xref: /linux/kernel/events/core.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	if (add && ctx->nr_cgroups++)
941 		return;
942 	else if (!add && --ctx->nr_cgroups)
943 		return;
944 	/*
945 	 * Because cgroup events are always per-cpu events,
946 	 * this will always be called from the right CPU.
947 	 */
948 	cpuctx = __get_cpu_context(ctx);
949 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 	if (add) {
952 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953 
954 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	} else {
958 		list_del(cpuctx_entry);
959 		cpuctx->cgrp = NULL;
960 	}
961 }
962 
963 #else /* !CONFIG_CGROUP_PERF */
964 
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 	return true;
969 }
970 
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973 
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982 
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986 
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 					 struct task_struct *next)
989 {
990 }
991 
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 					struct task_struct *task)
994 {
995 }
996 
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 				      struct perf_event_attr *attr,
999 				      struct perf_event *group_leader)
1000 {
1001 	return -EINVAL;
1002 }
1003 
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 			  struct perf_event_context *ctx)
1007 {
1008 }
1009 
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019 
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 			 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 	struct perf_cpu_context *cpuctx;
1044 	int rotations = 0;
1045 
1046 	lockdep_assert_irqs_disabled();
1047 
1048 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 	rotations = perf_rotate_context(cpuctx);
1050 
1051 	raw_spin_lock(&cpuctx->hrtimer_lock);
1052 	if (rotations)
1053 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 	else
1055 		cpuctx->hrtimer_active = 0;
1056 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057 
1058 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060 
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 	struct hrtimer *timer = &cpuctx->hrtimer;
1064 	struct pmu *pmu = cpuctx->ctx.pmu;
1065 	u64 interval;
1066 
1067 	/* no multiplexing needed for SW PMU */
1068 	if (pmu->task_ctx_nr == perf_sw_context)
1069 		return;
1070 
1071 	/*
1072 	 * check default is sane, if not set then force to
1073 	 * default interval (1/tick)
1074 	 */
1075 	interval = pmu->hrtimer_interval_ms;
1076 	if (interval < 1)
1077 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078 
1079 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080 
1081 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 	timer->function = perf_mux_hrtimer_handler;
1084 }
1085 
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	unsigned long flags;
1091 
1092 	/* not for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return 0;
1095 
1096 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 	if (!cpuctx->hrtimer_active) {
1098 		cpuctx->hrtimer_active = 1;
1099 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 	}
1102 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103 
1104 	return 0;
1105 }
1106 
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 	if (!(*count)++)
1111 		pmu->pmu_disable(pmu);
1112 }
1113 
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 	if (!--(*count))
1118 		pmu->pmu_enable(pmu);
1119 }
1120 
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1136 
1137 	list_add(&ctx->active_ctx_list, head);
1138 }
1139 
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 	lockdep_assert_irqs_disabled();
1143 
1144 	WARN_ON(list_empty(&ctx->active_ctx_list));
1145 
1146 	list_del_init(&ctx->active_ctx_list);
1147 }
1148 
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153 
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 	struct perf_event_context *ctx;
1157 
1158 	ctx = container_of(head, struct perf_event_context, rcu_head);
1159 	kfree(ctx->task_ctx_data);
1160 	kfree(ctx);
1161 }
1162 
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 	if (atomic_dec_and_test(&ctx->refcount)) {
1166 		if (ctx->parent_ctx)
1167 			put_ctx(ctx->parent_ctx);
1168 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 			put_task_struct(ctx->task);
1170 		call_rcu(&ctx->rcu_head, free_ctx);
1171 	}
1172 }
1173 
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()	[ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()			[ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()		[ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event()	[ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *	task_struct::perf_event_mutex
1229  *	  perf_event_context::mutex
1230  *	    perf_event::child_mutex;
1231  *	      perf_event_context::lock
1232  *	    perf_event::mmap_mutex
1233  *	    mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *	  cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242 	struct perf_event_context *ctx;
1243 
1244 again:
1245 	rcu_read_lock();
1246 	ctx = READ_ONCE(event->ctx);
1247 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 		rcu_read_unlock();
1249 		goto again;
1250 	}
1251 	rcu_read_unlock();
1252 
1253 	mutex_lock_nested(&ctx->mutex, nesting);
1254 	if (event->ctx != ctx) {
1255 		mutex_unlock(&ctx->mutex);
1256 		put_ctx(ctx);
1257 		goto again;
1258 	}
1259 
1260 	return ctx;
1261 }
1262 
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266 	return perf_event_ctx_lock_nested(event, 0);
1267 }
1268 
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270 				  struct perf_event_context *ctx)
1271 {
1272 	mutex_unlock(&ctx->mutex);
1273 	put_ctx(ctx);
1274 }
1275 
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285 
1286 	lockdep_assert_held(&ctx->lock);
1287 
1288 	if (parent_ctx)
1289 		ctx->parent_ctx = NULL;
1290 	ctx->generation++;
1291 
1292 	return parent_ctx;
1293 }
1294 
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 				enum pid_type type)
1297 {
1298 	u32 nr;
1299 	/*
1300 	 * only top level events have the pid namespace they were created in
1301 	 */
1302 	if (event->parent)
1303 		event = event->parent;
1304 
1305 	nr = __task_pid_nr_ns(p, type, event->ns);
1306 	/* avoid -1 if it is idle thread or runs in another ns */
1307 	if (!nr && !pid_alive(p))
1308 		nr = -1;
1309 	return nr;
1310 }
1311 
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316 
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321 
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328 	u64 id = event->id;
1329 
1330 	if (event->parent)
1331 		id = event->parent->id;
1332 
1333 	return id;
1334 }
1335 
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345 	struct perf_event_context *ctx;
1346 
1347 retry:
1348 	/*
1349 	 * One of the few rules of preemptible RCU is that one cannot do
1350 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351 	 * part of the read side critical section was irqs-enabled -- see
1352 	 * rcu_read_unlock_special().
1353 	 *
1354 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355 	 * side critical section has interrupts disabled.
1356 	 */
1357 	local_irq_save(*flags);
1358 	rcu_read_lock();
1359 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 	if (ctx) {
1361 		/*
1362 		 * If this context is a clone of another, it might
1363 		 * get swapped for another underneath us by
1364 		 * perf_event_task_sched_out, though the
1365 		 * rcu_read_lock() protects us from any context
1366 		 * getting freed.  Lock the context and check if it
1367 		 * got swapped before we could get the lock, and retry
1368 		 * if so.  If we locked the right context, then it
1369 		 * can't get swapped on us any more.
1370 		 */
1371 		raw_spin_lock(&ctx->lock);
1372 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373 			raw_spin_unlock(&ctx->lock);
1374 			rcu_read_unlock();
1375 			local_irq_restore(*flags);
1376 			goto retry;
1377 		}
1378 
1379 		if (ctx->task == TASK_TOMBSTONE ||
1380 		    !atomic_inc_not_zero(&ctx->refcount)) {
1381 			raw_spin_unlock(&ctx->lock);
1382 			ctx = NULL;
1383 		} else {
1384 			WARN_ON_ONCE(ctx->task != task);
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 	if (!ctx)
1389 		local_irq_restore(*flags);
1390 	return ctx;
1391 }
1392 
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401 	struct perf_event_context *ctx;
1402 	unsigned long flags;
1403 
1404 	ctx = perf_lock_task_context(task, ctxn, &flags);
1405 	if (ctx) {
1406 		++ctx->pin_count;
1407 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408 	}
1409 	return ctx;
1410 }
1411 
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414 	unsigned long flags;
1415 
1416 	raw_spin_lock_irqsave(&ctx->lock, flags);
1417 	--ctx->pin_count;
1418 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420 
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426 	u64 now = perf_clock();
1427 
1428 	ctx->time += now - ctx->timestamp;
1429 	ctx->timestamp = now;
1430 }
1431 
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434 	struct perf_event_context *ctx = event->ctx;
1435 
1436 	if (is_cgroup_event(event))
1437 		return perf_cgroup_event_time(event);
1438 
1439 	return ctx ? ctx->time : 0;
1440 }
1441 
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444 	struct perf_event_context *ctx = event->ctx;
1445 	enum event_type_t event_type;
1446 
1447 	lockdep_assert_held(&ctx->lock);
1448 
1449 	/*
1450 	 * It's 'group type', really, because if our group leader is
1451 	 * pinned, so are we.
1452 	 */
1453 	if (event->group_leader != event)
1454 		event = event->group_leader;
1455 
1456 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 	if (!ctx->task)
1458 		event_type |= EVENT_CPU;
1459 
1460 	return event_type;
1461 }
1462 
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 	if (event->attr.pinned)
1467 		return &ctx->pinned_groups;
1468 	else
1469 		return &ctx->flexible_groups;
1470 }
1471 
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 	lockdep_assert_held(&ctx->lock);
1480 
1481 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 	event->attach_state |= PERF_ATTACH_CONTEXT;
1483 
1484 	event->tstamp = perf_event_time(event);
1485 
1486 	/*
1487 	 * If we're a stand alone event or group leader, we go to the context
1488 	 * list, group events are kept attached to the group so that
1489 	 * perf_group_detach can, at all times, locate all siblings.
1490 	 */
1491 	if (event->group_leader == event) {
1492 		struct list_head *list;
1493 
1494 		event->group_caps = event->event_caps;
1495 
1496 		list = ctx_group_list(event, ctx);
1497 		list_add_tail(&event->group_entry, list);
1498 	}
1499 
1500 	list_update_cgroup_event(event, ctx, true);
1501 
1502 	list_add_rcu(&event->event_entry, &ctx->event_list);
1503 	ctx->nr_events++;
1504 	if (event->attr.inherit_stat)
1505 		ctx->nr_stat++;
1506 
1507 	ctx->generation++;
1508 }
1509 
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 					      PERF_EVENT_STATE_INACTIVE;
1517 }
1518 
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521 	int entry = sizeof(u64); /* value */
1522 	int size = 0;
1523 	int nr = 1;
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 		size += sizeof(u64);
1527 
1528 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 		size += sizeof(u64);
1530 
1531 	if (event->attr.read_format & PERF_FORMAT_ID)
1532 		entry += sizeof(u64);
1533 
1534 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535 		nr += nr_siblings;
1536 		size += sizeof(u64);
1537 	}
1538 
1539 	size += entry * nr;
1540 	event->read_size = size;
1541 }
1542 
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545 	struct perf_sample_data *data;
1546 	u16 size = 0;
1547 
1548 	if (sample_type & PERF_SAMPLE_IP)
1549 		size += sizeof(data->ip);
1550 
1551 	if (sample_type & PERF_SAMPLE_ADDR)
1552 		size += sizeof(data->addr);
1553 
1554 	if (sample_type & PERF_SAMPLE_PERIOD)
1555 		size += sizeof(data->period);
1556 
1557 	if (sample_type & PERF_SAMPLE_WEIGHT)
1558 		size += sizeof(data->weight);
1559 
1560 	if (sample_type & PERF_SAMPLE_READ)
1561 		size += event->read_size;
1562 
1563 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 		size += sizeof(data->data_src.val);
1565 
1566 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 		size += sizeof(data->txn);
1568 
1569 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 		size += sizeof(data->phys_addr);
1571 
1572 	event->header_size = size;
1573 }
1574 
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581 	__perf_event_read_size(event,
1582 			       event->group_leader->nr_siblings);
1583 	__perf_event_header_size(event, event->attr.sample_type);
1584 }
1585 
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588 	struct perf_sample_data *data;
1589 	u64 sample_type = event->attr.sample_type;
1590 	u16 size = 0;
1591 
1592 	if (sample_type & PERF_SAMPLE_TID)
1593 		size += sizeof(data->tid_entry);
1594 
1595 	if (sample_type & PERF_SAMPLE_TIME)
1596 		size += sizeof(data->time);
1597 
1598 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 		size += sizeof(data->id);
1600 
1601 	if (sample_type & PERF_SAMPLE_ID)
1602 		size += sizeof(data->id);
1603 
1604 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 		size += sizeof(data->stream_id);
1606 
1607 	if (sample_type & PERF_SAMPLE_CPU)
1608 		size += sizeof(data->cpu_entry);
1609 
1610 	event->id_header_size = size;
1611 }
1612 
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615 	/*
1616 	 * The values computed here will be over-written when we actually
1617 	 * attach the event.
1618 	 */
1619 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 	perf_event__id_header_size(event);
1622 
1623 	/*
1624 	 * Sum the lot; should not exceed the 64k limit we have on records.
1625 	 * Conservative limit to allow for callchains and other variable fields.
1626 	 */
1627 	if (event->read_size + event->header_size +
1628 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 		return false;
1630 
1631 	return true;
1632 }
1633 
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636 	struct perf_event *group_leader = event->group_leader, *pos;
1637 
1638 	lockdep_assert_held(&event->ctx->lock);
1639 
1640 	/*
1641 	 * We can have double attach due to group movement in perf_event_open.
1642 	 */
1643 	if (event->attach_state & PERF_ATTACH_GROUP)
1644 		return;
1645 
1646 	event->attach_state |= PERF_ATTACH_GROUP;
1647 
1648 	if (group_leader == event)
1649 		return;
1650 
1651 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652 
1653 	group_leader->group_caps &= event->event_caps;
1654 
1655 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 	group_leader->nr_siblings++;
1657 
1658 	perf_event__header_size(group_leader);
1659 
1660 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 		perf_event__header_size(pos);
1662 }
1663 
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671 	WARN_ON_ONCE(event->ctx != ctx);
1672 	lockdep_assert_held(&ctx->lock);
1673 
1674 	/*
1675 	 * We can have double detach due to exit/hot-unplug + close.
1676 	 */
1677 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678 		return;
1679 
1680 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681 
1682 	list_update_cgroup_event(event, ctx, false);
1683 
1684 	ctx->nr_events--;
1685 	if (event->attr.inherit_stat)
1686 		ctx->nr_stat--;
1687 
1688 	list_del_rcu(&event->event_entry);
1689 
1690 	if (event->group_leader == event)
1691 		list_del_init(&event->group_entry);
1692 
1693 	/*
1694 	 * If event was in error state, then keep it
1695 	 * that way, otherwise bogus counts will be
1696 	 * returned on read(). The only way to get out
1697 	 * of error state is by explicit re-enabling
1698 	 * of the event
1699 	 */
1700 	if (event->state > PERF_EVENT_STATE_OFF)
1701 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702 
1703 	ctx->generation++;
1704 }
1705 
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 	struct perf_event *sibling, *tmp;
1709 	struct list_head *list = NULL;
1710 
1711 	lockdep_assert_held(&event->ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_GROUP;
1720 
1721 	/*
1722 	 * If this is a sibling, remove it from its group.
1723 	 */
1724 	if (event->group_leader != event) {
1725 		list_del_init(&event->group_entry);
1726 		event->group_leader->nr_siblings--;
1727 		goto out;
1728 	}
1729 
1730 	if (!list_empty(&event->group_entry))
1731 		list = &event->group_entry;
1732 
1733 	/*
1734 	 * If this was a group event with sibling events then
1735 	 * upgrade the siblings to singleton events by adding them
1736 	 * to whatever list we are on.
1737 	 */
1738 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 		if (list)
1740 			list_move_tail(&sibling->group_entry, list);
1741 		sibling->group_leader = sibling;
1742 
1743 		/* Inherit group flags from the previous leader */
1744 		sibling->group_caps = event->group_caps;
1745 
1746 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 	}
1748 
1749 out:
1750 	perf_event__header_size(event->group_leader);
1751 
1752 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 		perf_event__header_size(tmp);
1754 }
1755 
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 	return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760 
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 	struct pmu *pmu = event->pmu;
1764 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766 
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 	struct perf_event *child;
1776 
1777 	if (!__pmu_filter_match(event))
1778 		return 0;
1779 
1780 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 		if (!__pmu_filter_match(child))
1782 			return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794 
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 		  struct perf_cpu_context *cpuctx,
1798 		  struct perf_event_context *ctx)
1799 {
1800 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801 
1802 	WARN_ON_ONCE(event->ctx != ctx);
1803 	lockdep_assert_held(&ctx->lock);
1804 
1805 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1806 		return;
1807 
1808 	perf_pmu_disable(event->pmu);
1809 
1810 	event->pmu->del(event, 0);
1811 	event->oncpu = -1;
1812 
1813 	if (event->pending_disable) {
1814 		event->pending_disable = 0;
1815 		state = PERF_EVENT_STATE_OFF;
1816 	}
1817 	perf_event_set_state(event, state);
1818 
1819 	if (!is_software_event(event))
1820 		cpuctx->active_oncpu--;
1821 	if (!--ctx->nr_active)
1822 		perf_event_ctx_deactivate(ctx);
1823 	if (event->attr.freq && event->attr.sample_freq)
1824 		ctx->nr_freq--;
1825 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1826 		cpuctx->exclusive = 0;
1827 
1828 	perf_pmu_enable(event->pmu);
1829 }
1830 
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833 		struct perf_cpu_context *cpuctx,
1834 		struct perf_event_context *ctx)
1835 {
1836 	struct perf_event *event;
1837 
1838 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 		return;
1840 
1841 	perf_pmu_disable(ctx->pmu);
1842 
1843 	event_sched_out(group_event, cpuctx, ctx);
1844 
1845 	/*
1846 	 * Schedule out siblings (if any):
1847 	 */
1848 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 		event_sched_out(event, cpuctx, ctx);
1850 
1851 	perf_pmu_enable(ctx->pmu);
1852 
1853 	if (group_event->attr.exclusive)
1854 		cpuctx->exclusive = 0;
1855 }
1856 
1857 #define DETACH_GROUP	0x01UL
1858 
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867 			   struct perf_cpu_context *cpuctx,
1868 			   struct perf_event_context *ctx,
1869 			   void *info)
1870 {
1871 	unsigned long flags = (unsigned long)info;
1872 
1873 	if (ctx->is_active & EVENT_TIME) {
1874 		update_context_time(ctx);
1875 		update_cgrp_time_from_cpuctx(cpuctx);
1876 	}
1877 
1878 	event_sched_out(event, cpuctx, ctx);
1879 	if (flags & DETACH_GROUP)
1880 		perf_group_detach(event);
1881 	list_del_event(event, ctx);
1882 
1883 	if (!ctx->nr_events && ctx->is_active) {
1884 		ctx->is_active = 0;
1885 		if (ctx->task) {
1886 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 			cpuctx->task_ctx = NULL;
1888 		}
1889 	}
1890 }
1891 
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904 	struct perf_event_context *ctx = event->ctx;
1905 
1906 	lockdep_assert_held(&ctx->mutex);
1907 
1908 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1909 
1910 	/*
1911 	 * The above event_function_call() can NO-OP when it hits
1912 	 * TASK_TOMBSTONE. In that case we must already have been detached
1913 	 * from the context (by perf_event_exit_event()) but the grouping
1914 	 * might still be in-tact.
1915 	 */
1916 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 	if ((flags & DETACH_GROUP) &&
1918 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1919 		/*
1920 		 * Since in that case we cannot possibly be scheduled, simply
1921 		 * detach now.
1922 		 */
1923 		raw_spin_lock_irq(&ctx->lock);
1924 		perf_group_detach(event);
1925 		raw_spin_unlock_irq(&ctx->lock);
1926 	}
1927 }
1928 
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933 				 struct perf_cpu_context *cpuctx,
1934 				 struct perf_event_context *ctx,
1935 				 void *info)
1936 {
1937 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 		return;
1939 
1940 	if (ctx->is_active & EVENT_TIME) {
1941 		update_context_time(ctx);
1942 		update_cgrp_time_from_event(event);
1943 	}
1944 
1945 	if (event == event->group_leader)
1946 		group_sched_out(event, cpuctx, ctx);
1947 	else
1948 		event_sched_out(event, cpuctx, ctx);
1949 
1950 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952 
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 	struct perf_event_context *ctx = event->ctx;
1970 
1971 	raw_spin_lock_irq(&ctx->lock);
1972 	if (event->state <= PERF_EVENT_STATE_OFF) {
1973 		raw_spin_unlock_irq(&ctx->lock);
1974 		return;
1975 	}
1976 	raw_spin_unlock_irq(&ctx->lock);
1977 
1978 	event_function_call(event, __perf_event_disable, NULL);
1979 }
1980 
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 	event_function_local(event, __perf_event_disable, NULL);
1984 }
1985 
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 	struct perf_event_context *ctx;
1993 
1994 	ctx = perf_event_ctx_lock(event);
1995 	_perf_event_disable(event);
1996 	perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999 
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 	event->pending_disable = 1;
2003 	irq_work_queue(&event->pending);
2004 }
2005 
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 				 struct perf_event_context *ctx)
2008 {
2009 	/*
2010 	 * use the correct time source for the time snapshot
2011 	 *
2012 	 * We could get by without this by leveraging the
2013 	 * fact that to get to this function, the caller
2014 	 * has most likely already called update_context_time()
2015 	 * and update_cgrp_time_xx() and thus both timestamp
2016 	 * are identical (or very close). Given that tstamp is,
2017 	 * already adjusted for cgroup, we could say that:
2018 	 *    tstamp - ctx->timestamp
2019 	 * is equivalent to
2020 	 *    tstamp - cgrp->timestamp.
2021 	 *
2022 	 * Then, in perf_output_read(), the calculation would
2023 	 * work with no changes because:
2024 	 * - event is guaranteed scheduled in
2025 	 * - no scheduled out in between
2026 	 * - thus the timestamp would be the same
2027 	 *
2028 	 * But this is a bit hairy.
2029 	 *
2030 	 * So instead, we have an explicit cgroup call to remain
2031 	 * within the time time source all along. We believe it
2032 	 * is cleaner and simpler to understand.
2033 	 */
2034 	if (is_cgroup_event(event))
2035 		perf_cgroup_set_shadow_time(event, event->tstamp);
2036 	else
2037 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039 
2040 #define MAX_INTERRUPTS (~0ULL)
2041 
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044 
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 		 struct perf_cpu_context *cpuctx,
2048 		 struct perf_event_context *ctx)
2049 {
2050 	int ret = 0;
2051 
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	if (event->state <= PERF_EVENT_STATE_OFF)
2055 		return 0;
2056 
2057 	WRITE_ONCE(event->oncpu, smp_processor_id());
2058 	/*
2059 	 * Order event::oncpu write to happen before the ACTIVE state is
2060 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 	 * ->oncpu if it sees ACTIVE.
2062 	 */
2063 	smp_wmb();
2064 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065 
2066 	/*
2067 	 * Unthrottle events, since we scheduled we might have missed several
2068 	 * ticks already, also for a heavily scheduling task there is little
2069 	 * guarantee it'll get a tick in a timely manner.
2070 	 */
2071 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 		perf_log_throttle(event, 1);
2073 		event->hw.interrupts = 0;
2074 	}
2075 
2076 	perf_pmu_disable(event->pmu);
2077 
2078 	perf_set_shadow_time(event, ctx);
2079 
2080 	perf_log_itrace_start(event);
2081 
2082 	if (event->pmu->add(event, PERF_EF_START)) {
2083 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084 		event->oncpu = -1;
2085 		ret = -EAGAIN;
2086 		goto out;
2087 	}
2088 
2089 	if (!is_software_event(event))
2090 		cpuctx->active_oncpu++;
2091 	if (!ctx->nr_active++)
2092 		perf_event_ctx_activate(ctx);
2093 	if (event->attr.freq && event->attr.sample_freq)
2094 		ctx->nr_freq++;
2095 
2096 	if (event->attr.exclusive)
2097 		cpuctx->exclusive = 1;
2098 
2099 out:
2100 	perf_pmu_enable(event->pmu);
2101 
2102 	return ret;
2103 }
2104 
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107 	       struct perf_cpu_context *cpuctx,
2108 	       struct perf_event_context *ctx)
2109 {
2110 	struct perf_event *event, *partial_group = NULL;
2111 	struct pmu *pmu = ctx->pmu;
2112 
2113 	if (group_event->state == PERF_EVENT_STATE_OFF)
2114 		return 0;
2115 
2116 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117 
2118 	if (event_sched_in(group_event, cpuctx, ctx)) {
2119 		pmu->cancel_txn(pmu);
2120 		perf_mux_hrtimer_restart(cpuctx);
2121 		return -EAGAIN;
2122 	}
2123 
2124 	/*
2125 	 * Schedule in siblings as one group (if any):
2126 	 */
2127 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128 		if (event_sched_in(event, cpuctx, ctx)) {
2129 			partial_group = event;
2130 			goto group_error;
2131 		}
2132 	}
2133 
2134 	if (!pmu->commit_txn(pmu))
2135 		return 0;
2136 
2137 group_error:
2138 	/*
2139 	 * Groups can be scheduled in as one unit only, so undo any
2140 	 * partial group before returning:
2141 	 * The events up to the failed event are scheduled out normally.
2142 	 */
2143 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 		if (event == partial_group)
2145 			break;
2146 
2147 		event_sched_out(event, cpuctx, ctx);
2148 	}
2149 	event_sched_out(group_event, cpuctx, ctx);
2150 
2151 	pmu->cancel_txn(pmu);
2152 
2153 	perf_mux_hrtimer_restart(cpuctx);
2154 
2155 	return -EAGAIN;
2156 }
2157 
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162 			   struct perf_cpu_context *cpuctx,
2163 			   int can_add_hw)
2164 {
2165 	/*
2166 	 * Groups consisting entirely of software events can always go on.
2167 	 */
2168 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 		return 1;
2170 	/*
2171 	 * If an exclusive group is already on, no other hardware
2172 	 * events can go on.
2173 	 */
2174 	if (cpuctx->exclusive)
2175 		return 0;
2176 	/*
2177 	 * If this group is exclusive and there are already
2178 	 * events on the CPU, it can't go on.
2179 	 */
2180 	if (event->attr.exclusive && cpuctx->active_oncpu)
2181 		return 0;
2182 	/*
2183 	 * Otherwise, try to add it if all previous groups were able
2184 	 * to go on.
2185 	 */
2186 	return can_add_hw;
2187 }
2188 
2189 static void add_event_to_ctx(struct perf_event *event,
2190 			       struct perf_event_context *ctx)
2191 {
2192 	list_add_event(event, ctx);
2193 	perf_group_attach(event);
2194 }
2195 
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 			  struct perf_cpu_context *cpuctx,
2198 			  enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 	     struct perf_cpu_context *cpuctx,
2202 	     enum event_type_t event_type,
2203 	     struct task_struct *task);
2204 
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 			       struct perf_event_context *ctx,
2207 			       enum event_type_t event_type)
2208 {
2209 	if (!cpuctx->task_ctx)
2210 		return;
2211 
2212 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 		return;
2214 
2215 	ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217 
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 				struct perf_event_context *ctx,
2220 				struct task_struct *task)
2221 {
2222 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 	if (ctx)
2224 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 	if (ctx)
2227 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229 
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 			struct perf_event_context *task_ctx,
2247 			enum event_type_t event_type)
2248 {
2249 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 	bool cpu_event = !!(event_type & EVENT_CPU);
2251 
2252 	/*
2253 	 * If pinned groups are involved, flexible groups also need to be
2254 	 * scheduled out.
2255 	 */
2256 	if (event_type & EVENT_PINNED)
2257 		event_type |= EVENT_FLEXIBLE;
2258 
2259 	perf_pmu_disable(cpuctx->ctx.pmu);
2260 	if (task_ctx)
2261 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262 
2263 	/*
2264 	 * Decide which cpu ctx groups to schedule out based on the types
2265 	 * of events that caused rescheduling:
2266 	 *  - EVENT_CPU: schedule out corresponding groups;
2267 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 	 *  - otherwise, do nothing more.
2269 	 */
2270 	if (cpu_event)
2271 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 	else if (ctx_event_type & EVENT_PINNED)
2273 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274 
2275 	perf_event_sched_in(cpuctx, task_ctx, current);
2276 	perf_pmu_enable(cpuctx->ctx.pmu);
2277 }
2278 
2279 /*
2280  * Cross CPU call to install and enable a performance event
2281  *
2282  * Very similar to remote_function() + event_function() but cannot assume that
2283  * things like ctx->is_active and cpuctx->task_ctx are set.
2284  */
2285 static int  __perf_install_in_context(void *info)
2286 {
2287 	struct perf_event *event = info;
2288 	struct perf_event_context *ctx = event->ctx;
2289 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291 	bool reprogram = true;
2292 	int ret = 0;
2293 
2294 	raw_spin_lock(&cpuctx->ctx.lock);
2295 	if (ctx->task) {
2296 		raw_spin_lock(&ctx->lock);
2297 		task_ctx = ctx;
2298 
2299 		reprogram = (ctx->task == current);
2300 
2301 		/*
2302 		 * If the task is running, it must be running on this CPU,
2303 		 * otherwise we cannot reprogram things.
2304 		 *
2305 		 * If its not running, we don't care, ctx->lock will
2306 		 * serialize against it becoming runnable.
2307 		 */
2308 		if (task_curr(ctx->task) && !reprogram) {
2309 			ret = -ESRCH;
2310 			goto unlock;
2311 		}
2312 
2313 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314 	} else if (task_ctx) {
2315 		raw_spin_lock(&task_ctx->lock);
2316 	}
2317 
2318 	if (reprogram) {
2319 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 		add_event_to_ctx(event, ctx);
2321 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322 	} else {
2323 		add_event_to_ctx(event, ctx);
2324 	}
2325 
2326 unlock:
2327 	perf_ctx_unlock(cpuctx, task_ctx);
2328 
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Attach a performance event to a context.
2334  *
2335  * Very similar to event_function_call, see comment there.
2336  */
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339 			struct perf_event *event,
2340 			int cpu)
2341 {
2342 	struct task_struct *task = READ_ONCE(ctx->task);
2343 
2344 	lockdep_assert_held(&ctx->mutex);
2345 
2346 	if (event->cpu != -1)
2347 		event->cpu = cpu;
2348 
2349 	/*
2350 	 * Ensures that if we can observe event->ctx, both the event and ctx
2351 	 * will be 'complete'. See perf_iterate_sb_cpu().
2352 	 */
2353 	smp_store_release(&event->ctx, ctx);
2354 
2355 	if (!task) {
2356 		cpu_function_call(cpu, __perf_install_in_context, event);
2357 		return;
2358 	}
2359 
2360 	/*
2361 	 * Should not happen, we validate the ctx is still alive before calling.
2362 	 */
2363 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 		return;
2365 
2366 	/*
2367 	 * Installing events is tricky because we cannot rely on ctx->is_active
2368 	 * to be set in case this is the nr_events 0 -> 1 transition.
2369 	 *
2370 	 * Instead we use task_curr(), which tells us if the task is running.
2371 	 * However, since we use task_curr() outside of rq::lock, we can race
2372 	 * against the actual state. This means the result can be wrong.
2373 	 *
2374 	 * If we get a false positive, we retry, this is harmless.
2375 	 *
2376 	 * If we get a false negative, things are complicated. If we are after
2377 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 	 * value must be correct. If we're before, it doesn't matter since
2379 	 * perf_event_context_sched_in() will program the counter.
2380 	 *
2381 	 * However, this hinges on the remote context switch having observed
2382 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 	 * ctx::lock in perf_event_context_sched_in().
2384 	 *
2385 	 * We do this by task_function_call(), if the IPI fails to hit the task
2386 	 * we know any future context switch of task must see the
2387 	 * perf_event_ctpx[] store.
2388 	 */
2389 
2390 	/*
2391 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 	 * task_cpu() load, such that if the IPI then does not find the task
2393 	 * running, a future context switch of that task must observe the
2394 	 * store.
2395 	 */
2396 	smp_mb();
2397 again:
2398 	if (!task_function_call(task, __perf_install_in_context, event))
2399 		return;
2400 
2401 	raw_spin_lock_irq(&ctx->lock);
2402 	task = ctx->task;
2403 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404 		/*
2405 		 * Cannot happen because we already checked above (which also
2406 		 * cannot happen), and we hold ctx->mutex, which serializes us
2407 		 * against perf_event_exit_task_context().
2408 		 */
2409 		raw_spin_unlock_irq(&ctx->lock);
2410 		return;
2411 	}
2412 	/*
2413 	 * If the task is not running, ctx->lock will avoid it becoming so,
2414 	 * thus we can safely install the event.
2415 	 */
2416 	if (task_curr(task)) {
2417 		raw_spin_unlock_irq(&ctx->lock);
2418 		goto again;
2419 	}
2420 	add_event_to_ctx(event, ctx);
2421 	raw_spin_unlock_irq(&ctx->lock);
2422 }
2423 
2424 /*
2425  * Cross CPU call to enable a performance event
2426  */
2427 static void __perf_event_enable(struct perf_event *event,
2428 				struct perf_cpu_context *cpuctx,
2429 				struct perf_event_context *ctx,
2430 				void *info)
2431 {
2432 	struct perf_event *leader = event->group_leader;
2433 	struct perf_event_context *task_ctx;
2434 
2435 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 	    event->state <= PERF_EVENT_STATE_ERROR)
2437 		return;
2438 
2439 	if (ctx->is_active)
2440 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441 
2442 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443 
2444 	if (!ctx->is_active)
2445 		return;
2446 
2447 	if (!event_filter_match(event)) {
2448 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449 		return;
2450 	}
2451 
2452 	/*
2453 	 * If the event is in a group and isn't the group leader,
2454 	 * then don't put it on unless the group is on.
2455 	 */
2456 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458 		return;
2459 	}
2460 
2461 	task_ctx = cpuctx->task_ctx;
2462 	if (ctx->task)
2463 		WARN_ON_ONCE(task_ctx != ctx);
2464 
2465 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 }
2467 
2468 /*
2469  * Enable a event.
2470  *
2471  * If event->ctx is a cloned context, callers must make sure that
2472  * every task struct that event->ctx->task could possibly point to
2473  * remains valid.  This condition is satisfied when called through
2474  * perf_event_for_each_child or perf_event_for_each as described
2475  * for perf_event_disable.
2476  */
2477 static void _perf_event_enable(struct perf_event *event)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	raw_spin_lock_irq(&ctx->lock);
2482 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 	    event->state <  PERF_EVENT_STATE_ERROR) {
2484 		raw_spin_unlock_irq(&ctx->lock);
2485 		return;
2486 	}
2487 
2488 	/*
2489 	 * If the event is in error state, clear that first.
2490 	 *
2491 	 * That way, if we see the event in error state below, we know that it
2492 	 * has gone back into error state, as distinct from the task having
2493 	 * been scheduled away before the cross-call arrived.
2494 	 */
2495 	if (event->state == PERF_EVENT_STATE_ERROR)
2496 		event->state = PERF_EVENT_STATE_OFF;
2497 	raw_spin_unlock_irq(&ctx->lock);
2498 
2499 	event_function_call(event, __perf_event_enable, NULL);
2500 }
2501 
2502 /*
2503  * See perf_event_disable();
2504  */
2505 void perf_event_enable(struct perf_event *event)
2506 {
2507 	struct perf_event_context *ctx;
2508 
2509 	ctx = perf_event_ctx_lock(event);
2510 	_perf_event_enable(event);
2511 	perf_event_ctx_unlock(event, ctx);
2512 }
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2514 
2515 struct stop_event_data {
2516 	struct perf_event	*event;
2517 	unsigned int		restart;
2518 };
2519 
2520 static int __perf_event_stop(void *info)
2521 {
2522 	struct stop_event_data *sd = info;
2523 	struct perf_event *event = sd->event;
2524 
2525 	/* if it's already INACTIVE, do nothing */
2526 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 		return 0;
2528 
2529 	/* matches smp_wmb() in event_sched_in() */
2530 	smp_rmb();
2531 
2532 	/*
2533 	 * There is a window with interrupts enabled before we get here,
2534 	 * so we need to check again lest we try to stop another CPU's event.
2535 	 */
2536 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 		return -EAGAIN;
2538 
2539 	event->pmu->stop(event, PERF_EF_UPDATE);
2540 
2541 	/*
2542 	 * May race with the actual stop (through perf_pmu_output_stop()),
2543 	 * but it is only used for events with AUX ring buffer, and such
2544 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 	 * see comments in perf_aux_output_begin().
2546 	 *
2547 	 * Since this is happening on a event-local CPU, no trace is lost
2548 	 * while restarting.
2549 	 */
2550 	if (sd->restart)
2551 		event->pmu->start(event, 0);
2552 
2553 	return 0;
2554 }
2555 
2556 static int perf_event_stop(struct perf_event *event, int restart)
2557 {
2558 	struct stop_event_data sd = {
2559 		.event		= event,
2560 		.restart	= restart,
2561 	};
2562 	int ret = 0;
2563 
2564 	do {
2565 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 			return 0;
2567 
2568 		/* matches smp_wmb() in event_sched_in() */
2569 		smp_rmb();
2570 
2571 		/*
2572 		 * We only want to restart ACTIVE events, so if the event goes
2573 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 		 * fall through with ret==-ENXIO.
