xref: /linux/kernel/events/core.c (revision 1f8d99de1d1b4b3764203ae02db57041475dab84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 	struct perf_cgroup *cgrp;
785 
786 	/*
787 	 * ensure we access cgroup data only when needed and
788 	 * when we know the cgroup is pinned (css_get)
789 	 */
790 	if (!is_cgroup_event(event))
791 		return;
792 
793 	cgrp = perf_cgroup_from_task(current, event->ctx);
794 	/*
795 	 * Do not update time when cgroup is not active
796 	 */
797 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798 		info = this_cpu_ptr(event->cgrp->info);
799 		__update_cgrp_time(info, perf_clock(), true);
800 	}
801 }
802 
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805 			  struct perf_event_context *ctx)
806 {
807 	struct perf_cgroup *cgrp;
808 	struct perf_cgroup_info *info;
809 	struct cgroup_subsys_state *css;
810 
811 	/*
812 	 * ctx->lock held by caller
813 	 * ensure we do not access cgroup data
814 	 * unless we have the cgroup pinned (css_get)
815 	 */
816 	if (!task || !ctx->nr_cgroups)
817 		return;
818 
819 	cgrp = perf_cgroup_from_task(task, ctx);
820 
821 	for (css = &cgrp->css; css; css = css->parent) {
822 		cgrp = container_of(css, struct perf_cgroup, css);
823 		info = this_cpu_ptr(cgrp->info);
824 		__update_cgrp_time(info, ctx->timestamp, false);
825 		__store_release(&info->active, 1);
826 	}
827 }
828 
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830 
831 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
833 
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842 	struct perf_cpu_context *cpuctx;
843 	struct list_head *list;
844 	unsigned long flags;
845 
846 	/*
847 	 * Disable interrupts and preemption to avoid this CPU's
848 	 * cgrp_cpuctx_entry to change under us.
849 	 */
850 	local_irq_save(flags);
851 
852 	list = this_cpu_ptr(&cgrp_cpuctx_list);
853 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
854 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855 
856 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857 		perf_pmu_disable(cpuctx->ctx.pmu);
858 
859 		if (mode & PERF_CGROUP_SWOUT) {
860 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861 			/*
862 			 * must not be done before ctxswout due
863 			 * to event_filter_match() in event_sched_out()
864 			 */
865 			cpuctx->cgrp = NULL;
866 		}
867 
868 		if (mode & PERF_CGROUP_SWIN) {
869 			WARN_ON_ONCE(cpuctx->cgrp);
870 			/*
871 			 * set cgrp before ctxsw in to allow
872 			 * event_filter_match() to not have to pass
873 			 * task around
874 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
875 			 * because cgorup events are only per-cpu
876 			 */
877 			cpuctx->cgrp = perf_cgroup_from_task(task,
878 							     &cpuctx->ctx);
879 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880 		}
881 		perf_pmu_enable(cpuctx->ctx.pmu);
882 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883 	}
884 
885 	local_irq_restore(flags);
886 }
887 
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889 					 struct task_struct *next)
890 {
891 	struct perf_cgroup *cgrp1;
892 	struct perf_cgroup *cgrp2 = NULL;
893 
894 	rcu_read_lock();
895 	/*
896 	 * we come here when we know perf_cgroup_events > 0
897 	 * we do not need to pass the ctx here because we know
898 	 * we are holding the rcu lock
899 	 */
900 	cgrp1 = perf_cgroup_from_task(task, NULL);
901 	cgrp2 = perf_cgroup_from_task(next, NULL);
902 
903 	/*
904 	 * only schedule out current cgroup events if we know
905 	 * that we are switching to a different cgroup. Otherwise,
906 	 * do no touch the cgroup events.
907 	 */
908 	if (cgrp1 != cgrp2)
909 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910 
911 	rcu_read_unlock();
912 }
913 
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915 					struct task_struct *task)
916 {
917 	struct perf_cgroup *cgrp1;
918 	struct perf_cgroup *cgrp2 = NULL;
919 
920 	rcu_read_lock();
921 	/*
922 	 * we come here when we know perf_cgroup_events > 0
923 	 * we do not need to pass the ctx here because we know
924 	 * we are holding the rcu lock
925 	 */
926 	cgrp1 = perf_cgroup_from_task(task, NULL);
927 	cgrp2 = perf_cgroup_from_task(prev, NULL);
928 
929 	/*
930 	 * only need to schedule in cgroup events if we are changing
931 	 * cgroup during ctxsw. Cgroup events were not scheduled
932 	 * out of ctxsw out if that was not the case.
933 	 */
934 	if (cgrp1 != cgrp2)
935 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936 
937 	rcu_read_unlock();
938 }
939 
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941 				struct cgroup_subsys_state *css)
942 {
943 	struct perf_cpu_context *cpuctx;
944 	struct perf_event **storage;
945 	int cpu, heap_size, ret = 0;
946 
947 	/*
948 	 * Allow storage to have sufficent space for an iterator for each
949 	 * possibly nested cgroup plus an iterator for events with no cgroup.
950 	 */
951 	for (heap_size = 1; css; css = css->parent)
952 		heap_size++;
953 
954 	for_each_possible_cpu(cpu) {
955 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956 		if (heap_size <= cpuctx->heap_size)
957 			continue;
958 
959 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960 				       GFP_KERNEL, cpu_to_node(cpu));
961 		if (!storage) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		raw_spin_lock_irq(&cpuctx->ctx.lock);
967 		if (cpuctx->heap_size < heap_size) {
968 			swap(cpuctx->heap, storage);
969 			if (storage == cpuctx->heap_default)
970 				storage = NULL;
971 			cpuctx->heap_size = heap_size;
972 		}
973 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
974 
975 		kfree(storage);
976 	}
977 
978 	return ret;
979 }
980 
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982 				      struct perf_event_attr *attr,
983 				      struct perf_event *group_leader)
984 {
985 	struct perf_cgroup *cgrp;
986 	struct cgroup_subsys_state *css;
987 	struct fd f = fdget(fd);
988 	int ret = 0;
989 
990 	if (!f.file)
991 		return -EBADF;
992 
993 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
994 					 &perf_event_cgrp_subsys);
995 	if (IS_ERR(css)) {
996 		ret = PTR_ERR(css);
997 		goto out;
998 	}
999 
1000 	ret = perf_cgroup_ensure_storage(event, css);
1001 	if (ret)
1002 		goto out;
1003 
1004 	cgrp = container_of(css, struct perf_cgroup, css);
1005 	event->cgrp = cgrp;
1006 
1007 	/*
1008 	 * all events in a group must monitor
1009 	 * the same cgroup because a task belongs
1010 	 * to only one perf cgroup at a time
1011 	 */
1012 	if (group_leader && group_leader->cgrp != cgrp) {
1013 		perf_detach_cgroup(event);
1014 		ret = -EINVAL;
1015 	}
1016 out:
1017 	fdput(f);
1018 	return ret;
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	/*
1030 	 * Because cgroup events are always per-cpu events,
1031 	 * @ctx == &cpuctx->ctx.
1032 	 */
1033 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034 
1035 	/*
1036 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037 	 * matching the event's cgroup, we must do this for every new event,
1038 	 * because if the first would mismatch, the second would not try again
1039 	 * and we would leave cpuctx->cgrp unset.
1040 	 */
1041 	if (ctx->is_active && !cpuctx->cgrp) {
1042 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043 
1044 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045 			cpuctx->cgrp = cgrp;
1046 	}
1047 
1048 	if (ctx->nr_cgroups++)
1049 		return;
1050 
1051 	list_add(&cpuctx->cgrp_cpuctx_entry,
1052 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054 
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058 	struct perf_cpu_context *cpuctx;
1059 
1060 	if (!is_cgroup_event(event))
1061 		return;
1062 
1063 	/*
1064 	 * Because cgroup events are always per-cpu events,
1065 	 * @ctx == &cpuctx->ctx.
1066 	 */
1067 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068 
1069 	if (--ctx->nr_cgroups)
1070 		return;
1071 
1072 	if (ctx->is_active && cpuctx->cgrp)
1073 		cpuctx->cgrp = NULL;
1074 
1075 	list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077 
1078 #else /* !CONFIG_CGROUP_PERF */
1079 
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083 	return true;
1084 }
1085 
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088 
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091 	return 0;
1092 }
1093 
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097 
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099 						bool final)
1100 {
1101 }
1102 
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104 					 struct task_struct *next)
1105 {
1106 }
1107 
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109 					struct task_struct *task)
1110 {
1111 }
1112 
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122 			  struct perf_event_context *ctx)
1123 {
1124 }
1125 
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151 
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162 	struct perf_cpu_context *cpuctx;
1163 	bool rotations;
1164 
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168 	rotations = perf_rotate_context(cpuctx);
1169 
1170 	raw_spin_lock(&cpuctx->hrtimer_lock);
1171 	if (rotations)
1172 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173 	else
1174 		cpuctx->hrtimer_active = 0;
1175 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1176 
1177 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179 
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182 	struct hrtimer *timer = &cpuctx->hrtimer;
1183 	struct pmu *pmu = cpuctx->ctx.pmu;
1184 	u64 interval;
1185 
1186 	/* no multiplexing needed for SW PMU */
1187 	if (pmu->task_ctx_nr == perf_sw_context)
1188 		return;
1189 
1190 	/*
1191 	 * check default is sane, if not set then force to
1192 	 * default interval (1/tick)
1193 	 */
1194 	interval = pmu->hrtimer_interval_ms;
1195 	if (interval < 1)
1196 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197 
1198 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199 
1200 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202 	timer->function = perf_mux_hrtimer_handler;
1203 }
1204 
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207 	struct hrtimer *timer = &cpuctx->hrtimer;
1208 	struct pmu *pmu = cpuctx->ctx.pmu;
1209 	unsigned long flags;
1210 
1211 	/* not for SW PMU */
1212 	if (pmu->task_ctx_nr == perf_sw_context)
1213 		return 0;
1214 
1215 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216 	if (!cpuctx->hrtimer_active) {
1217 		cpuctx->hrtimer_active = 1;
1218 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220 	}
1221 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222 
1223 	return 0;
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241 
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251 
1252 	lockdep_assert_irqs_disabled();
1253 
1254 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1255 
1256 	list_add(&ctx->active_ctx_list, head);
1257 }
1258 
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261 	lockdep_assert_irqs_disabled();
1262 
1263 	WARN_ON(list_empty(&ctx->active_ctx_list));
1264 
1265 	list_del_init(&ctx->active_ctx_list);
1266 }
1267 
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270 	refcount_inc(&ctx->refcount);
1271 }
1272 
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275 	if (pmu->task_ctx_cache)
1276 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277 
1278 	return NULL;
1279 }
1280 
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283 	if (pmu->task_ctx_cache && task_ctx_data)
1284 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286 
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289 	struct perf_event_context *ctx;
1290 
1291 	ctx = container_of(head, struct perf_event_context, rcu_head);
1292 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293 	kfree(ctx);
1294 }
1295 
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298 	if (refcount_dec_and_test(&ctx->refcount)) {
1299 		if (ctx->parent_ctx)
1300 			put_ctx(ctx->parent_ctx);
1301 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302 			put_task_struct(ctx->task);
1303 		call_rcu(&ctx->rcu_head, free_ctx);
1304 	}
1305 }
1306 
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()	[ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()			[ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()		[ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event()	[ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *	task_struct::perf_event_mutex
1362  *	  perf_event_context::mutex
1363  *	    perf_event::child_mutex;
1364  *	      perf_event_context::lock
1365  *	    perf_event::mmap_mutex
1366  *	    mmap_lock
1367  *	      perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *	  cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376 	struct perf_event_context *ctx;
1377 
1378 again:
1379 	rcu_read_lock();
1380 	ctx = READ_ONCE(event->ctx);
1381 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1382 		rcu_read_unlock();
1383 		goto again;
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	mutex_lock_nested(&ctx->mutex, nesting);
1388 	if (event->ctx != ctx) {
1389 		mutex_unlock(&ctx->mutex);
1390 		put_ctx(ctx);
1391 		goto again;
1392 	}
1393 
1394 	return ctx;
1395 }
1396 
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400 	return perf_event_ctx_lock_nested(event, 0);
1401 }
1402 
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404 				  struct perf_event_context *ctx)
1405 {
1406 	mutex_unlock(&ctx->mutex);
1407 	put_ctx(ctx);
1408 }
1409 
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419 
1420 	lockdep_assert_held(&ctx->lock);
1421 
1422 	if (parent_ctx)
1423 		ctx->parent_ctx = NULL;
1424 	ctx->generation++;
1425 
1426 	return parent_ctx;
1427 }
1428 
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430 				enum pid_type type)
1431 {
1432 	u32 nr;
1433 	/*
1434 	 * only top level events have the pid namespace they were created in
1435 	 */
1436 	if (event->parent)
1437 		event = event->parent;
1438 
1439 	nr = __task_pid_nr_ns(p, type, event->ns);
1440 	/* avoid -1 if it is idle thread or runs in another ns */
1441 	if (!nr && !pid_alive(p))
1442 		nr = -1;
1443 	return nr;
1444 }
1445 
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450 
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455 
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462 	u64 id = event->id;
1463 
1464 	if (event->parent)
1465 		id = event->parent->id;
1466 
1467 	return id;
1468 }
1469 
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479 	struct perf_event_context *ctx;
1480 
1481 retry:
1482 	/*
1483 	 * One of the few rules of preemptible RCU is that one cannot do
1484 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485 	 * part of the read side critical section was irqs-enabled -- see
1486 	 * rcu_read_unlock_special().
1487 	 *
1488 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1489 	 * side critical section has interrupts disabled.
1490 	 */
1491 	local_irq_save(*flags);
1492 	rcu_read_lock();
1493 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494 	if (ctx) {
1495 		/*
1496 		 * If this context is a clone of another, it might
1497 		 * get swapped for another underneath us by
1498 		 * perf_event_task_sched_out, though the
1499 		 * rcu_read_lock() protects us from any context
1500 		 * getting freed.  Lock the context and check if it
1501 		 * got swapped before we could get the lock, and retry
1502 		 * if so.  If we locked the right context, then it
1503 		 * can't get swapped on us any more.
1504 		 */
1505 		raw_spin_lock(&ctx->lock);
1506 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			rcu_read_unlock();
1509 			local_irq_restore(*flags);
1510 			goto retry;
1511 		}
1512 
1513 		if (ctx->task == TASK_TOMBSTONE ||
1514 		    !refcount_inc_not_zero(&ctx->refcount)) {
1515 			raw_spin_unlock(&ctx->lock);
1516 			ctx = NULL;
1517 		} else {
1518 			WARN_ON_ONCE(ctx->task != task);
1519 		}
1520 	}
1521 	rcu_read_unlock();
1522 	if (!ctx)
1523 		local_irq_restore(*flags);
1524 	return ctx;
1525 }
1526 
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535 	struct perf_event_context *ctx;
1536 	unsigned long flags;
1537 
1538 	ctx = perf_lock_task_context(task, ctxn, &flags);
1539 	if (ctx) {
1540 		++ctx->pin_count;
1541 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542 	}
1543 	return ctx;
1544 }
1545 
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548 	unsigned long flags;
1549 
1550 	raw_spin_lock_irqsave(&ctx->lock, flags);
1551 	--ctx->pin_count;
1552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554 
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560 	u64 now = perf_clock();
1561 
1562 	if (adv)
1563 		ctx->time += now - ctx->timestamp;
1564 	ctx->timestamp = now;
1565 
1566 	/*
1567 	 * The above: time' = time + (now - timestamp), can be re-arranged
1568 	 * into: time` = now + (time - timestamp), which gives a single value
1569 	 * offset to compute future time without locks on.
1570 	 *
1571 	 * See perf_event_time_now(), which can be used from NMI context where
1572 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1573 	 * both the above values in a consistent manner.
1574 	 */
1575 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577 
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580 	__update_context_time(ctx, true);
1581 }
1582 
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585 	struct perf_event_context *ctx = event->ctx;
1586 
1587 	if (unlikely(!ctx))
1588 		return 0;
1589 
1590 	if (is_cgroup_event(event))
1591 		return perf_cgroup_event_time(event);
1592 
1593 	return ctx->time;
1594 }
1595 
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598 	struct perf_event_context *ctx = event->ctx;
1599 
1600 	if (unlikely(!ctx))
1601 		return 0;
1602 
1603 	if (is_cgroup_event(event))
1604 		return perf_cgroup_event_time_now(event, now);
1605 
1606 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607 		return ctx->time;
1608 
1609 	now += READ_ONCE(ctx->timeoffset);
1610 	return now;
1611 }
1612 
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615 	struct perf_event_context *ctx = event->ctx;
1616 	enum event_type_t event_type;
1617 
1618 	lockdep_assert_held(&ctx->lock);
1619 
1620 	/*
1621 	 * It's 'group type', really, because if our group leader is
1622 	 * pinned, so are we.
1623 	 */
1624 	if (event->group_leader != event)
1625 		event = event->group_leader;
1626 
1627 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628 	if (!ctx->task)
1629 		event_type |= EVENT_CPU;
1630 
1631 	return event_type;
1632 }
1633 
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639 	RB_CLEAR_NODE(&event->group_node);
1640 	event->group_index = 0;
1641 }
1642 
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	if (event->attr.pinned)
1651 		return &ctx->pinned_groups;
1652 	else
1653 		return &ctx->flexible_groups;
1654 }
1655 
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661 	groups->tree = RB_ROOT;
1662 	groups->index = 0;
1663 }
1664 
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667 	struct cgroup *cgroup = NULL;
1668 
1669 #ifdef CONFIG_CGROUP_PERF
1670 	if (event->cgrp)
1671 		cgroup = event->cgrp->css.cgroup;
1672 #endif
1673 
1674 	return cgroup;
1675 }
1676 
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685 		      const u64 left_group_index, const struct perf_event *right)
1686 {
1687 	if (left_cpu < right->cpu)
1688 		return -1;
1689 	if (left_cpu > right->cpu)
1690 		return 1;
1691 
1692 #ifdef CONFIG_CGROUP_PERF
1693 	{
1694 		const struct cgroup *right_cgroup = event_cgroup(right);
1695 
1696 		if (left_cgroup != right_cgroup) {
1697 			if (!left_cgroup) {
1698 				/*
1699 				 * Left has no cgroup but right does, no
1700 				 * cgroups come first.
1701 				 */
1702 				return -1;
1703 			}
1704 			if (!right_cgroup) {
1705 				/*
1706 				 * Right has no cgroup but left does, no
1707 				 * cgroups come first.
1708 				 */
1709 				return 1;
1710 			}
1711 			/* Two dissimilar cgroups, order by id. */
1712 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713 				return -1;
1714 
1715 			return 1;
1716 		}
1717 	}
1718 #endif
1719 
1720 	if (left_group_index < right->group_index)
1721 		return -1;
1722 	if (left_group_index > right->group_index)
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 #define __node_2_pe(node) \
1729 	rb_entry((node), struct perf_event, group_node)
1730 
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733 	struct perf_event *e = __node_2_pe(a);
1734 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735 				     __node_2_pe(b)) < 0;
1736 }
1737 
1738 struct __group_key {
1739 	int cpu;
1740 	struct cgroup *cgroup;
1741 };
1742 
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745 	const struct __group_key *a = key;
1746 	const struct perf_event *b = __node_2_pe(node);
1747 
1748 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751 
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759 			 struct perf_event *event)
1760 {
1761 	event->group_index = ++groups->index;
1762 
1763 	rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765 
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772 	struct perf_event_groups *groups;
1773 
1774 	groups = get_event_groups(event, ctx);
1775 	perf_event_groups_insert(groups, event);
1776 }
1777 
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783 			 struct perf_event *event)
1784 {
1785 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786 		     RB_EMPTY_ROOT(&groups->tree));
1787 
1788 	rb_erase(&event->group_node, &groups->tree);
1789 	init_event_group(event);
1790 }
1791 
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798 	struct perf_event_groups *groups;
1799 
1800 	groups = get_event_groups(event, ctx);
1801 	perf_event_groups_delete(groups, event);
1802 }
1803 
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809 			struct cgroup *cgrp)
1810 {
1811 	struct __group_key key = {
1812 		.cpu = cpu,
1813 		.cgroup = cgrp,
1814 	};
1815 	struct rb_node *node;
1816 
1817 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1818 	if (node)
1819 		return __node_2_pe(node);
1820 
1821 	return NULL;
1822 }
1823 
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830 	struct __group_key key = {
1831 		.cpu = event->cpu,
1832 		.cgroup = event_cgroup(event),
1833 	};
1834 	struct rb_node *next;
1835 
1836 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1837 	if (next)
1838 		return __node_2_pe(next);
1839 
1840 	return NULL;
1841 }
1842 
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)			\
1847 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1848 				typeof(*event), group_node); event;	\
1849 		event = rb_entry_safe(rb_next(&event->group_node),	\
1850 				typeof(*event), group_node))
1851 
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862 	event->attach_state |= PERF_ATTACH_CONTEXT;
1863 
1864 	event->tstamp = perf_event_time(event);
1865 
1866 	/*
1867 	 * If we're a stand alone event or group leader, we go to the context
1868 	 * list, group events are kept attached to the group so that
1869 	 * perf_group_detach can, at all times, locate all siblings.
1870 	 */
1871 	if (event->group_leader == event) {
1872 		event->group_caps = event->event_caps;
1873 		add_event_to_groups(event, ctx);
1874 	}
1875 
1876 	list_add_rcu(&event->event_entry, &ctx->event_list);
1877 	ctx->nr_events++;
1878 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879 		ctx->nr_user++;
1880 	if (event->attr.inherit_stat)
1881 		ctx->nr_stat++;
1882 
1883 	if (event->state > PERF_EVENT_STATE_OFF)
1884 		perf_cgroup_event_enable(event, ctx);
1885 
1886 	ctx->generation++;
1887 }
1888 
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895 					      PERF_EVENT_STATE_INACTIVE;
1896 }
1897 
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900 	int entry = sizeof(u64); /* value */
1901 	int size = 0;
1902 	int nr = 1;
1903 
1904 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905 		size += sizeof(u64);
1906 
1907 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908 		size += sizeof(u64);
1909 
1910 	if (event->attr.read_format & PERF_FORMAT_ID)
1911 		entry += sizeof(u64);
1912 
1913 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914 		nr += nr_siblings;
1915 		size += sizeof(u64);
1916 	}
1917 
1918 	size += entry * nr;
1919 	event->read_size = size;
1920 }
1921 
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924 	struct perf_sample_data *data;
1925 	u16 size = 0;
1926 
1927 	if (sample_type & PERF_SAMPLE_IP)
1928 		size += sizeof(data->ip);
1929 
1930 	if (sample_type & PERF_SAMPLE_ADDR)
1931 		size += sizeof(data->addr);
1932 
1933 	if (sample_type & PERF_SAMPLE_PERIOD)
1934 		size += sizeof(data->period);
1935 
1936 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937 		size += sizeof(data->weight.full);
1938 
1939 	if (sample_type & PERF_SAMPLE_READ)
1940 		size += event->read_size;
1941 
1942 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1943 		size += sizeof(data->data_src.val);
1944 
1945 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1946 		size += sizeof(data->txn);
1947 
1948 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949 		size += sizeof(data->phys_addr);
1950 
1951 	if (sample_type & PERF_SAMPLE_CGROUP)
1952 		size += sizeof(data->cgroup);
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955 		size += sizeof(data->data_page_size);
1956 
1957 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958 		size += sizeof(data->code_page_size);
1959 
1960 	event->header_size = size;
1961 }
1962 
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969 	__perf_event_read_size(event,
1970 			       event->group_leader->nr_siblings);
1971 	__perf_event_header_size(event, event->attr.sample_type);
1972 }
1973 
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976 	struct perf_sample_data *data;
1977 	u64 sample_type = event->attr.sample_type;
1978 	u16 size = 0;
1979 
1980 	if (sample_type & PERF_SAMPLE_TID)
1981 		size += sizeof(data->tid_entry);
1982 
1983 	if (sample_type & PERF_SAMPLE_TIME)
1984 		size += sizeof(data->time);
1985 
1986 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987 		size += sizeof(data->id);
1988 
1989 	if (sample_type & PERF_SAMPLE_ID)
1990 		size += sizeof(data->id);
1991 
1992 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1993 		size += sizeof(data->stream_id);
1994 
1995 	if (sample_type & PERF_SAMPLE_CPU)
1996 		size += sizeof(data->cpu_entry);
1997 
1998 	event->id_header_size = size;
1999 }
2000 
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003 	/*
2004 	 * The values computed here will be over-written when we actually
2005 	 * attach the event.
2006 	 */
2007 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009 	perf_event__id_header_size(event);
2010 
2011 	/*
2012 	 * Sum the lot; should not exceed the 64k limit we have on records.
2013 	 * Conservative limit to allow for callchains and other variable fields.
2014 	 */
2015 	if (event->read_size + event->header_size +
2016 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017 		return false;
2018 
2019 	return true;
2020 }
2021 
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024 	struct perf_event *group_leader = event->group_leader, *pos;
2025 
2026 	lockdep_assert_held(&event->ctx->lock);
2027 
2028 	/*
2029 	 * We can have double attach due to group movement in perf_event_open.
2030 	 */
2031 	if (event->attach_state & PERF_ATTACH_GROUP)
2032 		return;
2033 
2034 	event->attach_state |= PERF_ATTACH_GROUP;
2035 
2036 	if (group_leader == event)
2037 		return;
2038 
2039 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040 
2041 	group_leader->group_caps &= event->event_caps;
2042 
2043 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044 	group_leader->nr_siblings++;
2045 
2046 	perf_event__header_size(group_leader);
2047 
2048 	for_each_sibling_event(pos, group_leader)
2049 		perf_event__header_size(pos);
2050 }
2051 
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059 	WARN_ON_ONCE(event->ctx != ctx);
2060 	lockdep_assert_held(&ctx->lock);
2061 
2062 	/*
2063 	 * We can have double detach due to exit/hot-unplug + close.
2064 	 */
2065 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066 		return;
2067 
2068 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069 
2070 	ctx->nr_events--;
2071 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072 		ctx->nr_user--;
2073 	if (event->attr.inherit_stat)
2074 		ctx->nr_stat--;
2075 
2076 	list_del_rcu(&event->event_entry);
2077 
2078 	if (event->group_leader == event)
2079 		del_event_from_groups(event, ctx);
2080 
2081 	/*
2082 	 * If event was in error state, then keep it
2083 	 * that way, otherwise bogus counts will be
2084 	 * returned on read(). The only way to get out
2085 	 * of error state is by explicit re-enabling
2086 	 * of the event
2087 	 */
2088 	if (event->state > PERF_EVENT_STATE_OFF) {
2089 		perf_cgroup_event_disable(event, ctx);
2090 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091 	}
2092 
2093 	ctx->generation++;
2094 }
2095 
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099 	if (!has_aux(aux_event))
2100 		return 0;
2101 
2102 	if (!event->pmu->aux_output_match)
2103 		return 0;
2104 
2105 	return event->pmu->aux_output_match(aux_event);
2106 }
2107 
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110 			    struct perf_cpu_context *cpuctx,
2111 			    struct perf_event_context *ctx);
2112 
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115 	struct perf_event_context *ctx = event->ctx;
2116 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117 	struct perf_event *iter;
2118 
2119 	/*
2120 	 * If event uses aux_event tear down the link
2121 	 */
2122 	if (event->aux_event) {
2123 		iter = event->aux_event;
2124 		event->aux_event = NULL;
2125 		put_event(iter);
2126 		return;
2127 	}
2128 
2129 	/*
2130 	 * If the event is an aux_event, tear down all links to
2131 	 * it from other events.
2132 	 */
2133 	for_each_sibling_event(iter, event->group_leader) {
2134 		if (iter->aux_event != event)
2135 			continue;
2136 
2137 		iter->aux_event = NULL;
2138 		put_event(event);
2139 
2140 		/*
2141 		 * If it's ACTIVE, schedule it out and put it into ERROR
2142 		 * state so that we don't try to schedule it again. Note
2143 		 * that perf_event_enable() will clear the ERROR status.
2144 		 */
2145 		event_sched_out(iter, cpuctx, ctx);
2146 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147 	}
2148 }
2149 
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154 
2155 static int perf_get_aux_event(struct perf_event *event,
2156 			      struct perf_event *group_leader)
2157 {
2158 	/*
2159 	 * Our group leader must be an aux event if we want to be
2160 	 * an aux_output. This way, the aux event will precede its
2161 	 * aux_output events in the group, and therefore will always
2162 	 * schedule first.
2163 	 */
2164 	if (!group_leader)
2165 		return 0;
2166 
2167 	/*
2168 	 * aux_output and aux_sample_size are mutually exclusive.
2169 	 */
2170 	if (event->attr.aux_output && event->attr.aux_sample_size)
2171 		return 0;
2172 
2173 	if (event->attr.aux_output &&
2174 	    !perf_aux_output_match(event, group_leader))
2175 		return 0;
2176 
2177 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178 		return 0;
2179 
2180 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181 		return 0;
2182 
2183 	/*
2184 	 * Link aux_outputs to their aux event; this is undone in
2185 	 * perf_group_detach() by perf_put_aux_event(). When the
2186 	 * group in torn down, the aux_output events loose their
2187 	 * link to the aux_event and can't schedule any more.
2188 	 */
2189 	event->aux_event = group_leader;
2190 
2191 	return 1;
2192 }
2193 
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196 	struct perf_event_context *ctx = event->ctx;
2197 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199 
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208 	struct perf_event_context *ctx = event->ctx;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 
2211 	event_sched_out(event, cpuctx, ctx);
2212 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214 
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217 	struct perf_event *leader = event->group_leader;
2218 	struct perf_event *sibling, *tmp;
2219 	struct perf_event_context *ctx = event->ctx;
2220 
2221 	lockdep_assert_held(&ctx->lock);
2222 
2223 	/*
2224 	 * We can have double detach due to exit/hot-unplug + close.
2225 	 */
2226 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2227 		return;
2228 
2229 	event->attach_state &= ~PERF_ATTACH_GROUP;
2230 
2231 	perf_put_aux_event(event);
2232 
2233 	/*
2234 	 * If this is a sibling, remove it from its group.
2235 	 */
2236 	if (leader != event) {
2237 		list_del_init(&event->sibling_list);
2238 		event->group_leader->nr_siblings--;
2239 		goto out;
2240 	}
2241 
2242 	/*
2243 	 * If this was a group event with sibling events then
2244 	 * upgrade the siblings to singleton events by adding them
2245 	 * to whatever list we are on.
2246 	 */
2247 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248 
2249 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250 			perf_remove_sibling_event(sibling);
2251 
2252 		sibling->group_leader = sibling;
2253 		list_del_init(&sibling->sibling_list);
2254 
2255 		/* Inherit group flags from the previous leader */
2256 		sibling->group_caps = event->group_caps;
2257 
2258 		if (!RB_EMPTY_NODE(&event->group_node)) {
2259 			add_event_to_groups(sibling, event->ctx);
2260 
2261 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2263 		}
2264 
2265 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2266 	}
2267 
2268 out:
2269 	for_each_sibling_event(tmp, leader)
2270 		perf_event__header_size(tmp);
2271 
2272 	perf_event__header_size(leader);
2273 }
2274 
2275 static void sync_child_event(struct perf_event *child_event);
2276 
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279 	struct perf_event *parent_event = event->parent;
2280 
2281 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2282 		return;
2283 
2284 	event->attach_state &= ~PERF_ATTACH_CHILD;
2285 
2286 	if (WARN_ON_ONCE(!parent_event))
2287 		return;
2288 
2289 	lockdep_assert_held(&parent_event->child_mutex);
2290 
2291 	sync_child_event(event);
2292 	list_del_init(&event->child_list);
2293 }
2294 
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297 	return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299 
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302 	struct pmu *pmu = event->pmu;
2303 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305 
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314 	struct perf_event *sibling;
2315 
2316 	if (!__pmu_filter_match(event))
2317 		return 0;
2318 
2319 	for_each_sibling_event(sibling, event) {
2320 		if (!__pmu_filter_match(sibling))
2321 			return 0;
2322 	}
2323 
2324 	return 1;
2325 }
2326 
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331 	       perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333 
2334 static void
2335 event_sched_out(struct perf_event *event,
2336 		  struct perf_cpu_context *cpuctx,
2337 		  struct perf_event_context *ctx)
2338 {
2339 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340 
2341 	WARN_ON_ONCE(event->ctx != ctx);
2342 	lockdep_assert_held(&ctx->lock);
2343 
2344 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2345 		return;
2346 
2347 	/*
2348 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349 	 * we can schedule events _OUT_ individually through things like
2350 	 * __perf_remove_from_context().
2351 	 */
2352 	list_del_init(&event->active_list);
2353 
2354 	perf_pmu_disable(event->pmu);
2355 
2356 	event->pmu->del(event, 0);
2357 	event->oncpu = -1;
2358 
2359 	if (READ_ONCE(event->pending_disable) >= 0) {
2360 		WRITE_ONCE(event->pending_disable, -1);
2361 		perf_cgroup_event_disable(event, ctx);
2362 		state = PERF_EVENT_STATE_OFF;
2363 	}
2364 	perf_event_set_state(event, state);
2365 
2366 	if (!is_software_event(event))
2367 		cpuctx->active_oncpu--;
2368 	if (!--ctx->nr_active)
2369 		perf_event_ctx_deactivate(ctx);
2370 	if (event->attr.freq && event->attr.sample_freq)
2371 		ctx->nr_freq--;
2372 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2373 		cpuctx->exclusive = 0;
2374 
2375 	perf_pmu_enable(event->pmu);
2376 }
2377 
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380 		struct perf_cpu_context *cpuctx,
2381 		struct perf_event_context *ctx)
2382 {
2383 	struct perf_event *event;
2384 
2385 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386 		return;
2387 
2388 	perf_pmu_disable(ctx->pmu);
2389 
2390 	event_sched_out(group_event, cpuctx, ctx);
2391 
2392 	/*
2393 	 * Schedule out siblings (if any):
2394 	 */
2395 	for_each_sibling_event(event, group_event)
2396 		event_sched_out(event, cpuctx, ctx);
2397 
2398 	perf_pmu_enable(ctx->pmu);
2399 }
2400 
2401 #define DETACH_GROUP	0x01UL
2402 #define DETACH_CHILD	0x02UL
2403 
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412 			   struct perf_cpu_context *cpuctx,
2413 			   struct perf_event_context *ctx,
2414 			   void *info)
2415 {
2416 	unsigned long flags = (unsigned long)info;
2417 
2418 	if (ctx->is_active & EVENT_TIME) {
2419 		update_context_time(ctx);
2420 		update_cgrp_time_from_cpuctx(cpuctx, false);
2421 	}
2422 
2423 	event_sched_out(event, cpuctx, ctx);
2424 	if (flags & DETACH_GROUP)
2425 		perf_group_detach(event);
2426 	if (flags & DETACH_CHILD)
2427 		perf_child_detach(event);
2428 	list_del_event(event, ctx);
2429 
2430 	if (!ctx->nr_events && ctx->is_active) {
2431 		if (ctx == &cpuctx->ctx)
2432 			update_cgrp_time_from_cpuctx(cpuctx, true);
2433 
2434 		ctx->is_active = 0;
2435 		ctx->rotate_necessary = 0;
2436 		if (ctx->task) {
2437 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438 			cpuctx->task_ctx = NULL;
2439 		}
2440 	}
2441 }
2442 
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455 	struct perf_event_context *ctx = event->ctx;
2456 
2457 	lockdep_assert_held(&ctx->mutex);
2458 
2459 	/*
2460 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2462 	 * event_function_call() user.
2463 	 */
2464 	raw_spin_lock_irq(&ctx->lock);
2465 	if (!ctx->is_active) {
2466 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2467 					   ctx, (void *)flags);
2468 		raw_spin_unlock_irq(&ctx->lock);
2469 		return;
2470 	}
2471 	raw_spin_unlock_irq(&ctx->lock);
2472 
2473 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2474 }
2475 
2476 /*
2477  * Cross CPU call to disable a performance event
2478  */
2479 static void __perf_event_disable(struct perf_event *event,
2480 				 struct perf_cpu_context *cpuctx,
2481 				 struct perf_event_context *ctx,
2482 				 void *info)
2483 {
2484 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2485 		return;
2486 
2487 	if (ctx->is_active & EVENT_TIME) {
2488 		update_context_time(ctx);
2489 		update_cgrp_time_from_event(event);
2490 	}
2491 
2492 	if (event == event->group_leader)
2493 		group_sched_out(event, cpuctx, ctx);
2494 	else
2495 		event_sched_out(event, cpuctx, ctx);
2496 
2497 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2498 	perf_cgroup_event_disable(event, ctx);
2499 }
2500 
2501 /*
2502  * Disable an event.
2503  *
2504  * If event->ctx is a cloned context, callers must make sure that
2505  * every task struct that event->ctx->task could possibly point to
2506  * remains valid.  This condition is satisfied when called through
2507  * perf_event_for_each_child or perf_event_for_each because they
2508  * hold the top-level event's child_mutex, so any descendant that
2509  * goes to exit will block in perf_event_exit_event().
2510  *
2511  * When called from perf_pending_event it's OK because event->ctx
2512  * is the current context on this CPU and preemption is disabled,
2513  * hence we can't get into perf_event_task_sched_out for this context.
2514  */
2515 static void _perf_event_disable(struct perf_event *event)
2516 {
2517 	struct perf_event_context *ctx = event->ctx;
2518 
2519 	raw_spin_lock_irq(&ctx->lock);
2520 	if (event->state <= PERF_EVENT_STATE_OFF) {
2521 		raw_spin_unlock_irq(&ctx->lock);
2522 		return;
2523 	}
2524 	raw_spin_unlock_irq(&ctx->lock);
2525 
2526 	event_function_call(event, __perf_event_disable, NULL);
2527 }
2528 
2529 void perf_event_disable_local(struct perf_event *event)
2530 {
2531 	event_function_local(event, __perf_event_disable, NULL);
2532 }
2533 
2534 /*
2535  * Strictly speaking kernel users cannot create groups and therefore this
2536  * interface does not need the perf_event_ctx_lock() magic.
2537  */
2538 void perf_event_disable(struct perf_event *event)
2539 {
2540 	struct perf_event_context *ctx;
2541 
2542 	ctx = perf_event_ctx_lock(event);
2543 	_perf_event_disable(event);
2544 	perf_event_ctx_unlock(event, ctx);
2545 }
2546 EXPORT_SYMBOL_GPL(perf_event_disable);
2547 
2548 void perf_event_disable_inatomic(struct perf_event *event)
2549 {
2550 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2551 	/* can fail, see perf_pending_event_disable() */
2552 	irq_work_queue(&event->pending);
2553 }
2554 
2555 #define MAX_INTERRUPTS (~0ULL)
2556 
2557 static void perf_log_throttle(struct perf_event *event, int enable);
2558 static void perf_log_itrace_start(struct perf_event *event);
2559 
2560 static int
2561 event_sched_in(struct perf_event *event,
2562 		 struct perf_cpu_context *cpuctx,
2563 		 struct perf_event_context *ctx)
2564 {
2565 	int ret = 0;
2566 
2567 	WARN_ON_ONCE(event->ctx != ctx);
2568 
2569 	lockdep_assert_held(&ctx->lock);
2570 
2571 	if (event->state <= PERF_EVENT_STATE_OFF)
2572 		return 0;
2573 
2574 	WRITE_ONCE(event->oncpu, smp_processor_id());
2575 	/*
2576 	 * Order event::oncpu write to happen before the ACTIVE state is
2577 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2578 	 * ->oncpu if it sees ACTIVE.
2579 	 */
2580 	smp_wmb();
2581 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2582 
2583 	/*
2584 	 * Unthrottle events, since we scheduled we might have missed several
2585 	 * ticks already, also for a heavily scheduling task there is little
2586 	 * guarantee it'll get a tick in a timely manner.
2587 	 */
2588 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2589 		perf_log_throttle(event, 1);
2590 		event->hw.interrupts = 0;
2591 	}
2592 
2593 	perf_pmu_disable(event->pmu);
2594 
2595 	perf_log_itrace_start(event);
2596 
2597 	if (event->pmu->add(event, PERF_EF_START)) {
2598 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2599 		event->oncpu = -1;
2600 		ret = -EAGAIN;
2601 		goto out;
2602 	}
2603 
2604 	if (!is_software_event(event))
2605 		cpuctx->active_oncpu++;
2606 	if (!ctx->nr_active++)
2607 		perf_event_ctx_activate(ctx);
2608 	if (event->attr.freq && event->attr.sample_freq)
2609 		ctx->nr_freq++;
2610 
2611 	if (event->attr.exclusive)
2612 		cpuctx->exclusive = 1;
2613 
2614 out:
2615 	perf_pmu_enable(event->pmu);
2616 
2617 	return ret;
2618 }
2619 
2620 static int
2621 group_sched_in(struct perf_event *group_event,
2622 	       struct perf_cpu_context *cpuctx,
2623 	       struct perf_event_context *ctx)
2624 {
2625 	struct perf_event *event, *partial_group = NULL;
2626 	struct pmu *pmu = ctx->pmu;
2627 
2628 	if (group_event->state == PERF_EVENT_STATE_OFF)
2629 		return 0;
2630 
2631 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2632 
2633 	if (event_sched_in(group_event, cpuctx, ctx))
2634 		goto error;
2635 
2636 	/*
2637 	 * Schedule in siblings as one group (if any):
2638 	 */
2639 	for_each_sibling_event(event, group_event) {
2640 		if (event_sched_in(event, cpuctx, ctx)) {
2641 			partial_group = event;
2642 			goto group_error;
2643 		}
2644 	}
2645 
2646 	if (!pmu->commit_txn(pmu))
2647 		return 0;
2648 
2649 group_error:
2650 	/*
2651 	 * Groups can be scheduled in as one unit only, so undo any
2652 	 * partial group before returning:
2653 	 * The events up to the failed event are scheduled out normally.
2654 	 */
2655 	for_each_sibling_event(event, group_event) {
2656 		if (event == partial_group)
2657 			break;
2658 
2659 		event_sched_out(event, cpuctx, ctx);
2660 	}
2661 	event_sched_out(group_event, cpuctx, ctx);
2662 
2663 error:
2664 	pmu->cancel_txn(pmu);
2665 	return -EAGAIN;
2666 }
2667 
2668 /*
2669  * Work out whether we can put this event group on the CPU now.
2670  */
2671 static int group_can_go_on(struct perf_event *event,
2672 			   struct perf_cpu_context *cpuctx,
2673 			   int can_add_hw)
2674 {
2675 	/*
2676 	 * Groups consisting entirely of software events can always go on.
2677 	 */
2678 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2679 		return 1;
2680 	/*
2681 	 * If an exclusive group is already on, no other hardware
2682 	 * events can go on.
2683 	 */
2684 	if (cpuctx->exclusive)
2685 		return 0;
2686 	/*
2687 	 * If this group is exclusive and there are already
2688 	 * events on the CPU, it can't go on.
2689 	 */
2690 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2691 		return 0;
2692 	/*
2693 	 * Otherwise, try to add it if all previous groups were able
2694 	 * to go on.
2695 	 */
2696 	return can_add_hw;
2697 }
2698 
2699 static void add_event_to_ctx(struct perf_event *event,
2700 			       struct perf_event_context *ctx)
2701 {
2702 	list_add_event(event, ctx);
2703 	perf_group_attach(event);
2704 }
2705 
2706 static void ctx_sched_out(struct perf_event_context *ctx,
2707 			  struct perf_cpu_context *cpuctx,
2708 			  enum event_type_t event_type);
2709 static void
2710 ctx_sched_in(struct perf_event_context *ctx,
2711 	     struct perf_cpu_context *cpuctx,
2712 	     enum event_type_t event_type,
2713 	     struct task_struct *task);
2714 
2715 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 			       struct perf_event_context *ctx,
2717 			       enum event_type_t event_type)
2718 {
2719 	if (!cpuctx->task_ctx)
2720 		return;
2721 
2722 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2723 		return;
2724 
2725 	ctx_sched_out(ctx, cpuctx, event_type);
2726 }
2727 
2728 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2729 				struct perf_event_context *ctx,
2730 				struct task_struct *task)
2731 {
2732 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2733 	if (ctx)
2734 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2735 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2736 	if (ctx)
2737 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2738 }
2739 
2740 /*
2741  * We want to maintain the following priority of scheduling:
2742  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2743  *  - task pinned (EVENT_PINNED)
2744  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2745  *  - task flexible (EVENT_FLEXIBLE).
2746  *
2747  * In order to avoid unscheduling and scheduling back in everything every
2748  * time an event is added, only do it for the groups of equal priority and
2749  * below.
2750  *
2751  * This can be called after a batch operation on task events, in which case
2752  * event_type is a bit mask of the types of events involved. For CPU events,
2753  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2754  */
2755 static void ctx_resched(struct perf_cpu_context *cpuctx,
2756 			struct perf_event_context *task_ctx,
2757 			enum event_type_t event_type)
2758 {
2759 	enum event_type_t ctx_event_type;
2760 	bool cpu_event = !!(event_type & EVENT_CPU);
2761 
2762 	/*
2763 	 * If pinned groups are involved, flexible groups also need to be
2764 	 * scheduled out.
2765 	 */
2766 	if (event_type & EVENT_PINNED)
2767 		event_type |= EVENT_FLEXIBLE;
2768 
2769 	ctx_event_type = event_type & EVENT_ALL;
2770 
2771 	perf_pmu_disable(cpuctx->ctx.pmu);
2772 	if (task_ctx)
2773 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2774 
2775 	/*
2776 	 * Decide which cpu ctx groups to schedule out based on the types
2777 	 * of events that caused rescheduling:
2778 	 *  - EVENT_CPU: schedule out corresponding groups;
2779 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2780 	 *  - otherwise, do nothing more.
2781 	 */
2782 	if (cpu_event)
2783 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2784 	else if (ctx_event_type & EVENT_PINNED)
2785 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2786 
2787 	perf_event_sched_in(cpuctx, task_ctx, current);
2788 	perf_pmu_enable(cpuctx->ctx.pmu);
2789 }
2790 
2791 void perf_pmu_resched(struct pmu *pmu)
2792 {
2793 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2794 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2795 
2796 	perf_ctx_lock(cpuctx, task_ctx);
2797 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2798 	perf_ctx_unlock(cpuctx, task_ctx);
2799 }
2800 
2801 /*
2802  * Cross CPU call to install and enable a performance event
2803  *
2804  * Very similar to remote_function() + event_function() but cannot assume that
2805  * things like ctx->is_active and cpuctx->task_ctx are set.
