1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 149 static LIST_HEAD(pmus); 150 static DEFINE_MUTEX(pmus_lock); 151 static struct srcu_struct pmus_srcu; 152 153 /* 154 * perf event paranoia level: 155 * -1 - not paranoid at all 156 * 0 - disallow raw tracepoint access for unpriv 157 * 1 - disallow cpu events for unpriv 158 * 2 - disallow kernel profiling for unpriv 159 */ 160 int sysctl_perf_event_paranoid __read_mostly = 1; 161 162 /* Minimum for 512 kiB + 1 user control page */ 163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 164 165 /* 166 * max perf event sample rate 167 */ 168 #define DEFAULT_MAX_SAMPLE_RATE 100000 169 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 170 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 171 172 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 173 174 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 175 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 176 177 static atomic_t perf_sample_allowed_ns __read_mostly = 178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100); 179 180 void update_perf_cpu_limits(void) 181 { 182 u64 tmp = perf_sample_period_ns; 183 184 tmp *= sysctl_perf_cpu_time_max_percent; 185 do_div(tmp, 100); 186 atomic_set(&perf_sample_allowed_ns, tmp); 187 } 188 189 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 190 191 int perf_proc_update_handler(struct ctl_table *table, int write, 192 void __user *buffer, size_t *lenp, 193 loff_t *ppos) 194 { 195 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 196 197 if (ret || !write) 198 return ret; 199 200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 202 update_perf_cpu_limits(); 203 204 return 0; 205 } 206 207 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 208 209 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 210 void __user *buffer, size_t *lenp, 211 loff_t *ppos) 212 { 213 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 214 215 if (ret || !write) 216 return ret; 217 218 update_perf_cpu_limits(); 219 220 return 0; 221 } 222 223 /* 224 * perf samples are done in some very critical code paths (NMIs). 225 * If they take too much CPU time, the system can lock up and not 226 * get any real work done. This will drop the sample rate when 227 * we detect that events are taking too long. 228 */ 229 #define NR_ACCUMULATED_SAMPLES 128 230 DEFINE_PER_CPU(u64, running_sample_length); 231 232 void perf_sample_event_took(u64 sample_len_ns) 233 { 234 u64 avg_local_sample_len; 235 u64 local_samples_len; 236 237 if (atomic_read(&perf_sample_allowed_ns) == 0) 238 return; 239 240 /* decay the counter by 1 average sample */ 241 local_samples_len = __get_cpu_var(running_sample_length); 242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 243 local_samples_len += sample_len_ns; 244 __get_cpu_var(running_sample_length) = local_samples_len; 245 246 /* 247 * note: this will be biased artifically low until we have 248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 249 * from having to maintain a count. 250 */ 251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 252 253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns)) 254 return; 255 256 if (max_samples_per_tick <= 1) 257 return; 258 259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 262 263 printk_ratelimited(KERN_WARNING 264 "perf samples too long (%lld > %d), lowering " 265 "kernel.perf_event_max_sample_rate to %d\n", 266 avg_local_sample_len, 267 atomic_read(&perf_sample_allowed_ns), 268 sysctl_perf_event_sample_rate); 269 270 update_perf_cpu_limits(); 271 } 272 273 static atomic64_t perf_event_id; 274 275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 276 enum event_type_t event_type); 277 278 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 279 enum event_type_t event_type, 280 struct task_struct *task); 281 282 static void update_context_time(struct perf_event_context *ctx); 283 static u64 perf_event_time(struct perf_event *event); 284 285 void __weak perf_event_print_debug(void) { } 286 287 extern __weak const char *perf_pmu_name(void) 288 { 289 return "pmu"; 290 } 291 292 static inline u64 perf_clock(void) 293 { 294 return local_clock(); 295 } 296 297 static inline struct perf_cpu_context * 298 __get_cpu_context(struct perf_event_context *ctx) 299 { 300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 301 } 302 303 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 304 struct perf_event_context *ctx) 305 { 306 raw_spin_lock(&cpuctx->ctx.lock); 307 if (ctx) 308 raw_spin_lock(&ctx->lock); 309 } 310 311 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 312 struct perf_event_context *ctx) 313 { 314 if (ctx) 315 raw_spin_unlock(&ctx->lock); 316 raw_spin_unlock(&cpuctx->ctx.lock); 317 } 318 319 #ifdef CONFIG_CGROUP_PERF 320 321 /* 322 * perf_cgroup_info keeps track of time_enabled for a cgroup. 323 * This is a per-cpu dynamically allocated data structure. 324 */ 325 struct perf_cgroup_info { 326 u64 time; 327 u64 timestamp; 328 }; 329 330 struct perf_cgroup { 331 struct cgroup_subsys_state css; 332 struct perf_cgroup_info __percpu *info; 333 }; 334 335 /* 336 * Must ensure cgroup is pinned (css_get) before calling 337 * this function. In other words, we cannot call this function 338 * if there is no cgroup event for the current CPU context. 339 */ 340 static inline struct perf_cgroup * 341 perf_cgroup_from_task(struct task_struct *task) 342 { 343 return container_of(task_subsys_state(task, perf_subsys_id), 344 struct perf_cgroup, css); 345 } 346 347 static inline bool 348 perf_cgroup_match(struct perf_event *event) 349 { 350 struct perf_event_context *ctx = event->ctx; 351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 352 353 /* @event doesn't care about cgroup */ 354 if (!event->cgrp) 355 return true; 356 357 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 358 if (!cpuctx->cgrp) 359 return false; 360 361 /* 362 * Cgroup scoping is recursive. An event enabled for a cgroup is 363 * also enabled for all its descendant cgroups. If @cpuctx's 364 * cgroup is a descendant of @event's (the test covers identity 365 * case), it's a match. 366 */ 367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 368 event->cgrp->css.cgroup); 369 } 370 371 static inline bool perf_tryget_cgroup(struct perf_event *event) 372 { 373 return css_tryget(&event->cgrp->css); 374 } 375 376 static inline void perf_put_cgroup(struct perf_event *event) 377 { 378 css_put(&event->cgrp->css); 379 } 380 381 static inline void perf_detach_cgroup(struct perf_event *event) 382 { 383 perf_put_cgroup(event); 384 event->cgrp = NULL; 385 } 386 387 static inline int is_cgroup_event(struct perf_event *event) 388 { 389 return event->cgrp != NULL; 390 } 391 392 static inline u64 perf_cgroup_event_time(struct perf_event *event) 393 { 394 struct perf_cgroup_info *t; 395 396 t = per_cpu_ptr(event->cgrp->info, event->cpu); 397 return t->time; 398 } 399 400 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 401 { 402 struct perf_cgroup_info *info; 403 u64 now; 404 405 now = perf_clock(); 406 407 info = this_cpu_ptr(cgrp->info); 408 409 info->time += now - info->timestamp; 410 info->timestamp = now; 411 } 412 413 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 414 { 415 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 416 if (cgrp_out) 417 __update_cgrp_time(cgrp_out); 418 } 419 420 static inline void update_cgrp_time_from_event(struct perf_event *event) 421 { 422 struct perf_cgroup *cgrp; 423 424 /* 425 * ensure we access cgroup data only when needed and 426 * when we know the cgroup is pinned (css_get) 427 */ 428 if (!is_cgroup_event(event)) 429 return; 430 431 cgrp = perf_cgroup_from_task(current); 432 /* 433 * Do not update time when cgroup is not active 434 */ 435 if (cgrp == event->cgrp) 436 __update_cgrp_time(event->cgrp); 437 } 438 439 static inline void 440 perf_cgroup_set_timestamp(struct task_struct *task, 441 struct perf_event_context *ctx) 442 { 443 struct perf_cgroup *cgrp; 444 struct perf_cgroup_info *info; 445 446 /* 447 * ctx->lock held by caller 448 * ensure we do not access cgroup data 449 * unless we have the cgroup pinned (css_get) 450 */ 451 if (!task || !ctx->nr_cgroups) 452 return; 453 454 cgrp = perf_cgroup_from_task(task); 455 info = this_cpu_ptr(cgrp->info); 456 info->timestamp = ctx->timestamp; 457 } 458 459 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 460 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 461 462 /* 463 * reschedule events based on the cgroup constraint of task. 464 * 465 * mode SWOUT : schedule out everything 466 * mode SWIN : schedule in based on cgroup for next 467 */ 468 void perf_cgroup_switch(struct task_struct *task, int mode) 469 { 470 struct perf_cpu_context *cpuctx; 471 struct pmu *pmu; 472 unsigned long flags; 473 474 /* 475 * disable interrupts to avoid geting nr_cgroup 476 * changes via __perf_event_disable(). Also 477 * avoids preemption. 478 */ 479 local_irq_save(flags); 480 481 /* 482 * we reschedule only in the presence of cgroup 483 * constrained events. 484 */ 485 rcu_read_lock(); 486 487 list_for_each_entry_rcu(pmu, &pmus, entry) { 488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 489 if (cpuctx->unique_pmu != pmu) 490 continue; /* ensure we process each cpuctx once */ 491 492 /* 493 * perf_cgroup_events says at least one 494 * context on this CPU has cgroup events. 495 * 496 * ctx->nr_cgroups reports the number of cgroup 497 * events for a context. 498 */ 499 if (cpuctx->ctx.nr_cgroups > 0) { 500 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 501 perf_pmu_disable(cpuctx->ctx.pmu); 502 503 if (mode & PERF_CGROUP_SWOUT) { 504 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 505 /* 506 * must not be done before ctxswout due 507 * to event_filter_match() in event_sched_out() 508 */ 509 cpuctx->cgrp = NULL; 510 } 511 512 if (mode & PERF_CGROUP_SWIN) { 513 WARN_ON_ONCE(cpuctx->cgrp); 514 /* 515 * set cgrp before ctxsw in to allow 516 * event_filter_match() to not have to pass 517 * task around 518 */ 519 cpuctx->cgrp = perf_cgroup_from_task(task); 520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 521 } 522 perf_pmu_enable(cpuctx->ctx.pmu); 523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 524 } 525 } 526 527 rcu_read_unlock(); 528 529 local_irq_restore(flags); 530 } 531 532 static inline void perf_cgroup_sched_out(struct task_struct *task, 533 struct task_struct *next) 534 { 535 struct perf_cgroup *cgrp1; 536 struct perf_cgroup *cgrp2 = NULL; 537 538 /* 539 * we come here when we know perf_cgroup_events > 0 540 */ 541 cgrp1 = perf_cgroup_from_task(task); 542 543 /* 544 * next is NULL when called from perf_event_enable_on_exec() 545 * that will systematically cause a cgroup_switch() 546 */ 547 if (next) 548 cgrp2 = perf_cgroup_from_task(next); 549 550 /* 551 * only schedule out current cgroup events if we know 552 * that we are switching to a different cgroup. Otherwise, 553 * do no touch the cgroup events. 554 */ 555 if (cgrp1 != cgrp2) 556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 557 } 558 559 static inline void perf_cgroup_sched_in(struct task_struct *prev, 560 struct task_struct *task) 561 { 562 struct perf_cgroup *cgrp1; 563 struct perf_cgroup *cgrp2 = NULL; 564 565 /* 566 * we come here when we know perf_cgroup_events > 0 567 */ 568 cgrp1 = perf_cgroup_from_task(task); 569 570 /* prev can never be NULL */ 571 cgrp2 = perf_cgroup_from_task(prev); 572 573 /* 574 * only need to schedule in cgroup events if we are changing 575 * cgroup during ctxsw. Cgroup events were not scheduled 576 * out of ctxsw out if that was not the case. 577 */ 578 if (cgrp1 != cgrp2) 579 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 580 } 581 582 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 583 struct perf_event_attr *attr, 584 struct perf_event *group_leader) 585 { 586 struct perf_cgroup *cgrp; 587 struct cgroup_subsys_state *css; 588 struct fd f = fdget(fd); 589 int ret = 0; 590 591 if (!f.file) 592 return -EBADF; 593 594 css = cgroup_css_from_dir(f.file, perf_subsys_id); 595 if (IS_ERR(css)) { 596 ret = PTR_ERR(css); 597 goto out; 598 } 599 600 cgrp = container_of(css, struct perf_cgroup, css); 601 event->cgrp = cgrp; 602 603 /* must be done before we fput() the file */ 604 if (!perf_tryget_cgroup(event)) { 605 event->cgrp = NULL; 606 ret = -ENOENT; 607 goto out; 608 } 609 610 /* 611 * all events in a group must monitor 612 * the same cgroup because a task belongs 613 * to only one perf cgroup at a time 614 */ 615 if (group_leader && group_leader->cgrp != cgrp) { 616 perf_detach_cgroup(event); 617 ret = -EINVAL; 618 } 619 out: 620 fdput(f); 621 return ret; 622 } 623 624 static inline void 625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 626 { 627 struct perf_cgroup_info *t; 628 t = per_cpu_ptr(event->cgrp->info, event->cpu); 629 event->shadow_ctx_time = now - t->timestamp; 630 } 631 632 static inline void 633 perf_cgroup_defer_enabled(struct perf_event *event) 634 { 635 /* 636 * when the current task's perf cgroup does not match 637 * the event's, we need to remember to call the 638 * perf_mark_enable() function the first time a task with 639 * a matching perf cgroup is scheduled in. 640 */ 641 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 642 event->cgrp_defer_enabled = 1; 643 } 644 645 static inline void 646 perf_cgroup_mark_enabled(struct perf_event *event, 647 struct perf_event_context *ctx) 648 { 649 struct perf_event *sub; 650 u64 tstamp = perf_event_time(event); 651 652 if (!event->cgrp_defer_enabled) 653 return; 654 655 event->cgrp_defer_enabled = 0; 656 657 event->tstamp_enabled = tstamp - event->total_time_enabled; 658 list_for_each_entry(sub, &event->sibling_list, group_entry) { 659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 660 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 661 sub->cgrp_defer_enabled = 0; 662 } 663 } 664 } 665 #else /* !CONFIG_CGROUP_PERF */ 666 667 static inline bool 668 perf_cgroup_match(struct perf_event *event) 669 { 670 return true; 671 } 672 673 static inline void perf_detach_cgroup(struct perf_event *event) 674 {} 675 676 static inline int is_cgroup_event(struct perf_event *event) 677 { 678 return 0; 679 } 680 681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 682 { 683 return 0; 684 } 685 686 static inline void update_cgrp_time_from_event(struct perf_event *event) 687 { 688 } 689 690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 691 { 692 } 693 694 static inline void perf_cgroup_sched_out(struct task_struct *task, 695 struct task_struct *next) 696 { 697 } 698 699 static inline void perf_cgroup_sched_in(struct task_struct *prev, 700 struct task_struct *task) 701 { 702 } 703 704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 705 struct perf_event_attr *attr, 706 struct perf_event *group_leader) 707 { 708 return -EINVAL; 709 } 710 711 static inline void 712 perf_cgroup_set_timestamp(struct task_struct *task, 713 struct perf_event_context *ctx) 714 { 715 } 716 717 void 718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 719 { 720 } 721 722 static inline void 723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 724 { 725 } 726 727 static inline u64 perf_cgroup_event_time(struct perf_event *event) 728 { 729 return 0; 730 } 731 732 static inline void 733 perf_cgroup_defer_enabled(struct perf_event *event) 734 { 735 } 736 737 static inline void 738 perf_cgroup_mark_enabled(struct perf_event *event, 739 struct perf_event_context *ctx) 740 { 741 } 742 #endif 743 744 /* 745 * set default to be dependent on timer tick just 746 * like original code 747 */ 748 #define PERF_CPU_HRTIMER (1000 / HZ) 749 /* 750 * function must be called with interrupts disbled 751 */ 752 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 753 { 754 struct perf_cpu_context *cpuctx; 755 enum hrtimer_restart ret = HRTIMER_NORESTART; 756 int rotations = 0; 757 758 WARN_ON(!irqs_disabled()); 759 760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 761 762 rotations = perf_rotate_context(cpuctx); 763 764 /* 765 * arm timer if needed 766 */ 767 if (rotations) { 768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 769 ret = HRTIMER_RESTART; 770 } 771 772 return ret; 773 } 774 775 /* CPU is going down */ 776 void perf_cpu_hrtimer_cancel(int cpu) 777 { 778 struct perf_cpu_context *cpuctx; 779 struct pmu *pmu; 780 unsigned long flags; 781 782 if (WARN_ON(cpu != smp_processor_id())) 783 return; 784 785 local_irq_save(flags); 786 787 rcu_read_lock(); 788 789 list_for_each_entry_rcu(pmu, &pmus, entry) { 790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 791 792 if (pmu->task_ctx_nr == perf_sw_context) 793 continue; 794 795 hrtimer_cancel(&cpuctx->hrtimer); 796 } 797 798 rcu_read_unlock(); 799 800 local_irq_restore(flags); 801 } 802 803 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 804 { 805 struct hrtimer *hr = &cpuctx->hrtimer; 806 struct pmu *pmu = cpuctx->ctx.pmu; 807 int timer; 808 809 /* no multiplexing needed for SW PMU */ 810 if (pmu->task_ctx_nr == perf_sw_context) 811 return; 812 813 /* 814 * check default is sane, if not set then force to 815 * default interval (1/tick) 816 */ 817 timer = pmu->hrtimer_interval_ms; 818 if (timer < 1) 819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 820 821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 822 823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 824 hr->function = perf_cpu_hrtimer_handler; 825 } 826 827 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 828 { 829 struct hrtimer *hr = &cpuctx->hrtimer; 830 struct pmu *pmu = cpuctx->ctx.pmu; 831 832 /* not for SW PMU */ 833 if (pmu->task_ctx_nr == perf_sw_context) 834 return; 835 836 if (hrtimer_active(hr)) 837 return; 838 839 if (!hrtimer_callback_running(hr)) 840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 841 0, HRTIMER_MODE_REL_PINNED, 0); 842 } 843 844 void perf_pmu_disable(struct pmu *pmu) 845 { 846 int *count = this_cpu_ptr(pmu->pmu_disable_count); 847 if (!(*count)++) 848 pmu->pmu_disable(pmu); 849 } 850 851 void perf_pmu_enable(struct pmu *pmu) 852 { 853 int *count = this_cpu_ptr(pmu->pmu_disable_count); 854 if (!--(*count)) 855 pmu->pmu_enable(pmu); 856 } 857 858 static DEFINE_PER_CPU(struct list_head, rotation_list); 859 860 /* 861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 862 * because they're strictly cpu affine and rotate_start is called with IRQs 863 * disabled, while rotate_context is called from IRQ context. 864 */ 865 static void perf_pmu_rotate_start(struct pmu *pmu) 866 { 867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 868 struct list_head *head = &__get_cpu_var(rotation_list); 869 870 WARN_ON(!irqs_disabled()); 871 872 if (list_empty(&cpuctx->rotation_list)) { 873 int was_empty = list_empty(head); 874 list_add(&cpuctx->rotation_list, head); 875 if (was_empty) 876 tick_nohz_full_kick(); 877 } 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 } 903 904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 905 { 906 /* 907 * only top level events have the pid namespace they were created in 908 */ 909 if (event->parent) 910 event = event->parent; 911 912 return task_tgid_nr_ns(p, event->ns); 913 } 914 915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 916 { 917 /* 918 * only top level events have the pid namespace they were created in 919 */ 920 if (event->parent) 921 event = event->parent; 922 923 return task_pid_nr_ns(p, event->ns); 924 } 925 926 /* 927 * If we inherit events we want to return the parent event id 928 * to userspace. 929 */ 930 static u64 primary_event_id(struct perf_event *event) 931 { 932 u64 id = event->id; 933 934 if (event->parent) 935 id = event->parent->id; 936 937 return id; 938 } 939 940 /* 941 * Get the perf_event_context for a task and lock it. 942 * This has to cope with with the fact that until it is locked, 943 * the context could get moved to another task. 944 */ 945 static struct perf_event_context * 946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 947 { 948 struct perf_event_context *ctx; 949 950 retry: 951 /* 952 * One of the few rules of preemptible RCU is that one cannot do 953 * rcu_read_unlock() while holding a scheduler (or nested) lock when 954 * part of the read side critical section was preemptible -- see 955 * rcu_read_unlock_special(). 956 * 957 * Since ctx->lock nests under rq->lock we must ensure the entire read 958 * side critical section is non-preemptible. 959 */ 960 preempt_disable(); 961 rcu_read_lock(); 962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 963 if (ctx) { 964 /* 965 * If this context is a clone of another, it might 966 * get swapped for another underneath us by 967 * perf_event_task_sched_out, though the 968 * rcu_read_lock() protects us from any context 969 * getting freed. Lock the context and check if it 970 * got swapped before we could get the lock, and retry 971 * if so. If we locked the right context, then it 972 * can't get swapped on us any more. 973 */ 974 raw_spin_lock_irqsave(&ctx->lock, *flags); 975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 976 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 977 rcu_read_unlock(); 978 preempt_enable(); 979 goto retry; 980 } 981 982 if (!atomic_inc_not_zero(&ctx->refcount)) { 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 984 ctx = NULL; 985 } 986 } 987 rcu_read_unlock(); 988 preempt_enable(); 989 return ctx; 990 } 991 992 /* 993 * Get the context for a task and increment its pin_count so it 994 * can't get swapped to another task. This also increments its 995 * reference count so that the context can't get freed. 996 */ 997 static struct perf_event_context * 998 perf_pin_task_context(struct task_struct *task, int ctxn) 999 { 1000 struct perf_event_context *ctx; 1001 unsigned long flags; 1002 1003 ctx = perf_lock_task_context(task, ctxn, &flags); 1004 if (ctx) { 1005 ++ctx->pin_count; 1006 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1007 } 1008 return ctx; 1009 } 1010 1011 static void perf_unpin_context(struct perf_event_context *ctx) 1012 { 1013 unsigned long flags; 1014 1015 raw_spin_lock_irqsave(&ctx->lock, flags); 1016 --ctx->pin_count; 1017 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1018 } 1019 1020 /* 1021 * Update the record of the current time in a context. 1022 */ 1023 static void update_context_time(struct perf_event_context *ctx) 1024 { 1025 u64 now = perf_clock(); 1026 1027 ctx->time += now - ctx->timestamp; 1028 ctx->timestamp = now; 1029 } 1030 1031 static u64 perf_event_time(struct perf_event *event) 1032 { 1033 struct perf_event_context *ctx = event->ctx; 1034 1035 if (is_cgroup_event(event)) 1036 return perf_cgroup_event_time(event); 1037 1038 return ctx ? ctx->time : 0; 1039 } 1040 1041 /* 1042 * Update the total_time_enabled and total_time_running fields for a event. 1043 * The caller of this function needs to hold the ctx->lock. 1044 */ 1045 static void update_event_times(struct perf_event *event) 1046 { 1047 struct perf_event_context *ctx = event->ctx; 1048 u64 run_end; 1049 1050 if (event->state < PERF_EVENT_STATE_INACTIVE || 1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1052 return; 1053 /* 1054 * in cgroup mode, time_enabled represents 1055 * the time the event was enabled AND active 1056 * tasks were in the monitored cgroup. This is 1057 * independent of the activity of the context as 1058 * there may be a mix of cgroup and non-cgroup events. 1059 * 1060 * That is why we treat cgroup events differently 1061 * here. 1062 */ 1063 if (is_cgroup_event(event)) 1064 run_end = perf_cgroup_event_time(event); 1065 else if (ctx->is_active) 1066 run_end = ctx->time; 1067 else 1068 run_end = event->tstamp_stopped; 1069 1070 event->total_time_enabled = run_end - event->tstamp_enabled; 1071 1072 if (event->state == PERF_EVENT_STATE_INACTIVE) 1073 run_end = event->tstamp_stopped; 1074 else 1075 run_end = perf_event_time(event); 1076 1077 event->total_time_running = run_end - event->tstamp_running; 1078 1079 } 1080 1081 /* 1082 * Update total_time_enabled and total_time_running for all events in a group. 1083 */ 1084 static void update_group_times(struct perf_event *leader) 1085 { 1086 struct perf_event *event; 1087 1088 update_event_times(leader); 1089 list_for_each_entry(event, &leader->sibling_list, group_entry) 1090 update_event_times(event); 1091 } 1092 1093 static struct list_head * 1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1095 { 1096 if (event->attr.pinned) 1097 return &ctx->pinned_groups; 1098 else 1099 return &ctx->flexible_groups; 1100 } 1101 1102 /* 1103 * Add a event from the lists for its context. 1104 * Must be called with ctx->mutex and ctx->lock held. 1105 */ 1106 static void 1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1108 { 1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1110 event->attach_state |= PERF_ATTACH_CONTEXT; 1111 1112 /* 1113 * If we're a stand alone event or group leader, we go to the context 1114 * list, group events are kept attached to the group so that 1115 * perf_group_detach can, at all times, locate all siblings. 1116 */ 1117 if (event->group_leader == event) { 1118 struct list_head *list; 1119 1120 if (is_software_event(event)) 1121 event->group_flags |= PERF_GROUP_SOFTWARE; 1122 1123 list = ctx_group_list(event, ctx); 1124 list_add_tail(&event->group_entry, list); 1125 } 1126 1127 if (is_cgroup_event(event)) 1128 ctx->nr_cgroups++; 1129 1130 if (has_branch_stack(event)) 1131 ctx->nr_branch_stack++; 1132 1133 list_add_rcu(&event->event_entry, &ctx->event_list); 1134 if (!ctx->nr_events) 1135 perf_pmu_rotate_start(ctx->pmu); 1136 ctx->nr_events++; 1137 if (event->attr.inherit_stat) 1138 ctx->nr_stat++; 1139 } 1140 1141 /* 1142 * Initialize event state based on the perf_event_attr::disabled. 