EAGAIN); 3147 3148 return ret; 3149 } 3150 3151 /* 3152 * In order to contain the amount of racy and tricky in the address filter 3153 * configuration management, it is a two part process: 3154 * 3155 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3156 * we update the addresses of corresponding vmas in 3157 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3158 * (p2) when an event is scheduled in (pmu::add), it calls 3159 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3160 * if the generation has changed since the previous call. 3161 * 3162 * If (p1) happens while the event is active, we restart it to force (p2). 3163 * 3164 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3165 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3166 * ioctl; 3167 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3168 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3169 * for reading; 3170 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3171 * of exec. 3172 */ 3173 void perf_event_addr_filters_sync(struct perf_event *event) 3174 { 3175 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3176 3177 if (!has_addr_filter(event)) 3178 return; 3179 3180 raw_spin_lock(&ifh->lock); 3181 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3182 event->pmu->addr_filters_sync(event); 3183 event->hw.addr_filters_gen = event->addr_filters_gen; 3184 } 3185 raw_spin_unlock(&ifh->lock); 3186 } 3187 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3188 3189 static int _perf_event_refresh(struct perf_event *event, int refresh) 3190 { 3191 /* 3192 * not supported on inherited events 3193 */ 3194 if (event->attr.inherit || !is_sampling_event(event)) 3195 return -EINVAL; 3196 3197 atomic_add(refresh, &event->event_limit); 3198 _perf_event_enable(event); 3199 3200 return 0; 3201 } 3202 3203 /* 3204 * See perf_event_disable() 3205 */ 3206 int perf_event_refresh(struct perf_event *event, int refresh) 3207 { 3208 struct perf_event_context *ctx; 3209 int ret; 3210 3211 ctx = perf_event_ctx_lock(event); 3212 ret = _perf_event_refresh(event, refresh); 3213 perf_event_ctx_unlock(event, ctx); 3214 3215 return ret; 3216 } 3217 EXPORT_SYMBOL_GPL(perf_event_refresh); 3218 3219 static int perf_event_modify_breakpoint(struct perf_event *bp, 3220 struct perf_event_attr *attr) 3221 { 3222 int err; 3223 3224 _perf_event_disable(bp); 3225 3226 err = modify_user_hw_breakpoint_check(bp, attr, true); 3227 3228 if (!bp->attr.disabled) 3229 _perf_event_enable(bp); 3230 3231 return err; 3232 } 3233 3234 static int perf_event_modify_attr(struct perf_event *event, 3235 struct perf_event_attr *attr) 3236 { 3237 int (*func)(struct perf_event *, struct perf_event_attr *); 3238 struct perf_event *child; 3239 int err; 3240 3241 if (event->attr.type != attr->type) 3242 return -EINVAL; 3243 3244 switch (event->attr.type) { 3245 case PERF_TYPE_BREAKPOINT: 3246 func = perf_event_modify_breakpoint; 3247 break; 3248 default: 3249 /* Place holder for future additions. */ 3250 return -EOPNOTSUPP; 3251 } 3252 3253 WARN_ON_ONCE(event->ctx->parent_ctx); 3254 3255 mutex_lock(&event->child_mutex); 3256 err = func(event, attr); 3257 if (err) 3258 goto out; 3259 list_for_each_entry(child, &event->child_list, child_list) { 3260 err = func(child, attr); 3261 if (err) 3262 goto out; 3263 } 3264 out: 3265 mutex_unlock(&event->child_mutex); 3266 return err; 3267 } 3268 3269 static void ctx_sched_out(struct perf_event_context *ctx, 3270 struct perf_cpu_context *cpuctx, 3271 enum event_type_t event_type) 3272 { 3273 struct perf_event *event, *tmp; 3274 int is_active = ctx->is_active; 3275 3276 lockdep_assert_held(&ctx->lock); 3277 3278 if (likely(!ctx->nr_events)) { 3279 /* 3280 * See __perf_remove_from_context(). 3281 */ 3282 WARN_ON_ONCE(ctx->is_active); 3283 if (ctx->task) 3284 WARN_ON_ONCE(cpuctx->task_ctx); 3285 return; 3286 } 3287 3288 /* 3289 * Always update time if it was set; not only when it changes. 3290 * Otherwise we can 'forget' to update time for any but the last 3291 * context we sched out. For example: 3292 * 3293 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3294 * ctx_sched_out(.event_type = EVENT_PINNED) 3295 * 3296 * would only update time for the pinned events. 3297 */ 3298 if (is_active & EVENT_TIME) { 3299 /* update (and stop) ctx time */ 3300 update_context_time(ctx); 3301 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3302 /* 3303 * CPU-release for the below ->is_active store, 3304 * see __load_acquire() in perf_event_time_now() 3305 */ 3306 barrier(); 3307 } 3308 3309 ctx->is_active &= ~event_type; 3310 if (!(ctx->is_active & EVENT_ALL)) 3311 ctx->is_active = 0; 3312 3313 if (ctx->task) { 3314 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3315 if (!ctx->is_active) 3316 cpuctx->task_ctx = NULL; 3317 } 3318 3319 is_active ^= ctx->is_active; /* changed bits */ 3320 3321 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3322 return; 3323 3324 perf_pmu_disable(ctx->pmu); 3325 if (is_active & EVENT_PINNED) { 3326 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3327 group_sched_out(event, cpuctx, ctx); 3328 } 3329 3330 if (is_active & EVENT_FLEXIBLE) { 3331 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3332 group_sched_out(event, cpuctx, ctx); 3333 3334 /* 3335 * Since we cleared EVENT_FLEXIBLE, also clear 3336 * rotate_necessary, is will be reset by 3337 * ctx_flexible_sched_in() when needed. 3338 */ 3339 ctx->rotate_necessary = 0; 3340 } 3341 perf_pmu_enable(ctx->pmu); 3342 } 3343 3344 /* 3345 * Test whether two contexts are equivalent, i.e. whether they have both been 3346 * cloned from the same version of the same context. 3347 * 3348 * Equivalence is measured using a generation number in the context that is 3349 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3350 * and list_del_event(). 3351 */ 3352 static int context_equiv(struct perf_event_context *ctx1, 3353 struct perf_event_context *ctx2) 3354 { 3355 lockdep_assert_held(&ctx1->lock); 3356 lockdep_assert_held(&ctx2->lock); 3357 3358 /* Pinning disables the swap optimization */ 3359 if (ctx1->pin_count || ctx2->pin_count) 3360 return 0; 3361 3362 /* If ctx1 is the parent of ctx2 */ 3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3364 return 1; 3365 3366 /* If ctx2 is the parent of ctx1 */ 3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3368 return 1; 3369 3370 /* 3371 * If ctx1 and ctx2 have the same parent; we flatten the parent 3372 * hierarchy, see perf_event_init_context(). 3373 */ 3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3375 ctx1->parent_gen == ctx2->parent_gen) 3376 return 1; 3377 3378 /* Unmatched */ 3379 return 0; 3380 } 3381 3382 static void __perf_event_sync_stat(struct perf_event *event, 3383 struct perf_event *next_event) 3384 { 3385 u64 value; 3386 3387 if (!event->attr.inherit_stat) 3388 return; 3389 3390 /* 3391 * Update the event value, we cannot use perf_event_read() 3392 * because we're in the middle of a context switch and have IRQs 3393 * disabled, which upsets smp_call_function_single(), however 3394 * we know the event must be on the current CPU, therefore we 3395 * don't need to use it. 3396 */ 3397 if (event->state == PERF_EVENT_STATE_ACTIVE) 3398 event->pmu->read(event); 3399 3400 perf_event_update_time(event); 3401 3402 /* 3403 * In order to keep per-task stats reliable we need to flip the event 3404 * values when we flip the contexts. 3405 */ 3406 value = local64_read(&next_event->count); 3407 value = local64_xchg(&event->count, value); 3408 local64_set(&next_event->count, value); 3409 3410 swap(event->total_time_enabled, next_event->total_time_enabled); 3411 swap(event->total_time_running, next_event->total_time_running); 3412 3413 /* 3414 * Since we swizzled the values, update the user visible data too. 3415 */ 3416 perf_event_update_userpage(event); 3417 perf_event_update_userpage(next_event); 3418 } 3419 3420 static void perf_event_sync_stat(struct perf_event_context *ctx, 3421 struct perf_event_context *next_ctx) 3422 { 3423 struct perf_event *event, *next_event; 3424 3425 if (!ctx->nr_stat) 3426 return; 3427 3428 update_context_time(ctx); 3429 3430 event = list_first_entry(&ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 next_event = list_first_entry(&next_ctx->event_list, 3434 struct perf_event, event_entry); 3435 3436 while (&event->event_entry != &ctx->event_list && 3437 &next_event->event_entry != &next_ctx->event_list) { 3438 3439 __perf_event_sync_stat(event, next_event); 3440 3441 event = list_next_entry(event, event_entry); 3442 next_event = list_next_entry(next_event, event_entry); 3443 } 3444 } 3445 3446 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3447 struct task_struct *next) 3448 { 3449 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3450 struct perf_event_context *next_ctx; 3451 struct perf_event_context *parent, *next_parent; 3452 struct perf_cpu_context *cpuctx; 3453 int do_switch = 1; 3454 struct pmu *pmu; 3455 3456 if (likely(!ctx)) 3457 return; 3458 3459 pmu = ctx->pmu; 3460 cpuctx = __get_cpu_context(ctx); 3461 if (!cpuctx->task_ctx) 3462 return; 3463 3464 rcu_read_lock(); 3465 next_ctx = next->perf_event_ctxp[ctxn]; 3466 if (!next_ctx) 3467 goto unlock; 3468 3469 parent = rcu_dereference(ctx->parent_ctx); 3470 next_parent = rcu_dereference(next_ctx->parent_ctx); 3471 3472 /* If neither context have a parent context; they cannot be clones. */ 3473 if (!parent && !next_parent) 3474 goto unlock; 3475 3476 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3477 /* 3478 * Looks like the two contexts are clones, so we might be 3479 * able to optimize the context switch. We lock both 3480 * contexts and check that they are clones under the 3481 * lock (including re-checking that neither has been 3482 * uncloned in the meantime). It doesn't matter which 3483 * order we take the locks because no other cpu could 3484 * be trying to lock both of these tasks. 3485 */ 3486 raw_spin_lock(&ctx->lock); 3487 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3488 if (context_equiv(ctx, next_ctx)) { 3489 3490 WRITE_ONCE(ctx->task, next); 3491 WRITE_ONCE(next_ctx->task, task); 3492 3493 perf_pmu_disable(pmu); 3494 3495 if (cpuctx->sched_cb_usage && pmu->sched_task) 3496 pmu->sched_task(ctx, false); 3497 3498 /* 3499 * PMU specific parts of task perf context can require 3500 * additional synchronization. As an example of such 3501 * synchronization see implementation details of Intel 3502 * LBR call stack data profiling; 3503 */ 3504 if (pmu->swap_task_ctx) 3505 pmu->swap_task_ctx(ctx, next_ctx); 3506 else 3507 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3508 3509 perf_pmu_enable(pmu); 3510 3511 /* 3512 * RCU_INIT_POINTER here is safe because we've not 3513 * modified the ctx and the above modification of 3514 * ctx->task and ctx->task_ctx_data are immaterial 3515 * since those values are always verified under 3516 * ctx->lock which we're now holding. 3517 */ 3518 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3519 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3520 3521 do_switch = 0; 3522 3523 perf_event_sync_stat(ctx, next_ctx); 3524 } 3525 raw_spin_unlock(&next_ctx->lock); 3526 raw_spin_unlock(&ctx->lock); 3527 } 3528 unlock: 3529 rcu_read_unlock(); 3530 3531 if (do_switch) { 3532 raw_spin_lock(&ctx->lock); 3533 perf_pmu_disable(pmu); 3534 3535 if (cpuctx->sched_cb_usage && pmu->sched_task) 3536 pmu->sched_task(ctx, false); 3537 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3538 3539 perf_pmu_enable(pmu); 3540 raw_spin_unlock(&ctx->lock); 3541 } 3542 } 3543 3544 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3545 3546 void perf_sched_cb_dec(struct pmu *pmu) 3547 { 3548 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3549 3550 this_cpu_dec(perf_sched_cb_usages); 3551 3552 if (!--cpuctx->sched_cb_usage) 3553 list_del(&cpuctx->sched_cb_entry); 3554 } 3555 3556 3557 void perf_sched_cb_inc(struct pmu *pmu) 3558 { 3559 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3560 3561 if (!cpuctx->sched_cb_usage++) 3562 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3563 3564 this_cpu_inc(perf_sched_cb_usages); 3565 } 3566 3567 /* 3568 * This function provides the context switch callback to the lower code 3569 * layer. It is invoked ONLY when the context switch callback is enabled. 3570 * 3571 * This callback is relevant even to per-cpu events; for example multi event 3572 * PEBS requires this to provide PID/TID information. This requires we flush 3573 * all queued PEBS records before we context switch to a new task. 3574 */ 3575 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3576 { 3577 struct pmu *pmu; 3578 3579 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3580 3581 if (WARN_ON_ONCE(!pmu->sched_task)) 3582 return; 3583 3584 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3585 perf_pmu_disable(pmu); 3586 3587 pmu->sched_task(cpuctx->task_ctx, sched_in); 3588 3589 perf_pmu_enable(pmu); 3590 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3591 } 3592 3593 static void perf_pmu_sched_task(struct task_struct *prev, 3594 struct task_struct *next, 3595 bool sched_in) 3596 { 3597 struct perf_cpu_context *cpuctx; 3598 3599 if (prev == next) 3600 return; 3601 3602 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3603 /* will be handled in perf_event_context_sched_in/out */ 3604 if (cpuctx->task_ctx) 3605 continue; 3606 3607 __perf_pmu_sched_task(cpuctx, sched_in); 3608 } 3609 } 3610 3611 static void perf_event_switch(struct task_struct *task, 3612 struct task_struct *next_prev, bool sched_in); 3613 3614 #define for_each_task_context_nr(ctxn) \ 3615 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3616 3617 /* 3618 * Called from scheduler to remove the events of the current task, 3619 * with interrupts disabled. 3620 * 3621 * We stop each event and update the event value in event->count. 3622 * 3623 * This does not protect us against NMI, but disable() 3624 * sets the disabled bit in the control field of event _before_ 3625 * accessing the event control register. If a NMI hits, then it will 3626 * not restart the event. 3627 */ 3628 void __perf_event_task_sched_out(struct task_struct *task, 3629 struct task_struct *next) 3630 { 3631 int ctxn; 3632 3633 if (__this_cpu_read(perf_sched_cb_usages)) 3634 perf_pmu_sched_task(task, next, false); 3635 3636 if (atomic_read(&nr_switch_events)) 3637 perf_event_switch(task, next, false); 3638 3639 for_each_task_context_nr(ctxn) 3640 perf_event_context_sched_out(task, ctxn, next); 3641 3642 /* 3643 * if cgroup events exist on this CPU, then we need 3644 * to check if we have to switch out PMU state. 3645 * cgroup event are system-wide mode only 3646 */ 3647 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3648 perf_cgroup_sched_out(task, next); 3649 } 3650 3651 /* 3652 * Called with IRQs disabled 3653 */ 3654 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3655 enum event_type_t event_type) 3656 { 3657 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3658 } 3659 3660 static bool perf_less_group_idx(const void *l, const void *r) 3661 { 3662 const struct perf_event *le = *(const struct perf_event **)l; 3663 const struct perf_event *re = *(const struct perf_event **)r; 3664 3665 return le->group_index < re->group_index; 3666 } 3667 3668 static void swap_ptr(void *l, void *r) 3669 { 3670 void **lp = l, **rp = r; 3671 3672 swap(*lp, *rp); 3673 } 3674 3675 static const struct min_heap_callbacks perf_min_heap = { 3676 .elem_size = sizeof(struct perf_event *), 3677 .less = perf_less_group_idx, 3678 .swp = swap_ptr, 3679 }; 3680 3681 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3682 { 3683 struct perf_event **itrs = heap->data; 3684 3685 if (event) { 3686 itrs[heap->nr] = event; 3687 heap->nr++; 3688 } 3689 } 3690 3691 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3692 struct perf_event_groups *groups, int cpu, 3693 int (*func)(struct perf_event *, void *), 3694 void *data) 3695 { 3696 #ifdef CONFIG_CGROUP_PERF 3697 struct cgroup_subsys_state *css = NULL; 3698 #endif 3699 /* Space for per CPU and/or any CPU event iterators. */ 3700 struct perf_event *itrs[2]; 3701 struct min_heap event_heap; 3702 struct perf_event **evt; 3703 int ret; 3704 3705 if (cpuctx) { 3706 event_heap = (struct min_heap){ 3707 .data = cpuctx->heap, 3708 .nr = 0, 3709 .size = cpuctx->heap_size, 3710 }; 3711 3712 lockdep_assert_held(&cpuctx->ctx.lock); 3713 3714 #ifdef CONFIG_CGROUP_PERF 3715 if (cpuctx->cgrp) 3716 css = &cpuctx->cgrp->css; 3717 #endif 3718 } else { 3719 event_heap = (struct min_heap){ 3720 .data = itrs, 3721 .nr = 0, 3722 .size = ARRAY_SIZE(itrs), 3723 }; 3724 /* Events not within a CPU context may be on any CPU. */ 3725 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3726 } 3727 evt = event_heap.data; 3728 3729 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3730 3731 #ifdef CONFIG_CGROUP_PERF 3732 for (; css; css = css->parent) 3733 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3734 #endif 3735 3736 min_heapify_all(&event_heap, &perf_min_heap); 3737 3738 while (event_heap.nr) { 3739 ret = func(*evt, data); 3740 if (ret) 3741 return ret; 3742 3743 *evt = perf_event_groups_next(*evt); 3744 if (*evt) 3745 min_heapify(&event_heap, 0, &perf_min_heap); 3746 else 3747 min_heap_pop(&event_heap, &perf_min_heap); 3748 } 3749 3750 return 0; 3751 } 3752 3753 /* 3754 * Because the userpage is strictly per-event (there is no concept of context, 3755 * so there cannot be a context indirection), every userpage must be updated 3756 * when context time starts :-( 3757 * 3758 * IOW, we must not miss EVENT_TIME edges. 3759 */ 3760 static inline bool event_update_userpage(struct perf_event *event) 3761 { 3762 if (likely(!atomic_read(&event->mmap_count))) 3763 return false; 3764 3765 perf_event_update_time(event); 3766 perf_event_update_userpage(event); 3767 3768 return true; 3769 } 3770 3771 static inline void group_update_userpage(struct perf_event *group_event) 3772 { 3773 struct perf_event *event; 3774 3775 if (!event_update_userpage(group_event)) 3776 return; 3777 3778 for_each_sibling_event(event, group_event) 3779 event_update_userpage(event); 3780 } 3781 3782 static int merge_sched_in(struct perf_event *event, void *data) 3783 { 3784 struct perf_event_context *ctx = event->ctx; 3785 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3786 int *can_add_hw = data; 3787 3788 if (event->state <= PERF_EVENT_STATE_OFF) 3789 return 0; 3790 3791 if (!event_filter_match(event)) 3792 return 0; 3793 3794 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3795 if (!group_sched_in(event, cpuctx, ctx)) 3796 list_add_tail(&event->active_list, get_event_list(event)); 3797 } 3798 3799 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3800 *can_add_hw = 0; 3801 if (event->attr.pinned) { 3802 perf_cgroup_event_disable(event, ctx); 3803 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3804 } else { 3805 ctx->rotate_necessary = 1; 3806 perf_mux_hrtimer_restart(cpuctx); 3807 group_update_userpage(event); 3808 } 3809 } 3810 3811 return 0; 3812 } 3813 3814 static void 3815 ctx_pinned_sched_in(struct perf_event_context *ctx, 3816 struct perf_cpu_context *cpuctx) 3817 { 3818 int can_add_hw = 1; 3819 3820 if (ctx != &cpuctx->ctx) 3821 cpuctx = NULL; 3822 3823 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3824 smp_processor_id(), 3825 merge_sched_in, &can_add_hw); 3826 } 3827 3828 static void 3829 ctx_flexible_sched_in(struct perf_event_context *ctx, 3830 struct perf_cpu_context *cpuctx) 3831 { 3832 int can_add_hw = 1; 3833 3834 if (ctx != &cpuctx->ctx) 3835 cpuctx = NULL; 3836 3837 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3838 smp_processor_id(), 3839 merge_sched_in, &can_add_hw); 3840 } 3841 3842 static void 3843 ctx_sched_in(struct perf_event_context *ctx, 3844 struct perf_cpu_context *cpuctx, 3845 enum event_type_t event_type, 3846 struct task_struct *task) 3847 { 3848 int is_active = ctx->is_active; 3849 3850 lockdep_assert_held(&ctx->lock); 3851 3852 if (likely(!ctx->nr_events)) 3853 return; 3854 3855 if (is_active ^ EVENT_TIME) { 3856 /* start ctx time */ 3857 __update_context_time(ctx, false); 3858 perf_cgroup_set_timestamp(task, ctx); 3859 /* 3860 * CPU-release for the below ->is_active store, 3861 * see __load_acquire() in perf_event_time_now() 3862 */ 3863 barrier(); 3864 } 3865 3866 ctx->is_active |= (event_type | EVENT_TIME); 3867 if (ctx->task) { 3868 if (!is_active) 3869 cpuctx->task_ctx = ctx; 3870 else 3871 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3872 } 3873 3874 is_active ^= ctx->is_active; /* changed bits */ 3875 3876 /* 3877 * First go through the list and put on any pinned groups 3878 * in order to give them the best chance of going on. 3879 */ 3880 if (is_active & EVENT_PINNED) 3881 ctx_pinned_sched_in(ctx, cpuctx); 3882 3883 /* Then walk through the lower prio flexible groups */ 3884 if (is_active & EVENT_FLEXIBLE) 3885 ctx_flexible_sched_in(ctx, cpuctx); 3886 } 3887 3888 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3889 enum event_type_t event_type, 3890 struct task_struct *task) 3891 { 3892 struct perf_event_context *ctx = &cpuctx->ctx; 3893 3894 ctx_sched_in(ctx, cpuctx, event_type, task); 3895 } 3896 3897 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3898 struct task_struct *task) 3899 { 3900 struct perf_cpu_context *cpuctx; 3901 struct pmu *pmu; 3902 3903 cpuctx = __get_cpu_context(ctx); 3904 3905 /* 3906 * HACK: for HETEROGENEOUS the task context might have switched to a 3907 * different PMU, force (re)set the context, 3908 */ 3909 pmu = ctx->pmu = cpuctx->ctx.pmu; 3910 3911 if (cpuctx->task_ctx == ctx) { 3912 if (cpuctx->sched_cb_usage) 3913 __perf_pmu_sched_task(cpuctx, true); 3914 return; 3915 } 3916 3917 perf_ctx_lock(cpuctx, ctx); 3918 /* 3919 * We must check ctx->nr_events while holding ctx->lock, such 3920 * that we serialize against perf_install_in_context(). 3921 */ 3922 if (!ctx->nr_events) 3923 goto unlock; 3924 3925 perf_pmu_disable(pmu); 3926 /* 3927 * We want to keep the following priority order: 3928 * cpu pinned (that don't need to move), task pinned, 3929 * cpu flexible, task flexible. 3930 * 3931 * However, if task's ctx is not carrying any pinned 3932 * events, no need to flip the cpuctx's events around. 3933 */ 3934 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3935 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3936 perf_event_sched_in(cpuctx, ctx, task); 3937 3938 if (cpuctx->sched_cb_usage && pmu->sched_task) 3939 pmu->sched_task(cpuctx->task_ctx, true); 3940 3941 perf_pmu_enable(pmu); 3942 3943 unlock: 3944 perf_ctx_unlock(cpuctx, ctx); 3945 } 3946 3947 /* 3948 * Called from scheduler to add the events of the current task 3949 * with interrupts disabled. 3950 * 3951 * We restore the event value and then enable it. 3952 * 3953 * This does not protect us against NMI, but enable() 3954 * sets the enabled bit in the control field of event _before_ 3955 * accessing the event control register. If a NMI hits, then it will 3956 * keep the event running. 3957 */ 3958 void __perf_event_task_sched_in(struct task_struct *prev, 3959 struct task_struct *task) 3960 { 3961 struct perf_event_context *ctx; 3962 int ctxn; 3963 3964 /* 3965 * If cgroup events exist on this CPU, then we need to check if we have 3966 * to switch in PMU state; cgroup event are system-wide mode only. 3967 * 3968 * Since cgroup events are CPU events, we must schedule these in before 3969 * we schedule in the task events. 3970 */ 3971 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3972 perf_cgroup_sched_in(prev, task); 3973 3974 for_each_task_context_nr(ctxn) { 3975 ctx = task->perf_event_ctxp[ctxn]; 3976 if (likely(!ctx)) 3977 continue; 3978 3979 perf_event_context_sched_in(ctx, task); 3980 } 3981 3982 if (atomic_read(&nr_switch_events)) 3983 perf_event_switch(task, prev, true); 3984 3985 if (__this_cpu_read(perf_sched_cb_usages)) 3986 perf_pmu_sched_task(prev, task, true); 3987 } 3988 3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3990 { 3991 u64 frequency = event->attr.sample_freq; 3992 u64 sec = NSEC_PER_SEC; 3993 u64 divisor, dividend; 3994 3995 int count_fls, nsec_fls, frequency_fls, sec_fls; 3996 3997 count_fls = fls64(count); 3998 nsec_fls = fls64(nsec); 3999 frequency_fls = fls64(frequency); 4000 sec_fls = 30; 4001 4002 /* 4003 * We got @count in @nsec, with a target of sample_freq HZ 4004 * the target period becomes: 4005 * 4006 * @count * 10^9 4007 * period = ------------------- 4008 * @nsec * sample_freq 4009 * 4010 */ 4011 4012 /* 4013 * Reduce accuracy by one bit such that @a and @b converge 4014 * to a similar magnitude. 4015 */ 4016 #define REDUCE_FLS(a, b) \ 4017 do { \ 4018 if (a##_fls > b##_fls) { \ 4019 a >>= 1; \ 4020 a##_fls--; \ 4021 } else { \ 4022 b >>= 1; \ 4023 b##_fls--; \ 4024 } \ 4025 } while (0) 4026 4027 /* 4028 * Reduce accuracy until either term fits in a u64, then proceed with 4029 * the other, so that finally we can do a u64/u64 division. 4030 */ 4031 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4032 REDUCE_FLS(nsec, frequency); 4033 REDUCE_FLS(sec, count); 4034 } 4035 4036 if (count_fls + sec_fls > 64) { 4037 divisor = nsec * frequency; 4038 4039 while (count_fls + sec_fls > 64) { 4040 REDUCE_FLS(count, sec); 4041 divisor >>= 1; 4042 } 4043 4044 dividend = count * sec; 4045 } else { 4046 dividend = count * sec; 4047 4048 while (nsec_fls + frequency_fls > 64) { 4049 REDUCE_FLS(nsec, frequency); 4050 dividend >>= 1; 4051 } 4052 4053 divisor = nsec * frequency; 4054 } 4055 4056 if (!divisor) 4057 return dividend; 4058 4059 return div64_u64(dividend, divisor); 4060 } 4061 4062 static DEFINE_PER_CPU(int, perf_throttled_count); 4063 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4064 4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4066 { 4067 struct hw_perf_event *hwc = &event->hw; 4068 s64 period, sample_period; 4069 s64 delta; 4070 4071 period = perf_calculate_period(event, nsec, count); 4072 4073 delta = (s64)(period - hwc->sample_period); 4074 delta = (delta + 7) / 8; /* low pass filter */ 4075 4076 sample_period = hwc->sample_period + delta; 4077 4078 if (!sample_period) 4079 sample_period = 1; 4080 4081 hwc->sample_period = sample_period; 4082 4083 if (local64_read(&hwc->period_left) > 8*sample_period) { 4084 if (disable) 4085 event->pmu->stop(event, PERF_EF_UPDATE); 4086 4087 local64_set(&hwc->period_left, 0); 4088 4089 if (disable) 4090 event->pmu->start(event, PERF_EF_RELOAD); 4091 } 4092 } 4093 4094 /* 4095 * combine freq adjustment with unthrottling to avoid two passes over the 4096 * events. At the same time, make sure, having freq events does not change 4097 * the rate of unthrottling as that would introduce bias. 4098 */ 4099 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4100 int needs_unthr) 4101 { 4102 struct perf_event *event; 4103 struct hw_perf_event *hwc; 4104 u64 now, period = TICK_NSEC; 4105 s64 delta; 4106 4107 /* 4108 * only need to iterate over all events iff: 4109 * - context have events in frequency mode (needs freq adjust) 4110 * - there are events to unthrottle on this cpu 4111 */ 4112 if (!(ctx->nr_freq || needs_unthr)) 4113 return; 4114 4115 raw_spin_lock(&ctx->lock); 4116 perf_pmu_disable(ctx->pmu); 4117 4118 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4119 if (event->state != PERF_EVENT_STATE_ACTIVE) 4120 continue; 4121 4122 if (!event_filter_match(event)) 4123 continue; 4124 4125 perf_pmu_disable(event->pmu); 4126 4127 hwc = &event->hw; 4128 4129 if (hwc->interrupts == MAX_INTERRUPTS) { 4130 hwc->interrupts = 0; 4131 perf_log_throttle(event, 1); 4132 event->pmu->start(event, 0); 4133 } 4134 4135 if (!event->attr.freq || !event->attr.sample_freq) 4136 goto next; 4137 4138 /* 4139 * stop the event and update event->count 4140 */ 4141 event->pmu->stop(event, PERF_EF_UPDATE); 4142 4143 now = local64_read(&event->count); 4144 delta = now - hwc->freq_count_stamp; 4145 hwc->freq_count_stamp = now; 4146 4147 /* 4148 * restart the event 4149 * reload only if value has changed 4150 * we have stopped the event so tell that 4151 * to perf_adjust_period() to avoid stopping it 4152 * twice. 4153 */ 4154 if (delta > 0) 4155 perf_adjust_period(event, period, delta, false); 4156 4157 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4158 next: 4159 perf_pmu_enable(event->pmu); 4160 } 4161 4162 perf_pmu_enable(ctx->pmu); 4163 raw_spin_unlock(&ctx->lock); 4164 } 4165 4166 /* 4167 * Move @event to the tail of the @ctx's elegible events. 4168 */ 4169 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4170 { 4171 /* 4172 * Rotate the first entry last of non-pinned groups. Rotation might be 4173 * disabled by the inheritance code. 4174 */ 4175 if (ctx->rotate_disable) 4176 return; 4177 4178 perf_event_groups_delete(&ctx->flexible_groups, event); 4179 perf_event_groups_insert(&ctx->flexible_groups, event); 4180 } 4181 4182 /* pick an event from the flexible_groups to rotate */ 4183 static inline struct perf_event * 4184 ctx_event_to_rotate(struct perf_event_context *ctx) 4185 { 4186 struct perf_event *event; 4187 4188 /* pick the first active flexible event */ 4189 event = list_first_entry_or_null(&ctx->flexible_active, 4190 struct perf_event, active_list); 4191 4192 /* if no active flexible event, pick the first event */ 4193 if (!event) { 4194 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4195 typeof(*event), group_node); 4196 } 4197 4198 /* 4199 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4200 * finds there are unschedulable events, it will set it again. 4201 */ 4202 ctx->rotate_necessary = 0; 4203 4204 return event; 4205 } 4206 4207 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4208 { 4209 struct perf_event *cpu_event = NULL, *task_event = NULL; 4210 struct perf_event_context *task_ctx = NULL; 4211 int cpu_rotate, task_rotate; 4212 4213 /* 4214 * Since we run this from IRQ context, nobody can install new 4215 * events, thus the event count values are stable. 4216 */ 4217 4218 cpu_rotate = cpuctx->ctx.rotate_necessary; 4219 task_ctx = cpuctx->task_ctx; 4220 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4221 4222 if (!(cpu_rotate || task_rotate)) 4223 return false; 4224 4225 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4226 perf_pmu_disable(cpuctx->ctx.pmu); 4227 4228 if (task_rotate) 4229 task_event = ctx_event_to_rotate(task_ctx); 4230 if (cpu_rotate) 4231 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4232 4233 /* 4234 * As per the order given at ctx_resched() first 'pop' task flexible 4235 * and then, if needed CPU flexible. 4236 */ 4237 if (task_event || (task_ctx && cpu_event)) 4238 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4239 if (cpu_event) 4240 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4241 4242 if (task_event) 4243 rotate_ctx(task_ctx, task_event); 4244 if (cpu_event) 4245 rotate_ctx(&cpuctx->ctx, cpu_event); 4246 4247 perf_event_sched_in(cpuctx, task_ctx, current); 4248 4249 perf_pmu_enable(cpuctx->ctx.pmu); 4250 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4251 4252 return true; 4253 } 4254 4255 void perf_event_task_tick(void) 4256 { 4257 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4258 struct perf_event_context *ctx, *tmp; 4259 int throttled; 4260 4261 lockdep_assert_irqs_disabled(); 4262 4263 __this_cpu_inc(perf_throttled_seq); 4264 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4265 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4266 4267 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4268 perf_adjust_freq_unthr_context(ctx, throttled); 4269 } 4270 4271 static int event_enable_on_exec(struct perf_event *event, 4272 struct perf_event_context *ctx) 4273 { 4274 if (!event->attr.enable_on_exec) 4275 return 0; 4276 4277 event->attr.enable_on_exec = 0; 4278 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4279 return 0; 4280 4281 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4282 4283 return 1; 4284 } 4285 4286 /* 4287 * Enable all of a task's events that have been marked enable-on-exec. 4288 * This expects task == current. 4289 */ 4290 static void perf_event_enable_on_exec(int ctxn) 4291 { 4292 struct perf_event_context *ctx, *clone_ctx = NULL; 4293 enum event_type_t event_type = 0; 4294 struct perf_cpu_context *cpuctx; 4295 struct perf_event *event; 4296 unsigned long flags; 4297 int enabled = 0; 4298 4299 local_irq_save(flags); 4300 ctx = current->perf_event_ctxp[ctxn]; 4301 if (!ctx || !ctx->nr_events) 4302 goto out; 4303 4304 cpuctx = __get_cpu_context(ctx); 4305 perf_ctx_lock(cpuctx, ctx); 4306 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4307 list_for_each_entry(event, &ctx->event_list, event_entry) { 4308 enabled |= event_enable_on_exec(event, ctx); 4309 event_type |= get_event_type(event); 4310 } 4311 4312 /* 4313 * Unclone and reschedule this context if we enabled any event. 4314 */ 4315 if (enabled) { 4316 clone_ctx = unclone_ctx(ctx); 4317 ctx_resched(cpuctx, ctx, event_type); 4318 } else { 4319 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4320 } 4321 perf_ctx_unlock(cpuctx, ctx); 4322 4323 out: 4324 local_irq_restore(flags); 4325 4326 if (clone_ctx) 4327 put_ctx(clone_ctx); 4328 } 4329 4330 static void perf_remove_from_owner(struct perf_event *event); 4331 static void perf_event_exit_event(struct perf_event *event, 4332 struct perf_event_context *ctx); 4333 4334 /* 4335 * Removes all events from the current task that have been marked 4336 * remove-on-exec, and feeds their values back to parent events. 4337 */ 4338 static void perf_event_remove_on_exec(int ctxn) 4339 { 4340 struct perf_event_context *ctx, *clone_ctx = NULL; 4341 struct perf_event *event, *next; 4342 LIST_HEAD(free_list); 4343 unsigned long flags; 4344 bool modified = false; 4345 4346 ctx = perf_pin_task_context(current, ctxn); 4347 if (!ctx) 4348 return; 4349 4350 mutex_lock(&ctx->mutex); 4351 4352 if (WARN_ON_ONCE(ctx->task != current)) 4353 goto unlock; 4354 4355 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4356 if (!event->attr.remove_on_exec) 4357 continue; 4358 4359 if (!is_kernel_event(event)) 4360 perf_remove_from_owner(event); 4361 4362 modified = true; 4363 4364 perf_event_exit_event(event, ctx); 4365 } 4366 4367 raw_spin_lock_irqsave(&ctx->lock, flags); 4368 if (modified) 4369 clone_ctx = unclone_ctx(ctx); 4370 --ctx->pin_count; 4371 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4372 4373 unlock: 4374 mutex_unlock(&ctx->mutex); 4375 4376 put_ctx(ctx); 4377 if (clone_ctx) 4378 put_ctx(clone_ctx); 4379 } 4380 4381 struct perf_read_data { 4382 struct perf_event *event; 4383 bool group; 4384 int ret; 4385 }; 4386 4387 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4388 { 4389 u16 local_pkg, event_pkg; 4390 4391 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4392 int local_cpu = smp_processor_id(); 4393 4394 event_pkg = topology_physical_package_id(event_cpu); 4395 local_pkg = topology_physical_package_id(local_cpu); 4396 4397 if (event_pkg == local_pkg) 4398 return local_cpu; 4399 } 4400 4401 return event_cpu; 4402 } 4403 4404 /* 4405 * Cross CPU call to read the hardware event 4406 */ 4407 static void __perf_event_read(void *info) 4408 { 4409 struct perf_read_data *data = info; 4410 struct perf_event *sub, *event = data->event; 4411 struct perf_event_context *ctx = event->ctx; 4412 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4413 struct pmu *pmu = event->pmu; 4414 4415 /* 4416 * If this is a task context, we need to check whether it is 4417 * the current task context of this cpu. If not it has been 4418 * scheduled out before the smp call arrived. In that case 4419 * event->count would have been updated to a recent sample 4420 * when the event was scheduled out. 4421 */ 4422 if (ctx->task && cpuctx->task_ctx != ctx) 4423 return; 4424 4425 raw_spin_lock(&ctx->lock); 4426 if (ctx->is_active & EVENT_TIME) { 4427 update_context_time(ctx); 4428 update_cgrp_time_from_event(event); 4429 } 4430 4431 perf_event_update_time(event); 4432 if (data->group) 4433 perf_event_update_sibling_time(event); 4434 4435 if (event->state != PERF_EVENT_STATE_ACTIVE) 4436 goto unlock; 4437 4438 if (!data->group) { 4439 pmu->read(event); 4440 data->ret = 0; 4441 goto unlock; 4442 } 4443 4444 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4445 4446 pmu->read(event); 4447 4448 for_each_sibling_event(sub, event) { 4449 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4450 /* 4451 * Use sibling's PMU rather than @event's since 4452 * sibling could be on different (eg: software) PMU. 4453 */ 4454 sub->pmu->read(sub); 4455 } 4456 } 4457 4458 data->ret = pmu->commit_txn(pmu); 4459 4460 unlock: 4461 raw_spin_unlock(&ctx->lock); 4462 } 4463 4464 static inline u64 perf_event_count(struct perf_event *event) 4465 { 4466 return local64_read(&event->count) + atomic64_read(&event->child_count); 4467 } 4468 4469 static void calc_timer_values(struct perf_event *event, 4470 u64 *now, 4471 u64 *enabled, 4472 u64 *running) 4473 { 4474 u64 ctx_time; 4475 4476 *now = perf_clock(); 4477 ctx_time = perf_event_time_now(event, *now); 4478 __perf_update_times(event, ctx_time, enabled, running); 4479 } 4480 4481 /* 4482 * NMI-safe method to read a local event, that is an event that 4483 * is: 4484 * - either for the current task, or for this CPU 4485 * - does not have inherit set, for inherited task events 4486 * will not be local and we cannot read them atomically 4487 * - must not have a pmu::count method 4488 */ 4489 int perf_event_read_local(struct perf_event *event, u64 *value, 4490 u64 *enabled, u64 *running) 4491 { 4492 unsigned long flags; 4493 int ret = 0; 4494 4495 /* 4496 * Disabling interrupts avoids all counter scheduling (context 4497 * switches, timer based rotation and IPIs). 