2575 		 */
2576 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 					__perf_event_stop, &sd);
2578 	} while (ret == -EAGAIN);
2579 
2580 	return ret;
2581 }
2582 
2583 /*
2584  * In order to contain the amount of racy and tricky in the address filter
2585  * configuration management, it is a two part process:
2586  *
2587  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588  *      we update the addresses of corresponding vmas in
2589  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2590  * (p2) when an event is scheduled in (pmu::add), it calls
2591  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592  *      if the generation has changed since the previous call.
2593  *
2594  * If (p1) happens while the event is active, we restart it to force (p2).
2595  *
2596  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2598  *     ioctl;
2599  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2601  *     for reading;
2602  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603  *     of exec.
2604  */
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2606 {
2607 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608 
2609 	if (!has_addr_filter(event))
2610 		return;
2611 
2612 	raw_spin_lock(&ifh->lock);
2613 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 		event->pmu->addr_filters_sync(event);
2615 		event->hw.addr_filters_gen = event->addr_filters_gen;
2616 	}
2617 	raw_spin_unlock(&ifh->lock);
2618 }
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620 
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2622 {
2623 	/*
2624 	 * not supported on inherited events
2625 	 */
2626 	if (event->attr.inherit || !is_sampling_event(event))
2627 		return -EINVAL;
2628 
2629 	atomic_add(refresh, &event->event_limit);
2630 	_perf_event_enable(event);
2631 
2632 	return 0;
2633 }
2634 
2635 /*
2636  * See perf_event_disable()
2637  */
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2639 {
2640 	struct perf_event_context *ctx;
2641 	int ret;
2642 
2643 	ctx = perf_event_ctx_lock(event);
2644 	ret = _perf_event_refresh(event, refresh);
2645 	perf_event_ctx_unlock(event, ctx);
2646 
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2650 
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652 			  struct perf_cpu_context *cpuctx,
2653 			  enum event_type_t event_type)
2654 {
2655 	int is_active = ctx->is_active;
2656 	struct perf_event *event;
2657 
2658 	lockdep_assert_held(&ctx->lock);
2659 
2660 	if (likely(!ctx->nr_events)) {
2661 		/*
2662 		 * See __perf_remove_from_context().
2663 		 */
2664 		WARN_ON_ONCE(ctx->is_active);
2665 		if (ctx->task)
2666 			WARN_ON_ONCE(cpuctx->task_ctx);
2667 		return;
2668 	}
2669 
2670 	ctx->is_active &= ~event_type;
2671 	if (!(ctx->is_active & EVENT_ALL))
2672 		ctx->is_active = 0;
2673 
2674 	if (ctx->task) {
2675 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 		if (!ctx->is_active)
2677 			cpuctx->task_ctx = NULL;
2678 	}
2679 
2680 	/*
2681 	 * Always update time if it was set; not only when it changes.
2682 	 * Otherwise we can 'forget' to update time for any but the last
2683 	 * context we sched out. For example:
2684 	 *
2685 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2687 	 *
2688 	 * would only update time for the pinned events.
2689 	 */
2690 	if (is_active & EVENT_TIME) {
2691 		/* update (and stop) ctx time */
2692 		update_context_time(ctx);
2693 		update_cgrp_time_from_cpuctx(cpuctx);
2694 	}
2695 
2696 	is_active ^= ctx->is_active; /* changed bits */
2697 
2698 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699 		return;
2700 
2701 	perf_pmu_disable(ctx->pmu);
2702 	if (is_active & EVENT_PINNED) {
2703 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 			group_sched_out(event, cpuctx, ctx);
2705 	}
2706 
2707 	if (is_active & EVENT_FLEXIBLE) {
2708 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709 			group_sched_out(event, cpuctx, ctx);
2710 	}
2711 	perf_pmu_enable(ctx->pmu);
2712 }
2713 
2714 /*
2715  * Test whether two contexts are equivalent, i.e. whether they have both been
2716  * cloned from the same version of the same context.
2717  *
2718  * Equivalence is measured using a generation number in the context that is
2719  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720  * and list_del_event().
2721  */
2722 static int context_equiv(struct perf_event_context *ctx1,
2723 			 struct perf_event_context *ctx2)
2724 {
2725 	lockdep_assert_held(&ctx1->lock);
2726 	lockdep_assert_held(&ctx2->lock);
2727 
2728 	/* Pinning disables the swap optimization */
2729 	if (ctx1->pin_count || ctx2->pin_count)
2730 		return 0;
2731 
2732 	/* If ctx1 is the parent of ctx2 */
2733 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 		return 1;
2735 
2736 	/* If ctx2 is the parent of ctx1 */
2737 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 		return 1;
2739 
2740 	/*
2741 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 	 * hierarchy, see perf_event_init_context().
2743 	 */
2744 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 			ctx1->parent_gen == ctx2->parent_gen)
2746 		return 1;
2747 
2748 	/* Unmatched */
2749 	return 0;
2750 }
2751 
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753 				     struct perf_event *next_event)
2754 {
2755 	u64 value;
2756 
2757 	if (!event->attr.inherit_stat)
2758 		return;
2759 
2760 	/*
2761 	 * Update the event value, we cannot use perf_event_read()
2762 	 * because we're in the middle of a context switch and have IRQs
2763 	 * disabled, which upsets smp_call_function_single(), however
2764 	 * we know the event must be on the current CPU, therefore we
2765 	 * don't need to use it.
2766 	 */
2767 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2768 		event->pmu->read(event);
2769 
2770 	perf_event_update_time(event);
2771 
2772 	/*
2773 	 * In order to keep per-task stats reliable we need to flip the event
2774 	 * values when we flip the contexts.
2775 	 */
2776 	value = local64_read(&next_event->count);
2777 	value = local64_xchg(&event->count, value);
2778 	local64_set(&next_event->count, value);
2779 
2780 	swap(event->total_time_enabled, next_event->total_time_enabled);
2781 	swap(event->total_time_running, next_event->total_time_running);
2782 
2783 	/*
2784 	 * Since we swizzled the values, update the user visible data too.
2785 	 */
2786 	perf_event_update_userpage(event);
2787 	perf_event_update_userpage(next_event);
2788 }
2789 
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 				   struct perf_event_context *next_ctx)
2792 {
2793 	struct perf_event *event, *next_event;
2794 
2795 	if (!ctx->nr_stat)
2796 		return;
2797 
2798 	update_context_time(ctx);
2799 
2800 	event = list_first_entry(&ctx->event_list,
2801 				   struct perf_event, event_entry);
2802 
2803 	next_event = list_first_entry(&next_ctx->event_list,
2804 					struct perf_event, event_entry);
2805 
2806 	while (&event->event_entry != &ctx->event_list &&
2807 	       &next_event->event_entry != &next_ctx->event_list) {
2808 
2809 		__perf_event_sync_stat(event, next_event);
2810 
2811 		event = list_next_entry(event, event_entry);
2812 		next_event = list_next_entry(next_event, event_entry);
2813 	}
2814 }
2815 
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 					 struct task_struct *next)
2818 {
2819 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820 	struct perf_event_context *next_ctx;
2821 	struct perf_event_context *parent, *next_parent;
2822 	struct perf_cpu_context *cpuctx;
2823 	int do_switch = 1;
2824 
2825 	if (likely(!ctx))
2826 		return;
2827 
2828 	cpuctx = __get_cpu_context(ctx);
2829 	if (!cpuctx->task_ctx)
2830 		return;
2831 
2832 	rcu_read_lock();
2833 	next_ctx = next->perf_event_ctxp[ctxn];
2834 	if (!next_ctx)
2835 		goto unlock;
2836 
2837 	parent = rcu_dereference(ctx->parent_ctx);
2838 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2839 
2840 	/* If neither context have a parent context; they cannot be clones. */
2841 	if (!parent && !next_parent)
2842 		goto unlock;
2843 
2844 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845 		/*
2846 		 * Looks like the two contexts are clones, so we might be
2847 		 * able to optimize the context switch.  We lock both
2848 		 * contexts and check that they are clones under the
2849 		 * lock (including re-checking that neither has been
2850 		 * uncloned in the meantime).  It doesn't matter which
2851 		 * order we take the locks because no other cpu could
2852 		 * be trying to lock both of these tasks.
2853 		 */
2854 		raw_spin_lock(&ctx->lock);
2855 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856 		if (context_equiv(ctx, next_ctx)) {
2857 			WRITE_ONCE(ctx->task, next);
2858 			WRITE_ONCE(next_ctx->task, task);
2859 
2860 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861 
2862 			/*
2863 			 * RCU_INIT_POINTER here is safe because we've not
2864 			 * modified the ctx and the above modification of
2865 			 * ctx->task and ctx->task_ctx_data are immaterial
2866 			 * since those values are always verified under
2867 			 * ctx->lock which we're now holding.
2868 			 */
2869 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871 
2872 			do_switch = 0;
2873 
2874 			perf_event_sync_stat(ctx, next_ctx);
2875 		}
2876 		raw_spin_unlock(&next_ctx->lock);
2877 		raw_spin_unlock(&ctx->lock);
2878 	}
2879 unlock:
2880 	rcu_read_unlock();
2881 
2882 	if (do_switch) {
2883 		raw_spin_lock(&ctx->lock);
2884 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885 		raw_spin_unlock(&ctx->lock);
2886 	}
2887 }
2888 
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890 
2891 void perf_sched_cb_dec(struct pmu *pmu)
2892 {
2893 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894 
2895 	this_cpu_dec(perf_sched_cb_usages);
2896 
2897 	if (!--cpuctx->sched_cb_usage)
2898 		list_del(&cpuctx->sched_cb_entry);
2899 }
2900 
2901 
2902 void perf_sched_cb_inc(struct pmu *pmu)
2903 {
2904 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905 
2906 	if (!cpuctx->sched_cb_usage++)
2907 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908 
2909 	this_cpu_inc(perf_sched_cb_usages);
2910 }
2911 
2912 /*
2913  * This function provides the context switch callback to the lower code
2914  * layer. It is invoked ONLY when the context switch callback is enabled.
2915  *
2916  * This callback is relevant even to per-cpu events; for example multi event
2917  * PEBS requires this to provide PID/TID information. This requires we flush
2918  * all queued PEBS records before we context switch to a new task.
2919  */
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921 				struct task_struct *next,
2922 				bool sched_in)
2923 {
2924 	struct perf_cpu_context *cpuctx;
2925 	struct pmu *pmu;
2926 
2927 	if (prev == next)
2928 		return;
2929 
2930 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932 
2933 		if (WARN_ON_ONCE(!pmu->sched_task))
2934 			continue;
2935 
2936 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 		perf_pmu_disable(pmu);
2938 
2939 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2940 
2941 		perf_pmu_enable(pmu);
2942 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943 	}
2944 }
2945 
2946 static void perf_event_switch(struct task_struct *task,
2947 			      struct task_struct *next_prev, bool sched_in);
2948 
2949 #define for_each_task_context_nr(ctxn)					\
2950 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951 
2952 /*
2953  * Called from scheduler to remove the events of the current task,
2954  * with interrupts disabled.
2955  *
2956  * We stop each event and update the event value in event->count.
2957  *
2958  * This does not protect us against NMI, but disable()
2959  * sets the disabled bit in the control field of event _before_
2960  * accessing the event control register. If a NMI hits, then it will
2961  * not restart the event.
2962  */
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964 				 struct task_struct *next)
2965 {
2966 	int ctxn;
2967 
2968 	if (__this_cpu_read(perf_sched_cb_usages))
2969 		perf_pmu_sched_task(task, next, false);
2970 
2971 	if (atomic_read(&nr_switch_events))
2972 		perf_event_switch(task, next, false);
2973 
2974 	for_each_task_context_nr(ctxn)
2975 		perf_event_context_sched_out(task, ctxn, next);
2976 
2977 	/*
2978 	 * if cgroup events exist on this CPU, then we need
2979 	 * to check if we have to switch out PMU state.
2980 	 * cgroup event are system-wide mode only
2981 	 */
2982 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983 		perf_cgroup_sched_out(task, next);
2984 }
2985 
2986 /*
2987  * Called with IRQs disabled
2988  */
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 			      enum event_type_t event_type)
2991 {
2992 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 }
2994 
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997 		    struct perf_cpu_context *cpuctx)
2998 {
2999 	struct perf_event *event;
3000 
3001 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 		if (event->state <= PERF_EVENT_STATE_OFF)
3003 			continue;
3004 		if (!event_filter_match(event))
3005 			continue;
3006 
3007 		if (group_can_go_on(event, cpuctx, 1))
3008 			group_sched_in(event, cpuctx, ctx);
3009 
3010 		/*
3011 		 * If this pinned group hasn't been scheduled,
3012 		 * put it in error state.
3013 		 */
3014 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016 	}
3017 }
3018 
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021 		      struct perf_cpu_context *cpuctx)
3022 {
3023 	struct perf_event *event;
3024 	int can_add_hw = 1;
3025 
3026 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 		/* Ignore events in OFF or ERROR state */
3028 		if (event->state <= PERF_EVENT_STATE_OFF)
3029 			continue;
3030 		/*
3031 		 * Listen to the 'cpu' scheduling filter constraint
3032 		 * of events:
3033 		 */
3034 		if (!event_filter_match(event))
3035 			continue;
3036 
3037 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038 			if (group_sched_in(event, cpuctx, ctx))
3039 				can_add_hw = 0;
3040 		}
3041 	}
3042 }
3043 
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046 	     struct perf_cpu_context *cpuctx,
3047 	     enum event_type_t event_type,
3048 	     struct task_struct *task)
3049 {
3050 	int is_active = ctx->is_active;
3051 	u64 now;
3052 
3053 	lockdep_assert_held(&ctx->lock);
3054 
3055 	if (likely(!ctx->nr_events))
3056 		return;
3057 
3058 	ctx->is_active |= (event_type | EVENT_TIME);
3059 	if (ctx->task) {
3060 		if (!is_active)
3061 			cpuctx->task_ctx = ctx;
3062 		else
3063 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064 	}
3065 
3066 	is_active ^= ctx->is_active; /* changed bits */
3067 
3068 	if (is_active & EVENT_TIME) {
3069 		/* start ctx time */
3070 		now = perf_clock();
3071 		ctx->timestamp = now;
3072 		perf_cgroup_set_timestamp(task, ctx);
3073 	}
3074 
3075 	/*
3076 	 * First go through the list and put on any pinned groups
3077 	 * in order to give them the best chance of going on.
3078 	 */
3079 	if (is_active & EVENT_PINNED)
3080 		ctx_pinned_sched_in(ctx, cpuctx);
3081 
3082 	/* Then walk through the lower prio flexible groups */
3083 	if (is_active & EVENT_FLEXIBLE)
3084 		ctx_flexible_sched_in(ctx, cpuctx);
3085 }
3086 
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088 			     enum event_type_t event_type,
3089 			     struct task_struct *task)
3090 {
3091 	struct perf_event_context *ctx = &cpuctx->ctx;
3092 
3093 	ctx_sched_in(ctx, cpuctx, event_type, task);
3094 }
3095 
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 					struct task_struct *task)
3098 {
3099 	struct perf_cpu_context *cpuctx;
3100 
3101 	cpuctx = __get_cpu_context(ctx);
3102 	if (cpuctx->task_ctx == ctx)
3103 		return;
3104 
3105 	perf_ctx_lock(cpuctx, ctx);
3106 	/*
3107 	 * We must check ctx->nr_events while holding ctx->lock, such
3108 	 * that we serialize against perf_install_in_context().
3109 	 */
3110 	if (!ctx->nr_events)
3111 		goto unlock;
3112 
3113 	perf_pmu_disable(ctx->pmu);
3114 	/*
3115 	 * We want to keep the following priority order:
3116 	 * cpu pinned (that don't need to move), task pinned,
3117 	 * cpu flexible, task flexible.
3118 	 *
3119 	 * However, if task's ctx is not carrying any pinned
3120 	 * events, no need to flip the cpuctx's events around.
3121 	 */
3122 	if (!list_empty(&ctx->pinned_groups))
3123 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 	perf_event_sched_in(cpuctx, ctx, task);
3125 	perf_pmu_enable(ctx->pmu);
3126 
3127 unlock:
3128 	perf_ctx_unlock(cpuctx, ctx);
3129 }
3130 
3131 /*
3132  * Called from scheduler to add the events of the current task
3133  * with interrupts disabled.
3134  *
3135  * We restore the event value and then enable it.
3136  *
3137  * This does not protect us against NMI, but enable()
3138  * sets the enabled bit in the control field of event _before_
3139  * accessing the event control register. If a NMI hits, then it will
3140  * keep the event running.
3141  */
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143 				struct task_struct *task)
3144 {
3145 	struct perf_event_context *ctx;
3146 	int ctxn;
3147 
3148 	/*
3149 	 * If cgroup events exist on this CPU, then we need to check if we have
3150 	 * to switch in PMU state; cgroup event are system-wide mode only.
3151 	 *
3152 	 * Since cgroup events are CPU events, we must schedule these in before
3153 	 * we schedule in the task events.
3154 	 */
3155 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 		perf_cgroup_sched_in(prev, task);
3157 
3158 	for_each_task_context_nr(ctxn) {
3159 		ctx = task->perf_event_ctxp[ctxn];
3160 		if (likely(!ctx))
3161 			continue;
3162 
3163 		perf_event_context_sched_in(ctx, task);
3164 	}
3165 
3166 	if (atomic_read(&nr_switch_events))
3167 		perf_event_switch(task, prev, true);
3168 
3169 	if (__this_cpu_read(perf_sched_cb_usages))
3170 		perf_pmu_sched_task(prev, task, true);
3171 }
3172 
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174 {
3175 	u64 frequency = event->attr.sample_freq;
3176 	u64 sec = NSEC_PER_SEC;
3177 	u64 divisor, dividend;
3178 
3179 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3180 
3181 	count_fls = fls64(count);
3182 	nsec_fls = fls64(nsec);
3183 	frequency_fls = fls64(frequency);
3184 	sec_fls = 30;
3185 
3186 	/*
3187 	 * We got @count in @nsec, with a target of sample_freq HZ
3188 	 * the target period becomes:
3189 	 *
3190 	 *             @count * 10^9
3191 	 * period = -------------------
3192 	 *          @nsec * sample_freq
3193 	 *
3194 	 */
3195 
3196 	/*
3197 	 * Reduce accuracy by one bit such that @a and @b converge
3198 	 * to a similar magnitude.
3199 	 */
3200 #define REDUCE_FLS(a, b)		\
3201 do {					\
3202 	if (a##_fls > b##_fls) {	\
3203 		a >>= 1;		\
3204 		a##_fls--;		\
3205 	} else {			\
3206 		b >>= 1;		\
3207 		b##_fls--;		\
3208 	}				\
3209 } while (0)
3210 
3211 	/*
3212 	 * Reduce accuracy until either term fits in a u64, then proceed with
3213 	 * the other, so that finally we can do a u64/u64 division.
3214 	 */
3215 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 		REDUCE_FLS(nsec, frequency);
3217 		REDUCE_FLS(sec, count);
3218 	}
3219 
3220 	if (count_fls + sec_fls > 64) {
3221 		divisor = nsec * frequency;
3222 
3223 		while (count_fls + sec_fls > 64) {
3224 			REDUCE_FLS(count, sec);
3225 			divisor >>= 1;
3226 		}
3227 
3228 		dividend = count * sec;
3229 	} else {
3230 		dividend = count * sec;
3231 
3232 		while (nsec_fls + frequency_fls > 64) {
3233 			REDUCE_FLS(nsec, frequency);
3234 			dividend >>= 1;
3235 		}
3236 
3237 		divisor = nsec * frequency;
3238 	}
3239 
3240 	if (!divisor)
3241 		return dividend;
3242 
3243 	return div64_u64(dividend, divisor);
3244 }
3245 
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248 
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250 {
3251 	struct hw_perf_event *hwc = &event->hw;
3252 	s64 period, sample_period;
3253 	s64 delta;
3254 
3255 	period = perf_calculate_period(event, nsec, count);
3256 
3257 	delta = (s64)(period - hwc->sample_period);
3258 	delta = (delta + 7) / 8; /* low pass filter */
3259 
3260 	sample_period = hwc->sample_period + delta;
3261 
3262 	if (!sample_period)
3263 		sample_period = 1;
3264 
3265 	hwc->sample_period = sample_period;
3266 
3267 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3268 		if (disable)
3269 			event->pmu->stop(event, PERF_EF_UPDATE);
3270 
3271 		local64_set(&hwc->period_left, 0);
3272 
3273 		if (disable)
3274 			event->pmu->start(event, PERF_EF_RELOAD);
3275 	}
3276 }
3277 
3278 /*
3279  * combine freq adjustment with unthrottling to avoid two passes over the
3280  * events. At the same time, make sure, having freq events does not change
3281  * the rate of unthrottling as that would introduce bias.
3282  */
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 					   int needs_unthr)
3285 {
3286 	struct perf_event *event;
3287 	struct hw_perf_event *hwc;
3288 	u64 now, period = TICK_NSEC;
3289 	s64 delta;
3290 
3291 	/*
3292 	 * only need to iterate over all events iff:
3293 	 * - context have events in frequency mode (needs freq adjust)
3294 	 * - there are events to unthrottle on this cpu
3295 	 */
3296 	if (!(ctx->nr_freq || needs_unthr))
3297 		return;
3298 
3299 	raw_spin_lock(&ctx->lock);
3300 	perf_pmu_disable(ctx->pmu);
3301 
3302 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3304 			continue;
3305 
3306 		if (!event_filter_match(event))
3307 			continue;
3308 
3309 		perf_pmu_disable(event->pmu);
3310 
3311 		hwc = &event->hw;
3312 
3313 		if (hwc->interrupts == MAX_INTERRUPTS) {
3314 			hwc->interrupts = 0;
3315 			perf_log_throttle(event, 1);
3316 			event->pmu->start(event, 0);
3317 		}
3318 
3319 		if (!event->attr.freq || !event->attr.sample_freq)
3320 			goto next;
3321 
3322 		/*
3323 		 * stop the event and update event->count
3324 		 */
3325 		event->pmu->stop(event, PERF_EF_UPDATE);
3326 
3327 		now = local64_read(&event->count);
3328 		delta = now - hwc->freq_count_stamp;
3329 		hwc->freq_count_stamp = now;
3330 
3331 		/*
3332 		 * restart the event
3333 		 * reload only if value has changed
3334 		 * we have stopped the event so tell that
3335 		 * to perf_adjust_period() to avoid stopping it
3336 		 * twice.
3337 		 */
3338 		if (delta > 0)
3339 			perf_adjust_period(event, period, delta, false);
3340 
3341 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342 	next:
3343 		perf_pmu_enable(event->pmu);
3344 	}
3345 
3346 	perf_pmu_enable(ctx->pmu);
3347 	raw_spin_unlock(&ctx->lock);
3348 }
3349 
3350 /*
3351  * Round-robin a context's events:
3352  */
3353 static void rotate_ctx(struct perf_event_context *ctx)
3354 {
3355 	/*
3356 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 	 * disabled by the inheritance code.
3358 	 */
3359 	if (!ctx->rotate_disable)
3360 		list_rotate_left(&ctx->flexible_groups);
3361 }
3362 
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364 {
3365 	struct perf_event_context *ctx = NULL;
3366 	int rotate = 0;
3367 
3368 	if (cpuctx->ctx.nr_events) {
3369 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 			rotate = 1;
3371 	}
3372 
3373 	ctx = cpuctx->task_ctx;
3374 	if (ctx && ctx->nr_events) {
3375 		if (ctx->nr_events != ctx->nr_active)
3376 			rotate = 1;
3377 	}
3378 
3379 	if (!rotate)
3380 		goto done;
3381 
3382 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383 	perf_pmu_disable(cpuctx->ctx.pmu);
3384 
3385 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 	if (ctx)
3387 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3388 
3389 	rotate_ctx(&cpuctx->ctx);
3390 	if (ctx)
3391 		rotate_ctx(ctx);
3392 
3393 	perf_event_sched_in(cpuctx, ctx, current);
3394 
3395 	perf_pmu_enable(cpuctx->ctx.pmu);
3396 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3398 
3399 	return rotate;
3400 }
3401 
3402 void perf_event_task_tick(void)
3403 {
3404 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 	struct perf_event_context *ctx, *tmp;
3406 	int throttled;
3407 
3408 	lockdep_assert_irqs_disabled();
3409 
3410 	__this_cpu_inc(perf_throttled_seq);
3411 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413 
3414 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415 		perf_adjust_freq_unthr_context(ctx, throttled);
3416 }
3417 
3418 static int event_enable_on_exec(struct perf_event *event,
3419 				struct perf_event_context *ctx)
3420 {
3421 	if (!event->attr.enable_on_exec)
3422 		return 0;
3423 
3424 	event->attr.enable_on_exec = 0;
3425 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 		return 0;
3427 
3428 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429 
3430 	return 1;
3431 }
3432 
3433 /*
3434  * Enable all of a task's events that have been marked enable-on-exec.
3435  * This expects task == current.
3436  */
3437 static void perf_event_enable_on_exec(int ctxn)
3438 {
3439 	struct perf_event_context *ctx, *clone_ctx = NULL;
3440 	enum event_type_t event_type = 0;
3441 	struct perf_cpu_context *cpuctx;
3442 	struct perf_event *event;
3443 	unsigned long flags;
3444 	int enabled = 0;
3445 
3446 	local_irq_save(flags);
3447 	ctx = current->perf_event_ctxp[ctxn];
3448 	if (!ctx || !ctx->nr_events)
3449 		goto out;
3450 
3451 	cpuctx = __get_cpu_context(ctx);
3452 	perf_ctx_lock(cpuctx, ctx);
3453 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3455 		enabled |= event_enable_on_exec(event, ctx);
3456 		event_type |= get_event_type(event);
3457 	}
3458 
3459 	/*
3460 	 * Unclone and reschedule this context if we enabled any event.
3461 	 */
3462 	if (enabled) {
3463 		clone_ctx = unclone_ctx(ctx);
3464 		ctx_resched(cpuctx, ctx, event_type);
3465 	} else {
3466 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467 	}
3468 	perf_ctx_unlock(cpuctx, ctx);
3469 
3470 out:
3471 	local_irq_restore(flags);
3472 
3473 	if (clone_ctx)
3474 		put_ctx(clone_ctx);
3475 }
3476 
3477 struct perf_read_data {
3478 	struct perf_event *event;
3479 	bool group;
3480 	int ret;
3481 };
3482 
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 {
3485 	u16 local_pkg, event_pkg;
3486 
3487 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488 		int local_cpu = smp_processor_id();
3489 
3490 		event_pkg = topology_physical_package_id(event_cpu);
3491 		local_pkg = topology_physical_package_id(local_cpu);
3492 
3493 		if (event_pkg == local_pkg)
3494 			return local_cpu;
3495 	}
3496 
3497 	return event_cpu;
3498 }
3499 
3500 /*
3501  * Cross CPU call to read the hardware event
3502  */
3503 static void __perf_event_read(void *info)
3504 {
3505 	struct perf_read_data *data = info;
3506 	struct perf_event *sub, *event = data->event;
3507 	struct perf_event_context *ctx = event->ctx;
3508 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509 	struct pmu *pmu = event->pmu;
3510 
3511 	/*
3512 	 * If this is a task context, we need to check whether it is
3513 	 * the current task context of this cpu.  If not it has been
3514 	 * scheduled out before the smp call arrived.  In that case
3515 	 * event->count would have been updated to a recent sample
3516 	 * when the event was scheduled out.
3517 	 */
3518 	if (ctx->task && cpuctx->task_ctx != ctx)
3519 		return;
3520 
3521 	raw_spin_lock(&ctx->lock);
3522 	if (ctx->is_active & EVENT_TIME) {
3523 		update_context_time(ctx);
3524 		update_cgrp_time_from_event(event);
3525 	}
3526 
3527 	perf_event_update_time(event);
3528 	if (data->group)
3529 		perf_event_update_sibling_time(event);
3530 
3531 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 		goto unlock;
3533 
3534 	if (!data->group) {
3535 		pmu->read(event);
3536 		data->ret = 0;
3537 		goto unlock;
3538 	}
3539 
3540 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541 
3542 	pmu->read(event);
3543 
3544 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546 			/*
3547 			 * Use sibling's PMU rather than @event's since
3548 			 * sibling could be on different (eg: software) PMU.
3549 			 */
3550 			sub->pmu->read(sub);
3551 		}
3552 	}
3553 
3554 	data->ret = pmu->commit_txn(pmu);
3555 
3556 unlock:
3557 	raw_spin_unlock(&ctx->lock);
3558 }
3559 
3560 static inline u64 perf_event_count(struct perf_event *event)
3561 {
3562 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3563 }
3564 
3565 /*
3566  * NMI-safe method to read a local event, that is an event that
3567  * is:
3568  *   - either for the current task, or for this CPU
3569  *   - does not have inherit set, for inherited task events
3570  *     will not be local and we cannot read them atomically
3571  *   - must not have a pmu::count method
3572  */
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574 			  u64 *enabled, u64 *running)
3575 {
3576 	unsigned long flags;
3577 	int ret = 0;
3578 
3579 	/*
3580 	 * Disabling interrupts avoids all counter scheduling (context
3581 	 * switches, timer based rotation and IPIs).
3582 	 */
3583 	local_irq_save(flags);
3584 
3585 	/*
3586 	 * It must not be an event with inherit set, we cannot read
3587 	 * all child counters from atomic context.
3588 	 */
3589 	if (event->attr.inherit) {
3590 		ret = -EOPNOTSUPP;
3591 		goto out;
3592 	}
3593 
3594 	/* If this is a per-task event, it must be for current */
3595 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 	    event->hw.target != current) {
3597 		ret = -EINVAL;
3598 		goto out;
3599 	}
3600 
3601 	/* If this is a per-CPU event, it must be for this CPU */
3602 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 	    event->cpu != smp_processor_id()) {
3604 		ret = -EINVAL;
3605 		goto out;
3606 	}
3607 
3608 	/*
3609 	 * If the event is currently on this CPU, its either a per-task event,
3610 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 	 * oncpu == -1).
3612 	 */
3613 	if (event->oncpu == smp_processor_id())
3614 		event->pmu->read(event);
3615 
3616 	*value = local64_read(&event->count);
3617 	if (enabled || running) {
3618 		u64 now = event->shadow_ctx_time + perf_clock();
3619 		u64 __enabled, __running;
3620 
3621 		__perf_update_times(event, now, &__enabled, &__running);
3622 		if (enabled)
3623 			*enabled = __enabled;
3624 		if (running)
3625 			*running = __running;
3626 	}
3627 out:
3628 	local_irq_restore(flags);
3629 
3630 	return ret;
3631 }
3632 
3633 static int perf_event_read(struct perf_event *event, bool group)
3634 {
3635 	enum perf_event_state state = READ_ONCE(event->state);
3636 	int event_cpu, ret = 0;
3637 
3638 	/*
3639 	 * If event is enabled and currently active on a CPU, update the
3640 	 * value in the event structure:
3641 	 */
3642 again:
3643 	if (state == PERF_EVENT_STATE_ACTIVE) {
3644 		struct perf_read_data data;
3645 
3646 		/*
3647 		 * Orders the ->state and ->oncpu loads such that if we see
3648 		 * ACTIVE we must also see the right ->oncpu.
3649 		 *
3650 		 * Matches the smp_wmb() from event_sched_in().
3651 		 */
3652 		smp_rmb();
3653 
3654 		event_cpu = READ_ONCE(event->oncpu);
3655 		if ((unsigned)event_cpu >= nr_cpu_ids)
3656 			return 0;
3657 
3658 		data = (struct perf_read_data){
3659 			.event = event,
3660 			.group = group,
3661 			.ret = 0,
3662 		};
3663 
3664 		preempt_disable();
3665 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3666 
3667 		/*
3668 		 * Purposely ignore the smp_call_function_single() return
3669 		 * value.
3670 		 *
3671 		 * If event_cpu isn't a valid CPU it means the event got
3672 		 * scheduled out and that will have updated the event count.
3673 		 *
3674 		 * Therefore, either way, we'll have an up-to-date event count
3675 		 * after this.
3676 		 */
3677 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 		preempt_enable();
3679 		ret = data.ret;
3680 
3681 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3682 		struct perf_event_context *ctx = event->ctx;
3683 		unsigned long flags;
3684 
3685 		raw_spin_lock_irqsave(&ctx->lock, flags);
3686 		state = event->state;
3687 		if (state != PERF_EVENT_STATE_INACTIVE) {
3688 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 			goto again;
3690 		}
3691 
3692 		/*
3693 		 * May read while context is not active (e.g., thread is
3694 		 * blocked), in that case we cannot update context time
3695 		 */
3696 		if (ctx->is_active & EVENT_TIME) {
3697 			update_context_time(ctx);
3698 			update_cgrp_time_from_event(event);
3699 		}
3700 
3701 		perf_event_update_time(event);
3702 		if (group)
3703 			perf_event_update_sibling_time(event);
3704 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3705 	}
3706 
3707 	return ret;
3708 }
3709 
3710 /*
3711  * Initialize the perf_event context in a task_struct:
3712  */
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3714 {
3715 	raw_spin_lock_init(&ctx->lock);
3716 	mutex_init(&ctx->mutex);
3717 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3718 	INIT_LIST_HEAD(&ctx->pinned_groups);
3719 	INIT_LIST_HEAD(&ctx->flexible_groups);
3720 	INIT_LIST_HEAD(&ctx->event_list);
3721 	atomic_set(&ctx->refcount, 1);
3722 }
3723 
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726 {
3727 	struct perf_event_context *ctx;
3728 
3729 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 	if (!ctx)
3731 		return NULL;
3732 
3733 	__perf_event_init_context(ctx);
3734 	if (task) {
3735 		ctx->task = task;
3736 		get_task_struct(task);
3737 	}
3738 	ctx->pmu = pmu;
3739 
3740 	return ctx;
3741 }
3742 
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3745 {
3746 	struct task_struct *task;
3747 
3748 	rcu_read_lock();
3749 	if (!vpid)
3750 		task = current;
3751 	else
3752 		task = find_task_by_vpid(vpid);
3753 	if (task)
3754 		get_task_struct(task);
3755 	rcu_read_unlock();
3756 
3757 	if (!task)
3758 		return ERR_PTR(-ESRCH);
3759 
3760 	return task;
3761 }
3762 
3763 /*
3764  * Returns a matching context with refcount and pincount.
3765  */
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768 		struct perf_event *event)
3769 {
3770 	struct perf_event_context *ctx, *clone_ctx = NULL;
3771 	struct perf_cpu_context *cpuctx;
3772 	void *task_ctx_data = NULL;
3773 	unsigned long flags;
3774 	int ctxn, err;
3775 	int cpu = event->cpu;
3776 
3777 	if (!task) {
3778 		/* Must be root to operate on a CPU event: */
3779 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780 			return ERR_PTR(-EACCES);
3781 
3782 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783 		ctx = &cpuctx->ctx;
3784 		get_ctx(ctx);
3785 		++ctx->pin_count;
3786 
3787 		return ctx;
3788 	}
3789 
3790 	err = -EINVAL;
3791 	ctxn = pmu->task_ctx_nr;
3792 	if (ctxn < 0)
3793 		goto errout;
3794 
3795 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 		if (!task_ctx_data) {
3798 			err = -ENOMEM;
3799 			goto errout;
3800 		}
3801 	}
3802 
3803 retry:
3804 	ctx = perf_lock_task_context(task, ctxn, &flags);
3805 	if (ctx) {
3806 		clone_ctx = unclone_ctx(ctx);
3807 		++ctx->pin_count;
3808 
3809 		if (task_ctx_data && !ctx->task_ctx_data) {
3810 			ctx->task_ctx_data = task_ctx_data;
3811 			task_ctx_data = NULL;
3812 		}
3813 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814 
3815 		if (clone_ctx)
3816 			put_ctx(clone_ctx);
3817 	} else {
3818 		ctx = alloc_perf_context(pmu, task);
3819 		err = -ENOMEM;
3820 		if (!ctx)
3821 			goto errout;
3822 
3823 		if (task_ctx_data) {
3824 			ctx->task_ctx_data = task_ctx_data;
3825 			task_ctx_data = NULL;
3826 		}
3827 
3828 		err = 0;
3829 		mutex_lock(&task->perf_event_mutex);
3830 		/*
3831 		 * If it has already passed perf_event_exit_task().