1143 */ 1144 static inline void perf_event__state_init(struct perf_event *event) 1145 { 1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1147 PERF_EVENT_STATE_INACTIVE; 1148 } 1149 1150 /* 1151 * Called at perf_event creation and when events are attached/detached from a 1152 * group. 1153 */ 1154 static void perf_event__read_size(struct perf_event *event) 1155 { 1156 int entry = sizeof(u64); /* value */ 1157 int size = 0; 1158 int nr = 1; 1159 1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1161 size += sizeof(u64); 1162 1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1164 size += sizeof(u64); 1165 1166 if (event->attr.read_format & PERF_FORMAT_ID) 1167 entry += sizeof(u64); 1168 1169 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1170 nr += event->group_leader->nr_siblings; 1171 size += sizeof(u64); 1172 } 1173 1174 size += entry * nr; 1175 event->read_size = size; 1176 } 1177 1178 static void perf_event__header_size(struct perf_event *event) 1179 { 1180 struct perf_sample_data *data; 1181 u64 sample_type = event->attr.sample_type; 1182 u16 size = 0; 1183 1184 perf_event__read_size(event); 1185 1186 if (sample_type & PERF_SAMPLE_IP) 1187 size += sizeof(data->ip); 1188 1189 if (sample_type & PERF_SAMPLE_ADDR) 1190 size += sizeof(data->addr); 1191 1192 if (sample_type & PERF_SAMPLE_PERIOD) 1193 size += sizeof(data->period); 1194 1195 if (sample_type & PERF_SAMPLE_WEIGHT) 1196 size += sizeof(data->weight); 1197 1198 if (sample_type & PERF_SAMPLE_READ) 1199 size += event->read_size; 1200 1201 if (sample_type & PERF_SAMPLE_DATA_SRC) 1202 size += sizeof(data->data_src.val); 1203 1204 event->header_size = size; 1205 } 1206 1207 static void perf_event__id_header_size(struct perf_event *event) 1208 { 1209 struct perf_sample_data *data; 1210 u64 sample_type = event->attr.sample_type; 1211 u16 size = 0; 1212 1213 if (sample_type & PERF_SAMPLE_TID) 1214 size += sizeof(data->tid_entry); 1215 1216 if (sample_type & PERF_SAMPLE_TIME) 1217 size += sizeof(data->time); 1218 1219 if (sample_type & PERF_SAMPLE_ID) 1220 size += sizeof(data->id); 1221 1222 if (sample_type & PERF_SAMPLE_STREAM_ID) 1223 size += sizeof(data->stream_id); 1224 1225 if (sample_type & PERF_SAMPLE_CPU) 1226 size += sizeof(data->cpu_entry); 1227 1228 event->id_header_size = size; 1229 } 1230 1231 static void perf_group_attach(struct perf_event *event) 1232 { 1233 struct perf_event *group_leader = event->group_leader, *pos; 1234 1235 /* 1236 * We can have double attach due to group movement in perf_event_open. 1237 */ 1238 if (event->attach_state & PERF_ATTACH_GROUP) 1239 return; 1240 1241 event->attach_state |= PERF_ATTACH_GROUP; 1242 1243 if (group_leader == event) 1244 return; 1245 1246 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1247 !is_software_event(event)) 1248 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1249 1250 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1251 group_leader->nr_siblings++; 1252 1253 perf_event__header_size(group_leader); 1254 1255 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1256 perf_event__header_size(pos); 1257 } 1258 1259 /* 1260 * Remove a event from the lists for its context. 1261 * Must be called with ctx->mutex and ctx->lock held. 1262 */ 1263 static void 1264 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1265 { 1266 struct perf_cpu_context *cpuctx; 1267 /* 1268 * We can have double detach due to exit/hot-unplug + close. 1269 */ 1270 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1271 return; 1272 1273 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1274 1275 if (is_cgroup_event(event)) { 1276 ctx->nr_cgroups--; 1277 cpuctx = __get_cpu_context(ctx); 1278 /* 1279 * if there are no more cgroup events 1280 * then cler cgrp to avoid stale pointer 1281 * in update_cgrp_time_from_cpuctx() 1282 */ 1283 if (!ctx->nr_cgroups) 1284 cpuctx->cgrp = NULL; 1285 } 1286 1287 if (has_branch_stack(event)) 1288 ctx->nr_branch_stack--; 1289 1290 ctx->nr_events--; 1291 if (event->attr.inherit_stat) 1292 ctx->nr_stat--; 1293 1294 list_del_rcu(&event->event_entry); 1295 1296 if (event->group_leader == event) 1297 list_del_init(&event->group_entry); 1298 1299 update_group_times(event); 1300 1301 /* 1302 * If event was in error state, then keep it 1303 * that way, otherwise bogus counts will be 1304 * returned on read(). The only way to get out 1305 * of error state is by explicit re-enabling 1306 * of the event 1307 */ 1308 if (event->state > PERF_EVENT_STATE_OFF) 1309 event->state = PERF_EVENT_STATE_OFF; 1310 } 1311 1312 static void perf_group_detach(struct perf_event *event) 1313 { 1314 struct perf_event *sibling, *tmp; 1315 struct list_head *list = NULL; 1316 1317 /* 1318 * We can have double detach due to exit/hot-unplug + close. 1319 */ 1320 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1321 return; 1322 1323 event->attach_state &= ~PERF_ATTACH_GROUP; 1324 1325 /* 1326 * If this is a sibling, remove it from its group. 1327 */ 1328 if (event->group_leader != event) { 1329 list_del_init(&event->group_entry); 1330 event->group_leader->nr_siblings--; 1331 goto out; 1332 } 1333 1334 if (!list_empty(&event->group_entry)) 1335 list = &event->group_entry; 1336 1337 /* 1338 * If this was a group event with sibling events then 1339 * upgrade the siblings to singleton events by adding them 1340 * to whatever list we are on. 1341 */ 1342 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1343 if (list) 1344 list_move_tail(&sibling->group_entry, list); 1345 sibling->group_leader = sibling; 1346 1347 /* Inherit group flags from the previous leader */ 1348 sibling->group_flags = event->group_flags; 1349 } 1350 1351 out: 1352 perf_event__header_size(event->group_leader); 1353 1354 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1355 perf_event__header_size(tmp); 1356 } 1357 1358 static inline int 1359 event_filter_match(struct perf_event *event) 1360 { 1361 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1362 && perf_cgroup_match(event); 1363 } 1364 1365 static void 1366 event_sched_out(struct perf_event *event, 1367 struct perf_cpu_context *cpuctx, 1368 struct perf_event_context *ctx) 1369 { 1370 u64 tstamp = perf_event_time(event); 1371 u64 delta; 1372 /* 1373 * An event which could not be activated because of 1374 * filter mismatch still needs to have its timings 1375 * maintained, otherwise bogus information is return 1376 * via read() for time_enabled, time_running: 1377 */ 1378 if (event->state == PERF_EVENT_STATE_INACTIVE 1379 && !event_filter_match(event)) { 1380 delta = tstamp - event->tstamp_stopped; 1381 event->tstamp_running += delta; 1382 event->tstamp_stopped = tstamp; 1383 } 1384 1385 if (event->state != PERF_EVENT_STATE_ACTIVE) 1386 return; 1387 1388 event->state = PERF_EVENT_STATE_INACTIVE; 1389 if (event->pending_disable) { 1390 event->pending_disable = 0; 1391 event->state = PERF_EVENT_STATE_OFF; 1392 } 1393 event->tstamp_stopped = tstamp; 1394 event->pmu->del(event, 0); 1395 event->oncpu = -1; 1396 1397 if (!is_software_event(event)) 1398 cpuctx->active_oncpu--; 1399 ctx->nr_active--; 1400 if (event->attr.freq && event->attr.sample_freq) 1401 ctx->nr_freq--; 1402 if (event->attr.exclusive || !cpuctx->active_oncpu) 1403 cpuctx->exclusive = 0; 1404 } 1405 1406 static void 1407 group_sched_out(struct perf_event *group_event, 1408 struct perf_cpu_context *cpuctx, 1409 struct perf_event_context *ctx) 1410 { 1411 struct perf_event *event; 1412 int state = group_event->state; 1413 1414 event_sched_out(group_event, cpuctx, ctx); 1415 1416 /* 1417 * Schedule out siblings (if any): 1418 */ 1419 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1420 event_sched_out(event, cpuctx, ctx); 1421 1422 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1423 cpuctx->exclusive = 0; 1424 } 1425 1426 /* 1427 * Cross CPU call to remove a performance event 1428 * 1429 * We disable the event on the hardware level first. After that we 1430 * remove it from the context list. 1431 */ 1432 static int __perf_remove_from_context(void *info) 1433 { 1434 struct perf_event *event = info; 1435 struct perf_event_context *ctx = event->ctx; 1436 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1437 1438 raw_spin_lock(&ctx->lock); 1439 event_sched_out(event, cpuctx, ctx); 1440 list_del_event(event, ctx); 1441 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1442 ctx->is_active = 0; 1443 cpuctx->task_ctx = NULL; 1444 } 1445 raw_spin_unlock(&ctx->lock); 1446 1447 return 0; 1448 } 1449 1450 1451 /* 1452 * Remove the event from a task's (or a CPU's) list of events. 1453 * 1454 * CPU events are removed with a smp call. For task events we only 1455 * call when the task is on a CPU. 1456 * 1457 * If event->ctx is a cloned context, callers must make sure that 1458 * every task struct that event->ctx->task could possibly point to 1459 * remains valid. This is OK when called from perf_release since 1460 * that only calls us on the top-level context, which can't be a clone. 1461 * When called from perf_event_exit_task, it's OK because the 1462 * context has been detached from its task. 1463 */ 1464 static void perf_remove_from_context(struct perf_event *event) 1465 { 1466 struct perf_event_context *ctx = event->ctx; 1467 struct task_struct *task = ctx->task; 1468 1469 lockdep_assert_held(&ctx->mutex); 1470 1471 if (!task) { 1472 /* 1473 * Per cpu events are removed via an smp call and 1474 * the removal is always successful. 1475 */ 1476 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1477 return; 1478 } 1479 1480 retry: 1481 if (!task_function_call(task, __perf_remove_from_context, event)) 1482 return; 1483 1484 raw_spin_lock_irq(&ctx->lock); 1485 /* 1486 * If we failed to find a running task, but find the context active now 1487 * that we've acquired the ctx->lock, retry. 1488 */ 1489 if (ctx->is_active) { 1490 raw_spin_unlock_irq(&ctx->lock); 1491 goto retry; 1492 } 1493 1494 /* 1495 * Since the task isn't running, its safe to remove the event, us 1496 * holding the ctx->lock ensures the task won't get scheduled in. 1497 */ 1498 list_del_event(event, ctx); 1499 raw_spin_unlock_irq(&ctx->lock); 1500 } 1501 1502 /* 1503 * Cross CPU call to disable a performance event 1504 */ 1505 int __perf_event_disable(void *info) 1506 { 1507 struct perf_event *event = info; 1508 struct perf_event_context *ctx = event->ctx; 1509 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1510 1511 /* 1512 * If this is a per-task event, need to check whether this 1513 * event's task is the current task on this cpu. 1514 * 1515 * Can trigger due to concurrent perf_event_context_sched_out() 1516 * flipping contexts around. 1517 */ 1518 if (ctx->task && cpuctx->task_ctx != ctx) 1519 return -EINVAL; 1520 1521 raw_spin_lock(&ctx->lock); 1522 1523 /* 1524 * If the event is on, turn it off. 1525 * If it is in error state, leave it in error state. 1526 */ 1527 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1528 update_context_time(ctx); 1529 update_cgrp_time_from_event(event); 1530 update_group_times(event); 1531 if (event == event->group_leader) 1532 group_sched_out(event, cpuctx, ctx); 1533 else 1534 event_sched_out(event, cpuctx, ctx); 1535 event->state = PERF_EVENT_STATE_OFF; 1536 } 1537 1538 raw_spin_unlock(&ctx->lock); 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Disable a event. 1545 * 1546 * If event->ctx is a cloned context, callers must make sure that 1547 * every task struct that event->ctx->task could possibly point to 1548 * remains valid. This condition is satisifed when called through 1549 * perf_event_for_each_child or perf_event_for_each because they 1550 * hold the top-level event's child_mutex, so any descendant that 1551 * goes to exit will block in sync_child_event. 1552 * When called from perf_pending_event it's OK because event->ctx 1553 * is the current context on this CPU and preemption is disabled, 1554 * hence we can't get into perf_event_task_sched_out for this context. 1555 */ 1556 void perf_event_disable(struct perf_event *event) 1557 { 1558 struct perf_event_context *ctx = event->ctx; 1559 struct task_struct *task = ctx->task; 1560 1561 if (!task) { 1562 /* 1563 * Disable the event on the cpu that it's on 1564 */ 1565 cpu_function_call(event->cpu, __perf_event_disable, event); 1566 return; 1567 } 1568 1569 retry: 1570 if (!task_function_call(task, __perf_event_disable, event)) 1571 return; 1572 1573 raw_spin_lock_irq(&ctx->lock); 1574 /* 1575 * If the event is still active, we need to retry the cross-call. 1576 */ 1577 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1578 raw_spin_unlock_irq(&ctx->lock); 1579 /* 1580 * Reload the task pointer, it might have been changed by 1581 * a concurrent perf_event_context_sched_out(). 1582 */ 1583 task = ctx->task; 1584 goto retry; 1585 } 1586 1587 /* 1588 * Since we have the lock this context can't be scheduled 1589 * in, so we can change the state safely. 1590 */ 1591 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1592 update_group_times(event); 1593 event->state = PERF_EVENT_STATE_OFF; 1594 } 1595 raw_spin_unlock_irq(&ctx->lock); 1596 } 1597 EXPORT_SYMBOL_GPL(perf_event_disable); 1598 1599 static void perf_set_shadow_time(struct perf_event *event, 1600 struct perf_event_context *ctx, 1601 u64 tstamp) 1602 { 1603 /* 1604 * use the correct time source for the time snapshot 1605 * 1606 * We could get by without this by leveraging the 1607 * fact that to get to this function, the caller 1608 * has most likely already called update_context_time() 1609 * and update_cgrp_time_xx() and thus both timestamp 1610 * are identical (or very close). Given that tstamp is, 1611 * already adjusted for cgroup, we could say that: 1612 * tstamp - ctx->timestamp 1613 * is equivalent to 1614 * tstamp - cgrp->timestamp. 1615 * 1616 * Then, in perf_output_read(), the calculation would 1617 * work with no changes because: 1618 * - event is guaranteed scheduled in 1619 * - no scheduled out in between 1620 * - thus the timestamp would be the same 1621 * 1622 * But this is a bit hairy. 1623 * 1624 * So instead, we have an explicit cgroup call to remain 1625 * within the time time source all along. We believe it 1626 * is cleaner and simpler to understand. 1627 */ 1628 if (is_cgroup_event(event)) 1629 perf_cgroup_set_shadow_time(event, tstamp); 1630 else 1631 event->shadow_ctx_time = tstamp - ctx->timestamp; 1632 } 1633 1634 #define MAX_INTERRUPTS (~0ULL) 1635 1636 static void perf_log_throttle(struct perf_event *event, int enable); 1637 1638 static int 1639 event_sched_in(struct perf_event *event, 1640 struct perf_cpu_context *cpuctx, 1641 struct perf_event_context *ctx) 1642 { 1643 u64 tstamp = perf_event_time(event); 1644 1645 if (event->state <= PERF_EVENT_STATE_OFF) 1646 return 0; 1647 1648 event->state = PERF_EVENT_STATE_ACTIVE; 1649 event->oncpu = smp_processor_id(); 1650 1651 /* 1652 * Unthrottle events, since we scheduled we might have missed several 1653 * ticks already, also for a heavily scheduling task there is little 1654 * guarantee it'll get a tick in a timely manner. 1655 */ 1656 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1657 perf_log_throttle(event, 1); 1658 event->hw.interrupts = 0; 1659 } 1660 1661 /* 1662 * The new state must be visible before we turn it on in the hardware: 1663 */ 1664 smp_wmb(); 1665 1666 if (event->pmu->add(event, PERF_EF_START)) { 1667 event->state = PERF_EVENT_STATE_INACTIVE; 1668 event->oncpu = -1; 1669 return -EAGAIN; 1670 } 1671 1672 event->tstamp_running += tstamp - event->tstamp_stopped; 1673 1674 perf_set_shadow_time(event, ctx, tstamp); 1675 1676 if (!is_software_event(event)) 1677 cpuctx->active_oncpu++; 1678 ctx->nr_active++; 1679 if (event->attr.freq && event->attr.sample_freq) 1680 ctx->nr_freq++; 1681 1682 if (event->attr.exclusive) 1683 cpuctx->exclusive = 1; 1684 1685 return 0; 1686 } 1687 1688 static int 1689 group_sched_in(struct perf_event *group_event, 1690 struct perf_cpu_context *cpuctx, 1691 struct perf_event_context *ctx) 1692 { 1693 struct perf_event *event, *partial_group = NULL; 1694 struct pmu *pmu = group_event->pmu; 1695 u64 now = ctx->time; 1696 bool simulate = false; 1697 1698 if (group_event->state == PERF_EVENT_STATE_OFF) 1699 return 0; 1700 1701 pmu->start_txn(pmu); 1702 1703 if (event_sched_in(group_event, cpuctx, ctx)) { 1704 pmu->cancel_txn(pmu); 1705 perf_cpu_hrtimer_restart(cpuctx); 1706 return -EAGAIN; 1707 } 1708 1709 /* 1710 * Schedule in siblings as one group (if any): 1711 */ 1712 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1713 if (event_sched_in(event, cpuctx, ctx)) { 1714 partial_group = event; 1715 goto group_error; 1716 } 1717 } 1718 1719 if (!pmu->commit_txn(pmu)) 1720 return 0; 1721 1722 group_error: 1723 /* 1724 * Groups can be scheduled in as one unit only, so undo any 1725 * partial group before returning: 1726 * The events up to the failed event are scheduled out normally, 1727 * tstamp_stopped will be updated. 1728 * 1729 * The failed events and the remaining siblings need to have 1730 * their timings updated as if they had gone thru event_sched_in() 1731 * and event_sched_out(). This is required to get consistent timings 1732 * across the group. This also takes care of the case where the group 1733 * could never be scheduled by ensuring tstamp_stopped is set to mark 1734 * the time the event was actually stopped, such that time delta 1735 * calculation in update_event_times() is correct. 1736 */ 1737 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1738 if (event == partial_group) 1739 simulate = true; 1740 1741 if (simulate) { 1742 event->tstamp_running += now - event->tstamp_stopped; 1743 event->tstamp_stopped = now; 1744 } else { 1745 event_sched_out(event, cpuctx, ctx); 1746 } 1747 } 1748 event_sched_out(group_event, cpuctx, ctx); 1749 1750 pmu->cancel_txn(pmu); 1751 1752 perf_cpu_hrtimer_restart(cpuctx); 1753 1754 return -EAGAIN; 1755 } 1756 1757 /* 1758 * Work out whether we can put this event group on the CPU now. 1759 */ 1760 static int group_can_go_on(struct perf_event *event, 1761 struct perf_cpu_context *cpuctx, 1762 int can_add_hw) 1763 { 1764 /* 1765 * Groups consisting entirely of software events can always go on. 1766 */ 1767 if (event->group_flags & PERF_GROUP_SOFTWARE) 1768 return 1; 1769 /* 1770 * If an exclusive group is already on, no other hardware 1771 * events can go on. 1772 */ 1773 if (cpuctx->exclusive) 1774 return 0; 1775 /* 1776 * If this group is exclusive and there are already 1777 * events on the CPU, it can't go on. 1778 */ 1779 if (event->attr.exclusive && cpuctx->active_oncpu) 1780 return 0; 1781 /* 1782 * Otherwise, try to add it if all previous groups were able 1783 * to go on. 1784 */ 1785 return can_add_hw; 1786 } 1787 1788 static void add_event_to_ctx(struct perf_event *event, 1789 struct perf_event_context *ctx) 1790 { 1791 u64 tstamp = perf_event_time(event); 1792 1793 list_add_event(event, ctx); 1794 perf_group_attach(event); 1795 event->tstamp_enabled = tstamp; 1796 event->tstamp_running = tstamp; 1797 event->tstamp_stopped = tstamp; 1798 } 1799 1800 static void task_ctx_sched_out(struct perf_event_context *ctx); 1801 static void 1802 ctx_sched_in(struct perf_event_context *ctx, 1803 struct perf_cpu_context *cpuctx, 1804 enum event_type_t event_type, 1805 struct task_struct *task); 1806 1807 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1808 struct perf_event_context *ctx, 1809 struct task_struct *task) 1810 { 1811 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1812 if (ctx) 1813 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1814 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1815 if (ctx) 1816 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1817 } 1818 1819 /* 1820 * Cross CPU call to install and enable a performance event 1821 * 1822 * Must be called with ctx->mutex held 1823 */ 1824 static int __perf_install_in_context(void *info) 1825 { 1826 struct perf_event *event = info; 1827 struct perf_event_context *ctx = event->ctx; 1828 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1829 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1830 struct task_struct *task = current; 1831 1832 perf_ctx_lock(cpuctx, task_ctx); 1833 perf_pmu_disable(cpuctx->ctx.pmu); 1834 1835 /* 1836 * If there was an active task_ctx schedule it out. 1837 */ 1838 if (task_ctx) 1839 task_ctx_sched_out(task_ctx); 1840 1841 /* 1842 * If the context we're installing events in is not the 1843 * active task_ctx, flip them. 1844 */ 1845 if (ctx->task && task_ctx != ctx) { 1846 if (task_ctx) 1847 raw_spin_unlock(&task_ctx->lock); 1848 raw_spin_lock(&ctx->lock); 1849 task_ctx = ctx; 1850 } 1851 1852 if (task_ctx) { 1853 cpuctx->task_ctx = task_ctx; 1854 task = task_ctx->task; 1855 } 1856 1857 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1858 1859 update_context_time(ctx); 1860 /* 1861 * update cgrp time only if current cgrp 1862 * matches event->cgrp. Must be done before 1863 * calling add_event_to_ctx() 1864 */ 1865 update_cgrp_time_from_event(event); 1866 1867 add_event_to_ctx(event, ctx); 1868 1869 /* 1870 * Schedule everything back in 1871 */ 1872 perf_event_sched_in(cpuctx, task_ctx, task); 1873 1874 perf_pmu_enable(cpuctx->ctx.pmu); 1875 perf_ctx_unlock(cpuctx, task_ctx); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * Attach a performance event to a context 1882 * 1883 * First we add the event to the list with the hardware enable bit 1884 * in event->hw_config cleared. 1885 * 1886 * If the event is attached to a task which is on a CPU we use a smp 1887 * call to enable it in the task context. The task might have been 1888 * scheduled away, but we check this in the smp call again. 1889 */ 1890 static void 1891 perf_install_in_context(struct perf_event_context *ctx, 1892 struct perf_event *event, 1893 int cpu) 1894 { 1895 struct task_struct *task = ctx->task; 1896 1897 lockdep_assert_held(&ctx->mutex); 1898 1899 event->ctx = ctx; 1900 if (event->cpu != -1) 1901 event->cpu = cpu; 1902 1903 if (!task) { 1904 /* 1905 * Per cpu events are installed via an smp call and 1906 * the install is always successful. 1907 */ 1908 cpu_function_call(cpu, __perf_install_in_context, event); 1909 return; 1910 } 1911 1912 retry: 1913 if (!task_function_call(task, __perf_install_in_context, event)) 1914 return; 1915 1916 raw_spin_lock_irq(&ctx->lock); 1917 /* 1918 * If we failed to find a running task, but find the context active now 1919 * that we've acquired the ctx->lock, retry. 1920 */ 1921 if (ctx->is_active) { 1922 raw_spin_unlock_irq(&ctx->lock); 1923 goto retry; 1924 } 1925 1926 /* 1927 * Since the task isn't running, its safe to add the event, us holding 1928 * the ctx->lock ensures the task won't get scheduled in. 1929 */ 1930 add_event_to_ctx(event, ctx); 1931 raw_spin_unlock_irq(&ctx->lock); 1932 } 1933 1934 /* 1935 * Put a event into inactive state and update time fields. 1936 * Enabling the leader of a group effectively enables all 1937 * the group members that aren't explicitly disabled, so we 1938 * have to update their ->tstamp_enabled also. 1939 * Note: this works for group members as well as group leaders 1940 * since the non-leader members' sibling_lists will be empty. 1941 */ 1942 static void __perf_event_mark_enabled(struct perf_event *event) 1943 { 1944 struct perf_event *sub; 1945 u64 tstamp = perf_event_time(event); 1946 1947 event->state = PERF_EVENT_STATE_INACTIVE; 1948 event->tstamp_enabled = tstamp - event->total_time_enabled; 1949 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1952 } 1953 } 1954 1955 /* 1956 * Cross CPU call to enable a performance event 1957 */ 1958 static int __perf_event_enable(void *info) 1959 { 1960 struct perf_event *event = info; 1961 struct perf_event_context *ctx = event->ctx; 1962 struct perf_event *leader = event->group_leader; 1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1964 int err; 1965 1966 /* 1967 * There's a time window between 'ctx->is_active' check 1968 * in perf_event_enable function and this place having: 1969 * - IRQs on 1970 * - ctx->lock unlocked 1971 * 1972 * where the task could be killed and 'ctx' deactivated 1973 * by perf_event_exit_task. 1974 */ 1975 if (!ctx->is_active) 1976 return -EINVAL; 1977 1978 raw_spin_lock(&ctx->lock); 1979 update_context_time(ctx); 1980 1981 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1982 goto unlock; 1983 1984 /* 1985 * set current task's cgroup time reference point 1986 */ 1987 perf_cgroup_set_timestamp(current, ctx); 1988 1989 __perf_event_mark_enabled(event); 1990 1991 if (!event_filter_match(event)) { 1992 if (is_cgroup_event(event)) 1993 perf_cgroup_defer_enabled(event); 1994 goto unlock; 1995 } 1996 1997 /* 1998 * If the event is in a group and isn't the group leader, 1999 * then don't put it on unless the group is on. 2000 */ 2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2002 goto unlock; 2003 2004 if (!group_can_go_on(event, cpuctx, 1)) { 2005 err = -EEXIST; 2006 } else { 2007 if (event == leader) 2008 err = group_sched_in(event, cpuctx, ctx); 2009 else 2010 err = event_sched_in(event, cpuctx, ctx); 2011 } 2012 2013 if (err) { 2014 /* 2015 * If this event can't go on and it's part of a 2016 * group, then the whole group has to come off. 2017 */ 2018 if (leader != event) { 2019 group_sched_out(leader, cpuctx, ctx); 2020 perf_cpu_hrtimer_restart(cpuctx); 2021 } 2022 if (leader->attr.pinned) { 2023 update_group_times(leader); 2024 leader->state = PERF_EVENT_STATE_ERROR; 2025 } 2026 } 2027 2028 unlock: 2029 raw_spin_unlock(&ctx->lock); 2030 2031 return 0; 2032 } 2033 2034 /* 2035 * Enable a event. 2036 * 2037 * If event->ctx is a cloned context, callers must make sure that 2038 * every task struct that event->ctx->task could possibly point to 2039 * remains valid. This condition is satisfied when called through 2040 * perf_event_for_each_child or perf_event_for_each as described 2041 * for perf_event_disable. 