4498 */ 4499 local_irq_save(flags); 4500 4501 /* 4502 * It must not be an event with inherit set, we cannot read 4503 * all child counters from atomic context. 4504 */ 4505 if (event->attr.inherit) { 4506 ret = -EOPNOTSUPP; 4507 goto out; 4508 } 4509 4510 /* If this is a per-task event, it must be for current */ 4511 if ((event->attach_state & PERF_ATTACH_TASK) && 4512 event->hw.target != current) { 4513 ret = -EINVAL; 4514 goto out; 4515 } 4516 4517 /* If this is a per-CPU event, it must be for this CPU */ 4518 if (!(event->attach_state & PERF_ATTACH_TASK) && 4519 event->cpu != smp_processor_id()) { 4520 ret = -EINVAL; 4521 goto out; 4522 } 4523 4524 /* If this is a pinned event it must be running on this CPU */ 4525 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4526 ret = -EBUSY; 4527 goto out; 4528 } 4529 4530 /* 4531 * If the event is currently on this CPU, its either a per-task event, 4532 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4533 * oncpu == -1). 4534 */ 4535 if (event->oncpu == smp_processor_id()) 4536 event->pmu->read(event); 4537 4538 *value = local64_read(&event->count); 4539 if (enabled || running) { 4540 u64 __enabled, __running, __now;; 4541 4542 calc_timer_values(event, &__now, &__enabled, &__running); 4543 if (enabled) 4544 *enabled = __enabled; 4545 if (running) 4546 *running = __running; 4547 } 4548 out: 4549 local_irq_restore(flags); 4550 4551 return ret; 4552 } 4553 4554 static int perf_event_read(struct perf_event *event, bool group) 4555 { 4556 enum perf_event_state state = READ_ONCE(event->state); 4557 int event_cpu, ret = 0; 4558 4559 /* 4560 * If event is enabled and currently active on a CPU, update the 4561 * value in the event structure: 4562 */ 4563 again: 4564 if (state == PERF_EVENT_STATE_ACTIVE) { 4565 struct perf_read_data data; 4566 4567 /* 4568 * Orders the ->state and ->oncpu loads such that if we see 4569 * ACTIVE we must also see the right ->oncpu. 4570 * 4571 * Matches the smp_wmb() from event_sched_in(). 4572 */ 4573 smp_rmb(); 4574 4575 event_cpu = READ_ONCE(event->oncpu); 4576 if ((unsigned)event_cpu >= nr_cpu_ids) 4577 return 0; 4578 4579 data = (struct perf_read_data){ 4580 .event = event, 4581 .group = group, 4582 .ret = 0, 4583 }; 4584 4585 preempt_disable(); 4586 event_cpu = __perf_event_read_cpu(event, event_cpu); 4587 4588 /* 4589 * Purposely ignore the smp_call_function_single() return 4590 * value. 4591 * 4592 * If event_cpu isn't a valid CPU it means the event got 4593 * scheduled out and that will have updated the event count. 4594 * 4595 * Therefore, either way, we'll have an up-to-date event count 4596 * after this. 4597 */ 4598 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4599 preempt_enable(); 4600 ret = data.ret; 4601 4602 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4603 struct perf_event_context *ctx = event->ctx; 4604 unsigned long flags; 4605 4606 raw_spin_lock_irqsave(&ctx->lock, flags); 4607 state = event->state; 4608 if (state != PERF_EVENT_STATE_INACTIVE) { 4609 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4610 goto again; 4611 } 4612 4613 /* 4614 * May read while context is not active (e.g., thread is 4615 * blocked), in that case we cannot update context time 4616 */ 4617 if (ctx->is_active & EVENT_TIME) { 4618 update_context_time(ctx); 4619 update_cgrp_time_from_event(event); 4620 } 4621 4622 perf_event_update_time(event); 4623 if (group) 4624 perf_event_update_sibling_time(event); 4625 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4626 } 4627 4628 return ret; 4629 } 4630 4631 /* 4632 * Initialize the perf_event context in a task_struct: 4633 */ 4634 static void __perf_event_init_context(struct perf_event_context *ctx) 4635 { 4636 raw_spin_lock_init(&ctx->lock); 4637 mutex_init(&ctx->mutex); 4638 INIT_LIST_HEAD(&ctx->active_ctx_list); 4639 perf_event_groups_init(&ctx->pinned_groups); 4640 perf_event_groups_init(&ctx->flexible_groups); 4641 INIT_LIST_HEAD(&ctx->event_list); 4642 INIT_LIST_HEAD(&ctx->pinned_active); 4643 INIT_LIST_HEAD(&ctx->flexible_active); 4644 refcount_set(&ctx->refcount, 1); 4645 } 4646 4647 static struct perf_event_context * 4648 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4649 { 4650 struct perf_event_context *ctx; 4651 4652 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4653 if (!ctx) 4654 return NULL; 4655 4656 __perf_event_init_context(ctx); 4657 if (task) 4658 ctx->task = get_task_struct(task); 4659 ctx->pmu = pmu; 4660 4661 return ctx; 4662 } 4663 4664 static struct task_struct * 4665 find_lively_task_by_vpid(pid_t vpid) 4666 { 4667 struct task_struct *task; 4668 4669 rcu_read_lock(); 4670 if (!vpid) 4671 task = current; 4672 else 4673 task = find_task_by_vpid(vpid); 4674 if (task) 4675 get_task_struct(task); 4676 rcu_read_unlock(); 4677 4678 if (!task) 4679 return ERR_PTR(-ESRCH); 4680 4681 return task; 4682 } 4683 4684 /* 4685 * Returns a matching context with refcount and pincount. 4686 */ 4687 static struct perf_event_context * 4688 find_get_context(struct pmu *pmu, struct task_struct *task, 4689 struct perf_event *event) 4690 { 4691 struct perf_event_context *ctx, *clone_ctx = NULL; 4692 struct perf_cpu_context *cpuctx; 4693 void *task_ctx_data = NULL; 4694 unsigned long flags; 4695 int ctxn, err; 4696 int cpu = event->cpu; 4697 4698 if (!task) { 4699 /* Must be root to operate on a CPU event: */ 4700 err = perf_allow_cpu(&event->attr); 4701 if (err) 4702 return ERR_PTR(err); 4703 4704 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4705 ctx = &cpuctx->ctx; 4706 get_ctx(ctx); 4707 raw_spin_lock_irqsave(&ctx->lock, flags); 4708 ++ctx->pin_count; 4709 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4710 4711 return ctx; 4712 } 4713 4714 err = -EINVAL; 4715 ctxn = pmu->task_ctx_nr; 4716 if (ctxn < 0) 4717 goto errout; 4718 4719 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4720 task_ctx_data = alloc_task_ctx_data(pmu); 4721 if (!task_ctx_data) { 4722 err = -ENOMEM; 4723 goto errout; 4724 } 4725 } 4726 4727 retry: 4728 ctx = perf_lock_task_context(task, ctxn, &flags); 4729 if (ctx) { 4730 clone_ctx = unclone_ctx(ctx); 4731 ++ctx->pin_count; 4732 4733 if (task_ctx_data && !ctx->task_ctx_data) { 4734 ctx->task_ctx_data = task_ctx_data; 4735 task_ctx_data = NULL; 4736 } 4737 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4738 4739 if (clone_ctx) 4740 put_ctx(clone_ctx); 4741 } else { 4742 ctx = alloc_perf_context(pmu, task); 4743 err = -ENOMEM; 4744 if (!ctx) 4745 goto errout; 4746 4747 if (task_ctx_data) { 4748 ctx->task_ctx_data = task_ctx_data; 4749 task_ctx_data = NULL; 4750 } 4751 4752 err = 0; 4753 mutex_lock(&task->perf_event_mutex); 4754 /* 4755 * If it has already passed perf_event_exit_task(). 4756 * we must see PF_EXITING, it takes this mutex too. 4757 */ 4758 if (task->flags & PF_EXITING) 4759 err = -ESRCH; 4760 else if (task->perf_event_ctxp[ctxn]) 4761 err = -EAGAIN; 4762 else { 4763 get_ctx(ctx); 4764 ++ctx->pin_count; 4765 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4766 } 4767 mutex_unlock(&task->perf_event_mutex); 4768 4769 if (unlikely(err)) { 4770 put_ctx(ctx); 4771 4772 if (err == -EAGAIN) 4773 goto retry; 4774 goto errout; 4775 } 4776 } 4777 4778 free_task_ctx_data(pmu, task_ctx_data); 4779 return ctx; 4780 4781 errout: 4782 free_task_ctx_data(pmu, task_ctx_data); 4783 return ERR_PTR(err); 4784 } 4785 4786 static void perf_event_free_filter(struct perf_event *event); 4787 4788 static void free_event_rcu(struct rcu_head *head) 4789 { 4790 struct perf_event *event; 4791 4792 event = container_of(head, struct perf_event, rcu_head); 4793 if (event->ns) 4794 put_pid_ns(event->ns); 4795 perf_event_free_filter(event); 4796 kmem_cache_free(perf_event_cache, event); 4797 } 4798 4799 static void ring_buffer_attach(struct perf_event *event, 4800 struct perf_buffer *rb); 4801 4802 static void detach_sb_event(struct perf_event *event) 4803 { 4804 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4805 4806 raw_spin_lock(&pel->lock); 4807 list_del_rcu(&event->sb_list); 4808 raw_spin_unlock(&pel->lock); 4809 } 4810 4811 static bool is_sb_event(struct perf_event *event) 4812 { 4813 struct perf_event_attr *attr = &event->attr; 4814 4815 if (event->parent) 4816 return false; 4817 4818 if (event->attach_state & PERF_ATTACH_TASK) 4819 return false; 4820 4821 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4822 attr->comm || attr->comm_exec || 4823 attr->task || attr->ksymbol || 4824 attr->context_switch || attr->text_poke || 4825 attr->bpf_event) 4826 return true; 4827 return false; 4828 } 4829 4830 static void unaccount_pmu_sb_event(struct perf_event *event) 4831 { 4832 if (is_sb_event(event)) 4833 detach_sb_event(event); 4834 } 4835 4836 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4837 { 4838 if (event->parent) 4839 return; 4840 4841 if (is_cgroup_event(event)) 4842 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4843 } 4844 4845 #ifdef CONFIG_NO_HZ_FULL 4846 static DEFINE_SPINLOCK(nr_freq_lock); 4847 #endif 4848 4849 static void unaccount_freq_event_nohz(void) 4850 { 4851 #ifdef CONFIG_NO_HZ_FULL 4852 spin_lock(&nr_freq_lock); 4853 if (atomic_dec_and_test(&nr_freq_events)) 4854 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4855 spin_unlock(&nr_freq_lock); 4856 #endif 4857 } 4858 4859 static void unaccount_freq_event(void) 4860 { 4861 if (tick_nohz_full_enabled()) 4862 unaccount_freq_event_nohz(); 4863 else 4864 atomic_dec(&nr_freq_events); 4865 } 4866 4867 static void unaccount_event(struct perf_event *event) 4868 { 4869 bool dec = false; 4870 4871 if (event->parent) 4872 return; 4873 4874 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4875 dec = true; 4876 if (event->attr.mmap || event->attr.mmap_data) 4877 atomic_dec(&nr_mmap_events); 4878 if (event->attr.build_id) 4879 atomic_dec(&nr_build_id_events); 4880 if (event->attr.comm) 4881 atomic_dec(&nr_comm_events); 4882 if (event->attr.namespaces) 4883 atomic_dec(&nr_namespaces_events); 4884 if (event->attr.cgroup) 4885 atomic_dec(&nr_cgroup_events); 4886 if (event->attr.task) 4887 atomic_dec(&nr_task_events); 4888 if (event->attr.freq) 4889 unaccount_freq_event(); 4890 if (event->attr.context_switch) { 4891 dec = true; 4892 atomic_dec(&nr_switch_events); 4893 } 4894 if (is_cgroup_event(event)) 4895 dec = true; 4896 if (has_branch_stack(event)) 4897 dec = true; 4898 if (event->attr.ksymbol) 4899 atomic_dec(&nr_ksymbol_events); 4900 if (event->attr.bpf_event) 4901 atomic_dec(&nr_bpf_events); 4902 if (event->attr.text_poke) 4903 atomic_dec(&nr_text_poke_events); 4904 4905 if (dec) { 4906 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4907 schedule_delayed_work(&perf_sched_work, HZ); 4908 } 4909 4910 unaccount_event_cpu(event, event->cpu); 4911 4912 unaccount_pmu_sb_event(event); 4913 } 4914 4915 static void perf_sched_delayed(struct work_struct *work) 4916 { 4917 mutex_lock(&perf_sched_mutex); 4918 if (atomic_dec_and_test(&perf_sched_count)) 4919 static_branch_disable(&perf_sched_events); 4920 mutex_unlock(&perf_sched_mutex); 4921 } 4922 4923 /* 4924 * The following implement mutual exclusion of events on "exclusive" pmus 4925 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4926 * at a time, so we disallow creating events that might conflict, namely: 4927 * 4928 * 1) cpu-wide events in the presence of per-task events, 4929 * 2) per-task events in the presence of cpu-wide events, 4930 * 3) two matching events on the same context. 4931 * 4932 * The former two cases are handled in the allocation path (perf_event_alloc(), 4933 * _free_event()), the latter -- before the first perf_install_in_context(). 4934 */ 4935 static int exclusive_event_init(struct perf_event *event) 4936 { 4937 struct pmu *pmu = event->pmu; 4938 4939 if (!is_exclusive_pmu(pmu)) 4940 return 0; 4941 4942 /* 4943 * Prevent co-existence of per-task and cpu-wide events on the 4944 * same exclusive pmu. 4945 * 4946 * Negative pmu::exclusive_cnt means there are cpu-wide 4947 * events on this "exclusive" pmu, positive means there are 4948 * per-task events. 4949 * 4950 * Since this is called in perf_event_alloc() path, event::ctx 4951 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4952 * to mean "per-task event", because unlike other attach states it 4953 * never gets cleared. 4954 */ 4955 if (event->attach_state & PERF_ATTACH_TASK) { 4956 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4957 return -EBUSY; 4958 } else { 4959 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4960 return -EBUSY; 4961 } 4962 4963 return 0; 4964 } 4965 4966 static void exclusive_event_destroy(struct perf_event *event) 4967 { 4968 struct pmu *pmu = event->pmu; 4969 4970 if (!is_exclusive_pmu(pmu)) 4971 return; 4972 4973 /* see comment in exclusive_event_init() */ 4974 if (event->attach_state & PERF_ATTACH_TASK) 4975 atomic_dec(&pmu->exclusive_cnt); 4976 else 4977 atomic_inc(&pmu->exclusive_cnt); 4978 } 4979 4980 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4981 { 4982 if ((e1->pmu == e2->pmu) && 4983 (e1->cpu == e2->cpu || 4984 e1->cpu == -1 || 4985 e2->cpu == -1)) 4986 return true; 4987 return false; 4988 } 4989 4990 static bool exclusive_event_installable(struct perf_event *event, 4991 struct perf_event_context *ctx) 4992 { 4993 struct perf_event *iter_event; 4994 struct pmu *pmu = event->pmu; 4995 4996 lockdep_assert_held(&ctx->mutex); 4997 4998 if (!is_exclusive_pmu(pmu)) 4999 return true; 5000 5001 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5002 if (exclusive_event_match(iter_event, event)) 5003 return false; 5004 } 5005 5006 return true; 5007 } 5008 5009 static void perf_addr_filters_splice(struct perf_event *event, 5010 struct list_head *head); 5011 5012 static void _free_event(struct perf_event *event) 5013 { 5014 irq_work_sync(&event->pending); 5015 5016 unaccount_event(event); 5017 5018 security_perf_event_free(event); 5019 5020 if (event->rb) { 5021 /* 5022 * Can happen when we close an event with re-directed output. 5023 * 5024 * Since we have a 0 refcount, perf_mmap_close() will skip 5025 * over us; possibly making our ring_buffer_put() the last. 5026 */ 5027 mutex_lock(&event->mmap_mutex); 5028 ring_buffer_attach(event, NULL); 5029 mutex_unlock(&event->mmap_mutex); 5030 } 5031 5032 if (is_cgroup_event(event)) 5033 perf_detach_cgroup(event); 5034 5035 if (!event->parent) { 5036 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5037 put_callchain_buffers(); 5038 } 5039 5040 perf_event_free_bpf_prog(event); 5041 perf_addr_filters_splice(event, NULL); 5042 kfree(event->addr_filter_ranges); 5043 5044 if (event->destroy) 5045 event->destroy(event); 5046 5047 /* 5048 * Must be after ->destroy(), due to uprobe_perf_close() using 5049 * hw.target. 5050 */ 5051 if (event->hw.target) 5052 put_task_struct(event->hw.target); 5053 5054 /* 5055 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5056 * all task references must be cleaned up. 5057 */ 5058 if (event->ctx) 5059 put_ctx(event->ctx); 5060 5061 exclusive_event_destroy(event); 5062 module_put(event->pmu->module); 5063 5064 call_rcu(&event->rcu_head, free_event_rcu); 5065 } 5066 5067 /* 5068 * Used to free events which have a known refcount of 1, such as in error paths 5069 * where the event isn't exposed yet and inherited events. 5070 */ 5071 static void free_event(struct perf_event *event) 5072 { 5073 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5074 "unexpected event refcount: %ld; ptr=%p\n", 5075 atomic_long_read(&event->refcount), event)) { 5076 /* leak to avoid use-after-free */ 5077 return; 5078 } 5079 5080 _free_event(event); 5081 } 5082 5083 /* 5084 * Remove user event from the owner task. 5085 */ 5086 static void perf_remove_from_owner(struct perf_event *event) 5087 { 5088 struct task_struct *owner; 5089 5090 rcu_read_lock(); 5091 /* 5092 * Matches the smp_store_release() in perf_event_exit_task(). If we 5093 * observe !owner it means the list deletion is complete and we can 5094 * indeed free this event, otherwise we need to serialize on 5095 * owner->perf_event_mutex. 5096 */ 5097 owner = READ_ONCE(event->owner); 5098 if (owner) { 5099 /* 5100 * Since delayed_put_task_struct() also drops the last 5101 * task reference we can safely take a new reference 5102 * while holding the rcu_read_lock(). 5103 */ 5104 get_task_struct(owner); 5105 } 5106 rcu_read_unlock(); 5107 5108 if (owner) { 5109 /* 5110 * If we're here through perf_event_exit_task() we're already 5111 * holding ctx->mutex which would be an inversion wrt. the 5112 * normal lock order. 5113 * 5114 * However we can safely take this lock because its the child 5115 * ctx->mutex. 5116 */ 5117 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5118 5119 /* 5120 * We have to re-check the event->owner field, if it is cleared 5121 * we raced with perf_event_exit_task(), acquiring the mutex 5122 * ensured they're done, and we can proceed with freeing the 5123 * event. 5124 */ 5125 if (event->owner) { 5126 list_del_init(&event->owner_entry); 5127 smp_store_release(&event->owner, NULL); 5128 } 5129 mutex_unlock(&owner->perf_event_mutex); 5130 put_task_struct(owner); 5131 } 5132 } 5133 5134 static void put_event(struct perf_event *event) 5135 { 5136 if (!atomic_long_dec_and_test(&event->refcount)) 5137 return; 5138 5139 _free_event(event); 5140 } 5141 5142 /* 5143 * Kill an event dead; while event:refcount will preserve the event 5144 * object, it will not preserve its functionality. Once the last 'user' 5145 * gives up the object, we'll destroy the thing. 5146 */ 5147 int perf_event_release_kernel(struct perf_event *event) 5148 { 5149 struct perf_event_context *ctx = event->ctx; 5150 struct perf_event *child, *tmp; 5151 LIST_HEAD(free_list); 5152 5153 /* 5154 * If we got here through err_file: fput(event_file); we will not have 5155 * attached to a context yet. 5156 */ 5157 if (!ctx) { 5158 WARN_ON_ONCE(event->attach_state & 5159 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5160 goto no_ctx; 5161 } 5162 5163 if (!is_kernel_event(event)) 5164 perf_remove_from_owner(event); 5165 5166 ctx = perf_event_ctx_lock(event); 5167 WARN_ON_ONCE(ctx->parent_ctx); 5168 perf_remove_from_context(event, DETACH_GROUP); 5169 5170 raw_spin_lock_irq(&ctx->lock); 5171 /* 5172 * Mark this event as STATE_DEAD, there is no external reference to it 5173 * anymore. 5174 * 5175 * Anybody acquiring event->child_mutex after the below loop _must_ 5176 * also see this, most importantly inherit_event() which will avoid 5177 * placing more children on the list. 5178 * 5179 * Thus this guarantees that we will in fact observe and kill _ALL_ 5180 * child events. 5181 */ 5182 event->state = PERF_EVENT_STATE_DEAD; 5183 raw_spin_unlock_irq(&ctx->lock); 5184 5185 perf_event_ctx_unlock(event, ctx); 5186 5187 again: 5188 mutex_lock(&event->child_mutex); 5189 list_for_each_entry(child, &event->child_list, child_list) { 5190 5191 /* 5192 * Cannot change, child events are not migrated, see the 5193 * comment with perf_event_ctx_lock_nested(). 5194 */ 5195 ctx = READ_ONCE(child->ctx); 5196 /* 5197 * Since child_mutex nests inside ctx::mutex, we must jump 5198 * through hoops. We start by grabbing a reference on the ctx. 5199 * 5200 * Since the event cannot get freed while we hold the 5201 * child_mutex, the context must also exist and have a !0 5202 * reference count. 5203 */ 5204 get_ctx(ctx); 5205 5206 /* 5207 * Now that we have a ctx ref, we can drop child_mutex, and 5208 * acquire ctx::mutex without fear of it going away. Then we 5209 * can re-acquire child_mutex. 5210 */ 5211 mutex_unlock(&event->child_mutex); 5212 mutex_lock(&ctx->mutex); 5213 mutex_lock(&event->child_mutex); 5214 5215 /* 5216 * Now that we hold ctx::mutex and child_mutex, revalidate our 5217 * state, if child is still the first entry, it didn't get freed 5218 * and we can continue doing so. 5219 */ 5220 tmp = list_first_entry_or_null(&event->child_list, 5221 struct perf_event, child_list); 5222 if (tmp == child) { 5223 perf_remove_from_context(child, DETACH_GROUP); 5224 list_move(&child->child_list, &free_list); 5225 /* 5226 * This matches the refcount bump in inherit_event(); 5227 * this can't be the last reference. 5228 */ 5229 put_event(event); 5230 } 5231 5232 mutex_unlock(&event->child_mutex); 5233 mutex_unlock(&ctx->mutex); 5234 put_ctx(ctx); 5235 goto again; 5236 } 5237 mutex_unlock(&event->child_mutex); 5238 5239 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5240 void *var = &child->ctx->refcount; 5241 5242 list_del(&child->child_list); 5243 free_event(child); 5244 5245 /* 5246 * Wake any perf_event_free_task() waiting for this event to be 5247 * freed. 5248 */ 5249 smp_mb(); /* pairs with wait_var_event() */ 5250 wake_up_var(var); 5251 } 5252 5253 no_ctx: 5254 put_event(event); /* Must be the 'last' reference */ 5255 return 0; 5256 } 5257 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5258 5259 /* 5260 * Called when the last reference to the file is gone. 5261 */ 5262 static int perf_release(struct inode *inode, struct file *file) 5263 { 5264 perf_event_release_kernel(file->private_data); 5265 return 0; 5266 } 5267 5268 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5269 { 5270 struct perf_event *child; 5271 u64 total = 0; 5272 5273 *enabled = 0; 5274 *running = 0; 5275 5276 mutex_lock(&event->child_mutex); 5277 5278 (void)perf_event_read(event, false); 5279 total += perf_event_count(event); 5280 5281 *enabled += event->total_time_enabled + 5282 atomic64_read(&event->child_total_time_enabled); 5283 *running += event->total_time_running + 5284 atomic64_read(&event->child_total_time_running); 5285 5286 list_for_each_entry(child, &event->child_list, child_list) { 5287 (void)perf_event_read(child, false); 5288 total += perf_event_count(child); 5289 *enabled += child->total_time_enabled; 5290 *running += child->total_time_running; 5291 } 5292 mutex_unlock(&event->child_mutex); 5293 5294 return total; 5295 } 5296 5297 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5298 { 5299 struct perf_event_context *ctx; 5300 u64 count; 5301 5302 ctx = perf_event_ctx_lock(event); 5303 count = __perf_event_read_value(event, enabled, running); 5304 perf_event_ctx_unlock(event, ctx); 5305 5306 return count; 5307 } 5308 EXPORT_SYMBOL_GPL(perf_event_read_value); 5309 5310 static int __perf_read_group_add(struct perf_event *leader, 5311 u64 read_format, u64 *values) 5312 { 5313 struct perf_event_context *ctx = leader->ctx; 5314 struct perf_event *sub; 5315 unsigned long flags; 5316 int n = 1; /* skip @nr */ 5317 int ret; 5318 5319 ret = perf_event_read(leader, true); 5320 if (ret) 5321 return ret; 5322 5323 raw_spin_lock_irqsave(&ctx->lock, flags); 5324 5325 /* 5326 * Since we co-schedule groups, {enabled,running} times of siblings 5327 * will be identical to those of the leader, so we only publish one 5328 * set. 5329 */ 5330 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5331 values[n++] += leader->total_time_enabled + 5332 atomic64_read(&leader->child_total_time_enabled); 5333 } 5334 5335 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5336 values[n++] += leader->total_time_running + 5337 atomic64_read(&leader->child_total_time_running); 5338 } 5339 5340 /* 5341 * Write {count,id} tuples for every sibling. 5342 */ 5343 values[n++] += perf_event_count(leader); 5344 if (read_format & PERF_FORMAT_ID) 5345 values[n++] = primary_event_id(leader); 5346 5347 for_each_sibling_event(sub, leader) { 5348 values[n++] += perf_event_count(sub); 5349 if (read_format & PERF_FORMAT_ID) 5350 values[n++] = primary_event_id(sub); 5351 } 5352 5353 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5354 return 0; 5355 } 5356 5357 static int perf_read_group(struct perf_event *event, 5358 u64 read_format, char __user *buf) 5359 { 5360 struct perf_event *leader = event->group_leader, *child; 5361 struct perf_event_context *ctx = leader->ctx; 5362 int ret; 5363 u64 *values; 5364 5365 lockdep_assert_held(&ctx->mutex); 5366 5367 values = kzalloc(event->read_size, GFP_KERNEL); 5368 if (!values) 5369 return -ENOMEM; 5370 5371 values[0] = 1 + leader->nr_siblings; 5372 5373 /* 5374 * By locking the child_mutex of the leader we effectively 5375 * lock the child list of all siblings.. XXX explain how. 5376 */ 5377 mutex_lock(&leader->child_mutex); 5378 5379 ret = __perf_read_group_add(leader, read_format, values); 5380 if (ret) 5381 goto unlock; 5382 5383 list_for_each_entry(child, &leader->child_list, child_list) { 5384 ret = __perf_read_group_add(child, read_format, values); 5385 if (ret) 5386 goto unlock; 5387 } 5388 5389 mutex_unlock(&leader->child_mutex); 5390 5391 ret = event->read_size; 5392 if (copy_to_user(buf, values, event->read_size)) 5393 ret = -EFAULT; 5394 goto out; 5395 5396 unlock: 5397 mutex_unlock(&leader->child_mutex); 5398 out: 5399 kfree(values); 5400 return ret; 5401 } 5402 5403 static int perf_read_one(struct perf_event *event, 5404 u64 read_format, char __user *buf) 5405 { 5406 u64 enabled, running; 5407 u64 values[4]; 5408 int n = 0; 5409 5410 values[n++] = __perf_event_read_value(event, &enabled, &running); 5411 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5412 values[n++] = enabled; 5413 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5414 values[n++] = running; 5415 if (read_format & PERF_FORMAT_ID) 5416 values[n++] = primary_event_id(event); 5417 5418 if (copy_to_user(buf, values, n * sizeof(u64))) 5419 return -EFAULT; 5420 5421 return n * sizeof(u64); 5422 } 5423 5424 static bool is_event_hup(struct perf_event *event) 5425 { 5426 bool no_children; 5427 5428 if (event->state > PERF_EVENT_STATE_EXIT) 5429 return false; 5430 5431 mutex_lock(&event->child_mutex); 5432 no_children = list_empty(&event->child_list); 5433 mutex_unlock(&event->child_mutex); 5434 return no_children; 5435 } 5436 5437 /* 5438 * Read the performance event - simple non blocking version for now 5439 */ 5440 static ssize_t 5441 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5442 { 5443 u64 read_format = event->attr.read_format; 5444 int ret; 5445 5446 /* 5447 * Return end-of-file for a read on an event that is in 5448 * error state (i.e. because it was pinned but it couldn't be 5449 * scheduled on to the CPU at some point). 5450 */ 5451 if (event->state == PERF_EVENT_STATE_ERROR) 5452 return 0; 5453 5454 if (count < event->read_size) 5455 return -ENOSPC; 5456 5457 WARN_ON_ONCE(event->ctx->parent_ctx); 5458 if (read_format & PERF_FORMAT_GROUP) 5459 ret = perf_read_group(event, read_format, buf); 5460 else 5461 ret = perf_read_one(event, read_format, buf); 5462 5463 return ret; 5464 } 5465 5466 static ssize_t 5467 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5468 { 5469 struct perf_event *event = file->private_data; 5470 struct perf_event_context *ctx; 5471 int ret; 5472 5473 ret = security_perf_event_read(event); 5474 if (ret) 5475 return ret; 5476 5477 ctx = perf_event_ctx_lock(event); 5478 ret = __perf_read(event, buf, count); 5479 perf_event_ctx_unlock(event, ctx); 5480 5481 return ret; 5482 } 5483 5484 static __poll_t perf_poll(struct file *file, poll_table *wait) 5485 { 5486 struct perf_event *event = file->private_data; 5487 struct perf_buffer *rb; 5488 __poll_t events = EPOLLHUP; 5489 5490 poll_wait(file, &event->waitq, wait); 5491 5492 if (is_event_hup(event)) 5493 return events; 5494 5495 /* 5496 * Pin the event->rb by taking event->mmap_mutex; otherwise 5497 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5498 */ 5499 mutex_lock(&event->mmap_mutex); 5500 rb = event->rb; 5501 if (rb) 5502 events = atomic_xchg(&rb->poll, 0); 5503 mutex_unlock(&event->mmap_mutex); 5504 return events; 5505 } 5506 5507 static void _perf_event_reset(struct perf_event *event) 5508 { 5509 (void)perf_event_read(event, false); 5510 local64_set(&event->count, 0); 5511 perf_event_update_userpage(event); 5512 } 5513 5514 /* Assume it's not an event with inherit set. */ 5515 u64 perf_event_pause(struct perf_event *event, bool reset) 5516 { 5517 struct perf_event_context *ctx; 5518 u64 count; 5519 5520 ctx = perf_event_ctx_lock(event); 5521 WARN_ON_ONCE(event->attr.inherit); 5522 _perf_event_disable(event); 5523 count = local64_read(&event->count); 5524 if (reset) 5525 local64_set(&event->count, 0); 5526 perf_event_ctx_unlock(event, ctx); 5527 5528 return count; 5529 } 5530 EXPORT_SYMBOL_GPL(perf_event_pause); 5531 5532 /* 5533 * Holding the top-level event's child_mutex means that any 5534 * descendant process that has inherited this event will block 5535 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5536 * task existence requirements of perf_event_enable/disable. 5537 */ 5538 static void perf_event_for_each_child(struct perf_event *event, 5539 void (*func)(struct perf_event *)) 5540 { 5541 struct perf_event *child; 5542 5543 WARN_ON_ONCE(event->ctx->parent_ctx); 5544 5545 mutex_lock(&event->child_mutex); 5546 func(event); 5547 list_for_each_entry(child, &event->child_list, child_list) 5548 func(child); 5549 mutex_unlock(&event->child_mutex); 5550 } 5551 5552 static void perf_event_for_each(struct perf_event *event, 5553 void (*func)(struct perf_event *)) 5554 { 5555 struct perf_event_context *ctx = event->ctx; 5556 struct perf_event *sibling; 5557 5558 lockdep_assert_held(&ctx->mutex); 5559 5560 event = event->group_leader; 5561 5562 perf_event_for_each_child(event, func); 5563 for_each_sibling_event(sibling, event) 5564 perf_event_for_each_child(sibling, func); 5565 } 5566 5567 static void __perf_event_period(struct perf_event *event, 5568 struct perf_cpu_context *cpuctx, 5569 struct perf_event_context *ctx, 5570 void *info) 5571 { 5572 u64 value = *((u64 *)info); 5573 bool active; 5574 5575 if (event->attr.freq) { 5576 event->attr.sample_freq = value; 5577 } else { 5578 event->attr.sample_period = value; 5579 event->hw.sample_period = value; 5580 } 5581 5582 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5583 if (active) { 5584 perf_pmu_disable(ctx->pmu); 5585 /* 5586 * We could be throttled; unthrottle now to avoid the tick 5587 * trying to unthrottle while we already re-started the event. 