3832 		 * we must see PF_EXITING, it takes this mutex too.
3833 		 */
3834 		if (task->flags & PF_EXITING)
3835 			err = -ESRCH;
3836 		else if (task->perf_event_ctxp[ctxn])
3837 			err = -EAGAIN;
3838 		else {
3839 			get_ctx(ctx);
3840 			++ctx->pin_count;
3841 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842 		}
3843 		mutex_unlock(&task->perf_event_mutex);
3844 
3845 		if (unlikely(err)) {
3846 			put_ctx(ctx);
3847 
3848 			if (err == -EAGAIN)
3849 				goto retry;
3850 			goto errout;
3851 		}
3852 	}
3853 
3854 	kfree(task_ctx_data);
3855 	return ctx;
3856 
3857 errout:
3858 	kfree(task_ctx_data);
3859 	return ERR_PTR(err);
3860 }
3861 
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3864 
3865 static void free_event_rcu(struct rcu_head *head)
3866 {
3867 	struct perf_event *event;
3868 
3869 	event = container_of(head, struct perf_event, rcu_head);
3870 	if (event->ns)
3871 		put_pid_ns(event->ns);
3872 	perf_event_free_filter(event);
3873 	kfree(event);
3874 }
3875 
3876 static void ring_buffer_attach(struct perf_event *event,
3877 			       struct ring_buffer *rb);
3878 
3879 static void detach_sb_event(struct perf_event *event)
3880 {
3881 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882 
3883 	raw_spin_lock(&pel->lock);
3884 	list_del_rcu(&event->sb_list);
3885 	raw_spin_unlock(&pel->lock);
3886 }
3887 
3888 static bool is_sb_event(struct perf_event *event)
3889 {
3890 	struct perf_event_attr *attr = &event->attr;
3891 
3892 	if (event->parent)
3893 		return false;
3894 
3895 	if (event->attach_state & PERF_ATTACH_TASK)
3896 		return false;
3897 
3898 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 	    attr->comm || attr->comm_exec ||
3900 	    attr->task ||
3901 	    attr->context_switch)
3902 		return true;
3903 	return false;
3904 }
3905 
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3907 {
3908 	if (is_sb_event(event))
3909 		detach_sb_event(event);
3910 }
3911 
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913 {
3914 	if (event->parent)
3915 		return;
3916 
3917 	if (is_cgroup_event(event))
3918 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919 }
3920 
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3924 
3925 static void unaccount_freq_event_nohz(void)
3926 {
3927 #ifdef CONFIG_NO_HZ_FULL
3928 	spin_lock(&nr_freq_lock);
3929 	if (atomic_dec_and_test(&nr_freq_events))
3930 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 	spin_unlock(&nr_freq_lock);
3932 #endif
3933 }
3934 
3935 static void unaccount_freq_event(void)
3936 {
3937 	if (tick_nohz_full_enabled())
3938 		unaccount_freq_event_nohz();
3939 	else
3940 		atomic_dec(&nr_freq_events);
3941 }
3942 
3943 static void unaccount_event(struct perf_event *event)
3944 {
3945 	bool dec = false;
3946 
3947 	if (event->parent)
3948 		return;
3949 
3950 	if (event->attach_state & PERF_ATTACH_TASK)
3951 		dec = true;
3952 	if (event->attr.mmap || event->attr.mmap_data)
3953 		atomic_dec(&nr_mmap_events);
3954 	if (event->attr.comm)
3955 		atomic_dec(&nr_comm_events);
3956 	if (event->attr.namespaces)
3957 		atomic_dec(&nr_namespaces_events);
3958 	if (event->attr.task)
3959 		atomic_dec(&nr_task_events);
3960 	if (event->attr.freq)
3961 		unaccount_freq_event();
3962 	if (event->attr.context_switch) {
3963 		dec = true;
3964 		atomic_dec(&nr_switch_events);
3965 	}
3966 	if (is_cgroup_event(event))
3967 		dec = true;
3968 	if (has_branch_stack(event))
3969 		dec = true;
3970 
3971 	if (dec) {
3972 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 			schedule_delayed_work(&perf_sched_work, HZ);
3974 	}
3975 
3976 	unaccount_event_cpu(event, event->cpu);
3977 
3978 	unaccount_pmu_sb_event(event);
3979 }
3980 
3981 static void perf_sched_delayed(struct work_struct *work)
3982 {
3983 	mutex_lock(&perf_sched_mutex);
3984 	if (atomic_dec_and_test(&perf_sched_count))
3985 		static_branch_disable(&perf_sched_events);
3986 	mutex_unlock(&perf_sched_mutex);
3987 }
3988 
3989 /*
3990  * The following implement mutual exclusion of events on "exclusive" pmus
3991  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992  * at a time, so we disallow creating events that might conflict, namely:
3993  *
3994  *  1) cpu-wide events in the presence of per-task events,
3995  *  2) per-task events in the presence of cpu-wide events,
3996  *  3) two matching events on the same context.
3997  *
3998  * The former two cases are handled in the allocation path (perf_event_alloc(),
3999  * _free_event()), the latter -- before the first perf_install_in_context().
4000  */
4001 static int exclusive_event_init(struct perf_event *event)
4002 {
4003 	struct pmu *pmu = event->pmu;
4004 
4005 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 		return 0;
4007 
4008 	/*
4009 	 * Prevent co-existence of per-task and cpu-wide events on the
4010 	 * same exclusive pmu.
4011 	 *
4012 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 	 * events on this "exclusive" pmu, positive means there are
4014 	 * per-task events.
4015 	 *
4016 	 * Since this is called in perf_event_alloc() path, event::ctx
4017 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 	 * to mean "per-task event", because unlike other attach states it
4019 	 * never gets cleared.
4020 	 */
4021 	if (event->attach_state & PERF_ATTACH_TASK) {
4022 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 			return -EBUSY;
4024 	} else {
4025 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 			return -EBUSY;
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 static void exclusive_event_destroy(struct perf_event *event)
4033 {
4034 	struct pmu *pmu = event->pmu;
4035 
4036 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 		return;
4038 
4039 	/* see comment in exclusive_event_init() */
4040 	if (event->attach_state & PERF_ATTACH_TASK)
4041 		atomic_dec(&pmu->exclusive_cnt);
4042 	else
4043 		atomic_inc(&pmu->exclusive_cnt);
4044 }
4045 
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047 {
4048 	if ((e1->pmu == e2->pmu) &&
4049 	    (e1->cpu == e2->cpu ||
4050 	     e1->cpu == -1 ||
4051 	     e2->cpu == -1))
4052 		return true;
4053 	return false;
4054 }
4055 
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058 					struct perf_event_context *ctx)
4059 {
4060 	struct perf_event *iter_event;
4061 	struct pmu *pmu = event->pmu;
4062 
4063 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 		return true;
4065 
4066 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 		if (exclusive_event_match(iter_event, event))
4068 			return false;
4069 	}
4070 
4071 	return true;
4072 }
4073 
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075 				       struct list_head *head);
4076 
4077 static void _free_event(struct perf_event *event)
4078 {
4079 	irq_work_sync(&event->pending);
4080 
4081 	unaccount_event(event);
4082 
4083 	if (event->rb) {
4084 		/*
4085 		 * Can happen when we close an event with re-directed output.
4086 		 *
4087 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 		 * over us; possibly making our ring_buffer_put() the last.
4089 		 */
4090 		mutex_lock(&event->mmap_mutex);
4091 		ring_buffer_attach(event, NULL);
4092 		mutex_unlock(&event->mmap_mutex);
4093 	}
4094 
4095 	if (is_cgroup_event(event))
4096 		perf_detach_cgroup(event);
4097 
4098 	if (!event->parent) {
4099 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 			put_callchain_buffers();
4101 	}
4102 
4103 	perf_event_free_bpf_prog(event);
4104 	perf_addr_filters_splice(event, NULL);
4105 	kfree(event->addr_filters_offs);
4106 
4107 	if (event->destroy)
4108 		event->destroy(event);
4109 
4110 	if (event->ctx)
4111 		put_ctx(event->ctx);
4112 
4113 	exclusive_event_destroy(event);
4114 	module_put(event->pmu->module);
4115 
4116 	call_rcu(&event->rcu_head, free_event_rcu);
4117 }
4118 
4119 /*
4120  * Used to free events which have a known refcount of 1, such as in error paths
4121  * where the event isn't exposed yet and inherited events.
4122  */
4123 static void free_event(struct perf_event *event)
4124 {
4125 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 				"unexpected event refcount: %ld; ptr=%p\n",
4127 				atomic_long_read(&event->refcount), event)) {
4128 		/* leak to avoid use-after-free */
4129 		return;
4130 	}
4131 
4132 	_free_event(event);
4133 }
4134 
4135 /*
4136  * Remove user event from the owner task.
4137  */
4138 static void perf_remove_from_owner(struct perf_event *event)
4139 {
4140 	struct task_struct *owner;
4141 
4142 	rcu_read_lock();
4143 	/*
4144 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 	 * observe !owner it means the list deletion is complete and we can
4146 	 * indeed free this event, otherwise we need to serialize on
4147 	 * owner->perf_event_mutex.
4148 	 */
4149 	owner = READ_ONCE(event->owner);
4150 	if (owner) {
4151 		/*
4152 		 * Since delayed_put_task_struct() also drops the last
4153 		 * task reference we can safely take a new reference
4154 		 * while holding the rcu_read_lock().
4155 		 */
4156 		get_task_struct(owner);
4157 	}
4158 	rcu_read_unlock();
4159 
4160 	if (owner) {
4161 		/*
4162 		 * If we're here through perf_event_exit_task() we're already
4163 		 * holding ctx->mutex which would be an inversion wrt. the
4164 		 * normal lock order.
4165 		 *
4166 		 * However we can safely take this lock because its the child
4167 		 * ctx->mutex.
4168 		 */
4169 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170 
4171 		/*
4172 		 * We have to re-check the event->owner field, if it is cleared
4173 		 * we raced with perf_event_exit_task(), acquiring the mutex
4174 		 * ensured they're done, and we can proceed with freeing the
4175 		 * event.
4176 		 */
4177 		if (event->owner) {
4178 			list_del_init(&event->owner_entry);
4179 			smp_store_release(&event->owner, NULL);
4180 		}
4181 		mutex_unlock(&owner->perf_event_mutex);
4182 		put_task_struct(owner);
4183 	}
4184 }
4185 
4186 static void put_event(struct perf_event *event)
4187 {
4188 	if (!atomic_long_dec_and_test(&event->refcount))
4189 		return;
4190 
4191 	_free_event(event);
4192 }
4193 
4194 /*
4195  * Kill an event dead; while event:refcount will preserve the event
4196  * object, it will not preserve its functionality. Once the last 'user'
4197  * gives up the object, we'll destroy the thing.
4198  */
4199 int perf_event_release_kernel(struct perf_event *event)
4200 {
4201 	struct perf_event_context *ctx = event->ctx;
4202 	struct perf_event *child, *tmp;
4203 	LIST_HEAD(free_list);
4204 
4205 	/*
4206 	 * If we got here through err_file: fput(event_file); we will not have
4207 	 * attached to a context yet.
4208 	 */
4209 	if (!ctx) {
4210 		WARN_ON_ONCE(event->attach_state &
4211 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 		goto no_ctx;
4213 	}
4214 
4215 	if (!is_kernel_event(event))
4216 		perf_remove_from_owner(event);
4217 
4218 	ctx = perf_event_ctx_lock(event);
4219 	WARN_ON_ONCE(ctx->parent_ctx);
4220 	perf_remove_from_context(event, DETACH_GROUP);
4221 
4222 	raw_spin_lock_irq(&ctx->lock);
4223 	/*
4224 	 * Mark this event as STATE_DEAD, there is no external reference to it
4225 	 * anymore.
4226 	 *
4227 	 * Anybody acquiring event->child_mutex after the below loop _must_
4228 	 * also see this, most importantly inherit_event() which will avoid
4229 	 * placing more children on the list.
4230 	 *
4231 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 	 * child events.
4233 	 */
4234 	event->state = PERF_EVENT_STATE_DEAD;
4235 	raw_spin_unlock_irq(&ctx->lock);
4236 
4237 	perf_event_ctx_unlock(event, ctx);
4238 
4239 again:
4240 	mutex_lock(&event->child_mutex);
4241 	list_for_each_entry(child, &event->child_list, child_list) {
4242 
4243 		/*
4244 		 * Cannot change, child events are not migrated, see the
4245 		 * comment with perf_event_ctx_lock_nested().
4246 		 */
4247 		ctx = READ_ONCE(child->ctx);
4248 		/*
4249 		 * Since child_mutex nests inside ctx::mutex, we must jump
4250 		 * through hoops. We start by grabbing a reference on the ctx.
4251 		 *
4252 		 * Since the event cannot get freed while we hold the
4253 		 * child_mutex, the context must also exist and have a !0
4254 		 * reference count.
4255 		 */
4256 		get_ctx(ctx);
4257 
4258 		/*
4259 		 * Now that we have a ctx ref, we can drop child_mutex, and
4260 		 * acquire ctx::mutex without fear of it going away. Then we
4261 		 * can re-acquire child_mutex.
4262 		 */
4263 		mutex_unlock(&event->child_mutex);
4264 		mutex_lock(&ctx->mutex);
4265 		mutex_lock(&event->child_mutex);
4266 
4267 		/*
4268 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 		 * state, if child is still the first entry, it didn't get freed
4270 		 * and we can continue doing so.
4271 		 */
4272 		tmp = list_first_entry_or_null(&event->child_list,
4273 					       struct perf_event, child_list);
4274 		if (tmp == child) {
4275 			perf_remove_from_context(child, DETACH_GROUP);
4276 			list_move(&child->child_list, &free_list);
4277 			/*
4278 			 * This matches the refcount bump in inherit_event();
4279 			 * this can't be the last reference.
4280 			 */
4281 			put_event(event);
4282 		}
4283 
4284 		mutex_unlock(&event->child_mutex);
4285 		mutex_unlock(&ctx->mutex);
4286 		put_ctx(ctx);
4287 		goto again;
4288 	}
4289 	mutex_unlock(&event->child_mutex);
4290 
4291 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 		list_del(&child->child_list);
4293 		free_event(child);
4294 	}
4295 
4296 no_ctx:
4297 	put_event(event); /* Must be the 'last' reference */
4298 	return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301 
4302 /*
4303  * Called when the last reference to the file is gone.
4304  */
4305 static int perf_release(struct inode *inode, struct file *file)
4306 {
4307 	perf_event_release_kernel(file->private_data);
4308 	return 0;
4309 }
4310 
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312 {
4313 	struct perf_event *child;
4314 	u64 total = 0;
4315 
4316 	*enabled = 0;
4317 	*running = 0;
4318 
4319 	mutex_lock(&event->child_mutex);
4320 
4321 	(void)perf_event_read(event, false);
4322 	total += perf_event_count(event);
4323 
4324 	*enabled += event->total_time_enabled +
4325 			atomic64_read(&event->child_total_time_enabled);
4326 	*running += event->total_time_running +
4327 			atomic64_read(&event->child_total_time_running);
4328 
4329 	list_for_each_entry(child, &event->child_list, child_list) {
4330 		(void)perf_event_read(child, false);
4331 		total += perf_event_count(child);
4332 		*enabled += child->total_time_enabled;
4333 		*running += child->total_time_running;
4334 	}
4335 	mutex_unlock(&event->child_mutex);
4336 
4337 	return total;
4338 }
4339 
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341 {
4342 	struct perf_event_context *ctx;
4343 	u64 count;
4344 
4345 	ctx = perf_event_ctx_lock(event);
4346 	count = __perf_event_read_value(event, enabled, running);
4347 	perf_event_ctx_unlock(event, ctx);
4348 
4349 	return count;
4350 }
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4352 
4353 static int __perf_read_group_add(struct perf_event *leader,
4354 					u64 read_format, u64 *values)
4355 {
4356 	struct perf_event_context *ctx = leader->ctx;
4357 	struct perf_event *sub;
4358 	unsigned long flags;
4359 	int n = 1; /* skip @nr */
4360 	int ret;
4361 
4362 	ret = perf_event_read(leader, true);
4363 	if (ret)
4364 		return ret;
4365 
4366 	raw_spin_lock_irqsave(&ctx->lock, flags);
4367 
4368 	/*
4369 	 * Since we co-schedule groups, {enabled,running} times of siblings
4370 	 * will be identical to those of the leader, so we only publish one
4371 	 * set.
4372 	 */
4373 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 		values[n++] += leader->total_time_enabled +
4375 			atomic64_read(&leader->child_total_time_enabled);
4376 	}
4377 
4378 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 		values[n++] += leader->total_time_running +
4380 			atomic64_read(&leader->child_total_time_running);
4381 	}
4382 
4383 	/*
4384 	 * Write {count,id} tuples for every sibling.
4385 	 */
4386 	values[n++] += perf_event_count(leader);
4387 	if (read_format & PERF_FORMAT_ID)
4388 		values[n++] = primary_event_id(leader);
4389 
4390 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 		values[n++] += perf_event_count(sub);
4392 		if (read_format & PERF_FORMAT_ID)
4393 			values[n++] = primary_event_id(sub);
4394 	}
4395 
4396 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397 	return 0;
4398 }
4399 
4400 static int perf_read_group(struct perf_event *event,
4401 				   u64 read_format, char __user *buf)
4402 {
4403 	struct perf_event *leader = event->group_leader, *child;
4404 	struct perf_event_context *ctx = leader->ctx;
4405 	int ret;
4406 	u64 *values;
4407 
4408 	lockdep_assert_held(&ctx->mutex);
4409 
4410 	values = kzalloc(event->read_size, GFP_KERNEL);
4411 	if (!values)
4412 		return -ENOMEM;
4413 
4414 	values[0] = 1 + leader->nr_siblings;
4415 
4416 	/*
4417 	 * By locking the child_mutex of the leader we effectively
4418 	 * lock the child list of all siblings.. XXX explain how.
4419 	 */
4420 	mutex_lock(&leader->child_mutex);
4421 
4422 	ret = __perf_read_group_add(leader, read_format, values);
4423 	if (ret)
4424 		goto unlock;
4425 
4426 	list_for_each_entry(child, &leader->child_list, child_list) {
4427 		ret = __perf_read_group_add(child, read_format, values);
4428 		if (ret)
4429 			goto unlock;
4430 	}
4431 
4432 	mutex_unlock(&leader->child_mutex);
4433 
4434 	ret = event->read_size;
4435 	if (copy_to_user(buf, values, event->read_size))
4436 		ret = -EFAULT;
4437 	goto out;
4438 
4439 unlock:
4440 	mutex_unlock(&leader->child_mutex);
4441 out:
4442 	kfree(values);
4443 	return ret;
4444 }
4445 
4446 static int perf_read_one(struct perf_event *event,
4447 				 u64 read_format, char __user *buf)
4448 {
4449 	u64 enabled, running;
4450 	u64 values[4];
4451 	int n = 0;
4452 
4453 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4454 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 		values[n++] = enabled;
4456 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 		values[n++] = running;
4458 	if (read_format & PERF_FORMAT_ID)
4459 		values[n++] = primary_event_id(event);
4460 
4461 	if (copy_to_user(buf, values, n * sizeof(u64)))
4462 		return -EFAULT;
4463 
4464 	return n * sizeof(u64);
4465 }
4466 
4467 static bool is_event_hup(struct perf_event *event)
4468 {
4469 	bool no_children;
4470 
4471 	if (event->state > PERF_EVENT_STATE_EXIT)
4472 		return false;
4473 
4474 	mutex_lock(&event->child_mutex);
4475 	no_children = list_empty(&event->child_list);
4476 	mutex_unlock(&event->child_mutex);
4477 	return no_children;
4478 }
4479 
4480 /*
4481  * Read the performance event - simple non blocking version for now
4482  */
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4485 {
4486 	u64 read_format = event->attr.read_format;
4487 	int ret;
4488 
4489 	/*
4490 	 * Return end-of-file for a read on a event that is in
4491 	 * error state (i.e. because it was pinned but it couldn't be
4492 	 * scheduled on to the CPU at some point).
4493 	 */
4494 	if (event->state == PERF_EVENT_STATE_ERROR)
4495 		return 0;
4496 
4497 	if (count < event->read_size)
4498 		return -ENOSPC;
4499 
4500 	WARN_ON_ONCE(event->ctx->parent_ctx);
4501 	if (read_format & PERF_FORMAT_GROUP)
4502 		ret = perf_read_group(event, read_format, buf);
4503 	else
4504 		ret = perf_read_one(event, read_format, buf);
4505 
4506 	return ret;
4507 }
4508 
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511 {
4512 	struct perf_event *event = file->private_data;
4513 	struct perf_event_context *ctx;
4514 	int ret;
4515 
4516 	ctx = perf_event_ctx_lock(event);
4517 	ret = __perf_read(event, buf, count);
4518 	perf_event_ctx_unlock(event, ctx);
4519 
4520 	return ret;
4521 }
4522 
4523 static unsigned int perf_poll(struct file *file, poll_table *wait)
4524 {
4525 	struct perf_event *event = file->private_data;
4526 	struct ring_buffer *rb;
4527 	unsigned int events = POLLHUP;
4528 
4529 	poll_wait(file, &event->waitq, wait);
4530 
4531 	if (is_event_hup(event))
4532 		return events;
4533 
4534 	/*
4535 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537 	 */
4538 	mutex_lock(&event->mmap_mutex);
4539 	rb = event->rb;
4540 	if (rb)
4541 		events = atomic_xchg(&rb->poll, 0);
4542 	mutex_unlock(&event->mmap_mutex);
4543 	return events;
4544 }
4545 
4546 static void _perf_event_reset(struct perf_event *event)
4547 {
4548 	(void)perf_event_read(event, false);
4549 	local64_set(&event->count, 0);
4550 	perf_event_update_userpage(event);
4551 }
4552 
4553 /*
4554  * Holding the top-level event's child_mutex means that any
4555  * descendant process that has inherited this event will block
4556  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557  * task existence requirements of perf_event_enable/disable.
4558  */
4559 static void perf_event_for_each_child(struct perf_event *event,
4560 					void (*func)(struct perf_event *))
4561 {
4562 	struct perf_event *child;
4563 
4564 	WARN_ON_ONCE(event->ctx->parent_ctx);
4565 
4566 	mutex_lock(&event->child_mutex);
4567 	func(event);
4568 	list_for_each_entry(child, &event->child_list, child_list)
4569 		func(child);
4570 	mutex_unlock(&event->child_mutex);
4571 }
4572 
4573 static void perf_event_for_each(struct perf_event *event,
4574 				  void (*func)(struct perf_event *))
4575 {
4576 	struct perf_event_context *ctx = event->ctx;
4577 	struct perf_event *sibling;
4578 
4579 	lockdep_assert_held(&ctx->mutex);
4580 
4581 	event = event->group_leader;
4582 
4583 	perf_event_for_each_child(event, func);
4584 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585 		perf_event_for_each_child(sibling, func);
4586 }
4587 
4588 static void __perf_event_period(struct perf_event *event,
4589 				struct perf_cpu_context *cpuctx,
4590 				struct perf_event_context *ctx,
4591 				void *info)
4592 {
4593 	u64 value = *((u64 *)info);
4594 	bool active;
4595 
4596 	if (event->attr.freq) {
4597 		event->attr.sample_freq = value;
4598 	} else {
4599 		event->attr.sample_period = value;
4600 		event->hw.sample_period = value;
4601 	}
4602 
4603 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 	if (active) {
4605 		perf_pmu_disable(ctx->pmu);
4606 		/*
4607 		 * We could be throttled; unthrottle now to avoid the tick
4608 		 * trying to unthrottle while we already re-started the event.
4609 		 */
4610 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 			event->hw.interrupts = 0;
4612 			perf_log_throttle(event, 1);
4613 		}
4614 		event->pmu->stop(event, PERF_EF_UPDATE);
4615 	}
4616 
4617 	local64_set(&event->hw.period_left, 0);
4618 
4619 	if (active) {
4620 		event->pmu->start(event, PERF_EF_RELOAD);
4621 		perf_pmu_enable(ctx->pmu);
4622 	}
4623 }
4624 
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626 {
4627 	u64 value;
4628 
4629 	if (!is_sampling_event(event))
4630 		return -EINVAL;
4631 
4632 	if (copy_from_user(&value, arg, sizeof(value)))
4633 		return -EFAULT;
4634 
4635 	if (!value)
4636 		return -EINVAL;
4637 
4638 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 		return -EINVAL;
4640 
4641 	event_function_call(event, __perf_event_period, &value);
4642 
4643 	return 0;
4644 }
4645 
4646 static const struct file_operations perf_fops;
4647 
4648 static inline int perf_fget_light(int fd, struct fd *p)
4649 {
4650 	struct fd f = fdget(fd);
4651 	if (!f.file)
4652 		return -EBADF;
4653 
4654 	if (f.file->f_op != &perf_fops) {
4655 		fdput(f);
4656 		return -EBADF;
4657 	}
4658 	*p = f;
4659 	return 0;
4660 }
4661 
4662 static int perf_event_set_output(struct perf_event *event,
4663 				 struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666 
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668 {
4669 	void (*func)(struct perf_event *);
4670 	u32 flags = arg;
4671 
4672 	switch (cmd) {
4673 	case PERF_EVENT_IOC_ENABLE:
4674 		func = _perf_event_enable;
4675 		break;
4676 	case PERF_EVENT_IOC_DISABLE:
4677 		func = _perf_event_disable;
4678 		break;
4679 	case PERF_EVENT_IOC_RESET:
4680 		func = _perf_event_reset;
4681 		break;
4682 
4683 	case PERF_EVENT_IOC_REFRESH:
4684 		return _perf_event_refresh(event, arg);
4685 
4686 	case PERF_EVENT_IOC_PERIOD:
4687 		return perf_event_period(event, (u64 __user *)arg);
4688 
4689 	case PERF_EVENT_IOC_ID:
4690 	{
4691 		u64 id = primary_event_id(event);
4692 
4693 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 			return -EFAULT;
4695 		return 0;
4696 	}
4697 
4698 	case PERF_EVENT_IOC_SET_OUTPUT:
4699 	{
4700 		int ret;
4701 		if (arg != -1) {
4702 			struct perf_event *output_event;
4703 			struct fd output;
4704 			ret = perf_fget_light(arg, &output);
4705 			if (ret)
4706 				return ret;
4707 			output_event = output.file->private_data;
4708 			ret = perf_event_set_output(event, output_event);
4709 			fdput(output);
4710 		} else {
4711 			ret = perf_event_set_output(event, NULL);
4712 		}
4713 		return ret;
4714 	}
4715 
4716 	case PERF_EVENT_IOC_SET_FILTER:
4717 		return perf_event_set_filter(event, (void __user *)arg);
4718 
4719 	case PERF_EVENT_IOC_SET_BPF:
4720 		return perf_event_set_bpf_prog(event, arg);
4721 
4722 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 		struct ring_buffer *rb;
4724 
4725 		rcu_read_lock();
4726 		rb = rcu_dereference(event->rb);
4727 		if (!rb || !rb->nr_pages) {
4728 			rcu_read_unlock();
4729 			return -EINVAL;
4730 		}
4731 		rb_toggle_paused(rb, !!arg);
4732 		rcu_read_unlock();
4733 		return 0;
4734 	}
4735 	default:
4736 		return -ENOTTY;
4737 	}
4738 
4739 	if (flags & PERF_IOC_FLAG_GROUP)
4740 		perf_event_for_each(event, func);
4741 	else
4742 		perf_event_for_each_child(event, func);
4743 
4744 	return 0;
4745 }
4746 
4747 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4748 {
4749 	struct perf_event *event = file->private_data;
4750 	struct perf_event_context *ctx;
4751 	long ret;
4752 
4753 	ctx = perf_event_ctx_lock(event);
4754 	ret = _perf_ioctl(event, cmd, arg);
4755 	perf_event_ctx_unlock(event, ctx);
4756 
4757 	return ret;
4758 }
4759 
4760 #ifdef CONFIG_COMPAT
4761 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4762 				unsigned long arg)
4763 {
4764 	switch (_IOC_NR(cmd)) {
4765 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4766 	case _IOC_NR(PERF_EVENT_IOC_ID):
4767 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4768 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4769 			cmd &= ~IOCSIZE_MASK;
4770 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4771 		}
4772 		break;
4773 	}
4774 	return perf_ioctl(file, cmd, arg);
4775 }
4776 #else
4777 # define perf_compat_ioctl NULL
4778 #endif
4779 
4780 int perf_event_task_enable(void)
4781 {
4782 	struct perf_event_context *ctx;
4783 	struct perf_event *event;
4784 
4785 	mutex_lock(&current->perf_event_mutex);
4786 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4787 		ctx = perf_event_ctx_lock(event);
4788 		perf_event_for_each_child(event, _perf_event_enable);
4789 		perf_event_ctx_unlock(event, ctx);
4790 	}
4791 	mutex_unlock(&current->perf_event_mutex);
4792 
4793 	return 0;
4794 }
4795 
4796 int perf_event_task_disable(void)
4797 {
4798 	struct perf_event_context *ctx;
4799 	struct perf_event *event;
4800 
4801 	mutex_lock(&current->perf_event_mutex);
4802 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803 		ctx = perf_event_ctx_lock(event);
4804 		perf_event_for_each_child(event, _perf_event_disable);
4805 		perf_event_ctx_unlock(event, ctx);
4806 	}
4807 	mutex_unlock(&current->perf_event_mutex);
4808 
4809 	return 0;
4810 }
4811 
4812 static int perf_event_index(struct perf_event *event)
4813 {
4814 	if (event->hw.state & PERF_HES_STOPPED)
4815 		return 0;
4816 
4817 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4818 		return 0;
4819 
4820 	return event->pmu->event_idx(event);
4821 }
4822 
4823 static void calc_timer_values(struct perf_event *event,
4824 				u64 *now,
4825 				u64 *enabled,
4826 				u64 *running)
4827 {
4828 	u64 ctx_time;
4829 
4830 	*now = perf_clock();
4831 	ctx_time = event->shadow_ctx_time + *now;
4832 	__perf_update_times(event, ctx_time, enabled, running);
4833 }
4834 
4835 static void perf_event_init_userpage(struct perf_event *event)
4836 {
4837 	struct perf_event_mmap_page *userpg;
4838 	struct ring_buffer *rb;
4839 
4840 	rcu_read_lock();
4841 	rb = rcu_dereference(event->rb);
4842 	if (!rb)
4843 		goto unlock;
4844 
4845 	userpg = rb->user_page;
4846 
4847 	/* Allow new userspace to detect that bit 0 is deprecated */
4848 	userpg->cap_bit0_is_deprecated = 1;
4849 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4850 	userpg->data_offset = PAGE_SIZE;
4851 	userpg->data_size = perf_data_size(rb);
4852 
4853 unlock:
4854 	rcu_read_unlock();
4855 }
4856 
4857 void __weak arch_perf_update_userpage(
4858 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4859 {
4860 }
4861 
4862 /*
4863  * Callers need to ensure there can be no nesting of this function, otherwise
4864  * the seqlock logic goes bad. We can not serialize this because the arch
4865  * code calls this from NMI context.
4866  */
4867 void perf_event_update_userpage(struct perf_event *event)
4868 {
4869 	struct perf_event_mmap_page *userpg;
4870 	struct ring_buffer *rb;
4871 	u64 enabled, running, now;
4872 
4873 	rcu_read_lock();
4874 	rb = rcu_dereference(event->rb);
4875 	if (!rb)
4876 		goto unlock;
4877 
4878 	/*
4879 	 * compute total_time_enabled, total_time_running
4880 	 * based on snapshot values taken when the event
4881 	 * was last scheduled in.
4882 	 *
4883 	 * we cannot simply called update_context_time()
4884 	 * because of locking issue as we can be called in
4885 	 * NMI context
4886 	 */
4887 	calc_timer_values(event, &now, &enabled, &running);
4888 
4889 	userpg = rb->user_page;
4890 	/*
4891 	 * Disable preemption so as to not let the corresponding user-space
4892 	 * spin too long if we get preempted.
4893 	 */
4894 	preempt_disable();
4895 	++userpg->lock;
4896 	barrier();
4897 	userpg->index = perf_event_index(event);
4898 	userpg->offset = perf_event_count(event);
4899 	if (userpg->index)
4900 		userpg->offset -= local64_read(&event->hw.prev_count);
4901 
4902 	userpg->time_enabled = enabled +
4903 			atomic64_read(&event->child_total_time_enabled);
4904 
4905 	userpg->time_running = running +
4906 			atomic64_read(&event->child_total_time_running);
4907 
4908 	arch_perf_update_userpage(event, userpg, now);
4909 
4910 	barrier();
4911 	++userpg->lock;
4912 	preempt_enable();
4913 unlock:
4914 	rcu_read_unlock();
4915 }
4916 
4917 static int perf_mmap_fault(struct vm_fault *vmf)
4918 {
4919 	struct perf_event *event = vmf->vma->vm_file->private_data;
4920 	struct ring_buffer *rb;
4921 	int ret = VM_FAULT_SIGBUS;
4922 
4923 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4924 		if (vmf->pgoff == 0)
4925 			ret = 0;
4926 		return ret;
4927 	}
4928 
4929 	rcu_read_lock();
4930 	rb = rcu_dereference(event->rb);
4931 	if (!rb)
4932 		goto unlock;
4933 
4934 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4935 		goto unlock;
4936 
4937 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4938 	if (!vmf->page)
4939 		goto unlock;
4940 
4941 	get_page(vmf->page);
4942 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4943 	vmf->page->index   = vmf->pgoff;
4944 
4945 	ret = 0;
4946 unlock:
4947 	rcu_read_unlock();
4948 
4949 	return ret;
4950 }
4951 
4952 static void ring_buffer_attach(struct perf_event *event,
4953 			       struct ring_buffer *rb)
4954 {
4955 	struct ring_buffer *old_rb = NULL;
4956 	unsigned long flags;
4957 
4958 	if (event->rb) {
4959 		/*
4960 		 * Should be impossible, we set this when removing
4961 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4962 		 */
4963 		WARN_ON_ONCE(event->rcu_pending);
4964 
4965 		old_rb = event->rb;
4966 		spin_lock_irqsave(&old_rb->event_lock, flags);
4967 		list_del_rcu(&event->rb_entry);
4968 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4969 
4970 		event->rcu_batches = get_state_synchronize_rcu();
4971 		event->rcu_pending = 1;
4972 	}
4973 
4974 	if (rb) {
4975 		if (event->rcu_pending) {
4976 			cond_synchronize_rcu(event->rcu_batches);
4977 			event->rcu_pending = 0;
4978 		}
4979 
4980 		spin_lock_irqsave(&rb->event_lock, flags);
4981 		list_add_rcu(&event->rb_entry, &rb->event_list);
4982 		spin_unlock_irqrestore(&rb->event_lock, flags);
4983 	}
4984 
4985 	/*
4986 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4987 	 * before swizzling the event::rb pointer; if it's getting
4988 	 * unmapped, its aux_mmap_count will be 0 and it won't
4989 	 * restart. See the comment in __perf_pmu_output_stop().
4990 	 *
4991 	 * Data will inevitably be lost when set_output is done in
4992 	 * mid-air, but then again, whoever does it like this is
4993 	 * not in for the data anyway.
4994 	 */
4995 	if (has_aux(event))
4996 		perf_event_stop(event, 0);
4997 
4998 	rcu_assign_pointer(event->rb, rb);
4999 
5000 	if (old_rb) {
5001 		ring_buffer_put(old_rb);
5002 		/*
5003 		 * Since we detached before setting the new rb, so that we
5004 		 * could attach the new rb, we could have missed a wakeup.
5005 		 * Provide it now.