2042 */ 2043 void perf_event_enable(struct perf_event *event) 2044 { 2045 struct perf_event_context *ctx = event->ctx; 2046 struct task_struct *task = ctx->task; 2047 2048 if (!task) { 2049 /* 2050 * Enable the event on the cpu that it's on 2051 */ 2052 cpu_function_call(event->cpu, __perf_event_enable, event); 2053 return; 2054 } 2055 2056 raw_spin_lock_irq(&ctx->lock); 2057 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2058 goto out; 2059 2060 /* 2061 * If the event is in error state, clear that first. 2062 * That way, if we see the event in error state below, we 2063 * know that it has gone back into error state, as distinct 2064 * from the task having been scheduled away before the 2065 * cross-call arrived. 2066 */ 2067 if (event->state == PERF_EVENT_STATE_ERROR) 2068 event->state = PERF_EVENT_STATE_OFF; 2069 2070 retry: 2071 if (!ctx->is_active) { 2072 __perf_event_mark_enabled(event); 2073 goto out; 2074 } 2075 2076 raw_spin_unlock_irq(&ctx->lock); 2077 2078 if (!task_function_call(task, __perf_event_enable, event)) 2079 return; 2080 2081 raw_spin_lock_irq(&ctx->lock); 2082 2083 /* 2084 * If the context is active and the event is still off, 2085 * we need to retry the cross-call. 2086 */ 2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2088 /* 2089 * task could have been flipped by a concurrent 2090 * perf_event_context_sched_out() 2091 */ 2092 task = ctx->task; 2093 goto retry; 2094 } 2095 2096 out: 2097 raw_spin_unlock_irq(&ctx->lock); 2098 } 2099 EXPORT_SYMBOL_GPL(perf_event_enable); 2100 2101 int perf_event_refresh(struct perf_event *event, int refresh) 2102 { 2103 /* 2104 * not supported on inherited events 2105 */ 2106 if (event->attr.inherit || !is_sampling_event(event)) 2107 return -EINVAL; 2108 2109 atomic_add(refresh, &event->event_limit); 2110 perf_event_enable(event); 2111 2112 return 0; 2113 } 2114 EXPORT_SYMBOL_GPL(perf_event_refresh); 2115 2116 static void ctx_sched_out(struct perf_event_context *ctx, 2117 struct perf_cpu_context *cpuctx, 2118 enum event_type_t event_type) 2119 { 2120 struct perf_event *event; 2121 int is_active = ctx->is_active; 2122 2123 ctx->is_active &= ~event_type; 2124 if (likely(!ctx->nr_events)) 2125 return; 2126 2127 update_context_time(ctx); 2128 update_cgrp_time_from_cpuctx(cpuctx); 2129 if (!ctx->nr_active) 2130 return; 2131 2132 perf_pmu_disable(ctx->pmu); 2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2135 group_sched_out(event, cpuctx, ctx); 2136 } 2137 2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2140 group_sched_out(event, cpuctx, ctx); 2141 } 2142 perf_pmu_enable(ctx->pmu); 2143 } 2144 2145 /* 2146 * Test whether two contexts are equivalent, i.e. whether they 2147 * have both been cloned from the same version of the same context 2148 * and they both have the same number of enabled events. 2149 * If the number of enabled events is the same, then the set 2150 * of enabled events should be the same, because these are both 2151 * inherited contexts, therefore we can't access individual events 2152 * in them directly with an fd; we can only enable/disable all 2153 * events via prctl, or enable/disable all events in a family 2154 * via ioctl, which will have the same effect on both contexts. 2155 */ 2156 static int context_equiv(struct perf_event_context *ctx1, 2157 struct perf_event_context *ctx2) 2158 { 2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 2160 && ctx1->parent_gen == ctx2->parent_gen 2161 && !ctx1->pin_count && !ctx2->pin_count; 2162 } 2163 2164 static void __perf_event_sync_stat(struct perf_event *event, 2165 struct perf_event *next_event) 2166 { 2167 u64 value; 2168 2169 if (!event->attr.inherit_stat) 2170 return; 2171 2172 /* 2173 * Update the event value, we cannot use perf_event_read() 2174 * because we're in the middle of a context switch and have IRQs 2175 * disabled, which upsets smp_call_function_single(), however 2176 * we know the event must be on the current CPU, therefore we 2177 * don't need to use it. 2178 */ 2179 switch (event->state) { 2180 case PERF_EVENT_STATE_ACTIVE: 2181 event->pmu->read(event); 2182 /* fall-through */ 2183 2184 case PERF_EVENT_STATE_INACTIVE: 2185 update_event_times(event); 2186 break; 2187 2188 default: 2189 break; 2190 } 2191 2192 /* 2193 * In order to keep per-task stats reliable we need to flip the event 2194 * values when we flip the contexts. 2195 */ 2196 value = local64_read(&next_event->count); 2197 value = local64_xchg(&event->count, value); 2198 local64_set(&next_event->count, value); 2199 2200 swap(event->total_time_enabled, next_event->total_time_enabled); 2201 swap(event->total_time_running, next_event->total_time_running); 2202 2203 /* 2204 * Since we swizzled the values, update the user visible data too. 2205 */ 2206 perf_event_update_userpage(event); 2207 perf_event_update_userpage(next_event); 2208 } 2209 2210 #define list_next_entry(pos, member) \ 2211 list_entry(pos->member.next, typeof(*pos), member) 2212 2213 static void perf_event_sync_stat(struct perf_event_context *ctx, 2214 struct perf_event_context *next_ctx) 2215 { 2216 struct perf_event *event, *next_event; 2217 2218 if (!ctx->nr_stat) 2219 return; 2220 2221 update_context_time(ctx); 2222 2223 event = list_first_entry(&ctx->event_list, 2224 struct perf_event, event_entry); 2225 2226 next_event = list_first_entry(&next_ctx->event_list, 2227 struct perf_event, event_entry); 2228 2229 while (&event->event_entry != &ctx->event_list && 2230 &next_event->event_entry != &next_ctx->event_list) { 2231 2232 __perf_event_sync_stat(event, next_event); 2233 2234 event = list_next_entry(event, event_entry); 2235 next_event = list_next_entry(next_event, event_entry); 2236 } 2237 } 2238 2239 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2240 struct task_struct *next) 2241 { 2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2243 struct perf_event_context *next_ctx; 2244 struct perf_event_context *parent; 2245 struct perf_cpu_context *cpuctx; 2246 int do_switch = 1; 2247 2248 if (likely(!ctx)) 2249 return; 2250 2251 cpuctx = __get_cpu_context(ctx); 2252 if (!cpuctx->task_ctx) 2253 return; 2254 2255 rcu_read_lock(); 2256 parent = rcu_dereference(ctx->parent_ctx); 2257 next_ctx = next->perf_event_ctxp[ctxn]; 2258 if (parent && next_ctx && 2259 rcu_dereference(next_ctx->parent_ctx) == parent) { 2260 /* 2261 * Looks like the two contexts are clones, so we might be 2262 * able to optimize the context switch. We lock both 2263 * contexts and check that they are clones under the 2264 * lock (including re-checking that neither has been 2265 * uncloned in the meantime). It doesn't matter which 2266 * order we take the locks because no other cpu could 2267 * be trying to lock both of these tasks. 2268 */ 2269 raw_spin_lock(&ctx->lock); 2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2271 if (context_equiv(ctx, next_ctx)) { 2272 /* 2273 * XXX do we need a memory barrier of sorts 2274 * wrt to rcu_dereference() of perf_event_ctxp 2275 */ 2276 task->perf_event_ctxp[ctxn] = next_ctx; 2277 next->perf_event_ctxp[ctxn] = ctx; 2278 ctx->task = next; 2279 next_ctx->task = task; 2280 do_switch = 0; 2281 2282 perf_event_sync_stat(ctx, next_ctx); 2283 } 2284 raw_spin_unlock(&next_ctx->lock); 2285 raw_spin_unlock(&ctx->lock); 2286 } 2287 rcu_read_unlock(); 2288 2289 if (do_switch) { 2290 raw_spin_lock(&ctx->lock); 2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2292 cpuctx->task_ctx = NULL; 2293 raw_spin_unlock(&ctx->lock); 2294 } 2295 } 2296 2297 #define for_each_task_context_nr(ctxn) \ 2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2299 2300 /* 2301 * Called from scheduler to remove the events of the current task, 2302 * with interrupts disabled. 2303 * 2304 * We stop each event and update the event value in event->count. 2305 * 2306 * This does not protect us against NMI, but disable() 2307 * sets the disabled bit in the control field of event _before_ 2308 * accessing the event control register. If a NMI hits, then it will 2309 * not restart the event. 2310 */ 2311 void __perf_event_task_sched_out(struct task_struct *task, 2312 struct task_struct *next) 2313 { 2314 int ctxn; 2315 2316 for_each_task_context_nr(ctxn) 2317 perf_event_context_sched_out(task, ctxn, next); 2318 2319 /* 2320 * if cgroup events exist on this CPU, then we need 2321 * to check if we have to switch out PMU state. 2322 * cgroup event are system-wide mode only 2323 */ 2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2325 perf_cgroup_sched_out(task, next); 2326 } 2327 2328 static void task_ctx_sched_out(struct perf_event_context *ctx) 2329 { 2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2331 2332 if (!cpuctx->task_ctx) 2333 return; 2334 2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2336 return; 2337 2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2339 cpuctx->task_ctx = NULL; 2340 } 2341 2342 /* 2343 * Called with IRQs disabled 2344 */ 2345 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2346 enum event_type_t event_type) 2347 { 2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2349 } 2350 2351 static void 2352 ctx_pinned_sched_in(struct perf_event_context *ctx, 2353 struct perf_cpu_context *cpuctx) 2354 { 2355 struct perf_event *event; 2356 2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2358 if (event->state <= PERF_EVENT_STATE_OFF) 2359 continue; 2360 if (!event_filter_match(event)) 2361 continue; 2362 2363 /* may need to reset tstamp_enabled */ 2364 if (is_cgroup_event(event)) 2365 perf_cgroup_mark_enabled(event, ctx); 2366 2367 if (group_can_go_on(event, cpuctx, 1)) 2368 group_sched_in(event, cpuctx, ctx); 2369 2370 /* 2371 * If this pinned group hasn't been scheduled, 2372 * put it in error state. 2373 */ 2374 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2375 update_group_times(event); 2376 event->state = PERF_EVENT_STATE_ERROR; 2377 } 2378 } 2379 } 2380 2381 static void 2382 ctx_flexible_sched_in(struct perf_event_context *ctx, 2383 struct perf_cpu_context *cpuctx) 2384 { 2385 struct perf_event *event; 2386 int can_add_hw = 1; 2387 2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2389 /* Ignore events in OFF or ERROR state */ 2390 if (event->state <= PERF_EVENT_STATE_OFF) 2391 continue; 2392 /* 2393 * Listen to the 'cpu' scheduling filter constraint 2394 * of events: 2395 */ 2396 if (!event_filter_match(event)) 2397 continue; 2398 2399 /* may need to reset tstamp_enabled */ 2400 if (is_cgroup_event(event)) 2401 perf_cgroup_mark_enabled(event, ctx); 2402 2403 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2404 if (group_sched_in(event, cpuctx, ctx)) 2405 can_add_hw = 0; 2406 } 2407 } 2408 } 2409 2410 static void 2411 ctx_sched_in(struct perf_event_context *ctx, 2412 struct perf_cpu_context *cpuctx, 2413 enum event_type_t event_type, 2414 struct task_struct *task) 2415 { 2416 u64 now; 2417 int is_active = ctx->is_active; 2418 2419 ctx->is_active |= event_type; 2420 if (likely(!ctx->nr_events)) 2421 return; 2422 2423 now = perf_clock(); 2424 ctx->timestamp = now; 2425 perf_cgroup_set_timestamp(task, ctx); 2426 /* 2427 * First go through the list and put on any pinned groups 2428 * in order to give them the best chance of going on. 2429 */ 2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2431 ctx_pinned_sched_in(ctx, cpuctx); 2432 2433 /* Then walk through the lower prio flexible groups */ 2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2435 ctx_flexible_sched_in(ctx, cpuctx); 2436 } 2437 2438 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2439 enum event_type_t event_type, 2440 struct task_struct *task) 2441 { 2442 struct perf_event_context *ctx = &cpuctx->ctx; 2443 2444 ctx_sched_in(ctx, cpuctx, event_type, task); 2445 } 2446 2447 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2448 struct task_struct *task) 2449 { 2450 struct perf_cpu_context *cpuctx; 2451 2452 cpuctx = __get_cpu_context(ctx); 2453 if (cpuctx->task_ctx == ctx) 2454 return; 2455 2456 perf_ctx_lock(cpuctx, ctx); 2457 perf_pmu_disable(ctx->pmu); 2458 /* 2459 * We want to keep the following priority order: 2460 * cpu pinned (that don't need to move), task pinned, 2461 * cpu flexible, task flexible. 2462 */ 2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2464 2465 if (ctx->nr_events) 2466 cpuctx->task_ctx = ctx; 2467 2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2469 2470 perf_pmu_enable(ctx->pmu); 2471 perf_ctx_unlock(cpuctx, ctx); 2472 2473 /* 2474 * Since these rotations are per-cpu, we need to ensure the 2475 * cpu-context we got scheduled on is actually rotating. 2476 */ 2477 perf_pmu_rotate_start(ctx->pmu); 2478 } 2479 2480 /* 2481 * When sampling the branck stack in system-wide, it may be necessary 2482 * to flush the stack on context switch. This happens when the branch 2483 * stack does not tag its entries with the pid of the current task. 2484 * Otherwise it becomes impossible to associate a branch entry with a 2485 * task. This ambiguity is more likely to appear when the branch stack 2486 * supports priv level filtering and the user sets it to monitor only 2487 * at the user level (which could be a useful measurement in system-wide 2488 * mode). In that case, the risk is high of having a branch stack with 2489 * branch from multiple tasks. Flushing may mean dropping the existing 2490 * entries or stashing them somewhere in the PMU specific code layer. 2491 * 2492 * This function provides the context switch callback to the lower code 2493 * layer. It is invoked ONLY when there is at least one system-wide context 2494 * with at least one active event using taken branch sampling. 2495 */ 2496 static void perf_branch_stack_sched_in(struct task_struct *prev, 2497 struct task_struct *task) 2498 { 2499 struct perf_cpu_context *cpuctx; 2500 struct pmu *pmu; 2501 unsigned long flags; 2502 2503 /* no need to flush branch stack if not changing task */ 2504 if (prev == task) 2505 return; 2506 2507 local_irq_save(flags); 2508 2509 rcu_read_lock(); 2510 2511 list_for_each_entry_rcu(pmu, &pmus, entry) { 2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2513 2514 /* 2515 * check if the context has at least one 2516 * event using PERF_SAMPLE_BRANCH_STACK 2517 */ 2518 if (cpuctx->ctx.nr_branch_stack > 0 2519 && pmu->flush_branch_stack) { 2520 2521 pmu = cpuctx->ctx.pmu; 2522 2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2524 2525 perf_pmu_disable(pmu); 2526 2527 pmu->flush_branch_stack(); 2528 2529 perf_pmu_enable(pmu); 2530 2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2532 } 2533 } 2534 2535 rcu_read_unlock(); 2536 2537 local_irq_restore(flags); 2538 } 2539 2540 /* 2541 * Called from scheduler to add the events of the current task 2542 * with interrupts disabled. 2543 * 2544 * We restore the event value and then enable it. 2545 * 2546 * This does not protect us against NMI, but enable() 2547 * sets the enabled bit in the control field of event _before_ 2548 * accessing the event control register. If a NMI hits, then it will 2549 * keep the event running. 2550 */ 2551 void __perf_event_task_sched_in(struct task_struct *prev, 2552 struct task_struct *task) 2553 { 2554 struct perf_event_context *ctx; 2555 int ctxn; 2556 2557 for_each_task_context_nr(ctxn) { 2558 ctx = task->perf_event_ctxp[ctxn]; 2559 if (likely(!ctx)) 2560 continue; 2561 2562 perf_event_context_sched_in(ctx, task); 2563 } 2564 /* 2565 * if cgroup events exist on this CPU, then we need 2566 * to check if we have to switch in PMU state. 2567 * cgroup event are system-wide mode only 2568 */ 2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2570 perf_cgroup_sched_in(prev, task); 2571 2572 /* check for system-wide branch_stack events */ 2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2574 perf_branch_stack_sched_in(prev, task); 2575 } 2576 2577 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2578 { 2579 u64 frequency = event->attr.sample_freq; 2580 u64 sec = NSEC_PER_SEC; 2581 u64 divisor, dividend; 2582 2583 int count_fls, nsec_fls, frequency_fls, sec_fls; 2584 2585 count_fls = fls64(count); 2586 nsec_fls = fls64(nsec); 2587 frequency_fls = fls64(frequency); 2588 sec_fls = 30; 2589 2590 /* 2591 * We got @count in @nsec, with a target of sample_freq HZ 2592 * the target period becomes: 2593 * 2594 * @count * 10^9 2595 * period = ------------------- 2596 * @nsec * sample_freq 2597 * 2598 */ 2599 2600 /* 2601 * Reduce accuracy by one bit such that @a and @b converge 2602 * to a similar magnitude. 2603 */ 2604 #define REDUCE_FLS(a, b) \ 2605 do { \ 2606 if (a##_fls > b##_fls) { \ 2607 a >>= 1; \ 2608 a##_fls--; \ 2609 } else { \ 2610 b >>= 1; \ 2611 b##_fls--; \ 2612 } \ 2613 } while (0) 2614 2615 /* 2616 * Reduce accuracy until either term fits in a u64, then proceed with 2617 * the other, so that finally we can do a u64/u64 division. 2618 */ 2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2620 REDUCE_FLS(nsec, frequency); 2621 REDUCE_FLS(sec, count); 2622 } 2623 2624 if (count_fls + sec_fls > 64) { 2625 divisor = nsec * frequency; 2626 2627 while (count_fls + sec_fls > 64) { 2628 REDUCE_FLS(count, sec); 2629 divisor >>= 1; 2630 } 2631 2632 dividend = count * sec; 2633 } else { 2634 dividend = count * sec; 2635 2636 while (nsec_fls + frequency_fls > 64) { 2637 REDUCE_FLS(nsec, frequency); 2638 dividend >>= 1; 2639 } 2640 2641 divisor = nsec * frequency; 2642 } 2643 2644 if (!divisor) 2645 return dividend; 2646 2647 return div64_u64(dividend, divisor); 2648 } 2649 2650 static DEFINE_PER_CPU(int, perf_throttled_count); 2651 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2652 2653 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2654 { 2655 struct hw_perf_event *hwc = &event->hw; 2656 s64 period, sample_period; 2657 s64 delta; 2658 2659 period = perf_calculate_period(event, nsec, count); 2660 2661 delta = (s64)(period - hwc->sample_period); 2662 delta = (delta + 7) / 8; /* low pass filter */ 2663 2664 sample_period = hwc->sample_period + delta; 2665 2666 if (!sample_period) 2667 sample_period = 1; 2668 2669 hwc->sample_period = sample_period; 2670 2671 if (local64_read(&hwc->period_left) > 8*sample_period) { 2672 if (disable) 2673 event->pmu->stop(event, PERF_EF_UPDATE); 2674 2675 local64_set(&hwc->period_left, 0); 2676 2677 if (disable) 2678 event->pmu->start(event, PERF_EF_RELOAD); 2679 } 2680 } 2681 2682 /* 2683 * combine freq adjustment with unthrottling to avoid two passes over the 2684 * events. At the same time, make sure, having freq events does not change 2685 * the rate of unthrottling as that would introduce bias. 2686 */ 2687 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2688 int needs_unthr) 2689 { 2690 struct perf_event *event; 2691 struct hw_perf_event *hwc; 2692 u64 now, period = TICK_NSEC; 2693 s64 delta; 2694 2695 /* 2696 * only need to iterate over all events iff: 2697 * - context have events in frequency mode (needs freq adjust) 2698 * - there are events to unthrottle on this cpu 2699 */ 2700 if (!(ctx->nr_freq || needs_unthr)) 2701 return; 2702 2703 raw_spin_lock(&ctx->lock); 2704 perf_pmu_disable(ctx->pmu); 2705 2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2707 if (event->state != PERF_EVENT_STATE_ACTIVE) 2708 continue; 2709 2710 if (!event_filter_match(event)) 2711 continue; 2712 2713 hwc = &event->hw; 2714 2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2716 hwc->interrupts = 0; 2717 perf_log_throttle(event, 1); 2718 event->pmu->start(event, 0); 2719 } 2720 2721 if (!event->attr.freq || !event->attr.sample_freq) 2722 continue; 2723 2724 /* 2725 * stop the event and update event->count 2726 */ 2727 event->pmu->stop(event, PERF_EF_UPDATE); 2728 2729 now = local64_read(&event->count); 2730 delta = now - hwc->freq_count_stamp; 2731 hwc->freq_count_stamp = now; 2732 2733 /* 2734 * restart the event 2735 * reload only if value has changed 2736 * we have stopped the event so tell that 2737 * to perf_adjust_period() to avoid stopping it 2738 * twice. 2739 */ 2740 if (delta > 0) 2741 perf_adjust_period(event, period, delta, false); 2742 2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2744 } 2745 2746 perf_pmu_enable(ctx->pmu); 2747 raw_spin_unlock(&ctx->lock); 2748 } 2749 2750 /* 2751 * Round-robin a context's events: 2752 */ 2753 static void rotate_ctx(struct perf_event_context *ctx) 2754 { 2755 /* 2756 * Rotate the first entry last of non-pinned groups. Rotation might be 2757 * disabled by the inheritance code. 2758 */ 2759 if (!ctx->rotate_disable) 2760 list_rotate_left(&ctx->flexible_groups); 2761 } 2762 2763 /* 2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2765 * because they're strictly cpu affine and rotate_start is called with IRQs 2766 * disabled, while rotate_context is called from IRQ context. 2767 */ 2768 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2769 { 2770 struct perf_event_context *ctx = NULL; 2771 int rotate = 0, remove = 1; 2772 2773 if (cpuctx->ctx.nr_events) { 2774 remove = 0; 2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2776 rotate = 1; 2777 } 2778 2779 ctx = cpuctx->task_ctx; 2780 if (ctx && ctx->nr_events) { 2781 remove = 0; 2782 if (ctx->nr_events != ctx->nr_active) 2783 rotate = 1; 2784 } 2785 2786 if (!rotate) 2787 goto done; 2788 2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2790 perf_pmu_disable(cpuctx->ctx.pmu); 2791 2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2793 if (ctx) 2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2795 2796 rotate_ctx(&cpuctx->ctx); 2797 if (ctx) 2798 rotate_ctx(ctx); 2799 2800 perf_event_sched_in(cpuctx, ctx, current); 2801 2802 perf_pmu_enable(cpuctx->ctx.pmu); 2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2804 done: 2805 if (remove) 2806 list_del_init(&cpuctx->rotation_list); 2807 2808 return rotate; 2809 } 2810 2811 #ifdef CONFIG_NO_HZ_FULL 2812 bool perf_event_can_stop_tick(void) 2813 { 2814 if (list_empty(&__get_cpu_var(rotation_list))) 2815 return true; 2816 else 2817 return false; 2818 } 2819 #endif 2820 2821 void perf_event_task_tick(void) 2822 { 2823 struct list_head *head = &__get_cpu_var(rotation_list); 2824 struct perf_cpu_context *cpuctx, *tmp; 2825 struct perf_event_context *ctx; 2826 int throttled; 2827 2828 WARN_ON(!irqs_disabled()); 2829 2830 __this_cpu_inc(perf_throttled_seq); 2831 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2832 2833 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2834 ctx = &cpuctx->ctx; 2835 perf_adjust_freq_unthr_context(ctx, throttled); 2836 2837 ctx = cpuctx->task_ctx; 2838 if (ctx) 2839 perf_adjust_freq_unthr_context(ctx, throttled); 2840 } 2841 } 2842 2843 static int event_enable_on_exec(struct perf_event *event, 2844 struct perf_event_context *ctx) 2845 { 2846 if (!event->attr.enable_on_exec) 2847 return 0; 2848 2849 event->attr.enable_on_exec = 0; 2850 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2851 return 0; 2852 2853 __perf_event_mark_enabled(event); 2854 2855 return 1; 2856 } 2857 2858 /* 2859 * Enable all of a task's events that have been marked enable-on-exec. 2860 * This expects task == current. 2861 */ 2862 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2863 { 2864 struct perf_event *event; 2865 unsigned long flags; 2866 int enabled = 0; 2867 int ret; 2868 2869 local_irq_save(flags); 2870 if (!ctx || !ctx->nr_events) 2871 goto out; 2872 2873 /* 2874 * We must ctxsw out cgroup events to avoid conflict 2875 * when invoking perf_task_event_sched_in() later on 2876 * in this function. Otherwise we end up trying to 2877 * ctxswin cgroup events which are already scheduled 2878 * in. 2879 */ 2880 perf_cgroup_sched_out(current, NULL); 2881 2882 raw_spin_lock(&ctx->lock); 2883 task_ctx_sched_out(ctx); 2884 2885 list_for_each_entry(event, &ctx->event_list, event_entry) { 2886 ret = event_enable_on_exec(event, ctx); 2887 if (ret) 2888 enabled = 1; 2889 } 2890 2891 /* 2892 * Unclone this context if we enabled any event. 