5588 */ 5589 if (event->hw.interrupts == MAX_INTERRUPTS) { 5590 event->hw.interrupts = 0; 5591 perf_log_throttle(event, 1); 5592 } 5593 event->pmu->stop(event, PERF_EF_UPDATE); 5594 } 5595 5596 local64_set(&event->hw.period_left, 0); 5597 5598 if (active) { 5599 event->pmu->start(event, PERF_EF_RELOAD); 5600 perf_pmu_enable(ctx->pmu); 5601 } 5602 } 5603 5604 static int perf_event_check_period(struct perf_event *event, u64 value) 5605 { 5606 return event->pmu->check_period(event, value); 5607 } 5608 5609 static int _perf_event_period(struct perf_event *event, u64 value) 5610 { 5611 if (!is_sampling_event(event)) 5612 return -EINVAL; 5613 5614 if (!value) 5615 return -EINVAL; 5616 5617 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5618 return -EINVAL; 5619 5620 if (perf_event_check_period(event, value)) 5621 return -EINVAL; 5622 5623 if (!event->attr.freq && (value & (1ULL << 63))) 5624 return -EINVAL; 5625 5626 event_function_call(event, __perf_event_period, &value); 5627 5628 return 0; 5629 } 5630 5631 int perf_event_period(struct perf_event *event, u64 value) 5632 { 5633 struct perf_event_context *ctx; 5634 int ret; 5635 5636 ctx = perf_event_ctx_lock(event); 5637 ret = _perf_event_period(event, value); 5638 perf_event_ctx_unlock(event, ctx); 5639 5640 return ret; 5641 } 5642 EXPORT_SYMBOL_GPL(perf_event_period); 5643 5644 static const struct file_operations perf_fops; 5645 5646 static inline int perf_fget_light(int fd, struct fd *p) 5647 { 5648 struct fd f = fdget(fd); 5649 if (!f.file) 5650 return -EBADF; 5651 5652 if (f.file->f_op != &perf_fops) { 5653 fdput(f); 5654 return -EBADF; 5655 } 5656 *p = f; 5657 return 0; 5658 } 5659 5660 static int perf_event_set_output(struct perf_event *event, 5661 struct perf_event *output_event); 5662 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5663 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5664 struct perf_event_attr *attr); 5665 5666 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5667 { 5668 void (*func)(struct perf_event *); 5669 u32 flags = arg; 5670 5671 switch (cmd) { 5672 case PERF_EVENT_IOC_ENABLE: 5673 func = _perf_event_enable; 5674 break; 5675 case PERF_EVENT_IOC_DISABLE: 5676 func = _perf_event_disable; 5677 break; 5678 case PERF_EVENT_IOC_RESET: 5679 func = _perf_event_reset; 5680 break; 5681 5682 case PERF_EVENT_IOC_REFRESH: 5683 return _perf_event_refresh(event, arg); 5684 5685 case PERF_EVENT_IOC_PERIOD: 5686 { 5687 u64 value; 5688 5689 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5690 return -EFAULT; 5691 5692 return _perf_event_period(event, value); 5693 } 5694 case PERF_EVENT_IOC_ID: 5695 { 5696 u64 id = primary_event_id(event); 5697 5698 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5699 return -EFAULT; 5700 return 0; 5701 } 5702 5703 case PERF_EVENT_IOC_SET_OUTPUT: 5704 { 5705 int ret; 5706 if (arg != -1) { 5707 struct perf_event *output_event; 5708 struct fd output; 5709 ret = perf_fget_light(arg, &output); 5710 if (ret) 5711 return ret; 5712 output_event = output.file->private_data; 5713 ret = perf_event_set_output(event, output_event); 5714 fdput(output); 5715 } else { 5716 ret = perf_event_set_output(event, NULL); 5717 } 5718 return ret; 5719 } 5720 5721 case PERF_EVENT_IOC_SET_FILTER: 5722 return perf_event_set_filter(event, (void __user *)arg); 5723 5724 case PERF_EVENT_IOC_SET_BPF: 5725 { 5726 struct bpf_prog *prog; 5727 int err; 5728 5729 prog = bpf_prog_get(arg); 5730 if (IS_ERR(prog)) 5731 return PTR_ERR(prog); 5732 5733 err = perf_event_set_bpf_prog(event, prog, 0); 5734 if (err) { 5735 bpf_prog_put(prog); 5736 return err; 5737 } 5738 5739 return 0; 5740 } 5741 5742 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5743 struct perf_buffer *rb; 5744 5745 rcu_read_lock(); 5746 rb = rcu_dereference(event->rb); 5747 if (!rb || !rb->nr_pages) { 5748 rcu_read_unlock(); 5749 return -EINVAL; 5750 } 5751 rb_toggle_paused(rb, !!arg); 5752 rcu_read_unlock(); 5753 return 0; 5754 } 5755 5756 case PERF_EVENT_IOC_QUERY_BPF: 5757 return perf_event_query_prog_array(event, (void __user *)arg); 5758 5759 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5760 struct perf_event_attr new_attr; 5761 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5762 &new_attr); 5763 5764 if (err) 5765 return err; 5766 5767 return perf_event_modify_attr(event, &new_attr); 5768 } 5769 default: 5770 return -ENOTTY; 5771 } 5772 5773 if (flags & PERF_IOC_FLAG_GROUP) 5774 perf_event_for_each(event, func); 5775 else 5776 perf_event_for_each_child(event, func); 5777 5778 return 0; 5779 } 5780 5781 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5782 { 5783 struct perf_event *event = file->private_data; 5784 struct perf_event_context *ctx; 5785 long ret; 5786 5787 /* Treat ioctl like writes as it is likely a mutating operation. */ 5788 ret = security_perf_event_write(event); 5789 if (ret) 5790 return ret; 5791 5792 ctx = perf_event_ctx_lock(event); 5793 ret = _perf_ioctl(event, cmd, arg); 5794 perf_event_ctx_unlock(event, ctx); 5795 5796 return ret; 5797 } 5798 5799 #ifdef CONFIG_COMPAT 5800 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5801 unsigned long arg) 5802 { 5803 switch (_IOC_NR(cmd)) { 5804 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5805 case _IOC_NR(PERF_EVENT_IOC_ID): 5806 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5807 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5808 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5809 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5810 cmd &= ~IOCSIZE_MASK; 5811 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5812 } 5813 break; 5814 } 5815 return perf_ioctl(file, cmd, arg); 5816 } 5817 #else 5818 # define perf_compat_ioctl NULL 5819 #endif 5820 5821 int perf_event_task_enable(void) 5822 { 5823 struct perf_event_context *ctx; 5824 struct perf_event *event; 5825 5826 mutex_lock(¤t->perf_event_mutex); 5827 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5828 ctx = perf_event_ctx_lock(event); 5829 perf_event_for_each_child(event, _perf_event_enable); 5830 perf_event_ctx_unlock(event, ctx); 5831 } 5832 mutex_unlock(¤t->perf_event_mutex); 5833 5834 return 0; 5835 } 5836 5837 int perf_event_task_disable(void) 5838 { 5839 struct perf_event_context *ctx; 5840 struct perf_event *event; 5841 5842 mutex_lock(¤t->perf_event_mutex); 5843 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5844 ctx = perf_event_ctx_lock(event); 5845 perf_event_for_each_child(event, _perf_event_disable); 5846 perf_event_ctx_unlock(event, ctx); 5847 } 5848 mutex_unlock(¤t->perf_event_mutex); 5849 5850 return 0; 5851 } 5852 5853 static int perf_event_index(struct perf_event *event) 5854 { 5855 if (event->hw.state & PERF_HES_STOPPED) 5856 return 0; 5857 5858 if (event->state != PERF_EVENT_STATE_ACTIVE) 5859 return 0; 5860 5861 return event->pmu->event_idx(event); 5862 } 5863 5864 static void perf_event_init_userpage(struct perf_event *event) 5865 { 5866 struct perf_event_mmap_page *userpg; 5867 struct perf_buffer *rb; 5868 5869 rcu_read_lock(); 5870 rb = rcu_dereference(event->rb); 5871 if (!rb) 5872 goto unlock; 5873 5874 userpg = rb->user_page; 5875 5876 /* Allow new userspace to detect that bit 0 is deprecated */ 5877 userpg->cap_bit0_is_deprecated = 1; 5878 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5879 userpg->data_offset = PAGE_SIZE; 5880 userpg->data_size = perf_data_size(rb); 5881 5882 unlock: 5883 rcu_read_unlock(); 5884 } 5885 5886 void __weak arch_perf_update_userpage( 5887 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5888 { 5889 } 5890 5891 /* 5892 * Callers need to ensure there can be no nesting of this function, otherwise 5893 * the seqlock logic goes bad. We can not serialize this because the arch 5894 * code calls this from NMI context. 5895 */ 5896 void perf_event_update_userpage(struct perf_event *event) 5897 { 5898 struct perf_event_mmap_page *userpg; 5899 struct perf_buffer *rb; 5900 u64 enabled, running, now; 5901 5902 rcu_read_lock(); 5903 rb = rcu_dereference(event->rb); 5904 if (!rb) 5905 goto unlock; 5906 5907 /* 5908 * compute total_time_enabled, total_time_running 5909 * based on snapshot values taken when the event 5910 * was last scheduled in. 5911 * 5912 * we cannot simply called update_context_time() 5913 * because of locking issue as we can be called in 5914 * NMI context 5915 */ 5916 calc_timer_values(event, &now, &enabled, &running); 5917 5918 userpg = rb->user_page; 5919 /* 5920 * Disable preemption to guarantee consistent time stamps are stored to 5921 * the user page. 5922 */ 5923 preempt_disable(); 5924 ++userpg->lock; 5925 barrier(); 5926 userpg->index = perf_event_index(event); 5927 userpg->offset = perf_event_count(event); 5928 if (userpg->index) 5929 userpg->offset -= local64_read(&event->hw.prev_count); 5930 5931 userpg->time_enabled = enabled + 5932 atomic64_read(&event->child_total_time_enabled); 5933 5934 userpg->time_running = running + 5935 atomic64_read(&event->child_total_time_running); 5936 5937 arch_perf_update_userpage(event, userpg, now); 5938 5939 barrier(); 5940 ++userpg->lock; 5941 preempt_enable(); 5942 unlock: 5943 rcu_read_unlock(); 5944 } 5945 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5946 5947 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5948 { 5949 struct perf_event *event = vmf->vma->vm_file->private_data; 5950 struct perf_buffer *rb; 5951 vm_fault_t ret = VM_FAULT_SIGBUS; 5952 5953 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5954 if (vmf->pgoff == 0) 5955 ret = 0; 5956 return ret; 5957 } 5958 5959 rcu_read_lock(); 5960 rb = rcu_dereference(event->rb); 5961 if (!rb) 5962 goto unlock; 5963 5964 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5965 goto unlock; 5966 5967 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5968 if (!vmf->page) 5969 goto unlock; 5970 5971 get_page(vmf->page); 5972 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5973 vmf->page->index = vmf->pgoff; 5974 5975 ret = 0; 5976 unlock: 5977 rcu_read_unlock(); 5978 5979 return ret; 5980 } 5981 5982 static void ring_buffer_attach(struct perf_event *event, 5983 struct perf_buffer *rb) 5984 { 5985 struct perf_buffer *old_rb = NULL; 5986 unsigned long flags; 5987 5988 if (event->rb) { 5989 /* 5990 * Should be impossible, we set this when removing 5991 * event->rb_entry and wait/clear when adding event->rb_entry. 5992 */ 5993 WARN_ON_ONCE(event->rcu_pending); 5994 5995 old_rb = event->rb; 5996 spin_lock_irqsave(&old_rb->event_lock, flags); 5997 list_del_rcu(&event->rb_entry); 5998 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5999 6000 event->rcu_batches = get_state_synchronize_rcu(); 6001 event->rcu_pending = 1; 6002 } 6003 6004 if (rb) { 6005 if (event->rcu_pending) { 6006 cond_synchronize_rcu(event->rcu_batches); 6007 event->rcu_pending = 0; 6008 } 6009 6010 spin_lock_irqsave(&rb->event_lock, flags); 6011 list_add_rcu(&event->rb_entry, &rb->event_list); 6012 spin_unlock_irqrestore(&rb->event_lock, flags); 6013 } 6014 6015 /* 6016 * Avoid racing with perf_mmap_close(AUX): stop the event 6017 * before swizzling the event::rb pointer; if it's getting 6018 * unmapped, its aux_mmap_count will be 0 and it won't 6019 * restart. See the comment in __perf_pmu_output_stop(). 6020 * 6021 * Data will inevitably be lost when set_output is done in 6022 * mid-air, but then again, whoever does it like this is 6023 * not in for the data anyway. 6024 */ 6025 if (has_aux(event)) 6026 perf_event_stop(event, 0); 6027 6028 rcu_assign_pointer(event->rb, rb); 6029 6030 if (old_rb) { 6031 ring_buffer_put(old_rb); 6032 /* 6033 * Since we detached before setting the new rb, so that we 6034 * could attach the new rb, we could have missed a wakeup. 6035 * Provide it now. 6036 */ 6037 wake_up_all(&event->waitq); 6038 } 6039 } 6040 6041 static void ring_buffer_wakeup(struct perf_event *event) 6042 { 6043 struct perf_buffer *rb; 6044 6045 rcu_read_lock(); 6046 rb = rcu_dereference(event->rb); 6047 if (rb) { 6048 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6049 wake_up_all(&event->waitq); 6050 } 6051 rcu_read_unlock(); 6052 } 6053 6054 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6055 { 6056 struct perf_buffer *rb; 6057 6058 rcu_read_lock(); 6059 rb = rcu_dereference(event->rb); 6060 if (rb) { 6061 if (!refcount_inc_not_zero(&rb->refcount)) 6062 rb = NULL; 6063 } 6064 rcu_read_unlock(); 6065 6066 return rb; 6067 } 6068 6069 void ring_buffer_put(struct perf_buffer *rb) 6070 { 6071 if (!refcount_dec_and_test(&rb->refcount)) 6072 return; 6073 6074 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6075 6076 call_rcu(&rb->rcu_head, rb_free_rcu); 6077 } 6078 6079 static void perf_mmap_open(struct vm_area_struct *vma) 6080 { 6081 struct perf_event *event = vma->vm_file->private_data; 6082 6083 atomic_inc(&event->mmap_count); 6084 atomic_inc(&event->rb->mmap_count); 6085 6086 if (vma->vm_pgoff) 6087 atomic_inc(&event->rb->aux_mmap_count); 6088 6089 if (event->pmu->event_mapped) 6090 event->pmu->event_mapped(event, vma->vm_mm); 6091 } 6092 6093 static void perf_pmu_output_stop(struct perf_event *event); 6094 6095 /* 6096 * A buffer can be mmap()ed multiple times; either directly through the same 6097 * event, or through other events by use of perf_event_set_output(). 6098 * 6099 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6100 * the buffer here, where we still have a VM context. This means we need 6101 * to detach all events redirecting to us. 6102 */ 6103 static void perf_mmap_close(struct vm_area_struct *vma) 6104 { 6105 struct perf_event *event = vma->vm_file->private_data; 6106 struct perf_buffer *rb = ring_buffer_get(event); 6107 struct user_struct *mmap_user = rb->mmap_user; 6108 int mmap_locked = rb->mmap_locked; 6109 unsigned long size = perf_data_size(rb); 6110 bool detach_rest = false; 6111 6112 if (event->pmu->event_unmapped) 6113 event->pmu->event_unmapped(event, vma->vm_mm); 6114 6115 /* 6116 * rb->aux_mmap_count will always drop before rb->mmap_count and 6117 * event->mmap_count, so it is ok to use event->mmap_mutex to 6118 * serialize with perf_mmap here. 6119 */ 6120 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6121 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6122 /* 6123 * Stop all AUX events that are writing to this buffer, 6124 * so that we can free its AUX pages and corresponding PMU 6125 * data. Note that after rb::aux_mmap_count dropped to zero, 6126 * they won't start any more (see perf_aux_output_begin()). 6127 */ 6128 perf_pmu_output_stop(event); 6129 6130 /* now it's safe to free the pages */ 6131 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6132 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6133 6134 /* this has to be the last one */ 6135 rb_free_aux(rb); 6136 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6137 6138 mutex_unlock(&event->mmap_mutex); 6139 } 6140 6141 if (atomic_dec_and_test(&rb->mmap_count)) 6142 detach_rest = true; 6143 6144 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6145 goto out_put; 6146 6147 ring_buffer_attach(event, NULL); 6148 mutex_unlock(&event->mmap_mutex); 6149 6150 /* If there's still other mmap()s of this buffer, we're done. */ 6151 if (!detach_rest) 6152 goto out_put; 6153 6154 /* 6155 * No other mmap()s, detach from all other events that might redirect 6156 * into the now unreachable buffer. Somewhat complicated by the 6157 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6158 */ 6159 again: 6160 rcu_read_lock(); 6161 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6162 if (!atomic_long_inc_not_zero(&event->refcount)) { 6163 /* 6164 * This event is en-route to free_event() which will 6165 * detach it and remove it from the list. 6166 */ 6167 continue; 6168 } 6169 rcu_read_unlock(); 6170 6171 mutex_lock(&event->mmap_mutex); 6172 /* 6173 * Check we didn't race with perf_event_set_output() which can 6174 * swizzle the rb from under us while we were waiting to 6175 * acquire mmap_mutex. 6176 * 6177 * If we find a different rb; ignore this event, a next 6178 * iteration will no longer find it on the list. We have to 6179 * still restart the iteration to make sure we're not now 6180 * iterating the wrong list. 6181 */ 6182 if (event->rb == rb) 6183 ring_buffer_attach(event, NULL); 6184 6185 mutex_unlock(&event->mmap_mutex); 6186 put_event(event); 6187 6188 /* 6189 * Restart the iteration; either we're on the wrong list or 6190 * destroyed its integrity by doing a deletion. 6191 */ 6192 goto again; 6193 } 6194 rcu_read_unlock(); 6195 6196 /* 6197 * It could be there's still a few 0-ref events on the list; they'll 6198 * get cleaned up by free_event() -- they'll also still have their 6199 * ref on the rb and will free it whenever they are done with it. 6200 * 6201 * Aside from that, this buffer is 'fully' detached and unmapped, 6202 * undo the VM accounting. 6203 */ 6204 6205 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6206 &mmap_user->locked_vm); 6207 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6208 free_uid(mmap_user); 6209 6210 out_put: 6211 ring_buffer_put(rb); /* could be last */ 6212 } 6213 6214 static const struct vm_operations_struct perf_mmap_vmops = { 6215 .open = perf_mmap_open, 6216 .close = perf_mmap_close, /* non mergeable */ 6217 .fault = perf_mmap_fault, 6218 .page_mkwrite = perf_mmap_fault, 6219 }; 6220 6221 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6222 { 6223 struct perf_event *event = file->private_data; 6224 unsigned long user_locked, user_lock_limit; 6225 struct user_struct *user = current_user(); 6226 struct perf_buffer *rb = NULL; 6227 unsigned long locked, lock_limit; 6228 unsigned long vma_size; 6229 unsigned long nr_pages; 6230 long user_extra = 0, extra = 0; 6231 int ret = 0, flags = 0; 6232 6233 /* 6234 * Don't allow mmap() of inherited per-task counters. This would 6235 * create a performance issue due to all children writing to the 6236 * same rb. 6237 */ 6238 if (event->cpu == -1 && event->attr.inherit) 6239 return -EINVAL; 6240 6241 if (!(vma->vm_flags & VM_SHARED)) 6242 return -EINVAL; 6243 6244 ret = security_perf_event_read(event); 6245 if (ret) 6246 return ret; 6247 6248 vma_size = vma->vm_end - vma->vm_start; 6249 6250 if (vma->vm_pgoff == 0) { 6251 nr_pages = (vma_size / PAGE_SIZE) - 1; 6252 } else { 6253 /* 6254 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6255 * mapped, all subsequent mappings should have the same size 6256 * and offset. Must be above the normal perf buffer. 6257 */ 6258 u64 aux_offset, aux_size; 6259 6260 if (!event->rb) 6261 return -EINVAL; 6262 6263 nr_pages = vma_size / PAGE_SIZE; 6264 6265 mutex_lock(&event->mmap_mutex); 6266 ret = -EINVAL; 6267 6268 rb = event->rb; 6269 if (!rb) 6270 goto aux_unlock; 6271 6272 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6273 aux_size = READ_ONCE(rb->user_page->aux_size); 6274 6275 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6276 goto aux_unlock; 6277 6278 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6279 goto aux_unlock; 6280 6281 /* already mapped with a different offset */ 6282 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6283 goto aux_unlock; 6284 6285 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6286 goto aux_unlock; 6287 6288 /* already mapped with a different size */ 6289 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6290 goto aux_unlock; 6291 6292 if (!is_power_of_2(nr_pages)) 6293 goto aux_unlock; 6294 6295 if (!atomic_inc_not_zero(&rb->mmap_count)) 6296 goto aux_unlock; 6297 6298 if (rb_has_aux(rb)) { 6299 atomic_inc(&rb->aux_mmap_count); 6300 ret = 0; 6301 goto unlock; 6302 } 6303 6304 atomic_set(&rb->aux_mmap_count, 1); 6305 user_extra = nr_pages; 6306 6307 goto accounting; 6308 } 6309 6310 /* 6311 * If we have rb pages ensure they're a power-of-two number, so we 6312 * can do bitmasks instead of modulo. 6313 */ 6314 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6315 return -EINVAL; 6316 6317 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6318 return -EINVAL; 6319 6320 WARN_ON_ONCE(event->ctx->parent_ctx); 6321 again: 6322 mutex_lock(&event->mmap_mutex); 6323 if (event->rb) { 6324 if (event->rb->nr_pages != nr_pages) { 6325 ret = -EINVAL; 6326 goto unlock; 6327 } 6328 6329 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6330 /* 6331 * Raced against perf_mmap_close() through 6332 * perf_event_set_output(). Try again, hope for better 6333 * luck. 6334 */ 6335 mutex_unlock(&event->mmap_mutex); 6336 goto again; 6337 } 6338 6339 goto unlock; 6340 } 6341 6342 user_extra = nr_pages + 1; 6343 6344 accounting: 6345 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6346 6347 /* 6348 * Increase the limit linearly with more CPUs: 6349 */ 6350 user_lock_limit *= num_online_cpus(); 6351 6352 user_locked = atomic_long_read(&user->locked_vm); 6353 6354 /* 6355 * sysctl_perf_event_mlock may have changed, so that 6356 * user->locked_vm > user_lock_limit 6357 */ 6358 if (user_locked > user_lock_limit) 6359 user_locked = user_lock_limit; 6360 user_locked += user_extra; 6361 6362 if (user_locked > user_lock_limit) { 6363 /* 6364 * charge locked_vm until it hits user_lock_limit; 6365 * charge the rest from pinned_vm 6366 */ 6367 extra = user_locked - user_lock_limit; 6368 user_extra -= extra; 6369 } 6370 6371 lock_limit = rlimit(RLIMIT_MEMLOCK); 6372 lock_limit >>= PAGE_SHIFT; 6373 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6374 6375 if ((locked > lock_limit) && perf_is_paranoid() && 6376 !capable(CAP_IPC_LOCK)) { 6377 ret = -EPERM; 6378 goto unlock; 6379 } 6380 6381 WARN_ON(!rb && event->rb); 6382 6383 if (vma->vm_flags & VM_WRITE) 6384 flags |= RING_BUFFER_WRITABLE; 6385 6386 if (!rb) { 6387 rb = rb_alloc(nr_pages, 6388 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6389 event->cpu, flags); 6390 6391 if (!rb) { 6392 ret = -ENOMEM; 6393 goto unlock; 6394 } 6395 6396 atomic_set(&rb->mmap_count, 1); 6397 rb->mmap_user = get_current_user(); 6398 rb->mmap_locked = extra; 6399 6400 ring_buffer_attach(event, rb); 6401 6402 perf_event_update_time(event); 6403 perf_event_init_userpage(event); 6404 perf_event_update_userpage(event); 6405 } else { 6406 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6407 event->attr.aux_watermark, flags); 6408 if (!ret) 6409 rb->aux_mmap_locked = extra; 6410 } 6411 6412 unlock: 6413 if (!ret) { 6414 atomic_long_add(user_extra, &user->locked_vm); 6415 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6416 6417 atomic_inc(&event->mmap_count); 6418 } else if (rb) { 6419 atomic_dec(&rb->mmap_count); 6420 } 6421 aux_unlock: 6422 mutex_unlock(&event->mmap_mutex); 6423 6424 /* 6425 * Since pinned accounting is per vm we cannot allow fork() to copy our 6426 * vma. 6427 */ 6428 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6429 vma->vm_ops = &perf_mmap_vmops; 6430 6431 if (event->pmu->event_mapped) 6432 event->pmu->event_mapped(event, vma->vm_mm); 6433 6434 return ret; 6435 } 6436 6437 static int perf_fasync(int fd, struct file *filp, int on) 6438 { 6439 struct inode *inode = file_inode(filp); 6440 struct perf_event *event = filp->private_data; 6441 int retval; 6442 6443 inode_lock(inode); 6444 retval = fasync_helper(fd, filp, on, &event->fasync); 6445 inode_unlock(inode); 6446 6447 if (retval < 0) 6448 return retval; 6449 6450 return 0; 6451 } 6452 6453 static const struct file_operations perf_fops = { 6454 .llseek = no_llseek, 6455 .release = perf_release, 6456 .read = perf_read, 6457 .poll = perf_poll, 6458 .unlocked_ioctl = perf_ioctl, 6459 .compat_ioctl = perf_compat_ioctl, 6460 .mmap = perf_mmap, 6461 .fasync = perf_fasync, 6462 }; 6463 6464 /* 6465 * Perf event wakeup 6466 * 6467 * If there's data, ensure we set the poll() state and publish everything 6468 * to user-space before waking everybody up. 6469 */ 6470 6471 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6472 { 6473 /* only the parent has fasync state */ 6474 if (event->parent) 6475 event = event->parent; 6476 return &event->fasync; 6477 } 6478 6479 void perf_event_wakeup(struct perf_event *event) 6480 { 6481 ring_buffer_wakeup(event); 6482 6483 if (event->pending_kill) { 6484 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6485 event->pending_kill = 0; 6486 } 6487 } 6488 6489 static void perf_sigtrap(struct perf_event *event) 6490 { 6491 /* 6492 * We'd expect this to only occur if the irq_work is delayed and either 6493 * ctx->task or current has changed in the meantime. This can be the 6494 * case on architectures that do not implement arch_irq_work_raise(). 6495 */ 6496 if (WARN_ON_ONCE(event->ctx->task != current)) 6497 return; 6498 6499 /* 6500 * perf_pending_event() can race with the task exiting. 6501 */ 6502 if (current->flags & PF_EXITING) 6503 return; 6504 6505 force_sig_perf((void __user *)event->pending_addr, 6506 event->attr.type, event->attr.sig_data); 6507 } 6508 6509 static void perf_pending_event_disable(struct perf_event *event) 6510 { 6511 int cpu = READ_ONCE(event->pending_disable); 6512 6513 if (cpu < 0) 6514 return; 6515 6516 if (cpu == smp_processor_id()) { 6517 WRITE_ONCE(event->pending_disable, -1); 6518 6519 if (event->attr.sigtrap) { 6520 perf_sigtrap(event); 6521 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6522 return; 6523 } 6524 6525 perf_event_disable_local(event); 6526 return; 6527 } 6528 6529 /* 6530 * CPU-A CPU-B 6531 * 6532 * perf_event_disable_inatomic() 6533 * @pending_disable = CPU-A; 6534 * irq_work_queue(); 6535 * 6536 * sched-out 6537 * @pending_disable = -1; 6538 * 6539 * sched-in 6540 * perf_event_disable_inatomic() 6541 * @pending_disable = CPU-B; 6542 * irq_work_queue(); // FAILS 6543 * 6544 * irq_work_run() 6545 * perf_pending_event() 6546 * 6547 * But the event runs on CPU-B and wants disabling there. 6548 */ 6549 irq_work_queue_on(&event->pending, cpu); 6550 } 6551 6552 static void perf_pending_event(struct irq_work *entry) 6553 { 6554 struct perf_event *event = container_of(entry, struct perf_event, pending); 6555 int rctx; 6556 6557 rctx = perf_swevent_get_recursion_context(); 6558 /* 6559 * If we 'fail' here, that's OK, it means recursion is already disabled 6560 * and we won't recurse 'further'. 6561 */ 6562 6563 perf_pending_event_disable(event); 6564 6565 if (event->pending_wakeup) { 6566 event->pending_wakeup = 0; 6567 perf_event_wakeup(event); 6568 } 6569 6570 if (rctx >= 0) 6571 perf_swevent_put_recursion_context(rctx); 6572 } 6573 6574 #ifdef CONFIG_GUEST_PERF_EVENTS 6575 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6576 6577 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6578 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6579 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6580 6581 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6582 { 6583 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6584 return; 6585 6586 rcu_assign_pointer(perf_guest_cbs, cbs); 6587 static_call_update(__perf_guest_state, cbs->state); 6588 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6589 6590 /* Implementing ->handle_intel_pt_intr is optional. */ 6591 if (cbs->handle_intel_pt_intr) 6592 static_call_update(__perf_guest_handle_intel_pt_intr, 6593 cbs->handle_intel_pt_intr); 6594 } 6595 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6596 6597 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6598 { 6599 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6600 return; 6601 6602 rcu_assign_pointer(perf_guest_cbs, NULL); 6603 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6604 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6605 static_call_update(__perf_guest_handle_intel_pt_intr, 6606 (void *)&__static_call_return0); 6607 synchronize_rcu(); 6608 } 6609 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6610 #endif 6611 6612 static void 6613 perf_output_sample_regs(struct perf_output_handle *handle, 6614 struct pt_regs *regs, u64 mask) 6615 { 6616 int bit; 6617 DECLARE_BITMAP(_mask, 64); 6618 6619 bitmap_from_u64(_mask, mask); 6620 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6621 u64 val; 6622 6623 val = perf_reg_value(regs, bit); 6624 perf_output_put(handle, val); 6625 } 6626 } 6627 6628 static void perf_sample_regs_user(struct perf_regs *regs_user, 6629 struct pt_regs *regs) 6630 { 6631 if (user_mode(regs)) { 6632 regs_user->abi = perf_reg_abi(current); 6633 regs_user->regs = regs; 6634 } else if (!(current->flags & PF_KTHREAD)) { 6635 perf_get_regs_user(regs_user, regs); 6636 } else { 6637 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6638 regs_user->regs = NULL; 6639 } 6640 } 6641 6642 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6643 struct pt_regs *regs) 6644 { 6645 regs_intr->regs = regs; 6646 regs_intr->abi = perf_reg_abi(current); 6647 } 6648 6649 6650 /* 6651 * Get remaining task size from user stack pointer. 6652 * 6653 * It'd be better to take stack vma map and limit this more 6654 * precisely, but there's no way to get it safely under interrupt, 6655 * so using TASK_SIZE as limit. 6656 */ 6657 static u64 perf_ustack_task_size(struct pt_regs *regs) 6658 { 6659 unsigned long addr = perf_user_stack_pointer(regs); 6660 6661 if (!addr || addr >= TASK_SIZE) 6662 return 0; 6663 6664 return TASK_SIZE - addr; 6665 } 6666 6667 static u16 6668 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6669 struct pt_regs *regs) 6670 { 6671 u64 task_size; 6672 6673 /* No regs, no stack pointer, no dump. */ 6674 if (!regs) 6675 return 0; 6676 6677 /* 6678 * Check if we fit in with the requested stack size into the: 6679 * - TASK_SIZE 6680 * If we don't, we limit the size to the TASK_SIZE. 6681 * 6682 * - remaining sample size 6683 * If we don't, we customize the stack size to 6684 * fit in to the remaining sample size. 6685 */ 6686 6687 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6688 stack_size = min(stack_size, (u16) task_size); 6689 6690 /* Current header size plus static size and dynamic size. */ 6691 header_size += 2 * sizeof(u64); 6692 6693 /* Do we fit in with the current stack dump size? */ 6694 if ((u16) (header_size + stack_size) < header_size) { 6695 /* 6696 * If we overflow the maximum size for the sample, 6697 * we customize the stack dump size to fit in. 6698 */ 6699 stack_size = USHRT_MAX - header_size - sizeof(u64); 6700 stack_size = round_up(stack_size, sizeof(u64)); 6701 } 6702 6703 return stack_size; 6704 } 6705 6706 static void 6707 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6708 struct pt_regs *regs) 6709 { 6710 /* Case of a kernel thread, nothing to dump */ 6711 if (!regs) { 6712 u64 size = 0; 6713 perf_output_put(handle, size); 6714 } else { 6715 unsigned long sp; 6716 unsigned int rem; 6717 u64 dyn_size; 6718 mm_segment_t fs; 6719 6720 /* 6721 * We dump: 6722 * static size 6723 * - the size requested by user or the best one we can fit 6724 * in to the sample max size 6725 * data 6726 * - user stack dump data 6727 * dynamic size 6728 * - the actual dumped size 6729 */ 6730 6731 /* Static size. */ 6732 perf_output_put(handle, dump_size); 6733 6734 /* Data. */ 6735 sp = perf_user_stack_pointer(regs); 6736 fs = force_uaccess_begin(); 6737 rem = __output_copy_user(handle, (void *) sp, dump_size); 6738 force_uaccess_end(fs); 6739 dyn_size = dump_size - rem; 6740 6741 perf_output_skip(handle, rem); 6742 6743 /* Dynamic size. */ 6744 perf_output_put(handle, dyn_size); 6745 } 6746 } 6747 6748 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6749 struct perf_sample_data *data, 6750 size_t size) 6751 { 6752 struct perf_event *sampler = event->aux_event; 6753 struct perf_buffer *rb; 6754 6755 data->aux_size = 0; 6756 6757 if (!sampler) 6758 goto out; 6759 6760 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6761 goto out; 6762 6763 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6764 goto out; 6765 6766 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6767 if (!rb) 6768 goto out; 6769 6770 /* 6771 * If this is an NMI hit inside sampling code, don't take 6772 * the sample. See also perf_aux_sample_output(). 6773 */ 6774 if (READ_ONCE(rb->aux_in_sampling)) { 6775 data->aux_size = 0; 6776 } else { 6777 size = min_t(size_t, size, perf_aux_size(rb)); 6778 data->aux_size = ALIGN(size, sizeof(u64)); 6779 } 6780 ring_buffer_put(rb); 6781 6782 out: 6783 return data->aux_size; 6784 } 6785 6786 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6787 struct perf_event *event, 6788 struct perf_output_handle *handle, 6789 unsigned long size) 6790 { 6791 unsigned long flags; 6792 long ret; 6793 6794 /* 6795 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6796 * paths. If we start calling them in NMI context, they may race with 6797 * the IRQ ones, that is, for example, re-starting an event that's just 6798 * been stopped, which is why we're using a separate callback that 6799 * doesn't change the event state. 6800 * 6801 * IRQs need to be disabled to prevent IPIs from racing with us. 6802 */ 6803 local_irq_save(flags); 6804 /* 6805 * Guard against NMI hits inside the critical section; 6806 * see also perf_prepare_sample_aux(). 6807 */ 6808 WRITE_ONCE(rb->aux_in_sampling, 1); 6809 barrier(); 6810 6811 ret = event->pmu->snapshot_aux(event, handle, size); 6812 6813 barrier(); 6814 WRITE_ONCE(rb->aux_in_sampling, 0); 6815 local_irq_restore(flags); 6816 6817 return ret; 6818 } 6819 6820 static void perf_aux_sample_output(struct perf_event *event, 6821 struct perf_output_handle *handle, 6822 struct perf_sample_data *data) 6823 { 6824 struct perf_event *sampler = event->aux_event; 6825 struct perf_buffer *rb; 6826 unsigned long pad; 6827 long size; 6828 6829 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6830 return; 6831 6832 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6833 if (!rb) 6834 return; 6835 6836 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6837 6838 /* 6839 * An error here means that perf_output_copy() failed (returned a 6840 * non-zero surplus that it didn't copy), which in its current 6841 * enlightened implementation is not possible. If that changes, we'd 6842 * like to know. 6843 */ 6844 if (WARN_ON_ONCE(size < 0)) 6845 goto out_put; 6846 6847 /* 6848 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6849 * perf_prepare_sample_aux(), so should not be more than that. 6850 */ 6851 pad = data->aux_size - size; 6852 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6853 pad = 8; 6854 6855 if (pad) { 6856 u64 zero = 0; 6857 perf_output_copy(handle, &zero, pad); 6858 } 6859 6860 out_put: 6861 ring_buffer_put(rb); 6862 } 6863 6864 static void __perf_event_header__init_id(struct perf_event_header *header, 6865 struct perf_sample_data *data, 6866 struct perf_event *event) 6867 { 6868 u64 sample_type = event->attr.sample_type; 6869 6870 data->type = sample_type; 6871 header->size += event->id_header_size; 6872 6873 if (sample_type & PERF_SAMPLE_TID) { 6874 /* namespace issues */ 6875 data->tid_entry.pid = perf_event_pid(event, current); 6876 data->tid_entry.tid = perf_event_tid(event, current); 6877 } 6878 6879 if (sample_type & PERF_SAMPLE_TIME) 6880 data->time = perf_event_clock(event); 6881 6882 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6883 data->id = primary_event_id(event); 6884 6885 if (sample_type & PERF_SAMPLE_STREAM_ID) 6886 data->stream_id = event->id; 6887 6888 if (sample_type & PERF_SAMPLE_CPU) { 6889 data->cpu_entry.cpu = raw_smp_processor_id(); 6890 data->cpu_entry.reserved = 0; 6891 } 6892 } 6893 6894 void perf_event_header__init_id(struct perf_event_header *header, 6895 struct perf_sample_data *data, 6896 struct perf_event *event) 6897 { 6898 if (event->attr.sample_id_all) 6899 __perf_event_header__init_id(header, data, event); 6900 } 6901 6902 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6903 struct perf_sample_data *data) 6904 { 6905 u64 sample_type = data->type; 6906 6907 if (sample_type & PERF_SAMPLE_TID) 6908 perf_output_put(handle, data->tid_entry); 6909 6910 if (sample_type & PERF_SAMPLE_TIME) 6911 perf_output_put(handle, data->time); 6912 6913 if (sample_type & PERF_SAMPLE_ID) 6914 perf_output_put(handle, data->id); 6915 6916 if (sample_type & PERF_SAMPLE_STREAM_ID) 6917 perf_output_put(handle, data->stream_id); 6918 6919 if (sample_type & PERF_SAMPLE_CPU) 6920 perf_output_put(handle, data->cpu_entry); 6921 6922 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6923 perf_output_put(handle, data->id); 6924 } 6925 6926 void perf_event__output_id_sample(struct perf_event *event, 6927 struct perf_output_handle *handle, 6928 struct perf_sample_data *sample) 6929 { 6930 if (event->attr.sample_id_all) 6931 __perf_event__output_id_sample(handle, sample); 6932 } 6933 6934 static void perf_output_read_one(struct perf_output_handle *handle, 6935 struct perf_event *event, 6936 u64 enabled, u64 running) 6937 { 6938 u64 read_format = event->attr.read_format; 6939 u64 values[4]; 6940 int n = 0; 6941 6942 values[n++] = perf_event_count(event); 6943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6944 values[n++] = enabled + 6945 atomic64_read(&event->child_total_time_enabled); 6946 } 6947 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6948 values[n++] = running + 6949 atomic64_read(&event->child_total_time_running); 6950 } 6951 if (read_format & PERF_FORMAT_ID) 6952 values[n++] = primary_event_id(event); 6953 6954 __output_copy(handle, values, n * sizeof(u64)); 6955 } 6956 6957 static void perf_output_read_group(struct perf_output_handle *handle, 6958 struct perf_event *event, 6959 u64 enabled, u64 running) 6960 { 6961 struct perf_event *leader = event->group_leader, *sub; 6962 u64 read_format = event->attr.read_format; 6963 u64 values[5]; 6964 int n = 0; 6965 6966 values[n++] = 1 + leader->nr_siblings; 6967 6968 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6969 values[n++] = enabled; 6970 6971 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6972 values[n++] = running; 6973 6974 if ((leader != event) && 6975 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6976 leader->pmu->read(leader); 6977 6978 values[n++] = perf_event_count(leader); 6979 if (read_format & PERF_FORMAT_ID) 6980 values[n++] = primary_event_id(leader); 6981 6982 __output_copy(handle, values, n * sizeof(u64)); 6983 6984 for_each_sibling_event(sub, leader) { 6985 n = 0; 6986 6987 if ((sub != event) && 6988 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6989 sub->pmu->read(sub); 6990 6991 values[n++] = perf_event_count(sub); 6992 if (read_format & PERF_FORMAT_ID) 6993 values[n++] = primary_event_id(sub); 6994 6995 __output_copy(handle, values, n * sizeof(u64)); 6996 } 6997 } 6998 6999 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7000 PERF_FORMAT_TOTAL_TIME_RUNNING) 7001 7002 /* 7003 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7004 * 7005 * The problem is that its both hard and excessively expensive to iterate the 7006 * child list, not to mention that its impossible to IPI the children running 7007 * on another CPU, from interrupt/NMI context. 