5006 		 */
5007 		wake_up_all(&event->waitq);
5008 	}
5009 }
5010 
5011 static void ring_buffer_wakeup(struct perf_event *event)
5012 {
5013 	struct ring_buffer *rb;
5014 
5015 	rcu_read_lock();
5016 	rb = rcu_dereference(event->rb);
5017 	if (rb) {
5018 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5019 			wake_up_all(&event->waitq);
5020 	}
5021 	rcu_read_unlock();
5022 }
5023 
5024 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5025 {
5026 	struct ring_buffer *rb;
5027 
5028 	rcu_read_lock();
5029 	rb = rcu_dereference(event->rb);
5030 	if (rb) {
5031 		if (!atomic_inc_not_zero(&rb->refcount))
5032 			rb = NULL;
5033 	}
5034 	rcu_read_unlock();
5035 
5036 	return rb;
5037 }
5038 
5039 void ring_buffer_put(struct ring_buffer *rb)
5040 {
5041 	if (!atomic_dec_and_test(&rb->refcount))
5042 		return;
5043 
5044 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5045 
5046 	call_rcu(&rb->rcu_head, rb_free_rcu);
5047 }
5048 
5049 static void perf_mmap_open(struct vm_area_struct *vma)
5050 {
5051 	struct perf_event *event = vma->vm_file->private_data;
5052 
5053 	atomic_inc(&event->mmap_count);
5054 	atomic_inc(&event->rb->mmap_count);
5055 
5056 	if (vma->vm_pgoff)
5057 		atomic_inc(&event->rb->aux_mmap_count);
5058 
5059 	if (event->pmu->event_mapped)
5060 		event->pmu->event_mapped(event, vma->vm_mm);
5061 }
5062 
5063 static void perf_pmu_output_stop(struct perf_event *event);
5064 
5065 /*
5066  * A buffer can be mmap()ed multiple times; either directly through the same
5067  * event, or through other events by use of perf_event_set_output().
5068  *
5069  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5070  * the buffer here, where we still have a VM context. This means we need
5071  * to detach all events redirecting to us.
5072  */
5073 static void perf_mmap_close(struct vm_area_struct *vma)
5074 {
5075 	struct perf_event *event = vma->vm_file->private_data;
5076 
5077 	struct ring_buffer *rb = ring_buffer_get(event);
5078 	struct user_struct *mmap_user = rb->mmap_user;
5079 	int mmap_locked = rb->mmap_locked;
5080 	unsigned long size = perf_data_size(rb);
5081 
5082 	if (event->pmu->event_unmapped)
5083 		event->pmu->event_unmapped(event, vma->vm_mm);
5084 
5085 	/*
5086 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5087 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5088 	 * serialize with perf_mmap here.
5089 	 */
5090 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5091 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5092 		/*
5093 		 * Stop all AUX events that are writing to this buffer,
5094 		 * so that we can free its AUX pages and corresponding PMU
5095 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5096 		 * they won't start any more (see perf_aux_output_begin()).
5097 		 */
5098 		perf_pmu_output_stop(event);
5099 
5100 		/* now it's safe to free the pages */
5101 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5102 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5103 
5104 		/* this has to be the last one */
5105 		rb_free_aux(rb);
5106 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5107 
5108 		mutex_unlock(&event->mmap_mutex);
5109 	}
5110 
5111 	atomic_dec(&rb->mmap_count);
5112 
5113 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5114 		goto out_put;
5115 
5116 	ring_buffer_attach(event, NULL);
5117 	mutex_unlock(&event->mmap_mutex);
5118 
5119 	/* If there's still other mmap()s of this buffer, we're done. */
5120 	if (atomic_read(&rb->mmap_count))
5121 		goto out_put;
5122 
5123 	/*
5124 	 * No other mmap()s, detach from all other events that might redirect
5125 	 * into the now unreachable buffer. Somewhat complicated by the
5126 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5127 	 */
5128 again:
5129 	rcu_read_lock();
5130 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5131 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5132 			/*
5133 			 * This event is en-route to free_event() which will
5134 			 * detach it and remove it from the list.
5135 			 */
5136 			continue;
5137 		}
5138 		rcu_read_unlock();
5139 
5140 		mutex_lock(&event->mmap_mutex);
5141 		/*
5142 		 * Check we didn't race with perf_event_set_output() which can
5143 		 * swizzle the rb from under us while we were waiting to
5144 		 * acquire mmap_mutex.
5145 		 *
5146 		 * If we find a different rb; ignore this event, a next
5147 		 * iteration will no longer find it on the list. We have to
5148 		 * still restart the iteration to make sure we're not now
5149 		 * iterating the wrong list.
5150 		 */
5151 		if (event->rb == rb)
5152 			ring_buffer_attach(event, NULL);
5153 
5154 		mutex_unlock(&event->mmap_mutex);
5155 		put_event(event);
5156 
5157 		/*
5158 		 * Restart the iteration; either we're on the wrong list or
5159 		 * destroyed its integrity by doing a deletion.
5160 		 */
5161 		goto again;
5162 	}
5163 	rcu_read_unlock();
5164 
5165 	/*
5166 	 * It could be there's still a few 0-ref events on the list; they'll
5167 	 * get cleaned up by free_event() -- they'll also still have their
5168 	 * ref on the rb and will free it whenever they are done with it.
5169 	 *
5170 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5171 	 * undo the VM accounting.
5172 	 */
5173 
5174 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5175 	vma->vm_mm->pinned_vm -= mmap_locked;
5176 	free_uid(mmap_user);
5177 
5178 out_put:
5179 	ring_buffer_put(rb); /* could be last */
5180 }
5181 
5182 static const struct vm_operations_struct perf_mmap_vmops = {
5183 	.open		= perf_mmap_open,
5184 	.close		= perf_mmap_close, /* non mergable */
5185 	.fault		= perf_mmap_fault,
5186 	.page_mkwrite	= perf_mmap_fault,
5187 };
5188 
5189 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5190 {
5191 	struct perf_event *event = file->private_data;
5192 	unsigned long user_locked, user_lock_limit;
5193 	struct user_struct *user = current_user();
5194 	unsigned long locked, lock_limit;
5195 	struct ring_buffer *rb = NULL;
5196 	unsigned long vma_size;
5197 	unsigned long nr_pages;
5198 	long user_extra = 0, extra = 0;
5199 	int ret = 0, flags = 0;
5200 
5201 	/*
5202 	 * Don't allow mmap() of inherited per-task counters. This would
5203 	 * create a performance issue due to all children writing to the
5204 	 * same rb.
5205 	 */
5206 	if (event->cpu == -1 && event->attr.inherit)
5207 		return -EINVAL;
5208 
5209 	if (!(vma->vm_flags & VM_SHARED))
5210 		return -EINVAL;
5211 
5212 	vma_size = vma->vm_end - vma->vm_start;
5213 
5214 	if (vma->vm_pgoff == 0) {
5215 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5216 	} else {
5217 		/*
5218 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5219 		 * mapped, all subsequent mappings should have the same size
5220 		 * and offset. Must be above the normal perf buffer.
5221 		 */
5222 		u64 aux_offset, aux_size;
5223 
5224 		if (!event->rb)
5225 			return -EINVAL;
5226 
5227 		nr_pages = vma_size / PAGE_SIZE;
5228 
5229 		mutex_lock(&event->mmap_mutex);
5230 		ret = -EINVAL;
5231 
5232 		rb = event->rb;
5233 		if (!rb)
5234 			goto aux_unlock;
5235 
5236 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5237 		aux_size = READ_ONCE(rb->user_page->aux_size);
5238 
5239 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5240 			goto aux_unlock;
5241 
5242 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5243 			goto aux_unlock;
5244 
5245 		/* already mapped with a different offset */
5246 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5247 			goto aux_unlock;
5248 
5249 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5250 			goto aux_unlock;
5251 
5252 		/* already mapped with a different size */
5253 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5254 			goto aux_unlock;
5255 
5256 		if (!is_power_of_2(nr_pages))
5257 			goto aux_unlock;
5258 
5259 		if (!atomic_inc_not_zero(&rb->mmap_count))
5260 			goto aux_unlock;
5261 
5262 		if (rb_has_aux(rb)) {
5263 			atomic_inc(&rb->aux_mmap_count);
5264 			ret = 0;
5265 			goto unlock;
5266 		}
5267 
5268 		atomic_set(&rb->aux_mmap_count, 1);
5269 		user_extra = nr_pages;
5270 
5271 		goto accounting;
5272 	}
5273 
5274 	/*
5275 	 * If we have rb pages ensure they're a power-of-two number, so we
5276 	 * can do bitmasks instead of modulo.
5277 	 */
5278 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5279 		return -EINVAL;
5280 
5281 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5282 		return -EINVAL;
5283 
5284 	WARN_ON_ONCE(event->ctx->parent_ctx);
5285 again:
5286 	mutex_lock(&event->mmap_mutex);
5287 	if (event->rb) {
5288 		if (event->rb->nr_pages != nr_pages) {
5289 			ret = -EINVAL;
5290 			goto unlock;
5291 		}
5292 
5293 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5294 			/*
5295 			 * Raced against perf_mmap_close() through
5296 			 * perf_event_set_output(). Try again, hope for better
5297 			 * luck.
5298 			 */
5299 			mutex_unlock(&event->mmap_mutex);
5300 			goto again;
5301 		}
5302 
5303 		goto unlock;
5304 	}
5305 
5306 	user_extra = nr_pages + 1;
5307 
5308 accounting:
5309 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5310 
5311 	/*
5312 	 * Increase the limit linearly with more CPUs:
5313 	 */
5314 	user_lock_limit *= num_online_cpus();
5315 
5316 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5317 
5318 	if (user_locked > user_lock_limit)
5319 		extra = user_locked - user_lock_limit;
5320 
5321 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5322 	lock_limit >>= PAGE_SHIFT;
5323 	locked = vma->vm_mm->pinned_vm + extra;
5324 
5325 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5326 		!capable(CAP_IPC_LOCK)) {
5327 		ret = -EPERM;
5328 		goto unlock;
5329 	}
5330 
5331 	WARN_ON(!rb && event->rb);
5332 
5333 	if (vma->vm_flags & VM_WRITE)
5334 		flags |= RING_BUFFER_WRITABLE;
5335 
5336 	if (!rb) {
5337 		rb = rb_alloc(nr_pages,
5338 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5339 			      event->cpu, flags);
5340 
5341 		if (!rb) {
5342 			ret = -ENOMEM;
5343 			goto unlock;
5344 		}
5345 
5346 		atomic_set(&rb->mmap_count, 1);
5347 		rb->mmap_user = get_current_user();
5348 		rb->mmap_locked = extra;
5349 
5350 		ring_buffer_attach(event, rb);
5351 
5352 		perf_event_init_userpage(event);
5353 		perf_event_update_userpage(event);
5354 	} else {
5355 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5356 				   event->attr.aux_watermark, flags);
5357 		if (!ret)
5358 			rb->aux_mmap_locked = extra;
5359 	}
5360 
5361 unlock:
5362 	if (!ret) {
5363 		atomic_long_add(user_extra, &user->locked_vm);
5364 		vma->vm_mm->pinned_vm += extra;
5365 
5366 		atomic_inc(&event->mmap_count);
5367 	} else if (rb) {
5368 		atomic_dec(&rb->mmap_count);
5369 	}
5370 aux_unlock:
5371 	mutex_unlock(&event->mmap_mutex);
5372 
5373 	/*
5374 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5375 	 * vma.
5376 	 */
5377 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5378 	vma->vm_ops = &perf_mmap_vmops;
5379 
5380 	if (event->pmu->event_mapped)
5381 		event->pmu->event_mapped(event, vma->vm_mm);
5382 
5383 	return ret;
5384 }
5385 
5386 static int perf_fasync(int fd, struct file *filp, int on)
5387 {
5388 	struct inode *inode = file_inode(filp);
5389 	struct perf_event *event = filp->private_data;
5390 	int retval;
5391 
5392 	inode_lock(inode);
5393 	retval = fasync_helper(fd, filp, on, &event->fasync);
5394 	inode_unlock(inode);
5395 
5396 	if (retval < 0)
5397 		return retval;
5398 
5399 	return 0;
5400 }
5401 
5402 static const struct file_operations perf_fops = {
5403 	.llseek			= no_llseek,
5404 	.release		= perf_release,
5405 	.read			= perf_read,
5406 	.poll			= perf_poll,
5407 	.unlocked_ioctl		= perf_ioctl,
5408 	.compat_ioctl		= perf_compat_ioctl,
5409 	.mmap			= perf_mmap,
5410 	.fasync			= perf_fasync,
5411 };
5412 
5413 /*
5414  * Perf event wakeup
5415  *
5416  * If there's data, ensure we set the poll() state and publish everything
5417  * to user-space before waking everybody up.
5418  */
5419 
5420 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5421 {
5422 	/* only the parent has fasync state */
5423 	if (event->parent)
5424 		event = event->parent;
5425 	return &event->fasync;
5426 }
5427 
5428 void perf_event_wakeup(struct perf_event *event)
5429 {
5430 	ring_buffer_wakeup(event);
5431 
5432 	if (event->pending_kill) {
5433 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5434 		event->pending_kill = 0;
5435 	}
5436 }
5437 
5438 static void perf_pending_event(struct irq_work *entry)
5439 {
5440 	struct perf_event *event = container_of(entry,
5441 			struct perf_event, pending);
5442 	int rctx;
5443 
5444 	rctx = perf_swevent_get_recursion_context();
5445 	/*
5446 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5447 	 * and we won't recurse 'further'.
5448 	 */
5449 
5450 	if (event->pending_disable) {
5451 		event->pending_disable = 0;
5452 		perf_event_disable_local(event);
5453 	}
5454 
5455 	if (event->pending_wakeup) {
5456 		event->pending_wakeup = 0;
5457 		perf_event_wakeup(event);
5458 	}
5459 
5460 	if (rctx >= 0)
5461 		perf_swevent_put_recursion_context(rctx);
5462 }
5463 
5464 /*
5465  * We assume there is only KVM supporting the callbacks.
5466  * Later on, we might change it to a list if there is
5467  * another virtualization implementation supporting the callbacks.
5468  */
5469 struct perf_guest_info_callbacks *perf_guest_cbs;
5470 
5471 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5472 {
5473 	perf_guest_cbs = cbs;
5474 	return 0;
5475 }
5476 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5477 
5478 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5479 {
5480 	perf_guest_cbs = NULL;
5481 	return 0;
5482 }
5483 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5484 
5485 static void
5486 perf_output_sample_regs(struct perf_output_handle *handle,
5487 			struct pt_regs *regs, u64 mask)
5488 {
5489 	int bit;
5490 	DECLARE_BITMAP(_mask, 64);
5491 
5492 	bitmap_from_u64(_mask, mask);
5493 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5494 		u64 val;
5495 
5496 		val = perf_reg_value(regs, bit);
5497 		perf_output_put(handle, val);
5498 	}
5499 }
5500 
5501 static void perf_sample_regs_user(struct perf_regs *regs_user,
5502 				  struct pt_regs *regs,
5503 				  struct pt_regs *regs_user_copy)
5504 {
5505 	if (user_mode(regs)) {
5506 		regs_user->abi = perf_reg_abi(current);
5507 		regs_user->regs = regs;
5508 	} else if (current->mm) {
5509 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5510 	} else {
5511 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5512 		regs_user->regs = NULL;
5513 	}
5514 }
5515 
5516 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5517 				  struct pt_regs *regs)
5518 {
5519 	regs_intr->regs = regs;
5520 	regs_intr->abi  = perf_reg_abi(current);
5521 }
5522 
5523 
5524 /*
5525  * Get remaining task size from user stack pointer.
5526  *
5527  * It'd be better to take stack vma map and limit this more
5528  * precisly, but there's no way to get it safely under interrupt,
5529  * so using TASK_SIZE as limit.
5530  */
5531 static u64 perf_ustack_task_size(struct pt_regs *regs)
5532 {
5533 	unsigned long addr = perf_user_stack_pointer(regs);
5534 
5535 	if (!addr || addr >= TASK_SIZE)
5536 		return 0;
5537 
5538 	return TASK_SIZE - addr;
5539 }
5540 
5541 static u16
5542 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5543 			struct pt_regs *regs)
5544 {
5545 	u64 task_size;
5546 
5547 	/* No regs, no stack pointer, no dump. */
5548 	if (!regs)
5549 		return 0;
5550 
5551 	/*
5552 	 * Check if we fit in with the requested stack size into the:
5553 	 * - TASK_SIZE
5554 	 *   If we don't, we limit the size to the TASK_SIZE.
5555 	 *
5556 	 * - remaining sample size
5557 	 *   If we don't, we customize the stack size to
5558 	 *   fit in to the remaining sample size.
5559 	 */
5560 
5561 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5562 	stack_size = min(stack_size, (u16) task_size);
5563 
5564 	/* Current header size plus static size and dynamic size. */
5565 	header_size += 2 * sizeof(u64);
5566 
5567 	/* Do we fit in with the current stack dump size? */
5568 	if ((u16) (header_size + stack_size) < header_size) {
5569 		/*
5570 		 * If we overflow the maximum size for the sample,
5571 		 * we customize the stack dump size to fit in.
5572 		 */
5573 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5574 		stack_size = round_up(stack_size, sizeof(u64));
5575 	}
5576 
5577 	return stack_size;
5578 }
5579 
5580 static void
5581 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5582 			  struct pt_regs *regs)
5583 {
5584 	/* Case of a kernel thread, nothing to dump */
5585 	if (!regs) {
5586 		u64 size = 0;
5587 		perf_output_put(handle, size);
5588 	} else {
5589 		unsigned long sp;
5590 		unsigned int rem;
5591 		u64 dyn_size;
5592 
5593 		/*
5594 		 * We dump:
5595 		 * static size
5596 		 *   - the size requested by user or the best one we can fit
5597 		 *     in to the sample max size
5598 		 * data
5599 		 *   - user stack dump data
5600 		 * dynamic size
5601 		 *   - the actual dumped size
5602 		 */
5603 
5604 		/* Static size. */
5605 		perf_output_put(handle, dump_size);
5606 
5607 		/* Data. */
5608 		sp = perf_user_stack_pointer(regs);
5609 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5610 		dyn_size = dump_size - rem;
5611 
5612 		perf_output_skip(handle, rem);
5613 
5614 		/* Dynamic size. */
5615 		perf_output_put(handle, dyn_size);
5616 	}
5617 }
5618 
5619 static void __perf_event_header__init_id(struct perf_event_header *header,
5620 					 struct perf_sample_data *data,
5621 					 struct perf_event *event)
5622 {
5623 	u64 sample_type = event->attr.sample_type;
5624 
5625 	data->type = sample_type;
5626 	header->size += event->id_header_size;
5627 
5628 	if (sample_type & PERF_SAMPLE_TID) {
5629 		/* namespace issues */
5630 		data->tid_entry.pid = perf_event_pid(event, current);
5631 		data->tid_entry.tid = perf_event_tid(event, current);
5632 	}
5633 
5634 	if (sample_type & PERF_SAMPLE_TIME)
5635 		data->time = perf_event_clock(event);
5636 
5637 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5638 		data->id = primary_event_id(event);
5639 
5640 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5641 		data->stream_id = event->id;
5642 
5643 	if (sample_type & PERF_SAMPLE_CPU) {
5644 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5645 		data->cpu_entry.reserved = 0;
5646 	}
5647 }
5648 
5649 void perf_event_header__init_id(struct perf_event_header *header,
5650 				struct perf_sample_data *data,
5651 				struct perf_event *event)
5652 {
5653 	if (event->attr.sample_id_all)
5654 		__perf_event_header__init_id(header, data, event);
5655 }
5656 
5657 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5658 					   struct perf_sample_data *data)
5659 {
5660 	u64 sample_type = data->type;
5661 
5662 	if (sample_type & PERF_SAMPLE_TID)
5663 		perf_output_put(handle, data->tid_entry);
5664 
5665 	if (sample_type & PERF_SAMPLE_TIME)
5666 		perf_output_put(handle, data->time);
5667 
5668 	if (sample_type & PERF_SAMPLE_ID)
5669 		perf_output_put(handle, data->id);
5670 
5671 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5672 		perf_output_put(handle, data->stream_id);
5673 
5674 	if (sample_type & PERF_SAMPLE_CPU)
5675 		perf_output_put(handle, data->cpu_entry);
5676 
5677 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5678 		perf_output_put(handle, data->id);
5679 }
5680 
5681 void perf_event__output_id_sample(struct perf_event *event,
5682 				  struct perf_output_handle *handle,
5683 				  struct perf_sample_data *sample)
5684 {
5685 	if (event->attr.sample_id_all)
5686 		__perf_event__output_id_sample(handle, sample);
5687 }
5688 
5689 static void perf_output_read_one(struct perf_output_handle *handle,
5690 				 struct perf_event *event,
5691 				 u64 enabled, u64 running)
5692 {
5693 	u64 read_format = event->attr.read_format;
5694 	u64 values[4];
5695 	int n = 0;
5696 
5697 	values[n++] = perf_event_count(event);
5698 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5699 		values[n++] = enabled +
5700 			atomic64_read(&event->child_total_time_enabled);
5701 	}
5702 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5703 		values[n++] = running +
5704 			atomic64_read(&event->child_total_time_running);
5705 	}
5706 	if (read_format & PERF_FORMAT_ID)
5707 		values[n++] = primary_event_id(event);
5708 
5709 	__output_copy(handle, values, n * sizeof(u64));
5710 }
5711 
5712 static void perf_output_read_group(struct perf_output_handle *handle,
5713 			    struct perf_event *event,
5714 			    u64 enabled, u64 running)
5715 {
5716 	struct perf_event *leader = event->group_leader, *sub;
5717 	u64 read_format = event->attr.read_format;
5718 	u64 values[5];
5719 	int n = 0;
5720 
5721 	values[n++] = 1 + leader->nr_siblings;
5722 
5723 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5724 		values[n++] = enabled;
5725 
5726 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5727 		values[n++] = running;
5728 
5729 	if (leader != event)
5730 		leader->pmu->read(leader);
5731 
5732 	values[n++] = perf_event_count(leader);
5733 	if (read_format & PERF_FORMAT_ID)
5734 		values[n++] = primary_event_id(leader);
5735 
5736 	__output_copy(handle, values, n * sizeof(u64));
5737 
5738 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5739 		n = 0;
5740 
5741 		if ((sub != event) &&
5742 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5743 			sub->pmu->read(sub);
5744 
5745 		values[n++] = perf_event_count(sub);
5746 		if (read_format & PERF_FORMAT_ID)
5747 			values[n++] = primary_event_id(sub);
5748 
5749 		__output_copy(handle, values, n * sizeof(u64));
5750 	}
5751 }
5752 
5753 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5754 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5755 
5756 /*
5757  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5758  *
5759  * The problem is that its both hard and excessively expensive to iterate the
5760  * child list, not to mention that its impossible to IPI the children running
5761  * on another CPU, from interrupt/NMI context.
5762  */
5763 static void perf_output_read(struct perf_output_handle *handle,
5764 			     struct perf_event *event)
5765 {
5766 	u64 enabled = 0, running = 0, now;
5767 	u64 read_format = event->attr.read_format;
5768 
5769 	/*
5770 	 * compute total_time_enabled, total_time_running
5771 	 * based on snapshot values taken when the event
5772 	 * was last scheduled in.
5773 	 *
5774 	 * we cannot simply called update_context_time()
5775 	 * because of locking issue as we are called in
5776 	 * NMI context
5777 	 */
5778 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5779 		calc_timer_values(event, &now, &enabled, &running);
5780 
5781 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5782 		perf_output_read_group(handle, event, enabled, running);
5783 	else
5784 		perf_output_read_one(handle, event, enabled, running);
5785 }
5786 
5787 void perf_output_sample(struct perf_output_handle *handle,
5788 			struct perf_event_header *header,
5789 			struct perf_sample_data *data,
5790 			struct perf_event *event)
5791 {
5792 	u64 sample_type = data->type;
5793 
5794 	perf_output_put(handle, *header);
5795 
5796 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5797 		perf_output_put(handle, data->id);
5798 
5799 	if (sample_type & PERF_SAMPLE_IP)
5800 		perf_output_put(handle, data->ip);
5801 
5802 	if (sample_type & PERF_SAMPLE_TID)
5803 		perf_output_put(handle, data->tid_entry);
5804 
5805 	if (sample_type & PERF_SAMPLE_TIME)
5806 		perf_output_put(handle, data->time);
5807 
5808 	if (sample_type & PERF_SAMPLE_ADDR)
5809 		perf_output_put(handle, data->addr);
5810 
5811 	if (sample_type & PERF_SAMPLE_ID)
5812 		perf_output_put(handle, data->id);
5813 
5814 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5815 		perf_output_put(handle, data->stream_id);
5816 
5817 	if (sample_type & PERF_SAMPLE_CPU)
5818 		perf_output_put(handle, data->cpu_entry);
5819 
5820 	if (sample_type & PERF_SAMPLE_PERIOD)
5821 		perf_output_put(handle, data->period);
5822 
5823 	if (sample_type & PERF_SAMPLE_READ)
5824 		perf_output_read(handle, event);
5825 
5826 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5827 		if (data->callchain) {
5828 			int size = 1;
5829 
5830 			if (data->callchain)
5831 				size += data->callchain->nr;
5832 
5833 			size *= sizeof(u64);
5834 
5835 			__output_copy(handle, data->callchain, size);
5836 		} else {
5837 			u64 nr = 0;
5838 			perf_output_put(handle, nr);
5839 		}
5840 	}
5841 
5842 	if (sample_type & PERF_SAMPLE_RAW) {
5843 		struct perf_raw_record *raw = data->raw;
5844 
5845 		if (raw) {
5846 			struct perf_raw_frag *frag = &raw->frag;
5847 
5848 			perf_output_put(handle, raw->size);
5849 			do {
5850 				if (frag->copy) {
5851 					__output_custom(handle, frag->copy,
5852 							frag->data, frag->size);
5853 				} else {
5854 					__output_copy(handle, frag->data,
5855 						      frag->size);
5856 				}
5857 				if (perf_raw_frag_last(frag))
5858 					break;
5859 				frag = frag->next;
5860 			} while (1);
5861 			if (frag->pad)
5862 				__output_skip(handle, NULL, frag->pad);
5863 		} else {
5864 			struct {
5865 				u32	size;
5866 				u32	data;
5867 			} raw = {
5868 				.size = sizeof(u32),
5869 				.data = 0,
5870 			};
5871 			perf_output_put(handle, raw);
5872 		}
5873 	}
5874 
5875 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5876 		if (data->br_stack) {
5877 			size_t size;
5878 
5879 			size = data->br_stack->nr
5880 			     * sizeof(struct perf_branch_entry);
5881 
5882 			perf_output_put(handle, data->br_stack->nr);
5883 			perf_output_copy(handle, data->br_stack->entries, size);
5884 		} else {
5885 			/*
5886 			 * we always store at least the value of nr
5887 			 */
5888 			u64 nr = 0;
5889 			perf_output_put(handle, nr);
5890 		}
5891 	}
5892 
5893 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5894 		u64 abi = data->regs_user.abi;
5895 
5896 		/*
5897 		 * If there are no regs to dump, notice it through
5898 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5899 		 */
5900 		perf_output_put(handle, abi);
5901 
5902 		if (abi) {
5903 			u64 mask = event->attr.sample_regs_user;
5904 			perf_output_sample_regs(handle,
5905 						data->regs_user.regs,
5906 						mask);
5907 		}
5908 	}
5909 
5910 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5911 		perf_output_sample_ustack(handle,
5912 					  data->stack_user_size,
5913 					  data->regs_user.regs);
5914 	}
5915 
5916 	if (sample_type & PERF_SAMPLE_WEIGHT)
5917 		perf_output_put(handle, data->weight);
5918 
5919 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5920 		perf_output_put(handle, data->data_src.val);
5921 
5922 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5923 		perf_output_put(handle, data->txn);
5924 
5925 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5926 		u64 abi = data->regs_intr.abi;
5927 		/*
5928 		 * If there are no regs to dump, notice it through
5929 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5930 		 */
5931 		perf_output_put(handle, abi);
5932 
5933 		if (abi) {
5934 			u64 mask = event->attr.sample_regs_intr;
5935 
5936 			perf_output_sample_regs(handle,
5937 						data->regs_intr.regs,
5938 						mask);
5939 		}
5940 	}
5941 
5942 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5943 		perf_output_put(handle, data->phys_addr);
5944 
5945 	if (!event->attr.watermark) {
5946 		int wakeup_events = event->attr.wakeup_events;
5947 
5948 		if (wakeup_events) {
5949 			struct ring_buffer *rb = handle->rb;
5950 			int events = local_inc_return(&rb->events);
5951 
5952 			if (events >= wakeup_events) {
5953 				local_sub(wakeup_events, &rb->events);
5954 				local_inc(&rb->wakeup);
5955 			}
5956 		}
5957 	}
5958 }
5959 
5960 static u64 perf_virt_to_phys(u64 virt)
5961 {
5962 	u64 phys_addr = 0;
5963 	struct page *p = NULL;
5964 
5965 	if (!virt)
5966 		return 0;
5967 
5968 	if (virt >= TASK_SIZE) {
5969 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5970 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5971 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5972 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5973 	} else {
5974 		/*
5975 		 * Walking the pages tables for user address.
5976 		 * Interrupts are disabled, so it prevents any tear down
5977 		 * of the page tables.
5978 		 * Try IRQ-safe __get_user_pages_fast first.
5979 		 * If failed, leave phys_addr as 0.
5980 		 */
5981 		if ((current->mm != NULL) &&
5982 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5983 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5984 
5985 		if (p)
5986 			put_page(p);
5987 	}
5988 
5989 	return phys_addr;
5990 }
5991 
5992 void perf_prepare_sample(struct perf_event_header *header,
5993 			 struct perf_sample_data *data,
5994 			 struct perf_event *event,
5995 			 struct pt_regs *regs)
5996 {
5997 	u64 sample_type = event->attr.sample_type;
5998 
5999 	header->type = PERF_RECORD_SAMPLE;
6000 	header->size = sizeof(*header) + event->header_size;
6001 
6002 	header->misc = 0;
6003 	header->misc |= perf_misc_flags(regs);
6004 
6005 	__perf_event_header__init_id(header, data, event);
6006 
6007 	if (sample_type & PERF_SAMPLE_IP)
6008 		data->ip = perf_instruction_pointer(regs);
6009 
6010 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6011 		int size = 1;
6012 
6013 		data->callchain = perf_callchain(event, regs);
6014 
6015 		if (data->callchain)
6016 			size += data->callchain->nr;
6017 
6018 		header->size += size * sizeof(u64);
6019 	}
6020 
6021 	if (sample_type & PERF_SAMPLE_RAW) {
6022 		struct perf_raw_record *raw = data->raw;
6023 		int size;
6024 
6025 		if (raw) {
6026 			struct perf_raw_frag *frag = &raw->frag;
6027 			u32 sum = 0;
6028 
6029 			do {
6030 				sum += frag->size;
6031 				if (perf_raw_frag_last(frag))
6032 					break;
6033 				frag = frag->next;
6034 			} while (1);
6035 
6036 			size = round_up(sum + sizeof(u32), sizeof(u64));
6037 			raw->size = size - sizeof(u32);
6038 			frag->pad = raw->size - sum;
6039 		} else {
6040 			size = sizeof(u64);
6041 		}
6042 
6043 		header->size += size;
6044 	}
6045 
6046 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6047 		int size = sizeof(u64); /* nr */
6048 		if (data->br_stack) {
6049 			size += data->br_stack->nr
6050 			      * sizeof(struct perf_branch_entry);
6051 		}
6052 		header->size += size;
6053 	}
6054 
6055 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6056 		perf_sample_regs_user(&data->regs_user, regs,
6057 				      &data->regs_user_copy);
6058 
6059 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6060 		/* regs dump ABI info */
6061 		int size = sizeof(u64);
6062 
6063 		if (data->regs_user.regs) {
6064 			u64 mask = event->attr.sample_regs_user;
6065 			size += hweight64(mask) * sizeof(u64);
6066 		}
6067 
6068 		header->size += size;
6069 	}
6070 
6071 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6072 		/*
6073 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6074 		 * processed as the last one or have additional check added
6075 		 * in case new sample type is added, because we could eat
6076 		 * up the rest of the sample size.
6077 		 */
6078 		u16 stack_size = event->attr.sample_stack_user;
6079 		u16 size = sizeof(u64);
6080 
6081 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6082 						     data->regs_user.regs);
6083 
6084 		/*
6085 		 * If there is something to dump, add space for the dump
6086 		 * itself and for the field that tells the dynamic size,
6087 		 * which is how many have been actually dumped.
6088 		 */
6089 		if (stack_size)
6090 			size += sizeof(u64) + stack_size;
6091 
6092 		data->stack_user_size = stack_size;
6093 		header->size += size;
6094 	}
6095 
6096 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6097 		/* regs dump ABI info */
6098 		int size = sizeof(u64);
6099 
6100 		perf_sample_regs_intr(&data->regs_intr, regs);
6101 
6102 		if (data->regs_intr.regs) {
6103 			u64 mask = event->attr.sample_regs_intr;
6104 
6105 			size += hweight64(mask) * sizeof(u64);
6106 		}
6107 
6108 		header->size += size;
6109 	}
6110 
6111 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6112 		data->phys_addr = perf_virt_to_phys(data->addr);
6113 }
6114 
6115 static void __always_inline
6116 __perf_event_output(struct perf_event *event,
6117 		    struct perf_sample_data *data,
6118 		    struct pt_regs *regs,
6119 		    int (*output_begin)(struct perf_output_handle *,
6120 					struct perf_event *,
6121 					unsigned int))
6122 {
6123 	struct perf_output_handle handle;
6124 	struct perf_event_header header;
6125 
6126 	/* protect the callchain buffers */
6127 	rcu_read_lock();
6128 
6129 	perf_prepare_sample(&header, data, event, regs);
6130 
6131 	if (output_begin(&handle, event, header.size))
6132 		goto exit;
6133 
6134 	perf_output_sample(&handle, &header, data, event);
6135 
6136 	perf_output_end(&handle);
6137 
6138 exit:
6139 	rcu_read_unlock();
6140 }
6141 
6142 void
6143 perf_event_output_forward(struct perf_event *event,
6144 			 struct perf_sample_data *data,
6145 			 struct pt_regs *regs)
6146 {
6147 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6148 }
6149 
6150 void
6151 perf_event_output_backward(struct perf_event *event,
6152 			   struct perf_sample_data *data,
6153 			   struct pt_regs *regs)
6154 {
6155 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6156 }
6157 
6158 void
6159 perf_event_output(struct perf_event *event,
6160 		  struct perf_sample_data *data,
6161 		  struct pt_regs *regs)
6162 {
6163 	__perf_event_output(event, data, regs, perf_output_begin);
6164 }
6165 
6166 /*
6167  * read event_id
6168  */
6169 
6170 struct perf_read_event {
6171 	struct perf_event_header	header;
6172 
6173 	u32				pid;
6174 	u32				tid;
6175 };
6176 
6177 static void
6178 perf_event_read_event(struct perf_event *event,
6179 			struct task_struct *task)
6180 {
6181 	struct perf_output_handle handle;
6182 	struct perf_sample_data sample;
6183 	struct perf_read_event read_event = {
6184 		.header = {
6185 			.type = PERF_RECORD_READ,
6186 			.misc = 0,
6187 			.size = sizeof(read_event) + event->read_size,
6188 		},
6189 		.pid = perf_event_pid(event, task),
6190 		.tid = perf_event_tid(event, task),
6191 	};
6192 	int ret;
6193 
6194 	perf_event_header__init_id(&read_event.header, &sample, event);
6195 	ret = perf_output_begin(&handle, event, read_event.header.size);
6196 	if (ret)
6197 		return;
6198 
6199 	perf_output_put(&handle, read_event);
6200 	perf_output_read(&handle, event);
6201 	perf_event__output_id_sample(event, &handle, &sample);
6202 
6203 	perf_output_end(&handle);
6204 }
6205 
6206 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6207 
6208 static void
6209 perf_iterate_ctx(struct perf_event_context *ctx,
6210 		   perf_iterate_f output,
6211 		   void *data, bool all)
6212 {
6213 	struct perf_event *event;
6214 
6215 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6216 		if (!all) {
6217 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6218 				continue;
6219 			if (!event_filter_match(event))
6220 				continue;
6221 		}
6222 
6223 		output(event, data);
6224 	}
6225 }
6226 
6227 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6228 {
6229 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6230 	struct perf_event *event;
6231 
6232 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6233 		/*
6234 		 * Skip events that are not fully formed yet; ensure that
6235 		 * if we observe event->ctx, both event and ctx will be
6236 		 * complete enough. See perf_install_in_context().
6237 		 */
6238 		if (!smp_load_acquire(&event->ctx))
6239 			continue;
6240 
6241 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6242 			continue;
6243 		if (!event_filter_match(event))
6244 			continue;
6245 		output(event, data);
6246 	}
6247 }
6248 
6249 /*
6250  * Iterate all events that need to receive side-band events.
6251  *
6252  * For new callers; ensure that account_pmu_sb_event() includes
6253  * your event, otherwise it might not get delivered.