2893 */ 2894 if (enabled) 2895 unclone_ctx(ctx); 2896 2897 raw_spin_unlock(&ctx->lock); 2898 2899 /* 2900 * Also calls ctxswin for cgroup events, if any: 2901 */ 2902 perf_event_context_sched_in(ctx, ctx->task); 2903 out: 2904 local_irq_restore(flags); 2905 } 2906 2907 /* 2908 * Cross CPU call to read the hardware event 2909 */ 2910 static void __perf_event_read(void *info) 2911 { 2912 struct perf_event *event = info; 2913 struct perf_event_context *ctx = event->ctx; 2914 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2915 2916 /* 2917 * If this is a task context, we need to check whether it is 2918 * the current task context of this cpu. If not it has been 2919 * scheduled out before the smp call arrived. In that case 2920 * event->count would have been updated to a recent sample 2921 * when the event was scheduled out. 2922 */ 2923 if (ctx->task && cpuctx->task_ctx != ctx) 2924 return; 2925 2926 raw_spin_lock(&ctx->lock); 2927 if (ctx->is_active) { 2928 update_context_time(ctx); 2929 update_cgrp_time_from_event(event); 2930 } 2931 update_event_times(event); 2932 if (event->state == PERF_EVENT_STATE_ACTIVE) 2933 event->pmu->read(event); 2934 raw_spin_unlock(&ctx->lock); 2935 } 2936 2937 static inline u64 perf_event_count(struct perf_event *event) 2938 { 2939 return local64_read(&event->count) + atomic64_read(&event->child_count); 2940 } 2941 2942 static u64 perf_event_read(struct perf_event *event) 2943 { 2944 /* 2945 * If event is enabled and currently active on a CPU, update the 2946 * value in the event structure: 2947 */ 2948 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2949 smp_call_function_single(event->oncpu, 2950 __perf_event_read, event, 1); 2951 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2952 struct perf_event_context *ctx = event->ctx; 2953 unsigned long flags; 2954 2955 raw_spin_lock_irqsave(&ctx->lock, flags); 2956 /* 2957 * may read while context is not active 2958 * (e.g., thread is blocked), in that case 2959 * we cannot update context time 2960 */ 2961 if (ctx->is_active) { 2962 update_context_time(ctx); 2963 update_cgrp_time_from_event(event); 2964 } 2965 update_event_times(event); 2966 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2967 } 2968 2969 return perf_event_count(event); 2970 } 2971 2972 /* 2973 * Initialize the perf_event context in a task_struct: 2974 */ 2975 static void __perf_event_init_context(struct perf_event_context *ctx) 2976 { 2977 raw_spin_lock_init(&ctx->lock); 2978 mutex_init(&ctx->mutex); 2979 INIT_LIST_HEAD(&ctx->pinned_groups); 2980 INIT_LIST_HEAD(&ctx->flexible_groups); 2981 INIT_LIST_HEAD(&ctx->event_list); 2982 atomic_set(&ctx->refcount, 1); 2983 } 2984 2985 static struct perf_event_context * 2986 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2987 { 2988 struct perf_event_context *ctx; 2989 2990 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2991 if (!ctx) 2992 return NULL; 2993 2994 __perf_event_init_context(ctx); 2995 if (task) { 2996 ctx->task = task; 2997 get_task_struct(task); 2998 } 2999 ctx->pmu = pmu; 3000 3001 return ctx; 3002 } 3003 3004 static struct task_struct * 3005 find_lively_task_by_vpid(pid_t vpid) 3006 { 3007 struct task_struct *task; 3008 int err; 3009 3010 rcu_read_lock(); 3011 if (!vpid) 3012 task = current; 3013 else 3014 task = find_task_by_vpid(vpid); 3015 if (task) 3016 get_task_struct(task); 3017 rcu_read_unlock(); 3018 3019 if (!task) 3020 return ERR_PTR(-ESRCH); 3021 3022 /* Reuse ptrace permission checks for now. */ 3023 err = -EACCES; 3024 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3025 goto errout; 3026 3027 return task; 3028 errout: 3029 put_task_struct(task); 3030 return ERR_PTR(err); 3031 3032 } 3033 3034 /* 3035 * Returns a matching context with refcount and pincount. 3036 */ 3037 static struct perf_event_context * 3038 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3039 { 3040 struct perf_event_context *ctx; 3041 struct perf_cpu_context *cpuctx; 3042 unsigned long flags; 3043 int ctxn, err; 3044 3045 if (!task) { 3046 /* Must be root to operate on a CPU event: */ 3047 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3048 return ERR_PTR(-EACCES); 3049 3050 /* 3051 * We could be clever and allow to attach a event to an 3052 * offline CPU and activate it when the CPU comes up, but 3053 * that's for later. 3054 */ 3055 if (!cpu_online(cpu)) 3056 return ERR_PTR(-ENODEV); 3057 3058 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3059 ctx = &cpuctx->ctx; 3060 get_ctx(ctx); 3061 ++ctx->pin_count; 3062 3063 return ctx; 3064 } 3065 3066 err = -EINVAL; 3067 ctxn = pmu->task_ctx_nr; 3068 if (ctxn < 0) 3069 goto errout; 3070 3071 retry: 3072 ctx = perf_lock_task_context(task, ctxn, &flags); 3073 if (ctx) { 3074 unclone_ctx(ctx); 3075 ++ctx->pin_count; 3076 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3077 } else { 3078 ctx = alloc_perf_context(pmu, task); 3079 err = -ENOMEM; 3080 if (!ctx) 3081 goto errout; 3082 3083 err = 0; 3084 mutex_lock(&task->perf_event_mutex); 3085 /* 3086 * If it has already passed perf_event_exit_task(). 3087 * we must see PF_EXITING, it takes this mutex too. 3088 */ 3089 if (task->flags & PF_EXITING) 3090 err = -ESRCH; 3091 else if (task->perf_event_ctxp[ctxn]) 3092 err = -EAGAIN; 3093 else { 3094 get_ctx(ctx); 3095 ++ctx->pin_count; 3096 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3097 } 3098 mutex_unlock(&task->perf_event_mutex); 3099 3100 if (unlikely(err)) { 3101 put_ctx(ctx); 3102 3103 if (err == -EAGAIN) 3104 goto retry; 3105 goto errout; 3106 } 3107 } 3108 3109 return ctx; 3110 3111 errout: 3112 return ERR_PTR(err); 3113 } 3114 3115 static void perf_event_free_filter(struct perf_event *event); 3116 3117 static void free_event_rcu(struct rcu_head *head) 3118 { 3119 struct perf_event *event; 3120 3121 event = container_of(head, struct perf_event, rcu_head); 3122 if (event->ns) 3123 put_pid_ns(event->ns); 3124 perf_event_free_filter(event); 3125 kfree(event); 3126 } 3127 3128 static void ring_buffer_put(struct ring_buffer *rb); 3129 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3130 3131 static void free_event(struct perf_event *event) 3132 { 3133 irq_work_sync(&event->pending); 3134 3135 if (!event->parent) { 3136 if (event->attach_state & PERF_ATTACH_TASK) 3137 static_key_slow_dec_deferred(&perf_sched_events); 3138 if (event->attr.mmap || event->attr.mmap_data) 3139 atomic_dec(&nr_mmap_events); 3140 if (event->attr.comm) 3141 atomic_dec(&nr_comm_events); 3142 if (event->attr.task) 3143 atomic_dec(&nr_task_events); 3144 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3145 put_callchain_buffers(); 3146 if (is_cgroup_event(event)) { 3147 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 3148 static_key_slow_dec_deferred(&perf_sched_events); 3149 } 3150 3151 if (has_branch_stack(event)) { 3152 static_key_slow_dec_deferred(&perf_sched_events); 3153 /* is system-wide event */ 3154 if (!(event->attach_state & PERF_ATTACH_TASK)) { 3155 atomic_dec(&per_cpu(perf_branch_stack_events, 3156 event->cpu)); 3157 } 3158 } 3159 } 3160 3161 if (event->rb) { 3162 struct ring_buffer *rb; 3163 3164 /* 3165 * Can happen when we close an event with re-directed output. 3166 * 3167 * Since we have a 0 refcount, perf_mmap_close() will skip 3168 * over us; possibly making our ring_buffer_put() the last. 3169 */ 3170 mutex_lock(&event->mmap_mutex); 3171 rb = event->rb; 3172 if (rb) { 3173 rcu_assign_pointer(event->rb, NULL); 3174 ring_buffer_detach(event, rb); 3175 ring_buffer_put(rb); /* could be last */ 3176 } 3177 mutex_unlock(&event->mmap_mutex); 3178 } 3179 3180 if (is_cgroup_event(event)) 3181 perf_detach_cgroup(event); 3182 3183 if (event->destroy) 3184 event->destroy(event); 3185 3186 if (event->ctx) 3187 put_ctx(event->ctx); 3188 3189 call_rcu(&event->rcu_head, free_event_rcu); 3190 } 3191 3192 int perf_event_release_kernel(struct perf_event *event) 3193 { 3194 struct perf_event_context *ctx = event->ctx; 3195 3196 WARN_ON_ONCE(ctx->parent_ctx); 3197 /* 3198 * There are two ways this annotation is useful: 3199 * 3200 * 1) there is a lock recursion from perf_event_exit_task 3201 * see the comment there. 3202 * 3203 * 2) there is a lock-inversion with mmap_sem through 3204 * perf_event_read_group(), which takes faults while 3205 * holding ctx->mutex, however this is called after 3206 * the last filedesc died, so there is no possibility 3207 * to trigger the AB-BA case. 3208 */ 3209 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3210 raw_spin_lock_irq(&ctx->lock); 3211 perf_group_detach(event); 3212 raw_spin_unlock_irq(&ctx->lock); 3213 perf_remove_from_context(event); 3214 mutex_unlock(&ctx->mutex); 3215 3216 free_event(event); 3217 3218 return 0; 3219 } 3220 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3221 3222 /* 3223 * Called when the last reference to the file is gone. 3224 */ 3225 static void put_event(struct perf_event *event) 3226 { 3227 struct task_struct *owner; 3228 3229 if (!atomic_long_dec_and_test(&event->refcount)) 3230 return; 3231 3232 rcu_read_lock(); 3233 owner = ACCESS_ONCE(event->owner); 3234 /* 3235 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3236 * !owner it means the list deletion is complete and we can indeed 3237 * free this event, otherwise we need to serialize on 3238 * owner->perf_event_mutex. 3239 */ 3240 smp_read_barrier_depends(); 3241 if (owner) { 3242 /* 3243 * Since delayed_put_task_struct() also drops the last 3244 * task reference we can safely take a new reference 3245 * while holding the rcu_read_lock(). 3246 */ 3247 get_task_struct(owner); 3248 } 3249 rcu_read_unlock(); 3250 3251 if (owner) { 3252 mutex_lock(&owner->perf_event_mutex); 3253 /* 3254 * We have to re-check the event->owner field, if it is cleared 3255 * we raced with perf_event_exit_task(), acquiring the mutex 3256 * ensured they're done, and we can proceed with freeing the 3257 * event. 3258 */ 3259 if (event->owner) 3260 list_del_init(&event->owner_entry); 3261 mutex_unlock(&owner->perf_event_mutex); 3262 put_task_struct(owner); 3263 } 3264 3265 perf_event_release_kernel(event); 3266 } 3267 3268 static int perf_release(struct inode *inode, struct file *file) 3269 { 3270 put_event(file->private_data); 3271 return 0; 3272 } 3273 3274 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3275 { 3276 struct perf_event *child; 3277 u64 total = 0; 3278 3279 *enabled = 0; 3280 *running = 0; 3281 3282 mutex_lock(&event->child_mutex); 3283 total += perf_event_read(event); 3284 *enabled += event->total_time_enabled + 3285 atomic64_read(&event->child_total_time_enabled); 3286 *running += event->total_time_running + 3287 atomic64_read(&event->child_total_time_running); 3288 3289 list_for_each_entry(child, &event->child_list, child_list) { 3290 total += perf_event_read(child); 3291 *enabled += child->total_time_enabled; 3292 *running += child->total_time_running; 3293 } 3294 mutex_unlock(&event->child_mutex); 3295 3296 return total; 3297 } 3298 EXPORT_SYMBOL_GPL(perf_event_read_value); 3299 3300 static int perf_event_read_group(struct perf_event *event, 3301 u64 read_format, char __user *buf) 3302 { 3303 struct perf_event *leader = event->group_leader, *sub; 3304 int n = 0, size = 0, ret = -EFAULT; 3305 struct perf_event_context *ctx = leader->ctx; 3306 u64 values[5]; 3307 u64 count, enabled, running; 3308 3309 mutex_lock(&ctx->mutex); 3310 count = perf_event_read_value(leader, &enabled, &running); 3311 3312 values[n++] = 1 + leader->nr_siblings; 3313 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3314 values[n++] = enabled; 3315 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3316 values[n++] = running; 3317 values[n++] = count; 3318 if (read_format & PERF_FORMAT_ID) 3319 values[n++] = primary_event_id(leader); 3320 3321 size = n * sizeof(u64); 3322 3323 if (copy_to_user(buf, values, size)) 3324 goto unlock; 3325 3326 ret = size; 3327 3328 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3329 n = 0; 3330 3331 values[n++] = perf_event_read_value(sub, &enabled, &running); 3332 if (read_format & PERF_FORMAT_ID) 3333 values[n++] = primary_event_id(sub); 3334 3335 size = n * sizeof(u64); 3336 3337 if (copy_to_user(buf + ret, values, size)) { 3338 ret = -EFAULT; 3339 goto unlock; 3340 } 3341 3342 ret += size; 3343 } 3344 unlock: 3345 mutex_unlock(&ctx->mutex); 3346 3347 return ret; 3348 } 3349 3350 static int perf_event_read_one(struct perf_event *event, 3351 u64 read_format, char __user *buf) 3352 { 3353 u64 enabled, running; 3354 u64 values[4]; 3355 int n = 0; 3356 3357 values[n++] = perf_event_read_value(event, &enabled, &running); 3358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3359 values[n++] = enabled; 3360 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3361 values[n++] = running; 3362 if (read_format & PERF_FORMAT_ID) 3363 values[n++] = primary_event_id(event); 3364 3365 if (copy_to_user(buf, values, n * sizeof(u64))) 3366 return -EFAULT; 3367 3368 return n * sizeof(u64); 3369 } 3370 3371 /* 3372 * Read the performance event - simple non blocking version for now 3373 */ 3374 static ssize_t 3375 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3376 { 3377 u64 read_format = event->attr.read_format; 3378 int ret; 3379 3380 /* 3381 * Return end-of-file for a read on a event that is in 3382 * error state (i.e. because it was pinned but it couldn't be 3383 * scheduled on to the CPU at some point). 3384 */ 3385 if (event->state == PERF_EVENT_STATE_ERROR) 3386 return 0; 3387 3388 if (count < event->read_size) 3389 return -ENOSPC; 3390 3391 WARN_ON_ONCE(event->ctx->parent_ctx); 3392 if (read_format & PERF_FORMAT_GROUP) 3393 ret = perf_event_read_group(event, read_format, buf); 3394 else 3395 ret = perf_event_read_one(event, read_format, buf); 3396 3397 return ret; 3398 } 3399 3400 static ssize_t 3401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3402 { 3403 struct perf_event *event = file->private_data; 3404 3405 return perf_read_hw(event, buf, count); 3406 } 3407 3408 static unsigned int perf_poll(struct file *file, poll_table *wait) 3409 { 3410 struct perf_event *event = file->private_data; 3411 struct ring_buffer *rb; 3412 unsigned int events = POLL_HUP; 3413 3414 /* 3415 * Pin the event->rb by taking event->mmap_mutex; otherwise 3416 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3417 */ 3418 mutex_lock(&event->mmap_mutex); 3419 rb = event->rb; 3420 if (rb) 3421 events = atomic_xchg(&rb->poll, 0); 3422 mutex_unlock(&event->mmap_mutex); 3423 3424 poll_wait(file, &event->waitq, wait); 3425 3426 return events; 3427 } 3428 3429 static void perf_event_reset(struct perf_event *event) 3430 { 3431 (void)perf_event_read(event); 3432 local64_set(&event->count, 0); 3433 perf_event_update_userpage(event); 3434 } 3435 3436 /* 3437 * Holding the top-level event's child_mutex means that any 3438 * descendant process that has inherited this event will block 3439 * in sync_child_event if it goes to exit, thus satisfying the 3440 * task existence requirements of perf_event_enable/disable. 3441 */ 3442 static void perf_event_for_each_child(struct perf_event *event, 3443 void (*func)(struct perf_event *)) 3444 { 3445 struct perf_event *child; 3446 3447 WARN_ON_ONCE(event->ctx->parent_ctx); 3448 mutex_lock(&event->child_mutex); 3449 func(event); 3450 list_for_each_entry(child, &event->child_list, child_list) 3451 func(child); 3452 mutex_unlock(&event->child_mutex); 3453 } 3454 3455 static void perf_event_for_each(struct perf_event *event, 3456 void (*func)(struct perf_event *)) 3457 { 3458 struct perf_event_context *ctx = event->ctx; 3459 struct perf_event *sibling; 3460 3461 WARN_ON_ONCE(ctx->parent_ctx); 3462 mutex_lock(&ctx->mutex); 3463 event = event->group_leader; 3464 3465 perf_event_for_each_child(event, func); 3466 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3467 perf_event_for_each_child(sibling, func); 3468 mutex_unlock(&ctx->mutex); 3469 } 3470 3471 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3472 { 3473 struct perf_event_context *ctx = event->ctx; 3474 int ret = 0; 3475 u64 value; 3476 3477 if (!is_sampling_event(event)) 3478 return -EINVAL; 3479 3480 if (copy_from_user(&value, arg, sizeof(value))) 3481 return -EFAULT; 3482 3483 if (!value) 3484 return -EINVAL; 3485 3486 raw_spin_lock_irq(&ctx->lock); 3487 if (event->attr.freq) { 3488 if (value > sysctl_perf_event_sample_rate) { 3489 ret = -EINVAL; 3490 goto unlock; 3491 } 3492 3493 event->attr.sample_freq = value; 3494 } else { 3495 event->attr.sample_period = value; 3496 event->hw.sample_period = value; 3497 } 3498 unlock: 3499 raw_spin_unlock_irq(&ctx->lock); 3500 3501 return ret; 3502 } 3503 3504 static const struct file_operations perf_fops; 3505 3506 static inline int perf_fget_light(int fd, struct fd *p) 3507 { 3508 struct fd f = fdget(fd); 3509 if (!f.file) 3510 return -EBADF; 3511 3512 if (f.file->f_op != &perf_fops) { 3513 fdput(f); 3514 return -EBADF; 3515 } 3516 *p = f; 3517 return 0; 3518 } 3519 3520 static int perf_event_set_output(struct perf_event *event, 3521 struct perf_event *output_event); 3522 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3523 3524 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3525 { 3526 struct perf_event *event = file->private_data; 3527 void (*func)(struct perf_event *); 3528 u32 flags = arg; 3529 3530 switch (cmd) { 3531 case PERF_EVENT_IOC_ENABLE: 3532 func = perf_event_enable; 3533 break; 3534 case PERF_EVENT_IOC_DISABLE: 3535 func = perf_event_disable; 3536 break; 3537 case PERF_EVENT_IOC_RESET: 3538 func = perf_event_reset; 3539 break; 3540 3541 case PERF_EVENT_IOC_REFRESH: 3542 return perf_event_refresh(event, arg); 3543 3544 case PERF_EVENT_IOC_PERIOD: 3545 return perf_event_period(event, (u64 __user *)arg); 3546 3547 case PERF_EVENT_IOC_SET_OUTPUT: 3548 { 3549 int ret; 3550 if (arg != -1) { 3551 struct perf_event *output_event; 3552 struct fd output; 3553 ret = perf_fget_light(arg, &output); 3554 if (ret) 3555 return ret; 3556 output_event = output.file->private_data; 3557 ret = perf_event_set_output(event, output_event); 3558 fdput(output); 3559 } else { 3560 ret = perf_event_set_output(event, NULL); 3561 } 3562 return ret; 3563 } 3564 3565 case PERF_EVENT_IOC_SET_FILTER: 3566 return perf_event_set_filter(event, (void __user *)arg); 3567 3568 default: 3569 return -ENOTTY; 3570 } 3571 3572 if (flags & PERF_IOC_FLAG_GROUP) 3573 perf_event_for_each(event, func); 3574 else 3575 perf_event_for_each_child(event, func); 3576 3577 return 0; 3578 } 3579 3580 int perf_event_task_enable(void) 3581 { 3582 struct perf_event *event; 3583 3584 mutex_lock(¤t->perf_event_mutex); 3585 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3586 perf_event_for_each_child(event, perf_event_enable); 3587 mutex_unlock(¤t->perf_event_mutex); 3588 3589 return 0; 3590 } 3591 3592 int perf_event_task_disable(void) 3593 { 3594 struct perf_event *event; 3595 3596 mutex_lock(¤t->perf_event_mutex); 3597 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3598 perf_event_for_each_child(event, perf_event_disable); 3599 mutex_unlock(¤t->perf_event_mutex); 3600 3601 return 0; 3602 } 3603 3604 static int perf_event_index(struct perf_event *event) 3605 { 3606 if (event->hw.state & PERF_HES_STOPPED) 3607 return 0; 3608 3609 if (event->state != PERF_EVENT_STATE_ACTIVE) 3610 return 0; 3611 3612 return event->pmu->event_idx(event); 3613 } 3614 3615 static void calc_timer_values(struct perf_event *event, 3616 u64 *now, 3617 u64 *enabled, 3618 u64 *running) 3619 { 3620 u64 ctx_time; 3621 3622 *now = perf_clock(); 3623 ctx_time = event->shadow_ctx_time + *now; 3624 *enabled = ctx_time - event->tstamp_enabled; 3625 *running = ctx_time - event->tstamp_running; 3626 } 3627 3628 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3629 { 3630 } 3631 3632 /* 3633 * Callers need to ensure there can be no nesting of this function, otherwise 3634 * the seqlock logic goes bad. We can not serialize this because the arch 3635 * code calls this from NMI context. 3636 */ 3637 void perf_event_update_userpage(struct perf_event *event) 3638 { 3639 struct perf_event_mmap_page *userpg; 3640 struct ring_buffer *rb; 3641 u64 enabled, running, now; 3642 3643 rcu_read_lock(); 3644 /* 3645 * compute total_time_enabled, total_time_running 3646 * based on snapshot values taken when the event 3647 * was last scheduled in. 3648 * 3649 * we cannot simply called update_context_time() 3650 * because of locking issue as we can be called in 3651 * NMI context 3652 */ 3653 calc_timer_values(event, &now, &enabled, &running); 3654 rb = rcu_dereference(event->rb); 3655 if (!rb) 3656 goto unlock; 3657 3658 userpg = rb->user_page; 3659 3660 /* 3661 * Disable preemption so as to not let the corresponding user-space 3662 * spin too long if we get preempted. 3663 */ 3664 preempt_disable(); 3665 ++userpg->lock; 3666 barrier(); 3667 userpg->index = perf_event_index(event); 3668 userpg->offset = perf_event_count(event); 3669 if (userpg->index) 3670 userpg->offset -= local64_read(&event->hw.prev_count); 3671 3672 userpg->time_enabled = enabled + 3673 atomic64_read(&event->child_total_time_enabled); 3674 3675 userpg->time_running = running + 3676 atomic64_read(&event->child_total_time_running); 3677 3678 arch_perf_update_userpage(userpg, now); 3679 3680 barrier(); 3681 ++userpg->lock; 3682 preempt_enable(); 3683 unlock: 3684 rcu_read_unlock(); 3685 } 3686 3687 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3688 { 3689 struct perf_event *event = vma->vm_file->private_data; 3690 struct ring_buffer *rb; 3691 int ret = VM_FAULT_SIGBUS; 3692 3693 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3694 if (vmf->pgoff == 0) 3695 ret = 0; 3696 return ret; 3697 } 3698 3699 rcu_read_lock(); 3700 rb = rcu_dereference(event->rb); 3701 if (!rb) 3702 goto unlock; 3703 3704 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3705 goto unlock; 3706 3707 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3708 if (!vmf->page) 3709 goto unlock; 3710 3711 get_page(vmf->page); 3712 vmf->page->mapping = vma->vm_file->f_mapping; 3713 vmf->page->index = vmf->pgoff; 3714 3715 ret = 0; 3716 unlock: 3717 rcu_read_unlock(); 3718 3719 return ret; 3720 } 3721 3722 static void ring_buffer_attach(struct perf_event *event, 3723 struct ring_buffer *rb) 3724 { 3725 unsigned long flags; 3726 3727 if (!list_empty(&event->rb_entry)) 3728 return; 3729 3730 spin_lock_irqsave(&rb->event_lock, flags); 3731 if (list_empty(&event->rb_entry)) 3732 list_add(&event->rb_entry, &rb->event_list); 3733 spin_unlock_irqrestore(&rb->event_lock, flags); 3734 } 3735 3736 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3737 { 3738 unsigned long flags; 3739 3740 if (list_empty(&event->rb_entry)) 3741 return; 3742 3743 spin_lock_irqsave(&rb->event_lock, flags); 3744 list_del_init(&event->rb_entry); 3745 wake_up_all(&event->waitq); 3746 spin_unlock_irqrestore(&rb->event_lock, flags); 3747 } 3748 3749 static void ring_buffer_wakeup(struct perf_event *event) 3750 { 3751 struct ring_buffer *rb; 3752 3753 rcu_read_lock(); 3754 rb = rcu_dereference(event->rb); 3755 if (rb) { 3756 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3757 wake_up_all(&event->waitq); 3758 } 3759 rcu_read_unlock(); 3760 } 3761 3762 static void rb_free_rcu(struct rcu_head *rcu_head) 3763 { 3764 struct ring_buffer *rb; 3765 3766 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3767 rb_free(rb); 3768 } 3769 3770 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3771 { 3772 struct ring_buffer *rb; 3773 3774 rcu_read_lock(); 3775 rb = rcu_dereference(event->rb); 3776 if (rb) { 3777 if (!atomic_inc_not_zero(&rb->refcount)) 3778 rb = NULL; 3779 } 3780 rcu_read_unlock(); 3781 3782 return rb; 3783 } 3784 3785 static void ring_buffer_put(struct ring_buffer *rb) 3786 { 3787 if (!atomic_dec_and_test(&rb->refcount)) 3788 return; 3789 3790 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3791 3792 call_rcu(&rb->rcu_head, rb_free_rcu); 3793 } 3794 3795 static void perf_mmap_open(struct vm_area_struct *vma) 3796 { 3797 struct perf_event *event = vma->vm_file->private_data; 3798 3799 atomic_inc(&event->mmap_count); 3800 atomic_inc(&event->rb->mmap_count); 3801 } 3802 3803 /* 3804 * A buffer can be mmap()ed multiple times; either directly through the same 3805 * event, or through other events by use of perf_event_set_output(). 3806 * 3807 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3808 * the buffer here, where we still have a VM context. This means we need 3809 * to detach all events redirecting to us. 3810 */ 3811 static void perf_mmap_close(struct vm_area_struct *vma) 3812 { 3813 struct perf_event *event = vma->vm_file->private_data; 3814 3815 struct ring_buffer *rb = event->rb; 3816 struct user_struct *mmap_user = rb->mmap_user; 3817 int mmap_locked = rb->mmap_locked; 3818 unsigned long size = perf_data_size(rb); 3819 3820 atomic_dec(&rb->mmap_count); 3821 3822 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3823 return; 3824 3825 /* Detach current event from the buffer. */ 3826 rcu_assign_pointer(event->rb, NULL); 3827 ring_buffer_detach(event, rb); 3828 mutex_unlock(&event->mmap_mutex); 3829 3830 /* If there's still other mmap()s of this buffer, we're done. */ 3831 if (atomic_read(&rb->mmap_count)) { 3832 ring_buffer_put(rb); /* can't be last */ 3833 return; 3834 } 3835 3836 /* 3837 * No other mmap()s, detach from all other events that might redirect 3838 * into the now unreachable buffer. Somewhat complicated by the 3839 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3840 */ 3841 again: 3842 rcu_read_lock(); 3843 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3844 if (!atomic_long_inc_not_zero(&event->refcount)) { 3845 /* 3846 * This event is en-route to free_event() which will 3847 * detach it and remove it from the list. 3848 */ 3849 continue; 3850 } 3851 rcu_read_unlock(); 3852 3853 mutex_lock(&event->mmap_mutex); 3854 /* 3855 * Check we didn't race with perf_event_set_output() which can 3856 * swizzle the rb from under us while we were waiting to 3857 * acquire mmap_mutex. 3858 * 3859 * If we find a different rb; ignore this event, a next 3860 * iteration will no longer find it on the list. We have to 3861 * still restart the iteration to make sure we're not now 3862 * iterating the wrong list. 3863 */ 3864 if (event->rb == rb) { 3865 rcu_assign_pointer(event->rb, NULL); 3866 ring_buffer_detach(event, rb); 3867 ring_buffer_put(rb); /* can't be last, we still have one */ 3868 } 3869 mutex_unlock(&event->mmap_mutex); 3870 put_event(event); 3871 3872 /* 3873 * Restart the iteration; either we're on the wrong list or 3874 * destroyed its integrity by doing a deletion. 3875 */ 3876 goto again; 3877 } 3878 rcu_read_unlock(); 3879 3880 /* 3881 * It could be there's still a few 0-ref events on the list; they'll 3882 * get cleaned up by free_event() -- they'll also still have their 3883 * ref on the rb and will free it whenever they are done with it. 3884 * 3885 * Aside from that, this buffer is 'fully' detached and unmapped, 3886 * undo the VM accounting. 3887 */ 3888 3889 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3890 vma->vm_mm->pinned_vm -= mmap_locked; 3891 free_uid(mmap_user); 3892 3893 ring_buffer_put(rb); /* could be last */ 3894 } 3895 3896 static const struct vm_operations_struct perf_mmap_vmops = { 3897 .open = perf_mmap_open, 3898 .close = perf_mmap_close, 3899 .fault = perf_mmap_fault, 3900 .page_mkwrite = perf_mmap_fault, 3901 }; 3902 3903 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3904 { 3905 struct perf_event *event = file->private_data; 3906 unsigned long user_locked, user_lock_limit; 3907 struct user_struct *user = current_user(); 3908 unsigned long locked, lock_limit; 3909 struct ring_buffer *rb; 3910 unsigned long vma_size; 3911 unsigned long nr_pages; 3912 long user_extra, extra; 3913 int ret = 0, flags = 0; 3914 3915 /* 3916 * Don't allow mmap() of inherited per-task counters. This would 3917 * create a performance issue due to all children writing to the 3918 * same rb. 3919 */ 3920 if (event->cpu == -1 && event->attr.inherit) 3921 return -EINVAL; 3922 3923 if (!