2806  */
2807 static int  __perf_install_in_context(void *info)
2808 {
2809 	struct perf_event *event = info;
2810 	struct perf_event_context *ctx = event->ctx;
2811 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2812 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2813 	bool reprogram = true;
2814 	int ret = 0;
2815 
2816 	raw_spin_lock(&cpuctx->ctx.lock);
2817 	if (ctx->task) {
2818 		raw_spin_lock(&ctx->lock);
2819 		task_ctx = ctx;
2820 
2821 		reprogram = (ctx->task == current);
2822 
2823 		/*
2824 		 * If the task is running, it must be running on this CPU,
2825 		 * otherwise we cannot reprogram things.
2826 		 *
2827 		 * If its not running, we don't care, ctx->lock will
2828 		 * serialize against it becoming runnable.
2829 		 */
2830 		if (task_curr(ctx->task) && !reprogram) {
2831 			ret = -ESRCH;
2832 			goto unlock;
2833 		}
2834 
2835 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2836 	} else if (task_ctx) {
2837 		raw_spin_lock(&task_ctx->lock);
2838 	}
2839 
2840 #ifdef CONFIG_CGROUP_PERF
2841 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2842 		/*
2843 		 * If the current cgroup doesn't match the event's
2844 		 * cgroup, we should not try to schedule it.
2845 		 */
2846 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2847 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2848 					event->cgrp->css.cgroup);
2849 	}
2850 #endif
2851 
2852 	if (reprogram) {
2853 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2854 		add_event_to_ctx(event, ctx);
2855 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2856 	} else {
2857 		add_event_to_ctx(event, ctx);
2858 	}
2859 
2860 unlock:
2861 	perf_ctx_unlock(cpuctx, task_ctx);
2862 
2863 	return ret;
2864 }
2865 
2866 static bool exclusive_event_installable(struct perf_event *event,
2867 					struct perf_event_context *ctx);
2868 
2869 /*
2870  * Attach a performance event to a context.
2871  *
2872  * Very similar to event_function_call, see comment there.
2873  */
2874 static void
2875 perf_install_in_context(struct perf_event_context *ctx,
2876 			struct perf_event *event,
2877 			int cpu)
2878 {
2879 	struct task_struct *task = READ_ONCE(ctx->task);
2880 
2881 	lockdep_assert_held(&ctx->mutex);
2882 
2883 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2884 
2885 	if (event->cpu != -1)
2886 		event->cpu = cpu;
2887 
2888 	/*
2889 	 * Ensures that if we can observe event->ctx, both the event and ctx
2890 	 * will be 'complete'. See perf_iterate_sb_cpu().
2891 	 */
2892 	smp_store_release(&event->ctx, ctx);
2893 
2894 	/*
2895 	 * perf_event_attr::disabled events will not run and can be initialized
2896 	 * without IPI. Except when this is the first event for the context, in
2897 	 * that case we need the magic of the IPI to set ctx->is_active.
2898 	 *
2899 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2900 	 * event will issue the IPI and reprogram the hardware.
2901 	 */
2902 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2903 		raw_spin_lock_irq(&ctx->lock);
2904 		if (ctx->task == TASK_TOMBSTONE) {
2905 			raw_spin_unlock_irq(&ctx->lock);
2906 			return;
2907 		}
2908 		add_event_to_ctx(event, ctx);
2909 		raw_spin_unlock_irq(&ctx->lock);
2910 		return;
2911 	}
2912 
2913 	if (!task) {
2914 		cpu_function_call(cpu, __perf_install_in_context, event);
2915 		return;
2916 	}
2917 
2918 	/*
2919 	 * Should not happen, we validate the ctx is still alive before calling.
2920 	 */
2921 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2922 		return;
2923 
2924 	/*
2925 	 * Installing events is tricky because we cannot rely on ctx->is_active
2926 	 * to be set in case this is the nr_events 0 -> 1 transition.
2927 	 *
2928 	 * Instead we use task_curr(), which tells us if the task is running.
2929 	 * However, since we use task_curr() outside of rq::lock, we can race
2930 	 * against the actual state. This means the result can be wrong.
2931 	 *
2932 	 * If we get a false positive, we retry, this is harmless.
2933 	 *
2934 	 * If we get a false negative, things are complicated. If we are after
2935 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2936 	 * value must be correct. If we're before, it doesn't matter since
2937 	 * perf_event_context_sched_in() will program the counter.
2938 	 *
2939 	 * However, this hinges on the remote context switch having observed
2940 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2941 	 * ctx::lock in perf_event_context_sched_in().
2942 	 *
2943 	 * We do this by task_function_call(), if the IPI fails to hit the task
2944 	 * we know any future context switch of task must see the
2945 	 * perf_event_ctpx[] store.
2946 	 */
2947 
2948 	/*
2949 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2950 	 * task_cpu() load, such that if the IPI then does not find the task
2951 	 * running, a future context switch of that task must observe the
2952 	 * store.
2953 	 */
2954 	smp_mb();
2955 again:
2956 	if (!task_function_call(task, __perf_install_in_context, event))
2957 		return;
2958 
2959 	raw_spin_lock_irq(&ctx->lock);
2960 	task = ctx->task;
2961 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2962 		/*
2963 		 * Cannot happen because we already checked above (which also
2964 		 * cannot happen), and we hold ctx->mutex, which serializes us
2965 		 * against perf_event_exit_task_context().
2966 		 */
2967 		raw_spin_unlock_irq(&ctx->lock);
2968 		return;
2969 	}
2970 	/*
2971 	 * If the task is not running, ctx->lock will avoid it becoming so,
2972 	 * thus we can safely install the event.
2973 	 */
2974 	if (task_curr(task)) {
2975 		raw_spin_unlock_irq(&ctx->lock);
2976 		goto again;
2977 	}
2978 	add_event_to_ctx(event, ctx);
2979 	raw_spin_unlock_irq(&ctx->lock);
2980 }
2981 
2982 /*
2983  * Cross CPU call to enable a performance event
2984  */
2985 static void __perf_event_enable(struct perf_event *event,
2986 				struct perf_cpu_context *cpuctx,
2987 				struct perf_event_context *ctx,
2988 				void *info)
2989 {
2990 	struct perf_event *leader = event->group_leader;
2991 	struct perf_event_context *task_ctx;
2992 
2993 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2994 	    event->state <= PERF_EVENT_STATE_ERROR)
2995 		return;
2996 
2997 	if (ctx->is_active)
2998 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2999 
3000 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3001 	perf_cgroup_event_enable(event, ctx);
3002 
3003 	if (!ctx->is_active)
3004 		return;
3005 
3006 	if (!event_filter_match(event)) {
3007 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3008 		return;
3009 	}
3010 
3011 	/*
3012 	 * If the event is in a group and isn't the group leader,
3013 	 * then don't put it on unless the group is on.
3014 	 */
3015 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3016 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3017 		return;
3018 	}
3019 
3020 	task_ctx = cpuctx->task_ctx;
3021 	if (ctx->task)
3022 		WARN_ON_ONCE(task_ctx != ctx);
3023 
3024 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3025 }
3026 
3027 /*
3028  * Enable an event.
3029  *
3030  * If event->ctx is a cloned context, callers must make sure that
3031  * every task struct that event->ctx->task could possibly point to
3032  * remains valid.  This condition is satisfied when called through
3033  * perf_event_for_each_child or perf_event_for_each as described
3034  * for perf_event_disable.
3035  */
3036 static void _perf_event_enable(struct perf_event *event)
3037 {
3038 	struct perf_event_context *ctx = event->ctx;
3039 
3040 	raw_spin_lock_irq(&ctx->lock);
3041 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3042 	    event->state <  PERF_EVENT_STATE_ERROR) {
3043 out:
3044 		raw_spin_unlock_irq(&ctx->lock);
3045 		return;
3046 	}
3047 
3048 	/*
3049 	 * If the event is in error state, clear that first.
3050 	 *
3051 	 * That way, if we see the event in error state below, we know that it
3052 	 * has gone back into error state, as distinct from the task having
3053 	 * been scheduled away before the cross-call arrived.
3054 	 */
3055 	if (event->state == PERF_EVENT_STATE_ERROR) {
3056 		/*
3057 		 * Detached SIBLING events cannot leave ERROR state.
3058 		 */
3059 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3060 		    event->group_leader == event)
3061 			goto out;
3062 
3063 		event->state = PERF_EVENT_STATE_OFF;
3064 	}
3065 	raw_spin_unlock_irq(&ctx->lock);
3066 
3067 	event_function_call(event, __perf_event_enable, NULL);
3068 }
3069 
3070 /*
3071  * See perf_event_disable();
3072  */
3073 void perf_event_enable(struct perf_event *event)
3074 {
3075 	struct perf_event_context *ctx;
3076 
3077 	ctx = perf_event_ctx_lock(event);
3078 	_perf_event_enable(event);
3079 	perf_event_ctx_unlock(event, ctx);
3080 }
3081 EXPORT_SYMBOL_GPL(perf_event_enable);
3082 
3083 struct stop_event_data {
3084 	struct perf_event	*event;
3085 	unsigned int		restart;
3086 };
3087 
3088 static int __perf_event_stop(void *info)
3089 {
3090 	struct stop_event_data *sd = info;
3091 	struct perf_event *event = sd->event;
3092 
3093 	/* if it's already INACTIVE, do nothing */
3094 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095 		return 0;
3096 
3097 	/* matches smp_wmb() in event_sched_in() */
3098 	smp_rmb();
3099 
3100 	/*
3101 	 * There is a window with interrupts enabled before we get here,
3102 	 * so we need to check again lest we try to stop another CPU's event.
3103 	 */
3104 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3105 		return -EAGAIN;
3106 
3107 	event->pmu->stop(event, PERF_EF_UPDATE);
3108 
3109 	/*
3110 	 * May race with the actual stop (through perf_pmu_output_stop()),
3111 	 * but it is only used for events with AUX ring buffer, and such
3112 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3113 	 * see comments in perf_aux_output_begin().
3114 	 *
3115 	 * Since this is happening on an event-local CPU, no trace is lost
3116 	 * while restarting.
3117 	 */
3118 	if (sd->restart)
3119 		event->pmu->start(event, 0);
3120 
3121 	return 0;
3122 }
3123 
3124 static int perf_event_stop(struct perf_event *event, int restart)
3125 {
3126 	struct stop_event_data sd = {
3127 		.event		= event,
3128 		.restart	= restart,
3129 	};
3130 	int ret = 0;
3131 
3132 	do {
3133 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3134 			return 0;
3135 
3136 		/* matches smp_wmb() in event_sched_in() */
3137 		smp_rmb();
3138 
3139 		/*
3140 		 * We only want to restart ACTIVE events, so if the event goes
3141 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3142 		 * fall through with ret==-ENXIO.
3143 		 */
3144 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3145 					__perf_event_stop, &sd);
3146 	} while (ret == -EAGAIN);
3147 
3148 	return ret;
3149 }
3150 
3151 /*
3152  * In order to contain the amount of racy and tricky in the address filter
3153  * configuration management, it is a two part process:
3154  *
3155  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3156  *      we update the addresses of corresponding vmas in
3157  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3158  * (p2) when an event is scheduled in (pmu::add), it calls
3159  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3160  *      if the generation has changed since the previous call.
3161  *
3162  * If (p1) happens while the event is active, we restart it to force (p2).
3163  *
3164  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3165  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3166  *     ioctl;
3167  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3168  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3169  *     for reading;
3170  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3171  *     of exec.
3172  */
3173 void perf_event_addr_filters_sync(struct perf_event *event)
3174 {
3175 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3176 
3177 	if (!has_addr_filter(event))
3178 		return;
3179 
3180 	raw_spin_lock(&ifh->lock);
3181 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3182 		event->pmu->addr_filters_sync(event);
3183 		event->hw.addr_filters_gen = event->addr_filters_gen;
3184 	}
3185 	raw_spin_unlock(&ifh->lock);
3186 }
3187 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3188 
3189 static int _perf_event_refresh(struct perf_event *event, int refresh)
3190 {
3191 	/*
3192 	 * not supported on inherited events
3193 	 */
3194 	if (event->attr.inherit || !is_sampling_event(event))
3195 		return -EINVAL;
3196 
3197 	atomic_add(refresh, &event->event_limit);
3198 	_perf_event_enable(event);
3199 
3200 	return 0;
3201 }
3202 
3203 /*
3204  * See perf_event_disable()
3205  */
3206 int perf_event_refresh(struct perf_event *event, int refresh)
3207 {
3208 	struct perf_event_context *ctx;
3209 	int ret;
3210 
3211 	ctx = perf_event_ctx_lock(event);
3212 	ret = _perf_event_refresh(event, refresh);
3213 	perf_event_ctx_unlock(event, ctx);
3214 
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(perf_event_refresh);
3218 
3219 static int perf_event_modify_breakpoint(struct perf_event *bp,
3220 					 struct perf_event_attr *attr)
3221 {
3222 	int err;
3223 
3224 	_perf_event_disable(bp);
3225 
3226 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3227 
3228 	if (!bp->attr.disabled)
3229 		_perf_event_enable(bp);
3230 
3231 	return err;
3232 }
3233 
3234 static int perf_event_modify_attr(struct perf_event *event,
3235 				  struct perf_event_attr *attr)
3236 {
3237 	int (*func)(struct perf_event *, struct perf_event_attr *);
3238 	struct perf_event *child;
3239 	int err;
3240 
3241 	if (event->attr.type != attr->type)
3242 		return -EINVAL;
3243 
3244 	switch (event->attr.type) {
3245 	case PERF_TYPE_BREAKPOINT:
3246 		func = perf_event_modify_breakpoint;
3247 		break;
3248 	default:
3249 		/* Place holder for future additions. */
3250 		return -EOPNOTSUPP;
3251 	}
3252 
3253 	WARN_ON_ONCE(event->ctx->parent_ctx);
3254 
3255 	mutex_lock(&event->child_mutex);
3256 	err = func(event, attr);
3257 	if (err)
3258 		goto out;
3259 	list_for_each_entry(child, &event->child_list, child_list) {
3260 		err = func(child, attr);
3261 		if (err)
3262 			goto out;
3263 	}
3264 out:
3265 	mutex_unlock(&event->child_mutex);
3266 	return err;
3267 }
3268 
3269 static void ctx_sched_out(struct perf_event_context *ctx,
3270 			  struct perf_cpu_context *cpuctx,
3271 			  enum event_type_t event_type)
3272 {
3273 	struct perf_event *event, *tmp;
3274 	int is_active = ctx->is_active;
3275 
3276 	lockdep_assert_held(&ctx->lock);
3277 
3278 	if (likely(!ctx->nr_events)) {
3279 		/*
3280 		 * See __perf_remove_from_context().
3281 		 */
3282 		WARN_ON_ONCE(ctx->is_active);
3283 		if (ctx->task)
3284 			WARN_ON_ONCE(cpuctx->task_ctx);
3285 		return;
3286 	}
3287 
3288 	/*
3289 	 * Always update time if it was set; not only when it changes.
3290 	 * Otherwise we can 'forget' to update time for any but the last
3291 	 * context we sched out. For example:
3292 	 *
3293 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3294 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3295 	 *
3296 	 * would only update time for the pinned events.
3297 	 */
3298 	if (is_active & EVENT_TIME) {
3299 		/* update (and stop) ctx time */
3300 		update_context_time(ctx);
3301 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3302 		/*
3303 		 * CPU-release for the below ->is_active store,
3304 		 * see __load_acquire() in perf_event_time_now()
3305 		 */
3306 		barrier();
3307 	}
3308 
3309 	ctx->is_active &= ~event_type;
3310 	if (!(ctx->is_active & EVENT_ALL))
3311 		ctx->is_active = 0;
3312 
3313 	if (ctx->task) {
3314 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3315 		if (!ctx->is_active)
3316 			cpuctx->task_ctx = NULL;
3317 	}
3318 
3319 	is_active ^= ctx->is_active; /* changed bits */
3320 
3321 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3322 		return;
3323 
3324 	perf_pmu_disable(ctx->pmu);
3325 	if (is_active & EVENT_PINNED) {
3326 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3327 			group_sched_out(event, cpuctx, ctx);
3328 	}
3329 
3330 	if (is_active & EVENT_FLEXIBLE) {
3331 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3332 			group_sched_out(event, cpuctx, ctx);
3333 
3334 		/*
3335 		 * Since we cleared EVENT_FLEXIBLE, also clear
3336 		 * rotate_necessary, is will be reset by
3337 		 * ctx_flexible_sched_in() when needed.
3338 		 */
3339 		ctx->rotate_necessary = 0;
3340 	}
3341 	perf_pmu_enable(ctx->pmu);
3342 }
3343 
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353 			 struct perf_event_context *ctx2)
3354 {
3355 	lockdep_assert_held(&ctx1->lock);
3356 	lockdep_assert_held(&ctx2->lock);
3357 
3358 	/* Pinning disables the swap optimization */
3359 	if (ctx1->pin_count || ctx2->pin_count)
3360 		return 0;
3361 
3362 	/* If ctx1 is the parent of ctx2 */
3363 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 		return 1;
3365 
3366 	/* If ctx2 is the parent of ctx1 */
3367 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 		return 1;
3369 
3370 	/*
3371 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 	 * hierarchy, see perf_event_init_context().
3373 	 */
3374 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 			ctx1->parent_gen == ctx2->parent_gen)
3376 		return 1;
3377 
3378 	/* Unmatched */
3379 	return 0;
3380 }
3381 
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383 				     struct perf_event *next_event)
3384 {
3385 	u64 value;
3386 
3387 	if (!event->attr.inherit_stat)
3388 		return;
3389 
3390 	/*
3391 	 * Update the event value, we cannot use perf_event_read()
3392 	 * because we're in the middle of a context switch and have IRQs
3393 	 * disabled, which upsets smp_call_function_single(), however
3394 	 * we know the event must be on the current CPU, therefore we
3395 	 * don't need to use it.
3396 	 */
3397 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3398 		event->pmu->read(event);
3399 
3400 	perf_event_update_time(event);
3401 
3402 	/*
3403 	 * In order to keep per-task stats reliable we need to flip the event
3404 	 * values when we flip the contexts.
3405 	 */
3406 	value = local64_read(&next_event->count);
3407 	value = local64_xchg(&event->count, value);
3408 	local64_set(&next_event->count, value);
3409 
3410 	swap(event->total_time_enabled, next_event->total_time_enabled);
3411 	swap(event->total_time_running, next_event->total_time_running);
3412 
3413 	/*
3414 	 * Since we swizzled the values, update the user visible data too.
3415 	 */
3416 	perf_event_update_userpage(event);
3417 	perf_event_update_userpage(next_event);
3418 }
3419 
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 				   struct perf_event_context *next_ctx)
3422 {
3423 	struct perf_event *event, *next_event;
3424 
3425 	if (!ctx->nr_stat)
3426 		return;
3427 
3428 	update_context_time(ctx);
3429 
3430 	event = list_first_entry(&ctx->event_list,
3431 				   struct perf_event, event_entry);
3432 
3433 	next_event = list_first_entry(&next_ctx->event_list,
3434 					struct perf_event, event_entry);
3435 
3436 	while (&event->event_entry != &ctx->event_list &&
3437 	       &next_event->event_entry != &next_ctx->event_list) {
3438 
3439 		__perf_event_sync_stat(event, next_event);
3440 
3441 		event = list_next_entry(event, event_entry);
3442 		next_event = list_next_entry(next_event, event_entry);
3443 	}
3444 }
3445 
3446 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3447 					 struct task_struct *next)
3448 {
3449 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3450 	struct perf_event_context *next_ctx;
3451 	struct perf_event_context *parent, *next_parent;
3452 	struct perf_cpu_context *cpuctx;
3453 	int do_switch = 1;
3454 	struct pmu *pmu;
3455 
3456 	if (likely(!ctx))
3457 		return;
3458 
3459 	pmu = ctx->pmu;
3460 	cpuctx = __get_cpu_context(ctx);
3461 	if (!cpuctx->task_ctx)
3462 		return;
3463 
3464 	rcu_read_lock();
3465 	next_ctx = next->perf_event_ctxp[ctxn];
3466 	if (!next_ctx)
3467 		goto unlock;
3468 
3469 	parent = rcu_dereference(ctx->parent_ctx);
3470 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3471 
3472 	/* If neither context have a parent context; they cannot be clones. */
3473 	if (!parent && !next_parent)
3474 		goto unlock;
3475 
3476 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3477 		/*
3478 		 * Looks like the two contexts are clones, so we might be
3479 		 * able to optimize the context switch.  We lock both
3480 		 * contexts and check that they are clones under the
3481 		 * lock (including re-checking that neither has been
3482 		 * uncloned in the meantime).  It doesn't matter which
3483 		 * order we take the locks because no other cpu could
3484 		 * be trying to lock both of these tasks.
3485 		 */
3486 		raw_spin_lock(&ctx->lock);
3487 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3488 		if (context_equiv(ctx, next_ctx)) {
3489 
3490 			WRITE_ONCE(ctx->task, next);
3491 			WRITE_ONCE(next_ctx->task, task);
3492 
3493 			perf_pmu_disable(pmu);
3494 
3495 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3496 				pmu->sched_task(ctx, false);
3497 
3498 			/*
3499 			 * PMU specific parts of task perf context can require
3500 			 * additional synchronization. As an example of such
3501 			 * synchronization see implementation details of Intel
3502 			 * LBR call stack data profiling;
3503 			 */
3504 			if (pmu->swap_task_ctx)
3505 				pmu->swap_task_ctx(ctx, next_ctx);
3506 			else
3507 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3508 
3509 			perf_pmu_enable(pmu);
3510 
3511 			/*
3512 			 * RCU_INIT_POINTER here is safe because we've not
3513 			 * modified the ctx and the above modification of
3514 			 * ctx->task and ctx->task_ctx_data are immaterial
3515 			 * since those values are always verified under
3516 			 * ctx->lock which we're now holding.
3517 			 */
3518 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3519 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3520 
3521 			do_switch = 0;
3522 
3523 			perf_event_sync_stat(ctx, next_ctx);
3524 		}
3525 		raw_spin_unlock(&next_ctx->lock);
3526 		raw_spin_unlock(&ctx->lock);
3527 	}
3528 unlock:
3529 	rcu_read_unlock();
3530 
3531 	if (do_switch) {
3532 		raw_spin_lock(&ctx->lock);
3533 		perf_pmu_disable(pmu);
3534 
3535 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3536 			pmu->sched_task(ctx, false);
3537 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3538 
3539 		perf_pmu_enable(pmu);
3540 		raw_spin_unlock(&ctx->lock);
3541 	}
3542 }
3543 
3544 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3545 
3546 void perf_sched_cb_dec(struct pmu *pmu)
3547 {
3548 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3549 
3550 	this_cpu_dec(perf_sched_cb_usages);
3551 
3552 	if (!--cpuctx->sched_cb_usage)
3553 		list_del(&cpuctx->sched_cb_entry);
3554 }
3555 
3556 
3557 void perf_sched_cb_inc(struct pmu *pmu)
3558 {
3559 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3560 
3561 	if (!cpuctx->sched_cb_usage++)
3562 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3563 
3564 	this_cpu_inc(perf_sched_cb_usages);
3565 }
3566 
3567 /*
3568  * This function provides the context switch callback to the lower code
3569  * layer. It is invoked ONLY when the context switch callback is enabled.
3570  *
3571  * This callback is relevant even to per-cpu events; for example multi event
3572  * PEBS requires this to provide PID/TID information. This requires we flush
3573  * all queued PEBS records before we context switch to a new task.
3574  */
3575 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3576 {
3577 	struct pmu *pmu;
3578 
3579 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3580 
3581 	if (WARN_ON_ONCE(!pmu->sched_task))
3582 		return;
3583 
3584 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3585 	perf_pmu_disable(pmu);
3586 
3587 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3588 
3589 	perf_pmu_enable(pmu);
3590 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3591 }
3592 
3593 static void perf_pmu_sched_task(struct task_struct *prev,
3594 				struct task_struct *next,
3595 				bool sched_in)
3596 {
3597 	struct perf_cpu_context *cpuctx;
3598 
3599 	if (prev == next)
3600 		return;
3601 
3602 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3603 		/* will be handled in perf_event_context_sched_in/out */
3604 		if (cpuctx->task_ctx)
3605 			continue;
3606 
3607 		__perf_pmu_sched_task(cpuctx, sched_in);
3608 	}
3609 }
3610 
3611 static void perf_event_switch(struct task_struct *task,
3612 			      struct task_struct *next_prev, bool sched_in);
3613 
3614 #define for_each_task_context_nr(ctxn)					\
3615 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3616 
3617 /*
3618  * Called from scheduler to remove the events of the current task,
3619  * with interrupts disabled.
3620  *
3621  * We stop each event and update the event value in event->count.
3622  *
3623  * This does not protect us against NMI, but disable()
3624  * sets the disabled bit in the control field of event _before_
3625  * accessing the event control register. If a NMI hits, then it will
3626  * not restart the event.
3627  */
3628 void __perf_event_task_sched_out(struct task_struct *task,
3629 				 struct task_struct *next)
3630 {
3631 	int ctxn;
3632 
3633 	if (__this_cpu_read(perf_sched_cb_usages))
3634 		perf_pmu_sched_task(task, next, false);
3635 
3636 	if (atomic_read(&nr_switch_events))
3637 		perf_event_switch(task, next, false);
3638 
3639 	for_each_task_context_nr(ctxn)
3640 		perf_event_context_sched_out(task, ctxn, next);
3641 
3642 	/*
3643 	 * if cgroup events exist on this CPU, then we need
3644 	 * to check if we have to switch out PMU state.
3645 	 * cgroup event are system-wide mode only
3646 	 */
3647 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3648 		perf_cgroup_sched_out(task, next);
3649 }
3650 
3651 /*
3652  * Called with IRQs disabled
3653  */
3654 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3655 			      enum event_type_t event_type)
3656 {
3657 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3658 }
3659 
3660 static bool perf_less_group_idx(const void *l, const void *r)
3661 {
3662 	const struct perf_event *le = *(const struct perf_event **)l;
3663 	const struct perf_event *re = *(const struct perf_event **)r;
3664 
3665 	return le->group_index < re->group_index;
3666 }
3667 
3668 static void swap_ptr(void *l, void *r)
3669 {
3670 	void **lp = l, **rp = r;
3671 
3672 	swap(*lp, *rp);
3673 }
3674 
3675 static const struct min_heap_callbacks perf_min_heap = {
3676 	.elem_size = sizeof(struct perf_event *),
3677 	.less = perf_less_group_idx,
3678 	.swp = swap_ptr,
3679 };
3680 
3681 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3682 {
3683 	struct perf_event **itrs = heap->data;
3684 
3685 	if (event) {
3686 		itrs[heap->nr] = event;
3687 		heap->nr++;
3688 	}
3689 }
3690 
3691 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3692 				struct perf_event_groups *groups, int cpu,
3693 				int (*func)(struct perf_event *, void *),
3694 				void *data)
3695 {
3696 #ifdef CONFIG_CGROUP_PERF
3697 	struct cgroup_subsys_state *css = NULL;
3698 #endif
3699 	/* Space for per CPU and/or any CPU event iterators. */
3700 	struct perf_event *itrs[2];
3701 	struct min_heap event_heap;
3702 	struct perf_event **evt;
3703 	int ret;
3704 
3705 	if (cpuctx) {
3706 		event_heap = (struct min_heap){
3707 			.data = cpuctx->heap,
3708 			.nr = 0,
3709 			.size = cpuctx->heap_size,
3710 		};
3711 
3712 		lockdep_assert_held(&cpuctx->ctx.lock);
3713 
3714 #ifdef CONFIG_CGROUP_PERF
3715 		if (cpuctx->cgrp)
3716 			css = &cpuctx->cgrp->css;
3717 #endif
3718 	} else {
3719 		event_heap = (struct min_heap){
3720 			.data = itrs,
3721 			.nr = 0,
3722 			.size = ARRAY_SIZE(itrs),
3723 		};
3724 		/* Events not within a CPU context may be on any CPU. */
3725 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3726 	}
3727 	evt = event_heap.data;
3728 
3729 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3730 
3731 #ifdef CONFIG_CGROUP_PERF
3732 	for (; css; css = css->parent)
3733 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3734 #endif
3735 
3736 	min_heapify_all(&event_heap, &perf_min_heap);
3737 
3738 	while (event_heap.nr) {
3739 		ret = func(*evt, data);
3740 		if (ret)
3741 			return ret;
3742 
3743 		*evt = perf_event_groups_next(*evt);
3744 		if (*evt)
3745 			min_heapify(&event_heap, 0, &perf_min_heap);
3746 		else
3747 			min_heap_pop(&event_heap, &perf_min_heap);
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 /*
3754  * Because the userpage is strictly per-event (there is no concept of context,
3755  * so there cannot be a context indirection), every userpage must be updated
3756  * when context time starts :-(
3757  *
3758  * IOW, we must not miss EVENT_TIME edges.
3759  */
3760 static inline bool event_update_userpage(struct perf_event *event)
3761 {
3762 	if (likely(!atomic_read(&event->mmap_count)))
3763 		return false;
3764 
3765 	perf_event_update_time(event);
3766 	perf_event_update_userpage(event);
3767 
3768 	return true;
3769 }
3770 
3771 static inline void group_update_userpage(struct perf_event *group_event)
3772 {
3773 	struct perf_event *event;
3774 
3775 	if (!event_update_userpage(group_event))
3776 		return;
3777 
3778 	for_each_sibling_event(event, group_event)
3779 		event_update_userpage(event);
3780 }
3781 
3782 static int merge_sched_in(struct perf_event *event, void *data)
3783 {
3784 	struct perf_event_context *ctx = event->ctx;
3785 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3786 	int *can_add_hw = data;
3787 
3788 	if (event->state <= PERF_EVENT_STATE_OFF)
3789 		return 0;
3790 
3791 	if (!event_filter_match(event))
3792 		return 0;
3793 
3794 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3795 		if (!group_sched_in(event, cpuctx, ctx))
3796 			list_add_tail(&event->active_list, get_event_list(event));
3797 	}
3798 
3799 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3800 		*can_add_hw = 0;
3801 		if (event->attr.pinned) {
3802 			perf_cgroup_event_disable(event, ctx);
3803 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3804 		} else {
3805 			ctx->rotate_necessary = 1;
3806 			perf_mux_hrtimer_restart(cpuctx);
3807 			group_update_userpage(event);
3808 		}
3809 	}
3810 
3811 	return 0;
3812 }
3813 
3814 static void
3815 ctx_pinned_sched_in(struct perf_event_context *ctx,
3816 		    struct perf_cpu_context *cpuctx)
3817 {
3818 	int can_add_hw = 1;
3819 
3820 	if (ctx != &cpuctx->ctx)
3821 		cpuctx = NULL;
3822 
3823 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3824 			   smp_processor_id(),
3825 			   merge_sched_in, &can_add_hw);
3826 }
3827 
3828 static void
3829 ctx_flexible_sched_in(struct perf_event_context *ctx,
3830 		      struct perf_cpu_context *cpuctx)
3831 {
3832 	int can_add_hw = 1;
3833 
3834 	if (ctx != &cpuctx->ctx)
3835 		cpuctx = NULL;
3836 
3837 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3838 			   smp_processor_id(),
3839 			   merge_sched_in, &can_add_hw);
3840 }
3841 
3842 static void
3843 ctx_sched_in(struct perf_event_context *ctx,
3844 	     struct perf_cpu_context *cpuctx,
3845 	     enum event_type_t event_type,
3846 	     struct task_struct *task)
3847 {
3848 	int is_active = ctx->is_active;
3849 
3850 	lockdep_assert_held(&ctx->lock);
3851 
3852 	if (likely(!ctx->nr_events))
3853 		return;
3854 
3855 	if (is_active ^ EVENT_TIME) {
3856 		/* start ctx time */
3857 		__update_context_time(ctx, false);
3858 		perf_cgroup_set_timestamp(task, ctx);
3859 		/*
3860 		 * CPU-release for the below ->is_active store,
3861 		 * see __load_acquire() in perf_event_time_now()
3862 		 */
3863 		barrier();
3864 	}
3865 
3866 	ctx->is_active |= (event_type | EVENT_TIME);
3867 	if (ctx->task) {
3868 		if (!is_active)
3869 			cpuctx->task_ctx = ctx;
3870 		else
3871 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3872 	}
3873 
3874 	is_active ^= ctx->is_active; /* changed bits */
3875 
3876 	/*
3877 	 * First go through the list and put on any pinned groups
3878 	 * in order to give them the best chance of going on.
3879 	 */
3880 	if (is_active & EVENT_PINNED)
3881 		ctx_pinned_sched_in(ctx, cpuctx);
3882 
3883 	/* Then walk through the lower prio flexible groups */
3884 	if (is_active & EVENT_FLEXIBLE)
3885 		ctx_flexible_sched_in(ctx, cpuctx);
3886 }
3887 
3888 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3889 			     enum event_type_t event_type,
3890 			     struct task_struct *task)
3891 {
3892 	struct perf_event_context *ctx = &cpuctx->ctx;
3893 
3894 	ctx_sched_in(ctx, cpuctx, event_type, task);
3895 }
3896 
3897 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3898 					struct task_struct *task)
3899 {
3900 	struct perf_cpu_context *cpuctx;
3901 	struct pmu *pmu;
3902 
3903 	cpuctx = __get_cpu_context(ctx);
3904 
3905 	/*
3906 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3907 	 * different PMU, force (re)set the context,
3908 	 */
3909 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3910 
3911 	if (cpuctx->task_ctx == ctx) {
3912 		if (cpuctx->sched_cb_usage)
3913 			__perf_pmu_sched_task(cpuctx, true);
3914 		return;
3915 	}
3916 
3917 	perf_ctx_lock(cpuctx, ctx);
3918 	/*
3919 	 * We must check ctx->nr_events while holding ctx->lock, such
3920 	 * that we serialize against perf_install_in_context().
3921 	 */
3922 	if (!ctx->nr_events)
3923 		goto unlock;
3924 
3925 	perf_pmu_disable(pmu);
3926 	/*
3927 	 * We want to keep the following priority order:
3928 	 * cpu pinned (that don't need to move), task pinned,
3929 	 * cpu flexible, task flexible.
3930 	 *
3931 	 * However, if task's ctx is not carrying any pinned
3932 	 * events, no need to flip the cpuctx's events around.
3933 	 */
3934 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3935 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3936 	perf_event_sched_in(cpuctx, ctx, task);
3937 
3938 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3939 		pmu->sched_task(cpuctx->task_ctx, true);
3940 
3941 	perf_pmu_enable(pmu);
3942 
3943 unlock:
3944 	perf_ctx_unlock(cpuctx, ctx);
3945 }
3946 
3947 /*
3948  * Called from scheduler to add the events of the current task
3949  * with interrupts disabled.
3950  *
3951  * We restore the event value and then enable it.
3952  *
3953  * This does not protect us against NMI, but enable()
3954  * sets the enabled bit in the control field of event _before_
3955  * accessing the event control register. If a NMI hits, then it will
3956  * keep the event running.
3957  */
3958 void __perf_event_task_sched_in(struct task_struct *prev,
3959 				struct task_struct *task)
3960 {
3961 	struct perf_event_context *ctx;
3962 	int ctxn;
3963 
3964 	/*
3965 	 * If cgroup events exist on this CPU, then we need to check if we have
3966 	 * to switch in PMU state; cgroup event are system-wide mode only.
3967 	 *
3968 	 * Since cgroup events are CPU events, we must schedule these in before
3969 	 * we schedule in the task events.
3970 	 */
3971 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3972 		perf_cgroup_sched_in(prev, task);
3973 
3974 	for_each_task_context_nr(ctxn) {
3975 		ctx = task->perf_event_ctxp[ctxn];
3976 		if (likely(!ctx))
3977 			continue;
3978 
3979 		perf_event_context_sched_in(ctx, task);
3980 	}
3981 
3982 	if (atomic_read(&nr_switch_events))
3983 		perf_event_switch(task, prev, true);
3984 
3985 	if (__this_cpu_read(perf_sched_cb_usages))
3986 		perf_pmu_sched_task(prev, task, true);
3987 }
3988 
3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3990 {
3991 	u64 frequency = event->attr.sample_freq;
3992 	u64 sec = NSEC_PER_SEC;
3993 	u64 divisor, dividend;
3994 
3995 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3996 
3997 	count_fls = fls64(count);
3998 	nsec_fls = fls64(nsec);
3999 	frequency_fls = fls64(frequency);
4000 	sec_fls = 30;
4001 
4002 	/*
4003 	 * We got @count in @nsec, with a target of sample_freq HZ
4004 	 * the target period becomes:
4005 	 *
4006 	 *             @count * 10^9
4007 	 * period = -------------------
4008 	 *          @nsec * sample_freq
4009 	 *
4010 	 */
4011 
4012 	/*
4013 	 * Reduce accuracy by one bit such that @a and @b converge
4014 	 * to a similar magnitude.
4015 	 */
4016 #define REDUCE_FLS(a, b)		\
4017 do {					\
4018 	if (a##_fls > b##_fls) {	\
4019 		a >>= 1;		\
4020 		a##_fls--;		\
4021 	} else {			\
4022 		b >>= 1;		\
4023 		b##_fls--;		\
4024 	}				\
4025 } while (0)
4026 
4027 	/*
4028 	 * Reduce accuracy until either term fits in a u64, then proceed with
4029 	 * the other, so that finally we can do a u64/u64 division.
4030 	 */
4031 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4032 		REDUCE_FLS(nsec, frequency);
4033 		REDUCE_FLS(sec, count);
4034 	}
4035 
4036 	if (count_fls + sec_fls > 64) {
4037 		divisor = nsec * frequency;
4038 
4039 		while (count_fls + sec_fls > 64) {
4040 			REDUCE_FLS(count, sec);
4041 			divisor >>= 1;
4042 		}
4043 
4044 		dividend = count * sec;
4045 	} else {
4046 		dividend = count * sec;
4047 
4048 		while (nsec_fls + frequency_fls > 64) {
4049 			REDUCE_FLS(nsec, frequency);
4050 			dividend >>= 1;
4051 		}
4052 
4053 		divisor = nsec * frequency;
4054 	}
4055 
4056 	if (!divisor)
4057 		return dividend;
4058 
4059 	return div64_u64(dividend, divisor);
4060 }
4061 
4062 static DEFINE_PER_CPU(int, perf_throttled_count);
4063 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4064 
4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4066 {
4067 	struct hw_perf_event *hwc = &event->hw;
4068 	s64 period, sample_period;
4069 	s64 delta;
4070 
4071 	period = perf_calculate_period(event, nsec, count);
4072 
4073 	delta = (s64)(period - hwc->sample_period);
4074 	delta = (delta + 7) / 8; /* low pass filter */
4075 
4076 	sample_period = hwc->sample_period + delta;
4077 
4078 	if (!sample_period)
4079 		sample_period = 1;
4080 
4081 	hwc->sample_period = sample_period;
4082 
4083 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4084 		if (disable)
4085 			event->pmu->stop(event, PERF_EF_UPDATE);
4086 
4087 		local64_set(&hwc->period_left, 0);
4088 
4089 		if (disable)
4090 			event->pmu->start(event, PERF_EF_RELOAD);
4091 	}
4092 }
4093 
4094 /*
4095  * combine freq adjustment with unthrottling to avoid two passes over the
4096  * events. At the same time, make sure, having freq events does not change
4097  * the rate of unthrottling as that would introduce bias.
4098  */
4099 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4100 					   int needs_unthr)
4101 {
4102 	struct perf_event *event;
4103 	struct hw_perf_event *hwc;
4104 	u64 now, period = TICK_NSEC;
4105 	s64 delta;
4106 
4107 	/*
4108 	 * only need to iterate over all events iff:
4109 	 * - context have events in frequency mode (needs freq adjust)
4110 	 * - there are events to unthrottle on this cpu
4111 	 */
4112 	if (!(ctx->nr_freq || needs_unthr))
4113 		return;
4114 
4115 	raw_spin_lock(&ctx->lock);
4116 	perf_pmu_disable(ctx->pmu);
4117 
4118 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4119 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4120 			continue;
4121 
4122 		if (!event_filter_match(event))
4123 			continue;
4124 
4125 		perf_pmu_disable(event->pmu);
4126 
4127 		hwc = &event->hw;
4128 
4129 		if (hwc->interrupts == MAX_INTERRUPTS) {
4130 			hwc->interrupts = 0;
4131 			perf_log_throttle(event, 1);
4132 			event->pmu->start(event, 0);
4133 		}
4134 
4135 		if (!event->attr.freq || !event->attr.sample_freq)
4136 			goto next;
4137 
4138 		/*
4139 		 * stop the event and update event->count
4140 		 */
4141 		event->pmu->stop(event, PERF_EF_UPDATE);
4142 
4143 		now = local64_read(&event->count);
4144 		delta = now - hwc->freq_count_stamp;
4145 		hwc->freq_count_stamp = now;
4146 
4147 		/*
4148 		 * restart the event
4149 		 * reload only if value has changed
4150 		 * we have stopped the event so tell that
4151 		 * to perf_adjust_period() to avoid stopping it
4152 		 * twice.
4153 		 */
4154 		if (delta > 0)
4155 			perf_adjust_period(event, period, delta, false);
4156 
4157 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4158 	next:
4159 		perf_pmu_enable(event->pmu);
4160 	}
4161 
4162 	perf_pmu_enable(ctx->pmu);
4163 	raw_spin_unlock(&ctx->lock);
4164 }
4165 
4166 /*
4167  * Move @event to the tail of the @ctx's elegible events.
4168  */
4169 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4170 {
4171 	/*
4172 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4173 	 * disabled by the inheritance code.
4174 	 */
4175 	if (ctx->rotate_disable)
4176 		return;
4177 
4178 	perf_event_groups_delete(&ctx->flexible_groups, event);
4179 	perf_event_groups_insert(&ctx->flexible_groups, event);
4180 }
4181 
4182 /* pick an event from the flexible_groups to rotate */
4183 static inline struct perf_event *
4184 ctx_event_to_rotate(struct perf_event_context *ctx)
4185 {
4186 	struct perf_event *event;
4187 
4188 	/* pick the first active flexible event */
4189 	event = list_first_entry_or_null(&ctx->flexible_active,
4190 					 struct perf_event, active_list);
4191 
4192 	/* if no active flexible event, pick the first event */
4193 	if (!event) {
4194 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4195 				      typeof(*event), group_node);
4196 	}
4197 
4198 	/*
4199 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4200 	 * finds there are unschedulable events, it will set it again.
4201 	 */
4202 	ctx->rotate_necessary = 0;
4203 
4204 	return event;
4205 }
4206 
4207 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4208 {
4209 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4210 	struct perf_event_context *task_ctx = NULL;
4211 	int cpu_rotate, task_rotate;
4212 
4213 	/*
4214 	 * Since we run this from IRQ context, nobody can install new
4215 	 * events, thus the event count values are stable.
4216 	 */
4217 
4218 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4219 	task_ctx = cpuctx->task_ctx;
4220 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4221 
4222 	if (!(cpu_rotate || task_rotate))
4223 		return false;
4224 
4225 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4226 	perf_pmu_disable(cpuctx->ctx.pmu);
4227 
4228 	if (task_rotate)
4229 		task_event = ctx_event_to_rotate(task_ctx);
4230 	if (cpu_rotate)
4231 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4232 
4233 	/*
4234 	 * As per the order given at ctx_resched() first 'pop' task flexible
4235 	 * and then, if needed CPU flexible.
4236 	 */
4237 	if (task_event || (task_ctx && cpu_event))
4238 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4239 	if (cpu_event)
4240 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4241 
4242 	if (task_event)
4243 		rotate_ctx(task_ctx, task_event);
4244 	if (cpu_event)
4245 		rotate_ctx(&cpuctx->ctx, cpu_event);
4246 
4247 	perf_event_sched_in(cpuctx, task_ctx, current);
4248 
4249 	perf_pmu_enable(cpuctx->ctx.pmu);
4250 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4251 
4252 	return true;
4253 }
4254 
4255 void perf_event_task_tick(void)
4256 {
4257 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4258 	struct perf_event_context *ctx, *tmp;
4259 	int throttled;
4260 
4261 	lockdep_assert_irqs_disabled();
4262 
4263 	__this_cpu_inc(perf_throttled_seq);
4264 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4265 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4266 
4267 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4268 		perf_adjust_freq_unthr_context(ctx, throttled);
4269 }
4270 
4271 static int event_enable_on_exec(struct perf_event *event,
4272 				struct perf_event_context *ctx)
4273 {
4274 	if (!event->attr.enable_on_exec)
4275 		return 0;
4276 
4277 	event->attr.enable_on_exec = 0;
4278 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4279 		return 0;
4280 
4281 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4282 
4283 	return 1;
4284 }
4285 
4286 /*
4287  * Enable all of a task's events that have been marked enable-on-exec.
4288  * This expects task == current.
4289  */
4290 static void perf_event_enable_on_exec(int ctxn)
4291 {
4292 	struct perf_event_context *ctx, *clone_ctx = NULL;
4293 	enum event_type_t event_type = 0;
4294 	struct perf_cpu_context *cpuctx;
4295 	struct perf_event *event;
4296 	unsigned long flags;
4297 	int enabled = 0;
4298 
4299 	local_irq_save(flags);
4300 	ctx = current->perf_event_ctxp[ctxn];
4301 	if (!ctx || !ctx->nr_events)
4302 		goto out;
4303 
4304 	cpuctx = __get_cpu_context(ctx);
4305 	perf_ctx_lock(cpuctx, ctx);
4306 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4307 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4308 		enabled |= event_enable_on_exec(event, ctx);
4309 		event_type |= get_event_type(event);
4310 	}
4311 
4312 	/*
4313 	 * Unclone and reschedule this context if we enabled any event.