7008 */ 7009 static void perf_output_read(struct perf_output_handle *handle, 7010 struct perf_event *event) 7011 { 7012 u64 enabled = 0, running = 0, now; 7013 u64 read_format = event->attr.read_format; 7014 7015 /* 7016 * compute total_time_enabled, total_time_running 7017 * based on snapshot values taken when the event 7018 * was last scheduled in. 7019 * 7020 * we cannot simply called update_context_time() 7021 * because of locking issue as we are called in 7022 * NMI context 7023 */ 7024 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7025 calc_timer_values(event, &now, &enabled, &running); 7026 7027 if (event->attr.read_format & PERF_FORMAT_GROUP) 7028 perf_output_read_group(handle, event, enabled, running); 7029 else 7030 perf_output_read_one(handle, event, enabled, running); 7031 } 7032 7033 static inline bool perf_sample_save_hw_index(struct perf_event *event) 7034 { 7035 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 7036 } 7037 7038 void perf_output_sample(struct perf_output_handle *handle, 7039 struct perf_event_header *header, 7040 struct perf_sample_data *data, 7041 struct perf_event *event) 7042 { 7043 u64 sample_type = data->type; 7044 7045 perf_output_put(handle, *header); 7046 7047 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7048 perf_output_put(handle, data->id); 7049 7050 if (sample_type & PERF_SAMPLE_IP) 7051 perf_output_put(handle, data->ip); 7052 7053 if (sample_type & PERF_SAMPLE_TID) 7054 perf_output_put(handle, data->tid_entry); 7055 7056 if (sample_type & PERF_SAMPLE_TIME) 7057 perf_output_put(handle, data->time); 7058 7059 if (sample_type & PERF_SAMPLE_ADDR) 7060 perf_output_put(handle, data->addr); 7061 7062 if (sample_type & PERF_SAMPLE_ID) 7063 perf_output_put(handle, data->id); 7064 7065 if (sample_type & PERF_SAMPLE_STREAM_ID) 7066 perf_output_put(handle, data->stream_id); 7067 7068 if (sample_type & PERF_SAMPLE_CPU) 7069 perf_output_put(handle, data->cpu_entry); 7070 7071 if (sample_type & PERF_SAMPLE_PERIOD) 7072 perf_output_put(handle, data->period); 7073 7074 if (sample_type & PERF_SAMPLE_READ) 7075 perf_output_read(handle, event); 7076 7077 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7078 int size = 1; 7079 7080 size += data->callchain->nr; 7081 size *= sizeof(u64); 7082 __output_copy(handle, data->callchain, size); 7083 } 7084 7085 if (sample_type & PERF_SAMPLE_RAW) { 7086 struct perf_raw_record *raw = data->raw; 7087 7088 if (raw) { 7089 struct perf_raw_frag *frag = &raw->frag; 7090 7091 perf_output_put(handle, raw->size); 7092 do { 7093 if (frag->copy) { 7094 __output_custom(handle, frag->copy, 7095 frag->data, frag->size); 7096 } else { 7097 __output_copy(handle, frag->data, 7098 frag->size); 7099 } 7100 if (perf_raw_frag_last(frag)) 7101 break; 7102 frag = frag->next; 7103 } while (1); 7104 if (frag->pad) 7105 __output_skip(handle, NULL, frag->pad); 7106 } else { 7107 struct { 7108 u32 size; 7109 u32 data; 7110 } raw = { 7111 .size = sizeof(u32), 7112 .data = 0, 7113 }; 7114 perf_output_put(handle, raw); 7115 } 7116 } 7117 7118 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7119 if (data->br_stack) { 7120 size_t size; 7121 7122 size = data->br_stack->nr 7123 * sizeof(struct perf_branch_entry); 7124 7125 perf_output_put(handle, data->br_stack->nr); 7126 if (perf_sample_save_hw_index(event)) 7127 perf_output_put(handle, data->br_stack->hw_idx); 7128 perf_output_copy(handle, data->br_stack->entries, size); 7129 } else { 7130 /* 7131 * we always store at least the value of nr 7132 */ 7133 u64 nr = 0; 7134 perf_output_put(handle, nr); 7135 } 7136 } 7137 7138 if (sample_type & PERF_SAMPLE_REGS_USER) { 7139 u64 abi = data->regs_user.abi; 7140 7141 /* 7142 * If there are no regs to dump, notice it through 7143 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7144 */ 7145 perf_output_put(handle, abi); 7146 7147 if (abi) { 7148 u64 mask = event->attr.sample_regs_user; 7149 perf_output_sample_regs(handle, 7150 data->regs_user.regs, 7151 mask); 7152 } 7153 } 7154 7155 if (sample_type & PERF_SAMPLE_STACK_USER) { 7156 perf_output_sample_ustack(handle, 7157 data->stack_user_size, 7158 data->regs_user.regs); 7159 } 7160 7161 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7162 perf_output_put(handle, data->weight.full); 7163 7164 if (sample_type & PERF_SAMPLE_DATA_SRC) 7165 perf_output_put(handle, data->data_src.val); 7166 7167 if (sample_type & PERF_SAMPLE_TRANSACTION) 7168 perf_output_put(handle, data->txn); 7169 7170 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7171 u64 abi = data->regs_intr.abi; 7172 /* 7173 * If there are no regs to dump, notice it through 7174 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7175 */ 7176 perf_output_put(handle, abi); 7177 7178 if (abi) { 7179 u64 mask = event->attr.sample_regs_intr; 7180 7181 perf_output_sample_regs(handle, 7182 data->regs_intr.regs, 7183 mask); 7184 } 7185 } 7186 7187 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7188 perf_output_put(handle, data->phys_addr); 7189 7190 if (sample_type & PERF_SAMPLE_CGROUP) 7191 perf_output_put(handle, data->cgroup); 7192 7193 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7194 perf_output_put(handle, data->data_page_size); 7195 7196 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7197 perf_output_put(handle, data->code_page_size); 7198 7199 if (sample_type & PERF_SAMPLE_AUX) { 7200 perf_output_put(handle, data->aux_size); 7201 7202 if (data->aux_size) 7203 perf_aux_sample_output(event, handle, data); 7204 } 7205 7206 if (!event->attr.watermark) { 7207 int wakeup_events = event->attr.wakeup_events; 7208 7209 if (wakeup_events) { 7210 struct perf_buffer *rb = handle->rb; 7211 int events = local_inc_return(&rb->events); 7212 7213 if (events >= wakeup_events) { 7214 local_sub(wakeup_events, &rb->events); 7215 local_inc(&rb->wakeup); 7216 } 7217 } 7218 } 7219 } 7220 7221 static u64 perf_virt_to_phys(u64 virt) 7222 { 7223 u64 phys_addr = 0; 7224 7225 if (!virt) 7226 return 0; 7227 7228 if (virt >= TASK_SIZE) { 7229 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7230 if (virt_addr_valid((void *)(uintptr_t)virt) && 7231 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7232 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7233 } else { 7234 /* 7235 * Walking the pages tables for user address. 7236 * Interrupts are disabled, so it prevents any tear down 7237 * of the page tables. 7238 * Try IRQ-safe get_user_page_fast_only first. 7239 * If failed, leave phys_addr as 0. 7240 */ 7241 if (current->mm != NULL) { 7242 struct page *p; 7243 7244 pagefault_disable(); 7245 if (get_user_page_fast_only(virt, 0, &p)) { 7246 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7247 put_page(p); 7248 } 7249 pagefault_enable(); 7250 } 7251 } 7252 7253 return phys_addr; 7254 } 7255 7256 /* 7257 * Return the pagetable size of a given virtual address. 7258 */ 7259 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7260 { 7261 u64 size = 0; 7262 7263 #ifdef CONFIG_HAVE_FAST_GUP 7264 pgd_t *pgdp, pgd; 7265 p4d_t *p4dp, p4d; 7266 pud_t *pudp, pud; 7267 pmd_t *pmdp, pmd; 7268 pte_t *ptep, pte; 7269 7270 pgdp = pgd_offset(mm, addr); 7271 pgd = READ_ONCE(*pgdp); 7272 if (pgd_none(pgd)) 7273 return 0; 7274 7275 if (pgd_leaf(pgd)) 7276 return pgd_leaf_size(pgd); 7277 7278 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7279 p4d = READ_ONCE(*p4dp); 7280 if (!p4d_present(p4d)) 7281 return 0; 7282 7283 if (p4d_leaf(p4d)) 7284 return p4d_leaf_size(p4d); 7285 7286 pudp = pud_offset_lockless(p4dp, p4d, addr); 7287 pud = READ_ONCE(*pudp); 7288 if (!pud_present(pud)) 7289 return 0; 7290 7291 if (pud_leaf(pud)) 7292 return pud_leaf_size(pud); 7293 7294 pmdp = pmd_offset_lockless(pudp, pud, addr); 7295 pmd = READ_ONCE(*pmdp); 7296 if (!pmd_present(pmd)) 7297 return 0; 7298 7299 if (pmd_leaf(pmd)) 7300 return pmd_leaf_size(pmd); 7301 7302 ptep = pte_offset_map(&pmd, addr); 7303 pte = ptep_get_lockless(ptep); 7304 if (pte_present(pte)) 7305 size = pte_leaf_size(pte); 7306 pte_unmap(ptep); 7307 #endif /* CONFIG_HAVE_FAST_GUP */ 7308 7309 return size; 7310 } 7311 7312 static u64 perf_get_page_size(unsigned long addr) 7313 { 7314 struct mm_struct *mm; 7315 unsigned long flags; 7316 u64 size; 7317 7318 if (!addr) 7319 return 0; 7320 7321 /* 7322 * Software page-table walkers must disable IRQs, 7323 * which prevents any tear down of the page tables. 7324 */ 7325 local_irq_save(flags); 7326 7327 mm = current->mm; 7328 if (!mm) { 7329 /* 7330 * For kernel threads and the like, use init_mm so that 7331 * we can find kernel memory. 7332 */ 7333 mm = &init_mm; 7334 } 7335 7336 size = perf_get_pgtable_size(mm, addr); 7337 7338 local_irq_restore(flags); 7339 7340 return size; 7341 } 7342 7343 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7344 7345 struct perf_callchain_entry * 7346 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7347 { 7348 bool kernel = !event->attr.exclude_callchain_kernel; 7349 bool user = !event->attr.exclude_callchain_user; 7350 /* Disallow cross-task user callchains. */ 7351 bool crosstask = event->ctx->task && event->ctx->task != current; 7352 const u32 max_stack = event->attr.sample_max_stack; 7353 struct perf_callchain_entry *callchain; 7354 7355 if (!kernel && !user) 7356 return &__empty_callchain; 7357 7358 callchain = get_perf_callchain(regs, 0, kernel, user, 7359 max_stack, crosstask, true); 7360 return callchain ?: &__empty_callchain; 7361 } 7362 7363 void perf_prepare_sample(struct perf_event_header *header, 7364 struct perf_sample_data *data, 7365 struct perf_event *event, 7366 struct pt_regs *regs) 7367 { 7368 u64 sample_type = event->attr.sample_type; 7369 7370 header->type = PERF_RECORD_SAMPLE; 7371 header->size = sizeof(*header) + event->header_size; 7372 7373 header->misc = 0; 7374 header->misc |= perf_misc_flags(regs); 7375 7376 __perf_event_header__init_id(header, data, event); 7377 7378 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7379 data->ip = perf_instruction_pointer(regs); 7380 7381 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7382 int size = 1; 7383 7384 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7385 data->callchain = perf_callchain(event, regs); 7386 7387 size += data->callchain->nr; 7388 7389 header->size += size * sizeof(u64); 7390 } 7391 7392 if (sample_type & PERF_SAMPLE_RAW) { 7393 struct perf_raw_record *raw = data->raw; 7394 int size; 7395 7396 if (raw) { 7397 struct perf_raw_frag *frag = &raw->frag; 7398 u32 sum = 0; 7399 7400 do { 7401 sum += frag->size; 7402 if (perf_raw_frag_last(frag)) 7403 break; 7404 frag = frag->next; 7405 } while (1); 7406 7407 size = round_up(sum + sizeof(u32), sizeof(u64)); 7408 raw->size = size - sizeof(u32); 7409 frag->pad = raw->size - sum; 7410 } else { 7411 size = sizeof(u64); 7412 } 7413 7414 header->size += size; 7415 } 7416 7417 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7418 int size = sizeof(u64); /* nr */ 7419 if (data->br_stack) { 7420 if (perf_sample_save_hw_index(event)) 7421 size += sizeof(u64); 7422 7423 size += data->br_stack->nr 7424 * sizeof(struct perf_branch_entry); 7425 } 7426 header->size += size; 7427 } 7428 7429 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7430 perf_sample_regs_user(&data->regs_user, regs); 7431 7432 if (sample_type & PERF_SAMPLE_REGS_USER) { 7433 /* regs dump ABI info */ 7434 int size = sizeof(u64); 7435 7436 if (data->regs_user.regs) { 7437 u64 mask = event->attr.sample_regs_user; 7438 size += hweight64(mask) * sizeof(u64); 7439 } 7440 7441 header->size += size; 7442 } 7443 7444 if (sample_type & PERF_SAMPLE_STACK_USER) { 7445 /* 7446 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7447 * processed as the last one or have additional check added 7448 * in case new sample type is added, because we could eat 7449 * up the rest of the sample size. 7450 */ 7451 u16 stack_size = event->attr.sample_stack_user; 7452 u16 size = sizeof(u64); 7453 7454 stack_size = perf_sample_ustack_size(stack_size, header->size, 7455 data->regs_user.regs); 7456 7457 /* 7458 * If there is something to dump, add space for the dump 7459 * itself and for the field that tells the dynamic size, 7460 * which is how many have been actually dumped. 7461 */ 7462 if (stack_size) 7463 size += sizeof(u64) + stack_size; 7464 7465 data->stack_user_size = stack_size; 7466 header->size += size; 7467 } 7468 7469 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7470 /* regs dump ABI info */ 7471 int size = sizeof(u64); 7472 7473 perf_sample_regs_intr(&data->regs_intr, regs); 7474 7475 if (data->regs_intr.regs) { 7476 u64 mask = event->attr.sample_regs_intr; 7477 7478 size += hweight64(mask) * sizeof(u64); 7479 } 7480 7481 header->size += size; 7482 } 7483 7484 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7485 data->phys_addr = perf_virt_to_phys(data->addr); 7486 7487 #ifdef CONFIG_CGROUP_PERF 7488 if (sample_type & PERF_SAMPLE_CGROUP) { 7489 struct cgroup *cgrp; 7490 7491 /* protected by RCU */ 7492 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7493 data->cgroup = cgroup_id(cgrp); 7494 } 7495 #endif 7496 7497 /* 7498 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7499 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7500 * but the value will not dump to the userspace. 7501 */ 7502 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7503 data->data_page_size = perf_get_page_size(data->addr); 7504 7505 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7506 data->code_page_size = perf_get_page_size(data->ip); 7507 7508 if (sample_type & PERF_SAMPLE_AUX) { 7509 u64 size; 7510 7511 header->size += sizeof(u64); /* size */ 7512 7513 /* 7514 * Given the 16bit nature of header::size, an AUX sample can 7515 * easily overflow it, what with all the preceding sample bits. 7516 * Make sure this doesn't happen by using up to U16_MAX bytes 7517 * per sample in total (rounded down to 8 byte boundary). 7518 */ 7519 size = min_t(size_t, U16_MAX - header->size, 7520 event->attr.aux_sample_size); 7521 size = rounddown(size, 8); 7522 size = perf_prepare_sample_aux(event, data, size); 7523 7524 WARN_ON_ONCE(size + header->size > U16_MAX); 7525 header->size += size; 7526 } 7527 /* 7528 * If you're adding more sample types here, you likely need to do 7529 * something about the overflowing header::size, like repurpose the 7530 * lowest 3 bits of size, which should be always zero at the moment. 7531 * This raises a more important question, do we really need 512k sized 7532 * samples and why, so good argumentation is in order for whatever you 7533 * do here next. 7534 */ 7535 WARN_ON_ONCE(header->size & 7); 7536 } 7537 7538 static __always_inline int 7539 __perf_event_output(struct perf_event *event, 7540 struct perf_sample_data *data, 7541 struct pt_regs *regs, 7542 int (*output_begin)(struct perf_output_handle *, 7543 struct perf_sample_data *, 7544 struct perf_event *, 7545 unsigned int)) 7546 { 7547 struct perf_output_handle handle; 7548 struct perf_event_header header; 7549 int err; 7550 7551 /* protect the callchain buffers */ 7552 rcu_read_lock(); 7553 7554 perf_prepare_sample(&header, data, event, regs); 7555 7556 err = output_begin(&handle, data, event, header.size); 7557 if (err) 7558 goto exit; 7559 7560 perf_output_sample(&handle, &header, data, event); 7561 7562 perf_output_end(&handle); 7563 7564 exit: 7565 rcu_read_unlock(); 7566 return err; 7567 } 7568 7569 void 7570 perf_event_output_forward(struct perf_event *event, 7571 struct perf_sample_data *data, 7572 struct pt_regs *regs) 7573 { 7574 __perf_event_output(event, data, regs, perf_output_begin_forward); 7575 } 7576 7577 void 7578 perf_event_output_backward(struct perf_event *event, 7579 struct perf_sample_data *data, 7580 struct pt_regs *regs) 7581 { 7582 __perf_event_output(event, data, regs, perf_output_begin_backward); 7583 } 7584 7585 int 7586 perf_event_output(struct perf_event *event, 7587 struct perf_sample_data *data, 7588 struct pt_regs *regs) 7589 { 7590 return __perf_event_output(event, data, regs, perf_output_begin); 7591 } 7592 7593 /* 7594 * read event_id 7595 */ 7596 7597 struct perf_read_event { 7598 struct perf_event_header header; 7599 7600 u32 pid; 7601 u32 tid; 7602 }; 7603 7604 static void 7605 perf_event_read_event(struct perf_event *event, 7606 struct task_struct *task) 7607 { 7608 struct perf_output_handle handle; 7609 struct perf_sample_data sample; 7610 struct perf_read_event read_event = { 7611 .header = { 7612 .type = PERF_RECORD_READ, 7613 .misc = 0, 7614 .size = sizeof(read_event) + event->read_size, 7615 }, 7616 .pid = perf_event_pid(event, task), 7617 .tid = perf_event_tid(event, task), 7618 }; 7619 int ret; 7620 7621 perf_event_header__init_id(&read_event.header, &sample, event); 7622 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7623 if (ret) 7624 return; 7625 7626 perf_output_put(&handle, read_event); 7627 perf_output_read(&handle, event); 7628 perf_event__output_id_sample(event, &handle, &sample); 7629 7630 perf_output_end(&handle); 7631 } 7632 7633 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7634 7635 static void 7636 perf_iterate_ctx(struct perf_event_context *ctx, 7637 perf_iterate_f output, 7638 void *data, bool all) 7639 { 7640 struct perf_event *event; 7641 7642 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7643 if (!all) { 7644 if (event->state < PERF_EVENT_STATE_INACTIVE) 7645 continue; 7646 if (!event_filter_match(event)) 7647 continue; 7648 } 7649 7650 output(event, data); 7651 } 7652 } 7653 7654 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7655 { 7656 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7657 struct perf_event *event; 7658 7659 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7660 /* 7661 * Skip events that are not fully formed yet; ensure that 7662 * if we observe event->ctx, both event and ctx will be 7663 * complete enough. See perf_install_in_context(). 7664 */ 7665 if (!smp_load_acquire(&event->ctx)) 7666 continue; 7667 7668 if (event->state < PERF_EVENT_STATE_INACTIVE) 7669 continue; 7670 if (!event_filter_match(event)) 7671 continue; 7672 output(event, data); 7673 } 7674 } 7675 7676 /* 7677 * Iterate all events that need to receive side-band events. 7678 * 7679 * For new callers; ensure that account_pmu_sb_event() includes 7680 * your event, otherwise it might not get delivered. 7681 */ 7682 static void 7683 perf_iterate_sb(perf_iterate_f output, void *data, 7684 struct perf_event_context *task_ctx) 7685 { 7686 struct perf_event_context *ctx; 7687 int ctxn; 7688 7689 rcu_read_lock(); 7690 preempt_disable(); 7691 7692 /* 7693 * If we have task_ctx != NULL we only notify the task context itself. 7694 * The task_ctx is set only for EXIT events before releasing task 7695 * context. 7696 */ 7697 if (task_ctx) { 7698 perf_iterate_ctx(task_ctx, output, data, false); 7699 goto done; 7700 } 7701 7702 perf_iterate_sb_cpu(output, data); 7703 7704 for_each_task_context_nr(ctxn) { 7705 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7706 if (ctx) 7707 perf_iterate_ctx(ctx, output, data, false); 7708 } 7709 done: 7710 preempt_enable(); 7711 rcu_read_unlock(); 7712 } 7713 7714 /* 7715 * Clear all file-based filters at exec, they'll have to be 7716 * re-instated when/if these objects are mmapped again. 7717 */ 7718 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7719 { 7720 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7721 struct perf_addr_filter *filter; 7722 unsigned int restart = 0, count = 0; 7723 unsigned long flags; 7724 7725 if (!has_addr_filter(event)) 7726 return; 7727 7728 raw_spin_lock_irqsave(&ifh->lock, flags); 7729 list_for_each_entry(filter, &ifh->list, entry) { 7730 if (filter->path.dentry) { 7731 event->addr_filter_ranges[count].start = 0; 7732 event->addr_filter_ranges[count].size = 0; 7733 restart++; 7734 } 7735 7736 count++; 7737 } 7738 7739 if (restart) 7740 event->addr_filters_gen++; 7741 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7742 7743 if (restart) 7744 perf_event_stop(event, 1); 7745 } 7746 7747 void perf_event_exec(void) 7748 { 7749 struct perf_event_context *ctx; 7750 int ctxn; 7751 7752 for_each_task_context_nr(ctxn) { 7753 perf_event_enable_on_exec(ctxn); 7754 perf_event_remove_on_exec(ctxn); 7755 7756 rcu_read_lock(); 7757 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7758 if (ctx) { 7759 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7760 NULL, true); 7761 } 7762 rcu_read_unlock(); 7763 } 7764 } 7765 7766 struct remote_output { 7767 struct perf_buffer *rb; 7768 int err; 7769 }; 7770 7771 static void __perf_event_output_stop(struct perf_event *event, void *data) 7772 { 7773 struct perf_event *parent = event->parent; 7774 struct remote_output *ro = data; 7775 struct perf_buffer *rb = ro->rb; 7776 struct stop_event_data sd = { 7777 .event = event, 7778 }; 7779 7780 if (!has_aux(event)) 7781 return; 7782 7783 if (!parent) 7784 parent = event; 7785 7786 /* 7787 * In case of inheritance, it will be the parent that links to the 7788 * ring-buffer, but it will be the child that's actually using it. 7789 * 7790 * We are using event::rb to determine if the event should be stopped, 7791 * however this may race with ring_buffer_attach() (through set_output), 7792 * which will make us skip the event that actually needs to be stopped. 7793 * So ring_buffer_attach() has to stop an aux event before re-assigning 7794 * its rb pointer. 7795 */ 7796 if (rcu_dereference(parent->rb) == rb) 7797 ro->err = __perf_event_stop(&sd); 7798 } 7799 7800 static int __perf_pmu_output_stop(void *info) 7801 { 7802 struct perf_event *event = info; 7803 struct pmu *pmu = event->ctx->pmu; 7804 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7805 struct remote_output ro = { 7806 .rb = event->rb, 7807 }; 7808 7809 rcu_read_lock(); 7810 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7811 if (cpuctx->task_ctx) 7812 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7813 &ro, false); 7814 rcu_read_unlock(); 7815 7816 return ro.err; 7817 } 7818 7819 static void perf_pmu_output_stop(struct perf_event *event) 7820 { 7821 struct perf_event *iter; 7822 int err, cpu; 7823 7824 restart: 7825 rcu_read_lock(); 7826 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7827 /* 7828 * For per-CPU events, we need to make sure that neither they 7829 * nor their children are running; for cpu==-1 events it's 7830 * sufficient to stop the event itself if it's active, since 7831 * it can't have children. 7832 */ 7833 cpu = iter->cpu; 7834 if (cpu == -1) 7835 cpu = READ_ONCE(iter->oncpu); 7836 7837 if (cpu == -1) 7838 continue; 7839 7840 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7841 if (err == -EAGAIN) { 7842 rcu_read_unlock(); 7843 goto restart; 7844 } 7845 } 7846 rcu_read_unlock(); 7847 } 7848 7849 /* 7850 * task tracking -- fork/exit 7851 * 7852 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7853 */ 7854 7855 struct perf_task_event { 7856 struct task_struct *task; 7857 struct perf_event_context *task_ctx; 7858 7859 struct { 7860 struct perf_event_header header; 7861 7862 u32 pid; 7863 u32 ppid; 7864 u32 tid; 7865 u32 ptid; 7866 u64 time; 7867 } event_id; 7868 }; 7869 7870 static int perf_event_task_match(struct perf_event *event) 7871 { 7872 return event->attr.comm || event->attr.mmap || 7873 event->attr.mmap2 || event->attr.mmap_data || 7874 event->attr.task; 7875 } 7876 7877 static void perf_event_task_output(struct perf_event *event, 7878 void *data) 7879 { 7880 struct perf_task_event *task_event = data; 7881 struct perf_output_handle handle; 7882 struct perf_sample_data sample; 7883 struct task_struct *task = task_event->task; 7884 int ret, size = task_event->event_id.header.size; 7885 7886 if (!perf_event_task_match(event)) 7887 return; 7888 7889 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7890 7891 ret = perf_output_begin(&handle, &sample, event, 7892 task_event->event_id.header.size); 7893 if (ret) 7894 goto out; 7895 7896 task_event->event_id.pid = perf_event_pid(event, task); 7897 task_event->event_id.tid = perf_event_tid(event, task); 7898 7899 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7900 task_event->event_id.ppid = perf_event_pid(event, 7901 task->real_parent); 7902 task_event->event_id.ptid = perf_event_pid(event, 7903 task->real_parent); 7904 } else { /* PERF_RECORD_FORK */ 7905 task_event->event_id.ppid = perf_event_pid(event, current); 7906 task_event->event_id.ptid = perf_event_tid(event, current); 7907 } 7908 7909 task_event->event_id.time = perf_event_clock(event); 7910 7911 perf_output_put(&handle, task_event->event_id); 7912 7913 perf_event__output_id_sample(event, &handle, &sample); 7914 7915 perf_output_end(&handle); 7916 out: 7917 task_event->event_id.header.size = size; 7918 } 7919 7920 static void perf_event_task(struct task_struct *task, 7921 struct perf_event_context *task_ctx, 7922 int new) 7923 { 7924 struct perf_task_event task_event; 7925 7926 if (!atomic_read(&nr_comm_events) && 7927 !atomic_read(&nr_mmap_events) && 7928 !atomic_read(&nr_task_events)) 7929 return; 7930 7931 task_event = (struct perf_task_event){ 7932 .task = task, 7933 .task_ctx = task_ctx, 7934 .event_id = { 7935 .header = { 7936 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7937 .misc = 0, 7938 .size = sizeof(task_event.event_id), 7939 }, 7940 /* .pid */ 7941 /* .ppid */ 7942 /* .tid */ 7943 /* .ptid */ 7944 /* .time */ 7945 }, 7946 }; 7947 7948 perf_iterate_sb(perf_event_task_output, 7949 &task_event, 7950 task_ctx); 7951 } 7952 7953 void perf_event_fork(struct task_struct *task) 7954 { 7955 perf_event_task(task, NULL, 1); 7956 perf_event_namespaces(task); 7957 } 7958 7959 /* 7960 * comm tracking 7961 */ 7962 7963 struct perf_comm_event { 7964 struct task_struct *task; 7965 char *comm; 7966 int comm_size; 7967 7968 struct { 7969 struct perf_event_header header; 7970 7971 u32 pid; 7972 u32 tid; 7973 } event_id; 7974 }; 7975 7976 static int perf_event_comm_match(struct perf_event *event) 7977 { 7978 return event->attr.comm; 7979 } 7980 7981 static void perf_event_comm_output(struct perf_event *event, 7982 void *data) 7983 { 7984 struct perf_comm_event *comm_event = data; 7985 struct perf_output_handle handle; 7986 struct perf_sample_data sample; 7987 int size = comm_event->event_id.header.size; 7988 int ret; 7989 7990 if (!perf_event_comm_match(event)) 7991 return; 7992 7993 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7994 ret = perf_output_begin(&handle, &sample, event, 7995 comm_event->event_id.header.size); 7996 7997 if (ret) 7998 goto out; 7999 8000 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8001 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8002 8003 perf_output_put(&handle, comm_event->event_id); 8004 __output_copy(&handle, comm_event->comm, 8005 comm_event->comm_size); 8006 8007 perf_event__output_id_sample(event, &handle, &sample); 8008 8009 perf_output_end(&handle); 8010 out: 8011 comm_event->event_id.header.size = size; 8012 } 8013 8014 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8015 { 8016 char comm[TASK_COMM_LEN]; 8017 unsigned int size; 8018 8019 memset(comm, 0, sizeof(comm)); 8020 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8021 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8022 8023 comm_event->comm = comm; 8024 comm_event->comm_size = size; 8025 8026 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8027 8028 perf_iterate_sb(perf_event_comm_output, 8029 comm_event, 8030 NULL); 8031 } 8032 8033 void perf_event_comm(struct task_struct *task, bool exec) 8034 { 8035 struct perf_comm_event comm_event; 8036 8037 if (!atomic_read(&nr_comm_events)) 8038 return; 8039 8040 comm_event = (struct perf_comm_event){ 8041 .task = task, 8042 /* .comm */ 8043 /* .comm_size */ 8044 .event_id = { 8045 .header = { 8046 .type = PERF_RECORD_COMM, 8047 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8048 /* .size */ 8049 }, 8050 /* .pid */ 8051 /* .tid */ 8052 }, 8053 }; 8054 8055 perf_event_comm_event(&comm_event); 8056 } 8057 8058 /* 8059 * namespaces tracking 8060 */ 8061 8062 struct perf_namespaces_event { 8063 struct task_struct *task; 8064 8065 struct { 8066 struct perf_event_header header; 8067 8068 u32 pid; 8069 u32 tid; 8070 u64 nr_namespaces; 8071 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8072 } event_id; 8073 }; 8074 8075 static int perf_event_namespaces_match(struct perf_event *event) 8076 { 8077 return event->attr.namespaces; 8078 } 8079 8080 static void perf_event_namespaces_output(struct perf_event *event, 8081 void *data) 8082 { 8083 struct perf_namespaces_event *namespaces_event = data; 8084 struct perf_output_handle handle; 8085 struct perf_sample_data sample; 8086 u16 header_size = namespaces_event->event_id.header.size; 8087 int ret; 8088 8089 if (!perf_event_namespaces_match(event)) 8090 return; 8091 8092 perf_event_header__init_id(&namespaces_event->event_id.header, 8093 &sample, event); 8094 ret = perf_output_begin(&handle, &sample, event, 8095 namespaces_event->event_id.header.size); 8096 if (ret) 8097 goto out; 8098 8099 namespaces_event->event_id.pid = perf_event_pid(event, 8100 namespaces_event->task); 8101 namespaces_event->event_id.tid = perf_event_tid(event, 8102 namespaces_event->task); 8103 8104 perf_output_put(&handle, namespaces_event->event_id); 8105 8106 perf_event__output_id_sample(event, &handle, &sample); 8107 8108 perf_output_end(&handle); 8109 out: 8110 namespaces_event->event_id.header.size = header_size; 8111 } 8112 8113 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8114 struct task_struct *task, 8115 const struct proc_ns_operations *ns_ops) 8116 { 8117 struct path ns_path; 8118 struct inode *ns_inode; 8119 int error; 8120 8121 error = ns_get_path(&ns_path, task, ns_ops); 8122 if (!error) { 8123 ns_inode = ns_path.dentry->d_inode; 8124 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8125 ns_link_info->ino = ns_inode->i_ino; 8126 path_put(&ns_path); 8127 } 8128 } 8129 8130 void perf_event_namespaces(struct task_struct *task) 8131 { 8132 struct perf_namespaces_event namespaces_event; 8133 struct perf_ns_link_info *ns_link_info; 8134 8135 if (!atomic_read(&nr_namespaces_events)) 8136 return; 8137 8138 namespaces_event = (struct perf_namespaces_event){ 8139 .task = task, 8140 .event_id = { 8141 .header = { 8142 .type = PERF_RECORD_NAMESPACES, 8143 .misc = 0, 8144 .size = sizeof(namespaces_event.event_id), 8145 }, 8146 /* .pid */ 8147 /* .tid */ 8148 .nr_namespaces = NR_NAMESPACES, 8149 /* .link_info[NR_NAMESPACES] */ 8150 }, 8151 }; 8152 8153 ns_link_info = namespaces_event.event_id.link_info; 8154 8155 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8156 task, &mntns_operations); 8157 8158 #ifdef CONFIG_USER_NS 8159 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8160 task, &userns_operations); 8161 #endif 8162 #ifdef CONFIG_NET_NS 8163 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8164 task, &netns_operations); 8165 #endif 8166 #ifdef CONFIG_UTS_NS 8167 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8168 task, &utsns_operations); 8169 #endif 8170 #ifdef CONFIG_IPC_NS 8171 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8172 task, &ipcns_operations); 8173 #endif 8174 #ifdef CONFIG_PID_NS 8175 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8176 task, &pidns_operations); 8177 #endif 8178 #ifdef CONFIG_CGROUPS 8179 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8180 task, &cgroupns_operations); 8181 #endif 8182 8183 perf_iterate_sb(perf_event_namespaces_output, 8184 &namespaces_event, 8185 NULL); 8186 } 8187 8188 /* 8189 * cgroup tracking 8190 */ 8191 #ifdef CONFIG_CGROUP_PERF 8192 8193 struct perf_cgroup_event { 8194 char *path; 8195 int path_size; 8196 struct { 8197 struct perf_event_header header; 8198 u64 id; 8199 char path[]; 8200 } event_id; 8201 }; 8202 8203 static int perf_event_cgroup_match(struct perf_event *event) 8204 { 8205 return event->attr.cgroup; 8206 } 8207 8208 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8209 { 8210 struct perf_cgroup_event *cgroup_event = data; 8211 struct perf_output_handle handle; 8212 struct perf_sample_data sample; 8213 u16 header_size = cgroup_event->event_id.header.size; 8214 int ret; 8215 8216 if (!perf_event_cgroup_match(event)) 8217 return; 8218 8219 perf_event_header__init_id(&cgroup_event->event_id.header, 8220 &sample, event); 8221 ret = perf_output_begin(&handle, &sample, event, 8222 cgroup_event->event_id.header.size); 8223 if (ret) 8224 goto out; 8225 8226 perf_output_put(&handle, cgroup_event->event_id); 8227 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8228 8229 perf_event__output_id_sample(event, &handle, &sample); 8230 8231 perf_output_end(&handle); 8232 out: 8233 cgroup_event->event_id.header.size = header_size; 8234 } 8235 8236 static void perf_event_cgroup(struct cgroup *cgrp) 8237 { 8238 struct perf_cgroup_event cgroup_event; 8239 char path_enomem[16] = "//enomem"; 8240 char *pathname; 8241 size_t size; 8242 8243 if (!atomic_read(&nr_cgroup_events)) 8244 return; 8245 8246 cgroup_event = (struct perf_cgroup_event){ 8247 .event_id = { 8248 .header = { 8249 .type = PERF_RECORD_CGROUP, 8250 .misc = 0, 8251 .size = sizeof(cgroup_event.event_id), 8252 }, 8253 .id = cgroup_id(cgrp), 8254 }, 8255 }; 8256 8257 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8258 if (pathname == NULL) { 8259 cgroup_event.path = path_enomem; 8260 } else { 8261 /* just to be sure to have enough space for alignment */ 8262 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8263 cgroup_event.path = pathname; 8264 } 8265 8266 /* 8267 * Since our buffer works in 8 byte units we need to align our string 8268 * size to a multiple of 8. However, we must guarantee the tail end is 8269 * zero'd out to avoid leaking random bits to userspace. 8270 */ 8271 size = strlen(cgroup_event.path) + 1; 8272 while (!IS_ALIGNED(size, sizeof(u64))) 8273 cgroup_event.path[size++] = '\0'; 8274 8275 cgroup_event.event_id.header.size += size; 8276 cgroup_event.path_size = size; 8277 8278 perf_iterate_sb(perf_event_cgroup_output, 8279 &cgroup_event, 8280 NULL); 8281 8282 kfree(pathname); 8283 } 8284 8285 #endif 8286 8287 /* 8288 * mmap tracking 8289 */ 8290 8291 struct perf_mmap_event { 8292 struct vm_area_struct *vma; 8293 8294 const char *file_name; 8295 int file_size; 8296 int maj, min; 8297 u64 ino; 8298 u64 ino_generation; 8299 u32 prot, flags; 8300 u8 build_id[BUILD_ID_SIZE_MAX]; 8301 u32 build_id_size; 8302 8303 struct { 8304 struct perf_event_header header; 8305 8306 u32 pid; 8307 u32 tid; 8308 u64 start; 8309 u64 len; 8310 u64 pgoff; 8311 } event_id; 8312 }; 8313 8314 static int perf_event_mmap_match(struct perf_event *event, 8315 void *data) 8316 { 8317 struct perf_mmap_event *mmap_event = data; 8318 struct vm_area_struct *vma = mmap_event->vma; 8319 int executable = vma->vm_flags & VM_EXEC; 8320 8321 return (!executable && event->attr.mmap_data) || 8322 (executable && (event->attr.mmap || event->attr.mmap2)); 8323 } 8324 8325 static void perf_event_mmap_output(struct perf_event *event, 8326 void *data) 8327 { 8328 struct perf_mmap_event *mmap_event = data; 8329 struct perf_output_handle handle; 8330 struct perf_sample_data sample; 8331 int size = mmap_event->event_id.header.size; 8332 u32 type = mmap_event->event_id.header.type; 8333 bool use_build_id; 8334 int ret; 8335 8336 if (!perf_event_mmap_match(event, data)) 8337 return; 8338 8339 if (event->attr.mmap2) { 8340 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8341 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8342 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8343 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8344 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8345 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8346 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8347 } 8348 8349 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8350 ret = perf_output_begin(&handle, &sample, event, 8351 mmap_event->event_id.header.size); 8352 if (ret) 8353 goto out; 8354 8355 mmap_event->event_id.pid = perf_event_pid(event, current); 8356 mmap_event->event_id.tid = perf_event_tid(event, current); 8357 8358 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8359 8360 if (event->attr.mmap2 && use_build_id) 8361 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8362 8363 perf_output_put(&handle, mmap_event->event_id); 8364 8365 if (event->attr.mmap2) { 8366 if (use_build_id) { 8367 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8368 8369 __output_copy(&handle, size, 4); 8370 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8371 } else { 8372 perf_output_put(&handle, mmap_event->maj); 8373 perf_output_put(&handle, mmap_event->min); 8374 perf_output_put(&handle, mmap_event->ino); 8375 perf_output_put(&handle, mmap_event->ino_generation); 8376 } 8377 perf_output_put(&handle, mmap_event->prot); 8378 perf_output_put(&handle, mmap_event->flags); 8379 } 8380 8381 __output_copy(&handle, mmap_event->file_name, 8382 mmap_event->file_size); 8383 8384 perf_event__output_id_sample(event, &handle, &sample); 8385 8386 perf_output_end(&handle); 8387 out: 8388 mmap_event->event_id.header.size = size; 8389 mmap_event->event_id.header.type = type; 8390 } 8391 8392 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8393 { 8394 struct vm_area_struct *vma = mmap_event->vma; 8395 struct file *file = vma->vm_file; 8396 int maj = 0, min = 0; 8397 u64 ino = 0, gen = 0; 8398 u32 prot = 0, flags = 0; 8399 unsigned int size; 8400 char tmp[16]; 8401 char *buf = NULL; 8402 char *name; 8403 8404 if (vma->vm_flags & VM_READ) 8405 prot |= PROT_READ; 8406 if (vma->vm_flags & VM_WRITE) 8407 prot |= PROT_WRITE; 8408 if (vma->vm_flags & VM_EXEC) 8409 prot |= PROT_EXEC; 8410 8411 if (vma->vm_flags & VM_MAYSHARE) 8412 flags = MAP_SHARED; 8413 else 8414 flags = MAP_PRIVATE; 8415 8416 if (vma->vm_flags & VM_LOCKED) 8417 flags |= MAP_LOCKED; 8418 if (is_vm_hugetlb_page(vma)) 8419 flags |= MAP_HUGETLB; 8420 8421 if (file) { 8422 struct inode *inode; 8423 dev_t dev; 8424 8425 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8426 if (!buf) { 8427 name = "//enomem"; 8428 goto cpy_name; 8429 } 8430 /* 8431 * d_path() works from the end of the rb backwards, so we 8432 * need to add enough zero bytes after the string to handle 8433 * the 64bit alignment we do later. 