(vma->vm_flags & VM_SHARED)) 3924 return -EINVAL; 3925 3926 vma_size = vma->vm_end - vma->vm_start; 3927 nr_pages = (vma_size / PAGE_SIZE) - 1; 3928 3929 /* 3930 * If we have rb pages ensure they're a power-of-two number, so we 3931 * can do bitmasks instead of modulo. 3932 */ 3933 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3934 return -EINVAL; 3935 3936 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3937 return -EINVAL; 3938 3939 if (vma->vm_pgoff != 0) 3940 return -EINVAL; 3941 3942 WARN_ON_ONCE(event->ctx->parent_ctx); 3943 again: 3944 mutex_lock(&event->mmap_mutex); 3945 if (event->rb) { 3946 if (event->rb->nr_pages != nr_pages) { 3947 ret = -EINVAL; 3948 goto unlock; 3949 } 3950 3951 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 3952 /* 3953 * Raced against perf_mmap_close() through 3954 * perf_event_set_output(). Try again, hope for better 3955 * luck. 3956 */ 3957 mutex_unlock(&event->mmap_mutex); 3958 goto again; 3959 } 3960 3961 goto unlock; 3962 } 3963 3964 user_extra = nr_pages + 1; 3965 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3966 3967 /* 3968 * Increase the limit linearly with more CPUs: 3969 */ 3970 user_lock_limit *= num_online_cpus(); 3971 3972 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3973 3974 extra = 0; 3975 if (user_locked > user_lock_limit) 3976 extra = user_locked - user_lock_limit; 3977 3978 lock_limit = rlimit(RLIMIT_MEMLOCK); 3979 lock_limit >>= PAGE_SHIFT; 3980 locked = vma->vm_mm->pinned_vm + extra; 3981 3982 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3983 !capable(CAP_IPC_LOCK)) { 3984 ret = -EPERM; 3985 goto unlock; 3986 } 3987 3988 WARN_ON(event->rb); 3989 3990 if (vma->vm_flags & VM_WRITE) 3991 flags |= RING_BUFFER_WRITABLE; 3992 3993 rb = rb_alloc(nr_pages, 3994 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3995 event->cpu, flags); 3996 3997 if (!rb) { 3998 ret = -ENOMEM; 3999 goto unlock; 4000 } 4001 4002 atomic_set(&rb->mmap_count, 1); 4003 rb->mmap_locked = extra; 4004 rb->mmap_user = get_current_user(); 4005 4006 atomic_long_add(user_extra, &user->locked_vm); 4007 vma->vm_mm->pinned_vm += extra; 4008 4009 ring_buffer_attach(event, rb); 4010 rcu_assign_pointer(event->rb, rb); 4011 4012 perf_event_update_userpage(event); 4013 4014 unlock: 4015 if (!ret) 4016 atomic_inc(&event->mmap_count); 4017 mutex_unlock(&event->mmap_mutex); 4018 4019 /* 4020 * Since pinned accounting is per vm we cannot allow fork() to copy our 4021 * vma. 4022 */ 4023 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4024 vma->vm_ops = &perf_mmap_vmops; 4025 4026 return ret; 4027 } 4028 4029 static int perf_fasync(int fd, struct file *filp, int on) 4030 { 4031 struct inode *inode = file_inode(filp); 4032 struct perf_event *event = filp->private_data; 4033 int retval; 4034 4035 mutex_lock(&inode->i_mutex); 4036 retval = fasync_helper(fd, filp, on, &event->fasync); 4037 mutex_unlock(&inode->i_mutex); 4038 4039 if (retval < 0) 4040 return retval; 4041 4042 return 0; 4043 } 4044 4045 static const struct file_operations perf_fops = { 4046 .llseek = no_llseek, 4047 .release = perf_release, 4048 .read = perf_read, 4049 .poll = perf_poll, 4050 .unlocked_ioctl = perf_ioctl, 4051 .compat_ioctl = perf_ioctl, 4052 .mmap = perf_mmap, 4053 .fasync = perf_fasync, 4054 }; 4055 4056 /* 4057 * Perf event wakeup 4058 * 4059 * If there's data, ensure we set the poll() state and publish everything 4060 * to user-space before waking everybody up. 4061 */ 4062 4063 void perf_event_wakeup(struct perf_event *event) 4064 { 4065 ring_buffer_wakeup(event); 4066 4067 if (event->pending_kill) { 4068 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4069 event->pending_kill = 0; 4070 } 4071 } 4072 4073 static void perf_pending_event(struct irq_work *entry) 4074 { 4075 struct perf_event *event = container_of(entry, 4076 struct perf_event, pending); 4077 4078 if (event->pending_disable) { 4079 event->pending_disable = 0; 4080 __perf_event_disable(event); 4081 } 4082 4083 if (event->pending_wakeup) { 4084 event->pending_wakeup = 0; 4085 perf_event_wakeup(event); 4086 } 4087 } 4088 4089 /* 4090 * We assume there is only KVM supporting the callbacks. 4091 * Later on, we might change it to a list if there is 4092 * another virtualization implementation supporting the callbacks. 4093 */ 4094 struct perf_guest_info_callbacks *perf_guest_cbs; 4095 4096 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4097 { 4098 perf_guest_cbs = cbs; 4099 return 0; 4100 } 4101 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4102 4103 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4104 { 4105 perf_guest_cbs = NULL; 4106 return 0; 4107 } 4108 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4109 4110 static void 4111 perf_output_sample_regs(struct perf_output_handle *handle, 4112 struct pt_regs *regs, u64 mask) 4113 { 4114 int bit; 4115 4116 for_each_set_bit(bit, (const unsigned long *) &mask, 4117 sizeof(mask) * BITS_PER_BYTE) { 4118 u64 val; 4119 4120 val = perf_reg_value(regs, bit); 4121 perf_output_put(handle, val); 4122 } 4123 } 4124 4125 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4126 struct pt_regs *regs) 4127 { 4128 if (!user_mode(regs)) { 4129 if (current->mm) 4130 regs = task_pt_regs(current); 4131 else 4132 regs = NULL; 4133 } 4134 4135 if (regs) { 4136 regs_user->regs = regs; 4137 regs_user->abi = perf_reg_abi(current); 4138 } 4139 } 4140 4141 /* 4142 * Get remaining task size from user stack pointer. 4143 * 4144 * It'd be better to take stack vma map and limit this more 4145 * precisly, but there's no way to get it safely under interrupt, 4146 * so using TASK_SIZE as limit. 4147 */ 4148 static u64 perf_ustack_task_size(struct pt_regs *regs) 4149 { 4150 unsigned long addr = perf_user_stack_pointer(regs); 4151 4152 if (!addr || addr >= TASK_SIZE) 4153 return 0; 4154 4155 return TASK_SIZE - addr; 4156 } 4157 4158 static u16 4159 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4160 struct pt_regs *regs) 4161 { 4162 u64 task_size; 4163 4164 /* No regs, no stack pointer, no dump. */ 4165 if (!regs) 4166 return 0; 4167 4168 /* 4169 * Check if we fit in with the requested stack size into the: 4170 * - TASK_SIZE 4171 * If we don't, we limit the size to the TASK_SIZE. 4172 * 4173 * - remaining sample size 4174 * If we don't, we customize the stack size to 4175 * fit in to the remaining sample size. 4176 */ 4177 4178 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4179 stack_size = min(stack_size, (u16) task_size); 4180 4181 /* Current header size plus static size and dynamic size. */ 4182 header_size += 2 * sizeof(u64); 4183 4184 /* Do we fit in with the current stack dump size? */ 4185 if ((u16) (header_size + stack_size) < header_size) { 4186 /* 4187 * If we overflow the maximum size for the sample, 4188 * we customize the stack dump size to fit in. 4189 */ 4190 stack_size = USHRT_MAX - header_size - sizeof(u64); 4191 stack_size = round_up(stack_size, sizeof(u64)); 4192 } 4193 4194 return stack_size; 4195 } 4196 4197 static void 4198 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4199 struct pt_regs *regs) 4200 { 4201 /* Case of a kernel thread, nothing to dump */ 4202 if (!regs) { 4203 u64 size = 0; 4204 perf_output_put(handle, size); 4205 } else { 4206 unsigned long sp; 4207 unsigned int rem; 4208 u64 dyn_size; 4209 4210 /* 4211 * We dump: 4212 * static size 4213 * - the size requested by user or the best one we can fit 4214 * in to the sample max size 4215 * data 4216 * - user stack dump data 4217 * dynamic size 4218 * - the actual dumped size 4219 */ 4220 4221 /* Static size. */ 4222 perf_output_put(handle, dump_size); 4223 4224 /* Data. */ 4225 sp = perf_user_stack_pointer(regs); 4226 rem = __output_copy_user(handle, (void *) sp, dump_size); 4227 dyn_size = dump_size - rem; 4228 4229 perf_output_skip(handle, rem); 4230 4231 /* Dynamic size. */ 4232 perf_output_put(handle, dyn_size); 4233 } 4234 } 4235 4236 static void __perf_event_header__init_id(struct perf_event_header *header, 4237 struct perf_sample_data *data, 4238 struct perf_event *event) 4239 { 4240 u64 sample_type = event->attr.sample_type; 4241 4242 data->type = sample_type; 4243 header->size += event->id_header_size; 4244 4245 if (sample_type & PERF_SAMPLE_TID) { 4246 /* namespace issues */ 4247 data->tid_entry.pid = perf_event_pid(event, current); 4248 data->tid_entry.tid = perf_event_tid(event, current); 4249 } 4250 4251 if (sample_type & PERF_SAMPLE_TIME) 4252 data->time = perf_clock(); 4253 4254 if (sample_type & PERF_SAMPLE_ID) 4255 data->id = primary_event_id(event); 4256 4257 if (sample_type & PERF_SAMPLE_STREAM_ID) 4258 data->stream_id = event->id; 4259 4260 if (sample_type & PERF_SAMPLE_CPU) { 4261 data->cpu_entry.cpu = raw_smp_processor_id(); 4262 data->cpu_entry.reserved = 0; 4263 } 4264 } 4265 4266 void perf_event_header__init_id(struct perf_event_header *header, 4267 struct perf_sample_data *data, 4268 struct perf_event *event) 4269 { 4270 if (event->attr.sample_id_all) 4271 __perf_event_header__init_id(header, data, event); 4272 } 4273 4274 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4275 struct perf_sample_data *data) 4276 { 4277 u64 sample_type = data->type; 4278 4279 if (sample_type & PERF_SAMPLE_TID) 4280 perf_output_put(handle, data->tid_entry); 4281 4282 if (sample_type & PERF_SAMPLE_TIME) 4283 perf_output_put(handle, data->time); 4284 4285 if (sample_type & PERF_SAMPLE_ID) 4286 perf_output_put(handle, data->id); 4287 4288 if (sample_type & PERF_SAMPLE_STREAM_ID) 4289 perf_output_put(handle, data->stream_id); 4290 4291 if (sample_type & PERF_SAMPLE_CPU) 4292 perf_output_put(handle, data->cpu_entry); 4293 } 4294 4295 void perf_event__output_id_sample(struct perf_event *event, 4296 struct perf_output_handle *handle, 4297 struct perf_sample_data *sample) 4298 { 4299 if (event->attr.sample_id_all) 4300 __perf_event__output_id_sample(handle, sample); 4301 } 4302 4303 static void perf_output_read_one(struct perf_output_handle *handle, 4304 struct perf_event *event, 4305 u64 enabled, u64 running) 4306 { 4307 u64 read_format = event->attr.read_format; 4308 u64 values[4]; 4309 int n = 0; 4310 4311 values[n++] = perf_event_count(event); 4312 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4313 values[n++] = enabled + 4314 atomic64_read(&event->child_total_time_enabled); 4315 } 4316 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4317 values[n++] = running + 4318 atomic64_read(&event->child_total_time_running); 4319 } 4320 if (read_format & PERF_FORMAT_ID) 4321 values[n++] = primary_event_id(event); 4322 4323 __output_copy(handle, values, n * sizeof(u64)); 4324 } 4325 4326 /* 4327 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4328 */ 4329 static void perf_output_read_group(struct perf_output_handle *handle, 4330 struct perf_event *event, 4331 u64 enabled, u64 running) 4332 { 4333 struct perf_event *leader = event->group_leader, *sub; 4334 u64 read_format = event->attr.read_format; 4335 u64 values[5]; 4336 int n = 0; 4337 4338 values[n++] = 1 + leader->nr_siblings; 4339 4340 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4341 values[n++] = enabled; 4342 4343 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4344 values[n++] = running; 4345 4346 if (leader != event) 4347 leader->pmu->read(leader); 4348 4349 values[n++] = perf_event_count(leader); 4350 if (read_format & PERF_FORMAT_ID) 4351 values[n++] = primary_event_id(leader); 4352 4353 __output_copy(handle, values, n * sizeof(u64)); 4354 4355 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4356 n = 0; 4357 4358 if (sub != event) 4359 sub->pmu->read(sub); 4360 4361 values[n++] = perf_event_count(sub); 4362 if (read_format & PERF_FORMAT_ID) 4363 values[n++] = primary_event_id(sub); 4364 4365 __output_copy(handle, values, n * sizeof(u64)); 4366 } 4367 } 4368 4369 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4370 PERF_FORMAT_TOTAL_TIME_RUNNING) 4371 4372 static void perf_output_read(struct perf_output_handle *handle, 4373 struct perf_event *event) 4374 { 4375 u64 enabled = 0, running = 0, now; 4376 u64 read_format = event->attr.read_format; 4377 4378 /* 4379 * compute total_time_enabled, total_time_running 4380 * based on snapshot values taken when the event 4381 * was last scheduled in. 4382 * 4383 * we cannot simply called update_context_time() 4384 * because of locking issue as we are called in 4385 * NMI context 4386 */ 4387 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4388 calc_timer_values(event, &now, &enabled, &running); 4389 4390 if (event->attr.read_format & PERF_FORMAT_GROUP) 4391 perf_output_read_group(handle, event, enabled, running); 4392 else 4393 perf_output_read_one(handle, event, enabled, running); 4394 } 4395 4396 void perf_output_sample(struct perf_output_handle *handle, 4397 struct perf_event_header *header, 4398 struct perf_sample_data *data, 4399 struct perf_event *event) 4400 { 4401 u64 sample_type = data->type; 4402 4403 perf_output_put(handle, *header); 4404 4405 if (sample_type & PERF_SAMPLE_IP) 4406 perf_output_put(handle, data->ip); 4407 4408 if (sample_type & PERF_SAMPLE_TID) 4409 perf_output_put(handle, data->tid_entry); 4410 4411 if (sample_type & PERF_SAMPLE_TIME) 4412 perf_output_put(handle, data->time); 4413 4414 if (sample_type & PERF_SAMPLE_ADDR) 4415 perf_output_put(handle, data->addr); 4416 4417 if (sample_type & PERF_SAMPLE_ID) 4418 perf_output_put(handle, data->id); 4419 4420 if (sample_type & PERF_SAMPLE_STREAM_ID) 4421 perf_output_put(handle, data->stream_id); 4422 4423 if (sample_type & PERF_SAMPLE_CPU) 4424 perf_output_put(handle, data->cpu_entry); 4425 4426 if (sample_type & PERF_SAMPLE_PERIOD) 4427 perf_output_put(handle, data->period); 4428 4429 if (sample_type & PERF_SAMPLE_READ) 4430 perf_output_read(handle, event); 4431 4432 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4433 if (data->callchain) { 4434 int size = 1; 4435 4436 if (data->callchain) 4437 size += data->callchain->nr; 4438 4439 size *= sizeof(u64); 4440 4441 __output_copy(handle, data->callchain, size); 4442 } else { 4443 u64 nr = 0; 4444 perf_output_put(handle, nr); 4445 } 4446 } 4447 4448 if (sample_type & PERF_SAMPLE_RAW) { 4449 if (data->raw) { 4450 perf_output_put(handle, data->raw->size); 4451 __output_copy(handle, data->raw->data, 4452 data->raw->size); 4453 } else { 4454 struct { 4455 u32 size; 4456 u32 data; 4457 } raw = { 4458 .size = sizeof(u32), 4459 .data = 0, 4460 }; 4461 perf_output_put(handle, raw); 4462 } 4463 } 4464 4465 if (!event->attr.watermark) { 4466 int wakeup_events = event->attr.wakeup_events; 4467 4468 if (wakeup_events) { 4469 struct ring_buffer *rb = handle->rb; 4470 int events = local_inc_return(&rb->events); 4471 4472 if (events >= wakeup_events) { 4473 local_sub(wakeup_events, &rb->events); 4474 local_inc(&rb->wakeup); 4475 } 4476 } 4477 } 4478 4479 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4480 if (data->br_stack) { 4481 size_t size; 4482 4483 size = data->br_stack->nr 4484 * sizeof(struct perf_branch_entry); 4485 4486 perf_output_put(handle, data->br_stack->nr); 4487 perf_output_copy(handle, data->br_stack->entries, size); 4488 } else { 4489 /* 4490 * we always store at least the value of nr 4491 */ 4492 u64 nr = 0; 4493 perf_output_put(handle, nr); 4494 } 4495 } 4496 4497 if (sample_type & PERF_SAMPLE_REGS_USER) { 4498 u64 abi = data->regs_user.abi; 4499 4500 /* 4501 * If there are no regs to dump, notice it through 4502 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4503 */ 4504 perf_output_put(handle, abi); 4505 4506 if (abi) { 4507 u64 mask = event->attr.sample_regs_user; 4508 perf_output_sample_regs(handle, 4509 data->regs_user.regs, 4510 mask); 4511 } 4512 } 4513 4514 if (sample_type & PERF_SAMPLE_STACK_USER) 4515 perf_output_sample_ustack(handle, 4516 data->stack_user_size, 4517 data->regs_user.regs); 4518 4519 if (sample_type & PERF_SAMPLE_WEIGHT) 4520 perf_output_put(handle, data->weight); 4521 4522 if (sample_type & PERF_SAMPLE_DATA_SRC) 4523 perf_output_put(handle, data->data_src.val); 4524 } 4525 4526 void perf_prepare_sample(struct perf_event_header *header, 4527 struct perf_sample_data *data, 4528 struct perf_event *event, 4529 struct pt_regs *regs) 4530 { 4531 u64 sample_type = event->attr.sample_type; 4532 4533 header->type = PERF_RECORD_SAMPLE; 4534 header->size = sizeof(*header) + event->header_size; 4535 4536 header->misc = 0; 4537 header->misc |= perf_misc_flags(regs); 4538 4539 __perf_event_header__init_id(header, data, event); 4540 4541 if (sample_type & PERF_SAMPLE_IP) 4542 data->ip = perf_instruction_pointer(regs); 4543 4544 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4545 int size = 1; 4546 4547 data->callchain = perf_callchain(event, regs); 4548 4549 if (data->callchain) 4550 size += data->callchain->nr; 4551 4552 header->size += size * sizeof(u64); 4553 } 4554 4555 if (sample_type & PERF_SAMPLE_RAW) { 4556 int size = sizeof(u32); 4557 4558 if (data->raw) 4559 size += data->raw->size; 4560 else 4561 size += sizeof(u32); 4562 4563 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4564 header->size += size; 4565 } 4566 4567 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4568 int size = sizeof(u64); /* nr */ 4569 if (data->br_stack) { 4570 size += data->br_stack->nr 4571 * sizeof(struct perf_branch_entry); 4572 } 4573 header->size += size; 4574 } 4575 4576 if (sample_type & PERF_SAMPLE_REGS_USER) { 4577 /* regs dump ABI info */ 4578 int size = sizeof(u64); 4579 4580 perf_sample_regs_user(&data->regs_user, regs); 4581 4582 if (data->regs_user.regs) { 4583 u64 mask = event->attr.sample_regs_user; 4584 size += hweight64(mask) * sizeof(u64); 4585 } 4586 4587 header->size += size; 4588 } 4589 4590 if (sample_type & PERF_SAMPLE_STACK_USER) { 4591 /* 4592 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4593 * processed as the last one or have additional check added 4594 * in case new sample type is added, because we could eat 4595 * up the rest of the sample size. 4596 */ 4597 struct perf_regs_user *uregs = &data->regs_user; 4598 u16 stack_size = event->attr.sample_stack_user; 4599 u16 size = sizeof(u64); 4600 4601 if (!uregs->abi) 4602 perf_sample_regs_user(uregs, regs); 4603 4604 stack_size = perf_sample_ustack_size(stack_size, header->size, 4605 uregs->regs); 4606 4607 /* 4608 * If there is something to dump, add space for the dump 4609 * itself and for the field that tells the dynamic size, 4610 * which is how many have been actually dumped. 4611 */ 4612 if (stack_size) 4613 size += sizeof(u64) + stack_size; 4614 4615 data->stack_user_size = stack_size; 4616 header->size += size; 4617 } 4618 } 4619 4620 static void perf_event_output(struct perf_event *event, 4621 struct perf_sample_data *data, 4622 struct pt_regs *regs) 4623 { 4624 struct perf_output_handle handle; 4625 struct perf_event_header header; 4626 4627 /* protect the callchain buffers */ 4628 rcu_read_lock(); 4629 4630 perf_prepare_sample(&header, data, event, regs); 4631 4632 if (perf_output_begin(&handle, event, header.size)) 4633 goto exit; 4634 4635 perf_output_sample(&handle, &header, data, event); 4636 4637 perf_output_end(&handle); 4638 4639 exit: 4640 rcu_read_unlock(); 4641 } 4642 4643 /* 4644 * read event_id 4645 */ 4646 4647 struct perf_read_event { 4648 struct perf_event_header header; 4649 4650 u32 pid; 4651 u32 tid; 4652 }; 4653 4654 static void 4655 perf_event_read_event(struct perf_event *event, 4656 struct task_struct *task) 4657 { 4658 struct perf_output_handle handle; 4659 struct perf_sample_data sample; 4660 struct perf_read_event read_event = { 4661 .header = { 4662 .type = PERF_RECORD_READ, 4663 .misc = 0, 4664 .size = sizeof(read_event) + event->read_size, 4665 }, 4666 .pid = perf_event_pid(event, task), 4667 .tid = perf_event_tid(event, task), 4668 }; 4669 int ret; 4670 4671 perf_event_header__init_id(&read_event.header, &sample, event); 4672 ret = perf_output_begin(&handle, event, read_event.header.size); 4673 if (ret) 4674 return; 4675 4676 perf_output_put(&handle, read_event); 4677 perf_output_read(&handle, event); 4678 perf_event__output_id_sample(event, &handle, &sample); 4679 4680 perf_output_end(&handle); 4681 } 4682 4683 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data); 4684 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4685 4686 static void 4687 perf_event_aux_ctx(struct perf_event_context *ctx, 4688 perf_event_aux_match_cb match, 4689 perf_event_aux_output_cb output, 4690 void *data) 4691 { 4692 struct perf_event *event; 4693 4694 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4695 if (event->state < PERF_EVENT_STATE_INACTIVE) 4696 continue; 4697 if (!event_filter_match(event)) 4698 continue; 4699 if (match(event, data)) 4700 output(event, data); 4701 } 4702 } 4703 4704 static void 4705 perf_event_aux(perf_event_aux_match_cb match, 4706 perf_event_aux_output_cb output, 4707 void *data, 4708 struct perf_event_context *task_ctx) 4709 { 4710 struct perf_cpu_context *cpuctx; 4711 struct perf_event_context *ctx; 4712 struct pmu *pmu; 4713 int ctxn; 4714 4715 rcu_read_lock(); 4716 list_for_each_entry_rcu(pmu, &pmus, entry) { 4717 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4718 if (cpuctx->unique_pmu != pmu) 4719 goto next; 4720 perf_event_aux_ctx(&cpuctx->ctx, match, output, data); 4721 if (task_ctx) 4722 goto next; 4723 ctxn = pmu->task_ctx_nr; 4724 if (ctxn < 0) 4725 goto next; 4726 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4727 if (ctx) 4728 perf_event_aux_ctx(ctx, match, output, data); 4729 next: 4730 put_cpu_ptr(pmu->pmu_cpu_context); 4731 } 4732 4733 if (task_ctx) { 4734 preempt_disable(); 4735 perf_event_aux_ctx(task_ctx, match, output, data); 4736 preempt_enable(); 4737 } 4738 rcu_read_unlock(); 4739 } 4740 4741 /* 4742 * task tracking -- fork/exit 4743 * 4744 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4745 */ 4746 4747 struct perf_task_event { 4748 struct task_struct *task; 4749 struct perf_event_context *task_ctx; 4750 4751 struct { 4752 struct perf_event_header header; 4753 4754 u32 pid; 4755 u32 ppid; 4756 u32 tid; 4757 u32 ptid; 4758 u64 time; 4759 } event_id; 4760 }; 4761 4762 static void perf_event_task_output(struct perf_event *event, 4763 void *data) 4764 { 4765 struct perf_task_event *task_event = data; 4766 struct perf_output_handle handle; 4767 struct perf_sample_data sample; 4768 struct task_struct *task = task_event->task; 4769 int ret, size = task_event->event_id.header.size; 4770 4771 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4772 4773 ret = perf_output_begin(&handle, event, 4774 task_event->event_id.header.size); 4775 if (ret) 4776 goto out; 4777 4778 task_event->event_id.pid = perf_event_pid(event, task); 4779 task_event->event_id.ppid = perf_event_pid(event, current); 4780 4781 task_event->event_id.tid = perf_event_tid(event, task); 4782 task_event->event_id.ptid = perf_event_tid(event, current); 4783 4784 perf_output_put(&handle, task_event->event_id); 4785 4786 perf_event__output_id_sample(event, &handle, &sample); 4787 4788 perf_output_end(&handle); 4789 out: 4790 task_event->event_id.header.size = size; 4791 } 4792 4793 static int perf_event_task_match(struct perf_event *event, 4794 void *data __maybe_unused) 4795 { 4796 return event->attr.comm || event->attr.mmap || 4797 event->attr.mmap_data || event->attr.task; 4798 } 4799 4800 static void perf_event_task(struct task_struct *task, 4801 struct perf_event_context *task_ctx, 4802 int new) 4803 { 4804 struct perf_task_event task_event; 4805 4806 if (!atomic_read(&nr_comm_events) && 4807 !atomic_read(&nr_mmap_events) && 4808 !atomic_read(&nr_task_events)) 4809 return; 4810 4811 task_event = (struct perf_task_event){ 4812 .task = task, 4813 .task_ctx = task_ctx, 4814 .event_id = { 4815 .header = { 4816 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4817 .misc = 0, 4818 .size = sizeof(task_event.event_id), 4819 }, 4820 /* .pid */ 4821 /* .ppid */ 4822 /* .tid */ 4823 /* .ptid */ 4824 .time = perf_clock(), 4825 }, 4826 }; 4827 4828 perf_event_aux(perf_event_task_match, 4829 perf_event_task_output, 4830 &task_event, 4831 task_ctx); 4832 } 4833 4834 void perf_event_fork(struct task_struct *task) 4835 { 4836 perf_event_task(task, NULL, 1); 4837 } 4838 4839 /* 4840 * comm tracking 4841 */ 4842 4843 struct perf_comm_event { 4844 struct task_struct *task; 4845 char *comm; 4846 int comm_size; 4847 4848 struct { 4849 struct perf_event_header header; 4850 4851 u32 pid; 4852 u32 tid; 4853 } event_id; 4854 }; 4855 4856 static void perf_event_comm_output(struct perf_event *event, 4857 void *data) 4858 { 4859 struct perf_comm_event *comm_event = data; 4860 struct perf_output_handle handle; 4861 struct perf_sample_data sample; 4862 int size = comm_event->event_id.header.size; 4863 int ret; 4864 4865 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4866 ret = perf_output_begin(&handle, event, 4867 comm_event->event_id.header.size); 4868 4869 if (ret) 4870 goto out; 4871 4872 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4873 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4874 4875 perf_output_put(&handle, comm_event->event_id); 4876 __output_copy(&handle, comm_event->comm, 4877 comm_event->comm_size); 4878 4879 perf_event__output_id_sample(event, &handle, &sample); 4880 4881 perf_output_end(&handle); 4882 out: 4883 comm_event->event_id.header.size = size; 4884 } 4885 4886 static int perf_event_comm_match(struct perf_event *event, 4887 void *data __maybe_unused) 4888 { 4889 return event->attr.comm; 4890 } 4891 4892 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4893 { 4894 char comm[TASK_COMM_LEN]; 4895 unsigned int size; 4896 4897 memset(comm, 0, sizeof(comm)); 4898 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4899 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4900 4901 comm_event->comm = comm; 4902 comm_event->comm_size = size; 4903 4904 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4905 4906 perf_event_aux(perf_event_comm_match, 4907 perf_event_comm_output, 4908 comm_event, 4909 NULL); 4910 } 4911 4912 void perf_event_comm(struct task_struct *task) 4913 { 4914 struct perf_comm_event comm_event; 4915 struct perf_event_context *ctx; 4916 int ctxn; 4917 4918 rcu_read_lock(); 4919 for_each_task_context_nr(ctxn) { 4920 ctx = task->perf_event_ctxp[ctxn]; 4921 if (!ctx) 4922 continue; 4923 4924 perf_event_enable_on_exec(ctx); 4925 } 4926 rcu_read_unlock(); 4927 4928 if (!atomic_read(&nr_comm_events)) 4929 return; 4930 4931 comm_event = (struct perf_comm_event){ 4932 .task = task, 4933 /* .comm */ 4934 /* .comm_size */ 4935 .event_id = { 4936 .header = { 4937 .type = PERF_RECORD_COMM, 4938 .misc = 0, 4939 /* .size */ 4940 }, 4941 /* .pid */ 4942 /* .tid */ 4943 }, 4944 }; 4945 4946 perf_event_comm_event(&comm_event); 4947 } 4948 4949 /* 4950 * mmap tracking 4951 */ 4952 4953 struct perf_mmap_event { 4954 struct vm_area_struct *vma; 4955 4956 const char *file_name; 4957 int file_size; 4958 4959 struct { 4960 struct perf_event_header header; 4961 4962 u32 pid; 4963 u32 tid; 4964 u64 start; 4965 u64 len; 4966 u64 pgoff; 4967 } event_id; 4968 }; 4969 4970 static void perf_event_mmap_output(struct perf_event *event, 4971 void *data) 4972 { 4973 struct perf_mmap_event *mmap_event = data; 4974 struct perf_output_handle handle; 4975 struct perf_sample_data sample; 4976 int size = mmap_event->event_id.header.size; 4977 int ret; 4978 4979 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4980 ret = perf_output_begin(&handle, event, 4981 mmap_event->event_id.header.size); 4982 if (ret) 4983 goto out; 4984 4985 mmap_event->event_id.pid = perf_event_pid(event, current); 4986 mmap_event->event_id.tid = perf_event_tid(event, current); 4987 4988 perf_output_put(&handle, mmap_event->event_id); 4989 __output_copy(&handle, mmap_event->file_name, 4990 mmap_event->file_size); 4991 4992 perf_event__output_id_sample(event, &handle, &sample); 4993 4994 perf_output_end(&handle); 4995 out: 4996 mmap_event->event_id.header.size = size; 4997 } 4998 4999 static int perf_event_mmap_match(struct perf_event *event, 5000 void *data) 5001 { 5002 struct perf_mmap_event *mmap_event = data; 5003 struct vm_area_struct *vma = mmap_event->vma; 5004 int executable = vma->vm_flags & VM_EXEC; 5005 5006 return (!executable && event->attr.mmap_data) || 5007 (executable && event->attr.mmap); 5008 } 5009 5010 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5011 { 5012 struct vm_area_struct *vma = mmap_event->vma; 5013 struct file *file = vma->vm_file; 5014 unsigned int size; 5015 char tmp[16]; 5016 char *buf = NULL; 5017 const char *name; 5018 5019 memset(tmp, 0, sizeof(tmp)); 5020 5021 if (file) { 5022 /* 5023 * d_path works from the end of the rb backwards, so we 5024 * need to add enough zero bytes after the string to handle 5025 * the 64bit alignment we do later. 