6254  */
6255 static void
6256 perf_iterate_sb(perf_iterate_f output, void *data,
6257 	       struct perf_event_context *task_ctx)
6258 {
6259 	struct perf_event_context *ctx;
6260 	int ctxn;
6261 
6262 	rcu_read_lock();
6263 	preempt_disable();
6264 
6265 	/*
6266 	 * If we have task_ctx != NULL we only notify the task context itself.
6267 	 * The task_ctx is set only for EXIT events before releasing task
6268 	 * context.
6269 	 */
6270 	if (task_ctx) {
6271 		perf_iterate_ctx(task_ctx, output, data, false);
6272 		goto done;
6273 	}
6274 
6275 	perf_iterate_sb_cpu(output, data);
6276 
6277 	for_each_task_context_nr(ctxn) {
6278 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6279 		if (ctx)
6280 			perf_iterate_ctx(ctx, output, data, false);
6281 	}
6282 done:
6283 	preempt_enable();
6284 	rcu_read_unlock();
6285 }
6286 
6287 /*
6288  * Clear all file-based filters at exec, they'll have to be
6289  * re-instated when/if these objects are mmapped again.
6290  */
6291 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6292 {
6293 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6294 	struct perf_addr_filter *filter;
6295 	unsigned int restart = 0, count = 0;
6296 	unsigned long flags;
6297 
6298 	if (!has_addr_filter(event))
6299 		return;
6300 
6301 	raw_spin_lock_irqsave(&ifh->lock, flags);
6302 	list_for_each_entry(filter, &ifh->list, entry) {
6303 		if (filter->inode) {
6304 			event->addr_filters_offs[count] = 0;
6305 			restart++;
6306 		}
6307 
6308 		count++;
6309 	}
6310 
6311 	if (restart)
6312 		event->addr_filters_gen++;
6313 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6314 
6315 	if (restart)
6316 		perf_event_stop(event, 1);
6317 }
6318 
6319 void perf_event_exec(void)
6320 {
6321 	struct perf_event_context *ctx;
6322 	int ctxn;
6323 
6324 	rcu_read_lock();
6325 	for_each_task_context_nr(ctxn) {
6326 		ctx = current->perf_event_ctxp[ctxn];
6327 		if (!ctx)
6328 			continue;
6329 
6330 		perf_event_enable_on_exec(ctxn);
6331 
6332 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6333 				   true);
6334 	}
6335 	rcu_read_unlock();
6336 }
6337 
6338 struct remote_output {
6339 	struct ring_buffer	*rb;
6340 	int			err;
6341 };
6342 
6343 static void __perf_event_output_stop(struct perf_event *event, void *data)
6344 {
6345 	struct perf_event *parent = event->parent;
6346 	struct remote_output *ro = data;
6347 	struct ring_buffer *rb = ro->rb;
6348 	struct stop_event_data sd = {
6349 		.event	= event,
6350 	};
6351 
6352 	if (!has_aux(event))
6353 		return;
6354 
6355 	if (!parent)
6356 		parent = event;
6357 
6358 	/*
6359 	 * In case of inheritance, it will be the parent that links to the
6360 	 * ring-buffer, but it will be the child that's actually using it.
6361 	 *
6362 	 * We are using event::rb to determine if the event should be stopped,
6363 	 * however this may race with ring_buffer_attach() (through set_output),
6364 	 * which will make us skip the event that actually needs to be stopped.
6365 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6366 	 * its rb pointer.
6367 	 */
6368 	if (rcu_dereference(parent->rb) == rb)
6369 		ro->err = __perf_event_stop(&sd);
6370 }
6371 
6372 static int __perf_pmu_output_stop(void *info)
6373 {
6374 	struct perf_event *event = info;
6375 	struct pmu *pmu = event->pmu;
6376 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6377 	struct remote_output ro = {
6378 		.rb	= event->rb,
6379 	};
6380 
6381 	rcu_read_lock();
6382 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6383 	if (cpuctx->task_ctx)
6384 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6385 				   &ro, false);
6386 	rcu_read_unlock();
6387 
6388 	return ro.err;
6389 }
6390 
6391 static void perf_pmu_output_stop(struct perf_event *event)
6392 {
6393 	struct perf_event *iter;
6394 	int err, cpu;
6395 
6396 restart:
6397 	rcu_read_lock();
6398 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6399 		/*
6400 		 * For per-CPU events, we need to make sure that neither they
6401 		 * nor their children are running; for cpu==-1 events it's
6402 		 * sufficient to stop the event itself if it's active, since
6403 		 * it can't have children.
6404 		 */
6405 		cpu = iter->cpu;
6406 		if (cpu == -1)
6407 			cpu = READ_ONCE(iter->oncpu);
6408 
6409 		if (cpu == -1)
6410 			continue;
6411 
6412 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6413 		if (err == -EAGAIN) {
6414 			rcu_read_unlock();
6415 			goto restart;
6416 		}
6417 	}
6418 	rcu_read_unlock();
6419 }
6420 
6421 /*
6422  * task tracking -- fork/exit
6423  *
6424  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6425  */
6426 
6427 struct perf_task_event {
6428 	struct task_struct		*task;
6429 	struct perf_event_context	*task_ctx;
6430 
6431 	struct {
6432 		struct perf_event_header	header;
6433 
6434 		u32				pid;
6435 		u32				ppid;
6436 		u32				tid;
6437 		u32				ptid;
6438 		u64				time;
6439 	} event_id;
6440 };
6441 
6442 static int perf_event_task_match(struct perf_event *event)
6443 {
6444 	return event->attr.comm  || event->attr.mmap ||
6445 	       event->attr.mmap2 || event->attr.mmap_data ||
6446 	       event->attr.task;
6447 }
6448 
6449 static void perf_event_task_output(struct perf_event *event,
6450 				   void *data)
6451 {
6452 	struct perf_task_event *task_event = data;
6453 	struct perf_output_handle handle;
6454 	struct perf_sample_data	sample;
6455 	struct task_struct *task = task_event->task;
6456 	int ret, size = task_event->event_id.header.size;
6457 
6458 	if (!perf_event_task_match(event))
6459 		return;
6460 
6461 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6462 
6463 	ret = perf_output_begin(&handle, event,
6464 				task_event->event_id.header.size);
6465 	if (ret)
6466 		goto out;
6467 
6468 	task_event->event_id.pid = perf_event_pid(event, task);
6469 	task_event->event_id.ppid = perf_event_pid(event, current);
6470 
6471 	task_event->event_id.tid = perf_event_tid(event, task);
6472 	task_event->event_id.ptid = perf_event_tid(event, current);
6473 
6474 	task_event->event_id.time = perf_event_clock(event);
6475 
6476 	perf_output_put(&handle, task_event->event_id);
6477 
6478 	perf_event__output_id_sample(event, &handle, &sample);
6479 
6480 	perf_output_end(&handle);
6481 out:
6482 	task_event->event_id.header.size = size;
6483 }
6484 
6485 static void perf_event_task(struct task_struct *task,
6486 			      struct perf_event_context *task_ctx,
6487 			      int new)
6488 {
6489 	struct perf_task_event task_event;
6490 
6491 	if (!atomic_read(&nr_comm_events) &&
6492 	    !atomic_read(&nr_mmap_events) &&
6493 	    !atomic_read(&nr_task_events))
6494 		return;
6495 
6496 	task_event = (struct perf_task_event){
6497 		.task	  = task,
6498 		.task_ctx = task_ctx,
6499 		.event_id    = {
6500 			.header = {
6501 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6502 				.misc = 0,
6503 				.size = sizeof(task_event.event_id),
6504 			},
6505 			/* .pid  */
6506 			/* .ppid */
6507 			/* .tid  */
6508 			/* .ptid */
6509 			/* .time */
6510 		},
6511 	};
6512 
6513 	perf_iterate_sb(perf_event_task_output,
6514 		       &task_event,
6515 		       task_ctx);
6516 }
6517 
6518 void perf_event_fork(struct task_struct *task)
6519 {
6520 	perf_event_task(task, NULL, 1);
6521 	perf_event_namespaces(task);
6522 }
6523 
6524 /*
6525  * comm tracking
6526  */
6527 
6528 struct perf_comm_event {
6529 	struct task_struct	*task;
6530 	char			*comm;
6531 	int			comm_size;
6532 
6533 	struct {
6534 		struct perf_event_header	header;
6535 
6536 		u32				pid;
6537 		u32				tid;
6538 	} event_id;
6539 };
6540 
6541 static int perf_event_comm_match(struct perf_event *event)
6542 {
6543 	return event->attr.comm;
6544 }
6545 
6546 static void perf_event_comm_output(struct perf_event *event,
6547 				   void *data)
6548 {
6549 	struct perf_comm_event *comm_event = data;
6550 	struct perf_output_handle handle;
6551 	struct perf_sample_data sample;
6552 	int size = comm_event->event_id.header.size;
6553 	int ret;
6554 
6555 	if (!perf_event_comm_match(event))
6556 		return;
6557 
6558 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6559 	ret = perf_output_begin(&handle, event,
6560 				comm_event->event_id.header.size);
6561 
6562 	if (ret)
6563 		goto out;
6564 
6565 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6566 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6567 
6568 	perf_output_put(&handle, comm_event->event_id);
6569 	__output_copy(&handle, comm_event->comm,
6570 				   comm_event->comm_size);
6571 
6572 	perf_event__output_id_sample(event, &handle, &sample);
6573 
6574 	perf_output_end(&handle);
6575 out:
6576 	comm_event->event_id.header.size = size;
6577 }
6578 
6579 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6580 {
6581 	char comm[TASK_COMM_LEN];
6582 	unsigned int size;
6583 
6584 	memset(comm, 0, sizeof(comm));
6585 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6586 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6587 
6588 	comm_event->comm = comm;
6589 	comm_event->comm_size = size;
6590 
6591 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6592 
6593 	perf_iterate_sb(perf_event_comm_output,
6594 		       comm_event,
6595 		       NULL);
6596 }
6597 
6598 void perf_event_comm(struct task_struct *task, bool exec)
6599 {
6600 	struct perf_comm_event comm_event;
6601 
6602 	if (!atomic_read(&nr_comm_events))
6603 		return;
6604 
6605 	comm_event = (struct perf_comm_event){
6606 		.task	= task,
6607 		/* .comm      */
6608 		/* .comm_size */
6609 		.event_id  = {
6610 			.header = {
6611 				.type = PERF_RECORD_COMM,
6612 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6613 				/* .size */
6614 			},
6615 			/* .pid */
6616 			/* .tid */
6617 		},
6618 	};
6619 
6620 	perf_event_comm_event(&comm_event);
6621 }
6622 
6623 /*
6624  * namespaces tracking
6625  */
6626 
6627 struct perf_namespaces_event {
6628 	struct task_struct		*task;
6629 
6630 	struct {
6631 		struct perf_event_header	header;
6632 
6633 		u32				pid;
6634 		u32				tid;
6635 		u64				nr_namespaces;
6636 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6637 	} event_id;
6638 };
6639 
6640 static int perf_event_namespaces_match(struct perf_event *event)
6641 {
6642 	return event->attr.namespaces;
6643 }
6644 
6645 static void perf_event_namespaces_output(struct perf_event *event,
6646 					 void *data)
6647 {
6648 	struct perf_namespaces_event *namespaces_event = data;
6649 	struct perf_output_handle handle;
6650 	struct perf_sample_data sample;
6651 	u16 header_size = namespaces_event->event_id.header.size;
6652 	int ret;
6653 
6654 	if (!perf_event_namespaces_match(event))
6655 		return;
6656 
6657 	perf_event_header__init_id(&namespaces_event->event_id.header,
6658 				   &sample, event);
6659 	ret = perf_output_begin(&handle, event,
6660 				namespaces_event->event_id.header.size);
6661 	if (ret)
6662 		goto out;
6663 
6664 	namespaces_event->event_id.pid = perf_event_pid(event,
6665 							namespaces_event->task);
6666 	namespaces_event->event_id.tid = perf_event_tid(event,
6667 							namespaces_event->task);
6668 
6669 	perf_output_put(&handle, namespaces_event->event_id);
6670 
6671 	perf_event__output_id_sample(event, &handle, &sample);
6672 
6673 	perf_output_end(&handle);
6674 out:
6675 	namespaces_event->event_id.header.size = header_size;
6676 }
6677 
6678 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6679 				   struct task_struct *task,
6680 				   const struct proc_ns_operations *ns_ops)
6681 {
6682 	struct path ns_path;
6683 	struct inode *ns_inode;
6684 	void *error;
6685 
6686 	error = ns_get_path(&ns_path, task, ns_ops);
6687 	if (!error) {
6688 		ns_inode = ns_path.dentry->d_inode;
6689 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6690 		ns_link_info->ino = ns_inode->i_ino;
6691 		path_put(&ns_path);
6692 	}
6693 }
6694 
6695 void perf_event_namespaces(struct task_struct *task)
6696 {
6697 	struct perf_namespaces_event namespaces_event;
6698 	struct perf_ns_link_info *ns_link_info;
6699 
6700 	if (!atomic_read(&nr_namespaces_events))
6701 		return;
6702 
6703 	namespaces_event = (struct perf_namespaces_event){
6704 		.task	= task,
6705 		.event_id  = {
6706 			.header = {
6707 				.type = PERF_RECORD_NAMESPACES,
6708 				.misc = 0,
6709 				.size = sizeof(namespaces_event.event_id),
6710 			},
6711 			/* .pid */
6712 			/* .tid */
6713 			.nr_namespaces = NR_NAMESPACES,
6714 			/* .link_info[NR_NAMESPACES] */
6715 		},
6716 	};
6717 
6718 	ns_link_info = namespaces_event.event_id.link_info;
6719 
6720 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6721 			       task, &mntns_operations);
6722 
6723 #ifdef CONFIG_USER_NS
6724 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6725 			       task, &userns_operations);
6726 #endif
6727 #ifdef CONFIG_NET_NS
6728 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6729 			       task, &netns_operations);
6730 #endif
6731 #ifdef CONFIG_UTS_NS
6732 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6733 			       task, &utsns_operations);
6734 #endif
6735 #ifdef CONFIG_IPC_NS
6736 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6737 			       task, &ipcns_operations);
6738 #endif
6739 #ifdef CONFIG_PID_NS
6740 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6741 			       task, &pidns_operations);
6742 #endif
6743 #ifdef CONFIG_CGROUPS
6744 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6745 			       task, &cgroupns_operations);
6746 #endif
6747 
6748 	perf_iterate_sb(perf_event_namespaces_output,
6749 			&namespaces_event,
6750 			NULL);
6751 }
6752 
6753 /*
6754  * mmap tracking
6755  */
6756 
6757 struct perf_mmap_event {
6758 	struct vm_area_struct	*vma;
6759 
6760 	const char		*file_name;
6761 	int			file_size;
6762 	int			maj, min;
6763 	u64			ino;
6764 	u64			ino_generation;
6765 	u32			prot, flags;
6766 
6767 	struct {
6768 		struct perf_event_header	header;
6769 
6770 		u32				pid;
6771 		u32				tid;
6772 		u64				start;
6773 		u64				len;
6774 		u64				pgoff;
6775 	} event_id;
6776 };
6777 
6778 static int perf_event_mmap_match(struct perf_event *event,
6779 				 void *data)
6780 {
6781 	struct perf_mmap_event *mmap_event = data;
6782 	struct vm_area_struct *vma = mmap_event->vma;
6783 	int executable = vma->vm_flags & VM_EXEC;
6784 
6785 	return (!executable && event->attr.mmap_data) ||
6786 	       (executable && (event->attr.mmap || event->attr.mmap2));
6787 }
6788 
6789 static void perf_event_mmap_output(struct perf_event *event,
6790 				   void *data)
6791 {
6792 	struct perf_mmap_event *mmap_event = data;
6793 	struct perf_output_handle handle;
6794 	struct perf_sample_data sample;
6795 	int size = mmap_event->event_id.header.size;
6796 	int ret;
6797 
6798 	if (!perf_event_mmap_match(event, data))
6799 		return;
6800 
6801 	if (event->attr.mmap2) {
6802 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6803 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6804 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6805 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6806 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6807 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6808 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6809 	}
6810 
6811 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6812 	ret = perf_output_begin(&handle, event,
6813 				mmap_event->event_id.header.size);
6814 	if (ret)
6815 		goto out;
6816 
6817 	mmap_event->event_id.pid = perf_event_pid(event, current);
6818 	mmap_event->event_id.tid = perf_event_tid(event, current);
6819 
6820 	perf_output_put(&handle, mmap_event->event_id);
6821 
6822 	if (event->attr.mmap2) {
6823 		perf_output_put(&handle, mmap_event->maj);
6824 		perf_output_put(&handle, mmap_event->min);
6825 		perf_output_put(&handle, mmap_event->ino);
6826 		perf_output_put(&handle, mmap_event->ino_generation);
6827 		perf_output_put(&handle, mmap_event->prot);
6828 		perf_output_put(&handle, mmap_event->flags);
6829 	}
6830 
6831 	__output_copy(&handle, mmap_event->file_name,
6832 				   mmap_event->file_size);
6833 
6834 	perf_event__output_id_sample(event, &handle, &sample);
6835 
6836 	perf_output_end(&handle);
6837 out:
6838 	mmap_event->event_id.header.size = size;
6839 }
6840 
6841 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6842 {
6843 	struct vm_area_struct *vma = mmap_event->vma;
6844 	struct file *file = vma->vm_file;
6845 	int maj = 0, min = 0;
6846 	u64 ino = 0, gen = 0;
6847 	u32 prot = 0, flags = 0;
6848 	unsigned int size;
6849 	char tmp[16];
6850 	char *buf = NULL;
6851 	char *name;
6852 
6853 	if (vma->vm_flags & VM_READ)
6854 		prot |= PROT_READ;
6855 	if (vma->vm_flags & VM_WRITE)
6856 		prot |= PROT_WRITE;
6857 	if (vma->vm_flags & VM_EXEC)
6858 		prot |= PROT_EXEC;
6859 
6860 	if (vma->vm_flags & VM_MAYSHARE)
6861 		flags = MAP_SHARED;
6862 	else
6863 		flags = MAP_PRIVATE;
6864 
6865 	if (vma->vm_flags & VM_DENYWRITE)
6866 		flags |= MAP_DENYWRITE;
6867 	if (vma->vm_flags & VM_MAYEXEC)
6868 		flags |= MAP_EXECUTABLE;
6869 	if (vma->vm_flags & VM_LOCKED)
6870 		flags |= MAP_LOCKED;
6871 	if (vma->vm_flags & VM_HUGETLB)
6872 		flags |= MAP_HUGETLB;
6873 
6874 	if (file) {
6875 		struct inode *inode;
6876 		dev_t dev;
6877 
6878 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6879 		if (!buf) {
6880 			name = "//enomem";
6881 			goto cpy_name;
6882 		}
6883 		/*
6884 		 * d_path() works from the end of the rb backwards, so we
6885 		 * need to add enough zero bytes after the string to handle
6886 		 * the 64bit alignment we do later.
6887 		 */
6888 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6889 		if (IS_ERR(name)) {
6890 			name = "//toolong";
6891 			goto cpy_name;
6892 		}
6893 		inode = file_inode(vma->vm_file);
6894 		dev = inode->i_sb->s_dev;
6895 		ino = inode->i_ino;
6896 		gen = inode->i_generation;
6897 		maj = MAJOR(dev);
6898 		min = MINOR(dev);
6899 
6900 		goto got_name;
6901 	} else {
6902 		if (vma->vm_ops && vma->vm_ops->name) {
6903 			name = (char *) vma->vm_ops->name(vma);
6904 			if (name)
6905 				goto cpy_name;
6906 		}
6907 
6908 		name = (char *)arch_vma_name(vma);
6909 		if (name)
6910 			goto cpy_name;
6911 
6912 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6913 				vma->vm_end >= vma->vm_mm->brk) {
6914 			name = "[heap]";
6915 			goto cpy_name;
6916 		}
6917 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6918 				vma->vm_end >= vma->vm_mm->start_stack) {
6919 			name = "[stack]";
6920 			goto cpy_name;
6921 		}
6922 
6923 		name = "//anon";
6924 		goto cpy_name;
6925 	}
6926 
6927 cpy_name:
6928 	strlcpy(tmp, name, sizeof(tmp));
6929 	name = tmp;
6930 got_name:
6931 	/*
6932 	 * Since our buffer works in 8 byte units we need to align our string
6933 	 * size to a multiple of 8. However, we must guarantee the tail end is
6934 	 * zero'd out to avoid leaking random bits to userspace.
6935 	 */
6936 	size = strlen(name)+1;
6937 	while (!IS_ALIGNED(size, sizeof(u64)))
6938 		name[size++] = '\0';
6939 
6940 	mmap_event->file_name = name;
6941 	mmap_event->file_size = size;
6942 	mmap_event->maj = maj;
6943 	mmap_event->min = min;
6944 	mmap_event->ino = ino;
6945 	mmap_event->ino_generation = gen;
6946 	mmap_event->prot = prot;
6947 	mmap_event->flags = flags;
6948 
6949 	if (!(vma->vm_flags & VM_EXEC))
6950 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6951 
6952 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6953 
6954 	perf_iterate_sb(perf_event_mmap_output,
6955 		       mmap_event,
6956 		       NULL);
6957 
6958 	kfree(buf);
6959 }
6960 
6961 /*
6962  * Check whether inode and address range match filter criteria.
6963  */
6964 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6965 				     struct file *file, unsigned long offset,
6966 				     unsigned long size)
6967 {
6968 	if (filter->inode != file_inode(file))
6969 		return false;
6970 
6971 	if (filter->offset > offset + size)
6972 		return false;
6973 
6974 	if (filter->offset + filter->size < offset)
6975 		return false;
6976 
6977 	return true;
6978 }
6979 
6980 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6981 {
6982 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6983 	struct vm_area_struct *vma = data;
6984 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6985 	struct file *file = vma->vm_file;
6986 	struct perf_addr_filter *filter;
6987 	unsigned int restart = 0, count = 0;
6988 
6989 	if (!has_addr_filter(event))
6990 		return;
6991 
6992 	if (!file)
6993 		return;
6994 
6995 	raw_spin_lock_irqsave(&ifh->lock, flags);
6996 	list_for_each_entry(filter, &ifh->list, entry) {
6997 		if (perf_addr_filter_match(filter, file, off,
6998 					     vma->vm_end - vma->vm_start)) {
6999 			event->addr_filters_offs[count] = vma->vm_start;
7000 			restart++;
7001 		}
7002 
7003 		count++;
7004 	}
7005 
7006 	if (restart)
7007 		event->addr_filters_gen++;
7008 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7009 
7010 	if (restart)
7011 		perf_event_stop(event, 1);
7012 }
7013 
7014 /*
7015  * Adjust all task's events' filters to the new vma
7016  */
7017 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7018 {
7019 	struct perf_event_context *ctx;
7020 	int ctxn;
7021 
7022 	/*
7023 	 * Data tracing isn't supported yet and as such there is no need
7024 	 * to keep track of anything that isn't related to executable code:
7025 	 */
7026 	if (!(vma->vm_flags & VM_EXEC))
7027 		return;
7028 
7029 	rcu_read_lock();
7030 	for_each_task_context_nr(ctxn) {
7031 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7032 		if (!ctx)
7033 			continue;
7034 
7035 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7036 	}
7037 	rcu_read_unlock();
7038 }
7039 
7040 void perf_event_mmap(struct vm_area_struct *vma)
7041 {
7042 	struct perf_mmap_event mmap_event;
7043 
7044 	if (!atomic_read(&nr_mmap_events))
7045 		return;
7046 
7047 	mmap_event = (struct perf_mmap_event){
7048 		.vma	= vma,
7049 		/* .file_name */
7050 		/* .file_size */
7051 		.event_id  = {
7052 			.header = {
7053 				.type = PERF_RECORD_MMAP,
7054 				.misc = PERF_RECORD_MISC_USER,
7055 				/* .size */
7056 			},
7057 			/* .pid */
7058 			/* .tid */
7059 			.start  = vma->vm_start,
7060 			.len    = vma->vm_end - vma->vm_start,
7061 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7062 		},
7063 		/* .maj (attr_mmap2 only) */
7064 		/* .min (attr_mmap2 only) */
7065 		/* .ino (attr_mmap2 only) */
7066 		/* .ino_generation (attr_mmap2 only) */
7067 		/* .prot (attr_mmap2 only) */
7068 		/* .flags (attr_mmap2 only) */
7069 	};
7070 
7071 	perf_addr_filters_adjust(vma);
7072 	perf_event_mmap_event(&mmap_event);
7073 }
7074 
7075 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7076 			  unsigned long size, u64 flags)
7077 {
7078 	struct perf_output_handle handle;
7079 	struct perf_sample_data sample;
7080 	struct perf_aux_event {
7081 		struct perf_event_header	header;
7082 		u64				offset;
7083 		u64				size;
7084 		u64				flags;
7085 	} rec = {
7086 		.header = {
7087 			.type = PERF_RECORD_AUX,
7088 			.misc = 0,
7089 			.size = sizeof(rec),
7090 		},
7091 		.offset		= head,
7092 		.size		= size,
7093 		.flags		= flags,
7094 	};
7095 	int ret;
7096 
7097 	perf_event_header__init_id(&rec.header, &sample, event);
7098 	ret = perf_output_begin(&handle, event, rec.header.size);
7099 
7100 	if (ret)
7101 		return;
7102 
7103 	perf_output_put(&handle, rec);
7104 	perf_event__output_id_sample(event, &handle, &sample);
7105 
7106 	perf_output_end(&handle);
7107 }
7108 
7109 /*
7110  * Lost/dropped samples logging
7111  */
7112 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7113 {
7114 	struct perf_output_handle handle;
7115 	struct perf_sample_data sample;
7116 	int ret;
7117 
7118 	struct {
7119 		struct perf_event_header	header;
7120 		u64				lost;
7121 	} lost_samples_event = {
7122 		.header = {
7123 			.type = PERF_RECORD_LOST_SAMPLES,
7124 			.misc = 0,
7125 			.size = sizeof(lost_samples_event),
7126 		},
7127 		.lost		= lost,
7128 	};
7129 
7130 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7131 
7132 	ret = perf_output_begin(&handle, event,
7133 				lost_samples_event.header.size);
7134 	if (ret)
7135 		return;
7136 
7137 	perf_output_put(&handle, lost_samples_event);
7138 	perf_event__output_id_sample(event, &handle, &sample);
7139 	perf_output_end(&handle);
7140 }
7141 
7142 /*
7143  * context_switch tracking
7144  */
7145 
7146 struct perf_switch_event {
7147 	struct task_struct	*task;
7148 	struct task_struct	*next_prev;
7149 
7150 	struct {
7151 		struct perf_event_header	header;
7152 		u32				next_prev_pid;
7153 		u32				next_prev_tid;
7154 	} event_id;
7155 };
7156 
7157 static int perf_event_switch_match(struct perf_event *event)
7158 {
7159 	return event->attr.context_switch;
7160 }
7161 
7162 static void perf_event_switch_output(struct perf_event *event, void *data)
7163 {
7164 	struct perf_switch_event *se = data;
7165 	struct perf_output_handle handle;
7166 	struct perf_sample_data sample;
7167 	int ret;
7168 
7169 	if (!perf_event_switch_match(event))
7170 		return;
7171 
7172 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7173 	if (event->ctx->task) {
7174 		se->event_id.header.type = PERF_RECORD_SWITCH;
7175 		se->event_id.header.size = sizeof(se->event_id.header);
7176 	} else {
7177 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7178 		se->event_id.header.size = sizeof(se->event_id);
7179 		se->event_id.next_prev_pid =
7180 					perf_event_pid(event, se->next_prev);
7181 		se->event_id.next_prev_tid =
7182 					perf_event_tid(event, se->next_prev);
7183 	}
7184 
7185 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7186 
7187 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7188 	if (ret)
7189 		return;
7190 
7191 	if (event->ctx->task)
7192 		perf_output_put(&handle, se->event_id.header);
7193 	else
7194 		perf_output_put(&handle, se->event_id);
7195 
7196 	perf_event__output_id_sample(event, &handle, &sample);
7197 
7198 	perf_output_end(&handle);
7199 }
7200 
7201 static void perf_event_switch(struct task_struct *task,
7202 			      struct task_struct *next_prev, bool sched_in)
7203 {
7204 	struct perf_switch_event switch_event;
7205 
7206 	/* N.B. caller checks nr_switch_events != 0 */
7207 
7208 	switch_event = (struct perf_switch_event){
7209 		.task		= task,
7210 		.next_prev	= next_prev,
7211 		.event_id	= {
7212 			.header = {
7213 				/* .type */
7214 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7215 				/* .size */
7216 			},
7217 			/* .next_prev_pid */
7218 			/* .next_prev_tid */
7219 		},
7220 	};
7221 
7222 	perf_iterate_sb(perf_event_switch_output,
7223 		       &switch_event,
7224 		       NULL);
7225 }
7226 
7227 /*
7228  * IRQ throttle logging
7229  */
7230 
7231 static void perf_log_throttle(struct perf_event *event, int enable)
7232 {
7233 	struct perf_output_handle handle;
7234 	struct perf_sample_data sample;
7235 	int ret;
7236 
7237 	struct {
7238 		struct perf_event_header	header;
7239 		u64				time;
7240 		u64				id;
7241 		u64				stream_id;
7242 	} throttle_event = {
7243 		.header = {
7244 			.type = PERF_RECORD_THROTTLE,
7245 			.misc = 0,
7246 			.size = sizeof(throttle_event),
7247 		},
7248 		.time		= perf_event_clock(event),
7249 		.id		= primary_event_id(event),
7250 		.stream_id	= event->id,
7251 	};
7252 
7253 	if (enable)
7254 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7255 
7256 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7257 
7258 	ret = perf_output_begin(&handle, event,
7259 				throttle_event.header.size);
7260 	if (ret)
7261 		return;
7262 
7263 	perf_output_put(&handle, throttle_event);
7264 	perf_event__output_id_sample(event, &handle, &sample);
7265 	perf_output_end(&handle);
7266 }
7267 
7268 void perf_event_itrace_started(struct perf_event *event)
7269 {
7270 	event->attach_state |= PERF_ATTACH_ITRACE;
7271 }
7272 
7273 static void perf_log_itrace_start(struct perf_event *event)
7274 {
7275 	struct perf_output_handle handle;
7276 	struct perf_sample_data sample;
7277 	struct perf_aux_event {
7278 		struct perf_event_header        header;
7279 		u32				pid;
7280 		u32				tid;
7281 	} rec;
7282 	int ret;
7283 
7284 	if (event->parent)
7285 		event = event->parent;
7286 
7287 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7288 	    event->attach_state & PERF_ATTACH_ITRACE)
7289 		return;
7290 
7291 	rec.header.type	= PERF_RECORD_ITRACE_START;
7292 	rec.header.misc	= 0;
7293 	rec.header.size	= sizeof(rec);
7294 	rec.pid	= perf_event_pid(event, current);
7295 	rec.tid	= perf_event_tid(event, current);
7296 
7297 	perf_event_header__init_id(&rec.header, &sample, event);
7298 	ret = perf_output_begin(&handle, event, rec.header.size);
7299 
7300 	if (ret)
7301 		return;
7302 
7303 	perf_output_put(&handle, rec);
7304 	perf_event__output_id_sample(event, &handle, &sample);
7305 
7306 	perf_output_end(&handle);
7307 }
7308 
7309 static int
7310 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7311 {
7312 	struct hw_perf_event *hwc = &event->hw;
7313 	int ret = 0;
7314 	u64 seq;
7315 
7316 	seq = __this_cpu_read(perf_throttled_seq);
7317 	if (seq != hwc->interrupts_seq) {
7318 		hwc->interrupts_seq = seq;
7319 		hwc->interrupts = 1;
7320 	} else {
7321 		hwc->interrupts++;
7322 		if (unlikely(throttle
7323 			     && hwc->interrupts >= max_samples_per_tick)) {
7324 			__this_cpu_inc(perf_throttled_count);
7325 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7326 			hwc->interrupts = MAX_INTERRUPTS;
7327 			perf_log_throttle(event, 0);
7328 			ret = 1;
7329 		}
7330 	}
7331 
7332 	if (event->attr.freq) {
7333 		u64 now = perf_clock();
7334 		s64 delta = now - hwc->freq_time_stamp;
7335 
7336 		hwc->freq_time_stamp = now;
7337 
7338 		if (delta > 0 && delta < 2*TICK_NSEC)
7339 			perf_adjust_period(event, delta, hwc->last_period, true);
7340 	}
7341 
7342 	return ret;
7343 }
7344 
7345 int perf_event_account_interrupt(struct perf_event *event)
7346 {
7347 	return __perf_event_account_interrupt(event, 1);
7348 }
7349 
7350 /*
7351  * Generic event overflow handling, sampling.
7352  */
7353 
7354 static int __perf_event_overflow(struct perf_event *event,
7355 				   int throttle, struct perf_sample_data *data,
7356 				   struct pt_regs *regs)
7357 {
7358 	int events = atomic_read(&event->event_limit);
7359 	int ret = 0;
7360 
7361 	/*
7362 	 * Non-sampling counters might still use the PMI to fold short
7363 	 * hardware counters, ignore those.
7364 	 */
7365 	if (unlikely(!is_sampling_event(event)))
7366 		return 0;
7367 
7368 	ret = __perf_event_account_interrupt(event, throttle);
7369 
7370 	/*
7371 	 * XXX event_limit might not quite work as expected on inherited
7372 	 * events
7373 	 */
7374 
7375 	event->pending_kill = POLL_IN;
7376 	if (events && atomic_dec_and_test(&event->event_limit)) {
7377 		ret = 1;
7378 		event->pending_kill = POLL_HUP;
7379 
7380 		perf_event_disable_inatomic(event);
7381 	}
7382 
7383 	READ_ONCE(event->overflow_handler)(event, data, regs);
7384 
7385 	if (*perf_event_fasync(event) && event->pending_kill) {
7386 		event->pending_wakeup = 1;
7387 		irq_work_queue(&event->pending);
7388 	}
7389 
7390 	return ret;
7391 }
7392 
7393 int perf_event_overflow(struct perf_event *event,
7394 			  struct perf_sample_data *data,
7395 			  struct pt_regs *regs)
7396 {
7397 	return __perf_event_overflow(event, 1, data, regs);
7398 }
7399 
7400 /*
7401  * Generic software event infrastructure
7402  */
7403 
7404 struct swevent_htable {
7405 	struct swevent_hlist		*swevent_hlist;
7406 	struct mutex			hlist_mutex;
7407 	int				hlist_refcount;
7408 
7409 	/* Recursion avoidance in each contexts */
7410 	int				recursion[PERF_NR_CONTEXTS];
7411 };
7412 
7413 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7414 
7415 /*
7416  * We directly increment event->count and keep a second value in
7417  * event->hw.period_left to count intervals. This period event
7418  * is kept in the range [-sample_period, 0] so that we can use the
7419  * sign as trigger.
7420  */
7421 
7422 u64 perf_swevent_set_period(struct perf_event *event)
7423 {
7424 	struct hw_perf_event *hwc = &event->hw;
7425 	u64 period = hwc->last_period;
7426 	u64 nr, offset;
7427 	s64 old, val;
7428 
7429 	hwc->last_period = hwc->sample_period;
7430 
7431 again:
7432 	old = val = local64_read(&hwc->period_left);
7433 	if (val < 0)
7434 		return 0;
7435 
7436 	nr = div64_u64(period + val, period);
7437 	offset = nr * period;
7438 	val -= offset;
7439 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7440 		goto again;
7441 
7442 	return nr;
7443 }
7444 
7445 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7446 				    struct perf_sample_data *data,
7447 				    struct pt_regs *regs)
7448 {
7449 	struct hw_perf_event *hwc = &event->hw;
7450 	int throttle = 0;
7451 
7452 	if (!overflow)
7453 		overflow = perf_swevent_set_period(event);
7454 
7455 	if (hwc->interrupts == MAX_INTERRUPTS)
7456 		return;
7457 
7458 	for (; overflow; overflow--) {
7459 		if (__perf_event_overflow(event, throttle,
7460 					    data, regs)) {
7461 			/*
7462 			 * We inhibit the overflow from happening when
7463 			 * hwc->interrupts == MAX_INTERRUPTS.