4314 	 */
4315 	if (enabled) {
4316 		clone_ctx = unclone_ctx(ctx);
4317 		ctx_resched(cpuctx, ctx, event_type);
4318 	} else {
4319 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4320 	}
4321 	perf_ctx_unlock(cpuctx, ctx);
4322 
4323 out:
4324 	local_irq_restore(flags);
4325 
4326 	if (clone_ctx)
4327 		put_ctx(clone_ctx);
4328 }
4329 
4330 static void perf_remove_from_owner(struct perf_event *event);
4331 static void perf_event_exit_event(struct perf_event *event,
4332 				  struct perf_event_context *ctx);
4333 
4334 /*
4335  * Removes all events from the current task that have been marked
4336  * remove-on-exec, and feeds their values back to parent events.
4337  */
4338 static void perf_event_remove_on_exec(int ctxn)
4339 {
4340 	struct perf_event_context *ctx, *clone_ctx = NULL;
4341 	struct perf_event *event, *next;
4342 	LIST_HEAD(free_list);
4343 	unsigned long flags;
4344 	bool modified = false;
4345 
4346 	ctx = perf_pin_task_context(current, ctxn);
4347 	if (!ctx)
4348 		return;
4349 
4350 	mutex_lock(&ctx->mutex);
4351 
4352 	if (WARN_ON_ONCE(ctx->task != current))
4353 		goto unlock;
4354 
4355 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4356 		if (!event->attr.remove_on_exec)
4357 			continue;
4358 
4359 		if (!is_kernel_event(event))
4360 			perf_remove_from_owner(event);
4361 
4362 		modified = true;
4363 
4364 		perf_event_exit_event(event, ctx);
4365 	}
4366 
4367 	raw_spin_lock_irqsave(&ctx->lock, flags);
4368 	if (modified)
4369 		clone_ctx = unclone_ctx(ctx);
4370 	--ctx->pin_count;
4371 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4372 
4373 unlock:
4374 	mutex_unlock(&ctx->mutex);
4375 
4376 	put_ctx(ctx);
4377 	if (clone_ctx)
4378 		put_ctx(clone_ctx);
4379 }
4380 
4381 struct perf_read_data {
4382 	struct perf_event *event;
4383 	bool group;
4384 	int ret;
4385 };
4386 
4387 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4388 {
4389 	u16 local_pkg, event_pkg;
4390 
4391 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4392 		int local_cpu = smp_processor_id();
4393 
4394 		event_pkg = topology_physical_package_id(event_cpu);
4395 		local_pkg = topology_physical_package_id(local_cpu);
4396 
4397 		if (event_pkg == local_pkg)
4398 			return local_cpu;
4399 	}
4400 
4401 	return event_cpu;
4402 }
4403 
4404 /*
4405  * Cross CPU call to read the hardware event
4406  */
4407 static void __perf_event_read(void *info)
4408 {
4409 	struct perf_read_data *data = info;
4410 	struct perf_event *sub, *event = data->event;
4411 	struct perf_event_context *ctx = event->ctx;
4412 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4413 	struct pmu *pmu = event->pmu;
4414 
4415 	/*
4416 	 * If this is a task context, we need to check whether it is
4417 	 * the current task context of this cpu.  If not it has been
4418 	 * scheduled out before the smp call arrived.  In that case
4419 	 * event->count would have been updated to a recent sample
4420 	 * when the event was scheduled out.
4421 	 */
4422 	if (ctx->task && cpuctx->task_ctx != ctx)
4423 		return;
4424 
4425 	raw_spin_lock(&ctx->lock);
4426 	if (ctx->is_active & EVENT_TIME) {
4427 		update_context_time(ctx);
4428 		update_cgrp_time_from_event(event);
4429 	}
4430 
4431 	perf_event_update_time(event);
4432 	if (data->group)
4433 		perf_event_update_sibling_time(event);
4434 
4435 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4436 		goto unlock;
4437 
4438 	if (!data->group) {
4439 		pmu->read(event);
4440 		data->ret = 0;
4441 		goto unlock;
4442 	}
4443 
4444 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4445 
4446 	pmu->read(event);
4447 
4448 	for_each_sibling_event(sub, event) {
4449 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4450 			/*
4451 			 * Use sibling's PMU rather than @event's since
4452 			 * sibling could be on different (eg: software) PMU.
4453 			 */
4454 			sub->pmu->read(sub);
4455 		}
4456 	}
4457 
4458 	data->ret = pmu->commit_txn(pmu);
4459 
4460 unlock:
4461 	raw_spin_unlock(&ctx->lock);
4462 }
4463 
4464 static inline u64 perf_event_count(struct perf_event *event)
4465 {
4466 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4467 }
4468 
4469 static void calc_timer_values(struct perf_event *event,
4470 				u64 *now,
4471 				u64 *enabled,
4472 				u64 *running)
4473 {
4474 	u64 ctx_time;
4475 
4476 	*now = perf_clock();
4477 	ctx_time = perf_event_time_now(event, *now);
4478 	__perf_update_times(event, ctx_time, enabled, running);
4479 }
4480 
4481 /*
4482  * NMI-safe method to read a local event, that is an event that
4483  * is:
4484  *   - either for the current task, or for this CPU
4485  *   - does not have inherit set, for inherited task events
4486  *     will not be local and we cannot read them atomically
4487  *   - must not have a pmu::count method
4488  */
4489 int perf_event_read_local(struct perf_event *event, u64 *value,
4490 			  u64 *enabled, u64 *running)
4491 {
4492 	unsigned long flags;
4493 	int ret = 0;
4494 
4495 	/*
4496 	 * Disabling interrupts avoids all counter scheduling (context
4497 	 * switches, timer based rotation and IPIs).
4498 	 */
4499 	local_irq_save(flags);
4500 
4501 	/*
4502 	 * It must not be an event with inherit set, we cannot read
4503 	 * all child counters from atomic context.
4504 	 */
4505 	if (event->attr.inherit) {
4506 		ret = -EOPNOTSUPP;
4507 		goto out;
4508 	}
4509 
4510 	/* If this is a per-task event, it must be for current */
4511 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4512 	    event->hw.target != current) {
4513 		ret = -EINVAL;
4514 		goto out;
4515 	}
4516 
4517 	/* If this is a per-CPU event, it must be for this CPU */
4518 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4519 	    event->cpu != smp_processor_id()) {
4520 		ret = -EINVAL;
4521 		goto out;
4522 	}
4523 
4524 	/* If this is a pinned event it must be running on this CPU */
4525 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4526 		ret = -EBUSY;
4527 		goto out;
4528 	}
4529 
4530 	/*
4531 	 * If the event is currently on this CPU, its either a per-task event,
4532 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4533 	 * oncpu == -1).
4534 	 */
4535 	if (event->oncpu == smp_processor_id())
4536 		event->pmu->read(event);
4537 
4538 	*value = local64_read(&event->count);
4539 	if (enabled || running) {
4540 		u64 __enabled, __running, __now;;
4541 
4542 		calc_timer_values(event, &__now, &__enabled, &__running);
4543 		if (enabled)
4544 			*enabled = __enabled;
4545 		if (running)
4546 			*running = __running;
4547 	}
4548 out:
4549 	local_irq_restore(flags);
4550 
4551 	return ret;
4552 }
4553 
4554 static int perf_event_read(struct perf_event *event, bool group)
4555 {
4556 	enum perf_event_state state = READ_ONCE(event->state);
4557 	int event_cpu, ret = 0;
4558 
4559 	/*
4560 	 * If event is enabled and currently active on a CPU, update the
4561 	 * value in the event structure:
4562 	 */
4563 again:
4564 	if (state == PERF_EVENT_STATE_ACTIVE) {
4565 		struct perf_read_data data;
4566 
4567 		/*
4568 		 * Orders the ->state and ->oncpu loads such that if we see
4569 		 * ACTIVE we must also see the right ->oncpu.
4570 		 *
4571 		 * Matches the smp_wmb() from event_sched_in().
4572 		 */
4573 		smp_rmb();
4574 
4575 		event_cpu = READ_ONCE(event->oncpu);
4576 		if ((unsigned)event_cpu >= nr_cpu_ids)
4577 			return 0;
4578 
4579 		data = (struct perf_read_data){
4580 			.event = event,
4581 			.group = group,
4582 			.ret = 0,
4583 		};
4584 
4585 		preempt_disable();
4586 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4587 
4588 		/*
4589 		 * Purposely ignore the smp_call_function_single() return
4590 		 * value.
4591 		 *
4592 		 * If event_cpu isn't a valid CPU it means the event got
4593 		 * scheduled out and that will have updated the event count.
4594 		 *
4595 		 * Therefore, either way, we'll have an up-to-date event count
4596 		 * after this.
4597 		 */
4598 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4599 		preempt_enable();
4600 		ret = data.ret;
4601 
4602 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4603 		struct perf_event_context *ctx = event->ctx;
4604 		unsigned long flags;
4605 
4606 		raw_spin_lock_irqsave(&ctx->lock, flags);
4607 		state = event->state;
4608 		if (state != PERF_EVENT_STATE_INACTIVE) {
4609 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4610 			goto again;
4611 		}
4612 
4613 		/*
4614 		 * May read while context is not active (e.g., thread is
4615 		 * blocked), in that case we cannot update context time
4616 		 */
4617 		if (ctx->is_active & EVENT_TIME) {
4618 			update_context_time(ctx);
4619 			update_cgrp_time_from_event(event);
4620 		}
4621 
4622 		perf_event_update_time(event);
4623 		if (group)
4624 			perf_event_update_sibling_time(event);
4625 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4626 	}
4627 
4628 	return ret;
4629 }
4630 
4631 /*
4632  * Initialize the perf_event context in a task_struct:
4633  */
4634 static void __perf_event_init_context(struct perf_event_context *ctx)
4635 {
4636 	raw_spin_lock_init(&ctx->lock);
4637 	mutex_init(&ctx->mutex);
4638 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4639 	perf_event_groups_init(&ctx->pinned_groups);
4640 	perf_event_groups_init(&ctx->flexible_groups);
4641 	INIT_LIST_HEAD(&ctx->event_list);
4642 	INIT_LIST_HEAD(&ctx->pinned_active);
4643 	INIT_LIST_HEAD(&ctx->flexible_active);
4644 	refcount_set(&ctx->refcount, 1);
4645 }
4646 
4647 static struct perf_event_context *
4648 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4649 {
4650 	struct perf_event_context *ctx;
4651 
4652 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4653 	if (!ctx)
4654 		return NULL;
4655 
4656 	__perf_event_init_context(ctx);
4657 	if (task)
4658 		ctx->task = get_task_struct(task);
4659 	ctx->pmu = pmu;
4660 
4661 	return ctx;
4662 }
4663 
4664 static struct task_struct *
4665 find_lively_task_by_vpid(pid_t vpid)
4666 {
4667 	struct task_struct *task;
4668 
4669 	rcu_read_lock();
4670 	if (!vpid)
4671 		task = current;
4672 	else
4673 		task = find_task_by_vpid(vpid);
4674 	if (task)
4675 		get_task_struct(task);
4676 	rcu_read_unlock();
4677 
4678 	if (!task)
4679 		return ERR_PTR(-ESRCH);
4680 
4681 	return task;
4682 }
4683 
4684 /*
4685  * Returns a matching context with refcount and pincount.
4686  */
4687 static struct perf_event_context *
4688 find_get_context(struct pmu *pmu, struct task_struct *task,
4689 		struct perf_event *event)
4690 {
4691 	struct perf_event_context *ctx, *clone_ctx = NULL;
4692 	struct perf_cpu_context *cpuctx;
4693 	void *task_ctx_data = NULL;
4694 	unsigned long flags;
4695 	int ctxn, err;
4696 	int cpu = event->cpu;
4697 
4698 	if (!task) {
4699 		/* Must be root to operate on a CPU event: */
4700 		err = perf_allow_cpu(&event->attr);
4701 		if (err)
4702 			return ERR_PTR(err);
4703 
4704 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4705 		ctx = &cpuctx->ctx;
4706 		get_ctx(ctx);
4707 		raw_spin_lock_irqsave(&ctx->lock, flags);
4708 		++ctx->pin_count;
4709 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 
4711 		return ctx;
4712 	}
4713 
4714 	err = -EINVAL;
4715 	ctxn = pmu->task_ctx_nr;
4716 	if (ctxn < 0)
4717 		goto errout;
4718 
4719 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4720 		task_ctx_data = alloc_task_ctx_data(pmu);
4721 		if (!task_ctx_data) {
4722 			err = -ENOMEM;
4723 			goto errout;
4724 		}
4725 	}
4726 
4727 retry:
4728 	ctx = perf_lock_task_context(task, ctxn, &flags);
4729 	if (ctx) {
4730 		clone_ctx = unclone_ctx(ctx);
4731 		++ctx->pin_count;
4732 
4733 		if (task_ctx_data && !ctx->task_ctx_data) {
4734 			ctx->task_ctx_data = task_ctx_data;
4735 			task_ctx_data = NULL;
4736 		}
4737 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738 
4739 		if (clone_ctx)
4740 			put_ctx(clone_ctx);
4741 	} else {
4742 		ctx = alloc_perf_context(pmu, task);
4743 		err = -ENOMEM;
4744 		if (!ctx)
4745 			goto errout;
4746 
4747 		if (task_ctx_data) {
4748 			ctx->task_ctx_data = task_ctx_data;
4749 			task_ctx_data = NULL;
4750 		}
4751 
4752 		err = 0;
4753 		mutex_lock(&task->perf_event_mutex);
4754 		/*
4755 		 * If it has already passed perf_event_exit_task().
4756 		 * we must see PF_EXITING, it takes this mutex too.
4757 		 */
4758 		if (task->flags & PF_EXITING)
4759 			err = -ESRCH;
4760 		else if (task->perf_event_ctxp[ctxn])
4761 			err = -EAGAIN;
4762 		else {
4763 			get_ctx(ctx);
4764 			++ctx->pin_count;
4765 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4766 		}
4767 		mutex_unlock(&task->perf_event_mutex);
4768 
4769 		if (unlikely(err)) {
4770 			put_ctx(ctx);
4771 
4772 			if (err == -EAGAIN)
4773 				goto retry;
4774 			goto errout;
4775 		}
4776 	}
4777 
4778 	free_task_ctx_data(pmu, task_ctx_data);
4779 	return ctx;
4780 
4781 errout:
4782 	free_task_ctx_data(pmu, task_ctx_data);
4783 	return ERR_PTR(err);
4784 }
4785 
4786 static void perf_event_free_filter(struct perf_event *event);
4787 
4788 static void free_event_rcu(struct rcu_head *head)
4789 {
4790 	struct perf_event *event;
4791 
4792 	event = container_of(head, struct perf_event, rcu_head);
4793 	if (event->ns)
4794 		put_pid_ns(event->ns);
4795 	perf_event_free_filter(event);
4796 	kmem_cache_free(perf_event_cache, event);
4797 }
4798 
4799 static void ring_buffer_attach(struct perf_event *event,
4800 			       struct perf_buffer *rb);
4801 
4802 static void detach_sb_event(struct perf_event *event)
4803 {
4804 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4805 
4806 	raw_spin_lock(&pel->lock);
4807 	list_del_rcu(&event->sb_list);
4808 	raw_spin_unlock(&pel->lock);
4809 }
4810 
4811 static bool is_sb_event(struct perf_event *event)
4812 {
4813 	struct perf_event_attr *attr = &event->attr;
4814 
4815 	if (event->parent)
4816 		return false;
4817 
4818 	if (event->attach_state & PERF_ATTACH_TASK)
4819 		return false;
4820 
4821 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4822 	    attr->comm || attr->comm_exec ||
4823 	    attr->task || attr->ksymbol ||
4824 	    attr->context_switch || attr->text_poke ||
4825 	    attr->bpf_event)
4826 		return true;
4827 	return false;
4828 }
4829 
4830 static void unaccount_pmu_sb_event(struct perf_event *event)
4831 {
4832 	if (is_sb_event(event))
4833 		detach_sb_event(event);
4834 }
4835 
4836 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4837 {
4838 	if (event->parent)
4839 		return;
4840 
4841 	if (is_cgroup_event(event))
4842 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4843 }
4844 
4845 #ifdef CONFIG_NO_HZ_FULL
4846 static DEFINE_SPINLOCK(nr_freq_lock);
4847 #endif
4848 
4849 static void unaccount_freq_event_nohz(void)
4850 {
4851 #ifdef CONFIG_NO_HZ_FULL
4852 	spin_lock(&nr_freq_lock);
4853 	if (atomic_dec_and_test(&nr_freq_events))
4854 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4855 	spin_unlock(&nr_freq_lock);
4856 #endif
4857 }
4858 
4859 static void unaccount_freq_event(void)
4860 {
4861 	if (tick_nohz_full_enabled())
4862 		unaccount_freq_event_nohz();
4863 	else
4864 		atomic_dec(&nr_freq_events);
4865 }
4866 
4867 static void unaccount_event(struct perf_event *event)
4868 {
4869 	bool dec = false;
4870 
4871 	if (event->parent)
4872 		return;
4873 
4874 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4875 		dec = true;
4876 	if (event->attr.mmap || event->attr.mmap_data)
4877 		atomic_dec(&nr_mmap_events);
4878 	if (event->attr.build_id)
4879 		atomic_dec(&nr_build_id_events);
4880 	if (event->attr.comm)
4881 		atomic_dec(&nr_comm_events);
4882 	if (event->attr.namespaces)
4883 		atomic_dec(&nr_namespaces_events);
4884 	if (event->attr.cgroup)
4885 		atomic_dec(&nr_cgroup_events);
4886 	if (event->attr.task)
4887 		atomic_dec(&nr_task_events);
4888 	if (event->attr.freq)
4889 		unaccount_freq_event();
4890 	if (event->attr.context_switch) {
4891 		dec = true;
4892 		atomic_dec(&nr_switch_events);
4893 	}
4894 	if (is_cgroup_event(event))
4895 		dec = true;
4896 	if (has_branch_stack(event))
4897 		dec = true;
4898 	if (event->attr.ksymbol)
4899 		atomic_dec(&nr_ksymbol_events);
4900 	if (event->attr.bpf_event)
4901 		atomic_dec(&nr_bpf_events);
4902 	if (event->attr.text_poke)
4903 		atomic_dec(&nr_text_poke_events);
4904 
4905 	if (dec) {
4906 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4907 			schedule_delayed_work(&perf_sched_work, HZ);
4908 	}
4909 
4910 	unaccount_event_cpu(event, event->cpu);
4911 
4912 	unaccount_pmu_sb_event(event);
4913 }
4914 
4915 static void perf_sched_delayed(struct work_struct *work)
4916 {
4917 	mutex_lock(&perf_sched_mutex);
4918 	if (atomic_dec_and_test(&perf_sched_count))
4919 		static_branch_disable(&perf_sched_events);
4920 	mutex_unlock(&perf_sched_mutex);
4921 }
4922 
4923 /*
4924  * The following implement mutual exclusion of events on "exclusive" pmus
4925  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4926  * at a time, so we disallow creating events that might conflict, namely:
4927  *
4928  *  1) cpu-wide events in the presence of per-task events,
4929  *  2) per-task events in the presence of cpu-wide events,
4930  *  3) two matching events on the same context.
4931  *
4932  * The former two cases are handled in the allocation path (perf_event_alloc(),
4933  * _free_event()), the latter -- before the first perf_install_in_context().
4934  */
4935 static int exclusive_event_init(struct perf_event *event)
4936 {
4937 	struct pmu *pmu = event->pmu;
4938 
4939 	if (!is_exclusive_pmu(pmu))
4940 		return 0;
4941 
4942 	/*
4943 	 * Prevent co-existence of per-task and cpu-wide events on the
4944 	 * same exclusive pmu.
4945 	 *
4946 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4947 	 * events on this "exclusive" pmu, positive means there are
4948 	 * per-task events.
4949 	 *
4950 	 * Since this is called in perf_event_alloc() path, event::ctx
4951 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4952 	 * to mean "per-task event", because unlike other attach states it
4953 	 * never gets cleared.
4954 	 */
4955 	if (event->attach_state & PERF_ATTACH_TASK) {
4956 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4957 			return -EBUSY;
4958 	} else {
4959 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4960 			return -EBUSY;
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 static void exclusive_event_destroy(struct perf_event *event)
4967 {
4968 	struct pmu *pmu = event->pmu;
4969 
4970 	if (!is_exclusive_pmu(pmu))
4971 		return;
4972 
4973 	/* see comment in exclusive_event_init() */
4974 	if (event->attach_state & PERF_ATTACH_TASK)
4975 		atomic_dec(&pmu->exclusive_cnt);
4976 	else
4977 		atomic_inc(&pmu->exclusive_cnt);
4978 }
4979 
4980 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4981 {
4982 	if ((e1->pmu == e2->pmu) &&
4983 	    (e1->cpu == e2->cpu ||
4984 	     e1->cpu == -1 ||
4985 	     e2->cpu == -1))
4986 		return true;
4987 	return false;
4988 }
4989 
4990 static bool exclusive_event_installable(struct perf_event *event,
4991 					struct perf_event_context *ctx)
4992 {
4993 	struct perf_event *iter_event;
4994 	struct pmu *pmu = event->pmu;
4995 
4996 	lockdep_assert_held(&ctx->mutex);
4997 
4998 	if (!is_exclusive_pmu(pmu))
4999 		return true;
5000 
5001 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5002 		if (exclusive_event_match(iter_event, event))
5003 			return false;
5004 	}
5005 
5006 	return true;
5007 }
5008 
5009 static void perf_addr_filters_splice(struct perf_event *event,
5010 				       struct list_head *head);
5011 
5012 static void _free_event(struct perf_event *event)
5013 {
5014 	irq_work_sync(&event->pending);
5015 
5016 	unaccount_event(event);
5017 
5018 	security_perf_event_free(event);
5019 
5020 	if (event->rb) {
5021 		/*
5022 		 * Can happen when we close an event with re-directed output.
5023 		 *
5024 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5025 		 * over us; possibly making our ring_buffer_put() the last.
5026 		 */
5027 		mutex_lock(&event->mmap_mutex);
5028 		ring_buffer_attach(event, NULL);
5029 		mutex_unlock(&event->mmap_mutex);
5030 	}
5031 
5032 	if (is_cgroup_event(event))
5033 		perf_detach_cgroup(event);
5034 
5035 	if (!event->parent) {
5036 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5037 			put_callchain_buffers();
5038 	}
5039 
5040 	perf_event_free_bpf_prog(event);
5041 	perf_addr_filters_splice(event, NULL);
5042 	kfree(event->addr_filter_ranges);
5043 
5044 	if (event->destroy)
5045 		event->destroy(event);
5046 
5047 	/*
5048 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5049 	 * hw.target.
5050 	 */
5051 	if (event->hw.target)
5052 		put_task_struct(event->hw.target);
5053 
5054 	/*
5055 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5056 	 * all task references must be cleaned up.
5057 	 */
5058 	if (event->ctx)
5059 		put_ctx(event->ctx);
5060 
5061 	exclusive_event_destroy(event);
5062 	module_put(event->pmu->module);
5063 
5064 	call_rcu(&event->rcu_head, free_event_rcu);
5065 }
5066 
5067 /*
5068  * Used to free events which have a known refcount of 1, such as in error paths
5069  * where the event isn't exposed yet and inherited events.
5070  */
5071 static void free_event(struct perf_event *event)
5072 {
5073 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5074 				"unexpected event refcount: %ld; ptr=%p\n",
5075 				atomic_long_read(&event->refcount), event)) {
5076 		/* leak to avoid use-after-free */
5077 		return;
5078 	}
5079 
5080 	_free_event(event);
5081 }
5082 
5083 /*
5084  * Remove user event from the owner task.
5085  */
5086 static void perf_remove_from_owner(struct perf_event *event)
5087 {
5088 	struct task_struct *owner;
5089 
5090 	rcu_read_lock();
5091 	/*
5092 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5093 	 * observe !owner it means the list deletion is complete and we can
5094 	 * indeed free this event, otherwise we need to serialize on
5095 	 * owner->perf_event_mutex.
5096 	 */
5097 	owner = READ_ONCE(event->owner);
5098 	if (owner) {
5099 		/*
5100 		 * Since delayed_put_task_struct() also drops the last
5101 		 * task reference we can safely take a new reference
5102 		 * while holding the rcu_read_lock().
5103 		 */
5104 		get_task_struct(owner);
5105 	}
5106 	rcu_read_unlock();
5107 
5108 	if (owner) {
5109 		/*
5110 		 * If we're here through perf_event_exit_task() we're already
5111 		 * holding ctx->mutex which would be an inversion wrt. the
5112 		 * normal lock order.
5113 		 *
5114 		 * However we can safely take this lock because its the child
5115 		 * ctx->mutex.
5116 		 */
5117 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5118 
5119 		/*
5120 		 * We have to re-check the event->owner field, if it is cleared
5121 		 * we raced with perf_event_exit_task(), acquiring the mutex
5122 		 * ensured they're done, and we can proceed with freeing the
5123 		 * event.
5124 		 */
5125 		if (event->owner) {
5126 			list_del_init(&event->owner_entry);
5127 			smp_store_release(&event->owner, NULL);
5128 		}
5129 		mutex_unlock(&owner->perf_event_mutex);
5130 		put_task_struct(owner);
5131 	}
5132 }
5133 
5134 static void put_event(struct perf_event *event)
5135 {
5136 	if (!atomic_long_dec_and_test(&event->refcount))
5137 		return;
5138 
5139 	_free_event(event);
5140 }
5141 
5142 /*
5143  * Kill an event dead; while event:refcount will preserve the event
5144  * object, it will not preserve its functionality. Once the last 'user'
5145  * gives up the object, we'll destroy the thing.
5146  */
5147 int perf_event_release_kernel(struct perf_event *event)
5148 {
5149 	struct perf_event_context *ctx = event->ctx;
5150 	struct perf_event *child, *tmp;
5151 	LIST_HEAD(free_list);
5152 
5153 	/*
5154 	 * If we got here through err_file: fput(event_file); we will not have
5155 	 * attached to a context yet.
5156 	 */
5157 	if (!ctx) {
5158 		WARN_ON_ONCE(event->attach_state &
5159 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5160 		goto no_ctx;
5161 	}
5162 
5163 	if (!is_kernel_event(event))
5164 		perf_remove_from_owner(event);
5165 
5166 	ctx = perf_event_ctx_lock(event);
5167 	WARN_ON_ONCE(ctx->parent_ctx);
5168 	perf_remove_from_context(event, DETACH_GROUP);
5169 
5170 	raw_spin_lock_irq(&ctx->lock);
5171 	/*
5172 	 * Mark this event as STATE_DEAD, there is no external reference to it
5173 	 * anymore.
5174 	 *
5175 	 * Anybody acquiring event->child_mutex after the below loop _must_
5176 	 * also see this, most importantly inherit_event() which will avoid
5177 	 * placing more children on the list.
5178 	 *
5179 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5180 	 * child events.
5181 	 */
5182 	event->state = PERF_EVENT_STATE_DEAD;
5183 	raw_spin_unlock_irq(&ctx->lock);
5184 
5185 	perf_event_ctx_unlock(event, ctx);
5186 
5187 again:
5188 	mutex_lock(&event->child_mutex);
5189 	list_for_each_entry(child, &event->child_list, child_list) {
5190 
5191 		/*
5192 		 * Cannot change, child events are not migrated, see the
5193 		 * comment with perf_event_ctx_lock_nested().
5194 		 */
5195 		ctx = READ_ONCE(child->ctx);
5196 		/*
5197 		 * Since child_mutex nests inside ctx::mutex, we must jump
5198 		 * through hoops. We start by grabbing a reference on the ctx.
5199 		 *
5200 		 * Since the event cannot get freed while we hold the
5201 		 * child_mutex, the context must also exist and have a !0
5202 		 * reference count.
5203 		 */
5204 		get_ctx(ctx);
5205 
5206 		/*
5207 		 * Now that we have a ctx ref, we can drop child_mutex, and
5208 		 * acquire ctx::mutex without fear of it going away. Then we
5209 		 * can re-acquire child_mutex.
5210 		 */
5211 		mutex_unlock(&event->child_mutex);
5212 		mutex_lock(&ctx->mutex);
5213 		mutex_lock(&event->child_mutex);
5214 
5215 		/*
5216 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5217 		 * state, if child is still the first entry, it didn't get freed
5218 		 * and we can continue doing so.
5219 		 */
5220 		tmp = list_first_entry_or_null(&event->child_list,
5221 					       struct perf_event, child_list);
5222 		if (tmp == child) {
5223 			perf_remove_from_context(child, DETACH_GROUP);
5224 			list_move(&child->child_list, &free_list);
5225 			/*
5226 			 * This matches the refcount bump in inherit_event();
5227 			 * this can't be the last reference.
5228 			 */
5229 			put_event(event);
5230 		}
5231 
5232 		mutex_unlock(&event->child_mutex);
5233 		mutex_unlock(&ctx->mutex);
5234 		put_ctx(ctx);
5235 		goto again;
5236 	}
5237 	mutex_unlock(&event->child_mutex);
5238 
5239 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5240 		void *var = &child->ctx->refcount;
5241 
5242 		list_del(&child->child_list);
5243 		free_event(child);
5244 
5245 		/*
5246 		 * Wake any perf_event_free_task() waiting for this event to be
5247 		 * freed.
5248 		 */
5249 		smp_mb(); /* pairs with wait_var_event() */
5250 		wake_up_var(var);
5251 	}
5252 
5253 no_ctx:
5254 	put_event(event); /* Must be the 'last' reference */
5255 	return 0;
5256 }
5257 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5258 
5259 /*
5260  * Called when the last reference to the file is gone.
5261  */
5262 static int perf_release(struct inode *inode, struct file *file)
5263 {
5264 	perf_event_release_kernel(file->private_data);
5265 	return 0;
5266 }
5267 
5268 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5269 {
5270 	struct perf_event *child;
5271 	u64 total = 0;
5272 
5273 	*enabled = 0;
5274 	*running = 0;
5275 
5276 	mutex_lock(&event->child_mutex);
5277 
5278 	(void)perf_event_read(event, false);
5279 	total += perf_event_count(event);
5280 
5281 	*enabled += event->total_time_enabled +
5282 			atomic64_read(&event->child_total_time_enabled);
5283 	*running += event->total_time_running +
5284 			atomic64_read(&event->child_total_time_running);
5285 
5286 	list_for_each_entry(child, &event->child_list, child_list) {
5287 		(void)perf_event_read(child, false);
5288 		total += perf_event_count(child);
5289 		*enabled += child->total_time_enabled;
5290 		*running += child->total_time_running;
5291 	}
5292 	mutex_unlock(&event->child_mutex);
5293 
5294 	return total;
5295 }
5296 
5297 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5298 {
5299 	struct perf_event_context *ctx;
5300 	u64 count;
5301 
5302 	ctx = perf_event_ctx_lock(event);
5303 	count = __perf_event_read_value(event, enabled, running);
5304 	perf_event_ctx_unlock(event, ctx);
5305 
5306 	return count;
5307 }
5308 EXPORT_SYMBOL_GPL(perf_event_read_value);
5309 
5310 static int __perf_read_group_add(struct perf_event *leader,
5311 					u64 read_format, u64 *values)
5312 {
5313 	struct perf_event_context *ctx = leader->ctx;
5314 	struct perf_event *sub;
5315 	unsigned long flags;
5316 	int n = 1; /* skip @nr */
5317 	int ret;
5318 
5319 	ret = perf_event_read(leader, true);
5320 	if (ret)
5321 		return ret;
5322 
5323 	raw_spin_lock_irqsave(&ctx->lock, flags);
5324 
5325 	/*
5326 	 * Since we co-schedule groups, {enabled,running} times of siblings
5327 	 * will be identical to those of the leader, so we only publish one
5328 	 * set.
5329 	 */
5330 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5331 		values[n++] += leader->total_time_enabled +
5332 			atomic64_read(&leader->child_total_time_enabled);
5333 	}
5334 
5335 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5336 		values[n++] += leader->total_time_running +
5337 			atomic64_read(&leader->child_total_time_running);
5338 	}
5339 
5340 	/*
5341 	 * Write {count,id} tuples for every sibling.
5342 	 */
5343 	values[n++] += perf_event_count(leader);
5344 	if (read_format & PERF_FORMAT_ID)
5345 		values[n++] = primary_event_id(leader);
5346 
5347 	for_each_sibling_event(sub, leader) {
5348 		values[n++] += perf_event_count(sub);
5349 		if (read_format & PERF_FORMAT_ID)
5350 			values[n++] = primary_event_id(sub);
5351 	}
5352 
5353 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5354 	return 0;
5355 }
5356 
5357 static int perf_read_group(struct perf_event *event,
5358 				   u64 read_format, char __user *buf)
5359 {
5360 	struct perf_event *leader = event->group_leader, *child;
5361 	struct perf_event_context *ctx = leader->ctx;
5362 	int ret;
5363 	u64 *values;
5364 
5365 	lockdep_assert_held(&ctx->mutex);
5366 
5367 	values = kzalloc(event->read_size, GFP_KERNEL);
5368 	if (!values)
5369 		return -ENOMEM;
5370 
5371 	values[0] = 1 + leader->nr_siblings;
5372 
5373 	/*
5374 	 * By locking the child_mutex of the leader we effectively
5375 	 * lock the child list of all siblings.. XXX explain how.
5376 	 */
5377 	mutex_lock(&leader->child_mutex);
5378 
5379 	ret = __perf_read_group_add(leader, read_format, values);
5380 	if (ret)
5381 		goto unlock;
5382 
5383 	list_for_each_entry(child, &leader->child_list, child_list) {
5384 		ret = __perf_read_group_add(child, read_format, values);
5385 		if (ret)
5386 			goto unlock;
5387 	}
5388 
5389 	mutex_unlock(&leader->child_mutex);
5390 
5391 	ret = event->read_size;
5392 	if (copy_to_user(buf, values, event->read_size))
5393 		ret = -EFAULT;
5394 	goto out;
5395 
5396 unlock:
5397 	mutex_unlock(&leader->child_mutex);
5398 out:
5399 	kfree(values);
5400 	return ret;
5401 }
5402 
5403 static int perf_read_one(struct perf_event *event,
5404 				 u64 read_format, char __user *buf)
5405 {
5406 	u64 enabled, running;
5407 	u64 values[4];
5408 	int n = 0;
5409 
5410 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5411 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5412 		values[n++] = enabled;
5413 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5414 		values[n++] = running;
5415 	if (read_format & PERF_FORMAT_ID)
5416 		values[n++] = primary_event_id(event);
5417 
5418 	if (copy_to_user(buf, values, n * sizeof(u64)))
5419 		return -EFAULT;
5420 
5421 	return n * sizeof(u64);
5422 }
5423 
5424 static bool is_event_hup(struct perf_event *event)
5425 {
5426 	bool no_children;
5427 
5428 	if (event->state > PERF_EVENT_STATE_EXIT)
5429 		return false;
5430 
5431 	mutex_lock(&event->child_mutex);
5432 	no_children = list_empty(&event->child_list);
5433 	mutex_unlock(&event->child_mutex);
5434 	return no_children;
5435 }
5436 
5437 /*
5438  * Read the performance event - simple non blocking version for now
5439  */
5440 static ssize_t
5441 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5442 {
5443 	u64 read_format = event->attr.read_format;
5444 	int ret;
5445 
5446 	/*
5447 	 * Return end-of-file for a read on an event that is in
5448 	 * error state (i.e. because it was pinned but it couldn't be
5449 	 * scheduled on to the CPU at some point).
5450 	 */
5451 	if (event->state == PERF_EVENT_STATE_ERROR)
5452 		return 0;
5453 
5454 	if (count < event->read_size)
5455 		return -ENOSPC;
5456 
5457 	WARN_ON_ONCE(event->ctx->parent_ctx);
5458 	if (read_format & PERF_FORMAT_GROUP)
5459 		ret = perf_read_group(event, read_format, buf);
5460 	else
5461 		ret = perf_read_one(event, read_format, buf);
5462 
5463 	return ret;
5464 }
5465 
5466 static ssize_t
5467 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5468 {
5469 	struct perf_event *event = file->private_data;
5470 	struct perf_event_context *ctx;
5471 	int ret;
5472 
5473 	ret = security_perf_event_read(event);
5474 	if (ret)
5475 		return ret;
5476 
5477 	ctx = perf_event_ctx_lock(event);
5478 	ret = __perf_read(event, buf, count);
5479 	perf_event_ctx_unlock(event, ctx);
5480 
5481 	return ret;
5482 }
5483 
5484 static __poll_t perf_poll(struct file *file, poll_table *wait)
5485 {
5486 	struct perf_event *event = file->private_data;
5487 	struct perf_buffer *rb;
5488 	__poll_t events = EPOLLHUP;
5489 
5490 	poll_wait(file, &event->waitq, wait);
5491 
5492 	if (is_event_hup(event))
5493 		return events;
5494 
5495 	/*
5496 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5497 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5498 	 */
5499 	mutex_lock(&event->mmap_mutex);
5500 	rb = event->rb;
5501 	if (rb)
5502 		events = atomic_xchg(&rb->poll, 0);
5503 	mutex_unlock(&event->mmap_mutex);
5504 	return events;
5505 }
5506 
5507 static void _perf_event_reset(struct perf_event *event)
5508 {
5509 	(void)perf_event_read(event, false);
5510 	local64_set(&event->count, 0);
5511 	perf_event_update_userpage(event);
5512 }
5513 
5514 /* Assume it's not an event with inherit set. */
5515 u64 perf_event_pause(struct perf_event *event, bool reset)
5516 {
5517 	struct perf_event_context *ctx;
5518 	u64 count;
5519 
5520 	ctx = perf_event_ctx_lock(event);
5521 	WARN_ON_ONCE(event->attr.inherit);
5522 	_perf_event_disable(event);
5523 	count = local64_read(&event->count);
5524 	if (reset)
5525 		local64_set(&event->count, 0);
5526 	perf_event_ctx_unlock(event, ctx);
5527 
5528 	return count;
5529 }
5530 EXPORT_SYMBOL_GPL(perf_event_pause);
5531 
5532 /*
5533  * Holding the top-level event's child_mutex means that any
5534  * descendant process that has inherited this event will block
5535  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5536  * task existence requirements of perf_event_enable/disable.
5537  */
5538 static void perf_event_for_each_child(struct perf_event *event,
5539 					void (*func)(struct perf_event *))
5540 {
5541 	struct perf_event *child;
5542 
5543 	WARN_ON_ONCE(event->ctx->parent_ctx);
5544 
5545 	mutex_lock(&event->child_mutex);
5546 	func(event);
5547 	list_for_each_entry(child, &event->child_list, child_list)
5548 		func(child);
5549 	mutex_unlock(&event->child_mutex);
5550 }
5551 
5552 static void perf_event_for_each(struct perf_event *event,
5553 				  void (*func)(struct perf_event *))
5554 {
5555 	struct perf_event_context *ctx = event->ctx;
5556 	struct perf_event *sibling;
5557 
5558 	lockdep_assert_held(&ctx->mutex);
5559 
5560 	event = event->group_leader;
5561 
5562 	perf_event_for_each_child(event, func);
5563 	for_each_sibling_event(sibling, event)
5564 		perf_event_for_each_child(sibling, func);
5565 }
5566 
5567 static void __perf_event_period(struct perf_event *event,
5568 				struct perf_cpu_context *cpuctx,
5569 				struct perf_event_context *ctx,
5570 				void *info)
5571 {
5572 	u64 value = *((u64 *)info);
5573 	bool active;
5574 
5575 	if (event->attr.freq) {
5576 		event->attr.sample_freq = value;
5577 	} else {
5578 		event->attr.sample_period = value;
5579 		event->hw.sample_period = value;
5580 	}
5581 
5582 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5583 	if (active) {
5584 		perf_pmu_disable(ctx->pmu);
5585 		/*
5586 		 * We could be throttled; unthrottle now to avoid the tick
5587 		 * trying to unthrottle while we already re-started the event.
5588 		 */
5589 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5590 			event->hw.interrupts = 0;
5591 			perf_log_throttle(event, 1);
5592 		}
5593 		event->pmu->stop(event, PERF_EF_UPDATE);
5594 	}
5595 
5596 	local64_set(&event->hw.period_left, 0);
5597 
5598 	if (active) {
5599 		event->pmu->start(event, PERF_EF_RELOAD);
5600 		perf_pmu_enable(ctx->pmu);
5601 	}
5602 }
5603 
5604 static int perf_event_check_period(struct perf_event *event, u64 value)
5605 {
5606 	return event->pmu->check_period(event, value);
5607 }
5608 
5609 static int _perf_event_period(struct perf_event *event, u64 value)
5610 {
5611 	if (!is_sampling_event(event))
5612 		return -EINVAL;
5613 
5614 	if (!value)
5615 		return -EINVAL;
5616 
5617 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5618 		return -EINVAL;
5619 
5620 	if (perf_event_check_period(event, value))
5621 		return -EINVAL;
5622 
5623 	if (!event->attr.freq && (value & (1ULL << 63)))
5624 		return -EINVAL;
5625 
5626 	event_function_call(event, __perf_event_period, &value);
5627 
5628 	return 0;
5629 }
5630 
5631 int perf_event_period(struct perf_event *event, u64 value)
5632 {
5633 	struct perf_event_context *ctx;
5634 	int ret;
5635 
5636 	ctx = perf_event_ctx_lock(event);
5637 	ret = _perf_event_period(event, value);
5638 	perf_event_ctx_unlock(event, ctx);
5639 
5640 	return ret;
5641 }
5642 EXPORT_SYMBOL_GPL(perf_event_period);
5643 
5644 static const struct file_operations perf_fops;
5645 
5646 static inline int perf_fget_light(int fd, struct fd *p)
5647 {
5648 	struct fd f = fdget(fd);
5649 	if (!f.file)
5650 		return -EBADF;
5651 
5652 	if (f.file->f_op != &perf_fops) {
5653 		fdput(f);
5654 		return -EBADF;
5655 	}
5656 	*p = f;
5657 	return 0;
5658 }
5659 
5660 static int perf_event_set_output(struct perf_event *event,
5661 				 struct perf_event *output_event);
5662 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5663 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5664 			  struct perf_event_attr *attr);
5665 
5666 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5667 {
5668 	void (*func)(struct perf_event *);
5669 	u32 flags = arg;
5670 
5671 	switch (cmd) {
5672 	case PERF_EVENT_IOC_ENABLE:
5673 		func = _perf_event_enable;
5674 		break;
5675 	case PERF_EVENT_IOC_DISABLE:
5676 		func = _perf_event_disable;
5677 		break;
5678 	case PERF_EVENT_IOC_RESET:
5679 		func = _perf_event_reset;
5680 		break;
5681 
5682 	case PERF_EVENT_IOC_REFRESH:
5683 		return _perf_event_refresh(event, arg);
5684 
5685 	case PERF_EVENT_IOC_PERIOD:
5686 	{
5687 		u64 value;
5688 
5689 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5690 			return -EFAULT;
5691 
5692 		return _perf_event_period(event, value);
5693 	}
5694 	case PERF_EVENT_IOC_ID:
5695 	{
5696 		u64 id = primary_event_id(event);
5697 
5698 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5699 			return -EFAULT;
5700 		return 0;
5701 	}
5702 
5703 	case PERF_EVENT_IOC_SET_OUTPUT:
5704 	{
5705 		int ret;
5706 		if (arg != -1) {
5707 			struct perf_event *output_event;
5708 			struct fd output;
5709 			ret = perf_fget_light(arg, &output);
5710 			if (ret)
5711 				return ret;
5712 			output_event = output.file->private_data;
5713 			ret = perf_event_set_output(event, output_event);
5714 			fdput(output);
5715 		} else {
5716 			ret = perf_event_set_output(event, NULL);
5717 		}
5718 		return ret;
5719 	}
5720 
5721 	case PERF_EVENT_IOC_SET_FILTER:
5722 		return perf_event_set_filter(event, (void __user *)arg);
5723 
5724 	case PERF_EVENT_IOC_SET_BPF:
5725 	{
5726 		struct bpf_prog *prog;
5727 		int err;
5728 
5729 		prog = bpf_prog_get(arg);
5730 		if (IS_ERR(prog))
5731 			return PTR_ERR(prog);
5732 
5733 		err = perf_event_set_bpf_prog(event, prog, 0);
5734 		if (err) {
5735 			bpf_prog_put(prog);
5736 			return err;
5737 		}
5738 
5739 		return 0;
5740 	}
5741 
5742 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5743 		struct perf_buffer *rb;
5744 
5745 		rcu_read_lock();
5746 		rb = rcu_dereference(event->rb);
5747 		if (!rb || !rb->nr_pages) {
5748 			rcu_read_unlock();
5749 			return -EINVAL;
5750 		}
5751 		rb_toggle_paused(rb, !!arg);
5752 		rcu_read_unlock();
5753 		return 0;
5754 	}
5755 
5756 	case PERF_EVENT_IOC_QUERY_BPF:
5757 		return perf_event_query_prog_array(event, (void __user *)arg);
5758 
5759 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5760 		struct perf_event_attr new_attr;
5761 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5762 					 &new_attr);
5763 
5764 		if (err)
5765 			return err;
5766 
5767 		return perf_event_modify_attr(event,  &new_attr);
5768 	}
5769 	default:
5770 		return -ENOTTY;
5771 	}
5772 
5773 	if (flags & PERF_IOC_FLAG_GROUP)
5774 		perf_event_for_each(event, func);
5775 	else
5776 		perf_event_for_each_child(event, func);
5777 
5778 	return 0;
5779 }
5780 
5781 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5782 {
5783 	struct perf_event *event = file->private_data;
5784 	struct perf_event_context *ctx;
5785 	long ret;
5786 
5787 	/* Treat ioctl like writes as it is likely a mutating operation. */
5788 	ret = security_perf_event_write(event);
5789 	if (ret)
5790 		return ret;
5791 
5792 	ctx = perf_event_ctx_lock(event);
5793 	ret = _perf_ioctl(event, cmd, arg);
5794 	perf_event_ctx_unlock(event, ctx);
5795 
5796 	return ret;
5797 }
5798 
5799 #ifdef CONFIG_COMPAT
5800 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5801 				unsigned long arg)
5802 {
5803 	switch (_IOC_NR(cmd)) {
5804 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5805 	case _IOC_NR(PERF_EVENT_IOC_ID):
5806 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5807 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5808 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5809 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5810 			cmd &= ~IOCSIZE_MASK;
5811 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5812 		}
5813 		break;
5814 	}
5815 	return perf_ioctl(file, cmd, arg);
5816 }
5817 #else
5818 # define perf_compat_ioctl NULL
5819 #endif
5820 
5821 int perf_event_task_enable(void)
5822 {
5823 	struct perf_event_context *ctx;
5824 	struct perf_event *event;
5825 
5826 	mutex_lock(&current->perf_event_mutex);
5827 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5828 		ctx = perf_event_ctx_lock(event);
5829 		perf_event_for_each_child(event, _perf_event_enable);
5830 		perf_event_ctx_unlock(event, ctx);
5831 	}
5832 	mutex_unlock(&current->perf_event_mutex);
5833 
5834 	return 0;
5835 }
5836 
5837 int perf_event_task_disable(void)
5838 {
5839 	struct perf_event_context *ctx;
5840 	struct perf_event *event;
5841 
5842 	mutex_lock(&current->perf_event_mutex);
5843 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5844 		ctx = perf_event_ctx_lock(event);
5845 		perf_event_for_each_child(event, _perf_event_disable);
5846 		perf_event_ctx_unlock(event, ctx);
5847 	}
5848 	mutex_unlock(&current->perf_event_mutex);
5849 
5850 	return 0;
5851 }
5852 
5853 static int perf_event_index(struct perf_event *event)
5854 {
5855 	if (event->hw.state & PERF_HES_STOPPED)
5856 		return 0;
5857 
5858 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5859 		return 0;
5860 
5861 	return event->pmu->event_idx(event);
5862 }
5863 
5864 static void perf_event_init_userpage(struct perf_event *event)
5865 {
5866 	struct perf_event_mmap_page *userpg;
5867 	struct perf_buffer *rb;
5868 
5869 	rcu_read_lock();
5870 	rb = rcu_dereference(event->rb);
5871 	if (!rb)
5872 		goto unlock;
5873 
5874 	userpg = rb->user_page;
5875 
5876 	/* Allow new userspace to detect that bit 0 is deprecated */
5877 	userpg->cap_bit0_is_deprecated = 1;
5878 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5879 	userpg->data_offset = PAGE_SIZE;
5880 	userpg->data_size = perf_data_size(rb);
5881 
5882 unlock:
5883 	rcu_read_unlock();
5884 }
5885 
5886 void __weak arch_perf_update_userpage(
5887 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5888 {
5889 }
5890 
5891 /*
5892  * Callers need to ensure there can be no nesting of this function, otherwise
5893  * the seqlock logic goes bad. We can not serialize this because the arch
5894  * code calls this from NMI context.