5026 */ 5027 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 5028 if (!buf) { 5029 name = strncpy(tmp, "//enomem", sizeof(tmp)); 5030 goto got_name; 5031 } 5032 name = d_path(&file->f_path, buf, PATH_MAX); 5033 if (IS_ERR(name)) { 5034 name = strncpy(tmp, "//toolong", sizeof(tmp)); 5035 goto got_name; 5036 } 5037 } else { 5038 if (arch_vma_name(mmap_event->vma)) { 5039 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 5040 sizeof(tmp) - 1); 5041 tmp[sizeof(tmp) - 1] = '\0'; 5042 goto got_name; 5043 } 5044 5045 if (!vma->vm_mm) { 5046 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 5047 goto got_name; 5048 } else if (vma->vm_start <= vma->vm_mm->start_brk && 5049 vma->vm_end >= vma->vm_mm->brk) { 5050 name = strncpy(tmp, "[heap]", sizeof(tmp)); 5051 goto got_name; 5052 } else if (vma->vm_start <= vma->vm_mm->start_stack && 5053 vma->vm_end >= vma->vm_mm->start_stack) { 5054 name = strncpy(tmp, "[stack]", sizeof(tmp)); 5055 goto got_name; 5056 } 5057 5058 name = strncpy(tmp, "//anon", sizeof(tmp)); 5059 goto got_name; 5060 } 5061 5062 got_name: 5063 size = ALIGN(strlen(name)+1, sizeof(u64)); 5064 5065 mmap_event->file_name = name; 5066 mmap_event->file_size = size; 5067 5068 if (!(vma->vm_flags & VM_EXEC)) 5069 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5070 5071 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5072 5073 perf_event_aux(perf_event_mmap_match, 5074 perf_event_mmap_output, 5075 mmap_event, 5076 NULL); 5077 5078 kfree(buf); 5079 } 5080 5081 void perf_event_mmap(struct vm_area_struct *vma) 5082 { 5083 struct perf_mmap_event mmap_event; 5084 5085 if (!atomic_read(&nr_mmap_events)) 5086 return; 5087 5088 mmap_event = (struct perf_mmap_event){ 5089 .vma = vma, 5090 /* .file_name */ 5091 /* .file_size */ 5092 .event_id = { 5093 .header = { 5094 .type = PERF_RECORD_MMAP, 5095 .misc = PERF_RECORD_MISC_USER, 5096 /* .size */ 5097 }, 5098 /* .pid */ 5099 /* .tid */ 5100 .start = vma->vm_start, 5101 .len = vma->vm_end - vma->vm_start, 5102 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5103 }, 5104 }; 5105 5106 perf_event_mmap_event(&mmap_event); 5107 } 5108 5109 /* 5110 * IRQ throttle logging 5111 */ 5112 5113 static void perf_log_throttle(struct perf_event *event, int enable) 5114 { 5115 struct perf_output_handle handle; 5116 struct perf_sample_data sample; 5117 int ret; 5118 5119 struct { 5120 struct perf_event_header header; 5121 u64 time; 5122 u64 id; 5123 u64 stream_id; 5124 } throttle_event = { 5125 .header = { 5126 .type = PERF_RECORD_THROTTLE, 5127 .misc = 0, 5128 .size = sizeof(throttle_event), 5129 }, 5130 .time = perf_clock(), 5131 .id = primary_event_id(event), 5132 .stream_id = event->id, 5133 }; 5134 5135 if (enable) 5136 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5137 5138 perf_event_header__init_id(&throttle_event.header, &sample, event); 5139 5140 ret = perf_output_begin(&handle, event, 5141 throttle_event.header.size); 5142 if (ret) 5143 return; 5144 5145 perf_output_put(&handle, throttle_event); 5146 perf_event__output_id_sample(event, &handle, &sample); 5147 perf_output_end(&handle); 5148 } 5149 5150 /* 5151 * Generic event overflow handling, sampling. 5152 */ 5153 5154 static int __perf_event_overflow(struct perf_event *event, 5155 int throttle, struct perf_sample_data *data, 5156 struct pt_regs *regs) 5157 { 5158 int events = atomic_read(&event->event_limit); 5159 struct hw_perf_event *hwc = &event->hw; 5160 u64 seq; 5161 int ret = 0; 5162 5163 /* 5164 * Non-sampling counters might still use the PMI to fold short 5165 * hardware counters, ignore those. 5166 */ 5167 if (unlikely(!is_sampling_event(event))) 5168 return 0; 5169 5170 seq = __this_cpu_read(perf_throttled_seq); 5171 if (seq != hwc->interrupts_seq) { 5172 hwc->interrupts_seq = seq; 5173 hwc->interrupts = 1; 5174 } else { 5175 hwc->interrupts++; 5176 if (unlikely(throttle 5177 && hwc->interrupts >= max_samples_per_tick)) { 5178 __this_cpu_inc(perf_throttled_count); 5179 hwc->interrupts = MAX_INTERRUPTS; 5180 perf_log_throttle(event, 0); 5181 ret = 1; 5182 } 5183 } 5184 5185 if (event->attr.freq) { 5186 u64 now = perf_clock(); 5187 s64 delta = now - hwc->freq_time_stamp; 5188 5189 hwc->freq_time_stamp = now; 5190 5191 if (delta > 0 && delta < 2*TICK_NSEC) 5192 perf_adjust_period(event, delta, hwc->last_period, true); 5193 } 5194 5195 /* 5196 * XXX event_limit might not quite work as expected on inherited 5197 * events 5198 */ 5199 5200 event->pending_kill = POLL_IN; 5201 if (events && atomic_dec_and_test(&event->event_limit)) { 5202 ret = 1; 5203 event->pending_kill = POLL_HUP; 5204 event->pending_disable = 1; 5205 irq_work_queue(&event->pending); 5206 } 5207 5208 if (event->overflow_handler) 5209 event->overflow_handler(event, data, regs); 5210 else 5211 perf_event_output(event, data, regs); 5212 5213 if (event->fasync && event->pending_kill) { 5214 event->pending_wakeup = 1; 5215 irq_work_queue(&event->pending); 5216 } 5217 5218 return ret; 5219 } 5220 5221 int perf_event_overflow(struct perf_event *event, 5222 struct perf_sample_data *data, 5223 struct pt_regs *regs) 5224 { 5225 return __perf_event_overflow(event, 1, data, regs); 5226 } 5227 5228 /* 5229 * Generic software event infrastructure 5230 */ 5231 5232 struct swevent_htable { 5233 struct swevent_hlist *swevent_hlist; 5234 struct mutex hlist_mutex; 5235 int hlist_refcount; 5236 5237 /* Recursion avoidance in each contexts */ 5238 int recursion[PERF_NR_CONTEXTS]; 5239 }; 5240 5241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5242 5243 /* 5244 * We directly increment event->count and keep a second value in 5245 * event->hw.period_left to count intervals. This period event 5246 * is kept in the range [-sample_period, 0] so that we can use the 5247 * sign as trigger. 5248 */ 5249 5250 u64 perf_swevent_set_period(struct perf_event *event) 5251 { 5252 struct hw_perf_event *hwc = &event->hw; 5253 u64 period = hwc->last_period; 5254 u64 nr, offset; 5255 s64 old, val; 5256 5257 hwc->last_period = hwc->sample_period; 5258 5259 again: 5260 old = val = local64_read(&hwc->period_left); 5261 if (val < 0) 5262 return 0; 5263 5264 nr = div64_u64(period + val, period); 5265 offset = nr * period; 5266 val -= offset; 5267 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5268 goto again; 5269 5270 return nr; 5271 } 5272 5273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5274 struct perf_sample_data *data, 5275 struct pt_regs *regs) 5276 { 5277 struct hw_perf_event *hwc = &event->hw; 5278 int throttle = 0; 5279 5280 if (!overflow) 5281 overflow = perf_swevent_set_period(event); 5282 5283 if (hwc->interrupts == MAX_INTERRUPTS) 5284 return; 5285 5286 for (; overflow; overflow--) { 5287 if (__perf_event_overflow(event, throttle, 5288 data, regs)) { 5289 /* 5290 * We inhibit the overflow from happening when 5291 * hwc->interrupts == MAX_INTERRUPTS. 5292 */ 5293 break; 5294 } 5295 throttle = 1; 5296 } 5297 } 5298 5299 static void perf_swevent_event(struct perf_event *event, u64 nr, 5300 struct perf_sample_data *data, 5301 struct pt_regs *regs) 5302 { 5303 struct hw_perf_event *hwc = &event->hw; 5304 5305 local64_add(nr, &event->count); 5306 5307 if (!regs) 5308 return; 5309 5310 if (!is_sampling_event(event)) 5311 return; 5312 5313 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5314 data->period = nr; 5315 return perf_swevent_overflow(event, 1, data, regs); 5316 } else 5317 data->period = event->hw.last_period; 5318 5319 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5320 return perf_swevent_overflow(event, 1, data, regs); 5321 5322 if (local64_add_negative(nr, &hwc->period_left)) 5323 return; 5324 5325 perf_swevent_overflow(event, 0, data, regs); 5326 } 5327 5328 static int perf_exclude_event(struct perf_event *event, 5329 struct pt_regs *regs) 5330 { 5331 if (event->hw.state & PERF_HES_STOPPED) 5332 return 1; 5333 5334 if (regs) { 5335 if (event->attr.exclude_user && user_mode(regs)) 5336 return 1; 5337 5338 if (event->attr.exclude_kernel && !user_mode(regs)) 5339 return 1; 5340 } 5341 5342 return 0; 5343 } 5344 5345 static int perf_swevent_match(struct perf_event *event, 5346 enum perf_type_id type, 5347 u32 event_id, 5348 struct perf_sample_data *data, 5349 struct pt_regs *regs) 5350 { 5351 if (event->attr.type != type) 5352 return 0; 5353 5354 if (event->attr.config != event_id) 5355 return 0; 5356 5357 if (perf_exclude_event(event, regs)) 5358 return 0; 5359 5360 return 1; 5361 } 5362 5363 static inline u64 swevent_hash(u64 type, u32 event_id) 5364 { 5365 u64 val = event_id | (type << 32); 5366 5367 return hash_64(val, SWEVENT_HLIST_BITS); 5368 } 5369 5370 static inline struct hlist_head * 5371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5372 { 5373 u64 hash = swevent_hash(type, event_id); 5374 5375 return &hlist->heads[hash]; 5376 } 5377 5378 /* For the read side: events when they trigger */ 5379 static inline struct hlist_head * 5380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5381 { 5382 struct swevent_hlist *hlist; 5383 5384 hlist = rcu_dereference(swhash->swevent_hlist); 5385 if (!hlist) 5386 return NULL; 5387 5388 return __find_swevent_head(hlist, type, event_id); 5389 } 5390 5391 /* For the event head insertion and removal in the hlist */ 5392 static inline struct hlist_head * 5393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5394 { 5395 struct swevent_hlist *hlist; 5396 u32 event_id = event->attr.config; 5397 u64 type = event->attr.type; 5398 5399 /* 5400 * Event scheduling is always serialized against hlist allocation 5401 * and release. Which makes the protected version suitable here. 5402 * The context lock guarantees that. 5403 */ 5404 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5405 lockdep_is_held(&event->ctx->lock)); 5406 if (!hlist) 5407 return NULL; 5408 5409 return __find_swevent_head(hlist, type, event_id); 5410 } 5411 5412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5413 u64 nr, 5414 struct perf_sample_data *data, 5415 struct pt_regs *regs) 5416 { 5417 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5418 struct perf_event *event; 5419 struct hlist_head *head; 5420 5421 rcu_read_lock(); 5422 head = find_swevent_head_rcu(swhash, type, event_id); 5423 if (!head) 5424 goto end; 5425 5426 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5427 if (perf_swevent_match(event, type, event_id, data, regs)) 5428 perf_swevent_event(event, nr, data, regs); 5429 } 5430 end: 5431 rcu_read_unlock(); 5432 } 5433 5434 int perf_swevent_get_recursion_context(void) 5435 { 5436 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5437 5438 return get_recursion_context(swhash->recursion); 5439 } 5440 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5441 5442 inline void perf_swevent_put_recursion_context(int rctx) 5443 { 5444 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5445 5446 put_recursion_context(swhash->recursion, rctx); 5447 } 5448 5449 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5450 { 5451 struct perf_sample_data data; 5452 int rctx; 5453 5454 preempt_disable_notrace(); 5455 rctx = perf_swevent_get_recursion_context(); 5456 if (rctx < 0) 5457 return; 5458 5459 perf_sample_data_init(&data, addr, 0); 5460 5461 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5462 5463 perf_swevent_put_recursion_context(rctx); 5464 preempt_enable_notrace(); 5465 } 5466 5467 static void perf_swevent_read(struct perf_event *event) 5468 { 5469 } 5470 5471 static int perf_swevent_add(struct perf_event *event, int flags) 5472 { 5473 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5474 struct hw_perf_event *hwc = &event->hw; 5475 struct hlist_head *head; 5476 5477 if (is_sampling_event(event)) { 5478 hwc->last_period = hwc->sample_period; 5479 perf_swevent_set_period(event); 5480 } 5481 5482 hwc->state = !(flags & PERF_EF_START); 5483 5484 head = find_swevent_head(swhash, event); 5485 if (WARN_ON_ONCE(!head)) 5486 return -EINVAL; 5487 5488 hlist_add_head_rcu(&event->hlist_entry, head); 5489 5490 return 0; 5491 } 5492 5493 static void perf_swevent_del(struct perf_event *event, int flags) 5494 { 5495 hlist_del_rcu(&event->hlist_entry); 5496 } 5497 5498 static void perf_swevent_start(struct perf_event *event, int flags) 5499 { 5500 event->hw.state = 0; 5501 } 5502 5503 static void perf_swevent_stop(struct perf_event *event, int flags) 5504 { 5505 event->hw.state = PERF_HES_STOPPED; 5506 } 5507 5508 /* Deref the hlist from the update side */ 5509 static inline struct swevent_hlist * 5510 swevent_hlist_deref(struct swevent_htable *swhash) 5511 { 5512 return rcu_dereference_protected(swhash->swevent_hlist, 5513 lockdep_is_held(&swhash->hlist_mutex)); 5514 } 5515 5516 static void swevent_hlist_release(struct swevent_htable *swhash) 5517 { 5518 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5519 5520 if (!hlist) 5521 return; 5522 5523 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5524 kfree_rcu(hlist, rcu_head); 5525 } 5526 5527 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5528 { 5529 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5530 5531 mutex_lock(&swhash->hlist_mutex); 5532 5533 if (!--swhash->hlist_refcount) 5534 swevent_hlist_release(swhash); 5535 5536 mutex_unlock(&swhash->hlist_mutex); 5537 } 5538 5539 static void swevent_hlist_put(struct perf_event *event) 5540 { 5541 int cpu; 5542 5543 if (event->cpu != -1) { 5544 swevent_hlist_put_cpu(event, event->cpu); 5545 return; 5546 } 5547 5548 for_each_possible_cpu(cpu) 5549 swevent_hlist_put_cpu(event, cpu); 5550 } 5551 5552 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5553 { 5554 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5555 int err = 0; 5556 5557 mutex_lock(&swhash->hlist_mutex); 5558 5559 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5560 struct swevent_hlist *hlist; 5561 5562 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5563 if (!hlist) { 5564 err = -ENOMEM; 5565 goto exit; 5566 } 5567 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5568 } 5569 swhash->hlist_refcount++; 5570 exit: 5571 mutex_unlock(&swhash->hlist_mutex); 5572 5573 return err; 5574 } 5575 5576 static int swevent_hlist_get(struct perf_event *event) 5577 { 5578 int err; 5579 int cpu, failed_cpu; 5580 5581 if (event->cpu != -1) 5582 return swevent_hlist_get_cpu(event, event->cpu); 5583 5584 get_online_cpus(); 5585 for_each_possible_cpu(cpu) { 5586 err = swevent_hlist_get_cpu(event, cpu); 5587 if (err) { 5588 failed_cpu = cpu; 5589 goto fail; 5590 } 5591 } 5592 put_online_cpus(); 5593 5594 return 0; 5595 fail: 5596 for_each_possible_cpu(cpu) { 5597 if (cpu == failed_cpu) 5598 break; 5599 swevent_hlist_put_cpu(event, cpu); 5600 } 5601 5602 put_online_cpus(); 5603 return err; 5604 } 5605 5606 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5607 5608 static void sw_perf_event_destroy(struct perf_event *event) 5609 { 5610 u64 event_id = event->attr.config; 5611 5612 WARN_ON(event->parent); 5613 5614 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5615 swevent_hlist_put(event); 5616 } 5617 5618 static int perf_swevent_init(struct perf_event *event) 5619 { 5620 u64 event_id = event->attr.config; 5621 5622 if (event->attr.type != PERF_TYPE_SOFTWARE) 5623 return -ENOENT; 5624 5625 /* 5626 * no branch sampling for software events 5627 */ 5628 if (has_branch_stack(event)) 5629 return -EOPNOTSUPP; 5630 5631 switch (event_id) { 5632 case PERF_COUNT_SW_CPU_CLOCK: 5633 case PERF_COUNT_SW_TASK_CLOCK: 5634 return -ENOENT; 5635 5636 default: 5637 break; 5638 } 5639 5640 if (event_id >= PERF_COUNT_SW_MAX) 5641 return -ENOENT; 5642 5643 if (!event->parent) { 5644 int err; 5645 5646 err = swevent_hlist_get(event); 5647 if (err) 5648 return err; 5649 5650 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5651 event->destroy = sw_perf_event_destroy; 5652 } 5653 5654 return 0; 5655 } 5656 5657 static int perf_swevent_event_idx(struct perf_event *event) 5658 { 5659 return 0; 5660 } 5661 5662 static struct pmu perf_swevent = { 5663 .task_ctx_nr = perf_sw_context, 5664 5665 .event_init = perf_swevent_init, 5666 .add = perf_swevent_add, 5667 .del = perf_swevent_del, 5668 .start = perf_swevent_start, 5669 .stop = perf_swevent_stop, 5670 .read = perf_swevent_read, 5671 5672 .event_idx = perf_swevent_event_idx, 5673 }; 5674 5675 #ifdef CONFIG_EVENT_TRACING 5676 5677 static int perf_tp_filter_match(struct perf_event *event, 5678 struct perf_sample_data *data) 5679 { 5680 void *record = data->raw->data; 5681 5682 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5683 return 1; 5684 return 0; 5685 } 5686 5687 static int perf_tp_event_match(struct perf_event *event, 5688 struct perf_sample_data *data, 5689 struct pt_regs *regs) 5690 { 5691 if (event->hw.state & PERF_HES_STOPPED) 5692 return 0; 5693 /* 5694 * All tracepoints are from kernel-space. 5695 */ 5696 if (event->attr.exclude_kernel) 5697 return 0; 5698 5699 if (!perf_tp_filter_match(event, data)) 5700 return 0; 5701 5702 return 1; 5703 } 5704 5705 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5706 struct pt_regs *regs, struct hlist_head *head, int rctx, 5707 struct task_struct *task) 5708 { 5709 struct perf_sample_data data; 5710 struct perf_event *event; 5711 5712 struct perf_raw_record raw = { 5713 .size = entry_size, 5714 .data = record, 5715 }; 5716 5717 perf_sample_data_init(&data, addr, 0); 5718 data.raw = &raw; 5719 5720 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5721 if (perf_tp_event_match(event, &data, regs)) 5722 perf_swevent_event(event, count, &data, regs); 5723 } 5724 5725 /* 5726 * If we got specified a target task, also iterate its context and 5727 * deliver this event there too. 5728 */ 5729 if (task && task != current) { 5730 struct perf_event_context *ctx; 5731 struct trace_entry *entry = record; 5732 5733 rcu_read_lock(); 5734 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5735 if (!ctx) 5736 goto unlock; 5737 5738 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5739 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5740 continue; 5741 if (event->attr.config != entry->type) 5742 continue; 5743 if (perf_tp_event_match(event, &data, regs)) 5744 perf_swevent_event(event, count, &data, regs); 5745 } 5746 unlock: 5747 rcu_read_unlock(); 5748 } 5749 5750 perf_swevent_put_recursion_context(rctx); 5751 } 5752 EXPORT_SYMBOL_GPL(perf_tp_event); 5753 5754 static void tp_perf_event_destroy(struct perf_event *event) 5755 { 5756 perf_trace_destroy(event); 5757 } 5758 5759 static int perf_tp_event_init(struct perf_event *event) 5760 { 5761 int err; 5762 5763 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5764 return -ENOENT; 5765 5766 /* 5767 * no branch sampling for tracepoint events 5768 */ 5769 if (has_branch_stack(event)) 5770 return -EOPNOTSUPP; 5771 5772 err = perf_trace_init(event); 5773 if (err) 5774 return err; 5775 5776 event->destroy = tp_perf_event_destroy; 5777 5778 return 0; 5779 } 5780 5781 static struct pmu perf_tracepoint = { 5782 .task_ctx_nr = perf_sw_context, 5783 5784 .event_init = perf_tp_event_init, 5785 .add = perf_trace_add, 5786 .del = perf_trace_del, 5787 .start = perf_swevent_start, 5788 .stop = perf_swevent_stop, 5789 .read = perf_swevent_read, 5790 5791 .event_idx = perf_swevent_event_idx, 5792 }; 5793 5794 static inline void perf_tp_register(void) 5795 { 5796 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5797 } 5798 5799 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5800 { 5801 char *filter_str; 5802 int ret; 5803 5804 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5805 return -EINVAL; 5806 5807 filter_str = strndup_user(arg, PAGE_SIZE); 5808 if (IS_ERR(filter_str)) 5809 return PTR_ERR(filter_str); 5810 5811 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5812 5813 kfree(filter_str); 5814 return ret; 5815 } 5816 5817 static void perf_event_free_filter(struct perf_event *event) 5818 { 5819 ftrace_profile_free_filter(event); 5820 } 5821 5822 #else 5823 5824 static inline void perf_tp_register(void) 5825 { 5826 } 5827 5828 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5829 { 5830 return -ENOENT; 5831 } 5832 5833 static void perf_event_free_filter(struct perf_event *event) 5834 { 5835 } 5836 5837 #endif /* CONFIG_EVENT_TRACING */ 5838 5839 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5840 void perf_bp_event(struct perf_event *bp, void *data) 5841 { 5842 struct perf_sample_data sample; 5843 struct pt_regs *regs = data; 5844 5845 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5846 5847 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5848 perf_swevent_event(bp, 1, &sample, regs); 5849 } 5850 #endif 5851 5852 /* 5853 * hrtimer based swevent callback 5854 */ 5855 5856 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5857 { 5858 enum hrtimer_restart ret = HRTIMER_RESTART; 5859 struct perf_sample_data data; 5860 struct pt_regs *regs; 5861 struct perf_event *event; 5862 u64 period; 5863 5864 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5865 5866 if (event->state != PERF_EVENT_STATE_ACTIVE) 5867 return HRTIMER_NORESTART; 5868 5869 event->pmu->read(event); 5870 5871 perf_sample_data_init(&data, 0, event->hw.last_period); 5872 regs = get_irq_regs(); 5873 5874 if (regs && !perf_exclude_event(event, regs)) { 5875 if (!(event->attr.exclude_idle && is_idle_task(current))) 5876 if (__perf_event_overflow(event, 1, &data, regs)) 5877 ret = HRTIMER_NORESTART; 5878 } 5879 5880 period = max_t(u64, 10000, event->hw.sample_period); 5881 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5882 5883 return ret; 5884 } 5885 5886 static void perf_swevent_start_hrtimer(struct perf_event *event) 5887 { 5888 struct hw_perf_event *hwc = &event->hw; 5889 s64 period; 5890 5891 if (!is_sampling_event(event)) 5892 return; 5893 5894 period = local64_read(&hwc->period_left); 5895 if (period) { 5896 if (period < 0) 5897 period = 10000; 5898 5899 local64_set(&hwc->period_left, 0); 5900 } else { 5901 period = max_t(u64, 10000, hwc->sample_period); 5902 } 5903 __hrtimer_start_range_ns(&hwc->hrtimer, 5904 ns_to_ktime(period), 0, 5905 HRTIMER_MODE_REL_PINNED, 0); 5906 } 5907 5908 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5909 { 5910 struct hw_perf_event *hwc = &event->hw; 5911 5912 if (is_sampling_event(event)) { 5913 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5914 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5915 5916 hrtimer_cancel(&hwc->hrtimer); 5917 } 5918 } 5919 5920 static void perf_swevent_init_hrtimer(struct perf_event *event) 5921 { 5922 struct hw_perf_event *hwc = &event->hw; 5923 5924 if (!is_sampling_event(event)) 5925 return; 5926 5927 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5928 hwc->hrtimer.function = perf_swevent_hrtimer; 5929 5930 /* 5931 * Since hrtimers have a fixed rate, we can do a static freq->period 5932 * mapping and avoid the whole period adjust feedback stuff. 