7464 			 */
7465 			break;
7466 		}
7467 		throttle = 1;
7468 	}
7469 }
7470 
7471 static void perf_swevent_event(struct perf_event *event, u64 nr,
7472 			       struct perf_sample_data *data,
7473 			       struct pt_regs *regs)
7474 {
7475 	struct hw_perf_event *hwc = &event->hw;
7476 
7477 	local64_add(nr, &event->count);
7478 
7479 	if (!regs)
7480 		return;
7481 
7482 	if (!is_sampling_event(event))
7483 		return;
7484 
7485 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7486 		data->period = nr;
7487 		return perf_swevent_overflow(event, 1, data, regs);
7488 	} else
7489 		data->period = event->hw.last_period;
7490 
7491 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7492 		return perf_swevent_overflow(event, 1, data, regs);
7493 
7494 	if (local64_add_negative(nr, &hwc->period_left))
7495 		return;
7496 
7497 	perf_swevent_overflow(event, 0, data, regs);
7498 }
7499 
7500 static int perf_exclude_event(struct perf_event *event,
7501 			      struct pt_regs *regs)
7502 {
7503 	if (event->hw.state & PERF_HES_STOPPED)
7504 		return 1;
7505 
7506 	if (regs) {
7507 		if (event->attr.exclude_user && user_mode(regs))
7508 			return 1;
7509 
7510 		if (event->attr.exclude_kernel && !user_mode(regs))
7511 			return 1;
7512 	}
7513 
7514 	return 0;
7515 }
7516 
7517 static int perf_swevent_match(struct perf_event *event,
7518 				enum perf_type_id type,
7519 				u32 event_id,
7520 				struct perf_sample_data *data,
7521 				struct pt_regs *regs)
7522 {
7523 	if (event->attr.type != type)
7524 		return 0;
7525 
7526 	if (event->attr.config != event_id)
7527 		return 0;
7528 
7529 	if (perf_exclude_event(event, regs))
7530 		return 0;
7531 
7532 	return 1;
7533 }
7534 
7535 static inline u64 swevent_hash(u64 type, u32 event_id)
7536 {
7537 	u64 val = event_id | (type << 32);
7538 
7539 	return hash_64(val, SWEVENT_HLIST_BITS);
7540 }
7541 
7542 static inline struct hlist_head *
7543 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7544 {
7545 	u64 hash = swevent_hash(type, event_id);
7546 
7547 	return &hlist->heads[hash];
7548 }
7549 
7550 /* For the read side: events when they trigger */
7551 static inline struct hlist_head *
7552 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7553 {
7554 	struct swevent_hlist *hlist;
7555 
7556 	hlist = rcu_dereference(swhash->swevent_hlist);
7557 	if (!hlist)
7558 		return NULL;
7559 
7560 	return __find_swevent_head(hlist, type, event_id);
7561 }
7562 
7563 /* For the event head insertion and removal in the hlist */
7564 static inline struct hlist_head *
7565 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7566 {
7567 	struct swevent_hlist *hlist;
7568 	u32 event_id = event->attr.config;
7569 	u64 type = event->attr.type;
7570 
7571 	/*
7572 	 * Event scheduling is always serialized against hlist allocation
7573 	 * and release. Which makes the protected version suitable here.
7574 	 * The context lock guarantees that.
7575 	 */
7576 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7577 					  lockdep_is_held(&event->ctx->lock));
7578 	if (!hlist)
7579 		return NULL;
7580 
7581 	return __find_swevent_head(hlist, type, event_id);
7582 }
7583 
7584 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7585 				    u64 nr,
7586 				    struct perf_sample_data *data,
7587 				    struct pt_regs *regs)
7588 {
7589 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7590 	struct perf_event *event;
7591 	struct hlist_head *head;
7592 
7593 	rcu_read_lock();
7594 	head = find_swevent_head_rcu(swhash, type, event_id);
7595 	if (!head)
7596 		goto end;
7597 
7598 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7599 		if (perf_swevent_match(event, type, event_id, data, regs))
7600 			perf_swevent_event(event, nr, data, regs);
7601 	}
7602 end:
7603 	rcu_read_unlock();
7604 }
7605 
7606 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7607 
7608 int perf_swevent_get_recursion_context(void)
7609 {
7610 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7611 
7612 	return get_recursion_context(swhash->recursion);
7613 }
7614 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7615 
7616 void perf_swevent_put_recursion_context(int rctx)
7617 {
7618 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7619 
7620 	put_recursion_context(swhash->recursion, rctx);
7621 }
7622 
7623 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624 {
7625 	struct perf_sample_data data;
7626 
7627 	if (WARN_ON_ONCE(!regs))
7628 		return;
7629 
7630 	perf_sample_data_init(&data, addr, 0);
7631 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7632 }
7633 
7634 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7635 {
7636 	int rctx;
7637 
7638 	preempt_disable_notrace();
7639 	rctx = perf_swevent_get_recursion_context();
7640 	if (unlikely(rctx < 0))
7641 		goto fail;
7642 
7643 	___perf_sw_event(event_id, nr, regs, addr);
7644 
7645 	perf_swevent_put_recursion_context(rctx);
7646 fail:
7647 	preempt_enable_notrace();
7648 }
7649 
7650 static void perf_swevent_read(struct perf_event *event)
7651 {
7652 }
7653 
7654 static int perf_swevent_add(struct perf_event *event, int flags)
7655 {
7656 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657 	struct hw_perf_event *hwc = &event->hw;
7658 	struct hlist_head *head;
7659 
7660 	if (is_sampling_event(event)) {
7661 		hwc->last_period = hwc->sample_period;
7662 		perf_swevent_set_period(event);
7663 	}
7664 
7665 	hwc->state = !(flags & PERF_EF_START);
7666 
7667 	head = find_swevent_head(swhash, event);
7668 	if (WARN_ON_ONCE(!head))
7669 		return -EINVAL;
7670 
7671 	hlist_add_head_rcu(&event->hlist_entry, head);
7672 	perf_event_update_userpage(event);
7673 
7674 	return 0;
7675 }
7676 
7677 static void perf_swevent_del(struct perf_event *event, int flags)
7678 {
7679 	hlist_del_rcu(&event->hlist_entry);
7680 }
7681 
7682 static void perf_swevent_start(struct perf_event *event, int flags)
7683 {
7684 	event->hw.state = 0;
7685 }
7686 
7687 static void perf_swevent_stop(struct perf_event *event, int flags)
7688 {
7689 	event->hw.state = PERF_HES_STOPPED;
7690 }
7691 
7692 /* Deref the hlist from the update side */
7693 static inline struct swevent_hlist *
7694 swevent_hlist_deref(struct swevent_htable *swhash)
7695 {
7696 	return rcu_dereference_protected(swhash->swevent_hlist,
7697 					 lockdep_is_held(&swhash->hlist_mutex));
7698 }
7699 
7700 static void swevent_hlist_release(struct swevent_htable *swhash)
7701 {
7702 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7703 
7704 	if (!hlist)
7705 		return;
7706 
7707 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7708 	kfree_rcu(hlist, rcu_head);
7709 }
7710 
7711 static void swevent_hlist_put_cpu(int cpu)
7712 {
7713 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7714 
7715 	mutex_lock(&swhash->hlist_mutex);
7716 
7717 	if (!--swhash->hlist_refcount)
7718 		swevent_hlist_release(swhash);
7719 
7720 	mutex_unlock(&swhash->hlist_mutex);
7721 }
7722 
7723 static void swevent_hlist_put(void)
7724 {
7725 	int cpu;
7726 
7727 	for_each_possible_cpu(cpu)
7728 		swevent_hlist_put_cpu(cpu);
7729 }
7730 
7731 static int swevent_hlist_get_cpu(int cpu)
7732 {
7733 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7734 	int err = 0;
7735 
7736 	mutex_lock(&swhash->hlist_mutex);
7737 	if (!swevent_hlist_deref(swhash) &&
7738 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7739 		struct swevent_hlist *hlist;
7740 
7741 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7742 		if (!hlist) {
7743 			err = -ENOMEM;
7744 			goto exit;
7745 		}
7746 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7747 	}
7748 	swhash->hlist_refcount++;
7749 exit:
7750 	mutex_unlock(&swhash->hlist_mutex);
7751 
7752 	return err;
7753 }
7754 
7755 static int swevent_hlist_get(void)
7756 {
7757 	int err, cpu, failed_cpu;
7758 
7759 	mutex_lock(&pmus_lock);
7760 	for_each_possible_cpu(cpu) {
7761 		err = swevent_hlist_get_cpu(cpu);
7762 		if (err) {
7763 			failed_cpu = cpu;
7764 			goto fail;
7765 		}
7766 	}
7767 	mutex_unlock(&pmus_lock);
7768 	return 0;
7769 fail:
7770 	for_each_possible_cpu(cpu) {
7771 		if (cpu == failed_cpu)
7772 			break;
7773 		swevent_hlist_put_cpu(cpu);
7774 	}
7775 	mutex_unlock(&pmus_lock);
7776 	return err;
7777 }
7778 
7779 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7780 
7781 static void sw_perf_event_destroy(struct perf_event *event)
7782 {
7783 	u64 event_id = event->attr.config;
7784 
7785 	WARN_ON(event->parent);
7786 
7787 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7788 	swevent_hlist_put();
7789 }
7790 
7791 static int perf_swevent_init(struct perf_event *event)
7792 {
7793 	u64 event_id = event->attr.config;
7794 
7795 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7796 		return -ENOENT;
7797 
7798 	/*
7799 	 * no branch sampling for software events
7800 	 */
7801 	if (has_branch_stack(event))
7802 		return -EOPNOTSUPP;
7803 
7804 	switch (event_id) {
7805 	case PERF_COUNT_SW_CPU_CLOCK:
7806 	case PERF_COUNT_SW_TASK_CLOCK:
7807 		return -ENOENT;
7808 
7809 	default:
7810 		break;
7811 	}
7812 
7813 	if (event_id >= PERF_COUNT_SW_MAX)
7814 		return -ENOENT;
7815 
7816 	if (!event->parent) {
7817 		int err;
7818 
7819 		err = swevent_hlist_get();
7820 		if (err)
7821 			return err;
7822 
7823 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7824 		event->destroy = sw_perf_event_destroy;
7825 	}
7826 
7827 	return 0;
7828 }
7829 
7830 static struct pmu perf_swevent = {
7831 	.task_ctx_nr	= perf_sw_context,
7832 
7833 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7834 
7835 	.event_init	= perf_swevent_init,
7836 	.add		= perf_swevent_add,
7837 	.del		= perf_swevent_del,
7838 	.start		= perf_swevent_start,
7839 	.stop		= perf_swevent_stop,
7840 	.read		= perf_swevent_read,
7841 };
7842 
7843 #ifdef CONFIG_EVENT_TRACING
7844 
7845 static int perf_tp_filter_match(struct perf_event *event,
7846 				struct perf_sample_data *data)
7847 {
7848 	void *record = data->raw->frag.data;
7849 
7850 	/* only top level events have filters set */
7851 	if (event->parent)
7852 		event = event->parent;
7853 
7854 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7855 		return 1;
7856 	return 0;
7857 }
7858 
7859 static int perf_tp_event_match(struct perf_event *event,
7860 				struct perf_sample_data *data,
7861 				struct pt_regs *regs)
7862 {
7863 	if (event->hw.state & PERF_HES_STOPPED)
7864 		return 0;
7865 	/*
7866 	 * All tracepoints are from kernel-space.
7867 	 */
7868 	if (event->attr.exclude_kernel)
7869 		return 0;
7870 
7871 	if (!perf_tp_filter_match(event, data))
7872 		return 0;
7873 
7874 	return 1;
7875 }
7876 
7877 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7878 			       struct trace_event_call *call, u64 count,
7879 			       struct pt_regs *regs, struct hlist_head *head,
7880 			       struct task_struct *task)
7881 {
7882 	if (bpf_prog_array_valid(call)) {
7883 		*(struct pt_regs **)raw_data = regs;
7884 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7885 			perf_swevent_put_recursion_context(rctx);
7886 			return;
7887 		}
7888 	}
7889 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7890 		      rctx, task);
7891 }
7892 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7893 
7894 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7895 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7896 		   struct task_struct *task)
7897 {
7898 	struct perf_sample_data data;
7899 	struct perf_event *event;
7900 
7901 	struct perf_raw_record raw = {
7902 		.frag = {
7903 			.size = entry_size,
7904 			.data = record,
7905 		},
7906 	};
7907 
7908 	perf_sample_data_init(&data, 0, 0);
7909 	data.raw = &raw;
7910 
7911 	perf_trace_buf_update(record, event_type);
7912 
7913 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7914 		if (perf_tp_event_match(event, &data, regs))
7915 			perf_swevent_event(event, count, &data, regs);
7916 	}
7917 
7918 	/*
7919 	 * If we got specified a target task, also iterate its context and
7920 	 * deliver this event there too.
7921 	 */
7922 	if (task && task != current) {
7923 		struct perf_event_context *ctx;
7924 		struct trace_entry *entry = record;
7925 
7926 		rcu_read_lock();
7927 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7928 		if (!ctx)
7929 			goto unlock;
7930 
7931 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7932 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7933 				continue;
7934 			if (event->attr.config != entry->type)
7935 				continue;
7936 			if (perf_tp_event_match(event, &data, regs))
7937 				perf_swevent_event(event, count, &data, regs);
7938 		}
7939 unlock:
7940 		rcu_read_unlock();
7941 	}
7942 
7943 	perf_swevent_put_recursion_context(rctx);
7944 }
7945 EXPORT_SYMBOL_GPL(perf_tp_event);
7946 
7947 static void tp_perf_event_destroy(struct perf_event *event)
7948 {
7949 	perf_trace_destroy(event);
7950 }
7951 
7952 static int perf_tp_event_init(struct perf_event *event)
7953 {
7954 	int err;
7955 
7956 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7957 		return -ENOENT;
7958 
7959 	/*
7960 	 * no branch sampling for tracepoint events
7961 	 */
7962 	if (has_branch_stack(event))
7963 		return -EOPNOTSUPP;
7964 
7965 	err = perf_trace_init(event);
7966 	if (err)
7967 		return err;
7968 
7969 	event->destroy = tp_perf_event_destroy;
7970 
7971 	return 0;
7972 }
7973 
7974 static struct pmu perf_tracepoint = {
7975 	.task_ctx_nr	= perf_sw_context,
7976 
7977 	.event_init	= perf_tp_event_init,
7978 	.add		= perf_trace_add,
7979 	.del		= perf_trace_del,
7980 	.start		= perf_swevent_start,
7981 	.stop		= perf_swevent_stop,
7982 	.read		= perf_swevent_read,
7983 };
7984 
7985 static inline void perf_tp_register(void)
7986 {
7987 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7988 }
7989 
7990 static void perf_event_free_filter(struct perf_event *event)
7991 {
7992 	ftrace_profile_free_filter(event);
7993 }
7994 
7995 #ifdef CONFIG_BPF_SYSCALL
7996 static void bpf_overflow_handler(struct perf_event *event,
7997 				 struct perf_sample_data *data,
7998 				 struct pt_regs *regs)
7999 {
8000 	struct bpf_perf_event_data_kern ctx = {
8001 		.data = data,
8002 		.event = event,
8003 	};
8004 	int ret = 0;
8005 
8006 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8007 	preempt_disable();
8008 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8009 		goto out;
8010 	rcu_read_lock();
8011 	ret = BPF_PROG_RUN(event->prog, &ctx);
8012 	rcu_read_unlock();
8013 out:
8014 	__this_cpu_dec(bpf_prog_active);
8015 	preempt_enable();
8016 	if (!ret)
8017 		return;
8018 
8019 	event->orig_overflow_handler(event, data, regs);
8020 }
8021 
8022 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8023 {
8024 	struct bpf_prog *prog;
8025 
8026 	if (event->overflow_handler_context)
8027 		/* hw breakpoint or kernel counter */
8028 		return -EINVAL;
8029 
8030 	if (event->prog)
8031 		return -EEXIST;
8032 
8033 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8034 	if (IS_ERR(prog))
8035 		return PTR_ERR(prog);
8036 
8037 	event->prog = prog;
8038 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8039 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8040 	return 0;
8041 }
8042 
8043 static void perf_event_free_bpf_handler(struct perf_event *event)
8044 {
8045 	struct bpf_prog *prog = event->prog;
8046 
8047 	if (!prog)
8048 		return;
8049 
8050 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8051 	event->prog = NULL;
8052 	bpf_prog_put(prog);
8053 }
8054 #else
8055 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8056 {
8057 	return -EOPNOTSUPP;
8058 }
8059 static void perf_event_free_bpf_handler(struct perf_event *event)
8060 {
8061 }
8062 #endif
8063 
8064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8065 {
8066 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8067 	struct bpf_prog *prog;
8068 	int ret;
8069 
8070 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8071 		return perf_event_set_bpf_handler(event, prog_fd);
8072 
8073 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8074 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8075 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8076 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8077 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8078 		return -EINVAL;
8079 
8080 	prog = bpf_prog_get(prog_fd);
8081 	if (IS_ERR(prog))
8082 		return PTR_ERR(prog);
8083 
8084 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8085 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8086 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8087 		/* valid fd, but invalid bpf program type */
8088 		bpf_prog_put(prog);
8089 		return -EINVAL;
8090 	}
8091 
8092 	if (is_tracepoint || is_syscall_tp) {
8093 		int off = trace_event_get_offsets(event->tp_event);
8094 
8095 		if (prog->aux->max_ctx_offset > off) {
8096 			bpf_prog_put(prog);
8097 			return -EACCES;
8098 		}
8099 	}
8100 
8101 	ret = perf_event_attach_bpf_prog(event, prog);
8102 	if (ret)
8103 		bpf_prog_put(prog);
8104 	return ret;
8105 }
8106 
8107 static void perf_event_free_bpf_prog(struct perf_event *event)
8108 {
8109 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8110 		perf_event_free_bpf_handler(event);
8111 		return;
8112 	}
8113 	perf_event_detach_bpf_prog(event);
8114 }
8115 
8116 #else
8117 
8118 static inline void perf_tp_register(void)
8119 {
8120 }
8121 
8122 static void perf_event_free_filter(struct perf_event *event)
8123 {
8124 }
8125 
8126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8127 {
8128 	return -ENOENT;
8129 }
8130 
8131 static void perf_event_free_bpf_prog(struct perf_event *event)
8132 {
8133 }
8134 #endif /* CONFIG_EVENT_TRACING */
8135 
8136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8137 void perf_bp_event(struct perf_event *bp, void *data)
8138 {
8139 	struct perf_sample_data sample;
8140 	struct pt_regs *regs = data;
8141 
8142 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143 
8144 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145 		perf_swevent_event(bp, 1, &sample, regs);
8146 }
8147 #endif
8148 
8149 /*
8150  * Allocate a new address filter
8151  */
8152 static struct perf_addr_filter *
8153 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8154 {
8155 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8156 	struct perf_addr_filter *filter;
8157 
8158 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8159 	if (!filter)
8160 		return NULL;
8161 
8162 	INIT_LIST_HEAD(&filter->entry);
8163 	list_add_tail(&filter->entry, filters);
8164 
8165 	return filter;
8166 }
8167 
8168 static void free_filters_list(struct list_head *filters)
8169 {
8170 	struct perf_addr_filter *filter, *iter;
8171 
8172 	list_for_each_entry_safe(filter, iter, filters, entry) {
8173 		if (filter->inode)
8174 			iput(filter->inode);
8175 		list_del(&filter->entry);
8176 		kfree(filter);
8177 	}
8178 }
8179 
8180 /*
8181  * Free existing address filters and optionally install new ones
8182  */
8183 static void perf_addr_filters_splice(struct perf_event *event,
8184 				     struct list_head *head)
8185 {
8186 	unsigned long flags;
8187 	LIST_HEAD(list);
8188 
8189 	if (!has_addr_filter(event))
8190 		return;
8191 
8192 	/* don't bother with children, they don't have their own filters */
8193 	if (event->parent)
8194 		return;
8195 
8196 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8197 
8198 	list_splice_init(&event->addr_filters.list, &list);
8199 	if (head)
8200 		list_splice(head, &event->addr_filters.list);
8201 
8202 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8203 
8204 	free_filters_list(&list);
8205 }
8206 
8207 /*
8208  * Scan through mm's vmas and see if one of them matches the
8209  * @filter; if so, adjust filter's address range.
8210  * Called with mm::mmap_sem down for reading.
8211  */
8212 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8213 					    struct mm_struct *mm)
8214 {
8215 	struct vm_area_struct *vma;
8216 
8217 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8218 		struct file *file = vma->vm_file;
8219 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8220 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8221 
8222 		if (!file)
8223 			continue;
8224 
8225 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8226 			continue;
8227 
8228 		return vma->vm_start;
8229 	}
8230 
8231 	return 0;
8232 }
8233 
8234 /*
8235  * Update event's address range filters based on the
8236  * task's existing mappings, if any.
8237  */
8238 static void perf_event_addr_filters_apply(struct perf_event *event)
8239 {
8240 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8241 	struct task_struct *task = READ_ONCE(event->ctx->task);
8242 	struct perf_addr_filter *filter;
8243 	struct mm_struct *mm = NULL;
8244 	unsigned int count = 0;
8245 	unsigned long flags;
8246 
8247 	/*
8248 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8249 	 * will stop on the parent's child_mutex that our caller is also holding
8250 	 */
8251 	if (task == TASK_TOMBSTONE)
8252 		return;
8253 
8254 	if (!ifh->nr_file_filters)
8255 		return;
8256 
8257 	mm = get_task_mm(event->ctx->task);
8258 	if (!mm)
8259 		goto restart;
8260 
8261 	down_read(&mm->mmap_sem);
8262 
8263 	raw_spin_lock_irqsave(&ifh->lock, flags);
8264 	list_for_each_entry(filter, &ifh->list, entry) {
8265 		event->addr_filters_offs[count] = 0;
8266 
8267 		/*
8268 		 * Adjust base offset if the filter is associated to a binary
8269 		 * that needs to be mapped:
8270 		 */
8271 		if (filter->inode)
8272 			event->addr_filters_offs[count] =
8273 				perf_addr_filter_apply(filter, mm);
8274 
8275 		count++;
8276 	}
8277 
8278 	event->addr_filters_gen++;
8279 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8280 
8281 	up_read(&mm->mmap_sem);
8282 
8283 	mmput(mm);
8284 
8285 restart:
8286 	perf_event_stop(event, 1);
8287 }
8288 
8289 /*
8290  * Address range filtering: limiting the data to certain
8291  * instruction address ranges. Filters are ioctl()ed to us from
8292  * userspace as ascii strings.
8293  *
8294  * Filter string format:
8295  *
8296  * ACTION RANGE_SPEC
8297  * where ACTION is one of the
8298  *  * "filter": limit the trace to this region
8299  *  * "start": start tracing from this address
8300  *  * "stop": stop tracing at this address/region;
8301  * RANGE_SPEC is
8302  *  * for kernel addresses: <start address>[/<size>]
8303  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8304  *
8305  * if <size> is not specified, the range is treated as a single address.
8306  */
8307 enum {
8308 	IF_ACT_NONE = -1,
8309 	IF_ACT_FILTER,
8310 	IF_ACT_START,
8311 	IF_ACT_STOP,
8312 	IF_SRC_FILE,
8313 	IF_SRC_KERNEL,
8314 	IF_SRC_FILEADDR,
8315 	IF_SRC_KERNELADDR,
8316 };
8317 
8318 enum {
8319 	IF_STATE_ACTION = 0,
8320 	IF_STATE_SOURCE,
8321 	IF_STATE_END,
8322 };
8323 
8324 static const match_table_t if_tokens = {
8325 	{ IF_ACT_FILTER,	"filter" },
8326 	{ IF_ACT_START,		"start" },
8327 	{ IF_ACT_STOP,		"stop" },
8328 	{ IF_SRC_FILE,		"%u/%u@%s" },
8329 	{ IF_SRC_KERNEL,	"%u/%u" },
8330 	{ IF_SRC_FILEADDR,	"%u@%s" },
8331 	{ IF_SRC_KERNELADDR,	"%u" },
8332 	{ IF_ACT_NONE,		NULL },
8333 };
8334 
8335 /*
8336  * Address filter string parser
8337  */
8338 static int
8339 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8340 			     struct list_head *filters)
8341 {
8342 	struct perf_addr_filter *filter = NULL;
8343 	char *start, *orig, *filename = NULL;
8344 	struct path path;
8345 	substring_t args[MAX_OPT_ARGS];
8346 	int state = IF_STATE_ACTION, token;
8347 	unsigned int kernel = 0;
8348 	int ret = -EINVAL;
8349 
8350 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8351 	if (!fstr)
8352 		return -ENOMEM;
8353 
8354 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8355 		ret = -EINVAL;
8356 
8357 		if (!*start)
8358 			continue;
8359 
8360 		/* filter definition begins */
8361 		if (state == IF_STATE_ACTION) {
8362 			filter = perf_addr_filter_new(event, filters);
8363 			if (!filter)
8364 				goto fail;
8365 		}
8366 
8367 		token = match_token(start, if_tokens, args);
8368 		switch (token) {
8369 		case IF_ACT_FILTER:
8370 		case IF_ACT_START:
8371 			filter->filter = 1;
8372 
8373 		case IF_ACT_STOP:
8374 			if (state != IF_STATE_ACTION)
8375 				goto fail;
8376 
8377 			state = IF_STATE_SOURCE;
8378 			break;
8379 
8380 		case IF_SRC_KERNELADDR:
8381 		case IF_SRC_KERNEL:
8382 			kernel = 1;
8383 
8384 		case IF_SRC_FILEADDR:
8385 		case IF_SRC_FILE:
8386 			if (state != IF_STATE_SOURCE)
8387 				goto fail;
8388 
8389 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8390 				filter->range = 1;
8391 
8392 			*args[0].to = 0;
8393 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8394 			if (ret)
8395 				goto fail;
8396 
8397 			if (filter->range) {
8398 				*args[1].to = 0;
8399 				ret = kstrtoul(args[1].from, 0, &filter->size);
8400 				if (ret)
8401 					goto fail;
8402 			}
8403 
8404 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8405 				int fpos = filter->range ? 2 : 1;
8406 
8407 				filename = match_strdup(&args[fpos]);
8408 				if (!filename) {
8409 					ret = -ENOMEM;
8410 					goto fail;
8411 				}
8412 			}
8413 
8414 			state = IF_STATE_END;
8415 			break;
8416 
8417 		default:
8418 			goto fail;
8419 		}
8420 
8421 		/*
8422 		 * Filter definition is fully parsed, validate and install it.
8423 		 * Make sure that it doesn't contradict itself or the event's
8424 		 * attribute.
8425 		 */
8426 		if (state == IF_STATE_END) {
8427 			ret = -EINVAL;
8428 			if (kernel && event->attr.exclude_kernel)
8429 				goto fail;
8430 
8431 			if (!kernel) {
8432 				if (!filename)
8433 					goto fail;
8434 
8435 				/*
8436 				 * For now, we only support file-based filters
8437 				 * in per-task events; doing so for CPU-wide
8438 				 * events requires additional context switching
8439 				 * trickery, since same object code will be
8440 				 * mapped at different virtual addresses in
8441 				 * different processes.
8442 				 */
8443 				ret = -EOPNOTSUPP;
8444 				if (!event->ctx->task)
8445 					goto fail_free_name;
8446 
8447 				/* look up the path and grab its inode */
8448 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8449 				if (ret)
8450 					goto fail_free_name;
8451 
8452 				filter->inode = igrab(d_inode(path.dentry));
8453 				path_put(&path);
8454 				kfree(filename);
8455 				filename = NULL;
8456 
8457 				ret = -EINVAL;
8458 				if (!filter->inode ||
8459 				    !S_ISREG(filter->inode->i_mode))
8460 					/* free_filters_list() will iput() */
8461 					goto fail;
8462 
8463 				event->addr_filters.nr_file_filters++;
8464 			}
8465 
8466 			/* ready to consume more filters */
8467 			state = IF_STATE_ACTION;
8468 			filter = NULL;
8469 		}
8470 	}
8471 
8472 	if (state != IF_STATE_ACTION)
8473 		goto fail;
8474 
8475 	kfree(orig);
8476 
8477 	return 0;
8478 
8479 fail_free_name:
8480 	kfree(filename);
8481 fail:
8482 	free_filters_list(filters);
8483 	kfree(orig);
8484 
8485 	return ret;
8486 }
8487 
8488 static int
8489 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8490 {
8491 	LIST_HEAD(filters);
8492 	int ret;
8493 
8494 	/*
8495 	 * Since this is called in perf_ioctl() path, we're already holding
8496 	 * ctx::mutex.
8497 	 */
8498 	lockdep_assert_held(&event->ctx->mutex);
8499 
8500 	if (WARN_ON_ONCE(event->parent))
8501 		return -EINVAL;
8502 
8503 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8504 	if (ret)
8505 		goto fail_clear_files;
8506 
8507 	ret = event->pmu->addr_filters_validate(&filters);
8508 	if (ret)
8509 		goto fail_free_filters;
8510 
8511 	/* remove existing filters, if any */
8512 	perf_addr_filters_splice(event, &filters);
8513 
8514 	/* install new filters */
8515 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8516 
8517 	return ret;
8518 
8519 fail_free_filters:
8520 	free_filters_list(&filters);
8521 
8522 fail_clear_files:
8523 	event->addr_filters.nr_file_filters = 0;
8524 
8525 	return ret;
8526 }
8527 
8528 static int
8529 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8530 {
8531 	struct perf_event_context *ctx = event->ctx;
8532 	int ret;
8533 
8534 	/*
8535 	 * Beware, here be dragons!!
8536 	 *
8537 	 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8538 	 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8539 	 * perf_event_ctx_lock() we already have a reference on ctx.
8540 	 *
8541 	 * This can result in event getting moved to a different ctx, but that
8542 	 * does not affect the tracepoint state.
8543 	 */
8544 	mutex_unlock(&ctx->mutex);
8545 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8546 	mutex_lock(&ctx->mutex);
8547 
8548 	return ret;
8549 }
8550 
8551 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8552 {
8553 	char *filter_str;
8554 	int ret = -EINVAL;
8555 
8556 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8557 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8558 	    !has_addr_filter(event))
8559 		return -EINVAL;
8560 
8561 	filter_str = strndup_user(arg, PAGE_SIZE);
8562 	if (IS_ERR(filter_str))
8563 		return PTR_ERR(filter_str);
8564 
8565 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8566 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8567 		ret = perf_tracepoint_set_filter(event, filter_str);
8568 	else if (has_addr_filter(event))
8569 		ret = perf_event_set_addr_filter(event, filter_str);
8570 
8571 	kfree(filter_str);
8572 	return ret;
8573 }
8574 
8575 /*
8576  * hrtimer based swevent callback
8577  */
8578 
8579 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8580 {
8581 	enum hrtimer_restart ret = HRTIMER_RESTART;
8582 	struct perf_sample_data data;
8583 	struct pt_regs *regs;
8584 	struct perf_event *event;
8585 	u64 period;
8586 
8587 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8588 
8589 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8590 		return HRTIMER_NORESTART;
8591 
8592 	event->pmu->read(event);
8593 
8594 	perf_sample_data_init(&data, 0, event->hw.last_period);
8595 	regs = get_irq_regs();
8596 
8597 	if (regs && !perf_exclude_event(event, regs)) {
8598 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8599 			if (__perf_event_overflow(event, 1, &data, regs))
8600 				ret = HRTIMER_NORESTART;
8601 	}
8602 
8603 	period = max_t(u64, 10000, event->hw.sample_period);
8604 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8605 
8606 	return ret;
8607 }
8608 
8609 static void perf_swevent_start_hrtimer(struct perf_event *event)
8610 {
8611 	struct hw_perf_event *hwc = &event->hw;
8612 	s64 period;
8613 
8614 	if (!is_sampling_event(event))
8615 		return;
8616 
8617 	period = local64_read(&hwc->period_left);
8618 	if (period) {
8619 		if (period < 0)
8620 			period = 10000;
8621 
8622 		local64_set(&hwc->period_left, 0);
8623 	} else {
8624 		period = max_t(u64, 10000, hwc->sample_period);
8625 	}
8626 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8627 		      HRTIMER_MODE_REL_PINNED);
8628 }
8629 
8630 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8631 {
8632 	struct hw_perf_event *hwc = &event->hw;
8633 
8634 	if (is_sampling_event(event)) {
8635 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8636 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8637 
8638 		hrtimer_cancel(&hwc->hrtimer);
8639 	}
8640 }
8641 
8642 static void perf_swevent_init_hrtimer(struct perf_event *event)
8643 {
8644 	struct hw_perf_event *hwc = &event->hw;
8645 
8646 	if (!is_sampling_event(event))
8647 		return;
8648 
8649 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8650 	hwc->hrtimer.function = perf_swevent_hrtimer;
8651 
8652 	/*
8653 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8654 	 * mapping and avoid the whole period adjust feedback stuff.
8655 	 */
8656 	if (event->attr.freq) {
8657 		long freq = event->attr.sample_freq;
8658 
8659 		event->attr.sample_period = NSEC_PER_SEC / freq;
8660 		hwc->sample_period = event->attr.sample_period;
8661 		local64_set(&hwc->period_left, hwc->sample_period);
8662 		hwc->last_period = hwc->sample_period;
8663 		event->attr.freq = 0;
8664 	}
8665 }
8666 
8667 /*
8668  * Software event: cpu wall time clock
8669  */
8670 
8671 static void cpu_clock_event_update(struct perf_event *event)
8672 {
8673 	s64 prev;
8674 	u64 now;
8675 
8676 	now = local_clock();
8677 	prev = local64_xchg(&event->hw.prev_count, now);
8678 	local64_add(now - prev, &event->count);
8679 }
8680 
8681 static void cpu_clock_event_start(struct perf_event *event, int flags)
8682 {
8683 	local64_set(&event->hw.prev_count, local_clock());
8684 	perf_swevent_start_hrtimer(event);
8685 }
8686 
8687 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8688 {
8689 	perf_swevent_cancel_hrtimer(event);
8690 	cpu_clock_event_update(event);
8691 }
8692 
8693 static int cpu_clock_event_add(struct perf_event *event, int flags)
8694 {
8695 	if (flags & PERF_EF_START)
8696 		cpu_clock_event_start(event, flags);
8697 	perf_event_update_userpage(event);
8698 
8699 	return 0;
8700 }
8701 
8702 static void cpu_clock_event_del(struct perf_event *event, int flags)
8703 {
8704 	cpu_clock_event_stop(event, flags);
8705 }
8706 
8707 static void cpu_clock_event_read(struct perf_event *event)
8708 {
8709 	cpu_clock_event_update(event);
8710 }
8711 
8712 static int cpu_clock_event_init(struct perf_event *event)
8713 {
8714 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8715 		return -ENOENT;
8716 
8717 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8718 		return -ENOENT;
8719 
8720 	/*
8721 	 * no branch sampling for software events
8722 	 */
8723 	if (has_branch_stack(event))
8724 		return -EOPNOTSUPP;
8725 
8726 	perf_swevent_init_hrtimer(event);
8727 
8728 	return 0;
8729 }
8730 
8731 static struct pmu perf_cpu_clock = {
8732 	.task_ctx_nr	= perf_sw_context,
8733 
8734 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8735 
8736 	.event_init	= cpu_clock_event_init,
8737 	.add		= cpu_clock_event_add,
8738 	.del		= cpu_clock_event_del,
8739 	.start		= cpu_clock_event_start,
8740 	.stop		= cpu_clock_event_stop,
8741 	.read		= cpu_clock_event_read,
8742 };
8743 
8744 /*
8745  * Software event: task time clock
8746  */
8747 
8748 static void task_clock_event_update(struct perf_event *event, u64 now)
8749 {
8750 	u64 prev;
8751 	s64 delta;
8752 
8753 	prev = local64_xchg(&event->hw.prev_count, now);
8754 	delta = now - prev;
8755 	local64_add(delta, &event->count);
8756 }
8757 
8758 static void task_clock_event_start(struct perf_event *event, int flags)
8759 {
8760 	local64_set(&event->hw.prev_count, event->ctx->time);
8761 	perf_swevent_start_hrtimer(event);
8762 }
8763 
8764 static void task_clock_event_stop(struct perf_event *event, int flags)
8765 {
8766 	perf_swevent_cancel_hrtimer(event);
8767 	task_clock_event_update(event, event->ctx->time);
8768 }
8769 
8770 static int task_clock_event_add(struct perf_event *event, int flags)
8771 {
8772 	if (flags & PERF_EF_START)
8773 		task_clock_event_start(event, flags);
8774 	perf_event_update_userpage(event);
8775 
8776 	return 0;
8777 }
8778 
8779 static void task_clock_event_del(struct perf_event *event, int flags)
8780 {
8781 	task_clock_event_stop(event, PERF_EF_UPDATE);
8782 }
8783 
8784 static void task_clock_event_read(struct perf_event *event)
8785 {
8786 	u64 now = perf_clock();
8787 	u64 delta = now - event->ctx->timestamp;
8788 	u64 time = event->ctx->time + delta;
8789 
8790 	task_clock_event_update(event, time);
8791 }
8792 
8793 static int task_clock_event_init(struct perf_event *event)
8794 {
8795 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8796 		return -ENOENT;
8797 
8798 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8799 		return -ENOENT;
8800 
8801 	/*
8802 	 * no branch sampling for software events
8803 	 */
8804 	if (has_branch_stack(event))
8805 		return -EOPNOTSUPP;
8806 
8807 	perf_swevent_init_hrtimer(event);
8808 
8809 	return 0;
8810 }
8811 
8812 static struct pmu perf_task_clock = {
8813 	.task_ctx_nr	= perf_sw_context,
8814 
8815 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8816 
8817 	.event_init	= task_clock_event_init,
8818 	.add		= task_clock_event_add,
8819 	.del		= task_clock_event_del,
8820 	.start		= task_clock_event_start,
8821 	.stop		= task_clock_event_stop,
8822 	.read		= task_clock_event_read,
8823 };
8824 
8825 static void perf_pmu_nop_void(struct pmu *pmu)
8826 {
8827 }
8828 
8829 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8830 {
8831 }
8832 
8833 static int perf_pmu_nop_int(struct pmu *pmu)
8834 {
8835 	return 0;
8836 }
8837 
8838 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8839 
8840 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8841 {
8842 	__this_cpu_write(nop_txn_flags, flags);
8843 
8844 	if (flags & ~PERF_PMU_TXN_ADD)
8845 		return;
8846 
8847 	perf_pmu_disable(pmu);
8848 }
8849 
8850 static int perf_pmu_commit_txn(struct pmu *pmu)
8851 {
8852 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8853 
8854 	__this_cpu_write(nop_txn_flags, 0);
8855 
8856 	if (flags & ~PERF_PMU_TXN_ADD)
8857 		return 0;
8858 
8859 	perf_pmu_enable(pmu);
8860 	return 0;
8861 }
8862 
8863 static void perf_pmu_cancel_txn(struct pmu *pmu)
8864 {
8865 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8866 
8867 	__this_cpu_write(nop_txn_flags, 0);
8868 
8869 	if (flags & ~PERF_PMU_TXN_ADD)
8870 		return;
8871 
8872 	perf_pmu_enable(pmu);
8873 }
8874 
8875 static int perf_event_idx_default(struct perf_event *event)
8876 {
8877 	return 0;
8878 }
8879 
8880 /*
8881  * Ensures all contexts with the same task_ctx_nr have the same
8882  * pmu_cpu_context too.