5895  */
5896 void perf_event_update_userpage(struct perf_event *event)
5897 {
5898 	struct perf_event_mmap_page *userpg;
5899 	struct perf_buffer *rb;
5900 	u64 enabled, running, now;
5901 
5902 	rcu_read_lock();
5903 	rb = rcu_dereference(event->rb);
5904 	if (!rb)
5905 		goto unlock;
5906 
5907 	/*
5908 	 * compute total_time_enabled, total_time_running
5909 	 * based on snapshot values taken when the event
5910 	 * was last scheduled in.
5911 	 *
5912 	 * we cannot simply called update_context_time()
5913 	 * because of locking issue as we can be called in
5914 	 * NMI context
5915 	 */
5916 	calc_timer_values(event, &now, &enabled, &running);
5917 
5918 	userpg = rb->user_page;
5919 	/*
5920 	 * Disable preemption to guarantee consistent time stamps are stored to
5921 	 * the user page.
5922 	 */
5923 	preempt_disable();
5924 	++userpg->lock;
5925 	barrier();
5926 	userpg->index = perf_event_index(event);
5927 	userpg->offset = perf_event_count(event);
5928 	if (userpg->index)
5929 		userpg->offset -= local64_read(&event->hw.prev_count);
5930 
5931 	userpg->time_enabled = enabled +
5932 			atomic64_read(&event->child_total_time_enabled);
5933 
5934 	userpg->time_running = running +
5935 			atomic64_read(&event->child_total_time_running);
5936 
5937 	arch_perf_update_userpage(event, userpg, now);
5938 
5939 	barrier();
5940 	++userpg->lock;
5941 	preempt_enable();
5942 unlock:
5943 	rcu_read_unlock();
5944 }
5945 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5946 
5947 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5948 {
5949 	struct perf_event *event = vmf->vma->vm_file->private_data;
5950 	struct perf_buffer *rb;
5951 	vm_fault_t ret = VM_FAULT_SIGBUS;
5952 
5953 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5954 		if (vmf->pgoff == 0)
5955 			ret = 0;
5956 		return ret;
5957 	}
5958 
5959 	rcu_read_lock();
5960 	rb = rcu_dereference(event->rb);
5961 	if (!rb)
5962 		goto unlock;
5963 
5964 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5965 		goto unlock;
5966 
5967 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5968 	if (!vmf->page)
5969 		goto unlock;
5970 
5971 	get_page(vmf->page);
5972 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5973 	vmf->page->index   = vmf->pgoff;
5974 
5975 	ret = 0;
5976 unlock:
5977 	rcu_read_unlock();
5978 
5979 	return ret;
5980 }
5981 
5982 static void ring_buffer_attach(struct perf_event *event,
5983 			       struct perf_buffer *rb)
5984 {
5985 	struct perf_buffer *old_rb = NULL;
5986 	unsigned long flags;
5987 
5988 	if (event->rb) {
5989 		/*
5990 		 * Should be impossible, we set this when removing
5991 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5992 		 */
5993 		WARN_ON_ONCE(event->rcu_pending);
5994 
5995 		old_rb = event->rb;
5996 		spin_lock_irqsave(&old_rb->event_lock, flags);
5997 		list_del_rcu(&event->rb_entry);
5998 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5999 
6000 		event->rcu_batches = get_state_synchronize_rcu();
6001 		event->rcu_pending = 1;
6002 	}
6003 
6004 	if (rb) {
6005 		if (event->rcu_pending) {
6006 			cond_synchronize_rcu(event->rcu_batches);
6007 			event->rcu_pending = 0;
6008 		}
6009 
6010 		spin_lock_irqsave(&rb->event_lock, flags);
6011 		list_add_rcu(&event->rb_entry, &rb->event_list);
6012 		spin_unlock_irqrestore(&rb->event_lock, flags);
6013 	}
6014 
6015 	/*
6016 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6017 	 * before swizzling the event::rb pointer; if it's getting
6018 	 * unmapped, its aux_mmap_count will be 0 and it won't
6019 	 * restart. See the comment in __perf_pmu_output_stop().
6020 	 *
6021 	 * Data will inevitably be lost when set_output is done in
6022 	 * mid-air, but then again, whoever does it like this is
6023 	 * not in for the data anyway.
6024 	 */
6025 	if (has_aux(event))
6026 		perf_event_stop(event, 0);
6027 
6028 	rcu_assign_pointer(event->rb, rb);
6029 
6030 	if (old_rb) {
6031 		ring_buffer_put(old_rb);
6032 		/*
6033 		 * Since we detached before setting the new rb, so that we
6034 		 * could attach the new rb, we could have missed a wakeup.
6035 		 * Provide it now.
6036 		 */
6037 		wake_up_all(&event->waitq);
6038 	}
6039 }
6040 
6041 static void ring_buffer_wakeup(struct perf_event *event)
6042 {
6043 	struct perf_buffer *rb;
6044 
6045 	rcu_read_lock();
6046 	rb = rcu_dereference(event->rb);
6047 	if (rb) {
6048 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6049 			wake_up_all(&event->waitq);
6050 	}
6051 	rcu_read_unlock();
6052 }
6053 
6054 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6055 {
6056 	struct perf_buffer *rb;
6057 
6058 	rcu_read_lock();
6059 	rb = rcu_dereference(event->rb);
6060 	if (rb) {
6061 		if (!refcount_inc_not_zero(&rb->refcount))
6062 			rb = NULL;
6063 	}
6064 	rcu_read_unlock();
6065 
6066 	return rb;
6067 }
6068 
6069 void ring_buffer_put(struct perf_buffer *rb)
6070 {
6071 	if (!refcount_dec_and_test(&rb->refcount))
6072 		return;
6073 
6074 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6075 
6076 	call_rcu(&rb->rcu_head, rb_free_rcu);
6077 }
6078 
6079 static void perf_mmap_open(struct vm_area_struct *vma)
6080 {
6081 	struct perf_event *event = vma->vm_file->private_data;
6082 
6083 	atomic_inc(&event->mmap_count);
6084 	atomic_inc(&event->rb->mmap_count);
6085 
6086 	if (vma->vm_pgoff)
6087 		atomic_inc(&event->rb->aux_mmap_count);
6088 
6089 	if (event->pmu->event_mapped)
6090 		event->pmu->event_mapped(event, vma->vm_mm);
6091 }
6092 
6093 static void perf_pmu_output_stop(struct perf_event *event);
6094 
6095 /*
6096  * A buffer can be mmap()ed multiple times; either directly through the same
6097  * event, or through other events by use of perf_event_set_output().
6098  *
6099  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6100  * the buffer here, where we still have a VM context. This means we need
6101  * to detach all events redirecting to us.
6102  */
6103 static void perf_mmap_close(struct vm_area_struct *vma)
6104 {
6105 	struct perf_event *event = vma->vm_file->private_data;
6106 	struct perf_buffer *rb = ring_buffer_get(event);
6107 	struct user_struct *mmap_user = rb->mmap_user;
6108 	int mmap_locked = rb->mmap_locked;
6109 	unsigned long size = perf_data_size(rb);
6110 	bool detach_rest = false;
6111 
6112 	if (event->pmu->event_unmapped)
6113 		event->pmu->event_unmapped(event, vma->vm_mm);
6114 
6115 	/*
6116 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6117 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6118 	 * serialize with perf_mmap here.
6119 	 */
6120 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6121 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6122 		/*
6123 		 * Stop all AUX events that are writing to this buffer,
6124 		 * so that we can free its AUX pages and corresponding PMU
6125 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6126 		 * they won't start any more (see perf_aux_output_begin()).
6127 		 */
6128 		perf_pmu_output_stop(event);
6129 
6130 		/* now it's safe to free the pages */
6131 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6132 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6133 
6134 		/* this has to be the last one */
6135 		rb_free_aux(rb);
6136 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6137 
6138 		mutex_unlock(&event->mmap_mutex);
6139 	}
6140 
6141 	if (atomic_dec_and_test(&rb->mmap_count))
6142 		detach_rest = true;
6143 
6144 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6145 		goto out_put;
6146 
6147 	ring_buffer_attach(event, NULL);
6148 	mutex_unlock(&event->mmap_mutex);
6149 
6150 	/* If there's still other mmap()s of this buffer, we're done. */
6151 	if (!detach_rest)
6152 		goto out_put;
6153 
6154 	/*
6155 	 * No other mmap()s, detach from all other events that might redirect
6156 	 * into the now unreachable buffer. Somewhat complicated by the
6157 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6158 	 */
6159 again:
6160 	rcu_read_lock();
6161 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6162 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6163 			/*
6164 			 * This event is en-route to free_event() which will
6165 			 * detach it and remove it from the list.
6166 			 */
6167 			continue;
6168 		}
6169 		rcu_read_unlock();
6170 
6171 		mutex_lock(&event->mmap_mutex);
6172 		/*
6173 		 * Check we didn't race with perf_event_set_output() which can
6174 		 * swizzle the rb from under us while we were waiting to
6175 		 * acquire mmap_mutex.
6176 		 *
6177 		 * If we find a different rb; ignore this event, a next
6178 		 * iteration will no longer find it on the list. We have to
6179 		 * still restart the iteration to make sure we're not now
6180 		 * iterating the wrong list.
6181 		 */
6182 		if (event->rb == rb)
6183 			ring_buffer_attach(event, NULL);
6184 
6185 		mutex_unlock(&event->mmap_mutex);
6186 		put_event(event);
6187 
6188 		/*
6189 		 * Restart the iteration; either we're on the wrong list or
6190 		 * destroyed its integrity by doing a deletion.
6191 		 */
6192 		goto again;
6193 	}
6194 	rcu_read_unlock();
6195 
6196 	/*
6197 	 * It could be there's still a few 0-ref events on the list; they'll
6198 	 * get cleaned up by free_event() -- they'll also still have their
6199 	 * ref on the rb and will free it whenever they are done with it.
6200 	 *
6201 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6202 	 * undo the VM accounting.
6203 	 */
6204 
6205 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6206 			&mmap_user->locked_vm);
6207 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6208 	free_uid(mmap_user);
6209 
6210 out_put:
6211 	ring_buffer_put(rb); /* could be last */
6212 }
6213 
6214 static const struct vm_operations_struct perf_mmap_vmops = {
6215 	.open		= perf_mmap_open,
6216 	.close		= perf_mmap_close, /* non mergeable */
6217 	.fault		= perf_mmap_fault,
6218 	.page_mkwrite	= perf_mmap_fault,
6219 };
6220 
6221 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6222 {
6223 	struct perf_event *event = file->private_data;
6224 	unsigned long user_locked, user_lock_limit;
6225 	struct user_struct *user = current_user();
6226 	struct perf_buffer *rb = NULL;
6227 	unsigned long locked, lock_limit;
6228 	unsigned long vma_size;
6229 	unsigned long nr_pages;
6230 	long user_extra = 0, extra = 0;
6231 	int ret = 0, flags = 0;
6232 
6233 	/*
6234 	 * Don't allow mmap() of inherited per-task counters. This would
6235 	 * create a performance issue due to all children writing to the
6236 	 * same rb.
6237 	 */
6238 	if (event->cpu == -1 && event->attr.inherit)
6239 		return -EINVAL;
6240 
6241 	if (!(vma->vm_flags & VM_SHARED))
6242 		return -EINVAL;
6243 
6244 	ret = security_perf_event_read(event);
6245 	if (ret)
6246 		return ret;
6247 
6248 	vma_size = vma->vm_end - vma->vm_start;
6249 
6250 	if (vma->vm_pgoff == 0) {
6251 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6252 	} else {
6253 		/*
6254 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6255 		 * mapped, all subsequent mappings should have the same size
6256 		 * and offset. Must be above the normal perf buffer.
6257 		 */
6258 		u64 aux_offset, aux_size;
6259 
6260 		if (!event->rb)
6261 			return -EINVAL;
6262 
6263 		nr_pages = vma_size / PAGE_SIZE;
6264 
6265 		mutex_lock(&event->mmap_mutex);
6266 		ret = -EINVAL;
6267 
6268 		rb = event->rb;
6269 		if (!rb)
6270 			goto aux_unlock;
6271 
6272 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6273 		aux_size = READ_ONCE(rb->user_page->aux_size);
6274 
6275 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6276 			goto aux_unlock;
6277 
6278 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6279 			goto aux_unlock;
6280 
6281 		/* already mapped with a different offset */
6282 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6283 			goto aux_unlock;
6284 
6285 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6286 			goto aux_unlock;
6287 
6288 		/* already mapped with a different size */
6289 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6290 			goto aux_unlock;
6291 
6292 		if (!is_power_of_2(nr_pages))
6293 			goto aux_unlock;
6294 
6295 		if (!atomic_inc_not_zero(&rb->mmap_count))
6296 			goto aux_unlock;
6297 
6298 		if (rb_has_aux(rb)) {
6299 			atomic_inc(&rb->aux_mmap_count);
6300 			ret = 0;
6301 			goto unlock;
6302 		}
6303 
6304 		atomic_set(&rb->aux_mmap_count, 1);
6305 		user_extra = nr_pages;
6306 
6307 		goto accounting;
6308 	}
6309 
6310 	/*
6311 	 * If we have rb pages ensure they're a power-of-two number, so we
6312 	 * can do bitmasks instead of modulo.
6313 	 */
6314 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6315 		return -EINVAL;
6316 
6317 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6318 		return -EINVAL;
6319 
6320 	WARN_ON_ONCE(event->ctx->parent_ctx);
6321 again:
6322 	mutex_lock(&event->mmap_mutex);
6323 	if (event->rb) {
6324 		if (event->rb->nr_pages != nr_pages) {
6325 			ret = -EINVAL;
6326 			goto unlock;
6327 		}
6328 
6329 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6330 			/*
6331 			 * Raced against perf_mmap_close() through
6332 			 * perf_event_set_output(). Try again, hope for better
6333 			 * luck.
6334 			 */
6335 			mutex_unlock(&event->mmap_mutex);
6336 			goto again;
6337 		}
6338 
6339 		goto unlock;
6340 	}
6341 
6342 	user_extra = nr_pages + 1;
6343 
6344 accounting:
6345 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6346 
6347 	/*
6348 	 * Increase the limit linearly with more CPUs:
6349 	 */
6350 	user_lock_limit *= num_online_cpus();
6351 
6352 	user_locked = atomic_long_read(&user->locked_vm);
6353 
6354 	/*
6355 	 * sysctl_perf_event_mlock may have changed, so that
6356 	 *     user->locked_vm > user_lock_limit
6357 	 */
6358 	if (user_locked > user_lock_limit)
6359 		user_locked = user_lock_limit;
6360 	user_locked += user_extra;
6361 
6362 	if (user_locked > user_lock_limit) {
6363 		/*
6364 		 * charge locked_vm until it hits user_lock_limit;
6365 		 * charge the rest from pinned_vm
6366 		 */
6367 		extra = user_locked - user_lock_limit;
6368 		user_extra -= extra;
6369 	}
6370 
6371 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6372 	lock_limit >>= PAGE_SHIFT;
6373 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6374 
6375 	if ((locked > lock_limit) && perf_is_paranoid() &&
6376 		!capable(CAP_IPC_LOCK)) {
6377 		ret = -EPERM;
6378 		goto unlock;
6379 	}
6380 
6381 	WARN_ON(!rb && event->rb);
6382 
6383 	if (vma->vm_flags & VM_WRITE)
6384 		flags |= RING_BUFFER_WRITABLE;
6385 
6386 	if (!rb) {
6387 		rb = rb_alloc(nr_pages,
6388 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6389 			      event->cpu, flags);
6390 
6391 		if (!rb) {
6392 			ret = -ENOMEM;
6393 			goto unlock;
6394 		}
6395 
6396 		atomic_set(&rb->mmap_count, 1);
6397 		rb->mmap_user = get_current_user();
6398 		rb->mmap_locked = extra;
6399 
6400 		ring_buffer_attach(event, rb);
6401 
6402 		perf_event_update_time(event);
6403 		perf_event_init_userpage(event);
6404 		perf_event_update_userpage(event);
6405 	} else {
6406 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6407 				   event->attr.aux_watermark, flags);
6408 		if (!ret)
6409 			rb->aux_mmap_locked = extra;
6410 	}
6411 
6412 unlock:
6413 	if (!ret) {
6414 		atomic_long_add(user_extra, &user->locked_vm);
6415 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6416 
6417 		atomic_inc(&event->mmap_count);
6418 	} else if (rb) {
6419 		atomic_dec(&rb->mmap_count);
6420 	}
6421 aux_unlock:
6422 	mutex_unlock(&event->mmap_mutex);
6423 
6424 	/*
6425 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6426 	 * vma.
6427 	 */
6428 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6429 	vma->vm_ops = &perf_mmap_vmops;
6430 
6431 	if (event->pmu->event_mapped)
6432 		event->pmu->event_mapped(event, vma->vm_mm);
6433 
6434 	return ret;
6435 }
6436 
6437 static int perf_fasync(int fd, struct file *filp, int on)
6438 {
6439 	struct inode *inode = file_inode(filp);
6440 	struct perf_event *event = filp->private_data;
6441 	int retval;
6442 
6443 	inode_lock(inode);
6444 	retval = fasync_helper(fd, filp, on, &event->fasync);
6445 	inode_unlock(inode);
6446 
6447 	if (retval < 0)
6448 		return retval;
6449 
6450 	return 0;
6451 }
6452 
6453 static const struct file_operations perf_fops = {
6454 	.llseek			= no_llseek,
6455 	.release		= perf_release,
6456 	.read			= perf_read,
6457 	.poll			= perf_poll,
6458 	.unlocked_ioctl		= perf_ioctl,
6459 	.compat_ioctl		= perf_compat_ioctl,
6460 	.mmap			= perf_mmap,
6461 	.fasync			= perf_fasync,
6462 };
6463 
6464 /*
6465  * Perf event wakeup
6466  *
6467  * If there's data, ensure we set the poll() state and publish everything
6468  * to user-space before waking everybody up.
6469  */
6470 
6471 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6472 {
6473 	/* only the parent has fasync state */
6474 	if (event->parent)
6475 		event = event->parent;
6476 	return &event->fasync;
6477 }
6478 
6479 void perf_event_wakeup(struct perf_event *event)
6480 {
6481 	ring_buffer_wakeup(event);
6482 
6483 	if (event->pending_kill) {
6484 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6485 		event->pending_kill = 0;
6486 	}
6487 }
6488 
6489 static void perf_sigtrap(struct perf_event *event)
6490 {
6491 	/*
6492 	 * We'd expect this to only occur if the irq_work is delayed and either
6493 	 * ctx->task or current has changed in the meantime. This can be the
6494 	 * case on architectures that do not implement arch_irq_work_raise().
6495 	 */
6496 	if (WARN_ON_ONCE(event->ctx->task != current))
6497 		return;
6498 
6499 	/*
6500 	 * perf_pending_event() can race with the task exiting.
6501 	 */
6502 	if (current->flags & PF_EXITING)
6503 		return;
6504 
6505 	force_sig_perf((void __user *)event->pending_addr,
6506 		       event->attr.type, event->attr.sig_data);
6507 }
6508 
6509 static void perf_pending_event_disable(struct perf_event *event)
6510 {
6511 	int cpu = READ_ONCE(event->pending_disable);
6512 
6513 	if (cpu < 0)
6514 		return;
6515 
6516 	if (cpu == smp_processor_id()) {
6517 		WRITE_ONCE(event->pending_disable, -1);
6518 
6519 		if (event->attr.sigtrap) {
6520 			perf_sigtrap(event);
6521 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6522 			return;
6523 		}
6524 
6525 		perf_event_disable_local(event);
6526 		return;
6527 	}
6528 
6529 	/*
6530 	 *  CPU-A			CPU-B
6531 	 *
6532 	 *  perf_event_disable_inatomic()
6533 	 *    @pending_disable = CPU-A;
6534 	 *    irq_work_queue();
6535 	 *
6536 	 *  sched-out
6537 	 *    @pending_disable = -1;
6538 	 *
6539 	 *				sched-in
6540 	 *				perf_event_disable_inatomic()
6541 	 *				  @pending_disable = CPU-B;
6542 	 *				  irq_work_queue(); // FAILS
6543 	 *
6544 	 *  irq_work_run()
6545 	 *    perf_pending_event()
6546 	 *
6547 	 * But the event runs on CPU-B and wants disabling there.
6548 	 */
6549 	irq_work_queue_on(&event->pending, cpu);
6550 }
6551 
6552 static void perf_pending_event(struct irq_work *entry)
6553 {
6554 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6555 	int rctx;
6556 
6557 	rctx = perf_swevent_get_recursion_context();
6558 	/*
6559 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6560 	 * and we won't recurse 'further'.
6561 	 */
6562 
6563 	perf_pending_event_disable(event);
6564 
6565 	if (event->pending_wakeup) {
6566 		event->pending_wakeup = 0;
6567 		perf_event_wakeup(event);
6568 	}
6569 
6570 	if (rctx >= 0)
6571 		perf_swevent_put_recursion_context(rctx);
6572 }
6573 
6574 #ifdef CONFIG_GUEST_PERF_EVENTS
6575 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6576 
6577 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6578 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6579 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6580 
6581 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6582 {
6583 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6584 		return;
6585 
6586 	rcu_assign_pointer(perf_guest_cbs, cbs);
6587 	static_call_update(__perf_guest_state, cbs->state);
6588 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6589 
6590 	/* Implementing ->handle_intel_pt_intr is optional. */
6591 	if (cbs->handle_intel_pt_intr)
6592 		static_call_update(__perf_guest_handle_intel_pt_intr,
6593 				   cbs->handle_intel_pt_intr);
6594 }
6595 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6596 
6597 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6598 {
6599 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6600 		return;
6601 
6602 	rcu_assign_pointer(perf_guest_cbs, NULL);
6603 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6604 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6605 	static_call_update(__perf_guest_handle_intel_pt_intr,
6606 			   (void *)&__static_call_return0);
6607 	synchronize_rcu();
6608 }
6609 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6610 #endif
6611 
6612 static void
6613 perf_output_sample_regs(struct perf_output_handle *handle,
6614 			struct pt_regs *regs, u64 mask)
6615 {
6616 	int bit;
6617 	DECLARE_BITMAP(_mask, 64);
6618 
6619 	bitmap_from_u64(_mask, mask);
6620 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6621 		u64 val;
6622 
6623 		val = perf_reg_value(regs, bit);
6624 		perf_output_put(handle, val);
6625 	}
6626 }
6627 
6628 static void perf_sample_regs_user(struct perf_regs *regs_user,
6629 				  struct pt_regs *regs)
6630 {
6631 	if (user_mode(regs)) {
6632 		regs_user->abi = perf_reg_abi(current);
6633 		regs_user->regs = regs;
6634 	} else if (!(current->flags & PF_KTHREAD)) {
6635 		perf_get_regs_user(regs_user, regs);
6636 	} else {
6637 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6638 		regs_user->regs = NULL;
6639 	}
6640 }
6641 
6642 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6643 				  struct pt_regs *regs)
6644 {
6645 	regs_intr->regs = regs;
6646 	regs_intr->abi  = perf_reg_abi(current);
6647 }
6648 
6649 
6650 /*
6651  * Get remaining task size from user stack pointer.
6652  *
6653  * It'd be better to take stack vma map and limit this more
6654  * precisely, but there's no way to get it safely under interrupt,
6655  * so using TASK_SIZE as limit.
6656  */
6657 static u64 perf_ustack_task_size(struct pt_regs *regs)
6658 {
6659 	unsigned long addr = perf_user_stack_pointer(regs);
6660 
6661 	if (!addr || addr >= TASK_SIZE)
6662 		return 0;
6663 
6664 	return TASK_SIZE - addr;
6665 }
6666 
6667 static u16
6668 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6669 			struct pt_regs *regs)
6670 {
6671 	u64 task_size;
6672 
6673 	/* No regs, no stack pointer, no dump. */
6674 	if (!regs)
6675 		return 0;
6676 
6677 	/*
6678 	 * Check if we fit in with the requested stack size into the:
6679 	 * - TASK_SIZE
6680 	 *   If we don't, we limit the size to the TASK_SIZE.
6681 	 *
6682 	 * - remaining sample size
6683 	 *   If we don't, we customize the stack size to
6684 	 *   fit in to the remaining sample size.
6685 	 */
6686 
6687 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6688 	stack_size = min(stack_size, (u16) task_size);
6689 
6690 	/* Current header size plus static size and dynamic size. */
6691 	header_size += 2 * sizeof(u64);
6692 
6693 	/* Do we fit in with the current stack dump size? */
6694 	if ((u16) (header_size + stack_size) < header_size) {
6695 		/*
6696 		 * If we overflow the maximum size for the sample,
6697 		 * we customize the stack dump size to fit in.
6698 		 */
6699 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6700 		stack_size = round_up(stack_size, sizeof(u64));
6701 	}
6702 
6703 	return stack_size;
6704 }
6705 
6706 static void
6707 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6708 			  struct pt_regs *regs)
6709 {
6710 	/* Case of a kernel thread, nothing to dump */
6711 	if (!regs) {
6712 		u64 size = 0;
6713 		perf_output_put(handle, size);
6714 	} else {
6715 		unsigned long sp;
6716 		unsigned int rem;
6717 		u64 dyn_size;
6718 		mm_segment_t fs;
6719 
6720 		/*
6721 		 * We dump:
6722 		 * static size
6723 		 *   - the size requested by user or the best one we can fit
6724 		 *     in to the sample max size
6725 		 * data
6726 		 *   - user stack dump data
6727 		 * dynamic size
6728 		 *   - the actual dumped size
6729 		 */
6730 
6731 		/* Static size. */
6732 		perf_output_put(handle, dump_size);
6733 
6734 		/* Data. */
6735 		sp = perf_user_stack_pointer(regs);
6736 		fs = force_uaccess_begin();
6737 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6738 		force_uaccess_end(fs);
6739 		dyn_size = dump_size - rem;
6740 
6741 		perf_output_skip(handle, rem);
6742 
6743 		/* Dynamic size. */
6744 		perf_output_put(handle, dyn_size);
6745 	}
6746 }
6747 
6748 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6749 					  struct perf_sample_data *data,
6750 					  size_t size)
6751 {
6752 	struct perf_event *sampler = event->aux_event;
6753 	struct perf_buffer *rb;
6754 
6755 	data->aux_size = 0;
6756 
6757 	if (!sampler)
6758 		goto out;
6759 
6760 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6761 		goto out;
6762 
6763 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6764 		goto out;
6765 
6766 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6767 	if (!rb)
6768 		goto out;
6769 
6770 	/*
6771 	 * If this is an NMI hit inside sampling code, don't take
6772 	 * the sample. See also perf_aux_sample_output().
6773 	 */
6774 	if (READ_ONCE(rb->aux_in_sampling)) {
6775 		data->aux_size = 0;
6776 	} else {
6777 		size = min_t(size_t, size, perf_aux_size(rb));
6778 		data->aux_size = ALIGN(size, sizeof(u64));
6779 	}
6780 	ring_buffer_put(rb);
6781 
6782 out:
6783 	return data->aux_size;
6784 }
6785 
6786 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6787                                  struct perf_event *event,
6788                                  struct perf_output_handle *handle,
6789                                  unsigned long size)
6790 {
6791 	unsigned long flags;
6792 	long ret;
6793 
6794 	/*
6795 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6796 	 * paths. If we start calling them in NMI context, they may race with
6797 	 * the IRQ ones, that is, for example, re-starting an event that's just
6798 	 * been stopped, which is why we're using a separate callback that
6799 	 * doesn't change the event state.
6800 	 *
6801 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6802 	 */
6803 	local_irq_save(flags);
6804 	/*
6805 	 * Guard against NMI hits inside the critical section;
6806 	 * see also perf_prepare_sample_aux().
6807 	 */
6808 	WRITE_ONCE(rb->aux_in_sampling, 1);
6809 	barrier();
6810 
6811 	ret = event->pmu->snapshot_aux(event, handle, size);
6812 
6813 	barrier();
6814 	WRITE_ONCE(rb->aux_in_sampling, 0);
6815 	local_irq_restore(flags);
6816 
6817 	return ret;
6818 }
6819 
6820 static void perf_aux_sample_output(struct perf_event *event,
6821 				   struct perf_output_handle *handle,
6822 				   struct perf_sample_data *data)
6823 {
6824 	struct perf_event *sampler = event->aux_event;
6825 	struct perf_buffer *rb;
6826 	unsigned long pad;
6827 	long size;
6828 
6829 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6830 		return;
6831 
6832 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6833 	if (!rb)
6834 		return;
6835 
6836 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6837 
6838 	/*
6839 	 * An error here means that perf_output_copy() failed (returned a
6840 	 * non-zero surplus that it didn't copy), which in its current
6841 	 * enlightened implementation is not possible. If that changes, we'd
6842 	 * like to know.
6843 	 */
6844 	if (WARN_ON_ONCE(size < 0))
6845 		goto out_put;
6846 
6847 	/*
6848 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6849 	 * perf_prepare_sample_aux(), so should not be more than that.
6850 	 */
6851 	pad = data->aux_size - size;
6852 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6853 		pad = 8;
6854 
6855 	if (pad) {
6856 		u64 zero = 0;
6857 		perf_output_copy(handle, &zero, pad);
6858 	}
6859 
6860 out_put:
6861 	ring_buffer_put(rb);
6862 }
6863 
6864 static void __perf_event_header__init_id(struct perf_event_header *header,
6865 					 struct perf_sample_data *data,
6866 					 struct perf_event *event)
6867 {
6868 	u64 sample_type = event->attr.sample_type;
6869 
6870 	data->type = sample_type;
6871 	header->size += event->id_header_size;
6872 
6873 	if (sample_type & PERF_SAMPLE_TID) {
6874 		/* namespace issues */
6875 		data->tid_entry.pid = perf_event_pid(event, current);
6876 		data->tid_entry.tid = perf_event_tid(event, current);
6877 	}
6878 
6879 	if (sample_type & PERF_SAMPLE_TIME)
6880 		data->time = perf_event_clock(event);
6881 
6882 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6883 		data->id = primary_event_id(event);
6884 
6885 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6886 		data->stream_id = event->id;
6887 
6888 	if (sample_type & PERF_SAMPLE_CPU) {
6889 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6890 		data->cpu_entry.reserved = 0;
6891 	}
6892 }
6893 
6894 void perf_event_header__init_id(struct perf_event_header *header,
6895 				struct perf_sample_data *data,
6896 				struct perf_event *event)
6897 {
6898 	if (event->attr.sample_id_all)
6899 		__perf_event_header__init_id(header, data, event);
6900 }
6901 
6902 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6903 					   struct perf_sample_data *data)
6904 {
6905 	u64 sample_type = data->type;
6906 
6907 	if (sample_type & PERF_SAMPLE_TID)
6908 		perf_output_put(handle, data->tid_entry);
6909 
6910 	if (sample_type & PERF_SAMPLE_TIME)
6911 		perf_output_put(handle, data->time);
6912 
6913 	if (sample_type & PERF_SAMPLE_ID)
6914 		perf_output_put(handle, data->id);
6915 
6916 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6917 		perf_output_put(handle, data->stream_id);
6918 
6919 	if (sample_type & PERF_SAMPLE_CPU)
6920 		perf_output_put(handle, data->cpu_entry);
6921 
6922 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6923 		perf_output_put(handle, data->id);
6924 }
6925 
6926 void perf_event__output_id_sample(struct perf_event *event,
6927 				  struct perf_output_handle *handle,
6928 				  struct perf_sample_data *sample)
6929 {
6930 	if (event->attr.sample_id_all)
6931 		__perf_event__output_id_sample(handle, sample);
6932 }
6933 
6934 static void perf_output_read_one(struct perf_output_handle *handle,
6935 				 struct perf_event *event,
6936 				 u64 enabled, u64 running)
6937 {
6938 	u64 read_format = event->attr.read_format;
6939 	u64 values[4];
6940 	int n = 0;
6941 
6942 	values[n++] = perf_event_count(event);
6943 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6944 		values[n++] = enabled +
6945 			atomic64_read(&event->child_total_time_enabled);
6946 	}
6947 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6948 		values[n++] = running +
6949 			atomic64_read(&event->child_total_time_running);
6950 	}
6951 	if (read_format & PERF_FORMAT_ID)
6952 		values[n++] = primary_event_id(event);
6953 
6954 	__output_copy(handle, values, n * sizeof(u64));
6955 }
6956 
6957 static void perf_output_read_group(struct perf_output_handle *handle,
6958 			    struct perf_event *event,
6959 			    u64 enabled, u64 running)
6960 {
6961 	struct perf_event *leader = event->group_leader, *sub;
6962 	u64 read_format = event->attr.read_format;
6963 	u64 values[5];
6964 	int n = 0;
6965 
6966 	values[n++] = 1 + leader->nr_siblings;
6967 
6968 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6969 		values[n++] = enabled;
6970 
6971 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6972 		values[n++] = running;
6973 
6974 	if ((leader != event) &&
6975 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6976 		leader->pmu->read(leader);
6977 
6978 	values[n++] = perf_event_count(leader);
6979 	if (read_format & PERF_FORMAT_ID)
6980 		values[n++] = primary_event_id(leader);
6981 
6982 	__output_copy(handle, values, n * sizeof(u64));
6983 
6984 	for_each_sibling_event(sub, leader) {
6985 		n = 0;
6986 
6987 		if ((sub != event) &&
6988 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6989 			sub->pmu->read(sub);
6990 
6991 		values[n++] = perf_event_count(sub);
6992 		if (read_format & PERF_FORMAT_ID)
6993 			values[n++] = primary_event_id(sub);
6994 
6995 		__output_copy(handle, values, n * sizeof(u64));
6996 	}
6997 }
6998 
6999 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7000 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7001 
7002 /*
7003  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7004  *
7005  * The problem is that its both hard and excessively expensive to iterate the
7006  * child list, not to mention that its impossible to IPI the children running
7007  * on another CPU, from interrupt/NMI context.
7008  */
7009 static void perf_output_read(struct perf_output_handle *handle,
7010 			     struct perf_event *event)
7011 {
7012 	u64 enabled = 0, running = 0, now;
7013 	u64 read_format = event->attr.read_format;
7014 
7015 	/*
7016 	 * compute total_time_enabled, total_time_running
7017 	 * based on snapshot values taken when the event
7018 	 * was last scheduled in.
7019 	 *
7020 	 * we cannot simply called update_context_time()
7021 	 * because of locking issue as we are called in
7022 	 * NMI context
7023 	 */
7024 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7025 		calc_timer_values(event, &now, &enabled, &running);
7026 
7027 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7028 		perf_output_read_group(handle, event, enabled, running);
7029 	else
7030 		perf_output_read_one(handle, event, enabled, running);
7031 }
7032 
7033 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7034 {
7035 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7036 }
7037 
7038 void perf_output_sample(struct perf_output_handle *handle,
7039 			struct perf_event_header *header,
7040 			struct perf_sample_data *data,
7041 			struct perf_event *event)
7042 {
7043 	u64 sample_type = data->type;
7044 
7045 	perf_output_put(handle, *header);
7046 
7047 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7048 		perf_output_put(handle, data->id);
7049 
7050 	if (sample_type & PERF_SAMPLE_IP)
7051 		perf_output_put(handle, data->ip);
7052 
7053 	if (sample_type & PERF_SAMPLE_TID)
7054 		perf_output_put(handle, data->tid_entry);
7055 
7056 	if (sample_type & PERF_SAMPLE_TIME)
7057 		perf_output_put(handle, data->time);
7058 
7059 	if (sample_type & PERF_SAMPLE_ADDR)
7060 		perf_output_put(handle, data->addr);
7061 
7062 	if (sample_type & PERF_SAMPLE_ID)
7063 		perf_output_put(handle, data->id);
7064 
7065 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7066 		perf_output_put(handle, data->stream_id);
7067 
7068 	if (sample_type & PERF_SAMPLE_CPU)
7069 		perf_output_put(handle, data->cpu_entry);
7070 
7071 	if (sample_type & PERF_SAMPLE_PERIOD)
7072 		perf_output_put(handle, data->period);
7073 
7074 	if (sample_type & PERF_SAMPLE_READ)
7075 		perf_output_read(handle, event);
7076 
7077 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7078 		int size = 1;
7079 
7080 		size += data->callchain->nr;
7081 		size *= sizeof(u64);
7082 		__output_copy(handle, data->callchain, size);
7083 	}
7084 
7085 	if (sample_type & PERF_SAMPLE_RAW) {
7086 		struct perf_raw_record *raw = data->raw;
7087 
7088 		if (raw) {
7089 			struct perf_raw_frag *frag = &raw->frag;
7090 
7091 			perf_output_put(handle, raw->size);
7092 			do {
7093 				if (frag->copy) {
7094 					__output_custom(handle, frag->copy,
7095 							frag->data, frag->size);
7096 				} else {
7097 					__output_copy(handle, frag->data,
7098 						      frag->size);
7099 				}
7100 				if (perf_raw_frag_last(frag))
7101 					break;
7102 				frag = frag->next;
7103 			} while (1);
7104 			if (frag->pad)
7105 				__output_skip(handle, NULL, frag->pad);
7106 		} else {
7107 			struct {
7108 				u32	size;
7109 				u32	data;
7110 			} raw = {
7111 				.size = sizeof(u32),
7112 				.data = 0,
7113 			};
7114 			perf_output_put(handle, raw);
7115 		}
7116 	}
7117 
7118 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7119 		if (data->br_stack) {
7120 			size_t size;
7121 
7122 			size = data->br_stack->nr
7123 			     * sizeof(struct perf_branch_entry);
7124 
7125 			perf_output_put(handle, data->br_stack->nr);
7126 			if (perf_sample_save_hw_index(event))
7127 				perf_output_put(handle, data->br_stack->hw_idx);
7128 			perf_output_copy(handle, data->br_stack->entries, size);
7129 		} else {
7130 			/*
7131 			 * we always store at least the value of nr
7132 			 */
7133 			u64 nr = 0;
7134 			perf_output_put(handle, nr);
7135 		}
7136 	}
7137 
7138 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7139 		u64 abi = data->regs_user.abi;
7140 
7141 		/*
7142 		 * If there are no regs to dump, notice it through
7143 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7144 		 */
7145 		perf_output_put(handle, abi);
7146 
7147 		if (abi) {
7148 			u64 mask = event->attr.sample_regs_user;
7149 			perf_output_sample_regs(handle,
7150 						data->regs_user.regs,
7151 						mask);
7152 		}
7153 	}
7154 
7155 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7156 		perf_output_sample_ustack(handle,
7157 					  data->stack_user_size,
7158 					  data->regs_user.regs);
7159 	}
7160 
7161 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7162 		perf_output_put(handle, data->weight.full);
7163 
7164 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7165 		perf_output_put(handle, data->data_src.val);
7166 
7167 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7168 		perf_output_put(handle, data->txn);
7169 
7170 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7171 		u64 abi = data->regs_intr.abi;
7172 		/*
7173 		 * If there are no regs to dump, notice it through
7174 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7175 		 */
7176 		perf_output_put(handle, abi);
7177 
7178 		if (abi) {
7179 			u64 mask = event->attr.sample_regs_intr;
7180 
7181 			perf_output_sample_regs(handle,
7182 						data->regs_intr.regs,
7183 						mask);
7184 		}
7185 	}
7186 
7187 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7188 		perf_output_put(handle, data->phys_addr);
7189 
7190 	if (sample_type & PERF_SAMPLE_CGROUP)
7191 		perf_output_put(handle, data->cgroup);
7192 
7193 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7194 		perf_output_put(handle, data->data_page_size);
7195 
7196 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7197 		perf_output_put(handle, data->code_page_size);
7198 
7199 	if (sample_type & PERF_SAMPLE_AUX) {
7200 		perf_output_put(handle, data->aux_size);
7201 
7202 		if (data->aux_size)
7203 			perf_aux_sample_output(event, handle, data);
7204 	}
7205 
7206 	if (!event->attr.watermark) {
7207 		int wakeup_events = event->attr.wakeup_events;
7208 
7209 		if (wakeup_events) {
7210 			struct perf_buffer *rb = handle->rb;
7211 			int events = local_inc_return(&rb->events);
7212 
7213 			if (events >= wakeup_events) {
7214 				local_sub(wakeup_events, &rb->events);
7215 				local_inc(&rb->wakeup);
7216 			}
7217 		}
7218 	}
7219 }
7220 
7221 static u64 perf_virt_to_phys(u64 virt)
7222 {
7223 	u64 phys_addr = 0;
7224 
7225 	if (!virt)
7226 		return 0;
7227 
7228 	if (virt >= TASK_SIZE) {
7229 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7230 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7231 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7232 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7233 	} else {
7234 		/*
7235 		 * Walking the pages tables for user address.
7236 		 * Interrupts are disabled, so it prevents any tear down
7237 		 * of the page tables.
7238 		 * Try IRQ-safe get_user_page_fast_only first.
7239 		 * If failed, leave phys_addr as 0.
7240 		 */
7241 		if (current->mm != NULL) {
7242 			struct page *p;
7243 
7244 			pagefault_disable();
7245 			if (get_user_page_fast_only(virt, 0, &p)) {
7246 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7247 				put_page(p);
7248 			}
7249 			pagefault_enable();
7250 		}
7251 	}
7252 
7253 	return phys_addr;
7254 }
7255 
7256 /*
7257  * Return the pagetable size of a given virtual address.
7258  */
7259 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7260 {
7261 	u64 size = 0;
7262 
7263 #ifdef CONFIG_HAVE_FAST_GUP
7264 	pgd_t *pgdp, pgd;
7265 	p4d_t *p4dp, p4d;
7266 	pud_t *pudp, pud;
7267 	pmd_t *pmdp, pmd;
7268 	pte_t *ptep, pte;
7269 
7270 	pgdp = pgd_offset(mm, addr);
7271 	pgd = READ_ONCE(*pgdp);
7272 	if (pgd_none(pgd))
7273 		return 0;
7274 
7275 	if (pgd_leaf(pgd))
7276 		return pgd_leaf_size(pgd);
7277 
7278 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7279 	p4d = READ_ONCE(*p4dp);
7280 	if (!p4d_present(p4d))
7281 		return 0;
7282 
7283 	if (p4d_leaf(p4d))
7284 		return p4d_leaf_size(p4d);
7285 
7286 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7287 	pud = READ_ONCE(*pudp);
7288 	if (!pud_present(pud))
7289 		return 0;
7290 
7291 	if (pud_leaf(pud))
7292 		return pud_leaf_size(pud);
7293 
7294 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7295 	pmd = READ_ONCE(*pmdp);
7296 	if (!pmd_present(pmd))
7297 		return 0;
7298 
7299 	if (pmd_leaf(pmd))
7300 		return pmd_leaf_size(pmd);
7301 
7302 	ptep = pte_offset_map(&pmd, addr);
7303 	pte = ptep_get_lockless(ptep);
7304 	if (pte_present(pte))
7305 		size = pte_leaf_size(pte);
7306 	pte_unmap(ptep);
7307 #endif /* CONFIG_HAVE_FAST_GUP */
7308 
7309 	return size;
7310 }
7311 
7312 static u64 perf_get_page_size(unsigned long addr)
7313 {
7314 	struct mm_struct *mm;
7315 	unsigned long flags;
7316 	u64 size;
7317 
7318 	if (!addr)
7319 		return 0;
7320 
7321 	/*
7322 	 * Software page-table walkers must disable IRQs,
7323 	 * which prevents any tear down of the page tables.
7324 	 */
7325 	local_irq_save(flags);
7326 
7327 	mm = current->mm;
7328 	if (!mm) {
7329 		/*
7330 		 * For kernel threads and the like, use init_mm so that
7331 		 * we can find kernel memory.