5933 */ 5934 if (event->attr.freq) { 5935 long freq = event->attr.sample_freq; 5936 5937 event->attr.sample_period = NSEC_PER_SEC / freq; 5938 hwc->sample_period = event->attr.sample_period; 5939 local64_set(&hwc->period_left, hwc->sample_period); 5940 hwc->last_period = hwc->sample_period; 5941 event->attr.freq = 0; 5942 } 5943 } 5944 5945 /* 5946 * Software event: cpu wall time clock 5947 */ 5948 5949 static void cpu_clock_event_update(struct perf_event *event) 5950 { 5951 s64 prev; 5952 u64 now; 5953 5954 now = local_clock(); 5955 prev = local64_xchg(&event->hw.prev_count, now); 5956 local64_add(now - prev, &event->count); 5957 } 5958 5959 static void cpu_clock_event_start(struct perf_event *event, int flags) 5960 { 5961 local64_set(&event->hw.prev_count, local_clock()); 5962 perf_swevent_start_hrtimer(event); 5963 } 5964 5965 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5966 { 5967 perf_swevent_cancel_hrtimer(event); 5968 cpu_clock_event_update(event); 5969 } 5970 5971 static int cpu_clock_event_add(struct perf_event *event, int flags) 5972 { 5973 if (flags & PERF_EF_START) 5974 cpu_clock_event_start(event, flags); 5975 5976 return 0; 5977 } 5978 5979 static void cpu_clock_event_del(struct perf_event *event, int flags) 5980 { 5981 cpu_clock_event_stop(event, flags); 5982 } 5983 5984 static void cpu_clock_event_read(struct perf_event *event) 5985 { 5986 cpu_clock_event_update(event); 5987 } 5988 5989 static int cpu_clock_event_init(struct perf_event *event) 5990 { 5991 if (event->attr.type != PERF_TYPE_SOFTWARE) 5992 return -ENOENT; 5993 5994 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5995 return -ENOENT; 5996 5997 /* 5998 * no branch sampling for software events 5999 */ 6000 if (has_branch_stack(event)) 6001 return -EOPNOTSUPP; 6002 6003 perf_swevent_init_hrtimer(event); 6004 6005 return 0; 6006 } 6007 6008 static struct pmu perf_cpu_clock = { 6009 .task_ctx_nr = perf_sw_context, 6010 6011 .event_init = cpu_clock_event_init, 6012 .add = cpu_clock_event_add, 6013 .del = cpu_clock_event_del, 6014 .start = cpu_clock_event_start, 6015 .stop = cpu_clock_event_stop, 6016 .read = cpu_clock_event_read, 6017 6018 .event_idx = perf_swevent_event_idx, 6019 }; 6020 6021 /* 6022 * Software event: task time clock 6023 */ 6024 6025 static void task_clock_event_update(struct perf_event *event, u64 now) 6026 { 6027 u64 prev; 6028 s64 delta; 6029 6030 prev = local64_xchg(&event->hw.prev_count, now); 6031 delta = now - prev; 6032 local64_add(delta, &event->count); 6033 } 6034 6035 static void task_clock_event_start(struct perf_event *event, int flags) 6036 { 6037 local64_set(&event->hw.prev_count, event->ctx->time); 6038 perf_swevent_start_hrtimer(event); 6039 } 6040 6041 static void task_clock_event_stop(struct perf_event *event, int flags) 6042 { 6043 perf_swevent_cancel_hrtimer(event); 6044 task_clock_event_update(event, event->ctx->time); 6045 } 6046 6047 static int task_clock_event_add(struct perf_event *event, int flags) 6048 { 6049 if (flags & PERF_EF_START) 6050 task_clock_event_start(event, flags); 6051 6052 return 0; 6053 } 6054 6055 static void task_clock_event_del(struct perf_event *event, int flags) 6056 { 6057 task_clock_event_stop(event, PERF_EF_UPDATE); 6058 } 6059 6060 static void task_clock_event_read(struct perf_event *event) 6061 { 6062 u64 now = perf_clock(); 6063 u64 delta = now - event->ctx->timestamp; 6064 u64 time = event->ctx->time + delta; 6065 6066 task_clock_event_update(event, time); 6067 } 6068 6069 static int task_clock_event_init(struct perf_event *event) 6070 { 6071 if (event->attr.type != PERF_TYPE_SOFTWARE) 6072 return -ENOENT; 6073 6074 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6075 return -ENOENT; 6076 6077 /* 6078 * no branch sampling for software events 6079 */ 6080 if (has_branch_stack(event)) 6081 return -EOPNOTSUPP; 6082 6083 perf_swevent_init_hrtimer(event); 6084 6085 return 0; 6086 } 6087 6088 static struct pmu perf_task_clock = { 6089 .task_ctx_nr = perf_sw_context, 6090 6091 .event_init = task_clock_event_init, 6092 .add = task_clock_event_add, 6093 .del = task_clock_event_del, 6094 .start = task_clock_event_start, 6095 .stop = task_clock_event_stop, 6096 .read = task_clock_event_read, 6097 6098 .event_idx = perf_swevent_event_idx, 6099 }; 6100 6101 static void perf_pmu_nop_void(struct pmu *pmu) 6102 { 6103 } 6104 6105 static int perf_pmu_nop_int(struct pmu *pmu) 6106 { 6107 return 0; 6108 } 6109 6110 static void perf_pmu_start_txn(struct pmu *pmu) 6111 { 6112 perf_pmu_disable(pmu); 6113 } 6114 6115 static int perf_pmu_commit_txn(struct pmu *pmu) 6116 { 6117 perf_pmu_enable(pmu); 6118 return 0; 6119 } 6120 6121 static void perf_pmu_cancel_txn(struct pmu *pmu) 6122 { 6123 perf_pmu_enable(pmu); 6124 } 6125 6126 static int perf_event_idx_default(struct perf_event *event) 6127 { 6128 return event->hw.idx + 1; 6129 } 6130 6131 /* 6132 * Ensures all contexts with the same task_ctx_nr have the same 6133 * pmu_cpu_context too. 6134 */ 6135 static void *find_pmu_context(int ctxn) 6136 { 6137 struct pmu *pmu; 6138 6139 if (ctxn < 0) 6140 return NULL; 6141 6142 list_for_each_entry(pmu, &pmus, entry) { 6143 if (pmu->task_ctx_nr == ctxn) 6144 return pmu->pmu_cpu_context; 6145 } 6146 6147 return NULL; 6148 } 6149 6150 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6151 { 6152 int cpu; 6153 6154 for_each_possible_cpu(cpu) { 6155 struct perf_cpu_context *cpuctx; 6156 6157 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6158 6159 if (cpuctx->unique_pmu == old_pmu) 6160 cpuctx->unique_pmu = pmu; 6161 } 6162 } 6163 6164 static void free_pmu_context(struct pmu *pmu) 6165 { 6166 struct pmu *i; 6167 6168 mutex_lock(&pmus_lock); 6169 /* 6170 * Like a real lame refcount. 6171 */ 6172 list_for_each_entry(i, &pmus, entry) { 6173 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6174 update_pmu_context(i, pmu); 6175 goto out; 6176 } 6177 } 6178 6179 free_percpu(pmu->pmu_cpu_context); 6180 out: 6181 mutex_unlock(&pmus_lock); 6182 } 6183 static struct idr pmu_idr; 6184 6185 static ssize_t 6186 type_show(struct device *dev, struct device_attribute *attr, char *page) 6187 { 6188 struct pmu *pmu = dev_get_drvdata(dev); 6189 6190 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6191 } 6192 6193 static ssize_t 6194 perf_event_mux_interval_ms_show(struct device *dev, 6195 struct device_attribute *attr, 6196 char *page) 6197 { 6198 struct pmu *pmu = dev_get_drvdata(dev); 6199 6200 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6201 } 6202 6203 static ssize_t 6204 perf_event_mux_interval_ms_store(struct device *dev, 6205 struct device_attribute *attr, 6206 const char *buf, size_t count) 6207 { 6208 struct pmu *pmu = dev_get_drvdata(dev); 6209 int timer, cpu, ret; 6210 6211 ret = kstrtoint(buf, 0, &timer); 6212 if (ret) 6213 return ret; 6214 6215 if (timer < 1) 6216 return -EINVAL; 6217 6218 /* same value, noting to do */ 6219 if (timer == pmu->hrtimer_interval_ms) 6220 return count; 6221 6222 pmu->hrtimer_interval_ms = timer; 6223 6224 /* update all cpuctx for this PMU */ 6225 for_each_possible_cpu(cpu) { 6226 struct perf_cpu_context *cpuctx; 6227 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6228 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6229 6230 if (hrtimer_active(&cpuctx->hrtimer)) 6231 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6232 } 6233 6234 return count; 6235 } 6236 6237 #define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store) 6238 6239 static struct device_attribute pmu_dev_attrs[] = { 6240 __ATTR_RO(type), 6241 __ATTR_RW(perf_event_mux_interval_ms), 6242 __ATTR_NULL, 6243 }; 6244 6245 static int pmu_bus_running; 6246 static struct bus_type pmu_bus = { 6247 .name = "event_source", 6248 .dev_attrs = pmu_dev_attrs, 6249 }; 6250 6251 static void pmu_dev_release(struct device *dev) 6252 { 6253 kfree(dev); 6254 } 6255 6256 static int pmu_dev_alloc(struct pmu *pmu) 6257 { 6258 int ret = -ENOMEM; 6259 6260 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6261 if (!pmu->dev) 6262 goto out; 6263 6264 pmu->dev->groups = pmu->attr_groups; 6265 device_initialize(pmu->dev); 6266 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6267 if (ret) 6268 goto free_dev; 6269 6270 dev_set_drvdata(pmu->dev, pmu); 6271 pmu->dev->bus = &pmu_bus; 6272 pmu->dev->release = pmu_dev_release; 6273 ret = device_add(pmu->dev); 6274 if (ret) 6275 goto free_dev; 6276 6277 out: 6278 return ret; 6279 6280 free_dev: 6281 put_device(pmu->dev); 6282 goto out; 6283 } 6284 6285 static struct lock_class_key cpuctx_mutex; 6286 static struct lock_class_key cpuctx_lock; 6287 6288 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6289 { 6290 int cpu, ret; 6291 6292 mutex_lock(&pmus_lock); 6293 ret = -ENOMEM; 6294 pmu->pmu_disable_count = alloc_percpu(int); 6295 if (!pmu->pmu_disable_count) 6296 goto unlock; 6297 6298 pmu->type = -1; 6299 if (!name) 6300 goto skip_type; 6301 pmu->name = name; 6302 6303 if (type < 0) { 6304 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6305 if (type < 0) { 6306 ret = type; 6307 goto free_pdc; 6308 } 6309 } 6310 pmu->type = type; 6311 6312 if (pmu_bus_running) { 6313 ret = pmu_dev_alloc(pmu); 6314 if (ret) 6315 goto free_idr; 6316 } 6317 6318 skip_type: 6319 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6320 if (pmu->pmu_cpu_context) 6321 goto got_cpu_context; 6322 6323 ret = -ENOMEM; 6324 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6325 if (!pmu->pmu_cpu_context) 6326 goto free_dev; 6327 6328 for_each_possible_cpu(cpu) { 6329 struct perf_cpu_context *cpuctx; 6330 6331 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6332 __perf_event_init_context(&cpuctx->ctx); 6333 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6334 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6335 cpuctx->ctx.type = cpu_context; 6336 cpuctx->ctx.pmu = pmu; 6337 6338 __perf_cpu_hrtimer_init(cpuctx, cpu); 6339 6340 INIT_LIST_HEAD(&cpuctx->rotation_list); 6341 cpuctx->unique_pmu = pmu; 6342 } 6343 6344 got_cpu_context: 6345 if (!pmu->start_txn) { 6346 if (pmu->pmu_enable) { 6347 /* 6348 * If we have pmu_enable/pmu_disable calls, install 6349 * transaction stubs that use that to try and batch 6350 * hardware accesses. 6351 */ 6352 pmu->start_txn = perf_pmu_start_txn; 6353 pmu->commit_txn = perf_pmu_commit_txn; 6354 pmu->cancel_txn = perf_pmu_cancel_txn; 6355 } else { 6356 pmu->start_txn = perf_pmu_nop_void; 6357 pmu->commit_txn = perf_pmu_nop_int; 6358 pmu->cancel_txn = perf_pmu_nop_void; 6359 } 6360 } 6361 6362 if (!pmu->pmu_enable) { 6363 pmu->pmu_enable = perf_pmu_nop_void; 6364 pmu->pmu_disable = perf_pmu_nop_void; 6365 } 6366 6367 if (!pmu->event_idx) 6368 pmu->event_idx = perf_event_idx_default; 6369 6370 list_add_rcu(&pmu->entry, &pmus); 6371 ret = 0; 6372 unlock: 6373 mutex_unlock(&pmus_lock); 6374 6375 return ret; 6376 6377 free_dev: 6378 device_del(pmu->dev); 6379 put_device(pmu->dev); 6380 6381 free_idr: 6382 if (pmu->type >= PERF_TYPE_MAX) 6383 idr_remove(&pmu_idr, pmu->type); 6384 6385 free_pdc: 6386 free_percpu(pmu->pmu_disable_count); 6387 goto unlock; 6388 } 6389 6390 void perf_pmu_unregister(struct pmu *pmu) 6391 { 6392 mutex_lock(&pmus_lock); 6393 list_del_rcu(&pmu->entry); 6394 mutex_unlock(&pmus_lock); 6395 6396 /* 6397 * We dereference the pmu list under both SRCU and regular RCU, so 6398 * synchronize against both of those. 6399 */ 6400 synchronize_srcu(&pmus_srcu); 6401 synchronize_rcu(); 6402 6403 free_percpu(pmu->pmu_disable_count); 6404 if (pmu->type >= PERF_TYPE_MAX) 6405 idr_remove(&pmu_idr, pmu->type); 6406 device_del(pmu->dev); 6407 put_device(pmu->dev); 6408 free_pmu_context(pmu); 6409 } 6410 6411 struct pmu *perf_init_event(struct perf_event *event) 6412 { 6413 struct pmu *pmu = NULL; 6414 int idx; 6415 int ret; 6416 6417 idx = srcu_read_lock(&pmus_srcu); 6418 6419 rcu_read_lock(); 6420 pmu = idr_find(&pmu_idr, event->attr.type); 6421 rcu_read_unlock(); 6422 if (pmu) { 6423 event->pmu = pmu; 6424 ret = pmu->event_init(event); 6425 if (ret) 6426 pmu = ERR_PTR(ret); 6427 goto unlock; 6428 } 6429 6430 list_for_each_entry_rcu(pmu, &pmus, entry) { 6431 event->pmu = pmu; 6432 ret = pmu->event_init(event); 6433 if (!ret) 6434 goto unlock; 6435 6436 if (ret != -ENOENT) { 6437 pmu = ERR_PTR(ret); 6438 goto unlock; 6439 } 6440 } 6441 pmu = ERR_PTR(-ENOENT); 6442 unlock: 6443 srcu_read_unlock(&pmus_srcu, idx); 6444 6445 return pmu; 6446 } 6447 6448 /* 6449 * Allocate and initialize a event structure 6450 */ 6451 static struct perf_event * 6452 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6453 struct task_struct *task, 6454 struct perf_event *group_leader, 6455 struct perf_event *parent_event, 6456 perf_overflow_handler_t overflow_handler, 6457 void *context) 6458 { 6459 struct pmu *pmu; 6460 struct perf_event *event; 6461 struct hw_perf_event *hwc; 6462 long err; 6463 6464 if ((unsigned)cpu >= nr_cpu_ids) { 6465 if (!task || cpu != -1) 6466 return ERR_PTR(-EINVAL); 6467 } 6468 6469 event = kzalloc(sizeof(*event), GFP_KERNEL); 6470 if (!event) 6471 return ERR_PTR(-ENOMEM); 6472 6473 /* 6474 * Single events are their own group leaders, with an 6475 * empty sibling list: 6476 */ 6477 if (!group_leader) 6478 group_leader = event; 6479 6480 mutex_init(&event->child_mutex); 6481 INIT_LIST_HEAD(&event->child_list); 6482 6483 INIT_LIST_HEAD(&event->group_entry); 6484 INIT_LIST_HEAD(&event->event_entry); 6485 INIT_LIST_HEAD(&event->sibling_list); 6486 INIT_LIST_HEAD(&event->rb_entry); 6487 6488 init_waitqueue_head(&event->waitq); 6489 init_irq_work(&event->pending, perf_pending_event); 6490 6491 mutex_init(&event->mmap_mutex); 6492 6493 atomic_long_set(&event->refcount, 1); 6494 event->cpu = cpu; 6495 event->attr = *attr; 6496 event->group_leader = group_leader; 6497 event->pmu = NULL; 6498 event->oncpu = -1; 6499 6500 event->parent = parent_event; 6501 6502 event->ns = get_pid_ns(task_active_pid_ns(current)); 6503 event->id = atomic64_inc_return(&perf_event_id); 6504 6505 event->state = PERF_EVENT_STATE_INACTIVE; 6506 6507 if (task) { 6508 event->attach_state = PERF_ATTACH_TASK; 6509 6510 if (attr->type == PERF_TYPE_TRACEPOINT) 6511 event->hw.tp_target = task; 6512 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6513 /* 6514 * hw_breakpoint is a bit difficult here.. 6515 */ 6516 else if (attr->type == PERF_TYPE_BREAKPOINT) 6517 event->hw.bp_target = task; 6518 #endif 6519 } 6520 6521 if (!overflow_handler && parent_event) { 6522 overflow_handler = parent_event->overflow_handler; 6523 context = parent_event->overflow_handler_context; 6524 } 6525 6526 event->overflow_handler = overflow_handler; 6527 event->overflow_handler_context = context; 6528 6529 perf_event__state_init(event); 6530 6531 pmu = NULL; 6532 6533 hwc = &event->hw; 6534 hwc->sample_period = attr->sample_period; 6535 if (attr->freq && attr->sample_freq) 6536 hwc->sample_period = 1; 6537 hwc->last_period = hwc->sample_period; 6538 6539 local64_set(&hwc->period_left, hwc->sample_period); 6540 6541 /* 6542 * we currently do not support PERF_FORMAT_GROUP on inherited events 6543 */ 6544 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6545 goto done; 6546 6547 pmu = perf_init_event(event); 6548 6549 done: 6550 err = 0; 6551 if (!pmu) 6552 err = -EINVAL; 6553 else if (IS_ERR(pmu)) 6554 err = PTR_ERR(pmu); 6555 6556 if (err) { 6557 if (event->ns) 6558 put_pid_ns(event->ns); 6559 kfree(event); 6560 return ERR_PTR(err); 6561 } 6562 6563 if (!event->parent) { 6564 if (event->attach_state & PERF_ATTACH_TASK) 6565 static_key_slow_inc(&perf_sched_events.key); 6566 if (event->attr.mmap || event->attr.mmap_data) 6567 atomic_inc(&nr_mmap_events); 6568 if (event->attr.comm) 6569 atomic_inc(&nr_comm_events); 6570 if (event->attr.task) 6571 atomic_inc(&nr_task_events); 6572 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6573 err = get_callchain_buffers(); 6574 if (err) { 6575 free_event(event); 6576 return ERR_PTR(err); 6577 } 6578 } 6579 if (has_branch_stack(event)) { 6580 static_key_slow_inc(&perf_sched_events.key); 6581 if (!(event->attach_state & PERF_ATTACH_TASK)) 6582 atomic_inc(&per_cpu(perf_branch_stack_events, 6583 event->cpu)); 6584 } 6585 } 6586 6587 return event; 6588 } 6589 6590 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6591 struct perf_event_attr *attr) 6592 { 6593 u32 size; 6594 int ret; 6595 6596 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6597 return -EFAULT; 6598 6599 /* 6600 * zero the full structure, so that a short copy will be nice. 6601 */ 6602 memset(attr, 0, sizeof(*attr)); 6603 6604 ret = get_user(size, &uattr->size); 6605 if (ret) 6606 return ret; 6607 6608 if (size > PAGE_SIZE) /* silly large */ 6609 goto err_size; 6610 6611 if (!size) /* abi compat */ 6612 size = PERF_ATTR_SIZE_VER0; 6613 6614 if (size < PERF_ATTR_SIZE_VER0) 6615 goto err_size; 6616 6617 /* 6618 * If we're handed a bigger struct than we know of, 6619 * ensure all the unknown bits are 0 - i.e. new 6620 * user-space does not rely on any kernel feature 6621 * extensions we dont know about yet. 6622 */ 6623 if (size > sizeof(*attr)) { 6624 unsigned char __user *addr; 6625 unsigned char __user *end; 6626 unsigned char val; 6627 6628 addr = (void __user *)uattr + sizeof(*attr); 6629 end = (void __user *)uattr + size; 6630 6631 for (; addr < end; addr++) { 6632 ret = get_user(val, addr); 6633 if (ret) 6634 return ret; 6635 if (val) 6636 goto err_size; 6637 } 6638 size = sizeof(*attr); 6639 } 6640 6641 ret = copy_from_user(attr, uattr, size); 6642 if (ret) 6643 return -EFAULT; 6644 6645 if (attr->__reserved_1) 6646 return -EINVAL; 6647 6648 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6649 return -EINVAL; 6650 6651 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6652 return -EINVAL; 6653 6654 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6655 u64 mask = attr->branch_sample_type; 6656 6657 /* only using defined bits */ 6658 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6659 return -EINVAL; 6660 6661 /* at least one branch bit must be set */ 6662 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6663 return -EINVAL; 6664 6665 /* propagate priv level, when not set for branch */ 6666 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6667 6668 /* exclude_kernel checked on syscall entry */ 6669 if (!attr->exclude_kernel) 6670 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6671 6672 if (!attr->exclude_user) 6673 mask |= PERF_SAMPLE_BRANCH_USER; 6674 6675 if (!attr->exclude_hv) 6676 mask |= PERF_SAMPLE_BRANCH_HV; 6677 /* 6678 * adjust user setting (for HW filter setup) 6679 */ 6680 attr->branch_sample_type = mask; 6681 } 6682 /* privileged levels capture (kernel, hv): check permissions */ 6683 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6684 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6685 return -EACCES; 6686 } 6687 6688 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6689 ret = perf_reg_validate(attr->sample_regs_user); 6690 if (ret) 6691 return ret; 6692 } 6693 6694 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6695 if (!arch_perf_have_user_stack_dump()) 6696 return -ENOSYS; 6697 6698 /* 6699 * We have __u32 type for the size, but so far 6700 * we can only use __u16 as maximum due to the 6701 * __u16 sample size limit. 6702 */ 6703 if (attr->sample_stack_user >= USHRT_MAX) 6704 ret = -EINVAL; 6705 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6706 ret = -EINVAL; 6707 } 6708 6709 out: 6710 return ret; 6711 6712 err_size: 6713 put_user(sizeof(*attr), &uattr->size); 6714 ret = -E2BIG; 6715 goto out; 6716 } 6717 6718 static int 6719 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6720 { 6721 struct ring_buffer *rb = NULL, *old_rb = NULL; 6722 int ret = -EINVAL; 6723 6724 if (!output_event) 6725 goto set; 6726 6727 /* don't allow circular references */ 6728 if (event == output_event) 6729 goto out; 6730 6731 /* 6732 * Don't allow cross-cpu buffers 6733 */ 6734 if (output_event->cpu != event->cpu) 6735 goto out; 6736 6737 /* 6738 * If its not a per-cpu rb, it must be the same task. 6739 */ 6740 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6741 goto out; 6742 6743 set: 6744 mutex_lock(&event->mmap_mutex); 6745 /* Can't redirect output if we've got an active mmap() */ 6746 if (atomic_read(&event->mmap_count)) 6747 goto unlock; 6748 6749 old_rb = event->rb; 6750 6751 if (output_event) { 6752 /* get the rb we want to redirect to */ 6753 rb = ring_buffer_get(output_event); 6754 if (!rb) 6755 goto unlock; 6756 } 6757 6758 if (old_rb) 6759 ring_buffer_detach(event, old_rb); 6760 6761 if (rb) 6762 ring_buffer_attach(event, rb); 6763 6764 rcu_assign_pointer(event->rb, rb); 6765 6766 if (old_rb) { 6767 ring_buffer_put(old_rb); 6768 /* 6769 * Since we detached before setting the new rb, so that we 6770 * could attach the new rb, we could have missed a wakeup. 6771 * Provide it now. 6772 */ 6773 wake_up_all(&event->waitq); 6774 } 6775 6776 ret = 0; 6777 unlock: 6778 mutex_unlock(&event->mmap_mutex); 6779 6780 out: 6781 return ret; 6782 } 6783 6784 /** 6785 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6786 * 6787 * @attr_uptr: event_id type attributes for monitoring/sampling 6788 * @pid: target pid 6789 * @cpu: target cpu 6790 * @group_fd: group leader event fd 6791 */ 6792 SYSCALL_DEFINE5(perf_event_open, 6793 struct perf_event_attr __user *, attr_uptr, 6794 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6795 { 6796 struct perf_event *group_leader = NULL, *output_event = NULL; 6797 struct perf_event *event, *sibling; 6798 struct perf_event_attr attr; 6799 struct perf_event_context *ctx; 6800 struct file *event_file = NULL; 6801 struct fd group = {NULL, 0}; 6802 struct task_struct *task = NULL; 6803 struct pmu *pmu; 6804 int event_fd; 6805 int move_group = 0; 6806 int err; 6807 6808 /* for future expandability... */ 6809 if (flags & ~PERF_FLAG_ALL) 6810 return -EINVAL; 6811 6812 err = perf_copy_attr(attr_uptr, &attr); 6813 if (err) 6814 return err; 6815 6816 if (!attr.exclude_kernel) { 6817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6818 return -EACCES; 6819 } 6820 6821 if (attr.freq) { 6822 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6823 return -EINVAL; 6824 } 6825 6826 /* 6827 * In cgroup mode, the pid argument is used to pass the fd 6828 * opened to the cgroup directory in cgroupfs. The cpu argument 6829 * designates the cpu on which to monitor threads from that 6830 * cgroup. 6831 */ 6832 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6833 return -EINVAL; 6834 6835 event_fd = get_unused_fd(); 6836 if (event_fd < 0) 6837 return event_fd; 6838 6839 if (group_fd != -1) { 6840 err = perf_fget_light(group_fd, &group); 6841 if (err) 6842 goto err_fd; 6843 group_leader = group.file->private_data; 6844 if (flags & PERF_FLAG_FD_OUTPUT) 6845 output_event = group_leader; 6846 if (flags & PERF_FLAG_FD_NO_GROUP) 6847 group_leader = NULL; 6848 } 6849 6850 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6851 task = find_lively_task_by_vpid(pid); 6852 if (IS_ERR(task)) { 6853 err = PTR_ERR(task); 6854 goto err_group_fd; 6855 } 6856 } 6857 6858 get_online_cpus(); 6859 6860 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6861 NULL, NULL); 6862 if (IS_ERR(event)) { 6863 err = PTR_ERR(event); 6864 goto err_task; 6865 } 6866 6867 if (flags & PERF_FLAG_PID_CGROUP) { 6868 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6869 if (err) 6870 goto err_alloc; 6871 /* 6872 * one more event: 6873 * - that has cgroup constraint on event->cpu 6874 * - that may need work on context switch 6875 */ 6876 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6877 static_key_slow_inc(&perf_sched_events.key); 6878 } 6879 6880 /* 6881 * Special case software events and allow them to be part of 6882 * any hardware group. 6883 */ 6884 pmu = event->pmu; 6885 6886 if (group_leader && 6887 (is_software_event(event) != is_software_event(group_leader))) { 6888 if (is_software_event(event)) { 6889 /* 6890 * If event and group_leader are not both a software 6891 * event, and event is, then group leader is not. 6892 * 6893 * Allow the addition of software events to !software 6894 * groups, this is safe because software events never 6895 * fail to schedule. 6896 */ 6897 pmu = group_leader->pmu; 6898 } else if (is_software_event(group_leader) && 6899 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6900 /* 6901 * In case the group is a pure software group, and we 6902 * try to add a hardware event, move the whole group to 6903 * the hardware context. 