8434 */ 8435 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8436 if (IS_ERR(name)) { 8437 name = "//toolong"; 8438 goto cpy_name; 8439 } 8440 inode = file_inode(vma->vm_file); 8441 dev = inode->i_sb->s_dev; 8442 ino = inode->i_ino; 8443 gen = inode->i_generation; 8444 maj = MAJOR(dev); 8445 min = MINOR(dev); 8446 8447 goto got_name; 8448 } else { 8449 if (vma->vm_ops && vma->vm_ops->name) { 8450 name = (char *) vma->vm_ops->name(vma); 8451 if (name) 8452 goto cpy_name; 8453 } 8454 8455 name = (char *)arch_vma_name(vma); 8456 if (name) 8457 goto cpy_name; 8458 8459 if (vma->vm_start <= vma->vm_mm->start_brk && 8460 vma->vm_end >= vma->vm_mm->brk) { 8461 name = "[heap]"; 8462 goto cpy_name; 8463 } 8464 if (vma->vm_start <= vma->vm_mm->start_stack && 8465 vma->vm_end >= vma->vm_mm->start_stack) { 8466 name = "[stack]"; 8467 goto cpy_name; 8468 } 8469 8470 name = "//anon"; 8471 goto cpy_name; 8472 } 8473 8474 cpy_name: 8475 strlcpy(tmp, name, sizeof(tmp)); 8476 name = tmp; 8477 got_name: 8478 /* 8479 * Since our buffer works in 8 byte units we need to align our string 8480 * size to a multiple of 8. However, we must guarantee the tail end is 8481 * zero'd out to avoid leaking random bits to userspace. 8482 */ 8483 size = strlen(name)+1; 8484 while (!IS_ALIGNED(size, sizeof(u64))) 8485 name[size++] = '\0'; 8486 8487 mmap_event->file_name = name; 8488 mmap_event->file_size = size; 8489 mmap_event->maj = maj; 8490 mmap_event->min = min; 8491 mmap_event->ino = ino; 8492 mmap_event->ino_generation = gen; 8493 mmap_event->prot = prot; 8494 mmap_event->flags = flags; 8495 8496 if (!(vma->vm_flags & VM_EXEC)) 8497 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8498 8499 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8500 8501 if (atomic_read(&nr_build_id_events)) 8502 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8503 8504 perf_iterate_sb(perf_event_mmap_output, 8505 mmap_event, 8506 NULL); 8507 8508 kfree(buf); 8509 } 8510 8511 /* 8512 * Check whether inode and address range match filter criteria. 8513 */ 8514 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8515 struct file *file, unsigned long offset, 8516 unsigned long size) 8517 { 8518 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8519 if (!filter->path.dentry) 8520 return false; 8521 8522 if (d_inode(filter->path.dentry) != file_inode(file)) 8523 return false; 8524 8525 if (filter->offset > offset + size) 8526 return false; 8527 8528 if (filter->offset + filter->size < offset) 8529 return false; 8530 8531 return true; 8532 } 8533 8534 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8535 struct vm_area_struct *vma, 8536 struct perf_addr_filter_range *fr) 8537 { 8538 unsigned long vma_size = vma->vm_end - vma->vm_start; 8539 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8540 struct file *file = vma->vm_file; 8541 8542 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8543 return false; 8544 8545 if (filter->offset < off) { 8546 fr->start = vma->vm_start; 8547 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8548 } else { 8549 fr->start = vma->vm_start + filter->offset - off; 8550 fr->size = min(vma->vm_end - fr->start, filter->size); 8551 } 8552 8553 return true; 8554 } 8555 8556 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8557 { 8558 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8559 struct vm_area_struct *vma = data; 8560 struct perf_addr_filter *filter; 8561 unsigned int restart = 0, count = 0; 8562 unsigned long flags; 8563 8564 if (!has_addr_filter(event)) 8565 return; 8566 8567 if (!vma->vm_file) 8568 return; 8569 8570 raw_spin_lock_irqsave(&ifh->lock, flags); 8571 list_for_each_entry(filter, &ifh->list, entry) { 8572 if (perf_addr_filter_vma_adjust(filter, vma, 8573 &event->addr_filter_ranges[count])) 8574 restart++; 8575 8576 count++; 8577 } 8578 8579 if (restart) 8580 event->addr_filters_gen++; 8581 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8582 8583 if (restart) 8584 perf_event_stop(event, 1); 8585 } 8586 8587 /* 8588 * Adjust all task's events' filters to the new vma 8589 */ 8590 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8591 { 8592 struct perf_event_context *ctx; 8593 int ctxn; 8594 8595 /* 8596 * Data tracing isn't supported yet and as such there is no need 8597 * to keep track of anything that isn't related to executable code: 8598 */ 8599 if (!(vma->vm_flags & VM_EXEC)) 8600 return; 8601 8602 rcu_read_lock(); 8603 for_each_task_context_nr(ctxn) { 8604 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8605 if (!ctx) 8606 continue; 8607 8608 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8609 } 8610 rcu_read_unlock(); 8611 } 8612 8613 void perf_event_mmap(struct vm_area_struct *vma) 8614 { 8615 struct perf_mmap_event mmap_event; 8616 8617 if (!atomic_read(&nr_mmap_events)) 8618 return; 8619 8620 mmap_event = (struct perf_mmap_event){ 8621 .vma = vma, 8622 /* .file_name */ 8623 /* .file_size */ 8624 .event_id = { 8625 .header = { 8626 .type = PERF_RECORD_MMAP, 8627 .misc = PERF_RECORD_MISC_USER, 8628 /* .size */ 8629 }, 8630 /* .pid */ 8631 /* .tid */ 8632 .start = vma->vm_start, 8633 .len = vma->vm_end - vma->vm_start, 8634 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8635 }, 8636 /* .maj (attr_mmap2 only) */ 8637 /* .min (attr_mmap2 only) */ 8638 /* .ino (attr_mmap2 only) */ 8639 /* .ino_generation (attr_mmap2 only) */ 8640 /* .prot (attr_mmap2 only) */ 8641 /* .flags (attr_mmap2 only) */ 8642 }; 8643 8644 perf_addr_filters_adjust(vma); 8645 perf_event_mmap_event(&mmap_event); 8646 } 8647 8648 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8649 unsigned long size, u64 flags) 8650 { 8651 struct perf_output_handle handle; 8652 struct perf_sample_data sample; 8653 struct perf_aux_event { 8654 struct perf_event_header header; 8655 u64 offset; 8656 u64 size; 8657 u64 flags; 8658 } rec = { 8659 .header = { 8660 .type = PERF_RECORD_AUX, 8661 .misc = 0, 8662 .size = sizeof(rec), 8663 }, 8664 .offset = head, 8665 .size = size, 8666 .flags = flags, 8667 }; 8668 int ret; 8669 8670 perf_event_header__init_id(&rec.header, &sample, event); 8671 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8672 8673 if (ret) 8674 return; 8675 8676 perf_output_put(&handle, rec); 8677 perf_event__output_id_sample(event, &handle, &sample); 8678 8679 perf_output_end(&handle); 8680 } 8681 8682 /* 8683 * Lost/dropped samples logging 8684 */ 8685 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8686 { 8687 struct perf_output_handle handle; 8688 struct perf_sample_data sample; 8689 int ret; 8690 8691 struct { 8692 struct perf_event_header header; 8693 u64 lost; 8694 } lost_samples_event = { 8695 .header = { 8696 .type = PERF_RECORD_LOST_SAMPLES, 8697 .misc = 0, 8698 .size = sizeof(lost_samples_event), 8699 }, 8700 .lost = lost, 8701 }; 8702 8703 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8704 8705 ret = perf_output_begin(&handle, &sample, event, 8706 lost_samples_event.header.size); 8707 if (ret) 8708 return; 8709 8710 perf_output_put(&handle, lost_samples_event); 8711 perf_event__output_id_sample(event, &handle, &sample); 8712 perf_output_end(&handle); 8713 } 8714 8715 /* 8716 * context_switch tracking 8717 */ 8718 8719 struct perf_switch_event { 8720 struct task_struct *task; 8721 struct task_struct *next_prev; 8722 8723 struct { 8724 struct perf_event_header header; 8725 u32 next_prev_pid; 8726 u32 next_prev_tid; 8727 } event_id; 8728 }; 8729 8730 static int perf_event_switch_match(struct perf_event *event) 8731 { 8732 return event->attr.context_switch; 8733 } 8734 8735 static void perf_event_switch_output(struct perf_event *event, void *data) 8736 { 8737 struct perf_switch_event *se = data; 8738 struct perf_output_handle handle; 8739 struct perf_sample_data sample; 8740 int ret; 8741 8742 if (!perf_event_switch_match(event)) 8743 return; 8744 8745 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8746 if (event->ctx->task) { 8747 se->event_id.header.type = PERF_RECORD_SWITCH; 8748 se->event_id.header.size = sizeof(se->event_id.header); 8749 } else { 8750 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8751 se->event_id.header.size = sizeof(se->event_id); 8752 se->event_id.next_prev_pid = 8753 perf_event_pid(event, se->next_prev); 8754 se->event_id.next_prev_tid = 8755 perf_event_tid(event, se->next_prev); 8756 } 8757 8758 perf_event_header__init_id(&se->event_id.header, &sample, event); 8759 8760 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8761 if (ret) 8762 return; 8763 8764 if (event->ctx->task) 8765 perf_output_put(&handle, se->event_id.header); 8766 else 8767 perf_output_put(&handle, se->event_id); 8768 8769 perf_event__output_id_sample(event, &handle, &sample); 8770 8771 perf_output_end(&handle); 8772 } 8773 8774 static void perf_event_switch(struct task_struct *task, 8775 struct task_struct *next_prev, bool sched_in) 8776 { 8777 struct perf_switch_event switch_event; 8778 8779 /* N.B. caller checks nr_switch_events != 0 */ 8780 8781 switch_event = (struct perf_switch_event){ 8782 .task = task, 8783 .next_prev = next_prev, 8784 .event_id = { 8785 .header = { 8786 /* .type */ 8787 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8788 /* .size */ 8789 }, 8790 /* .next_prev_pid */ 8791 /* .next_prev_tid */ 8792 }, 8793 }; 8794 8795 if (!sched_in && task->on_rq) { 8796 switch_event.event_id.header.misc |= 8797 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8798 } 8799 8800 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8801 } 8802 8803 /* 8804 * IRQ throttle logging 8805 */ 8806 8807 static void perf_log_throttle(struct perf_event *event, int enable) 8808 { 8809 struct perf_output_handle handle; 8810 struct perf_sample_data sample; 8811 int ret; 8812 8813 struct { 8814 struct perf_event_header header; 8815 u64 time; 8816 u64 id; 8817 u64 stream_id; 8818 } throttle_event = { 8819 .header = { 8820 .type = PERF_RECORD_THROTTLE, 8821 .misc = 0, 8822 .size = sizeof(throttle_event), 8823 }, 8824 .time = perf_event_clock(event), 8825 .id = primary_event_id(event), 8826 .stream_id = event->id, 8827 }; 8828 8829 if (enable) 8830 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8831 8832 perf_event_header__init_id(&throttle_event.header, &sample, event); 8833 8834 ret = perf_output_begin(&handle, &sample, event, 8835 throttle_event.header.size); 8836 if (ret) 8837 return; 8838 8839 perf_output_put(&handle, throttle_event); 8840 perf_event__output_id_sample(event, &handle, &sample); 8841 perf_output_end(&handle); 8842 } 8843 8844 /* 8845 * ksymbol register/unregister tracking 8846 */ 8847 8848 struct perf_ksymbol_event { 8849 const char *name; 8850 int name_len; 8851 struct { 8852 struct perf_event_header header; 8853 u64 addr; 8854 u32 len; 8855 u16 ksym_type; 8856 u16 flags; 8857 } event_id; 8858 }; 8859 8860 static int perf_event_ksymbol_match(struct perf_event *event) 8861 { 8862 return event->attr.ksymbol; 8863 } 8864 8865 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8866 { 8867 struct perf_ksymbol_event *ksymbol_event = data; 8868 struct perf_output_handle handle; 8869 struct perf_sample_data sample; 8870 int ret; 8871 8872 if (!perf_event_ksymbol_match(event)) 8873 return; 8874 8875 perf_event_header__init_id(&ksymbol_event->event_id.header, 8876 &sample, event); 8877 ret = perf_output_begin(&handle, &sample, event, 8878 ksymbol_event->event_id.header.size); 8879 if (ret) 8880 return; 8881 8882 perf_output_put(&handle, ksymbol_event->event_id); 8883 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8884 perf_event__output_id_sample(event, &handle, &sample); 8885 8886 perf_output_end(&handle); 8887 } 8888 8889 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8890 const char *sym) 8891 { 8892 struct perf_ksymbol_event ksymbol_event; 8893 char name[KSYM_NAME_LEN]; 8894 u16 flags = 0; 8895 int name_len; 8896 8897 if (!atomic_read(&nr_ksymbol_events)) 8898 return; 8899 8900 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8901 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8902 goto err; 8903 8904 strlcpy(name, sym, KSYM_NAME_LEN); 8905 name_len = strlen(name) + 1; 8906 while (!IS_ALIGNED(name_len, sizeof(u64))) 8907 name[name_len++] = '\0'; 8908 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8909 8910 if (unregister) 8911 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8912 8913 ksymbol_event = (struct perf_ksymbol_event){ 8914 .name = name, 8915 .name_len = name_len, 8916 .event_id = { 8917 .header = { 8918 .type = PERF_RECORD_KSYMBOL, 8919 .size = sizeof(ksymbol_event.event_id) + 8920 name_len, 8921 }, 8922 .addr = addr, 8923 .len = len, 8924 .ksym_type = ksym_type, 8925 .flags = flags, 8926 }, 8927 }; 8928 8929 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8930 return; 8931 err: 8932 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8933 } 8934 8935 /* 8936 * bpf program load/unload tracking 8937 */ 8938 8939 struct perf_bpf_event { 8940 struct bpf_prog *prog; 8941 struct { 8942 struct perf_event_header header; 8943 u16 type; 8944 u16 flags; 8945 u32 id; 8946 u8 tag[BPF_TAG_SIZE]; 8947 } event_id; 8948 }; 8949 8950 static int perf_event_bpf_match(struct perf_event *event) 8951 { 8952 return event->attr.bpf_event; 8953 } 8954 8955 static void perf_event_bpf_output(struct perf_event *event, void *data) 8956 { 8957 struct perf_bpf_event *bpf_event = data; 8958 struct perf_output_handle handle; 8959 struct perf_sample_data sample; 8960 int ret; 8961 8962 if (!perf_event_bpf_match(event)) 8963 return; 8964 8965 perf_event_header__init_id(&bpf_event->event_id.header, 8966 &sample, event); 8967 ret = perf_output_begin(&handle, data, event, 8968 bpf_event->event_id.header.size); 8969 if (ret) 8970 return; 8971 8972 perf_output_put(&handle, bpf_event->event_id); 8973 perf_event__output_id_sample(event, &handle, &sample); 8974 8975 perf_output_end(&handle); 8976 } 8977 8978 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8979 enum perf_bpf_event_type type) 8980 { 8981 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8982 int i; 8983 8984 if (prog->aux->func_cnt == 0) { 8985 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8986 (u64)(unsigned long)prog->bpf_func, 8987 prog->jited_len, unregister, 8988 prog->aux->ksym.name); 8989 } else { 8990 for (i = 0; i < prog->aux->func_cnt; i++) { 8991 struct bpf_prog *subprog = prog->aux->func[i]; 8992 8993 perf_event_ksymbol( 8994 PERF_RECORD_KSYMBOL_TYPE_BPF, 8995 (u64)(unsigned long)subprog->bpf_func, 8996 subprog->jited_len, unregister, 8997 prog->aux->ksym.name); 8998 } 8999 } 9000 } 9001 9002 void perf_event_bpf_event(struct bpf_prog *prog, 9003 enum perf_bpf_event_type type, 9004 u16 flags) 9005 { 9006 struct perf_bpf_event bpf_event; 9007 9008 if (type <= PERF_BPF_EVENT_UNKNOWN || 9009 type >= PERF_BPF_EVENT_MAX) 9010 return; 9011 9012 switch (type) { 9013 case PERF_BPF_EVENT_PROG_LOAD: 9014 case PERF_BPF_EVENT_PROG_UNLOAD: 9015 if (atomic_read(&nr_ksymbol_events)) 9016 perf_event_bpf_emit_ksymbols(prog, type); 9017 break; 9018 default: 9019 break; 9020 } 9021 9022 if (!atomic_read(&nr_bpf_events)) 9023 return; 9024 9025 bpf_event = (struct perf_bpf_event){ 9026 .prog = prog, 9027 .event_id = { 9028 .header = { 9029 .type = PERF_RECORD_BPF_EVENT, 9030 .size = sizeof(bpf_event.event_id), 9031 }, 9032 .type = type, 9033 .flags = flags, 9034 .id = prog->aux->id, 9035 }, 9036 }; 9037 9038 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9039 9040 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9041 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9042 } 9043 9044 struct perf_text_poke_event { 9045 const void *old_bytes; 9046 const void *new_bytes; 9047 size_t pad; 9048 u16 old_len; 9049 u16 new_len; 9050 9051 struct { 9052 struct perf_event_header header; 9053 9054 u64 addr; 9055 } event_id; 9056 }; 9057 9058 static int perf_event_text_poke_match(struct perf_event *event) 9059 { 9060 return event->attr.text_poke; 9061 } 9062 9063 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9064 { 9065 struct perf_text_poke_event *text_poke_event = data; 9066 struct perf_output_handle handle; 9067 struct perf_sample_data sample; 9068 u64 padding = 0; 9069 int ret; 9070 9071 if (!perf_event_text_poke_match(event)) 9072 return; 9073 9074 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9075 9076 ret = perf_output_begin(&handle, &sample, event, 9077 text_poke_event->event_id.header.size); 9078 if (ret) 9079 return; 9080 9081 perf_output_put(&handle, text_poke_event->event_id); 9082 perf_output_put(&handle, text_poke_event->old_len); 9083 perf_output_put(&handle, text_poke_event->new_len); 9084 9085 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9086 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9087 9088 if (text_poke_event->pad) 9089 __output_copy(&handle, &padding, text_poke_event->pad); 9090 9091 perf_event__output_id_sample(event, &handle, &sample); 9092 9093 perf_output_end(&handle); 9094 } 9095 9096 void perf_event_text_poke(const void *addr, const void *old_bytes, 9097 size_t old_len, const void *new_bytes, size_t new_len) 9098 { 9099 struct perf_text_poke_event text_poke_event; 9100 size_t tot, pad; 9101 9102 if (!atomic_read(&nr_text_poke_events)) 9103 return; 9104 9105 tot = sizeof(text_poke_event.old_len) + old_len; 9106 tot += sizeof(text_poke_event.new_len) + new_len; 9107 pad = ALIGN(tot, sizeof(u64)) - tot; 9108 9109 text_poke_event = (struct perf_text_poke_event){ 9110 .old_bytes = old_bytes, 9111 .new_bytes = new_bytes, 9112 .pad = pad, 9113 .old_len = old_len, 9114 .new_len = new_len, 9115 .event_id = { 9116 .header = { 9117 .type = PERF_RECORD_TEXT_POKE, 9118 .misc = PERF_RECORD_MISC_KERNEL, 9119 .size = sizeof(text_poke_event.event_id) + tot + pad, 9120 }, 9121 .addr = (unsigned long)addr, 9122 }, 9123 }; 9124 9125 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9126 } 9127 9128 void perf_event_itrace_started(struct perf_event *event) 9129 { 9130 event->attach_state |= PERF_ATTACH_ITRACE; 9131 } 9132 9133 static void perf_log_itrace_start(struct perf_event *event) 9134 { 9135 struct perf_output_handle handle; 9136 struct perf_sample_data sample; 9137 struct perf_aux_event { 9138 struct perf_event_header header; 9139 u32 pid; 9140 u32 tid; 9141 } rec; 9142 int ret; 9143 9144 if (event->parent) 9145 event = event->parent; 9146 9147 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9148 event->attach_state & PERF_ATTACH_ITRACE) 9149 return; 9150 9151 rec.header.type = PERF_RECORD_ITRACE_START; 9152 rec.header.misc = 0; 9153 rec.header.size = sizeof(rec); 9154 rec.pid = perf_event_pid(event, current); 9155 rec.tid = perf_event_tid(event, current); 9156 9157 perf_event_header__init_id(&rec.header, &sample, event); 9158 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9159 9160 if (ret) 9161 return; 9162 9163 perf_output_put(&handle, rec); 9164 perf_event__output_id_sample(event, &handle, &sample); 9165 9166 perf_output_end(&handle); 9167 } 9168 9169 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9170 { 9171 struct perf_output_handle handle; 9172 struct perf_sample_data sample; 9173 struct perf_aux_event { 9174 struct perf_event_header header; 9175 u64 hw_id; 9176 } rec; 9177 int ret; 9178 9179 if (event->parent) 9180 event = event->parent; 9181 9182 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9183 rec.header.misc = 0; 9184 rec.header.size = sizeof(rec); 9185 rec.hw_id = hw_id; 9186 9187 perf_event_header__init_id(&rec.header, &sample, event); 9188 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9189 9190 if (ret) 9191 return; 9192 9193 perf_output_put(&handle, rec); 9194 perf_event__output_id_sample(event, &handle, &sample); 9195 9196 perf_output_end(&handle); 9197 } 9198 9199 static int 9200 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9201 { 9202 struct hw_perf_event *hwc = &event->hw; 9203 int ret = 0; 9204 u64 seq; 9205 9206 seq = __this_cpu_read(perf_throttled_seq); 9207 if (seq != hwc->interrupts_seq) { 9208 hwc->interrupts_seq = seq; 9209 hwc->interrupts = 1; 9210 } else { 9211 hwc->interrupts++; 9212 if (unlikely(throttle 9213 && hwc->interrupts >= max_samples_per_tick)) { 9214 __this_cpu_inc(perf_throttled_count); 9215 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9216 hwc->interrupts = MAX_INTERRUPTS; 9217 perf_log_throttle(event, 0); 9218 ret = 1; 9219 } 9220 } 9221 9222 if (event->attr.freq) { 9223 u64 now = perf_clock(); 9224 s64 delta = now - hwc->freq_time_stamp; 9225 9226 hwc->freq_time_stamp = now; 9227 9228 if (delta > 0 && delta < 2*TICK_NSEC) 9229 perf_adjust_period(event, delta, hwc->last_period, true); 9230 } 9231 9232 return ret; 9233 } 9234 9235 int perf_event_account_interrupt(struct perf_event *event) 9236 { 9237 return __perf_event_account_interrupt(event, 1); 9238 } 9239 9240 /* 9241 * Generic event overflow handling, sampling. 9242 */ 9243 9244 static int __perf_event_overflow(struct perf_event *event, 9245 int throttle, struct perf_sample_data *data, 9246 struct pt_regs *regs) 9247 { 9248 int events = atomic_read(&event->event_limit); 9249 int ret = 0; 9250 9251 /* 9252 * Non-sampling counters might still use the PMI to fold short 9253 * hardware counters, ignore those. 9254 */ 9255 if (unlikely(!is_sampling_event(event))) 9256 return 0; 9257 9258 ret = __perf_event_account_interrupt(event, throttle); 9259 9260 /* 9261 * XXX event_limit might not quite work as expected on inherited 9262 * events 9263 */ 9264 9265 event->pending_kill = POLL_IN; 9266 if (events && atomic_dec_and_test(&event->event_limit)) { 9267 ret = 1; 9268 event->pending_kill = POLL_HUP; 9269 event->pending_addr = data->addr; 9270 9271 perf_event_disable_inatomic(event); 9272 } 9273 9274 READ_ONCE(event->overflow_handler)(event, data, regs); 9275 9276 if (*perf_event_fasync(event) && event->pending_kill) { 9277 event->pending_wakeup = 1; 9278 irq_work_queue(&event->pending); 9279 } 9280 9281 return ret; 9282 } 9283 9284 int perf_event_overflow(struct perf_event *event, 9285 struct perf_sample_data *data, 9286 struct pt_regs *regs) 9287 { 9288 return __perf_event_overflow(event, 1, data, regs); 9289 } 9290 9291 /* 9292 * Generic software event infrastructure 9293 */ 9294 9295 struct swevent_htable { 9296 struct swevent_hlist *swevent_hlist; 9297 struct mutex hlist_mutex; 9298 int hlist_refcount; 9299 9300 /* Recursion avoidance in each contexts */ 9301 int recursion[PERF_NR_CONTEXTS]; 9302 }; 9303 9304 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9305 9306 /* 9307 * We directly increment event->count and keep a second value in 9308 * event->hw.period_left to count intervals. This period event 9309 * is kept in the range [-sample_period, 0] so that we can use the 9310 * sign as trigger. 9311 */ 9312 9313 u64 perf_swevent_set_period(struct perf_event *event) 9314 { 9315 struct hw_perf_event *hwc = &event->hw; 9316 u64 period = hwc->last_period; 9317 u64 nr, offset; 9318 s64 old, val; 9319 9320 hwc->last_period = hwc->sample_period; 9321 9322 again: 9323 old = val = local64_read(&hwc->period_left); 9324 if (val < 0) 9325 return 0; 9326 9327 nr = div64_u64(period + val, period); 9328 offset = nr * period; 9329 val -= offset; 9330 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9331 goto again; 9332 9333 return nr; 9334 } 9335 9336 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9337 struct perf_sample_data *data, 9338 struct pt_regs *regs) 9339 { 9340 struct hw_perf_event *hwc = &event->hw; 9341 int throttle = 0; 9342 9343 if (!overflow) 9344 overflow = perf_swevent_set_period(event); 9345 9346 if (hwc->interrupts == MAX_INTERRUPTS) 9347 return; 9348 9349 for (; overflow; overflow--) { 9350 if (__perf_event_overflow(event, throttle, 9351 data, regs)) { 9352 /* 9353 * We inhibit the overflow from happening when 9354 * hwc->interrupts == MAX_INTERRUPTS. 9355 */ 9356 break; 9357 } 9358 throttle = 1; 9359 } 9360 } 9361 9362 static void perf_swevent_event(struct perf_event *event, u64 nr, 9363 struct perf_sample_data *data, 9364 struct pt_regs *regs) 9365 { 9366 struct hw_perf_event *hwc = &event->hw; 9367 9368 local64_add(nr, &event->count); 9369 9370 if (!regs) 9371 return; 9372 9373 if (!is_sampling_event(event)) 9374 return; 9375 9376 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9377 data->period = nr; 9378 return perf_swevent_overflow(event, 1, data, regs); 9379 } else 9380 data->period = event->hw.last_period; 9381 9382 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9383 return perf_swevent_overflow(event, 1, data, regs); 9384 9385 if (local64_add_negative(nr, &hwc->period_left)) 9386 return; 9387 9388 perf_swevent_overflow(event, 0, data, regs); 9389 } 9390 9391 static int perf_exclude_event(struct perf_event *event, 9392 struct pt_regs *regs) 9393 { 9394 if (event->hw.state & PERF_HES_STOPPED) 9395 return 1; 9396 9397 if (regs) { 9398 if (event->attr.exclude_user && user_mode(regs)) 9399 return 1; 9400 9401 if (event->attr.exclude_kernel && !user_mode(regs)) 9402 return 1; 9403 } 9404 9405 return 0; 9406 } 9407 9408 static int perf_swevent_match(struct perf_event *event, 9409 enum perf_type_id type, 9410 u32 event_id, 9411 struct perf_sample_data *data, 9412 struct pt_regs *regs) 9413 { 9414 if (event->attr.type != type) 9415 return 0; 9416 9417 if (event->attr.config != event_id) 9418 return 0; 9419 9420 if (perf_exclude_event(event, regs)) 9421 return 0; 9422 9423 return 1; 9424 } 9425 9426 static inline u64 swevent_hash(u64 type, u32 event_id) 9427 { 9428 u64 val = event_id | (type << 32); 9429 9430 return hash_64(val, SWEVENT_HLIST_BITS); 9431 } 9432 9433 static inline struct hlist_head * 9434 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9435 { 9436 u64 hash = swevent_hash(type, event_id); 9437 9438 return &hlist->heads[hash]; 9439 } 9440 9441 /* For the read side: events when they trigger */ 9442 static inline struct hlist_head * 9443 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9444 { 9445 struct swevent_hlist *hlist; 9446 9447 hlist = rcu_dereference(swhash->swevent_hlist); 9448 if (!hlist) 9449 return NULL; 9450 9451 return __find_swevent_head(hlist, type, event_id); 9452 } 9453 9454 /* For the event head insertion and removal in the hlist */ 9455 static inline struct hlist_head * 9456 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9457 { 9458 struct swevent_hlist *hlist; 9459 u32 event_id = event->attr.config; 9460 u64 type = event->attr.type; 9461 9462 /* 9463 * Event scheduling is always serialized against hlist allocation 9464 * and release. Which makes the protected version suitable here. 9465 * The context lock guarantees that. 9466 */ 9467 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9468 lockdep_is_held(&event->ctx->lock)); 9469 if (!hlist) 9470 return NULL; 9471 9472 return __find_swevent_head(hlist, type, event_id); 9473 } 9474 9475 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9476 u64 nr, 9477 struct perf_sample_data *data, 9478 struct pt_regs *regs) 9479 { 9480 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9481 struct perf_event *event; 9482 struct hlist_head *head; 9483 9484 rcu_read_lock(); 9485 head = find_swevent_head_rcu(swhash, type, event_id); 9486 if (!head) 9487 goto end; 9488 9489 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9490 if (perf_swevent_match(event, type, event_id, data, regs)) 9491 perf_swevent_event(event, nr, data, regs); 9492 } 9493 end: 9494 rcu_read_unlock(); 9495 } 9496 9497 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9498 9499 int perf_swevent_get_recursion_context(void) 9500 { 9501 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9502 9503 return get_recursion_context(swhash->recursion); 9504 } 9505 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9506 9507 void perf_swevent_put_recursion_context(int rctx) 9508 { 9509 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9510 9511 put_recursion_context(swhash->recursion, rctx); 9512 } 9513 9514 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9515 { 9516 struct perf_sample_data data; 9517 9518 if (WARN_ON_ONCE(!regs)) 9519 return; 9520 9521 perf_sample_data_init(&data, addr, 0); 9522 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9523 } 9524 9525 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9526 { 9527 int rctx; 9528 9529 preempt_disable_notrace(); 9530 rctx = perf_swevent_get_recursion_context(); 9531 if (unlikely(rctx < 0)) 9532 goto fail; 9533 9534 ___perf_sw_event(event_id, nr, regs, addr); 9535 9536 perf_swevent_put_recursion_context(rctx); 9537 fail: 9538 preempt_enable_notrace(); 9539 } 9540 9541 static void perf_swevent_read(struct perf_event *event) 9542 { 9543 } 9544 9545 static int perf_swevent_add(struct perf_event *event, int flags) 9546 { 9547 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9548 struct hw_perf_event *hwc = &event->hw; 9549 struct hlist_head *head; 9550 9551 if (is_sampling_event(event)) { 9552 hwc->last_period = hwc->sample_period; 9553 perf_swevent_set_period(event); 9554 } 9555 9556 hwc->state = !(flags & PERF_EF_START); 9557 9558 head = find_swevent_head(swhash, event); 9559 if (WARN_ON_ONCE(!head)) 9560 return -EINVAL; 9561 9562 hlist_add_head_rcu(&event->hlist_entry, head); 9563 perf_event_update_userpage(event); 9564 9565 return 0; 9566 } 9567 9568 static void perf_swevent_del(struct perf_event *event, int flags) 9569 { 9570 hlist_del_rcu(&event->hlist_entry); 9571 } 9572 9573 static void perf_swevent_start(struct perf_event *event, int flags) 9574 { 9575 event->hw.state = 0; 9576 } 9577 9578 static void perf_swevent_stop(struct perf_event *event, int flags) 9579 { 9580 event->hw.state = PERF_HES_STOPPED; 9581 } 9582 9583 /* Deref the hlist from the update side */ 9584 static inline struct swevent_hlist * 9585 swevent_hlist_deref(struct swevent_htable *swhash) 9586 { 9587 return rcu_dereference_protected(swhash->swevent_hlist, 9588 lockdep_is_held(&swhash->hlist_mutex)); 9589 } 9590 9591 static void swevent_hlist_release(struct swevent_htable *swhash) 9592 { 9593 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9594 9595 if (!hlist) 9596 return; 9597 9598 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9599 kfree_rcu(hlist, rcu_head); 9600 } 9601 9602 static void swevent_hlist_put_cpu(int cpu) 9603 { 9604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9605 9606 mutex_lock(&swhash->hlist_mutex); 9607 9608 if (!