7332 		 */
7333 		mm = &init_mm;
7334 	}
7335 
7336 	size = perf_get_pgtable_size(mm, addr);
7337 
7338 	local_irq_restore(flags);
7339 
7340 	return size;
7341 }
7342 
7343 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7344 
7345 struct perf_callchain_entry *
7346 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7347 {
7348 	bool kernel = !event->attr.exclude_callchain_kernel;
7349 	bool user   = !event->attr.exclude_callchain_user;
7350 	/* Disallow cross-task user callchains. */
7351 	bool crosstask = event->ctx->task && event->ctx->task != current;
7352 	const u32 max_stack = event->attr.sample_max_stack;
7353 	struct perf_callchain_entry *callchain;
7354 
7355 	if (!kernel && !user)
7356 		return &__empty_callchain;
7357 
7358 	callchain = get_perf_callchain(regs, 0, kernel, user,
7359 				       max_stack, crosstask, true);
7360 	return callchain ?: &__empty_callchain;
7361 }
7362 
7363 void perf_prepare_sample(struct perf_event_header *header,
7364 			 struct perf_sample_data *data,
7365 			 struct perf_event *event,
7366 			 struct pt_regs *regs)
7367 {
7368 	u64 sample_type = event->attr.sample_type;
7369 
7370 	header->type = PERF_RECORD_SAMPLE;
7371 	header->size = sizeof(*header) + event->header_size;
7372 
7373 	header->misc = 0;
7374 	header->misc |= perf_misc_flags(regs);
7375 
7376 	__perf_event_header__init_id(header, data, event);
7377 
7378 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7379 		data->ip = perf_instruction_pointer(regs);
7380 
7381 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7382 		int size = 1;
7383 
7384 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7385 			data->callchain = perf_callchain(event, regs);
7386 
7387 		size += data->callchain->nr;
7388 
7389 		header->size += size * sizeof(u64);
7390 	}
7391 
7392 	if (sample_type & PERF_SAMPLE_RAW) {
7393 		struct perf_raw_record *raw = data->raw;
7394 		int size;
7395 
7396 		if (raw) {
7397 			struct perf_raw_frag *frag = &raw->frag;
7398 			u32 sum = 0;
7399 
7400 			do {
7401 				sum += frag->size;
7402 				if (perf_raw_frag_last(frag))
7403 					break;
7404 				frag = frag->next;
7405 			} while (1);
7406 
7407 			size = round_up(sum + sizeof(u32), sizeof(u64));
7408 			raw->size = size - sizeof(u32);
7409 			frag->pad = raw->size - sum;
7410 		} else {
7411 			size = sizeof(u64);
7412 		}
7413 
7414 		header->size += size;
7415 	}
7416 
7417 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7418 		int size = sizeof(u64); /* nr */
7419 		if (data->br_stack) {
7420 			if (perf_sample_save_hw_index(event))
7421 				size += sizeof(u64);
7422 
7423 			size += data->br_stack->nr
7424 			      * sizeof(struct perf_branch_entry);
7425 		}
7426 		header->size += size;
7427 	}
7428 
7429 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7430 		perf_sample_regs_user(&data->regs_user, regs);
7431 
7432 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7433 		/* regs dump ABI info */
7434 		int size = sizeof(u64);
7435 
7436 		if (data->regs_user.regs) {
7437 			u64 mask = event->attr.sample_regs_user;
7438 			size += hweight64(mask) * sizeof(u64);
7439 		}
7440 
7441 		header->size += size;
7442 	}
7443 
7444 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7445 		/*
7446 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7447 		 * processed as the last one or have additional check added
7448 		 * in case new sample type is added, because we could eat
7449 		 * up the rest of the sample size.
7450 		 */
7451 		u16 stack_size = event->attr.sample_stack_user;
7452 		u16 size = sizeof(u64);
7453 
7454 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7455 						     data->regs_user.regs);
7456 
7457 		/*
7458 		 * If there is something to dump, add space for the dump
7459 		 * itself and for the field that tells the dynamic size,
7460 		 * which is how many have been actually dumped.
7461 		 */
7462 		if (stack_size)
7463 			size += sizeof(u64) + stack_size;
7464 
7465 		data->stack_user_size = stack_size;
7466 		header->size += size;
7467 	}
7468 
7469 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7470 		/* regs dump ABI info */
7471 		int size = sizeof(u64);
7472 
7473 		perf_sample_regs_intr(&data->regs_intr, regs);
7474 
7475 		if (data->regs_intr.regs) {
7476 			u64 mask = event->attr.sample_regs_intr;
7477 
7478 			size += hweight64(mask) * sizeof(u64);
7479 		}
7480 
7481 		header->size += size;
7482 	}
7483 
7484 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7485 		data->phys_addr = perf_virt_to_phys(data->addr);
7486 
7487 #ifdef CONFIG_CGROUP_PERF
7488 	if (sample_type & PERF_SAMPLE_CGROUP) {
7489 		struct cgroup *cgrp;
7490 
7491 		/* protected by RCU */
7492 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7493 		data->cgroup = cgroup_id(cgrp);
7494 	}
7495 #endif
7496 
7497 	/*
7498 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7499 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7500 	 * but the value will not dump to the userspace.
7501 	 */
7502 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7503 		data->data_page_size = perf_get_page_size(data->addr);
7504 
7505 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7506 		data->code_page_size = perf_get_page_size(data->ip);
7507 
7508 	if (sample_type & PERF_SAMPLE_AUX) {
7509 		u64 size;
7510 
7511 		header->size += sizeof(u64); /* size */
7512 
7513 		/*
7514 		 * Given the 16bit nature of header::size, an AUX sample can
7515 		 * easily overflow it, what with all the preceding sample bits.
7516 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7517 		 * per sample in total (rounded down to 8 byte boundary).
7518 		 */
7519 		size = min_t(size_t, U16_MAX - header->size,
7520 			     event->attr.aux_sample_size);
7521 		size = rounddown(size, 8);
7522 		size = perf_prepare_sample_aux(event, data, size);
7523 
7524 		WARN_ON_ONCE(size + header->size > U16_MAX);
7525 		header->size += size;
7526 	}
7527 	/*
7528 	 * If you're adding more sample types here, you likely need to do
7529 	 * something about the overflowing header::size, like repurpose the
7530 	 * lowest 3 bits of size, which should be always zero at the moment.
7531 	 * This raises a more important question, do we really need 512k sized
7532 	 * samples and why, so good argumentation is in order for whatever you
7533 	 * do here next.
7534 	 */
7535 	WARN_ON_ONCE(header->size & 7);
7536 }
7537 
7538 static __always_inline int
7539 __perf_event_output(struct perf_event *event,
7540 		    struct perf_sample_data *data,
7541 		    struct pt_regs *regs,
7542 		    int (*output_begin)(struct perf_output_handle *,
7543 					struct perf_sample_data *,
7544 					struct perf_event *,
7545 					unsigned int))
7546 {
7547 	struct perf_output_handle handle;
7548 	struct perf_event_header header;
7549 	int err;
7550 
7551 	/* protect the callchain buffers */
7552 	rcu_read_lock();
7553 
7554 	perf_prepare_sample(&header, data, event, regs);
7555 
7556 	err = output_begin(&handle, data, event, header.size);
7557 	if (err)
7558 		goto exit;
7559 
7560 	perf_output_sample(&handle, &header, data, event);
7561 
7562 	perf_output_end(&handle);
7563 
7564 exit:
7565 	rcu_read_unlock();
7566 	return err;
7567 }
7568 
7569 void
7570 perf_event_output_forward(struct perf_event *event,
7571 			 struct perf_sample_data *data,
7572 			 struct pt_regs *regs)
7573 {
7574 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7575 }
7576 
7577 void
7578 perf_event_output_backward(struct perf_event *event,
7579 			   struct perf_sample_data *data,
7580 			   struct pt_regs *regs)
7581 {
7582 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7583 }
7584 
7585 int
7586 perf_event_output(struct perf_event *event,
7587 		  struct perf_sample_data *data,
7588 		  struct pt_regs *regs)
7589 {
7590 	return __perf_event_output(event, data, regs, perf_output_begin);
7591 }
7592 
7593 /*
7594  * read event_id
7595  */
7596 
7597 struct perf_read_event {
7598 	struct perf_event_header	header;
7599 
7600 	u32				pid;
7601 	u32				tid;
7602 };
7603 
7604 static void
7605 perf_event_read_event(struct perf_event *event,
7606 			struct task_struct *task)
7607 {
7608 	struct perf_output_handle handle;
7609 	struct perf_sample_data sample;
7610 	struct perf_read_event read_event = {
7611 		.header = {
7612 			.type = PERF_RECORD_READ,
7613 			.misc = 0,
7614 			.size = sizeof(read_event) + event->read_size,
7615 		},
7616 		.pid = perf_event_pid(event, task),
7617 		.tid = perf_event_tid(event, task),
7618 	};
7619 	int ret;
7620 
7621 	perf_event_header__init_id(&read_event.header, &sample, event);
7622 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7623 	if (ret)
7624 		return;
7625 
7626 	perf_output_put(&handle, read_event);
7627 	perf_output_read(&handle, event);
7628 	perf_event__output_id_sample(event, &handle, &sample);
7629 
7630 	perf_output_end(&handle);
7631 }
7632 
7633 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7634 
7635 static void
7636 perf_iterate_ctx(struct perf_event_context *ctx,
7637 		   perf_iterate_f output,
7638 		   void *data, bool all)
7639 {
7640 	struct perf_event *event;
7641 
7642 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7643 		if (!all) {
7644 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7645 				continue;
7646 			if (!event_filter_match(event))
7647 				continue;
7648 		}
7649 
7650 		output(event, data);
7651 	}
7652 }
7653 
7654 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7655 {
7656 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7657 	struct perf_event *event;
7658 
7659 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7660 		/*
7661 		 * Skip events that are not fully formed yet; ensure that
7662 		 * if we observe event->ctx, both event and ctx will be
7663 		 * complete enough. See perf_install_in_context().
7664 		 */
7665 		if (!smp_load_acquire(&event->ctx))
7666 			continue;
7667 
7668 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7669 			continue;
7670 		if (!event_filter_match(event))
7671 			continue;
7672 		output(event, data);
7673 	}
7674 }
7675 
7676 /*
7677  * Iterate all events that need to receive side-band events.
7678  *
7679  * For new callers; ensure that account_pmu_sb_event() includes
7680  * your event, otherwise it might not get delivered.
7681  */
7682 static void
7683 perf_iterate_sb(perf_iterate_f output, void *data,
7684 	       struct perf_event_context *task_ctx)
7685 {
7686 	struct perf_event_context *ctx;
7687 	int ctxn;
7688 
7689 	rcu_read_lock();
7690 	preempt_disable();
7691 
7692 	/*
7693 	 * If we have task_ctx != NULL we only notify the task context itself.
7694 	 * The task_ctx is set only for EXIT events before releasing task
7695 	 * context.
7696 	 */
7697 	if (task_ctx) {
7698 		perf_iterate_ctx(task_ctx, output, data, false);
7699 		goto done;
7700 	}
7701 
7702 	perf_iterate_sb_cpu(output, data);
7703 
7704 	for_each_task_context_nr(ctxn) {
7705 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7706 		if (ctx)
7707 			perf_iterate_ctx(ctx, output, data, false);
7708 	}
7709 done:
7710 	preempt_enable();
7711 	rcu_read_unlock();
7712 }
7713 
7714 /*
7715  * Clear all file-based filters at exec, they'll have to be
7716  * re-instated when/if these objects are mmapped again.
7717  */
7718 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7719 {
7720 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7721 	struct perf_addr_filter *filter;
7722 	unsigned int restart = 0, count = 0;
7723 	unsigned long flags;
7724 
7725 	if (!has_addr_filter(event))
7726 		return;
7727 
7728 	raw_spin_lock_irqsave(&ifh->lock, flags);
7729 	list_for_each_entry(filter, &ifh->list, entry) {
7730 		if (filter->path.dentry) {
7731 			event->addr_filter_ranges[count].start = 0;
7732 			event->addr_filter_ranges[count].size = 0;
7733 			restart++;
7734 		}
7735 
7736 		count++;
7737 	}
7738 
7739 	if (restart)
7740 		event->addr_filters_gen++;
7741 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7742 
7743 	if (restart)
7744 		perf_event_stop(event, 1);
7745 }
7746 
7747 void perf_event_exec(void)
7748 {
7749 	struct perf_event_context *ctx;
7750 	int ctxn;
7751 
7752 	for_each_task_context_nr(ctxn) {
7753 		perf_event_enable_on_exec(ctxn);
7754 		perf_event_remove_on_exec(ctxn);
7755 
7756 		rcu_read_lock();
7757 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7758 		if (ctx) {
7759 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7760 					 NULL, true);
7761 		}
7762 		rcu_read_unlock();
7763 	}
7764 }
7765 
7766 struct remote_output {
7767 	struct perf_buffer	*rb;
7768 	int			err;
7769 };
7770 
7771 static void __perf_event_output_stop(struct perf_event *event, void *data)
7772 {
7773 	struct perf_event *parent = event->parent;
7774 	struct remote_output *ro = data;
7775 	struct perf_buffer *rb = ro->rb;
7776 	struct stop_event_data sd = {
7777 		.event	= event,
7778 	};
7779 
7780 	if (!has_aux(event))
7781 		return;
7782 
7783 	if (!parent)
7784 		parent = event;
7785 
7786 	/*
7787 	 * In case of inheritance, it will be the parent that links to the
7788 	 * ring-buffer, but it will be the child that's actually using it.
7789 	 *
7790 	 * We are using event::rb to determine if the event should be stopped,
7791 	 * however this may race with ring_buffer_attach() (through set_output),
7792 	 * which will make us skip the event that actually needs to be stopped.
7793 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7794 	 * its rb pointer.
7795 	 */
7796 	if (rcu_dereference(parent->rb) == rb)
7797 		ro->err = __perf_event_stop(&sd);
7798 }
7799 
7800 static int __perf_pmu_output_stop(void *info)
7801 {
7802 	struct perf_event *event = info;
7803 	struct pmu *pmu = event->ctx->pmu;
7804 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7805 	struct remote_output ro = {
7806 		.rb	= event->rb,
7807 	};
7808 
7809 	rcu_read_lock();
7810 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7811 	if (cpuctx->task_ctx)
7812 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7813 				   &ro, false);
7814 	rcu_read_unlock();
7815 
7816 	return ro.err;
7817 }
7818 
7819 static void perf_pmu_output_stop(struct perf_event *event)
7820 {
7821 	struct perf_event *iter;
7822 	int err, cpu;
7823 
7824 restart:
7825 	rcu_read_lock();
7826 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7827 		/*
7828 		 * For per-CPU events, we need to make sure that neither they
7829 		 * nor their children are running; for cpu==-1 events it's
7830 		 * sufficient to stop the event itself if it's active, since
7831 		 * it can't have children.
7832 		 */
7833 		cpu = iter->cpu;
7834 		if (cpu == -1)
7835 			cpu = READ_ONCE(iter->oncpu);
7836 
7837 		if (cpu == -1)
7838 			continue;
7839 
7840 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7841 		if (err == -EAGAIN) {
7842 			rcu_read_unlock();
7843 			goto restart;
7844 		}
7845 	}
7846 	rcu_read_unlock();
7847 }
7848 
7849 /*
7850  * task tracking -- fork/exit
7851  *
7852  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7853  */
7854 
7855 struct perf_task_event {
7856 	struct task_struct		*task;
7857 	struct perf_event_context	*task_ctx;
7858 
7859 	struct {
7860 		struct perf_event_header	header;
7861 
7862 		u32				pid;
7863 		u32				ppid;
7864 		u32				tid;
7865 		u32				ptid;
7866 		u64				time;
7867 	} event_id;
7868 };
7869 
7870 static int perf_event_task_match(struct perf_event *event)
7871 {
7872 	return event->attr.comm  || event->attr.mmap ||
7873 	       event->attr.mmap2 || event->attr.mmap_data ||
7874 	       event->attr.task;
7875 }
7876 
7877 static void perf_event_task_output(struct perf_event *event,
7878 				   void *data)
7879 {
7880 	struct perf_task_event *task_event = data;
7881 	struct perf_output_handle handle;
7882 	struct perf_sample_data	sample;
7883 	struct task_struct *task = task_event->task;
7884 	int ret, size = task_event->event_id.header.size;
7885 
7886 	if (!perf_event_task_match(event))
7887 		return;
7888 
7889 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7890 
7891 	ret = perf_output_begin(&handle, &sample, event,
7892 				task_event->event_id.header.size);
7893 	if (ret)
7894 		goto out;
7895 
7896 	task_event->event_id.pid = perf_event_pid(event, task);
7897 	task_event->event_id.tid = perf_event_tid(event, task);
7898 
7899 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7900 		task_event->event_id.ppid = perf_event_pid(event,
7901 							task->real_parent);
7902 		task_event->event_id.ptid = perf_event_pid(event,
7903 							task->real_parent);
7904 	} else {  /* PERF_RECORD_FORK */
7905 		task_event->event_id.ppid = perf_event_pid(event, current);
7906 		task_event->event_id.ptid = perf_event_tid(event, current);
7907 	}
7908 
7909 	task_event->event_id.time = perf_event_clock(event);
7910 
7911 	perf_output_put(&handle, task_event->event_id);
7912 
7913 	perf_event__output_id_sample(event, &handle, &sample);
7914 
7915 	perf_output_end(&handle);
7916 out:
7917 	task_event->event_id.header.size = size;
7918 }
7919 
7920 static void perf_event_task(struct task_struct *task,
7921 			      struct perf_event_context *task_ctx,
7922 			      int new)
7923 {
7924 	struct perf_task_event task_event;
7925 
7926 	if (!atomic_read(&nr_comm_events) &&
7927 	    !atomic_read(&nr_mmap_events) &&
7928 	    !atomic_read(&nr_task_events))
7929 		return;
7930 
7931 	task_event = (struct perf_task_event){
7932 		.task	  = task,
7933 		.task_ctx = task_ctx,
7934 		.event_id    = {
7935 			.header = {
7936 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7937 				.misc = 0,
7938 				.size = sizeof(task_event.event_id),
7939 			},
7940 			/* .pid  */
7941 			/* .ppid */
7942 			/* .tid  */
7943 			/* .ptid */
7944 			/* .time */
7945 		},
7946 	};
7947 
7948 	perf_iterate_sb(perf_event_task_output,
7949 		       &task_event,
7950 		       task_ctx);
7951 }
7952 
7953 void perf_event_fork(struct task_struct *task)
7954 {
7955 	perf_event_task(task, NULL, 1);
7956 	perf_event_namespaces(task);
7957 }
7958 
7959 /*
7960  * comm tracking
7961  */
7962 
7963 struct perf_comm_event {
7964 	struct task_struct	*task;
7965 	char			*comm;
7966 	int			comm_size;
7967 
7968 	struct {
7969 		struct perf_event_header	header;
7970 
7971 		u32				pid;
7972 		u32				tid;
7973 	} event_id;
7974 };
7975 
7976 static int perf_event_comm_match(struct perf_event *event)
7977 {
7978 	return event->attr.comm;
7979 }
7980 
7981 static void perf_event_comm_output(struct perf_event *event,
7982 				   void *data)
7983 {
7984 	struct perf_comm_event *comm_event = data;
7985 	struct perf_output_handle handle;
7986 	struct perf_sample_data sample;
7987 	int size = comm_event->event_id.header.size;
7988 	int ret;
7989 
7990 	if (!perf_event_comm_match(event))
7991 		return;
7992 
7993 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7994 	ret = perf_output_begin(&handle, &sample, event,
7995 				comm_event->event_id.header.size);
7996 
7997 	if (ret)
7998 		goto out;
7999 
8000 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8001 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8002 
8003 	perf_output_put(&handle, comm_event->event_id);
8004 	__output_copy(&handle, comm_event->comm,
8005 				   comm_event->comm_size);
8006 
8007 	perf_event__output_id_sample(event, &handle, &sample);
8008 
8009 	perf_output_end(&handle);
8010 out:
8011 	comm_event->event_id.header.size = size;
8012 }
8013 
8014 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8015 {
8016 	char comm[TASK_COMM_LEN];
8017 	unsigned int size;
8018 
8019 	memset(comm, 0, sizeof(comm));
8020 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8021 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8022 
8023 	comm_event->comm = comm;
8024 	comm_event->comm_size = size;
8025 
8026 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8027 
8028 	perf_iterate_sb(perf_event_comm_output,
8029 		       comm_event,
8030 		       NULL);
8031 }
8032 
8033 void perf_event_comm(struct task_struct *task, bool exec)
8034 {
8035 	struct perf_comm_event comm_event;
8036 
8037 	if (!atomic_read(&nr_comm_events))
8038 		return;
8039 
8040 	comm_event = (struct perf_comm_event){
8041 		.task	= task,
8042 		/* .comm      */
8043 		/* .comm_size */
8044 		.event_id  = {
8045 			.header = {
8046 				.type = PERF_RECORD_COMM,
8047 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8048 				/* .size */
8049 			},
8050 			/* .pid */
8051 			/* .tid */
8052 		},
8053 	};
8054 
8055 	perf_event_comm_event(&comm_event);
8056 }
8057 
8058 /*
8059  * namespaces tracking
8060  */
8061 
8062 struct perf_namespaces_event {
8063 	struct task_struct		*task;
8064 
8065 	struct {
8066 		struct perf_event_header	header;
8067 
8068 		u32				pid;
8069 		u32				tid;
8070 		u64				nr_namespaces;
8071 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8072 	} event_id;
8073 };
8074 
8075 static int perf_event_namespaces_match(struct perf_event *event)
8076 {
8077 	return event->attr.namespaces;
8078 }
8079 
8080 static void perf_event_namespaces_output(struct perf_event *event,
8081 					 void *data)
8082 {
8083 	struct perf_namespaces_event *namespaces_event = data;
8084 	struct perf_output_handle handle;
8085 	struct perf_sample_data sample;
8086 	u16 header_size = namespaces_event->event_id.header.size;
8087 	int ret;
8088 
8089 	if (!perf_event_namespaces_match(event))
8090 		return;
8091 
8092 	perf_event_header__init_id(&namespaces_event->event_id.header,
8093 				   &sample, event);
8094 	ret = perf_output_begin(&handle, &sample, event,
8095 				namespaces_event->event_id.header.size);
8096 	if (ret)
8097 		goto out;
8098 
8099 	namespaces_event->event_id.pid = perf_event_pid(event,
8100 							namespaces_event->task);
8101 	namespaces_event->event_id.tid = perf_event_tid(event,
8102 							namespaces_event->task);
8103 
8104 	perf_output_put(&handle, namespaces_event->event_id);
8105 
8106 	perf_event__output_id_sample(event, &handle, &sample);
8107 
8108 	perf_output_end(&handle);
8109 out:
8110 	namespaces_event->event_id.header.size = header_size;
8111 }
8112 
8113 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8114 				   struct task_struct *task,
8115 				   const struct proc_ns_operations *ns_ops)
8116 {
8117 	struct path ns_path;
8118 	struct inode *ns_inode;
8119 	int error;
8120 
8121 	error = ns_get_path(&ns_path, task, ns_ops);
8122 	if (!error) {
8123 		ns_inode = ns_path.dentry->d_inode;
8124 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8125 		ns_link_info->ino = ns_inode->i_ino;
8126 		path_put(&ns_path);
8127 	}
8128 }
8129 
8130 void perf_event_namespaces(struct task_struct *task)
8131 {
8132 	struct perf_namespaces_event namespaces_event;
8133 	struct perf_ns_link_info *ns_link_info;
8134 
8135 	if (!atomic_read(&nr_namespaces_events))
8136 		return;
8137 
8138 	namespaces_event = (struct perf_namespaces_event){
8139 		.task	= task,
8140 		.event_id  = {
8141 			.header = {
8142 				.type = PERF_RECORD_NAMESPACES,
8143 				.misc = 0,
8144 				.size = sizeof(namespaces_event.event_id),
8145 			},
8146 			/* .pid */
8147 			/* .tid */
8148 			.nr_namespaces = NR_NAMESPACES,
8149 			/* .link_info[NR_NAMESPACES] */
8150 		},
8151 	};
8152 
8153 	ns_link_info = namespaces_event.event_id.link_info;
8154 
8155 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8156 			       task, &mntns_operations);
8157 
8158 #ifdef CONFIG_USER_NS
8159 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8160 			       task, &userns_operations);
8161 #endif
8162 #ifdef CONFIG_NET_NS
8163 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8164 			       task, &netns_operations);
8165 #endif
8166 #ifdef CONFIG_UTS_NS
8167 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8168 			       task, &utsns_operations);
8169 #endif
8170 #ifdef CONFIG_IPC_NS
8171 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8172 			       task, &ipcns_operations);
8173 #endif
8174 #ifdef CONFIG_PID_NS
8175 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8176 			       task, &pidns_operations);
8177 #endif
8178 #ifdef CONFIG_CGROUPS
8179 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8180 			       task, &cgroupns_operations);
8181 #endif
8182 
8183 	perf_iterate_sb(perf_event_namespaces_output,
8184 			&namespaces_event,
8185 			NULL);
8186 }
8187 
8188 /*
8189  * cgroup tracking
8190  */
8191 #ifdef CONFIG_CGROUP_PERF
8192 
8193 struct perf_cgroup_event {
8194 	char				*path;
8195 	int				path_size;
8196 	struct {
8197 		struct perf_event_header	header;
8198 		u64				id;
8199 		char				path[];
8200 	} event_id;
8201 };
8202 
8203 static int perf_event_cgroup_match(struct perf_event *event)
8204 {
8205 	return event->attr.cgroup;
8206 }
8207 
8208 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8209 {
8210 	struct perf_cgroup_event *cgroup_event = data;
8211 	struct perf_output_handle handle;
8212 	struct perf_sample_data sample;
8213 	u16 header_size = cgroup_event->event_id.header.size;
8214 	int ret;
8215 
8216 	if (!perf_event_cgroup_match(event))
8217 		return;
8218 
8219 	perf_event_header__init_id(&cgroup_event->event_id.header,
8220 				   &sample, event);
8221 	ret = perf_output_begin(&handle, &sample, event,
8222 				cgroup_event->event_id.header.size);
8223 	if (ret)
8224 		goto out;
8225 
8226 	perf_output_put(&handle, cgroup_event->event_id);
8227 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8228 
8229 	perf_event__output_id_sample(event, &handle, &sample);
8230 
8231 	perf_output_end(&handle);
8232 out:
8233 	cgroup_event->event_id.header.size = header_size;
8234 }
8235 
8236 static void perf_event_cgroup(struct cgroup *cgrp)
8237 {
8238 	struct perf_cgroup_event cgroup_event;
8239 	char path_enomem[16] = "//enomem";
8240 	char *pathname;
8241 	size_t size;
8242 
8243 	if (!atomic_read(&nr_cgroup_events))
8244 		return;
8245 
8246 	cgroup_event = (struct perf_cgroup_event){
8247 		.event_id  = {
8248 			.header = {
8249 				.type = PERF_RECORD_CGROUP,
8250 				.misc = 0,
8251 				.size = sizeof(cgroup_event.event_id),
8252 			},
8253 			.id = cgroup_id(cgrp),
8254 		},
8255 	};
8256 
8257 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8258 	if (pathname == NULL) {
8259 		cgroup_event.path = path_enomem;
8260 	} else {
8261 		/* just to be sure to have enough space for alignment */
8262 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8263 		cgroup_event.path = pathname;
8264 	}
8265 
8266 	/*
8267 	 * Since our buffer works in 8 byte units we need to align our string
8268 	 * size to a multiple of 8. However, we must guarantee the tail end is
8269 	 * zero'd out to avoid leaking random bits to userspace.
8270 	 */
8271 	size = strlen(cgroup_event.path) + 1;
8272 	while (!IS_ALIGNED(size, sizeof(u64)))
8273 		cgroup_event.path[size++] = '\0';
8274 
8275 	cgroup_event.event_id.header.size += size;
8276 	cgroup_event.path_size = size;
8277 
8278 	perf_iterate_sb(perf_event_cgroup_output,
8279 			&cgroup_event,
8280 			NULL);
8281 
8282 	kfree(pathname);
8283 }
8284 
8285 #endif
8286 
8287 /*
8288  * mmap tracking
8289  */
8290 
8291 struct perf_mmap_event {
8292 	struct vm_area_struct	*vma;
8293 
8294 	const char		*file_name;
8295 	int			file_size;
8296 	int			maj, min;
8297 	u64			ino;
8298 	u64			ino_generation;
8299 	u32			prot, flags;
8300 	u8			build_id[BUILD_ID_SIZE_MAX];
8301 	u32			build_id_size;
8302 
8303 	struct {
8304 		struct perf_event_header	header;
8305 
8306 		u32				pid;
8307 		u32				tid;
8308 		u64				start;
8309 		u64				len;
8310 		u64				pgoff;
8311 	} event_id;
8312 };
8313 
8314 static int perf_event_mmap_match(struct perf_event *event,
8315 				 void *data)
8316 {
8317 	struct perf_mmap_event *mmap_event = data;
8318 	struct vm_area_struct *vma = mmap_event->vma;
8319 	int executable = vma->vm_flags & VM_EXEC;
8320 
8321 	return (!executable && event->attr.mmap_data) ||
8322 	       (executable && (event->attr.mmap || event->attr.mmap2));
8323 }
8324 
8325 static void perf_event_mmap_output(struct perf_event *event,
8326 				   void *data)
8327 {
8328 	struct perf_mmap_event *mmap_event = data;
8329 	struct perf_output_handle handle;
8330 	struct perf_sample_data sample;
8331 	int size = mmap_event->event_id.header.size;
8332 	u32 type = mmap_event->event_id.header.type;
8333 	bool use_build_id;
8334 	int ret;
8335 
8336 	if (!perf_event_mmap_match(event, data))
8337 		return;
8338 
8339 	if (event->attr.mmap2) {
8340 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8341 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8342 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8343 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8344 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8345 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8346 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8347 	}
8348 
8349 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8350 	ret = perf_output_begin(&handle, &sample, event,
8351 				mmap_event->event_id.header.size);
8352 	if (ret)
8353 		goto out;
8354 
8355 	mmap_event->event_id.pid = perf_event_pid(event, current);
8356 	mmap_event->event_id.tid = perf_event_tid(event, current);
8357 
8358 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8359 
8360 	if (event->attr.mmap2 && use_build_id)
8361 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8362 
8363 	perf_output_put(&handle, mmap_event->event_id);
8364 
8365 	if (event->attr.mmap2) {
8366 		if (use_build_id) {
8367 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8368 
8369 			__output_copy(&handle, size, 4);
8370 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8371 		} else {
8372 			perf_output_put(&handle, mmap_event->maj);
8373 			perf_output_put(&handle, mmap_event->min);
8374 			perf_output_put(&handle, mmap_event->ino);
8375 			perf_output_put(&handle, mmap_event->ino_generation);
8376 		}
8377 		perf_output_put(&handle, mmap_event->prot);
8378 		perf_output_put(&handle, mmap_event->flags);
8379 	}
8380 
8381 	__output_copy(&handle, mmap_event->file_name,
8382 				   mmap_event->file_size);
8383 
8384 	perf_event__output_id_sample(event, &handle, &sample);
8385 
8386 	perf_output_end(&handle);
8387 out:
8388 	mmap_event->event_id.header.size = size;
8389 	mmap_event->event_id.header.type = type;
8390 }
8391 
8392 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8393 {
8394 	struct vm_area_struct *vma = mmap_event->vma;
8395 	struct file *file = vma->vm_file;
8396 	int maj = 0, min = 0;
8397 	u64 ino = 0, gen = 0;
8398 	u32 prot = 0, flags = 0;
8399 	unsigned int size;
8400 	char tmp[16];
8401 	char *buf = NULL;
8402 	char *name;
8403 
8404 	if (vma->vm_flags & VM_READ)
8405 		prot |= PROT_READ;
8406 	if (vma->vm_flags & VM_WRITE)
8407 		prot |= PROT_WRITE;
8408 	if (vma->vm_flags & VM_EXEC)
8409 		prot |= PROT_EXEC;
8410 
8411 	if (vma->vm_flags & VM_MAYSHARE)
8412 		flags = MAP_SHARED;
8413 	else
8414 		flags = MAP_PRIVATE;
8415 
8416 	if (vma->vm_flags & VM_LOCKED)
8417 		flags |= MAP_LOCKED;
8418 	if (is_vm_hugetlb_page(vma))
8419 		flags |= MAP_HUGETLB;
8420 
8421 	if (file) {
8422 		struct inode *inode;
8423 		dev_t dev;
8424 
8425 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8426 		if (!buf) {
8427 			name = "//enomem";
8428 			goto cpy_name;
8429 		}
8430 		/*
8431 		 * d_path() works from the end of the rb backwards, so we
8432 		 * need to add enough zero bytes after the string to handle
8433 		 * the 64bit alignment we do later.
8434 		 */
8435 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8436 		if (IS_ERR(name)) {
8437 			name = "//toolong";
8438 			goto cpy_name;
8439 		}
8440 		inode = file_inode(vma->vm_file);
8441 		dev = inode->i_sb->s_dev;
8442 		ino = inode->i_ino;
8443 		gen = inode->i_generation;
8444 		maj = MAJOR(dev);
8445 		min = MINOR(dev);
8446 
8447 		goto got_name;
8448 	} else {
8449 		if (vma->vm_ops && vma->vm_ops->name) {
8450 			name = (char *) vma->vm_ops->name(vma);
8451 			if (name)
8452 				goto cpy_name;
8453 		}
8454 
8455 		name = (char *)arch_vma_name(vma);
8456 		if (name)
8457 			goto cpy_name;
8458 
8459 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8460 				vma->vm_end >= vma->vm_mm->brk) {
8461 			name = "[heap]";
8462 			goto cpy_name;
8463 		}
8464 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8465 				vma->vm_end >= vma->vm_mm->start_stack) {
8466 			name = "[stack]";
8467 			goto cpy_name;
8468 		}
8469 
8470 		name = "//anon";
8471 		goto cpy_name;
8472 	}
8473 
8474 cpy_name:
8475 	strlcpy(tmp, name, sizeof(tmp));
8476 	name = tmp;
8477 got_name:
8478 	/*
8479 	 * Since our buffer works in 8 byte units we need to align our string
8480 	 * size to a multiple of 8. However, we must guarantee the tail end is
8481 	 * zero'd out to avoid leaking random bits to userspace.
8482 	 */
8483 	size = strlen(name)+1;
8484 	while (!IS_ALIGNED(size, sizeof(u64)))
8485 		name[size++] = '\0';
8486 
8487 	mmap_event->file_name = name;
8488 	mmap_event->file_size = size;
8489 	mmap_event->maj = maj;
8490 	mmap_event->min = min;
8491 	mmap_event->ino = ino;
8492 	mmap_event->ino_generation = gen;
8493 	mmap_event->prot = prot;
8494 	mmap_event->flags = flags;
8495 
8496 	if (!(vma->vm_flags & VM_EXEC))
8497 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8498 
8499 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8500 
8501 	if (atomic_read(&nr_build_id_events))
8502 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8503 
8504 	perf_iterate_sb(perf_event_mmap_output,
8505 		       mmap_event,
8506 		       NULL);
8507 
8508 	kfree(buf);
8509 }
8510 
8511 /*
8512  * Check whether inode and address range match filter criteria.
8513  */
8514 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8515 				     struct file *file, unsigned long offset,
8516 				     unsigned long size)
8517 {
8518 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8519 	if (!filter->path.dentry)
8520 		return false;
8521 
8522 	if (d_inode(filter->path.dentry) != file_inode(file))
8523 		return false;
8524 
8525 	if (filter->offset > offset + size)
8526 		return false;
8527 
8528 	if (filter->offset + filter->size < offset)
8529 		return false;
8530 
8531 	return true;
8532 }
8533 
8534 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8535 					struct vm_area_struct *vma,
8536 					struct perf_addr_filter_range *fr)
8537 {
8538 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8539 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8540 	struct file *file = vma->vm_file;
8541 
8542 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8543 		return false;
8544 
8545 	if (filter->offset < off) {
8546 		fr->start = vma->vm_start;
8547 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8548 	} else {
8549 		fr->start = vma->vm_start + filter->offset - off;
8550 		fr->size = min(vma->vm_end - fr->start, filter->size);
8551 	}
8552 
8553 	return true;
8554 }
8555 
8556 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8557 {
8558 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8559 	struct vm_area_struct *vma = data;
8560 	struct perf_addr_filter *filter;
8561 	unsigned int restart = 0, count = 0;
8562 	unsigned long flags;
8563 
8564 	if (!has_addr_filter(event))
8565 		return;
8566 
8567 	if (!vma->vm_file)
8568 		return;
8569 
8570 	raw_spin_lock_irqsave(&ifh->lock, flags);
8571 	list_for_each_entry(filter, &ifh->list, entry) {
8572 		if (perf_addr_filter_vma_adjust(filter, vma,
8573 						&event->addr_filter_ranges[count]))
8574 			restart++;
8575 
8576 		count++;
8577 	}
8578 
8579 	if (restart)
8580 		event->addr_filters_gen++;
8581 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8582 
8583 	if (restart)
8584 		perf_event_stop(event, 1);
8585 }
8586 
8587 /*
8588  * Adjust all task's events' filters to the new vma
8589  */
8590 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8591 {
8592 	struct perf_event_context *ctx;
8593 	int ctxn;
8594 
8595 	/*
8596 	 * Data tracing isn't supported yet and as such there is no need
8597 	 * to keep track of anything that isn't related to executable code:
8598 	 */
8599 	if (!(vma->vm_flags & VM_EXEC))
8600 		return;
8601 
8602 	rcu_read_lock();
8603 	for_each_task_context_nr(ctxn) {
8604 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8605 		if (!ctx)
8606 			continue;
8607 
8608 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8609 	}
8610 	rcu_read_unlock();
8611 }
8612 
8613 void perf_event_mmap(struct vm_area_struct *vma)
8614 {
8615 	struct perf_mmap_event mmap_event;
8616 
8617 	if (!atomic_read(&nr_mmap_events))
8618 		return;
8619 
8620 	mmap_event = (struct perf_mmap_event){
8621 		.vma	= vma,
8622 		/* .file_name */
8623 		/* .file_size */
8624 		.event_id  = {
8625 			.header = {
8626 				.type = PERF_RECORD_MMAP,
8627 				.misc = PERF_RECORD_MISC_USER,
8628 				/* .size */
8629 			},
8630 			/* .pid */
8631 			/* .tid */
8632 			.start  = vma->vm_start,
8633 			.len    = vma->vm_end - vma->vm_start,
8634 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8635 		},
8636 		/* .maj (attr_mmap2 only) */
8637 		/* .min (attr_mmap2 only) */
8638 		/* .ino (attr_mmap2 only) */
8639 		/* .ino_generation (attr_mmap2 only) */
8640 		/* .prot (attr_mmap2 only) */
8641 		/* .flags (attr_mmap2 only) */
8642 	};
8643 
8644 	perf_addr_filters_adjust(vma);
8645 	perf_event_mmap_event(&mmap_event);
8646 }
8647 
8648 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8649 			  unsigned long size, u64 flags)
8650 {
8651 	struct perf_output_handle handle;
8652 	struct perf_sample_data sample;
8653 	struct perf_aux_event {
8654 		struct perf_event_header	header;
8655 		u64				offset;
8656 		u64				size;
8657 		u64				flags;
8658 	} rec = {
8659 		.header = {
8660 			.type = PERF_RECORD_AUX,
8661 			.misc = 0,
8662 			.size = sizeof(rec),
8663 		},
8664 		.offset		= head,
8665 		.size		= size,
8666 		.flags		= flags,
8667 	};
8668 	int ret;
8669 
8670 	perf_event_header__init_id(&rec.header, &sample, event);
8671 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8672 
8673 	if (ret)
8674 		return;
8675 
8676 	perf_output_put(&handle, rec);
8677 	perf_event__output_id_sample(event, &handle, &sample);
8678 
8679 	perf_output_end(&handle);
8680 }
8681 
8682 /*
8683  * Lost/dropped samples logging
8684  */
8685 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8686 {
8687 	struct perf_output_handle handle;
8688 	struct perf_sample_data sample;
8689 	int ret;
8690 
8691 	struct {
8692 		struct perf_event_header	header;
8693 		u64				lost;
8694 	} lost_samples_event = {
8695 		.header = {
8696 			.type = PERF_RECORD_LOST_SAMPLES,
8697 			.misc = 0,
8698 			.size = sizeof(lost_samples_event),
8699 		},
8700 		.lost		= lost,
8701 	};
8702 
8703 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8704 
8705 	ret = perf_output_begin(&handle, &sample, event,
8706 				lost_samples_event.header.size);
8707 	if (ret)
8708 		return;
8709 
8710 	perf_output_put(&handle, lost_samples_event);
8711 	perf_event__output_id_sample(event, &handle, &sample);
8712 	perf_output_end(&handle);
8713 }
8714 
8715 /*
8716  * context_switch tracking
8717  */
8718 
8719 struct perf_switch_event {
8720 	struct task_struct	*task;
8721 	struct task_struct	*next_prev;
8722 
8723 	struct {
8724 		struct perf_event_header	header;
8725 		u32				next_prev_pid;
8726 		u32				next_prev_tid;
8727 	} event_id;
8728 };
8729 
8730 static int perf_event_switch_match(struct perf_event *event)
8731 {
8732 	return event->attr.context_switch;
8733 }
8734 
8735 static void perf_event_switch_output(struct perf_event *event, void *data)
8736 {
8737 	struct perf_switch_event *se = data;
8738 	struct perf_output_handle handle;
8739 	struct perf_sample_data sample;
8740 	int ret;
8741 
8742 	if (!perf_event_switch_match(event))
8743 		return;
8744 
8745 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8746 	if (event->ctx->task) {
8747 		se->event_id.header.type = PERF_RECORD_SWITCH;
8748 		se->event_id.header.size = sizeof(se->event_id.header);
8749 	} else {
8750 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8751 		se->event_id.header.size = sizeof(se->event_id);
8752 		se->event_id.next_prev_pid =
8753 					perf_event_pid(event, se->next_prev);
8754 		se->event_id.next_prev_tid =
8755 					perf_event_tid(event, se->next_prev);
8756 	}
8757 
8758 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8759 
8760 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8761 	if (ret)
8762 		return;
8763 
8764 	if (event->ctx->task)
8765 		perf_output_put(&handle, se->event_id.header);
8766 	else
8767 		perf_output_put(&handle, se->event_id);
8768 
8769 	perf_event__output_id_sample(event, &handle, &sample);
8770 
8771 	perf_output_end(&handle);
8772 }
8773 
8774 static void perf_event_switch(struct task_struct *task,
8775 			      struct task_struct *next_prev, bool sched_in)
8776 {
8777 	struct perf_switch_event switch_event;
8778 
8779 	/* N.B. caller checks nr_switch_events != 0 */
8780 
8781 	switch_event = (struct perf_switch_event){
8782 		.task		= task,
8783 		.next_prev	= next_prev,
8784 		.event_id	= {
8785 			.header = {
8786 				/* .type */
8787 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8788 				/* .size */
8789 			},
8790 			/* .next_prev_pid */
8791 			/* .next_prev_tid */
8792 		},
8793 	};
8794 
8795 	if (!sched_in && task->on_rq) {
8796 		switch_event.event_id.header.misc |=
8797 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8798 	}
8799 
8800 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8801 }
8802 
8803 /*
8804  * IRQ throttle logging
8805  */
8806 
8807 static void perf_log_throttle(struct perf_event *event, int enable)
8808 {
8809 	struct perf_output_handle handle;
8810 	struct perf_sample_data sample;
8811 	int ret;
8812 
8813 	struct {
8814 		struct perf_event_header	header;
8815 		u64				time;
8816 		u64				id;
8817 		u64				stream_id;
8818 	} throttle_event = {
8819 		.header = {
8820 			.type = PERF_RECORD_THROTTLE,
8821 			.misc = 0,
8822 			.size = sizeof(throttle_event),
8823 		},
8824 		.time		= perf_event_clock(event),
8825 		.id		= primary_event_id(event),
8826 		.stream_id	= event->id,
8827 	};
8828 
8829 	if (enable)
8830 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8831 
8832 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8833 
8834 	ret = perf_output_begin(&handle, &sample, event,
8835 				throttle_event.header.size);
8836 	if (ret)
8837 		return;
8838 
8839 	perf_output_put(&handle, throttle_event);
8840 	perf_event__output_id_sample(event, &handle, &sample);
8841 	perf_output_end(&handle);
8842 }
8843 
8844 /*
8845  * ksymbol register/unregister tracking
8846  */
8847 
8848 struct perf_ksymbol_event {
8849 	const char	*name;
8850 	int		name_len;
8851 	struct {
8852 		struct perf_event_header        header;
8853 		u64				addr;
8854 		u32				len;
8855 		u16				ksym_type;
8856 		u16				flags;
8857 	} event_id;
8858 };
8859 
8860 static int perf_event_ksymbol_match(struct perf_event *event)
8861 {
8862 	return event->attr.ksymbol;
8863 }
8864 
8865 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8866 {
8867 	struct perf_ksymbol_event *ksymbol_event = data;
8868 	struct perf_output_handle handle;
8869 	struct perf_sample_data sample;
8870 	int ret;
8871 
8872 	if (!perf_event_ksymbol_match(event))
8873 		return;
8874 
8875 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8876 				   &sample, event);
8877 	ret = perf_output_begin(&handle, &sample, event,
8878 				ksymbol_event->event_id.header.size);
8879 	if (ret)
8880 		return;
8881 
8882 	perf_output_put(&handle, ksymbol_event->event_id);
8883 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8884 	perf_event__output_id_sample(event, &handle, &sample);
8885 
8886 	perf_output_end(&handle);
8887 }
8888 
8889 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8890 			const char *sym)
8891 {
8892 	struct perf_ksymbol_event ksymbol_event;
8893 	char name[KSYM_NAME_LEN];
8894 	u16 flags = 0;
8895 	int name_len;
8896 
8897 	if (!atomic_read(&nr_ksymbol_events))
8898 		return;
8899 
8900 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8901 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8902 		goto err;
8903 
8904 	strlcpy(name, sym, KSYM_NAME_LEN);
8905 	name_len = strlen(name) + 1;
8906 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8907 		name[name_len++] = '\0';
8908 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8909 
8910 	if (unregister)
8911 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8912 
8913 	ksymbol_event = (struct perf_ksymbol_event){
8914 		.name = name,
8915 		.name_len = name_len,
8916 		.event_id = {
8917 			.header = {
8918 				.type = PERF_RECORD_KSYMBOL,
8919 				.size = sizeof(ksymbol_event.event_id) +
8920 					name_len,
8921 			},
8922 			.addr = addr,
8923 			.len = len,
8924 			.ksym_type = ksym_type,
8925 			.flags = flags,
8926 		},
8927 	};
8928 
8929 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8930 	return;
8931 err:
8932 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8933 }
8934 
8935 /*
8936  * bpf program load/unload tracking
8937  */
8938 
8939 struct perf_bpf_event {
8940 	struct bpf_prog	*prog;
8941 	struct {
8942 		struct perf_event_header        header;
8943 		u16				type;
8944 		u16				flags;
8945 		u32				id;
8946 		u8				tag[BPF_TAG_SIZE];
8947 	} event_id;
8948 };
8949 
8950 static int perf_event_bpf_match(struct perf_event *event)
8951 {
8952 	return event->attr.bpf_event;
8953 }
8954 
8955 static void perf_event_bpf_output(struct perf_event *event, void *data)
8956 {
8957 	struct perf_bpf_event *bpf_event = data;
8958 	struct perf_output_handle handle;
8959 	struct perf_sample_data sample;
8960 	int ret;
8961 
8962 	if (!perf_event_bpf_match(event))
8963 		return;
8964 
8965 	perf_event_header__init_id(&bpf_event->event_id.header,
8966 				   &sample, event);
8967 	ret = perf_output_begin(&handle, data, event,
8968 				bpf_event->event_id.header.size);
8969 	if (ret)
8970 		return;
8971 
8972 	perf_output_put(&handle, bpf_event->event_id);
8973 	perf_event__output_id_sample(event, &handle, &sample);
8974 
8975 	perf_output_end(&handle);
8976 }
8977 
8978 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8979 					 enum perf_bpf_event_type type)
8980 {
8981 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8982 	int i;
8983 
8984 	if (prog->aux->func_cnt == 0) {
8985 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8986 				   (u64)(unsigned long)prog->bpf_func,
8987 				   prog->jited_len, unregister,
8988 				   prog->aux->ksym.name);
8989 	} else {
8990 		for (i = 0; i < prog->aux->func_cnt; i++) {
8991 			struct bpf_prog *subprog = prog->aux->func[i];
8992 
8993 			perf_event_ksymbol(
8994 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8995 				(u64)(unsigned long)subprog->bpf_func,
8996 				subprog->jited_len, unregister,
8997 				prog->aux->ksym.name);
8998 		}
8999 	}
9000 }
9001 
9002 void perf_event_bpf_event(struct bpf_prog *prog,
9003 			  enum perf_bpf_event_type type,
9004 			  u16 flags)
9005 {
9006 	struct perf_bpf_event bpf_event;
9007 
9008 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9009 	    type >= PERF_BPF_EVENT_MAX)
9010 		return;
9011 
9012 	switch (type) {
9013 	case PERF_BPF_EVENT_PROG_LOAD:
9014 	case PERF_BPF_EVENT_PROG_UNLOAD:
9015 		if (atomic_read(&nr_ksymbol_events))
9016 			perf_event_bpf_emit_ksymbols(prog, type);
9017 		break;
9018 	default:
9019 		break;
9020 	}
9021 
9022 	if (!atomic_read(&nr_bpf_events))
9023 		return;
9024 
9025 	bpf_event = (struct perf_bpf_event){
9026 		.prog = prog,
9027 		.event_id = {
9028 			.header = {
9029 				.type = PERF_RECORD_BPF_EVENT,
9030 				.size = sizeof(bpf_event.event_id),
9031 			},
9032 			.type = type,
9033 			.flags = flags,
9034 			.id = prog->aux->id,
9035 		},
9036 	};
9037 
9038 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9039 
9040 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9041 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9042 }
9043 
9044 struct perf_text_poke_event {
9045 	const void		*old_bytes;
9046 	const void		*new_bytes;
9047 	size_t			pad;
9048 	u16			old_len;
9049 	u16			new_len;
9050 
9051 	struct {
9052 		struct perf_event_header	header;
9053 
9054 		u64				addr;
9055 	} event_id;
9056 };
9057 
9058 static int perf_event_text_poke_match(struct perf_event *event)
9059 {
9060 	return event->attr.text_poke;
9061 }
9062 
9063 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9064 {
9065 	struct perf_text_poke_event *text_poke_event = data;
9066 	struct perf_output_handle handle;
9067 	struct perf_sample_data sample;
9068 	u64 padding = 0;
9069 	int ret;
9070 
9071 	if (!perf_event_text_poke_match(event))
9072 		return;
9073 
9074 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9075 
9076 	ret = perf_output_begin(&handle, &sample, event,
9077 				text_poke_event->event_id.header.size);
9078 	if (ret)
9079 		return;
9080 
9081 	perf_output_put(&handle, text_poke_event->event_id);
9082 	perf_output_put(&handle, text_poke_event->old_len);
9083 	perf_output_put(&handle, text_poke_event->new_len);
9084 
9085 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9086 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9087 
9088 	if (text_poke_event->pad)
9089 		__output_copy(&handle, &padding, text_poke_event->pad);
9090 
9091 	perf_event__output_id_sample(event, &handle, &sample);
9092 
9093 	perf_output_end(&handle);
9094 }
9095 
9096 void perf_event_text_poke(const void *addr, const void *old_bytes,
9097 			  size_t old_len, const void *new_bytes, size_t new_len)
9098 {
9099 	struct perf_text_poke_event text_poke_event;
9100 	size_t tot, pad;
9101 
9102 	if (!atomic_read(&nr_text_poke_events))
9103 		return;
9104 
9105 	tot  = sizeof(text_poke_event.old_len) + old_len;
9106 	tot += sizeof(text_poke_event.new_len) + new_len;
9107 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9108 
9109 	text_poke_event = (struct perf_text_poke_event){
9110 		.old_bytes    = old_bytes,
9111 		.new_bytes    = new_bytes,
9112 		.pad          = pad,
9113 		.old_len      = old_len,
9114 		.new_len      = new_len,
9115 		.event_id  = {
9116 			.header = {
9117 				.type = PERF_RECORD_TEXT_POKE,
9118 				.misc = PERF_RECORD_MISC_KERNEL,
9119 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9120 			},
9121 			.addr = (unsigned long)addr,
9122 		},
9123 	};
9124 
9125 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9126 }
9127 
9128 void perf_event_itrace_started(struct perf_event *event)
9129 {
9130 	event->attach_state |= PERF_ATTACH_ITRACE;
9131 }
9132 
9133 static void perf_log_itrace_start(struct perf_event *event)
9134 {
9135 	struct perf_output_handle handle;
9136 	struct perf_sample_data sample;
9137 	struct perf_aux_event {
9138 		struct perf_event_header        header;
9139 		u32				pid;
9140 		u32				tid;
9141 	} rec;
9142 	int ret;
9143 
9144 	if (event->parent)
9145 		event = event->parent;
9146 
9147 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9148 	    event->attach_state & PERF_ATTACH_ITRACE)
9149 		return;
9150 
9151 	rec.header.type	= PERF_RECORD_ITRACE_START;
9152 	rec.header.misc	= 0;
9153 	rec.header.size	= sizeof(rec);
9154 	rec.pid	= perf_event_pid(event, current);
9155 	rec.tid	= perf_event_tid(event, current);
9156 
9157 	perf_event_header__init_id(&rec.header, &sample, event);
9158 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9159 
9160 	if (ret)
9161 		return;
9162 
9163 	perf_output_put(&handle, rec);
9164 	perf_event__output_id_sample(event, &handle, &sample);
9165 
9166 	perf_output_end(&handle);
9167 }
9168 
9169 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9170 {
9171 	struct perf_output_handle handle;
9172 	struct perf_sample_data sample;
9173 	struct perf_aux_event {
9174 		struct perf_event_header        header;
9175 		u64				hw_id;
9176 	} rec;
9177 	int ret;
9178 
9179 	if (event->parent)
9180 		event = event->parent;
9181 
9182 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9183 	rec.header.misc	= 0;
9184 	rec.header.size	= sizeof(rec);
9185 	rec.hw_id	= hw_id;
9186 
9187 	perf_event_header__init_id(&rec.header, &sample, event);
9188 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9189 
9190 	if (ret)
9191 		return;
9192 
9193 	perf_output_put(&handle, rec);
9194 	perf_event__output_id_sample(event, &handle, &sample);
9195 
9196 	perf_output_end(&handle);
9197 }
9198 
9199 static int
9200 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9201 {
9202 	struct hw_perf_event *hwc = &event->hw;
9203 	int ret = 0;
9204 	u64 seq;
9205 
9206 	seq = __this_cpu_read(perf_throttled_seq);
9207 	if (seq != hwc->interrupts_seq) {
9208 		hwc->interrupts_seq = seq;
9209 		hwc->interrupts = 1;
9210 	} else {
9211 		hwc->interrupts++;
9212 		if (unlikely(throttle
9213 			     && hwc->interrupts >= max_samples_per_tick)) {
9214 			__this_cpu_inc(perf_throttled_count);
9215 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9216 			hwc->interrupts = MAX_INTERRUPTS;
9217 			perf_log_throttle(event, 0);
9218 			ret = 1;
9219 		}
9220 	}
9221 
9222 	if (event->attr.freq) {
9223 		u64 now = perf_clock();
9224 		s64 delta = now - hwc->freq_time_stamp;
9225 
9226 		hwc->freq_time_stamp = now;
9227 
9228 		if (delta > 0 && delta < 2*TICK_NSEC)
9229 			perf_adjust_period(event, delta, hwc->last_period, true);
9230 	}
9231 
9232 	return ret;
9233 }
9234 
9235 int perf_event_account_interrupt(struct perf_event *event)
9236 {
9237 	return __perf_event_account_interrupt(event, 1);
9238 }
9239 
9240 /*
9241  * Generic event overflow handling, sampling.