8883  */
8884 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8885 {
8886 	struct pmu *pmu;
8887 
8888 	if (ctxn < 0)
8889 		return NULL;
8890 
8891 	list_for_each_entry(pmu, &pmus, entry) {
8892 		if (pmu->task_ctx_nr == ctxn)
8893 			return pmu->pmu_cpu_context;
8894 	}
8895 
8896 	return NULL;
8897 }
8898 
8899 static void free_pmu_context(struct pmu *pmu)
8900 {
8901 	/*
8902 	 * Static contexts such as perf_sw_context have a global lifetime
8903 	 * and may be shared between different PMUs. Avoid freeing them
8904 	 * when a single PMU is going away.
8905 	 */
8906 	if (pmu->task_ctx_nr > perf_invalid_context)
8907 		return;
8908 
8909 	mutex_lock(&pmus_lock);
8910 	free_percpu(pmu->pmu_cpu_context);
8911 	mutex_unlock(&pmus_lock);
8912 }
8913 
8914 /*
8915  * Let userspace know that this PMU supports address range filtering:
8916  */
8917 static ssize_t nr_addr_filters_show(struct device *dev,
8918 				    struct device_attribute *attr,
8919 				    char *page)
8920 {
8921 	struct pmu *pmu = dev_get_drvdata(dev);
8922 
8923 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8924 }
8925 DEVICE_ATTR_RO(nr_addr_filters);
8926 
8927 static struct idr pmu_idr;
8928 
8929 static ssize_t
8930 type_show(struct device *dev, struct device_attribute *attr, char *page)
8931 {
8932 	struct pmu *pmu = dev_get_drvdata(dev);
8933 
8934 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8935 }
8936 static DEVICE_ATTR_RO(type);
8937 
8938 static ssize_t
8939 perf_event_mux_interval_ms_show(struct device *dev,
8940 				struct device_attribute *attr,
8941 				char *page)
8942 {
8943 	struct pmu *pmu = dev_get_drvdata(dev);
8944 
8945 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8946 }
8947 
8948 static DEFINE_MUTEX(mux_interval_mutex);
8949 
8950 static ssize_t
8951 perf_event_mux_interval_ms_store(struct device *dev,
8952 				 struct device_attribute *attr,
8953 				 const char *buf, size_t count)
8954 {
8955 	struct pmu *pmu = dev_get_drvdata(dev);
8956 	int timer, cpu, ret;
8957 
8958 	ret = kstrtoint(buf, 0, &timer);
8959 	if (ret)
8960 		return ret;
8961 
8962 	if (timer < 1)
8963 		return -EINVAL;
8964 
8965 	/* same value, noting to do */
8966 	if (timer == pmu->hrtimer_interval_ms)
8967 		return count;
8968 
8969 	mutex_lock(&mux_interval_mutex);
8970 	pmu->hrtimer_interval_ms = timer;
8971 
8972 	/* update all cpuctx for this PMU */
8973 	cpus_read_lock();
8974 	for_each_online_cpu(cpu) {
8975 		struct perf_cpu_context *cpuctx;
8976 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8977 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8978 
8979 		cpu_function_call(cpu,
8980 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8981 	}
8982 	cpus_read_unlock();
8983 	mutex_unlock(&mux_interval_mutex);
8984 
8985 	return count;
8986 }
8987 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8988 
8989 static struct attribute *pmu_dev_attrs[] = {
8990 	&dev_attr_type.attr,
8991 	&dev_attr_perf_event_mux_interval_ms.attr,
8992 	NULL,
8993 };
8994 ATTRIBUTE_GROUPS(pmu_dev);
8995 
8996 static int pmu_bus_running;
8997 static struct bus_type pmu_bus = {
8998 	.name		= "event_source",
8999 	.dev_groups	= pmu_dev_groups,
9000 };
9001 
9002 static void pmu_dev_release(struct device *dev)
9003 {
9004 	kfree(dev);
9005 }
9006 
9007 static int pmu_dev_alloc(struct pmu *pmu)
9008 {
9009 	int ret = -ENOMEM;
9010 
9011 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9012 	if (!pmu->dev)
9013 		goto out;
9014 
9015 	pmu->dev->groups = pmu->attr_groups;
9016 	device_initialize(pmu->dev);
9017 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9018 	if (ret)
9019 		goto free_dev;
9020 
9021 	dev_set_drvdata(pmu->dev, pmu);
9022 	pmu->dev->bus = &pmu_bus;
9023 	pmu->dev->release = pmu_dev_release;
9024 	ret = device_add(pmu->dev);
9025 	if (ret)
9026 		goto free_dev;
9027 
9028 	/* For PMUs with address filters, throw in an extra attribute: */
9029 	if (pmu->nr_addr_filters)
9030 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9031 
9032 	if (ret)
9033 		goto del_dev;
9034 
9035 out:
9036 	return ret;
9037 
9038 del_dev:
9039 	device_del(pmu->dev);
9040 
9041 free_dev:
9042 	put_device(pmu->dev);
9043 	goto out;
9044 }
9045 
9046 static struct lock_class_key cpuctx_mutex;
9047 static struct lock_class_key cpuctx_lock;
9048 
9049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9050 {
9051 	int cpu, ret;
9052 
9053 	mutex_lock(&pmus_lock);
9054 	ret = -ENOMEM;
9055 	pmu->pmu_disable_count = alloc_percpu(int);
9056 	if (!pmu->pmu_disable_count)
9057 		goto unlock;
9058 
9059 	pmu->type = -1;
9060 	if (!name)
9061 		goto skip_type;
9062 	pmu->name = name;
9063 
9064 	if (type < 0) {
9065 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9066 		if (type < 0) {
9067 			ret = type;
9068 			goto free_pdc;
9069 		}
9070 	}
9071 	pmu->type = type;
9072 
9073 	if (pmu_bus_running) {
9074 		ret = pmu_dev_alloc(pmu);
9075 		if (ret)
9076 			goto free_idr;
9077 	}
9078 
9079 skip_type:
9080 	if (pmu->task_ctx_nr == perf_hw_context) {
9081 		static int hw_context_taken = 0;
9082 
9083 		/*
9084 		 * Other than systems with heterogeneous CPUs, it never makes
9085 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9086 		 * uncore must use perf_invalid_context.
9087 		 */
9088 		if (WARN_ON_ONCE(hw_context_taken &&
9089 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9090 			pmu->task_ctx_nr = perf_invalid_context;
9091 
9092 		hw_context_taken = 1;
9093 	}
9094 
9095 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9096 	if (pmu->pmu_cpu_context)
9097 		goto got_cpu_context;
9098 
9099 	ret = -ENOMEM;
9100 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9101 	if (!pmu->pmu_cpu_context)
9102 		goto free_dev;
9103 
9104 	for_each_possible_cpu(cpu) {
9105 		struct perf_cpu_context *cpuctx;
9106 
9107 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9108 		__perf_event_init_context(&cpuctx->ctx);
9109 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9110 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9111 		cpuctx->ctx.pmu = pmu;
9112 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9113 
9114 		__perf_mux_hrtimer_init(cpuctx, cpu);
9115 	}
9116 
9117 got_cpu_context:
9118 	if (!pmu->start_txn) {
9119 		if (pmu->pmu_enable) {
9120 			/*
9121 			 * If we have pmu_enable/pmu_disable calls, install
9122 			 * transaction stubs that use that to try and batch
9123 			 * hardware accesses.
9124 			 */
9125 			pmu->start_txn  = perf_pmu_start_txn;
9126 			pmu->commit_txn = perf_pmu_commit_txn;
9127 			pmu->cancel_txn = perf_pmu_cancel_txn;
9128 		} else {
9129 			pmu->start_txn  = perf_pmu_nop_txn;
9130 			pmu->commit_txn = perf_pmu_nop_int;
9131 			pmu->cancel_txn = perf_pmu_nop_void;
9132 		}
9133 	}
9134 
9135 	if (!pmu->pmu_enable) {
9136 		pmu->pmu_enable  = perf_pmu_nop_void;
9137 		pmu->pmu_disable = perf_pmu_nop_void;
9138 	}
9139 
9140 	if (!pmu->event_idx)
9141 		pmu->event_idx = perf_event_idx_default;
9142 
9143 	list_add_rcu(&pmu->entry, &pmus);
9144 	atomic_set(&pmu->exclusive_cnt, 0);
9145 	ret = 0;
9146 unlock:
9147 	mutex_unlock(&pmus_lock);
9148 
9149 	return ret;
9150 
9151 free_dev:
9152 	device_del(pmu->dev);
9153 	put_device(pmu->dev);
9154 
9155 free_idr:
9156 	if (pmu->type >= PERF_TYPE_MAX)
9157 		idr_remove(&pmu_idr, pmu->type);
9158 
9159 free_pdc:
9160 	free_percpu(pmu->pmu_disable_count);
9161 	goto unlock;
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_register);
9164 
9165 void perf_pmu_unregister(struct pmu *pmu)
9166 {
9167 	int remove_device;
9168 
9169 	mutex_lock(&pmus_lock);
9170 	remove_device = pmu_bus_running;
9171 	list_del_rcu(&pmu->entry);
9172 	mutex_unlock(&pmus_lock);
9173 
9174 	/*
9175 	 * We dereference the pmu list under both SRCU and regular RCU, so
9176 	 * synchronize against both of those.
9177 	 */
9178 	synchronize_srcu(&pmus_srcu);
9179 	synchronize_rcu();
9180 
9181 	free_percpu(pmu->pmu_disable_count);
9182 	if (pmu->type >= PERF_TYPE_MAX)
9183 		idr_remove(&pmu_idr, pmu->type);
9184 	if (remove_device) {
9185 		if (pmu->nr_addr_filters)
9186 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9187 		device_del(pmu->dev);
9188 		put_device(pmu->dev);
9189 	}
9190 	free_pmu_context(pmu);
9191 }
9192 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9193 
9194 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9195 {
9196 	struct perf_event_context *ctx = NULL;
9197 	int ret;
9198 
9199 	if (!try_module_get(pmu->module))
9200 		return -ENODEV;
9201 
9202 	/*
9203 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9204 	 * for example, validate if the group fits on the PMU. Therefore,
9205 	 * if this is a sibling event, acquire the ctx->mutex to protect
9206 	 * the sibling_list.
9207 	 */
9208 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9209 		/*
9210 		 * This ctx->mutex can nest when we're called through
9211 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9212 		 */
9213 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9214 						 SINGLE_DEPTH_NESTING);
9215 		BUG_ON(!ctx);
9216 	}
9217 
9218 	event->pmu = pmu;
9219 	ret = pmu->event_init(event);
9220 
9221 	if (ctx)
9222 		perf_event_ctx_unlock(event->group_leader, ctx);
9223 
9224 	if (ret)
9225 		module_put(pmu->module);
9226 
9227 	return ret;
9228 }
9229 
9230 static struct pmu *perf_init_event(struct perf_event *event)
9231 {
9232 	struct pmu *pmu;
9233 	int idx;
9234 	int ret;
9235 
9236 	idx = srcu_read_lock(&pmus_srcu);
9237 
9238 	/* Try parent's PMU first: */
9239 	if (event->parent && event->parent->pmu) {
9240 		pmu = event->parent->pmu;
9241 		ret = perf_try_init_event(pmu, event);
9242 		if (!ret)
9243 			goto unlock;
9244 	}
9245 
9246 	rcu_read_lock();
9247 	pmu = idr_find(&pmu_idr, event->attr.type);
9248 	rcu_read_unlock();
9249 	if (pmu) {
9250 		ret = perf_try_init_event(pmu, event);
9251 		if (ret)
9252 			pmu = ERR_PTR(ret);
9253 		goto unlock;
9254 	}
9255 
9256 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9257 		ret = perf_try_init_event(pmu, event);
9258 		if (!ret)
9259 			goto unlock;
9260 
9261 		if (ret != -ENOENT) {
9262 			pmu = ERR_PTR(ret);
9263 			goto unlock;
9264 		}
9265 	}
9266 	pmu = ERR_PTR(-ENOENT);
9267 unlock:
9268 	srcu_read_unlock(&pmus_srcu, idx);
9269 
9270 	return pmu;
9271 }
9272 
9273 static void attach_sb_event(struct perf_event *event)
9274 {
9275 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9276 
9277 	raw_spin_lock(&pel->lock);
9278 	list_add_rcu(&event->sb_list, &pel->list);
9279 	raw_spin_unlock(&pel->lock);
9280 }
9281 
9282 /*
9283  * We keep a list of all !task (and therefore per-cpu) events
9284  * that need to receive side-band records.
9285  *
9286  * This avoids having to scan all the various PMU per-cpu contexts
9287  * looking for them.
9288  */
9289 static void account_pmu_sb_event(struct perf_event *event)
9290 {
9291 	if (is_sb_event(event))
9292 		attach_sb_event(event);
9293 }
9294 
9295 static void account_event_cpu(struct perf_event *event, int cpu)
9296 {
9297 	if (event->parent)
9298 		return;
9299 
9300 	if (is_cgroup_event(event))
9301 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9302 }
9303 
9304 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9305 static void account_freq_event_nohz(void)
9306 {
9307 #ifdef CONFIG_NO_HZ_FULL
9308 	/* Lock so we don't race with concurrent unaccount */
9309 	spin_lock(&nr_freq_lock);
9310 	if (atomic_inc_return(&nr_freq_events) == 1)
9311 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9312 	spin_unlock(&nr_freq_lock);
9313 #endif
9314 }
9315 
9316 static void account_freq_event(void)
9317 {
9318 	if (tick_nohz_full_enabled())
9319 		account_freq_event_nohz();
9320 	else
9321 		atomic_inc(&nr_freq_events);
9322 }
9323 
9324 
9325 static void account_event(struct perf_event *event)
9326 {
9327 	bool inc = false;
9328 
9329 	if (event->parent)
9330 		return;
9331 
9332 	if (event->attach_state & PERF_ATTACH_TASK)
9333 		inc = true;
9334 	if (event->attr.mmap || event->attr.mmap_data)
9335 		atomic_inc(&nr_mmap_events);
9336 	if (event->attr.comm)
9337 		atomic_inc(&nr_comm_events);
9338 	if (event->attr.namespaces)
9339 		atomic_inc(&nr_namespaces_events);
9340 	if (event->attr.task)
9341 		atomic_inc(&nr_task_events);
9342 	if (event->attr.freq)
9343 		account_freq_event();
9344 	if (event->attr.context_switch) {
9345 		atomic_inc(&nr_switch_events);
9346 		inc = true;
9347 	}
9348 	if (has_branch_stack(event))
9349 		inc = true;
9350 	if (is_cgroup_event(event))
9351 		inc = true;
9352 
9353 	if (inc) {
9354 		/*
9355 		 * We need the mutex here because static_branch_enable()
9356 		 * must complete *before* the perf_sched_count increment
9357 		 * becomes visible.
9358 		 */
9359 		if (atomic_inc_not_zero(&perf_sched_count))
9360 			goto enabled;
9361 
9362 		mutex_lock(&perf_sched_mutex);
9363 		if (!atomic_read(&perf_sched_count)) {
9364 			static_branch_enable(&perf_sched_events);
9365 			/*
9366 			 * Guarantee that all CPUs observe they key change and
9367 			 * call the perf scheduling hooks before proceeding to
9368 			 * install events that need them.
9369 			 */
9370 			synchronize_sched();
9371 		}
9372 		/*
9373 		 * Now that we have waited for the sync_sched(), allow further
9374 		 * increments to by-pass the mutex.
9375 		 */
9376 		atomic_inc(&perf_sched_count);
9377 		mutex_unlock(&perf_sched_mutex);
9378 	}
9379 enabled:
9380 
9381 	account_event_cpu(event, event->cpu);
9382 
9383 	account_pmu_sb_event(event);
9384 }
9385 
9386 /*
9387  * Allocate and initialize a event structure
9388  */
9389 static struct perf_event *
9390 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9391 		 struct task_struct *task,
9392 		 struct perf_event *group_leader,
9393 		 struct perf_event *parent_event,
9394 		 perf_overflow_handler_t overflow_handler,
9395 		 void *context, int cgroup_fd)
9396 {
9397 	struct pmu *pmu;
9398 	struct perf_event *event;
9399 	struct hw_perf_event *hwc;
9400 	long err = -EINVAL;
9401 
9402 	if ((unsigned)cpu >= nr_cpu_ids) {
9403 		if (!task || cpu != -1)
9404 			return ERR_PTR(-EINVAL);
9405 	}
9406 
9407 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9408 	if (!event)
9409 		return ERR_PTR(-ENOMEM);
9410 
9411 	/*
9412 	 * Single events are their own group leaders, with an
9413 	 * empty sibling list:
9414 	 */
9415 	if (!group_leader)
9416 		group_leader = event;
9417 
9418 	mutex_init(&event->child_mutex);
9419 	INIT_LIST_HEAD(&event->child_list);
9420 
9421 	INIT_LIST_HEAD(&event->group_entry);
9422 	INIT_LIST_HEAD(&event->event_entry);
9423 	INIT_LIST_HEAD(&event->sibling_list);
9424 	INIT_LIST_HEAD(&event->rb_entry);
9425 	INIT_LIST_HEAD(&event->active_entry);
9426 	INIT_LIST_HEAD(&event->addr_filters.list);
9427 	INIT_HLIST_NODE(&event->hlist_entry);
9428 
9429 
9430 	init_waitqueue_head(&event->waitq);
9431 	init_irq_work(&event->pending, perf_pending_event);
9432 
9433 	mutex_init(&event->mmap_mutex);
9434 	raw_spin_lock_init(&event->addr_filters.lock);
9435 
9436 	atomic_long_set(&event->refcount, 1);
9437 	event->cpu		= cpu;
9438 	event->attr		= *attr;
9439 	event->group_leader	= group_leader;
9440 	event->pmu		= NULL;
9441 	event->oncpu		= -1;
9442 
9443 	event->parent		= parent_event;
9444 
9445 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9446 	event->id		= atomic64_inc_return(&perf_event_id);
9447 
9448 	event->state		= PERF_EVENT_STATE_INACTIVE;
9449 
9450 	if (task) {
9451 		event->attach_state = PERF_ATTACH_TASK;
9452 		/*
9453 		 * XXX pmu::event_init needs to know what task to account to
9454 		 * and we cannot use the ctx information because we need the
9455 		 * pmu before we get a ctx.
9456 		 */
9457 		event->hw.target = task;
9458 	}
9459 
9460 	event->clock = &local_clock;
9461 	if (parent_event)
9462 		event->clock = parent_event->clock;
9463 
9464 	if (!overflow_handler && parent_event) {
9465 		overflow_handler = parent_event->overflow_handler;
9466 		context = parent_event->overflow_handler_context;
9467 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9468 		if (overflow_handler == bpf_overflow_handler) {
9469 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9470 
9471 			if (IS_ERR(prog)) {
9472 				err = PTR_ERR(prog);
9473 				goto err_ns;
9474 			}
9475 			event->prog = prog;
9476 			event->orig_overflow_handler =
9477 				parent_event->orig_overflow_handler;
9478 		}
9479 #endif
9480 	}
9481 
9482 	if (overflow_handler) {
9483 		event->overflow_handler	= overflow_handler;
9484 		event->overflow_handler_context = context;
9485 	} else if (is_write_backward(event)){
9486 		event->overflow_handler = perf_event_output_backward;
9487 		event->overflow_handler_context = NULL;
9488 	} else {
9489 		event->overflow_handler = perf_event_output_forward;
9490 		event->overflow_handler_context = NULL;
9491 	}
9492 
9493 	perf_event__state_init(event);
9494 
9495 	pmu = NULL;
9496 
9497 	hwc = &event->hw;
9498 	hwc->sample_period = attr->sample_period;
9499 	if (attr->freq && attr->sample_freq)
9500 		hwc->sample_period = 1;
9501 	hwc->last_period = hwc->sample_period;
9502 
9503 	local64_set(&hwc->period_left, hwc->sample_period);
9504 
9505 	/*
9506 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9507 	 * See perf_output_read().
9508 	 */
9509 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9510 		goto err_ns;
9511 
9512 	if (!has_branch_stack(event))
9513 		event->attr.branch_sample_type = 0;
9514 
9515 	if (cgroup_fd != -1) {
9516 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9517 		if (err)
9518 			goto err_ns;
9519 	}
9520 
9521 	pmu = perf_init_event(event);
9522 	if (IS_ERR(pmu)) {
9523 		err = PTR_ERR(pmu);
9524 		goto err_ns;
9525 	}
9526 
9527 	err = exclusive_event_init(event);
9528 	if (err)
9529 		goto err_pmu;
9530 
9531 	if (has_addr_filter(event)) {
9532 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9533 						   sizeof(unsigned long),
9534 						   GFP_KERNEL);
9535 		if (!event->addr_filters_offs) {
9536 			err = -ENOMEM;
9537 			goto err_per_task;
9538 		}
9539 
9540 		/* force hw sync on the address filters */
9541 		event->addr_filters_gen = 1;
9542 	}
9543 
9544 	if (!event->parent) {
9545 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9546 			err = get_callchain_buffers(attr->sample_max_stack);
9547 			if (err)
9548 				goto err_addr_filters;
9549 		}
9550 	}
9551 
9552 	/* symmetric to unaccount_event() in _free_event() */
9553 	account_event(event);
9554 
9555 	return event;
9556 
9557 err_addr_filters:
9558 	kfree(event->addr_filters_offs);
9559 
9560 err_per_task:
9561 	exclusive_event_destroy(event);
9562 
9563 err_pmu:
9564 	if (event->destroy)
9565 		event->destroy(event);
9566 	module_put(pmu->module);
9567 err_ns:
9568 	if (is_cgroup_event(event))
9569 		perf_detach_cgroup(event);
9570 	if (event->ns)
9571 		put_pid_ns(event->ns);
9572 	kfree(event);
9573 
9574 	return ERR_PTR(err);
9575 }
9576 
9577 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9578 			  struct perf_event_attr *attr)
9579 {
9580 	u32 size;
9581 	int ret;
9582 
9583 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9584 		return -EFAULT;
9585 
9586 	/*
9587 	 * zero the full structure, so that a short copy will be nice.
9588 	 */
9589 	memset(attr, 0, sizeof(*attr));
9590 
9591 	ret = get_user(size, &uattr->size);
9592 	if (ret)
9593 		return ret;
9594 
9595 	if (size > PAGE_SIZE)	/* silly large */
9596 		goto err_size;
9597 
9598 	if (!size)		/* abi compat */
9599 		size = PERF_ATTR_SIZE_VER0;
9600 
9601 	if (size < PERF_ATTR_SIZE_VER0)
9602 		goto err_size;
9603 
9604 	/*
9605 	 * If we're handed a bigger struct than we know of,
9606 	 * ensure all the unknown bits are 0 - i.e. new
9607 	 * user-space does not rely on any kernel feature
9608 	 * extensions we dont know about yet.
9609 	 */
9610 	if (size > sizeof(*attr)) {
9611 		unsigned char __user *addr;
9612 		unsigned char __user *end;
9613 		unsigned char val;
9614 
9615 		addr = (void __user *)uattr + sizeof(*attr);
9616 		end  = (void __user *)uattr + size;
9617 
9618 		for (; addr < end; addr++) {
9619 			ret = get_user(val, addr);
9620 			if (ret)
9621 				return ret;
9622 			if (val)
9623 				goto err_size;
9624 		}
9625 		size = sizeof(*attr);
9626 	}
9627 
9628 	ret = copy_from_user(attr, uattr, size);
9629 	if (ret)
9630 		return -EFAULT;
9631 
9632 	attr->size = size;
9633 
9634 	if (attr->__reserved_1)
9635 		return -EINVAL;
9636 
9637 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9638 		return -EINVAL;
9639 
9640 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9641 		return -EINVAL;
9642 
9643 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9644 		u64 mask = attr->branch_sample_type;
9645 
9646 		/* only using defined bits */
9647 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9648 			return -EINVAL;
9649 
9650 		/* at least one branch bit must be set */
9651 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9652 			return -EINVAL;
9653 
9654 		/* propagate priv level, when not set for branch */
9655 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9656 
9657 			/* exclude_kernel checked on syscall entry */
9658 			if (!attr->exclude_kernel)
9659 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9660 
9661 			if (!attr->exclude_user)
9662 				mask |= PERF_SAMPLE_BRANCH_USER;
9663 
9664 			if (!attr->exclude_hv)
9665 				mask |= PERF_SAMPLE_BRANCH_HV;
9666 			/*
9667 			 * adjust user setting (for HW filter setup)
9668 			 */
9669 			attr->branch_sample_type = mask;
9670 		}
9671 		/* privileged levels capture (kernel, hv): check permissions */
9672 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9673 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9674 			return -EACCES;
9675 	}
9676 
9677 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9678 		ret = perf_reg_validate(attr->sample_regs_user);
9679 		if (ret)
9680 			return ret;
9681 	}
9682 
9683 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9684 		if (!arch_perf_have_user_stack_dump())
9685 			return -ENOSYS;
9686 
9687 		/*
9688 		 * We have __u32 type for the size, but so far
9689 		 * we can only use __u16 as maximum due to the
9690 		 * __u16 sample size limit.
9691 		 */
9692 		if (attr->sample_stack_user >= USHRT_MAX)
9693 			ret = -EINVAL;
9694 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9695 			ret = -EINVAL;
9696 	}
9697 
9698 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9699 		ret = perf_reg_validate(attr->sample_regs_intr);
9700 out:
9701 	return ret;
9702 
9703 err_size:
9704 	put_user(sizeof(*attr), &uattr->size);
9705 	ret = -E2BIG;
9706 	goto out;
9707 }
9708 
9709 static int
9710 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9711 {
9712 	struct ring_buffer *rb = NULL;
9713 	int ret = -EINVAL;
9714 
9715 	if (!output_event)
9716 		goto set;
9717 
9718 	/* don't allow circular references */
9719 	if (event == output_event)
9720 		goto out;
9721 
9722 	/*
9723 	 * Don't allow cross-cpu buffers
9724 	 */
9725 	if (output_event->cpu != event->cpu)
9726 		goto out;
9727 
9728 	/*
9729 	 * If its not a per-cpu rb, it must be the same task.
9730 	 */
9731 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9732 		goto out;
9733 
9734 	/*
9735 	 * Mixing clocks in the same buffer is trouble you don't need.
9736 	 */
9737 	if (output_event->clock != event->clock)
9738 		goto out;
9739 
9740 	/*
9741 	 * Either writing ring buffer from beginning or from end.
9742 	 * Mixing is not allowed.
9743 	 */
9744 	if (is_write_backward(output_event) != is_write_backward(event))
9745 		goto out;
9746 
9747 	/*
9748 	 * If both events generate aux data, they must be on the same PMU
9749 	 */
9750 	if (has_aux(event) && has_aux(output_event) &&
9751 	    event->pmu != output_event->pmu)
9752 		goto out;
9753 
9754 set:
9755 	mutex_lock(&event->mmap_mutex);
9756 	/* Can't redirect output if we've got an active mmap() */
9757 	if (atomic_read(&event->mmap_count))
9758 		goto unlock;
9759 
9760 	if (output_event) {
9761 		/* get the rb we want to redirect to */
9762 		rb = ring_buffer_get(output_event);
9763 		if (!rb)
9764 			goto unlock;
9765 	}
9766 
9767 	ring_buffer_attach(event, rb);
9768 
9769 	ret = 0;
9770 unlock:
9771 	mutex_unlock(&event->mmap_mutex);
9772 
9773 out:
9774 	return ret;
9775 }
9776 
9777 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9778 {
9779 	if (b < a)
9780 		swap(a, b);
9781 
9782 	mutex_lock(a);
9783 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9784 }
9785 
9786 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9787 {
9788 	bool nmi_safe = false;
9789 
9790 	switch (clk_id) {
9791 	case CLOCK_MONOTONIC:
9792 		event->clock = &ktime_get_mono_fast_ns;
9793 		nmi_safe = true;
9794 		break;
9795 
9796 	case CLOCK_MONOTONIC_RAW:
9797 		event->clock = &ktime_get_raw_fast_ns;
9798 		nmi_safe = true;
9799 		break;
9800 
9801 	case CLOCK_REALTIME:
9802 		event->clock = &ktime_get_real_ns;
9803 		break;
9804 
9805 	case CLOCK_BOOTTIME:
9806 		event->clock = &ktime_get_boot_ns;
9807 		break;
9808 
9809 	case CLOCK_TAI:
9810 		event->clock = &ktime_get_tai_ns;
9811 		break;
9812 
9813 	default:
9814 		return -EINVAL;
9815 	}
9816 
9817 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9818 		return -EINVAL;
9819 
9820 	return 0;
9821 }
9822 
9823 /*
9824  * Variation on perf_event_ctx_lock_nested(), except we take two context
9825  * mutexes.
9826  */
9827 static struct perf_event_context *
9828 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9829 			     struct perf_event_context *ctx)
9830 {
9831 	struct perf_event_context *gctx;
9832 
9833 again:
9834 	rcu_read_lock();
9835 	gctx = READ_ONCE(group_leader->ctx);
9836 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9837 		rcu_read_unlock();
9838 		goto again;
9839 	}
9840 	rcu_read_unlock();
9841 
9842 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9843 
9844 	if (group_leader->ctx != gctx) {
9845 		mutex_unlock(&ctx->mutex);
9846 		mutex_unlock(&gctx->mutex);
9847 		put_ctx(gctx);
9848 		goto again;
9849 	}
9850 
9851 	return gctx;
9852 }
9853 
9854 /**
9855  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9856  *
9857  * @attr_uptr:	event_id type attributes for monitoring/sampling
9858  * @pid:		target pid
9859  * @cpu:		target cpu
9860  * @group_fd:		group leader event fd
9861  */
9862 SYSCALL_DEFINE5(perf_event_open,
9863 		struct perf_event_attr __user *, attr_uptr,
9864 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9865 {
9866 	struct perf_event *group_leader = NULL, *output_event = NULL;
9867 	struct perf_event *event, *sibling;
9868 	struct perf_event_attr attr;
9869 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9870 	struct file *event_file = NULL;
9871 	struct fd group = {NULL, 0};
9872 	struct task_struct *task = NULL;
9873 	struct pmu *pmu;
9874 	int event_fd;
9875 	int move_group = 0;
9876 	int err;
9877 	int f_flags = O_RDWR;
9878 	int cgroup_fd = -1;
9879 
9880 	/* for future expandability... */
9881 	if (flags & ~PERF_FLAG_ALL)
9882 		return -EINVAL;
9883 
9884 	err = perf_copy_attr(attr_uptr, &attr);
9885 	if (err)
9886 		return err;
9887 
9888 	if (!attr.exclude_kernel) {
9889 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9890 			return -EACCES;
9891 	}
9892 
9893 	if (attr.namespaces) {
9894 		if (!capable(CAP_SYS_ADMIN))
9895 			return -EACCES;
9896 	}
9897 
9898 	if (attr.freq) {
9899 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9900 			return -EINVAL;
9901 	} else {
9902 		if (attr.sample_period & (1ULL << 63))
9903 			return -EINVAL;
9904 	}
9905 
9906 	/* Only privileged users can get physical addresses */
9907 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9908 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9909 		return -EACCES;
9910 
9911 	if (!attr.sample_max_stack)
9912 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9913 
9914 	/*
9915 	 * In cgroup mode, the pid argument is used to pass the fd
9916 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9917 	 * designates the cpu on which to monitor threads from that
9918 	 * cgroup.
9919 	 */
9920 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9921 		return -EINVAL;
9922 
9923 	if (flags & PERF_FLAG_FD_CLOEXEC)
9924 		f_flags |= O_CLOEXEC;
9925 
9926 	event_fd = get_unused_fd_flags(f_flags);
9927 	if (event_fd < 0)
9928 		return event_fd;
9929 
9930 	if (group_fd != -1) {
9931 		err = perf_fget_light(group_fd, &group);
9932 		if (err)
9933 			goto err_fd;
9934 		group_leader = group.file->private_data;
9935 		if (flags & PERF_FLAG_FD_OUTPUT)
9936 			output_event = group_leader;
9937 		if (flags & PERF_FLAG_FD_NO_GROUP)
9938 			group_leader = NULL;
9939 	}
9940 
9941 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9942 		task = find_lively_task_by_vpid(pid);
9943 		if (IS_ERR(task)) {
9944 			err = PTR_ERR(task);
9945 			goto err_group_fd;
9946 		}
9947 	}
9948 
9949 	if (task && group_leader &&
9950 	    group_leader->attr.inherit != attr.inherit) {
9951 		err = -EINVAL;
9952 		goto err_task;
9953 	}
9954 
9955 	if (task) {
9956 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9957 		if (err)
9958 			goto err_task;
9959 
9960 		/*
9961 		 * Reuse ptrace permission checks for now.
9962 		 *
9963 		 * We must hold cred_guard_mutex across this and any potential
9964 		 * perf_install_in_context() call for this new event to
9965 		 * serialize against exec() altering our credentials (and the
9966 		 * perf_event_exit_task() that could imply).
9967 		 */
9968 		err = -EACCES;
9969 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9970 			goto err_cred;
9971 	}
9972 
9973 	if (flags & PERF_FLAG_PID_CGROUP)
9974 		cgroup_fd = pid;
9975 
9976 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9977 				 NULL, NULL, cgroup_fd);
9978 	if (IS_ERR(event)) {
9979 		err = PTR_ERR(event);
9980 		goto err_cred;
9981 	}
9982 
9983 	if (is_sampling_event(event)) {
9984 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9985 			err = -EOPNOTSUPP;
9986 			goto err_alloc;
9987 		}
9988 	}
9989 
9990 	/*
9991 	 * Special case software events and allow them to be part of
9992 	 * any hardware group.