--swhash->hlist_refcount) 9609 swevent_hlist_release(swhash); 9610 9611 mutex_unlock(&swhash->hlist_mutex); 9612 } 9613 9614 static void swevent_hlist_put(void) 9615 { 9616 int cpu; 9617 9618 for_each_possible_cpu(cpu) 9619 swevent_hlist_put_cpu(cpu); 9620 } 9621 9622 static int swevent_hlist_get_cpu(int cpu) 9623 { 9624 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9625 int err = 0; 9626 9627 mutex_lock(&swhash->hlist_mutex); 9628 if (!swevent_hlist_deref(swhash) && 9629 cpumask_test_cpu(cpu, perf_online_mask)) { 9630 struct swevent_hlist *hlist; 9631 9632 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9633 if (!hlist) { 9634 err = -ENOMEM; 9635 goto exit; 9636 } 9637 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9638 } 9639 swhash->hlist_refcount++; 9640 exit: 9641 mutex_unlock(&swhash->hlist_mutex); 9642 9643 return err; 9644 } 9645 9646 static int swevent_hlist_get(void) 9647 { 9648 int err, cpu, failed_cpu; 9649 9650 mutex_lock(&pmus_lock); 9651 for_each_possible_cpu(cpu) { 9652 err = swevent_hlist_get_cpu(cpu); 9653 if (err) { 9654 failed_cpu = cpu; 9655 goto fail; 9656 } 9657 } 9658 mutex_unlock(&pmus_lock); 9659 return 0; 9660 fail: 9661 for_each_possible_cpu(cpu) { 9662 if (cpu == failed_cpu) 9663 break; 9664 swevent_hlist_put_cpu(cpu); 9665 } 9666 mutex_unlock(&pmus_lock); 9667 return err; 9668 } 9669 9670 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9671 9672 static void sw_perf_event_destroy(struct perf_event *event) 9673 { 9674 u64 event_id = event->attr.config; 9675 9676 WARN_ON(event->parent); 9677 9678 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9679 swevent_hlist_put(); 9680 } 9681 9682 static int perf_swevent_init(struct perf_event *event) 9683 { 9684 u64 event_id = event->attr.config; 9685 9686 if (event->attr.type != PERF_TYPE_SOFTWARE) 9687 return -ENOENT; 9688 9689 /* 9690 * no branch sampling for software events 9691 */ 9692 if (has_branch_stack(event)) 9693 return -EOPNOTSUPP; 9694 9695 switch (event_id) { 9696 case PERF_COUNT_SW_CPU_CLOCK: 9697 case PERF_COUNT_SW_TASK_CLOCK: 9698 return -ENOENT; 9699 9700 default: 9701 break; 9702 } 9703 9704 if (event_id >= PERF_COUNT_SW_MAX) 9705 return -ENOENT; 9706 9707 if (!event->parent) { 9708 int err; 9709 9710 err = swevent_hlist_get(); 9711 if (err) 9712 return err; 9713 9714 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9715 event->destroy = sw_perf_event_destroy; 9716 } 9717 9718 return 0; 9719 } 9720 9721 static struct pmu perf_swevent = { 9722 .task_ctx_nr = perf_sw_context, 9723 9724 .capabilities = PERF_PMU_CAP_NO_NMI, 9725 9726 .event_init = perf_swevent_init, 9727 .add = perf_swevent_add, 9728 .del = perf_swevent_del, 9729 .start = perf_swevent_start, 9730 .stop = perf_swevent_stop, 9731 .read = perf_swevent_read, 9732 }; 9733 9734 #ifdef CONFIG_EVENT_TRACING 9735 9736 static int perf_tp_filter_match(struct perf_event *event, 9737 struct perf_sample_data *data) 9738 { 9739 void *record = data->raw->frag.data; 9740 9741 /* only top level events have filters set */ 9742 if (event->parent) 9743 event = event->parent; 9744 9745 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9746 return 1; 9747 return 0; 9748 } 9749 9750 static int perf_tp_event_match(struct perf_event *event, 9751 struct perf_sample_data *data, 9752 struct pt_regs *regs) 9753 { 9754 if (event->hw.state & PERF_HES_STOPPED) 9755 return 0; 9756 /* 9757 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9758 */ 9759 if (event->attr.exclude_kernel && !user_mode(regs)) 9760 return 0; 9761 9762 if (!perf_tp_filter_match(event, data)) 9763 return 0; 9764 9765 return 1; 9766 } 9767 9768 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9769 struct trace_event_call *call, u64 count, 9770 struct pt_regs *regs, struct hlist_head *head, 9771 struct task_struct *task) 9772 { 9773 if (bpf_prog_array_valid(call)) { 9774 *(struct pt_regs **)raw_data = regs; 9775 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9776 perf_swevent_put_recursion_context(rctx); 9777 return; 9778 } 9779 } 9780 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9781 rctx, task); 9782 } 9783 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9784 9785 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9786 struct pt_regs *regs, struct hlist_head *head, int rctx, 9787 struct task_struct *task) 9788 { 9789 struct perf_sample_data data; 9790 struct perf_event *event; 9791 9792 struct perf_raw_record raw = { 9793 .frag = { 9794 .size = entry_size, 9795 .data = record, 9796 }, 9797 }; 9798 9799 perf_sample_data_init(&data, 0, 0); 9800 data.raw = &raw; 9801 9802 perf_trace_buf_update(record, event_type); 9803 9804 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9805 if (perf_tp_event_match(event, &data, regs)) 9806 perf_swevent_event(event, count, &data, regs); 9807 } 9808 9809 /* 9810 * If we got specified a target task, also iterate its context and 9811 * deliver this event there too. 9812 */ 9813 if (task && task != current) { 9814 struct perf_event_context *ctx; 9815 struct trace_entry *entry = record; 9816 9817 rcu_read_lock(); 9818 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9819 if (!ctx) 9820 goto unlock; 9821 9822 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9823 if (event->cpu != smp_processor_id()) 9824 continue; 9825 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9826 continue; 9827 if (event->attr.config != entry->type) 9828 continue; 9829 /* Cannot deliver synchronous signal to other task. */ 9830 if (event->attr.sigtrap) 9831 continue; 9832 if (perf_tp_event_match(event, &data, regs)) 9833 perf_swevent_event(event, count, &data, regs); 9834 } 9835 unlock: 9836 rcu_read_unlock(); 9837 } 9838 9839 perf_swevent_put_recursion_context(rctx); 9840 } 9841 EXPORT_SYMBOL_GPL(perf_tp_event); 9842 9843 static void tp_perf_event_destroy(struct perf_event *event) 9844 { 9845 perf_trace_destroy(event); 9846 } 9847 9848 static int perf_tp_event_init(struct perf_event *event) 9849 { 9850 int err; 9851 9852 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9853 return -ENOENT; 9854 9855 /* 9856 * no branch sampling for tracepoint events 9857 */ 9858 if (has_branch_stack(event)) 9859 return -EOPNOTSUPP; 9860 9861 err = perf_trace_init(event); 9862 if (err) 9863 return err; 9864 9865 event->destroy = tp_perf_event_destroy; 9866 9867 return 0; 9868 } 9869 9870 static struct pmu perf_tracepoint = { 9871 .task_ctx_nr = perf_sw_context, 9872 9873 .event_init = perf_tp_event_init, 9874 .add = perf_trace_add, 9875 .del = perf_trace_del, 9876 .start = perf_swevent_start, 9877 .stop = perf_swevent_stop, 9878 .read = perf_swevent_read, 9879 }; 9880 9881 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9882 /* 9883 * Flags in config, used by dynamic PMU kprobe and uprobe 9884 * The flags should match following PMU_FORMAT_ATTR(). 9885 * 9886 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9887 * if not set, create kprobe/uprobe 9888 * 9889 * The following values specify a reference counter (or semaphore in the 9890 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9891 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9892 * 9893 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9894 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9895 */ 9896 enum perf_probe_config { 9897 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9898 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9899 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9900 }; 9901 9902 PMU_FORMAT_ATTR(retprobe, "config:0"); 9903 #endif 9904 9905 #ifdef CONFIG_KPROBE_EVENTS 9906 static struct attribute *kprobe_attrs[] = { 9907 &format_attr_retprobe.attr, 9908 NULL, 9909 }; 9910 9911 static struct attribute_group kprobe_format_group = { 9912 .name = "format", 9913 .attrs = kprobe_attrs, 9914 }; 9915 9916 static const struct attribute_group *kprobe_attr_groups[] = { 9917 &kprobe_format_group, 9918 NULL, 9919 }; 9920 9921 static int perf_kprobe_event_init(struct perf_event *event); 9922 static struct pmu perf_kprobe = { 9923 .task_ctx_nr = perf_sw_context, 9924 .event_init = perf_kprobe_event_init, 9925 .add = perf_trace_add, 9926 .del = perf_trace_del, 9927 .start = perf_swevent_start, 9928 .stop = perf_swevent_stop, 9929 .read = perf_swevent_read, 9930 .attr_groups = kprobe_attr_groups, 9931 }; 9932 9933 static int perf_kprobe_event_init(struct perf_event *event) 9934 { 9935 int err; 9936 bool is_retprobe; 9937 9938 if (event->attr.type != perf_kprobe.type) 9939 return -ENOENT; 9940 9941 if (!perfmon_capable()) 9942 return -EACCES; 9943 9944 /* 9945 * no branch sampling for probe events 9946 */ 9947 if (has_branch_stack(event)) 9948 return -EOPNOTSUPP; 9949 9950 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9951 err = perf_kprobe_init(event, is_retprobe); 9952 if (err) 9953 return err; 9954 9955 event->destroy = perf_kprobe_destroy; 9956 9957 return 0; 9958 } 9959 #endif /* CONFIG_KPROBE_EVENTS */ 9960 9961 #ifdef CONFIG_UPROBE_EVENTS 9962 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9963 9964 static struct attribute *uprobe_attrs[] = { 9965 &format_attr_retprobe.attr, 9966 &format_attr_ref_ctr_offset.attr, 9967 NULL, 9968 }; 9969 9970 static struct attribute_group uprobe_format_group = { 9971 .name = "format", 9972 .attrs = uprobe_attrs, 9973 }; 9974 9975 static const struct attribute_group *uprobe_attr_groups[] = { 9976 &uprobe_format_group, 9977 NULL, 9978 }; 9979 9980 static int perf_uprobe_event_init(struct perf_event *event); 9981 static struct pmu perf_uprobe = { 9982 .task_ctx_nr = perf_sw_context, 9983 .event_init = perf_uprobe_event_init, 9984 .add = perf_trace_add, 9985 .del = perf_trace_del, 9986 .start = perf_swevent_start, 9987 .stop = perf_swevent_stop, 9988 .read = perf_swevent_read, 9989 .attr_groups = uprobe_attr_groups, 9990 }; 9991 9992 static int perf_uprobe_event_init(struct perf_event *event) 9993 { 9994 int err; 9995 unsigned long ref_ctr_offset; 9996 bool is_retprobe; 9997 9998 if (event->attr.type != perf_uprobe.type) 9999 return -ENOENT; 10000 10001 if (!perfmon_capable()) 10002 return -EACCES; 10003 10004 /* 10005 * no branch sampling for probe events 10006 */ 10007 if (has_branch_stack(event)) 10008 return -EOPNOTSUPP; 10009 10010 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10011 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10012 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10013 if (err) 10014 return err; 10015 10016 event->destroy = perf_uprobe_destroy; 10017 10018 return 0; 10019 } 10020 #endif /* CONFIG_UPROBE_EVENTS */ 10021 10022 static inline void perf_tp_register(void) 10023 { 10024 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10025 #ifdef CONFIG_KPROBE_EVENTS 10026 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10027 #endif 10028 #ifdef CONFIG_UPROBE_EVENTS 10029 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10030 #endif 10031 } 10032 10033 static void perf_event_free_filter(struct perf_event *event) 10034 { 10035 ftrace_profile_free_filter(event); 10036 } 10037 10038 #ifdef CONFIG_BPF_SYSCALL 10039 static void bpf_overflow_handler(struct perf_event *event, 10040 struct perf_sample_data *data, 10041 struct pt_regs *regs) 10042 { 10043 struct bpf_perf_event_data_kern ctx = { 10044 .data = data, 10045 .event = event, 10046 }; 10047 struct bpf_prog *prog; 10048 int ret = 0; 10049 10050 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10051 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10052 goto out; 10053 rcu_read_lock(); 10054 prog = READ_ONCE(event->prog); 10055 if (prog) 10056 ret = bpf_prog_run(prog, &ctx); 10057 rcu_read_unlock(); 10058 out: 10059 __this_cpu_dec(bpf_prog_active); 10060 if (!ret) 10061 return; 10062 10063 event->orig_overflow_handler(event, data, regs); 10064 } 10065 10066 static int perf_event_set_bpf_handler(struct perf_event *event, 10067 struct bpf_prog *prog, 10068 u64 bpf_cookie) 10069 { 10070 if (event->overflow_handler_context) 10071 /* hw breakpoint or kernel counter */ 10072 return -EINVAL; 10073 10074 if (event->prog) 10075 return -EEXIST; 10076 10077 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10078 return -EINVAL; 10079 10080 if (event->attr.precise_ip && 10081 prog->call_get_stack && 10082 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10083 event->attr.exclude_callchain_kernel || 10084 event->attr.exclude_callchain_user)) { 10085 /* 10086 * On perf_event with precise_ip, calling bpf_get_stack() 10087 * may trigger unwinder warnings and occasional crashes. 10088 * bpf_get_[stack|stackid] works around this issue by using 10089 * callchain attached to perf_sample_data. If the 10090 * perf_event does not full (kernel and user) callchain 10091 * attached to perf_sample_data, do not allow attaching BPF 10092 * program that calls bpf_get_[stack|stackid]. 10093 */ 10094 return -EPROTO; 10095 } 10096 10097 event->prog = prog; 10098 event->bpf_cookie = bpf_cookie; 10099 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10100 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10101 return 0; 10102 } 10103 10104 static void perf_event_free_bpf_handler(struct perf_event *event) 10105 { 10106 struct bpf_prog *prog = event->prog; 10107 10108 if (!prog) 10109 return; 10110 10111 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10112 event->prog = NULL; 10113 bpf_prog_put(prog); 10114 } 10115 #else 10116 static int perf_event_set_bpf_handler(struct perf_event *event, 10117 struct bpf_prog *prog, 10118 u64 bpf_cookie) 10119 { 10120 return -EOPNOTSUPP; 10121 } 10122 static void perf_event_free_bpf_handler(struct perf_event *event) 10123 { 10124 } 10125 #endif 10126 10127 /* 10128 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10129 * with perf_event_open() 10130 */ 10131 static inline bool perf_event_is_tracing(struct perf_event *event) 10132 { 10133 if (event->pmu == &perf_tracepoint) 10134 return true; 10135 #ifdef CONFIG_KPROBE_EVENTS 10136 if (event->pmu == &perf_kprobe) 10137 return true; 10138 #endif 10139 #ifdef CONFIG_UPROBE_EVENTS 10140 if (event->pmu == &perf_uprobe) 10141 return true; 10142 #endif 10143 return false; 10144 } 10145 10146 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10147 u64 bpf_cookie) 10148 { 10149 bool is_kprobe, is_tracepoint, is_syscall_tp; 10150 10151 if (!perf_event_is_tracing(event)) 10152 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10153 10154 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10155 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10156 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10157 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10158 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10159 return -EINVAL; 10160 10161 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10162 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10163 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10164 return -EINVAL; 10165 10166 /* Kprobe override only works for kprobes, not uprobes. */ 10167 if (prog->kprobe_override && 10168 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10169 return -EINVAL; 10170 10171 if (is_tracepoint || is_syscall_tp) { 10172 int off = trace_event_get_offsets(event->tp_event); 10173 10174 if (prog->aux->max_ctx_offset > off) 10175 return -EACCES; 10176 } 10177 10178 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10179 } 10180 10181 void perf_event_free_bpf_prog(struct perf_event *event) 10182 { 10183 if (!perf_event_is_tracing(event)) { 10184 perf_event_free_bpf_handler(event); 10185 return; 10186 } 10187 perf_event_detach_bpf_prog(event); 10188 } 10189 10190 #else 10191 10192 static inline void perf_tp_register(void) 10193 { 10194 } 10195 10196 static void perf_event_free_filter(struct perf_event *event) 10197 { 10198 } 10199 10200 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10201 u64 bpf_cookie) 10202 { 10203 return -ENOENT; 10204 } 10205 10206 void perf_event_free_bpf_prog(struct perf_event *event) 10207 { 10208 } 10209 #endif /* CONFIG_EVENT_TRACING */ 10210 10211 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10212 void perf_bp_event(struct perf_event *bp, void *data) 10213 { 10214 struct perf_sample_data sample; 10215 struct pt_regs *regs = data; 10216 10217 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10218 10219 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10220 perf_swevent_event(bp, 1, &sample, regs); 10221 } 10222 #endif 10223 10224 /* 10225 * Allocate a new address filter 10226 */ 10227 static struct perf_addr_filter * 10228 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10229 { 10230 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10231 struct perf_addr_filter *filter; 10232 10233 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10234 if (!filter) 10235 return NULL; 10236 10237 INIT_LIST_HEAD(&filter->entry); 10238 list_add_tail(&filter->entry, filters); 10239 10240 return filter; 10241 } 10242 10243 static void free_filters_list(struct list_head *filters) 10244 { 10245 struct perf_addr_filter *filter, *iter; 10246 10247 list_for_each_entry_safe(filter, iter, filters, entry) { 10248 path_put(&filter->path); 10249 list_del(&filter->entry); 10250 kfree(filter); 10251 } 10252 } 10253 10254 /* 10255 * Free existing address filters and optionally install new ones 10256 */ 10257 static void perf_addr_filters_splice(struct perf_event *event, 10258 struct list_head *head) 10259 { 10260 unsigned long flags; 10261 LIST_HEAD(list); 10262 10263 if (!has_addr_filter(event)) 10264 return; 10265 10266 /* don't bother with children, they don't have their own filters */ 10267 if (event->parent) 10268 return; 10269 10270 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10271 10272 list_splice_init(&event->addr_filters.list, &list); 10273 if (head) 10274 list_splice(head, &event->addr_filters.list); 10275 10276 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10277 10278 free_filters_list(&list); 10279 } 10280 10281 /* 10282 * Scan through mm's vmas and see if one of them matches the 10283 * @filter; if so, adjust filter's address range. 10284 * Called with mm::mmap_lock down for reading. 10285 */ 10286 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10287 struct mm_struct *mm, 10288 struct perf_addr_filter_range *fr) 10289 { 10290 struct vm_area_struct *vma; 10291 10292 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10293 if (!vma->vm_file) 10294 continue; 10295 10296 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10297 return; 10298 } 10299 } 10300 10301 /* 10302 * Update event's address range filters based on the 10303 * task's existing mappings, if any. 10304 */ 10305 static void perf_event_addr_filters_apply(struct perf_event *event) 10306 { 10307 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10308 struct task_struct *task = READ_ONCE(event->ctx->task); 10309 struct perf_addr_filter *filter; 10310 struct mm_struct *mm = NULL; 10311 unsigned int count = 0; 10312 unsigned long flags; 10313 10314 /* 10315 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10316 * will stop on the parent's child_mutex that our caller is also holding 10317 */ 10318 if (task == TASK_TOMBSTONE) 10319 return; 10320 10321 if (ifh->nr_file_filters) { 10322 mm = get_task_mm(task); 10323 if (!mm) 10324 goto restart; 10325 10326 mmap_read_lock(mm); 10327 } 10328 10329 raw_spin_lock_irqsave(&ifh->lock, flags); 10330 list_for_each_entry(filter, &ifh->list, entry) { 10331 if (filter->path.dentry) { 10332 /* 10333 * Adjust base offset if the filter is associated to a 10334 * binary that needs to be mapped: 10335 */ 10336 event->addr_filter_ranges[count].start = 0; 10337 event->addr_filter_ranges[count].size = 0; 10338 10339 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10340 } else { 10341 event->addr_filter_ranges[count].start = filter->offset; 10342 event->addr_filter_ranges[count].size = filter->size; 10343 } 10344 10345 count++; 10346 } 10347 10348 event->addr_filters_gen++; 10349 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10350 10351 if (ifh->nr_file_filters) { 10352 mmap_read_unlock(mm); 10353 10354 mmput(mm); 10355 } 10356 10357 restart: 10358 perf_event_stop(event, 1); 10359 } 10360 10361 /* 10362 * Address range filtering: limiting the data to certain 10363 * instruction address ranges. Filters are ioctl()ed to us from 10364 * userspace as ascii strings. 10365 * 10366 * Filter string format: 10367 * 10368 * ACTION RANGE_SPEC 10369 * where ACTION is one of the 10370 * * "filter": limit the trace to this region 10371 * * "start": start tracing from this address 10372 * * "stop": stop tracing at this address/region; 10373 * RANGE_SPEC is 10374 * * for kernel addresses: <start address>[/<size>] 10375 * * for object files: <start address>[/<size>]@</path/to/object/file> 10376 * 10377 * if <size> is not specified or is zero, the range is treated as a single 10378 * address; not valid for ACTION=="filter". 10379 */ 10380 enum { 10381 IF_ACT_NONE = -1, 10382 IF_ACT_FILTER, 10383 IF_ACT_START, 10384 IF_ACT_STOP, 10385 IF_SRC_FILE, 10386 IF_SRC_KERNEL, 10387 IF_SRC_FILEADDR, 10388 IF_SRC_KERNELADDR, 10389 }; 10390 10391 enum { 10392 IF_STATE_ACTION = 0, 10393 IF_STATE_SOURCE, 10394 IF_STATE_END, 10395 }; 10396 10397 static const match_table_t if_tokens = { 10398 { IF_ACT_FILTER, "filter" }, 10399 { IF_ACT_START, "start" }, 10400 { IF_ACT_STOP, "stop" }, 10401 { IF_SRC_FILE, "%u/%u@%s" }, 10402 { IF_SRC_KERNEL, "%u/%u" }, 10403 { IF_SRC_FILEADDR, "%u@%s" }, 10404 { IF_SRC_KERNELADDR, "%u" }, 10405 { IF_ACT_NONE, NULL }, 10406 }; 10407 10408 /* 10409 * Address filter string parser 10410 */ 10411 static int 10412 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10413 struct list_head *filters) 10414 { 10415 struct perf_addr_filter *filter = NULL; 10416 char *start, *orig, *filename = NULL; 10417 substring_t args[MAX_OPT_ARGS]; 10418 int state = IF_STATE_ACTION, token; 10419 unsigned int kernel = 0; 10420 int ret = -EINVAL; 10421 10422 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10423 if (!fstr) 10424 return -ENOMEM; 10425 10426 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10427 static const enum perf_addr_filter_action_t actions[] = { 10428 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10429 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10430 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10431 }; 10432 ret = -EINVAL; 10433 10434 if (!*start) 10435 continue; 10436 10437 /* filter definition begins */ 10438 if (state == IF_STATE_ACTION) { 10439 filter = perf_addr_filter_new(event, filters); 10440 if (!filter) 10441 goto fail; 10442 } 10443 10444 token = match_token(start, if_tokens, args); 10445 switch (token) { 10446 case IF_ACT_FILTER: 10447 case IF_ACT_START: 10448 case IF_ACT_STOP: 10449 if (state != IF_STATE_ACTION) 10450 goto fail; 10451 10452 filter->action = actions[token]; 10453 state = IF_STATE_SOURCE; 10454 break; 10455 10456 case IF_SRC_KERNELADDR: 10457 case IF_SRC_KERNEL: 10458 kernel = 1; 10459 fallthrough; 10460 10461 case IF_SRC_FILEADDR: 10462 case IF_SRC_FILE: 10463 if (state != IF_STATE_SOURCE) 10464 goto fail; 10465 10466 *args[0].to = 0; 10467 ret = kstrtoul(args[0].from, 0, &filter->offset); 10468 if (ret) 10469 goto fail; 10470 10471 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10472 *args[1].to = 0; 10473 ret = kstrtoul(args[1].from, 0, &filter->size); 10474 if (ret) 10475 goto fail; 10476 } 10477 10478 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10479 int fpos = token == IF_SRC_FILE ? 2 : 1; 10480 10481 kfree(filename); 10482 filename = match_strdup(&args[fpos]); 10483 if (!filename) { 10484 ret = -ENOMEM; 10485 goto fail; 10486 } 10487 } 10488 10489 state = IF_STATE_END; 10490 break; 10491 10492 default: 10493 goto fail; 10494 } 10495 10496 /* 10497 * Filter definition is fully parsed, validate and install it. 10498 * Make sure that it doesn't contradict itself or the event's 10499 * attribute. 10500 */ 10501 if (state == IF_STATE_END) { 10502 ret = -EINVAL; 10503 if (kernel && event->attr.exclude_kernel) 10504 goto fail; 10505 10506 /* 10507 * ACTION "filter" must have a non-zero length region 10508 * specified. 10509 */ 10510 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10511 !filter->size) 10512 goto fail; 10513 10514 if (!kernel) { 10515 if (!filename) 10516 goto fail; 10517 10518 /* 10519 * For now, we only support file-based filters 10520 * in per-task events; doing so for CPU-wide 10521 * events requires additional context switching 10522 * trickery, since same object code will be 10523 * mapped at different virtual addresses in 10524 * different processes. 10525 */ 10526 ret = -EOPNOTSUPP; 10527 if (!event->ctx->task) 10528 goto fail; 10529 10530 /* look up the path and grab its inode */ 10531 ret = kern_path(filename, LOOKUP_FOLLOW, 10532 &filter->path); 10533 if (ret) 10534 goto fail; 10535 10536 ret = -EINVAL; 10537 if (!filter->path.dentry || 10538 !S_ISREG(d_inode(filter->path.dentry) 10539 ->i_mode)) 10540 goto fail; 10541 10542 event->addr_filters.nr_file_filters++; 10543 } 10544 10545 /* ready to consume more filters */ 10546 state = IF_STATE_ACTION; 10547 filter = NULL; 10548 } 10549 } 10550 10551 if (state != IF_STATE_ACTION) 10552 goto fail; 10553 10554 kfree(filename); 10555 kfree(orig); 10556 10557 return 0; 10558 10559 fail: 10560 kfree(filename); 10561 free_filters_list(filters); 10562 kfree(orig); 10563 10564 return ret; 10565 } 10566 10567 static int 10568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10569 { 10570 LIST_HEAD(filters); 10571 int ret; 10572 10573 /* 10574 * Since this is called in perf_ioctl() path, we're already holding 10575 * ctx::mutex. 10576 */ 10577 lockdep_assert_held(&event->ctx->mutex); 10578 10579 if (WARN_ON_ONCE(event->parent)) 10580 return -EINVAL; 10581 10582 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10583 if (ret) 10584 goto fail_clear_files; 10585 10586 ret = event->pmu->addr_filters_validate(&filters); 10587 if (ret) 10588 goto fail_free_filters; 10589 10590 /* remove existing filters, if any */ 10591 perf_addr_filters_splice(event, &filters); 10592 10593 /* install new filters */ 10594 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10595 10596 return ret; 10597 10598 fail_free_filters: 10599 free_filters_list(&filters); 10600 10601 fail_clear_files: 10602 event->addr_filters.nr_file_filters = 0; 10603 10604 return ret; 10605 } 10606 10607 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10608 { 10609 int ret = -EINVAL; 10610 char *filter_str; 10611 10612 filter_str = strndup_user(arg, PAGE_SIZE); 10613 if (IS_ERR(filter_str)) 10614 return PTR_ERR(filter_str); 10615 10616 #ifdef CONFIG_EVENT_TRACING 10617 if (perf_event_is_tracing(event)) { 10618 struct perf_event_context *ctx = event->ctx; 10619 10620 /* 10621 * Beware, here be dragons!! 10622 * 10623 * the tracepoint muck will deadlock against ctx->mutex, but 10624 * the tracepoint stuff does not actually need it. So 10625 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10626 * already have a reference on ctx. 10627 * 10628 * This can result in event getting moved to a different ctx, 10629 * but that does not affect the tracepoint state. 10630 */ 10631 mutex_unlock(&ctx->mutex); 10632 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10633 mutex_lock(&ctx->mutex); 10634 } else 10635 #endif 10636 if (has_addr_filter(event)) 10637 ret = perf_event_set_addr_filter(event, filter_str); 10638 10639 kfree(filter_str); 10640 return ret; 10641 } 10642 10643 /* 10644 * hrtimer based swevent callback 10645 */ 10646 10647 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10648 { 10649 enum hrtimer_restart ret = HRTIMER_RESTART; 10650 struct perf_sample_data data; 10651 struct pt_regs *regs; 10652 struct perf_event *event; 10653 u64 period; 10654 10655 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10656 10657 if (event->state != PERF_EVENT_STATE_ACTIVE) 10658 return HRTIMER_NORESTART; 10659 10660 event->pmu->read(event); 10661 10662 perf_sample_data_init(&data, 0, event->hw.last_period); 10663 regs = get_irq_regs(); 10664 10665 if (regs && !perf_exclude_event(event, regs)) { 10666 if (!(event->attr.exclude_idle && is_idle_task(current))) 10667 if (__perf_event_overflow(event, 1, &data, regs)) 10668 ret = HRTIMER_NORESTART; 10669 } 10670 10671 period = max_t(u64, 10000, event->hw.sample_period); 10672 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10673 10674 return ret; 10675 } 10676 10677 static void perf_swevent_start_hrtimer(struct perf_event *event) 10678 { 10679 struct hw_perf_event *hwc = &event->hw; 10680 s64 period; 10681 10682 if (!is_sampling_event(event)) 10683 return; 10684 10685 period = local64_read(&hwc->period_left); 10686 if (period) { 10687 if (period < 0) 10688 period = 10000; 10689 10690 local64_set(&hwc->period_left, 0); 10691 } else { 10692 period = max_t(u64, 10000, hwc->sample_period); 10693 } 10694 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10695 HRTIMER_MODE_REL_PINNED_HARD); 10696 } 10697 10698 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10699 { 10700 struct hw_perf_event *hwc = &event->hw; 10701 10702 if (is_sampling_event(event)) { 10703 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10704 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10705 10706 hrtimer_cancel(&hwc->hrtimer); 10707 } 10708 } 10709 10710 static void perf_swevent_init_hrtimer(struct perf_event *event) 10711 { 10712 struct hw_perf_event *hwc = &event->hw; 10713 10714 if (!is_sampling_event(event)) 10715 return; 10716 10717 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10718 hwc->hrtimer.function = perf_swevent_hrtimer; 10719 10720 /* 10721 * Since hrtimers have a fixed rate, we can do a static freq->period 10722 * mapping and avoid the whole period adjust feedback stuff. 10723 */ 10724 if (event->attr.freq) { 10725 long freq = event->attr.sample_freq; 10726 10727 event->attr.sample_period = NSEC_PER_SEC / freq; 10728 hwc->sample_period = event->attr.sample_period; 10729 local64_set(&hwc->period_left, hwc->sample_period); 10730 hwc->last_period = hwc->sample_period; 10731 event->attr.freq = 0; 10732 } 10733 } 10734 10735 /* 10736 * Software event: cpu wall time clock 10737 */ 10738 10739 static void cpu_clock_event_update(struct perf_event *event) 10740 { 10741 s64 prev; 10742 u64 now; 10743 10744 now = local_clock(); 10745 prev = local64_xchg(&event->hw.prev_count, now); 10746 local64_add(now - prev, &event->count); 10747 } 10748 10749 static void cpu_clock_event_start(struct perf_event *event, int flags) 10750 { 10751 local64_set(&event->hw.prev_count, local_clock()); 10752 perf_swevent_start_hrtimer(event); 10753 } 10754 10755 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10756 { 10757 perf_swevent_cancel_hrtimer(event); 10758 cpu_clock_event_update(event); 10759 } 10760 10761 static int cpu_clock_event_add(struct perf_event *event, int flags) 10762 { 10763 if (flags & PERF_EF_START) 10764 cpu_clock_event_start(event, flags); 10765 perf_event_update_userpage(event); 10766 10767 return 0; 10768 } 10769 10770 static void cpu_clock_event_del(struct perf_event *event, int flags) 10771 { 10772 cpu_clock_event_stop(event, flags); 10773 } 10774 10775 static void cpu_clock_event_read(struct perf_event *event) 10776 { 10777 cpu_clock_event_update(event); 10778 } 10779 10780 static int cpu_clock_event_init(struct perf_event *event) 10781 { 10782 if (event->attr.type != PERF_TYPE_SOFTWARE) 10783 return -ENOENT; 10784 10785 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10786 return -ENOENT; 10787 10788 /* 10789 * no branch sampling for software events 10790 */ 10791 if (has_branch_stack(event)) 10792 return -EOPNOTSUPP; 10793 10794 perf_swevent_init_hrtimer(event); 10795 10796 return 0; 10797 } 10798 10799 static struct pmu perf_cpu_clock = { 10800 .task_ctx_nr = perf_sw_context, 10801 10802 .capabilities = PERF_PMU_CAP_NO_NMI, 10803 10804 .event_init = cpu_clock_event_init, 10805 .add = cpu_clock_event_add, 10806 .del = cpu_clock_event_del, 10807 .start = cpu_clock_event_start, 10808 .stop = cpu_clock_event_stop, 10809 .read = cpu_clock_event_read, 10810 }; 10811 10812 /* 10813 * Software event: task time clock 10814 */ 10815 10816 static void task_clock_event_update(struct perf_event *event, u64 now) 10817 { 10818 u64 prev; 10819 s64 delta; 10820 10821 prev = local64_xchg(&event->hw.prev_count, now); 10822 delta = now - prev; 10823 local64_add(delta, &event->count); 10824 } 10825 10826 static void task_clock_event_start(struct perf_event *event, int flags) 10827 { 10828 local64_set(&event->hw.prev_count, event->ctx->time); 10829 perf_swevent_start_hrtimer(event); 10830 } 10831 10832 static void task_clock_event_stop(struct perf_event *event, int flags) 10833 { 10834 perf_swevent_cancel_hrtimer(event); 10835 task_clock_event_update(event, event->ctx->time); 10836 } 10837 10838 static int task_clock_event_add(struct perf_event *event, int flags) 10839 { 10840 if (flags & PERF_EF_START) 10841 task_clock_event_start(event, flags); 10842 perf_event_update_userpage(event); 10843 10844 return 0; 10845 } 10846 10847 static void task_clock_event_del(struct perf_event *event, int flags) 10848 { 10849 task_clock_event_stop(event, PERF_EF_UPDATE); 10850 } 10851 10852 static void task_clock_event_read(struct perf_event *event) 10853 { 10854 u64 now = perf_clock(); 10855 u64 delta = now - event->ctx->timestamp; 10856 u64 time = event->ctx->time + delta; 10857 10858 task_clock_event_update(event, time); 10859 } 10860 10861 static int task_clock_event_init(struct perf_event *event) 10862 { 10863 if (event->attr.type != PERF_TYPE_SOFTWARE) 10864 return -ENOENT; 10865 10866 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10867 return -ENOENT; 10868 10869 /* 10870 * no branch sampling for software events 10871 */ 10872 if (has_branch_stack(event)) 10873 return -EOPNOTSUPP; 10874 10875 perf_swevent_init_hrtimer(event); 10876 10877 return 0; 10878 } 10879 10880 static struct pmu perf_task_clock = { 10881 .task_ctx_nr = perf_sw_context, 10882 10883 .capabilities = PERF_PMU_CAP_NO_NMI, 10884 10885 .event_init = task_clock_event_init, 10886 .add = task_clock_event_add, 10887 .del = task_clock_event_del, 10888 .start = task_clock_event_start, 10889 .stop = task_clock_event_stop, 10890 .read = task_clock_event_read, 10891 }; 10892 10893 static void perf_pmu_nop_void(struct pmu *pmu) 10894 { 10895 } 10896 10897 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10898 { 10899 } 10900 10901 static int perf_pmu_nop_int(struct pmu *pmu) 10902 { 10903 return 0; 10904 } 10905 10906 static int perf_event_nop_int(struct perf_event *event, u64 value) 10907 { 10908 return 0; 10909 } 10910 10911 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10912 10913 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10914 { 10915 __this_cpu_write(nop_txn_flags, flags); 10916 10917 if (flags & ~PERF_PMU_TXN_ADD) 10918 return; 10919 10920 perf_pmu_disable(pmu); 10921 } 10922 10923 static int perf_pmu_commit_txn(struct pmu *pmu) 10924 { 10925 unsigned int flags = __this_cpu_read(nop_txn_flags); 10926 10927 __this_cpu_write(nop_txn_flags, 0); 10928 10929 if (flags & ~PERF_PMU_TXN_ADD) 10930 return 0; 10931 10932 perf_pmu_enable(pmu); 10933 return 0; 10934 } 10935 10936 static void perf_pmu_cancel_txn(struct pmu *pmu) 10937 { 10938 unsigned int flags = __this_cpu_read(nop_txn_flags); 10939 10940 __this_cpu_write(nop_txn_flags, 0); 10941 10942 if (flags & ~PERF_PMU_TXN_ADD) 10943 return; 10944 10945 perf_pmu_enable(pmu); 10946 } 10947 10948 static int perf_event_idx_default(struct perf_event *event) 10949 { 10950 return 0; 10951 } 10952 10953 /* 10954 * Ensures all contexts with the same task_ctx_nr have the same 10955 * pmu_cpu_context too. 10956 */ 10957 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10958 { 10959 struct pmu *pmu; 10960 10961 if (ctxn < 0) 10962 return NULL; 10963 10964 list_for_each_entry(pmu, &pmus, entry) { 10965 if (pmu->task_ctx_nr == ctxn) 10966 return pmu->pmu_cpu_context; 10967 } 10968 10969 return NULL; 10970 } 10971 10972 static void free_pmu_context(struct pmu *pmu) 10973 { 10974 /* 10975 * Static contexts such as perf_sw_context have a global lifetime 10976 * and may be shared between different PMUs. Avoid freeing them 10977 * when a single PMU is going away. 10978 */ 10979 if (pmu->task_ctx_nr > perf_invalid_context) 10980 return; 10981 10982 free_percpu(pmu->pmu_cpu_context); 10983 } 10984 10985 /* 10986 * Let userspace know that this PMU supports address range filtering: 10987 */ 10988 static ssize_t nr_addr_filters_show(struct device *dev, 10989 struct device_attribute *attr, 10990 char *page) 10991 { 10992 struct pmu *pmu = dev_get_drvdata(dev); 10993 10994 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10995 } 10996 DEVICE_ATTR_RO(nr_addr_filters); 10997 10998 static struct idr pmu_idr; 10999 11000 static ssize_t 11001 type_show(struct device *dev, struct device_attribute *attr, char *page) 11002 { 11003 struct pmu *pmu = dev_get_drvdata(dev); 11004 11005 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 11006 } 11007 static DEVICE_ATTR_RO(type); 11008 11009 static ssize_t 11010 perf_event_mux_interval_ms_show(struct device *dev, 11011 struct device_attribute *attr, 11012 char *page) 11013 { 11014 struct pmu *pmu = dev_get_drvdata(dev); 11015 11016 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 11017 } 11018 11019 static DEFINE_MUTEX(mux_interval_mutex); 11020 11021 static ssize_t 11022 perf_event_mux_interval_ms_store(struct device *dev, 11023 struct device_attribute *attr, 11024 const char *buf, size_t count) 11025 { 11026 struct pmu *pmu = dev_get_drvdata(dev); 11027 int timer, cpu, ret; 11028 11029 ret = kstrtoint(buf, 0, &timer); 11030 if (ret) 11031 return ret; 11032 11033 if (timer < 1) 11034 return -EINVAL; 11035 11036 /* same value, noting to do */ 11037 if (timer == pmu->hrtimer_interval_ms) 11038 return count; 11039 11040 mutex_lock(&mux_interval_mutex); 11041 pmu->hrtimer_interval_ms = timer; 11042 11043 /* update all cpuctx for this PMU */ 11044 cpus_read_lock(); 11045 for_each_online_cpu(cpu) { 11046 struct perf_cpu_context *cpuctx; 11047 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11049 11050 cpu_function_call(cpu, 11051 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 11052 } 11053 cpus_read_unlock(); 11054 mutex_unlock(&mux_interval_mutex); 11055 11056 return count; 11057 } 11058 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11059 11060 static struct attribute *pmu_dev_attrs[] = { 11061 &dev_attr_type.attr, 11062 &dev_attr_perf_event_mux_interval_ms.attr, 11063 NULL, 11064 }; 11065 ATTRIBUTE_GROUPS(pmu_dev); 11066 11067 static int pmu_bus_running; 11068 static struct bus_type pmu_bus = { 11069 .name = "event_source", 11070 .dev_groups = pmu_dev_groups, 11071 }; 11072 11073 static void pmu_dev_release(struct device *dev) 11074 { 11075 kfree(dev); 11076 } 11077 11078 static int pmu_dev_alloc(struct pmu *pmu) 11079 { 11080 int ret = -ENOMEM; 11081 11082 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11083 if (!pmu->dev) 11084 goto out; 11085 11086 pmu->dev->groups = pmu->attr_groups; 11087 device_initialize(pmu->dev); 11088 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11089 if (ret) 11090 goto free_dev; 11091 11092 dev_set_drvdata(pmu->dev, pmu); 11093 pmu->dev->bus = &pmu_bus; 11094 pmu->dev->release = pmu_dev_release; 11095 ret = device_add(pmu->dev); 11096 if (ret) 11097 goto free_dev; 11098 11099 /* For PMUs with address filters, throw in an extra attribute: */ 11100 if (pmu->nr_addr_filters) 11101 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11102 11103 if (ret) 11104 goto del_dev; 11105 11106 if (pmu->attr_update) 11107 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11108 11109 if (ret) 11110 goto del_dev; 11111 11112 out: 11113 return ret; 11114 11115 del_dev: 11116 device_del(pmu->dev); 11117 11118 free_dev: 11119 put_device(pmu->dev); 11120 goto out; 11121 } 11122 11123 static struct lock_class_key cpuctx_mutex; 11124 static struct lock_class_key cpuctx_lock; 11125 11126 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11127 { 11128 int cpu, ret, max = PERF_TYPE_MAX; 11129 11130 mutex_lock(&pmus_lock); 11131 ret = -ENOMEM; 11132 pmu->pmu_disable_count = alloc_percpu(int); 11133 if (!pmu->pmu_disable_count) 11134 goto unlock; 11135 11136 pmu->type = -1; 11137 if (!name) 11138 goto skip_type; 11139 pmu->name = name; 11140 11141 if (type != PERF_TYPE_SOFTWARE) { 11142 if (type >= 0) 11143 max = type; 11144 11145 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11146 if (ret < 0) 11147 goto free_pdc; 11148 11149 WARN_ON(type >= 0 && ret != type); 11150 11151 type = ret; 11152 } 11153 pmu->type = type; 11154 11155 if (pmu_bus_running) { 11156 ret = pmu_dev_alloc(pmu); 11157 if (ret) 11158 goto free_idr; 11159 } 11160 11161 skip_type: 11162 if (pmu->task_ctx_nr == perf_hw_context) { 11163 static int hw_context_taken = 0; 11164 11165 /* 11166 * Other than systems with heterogeneous CPUs, it never makes 11167 * sense for two PMUs to share perf_hw_context. PMUs which are 11168 * uncore must use perf_invalid_context. 