9242  */
9243 
9244 static int __perf_event_overflow(struct perf_event *event,
9245 				   int throttle, struct perf_sample_data *data,
9246 				   struct pt_regs *regs)
9247 {
9248 	int events = atomic_read(&event->event_limit);
9249 	int ret = 0;
9250 
9251 	/*
9252 	 * Non-sampling counters might still use the PMI to fold short
9253 	 * hardware counters, ignore those.
9254 	 */
9255 	if (unlikely(!is_sampling_event(event)))
9256 		return 0;
9257 
9258 	ret = __perf_event_account_interrupt(event, throttle);
9259 
9260 	/*
9261 	 * XXX event_limit might not quite work as expected on inherited
9262 	 * events
9263 	 */
9264 
9265 	event->pending_kill = POLL_IN;
9266 	if (events && atomic_dec_and_test(&event->event_limit)) {
9267 		ret = 1;
9268 		event->pending_kill = POLL_HUP;
9269 		event->pending_addr = data->addr;
9270 
9271 		perf_event_disable_inatomic(event);
9272 	}
9273 
9274 	READ_ONCE(event->overflow_handler)(event, data, regs);
9275 
9276 	if (*perf_event_fasync(event) && event->pending_kill) {
9277 		event->pending_wakeup = 1;
9278 		irq_work_queue(&event->pending);
9279 	}
9280 
9281 	return ret;
9282 }
9283 
9284 int perf_event_overflow(struct perf_event *event,
9285 			  struct perf_sample_data *data,
9286 			  struct pt_regs *regs)
9287 {
9288 	return __perf_event_overflow(event, 1, data, regs);
9289 }
9290 
9291 /*
9292  * Generic software event infrastructure
9293  */
9294 
9295 struct swevent_htable {
9296 	struct swevent_hlist		*swevent_hlist;
9297 	struct mutex			hlist_mutex;
9298 	int				hlist_refcount;
9299 
9300 	/* Recursion avoidance in each contexts */
9301 	int				recursion[PERF_NR_CONTEXTS];
9302 };
9303 
9304 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9305 
9306 /*
9307  * We directly increment event->count and keep a second value in
9308  * event->hw.period_left to count intervals. This period event
9309  * is kept in the range [-sample_period, 0] so that we can use the
9310  * sign as trigger.
9311  */
9312 
9313 u64 perf_swevent_set_period(struct perf_event *event)
9314 {
9315 	struct hw_perf_event *hwc = &event->hw;
9316 	u64 period = hwc->last_period;
9317 	u64 nr, offset;
9318 	s64 old, val;
9319 
9320 	hwc->last_period = hwc->sample_period;
9321 
9322 again:
9323 	old = val = local64_read(&hwc->period_left);
9324 	if (val < 0)
9325 		return 0;
9326 
9327 	nr = div64_u64(period + val, period);
9328 	offset = nr * period;
9329 	val -= offset;
9330 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9331 		goto again;
9332 
9333 	return nr;
9334 }
9335 
9336 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9337 				    struct perf_sample_data *data,
9338 				    struct pt_regs *regs)
9339 {
9340 	struct hw_perf_event *hwc = &event->hw;
9341 	int throttle = 0;
9342 
9343 	if (!overflow)
9344 		overflow = perf_swevent_set_period(event);
9345 
9346 	if (hwc->interrupts == MAX_INTERRUPTS)
9347 		return;
9348 
9349 	for (; overflow; overflow--) {
9350 		if (__perf_event_overflow(event, throttle,
9351 					    data, regs)) {
9352 			/*
9353 			 * We inhibit the overflow from happening when
9354 			 * hwc->interrupts == MAX_INTERRUPTS.
9355 			 */
9356 			break;
9357 		}
9358 		throttle = 1;
9359 	}
9360 }
9361 
9362 static void perf_swevent_event(struct perf_event *event, u64 nr,
9363 			       struct perf_sample_data *data,
9364 			       struct pt_regs *regs)
9365 {
9366 	struct hw_perf_event *hwc = &event->hw;
9367 
9368 	local64_add(nr, &event->count);
9369 
9370 	if (!regs)
9371 		return;
9372 
9373 	if (!is_sampling_event(event))
9374 		return;
9375 
9376 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9377 		data->period = nr;
9378 		return perf_swevent_overflow(event, 1, data, regs);
9379 	} else
9380 		data->period = event->hw.last_period;
9381 
9382 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9383 		return perf_swevent_overflow(event, 1, data, regs);
9384 
9385 	if (local64_add_negative(nr, &hwc->period_left))
9386 		return;
9387 
9388 	perf_swevent_overflow(event, 0, data, regs);
9389 }
9390 
9391 static int perf_exclude_event(struct perf_event *event,
9392 			      struct pt_regs *regs)
9393 {
9394 	if (event->hw.state & PERF_HES_STOPPED)
9395 		return 1;
9396 
9397 	if (regs) {
9398 		if (event->attr.exclude_user && user_mode(regs))
9399 			return 1;
9400 
9401 		if (event->attr.exclude_kernel && !user_mode(regs))
9402 			return 1;
9403 	}
9404 
9405 	return 0;
9406 }
9407 
9408 static int perf_swevent_match(struct perf_event *event,
9409 				enum perf_type_id type,
9410 				u32 event_id,
9411 				struct perf_sample_data *data,
9412 				struct pt_regs *regs)
9413 {
9414 	if (event->attr.type != type)
9415 		return 0;
9416 
9417 	if (event->attr.config != event_id)
9418 		return 0;
9419 
9420 	if (perf_exclude_event(event, regs))
9421 		return 0;
9422 
9423 	return 1;
9424 }
9425 
9426 static inline u64 swevent_hash(u64 type, u32 event_id)
9427 {
9428 	u64 val = event_id | (type << 32);
9429 
9430 	return hash_64(val, SWEVENT_HLIST_BITS);
9431 }
9432 
9433 static inline struct hlist_head *
9434 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9435 {
9436 	u64 hash = swevent_hash(type, event_id);
9437 
9438 	return &hlist->heads[hash];
9439 }
9440 
9441 /* For the read side: events when they trigger */
9442 static inline struct hlist_head *
9443 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9444 {
9445 	struct swevent_hlist *hlist;
9446 
9447 	hlist = rcu_dereference(swhash->swevent_hlist);
9448 	if (!hlist)
9449 		return NULL;
9450 
9451 	return __find_swevent_head(hlist, type, event_id);
9452 }
9453 
9454 /* For the event head insertion and removal in the hlist */
9455 static inline struct hlist_head *
9456 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9457 {
9458 	struct swevent_hlist *hlist;
9459 	u32 event_id = event->attr.config;
9460 	u64 type = event->attr.type;
9461 
9462 	/*
9463 	 * Event scheduling is always serialized against hlist allocation
9464 	 * and release. Which makes the protected version suitable here.
9465 	 * The context lock guarantees that.
9466 	 */
9467 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9468 					  lockdep_is_held(&event->ctx->lock));
9469 	if (!hlist)
9470 		return NULL;
9471 
9472 	return __find_swevent_head(hlist, type, event_id);
9473 }
9474 
9475 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9476 				    u64 nr,
9477 				    struct perf_sample_data *data,
9478 				    struct pt_regs *regs)
9479 {
9480 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9481 	struct perf_event *event;
9482 	struct hlist_head *head;
9483 
9484 	rcu_read_lock();
9485 	head = find_swevent_head_rcu(swhash, type, event_id);
9486 	if (!head)
9487 		goto end;
9488 
9489 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9490 		if (perf_swevent_match(event, type, event_id, data, regs))
9491 			perf_swevent_event(event, nr, data, regs);
9492 	}
9493 end:
9494 	rcu_read_unlock();
9495 }
9496 
9497 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9498 
9499 int perf_swevent_get_recursion_context(void)
9500 {
9501 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9502 
9503 	return get_recursion_context(swhash->recursion);
9504 }
9505 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9506 
9507 void perf_swevent_put_recursion_context(int rctx)
9508 {
9509 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9510 
9511 	put_recursion_context(swhash->recursion, rctx);
9512 }
9513 
9514 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9515 {
9516 	struct perf_sample_data data;
9517 
9518 	if (WARN_ON_ONCE(!regs))
9519 		return;
9520 
9521 	perf_sample_data_init(&data, addr, 0);
9522 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9523 }
9524 
9525 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9526 {
9527 	int rctx;
9528 
9529 	preempt_disable_notrace();
9530 	rctx = perf_swevent_get_recursion_context();
9531 	if (unlikely(rctx < 0))
9532 		goto fail;
9533 
9534 	___perf_sw_event(event_id, nr, regs, addr);
9535 
9536 	perf_swevent_put_recursion_context(rctx);
9537 fail:
9538 	preempt_enable_notrace();
9539 }
9540 
9541 static void perf_swevent_read(struct perf_event *event)
9542 {
9543 }
9544 
9545 static int perf_swevent_add(struct perf_event *event, int flags)
9546 {
9547 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9548 	struct hw_perf_event *hwc = &event->hw;
9549 	struct hlist_head *head;
9550 
9551 	if (is_sampling_event(event)) {
9552 		hwc->last_period = hwc->sample_period;
9553 		perf_swevent_set_period(event);
9554 	}
9555 
9556 	hwc->state = !(flags & PERF_EF_START);
9557 
9558 	head = find_swevent_head(swhash, event);
9559 	if (WARN_ON_ONCE(!head))
9560 		return -EINVAL;
9561 
9562 	hlist_add_head_rcu(&event->hlist_entry, head);
9563 	perf_event_update_userpage(event);
9564 
9565 	return 0;
9566 }
9567 
9568 static void perf_swevent_del(struct perf_event *event, int flags)
9569 {
9570 	hlist_del_rcu(&event->hlist_entry);
9571 }
9572 
9573 static void perf_swevent_start(struct perf_event *event, int flags)
9574 {
9575 	event->hw.state = 0;
9576 }
9577 
9578 static void perf_swevent_stop(struct perf_event *event, int flags)
9579 {
9580 	event->hw.state = PERF_HES_STOPPED;
9581 }
9582 
9583 /* Deref the hlist from the update side */
9584 static inline struct swevent_hlist *
9585 swevent_hlist_deref(struct swevent_htable *swhash)
9586 {
9587 	return rcu_dereference_protected(swhash->swevent_hlist,
9588 					 lockdep_is_held(&swhash->hlist_mutex));
9589 }
9590 
9591 static void swevent_hlist_release(struct swevent_htable *swhash)
9592 {
9593 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9594 
9595 	if (!hlist)
9596 		return;
9597 
9598 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9599 	kfree_rcu(hlist, rcu_head);
9600 }
9601 
9602 static void swevent_hlist_put_cpu(int cpu)
9603 {
9604 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9605 
9606 	mutex_lock(&swhash->hlist_mutex);
9607 
9608 	if (!--swhash->hlist_refcount)
9609 		swevent_hlist_release(swhash);
9610 
9611 	mutex_unlock(&swhash->hlist_mutex);
9612 }
9613 
9614 static void swevent_hlist_put(void)
9615 {
9616 	int cpu;
9617 
9618 	for_each_possible_cpu(cpu)
9619 		swevent_hlist_put_cpu(cpu);
9620 }
9621 
9622 static int swevent_hlist_get_cpu(int cpu)
9623 {
9624 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9625 	int err = 0;
9626 
9627 	mutex_lock(&swhash->hlist_mutex);
9628 	if (!swevent_hlist_deref(swhash) &&
9629 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9630 		struct swevent_hlist *hlist;
9631 
9632 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9633 		if (!hlist) {
9634 			err = -ENOMEM;
9635 			goto exit;
9636 		}
9637 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9638 	}
9639 	swhash->hlist_refcount++;
9640 exit:
9641 	mutex_unlock(&swhash->hlist_mutex);
9642 
9643 	return err;
9644 }
9645 
9646 static int swevent_hlist_get(void)
9647 {
9648 	int err, cpu, failed_cpu;
9649 
9650 	mutex_lock(&pmus_lock);
9651 	for_each_possible_cpu(cpu) {
9652 		err = swevent_hlist_get_cpu(cpu);
9653 		if (err) {
9654 			failed_cpu = cpu;
9655 			goto fail;
9656 		}
9657 	}
9658 	mutex_unlock(&pmus_lock);
9659 	return 0;
9660 fail:
9661 	for_each_possible_cpu(cpu) {
9662 		if (cpu == failed_cpu)
9663 			break;
9664 		swevent_hlist_put_cpu(cpu);
9665 	}
9666 	mutex_unlock(&pmus_lock);
9667 	return err;
9668 }
9669 
9670 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9671 
9672 static void sw_perf_event_destroy(struct perf_event *event)
9673 {
9674 	u64 event_id = event->attr.config;
9675 
9676 	WARN_ON(event->parent);
9677 
9678 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9679 	swevent_hlist_put();
9680 }
9681 
9682 static int perf_swevent_init(struct perf_event *event)
9683 {
9684 	u64 event_id = event->attr.config;
9685 
9686 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9687 		return -ENOENT;
9688 
9689 	/*
9690 	 * no branch sampling for software events
9691 	 */
9692 	if (has_branch_stack(event))
9693 		return -EOPNOTSUPP;
9694 
9695 	switch (event_id) {
9696 	case PERF_COUNT_SW_CPU_CLOCK:
9697 	case PERF_COUNT_SW_TASK_CLOCK:
9698 		return -ENOENT;
9699 
9700 	default:
9701 		break;
9702 	}
9703 
9704 	if (event_id >= PERF_COUNT_SW_MAX)
9705 		return -ENOENT;
9706 
9707 	if (!event->parent) {
9708 		int err;
9709 
9710 		err = swevent_hlist_get();
9711 		if (err)
9712 			return err;
9713 
9714 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9715 		event->destroy = sw_perf_event_destroy;
9716 	}
9717 
9718 	return 0;
9719 }
9720 
9721 static struct pmu perf_swevent = {
9722 	.task_ctx_nr	= perf_sw_context,
9723 
9724 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9725 
9726 	.event_init	= perf_swevent_init,
9727 	.add		= perf_swevent_add,
9728 	.del		= perf_swevent_del,
9729 	.start		= perf_swevent_start,
9730 	.stop		= perf_swevent_stop,
9731 	.read		= perf_swevent_read,
9732 };
9733 
9734 #ifdef CONFIG_EVENT_TRACING
9735 
9736 static int perf_tp_filter_match(struct perf_event *event,
9737 				struct perf_sample_data *data)
9738 {
9739 	void *record = data->raw->frag.data;
9740 
9741 	/* only top level events have filters set */
9742 	if (event->parent)
9743 		event = event->parent;
9744 
9745 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9746 		return 1;
9747 	return 0;
9748 }
9749 
9750 static int perf_tp_event_match(struct perf_event *event,
9751 				struct perf_sample_data *data,
9752 				struct pt_regs *regs)
9753 {
9754 	if (event->hw.state & PERF_HES_STOPPED)
9755 		return 0;
9756 	/*
9757 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9758 	 */
9759 	if (event->attr.exclude_kernel && !user_mode(regs))
9760 		return 0;
9761 
9762 	if (!perf_tp_filter_match(event, data))
9763 		return 0;
9764 
9765 	return 1;
9766 }
9767 
9768 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9769 			       struct trace_event_call *call, u64 count,
9770 			       struct pt_regs *regs, struct hlist_head *head,
9771 			       struct task_struct *task)
9772 {
9773 	if (bpf_prog_array_valid(call)) {
9774 		*(struct pt_regs **)raw_data = regs;
9775 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9776 			perf_swevent_put_recursion_context(rctx);
9777 			return;
9778 		}
9779 	}
9780 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9781 		      rctx, task);
9782 }
9783 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9784 
9785 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9786 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9787 		   struct task_struct *task)
9788 {
9789 	struct perf_sample_data data;
9790 	struct perf_event *event;
9791 
9792 	struct perf_raw_record raw = {
9793 		.frag = {
9794 			.size = entry_size,
9795 			.data = record,
9796 		},
9797 	};
9798 
9799 	perf_sample_data_init(&data, 0, 0);
9800 	data.raw = &raw;
9801 
9802 	perf_trace_buf_update(record, event_type);
9803 
9804 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9805 		if (perf_tp_event_match(event, &data, regs))
9806 			perf_swevent_event(event, count, &data, regs);
9807 	}
9808 
9809 	/*
9810 	 * If we got specified a target task, also iterate its context and
9811 	 * deliver this event there too.
9812 	 */
9813 	if (task && task != current) {
9814 		struct perf_event_context *ctx;
9815 		struct trace_entry *entry = record;
9816 
9817 		rcu_read_lock();
9818 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9819 		if (!ctx)
9820 			goto unlock;
9821 
9822 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9823 			if (event->cpu != smp_processor_id())
9824 				continue;
9825 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9826 				continue;
9827 			if (event->attr.config != entry->type)
9828 				continue;
9829 			/* Cannot deliver synchronous signal to other task. */
9830 			if (event->attr.sigtrap)
9831 				continue;
9832 			if (perf_tp_event_match(event, &data, regs))
9833 				perf_swevent_event(event, count, &data, regs);
9834 		}
9835 unlock:
9836 		rcu_read_unlock();
9837 	}
9838 
9839 	perf_swevent_put_recursion_context(rctx);
9840 }
9841 EXPORT_SYMBOL_GPL(perf_tp_event);
9842 
9843 static void tp_perf_event_destroy(struct perf_event *event)
9844 {
9845 	perf_trace_destroy(event);
9846 }
9847 
9848 static int perf_tp_event_init(struct perf_event *event)
9849 {
9850 	int err;
9851 
9852 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9853 		return -ENOENT;
9854 
9855 	/*
9856 	 * no branch sampling for tracepoint events
9857 	 */
9858 	if (has_branch_stack(event))
9859 		return -EOPNOTSUPP;
9860 
9861 	err = perf_trace_init(event);
9862 	if (err)
9863 		return err;
9864 
9865 	event->destroy = tp_perf_event_destroy;
9866 
9867 	return 0;
9868 }
9869 
9870 static struct pmu perf_tracepoint = {
9871 	.task_ctx_nr	= perf_sw_context,
9872 
9873 	.event_init	= perf_tp_event_init,
9874 	.add		= perf_trace_add,
9875 	.del		= perf_trace_del,
9876 	.start		= perf_swevent_start,
9877 	.stop		= perf_swevent_stop,
9878 	.read		= perf_swevent_read,
9879 };
9880 
9881 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9882 /*
9883  * Flags in config, used by dynamic PMU kprobe and uprobe
9884  * The flags should match following PMU_FORMAT_ATTR().
9885  *
9886  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9887  *                               if not set, create kprobe/uprobe
9888  *
9889  * The following values specify a reference counter (or semaphore in the
9890  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9891  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9892  *
9893  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9894  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9895  */
9896 enum perf_probe_config {
9897 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9898 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9899 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9900 };
9901 
9902 PMU_FORMAT_ATTR(retprobe, "config:0");
9903 #endif
9904 
9905 #ifdef CONFIG_KPROBE_EVENTS
9906 static struct attribute *kprobe_attrs[] = {
9907 	&format_attr_retprobe.attr,
9908 	NULL,
9909 };
9910 
9911 static struct attribute_group kprobe_format_group = {
9912 	.name = "format",
9913 	.attrs = kprobe_attrs,
9914 };
9915 
9916 static const struct attribute_group *kprobe_attr_groups[] = {
9917 	&kprobe_format_group,
9918 	NULL,
9919 };
9920 
9921 static int perf_kprobe_event_init(struct perf_event *event);
9922 static struct pmu perf_kprobe = {
9923 	.task_ctx_nr	= perf_sw_context,
9924 	.event_init	= perf_kprobe_event_init,
9925 	.add		= perf_trace_add,
9926 	.del		= perf_trace_del,
9927 	.start		= perf_swevent_start,
9928 	.stop		= perf_swevent_stop,
9929 	.read		= perf_swevent_read,
9930 	.attr_groups	= kprobe_attr_groups,
9931 };
9932 
9933 static int perf_kprobe_event_init(struct perf_event *event)
9934 {
9935 	int err;
9936 	bool is_retprobe;
9937 
9938 	if (event->attr.type != perf_kprobe.type)
9939 		return -ENOENT;
9940 
9941 	if (!perfmon_capable())
9942 		return -EACCES;
9943 
9944 	/*
9945 	 * no branch sampling for probe events
9946 	 */
9947 	if (has_branch_stack(event))
9948 		return -EOPNOTSUPP;
9949 
9950 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9951 	err = perf_kprobe_init(event, is_retprobe);
9952 	if (err)
9953 		return err;
9954 
9955 	event->destroy = perf_kprobe_destroy;
9956 
9957 	return 0;
9958 }
9959 #endif /* CONFIG_KPROBE_EVENTS */
9960 
9961 #ifdef CONFIG_UPROBE_EVENTS
9962 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9963 
9964 static struct attribute *uprobe_attrs[] = {
9965 	&format_attr_retprobe.attr,
9966 	&format_attr_ref_ctr_offset.attr,
9967 	NULL,
9968 };
9969 
9970 static struct attribute_group uprobe_format_group = {
9971 	.name = "format",
9972 	.attrs = uprobe_attrs,
9973 };
9974 
9975 static const struct attribute_group *uprobe_attr_groups[] = {
9976 	&uprobe_format_group,
9977 	NULL,
9978 };
9979 
9980 static int perf_uprobe_event_init(struct perf_event *event);
9981 static struct pmu perf_uprobe = {
9982 	.task_ctx_nr	= perf_sw_context,
9983 	.event_init	= perf_uprobe_event_init,
9984 	.add		= perf_trace_add,
9985 	.del		= perf_trace_del,
9986 	.start		= perf_swevent_start,
9987 	.stop		= perf_swevent_stop,
9988 	.read		= perf_swevent_read,
9989 	.attr_groups	= uprobe_attr_groups,
9990 };
9991 
9992 static int perf_uprobe_event_init(struct perf_event *event)
9993 {
9994 	int err;
9995 	unsigned long ref_ctr_offset;
9996 	bool is_retprobe;
9997 
9998 	if (event->attr.type != perf_uprobe.type)
9999 		return -ENOENT;
10000 
10001 	if (!perfmon_capable())
10002 		return -EACCES;
10003 
10004 	/*
10005 	 * no branch sampling for probe events
10006 	 */
10007 	if (has_branch_stack(event))
10008 		return -EOPNOTSUPP;
10009 
10010 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10011 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10012 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10013 	if (err)
10014 		return err;
10015 
10016 	event->destroy = perf_uprobe_destroy;
10017 
10018 	return 0;
10019 }
10020 #endif /* CONFIG_UPROBE_EVENTS */
10021 
10022 static inline void perf_tp_register(void)
10023 {
10024 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10025 #ifdef CONFIG_KPROBE_EVENTS
10026 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10027 #endif
10028 #ifdef CONFIG_UPROBE_EVENTS
10029 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10030 #endif
10031 }
10032 
10033 static void perf_event_free_filter(struct perf_event *event)
10034 {
10035 	ftrace_profile_free_filter(event);
10036 }
10037 
10038 #ifdef CONFIG_BPF_SYSCALL
10039 static void bpf_overflow_handler(struct perf_event *event,
10040 				 struct perf_sample_data *data,
10041 				 struct pt_regs *regs)
10042 {
10043 	struct bpf_perf_event_data_kern ctx = {
10044 		.data = data,
10045 		.event = event,
10046 	};
10047 	struct bpf_prog *prog;
10048 	int ret = 0;
10049 
10050 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10051 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10052 		goto out;
10053 	rcu_read_lock();
10054 	prog = READ_ONCE(event->prog);
10055 	if (prog)
10056 		ret = bpf_prog_run(prog, &ctx);
10057 	rcu_read_unlock();
10058 out:
10059 	__this_cpu_dec(bpf_prog_active);
10060 	if (!ret)
10061 		return;
10062 
10063 	event->orig_overflow_handler(event, data, regs);
10064 }
10065 
10066 static int perf_event_set_bpf_handler(struct perf_event *event,
10067 				      struct bpf_prog *prog,
10068 				      u64 bpf_cookie)
10069 {
10070 	if (event->overflow_handler_context)
10071 		/* hw breakpoint or kernel counter */
10072 		return -EINVAL;
10073 
10074 	if (event->prog)
10075 		return -EEXIST;
10076 
10077 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10078 		return -EINVAL;
10079 
10080 	if (event->attr.precise_ip &&
10081 	    prog->call_get_stack &&
10082 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10083 	     event->attr.exclude_callchain_kernel ||
10084 	     event->attr.exclude_callchain_user)) {
10085 		/*
10086 		 * On perf_event with precise_ip, calling bpf_get_stack()
10087 		 * may trigger unwinder warnings and occasional crashes.
10088 		 * bpf_get_[stack|stackid] works around this issue by using
10089 		 * callchain attached to perf_sample_data. If the
10090 		 * perf_event does not full (kernel and user) callchain
10091 		 * attached to perf_sample_data, do not allow attaching BPF
10092 		 * program that calls bpf_get_[stack|stackid].
10093 		 */
10094 		return -EPROTO;
10095 	}
10096 
10097 	event->prog = prog;
10098 	event->bpf_cookie = bpf_cookie;
10099 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10100 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10101 	return 0;
10102 }
10103 
10104 static void perf_event_free_bpf_handler(struct perf_event *event)
10105 {
10106 	struct bpf_prog *prog = event->prog;
10107 
10108 	if (!prog)
10109 		return;
10110 
10111 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10112 	event->prog = NULL;
10113 	bpf_prog_put(prog);
10114 }
10115 #else
10116 static int perf_event_set_bpf_handler(struct perf_event *event,
10117 				      struct bpf_prog *prog,
10118 				      u64 bpf_cookie)
10119 {
10120 	return -EOPNOTSUPP;
10121 }
10122 static void perf_event_free_bpf_handler(struct perf_event *event)
10123 {
10124 }
10125 #endif
10126 
10127 /*
10128  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10129  * with perf_event_open()
10130  */
10131 static inline bool perf_event_is_tracing(struct perf_event *event)
10132 {
10133 	if (event->pmu == &perf_tracepoint)
10134 		return true;
10135 #ifdef CONFIG_KPROBE_EVENTS
10136 	if (event->pmu == &perf_kprobe)
10137 		return true;
10138 #endif
10139 #ifdef CONFIG_UPROBE_EVENTS
10140 	if (event->pmu == &perf_uprobe)
10141 		return true;
10142 #endif
10143 	return false;
10144 }
10145 
10146 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10147 			    u64 bpf_cookie)
10148 {
10149 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10150 
10151 	if (!perf_event_is_tracing(event))
10152 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10153 
10154 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10155 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10156 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10157 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10158 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10159 		return -EINVAL;
10160 
10161 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10162 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10163 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10164 		return -EINVAL;
10165 
10166 	/* Kprobe override only works for kprobes, not uprobes. */
10167 	if (prog->kprobe_override &&
10168 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10169 		return -EINVAL;
10170 
10171 	if (is_tracepoint || is_syscall_tp) {
10172 		int off = trace_event_get_offsets(event->tp_event);
10173 
10174 		if (prog->aux->max_ctx_offset > off)
10175 			return -EACCES;
10176 	}
10177 
10178 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10179 }
10180 
10181 void perf_event_free_bpf_prog(struct perf_event *event)
10182 {
10183 	if (!perf_event_is_tracing(event)) {
10184 		perf_event_free_bpf_handler(event);
10185 		return;
10186 	}
10187 	perf_event_detach_bpf_prog(event);
10188 }
10189 
10190 #else
10191 
10192 static inline void perf_tp_register(void)
10193 {
10194 }
10195 
10196 static void perf_event_free_filter(struct perf_event *event)
10197 {
10198 }
10199 
10200 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10201 			    u64 bpf_cookie)
10202 {
10203 	return -ENOENT;
10204 }
10205 
10206 void perf_event_free_bpf_prog(struct perf_event *event)
10207 {
10208 }
10209 #endif /* CONFIG_EVENT_TRACING */
10210 
10211 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10212 void perf_bp_event(struct perf_event *bp, void *data)
10213 {
10214 	struct perf_sample_data sample;
10215 	struct pt_regs *regs = data;
10216 
10217 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10218 
10219 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10220 		perf_swevent_event(bp, 1, &sample, regs);
10221 }
10222 #endif
10223 
10224 /*
10225  * Allocate a new address filter
10226  */
10227 static struct perf_addr_filter *
10228 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10229 {
10230 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10231 	struct perf_addr_filter *filter;
10232 
10233 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10234 	if (!filter)
10235 		return NULL;
10236 
10237 	INIT_LIST_HEAD(&filter->entry);
10238 	list_add_tail(&filter->entry, filters);
10239 
10240 	return filter;
10241 }
10242 
10243 static void free_filters_list(struct list_head *filters)
10244 {
10245 	struct perf_addr_filter *filter, *iter;
10246 
10247 	list_for_each_entry_safe(filter, iter, filters, entry) {
10248 		path_put(&filter->path);
10249 		list_del(&filter->entry);
10250 		kfree(filter);
10251 	}
10252 }
10253 
10254 /*
10255  * Free existing address filters and optionally install new ones
10256  */
10257 static void perf_addr_filters_splice(struct perf_event *event,
10258 				     struct list_head *head)
10259 {
10260 	unsigned long flags;
10261 	LIST_HEAD(list);
10262 
10263 	if (!has_addr_filter(event))
10264 		return;
10265 
10266 	/* don't bother with children, they don't have their own filters */
10267 	if (event->parent)
10268 		return;
10269 
10270 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10271 
10272 	list_splice_init(&event->addr_filters.list, &list);
10273 	if (head)
10274 		list_splice(head, &event->addr_filters.list);
10275 
10276 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10277 
10278 	free_filters_list(&list);
10279 }
10280 
10281 /*
10282  * Scan through mm's vmas and see if one of them matches the
10283  * @filter; if so, adjust filter's address range.
10284  * Called with mm::mmap_lock down for reading.
10285  */
10286 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10287 				   struct mm_struct *mm,
10288 				   struct perf_addr_filter_range *fr)
10289 {
10290 	struct vm_area_struct *vma;
10291 
10292 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10293 		if (!vma->vm_file)
10294 			continue;
10295 
10296 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10297 			return;
10298 	}
10299 }
10300 
10301 /*
10302  * Update event's address range filters based on the
10303  * task's existing mappings, if any.
10304  */
10305 static void perf_event_addr_filters_apply(struct perf_event *event)
10306 {
10307 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10308 	struct task_struct *task = READ_ONCE(event->ctx->task);
10309 	struct perf_addr_filter *filter;
10310 	struct mm_struct *mm = NULL;
10311 	unsigned int count = 0;
10312 	unsigned long flags;
10313 
10314 	/*
10315 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10316 	 * will stop on the parent's child_mutex that our caller is also holding
10317 	 */
10318 	if (task == TASK_TOMBSTONE)
10319 		return;
10320 
10321 	if (ifh->nr_file_filters) {
10322 		mm = get_task_mm(task);
10323 		if (!mm)
10324 			goto restart;
10325 
10326 		mmap_read_lock(mm);
10327 	}
10328 
10329 	raw_spin_lock_irqsave(&ifh->lock, flags);
10330 	list_for_each_entry(filter, &ifh->list, entry) {
10331 		if (filter->path.dentry) {
10332 			/*
10333 			 * Adjust base offset if the filter is associated to a
10334 			 * binary that needs to be mapped:
10335 			 */
10336 			event->addr_filter_ranges[count].start = 0;
10337 			event->addr_filter_ranges[count].size = 0;
10338 
10339 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10340 		} else {
10341 			event->addr_filter_ranges[count].start = filter->offset;
10342 			event->addr_filter_ranges[count].size  = filter->size;
10343 		}
10344 
10345 		count++;
10346 	}
10347 
10348 	event->addr_filters_gen++;
10349 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10350 
10351 	if (ifh->nr_file_filters) {
10352 		mmap_read_unlock(mm);
10353 
10354 		mmput(mm);
10355 	}
10356 
10357 restart:
10358 	perf_event_stop(event, 1);
10359 }
10360 
10361 /*
10362  * Address range filtering: limiting the data to certain
10363  * instruction address ranges. Filters are ioctl()ed to us from
10364  * userspace as ascii strings.
10365  *
10366  * Filter string format:
10367  *
10368  * ACTION RANGE_SPEC
10369  * where ACTION is one of the
10370  *  * "filter": limit the trace to this region
10371  *  * "start": start tracing from this address
10372  *  * "stop": stop tracing at this address/region;
10373  * RANGE_SPEC is
10374  *  * for kernel addresses: <start address>[/<size>]
10375  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10376  *
10377  * if <size> is not specified or is zero, the range is treated as a single
10378  * address; not valid for ACTION=="filter".
10379  */
10380 enum {
10381 	IF_ACT_NONE = -1,
10382 	IF_ACT_FILTER,
10383 	IF_ACT_START,
10384 	IF_ACT_STOP,
10385 	IF_SRC_FILE,
10386 	IF_SRC_KERNEL,
10387 	IF_SRC_FILEADDR,
10388 	IF_SRC_KERNELADDR,
10389 };
10390 
10391 enum {
10392 	IF_STATE_ACTION = 0,
10393 	IF_STATE_SOURCE,
10394 	IF_STATE_END,
10395 };
10396 
10397 static const match_table_t if_tokens = {
10398 	{ IF_ACT_FILTER,	"filter" },
10399 	{ IF_ACT_START,		"start" },
10400 	{ IF_ACT_STOP,		"stop" },
10401 	{ IF_SRC_FILE,		"%u/%u@%s" },
10402 	{ IF_SRC_KERNEL,	"%u/%u" },
10403 	{ IF_SRC_FILEADDR,	"%u@%s" },
10404 	{ IF_SRC_KERNELADDR,	"%u" },
10405 	{ IF_ACT_NONE,		NULL },
10406 };
10407 
10408 /*
10409  * Address filter string parser
10410  */
10411 static int
10412 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10413 			     struct list_head *filters)
10414 {
10415 	struct perf_addr_filter *filter = NULL;
10416 	char *start, *orig, *filename = NULL;
10417 	substring_t args[MAX_OPT_ARGS];
10418 	int state = IF_STATE_ACTION, token;
10419 	unsigned int kernel = 0;
10420 	int ret = -EINVAL;
10421 
10422 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10423 	if (!fstr)
10424 		return -ENOMEM;
10425 
10426 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10427 		static const enum perf_addr_filter_action_t actions[] = {
10428 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10429 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10430 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10431 		};
10432 		ret = -EINVAL;
10433 
10434 		if (!*start)
10435 			continue;
10436 
10437 		/* filter definition begins */
10438 		if (state == IF_STATE_ACTION) {
10439 			filter = perf_addr_filter_new(event, filters);
10440 			if (!filter)
10441 				goto fail;
10442 		}
10443 
10444 		token = match_token(start, if_tokens, args);
10445 		switch (token) {
10446 		case IF_ACT_FILTER:
10447 		case IF_ACT_START:
10448 		case IF_ACT_STOP:
10449 			if (state != IF_STATE_ACTION)
10450 				goto fail;
10451 
10452 			filter->action = actions[token];
10453 			state = IF_STATE_SOURCE;
10454 			break;
10455 
10456 		case IF_SRC_KERNELADDR:
10457 		case IF_SRC_KERNEL:
10458 			kernel = 1;
10459 			fallthrough;
10460 
10461 		case IF_SRC_FILEADDR:
10462 		case IF_SRC_FILE:
10463 			if (state != IF_STATE_SOURCE)
10464 				goto fail;
10465 
10466 			*args[0].to = 0;
10467 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10468 			if (ret)
10469 				goto fail;
10470 
10471 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10472 				*args[1].to = 0;
10473 				ret = kstrtoul(args[1].from, 0, &filter->size);
10474 				if (ret)
10475 					goto fail;
10476 			}
10477 
10478 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10479 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10480 
10481 				kfree(filename);
10482 				filename = match_strdup(&args[fpos]);
10483 				if (!filename) {
10484 					ret = -ENOMEM;
10485 					goto fail;
10486 				}
10487 			}
10488 
10489 			state = IF_STATE_END;
10490 			break;
10491 
10492 		default:
10493 			goto fail;
10494 		}
10495 
10496 		/*
10497 		 * Filter definition is fully parsed, validate and install it.
10498 		 * Make sure that it doesn't contradict itself or the event's
10499 		 * attribute.
10500 		 */
10501 		if (state == IF_STATE_END) {
10502 			ret = -EINVAL;
10503 			if (kernel && event->attr.exclude_kernel)
10504 				goto fail;
10505 
10506 			/*
10507 			 * ACTION "filter" must have a non-zero length region
10508 			 * specified.
10509 			 */
10510 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10511 			    !filter->size)
10512 				goto fail;
10513 
10514 			if (!kernel) {
10515 				if (!filename)
10516 					goto fail;
10517 
10518 				/*
10519 				 * For now, we only support file-based filters
10520 				 * in per-task events; doing so for CPU-wide
10521 				 * events requires additional context switching
10522 				 * trickery, since same object code will be
10523 				 * mapped at different virtual addresses in
10524 				 * different processes.