6904 */ 6905 move_group = 1; 6906 } 6907 } 6908 6909 /* 6910 * Get the target context (task or percpu): 6911 */ 6912 ctx = find_get_context(pmu, task, event->cpu); 6913 if (IS_ERR(ctx)) { 6914 err = PTR_ERR(ctx); 6915 goto err_alloc; 6916 } 6917 6918 if (task) { 6919 put_task_struct(task); 6920 task = NULL; 6921 } 6922 6923 /* 6924 * Look up the group leader (we will attach this event to it): 6925 */ 6926 if (group_leader) { 6927 err = -EINVAL; 6928 6929 /* 6930 * Do not allow a recursive hierarchy (this new sibling 6931 * becoming part of another group-sibling): 6932 */ 6933 if (group_leader->group_leader != group_leader) 6934 goto err_context; 6935 /* 6936 * Do not allow to attach to a group in a different 6937 * task or CPU context: 6938 */ 6939 if (move_group) { 6940 if (group_leader->ctx->type != ctx->type) 6941 goto err_context; 6942 } else { 6943 if (group_leader->ctx != ctx) 6944 goto err_context; 6945 } 6946 6947 /* 6948 * Only a group leader can be exclusive or pinned 6949 */ 6950 if (attr.exclusive || attr.pinned) 6951 goto err_context; 6952 } 6953 6954 if (output_event) { 6955 err = perf_event_set_output(event, output_event); 6956 if (err) 6957 goto err_context; 6958 } 6959 6960 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6961 if (IS_ERR(event_file)) { 6962 err = PTR_ERR(event_file); 6963 goto err_context; 6964 } 6965 6966 if (move_group) { 6967 struct perf_event_context *gctx = group_leader->ctx; 6968 6969 mutex_lock(&gctx->mutex); 6970 perf_remove_from_context(group_leader); 6971 6972 /* 6973 * Removing from the context ends up with disabled 6974 * event. What we want here is event in the initial 6975 * startup state, ready to be add into new context. 6976 */ 6977 perf_event__state_init(group_leader); 6978 list_for_each_entry(sibling, &group_leader->sibling_list, 6979 group_entry) { 6980 perf_remove_from_context(sibling); 6981 perf_event__state_init(sibling); 6982 put_ctx(gctx); 6983 } 6984 mutex_unlock(&gctx->mutex); 6985 put_ctx(gctx); 6986 } 6987 6988 WARN_ON_ONCE(ctx->parent_ctx); 6989 mutex_lock(&ctx->mutex); 6990 6991 if (move_group) { 6992 synchronize_rcu(); 6993 perf_install_in_context(ctx, group_leader, event->cpu); 6994 get_ctx(ctx); 6995 list_for_each_entry(sibling, &group_leader->sibling_list, 6996 group_entry) { 6997 perf_install_in_context(ctx, sibling, event->cpu); 6998 get_ctx(ctx); 6999 } 7000 } 7001 7002 perf_install_in_context(ctx, event, event->cpu); 7003 ++ctx->generation; 7004 perf_unpin_context(ctx); 7005 mutex_unlock(&ctx->mutex); 7006 7007 put_online_cpus(); 7008 7009 event->owner = current; 7010 7011 mutex_lock(¤t->perf_event_mutex); 7012 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7013 mutex_unlock(¤t->perf_event_mutex); 7014 7015 /* 7016 * Precalculate sample_data sizes 7017 */ 7018 perf_event__header_size(event); 7019 perf_event__id_header_size(event); 7020 7021 /* 7022 * Drop the reference on the group_event after placing the 7023 * new event on the sibling_list. This ensures destruction 7024 * of the group leader will find the pointer to itself in 7025 * perf_group_detach(). 7026 */ 7027 fdput(group); 7028 fd_install(event_fd, event_file); 7029 return event_fd; 7030 7031 err_context: 7032 perf_unpin_context(ctx); 7033 put_ctx(ctx); 7034 err_alloc: 7035 free_event(event); 7036 err_task: 7037 put_online_cpus(); 7038 if (task) 7039 put_task_struct(task); 7040 err_group_fd: 7041 fdput(group); 7042 err_fd: 7043 put_unused_fd(event_fd); 7044 return err; 7045 } 7046 7047 /** 7048 * perf_event_create_kernel_counter 7049 * 7050 * @attr: attributes of the counter to create 7051 * @cpu: cpu in which the counter is bound 7052 * @task: task to profile (NULL for percpu) 7053 */ 7054 struct perf_event * 7055 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7056 struct task_struct *task, 7057 perf_overflow_handler_t overflow_handler, 7058 void *context) 7059 { 7060 struct perf_event_context *ctx; 7061 struct perf_event *event; 7062 int err; 7063 7064 /* 7065 * Get the target context (task or percpu): 7066 */ 7067 7068 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7069 overflow_handler, context); 7070 if (IS_ERR(event)) { 7071 err = PTR_ERR(event); 7072 goto err; 7073 } 7074 7075 ctx = find_get_context(event->pmu, task, cpu); 7076 if (IS_ERR(ctx)) { 7077 err = PTR_ERR(ctx); 7078 goto err_free; 7079 } 7080 7081 WARN_ON_ONCE(ctx->parent_ctx); 7082 mutex_lock(&ctx->mutex); 7083 perf_install_in_context(ctx, event, cpu); 7084 ++ctx->generation; 7085 perf_unpin_context(ctx); 7086 mutex_unlock(&ctx->mutex); 7087 7088 return event; 7089 7090 err_free: 7091 free_event(event); 7092 err: 7093 return ERR_PTR(err); 7094 } 7095 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7096 7097 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7098 { 7099 struct perf_event_context *src_ctx; 7100 struct perf_event_context *dst_ctx; 7101 struct perf_event *event, *tmp; 7102 LIST_HEAD(events); 7103 7104 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7105 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7106 7107 mutex_lock(&src_ctx->mutex); 7108 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7109 event_entry) { 7110 perf_remove_from_context(event); 7111 put_ctx(src_ctx); 7112 list_add(&event->event_entry, &events); 7113 } 7114 mutex_unlock(&src_ctx->mutex); 7115 7116 synchronize_rcu(); 7117 7118 mutex_lock(&dst_ctx->mutex); 7119 list_for_each_entry_safe(event, tmp, &events, event_entry) { 7120 list_del(&event->event_entry); 7121 if (event->state >= PERF_EVENT_STATE_OFF) 7122 event->state = PERF_EVENT_STATE_INACTIVE; 7123 perf_install_in_context(dst_ctx, event, dst_cpu); 7124 get_ctx(dst_ctx); 7125 } 7126 mutex_unlock(&dst_ctx->mutex); 7127 } 7128 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7129 7130 static void sync_child_event(struct perf_event *child_event, 7131 struct task_struct *child) 7132 { 7133 struct perf_event *parent_event = child_event->parent; 7134 u64 child_val; 7135 7136 if (child_event->attr.inherit_stat) 7137 perf_event_read_event(child_event, child); 7138 7139 child_val = perf_event_count(child_event); 7140 7141 /* 7142 * Add back the child's count to the parent's count: 7143 */ 7144 atomic64_add(child_val, &parent_event->child_count); 7145 atomic64_add(child_event->total_time_enabled, 7146 &parent_event->child_total_time_enabled); 7147 atomic64_add(child_event->total_time_running, 7148 &parent_event->child_total_time_running); 7149 7150 /* 7151 * Remove this event from the parent's list 7152 */ 7153 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7154 mutex_lock(&parent_event->child_mutex); 7155 list_del_init(&child_event->child_list); 7156 mutex_unlock(&parent_event->child_mutex); 7157 7158 /* 7159 * Release the parent event, if this was the last 7160 * reference to it. 7161 */ 7162 put_event(parent_event); 7163 } 7164 7165 static void 7166 __perf_event_exit_task(struct perf_event *child_event, 7167 struct perf_event_context *child_ctx, 7168 struct task_struct *child) 7169 { 7170 if (child_event->parent) { 7171 raw_spin_lock_irq(&child_ctx->lock); 7172 perf_group_detach(child_event); 7173 raw_spin_unlock_irq(&child_ctx->lock); 7174 } 7175 7176 perf_remove_from_context(child_event); 7177 7178 /* 7179 * It can happen that the parent exits first, and has events 7180 * that are still around due to the child reference. These 7181 * events need to be zapped. 7182 */ 7183 if (child_event->parent) { 7184 sync_child_event(child_event, child); 7185 free_event(child_event); 7186 } 7187 } 7188 7189 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7190 { 7191 struct perf_event *child_event, *tmp; 7192 struct perf_event_context *child_ctx; 7193 unsigned long flags; 7194 7195 if (likely(!child->perf_event_ctxp[ctxn])) { 7196 perf_event_task(child, NULL, 0); 7197 return; 7198 } 7199 7200 local_irq_save(flags); 7201 /* 7202 * We can't reschedule here because interrupts are disabled, 7203 * and either child is current or it is a task that can't be 7204 * scheduled, so we are now safe from rescheduling changing 7205 * our context. 7206 */ 7207 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7208 7209 /* 7210 * Take the context lock here so that if find_get_context is 7211 * reading child->perf_event_ctxp, we wait until it has 7212 * incremented the context's refcount before we do put_ctx below. 7213 */ 7214 raw_spin_lock(&child_ctx->lock); 7215 task_ctx_sched_out(child_ctx); 7216 child->perf_event_ctxp[ctxn] = NULL; 7217 /* 7218 * If this context is a clone; unclone it so it can't get 7219 * swapped to another process while we're removing all 7220 * the events from it. 7221 */ 7222 unclone_ctx(child_ctx); 7223 update_context_time(child_ctx); 7224 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7225 7226 /* 7227 * Report the task dead after unscheduling the events so that we 7228 * won't get any samples after PERF_RECORD_EXIT. We can however still 7229 * get a few PERF_RECORD_READ events. 7230 */ 7231 perf_event_task(child, child_ctx, 0); 7232 7233 /* 7234 * We can recurse on the same lock type through: 7235 * 7236 * __perf_event_exit_task() 7237 * sync_child_event() 7238 * put_event() 7239 * mutex_lock(&ctx->mutex) 7240 * 7241 * But since its the parent context it won't be the same instance. 7242 */ 7243 mutex_lock(&child_ctx->mutex); 7244 7245 again: 7246 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7247 group_entry) 7248 __perf_event_exit_task(child_event, child_ctx, child); 7249 7250 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7251 group_entry) 7252 __perf_event_exit_task(child_event, child_ctx, child); 7253 7254 /* 7255 * If the last event was a group event, it will have appended all 7256 * its siblings to the list, but we obtained 'tmp' before that which 7257 * will still point to the list head terminating the iteration. 7258 */ 7259 if (!list_empty(&child_ctx->pinned_groups) || 7260 !list_empty(&child_ctx->flexible_groups)) 7261 goto again; 7262 7263 mutex_unlock(&child_ctx->mutex); 7264 7265 put_ctx(child_ctx); 7266 } 7267 7268 /* 7269 * When a child task exits, feed back event values to parent events. 7270 */ 7271 void perf_event_exit_task(struct task_struct *child) 7272 { 7273 struct perf_event *event, *tmp; 7274 int ctxn; 7275 7276 mutex_lock(&child->perf_event_mutex); 7277 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7278 owner_entry) { 7279 list_del_init(&event->owner_entry); 7280 7281 /* 7282 * Ensure the list deletion is visible before we clear 7283 * the owner, closes a race against perf_release() where 7284 * we need to serialize on the owner->perf_event_mutex. 7285 */ 7286 smp_wmb(); 7287 event->owner = NULL; 7288 } 7289 mutex_unlock(&child->perf_event_mutex); 7290 7291 for_each_task_context_nr(ctxn) 7292 perf_event_exit_task_context(child, ctxn); 7293 } 7294 7295 static void perf_free_event(struct perf_event *event, 7296 struct perf_event_context *ctx) 7297 { 7298 struct perf_event *parent = event->parent; 7299 7300 if (WARN_ON_ONCE(!parent)) 7301 return; 7302 7303 mutex_lock(&parent->child_mutex); 7304 list_del_init(&event->child_list); 7305 mutex_unlock(&parent->child_mutex); 7306 7307 put_event(parent); 7308 7309 perf_group_detach(event); 7310 list_del_event(event, ctx); 7311 free_event(event); 7312 } 7313 7314 /* 7315 * free an unexposed, unused context as created by inheritance by 7316 * perf_event_init_task below, used by fork() in case of fail. 7317 */ 7318 void perf_event_free_task(struct task_struct *task) 7319 { 7320 struct perf_event_context *ctx; 7321 struct perf_event *event, *tmp; 7322 int ctxn; 7323 7324 for_each_task_context_nr(ctxn) { 7325 ctx = task->perf_event_ctxp[ctxn]; 7326 if (!ctx) 7327 continue; 7328 7329 mutex_lock(&ctx->mutex); 7330 again: 7331 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7332 group_entry) 7333 perf_free_event(event, ctx); 7334 7335 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7336 group_entry) 7337 perf_free_event(event, ctx); 7338 7339 if (!list_empty(&ctx->pinned_groups) || 7340 !list_empty(&ctx->flexible_groups)) 7341 goto again; 7342 7343 mutex_unlock(&ctx->mutex); 7344 7345 put_ctx(ctx); 7346 } 7347 } 7348 7349 void perf_event_delayed_put(struct task_struct *task) 7350 { 7351 int ctxn; 7352 7353 for_each_task_context_nr(ctxn) 7354 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7355 } 7356 7357 /* 7358 * inherit a event from parent task to child task: 7359 */ 7360 static struct perf_event * 7361 inherit_event(struct perf_event *parent_event, 7362 struct task_struct *parent, 7363 struct perf_event_context *parent_ctx, 7364 struct task_struct *child, 7365 struct perf_event *group_leader, 7366 struct perf_event_context *child_ctx) 7367 { 7368 struct perf_event *child_event; 7369 unsigned long flags; 7370 7371 /* 7372 * Instead of creating recursive hierarchies of events, 7373 * we link inherited events back to the original parent, 7374 * which has a filp for sure, which we use as the reference 7375 * count: 7376 */ 7377 if (parent_event->parent) 7378 parent_event = parent_event->parent; 7379 7380 child_event = perf_event_alloc(&parent_event->attr, 7381 parent_event->cpu, 7382 child, 7383 group_leader, parent_event, 7384 NULL, NULL); 7385 if (IS_ERR(child_event)) 7386 return child_event; 7387 7388 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7389 free_event(child_event); 7390 return NULL; 7391 } 7392 7393 get_ctx(child_ctx); 7394 7395 /* 7396 * Make the child state follow the state of the parent event, 7397 * not its attr.disabled bit. We hold the parent's mutex, 7398 * so we won't race with perf_event_{en, dis}able_family. 7399 */ 7400 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7401 child_event->state = PERF_EVENT_STATE_INACTIVE; 7402 else 7403 child_event->state = PERF_EVENT_STATE_OFF; 7404 7405 if (parent_event->attr.freq) { 7406 u64 sample_period = parent_event->hw.sample_period; 7407 struct hw_perf_event *hwc = &child_event->hw; 7408 7409 hwc->sample_period = sample_period; 7410 hwc->last_period = sample_period; 7411 7412 local64_set(&hwc->period_left, sample_period); 7413 } 7414 7415 child_event->ctx = child_ctx; 7416 child_event->overflow_handler = parent_event->overflow_handler; 7417 child_event->overflow_handler_context 7418 = parent_event->overflow_handler_context; 7419 7420 /* 7421 * Precalculate sample_data sizes 7422 */ 7423 perf_event__header_size(child_event); 7424 perf_event__id_header_size(child_event); 7425 7426 /* 7427 * Link it up in the child's context: 7428 */ 7429 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7430 add_event_to_ctx(child_event, child_ctx); 7431 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7432 7433 /* 7434 * Link this into the parent event's child list 7435 */ 7436 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7437 mutex_lock(&parent_event->child_mutex); 7438 list_add_tail(&child_event->child_list, &parent_event->child_list); 7439 mutex_unlock(&parent_event->child_mutex); 7440 7441 return child_event; 7442 } 7443 7444 static int inherit_group(struct perf_event *parent_event, 7445 struct task_struct *parent, 7446 struct perf_event_context *parent_ctx, 7447 struct task_struct *child, 7448 struct perf_event_context *child_ctx) 7449 { 7450 struct perf_event *leader; 7451 struct perf_event *sub; 7452 struct perf_event *child_ctr; 7453 7454 leader = inherit_event(parent_event, parent, parent_ctx, 7455 child, NULL, child_ctx); 7456 if (IS_ERR(leader)) 7457 return PTR_ERR(leader); 7458 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7459 child_ctr = inherit_event(sub, parent, parent_ctx, 7460 child, leader, child_ctx); 7461 if (IS_ERR(child_ctr)) 7462 return PTR_ERR(child_ctr); 7463 } 7464 return 0; 7465 } 7466 7467 static int 7468 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7469 struct perf_event_context *parent_ctx, 7470 struct task_struct *child, int ctxn, 7471 int *inherited_all) 7472 { 7473 int ret; 7474 struct perf_event_context *child_ctx; 7475 7476 if (!event->attr.inherit) { 7477 *inherited_all = 0; 7478 return 0; 7479 } 7480 7481 child_ctx = child->perf_event_ctxp[ctxn]; 7482 if (!child_ctx) { 7483 /* 7484 * This is executed from the parent task context, so 7485 * inherit events that have been marked for cloning. 7486 * First allocate and initialize a context for the 7487 * child. 7488 */ 7489 7490 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7491 if (!child_ctx) 7492 return -ENOMEM; 7493 7494 child->perf_event_ctxp[ctxn] = child_ctx; 7495 } 7496 7497 ret = inherit_group(event, parent, parent_ctx, 7498 child, child_ctx); 7499 7500 if (ret) 7501 *inherited_all = 0; 7502 7503 return ret; 7504 } 7505 7506 /* 7507 * Initialize the perf_event context in task_struct 7508 */ 7509 int perf_event_init_context(struct task_struct *child, int ctxn) 7510 { 7511 struct perf_event_context *child_ctx, *parent_ctx; 7512 struct perf_event_context *cloned_ctx; 7513 struct perf_event *event; 7514 struct task_struct *parent = current; 7515 int inherited_all = 1; 7516 unsigned long flags; 7517 int ret = 0; 7518 7519 if (likely(!parent->perf_event_ctxp[ctxn])) 7520 return 0; 7521 7522 /* 7523 * If the parent's context is a clone, pin it so it won't get 7524 * swapped under us. 7525 */ 7526 parent_ctx = perf_pin_task_context(parent, ctxn); 7527 7528 /* 7529 * No need to check if parent_ctx != NULL here; since we saw 7530 * it non-NULL earlier, the only reason for it to become NULL 7531 * is if we exit, and since we're currently in the middle of 7532 * a fork we can't be exiting at the same time. 7533 */ 7534 7535 /* 7536 * Lock the parent list. No need to lock the child - not PID 7537 * hashed yet and not running, so nobody can access it. 7538 */ 7539 mutex_lock(&parent_ctx->mutex); 7540 7541 /* 7542 * We dont have to disable NMIs - we are only looking at 7543 * the list, not manipulating it: 7544 */ 7545 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7546 ret = inherit_task_group(event, parent, parent_ctx, 7547 child, ctxn, &inherited_all); 7548 if (ret) 7549 break; 7550 } 7551 7552 /* 7553 * We can't hold ctx->lock when iterating the ->flexible_group list due 7554 * to allocations, but we need to prevent rotation because 7555 * rotate_ctx() will change the list from interrupt context. 7556 */ 7557 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7558 parent_ctx->rotate_disable = 1; 7559 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7560 7561 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7562 ret = inherit_task_group(event, parent, parent_ctx, 7563 child, ctxn, &inherited_all); 7564 if (ret) 7565 break; 7566 } 7567 7568 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7569 parent_ctx->rotate_disable = 0; 7570 7571 child_ctx = child->perf_event_ctxp[ctxn]; 7572 7573 if (child_ctx && inherited_all) { 7574 /* 7575 * Mark the child context as a clone of the parent 7576 * context, or of whatever the parent is a clone of. 7577 * 7578 * Note that if the parent is a clone, the holding of 7579 * parent_ctx->lock avoids it from being uncloned. 7580 */ 7581 cloned_ctx = parent_ctx->parent_ctx; 7582 if (cloned_ctx) { 7583 child_ctx->parent_ctx = cloned_ctx; 7584 child_ctx->parent_gen = parent_ctx->parent_gen; 7585 } else { 7586 child_ctx->parent_ctx = parent_ctx; 7587 child_ctx->parent_gen = parent_ctx->generation; 7588 } 7589 get_ctx(child_ctx->parent_ctx); 7590 } 7591 7592 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7593 mutex_unlock(&parent_ctx->mutex); 7594 7595 perf_unpin_context(parent_ctx); 7596 put_ctx(parent_ctx); 7597 7598 return ret; 7599 } 7600 7601 /* 7602 * Initialize the perf_event context in task_struct 7603 */ 7604 int perf_event_init_task(struct task_struct *child) 7605 { 7606 int ctxn, ret; 7607 7608 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7609 mutex_init(&child->perf_event_mutex); 7610 INIT_LIST_HEAD(&child->perf_event_list); 7611 7612 for_each_task_context_nr(ctxn) { 7613 ret = perf_event_init_context(child, ctxn); 7614 if (ret) 7615 return ret; 7616 } 7617 7618 return 0; 7619 } 7620 7621 static void __init perf_event_init_all_cpus(void) 7622 { 7623 struct swevent_htable *swhash; 7624 int cpu; 7625 7626 for_each_possible_cpu(cpu) { 7627 swhash = &per_cpu(swevent_htable, cpu); 7628 mutex_init(&swhash->hlist_mutex); 7629 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7630 } 7631 } 7632 7633 static void __cpuinit perf_event_init_cpu(int cpu) 7634 { 7635 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7636 7637 mutex_lock(&swhash->hlist_mutex); 7638 if (swhash->hlist_refcount > 0) { 7639 struct swevent_hlist *hlist; 7640 7641 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7642 WARN_ON(!hlist); 7643 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7644 } 7645 mutex_unlock(&swhash->hlist_mutex); 7646 } 7647 7648 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7649 static void perf_pmu_rotate_stop(struct pmu *pmu) 7650 { 7651 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7652 7653 WARN_ON(!irqs_disabled()); 7654 7655 list_del_init(&cpuctx->rotation_list); 7656 } 7657 7658 static void __perf_event_exit_context(void *__info) 7659 { 7660 struct perf_event_context *ctx = __info; 7661 struct perf_event *event, *tmp; 7662 7663 perf_pmu_rotate_stop(ctx->pmu); 7664 7665 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7666 __perf_remove_from_context(event); 7667 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7668 __perf_remove_from_context(event); 7669 } 7670 7671 static void perf_event_exit_cpu_context(int cpu) 7672 { 7673 struct perf_event_context *ctx; 7674 struct pmu *pmu; 7675 int idx; 7676 7677 idx = srcu_read_lock(&pmus_srcu); 7678 list_for_each_entry_rcu(pmu, &pmus, entry) { 7679 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7680 7681 mutex_lock(&ctx->mutex); 7682 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7683 mutex_unlock(&ctx->mutex); 7684 } 7685 srcu_read_unlock(&pmus_srcu, idx); 7686 } 7687 7688 static void perf_event_exit_cpu(int cpu) 7689 { 7690 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7691 7692 mutex_lock(&swhash->hlist_mutex); 7693 swevent_hlist_release(swhash); 7694 mutex_unlock(&swhash->hlist_mutex); 7695 7696 perf_event_exit_cpu_context(cpu); 7697 } 7698 #else 7699 static inline void perf_event_exit_cpu(int cpu) { } 7700 #endif 7701 7702 static int 7703 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7704 { 7705 int cpu; 7706 7707 for_each_online_cpu(cpu) 7708 perf_event_exit_cpu(cpu); 7709 7710 return NOTIFY_OK; 7711 } 7712 7713 /* 7714 * Run the perf reboot notifier at the very last possible moment so that 7715 * the generic watchdog code runs as long as possible. 7716 */ 7717 static struct notifier_block perf_reboot_notifier = { 7718 .notifier_call = perf_reboot, 7719 .priority = INT_MIN, 7720 }; 7721 7722 static int __cpuinit 7723 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7724 { 7725 unsigned int cpu = (long)hcpu; 7726 7727 switch (action & ~CPU_TASKS_FROZEN) { 7728 7729 case CPU_UP_PREPARE: 7730 case CPU_DOWN_FAILED: 7731 perf_event_init_cpu(cpu); 7732 break; 7733 7734 case CPU_UP_CANCELED: 7735 case CPU_DOWN_PREPARE: 7736 perf_event_exit_cpu(cpu); 7737 break; 7738 default: 7739 break; 7740 } 7741 7742 return NOTIFY_OK; 7743 } 7744 7745 void __init perf_event_init(void) 7746 { 7747 int ret; 7748 7749 idr_init(&pmu_idr); 7750 7751 perf_event_init_all_cpus(); 7752 init_srcu_struct(&pmus_srcu); 7753 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7754 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7755 perf_pmu_register(&perf_task_clock, NULL, -1); 7756 perf_tp_register(); 7757 perf_cpu_notifier(perf_cpu_notify); 7758 register_reboot_notifier(&perf_reboot_notifier); 7759 7760 ret = init_hw_breakpoint(); 7761 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7762 7763 /* do not patch jump label more than once per second */ 7764 jump_label_rate_limit(&perf_sched_events, HZ); 7765 7766 /* 7767 * Build time assertion that we keep the data_head at the intended 7768 * location. IOW, validation we got the __reserved[] size right. 7769 */ 7770 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7771 != 1024); 7772 } 7773 7774 static int __init perf_event_sysfs_init(void) 7775 { 7776 struct pmu *pmu; 7777 int ret; 7778 7779 mutex_lock(&pmus_lock); 7780 7781 ret = bus_register(&pmu_bus); 7782 if (ret) 7783 goto unlock; 7784 7785 list_for_each_entry(pmu, &pmus, entry) { 7786 if (!pmu->name || pmu->type < 0) 7787 continue; 7788 7789 ret = pmu_dev_alloc(pmu); 7790 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7791 } 7792 pmu_bus_running = 1; 7793 ret = 0; 7794 7795 unlock: 7796 mutex_unlock(&pmus_lock); 7797 7798 return ret; 7799 } 7800 device_initcall(perf_event_sysfs_init); 7801 7802 #ifdef CONFIG_CGROUP_PERF 7803 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) 7804 { 7805 struct perf_cgroup *jc; 7806 7807 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7808 if (!jc) 7809 return ERR_PTR(-ENOMEM); 7810 7811 jc->info = alloc_percpu(struct perf_cgroup_info); 7812 if (!jc->info) { 7813 kfree(jc); 7814 return ERR_PTR(-ENOMEM); 7815 } 7816 7817 return &jc->css; 7818 } 7819 7820 static void perf_cgroup_css_free(struct cgroup *cont) 7821 { 7822 struct perf_cgroup *jc; 7823 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7824 struct perf_cgroup, css); 7825 free_percpu(jc->info); 7826 kfree(jc); 7827 } 7828 7829 static int __perf_cgroup_move(void *info) 7830 { 7831 struct task_struct *task = info; 7832 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7833 return 0; 7834 } 7835 7836 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7837 { 7838 struct task_struct *task; 7839 7840 cgroup_taskset_for_each(task, cgrp, tset) 7841 task_function_call(task, __perf_cgroup_move, task); 7842 } 7843 7844 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7845 struct task_struct *task) 7846 { 7847 /* 7848 * cgroup_exit() is called in the copy_process() failure path. 7849 * Ignore this case since the task hasn't ran yet, this avoids 7850 * trying to poke a half freed task state from generic code. 7851 */ 7852 if (!(task->flags & PF_EXITING)) 7853 return; 7854 7855 task_function_call(task, __perf_cgroup_move, task); 7856 } 7857 7858 struct cgroup_subsys perf_subsys = { 7859 .name = "perf_event", 7860 .subsys_id = perf_subsys_id, 7861 .css_alloc = perf_cgroup_css_alloc, 7862 .css_free = perf_cgroup_css_free, 7863 .exit = perf_cgroup_exit, 7864 .attach = perf_cgroup_attach, 7865 }; 7866 #endif /* CONFIG_CGROUP_PERF */ 7867