11169 */ 11170 if (WARN_ON_ONCE(hw_context_taken && 11171 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11172 pmu->task_ctx_nr = perf_invalid_context; 11173 11174 hw_context_taken = 1; 11175 } 11176 11177 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11178 if (pmu->pmu_cpu_context) 11179 goto got_cpu_context; 11180 11181 ret = -ENOMEM; 11182 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11183 if (!pmu->pmu_cpu_context) 11184 goto free_dev; 11185 11186 for_each_possible_cpu(cpu) { 11187 struct perf_cpu_context *cpuctx; 11188 11189 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11190 __perf_event_init_context(&cpuctx->ctx); 11191 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11192 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11193 cpuctx->ctx.pmu = pmu; 11194 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11195 11196 __perf_mux_hrtimer_init(cpuctx, cpu); 11197 11198 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11199 cpuctx->heap = cpuctx->heap_default; 11200 } 11201 11202 got_cpu_context: 11203 if (!pmu->start_txn) { 11204 if (pmu->pmu_enable) { 11205 /* 11206 * If we have pmu_enable/pmu_disable calls, install 11207 * transaction stubs that use that to try and batch 11208 * hardware accesses. 11209 */ 11210 pmu->start_txn = perf_pmu_start_txn; 11211 pmu->commit_txn = perf_pmu_commit_txn; 11212 pmu->cancel_txn = perf_pmu_cancel_txn; 11213 } else { 11214 pmu->start_txn = perf_pmu_nop_txn; 11215 pmu->commit_txn = perf_pmu_nop_int; 11216 pmu->cancel_txn = perf_pmu_nop_void; 11217 } 11218 } 11219 11220 if (!pmu->pmu_enable) { 11221 pmu->pmu_enable = perf_pmu_nop_void; 11222 pmu->pmu_disable = perf_pmu_nop_void; 11223 } 11224 11225 if (!pmu->check_period) 11226 pmu->check_period = perf_event_nop_int; 11227 11228 if (!pmu->event_idx) 11229 pmu->event_idx = perf_event_idx_default; 11230 11231 /* 11232 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11233 * since these cannot be in the IDR. This way the linear search 11234 * is fast, provided a valid software event is provided. 11235 */ 11236 if (type == PERF_TYPE_SOFTWARE || !name) 11237 list_add_rcu(&pmu->entry, &pmus); 11238 else 11239 list_add_tail_rcu(&pmu->entry, &pmus); 11240 11241 atomic_set(&pmu->exclusive_cnt, 0); 11242 ret = 0; 11243 unlock: 11244 mutex_unlock(&pmus_lock); 11245 11246 return ret; 11247 11248 free_dev: 11249 device_del(pmu->dev); 11250 put_device(pmu->dev); 11251 11252 free_idr: 11253 if (pmu->type != PERF_TYPE_SOFTWARE) 11254 idr_remove(&pmu_idr, pmu->type); 11255 11256 free_pdc: 11257 free_percpu(pmu->pmu_disable_count); 11258 goto unlock; 11259 } 11260 EXPORT_SYMBOL_GPL(perf_pmu_register); 11261 11262 void perf_pmu_unregister(struct pmu *pmu) 11263 { 11264 mutex_lock(&pmus_lock); 11265 list_del_rcu(&pmu->entry); 11266 11267 /* 11268 * We dereference the pmu list under both SRCU and regular RCU, so 11269 * synchronize against both of those. 11270 */ 11271 synchronize_srcu(&pmus_srcu); 11272 synchronize_rcu(); 11273 11274 free_percpu(pmu->pmu_disable_count); 11275 if (pmu->type != PERF_TYPE_SOFTWARE) 11276 idr_remove(&pmu_idr, pmu->type); 11277 if (pmu_bus_running) { 11278 if (pmu->nr_addr_filters) 11279 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11280 device_del(pmu->dev); 11281 put_device(pmu->dev); 11282 } 11283 free_pmu_context(pmu); 11284 mutex_unlock(&pmus_lock); 11285 } 11286 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11287 11288 static inline bool has_extended_regs(struct perf_event *event) 11289 { 11290 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11291 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11292 } 11293 11294 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11295 { 11296 struct perf_event_context *ctx = NULL; 11297 int ret; 11298 11299 if (!try_module_get(pmu->module)) 11300 return -ENODEV; 11301 11302 /* 11303 * A number of pmu->event_init() methods iterate the sibling_list to, 11304 * for example, validate if the group fits on the PMU. Therefore, 11305 * if this is a sibling event, acquire the ctx->mutex to protect 11306 * the sibling_list. 11307 */ 11308 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11309 /* 11310 * This ctx->mutex can nest when we're called through 11311 * inheritance. See the perf_event_ctx_lock_nested() comment. 11312 */ 11313 ctx = perf_event_ctx_lock_nested(event->group_leader, 11314 SINGLE_DEPTH_NESTING); 11315 BUG_ON(!ctx); 11316 } 11317 11318 event->pmu = pmu; 11319 ret = pmu->event_init(event); 11320 11321 if (ctx) 11322 perf_event_ctx_unlock(event->group_leader, ctx); 11323 11324 if (!ret) { 11325 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11326 has_extended_regs(event)) 11327 ret = -EOPNOTSUPP; 11328 11329 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11330 event_has_any_exclude_flag(event)) 11331 ret = -EINVAL; 11332 11333 if (ret && event->destroy) 11334 event->destroy(event); 11335 } 11336 11337 if (ret) 11338 module_put(pmu->module); 11339 11340 return ret; 11341 } 11342 11343 static struct pmu *perf_init_event(struct perf_event *event) 11344 { 11345 bool extended_type = false; 11346 int idx, type, ret; 11347 struct pmu *pmu; 11348 11349 idx = srcu_read_lock(&pmus_srcu); 11350 11351 /* Try parent's PMU first: */ 11352 if (event->parent && event->parent->pmu) { 11353 pmu = event->parent->pmu; 11354 ret = perf_try_init_event(pmu, event); 11355 if (!ret) 11356 goto unlock; 11357 } 11358 11359 /* 11360 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11361 * are often aliases for PERF_TYPE_RAW. 11362 */ 11363 type = event->attr.type; 11364 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11365 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11366 if (!type) { 11367 type = PERF_TYPE_RAW; 11368 } else { 11369 extended_type = true; 11370 event->attr.config &= PERF_HW_EVENT_MASK; 11371 } 11372 } 11373 11374 again: 11375 rcu_read_lock(); 11376 pmu = idr_find(&pmu_idr, type); 11377 rcu_read_unlock(); 11378 if (pmu) { 11379 if (event->attr.type != type && type != PERF_TYPE_RAW && 11380 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11381 goto fail; 11382 11383 ret = perf_try_init_event(pmu, event); 11384 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11385 type = event->attr.type; 11386 goto again; 11387 } 11388 11389 if (ret) 11390 pmu = ERR_PTR(ret); 11391 11392 goto unlock; 11393 } 11394 11395 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11396 ret = perf_try_init_event(pmu, event); 11397 if (!ret) 11398 goto unlock; 11399 11400 if (ret != -ENOENT) { 11401 pmu = ERR_PTR(ret); 11402 goto unlock; 11403 } 11404 } 11405 fail: 11406 pmu = ERR_PTR(-ENOENT); 11407 unlock: 11408 srcu_read_unlock(&pmus_srcu, idx); 11409 11410 return pmu; 11411 } 11412 11413 static void attach_sb_event(struct perf_event *event) 11414 { 11415 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11416 11417 raw_spin_lock(&pel->lock); 11418 list_add_rcu(&event->sb_list, &pel->list); 11419 raw_spin_unlock(&pel->lock); 11420 } 11421 11422 /* 11423 * We keep a list of all !task (and therefore per-cpu) events 11424 * that need to receive side-band records. 11425 * 11426 * This avoids having to scan all the various PMU per-cpu contexts 11427 * looking for them. 11428 */ 11429 static void account_pmu_sb_event(struct perf_event *event) 11430 { 11431 if (is_sb_event(event)) 11432 attach_sb_event(event); 11433 } 11434 11435 static void account_event_cpu(struct perf_event *event, int cpu) 11436 { 11437 if (event->parent) 11438 return; 11439 11440 if (is_cgroup_event(event)) 11441 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11442 } 11443 11444 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11445 static void account_freq_event_nohz(void) 11446 { 11447 #ifdef CONFIG_NO_HZ_FULL 11448 /* Lock so we don't race with concurrent unaccount */ 11449 spin_lock(&nr_freq_lock); 11450 if (atomic_inc_return(&nr_freq_events) == 1) 11451 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11452 spin_unlock(&nr_freq_lock); 11453 #endif 11454 } 11455 11456 static void account_freq_event(void) 11457 { 11458 if (tick_nohz_full_enabled()) 11459 account_freq_event_nohz(); 11460 else 11461 atomic_inc(&nr_freq_events); 11462 } 11463 11464 11465 static void account_event(struct perf_event *event) 11466 { 11467 bool inc = false; 11468 11469 if (event->parent) 11470 return; 11471 11472 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11473 inc = true; 11474 if (event->attr.mmap || event->attr.mmap_data) 11475 atomic_inc(&nr_mmap_events); 11476 if (event->attr.build_id) 11477 atomic_inc(&nr_build_id_events); 11478 if (event->attr.comm) 11479 atomic_inc(&nr_comm_events); 11480 if (event->attr.namespaces) 11481 atomic_inc(&nr_namespaces_events); 11482 if (event->attr.cgroup) 11483 atomic_inc(&nr_cgroup_events); 11484 if (event->attr.task) 11485 atomic_inc(&nr_task_events); 11486 if (event->attr.freq) 11487 account_freq_event(); 11488 if (event->attr.context_switch) { 11489 atomic_inc(&nr_switch_events); 11490 inc = true; 11491 } 11492 if (has_branch_stack(event)) 11493 inc = true; 11494 if (is_cgroup_event(event)) 11495 inc = true; 11496 if (event->attr.ksymbol) 11497 atomic_inc(&nr_ksymbol_events); 11498 if (event->attr.bpf_event) 11499 atomic_inc(&nr_bpf_events); 11500 if (event->attr.text_poke) 11501 atomic_inc(&nr_text_poke_events); 11502 11503 if (inc) { 11504 /* 11505 * We need the mutex here because static_branch_enable() 11506 * must complete *before* the perf_sched_count increment 11507 * becomes visible. 11508 */ 11509 if (atomic_inc_not_zero(&perf_sched_count)) 11510 goto enabled; 11511 11512 mutex_lock(&perf_sched_mutex); 11513 if (!atomic_read(&perf_sched_count)) { 11514 static_branch_enable(&perf_sched_events); 11515 /* 11516 * Guarantee that all CPUs observe they key change and 11517 * call the perf scheduling hooks before proceeding to 11518 * install events that need them. 11519 */ 11520 synchronize_rcu(); 11521 } 11522 /* 11523 * Now that we have waited for the sync_sched(), allow further 11524 * increments to by-pass the mutex. 11525 */ 11526 atomic_inc(&perf_sched_count); 11527 mutex_unlock(&perf_sched_mutex); 11528 } 11529 enabled: 11530 11531 account_event_cpu(event, event->cpu); 11532 11533 account_pmu_sb_event(event); 11534 } 11535 11536 /* 11537 * Allocate and initialize an event structure 11538 */ 11539 static struct perf_event * 11540 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11541 struct task_struct *task, 11542 struct perf_event *group_leader, 11543 struct perf_event *parent_event, 11544 perf_overflow_handler_t overflow_handler, 11545 void *context, int cgroup_fd) 11546 { 11547 struct pmu *pmu; 11548 struct perf_event *event; 11549 struct hw_perf_event *hwc; 11550 long err = -EINVAL; 11551 int node; 11552 11553 if ((unsigned)cpu >= nr_cpu_ids) { 11554 if (!task || cpu != -1) 11555 return ERR_PTR(-EINVAL); 11556 } 11557 if (attr->sigtrap && !task) { 11558 /* Requires a task: avoid signalling random tasks. */ 11559 return ERR_PTR(-EINVAL); 11560 } 11561 11562 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11563 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11564 node); 11565 if (!event) 11566 return ERR_PTR(-ENOMEM); 11567 11568 /* 11569 * Single events are their own group leaders, with an 11570 * empty sibling list: 11571 */ 11572 if (!group_leader) 11573 group_leader = event; 11574 11575 mutex_init(&event->child_mutex); 11576 INIT_LIST_HEAD(&event->child_list); 11577 11578 INIT_LIST_HEAD(&event->event_entry); 11579 INIT_LIST_HEAD(&event->sibling_list); 11580 INIT_LIST_HEAD(&event->active_list); 11581 init_event_group(event); 11582 INIT_LIST_HEAD(&event->rb_entry); 11583 INIT_LIST_HEAD(&event->active_entry); 11584 INIT_LIST_HEAD(&event->addr_filters.list); 11585 INIT_HLIST_NODE(&event->hlist_entry); 11586 11587 11588 init_waitqueue_head(&event->waitq); 11589 event->pending_disable = -1; 11590 init_irq_work(&event->pending, perf_pending_event); 11591 11592 mutex_init(&event->mmap_mutex); 11593 raw_spin_lock_init(&event->addr_filters.lock); 11594 11595 atomic_long_set(&event->refcount, 1); 11596 event->cpu = cpu; 11597 event->attr = *attr; 11598 event->group_leader = group_leader; 11599 event->pmu = NULL; 11600 event->oncpu = -1; 11601 11602 event->parent = parent_event; 11603 11604 event->ns = get_pid_ns(task_active_pid_ns(current)); 11605 event->id = atomic64_inc_return(&perf_event_id); 11606 11607 event->state = PERF_EVENT_STATE_INACTIVE; 11608 11609 if (event->attr.sigtrap) 11610 atomic_set(&event->event_limit, 1); 11611 11612 if (task) { 11613 event->attach_state = PERF_ATTACH_TASK; 11614 /* 11615 * XXX pmu::event_init needs to know what task to account to 11616 * and we cannot use the ctx information because we need the 11617 * pmu before we get a ctx. 11618 */ 11619 event->hw.target = get_task_struct(task); 11620 } 11621 11622 event->clock = &local_clock; 11623 if (parent_event) 11624 event->clock = parent_event->clock; 11625 11626 if (!overflow_handler && parent_event) { 11627 overflow_handler = parent_event->overflow_handler; 11628 context = parent_event->overflow_handler_context; 11629 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11630 if (overflow_handler == bpf_overflow_handler) { 11631 struct bpf_prog *prog = parent_event->prog; 11632 11633 bpf_prog_inc(prog); 11634 event->prog = prog; 11635 event->orig_overflow_handler = 11636 parent_event->orig_overflow_handler; 11637 } 11638 #endif 11639 } 11640 11641 if (overflow_handler) { 11642 event->overflow_handler = overflow_handler; 11643 event->overflow_handler_context = context; 11644 } else if (is_write_backward(event)){ 11645 event->overflow_handler = perf_event_output_backward; 11646 event->overflow_handler_context = NULL; 11647 } else { 11648 event->overflow_handler = perf_event_output_forward; 11649 event->overflow_handler_context = NULL; 11650 } 11651 11652 perf_event__state_init(event); 11653 11654 pmu = NULL; 11655 11656 hwc = &event->hw; 11657 hwc->sample_period = attr->sample_period; 11658 if (attr->freq && attr->sample_freq) 11659 hwc->sample_period = 1; 11660 hwc->last_period = hwc->sample_period; 11661 11662 local64_set(&hwc->period_left, hwc->sample_period); 11663 11664 /* 11665 * We currently do not support PERF_SAMPLE_READ on inherited events. 11666 * See perf_output_read(). 11667 */ 11668 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11669 goto err_ns; 11670 11671 if (!has_branch_stack(event)) 11672 event->attr.branch_sample_type = 0; 11673 11674 pmu = perf_init_event(event); 11675 if (IS_ERR(pmu)) { 11676 err = PTR_ERR(pmu); 11677 goto err_ns; 11678 } 11679 11680 /* 11681 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11682 * be different on other CPUs in the uncore mask. 11683 */ 11684 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11685 err = -EINVAL; 11686 goto err_pmu; 11687 } 11688 11689 if (event->attr.aux_output && 11690 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11691 err = -EOPNOTSUPP; 11692 goto err_pmu; 11693 } 11694 11695 if (cgroup_fd != -1) { 11696 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11697 if (err) 11698 goto err_pmu; 11699 } 11700 11701 err = exclusive_event_init(event); 11702 if (err) 11703 goto err_pmu; 11704 11705 if (has_addr_filter(event)) { 11706 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11707 sizeof(struct perf_addr_filter_range), 11708 GFP_KERNEL); 11709 if (!event->addr_filter_ranges) { 11710 err = -ENOMEM; 11711 goto err_per_task; 11712 } 11713 11714 /* 11715 * Clone the parent's vma offsets: they are valid until exec() 11716 * even if the mm is not shared with the parent. 11717 */ 11718 if (event->parent) { 11719 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11720 11721 raw_spin_lock_irq(&ifh->lock); 11722 memcpy(event->addr_filter_ranges, 11723 event->parent->addr_filter_ranges, 11724 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11725 raw_spin_unlock_irq(&ifh->lock); 11726 } 11727 11728 /* force hw sync on the address filters */ 11729 event->addr_filters_gen = 1; 11730 } 11731 11732 if (!event->parent) { 11733 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11734 err = get_callchain_buffers(attr->sample_max_stack); 11735 if (err) 11736 goto err_addr_filters; 11737 } 11738 } 11739 11740 err = security_perf_event_alloc(event); 11741 if (err) 11742 goto err_callchain_buffer; 11743 11744 /* symmetric to unaccount_event() in _free_event() */ 11745 account_event(event); 11746 11747 return event; 11748 11749 err_callchain_buffer: 11750 if (!event->parent) { 11751 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11752 put_callchain_buffers(); 11753 } 11754 err_addr_filters: 11755 kfree(event->addr_filter_ranges); 11756 11757 err_per_task: 11758 exclusive_event_destroy(event); 11759 11760 err_pmu: 11761 if (is_cgroup_event(event)) 11762 perf_detach_cgroup(event); 11763 if (event->destroy) 11764 event->destroy(event); 11765 module_put(pmu->module); 11766 err_ns: 11767 if (event->ns) 11768 put_pid_ns(event->ns); 11769 if (event->hw.target) 11770 put_task_struct(event->hw.target); 11771 kmem_cache_free(perf_event_cache, event); 11772 11773 return ERR_PTR(err); 11774 } 11775 11776 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11777 struct perf_event_attr *attr) 11778 { 11779 u32 size; 11780 int ret; 11781 11782 /* Zero the full structure, so that a short copy will be nice. */ 11783 memset(attr, 0, sizeof(*attr)); 11784 11785 ret = get_user(size, &uattr->size); 11786 if (ret) 11787 return ret; 11788 11789 /* ABI compatibility quirk: */ 11790 if (!size) 11791 size = PERF_ATTR_SIZE_VER0; 11792 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11793 goto err_size; 11794 11795 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11796 if (ret) { 11797 if (ret == -E2BIG) 11798 goto err_size; 11799 return ret; 11800 } 11801 11802 attr->size = size; 11803 11804 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11805 return -EINVAL; 11806 11807 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11808 return -EINVAL; 11809 11810 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11811 return -EINVAL; 11812 11813 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11814 u64 mask = attr->branch_sample_type; 11815 11816 /* only using defined bits */ 11817 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11818 return -EINVAL; 11819 11820 /* at least one branch bit must be set */ 11821 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11822 return -EINVAL; 11823 11824 /* propagate priv level, when not set for branch */ 11825 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11826 11827 /* exclude_kernel checked on syscall entry */ 11828 if (!attr->exclude_kernel) 11829 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11830 11831 if (!attr->exclude_user) 11832 mask |= PERF_SAMPLE_BRANCH_USER; 11833 11834 if (!attr->exclude_hv) 11835 mask |= PERF_SAMPLE_BRANCH_HV; 11836 /* 11837 * adjust user setting (for HW filter setup) 11838 */ 11839 attr->branch_sample_type = mask; 11840 } 11841 /* privileged levels capture (kernel, hv): check permissions */ 11842 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11843 ret = perf_allow_kernel(attr); 11844 if (ret) 11845 return ret; 11846 } 11847 } 11848 11849 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11850 ret = perf_reg_validate(attr->sample_regs_user); 11851 if (ret) 11852 return ret; 11853 } 11854 11855 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11856 if (!arch_perf_have_user_stack_dump()) 11857 return -ENOSYS; 11858 11859 /* 11860 * We have __u32 type for the size, but so far 11861 * we can only use __u16 as maximum due to the 11862 * __u16 sample size limit. 11863 */ 11864 if (attr->sample_stack_user >= USHRT_MAX) 11865 return -EINVAL; 11866 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11867 return -EINVAL; 11868 } 11869 11870 if (!attr->sample_max_stack) 11871 attr->sample_max_stack = sysctl_perf_event_max_stack; 11872 11873 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11874 ret = perf_reg_validate(attr->sample_regs_intr); 11875 11876 #ifndef CONFIG_CGROUP_PERF 11877 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11878 return -EINVAL; 11879 #endif 11880 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11881 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11882 return -EINVAL; 11883 11884 if (!attr->inherit && attr->inherit_thread) 11885 return -EINVAL; 11886 11887 if (attr->remove_on_exec && attr->enable_on_exec) 11888 return -EINVAL; 11889 11890 if (attr->sigtrap && !attr->remove_on_exec) 11891 return -EINVAL; 11892 11893 out: 11894 return ret; 11895 11896 err_size: 11897 put_user(sizeof(*attr), &uattr->size); 11898 ret = -E2BIG; 11899 goto out; 11900 } 11901 11902 static int 11903 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11904 { 11905 struct perf_buffer *rb = NULL; 11906 int ret = -EINVAL; 11907 11908 if (!output_event) 11909 goto set; 11910 11911 /* don't allow circular references */ 11912 if (event == output_event) 11913 goto out; 11914 11915 /* 11916 * Don't allow cross-cpu buffers 11917 */ 11918 if (output_event->cpu != event->cpu) 11919 goto out; 11920 11921 /* 11922 * If its not a per-cpu rb, it must be the same task. 11923 */ 11924 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11925 goto out; 11926 11927 /* 11928 * Mixing clocks in the same buffer is trouble you don't need. 11929 */ 11930 if (output_event->clock != event->clock) 11931 goto out; 11932 11933 /* 11934 * Either writing ring buffer from beginning or from end. 11935 * Mixing is not allowed. 11936 */ 11937 if (is_write_backward(output_event) != is_write_backward(event)) 11938 goto out; 11939 11940 /* 11941 * If both events generate aux data, they must be on the same PMU 11942 */ 11943 if (has_aux(event) && has_aux(output_event) && 11944 event->pmu != output_event->pmu) 11945 goto out; 11946 11947 set: 11948 mutex_lock(&event->mmap_mutex); 11949 /* Can't redirect output if we've got an active mmap() */ 11950 if (atomic_read(&event->mmap_count)) 11951 goto unlock; 11952 11953 if (output_event) { 11954 /* get the rb we want to redirect to */ 11955 rb = ring_buffer_get(output_event); 11956 if (!rb) 11957 goto unlock; 11958 } 11959 11960 ring_buffer_attach(event, rb); 11961 11962 ret = 0; 11963 unlock: 11964 mutex_unlock(&event->mmap_mutex); 11965 11966 out: 11967 return ret; 11968 } 11969 11970 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11971 { 11972 if (b < a) 11973 swap(a, b); 11974 11975 mutex_lock(a); 11976 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11977 } 11978 11979 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11980 { 11981 bool nmi_safe = false; 11982 11983 switch (clk_id) { 11984 case CLOCK_MONOTONIC: 11985 event->clock = &ktime_get_mono_fast_ns; 11986 nmi_safe = true; 11987 break; 11988 11989 case CLOCK_MONOTONIC_RAW: 11990 event->clock = &ktime_get_raw_fast_ns; 11991 nmi_safe = true; 11992 break; 11993 11994 case CLOCK_REALTIME: 11995 event->clock = &ktime_get_real_ns; 11996 break; 11997 11998 case CLOCK_BOOTTIME: 11999 event->clock = &ktime_get_boottime_ns; 12000 break; 12001 12002 case CLOCK_TAI: 12003 event->clock = &ktime_get_clocktai_ns; 12004 break; 12005 12006 default: 12007 return -EINVAL; 12008 } 12009 12010 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12011 return -EINVAL; 12012 12013 return 0; 12014 } 12015 12016 /* 12017 * Variation on perf_event_ctx_lock_nested(), except we take two context 12018 * mutexes. 12019 */ 12020 static struct perf_event_context * 12021 __perf_event_ctx_lock_double(struct perf_event *group_leader, 12022 struct perf_event_context *ctx) 12023 { 12024 struct perf_event_context *gctx; 12025 12026 again: 12027 rcu_read_lock(); 12028 gctx = READ_ONCE(group_leader->ctx); 12029 if (!refcount_inc_not_zero(&gctx->refcount)) { 12030 rcu_read_unlock(); 12031 goto again; 12032 } 12033 rcu_read_unlock(); 12034 12035 mutex_lock_double(&gctx->mutex, &ctx->mutex); 12036 12037 if (group_leader->ctx != gctx) { 12038 mutex_unlock(&ctx->mutex); 12039 mutex_unlock(&gctx->mutex); 12040 put_ctx(gctx); 12041 goto again; 12042 } 12043 12044 return gctx; 12045 } 12046 12047 static bool 12048 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12049 { 12050 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12051 bool is_capable = perfmon_capable(); 12052 12053 if (attr->sigtrap) { 12054 /* 12055 * perf_event_attr::sigtrap sends signals to the other task. 12056 * Require the current task to also have CAP_KILL. 12057 */ 12058 rcu_read_lock(); 12059 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12060 rcu_read_unlock(); 12061 12062 /* 12063 * If the required capabilities aren't available, checks for 12064 * ptrace permissions: upgrade to ATTACH, since sending signals 12065 * can effectively change the target task. 12066 */ 12067 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12068 } 12069 12070 /* 12071 * Preserve ptrace permission check for backwards compatibility. The 12072 * ptrace check also includes checks that the current task and other 12073 * task have matching uids, and is therefore not done here explicitly. 12074 */ 12075 return is_capable || ptrace_may_access(task, ptrace_mode); 12076 } 12077 12078 /** 12079 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12080 * 12081 * @attr_uptr: event_id type attributes for monitoring/sampling 12082 * @pid: target pid 12083 * @cpu: target cpu 12084 * @group_fd: group leader event fd 12085 * @flags: perf event open flags 12086 */ 12087 SYSCALL_DEFINE5(perf_event_open, 12088 struct perf_event_attr __user *, attr_uptr, 12089 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12090 { 12091 struct perf_event *group_leader = NULL, *output_event = NULL; 12092 struct perf_event *event, *sibling; 12093 struct perf_event_attr attr; 12094 struct perf_event_context *ctx, *gctx; 12095 struct file *event_file = NULL; 12096 struct fd group = {NULL, 0}; 12097 struct task_struct *task = NULL; 12098 struct pmu *pmu; 12099 int event_fd; 12100 int move_group = 0; 12101 int err; 12102 int f_flags = O_RDWR; 12103 int cgroup_fd = -1; 12104 12105 /* for future expandability... */ 12106 if (flags & ~PERF_FLAG_ALL) 12107 return -EINVAL; 12108 12109 /* Do we allow access to perf_event_open(2) ? */ 12110 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12111 if (err) 12112 return err; 12113 12114 err = perf_copy_attr(attr_uptr, &attr); 12115 if (err) 12116 return err; 12117 12118 if (!attr.exclude_kernel) { 12119 err = perf_allow_kernel(&attr); 12120 if (err) 12121 return err; 12122 } 12123 12124 if (attr.namespaces) { 12125 if (!perfmon_capable()) 12126 return -EACCES; 12127 } 12128 12129 if (attr.freq) { 12130 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12131 return -EINVAL; 12132 } else { 12133 if (attr.sample_period & (1ULL << 63)) 12134 return -EINVAL; 12135 } 12136 12137 /* Only privileged users can get physical addresses */ 12138 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12139 err = perf_allow_kernel(&attr); 12140 if (err) 12141 return err; 12142 } 12143 12144 /* REGS_INTR can leak data, lockdown must prevent this */ 12145 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12146 err = security_locked_down(LOCKDOWN_PERF); 12147 if (err) 12148 return err; 12149 } 12150 12151 /* 12152 * In cgroup mode, the pid argument is used to pass the fd 12153 * opened to the cgroup directory in cgroupfs. The cpu argument 12154 * designates the cpu on which to monitor threads from that 12155 * cgroup. 12156 */ 12157 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12158 return -EINVAL; 12159 12160 if (flags & PERF_FLAG_FD_CLOEXEC) 12161 f_flags |= O_CLOEXEC; 12162 12163 event_fd = get_unused_fd_flags(f_flags); 12164 if (event_fd < 0) 12165 return event_fd; 12166 12167 if (group_fd != -1) { 12168 err = perf_fget_light(group_fd, &group); 12169 if (err) 12170 goto err_fd; 12171 group_leader = group.file->private_data; 12172 if (flags & PERF_FLAG_FD_OUTPUT) 12173 output_event = group_leader; 12174 if (flags & PERF_FLAG_FD_NO_GROUP) 12175 group_leader = NULL; 12176 } 12177 12178 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12179 task = find_lively_task_by_vpid(pid); 12180 if (IS_ERR(task)) { 12181 err = PTR_ERR(task); 12182 goto err_group_fd; 12183 } 12184 } 12185 12186 if (task && group_leader && 12187 group_leader->attr.inherit != attr.inherit) { 12188 err = -EINVAL; 12189 goto err_task; 12190 } 12191 12192 if (flags & PERF_FLAG_PID_CGROUP) 12193 cgroup_fd = pid; 12194 12195 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12196 NULL, NULL, cgroup_fd); 12197 if (IS_ERR(event)) { 12198 err = PTR_ERR(event); 12199 goto err_task; 12200 } 12201 12202 if (is_sampling_event(event)) { 12203 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12204 err = -EOPNOTSUPP; 12205 goto err_alloc; 12206 } 12207 } 12208 12209 /* 12210 * Special case software events and allow them to be part of 12211 * any hardware group. 12212 */ 12213 pmu = event->pmu; 12214 12215 if (attr.use_clockid) { 12216 err = perf_event_set_clock(event, attr.clockid); 12217 if (err) 12218 goto err_alloc; 12219 } 12220 12221 if (pmu->task_ctx_nr == perf_sw_context) 12222 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12223 12224 if (group_leader) { 12225 if (is_software_event(event) && 12226 !in_software_context(group_leader)) { 12227 /* 12228 * If the event is a sw event, but the group_leader 12229 * is on hw context. 12230 * 12231 * Allow the addition of software events to hw 12232 * groups, this is safe because software events 12233 * never fail to schedule. 12234 */ 12235 pmu = group_leader->ctx->pmu; 12236 } else if (!is_software_event(event) && 12237 is_software_event(group_leader) && 12238 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12239 /* 12240 * In case the group is a pure software group, and we 12241 * try to add a hardware event, move the whole group to 12242 * the hardware context. 12243 */ 12244 move_group = 1; 12245 } 12246 } 12247 12248 /* 12249 * Get the target context (task or percpu): 12250 */ 12251 ctx = find_get_context(pmu, task, event); 12252 if (IS_ERR(ctx)) { 12253 err = PTR_ERR(ctx); 12254 goto err_alloc; 12255 } 12256 12257 /* 12258 * Look up the group leader (we will attach this event to it): 12259 */ 12260 if (group_leader) { 12261 err = -EINVAL; 12262 12263 /* 12264 * Do not allow a recursive hierarchy (this new sibling 12265 * becoming part of another group-sibling): 12266 */ 12267 if (group_leader->group_leader != group_leader) 12268 goto err_context; 12269 12270 /* All events in a group should have the same clock */ 12271 if (group_leader->clock != event->clock) 12272 goto err_context; 12273 12274 /* 12275 * Make sure we're both events for the same CPU; 12276 * grouping events for different CPUs is broken; since 12277 * you can never concurrently schedule them anyhow. 12278 */ 12279 if (group_leader->cpu != event->cpu) 12280 goto err_context; 12281 12282 /* 12283 * Make sure we're both on the same task, or both 12284 * per-CPU events. 12285 */ 12286 if (group_leader->ctx->task != ctx->task) 12287 goto err_context; 12288 12289 /* 12290 * Do not allow to attach to a group in a different task 12291 * or CPU context. If we're moving SW events, we'll fix 12292 * this up later, so allow that. 12293 */ 12294 if (!move_group && group_leader->ctx != ctx) 12295 goto err_context; 12296 12297 /* 12298 * Only a group leader can be exclusive or pinned 12299 */ 12300 if (attr.exclusive || attr.pinned) 12301 goto err_context; 12302 } 12303 12304 if (output_event) { 12305 err = perf_event_set_output(event, output_event); 12306 if (err) 12307 goto err_context; 12308 } 12309 12310 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12311 f_flags); 12312 if (IS_ERR(event_file)) { 12313 err = PTR_ERR(event_file); 12314 event_file = NULL; 12315 goto err_context; 12316 } 12317 12318 if (task) { 12319 err = down_read_interruptible(&task->signal->exec_update_lock); 12320 if (err) 12321 goto err_file; 12322 12323 /* 12324 * We must hold exec_update_lock across this and any potential 12325 * perf_install_in_context() call for this new event to 12326 * serialize against exec() altering our credentials (and the 12327 * perf_event_exit_task() that could imply). 12328 */ 12329 err = -EACCES; 12330 if (!perf_check_permission(&attr, task)) 12331 goto err_cred; 12332 } 12333 12334 if (move_group) { 12335 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12336 12337 if (gctx->task == TASK_TOMBSTONE) { 12338 err = -ESRCH; 12339 goto err_locked; 12340 } 12341 12342 /* 12343 * Check if we raced against another sys_perf_event_open() call 12344 * moving the software group underneath us. 12345 */ 12346 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12347 /* 12348 * If someone moved the group out from under us, check 12349 * if this new event wound up on the same ctx, if so 12350 * its the regular !move_group case, otherwise fail. 12351 */ 12352 if (gctx != ctx) { 12353 err = -EINVAL; 12354 goto err_locked; 12355 } else { 12356 perf_event_ctx_unlock(group_leader, gctx); 12357 move_group = 0; 12358 } 12359 } 12360 12361 /* 12362 * Failure to create exclusive events returns -EBUSY. 