10525 				 */
10526 				ret = -EOPNOTSUPP;
10527 				if (!event->ctx->task)
10528 					goto fail;
10529 
10530 				/* look up the path and grab its inode */
10531 				ret = kern_path(filename, LOOKUP_FOLLOW,
10532 						&filter->path);
10533 				if (ret)
10534 					goto fail;
10535 
10536 				ret = -EINVAL;
10537 				if (!filter->path.dentry ||
10538 				    !S_ISREG(d_inode(filter->path.dentry)
10539 					     ->i_mode))
10540 					goto fail;
10541 
10542 				event->addr_filters.nr_file_filters++;
10543 			}
10544 
10545 			/* ready to consume more filters */
10546 			state = IF_STATE_ACTION;
10547 			filter = NULL;
10548 		}
10549 	}
10550 
10551 	if (state != IF_STATE_ACTION)
10552 		goto fail;
10553 
10554 	kfree(filename);
10555 	kfree(orig);
10556 
10557 	return 0;
10558 
10559 fail:
10560 	kfree(filename);
10561 	free_filters_list(filters);
10562 	kfree(orig);
10563 
10564 	return ret;
10565 }
10566 
10567 static int
10568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10569 {
10570 	LIST_HEAD(filters);
10571 	int ret;
10572 
10573 	/*
10574 	 * Since this is called in perf_ioctl() path, we're already holding
10575 	 * ctx::mutex.
10576 	 */
10577 	lockdep_assert_held(&event->ctx->mutex);
10578 
10579 	if (WARN_ON_ONCE(event->parent))
10580 		return -EINVAL;
10581 
10582 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10583 	if (ret)
10584 		goto fail_clear_files;
10585 
10586 	ret = event->pmu->addr_filters_validate(&filters);
10587 	if (ret)
10588 		goto fail_free_filters;
10589 
10590 	/* remove existing filters, if any */
10591 	perf_addr_filters_splice(event, &filters);
10592 
10593 	/* install new filters */
10594 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10595 
10596 	return ret;
10597 
10598 fail_free_filters:
10599 	free_filters_list(&filters);
10600 
10601 fail_clear_files:
10602 	event->addr_filters.nr_file_filters = 0;
10603 
10604 	return ret;
10605 }
10606 
10607 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10608 {
10609 	int ret = -EINVAL;
10610 	char *filter_str;
10611 
10612 	filter_str = strndup_user(arg, PAGE_SIZE);
10613 	if (IS_ERR(filter_str))
10614 		return PTR_ERR(filter_str);
10615 
10616 #ifdef CONFIG_EVENT_TRACING
10617 	if (perf_event_is_tracing(event)) {
10618 		struct perf_event_context *ctx = event->ctx;
10619 
10620 		/*
10621 		 * Beware, here be dragons!!
10622 		 *
10623 		 * the tracepoint muck will deadlock against ctx->mutex, but
10624 		 * the tracepoint stuff does not actually need it. So
10625 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10626 		 * already have a reference on ctx.
10627 		 *
10628 		 * This can result in event getting moved to a different ctx,
10629 		 * but that does not affect the tracepoint state.
10630 		 */
10631 		mutex_unlock(&ctx->mutex);
10632 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10633 		mutex_lock(&ctx->mutex);
10634 	} else
10635 #endif
10636 	if (has_addr_filter(event))
10637 		ret = perf_event_set_addr_filter(event, filter_str);
10638 
10639 	kfree(filter_str);
10640 	return ret;
10641 }
10642 
10643 /*
10644  * hrtimer based swevent callback
10645  */
10646 
10647 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10648 {
10649 	enum hrtimer_restart ret = HRTIMER_RESTART;
10650 	struct perf_sample_data data;
10651 	struct pt_regs *regs;
10652 	struct perf_event *event;
10653 	u64 period;
10654 
10655 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10656 
10657 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10658 		return HRTIMER_NORESTART;
10659 
10660 	event->pmu->read(event);
10661 
10662 	perf_sample_data_init(&data, 0, event->hw.last_period);
10663 	regs = get_irq_regs();
10664 
10665 	if (regs && !perf_exclude_event(event, regs)) {
10666 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10667 			if (__perf_event_overflow(event, 1, &data, regs))
10668 				ret = HRTIMER_NORESTART;
10669 	}
10670 
10671 	period = max_t(u64, 10000, event->hw.sample_period);
10672 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10673 
10674 	return ret;
10675 }
10676 
10677 static void perf_swevent_start_hrtimer(struct perf_event *event)
10678 {
10679 	struct hw_perf_event *hwc = &event->hw;
10680 	s64 period;
10681 
10682 	if (!is_sampling_event(event))
10683 		return;
10684 
10685 	period = local64_read(&hwc->period_left);
10686 	if (period) {
10687 		if (period < 0)
10688 			period = 10000;
10689 
10690 		local64_set(&hwc->period_left, 0);
10691 	} else {
10692 		period = max_t(u64, 10000, hwc->sample_period);
10693 	}
10694 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10695 		      HRTIMER_MODE_REL_PINNED_HARD);
10696 }
10697 
10698 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10699 {
10700 	struct hw_perf_event *hwc = &event->hw;
10701 
10702 	if (is_sampling_event(event)) {
10703 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10704 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10705 
10706 		hrtimer_cancel(&hwc->hrtimer);
10707 	}
10708 }
10709 
10710 static void perf_swevent_init_hrtimer(struct perf_event *event)
10711 {
10712 	struct hw_perf_event *hwc = &event->hw;
10713 
10714 	if (!is_sampling_event(event))
10715 		return;
10716 
10717 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10718 	hwc->hrtimer.function = perf_swevent_hrtimer;
10719 
10720 	/*
10721 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10722 	 * mapping and avoid the whole period adjust feedback stuff.
10723 	 */
10724 	if (event->attr.freq) {
10725 		long freq = event->attr.sample_freq;
10726 
10727 		event->attr.sample_period = NSEC_PER_SEC / freq;
10728 		hwc->sample_period = event->attr.sample_period;
10729 		local64_set(&hwc->period_left, hwc->sample_period);
10730 		hwc->last_period = hwc->sample_period;
10731 		event->attr.freq = 0;
10732 	}
10733 }
10734 
10735 /*
10736  * Software event: cpu wall time clock
10737  */
10738 
10739 static void cpu_clock_event_update(struct perf_event *event)
10740 {
10741 	s64 prev;
10742 	u64 now;
10743 
10744 	now = local_clock();
10745 	prev = local64_xchg(&event->hw.prev_count, now);
10746 	local64_add(now - prev, &event->count);
10747 }
10748 
10749 static void cpu_clock_event_start(struct perf_event *event, int flags)
10750 {
10751 	local64_set(&event->hw.prev_count, local_clock());
10752 	perf_swevent_start_hrtimer(event);
10753 }
10754 
10755 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10756 {
10757 	perf_swevent_cancel_hrtimer(event);
10758 	cpu_clock_event_update(event);
10759 }
10760 
10761 static int cpu_clock_event_add(struct perf_event *event, int flags)
10762 {
10763 	if (flags & PERF_EF_START)
10764 		cpu_clock_event_start(event, flags);
10765 	perf_event_update_userpage(event);
10766 
10767 	return 0;
10768 }
10769 
10770 static void cpu_clock_event_del(struct perf_event *event, int flags)
10771 {
10772 	cpu_clock_event_stop(event, flags);
10773 }
10774 
10775 static void cpu_clock_event_read(struct perf_event *event)
10776 {
10777 	cpu_clock_event_update(event);
10778 }
10779 
10780 static int cpu_clock_event_init(struct perf_event *event)
10781 {
10782 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10783 		return -ENOENT;
10784 
10785 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10786 		return -ENOENT;
10787 
10788 	/*
10789 	 * no branch sampling for software events
10790 	 */
10791 	if (has_branch_stack(event))
10792 		return -EOPNOTSUPP;
10793 
10794 	perf_swevent_init_hrtimer(event);
10795 
10796 	return 0;
10797 }
10798 
10799 static struct pmu perf_cpu_clock = {
10800 	.task_ctx_nr	= perf_sw_context,
10801 
10802 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10803 
10804 	.event_init	= cpu_clock_event_init,
10805 	.add		= cpu_clock_event_add,
10806 	.del		= cpu_clock_event_del,
10807 	.start		= cpu_clock_event_start,
10808 	.stop		= cpu_clock_event_stop,
10809 	.read		= cpu_clock_event_read,
10810 };
10811 
10812 /*
10813  * Software event: task time clock
10814  */
10815 
10816 static void task_clock_event_update(struct perf_event *event, u64 now)
10817 {
10818 	u64 prev;
10819 	s64 delta;
10820 
10821 	prev = local64_xchg(&event->hw.prev_count, now);
10822 	delta = now - prev;
10823 	local64_add(delta, &event->count);
10824 }
10825 
10826 static void task_clock_event_start(struct perf_event *event, int flags)
10827 {
10828 	local64_set(&event->hw.prev_count, event->ctx->time);
10829 	perf_swevent_start_hrtimer(event);
10830 }
10831 
10832 static void task_clock_event_stop(struct perf_event *event, int flags)
10833 {
10834 	perf_swevent_cancel_hrtimer(event);
10835 	task_clock_event_update(event, event->ctx->time);
10836 }
10837 
10838 static int task_clock_event_add(struct perf_event *event, int flags)
10839 {
10840 	if (flags & PERF_EF_START)
10841 		task_clock_event_start(event, flags);
10842 	perf_event_update_userpage(event);
10843 
10844 	return 0;
10845 }
10846 
10847 static void task_clock_event_del(struct perf_event *event, int flags)
10848 {
10849 	task_clock_event_stop(event, PERF_EF_UPDATE);
10850 }
10851 
10852 static void task_clock_event_read(struct perf_event *event)
10853 {
10854 	u64 now = perf_clock();
10855 	u64 delta = now - event->ctx->timestamp;
10856 	u64 time = event->ctx->time + delta;
10857 
10858 	task_clock_event_update(event, time);
10859 }
10860 
10861 static int task_clock_event_init(struct perf_event *event)
10862 {
10863 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10864 		return -ENOENT;
10865 
10866 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10867 		return -ENOENT;
10868 
10869 	/*
10870 	 * no branch sampling for software events
10871 	 */
10872 	if (has_branch_stack(event))
10873 		return -EOPNOTSUPP;
10874 
10875 	perf_swevent_init_hrtimer(event);
10876 
10877 	return 0;
10878 }
10879 
10880 static struct pmu perf_task_clock = {
10881 	.task_ctx_nr	= perf_sw_context,
10882 
10883 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10884 
10885 	.event_init	= task_clock_event_init,
10886 	.add		= task_clock_event_add,
10887 	.del		= task_clock_event_del,
10888 	.start		= task_clock_event_start,
10889 	.stop		= task_clock_event_stop,
10890 	.read		= task_clock_event_read,
10891 };
10892 
10893 static void perf_pmu_nop_void(struct pmu *pmu)
10894 {
10895 }
10896 
10897 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10898 {
10899 }
10900 
10901 static int perf_pmu_nop_int(struct pmu *pmu)
10902 {
10903 	return 0;
10904 }
10905 
10906 static int perf_event_nop_int(struct perf_event *event, u64 value)
10907 {
10908 	return 0;
10909 }
10910 
10911 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10912 
10913 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10914 {
10915 	__this_cpu_write(nop_txn_flags, flags);
10916 
10917 	if (flags & ~PERF_PMU_TXN_ADD)
10918 		return;
10919 
10920 	perf_pmu_disable(pmu);
10921 }
10922 
10923 static int perf_pmu_commit_txn(struct pmu *pmu)
10924 {
10925 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10926 
10927 	__this_cpu_write(nop_txn_flags, 0);
10928 
10929 	if (flags & ~PERF_PMU_TXN_ADD)
10930 		return 0;
10931 
10932 	perf_pmu_enable(pmu);
10933 	return 0;
10934 }
10935 
10936 static void perf_pmu_cancel_txn(struct pmu *pmu)
10937 {
10938 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10939 
10940 	__this_cpu_write(nop_txn_flags, 0);
10941 
10942 	if (flags & ~PERF_PMU_TXN_ADD)
10943 		return;
10944 
10945 	perf_pmu_enable(pmu);
10946 }
10947 
10948 static int perf_event_idx_default(struct perf_event *event)
10949 {
10950 	return 0;
10951 }
10952 
10953 /*
10954  * Ensures all contexts with the same task_ctx_nr have the same
10955  * pmu_cpu_context too.
10956  */
10957 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10958 {
10959 	struct pmu *pmu;
10960 
10961 	if (ctxn < 0)
10962 		return NULL;
10963 
10964 	list_for_each_entry(pmu, &pmus, entry) {
10965 		if (pmu->task_ctx_nr == ctxn)
10966 			return pmu->pmu_cpu_context;
10967 	}
10968 
10969 	return NULL;
10970 }
10971 
10972 static void free_pmu_context(struct pmu *pmu)
10973 {
10974 	/*
10975 	 * Static contexts such as perf_sw_context have a global lifetime
10976 	 * and may be shared between different PMUs. Avoid freeing them
10977 	 * when a single PMU is going away.
10978 	 */
10979 	if (pmu->task_ctx_nr > perf_invalid_context)
10980 		return;
10981 
10982 	free_percpu(pmu->pmu_cpu_context);
10983 }
10984 
10985 /*
10986  * Let userspace know that this PMU supports address range filtering:
10987  */
10988 static ssize_t nr_addr_filters_show(struct device *dev,
10989 				    struct device_attribute *attr,
10990 				    char *page)
10991 {
10992 	struct pmu *pmu = dev_get_drvdata(dev);
10993 
10994 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10995 }
10996 DEVICE_ATTR_RO(nr_addr_filters);
10997 
10998 static struct idr pmu_idr;
10999 
11000 static ssize_t
11001 type_show(struct device *dev, struct device_attribute *attr, char *page)
11002 {
11003 	struct pmu *pmu = dev_get_drvdata(dev);
11004 
11005 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11006 }
11007 static DEVICE_ATTR_RO(type);
11008 
11009 static ssize_t
11010 perf_event_mux_interval_ms_show(struct device *dev,
11011 				struct device_attribute *attr,
11012 				char *page)
11013 {
11014 	struct pmu *pmu = dev_get_drvdata(dev);
11015 
11016 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11017 }
11018 
11019 static DEFINE_MUTEX(mux_interval_mutex);
11020 
11021 static ssize_t
11022 perf_event_mux_interval_ms_store(struct device *dev,
11023 				 struct device_attribute *attr,
11024 				 const char *buf, size_t count)
11025 {
11026 	struct pmu *pmu = dev_get_drvdata(dev);
11027 	int timer, cpu, ret;
11028 
11029 	ret = kstrtoint(buf, 0, &timer);
11030 	if (ret)
11031 		return ret;
11032 
11033 	if (timer < 1)
11034 		return -EINVAL;
11035 
11036 	/* same value, noting to do */
11037 	if (timer == pmu->hrtimer_interval_ms)
11038 		return count;
11039 
11040 	mutex_lock(&mux_interval_mutex);
11041 	pmu->hrtimer_interval_ms = timer;
11042 
11043 	/* update all cpuctx for this PMU */
11044 	cpus_read_lock();
11045 	for_each_online_cpu(cpu) {
11046 		struct perf_cpu_context *cpuctx;
11047 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11048 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11049 
11050 		cpu_function_call(cpu,
11051 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11052 	}
11053 	cpus_read_unlock();
11054 	mutex_unlock(&mux_interval_mutex);
11055 
11056 	return count;
11057 }
11058 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11059 
11060 static struct attribute *pmu_dev_attrs[] = {
11061 	&dev_attr_type.attr,
11062 	&dev_attr_perf_event_mux_interval_ms.attr,
11063 	NULL,
11064 };
11065 ATTRIBUTE_GROUPS(pmu_dev);
11066 
11067 static int pmu_bus_running;
11068 static struct bus_type pmu_bus = {
11069 	.name		= "event_source",
11070 	.dev_groups	= pmu_dev_groups,
11071 };
11072 
11073 static void pmu_dev_release(struct device *dev)
11074 {
11075 	kfree(dev);
11076 }
11077 
11078 static int pmu_dev_alloc(struct pmu *pmu)
11079 {
11080 	int ret = -ENOMEM;
11081 
11082 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11083 	if (!pmu->dev)
11084 		goto out;
11085 
11086 	pmu->dev->groups = pmu->attr_groups;
11087 	device_initialize(pmu->dev);
11088 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11089 	if (ret)
11090 		goto free_dev;
11091 
11092 	dev_set_drvdata(pmu->dev, pmu);
11093 	pmu->dev->bus = &pmu_bus;
11094 	pmu->dev->release = pmu_dev_release;
11095 	ret = device_add(pmu->dev);
11096 	if (ret)
11097 		goto free_dev;
11098 
11099 	/* For PMUs with address filters, throw in an extra attribute: */
11100 	if (pmu->nr_addr_filters)
11101 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11102 
11103 	if (ret)
11104 		goto del_dev;
11105 
11106 	if (pmu->attr_update)
11107 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11108 
11109 	if (ret)
11110 		goto del_dev;
11111 
11112 out:
11113 	return ret;
11114 
11115 del_dev:
11116 	device_del(pmu->dev);
11117 
11118 free_dev:
11119 	put_device(pmu->dev);
11120 	goto out;
11121 }
11122 
11123 static struct lock_class_key cpuctx_mutex;
11124 static struct lock_class_key cpuctx_lock;
11125 
11126 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11127 {
11128 	int cpu, ret, max = PERF_TYPE_MAX;
11129 
11130 	mutex_lock(&pmus_lock);
11131 	ret = -ENOMEM;
11132 	pmu->pmu_disable_count = alloc_percpu(int);
11133 	if (!pmu->pmu_disable_count)
11134 		goto unlock;
11135 
11136 	pmu->type = -1;
11137 	if (!name)
11138 		goto skip_type;
11139 	pmu->name = name;
11140 
11141 	if (type != PERF_TYPE_SOFTWARE) {
11142 		if (type >= 0)
11143 			max = type;
11144 
11145 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11146 		if (ret < 0)
11147 			goto free_pdc;
11148 
11149 		WARN_ON(type >= 0 && ret != type);
11150 
11151 		type = ret;
11152 	}
11153 	pmu->type = type;
11154 
11155 	if (pmu_bus_running) {
11156 		ret = pmu_dev_alloc(pmu);
11157 		if (ret)
11158 			goto free_idr;
11159 	}
11160 
11161 skip_type:
11162 	if (pmu->task_ctx_nr == perf_hw_context) {
11163 		static int hw_context_taken = 0;
11164 
11165 		/*
11166 		 * Other than systems with heterogeneous CPUs, it never makes
11167 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11168 		 * uncore must use perf_invalid_context.
11169 		 */
11170 		if (WARN_ON_ONCE(hw_context_taken &&
11171 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11172 			pmu->task_ctx_nr = perf_invalid_context;
11173 
11174 		hw_context_taken = 1;
11175 	}
11176 
11177 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11178 	if (pmu->pmu_cpu_context)
11179 		goto got_cpu_context;
11180 
11181 	ret = -ENOMEM;
11182 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11183 	if (!pmu->pmu_cpu_context)
11184 		goto free_dev;
11185 
11186 	for_each_possible_cpu(cpu) {
11187 		struct perf_cpu_context *cpuctx;
11188 
11189 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11190 		__perf_event_init_context(&cpuctx->ctx);
11191 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11192 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11193 		cpuctx->ctx.pmu = pmu;
11194 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11195 
11196 		__perf_mux_hrtimer_init(cpuctx, cpu);
11197 
11198 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11199 		cpuctx->heap = cpuctx->heap_default;
11200 	}
11201 
11202 got_cpu_context:
11203 	if (!pmu->start_txn) {
11204 		if (pmu->pmu_enable) {
11205 			/*
11206 			 * If we have pmu_enable/pmu_disable calls, install
11207 			 * transaction stubs that use that to try and batch
11208 			 * hardware accesses.
11209 			 */
11210 			pmu->start_txn  = perf_pmu_start_txn;
11211 			pmu->commit_txn = perf_pmu_commit_txn;
11212 			pmu->cancel_txn = perf_pmu_cancel_txn;
11213 		} else {
11214 			pmu->start_txn  = perf_pmu_nop_txn;
11215 			pmu->commit_txn = perf_pmu_nop_int;
11216 			pmu->cancel_txn = perf_pmu_nop_void;
11217 		}
11218 	}
11219 
11220 	if (!pmu->pmu_enable) {
11221 		pmu->pmu_enable  = perf_pmu_nop_void;
11222 		pmu->pmu_disable = perf_pmu_nop_void;
11223 	}
11224 
11225 	if (!pmu->check_period)
11226 		pmu->check_period = perf_event_nop_int;
11227 
11228 	if (!pmu->event_idx)
11229 		pmu->event_idx = perf_event_idx_default;
11230 
11231 	/*
11232 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11233 	 * since these cannot be in the IDR. This way the linear search
11234 	 * is fast, provided a valid software event is provided.
11235 	 */
11236 	if (type == PERF_TYPE_SOFTWARE || !name)
11237 		list_add_rcu(&pmu->entry, &pmus);
11238 	else
11239 		list_add_tail_rcu(&pmu->entry, &pmus);
11240 
11241 	atomic_set(&pmu->exclusive_cnt, 0);
11242 	ret = 0;
11243 unlock:
11244 	mutex_unlock(&pmus_lock);
11245 
11246 	return ret;
11247 
11248 free_dev:
11249 	device_del(pmu->dev);
11250 	put_device(pmu->dev);
11251 
11252 free_idr:
11253 	if (pmu->type != PERF_TYPE_SOFTWARE)
11254 		idr_remove(&pmu_idr, pmu->type);
11255 
11256 free_pdc:
11257 	free_percpu(pmu->pmu_disable_count);
11258 	goto unlock;
11259 }
11260 EXPORT_SYMBOL_GPL(perf_pmu_register);
11261 
11262 void perf_pmu_unregister(struct pmu *pmu)
11263 {
11264 	mutex_lock(&pmus_lock);
11265 	list_del_rcu(&pmu->entry);
11266 
11267 	/*
11268 	 * We dereference the pmu list under both SRCU and regular RCU, so
11269 	 * synchronize against both of those.
11270 	 */
11271 	synchronize_srcu(&pmus_srcu);
11272 	synchronize_rcu();
11273 
11274 	free_percpu(pmu->pmu_disable_count);
11275 	if (pmu->type != PERF_TYPE_SOFTWARE)
11276 		idr_remove(&pmu_idr, pmu->type);
11277 	if (pmu_bus_running) {
11278 		if (pmu->nr_addr_filters)
11279 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11280 		device_del(pmu->dev);
11281 		put_device(pmu->dev);
11282 	}
11283 	free_pmu_context(pmu);
11284 	mutex_unlock(&pmus_lock);
11285 }
11286 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11287 
11288 static inline bool has_extended_regs(struct perf_event *event)
11289 {
11290 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11291 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11292 }
11293 
11294 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11295 {
11296 	struct perf_event_context *ctx = NULL;
11297 	int ret;
11298 
11299 	if (!try_module_get(pmu->module))
11300 		return -ENODEV;
11301 
11302 	/*
11303 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11304 	 * for example, validate if the group fits on the PMU. Therefore,
11305 	 * if this is a sibling event, acquire the ctx->mutex to protect
11306 	 * the sibling_list.
11307 	 */
11308 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11309 		/*
11310 		 * This ctx->mutex can nest when we're called through
11311 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11312 		 */
11313 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11314 						 SINGLE_DEPTH_NESTING);
11315 		BUG_ON(!ctx);
11316 	}
11317 
11318 	event->pmu = pmu;
11319 	ret = pmu->event_init(event);
11320 
11321 	if (ctx)
11322 		perf_event_ctx_unlock(event->group_leader, ctx);
11323 
11324 	if (!ret) {
11325 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11326 		    has_extended_regs(event))
11327 			ret = -EOPNOTSUPP;
11328 
11329 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11330 		    event_has_any_exclude_flag(event))
11331 			ret = -EINVAL;
11332 
11333 		if (ret && event->destroy)
11334 			event->destroy(event);
11335 	}
11336 
11337 	if (ret)
11338 		module_put(pmu->module);
11339 
11340 	return ret;
11341 }
11342 
11343 static struct pmu *perf_init_event(struct perf_event *event)
11344 {
11345 	bool extended_type = false;
11346 	int idx, type, ret;
11347 	struct pmu *pmu;
11348 
11349 	idx = srcu_read_lock(&pmus_srcu);
11350 
11351 	/* Try parent's PMU first: */
11352 	if (event->parent && event->parent->pmu) {
11353 		pmu = event->parent->pmu;
11354 		ret = perf_try_init_event(pmu, event);
11355 		if (!ret)
11356 			goto unlock;
11357 	}
11358 
11359 	/*
11360 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11361 	 * are often aliases for PERF_TYPE_RAW.
11362 	 */
11363 	type = event->attr.type;
11364 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11365 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11366 		if (!type) {
11367 			type = PERF_TYPE_RAW;
11368 		} else {
11369 			extended_type = true;
11370 			event->attr.config &= PERF_HW_EVENT_MASK;
11371 		}
11372 	}
11373 
11374 again:
11375 	rcu_read_lock();
11376 	pmu = idr_find(&pmu_idr, type);
11377 	rcu_read_unlock();
11378 	if (pmu) {
11379 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11380 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11381 			goto fail;
11382 
11383 		ret = perf_try_init_event(pmu, event);
11384 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11385 			type = event->attr.type;
11386 			goto again;
11387 		}
11388 
11389 		if (ret)
11390 			pmu = ERR_PTR(ret);
11391 
11392 		goto unlock;
11393 	}
11394 
11395 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11396 		ret = perf_try_init_event(pmu, event);
11397 		if (!ret)
11398 			goto unlock;
11399 
11400 		if (ret != -ENOENT) {
11401 			pmu = ERR_PTR(ret);
11402 			goto unlock;
11403 		}
11404 	}
11405 fail:
11406 	pmu = ERR_PTR(-ENOENT);
11407 unlock:
11408 	srcu_read_unlock(&pmus_srcu, idx);
11409 
11410 	return pmu;
11411 }
11412 
11413 static void attach_sb_event(struct perf_event *event)
11414 {
11415 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11416 
11417 	raw_spin_lock(&pel->lock);
11418 	list_add_rcu(&event->sb_list, &pel->list);
11419 	raw_spin_unlock(&pel->lock);
11420 }
11421 
11422 /*
11423  * We keep a list of all !task (and therefore per-cpu) events
11424  * that need to receive side-band records.
11425  *
11426  * This avoids having to scan all the various PMU per-cpu contexts
11427  * looking for them.
11428  */
11429 static void account_pmu_sb_event(struct perf_event *event)
11430 {
11431 	if (is_sb_event(event))
11432 		attach_sb_event(event);
11433 }
11434 
11435 static void account_event_cpu(struct perf_event *event, int cpu)
11436 {
11437 	if (event->parent)
11438 		return;
11439 
11440 	if (is_cgroup_event(event))
11441 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11442 }
11443 
11444 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11445 static void account_freq_event_nohz(void)
11446 {
11447 #ifdef CONFIG_NO_HZ_FULL
11448 	/* Lock so we don't race with concurrent unaccount */
11449 	spin_lock(&nr_freq_lock);
11450 	if (atomic_inc_return(&nr_freq_events) == 1)
11451 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11452 	spin_unlock(&nr_freq_lock);
11453 #endif
11454 }
11455 
11456 static void account_freq_event(void)
11457 {
11458 	if (tick_nohz_full_enabled())
11459 		account_freq_event_nohz();
11460 	else
11461 		atomic_inc(&nr_freq_events);
11462 }
11463 
11464 
11465 static void account_event(struct perf_event *event)
11466 {
11467 	bool inc = false;
11468 
11469 	if (event->parent)
11470 		return;
11471 
11472 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11473 		inc = true;
11474 	if (event->attr.mmap || event->attr.mmap_data)
11475 		atomic_inc(&nr_mmap_events);
11476 	if (event->attr.build_id)
11477 		atomic_inc(&nr_build_id_events);
11478 	if (event->attr.comm)
11479 		atomic_inc(&nr_comm_events);
11480 	if (event->attr.namespaces)
11481 		atomic_inc(&nr_namespaces_events);
11482 	if (event->attr.cgroup)
11483 		atomic_inc(&nr_cgroup_events);
11484 	if (event->attr.task)
11485 		atomic_inc(&nr_task_events);
11486 	if (event->attr.freq)
11487 		account_freq_event();
11488 	if (event->attr.context_switch) {
11489 		atomic_inc(&nr_switch_events);
11490 		inc = true;
11491 	}
11492 	if (has_branch_stack(event))
11493 		inc = true;
11494 	if (is_cgroup_event(event))
11495 		inc = true;
11496 	if (event->attr.ksymbol)
11497 		atomic_inc(&nr_ksymbol_events);
11498 	if (event->attr.bpf_event)
11499 		atomic_inc(&nr_bpf_events);
11500 	if (event->attr.text_poke)
11501 		atomic_inc(&nr_text_poke_events);
11502 
11503 	if (inc) {
11504 		/*
11505 		 * We need the mutex here because static_branch_enable()
11506 		 * must complete *before* the perf_sched_count increment
11507 		 * becomes visible.
11508 		 */
11509 		if (atomic_inc_not_zero(&perf_sched_count))
11510 			goto enabled;
11511 
11512 		mutex_lock(&perf_sched_mutex);
11513 		if (!atomic_read(&perf_sched_count)) {
11514 			static_branch_enable(&perf_sched_events);
11515 			/*
11516 			 * Guarantee that all CPUs observe they key change and
11517 			 * call the perf scheduling hooks before proceeding to
11518 			 * install events that need them.
11519 			 */
11520 			synchronize_rcu();
11521 		}
11522 		/*
11523 		 * Now that we have waited for the sync_sched(), allow further
11524 		 * increments to by-pass the mutex.
11525 		 */
11526 		atomic_inc(&perf_sched_count);
11527 		mutex_unlock(&perf_sched_mutex);
11528 	}
11529 enabled:
11530 
11531 	account_event_cpu(event, event->cpu);
11532 
11533 	account_pmu_sb_event(event);
11534 }
11535 
11536 /*
11537  * Allocate and initialize an event structure
11538  */
11539 static struct perf_event *
11540 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11541 		 struct task_struct *task,
11542 		 struct perf_event *group_leader,
11543 		 struct perf_event *parent_event,
11544 		 perf_overflow_handler_t overflow_handler,
11545 		 void *context, int cgroup_fd)
11546 {
11547 	struct pmu *pmu;
11548 	struct perf_event *event;
11549 	struct hw_perf_event *hwc;
11550 	long err = -EINVAL;
11551 	int node;
11552 
11553 	if ((unsigned)cpu >= nr_cpu_ids) {
11554 		if (!task || cpu != -1)
11555 			return ERR_PTR(-EINVAL);
11556 	}
11557 	if (attr->sigtrap && !task) {
11558 		/* Requires a task: avoid signalling random tasks. */
11559 		return ERR_PTR(-EINVAL);
11560 	}
11561 
11562 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11563 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11564 				      node);
11565 	if (!event)
11566 		return ERR_PTR(-ENOMEM);
11567 
11568 	/*
11569 	 * Single events are their own group leaders, with an
11570 	 * empty sibling list:
11571 	 */
11572 	if (!group_leader)
11573 		group_leader = event;
11574 
11575 	mutex_init(&event->child_mutex);
11576 	INIT_LIST_HEAD(&event->child_list);
11577 
11578 	INIT_LIST_HEAD(&event->event_entry);
11579 	INIT_LIST_HEAD(&event->sibling_list);
11580 	INIT_LIST_HEAD(&event->active_list);
11581 	init_event_group(event);
11582 	INIT_LIST_HEAD(&event->rb_entry);
11583 	INIT_LIST_HEAD(&event->active_entry);
11584 	INIT_LIST_HEAD(&event->addr_filters.list);
11585 	INIT_HLIST_NODE(&event->hlist_entry);
11586 
11587 
11588 	init_waitqueue_head(&event->waitq);
11589 	event->pending_disable = -1;
11590 	init_irq_work(&event->pending, perf_pending_event);
11591 
11592 	mutex_init(&event->mmap_mutex);
11593 	raw_spin_lock_init(&event->addr_filters.lock);
11594 
11595 	atomic_long_set(&event->refcount, 1);
11596 	event->cpu		= cpu;
11597 	event->attr		= *attr;
11598 	event->group_leader	= group_leader;
11599 	event->pmu		= NULL;
11600 	event->oncpu		= -1;
11601 
11602 	event->parent		= parent_event;
11603 
11604 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11605 	event->id		= atomic64_inc_return(&perf_event_id);
11606 
11607 	event->state		= PERF_EVENT_STATE_INACTIVE;
11608 
11609 	if (event->attr.sigtrap)
11610 		atomic_set(&event->event_limit, 1);
11611 
11612 	if (task) {
11613 		event->attach_state = PERF_ATTACH_TASK;
11614 		/*
11615 		 * XXX pmu::event_init needs to know what task to account to
11616 		 * and we cannot use the ctx information because we need the
11617 		 * pmu before we get a ctx.
11618 		 */
11619 		event->hw.target = get_task_struct(task);
11620 	}
11621 
11622 	event->clock = &local_clock;
11623 	if (parent_event)
11624 		event->clock = parent_event->clock;
11625 
11626 	if (!overflow_handler && parent_event) {
11627 		overflow_handler = parent_event->overflow_handler;
11628 		context = parent_event->overflow_handler_context;
11629 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11630 		if (overflow_handler == bpf_overflow_handler) {
11631 			struct bpf_prog *prog = parent_event->prog;
11632 
11633 			bpf_prog_inc(prog);
11634 			event->prog = prog;
11635 			event->orig_overflow_handler =
11636 				parent_event->orig_overflow_handler;
11637 		}
11638 #endif
11639 	}
11640 
11641 	if (overflow_handler) {
11642 		event->overflow_handler	= overflow_handler;
11643 		event->overflow_handler_context = context;
11644 	} else if (is_write_backward(event)){
11645 		event->overflow_handler = perf_event_output_backward;
11646 		event->overflow_handler_context = NULL;
11647 	} else {
11648 		event->overflow_handler = perf_event_output_forward;
11649 		event->overflow_handler_context = NULL;
11650 	}
11651 
11652 	perf_event__state_init(event);
11653 
11654 	pmu = NULL;
11655 
11656 	hwc = &event->hw;
11657 	hwc->sample_period = attr->sample_period;
11658 	if (attr->freq && attr->sample_freq)
11659 		hwc->sample_period = 1;
11660 	hwc->last_period = hwc->sample_period;
11661 
11662 	local64_set(&hwc->period_left, hwc->sample_period);
11663 
11664 	/*
11665 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11666 	 * See perf_output_read().
11667 	 */
11668 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11669 		goto err_ns;
11670 
11671 	if (!has_branch_stack(event))
11672 		event->attr.branch_sample_type = 0;
11673 
11674 	pmu = perf_init_event(event);
11675 	if (IS_ERR(pmu)) {
11676 		err = PTR_ERR(pmu);
11677 		goto err_ns;
11678 	}
11679 
11680 	/*
11681 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11682 	 * be different on other CPUs in the uncore mask.
11683 	 */
11684 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11685 		err = -EINVAL;
11686 		goto err_pmu;
11687 	}
11688 
11689 	if (event->attr.aux_output &&
11690 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11691 		err = -EOPNOTSUPP;
11692 		goto err_pmu;
11693 	}
11694 
11695 	if (cgroup_fd != -1) {
11696 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11697 		if (err)
11698 			goto err_pmu;
11699 	}
11700 
11701 	err = exclusive_event_init(event);
11702 	if (err)
11703 		goto err_pmu;
11704 
11705 	if (has_addr_filter(event)) {
11706 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11707 						    sizeof(struct perf_addr_filter_range),
11708 						    GFP_KERNEL);
11709 		if (!event->addr_filter_ranges) {
11710 			err = -ENOMEM;
11711 			goto err_per_task;
11712 		}
11713 
11714 		/*
11715 		 * Clone the parent's vma offsets: they are valid until exec()
11716 		 * even if the mm is not shared with the parent.
11717 		 */
11718 		if (event->parent) {
11719 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11720 
11721 			raw_spin_lock_irq(&ifh->lock);
11722 			memcpy(event->addr_filter_ranges,
11723 			       event->parent->addr_filter_ranges,
11724 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11725 			raw_spin_unlock_irq(&ifh->lock);
11726 		}
11727 
11728 		/* force hw sync on the address filters */
11729 		event->addr_filters_gen = 1;
11730 	}
11731 
11732 	if (!event->parent) {
11733 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11734 			err = get_callchain_buffers(attr->sample_max_stack);
11735 			if (err)
11736 				goto err_addr_filters;
11737 		}
11738 	}
11739 
11740 	err = security_perf_event_alloc(event);
11741 	if (err)
11742 		goto err_callchain_buffer;
11743 
11744 	/* symmetric to unaccount_event() in _free_event() */
11745 	account_event(event);
11746 
11747 	return event;
11748 
11749 err_callchain_buffer:
11750 	if (!event->parent) {
11751 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11752 			put_callchain_buffers();
11753 	}
11754 err_addr_filters:
11755 	kfree(event->addr_filter_ranges);
11756 
11757 err_per_task:
11758 	exclusive_event_destroy(event);
11759 
11760 err_pmu:
11761 	if (is_cgroup_event(event))
11762 		perf_detach_cgroup(event);
11763 	if (event->destroy)
11764 		event->destroy(event);
11765 	module_put(pmu->module);
11766 err_ns:
11767 	if (event->ns)
11768 		put_pid_ns(event->ns);
11769 	if (event->hw.target)
11770 		put_task_struct(event->hw.target);
11771 	kmem_cache_free(perf_event_cache, event);
11772 
11773 	return ERR_PTR(err);
11774 }
11775 
11776 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11777 			  struct perf_event_attr *attr)
11778 {
11779 	u32 size;
11780 	int ret;
11781 
11782 	/* Zero the full structure, so that a short copy will be nice. */
11783 	memset(attr, 0, sizeof(*attr));
11784 
11785 	ret = get_user(size, &uattr->size);
11786 	if (ret)
11787 		return ret;
11788 
11789 	/* ABI compatibility quirk: */
11790 	if (!size)
11791 		size = PERF_ATTR_SIZE_VER0;
11792 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11793 		goto err_size;
11794 
11795 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11796 	if (ret) {
11797 		if (ret == -E2BIG)
11798 			goto err_size;
11799 		return ret;
11800 	}
11801 
11802 	attr->size = size;
11803 
11804 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11805 		return -EINVAL;
11806 
11807 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11808 		return -EINVAL;
11809 
11810 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11811 		return -EINVAL;
11812 
11813 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11814 		u64 mask = attr->branch_sample_type;
11815 
11816 		/* only using defined bits */
11817 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11818 			return -EINVAL;
11819 
11820 		/* at least one branch bit must be set */
11821 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11822 			return -EINVAL;
11823 
11824 		/* propagate priv level, when not set for branch */
11825 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11826 
11827 			/* exclude_kernel checked on syscall entry */
11828 			if (!attr->exclude_kernel)
11829 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11830 
11831 			if (!attr->exclude_user)
11832 				mask |= PERF_SAMPLE_BRANCH_USER;
11833 
11834 			if (!attr->exclude_hv)
11835 				mask |= PERF_SAMPLE_BRANCH_HV;
11836 			/*
11837 			 * adjust user setting (for HW filter setup)
11838 			 */
11839 			attr->branch_sample_type = mask;
11840 		}
11841 		/* privileged levels capture (kernel, hv): check permissions */
11842 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11843 			ret = perf_allow_kernel(attr);
11844 			if (ret)
11845 				return ret;
11846 		}
11847 	}
11848 
11849 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11850 		ret = perf_reg_validate(attr->sample_regs_user);
11851 		if (ret)
11852 			return ret;
11853 	}
11854 
11855 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11856 		if (!arch_perf_have_user_stack_dump())
11857 			return -ENOSYS;
11858 
11859 		/*
11860 		 * We have __u32 type for the size, but so far
11861 		 * we can only use __u16 as maximum due to the
11862 		 * __u16 sample size limit.
11863 		 */
11864 		if (attr->sample_stack_user >= USHRT_MAX)
11865 			return -EINVAL;
11866 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11867 			return -EINVAL;
11868 	}
11869 
11870 	if (!attr->sample_max_stack)
11871 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11872 
11873 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11874 		ret = perf_reg_validate(attr->sample_regs_intr);
11875 
11876 #ifndef CONFIG_CGROUP_PERF
11877 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11878 		return -EINVAL;
11879 #endif
11880 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11881 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11882 		return -EINVAL;
11883 
11884 	if (!attr->inherit && attr->inherit_thread)
11885 		return -EINVAL;
11886 
11887 	if (attr->remove_on_exec && attr->enable_on_exec)
11888 		return -EINVAL;
11889 
11890 	if (attr->sigtrap && !attr->remove_on_exec)
11891 		return -EINVAL;
11892 
11893 out:
11894 	return ret;
11895 
11896 err_size:
11897 	put_user(sizeof(*attr), &uattr->size);
11898 	ret = -E2BIG;
11899 	goto out;
11900 }
11901 
11902 static int
11903 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11904 {
11905 	struct perf_buffer *rb = NULL;
11906 	int ret = -EINVAL;
11907 
11908 	if (!output_event)
11909 		goto set;
11910 
11911 	/* don't allow circular references */
11912 	if (event == output_event)
11913 		goto out;
11914 
11915 	/*
11916 	 * Don't allow cross-cpu buffers
11917 	 */
11918 	if (output_event->cpu != event->cpu)
11919 		goto out;
11920 
11921 	/*
11922 	 * If its not a per-cpu rb, it must be the same task.
11923 	 */
11924 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11925 		goto out;
11926 
11927 	/*
11928 	 * Mixing clocks in the same buffer is trouble you don't need.
11929 	 */
11930 	if (output_event->clock != event->clock)
11931 		goto out;
11932 
11933 	/*
11934 	 * Either writing ring buffer from beginning or from end.
11935 	 * Mixing is not allowed.
11936 	 */
11937 	if (is_write_backward(output_event) != is_write_backward(event))
11938 		goto out;
11939 
11940 	/*
11941 	 * If both events generate aux data, they must be on the same PMU
11942 	 */
11943 	if (has_aux(event) && has_aux(output_event) &&
11944 	    event->pmu != output_event->pmu)
11945 		goto out;
11946 
11947 set:
11948 	mutex_lock(&event->mmap_mutex);
11949 	/* Can't redirect output if we've got an active mmap() */
11950 	if (atomic_read(&event->mmap_count))
11951 		goto unlock;
11952 
11953 	if (output_event) {
11954 		/* get the rb we want to redirect to */
11955 		rb = ring_buffer_get(output_event);
11956 		if (!rb)
11957 			goto unlock;
11958 	}
11959 
11960 	ring_buffer_attach(event, rb);
11961 
11962 	ret = 0;
11963 unlock:
11964 	mutex_unlock(&event->mmap_mutex);
11965 
11966 out:
11967 	return ret;
11968 }
11969 
11970 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11971 {
11972 	if (b < a)
11973 		swap(a, b);
11974 
11975 	mutex_lock(a);
11976 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11977 }
11978 
11979 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11980 {
11981 	bool nmi_safe = false;
11982 
11983 	switch (clk_id) {
11984 	case CLOCK_MONOTONIC:
11985 		event->clock = &ktime_get_mono_fast_ns;
11986 		nmi_safe = true;
11987 		break;
11988 
11989 	case CLOCK_MONOTONIC_RAW:
11990 		event->clock = &ktime_get_raw_fast_ns;
11991 		nmi_safe = true;
11992 		break;
11993 
11994 	case CLOCK_REALTIME:
11995 		event->clock = &ktime_get_real_ns;
11996 		break;
11997 
11998 	case CLOCK_BOOTTIME:
11999 		event->clock = &ktime_get_boottime_ns;
12000 		break;
12001 
12002 	case CLOCK_TAI:
12003 		event->clock = &ktime_get_clocktai_ns;
12004 		break;
12005 
12006 	default:
12007 		return -EINVAL;
12008 	}
12009 
12010 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12011 		return -EINVAL;
12012 
12013 	return 0;
12014 }
12015 
12016 /*
12017  * Variation on perf_event_ctx_lock_nested(), except we take two context
12018  * mutexes.
12019  */
12020 static struct perf_event_context *
12021 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12022 			     struct perf_event_context *ctx)
12023 {
12024 	struct perf_event_context *gctx;
12025 
12026 again:
12027 	rcu_read_lock();
12028 	gctx = READ_ONCE(group_leader->ctx);
12029 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12030 		rcu_read_unlock();
12031 		goto again;
12032 	}
12033 	rcu_read_unlock();
12034 
12035 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12036 
12037 	if (group_leader->ctx != gctx) {
12038 		mutex_unlock(&ctx->mutex);
12039 		mutex_unlock(&gctx->mutex);
12040 		put_ctx(gctx);
12041 		goto again;
12042 	}
12043 
12044 	return gctx;
12045 }
12046 
12047 static bool
12048 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12049 {
12050 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12051 	bool is_capable = perfmon_capable();
12052 
12053 	if (attr->sigtrap) {
12054 		/*
12055 		 * perf_event_attr::sigtrap sends signals to the other task.
12056 		 * Require the current task to also have CAP_KILL.
12057 		 */
12058 		rcu_read_lock();
12059 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12060 		rcu_read_unlock();
12061 
12062 		/*
12063 		 * If the required capabilities aren't available, checks for
12064 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12065 		 * can effectively change the target task.
12066 		 */
12067 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12068 	}
12069 
12070 	/*
12071 	 * Preserve ptrace permission check for backwards compatibility. The
12072 	 * ptrace check also includes checks that the current task and other
12073 	 * task have matching uids, and is therefore not done here explicitly.
12074 	 */
12075 	return is_capable || ptrace_may_access(task, ptrace_mode);
12076 }
12077 
12078 /**
12079  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12080  *
12081  * @attr_uptr:	event_id type attributes for monitoring/sampling
12082  * @pid:		target pid
12083  * @cpu:		target cpu
12084  * @group_fd:		group leader event fd
12085  * @flags:		perf event open flags
12086  */
12087 SYSCALL_DEFINE5(perf_event_open,
12088 		struct perf_event_attr __user *, attr_uptr,
12089 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12090 {
12091 	struct perf_event *group_leader = NULL, *output_event = NULL;
12092 	struct perf_event *event, *sibling;
12093 	struct perf_event_attr attr;
12094 	struct perf_event_context *ctx, *gctx;
12095 	struct file *event_file = NULL;
12096 	struct fd group = {NULL, 0};
12097 	struct task_struct *task = NULL;
12098 	struct pmu *pmu;
12099 	int event_fd;
12100 	int move_group = 0;
12101 	int err;
12102 	int f_flags = O_RDWR;
12103 	int cgroup_fd = -1;
12104 
12105 	/* for future expandability... */
12106 	if (flags & ~PERF_FLAG_ALL)
12107 		return -EINVAL;
12108 
12109 	/* Do we allow access to perf_event_open(2) ? */
12110 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12111 	if (err)
12112 		return err;
12113 
12114 	err = perf_copy_attr(attr_uptr, &attr);
12115 	if (err)
12116 		return err;
12117 
12118 	if (!attr.exclude_kernel) {
12119 		err = perf_allow_kernel(&attr);
12120 		if (err)
12121 			return err;
12122 	}
12123 
12124 	if (attr.namespaces) {
12125 		if (!perfmon_capable())
12126 			return -EACCES;
12127 	}
12128 
12129 	if (attr.freq) {
12130 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12131 			return -EINVAL;
12132 	} else {
12133 		if (attr.sample_period & (1ULL << 63))
12134 			return -EINVAL;
12135 	}
12136 
12137 	/* Only privileged users can get physical addresses */
12138 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12139 		err = perf_allow_kernel(&attr);
12140 		if (err)
12141 			return err;
12142 	}
12143 
12144 	/* REGS_INTR can leak data, lockdown must prevent this */
12145 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12146 		err = security_locked_down(LOCKDOWN_PERF);
12147 		if (err)
12148 			return err;
12149 	}
12150 
12151 	/*
12152 	 * In cgroup mode, the pid argument is used to pass the fd
12153 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12154 	 * designates the cpu on which to monitor threads from that
12155 	 * cgroup.
12156 	 */
12157 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12158 		return -EINVAL;
12159 
12160 	if (flags & PERF_FLAG_FD_CLOEXEC)
12161 		f_flags |= O_CLOEXEC;
12162 
12163 	event_fd = get_unused_fd_flags(f_flags);
12164 	if (event_fd < 0)
12165 		return event_fd;
12166 
12167 	if (group_fd != -1) {
12168 		err = perf_fget_light(group_fd, &group);
12169 		if (err)
12170 			goto err_fd;
12171 		group_leader = group.file->private_data;
12172 		if (flags & PERF_FLAG_FD_OUTPUT)
12173 			output_event = group_leader;
12174 		if (flags & PERF_FLAG_FD_NO_GROUP)
12175 			group_leader = NULL;
12176 	}
12177 
12178 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12179 		task = find_lively_task_by_vpid(pid);
12180 		if (IS_ERR(task)) {
12181 			err = PTR_ERR(task);
12182 			goto err_group_fd;
12183 		}
12184 	}
12185 
12186 	if (task && group_leader &&
12187 	    group_leader->attr.inherit != attr.inherit) {
12188 		err = -EINVAL;
12189 		goto err_task;
12190 	}
12191 
12192 	if (flags & PERF_FLAG_PID_CGROUP)
12193 		cgroup_fd = pid;
12194 
12195 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12196 				 NULL, NULL, cgroup_fd);
12197 	if (IS_ERR(event)) {
12198 		err = PTR_ERR(event);
12199 		goto err_task;
12200 	}
12201 
12202 	if (is_sampling_event(event)) {
12203 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12204 			err = -EOPNOTSUPP;
12205 			goto err_alloc;
12206 		}
12207 	}
12208 
12209 	/*
12210 	 * Special case software events and allow them to be part of
12211 	 * any hardware group.
12212 	 */
12213 	pmu = event->pmu;
12214 
12215 	if (attr.use_clockid) {
12216 		err = perf_event_set_clock(event, attr.clockid);
12217 		if (err)
12218 			goto err_alloc;
12219 	}
12220 
12221 	if (pmu->task_ctx_nr == perf_sw_context)
12222 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12223 
12224 	if (group_leader) {
12225 		if (is_software_event(event) &&
12226 		    !in_software_context(group_leader)) {
12227 			/*
12228 			 * If the event is a sw event, but the group_leader
12229 			 * is on hw context.
12230 			 *
12231 			 * Allow the addition of software events to hw
12232 			 * groups, this is safe because software events
12233 			 * never fail to schedule.
12234 			 */
12235 			pmu = group_leader->ctx->pmu;
12236 		} else if (!is_software_event(event) &&
12237 			   is_software_event(group_leader) &&
12238 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12239 			/*
12240 			 * In case the group is a pure software group, and we
12241 			 * try to add a hardware event, move the whole group to
12242 			 * the hardware context.
12243 			 */
12244 			move_group = 1;
12245 		}
12246 	}
12247 
12248 	/*
12249 	 * Get the target context (task or percpu):
12250 	 */
12251 	ctx = find_get_context(pmu, task, event);
12252 	if (IS_ERR(ctx)) {
12253 		err = PTR_ERR(ctx);
12254 		goto err_alloc;
12255 	}
12256 
12257 	/*
12258 	 * Look up the group leader (we will attach this event to it):
12259 	 */
12260 	if (group_leader) {
12261 		err = -EINVAL;
12262 
12263 		/*
12264 		 * Do not allow a recursive hierarchy (this new sibling
12265 		 * becoming part of another group-sibling):
12266 		 */
12267 		if (group_leader->group_leader != group_leader)
12268 			goto err_context;
12269 
12270 		/* All events in a group should have the same clock */
12271 		if (group_leader->clock != event->clock)
12272 			goto err_context;
12273 
12274 		/*
12275 		 * Make sure we're both events for the same CPU;
12276 		 * grouping events for different CPUs is broken; since
12277 		 * you can never concurrently schedule them anyhow.
12278 		 */
12279 		if (group_leader->cpu != event->cpu)
12280 			goto err_context;
12281 
12282 		/*
12283 		 * Make sure we're both on the same task, or both
12284 		 * per-CPU events.
12285 		 */
12286 		if (group_leader->ctx->task != ctx->task)
12287 			goto err_context;
12288 
12289 		/*
12290 		 * Do not allow to attach to a group in a different task
12291 		 * or CPU context. If we're moving SW events, we'll fix
12292 		 * this up later, so allow that.
12293 		 */
12294 		if (!move_group && group_leader->ctx != ctx)
12295 			goto err_context;
12296 
12297 		/*
12298 		 * Only a group leader can be exclusive or pinned
12299 		 */
12300 		if (attr.exclusive || attr.pinned)
12301 			goto err_context;
12302 	}
12303 
12304 	if (output_event) {
12305 		err = perf_event_set_output(event, output_event);
12306 		if (err)
12307 			goto err_context;
12308 	}
12309 
12310 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12311 					f_flags);
12312 	if (IS_ERR(event_file)) {
12313 		err = PTR_ERR(event_file);
12314 		event_file = NULL;
12315 		goto err_context;
12316 	}
12317 
12318 	if (task) {
12319 		err = down_read_interruptible(&task->signal->exec_update_lock);
12320 		if (err)
12321 			goto err_file;
12322 
12323 		/*
12324 		 * We must hold exec_update_lock across this and any potential
12325 		 * perf_install_in_context() call for this new event to
12326 		 * serialize against exec() altering our credentials (and the
12327 		 * perf_event_exit_task() that could imply).
12328 		 */
12329 		err = -EACCES;
12330 		if (!perf_check_permission(&attr, task))
12331 			goto err_cred;
12332 	}
12333 
12334 	if (move_group) {
12335 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12336 
12337 		if (gctx->task == TASK_TOMBSTONE) {
12338 			err = -ESRCH;
12339 			goto err_locked;
12340 		}
12341 
12342 		/*
12343 		 * Check if we raced against another sys_perf_event_open() call
12344 		 * moving the software group underneath us.
12345 		 */
12346 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12347 			/*
12348 			 * If someone moved the group out from under us, check
12349 			 * if this new event wound up on the same ctx, if so
12350 			 * its the regular !move_group case, otherwise fail.
12351 			 */
12352 			if (gctx != ctx) {
12353 				err = -EINVAL;
12354 				goto err_locked;
12355 			} else {
12356 				perf_event_ctx_unlock(group_leader, gctx);
12357 				move_group = 0;
12358 			}
12359 		}
12360 
12361 		/*
12362 		 * Failure to create exclusive events returns -EBUSY.
12363 		 */
12364 		err = -EBUSY;
12365 		if (!exclusive_event_installable(group_leader, ctx))
12366 			goto err_locked;
12367 
12368 		for_each_sibling_event(sibling, group_leader) {
12369 			if (!exclusive_event_installable(sibling, ctx))
12370 				goto err_locked;
12371 		}
12372 	} else {
12373 		mutex_lock(&ctx->mutex);
12374 	}
12375 
12376 	if (ctx->task == TASK_TOMBSTONE) {
12377 		err = -ESRCH;
12378 		goto err_locked;
12379 	}
12380 
12381 	if (!perf_event_validate_size(event)) {
12382 		err = -E2BIG;
12383 		goto err_locked;
12384 	}
12385 
12386 	if (!task) {
12387 		/*
12388 		 * Check if the @cpu we're creating an event for is online.
12389 		 *
12390 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12391 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12392 		 */
12393 		struct perf_cpu_context *cpuctx =
12394 			container_of(ctx, struct perf_cpu_context, ctx);
12395 
12396 		if (!cpuctx->online) {
12397 			err = -ENODEV;
12398 			goto err_locked;
12399 		}
12400 	}
12401 
12402 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12403 		err = -EINVAL;
12404 		goto err_locked;
12405 	}
12406 
12407 	/*
12408 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12409 	 * because we need to serialize with concurrent event creation.
12410 	 */
12411 	if (!exclusive_event_installable(event, ctx)) {
12412 		err = -EBUSY;
12413 		goto err_locked;
12414 	}
12415 
12416 	WARN_ON_ONCE(ctx->parent_ctx);
12417 
12418 	/*
12419 	 * This is the point on no return; we cannot fail hereafter. This is
12420 	 * where we start modifying current state.
12421 	 */
12422 
12423 	if (move_group) {
12424 		/*
12425 		 * See perf_event_ctx_lock() for comments on the details
12426 		 * of swizzling perf_event::ctx.
12427 		 */
12428 		perf_remove_from_context(group_leader, 0);
12429 		put_ctx(gctx);
12430 
12431 		for_each_sibling_event(sibling, group_leader) {
12432 			perf_remove_from_context(sibling, 0);
12433 			put_ctx(gctx);
12434 		}
12435 
12436 		/*
12437 		 * Wait for everybody to stop referencing the events through
12438 		 * the old lists, before installing it on new lists.
12439 		 */
12440 		synchronize_rcu();
12441 
12442 		/*
12443 		 * Install the group siblings before the group leader.
12444 		 *
12445 		 * Because a group leader will try and install the entire group
12446 		 * (through the sibling list, which is still in-tact), we can
12447 		 * end up with siblings installed in the wrong context.
12448 		 *
12449 		 * By installing siblings first we NO-OP because they're not
12450 		 * reachable through the group lists.
12451 		 */
12452 		for_each_sibling_event(sibling, group_leader) {
12453 			perf_event__state_init(sibling);
12454 			perf_install_in_context(ctx, sibling, sibling->cpu);
12455 			get_ctx(ctx);
12456 		}
12457 
12458 		/*
12459 		 * Removing from the context ends up with disabled
12460 		 * event. What we want here is event in the initial
12461 		 * startup state, ready to be add into new context.
12462 		 */
12463 		perf_event__state_init(group_leader);
12464 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12465 		get_ctx(ctx);
12466 	}
12467 
12468 	/*
12469 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12470 	 * that we're serialized against further additions and before
12471 	 * perf_install_in_context() which is the point the event is active and
12472 	 * can use these values.
12473 	 */
12474 	perf_event__header_size(event);
12475 	perf_event__id_header_size(event);
12476 
12477 	event->owner = current;
12478 
12479 	perf_install_in_context(ctx, event, event->cpu);
12480 	perf_unpin_context(ctx);
12481 
12482 	if (move_group)
12483 		perf_event_ctx_unlock(group_leader, gctx);
12484 	mutex_unlock(&ctx->mutex);
12485 
12486 	if (task) {
12487 		up_read(&task->signal->exec_update_lock);
12488 		put_task_struct(task);
12489 	}
12490 
12491 	mutex_lock(&current->perf_event_mutex);
12492 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12493 	mutex_unlock(&current->perf_event_mutex);
12494 
12495 	/*
12496 	 * Drop the reference on the group_event after placing the
12497 	 * new event on the sibling_list. This ensures destruction
12498 	 * of the group leader will find the pointer to itself in
12499 	 * perf_group_detach().
12500 	 */
12501 	fdput(group);
12502 	fd_install(event_fd, event_file);
12503 	return event_fd;
12504 
12505 err_locked:
12506 	if (move_group)
12507 		perf_event_ctx_unlock(group_leader, gctx);
12508 	mutex_unlock(&ctx->mutex);
12509 err_cred:
12510 	if (task)
12511 		up_read(&task->signal->exec_update_lock);
12512 err_file:
12513 	fput(event_file);
12514 err_context:
12515 	perf_unpin_context(ctx);
12516 	put_ctx(ctx);
12517 err_alloc:
12518 	/*
12519 	 * If event_file is set, the fput() above will have called ->release()
12520 	 * and that will take care of freeing the event.
12521 	 */
12522 	if (!event_file)
12523 		free_event(event);
12524 err_task:
12525 	if (task)
12526 		put_task_struct(task);
12527 err_group_fd:
12528 	fdput(group);
12529 err_fd:
12530 	put_unused_fd(event_fd);
12531 	return err;
12532 }
12533 
12534 /**
12535  * perf_event_create_kernel_counter
12536  *
12537  * @attr: attributes of the counter to create
12538  * @cpu: cpu in which the counter is bound
12539  * @task: task to profile (NULL for percpu)
12540  * @overflow_handler: callback to trigger when we hit the event
12541  * @context: context data could be used in overflow_handler callback
12542  */
12543 struct perf_event *
12544 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12545 				 struct task_struct *task,
12546 				 perf_overflow_handler_t overflow_handler,
12547 				 void *context)
12548 {
12549 	struct perf_event_context *ctx;
12550 	struct perf_event *event;
12551 	int err;
12552 
12553 	/*
12554 	 * Grouping is not supported for kernel events, neither is 'AUX',
12555 	 * make sure the caller's intentions are adjusted.
12556 	 */
12557 	if (attr->aux_output)
12558 		return ERR_PTR(-EINVAL);
12559 
12560 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12561 				 overflow_handler, context, -1);
12562 	if (IS_ERR(event)) {
12563 		err = PTR_ERR(event);
12564 		goto err;
12565 	}
12566 
12567 	/* Mark owner so we could distinguish it from user events. */
12568 	event->owner = TASK_TOMBSTONE;
12569 
12570 	/*
12571 	 * Get the target context (task or percpu):
12572 	 */
12573 	ctx = find_get_context(event->pmu, task, event);
12574 	if (IS_ERR(ctx)) {
12575 		err = PTR_ERR(ctx);
12576 		goto err_free;
12577 	}
12578 
12579 	WARN_ON_ONCE(ctx->parent_ctx);
12580 	mutex_lock(&ctx->mutex);
12581 	if (ctx->task == TASK_TOMBSTONE) {
12582 		err = -ESRCH;
12583 		goto err_unlock;
12584 	}
12585 
12586 	if (!task) {
12587 		/*
12588 		 * Check if the @cpu we're creating an event for is online.
12589 		 *
12590 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12591 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12592 		 */
12593 		struct perf_cpu_context *cpuctx =
12594 			container_of(ctx, struct perf_cpu_context, ctx);
12595 		if (!cpuctx->online) {
12596 			err = -ENODEV;
12597 			goto err_unlock;
12598 		}
12599 	}
12600 
12601 	if (!exclusive_event_installable(event, ctx)) {
12602 		err = -EBUSY;
12603 		goto err_unlock;
12604 	}
12605 
12606 	perf_install_in_context(ctx, event, event->cpu);
12607 	perf_unpin_context(ctx);
12608 	mutex_unlock(&ctx->mutex);
12609 
12610 	return event;
12611 
12612 err_unlock:
12613 	mutex_unlock(&ctx->mutex);
12614 	perf_unpin_context(ctx);
12615 	put_ctx(ctx);
12616 err_free:
12617 	free_event(event);
12618 err:
12619 	return ERR_PTR(err);
12620 }
12621 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12622 
12623 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12624 {
12625 	struct perf_event_context *src_ctx;
12626 	struct perf_event_context *dst_ctx;
12627 	struct perf_event *event, *tmp;
12628 	LIST_HEAD(events);
12629 
12630 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12631 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12632 
12633 	/*
12634 	 * See perf_event_ctx_lock() for comments on the details
12635 	 * of swizzling perf_event::ctx.
12636 	 */
12637 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12638 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12639 				 event_entry) {
12640 		perf_remove_from_context(event, 0);
12641 		unaccount_event_cpu(event, src_cpu);
12642 		put_ctx(src_ctx);
12643 		list_add(&event->migrate_entry, &events);
12644 	}
12645 
12646 	/*
12647 	 * Wait for the events to quiesce before re-instating them.
12648 	 */
12649 	synchronize_rcu();
12650 
12651 	/*
12652 	 * Re-instate events in 2 passes.
12653 	 *
12654 	 * Skip over group leaders and only install siblings on this first
12655 	 * pass, siblings will not get enabled without a leader, however a
12656 	 * leader will enable its siblings, even if those are still on the old
12657 	 * context.
12658 	 */
12659 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12660 		if (event->group_leader == event)
12661 			continue;
12662 
12663 		list_del(&event->migrate_entry);
12664 		if (event->state >= PERF_EVENT_STATE_OFF)
12665 			event->state = PERF_EVENT_STATE_INACTIVE;
12666 		account_event_cpu(event, dst_cpu);
12667 		perf_install_in_context(dst_ctx, event, dst_cpu);
12668 		get_ctx(dst_ctx);
12669 	}
12670 
12671 	/*
12672 	 * Once all the siblings are setup properly, install the group leaders
12673 	 * to make it go.
12674 	 */
12675 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12676 		list_del(&event->migrate_entry);
12677 		if (event->state >= PERF_EVENT_STATE_OFF)
12678 			event->state = PERF_EVENT_STATE_INACTIVE;
12679 		account_event_cpu(event, dst_cpu);
12680 		perf_install_in_context(dst_ctx, event, dst_cpu);
12681 		get_ctx(dst_ctx);
12682 	}
12683 	mutex_unlock(&dst_ctx->mutex);
12684 	mutex_unlock(&src_ctx->mutex);
12685 }
12686 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12687 
12688 static void sync_child_event(struct perf_event *child_event)
12689 {
12690 	struct perf_event *parent_event = child_event->parent;
12691 	u64 child_val;
12692 
12693 	if (child_event->attr.inherit_stat) {
12694 		struct task_struct *task = child_event->ctx->task;
12695 
12696 		if (task && task != TASK_TOMBSTONE)
12697 			perf_event_read_event(child_event, task);
12698 	}
12699 
12700 	child_val = perf_event_count(child_event);
12701 
12702 	/*
12703 	 * Add back the child's count to the parent's count:
12704 	 */
12705 	atomic64_add(child_val, &parent_event->child_count);
12706 	atomic64_add(child_event->total_time_enabled,
12707 		     &parent_event->child_total_time_enabled);
12708 	atomic64_add(child_event->total_time_running,
12709 		     &parent_event->child_total_time_running);
12710 }
12711 
12712 static void
12713 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12714 {
12715 	struct perf_event *parent_event = event->parent;
12716 	unsigned long detach_flags = 0;
12717 
12718 	if (parent_event) {
12719 		/*
12720 		 * Do not destroy the 'original' grouping; because of the
12721 		 * context switch optimization the original events could've
12722 		 * ended up in a random child task.
12723 		 *
12724 		 * If we were to destroy the original group, all group related
12725 		 * operations would cease to function properly after this
12726 		 * random child dies.
12727 		 *
12728 		 * Do destroy all inherited groups, we don't care about those
12729 		 * and being thorough is better.
12730 		 */
12731 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12732 		mutex_lock(&parent_event->child_mutex);
12733 	}
12734 
12735 	perf_remove_from_context(event, detach_flags);
12736 
12737 	raw_spin_lock_irq(&ctx->lock);
12738 	if (event->state > PERF_EVENT_STATE_EXIT)
12739 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12740 	raw_spin_unlock_irq(&ctx->lock);
12741 
12742 	/*
12743 	 * Child events can be freed.
12744 	 */
12745 	if (parent_event) {
12746 		mutex_unlock(&parent_event->child_mutex);
12747 		/*
12748 		 * Kick perf_poll() for is_event_hup();
12749 		 */
12750 		perf_event_wakeup(parent_event);
12751 		free_event(event);
12752 		put_event(parent_event);
12753 		return;
12754 	}
12755 
12756 	/*
12757 	 * Parent events are governed by their filedesc, retain them.
12758 	 */
12759 	perf_event_wakeup(event);
12760 }
12761 
12762 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12763 {
12764 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12765 	struct perf_event *child_event, *next;
12766 
12767 	WARN_ON_ONCE(child != current);
12768 
12769 	child_ctx = perf_pin_task_context(child, ctxn);
12770 	if (!child_ctx)
12771 		return;
12772 
12773 	/*
12774 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12775 	 * ctx::mutex over the entire thing. This serializes against almost
12776 	 * everything that wants to access the ctx.
12777 	 *
12778 	 * The exception is sys_perf_event_open() /
12779 	 * perf_event_create_kernel_count() which does find_get_context()
12780 	 * without ctx::mutex (it cannot because of the move_group double mutex
12781 	 * lock thing). See the comments in perf_install_in_context().
12782 	 */
12783 	mutex_lock(&child_ctx->mutex);
12784 
12785 	/*
12786 	 * In a single ctx::lock section, de-schedule the events and detach the
12787 	 * context from the task such that we cannot ever get it scheduled back
12788 	 * in.
12789 	 */
12790 	raw_spin_lock_irq(&child_ctx->lock);
12791 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12792 
12793 	/*
12794 	 * Now that the context is inactive, destroy the task <-> ctx relation
12795 	 * and mark the context dead.
12796 	 */
12797 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12798 	put_ctx(child_ctx); /* cannot be last */
12799 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12800 	put_task_struct(current); /* cannot be last */
12801 
12802 	clone_ctx = unclone_ctx(child_ctx);
12803 	raw_spin_unlock_irq(&child_ctx->lock);
12804 
12805 	if (clone_ctx)
12806 		put_ctx(clone_ctx);
12807 
12808 	/*
12809 	 * Report the task dead after unscheduling the events so that we
12810 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12811 	 * get a few PERF_RECORD_READ events.
12812 	 */
12813 	perf_event_task(child, child_ctx, 0);
12814 
12815 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12816 		perf_event_exit_event(child_event, child_ctx);
12817 
12818 	mutex_unlock(&child_ctx->mutex);
12819 
12820 	put_ctx(child_ctx);
12821 }
12822 
12823 /*
12824  * When a child task exits, feed back event values to parent events.
12825  *
12826  * Can be called with exec_update_lock held when called from
12827  * setup_new_exec().
12828  */
12829 void perf_event_exit_task(struct task_struct *child)
12830 {
12831 	struct perf_event *event, *tmp;
12832 	int ctxn;
12833 
12834 	mutex_lock(&child->perf_event_mutex);
12835 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12836 				 owner_entry) {
12837 		list_del_init(&event->owner_entry);
12838 
12839 		/*
12840 		 * Ensure the list deletion is visible before we clear
12841 		 * the owner, closes a race against perf_release() where
12842 		 * we need to serialize on the owner->perf_event_mutex.
12843 		 */
12844 		smp_store_release(&event->owner, NULL);
12845 	}
12846 	mutex_unlock(&child->perf_event_mutex);
12847 
12848 	for_each_task_context_nr(ctxn)
12849 		perf_event_exit_task_context(child, ctxn);
12850 
12851 	/*
12852 	 * The perf_event_exit_task_context calls perf_event_task
12853 	 * with child's task_ctx, which generates EXIT events for
12854 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12855 	 * At this point we need to send EXIT events to cpu contexts.
12856 	 */
12857 	perf_event_task(child, NULL, 0);
12858 }
12859 
12860 static void perf_free_event(struct perf_event *event,
12861 			    struct perf_event_context *ctx)
12862 {
12863 	struct perf_event *parent = event->parent;
12864 
12865 	if (WARN_ON_ONCE(!parent))
12866 		return;
12867 
12868 	mutex_lock(&parent->child_mutex);
12869 	list_del_init(&event->child_list);
12870 	mutex_unlock(&parent->child_mutex);
12871 
12872 	put_event(parent);
12873 
12874 	raw_spin_lock_irq(&ctx->lock);
12875 	perf_group_detach(event);
12876 	list_del_event(event, ctx);
12877 	raw_spin_unlock_irq(&ctx->lock);
12878 	free_event(event);
12879 }
12880 
12881 /*
12882  * Free a context as created by inheritance by perf_event_init_task() below,
12883  * used by fork() in case of fail.
12884  *
12885  * Even though the task has never lived, the context and events have been
12886  * exposed through the child_list, so we must take care tearing it all down.
12887  */
12888 void perf_event_free_task(struct task_struct *task)
12889 {
12890 	struct perf_event_context *ctx;
12891 	struct perf_event *event, *tmp;
12892 	int ctxn;
12893 
12894 	for_each_task_context_nr(ctxn) {
12895 		ctx = task->perf_event_ctxp[ctxn];
12896 		if (!ctx)
12897 			continue;
12898 
12899 		mutex_lock(&ctx->mutex);
12900 		raw_spin_lock_irq(&ctx->lock);
12901 		/*
12902 		 * Destroy the task <-> ctx relation and mark the context dead.
12903 		 *
12904 		 * This is important because even though the task hasn't been
12905 		 * exposed yet the context has been (through child_list).
12906 		 */
12907 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12908 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12909 		put_task_struct(task); /* cannot be last */
12910 		raw_spin_unlock_irq(&ctx->lock);
12911 
12912 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12913 			perf_free_event(event, ctx);
12914 
12915 		mutex_unlock(&ctx->mutex);
12916 
12917 		/*
12918 		 * perf_event_release_kernel() could've stolen some of our
12919 		 * child events and still have them on its free_list. In that
12920 		 * case we must wait for these events to have been freed (in
12921 		 * particular all their references to this task must've been
12922 		 * dropped).
12923 		 *
12924 		 * Without this copy_process() will unconditionally free this
12925 		 * task (irrespective of its reference count) and
12926 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12927 		 * use-after-free.
12928 		 *
12929 		 * Wait for all events to drop their context reference.
12930 		 */
12931 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12932 		put_ctx(ctx); /* must be last */
12933 	}
12934 }
12935 
12936 void perf_event_delayed_put(struct task_struct *task)
12937 {
12938 	int ctxn;
12939 
12940 	for_each_task_context_nr(ctxn)
12941 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12942 }
12943 
12944 struct file *perf_event_get(unsigned int fd)
12945 {
12946 	struct file *file = fget(fd);
12947 	if (!file)
12948 		return ERR_PTR(-EBADF);
12949 
12950 	if (file->f_op != &perf_fops) {
12951 		fput(file);
12952 		return ERR_PTR(-EBADF);
12953 	}
12954 
12955 	return file;
12956 }
12957 
12958 const struct perf_event *perf_get_event(struct file *file)
12959 {
12960 	if (file->f_op != &perf_fops)
12961 		return ERR_PTR(-EINVAL);
12962 
12963 	return file->private_data;
12964 }
12965 
12966 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12967 {
12968 	if (!event)
12969 		return ERR_PTR(-EINVAL);
12970 
12971 	return &event->attr;
12972 }
12973 
12974 /*
12975  * Inherit an event from parent task to child task.
12976  *
12977  * Returns:
12978  *  - valid pointer on success
12979  *  - NULL for orphaned events
12980  *  - IS_ERR() on error
12981  */
12982 static struct perf_event *
12983 inherit_event(struct perf_event *parent_event,
12984 	      struct task_struct *parent,
12985 	      struct perf_event_context *parent_ctx,
12986 	      struct task_struct *child,
12987 	      struct perf_event *group_leader,
12988 	      struct perf_event_context *child_ctx)
12989 {
12990 	enum perf_event_state parent_state = parent_event->state;
12991 	struct perf_event *child_event;
12992 	unsigned long flags;
12993 
12994 	/*
12995 	 * Instead of creating recursive hierarchies of events,
12996 	 * we link inherited events back to the original parent,
12997 	 * which has a filp for sure, which we use as the reference
12998 	 * count:
12999 	 */
13000 	if (parent_event->parent)
13001 		parent_event = parent_event->parent;
13002 
13003 	child_event = perf_event_alloc(&parent_event->attr,
13004 					   parent_event->cpu,
13005 					   child,
13006 					   group_leader, parent_event,
13007 					   NULL, NULL, -1);
13008 	if (IS_ERR(child_event))
13009 		return child_event;
13010 
13011 
13012 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13013 	    !child_ctx->task_ctx_data) {
13014 		struct pmu *pmu = child_event->pmu;
13015 
13016 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13017 		if (!child_ctx->task_ctx_data) {
13018 			free_event(child_event);
13019 			return ERR_PTR(-ENOMEM);
13020 		}
13021 	}
13022 
13023 	/*
13024 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13025 	 * must be under the same lock in order to serialize against
13026 	 * perf_event_release_kernel(), such that either we must observe
13027 	 * is_orphaned_event() or they will observe us on the child_list.
13028 	 */
13029 	mutex_lock(&parent_event->child_mutex);
13030 	if (is_orphaned_event(parent_event) ||
13031 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13032 		mutex_unlock(&parent_event->child_mutex);
13033 		/* task_ctx_data is freed with child_ctx */
13034 		free_event(child_event);
13035 		return NULL;
13036 	}
13037 
13038 	get_ctx(child_ctx);
13039 
13040 	/*
13041 	 * Make the child state follow the state of the parent event,
13042 	 * not its attr.disabled bit.  We hold the parent's mutex,
13043 	 * so we won't race with perf_event_{en, dis}able_family.
13044 	 */
13045 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13046 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13047 	else
13048 		child_event->state = PERF_EVENT_STATE_OFF;
13049 
13050 	if (parent_event->attr.freq) {
13051 		u64 sample_period = parent_event->hw.sample_period;
13052 		struct hw_perf_event *hwc = &child_event->hw;
13053 
13054 		hwc->sample_period = sample_period;
13055 		hwc->last_period   = sample_period;
13056 
13057 		local64_set(&hwc->period_left, sample_period);
13058 	}
13059 
13060 	child_event->ctx = child_ctx;
13061 	child_event->overflow_handler = parent_event->overflow_handler;
13062 	child_event->overflow_handler_context
13063 		= parent_event->overflow_handler_context;
13064 
13065 	/*
13066 	 * Precalculate sample_data sizes
13067 	 */
13068 	perf_event__header_size(child_event);
13069 	perf_event__id_header_size(child_event);
13070 
13071 	/*
13072 	 * Link it up in the child's context:
13073 	 */
13074 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13075 	add_event_to_ctx(child_event, child_ctx);
13076 	child_event->attach_state |= PERF_ATTACH_CHILD;
13077 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13078 
13079 	/*
13080 	 * Link this into the parent event's child list
13081 	 */
13082 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13083 	mutex_unlock(&parent_event->child_mutex);
13084 
13085 	return child_event;
13086 }
13087 
13088 /*
13089  * Inherits an event group.
13090  *
13091  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13092  * This matches with perf_event_release_kernel() removing all child events.
13093  *
13094  * Returns:
13095  *  - 0 on success
13096  *  - <0 on error
13097  */
13098 static int inherit_group(struct perf_event *parent_event,
13099 	      struct task_struct *parent,
13100 	      struct perf_event_context *parent_ctx,
13101 	      struct task_struct *child,
13102 	      struct perf_event_context *child_ctx)
13103 {
13104 	struct perf_event *leader;
13105 	struct perf_event *sub;
13106 	struct perf_event *child_ctr;
13107 
13108 	leader = inherit_event(parent_event, parent, parent_ctx,
13109 				 child, NULL, child_ctx);
13110 	if (IS_ERR(leader))
13111 		return PTR_ERR(leader);
13112 	/*
13113 	 * @leader can be NULL here because of is_orphaned_event(). In this
13114 	 * case inherit_event() will create individual events, similar to what
13115 	 * perf_group_detach() would do anyway.
13116 	 */
13117 	for_each_sibling_event(sub, parent_event) {
13118 		child_ctr = inherit_event(sub, parent, parent_ctx,
13119 					    child, leader, child_ctx);
13120 		if (IS_ERR(child_ctr))
13121 			return PTR_ERR(child_ctr);
13122 
13123 		if (sub->aux_event == parent_event && child_ctr &&
13124 		    !perf_get_aux_event(child_ctr, leader))
13125 			return -EINVAL;
13126 	}
13127 	return 0;
13128 }
13129 
13130 /*
13131  * Creates the child task context and tries to inherit the event-group.
13132  *
13133  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13134  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13135  * consistent with perf_event_release_kernel() removing all child events.
13136  *
13137  * Returns:
13138  *  - 0 on success
13139  *  - <0 on error
13140  */
13141 static int
13142 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13143 		   struct perf_event_context *parent_ctx,
13144 		   struct task_struct *child, int ctxn,
13145 		   u64 clone_flags, int *inherited_all)
13146 {
13147 	int ret;
13148 	struct perf_event_context *child_ctx;
13149 
13150 	if (!event->attr.inherit ||
13151 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13152 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13153 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13154 		*inherited_all = 0;
13155 		return 0;
13156 	}
13157 
13158 	child_ctx = child->perf_event_ctxp[ctxn];
13159 	if (!child_ctx) {
13160 		/*
13161 		 * This is executed from the parent task context, so
13162 		 * inherit events that have been marked for cloning.
13163 		 * First allocate and initialize a context for the
13164 		 * child.
13165 		 */
13166 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13167 		if (!child_ctx)
13168 			return -ENOMEM;
13169 
13170 		child->perf_event_ctxp[ctxn] = child_ctx;
13171 	}
13172 
13173 	ret = inherit_group(event, parent, parent_ctx,
13174 			    child, child_ctx);
13175 
13176 	if (ret)
13177 		*inherited_all = 0;
13178 
13179 	return ret;
13180 }
13181 
13182 /*
13183  * Initialize the perf_event context in task_struct
13184  */
13185 static int perf_event_init_context(struct task_struct *child, int ctxn,
13186 				   u64 clone_flags)
13187 {
13188 	struct perf_event_context *child_ctx, *parent_ctx;
13189 	struct perf_event_context *cloned_ctx;
13190 	struct perf_event *event;
13191 	struct task_struct *parent = current;
13192 	int inherited_all = 1;
13193 	unsigned long flags;
13194 	int ret = 0;
13195 
13196 	if (likely(!parent->perf_event_ctxp[ctxn]))
13197 		return 0;
13198 
13199 	/*
13200 	 * If the parent's context is a clone, pin it so it won't get
13201 	 * swapped under us.
13202 	 */
13203 	parent_ctx = perf_pin_task_context(parent, ctxn);
13204 	if (!parent_ctx)
13205 		return 0;
13206 
13207 	/*
13208 	 * No need to check if parent_ctx != NULL here; since we saw
13209 	 * it non-NULL earlier, the only reason for it to become NULL
13210 	 * is if we exit, and since we're currently in the middle of
13211 	 * a fork we can't be exiting at the same time.
13212 	 */
13213 
13214 	/*
13215 	 * Lock the parent list. No need to lock the child - not PID
13216 	 * hashed yet and not running, so nobody can access it.
13217 	 */
13218 	mutex_lock(&parent_ctx->mutex);
13219 
13220 	/*
13221 	 * We dont have to disable NMIs - we are only looking at
13222 	 * the list, not manipulating it:
13223 	 */
13224 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13225 		ret = inherit_task_group(event, parent, parent_ctx,
13226 					 child, ctxn, clone_flags,
13227 					 &inherited_all);
13228 		if (ret)
13229 			goto out_unlock;
13230 	}
13231 
13232 	/*
13233 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13234 	 * to allocations, but we need to prevent rotation because
13235 	 * rotate_ctx() will change the list from interrupt context.
13236 	 */
13237 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13238 	parent_ctx->rotate_disable = 1;
13239 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13240 
13241 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13242 		ret = inherit_task_group(event, parent, parent_ctx,
13243 					 child, ctxn, clone_flags,
13244 					 &inherited_all);
13245 		if (ret)
13246 			goto out_unlock;
13247 	}
13248 
13249 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13250 	parent_ctx->rotate_disable = 0;
13251 
13252 	child_ctx = child->perf_event_ctxp[ctxn];
13253 
13254 	if (child_ctx && inherited_all) {
13255 		/*
13256 		 * Mark the child context as a clone of the parent
13257 		 * context, or of whatever the parent is a clone of.
13258 		 *
13259 		 * Note that if the parent is a clone, the holding of
13260 		 * parent_ctx->lock avoids it from being uncloned.
13261 		 */
13262 		cloned_ctx = parent_ctx->parent_ctx;
13263 		if (cloned_ctx) {
13264 			child_ctx->parent_ctx = cloned_ctx;
13265 			child_ctx->parent_gen = parent_ctx->parent_gen;
13266 		} else {
13267 			child_ctx->parent_ctx = parent_ctx;
13268 			child_ctx->parent_gen = parent_ctx->generation;
13269 		}
13270 		get_ctx(child_ctx->parent_ctx);
13271 	}
13272 
13273 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13274 out_unlock:
13275 	mutex_unlock(&parent_ctx->mutex);
13276 
13277 	perf_unpin_context(parent_ctx);
13278 	put_ctx(parent_ctx);
13279 
13280 	return ret;
13281 }
13282 
13283 /*
13284  * Initialize the perf_event context in task_struct
13285  */
13286 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13287 {
13288 	int ctxn, ret;
13289 
13290 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13291 	mutex_init(&child->perf_event_mutex);
13292 	INIT_LIST_HEAD(&child->perf_event_list);
13293 
13294 	for_each_task_context_nr(ctxn) {
13295 		ret = perf_event_init_context(child, ctxn, clone_flags);
13296 		if (ret) {
13297 			perf_event_free_task(child);
13298 			return ret;
13299 		}
13300 	}
13301 
13302 	return 0;
13303 }
13304 
13305 static void __init perf_event_init_all_cpus(void)
13306 {
13307 	struct swevent_htable *swhash;
13308 	int cpu;
13309 
13310 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13311 
13312 	for_each_possible_cpu(cpu) {
13313 		swhash = &per_cpu(swevent_htable, cpu);
13314 		mutex_init(&swhash->hlist_mutex);
13315 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13316 
13317 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13318 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13319 
13320 #ifdef CONFIG_CGROUP_PERF
13321 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13322 #endif
13323 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13324 	}
13325 }
13326 
13327 static void perf_swevent_init_cpu(unsigned int cpu)
13328 {
13329 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13330 
13331 	mutex_lock(&swhash->hlist_mutex);
13332 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13333 		struct swevent_hlist *hlist;
13334 
13335 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13336 		WARN_ON(!hlist);
13337 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13338 	}
13339 	mutex_unlock(&swhash->hlist_mutex);
13340 }
13341 
13342 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13343 static void __perf_event_exit_context(void *__info)
13344 {
13345 	struct perf_event_context *ctx = __info;
13346 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13347 	struct perf_event *event;
13348 
13349 	raw_spin_lock(&ctx->lock);
13350 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13351 	list_for_each_entry(event, &ctx->event_list, event_entry)
13352 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13353 	raw_spin_unlock(&ctx->lock);
13354 }
13355 
13356 static void perf_event_exit_cpu_context(int cpu)
13357 {
13358 	struct perf_cpu_context *cpuctx;
13359 	struct perf_event_context *ctx;
13360 	struct pmu *pmu;
13361 
13362 	mutex_lock(&pmus_lock);
13363 	list_for_each_entry(pmu, &pmus, entry) {
13364 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13365 		ctx = &cpuctx->ctx;
13366 
13367 		mutex_lock(&ctx->mutex);
13368 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13369 		cpuctx->online = 0;
13370 		mutex_unlock(&ctx->mutex);
13371 	}
13372 	cpumask_clear_cpu(cpu, perf_online_mask);
13373 	mutex_unlock(&pmus_lock);
13374 }
13375 #else
13376 
13377 static void perf_event_exit_cpu_context(int cpu) { }
13378 
13379 #endif
13380 
13381 int perf_event_init_cpu(unsigned int cpu)
13382 {
13383 	struct perf_cpu_context *cpuctx;
13384 	struct perf_event_context *ctx;
13385 	struct pmu *pmu;
13386 
13387 	perf_swevent_init_cpu(cpu);
13388 
13389 	mutex_lock(&pmus_lock);
13390 	cpumask_set_cpu(cpu, perf_online_mask);
13391 	list_for_each_entry(pmu, &pmus, entry) {
13392 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13393 		ctx = &cpuctx->ctx;
13394 
13395 		mutex_lock(&ctx->mutex);
13396 		cpuctx->online = 1;
13397 		mutex_unlock(&ctx->mutex);
13398 	}
13399 	mutex_unlock(&pmus_lock);
13400 
13401 	return 0;
13402 }
13403 
13404 int perf_event_exit_cpu(unsigned int cpu)
13405 {
13406 	perf_event_exit_cpu_context(cpu);
13407 	return 0;
13408 }
13409 
13410 static int
13411 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13412 {
13413 	int cpu;
13414 
13415 	for_each_online_cpu(cpu)
13416 		perf_event_exit_cpu(cpu);
13417 
13418 	return NOTIFY_OK;
13419 }
13420 
13421 /*
13422  * Run the perf reboot notifier at the very last possible moment so that
13423  * the generic watchdog code runs as long as possible.
13424  */
13425 static struct notifier_block perf_reboot_notifier = {
13426 	.notifier_call = perf_reboot,
13427 	.priority = INT_MIN,
13428 };
13429 
13430 void __init perf_event_init(void)
13431 {
13432 	int ret;
13433 
13434 	idr_init(&pmu_idr);
13435 
13436 	perf_event_init_all_cpus();
13437 	init_srcu_struct(&pmus_srcu);
13438 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13439 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13440 	perf_pmu_register(&perf_task_clock, NULL, -1);
13441 	perf_tp_register();
13442 	perf_event_init_cpu(smp_processor_id());
13443 	register_reboot_notifier(&perf_reboot_notifier);
13444 
13445 	ret = init_hw_breakpoint();
13446 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13447 
13448 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13449 
13450 	/*
13451 	 * Build time assertion that we keep the data_head at the intended
13452 	 * location.  IOW, validation we got the __reserved[] size right.
13453 	 */
13454 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13455 		     != 1024);
13456 }
13457 
13458 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13459 			      char *page)
13460 {
13461 	struct perf_pmu_events_attr *pmu_attr =
13462 		container_of(attr, struct perf_pmu_events_attr, attr);
13463 
13464 	if (pmu_attr->event_str)
13465 		return sprintf(page, "%s\n", pmu_attr->event_str);
13466 
13467 	return 0;
13468 }
13469 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13470 
13471 static int __init perf_event_sysfs_init(void)
13472 {
13473 	struct pmu *pmu;
13474 	int ret;
13475 
13476 	mutex_lock(&pmus_lock);
13477 
13478 	ret = bus_register(&pmu_bus);
13479 	if (ret)
13480 		goto unlock;
13481 
13482 	list_for_each_entry(pmu, &pmus, entry) {
13483 		if (!pmu->name || pmu->type < 0)
13484 			continue;
13485 
13486 		ret = pmu_dev_alloc(pmu);
13487 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13488 	}
13489 	pmu_bus_running = 1;
13490 	ret = 0;
13491 
13492 unlock:
13493 	mutex_unlock(&pmus_lock);
13494 
13495 	return ret;
13496 }
13497 device_initcall(perf_event_sysfs_init);
13498 
13499 #ifdef CONFIG_CGROUP_PERF
13500 static struct cgroup_subsys_state *
13501 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13502 {
13503 	struct perf_cgroup *jc;
13504 
13505 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13506 	if (!jc)
13507 		return ERR_PTR(-ENOMEM);
13508 
13509 	jc->info = alloc_percpu(struct perf_cgroup_info);
13510 	if (!jc->info) {
13511 		kfree(jc);
13512 		return ERR_PTR(-ENOMEM);
13513 	}
13514 
13515 	return &jc->css;
13516 }
13517 
13518 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13519 {
13520 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13521 
13522 	free_percpu(jc->info);
13523 	kfree(jc);
13524 }
13525 
13526 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13527 {
13528 	perf_event_cgroup(css->cgroup);
13529 	return 0;
13530 }
13531 
13532 static int __perf_cgroup_move(void *info)
13533 {
13534 	struct task_struct *task = info;
13535 	rcu_read_lock();
13536 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13537 	rcu_read_unlock();
13538 	return 0;
13539 }
13540 
13541 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13542 {
13543 	struct task_struct *task;
13544 	struct cgroup_subsys_state *css;
13545 
13546 	cgroup_taskset_for_each(task, css, tset)
13547 		task_function_call(task, __perf_cgroup_move, task);
13548 }
13549 
13550 struct cgroup_subsys perf_event_cgrp_subsys = {
13551 	.css_alloc	= perf_cgroup_css_alloc,
13552 	.css_free	= perf_cgroup_css_free,
13553 	.css_online	= perf_cgroup_css_online,
13554 	.attach		= perf_cgroup_attach,
13555 	/*
13556 	 * Implicitly enable on dfl hierarchy so that perf events can
13557 	 * always be filtered by cgroup2 path as long as perf_event
13558 	 * controller is not mounted on a legacy hierarchy.
13559 	 */
13560 	.implicit_on_dfl = true,
13561 	.threaded	= true,
13562 };
13563 #endif /* CONFIG_CGROUP_PERF */
13564 
13565 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13566