12363 */ 12364 err = -EBUSY; 12365 if (!exclusive_event_installable(group_leader, ctx)) 12366 goto err_locked; 12367 12368 for_each_sibling_event(sibling, group_leader) { 12369 if (!exclusive_event_installable(sibling, ctx)) 12370 goto err_locked; 12371 } 12372 } else { 12373 mutex_lock(&ctx->mutex); 12374 } 12375 12376 if (ctx->task == TASK_TOMBSTONE) { 12377 err = -ESRCH; 12378 goto err_locked; 12379 } 12380 12381 if (!perf_event_validate_size(event)) { 12382 err = -E2BIG; 12383 goto err_locked; 12384 } 12385 12386 if (!task) { 12387 /* 12388 * Check if the @cpu we're creating an event for is online. 12389 * 12390 * We use the perf_cpu_context::ctx::mutex to serialize against 12391 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12392 */ 12393 struct perf_cpu_context *cpuctx = 12394 container_of(ctx, struct perf_cpu_context, ctx); 12395 12396 if (!cpuctx->online) { 12397 err = -ENODEV; 12398 goto err_locked; 12399 } 12400 } 12401 12402 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12403 err = -EINVAL; 12404 goto err_locked; 12405 } 12406 12407 /* 12408 * Must be under the same ctx::mutex as perf_install_in_context(), 12409 * because we need to serialize with concurrent event creation. 12410 */ 12411 if (!exclusive_event_installable(event, ctx)) { 12412 err = -EBUSY; 12413 goto err_locked; 12414 } 12415 12416 WARN_ON_ONCE(ctx->parent_ctx); 12417 12418 /* 12419 * This is the point on no return; we cannot fail hereafter. This is 12420 * where we start modifying current state. 12421 */ 12422 12423 if (move_group) { 12424 /* 12425 * See perf_event_ctx_lock() for comments on the details 12426 * of swizzling perf_event::ctx. 12427 */ 12428 perf_remove_from_context(group_leader, 0); 12429 put_ctx(gctx); 12430 12431 for_each_sibling_event(sibling, group_leader) { 12432 perf_remove_from_context(sibling, 0); 12433 put_ctx(gctx); 12434 } 12435 12436 /* 12437 * Wait for everybody to stop referencing the events through 12438 * the old lists, before installing it on new lists. 12439 */ 12440 synchronize_rcu(); 12441 12442 /* 12443 * Install the group siblings before the group leader. 12444 * 12445 * Because a group leader will try and install the entire group 12446 * (through the sibling list, which is still in-tact), we can 12447 * end up with siblings installed in the wrong context. 12448 * 12449 * By installing siblings first we NO-OP because they're not 12450 * reachable through the group lists. 12451 */ 12452 for_each_sibling_event(sibling, group_leader) { 12453 perf_event__state_init(sibling); 12454 perf_install_in_context(ctx, sibling, sibling->cpu); 12455 get_ctx(ctx); 12456 } 12457 12458 /* 12459 * Removing from the context ends up with disabled 12460 * event. What we want here is event in the initial 12461 * startup state, ready to be add into new context. 12462 */ 12463 perf_event__state_init(group_leader); 12464 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12465 get_ctx(ctx); 12466 } 12467 12468 /* 12469 * Precalculate sample_data sizes; do while holding ctx::mutex such 12470 * that we're serialized against further additions and before 12471 * perf_install_in_context() which is the point the event is active and 12472 * can use these values. 12473 */ 12474 perf_event__header_size(event); 12475 perf_event__id_header_size(event); 12476 12477 event->owner = current; 12478 12479 perf_install_in_context(ctx, event, event->cpu); 12480 perf_unpin_context(ctx); 12481 12482 if (move_group) 12483 perf_event_ctx_unlock(group_leader, gctx); 12484 mutex_unlock(&ctx->mutex); 12485 12486 if (task) { 12487 up_read(&task->signal->exec_update_lock); 12488 put_task_struct(task); 12489 } 12490 12491 mutex_lock(¤t->perf_event_mutex); 12492 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12493 mutex_unlock(¤t->perf_event_mutex); 12494 12495 /* 12496 * Drop the reference on the group_event after placing the 12497 * new event on the sibling_list. This ensures destruction 12498 * of the group leader will find the pointer to itself in 12499 * perf_group_detach(). 12500 */ 12501 fdput(group); 12502 fd_install(event_fd, event_file); 12503 return event_fd; 12504 12505 err_locked: 12506 if (move_group) 12507 perf_event_ctx_unlock(group_leader, gctx); 12508 mutex_unlock(&ctx->mutex); 12509 err_cred: 12510 if (task) 12511 up_read(&task->signal->exec_update_lock); 12512 err_file: 12513 fput(event_file); 12514 err_context: 12515 perf_unpin_context(ctx); 12516 put_ctx(ctx); 12517 err_alloc: 12518 /* 12519 * If event_file is set, the fput() above will have called ->release() 12520 * and that will take care of freeing the event. 12521 */ 12522 if (!event_file) 12523 free_event(event); 12524 err_task: 12525 if (task) 12526 put_task_struct(task); 12527 err_group_fd: 12528 fdput(group); 12529 err_fd: 12530 put_unused_fd(event_fd); 12531 return err; 12532 } 12533 12534 /** 12535 * perf_event_create_kernel_counter 12536 * 12537 * @attr: attributes of the counter to create 12538 * @cpu: cpu in which the counter is bound 12539 * @task: task to profile (NULL for percpu) 12540 * @overflow_handler: callback to trigger when we hit the event 12541 * @context: context data could be used in overflow_handler callback 12542 */ 12543 struct perf_event * 12544 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12545 struct task_struct *task, 12546 perf_overflow_handler_t overflow_handler, 12547 void *context) 12548 { 12549 struct perf_event_context *ctx; 12550 struct perf_event *event; 12551 int err; 12552 12553 /* 12554 * Grouping is not supported for kernel events, neither is 'AUX', 12555 * make sure the caller's intentions are adjusted. 12556 */ 12557 if (attr->aux_output) 12558 return ERR_PTR(-EINVAL); 12559 12560 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12561 overflow_handler, context, -1); 12562 if (IS_ERR(event)) { 12563 err = PTR_ERR(event); 12564 goto err; 12565 } 12566 12567 /* Mark owner so we could distinguish it from user events. */ 12568 event->owner = TASK_TOMBSTONE; 12569 12570 /* 12571 * Get the target context (task or percpu): 12572 */ 12573 ctx = find_get_context(event->pmu, task, event); 12574 if (IS_ERR(ctx)) { 12575 err = PTR_ERR(ctx); 12576 goto err_free; 12577 } 12578 12579 WARN_ON_ONCE(ctx->parent_ctx); 12580 mutex_lock(&ctx->mutex); 12581 if (ctx->task == TASK_TOMBSTONE) { 12582 err = -ESRCH; 12583 goto err_unlock; 12584 } 12585 12586 if (!task) { 12587 /* 12588 * Check if the @cpu we're creating an event for is online. 12589 * 12590 * We use the perf_cpu_context::ctx::mutex to serialize against 12591 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12592 */ 12593 struct perf_cpu_context *cpuctx = 12594 container_of(ctx, struct perf_cpu_context, ctx); 12595 if (!cpuctx->online) { 12596 err = -ENODEV; 12597 goto err_unlock; 12598 } 12599 } 12600 12601 if (!exclusive_event_installable(event, ctx)) { 12602 err = -EBUSY; 12603 goto err_unlock; 12604 } 12605 12606 perf_install_in_context(ctx, event, event->cpu); 12607 perf_unpin_context(ctx); 12608 mutex_unlock(&ctx->mutex); 12609 12610 return event; 12611 12612 err_unlock: 12613 mutex_unlock(&ctx->mutex); 12614 perf_unpin_context(ctx); 12615 put_ctx(ctx); 12616 err_free: 12617 free_event(event); 12618 err: 12619 return ERR_PTR(err); 12620 } 12621 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12622 12623 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12624 { 12625 struct perf_event_context *src_ctx; 12626 struct perf_event_context *dst_ctx; 12627 struct perf_event *event, *tmp; 12628 LIST_HEAD(events); 12629 12630 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12631 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12632 12633 /* 12634 * See perf_event_ctx_lock() for comments on the details 12635 * of swizzling perf_event::ctx. 12636 */ 12637 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12638 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12639 event_entry) { 12640 perf_remove_from_context(event, 0); 12641 unaccount_event_cpu(event, src_cpu); 12642 put_ctx(src_ctx); 12643 list_add(&event->migrate_entry, &events); 12644 } 12645 12646 /* 12647 * Wait for the events to quiesce before re-instating them. 12648 */ 12649 synchronize_rcu(); 12650 12651 /* 12652 * Re-instate events in 2 passes. 12653 * 12654 * Skip over group leaders and only install siblings on this first 12655 * pass, siblings will not get enabled without a leader, however a 12656 * leader will enable its siblings, even if those are still on the old 12657 * context. 12658 */ 12659 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12660 if (event->group_leader == event) 12661 continue; 12662 12663 list_del(&event->migrate_entry); 12664 if (event->state >= PERF_EVENT_STATE_OFF) 12665 event->state = PERF_EVENT_STATE_INACTIVE; 12666 account_event_cpu(event, dst_cpu); 12667 perf_install_in_context(dst_ctx, event, dst_cpu); 12668 get_ctx(dst_ctx); 12669 } 12670 12671 /* 12672 * Once all the siblings are setup properly, install the group leaders 12673 * to make it go. 12674 */ 12675 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12676 list_del(&event->migrate_entry); 12677 if (event->state >= PERF_EVENT_STATE_OFF) 12678 event->state = PERF_EVENT_STATE_INACTIVE; 12679 account_event_cpu(event, dst_cpu); 12680 perf_install_in_context(dst_ctx, event, dst_cpu); 12681 get_ctx(dst_ctx); 12682 } 12683 mutex_unlock(&dst_ctx->mutex); 12684 mutex_unlock(&src_ctx->mutex); 12685 } 12686 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12687 12688 static void sync_child_event(struct perf_event *child_event) 12689 { 12690 struct perf_event *parent_event = child_event->parent; 12691 u64 child_val; 12692 12693 if (child_event->attr.inherit_stat) { 12694 struct task_struct *task = child_event->ctx->task; 12695 12696 if (task && task != TASK_TOMBSTONE) 12697 perf_event_read_event(child_event, task); 12698 } 12699 12700 child_val = perf_event_count(child_event); 12701 12702 /* 12703 * Add back the child's count to the parent's count: 12704 */ 12705 atomic64_add(child_val, &parent_event->child_count); 12706 atomic64_add(child_event->total_time_enabled, 12707 &parent_event->child_total_time_enabled); 12708 atomic64_add(child_event->total_time_running, 12709 &parent_event->child_total_time_running); 12710 } 12711 12712 static void 12713 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12714 { 12715 struct perf_event *parent_event = event->parent; 12716 unsigned long detach_flags = 0; 12717 12718 if (parent_event) { 12719 /* 12720 * Do not destroy the 'original' grouping; because of the 12721 * context switch optimization the original events could've 12722 * ended up in a random child task. 12723 * 12724 * If we were to destroy the original group, all group related 12725 * operations would cease to function properly after this 12726 * random child dies. 12727 * 12728 * Do destroy all inherited groups, we don't care about those 12729 * and being thorough is better. 12730 */ 12731 detach_flags = DETACH_GROUP | DETACH_CHILD; 12732 mutex_lock(&parent_event->child_mutex); 12733 } 12734 12735 perf_remove_from_context(event, detach_flags); 12736 12737 raw_spin_lock_irq(&ctx->lock); 12738 if (event->state > PERF_EVENT_STATE_EXIT) 12739 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12740 raw_spin_unlock_irq(&ctx->lock); 12741 12742 /* 12743 * Child events can be freed. 12744 */ 12745 if (parent_event) { 12746 mutex_unlock(&parent_event->child_mutex); 12747 /* 12748 * Kick perf_poll() for is_event_hup(); 12749 */ 12750 perf_event_wakeup(parent_event); 12751 free_event(event); 12752 put_event(parent_event); 12753 return; 12754 } 12755 12756 /* 12757 * Parent events are governed by their filedesc, retain them. 12758 */ 12759 perf_event_wakeup(event); 12760 } 12761 12762 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12763 { 12764 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12765 struct perf_event *child_event, *next; 12766 12767 WARN_ON_ONCE(child != current); 12768 12769 child_ctx = perf_pin_task_context(child, ctxn); 12770 if (!child_ctx) 12771 return; 12772 12773 /* 12774 * In order to reduce the amount of tricky in ctx tear-down, we hold 12775 * ctx::mutex over the entire thing. This serializes against almost 12776 * everything that wants to access the ctx. 12777 * 12778 * The exception is sys_perf_event_open() / 12779 * perf_event_create_kernel_count() which does find_get_context() 12780 * without ctx::mutex (it cannot because of the move_group double mutex 12781 * lock thing). See the comments in perf_install_in_context(). 12782 */ 12783 mutex_lock(&child_ctx->mutex); 12784 12785 /* 12786 * In a single ctx::lock section, de-schedule the events and detach the 12787 * context from the task such that we cannot ever get it scheduled back 12788 * in. 12789 */ 12790 raw_spin_lock_irq(&child_ctx->lock); 12791 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12792 12793 /* 12794 * Now that the context is inactive, destroy the task <-> ctx relation 12795 * and mark the context dead. 12796 */ 12797 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12798 put_ctx(child_ctx); /* cannot be last */ 12799 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12800 put_task_struct(current); /* cannot be last */ 12801 12802 clone_ctx = unclone_ctx(child_ctx); 12803 raw_spin_unlock_irq(&child_ctx->lock); 12804 12805 if (clone_ctx) 12806 put_ctx(clone_ctx); 12807 12808 /* 12809 * Report the task dead after unscheduling the events so that we 12810 * won't get any samples after PERF_RECORD_EXIT. We can however still 12811 * get a few PERF_RECORD_READ events. 12812 */ 12813 perf_event_task(child, child_ctx, 0); 12814 12815 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12816 perf_event_exit_event(child_event, child_ctx); 12817 12818 mutex_unlock(&child_ctx->mutex); 12819 12820 put_ctx(child_ctx); 12821 } 12822 12823 /* 12824 * When a child task exits, feed back event values to parent events. 12825 * 12826 * Can be called with exec_update_lock held when called from 12827 * setup_new_exec(). 12828 */ 12829 void perf_event_exit_task(struct task_struct *child) 12830 { 12831 struct perf_event *event, *tmp; 12832 int ctxn; 12833 12834 mutex_lock(&child->perf_event_mutex); 12835 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12836 owner_entry) { 12837 list_del_init(&event->owner_entry); 12838 12839 /* 12840 * Ensure the list deletion is visible before we clear 12841 * the owner, closes a race against perf_release() where 12842 * we need to serialize on the owner->perf_event_mutex. 12843 */ 12844 smp_store_release(&event->owner, NULL); 12845 } 12846 mutex_unlock(&child->perf_event_mutex); 12847 12848 for_each_task_context_nr(ctxn) 12849 perf_event_exit_task_context(child, ctxn); 12850 12851 /* 12852 * The perf_event_exit_task_context calls perf_event_task 12853 * with child's task_ctx, which generates EXIT events for 12854 * child contexts and sets child->perf_event_ctxp[] to NULL. 12855 * At this point we need to send EXIT events to cpu contexts. 12856 */ 12857 perf_event_task(child, NULL, 0); 12858 } 12859 12860 static void perf_free_event(struct perf_event *event, 12861 struct perf_event_context *ctx) 12862 { 12863 struct perf_event *parent = event->parent; 12864 12865 if (WARN_ON_ONCE(!parent)) 12866 return; 12867 12868 mutex_lock(&parent->child_mutex); 12869 list_del_init(&event->child_list); 12870 mutex_unlock(&parent->child_mutex); 12871 12872 put_event(parent); 12873 12874 raw_spin_lock_irq(&ctx->lock); 12875 perf_group_detach(event); 12876 list_del_event(event, ctx); 12877 raw_spin_unlock_irq(&ctx->lock); 12878 free_event(event); 12879 } 12880 12881 /* 12882 * Free a context as created by inheritance by perf_event_init_task() below, 12883 * used by fork() in case of fail. 12884 * 12885 * Even though the task has never lived, the context and events have been 12886 * exposed through the child_list, so we must take care tearing it all down. 12887 */ 12888 void perf_event_free_task(struct task_struct *task) 12889 { 12890 struct perf_event_context *ctx; 12891 struct perf_event *event, *tmp; 12892 int ctxn; 12893 12894 for_each_task_context_nr(ctxn) { 12895 ctx = task->perf_event_ctxp[ctxn]; 12896 if (!ctx) 12897 continue; 12898 12899 mutex_lock(&ctx->mutex); 12900 raw_spin_lock_irq(&ctx->lock); 12901 /* 12902 * Destroy the task <-> ctx relation and mark the context dead. 12903 * 12904 * This is important because even though the task hasn't been 12905 * exposed yet the context has been (through child_list). 12906 */ 12907 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12908 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12909 put_task_struct(task); /* cannot be last */ 12910 raw_spin_unlock_irq(&ctx->lock); 12911 12912 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12913 perf_free_event(event, ctx); 12914 12915 mutex_unlock(&ctx->mutex); 12916 12917 /* 12918 * perf_event_release_kernel() could've stolen some of our 12919 * child events and still have them on its free_list. In that 12920 * case we must wait for these events to have been freed (in 12921 * particular all their references to this task must've been 12922 * dropped). 12923 * 12924 * Without this copy_process() will unconditionally free this 12925 * task (irrespective of its reference count) and 12926 * _free_event()'s put_task_struct(event->hw.target) will be a 12927 * use-after-free. 12928 * 12929 * Wait for all events to drop their context reference. 12930 */ 12931 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12932 put_ctx(ctx); /* must be last */ 12933 } 12934 } 12935 12936 void perf_event_delayed_put(struct task_struct *task) 12937 { 12938 int ctxn; 12939 12940 for_each_task_context_nr(ctxn) 12941 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12942 } 12943 12944 struct file *perf_event_get(unsigned int fd) 12945 { 12946 struct file *file = fget(fd); 12947 if (!file) 12948 return ERR_PTR(-EBADF); 12949 12950 if (file->f_op != &perf_fops) { 12951 fput(file); 12952 return ERR_PTR(-EBADF); 12953 } 12954 12955 return file; 12956 } 12957 12958 const struct perf_event *perf_get_event(struct file *file) 12959 { 12960 if (file->f_op != &perf_fops) 12961 return ERR_PTR(-EINVAL); 12962 12963 return file->private_data; 12964 } 12965 12966 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12967 { 12968 if (!event) 12969 return ERR_PTR(-EINVAL); 12970 12971 return &event->attr; 12972 } 12973 12974 /* 12975 * Inherit an event from parent task to child task. 12976 * 12977 * Returns: 12978 * - valid pointer on success 12979 * - NULL for orphaned events 12980 * - IS_ERR() on error 12981 */ 12982 static struct perf_event * 12983 inherit_event(struct perf_event *parent_event, 12984 struct task_struct *parent, 12985 struct perf_event_context *parent_ctx, 12986 struct task_struct *child, 12987 struct perf_event *group_leader, 12988 struct perf_event_context *child_ctx) 12989 { 12990 enum perf_event_state parent_state = parent_event->state; 12991 struct perf_event *child_event; 12992 unsigned long flags; 12993 12994 /* 12995 * Instead of creating recursive hierarchies of events, 12996 * we link inherited events back to the original parent, 12997 * which has a filp for sure, which we use as the reference 12998 * count: 12999 */ 13000 if (parent_event->parent) 13001 parent_event = parent_event->parent; 13002 13003 child_event = perf_event_alloc(&parent_event->attr, 13004 parent_event->cpu, 13005 child, 13006 group_leader, parent_event, 13007 NULL, NULL, -1); 13008 if (IS_ERR(child_event)) 13009 return child_event; 13010 13011 13012 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 13013 !child_ctx->task_ctx_data) { 13014 struct pmu *pmu = child_event->pmu; 13015 13016 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 13017 if (!child_ctx->task_ctx_data) { 13018 free_event(child_event); 13019 return ERR_PTR(-ENOMEM); 13020 } 13021 } 13022 13023 /* 13024 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13025 * must be under the same lock in order to serialize against 13026 * perf_event_release_kernel(), such that either we must observe 13027 * is_orphaned_event() or they will observe us on the child_list. 13028 */ 13029 mutex_lock(&parent_event->child_mutex); 13030 if (is_orphaned_event(parent_event) || 13031 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13032 mutex_unlock(&parent_event->child_mutex); 13033 /* task_ctx_data is freed with child_ctx */ 13034 free_event(child_event); 13035 return NULL; 13036 } 13037 13038 get_ctx(child_ctx); 13039 13040 /* 13041 * Make the child state follow the state of the parent event, 13042 * not its attr.disabled bit. We hold the parent's mutex, 13043 * so we won't race with perf_event_{en, dis}able_family. 13044 */ 13045 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13046 child_event->state = PERF_EVENT_STATE_INACTIVE; 13047 else 13048 child_event->state = PERF_EVENT_STATE_OFF; 13049 13050 if (parent_event->attr.freq) { 13051 u64 sample_period = parent_event->hw.sample_period; 13052 struct hw_perf_event *hwc = &child_event->hw; 13053 13054 hwc->sample_period = sample_period; 13055 hwc->last_period = sample_period; 13056 13057 local64_set(&hwc->period_left, sample_period); 13058 } 13059 13060 child_event->ctx = child_ctx; 13061 child_event->overflow_handler = parent_event->overflow_handler; 13062 child_event->overflow_handler_context 13063 = parent_event->overflow_handler_context; 13064 13065 /* 13066 * Precalculate sample_data sizes 13067 */ 13068 perf_event__header_size(child_event); 13069 perf_event__id_header_size(child_event); 13070 13071 /* 13072 * Link it up in the child's context: 13073 */ 13074 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13075 add_event_to_ctx(child_event, child_ctx); 13076 child_event->attach_state |= PERF_ATTACH_CHILD; 13077 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13078 13079 /* 13080 * Link this into the parent event's child list 13081 */ 13082 list_add_tail(&child_event->child_list, &parent_event->child_list); 13083 mutex_unlock(&parent_event->child_mutex); 13084 13085 return child_event; 13086 } 13087 13088 /* 13089 * Inherits an event group. 13090 * 13091 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13092 * This matches with perf_event_release_kernel() removing all child events. 13093 * 13094 * Returns: 13095 * - 0 on success 13096 * - <0 on error 13097 */ 13098 static int inherit_group(struct perf_event *parent_event, 13099 struct task_struct *parent, 13100 struct perf_event_context *parent_ctx, 13101 struct task_struct *child, 13102 struct perf_event_context *child_ctx) 13103 { 13104 struct perf_event *leader; 13105 struct perf_event *sub; 13106 struct perf_event *child_ctr; 13107 13108 leader = inherit_event(parent_event, parent, parent_ctx, 13109 child, NULL, child_ctx); 13110 if (IS_ERR(leader)) 13111 return PTR_ERR(leader); 13112 /* 13113 * @leader can be NULL here because of is_orphaned_event(). In this 13114 * case inherit_event() will create individual events, similar to what 13115 * perf_group_detach() would do anyway. 13116 */ 13117 for_each_sibling_event(sub, parent_event) { 13118 child_ctr = inherit_event(sub, parent, parent_ctx, 13119 child, leader, child_ctx); 13120 if (IS_ERR(child_ctr)) 13121 return PTR_ERR(child_ctr); 13122 13123 if (sub->aux_event == parent_event && child_ctr && 13124 !perf_get_aux_event(child_ctr, leader)) 13125 return -EINVAL; 13126 } 13127 return 0; 13128 } 13129 13130 /* 13131 * Creates the child task context and tries to inherit the event-group. 13132 * 13133 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13134 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13135 * consistent with perf_event_release_kernel() removing all child events. 13136 * 13137 * Returns: 13138 * - 0 on success 13139 * - <0 on error 13140 */ 13141 static int 13142 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13143 struct perf_event_context *parent_ctx, 13144 struct task_struct *child, int ctxn, 13145 u64 clone_flags, int *inherited_all) 13146 { 13147 int ret; 13148 struct perf_event_context *child_ctx; 13149 13150 if (!event->attr.inherit || 13151 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13152 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13153 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13154 *inherited_all = 0; 13155 return 0; 13156 } 13157 13158 child_ctx = child->perf_event_ctxp[ctxn]; 13159 if (!child_ctx) { 13160 /* 13161 * This is executed from the parent task context, so 13162 * inherit events that have been marked for cloning. 13163 * First allocate and initialize a context for the 13164 * child. 13165 */ 13166 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13167 if (!child_ctx) 13168 return -ENOMEM; 13169 13170 child->perf_event_ctxp[ctxn] = child_ctx; 13171 } 13172 13173 ret = inherit_group(event, parent, parent_ctx, 13174 child, child_ctx); 13175 13176 if (ret) 13177 *inherited_all = 0; 13178 13179 return ret; 13180 } 13181 13182 /* 13183 * Initialize the perf_event context in task_struct 13184 */ 13185 static int perf_event_init_context(struct task_struct *child, int ctxn, 13186 u64 clone_flags) 13187 { 13188 struct perf_event_context *child_ctx, *parent_ctx; 13189 struct perf_event_context *cloned_ctx; 13190 struct perf_event *event; 13191 struct task_struct *parent = current; 13192 int inherited_all = 1; 13193 unsigned long flags; 13194 int ret = 0; 13195 13196 if (likely(!parent->perf_event_ctxp[ctxn])) 13197 return 0; 13198 13199 /* 13200 * If the parent's context is a clone, pin it so it won't get 13201 * swapped under us. 13202 */ 13203 parent_ctx = perf_pin_task_context(parent, ctxn); 13204 if (!parent_ctx) 13205 return 0; 13206 13207 /* 13208 * No need to check if parent_ctx != NULL here; since we saw 13209 * it non-NULL earlier, the only reason for it to become NULL 13210 * is if we exit, and since we're currently in the middle of 13211 * a fork we can't be exiting at the same time. 13212 */ 13213 13214 /* 13215 * Lock the parent list. No need to lock the child - not PID 13216 * hashed yet and not running, so nobody can access it. 13217 */ 13218 mutex_lock(&parent_ctx->mutex); 13219 13220 /* 13221 * We dont have to disable NMIs - we are only looking at 13222 * the list, not manipulating it: 13223 */ 13224 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13225 ret = inherit_task_group(event, parent, parent_ctx, 13226 child, ctxn, clone_flags, 13227 &inherited_all); 13228 if (ret) 13229 goto out_unlock; 13230 } 13231 13232 /* 13233 * We can't hold ctx->lock when iterating the ->flexible_group list due 13234 * to allocations, but we need to prevent rotation because 13235 * rotate_ctx() will change the list from interrupt context. 13236 */ 13237 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13238 parent_ctx->rotate_disable = 1; 13239 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13240 13241 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13242 ret = inherit_task_group(event, parent, parent_ctx, 13243 child, ctxn, clone_flags, 13244 &inherited_all); 13245 if (ret) 13246 goto out_unlock; 13247 } 13248 13249 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13250 parent_ctx->rotate_disable = 0; 13251 13252 child_ctx = child->perf_event_ctxp[ctxn]; 13253 13254 if (child_ctx && inherited_all) { 13255 /* 13256 * Mark the child context as a clone of the parent 13257 * context, or of whatever the parent is a clone of. 13258 * 13259 * Note that if the parent is a clone, the holding of 13260 * parent_ctx->lock avoids it from being uncloned. 13261 */ 13262 cloned_ctx = parent_ctx->parent_ctx; 13263 if (cloned_ctx) { 13264 child_ctx->parent_ctx = cloned_ctx; 13265 child_ctx->parent_gen = parent_ctx->parent_gen; 13266 } else { 13267 child_ctx->parent_ctx = parent_ctx; 13268 child_ctx->parent_gen = parent_ctx->generation; 13269 } 13270 get_ctx(child_ctx->parent_ctx); 13271 } 13272 13273 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13274 out_unlock: 13275 mutex_unlock(&parent_ctx->mutex); 13276 13277 perf_unpin_context(parent_ctx); 13278 put_ctx(parent_ctx); 13279 13280 return ret; 13281 } 13282 13283 /* 13284 * Initialize the perf_event context in task_struct 13285 */ 13286 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13287 { 13288 int ctxn, ret; 13289 13290 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13291 mutex_init(&child->perf_event_mutex); 13292 INIT_LIST_HEAD(&child->perf_event_list); 13293 13294 for_each_task_context_nr(ctxn) { 13295 ret = perf_event_init_context(child, ctxn, clone_flags); 13296 if (ret) { 13297 perf_event_free_task(child); 13298 return ret; 13299 } 13300 } 13301 13302 return 0; 13303 } 13304 13305 static void __init perf_event_init_all_cpus(void) 13306 { 13307 struct swevent_htable *swhash; 13308 int cpu; 13309 13310 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13311 13312 for_each_possible_cpu(cpu) { 13313 swhash = &per_cpu(swevent_htable, cpu); 13314 mutex_init(&swhash->hlist_mutex); 13315 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13316 13317 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13318 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13319 13320 #ifdef CONFIG_CGROUP_PERF 13321 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13322 #endif 13323 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13324 } 13325 } 13326 13327 static void perf_swevent_init_cpu(unsigned int cpu) 13328 { 13329 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13330 13331 mutex_lock(&swhash->hlist_mutex); 13332 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13333 struct swevent_hlist *hlist; 13334 13335 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13336 WARN_ON(!hlist); 13337 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13338 } 13339 mutex_unlock(&swhash->hlist_mutex); 13340 } 13341 13342 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13343 static void __perf_event_exit_context(void *__info) 13344 { 13345 struct perf_event_context *ctx = __info; 13346 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13347 struct perf_event *event; 13348 13349 raw_spin_lock(&ctx->lock); 13350 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13351 list_for_each_entry(event, &ctx->event_list, event_entry) 13352 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13353 raw_spin_unlock(&ctx->lock); 13354 } 13355 13356 static void perf_event_exit_cpu_context(int cpu) 13357 { 13358 struct perf_cpu_context *cpuctx; 13359 struct perf_event_context *ctx; 13360 struct pmu *pmu; 13361 13362 mutex_lock(&pmus_lock); 13363 list_for_each_entry(pmu, &pmus, entry) { 13364 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13365 ctx = &cpuctx->ctx; 13366 13367 mutex_lock(&ctx->mutex); 13368 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13369 cpuctx->online = 0; 13370 mutex_unlock(&ctx->mutex); 13371 } 13372 cpumask_clear_cpu(cpu, perf_online_mask); 13373 mutex_unlock(&pmus_lock); 13374 } 13375 #else 13376 13377 static void perf_event_exit_cpu_context(int cpu) { } 13378 13379 #endif 13380 13381 int perf_event_init_cpu(unsigned int cpu) 13382 { 13383 struct perf_cpu_context *cpuctx; 13384 struct perf_event_context *ctx; 13385 struct pmu *pmu; 13386 13387 perf_swevent_init_cpu(cpu); 13388 13389 mutex_lock(&pmus_lock); 13390 cpumask_set_cpu(cpu, perf_online_mask); 13391 list_for_each_entry(pmu, &pmus, entry) { 13392 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13393 ctx = &cpuctx->ctx; 13394 13395 mutex_lock(&ctx->mutex); 13396 cpuctx->online = 1; 13397 mutex_unlock(&ctx->mutex); 13398 } 13399 mutex_unlock(&pmus_lock); 13400 13401 return 0; 13402 } 13403 13404 int perf_event_exit_cpu(unsigned int cpu) 13405 { 13406 perf_event_exit_cpu_context(cpu); 13407 return 0; 13408 } 13409 13410 static int 13411 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13412 { 13413 int cpu; 13414 13415 for_each_online_cpu(cpu) 13416 perf_event_exit_cpu(cpu); 13417 13418 return NOTIFY_OK; 13419 } 13420 13421 /* 13422 * Run the perf reboot notifier at the very last possible moment so that 13423 * the generic watchdog code runs as long as possible. 13424 */ 13425 static struct notifier_block perf_reboot_notifier = { 13426 .notifier_call = perf_reboot, 13427 .priority = INT_MIN, 13428 }; 13429 13430 void __init perf_event_init(void) 13431 { 13432 int ret; 13433 13434 idr_init(&pmu_idr); 13435 13436 perf_event_init_all_cpus(); 13437 init_srcu_struct(&pmus_srcu); 13438 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13439 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13440 perf_pmu_register(&perf_task_clock, NULL, -1); 13441 perf_tp_register(); 13442 perf_event_init_cpu(smp_processor_id()); 13443 register_reboot_notifier(&perf_reboot_notifier); 13444 13445 ret = init_hw_breakpoint(); 13446 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13447 13448 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13449 13450 /* 13451 * Build time assertion that we keep the data_head at the intended 13452 * location. IOW, validation we got the __reserved[] size right. 13453 */ 13454 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13455 != 1024); 13456 } 13457 13458 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13459 char *page) 13460 { 13461 struct perf_pmu_events_attr *pmu_attr = 13462 container_of(attr, struct perf_pmu_events_attr, attr); 13463 13464 if (pmu_attr->event_str) 13465 return sprintf(page, "%s\n", pmu_attr->event_str); 13466 13467 return 0; 13468 } 13469 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13470 13471 static int __init perf_event_sysfs_init(void) 13472 { 13473 struct pmu *pmu; 13474 int ret; 13475 13476 mutex_lock(&pmus_lock); 13477 13478 ret = bus_register(&pmu_bus); 13479 if (ret) 13480 goto unlock; 13481 13482 list_for_each_entry(pmu, &pmus, entry) { 13483 if (!pmu->name || pmu->type < 0) 13484 continue; 13485 13486 ret = pmu_dev_alloc(pmu); 13487 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13488 } 13489 pmu_bus_running = 1; 13490 ret = 0; 13491 13492 unlock: 13493 mutex_unlock(&pmus_lock); 13494 13495 return ret; 13496 } 13497 device_initcall(perf_event_sysfs_init); 13498 13499 #ifdef CONFIG_CGROUP_PERF 13500 static struct cgroup_subsys_state * 13501 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13502 { 13503 struct perf_cgroup *jc; 13504 13505 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13506 if (!jc) 13507 return ERR_PTR(-ENOMEM); 13508 13509 jc->info = alloc_percpu(struct perf_cgroup_info); 13510 if (!jc->info) { 13511 kfree(jc); 13512 return ERR_PTR(-ENOMEM); 13513 } 13514 13515 return &jc->css; 13516 } 13517 13518 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13519 { 13520 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13521 13522 free_percpu(jc->info); 13523 kfree(jc); 13524 } 13525 13526 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13527 { 13528 perf_event_cgroup(css->cgroup); 13529 return 0; 13530 } 13531 13532 static int __perf_cgroup_move(void *info) 13533 { 13534 struct task_struct *task = info; 13535 rcu_read_lock(); 13536 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13537 rcu_read_unlock(); 13538 return 0; 13539 } 13540 13541 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13542 { 13543 struct task_struct *task; 13544 struct cgroup_subsys_state *css; 13545 13546 cgroup_taskset_for_each(task, css, tset) 13547 task_function_call(task, __perf_cgroup_move, task); 13548 } 13549 13550 struct cgroup_subsys perf_event_cgrp_subsys = { 13551 .css_alloc = perf_cgroup_css_alloc, 13552 .css_free = perf_cgroup_css_free, 13553 .css_online = perf_cgroup_css_online, 13554 .attach = perf_cgroup_attach, 13555 /* 13556 * Implicitly enable on dfl hierarchy so that perf events can 13557 * always be filtered by cgroup2 path as long as perf_event 13558 * controller is not mounted on a legacy hierarchy. 13559 */ 13560 .implicit_on_dfl = true, 13561 .threaded = true, 13562 }; 13563 #endif /* CONFIG_CGROUP_PERF */ 13564 13565 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13566