9993 	 */
9994 	pmu = event->pmu;
9995 
9996 	if (attr.use_clockid) {
9997 		err = perf_event_set_clock(event, attr.clockid);
9998 		if (err)
9999 			goto err_alloc;
10000 	}
10001 
10002 	if (pmu->task_ctx_nr == perf_sw_context)
10003 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10004 
10005 	if (group_leader &&
10006 	    (is_software_event(event) != is_software_event(group_leader))) {
10007 		if (is_software_event(event)) {
10008 			/*
10009 			 * If event and group_leader are not both a software
10010 			 * event, and event is, then group leader is not.
10011 			 *
10012 			 * Allow the addition of software events to !software
10013 			 * groups, this is safe because software events never
10014 			 * fail to schedule.
10015 			 */
10016 			pmu = group_leader->pmu;
10017 		} else if (is_software_event(group_leader) &&
10018 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10019 			/*
10020 			 * In case the group is a pure software group, and we
10021 			 * try to add a hardware event, move the whole group to
10022 			 * the hardware context.
10023 			 */
10024 			move_group = 1;
10025 		}
10026 	}
10027 
10028 	/*
10029 	 * Get the target context (task or percpu):
10030 	 */
10031 	ctx = find_get_context(pmu, task, event);
10032 	if (IS_ERR(ctx)) {
10033 		err = PTR_ERR(ctx);
10034 		goto err_alloc;
10035 	}
10036 
10037 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10038 		err = -EBUSY;
10039 		goto err_context;
10040 	}
10041 
10042 	/*
10043 	 * Look up the group leader (we will attach this event to it):
10044 	 */
10045 	if (group_leader) {
10046 		err = -EINVAL;
10047 
10048 		/*
10049 		 * Do not allow a recursive hierarchy (this new sibling
10050 		 * becoming part of another group-sibling):
10051 		 */
10052 		if (group_leader->group_leader != group_leader)
10053 			goto err_context;
10054 
10055 		/* All events in a group should have the same clock */
10056 		if (group_leader->clock != event->clock)
10057 			goto err_context;
10058 
10059 		/*
10060 		 * Make sure we're both events for the same CPU;
10061 		 * grouping events for different CPUs is broken; since
10062 		 * you can never concurrently schedule them anyhow.
10063 		 */
10064 		if (group_leader->cpu != event->cpu)
10065 			goto err_context;
10066 
10067 		/*
10068 		 * Make sure we're both on the same task, or both
10069 		 * per-CPU events.
10070 		 */
10071 		if (group_leader->ctx->task != ctx->task)
10072 			goto err_context;
10073 
10074 		/*
10075 		 * Do not allow to attach to a group in a different task
10076 		 * or CPU context. If we're moving SW events, we'll fix
10077 		 * this up later, so allow that.
10078 		 */
10079 		if (!move_group && group_leader->ctx != ctx)
10080 			goto err_context;
10081 
10082 		/*
10083 		 * Only a group leader can be exclusive or pinned
10084 		 */
10085 		if (attr.exclusive || attr.pinned)
10086 			goto err_context;
10087 	}
10088 
10089 	if (output_event) {
10090 		err = perf_event_set_output(event, output_event);
10091 		if (err)
10092 			goto err_context;
10093 	}
10094 
10095 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10096 					f_flags);
10097 	if (IS_ERR(event_file)) {
10098 		err = PTR_ERR(event_file);
10099 		event_file = NULL;
10100 		goto err_context;
10101 	}
10102 
10103 	if (move_group) {
10104 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10105 
10106 		if (gctx->task == TASK_TOMBSTONE) {
10107 			err = -ESRCH;
10108 			goto err_locked;
10109 		}
10110 
10111 		/*
10112 		 * Check if we raced against another sys_perf_event_open() call
10113 		 * moving the software group underneath us.
10114 		 */
10115 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10116 			/*
10117 			 * If someone moved the group out from under us, check
10118 			 * if this new event wound up on the same ctx, if so
10119 			 * its the regular !move_group case, otherwise fail.
10120 			 */
10121 			if (gctx != ctx) {
10122 				err = -EINVAL;
10123 				goto err_locked;
10124 			} else {
10125 				perf_event_ctx_unlock(group_leader, gctx);
10126 				move_group = 0;
10127 			}
10128 		}
10129 	} else {
10130 		mutex_lock(&ctx->mutex);
10131 	}
10132 
10133 	if (ctx->task == TASK_TOMBSTONE) {
10134 		err = -ESRCH;
10135 		goto err_locked;
10136 	}
10137 
10138 	if (!perf_event_validate_size(event)) {
10139 		err = -E2BIG;
10140 		goto err_locked;
10141 	}
10142 
10143 	if (!task) {
10144 		/*
10145 		 * Check if the @cpu we're creating an event for is online.
10146 		 *
10147 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10148 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10149 		 */
10150 		struct perf_cpu_context *cpuctx =
10151 			container_of(ctx, struct perf_cpu_context, ctx);
10152 
10153 		if (!cpuctx->online) {
10154 			err = -ENODEV;
10155 			goto err_locked;
10156 		}
10157 	}
10158 
10159 
10160 	/*
10161 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10162 	 * because we need to serialize with concurrent event creation.
10163 	 */
10164 	if (!exclusive_event_installable(event, ctx)) {
10165 		/* exclusive and group stuff are assumed mutually exclusive */
10166 		WARN_ON_ONCE(move_group);
10167 
10168 		err = -EBUSY;
10169 		goto err_locked;
10170 	}
10171 
10172 	WARN_ON_ONCE(ctx->parent_ctx);
10173 
10174 	/*
10175 	 * This is the point on no return; we cannot fail hereafter. This is
10176 	 * where we start modifying current state.
10177 	 */
10178 
10179 	if (move_group) {
10180 		/*
10181 		 * See perf_event_ctx_lock() for comments on the details
10182 		 * of swizzling perf_event::ctx.
10183 		 */
10184 		perf_remove_from_context(group_leader, 0);
10185 		put_ctx(gctx);
10186 
10187 		list_for_each_entry(sibling, &group_leader->sibling_list,
10188 				    group_entry) {
10189 			perf_remove_from_context(sibling, 0);
10190 			put_ctx(gctx);
10191 		}
10192 
10193 		/*
10194 		 * Wait for everybody to stop referencing the events through
10195 		 * the old lists, before installing it on new lists.
10196 		 */
10197 		synchronize_rcu();
10198 
10199 		/*
10200 		 * Install the group siblings before the group leader.
10201 		 *
10202 		 * Because a group leader will try and install the entire group
10203 		 * (through the sibling list, which is still in-tact), we can
10204 		 * end up with siblings installed in the wrong context.
10205 		 *
10206 		 * By installing siblings first we NO-OP because they're not
10207 		 * reachable through the group lists.
10208 		 */
10209 		list_for_each_entry(sibling, &group_leader->sibling_list,
10210 				    group_entry) {
10211 			perf_event__state_init(sibling);
10212 			perf_install_in_context(ctx, sibling, sibling->cpu);
10213 			get_ctx(ctx);
10214 		}
10215 
10216 		/*
10217 		 * Removing from the context ends up with disabled
10218 		 * event. What we want here is event in the initial
10219 		 * startup state, ready to be add into new context.
10220 		 */
10221 		perf_event__state_init(group_leader);
10222 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10223 		get_ctx(ctx);
10224 	}
10225 
10226 	/*
10227 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10228 	 * that we're serialized against further additions and before
10229 	 * perf_install_in_context() which is the point the event is active and
10230 	 * can use these values.
10231 	 */
10232 	perf_event__header_size(event);
10233 	perf_event__id_header_size(event);
10234 
10235 	event->owner = current;
10236 
10237 	perf_install_in_context(ctx, event, event->cpu);
10238 	perf_unpin_context(ctx);
10239 
10240 	if (move_group)
10241 		perf_event_ctx_unlock(group_leader, gctx);
10242 	mutex_unlock(&ctx->mutex);
10243 
10244 	if (task) {
10245 		mutex_unlock(&task->signal->cred_guard_mutex);
10246 		put_task_struct(task);
10247 	}
10248 
10249 	mutex_lock(&current->perf_event_mutex);
10250 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10251 	mutex_unlock(&current->perf_event_mutex);
10252 
10253 	/*
10254 	 * Drop the reference on the group_event after placing the
10255 	 * new event on the sibling_list. This ensures destruction
10256 	 * of the group leader will find the pointer to itself in
10257 	 * perf_group_detach().
10258 	 */
10259 	fdput(group);
10260 	fd_install(event_fd, event_file);
10261 	return event_fd;
10262 
10263 err_locked:
10264 	if (move_group)
10265 		perf_event_ctx_unlock(group_leader, gctx);
10266 	mutex_unlock(&ctx->mutex);
10267 /* err_file: */
10268 	fput(event_file);
10269 err_context:
10270 	perf_unpin_context(ctx);
10271 	put_ctx(ctx);
10272 err_alloc:
10273 	/*
10274 	 * If event_file is set, the fput() above will have called ->release()
10275 	 * and that will take care of freeing the event.
10276 	 */
10277 	if (!event_file)
10278 		free_event(event);
10279 err_cred:
10280 	if (task)
10281 		mutex_unlock(&task->signal->cred_guard_mutex);
10282 err_task:
10283 	if (task)
10284 		put_task_struct(task);
10285 err_group_fd:
10286 	fdput(group);
10287 err_fd:
10288 	put_unused_fd(event_fd);
10289 	return err;
10290 }
10291 
10292 /**
10293  * perf_event_create_kernel_counter
10294  *
10295  * @attr: attributes of the counter to create
10296  * @cpu: cpu in which the counter is bound
10297  * @task: task to profile (NULL for percpu)
10298  */
10299 struct perf_event *
10300 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10301 				 struct task_struct *task,
10302 				 perf_overflow_handler_t overflow_handler,
10303 				 void *context)
10304 {
10305 	struct perf_event_context *ctx;
10306 	struct perf_event *event;
10307 	int err;
10308 
10309 	/*
10310 	 * Get the target context (task or percpu):
10311 	 */
10312 
10313 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10314 				 overflow_handler, context, -1);
10315 	if (IS_ERR(event)) {
10316 		err = PTR_ERR(event);
10317 		goto err;
10318 	}
10319 
10320 	/* Mark owner so we could distinguish it from user events. */
10321 	event->owner = TASK_TOMBSTONE;
10322 
10323 	ctx = find_get_context(event->pmu, task, event);
10324 	if (IS_ERR(ctx)) {
10325 		err = PTR_ERR(ctx);
10326 		goto err_free;
10327 	}
10328 
10329 	WARN_ON_ONCE(ctx->parent_ctx);
10330 	mutex_lock(&ctx->mutex);
10331 	if (ctx->task == TASK_TOMBSTONE) {
10332 		err = -ESRCH;
10333 		goto err_unlock;
10334 	}
10335 
10336 	if (!task) {
10337 		/*
10338 		 * Check if the @cpu we're creating an event for is online.
10339 		 *
10340 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10341 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10342 		 */
10343 		struct perf_cpu_context *cpuctx =
10344 			container_of(ctx, struct perf_cpu_context, ctx);
10345 		if (!cpuctx->online) {
10346 			err = -ENODEV;
10347 			goto err_unlock;
10348 		}
10349 	}
10350 
10351 	if (!exclusive_event_installable(event, ctx)) {
10352 		err = -EBUSY;
10353 		goto err_unlock;
10354 	}
10355 
10356 	perf_install_in_context(ctx, event, cpu);
10357 	perf_unpin_context(ctx);
10358 	mutex_unlock(&ctx->mutex);
10359 
10360 	return event;
10361 
10362 err_unlock:
10363 	mutex_unlock(&ctx->mutex);
10364 	perf_unpin_context(ctx);
10365 	put_ctx(ctx);
10366 err_free:
10367 	free_event(event);
10368 err:
10369 	return ERR_PTR(err);
10370 }
10371 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10372 
10373 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10374 {
10375 	struct perf_event_context *src_ctx;
10376 	struct perf_event_context *dst_ctx;
10377 	struct perf_event *event, *tmp;
10378 	LIST_HEAD(events);
10379 
10380 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10381 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10382 
10383 	/*
10384 	 * See perf_event_ctx_lock() for comments on the details
10385 	 * of swizzling perf_event::ctx.
10386 	 */
10387 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10388 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10389 				 event_entry) {
10390 		perf_remove_from_context(event, 0);
10391 		unaccount_event_cpu(event, src_cpu);
10392 		put_ctx(src_ctx);
10393 		list_add(&event->migrate_entry, &events);
10394 	}
10395 
10396 	/*
10397 	 * Wait for the events to quiesce before re-instating them.
10398 	 */
10399 	synchronize_rcu();
10400 
10401 	/*
10402 	 * Re-instate events in 2 passes.
10403 	 *
10404 	 * Skip over group leaders and only install siblings on this first
10405 	 * pass, siblings will not get enabled without a leader, however a
10406 	 * leader will enable its siblings, even if those are still on the old
10407 	 * context.
10408 	 */
10409 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10410 		if (event->group_leader == event)
10411 			continue;
10412 
10413 		list_del(&event->migrate_entry);
10414 		if (event->state >= PERF_EVENT_STATE_OFF)
10415 			event->state = PERF_EVENT_STATE_INACTIVE;
10416 		account_event_cpu(event, dst_cpu);
10417 		perf_install_in_context(dst_ctx, event, dst_cpu);
10418 		get_ctx(dst_ctx);
10419 	}
10420 
10421 	/*
10422 	 * Once all the siblings are setup properly, install the group leaders
10423 	 * to make it go.
10424 	 */
10425 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10426 		list_del(&event->migrate_entry);
10427 		if (event->state >= PERF_EVENT_STATE_OFF)
10428 			event->state = PERF_EVENT_STATE_INACTIVE;
10429 		account_event_cpu(event, dst_cpu);
10430 		perf_install_in_context(dst_ctx, event, dst_cpu);
10431 		get_ctx(dst_ctx);
10432 	}
10433 	mutex_unlock(&dst_ctx->mutex);
10434 	mutex_unlock(&src_ctx->mutex);
10435 }
10436 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10437 
10438 static void sync_child_event(struct perf_event *child_event,
10439 			       struct task_struct *child)
10440 {
10441 	struct perf_event *parent_event = child_event->parent;
10442 	u64 child_val;
10443 
10444 	if (child_event->attr.inherit_stat)
10445 		perf_event_read_event(child_event, child);
10446 
10447 	child_val = perf_event_count(child_event);
10448 
10449 	/*
10450 	 * Add back the child's count to the parent's count:
10451 	 */
10452 	atomic64_add(child_val, &parent_event->child_count);
10453 	atomic64_add(child_event->total_time_enabled,
10454 		     &parent_event->child_total_time_enabled);
10455 	atomic64_add(child_event->total_time_running,
10456 		     &parent_event->child_total_time_running);
10457 }
10458 
10459 static void
10460 perf_event_exit_event(struct perf_event *child_event,
10461 		      struct perf_event_context *child_ctx,
10462 		      struct task_struct *child)
10463 {
10464 	struct perf_event *parent_event = child_event->parent;
10465 
10466 	/*
10467 	 * Do not destroy the 'original' grouping; because of the context
10468 	 * switch optimization the original events could've ended up in a
10469 	 * random child task.
10470 	 *
10471 	 * If we were to destroy the original group, all group related
10472 	 * operations would cease to function properly after this random
10473 	 * child dies.
10474 	 *
10475 	 * Do destroy all inherited groups, we don't care about those
10476 	 * and being thorough is better.
10477 	 */
10478 	raw_spin_lock_irq(&child_ctx->lock);
10479 	WARN_ON_ONCE(child_ctx->is_active);
10480 
10481 	if (parent_event)
10482 		perf_group_detach(child_event);
10483 	list_del_event(child_event, child_ctx);
10484 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10485 	raw_spin_unlock_irq(&child_ctx->lock);
10486 
10487 	/*
10488 	 * Parent events are governed by their filedesc, retain them.
10489 	 */
10490 	if (!parent_event) {
10491 		perf_event_wakeup(child_event);
10492 		return;
10493 	}
10494 	/*
10495 	 * Child events can be cleaned up.
10496 	 */
10497 
10498 	sync_child_event(child_event, child);
10499 
10500 	/*
10501 	 * Remove this event from the parent's list
10502 	 */
10503 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10504 	mutex_lock(&parent_event->child_mutex);
10505 	list_del_init(&child_event->child_list);
10506 	mutex_unlock(&parent_event->child_mutex);
10507 
10508 	/*
10509 	 * Kick perf_poll() for is_event_hup().
10510 	 */
10511 	perf_event_wakeup(parent_event);
10512 	free_event(child_event);
10513 	put_event(parent_event);
10514 }
10515 
10516 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10517 {
10518 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10519 	struct perf_event *child_event, *next;
10520 
10521 	WARN_ON_ONCE(child != current);
10522 
10523 	child_ctx = perf_pin_task_context(child, ctxn);
10524 	if (!child_ctx)
10525 		return;
10526 
10527 	/*
10528 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10529 	 * ctx::mutex over the entire thing. This serializes against almost
10530 	 * everything that wants to access the ctx.
10531 	 *
10532 	 * The exception is sys_perf_event_open() /
10533 	 * perf_event_create_kernel_count() which does find_get_context()
10534 	 * without ctx::mutex (it cannot because of the move_group double mutex
10535 	 * lock thing). See the comments in perf_install_in_context().
10536 	 */
10537 	mutex_lock(&child_ctx->mutex);
10538 
10539 	/*
10540 	 * In a single ctx::lock section, de-schedule the events and detach the
10541 	 * context from the task such that we cannot ever get it scheduled back
10542 	 * in.
10543 	 */
10544 	raw_spin_lock_irq(&child_ctx->lock);
10545 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10546 
10547 	/*
10548 	 * Now that the context is inactive, destroy the task <-> ctx relation
10549 	 * and mark the context dead.
10550 	 */
10551 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10552 	put_ctx(child_ctx); /* cannot be last */
10553 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10554 	put_task_struct(current); /* cannot be last */
10555 
10556 	clone_ctx = unclone_ctx(child_ctx);
10557 	raw_spin_unlock_irq(&child_ctx->lock);
10558 
10559 	if (clone_ctx)
10560 		put_ctx(clone_ctx);
10561 
10562 	/*
10563 	 * Report the task dead after unscheduling the events so that we
10564 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10565 	 * get a few PERF_RECORD_READ events.
10566 	 */
10567 	perf_event_task(child, child_ctx, 0);
10568 
10569 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10570 		perf_event_exit_event(child_event, child_ctx, child);
10571 
10572 	mutex_unlock(&child_ctx->mutex);
10573 
10574 	put_ctx(child_ctx);
10575 }
10576 
10577 /*
10578  * When a child task exits, feed back event values to parent events.
10579  *
10580  * Can be called with cred_guard_mutex held when called from
10581  * install_exec_creds().
10582  */
10583 void perf_event_exit_task(struct task_struct *child)
10584 {
10585 	struct perf_event *event, *tmp;
10586 	int ctxn;
10587 
10588 	mutex_lock(&child->perf_event_mutex);
10589 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10590 				 owner_entry) {
10591 		list_del_init(&event->owner_entry);
10592 
10593 		/*
10594 		 * Ensure the list deletion is visible before we clear
10595 		 * the owner, closes a race against perf_release() where
10596 		 * we need to serialize on the owner->perf_event_mutex.
10597 		 */
10598 		smp_store_release(&event->owner, NULL);
10599 	}
10600 	mutex_unlock(&child->perf_event_mutex);
10601 
10602 	for_each_task_context_nr(ctxn)
10603 		perf_event_exit_task_context(child, ctxn);
10604 
10605 	/*
10606 	 * The perf_event_exit_task_context calls perf_event_task
10607 	 * with child's task_ctx, which generates EXIT events for
10608 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10609 	 * At this point we need to send EXIT events to cpu contexts.
10610 	 */
10611 	perf_event_task(child, NULL, 0);
10612 }
10613 
10614 static void perf_free_event(struct perf_event *event,
10615 			    struct perf_event_context *ctx)
10616 {
10617 	struct perf_event *parent = event->parent;
10618 
10619 	if (WARN_ON_ONCE(!parent))
10620 		return;
10621 
10622 	mutex_lock(&parent->child_mutex);
10623 	list_del_init(&event->child_list);
10624 	mutex_unlock(&parent->child_mutex);
10625 
10626 	put_event(parent);
10627 
10628 	raw_spin_lock_irq(&ctx->lock);
10629 	perf_group_detach(event);
10630 	list_del_event(event, ctx);
10631 	raw_spin_unlock_irq(&ctx->lock);
10632 	free_event(event);
10633 }
10634 
10635 /*
10636  * Free an unexposed, unused context as created by inheritance by
10637  * perf_event_init_task below, used by fork() in case of fail.
10638  *
10639  * Not all locks are strictly required, but take them anyway to be nice and
10640  * help out with the lockdep assertions.
10641  */
10642 void perf_event_free_task(struct task_struct *task)
10643 {
10644 	struct perf_event_context *ctx;
10645 	struct perf_event *event, *tmp;
10646 	int ctxn;
10647 
10648 	for_each_task_context_nr(ctxn) {
10649 		ctx = task->perf_event_ctxp[ctxn];
10650 		if (!ctx)
10651 			continue;
10652 
10653 		mutex_lock(&ctx->mutex);
10654 		raw_spin_lock_irq(&ctx->lock);
10655 		/*
10656 		 * Destroy the task <-> ctx relation and mark the context dead.
10657 		 *
10658 		 * This is important because even though the task hasn't been
10659 		 * exposed yet the context has been (through child_list).
10660 		 */
10661 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10662 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10663 		put_task_struct(task); /* cannot be last */
10664 		raw_spin_unlock_irq(&ctx->lock);
10665 
10666 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10667 			perf_free_event(event, ctx);
10668 
10669 		mutex_unlock(&ctx->mutex);
10670 		put_ctx(ctx);
10671 	}
10672 }
10673 
10674 void perf_event_delayed_put(struct task_struct *task)
10675 {
10676 	int ctxn;
10677 
10678 	for_each_task_context_nr(ctxn)
10679 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10680 }
10681 
10682 struct file *perf_event_get(unsigned int fd)
10683 {
10684 	struct file *file;
10685 
10686 	file = fget_raw(fd);
10687 	if (!file)
10688 		return ERR_PTR(-EBADF);
10689 
10690 	if (file->f_op != &perf_fops) {
10691 		fput(file);
10692 		return ERR_PTR(-EBADF);
10693 	}
10694 
10695 	return file;
10696 }
10697 
10698 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10699 {
10700 	if (!event)
10701 		return ERR_PTR(-EINVAL);
10702 
10703 	return &event->attr;
10704 }
10705 
10706 /*
10707  * Inherit a event from parent task to child task.
10708  *
10709  * Returns:
10710  *  - valid pointer on success
10711  *  - NULL for orphaned events
10712  *  - IS_ERR() on error
10713  */
10714 static struct perf_event *
10715 inherit_event(struct perf_event *parent_event,
10716 	      struct task_struct *parent,
10717 	      struct perf_event_context *parent_ctx,
10718 	      struct task_struct *child,
10719 	      struct perf_event *group_leader,
10720 	      struct perf_event_context *child_ctx)
10721 {
10722 	enum perf_event_state parent_state = parent_event->state;
10723 	struct perf_event *child_event;
10724 	unsigned long flags;
10725 
10726 	/*
10727 	 * Instead of creating recursive hierarchies of events,
10728 	 * we link inherited events back to the original parent,
10729 	 * which has a filp for sure, which we use as the reference
10730 	 * count:
10731 	 */
10732 	if (parent_event->parent)
10733 		parent_event = parent_event->parent;
10734 
10735 	child_event = perf_event_alloc(&parent_event->attr,
10736 					   parent_event->cpu,
10737 					   child,
10738 					   group_leader, parent_event,
10739 					   NULL, NULL, -1);
10740 	if (IS_ERR(child_event))
10741 		return child_event;
10742 
10743 	/*
10744 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10745 	 * must be under the same lock in order to serialize against
10746 	 * perf_event_release_kernel(), such that either we must observe
10747 	 * is_orphaned_event() or they will observe us on the child_list.
10748 	 */
10749 	mutex_lock(&parent_event->child_mutex);
10750 	if (is_orphaned_event(parent_event) ||
10751 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10752 		mutex_unlock(&parent_event->child_mutex);
10753 		free_event(child_event);
10754 		return NULL;
10755 	}
10756 
10757 	get_ctx(child_ctx);
10758 
10759 	/*
10760 	 * Make the child state follow the state of the parent event,
10761 	 * not its attr.disabled bit.  We hold the parent's mutex,
10762 	 * so we won't race with perf_event_{en, dis}able_family.
10763 	 */
10764 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10765 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10766 	else
10767 		child_event->state = PERF_EVENT_STATE_OFF;
10768 
10769 	if (parent_event->attr.freq) {
10770 		u64 sample_period = parent_event->hw.sample_period;
10771 		struct hw_perf_event *hwc = &child_event->hw;
10772 
10773 		hwc->sample_period = sample_period;
10774 		hwc->last_period   = sample_period;
10775 
10776 		local64_set(&hwc->period_left, sample_period);
10777 	}
10778 
10779 	child_event->ctx = child_ctx;
10780 	child_event->overflow_handler = parent_event->overflow_handler;
10781 	child_event->overflow_handler_context
10782 		= parent_event->overflow_handler_context;
10783 
10784 	/*
10785 	 * Precalculate sample_data sizes
10786 	 */
10787 	perf_event__header_size(child_event);
10788 	perf_event__id_header_size(child_event);
10789 
10790 	/*
10791 	 * Link it up in the child's context:
10792 	 */
10793 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10794 	add_event_to_ctx(child_event, child_ctx);
10795 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10796 
10797 	/*
10798 	 * Link this into the parent event's child list
10799 	 */
10800 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10801 	mutex_unlock(&parent_event->child_mutex);
10802 
10803 	return child_event;
10804 }
10805 
10806 /*
10807  * Inherits an event group.
10808  *
10809  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10810  * This matches with perf_event_release_kernel() removing all child events.
10811  *
10812  * Returns:
10813  *  - 0 on success
10814  *  - <0 on error
10815  */
10816 static int inherit_group(struct perf_event *parent_event,
10817 	      struct task_struct *parent,
10818 	      struct perf_event_context *parent_ctx,
10819 	      struct task_struct *child,
10820 	      struct perf_event_context *child_ctx)
10821 {
10822 	struct perf_event *leader;
10823 	struct perf_event *sub;
10824 	struct perf_event *child_ctr;
10825 
10826 	leader = inherit_event(parent_event, parent, parent_ctx,
10827 				 child, NULL, child_ctx);
10828 	if (IS_ERR(leader))
10829 		return PTR_ERR(leader);
10830 	/*
10831 	 * @leader can be NULL here because of is_orphaned_event(). In this
10832 	 * case inherit_event() will create individual events, similar to what
10833 	 * perf_group_detach() would do anyway.
10834 	 */
10835 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10836 		child_ctr = inherit_event(sub, parent, parent_ctx,
10837 					    child, leader, child_ctx);
10838 		if (IS_ERR(child_ctr))
10839 			return PTR_ERR(child_ctr);
10840 	}
10841 	return 0;
10842 }
10843 
10844 /*
10845  * Creates the child task context and tries to inherit the event-group.
10846  *
10847  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10848  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10849  * consistent with perf_event_release_kernel() removing all child events.
10850  *
10851  * Returns:
10852  *  - 0 on success
10853  *  - <0 on error
10854  */
10855 static int
10856 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10857 		   struct perf_event_context *parent_ctx,
10858 		   struct task_struct *child, int ctxn,
10859 		   int *inherited_all)
10860 {
10861 	int ret;
10862 	struct perf_event_context *child_ctx;
10863 
10864 	if (!event->attr.inherit) {
10865 		*inherited_all = 0;
10866 		return 0;
10867 	}
10868 
10869 	child_ctx = child->perf_event_ctxp[ctxn];
10870 	if (!child_ctx) {
10871 		/*
10872 		 * This is executed from the parent task context, so
10873 		 * inherit events that have been marked for cloning.
10874 		 * First allocate and initialize a context for the
10875 		 * child.
10876 		 */
10877 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10878 		if (!child_ctx)
10879 			return -ENOMEM;
10880 
10881 		child->perf_event_ctxp[ctxn] = child_ctx;
10882 	}
10883 
10884 	ret = inherit_group(event, parent, parent_ctx,
10885 			    child, child_ctx);
10886 
10887 	if (ret)
10888 		*inherited_all = 0;
10889 
10890 	return ret;
10891 }
10892 
10893 /*
10894  * Initialize the perf_event context in task_struct
10895  */
10896 static int perf_event_init_context(struct task_struct *child, int ctxn)
10897 {
10898 	struct perf_event_context *child_ctx, *parent_ctx;
10899 	struct perf_event_context *cloned_ctx;
10900 	struct perf_event *event;
10901 	struct task_struct *parent = current;
10902 	int inherited_all = 1;
10903 	unsigned long flags;
10904 	int ret = 0;
10905 
10906 	if (likely(!parent->perf_event_ctxp[ctxn]))
10907 		return 0;
10908 
10909 	/*
10910 	 * If the parent's context is a clone, pin it so it won't get
10911 	 * swapped under us.
10912 	 */
10913 	parent_ctx = perf_pin_task_context(parent, ctxn);
10914 	if (!parent_ctx)
10915 		return 0;
10916 
10917 	/*
10918 	 * No need to check if parent_ctx != NULL here; since we saw
10919 	 * it non-NULL earlier, the only reason for it to become NULL
10920 	 * is if we exit, and since we're currently in the middle of
10921 	 * a fork we can't be exiting at the same time.
10922 	 */
10923 
10924 	/*
10925 	 * Lock the parent list. No need to lock the child - not PID
10926 	 * hashed yet and not running, so nobody can access it.
10927 	 */
10928 	mutex_lock(&parent_ctx->mutex);
10929 
10930 	/*
10931 	 * We dont have to disable NMIs - we are only looking at
10932 	 * the list, not manipulating it:
10933 	 */
10934 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10935 		ret = inherit_task_group(event, parent, parent_ctx,
10936 					 child, ctxn, &inherited_all);
10937 		if (ret)
10938 			goto out_unlock;
10939 	}
10940 
10941 	/*
10942 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10943 	 * to allocations, but we need to prevent rotation because
10944 	 * rotate_ctx() will change the list from interrupt context.
10945 	 */
10946 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10947 	parent_ctx->rotate_disable = 1;
10948 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10949 
10950 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10951 		ret = inherit_task_group(event, parent, parent_ctx,
10952 					 child, ctxn, &inherited_all);
10953 		if (ret)
10954 			goto out_unlock;
10955 	}
10956 
10957 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10958 	parent_ctx->rotate_disable = 0;
10959 
10960 	child_ctx = child->perf_event_ctxp[ctxn];
10961 
10962 	if (child_ctx && inherited_all) {
10963 		/*
10964 		 * Mark the child context as a clone of the parent
10965 		 * context, or of whatever the parent is a clone of.
10966 		 *
10967 		 * Note that if the parent is a clone, the holding of
10968 		 * parent_ctx->lock avoids it from being uncloned.
10969 		 */
10970 		cloned_ctx = parent_ctx->parent_ctx;
10971 		if (cloned_ctx) {
10972 			child_ctx->parent_ctx = cloned_ctx;
10973 			child_ctx->parent_gen = parent_ctx->parent_gen;
10974 		} else {
10975 			child_ctx->parent_ctx = parent_ctx;
10976 			child_ctx->parent_gen = parent_ctx->generation;
10977 		}
10978 		get_ctx(child_ctx->parent_ctx);
10979 	}
10980 
10981 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10982 out_unlock:
10983 	mutex_unlock(&parent_ctx->mutex);
10984 
10985 	perf_unpin_context(parent_ctx);
10986 	put_ctx(parent_ctx);
10987 
10988 	return ret;
10989 }
10990 
10991 /*
10992  * Initialize the perf_event context in task_struct
10993  */
10994 int perf_event_init_task(struct task_struct *child)
10995 {
10996 	int ctxn, ret;
10997 
10998 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10999 	mutex_init(&child->perf_event_mutex);
11000 	INIT_LIST_HEAD(&child->perf_event_list);
11001 
11002 	for_each_task_context_nr(ctxn) {
11003 		ret = perf_event_init_context(child, ctxn);
11004 		if (ret) {
11005 			perf_event_free_task(child);
11006 			return ret;
11007 		}
11008 	}
11009 
11010 	return 0;
11011 }
11012 
11013 static void __init perf_event_init_all_cpus(void)
11014 {
11015 	struct swevent_htable *swhash;
11016 	int cpu;
11017 
11018 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11019 
11020 	for_each_possible_cpu(cpu) {
11021 		swhash = &per_cpu(swevent_htable, cpu);
11022 		mutex_init(&swhash->hlist_mutex);
11023 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11024 
11025 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11026 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11027 
11028 #ifdef CONFIG_CGROUP_PERF
11029 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11030 #endif
11031 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11032 	}
11033 }
11034 
11035 void perf_swevent_init_cpu(unsigned int cpu)
11036 {
11037 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11038 
11039 	mutex_lock(&swhash->hlist_mutex);
11040 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11041 		struct swevent_hlist *hlist;
11042 
11043 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11044 		WARN_ON(!hlist);
11045 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11046 	}
11047 	mutex_unlock(&swhash->hlist_mutex);
11048 }
11049 
11050 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11051 static void __perf_event_exit_context(void *__info)
11052 {
11053 	struct perf_event_context *ctx = __info;
11054 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11055 	struct perf_event *event;
11056 
11057 	raw_spin_lock(&ctx->lock);
11058 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11059 	list_for_each_entry(event, &ctx->event_list, event_entry)
11060 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11061 	raw_spin_unlock(&ctx->lock);
11062 }
11063 
11064 static void perf_event_exit_cpu_context(int cpu)
11065 {
11066 	struct perf_cpu_context *cpuctx;
11067 	struct perf_event_context *ctx;
11068 	struct pmu *pmu;
11069 
11070 	mutex_lock(&pmus_lock);
11071 	list_for_each_entry(pmu, &pmus, entry) {
11072 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11073 		ctx = &cpuctx->ctx;
11074 
11075 		mutex_lock(&ctx->mutex);
11076 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11077 		cpuctx->online = 0;
11078 		mutex_unlock(&ctx->mutex);
11079 	}
11080 	cpumask_clear_cpu(cpu, perf_online_mask);
11081 	mutex_unlock(&pmus_lock);
11082 }
11083 #else
11084 
11085 static void perf_event_exit_cpu_context(int cpu) { }
11086 
11087 #endif
11088 
11089 int perf_event_init_cpu(unsigned int cpu)
11090 {
11091 	struct perf_cpu_context *cpuctx;
11092 	struct perf_event_context *ctx;
11093 	struct pmu *pmu;
11094 
11095 	perf_swevent_init_cpu(cpu);
11096 
11097 	mutex_lock(&pmus_lock);
11098 	cpumask_set_cpu(cpu, perf_online_mask);
11099 	list_for_each_entry(pmu, &pmus, entry) {
11100 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11101 		ctx = &cpuctx->ctx;
11102 
11103 		mutex_lock(&ctx->mutex);
11104 		cpuctx->online = 1;
11105 		mutex_unlock(&ctx->mutex);
11106 	}
11107 	mutex_unlock(&pmus_lock);
11108 
11109 	return 0;
11110 }
11111 
11112 int perf_event_exit_cpu(unsigned int cpu)
11113 {
11114 	perf_event_exit_cpu_context(cpu);
11115 	return 0;
11116 }
11117 
11118 static int
11119 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11120 {
11121 	int cpu;
11122 
11123 	for_each_online_cpu(cpu)
11124 		perf_event_exit_cpu(cpu);
11125 
11126 	return NOTIFY_OK;
11127 }
11128 
11129 /*
11130  * Run the perf reboot notifier at the very last possible moment so that
11131  * the generic watchdog code runs as long as possible.
11132  */
11133 static struct notifier_block perf_reboot_notifier = {
11134 	.notifier_call = perf_reboot,
11135 	.priority = INT_MIN,
11136 };
11137 
11138 void __init perf_event_init(void)
11139 {
11140 	int ret;
11141 
11142 	idr_init(&pmu_idr);
11143 
11144 	perf_event_init_all_cpus();
11145 	init_srcu_struct(&pmus_srcu);
11146 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11147 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11148 	perf_pmu_register(&perf_task_clock, NULL, -1);
11149 	perf_tp_register();
11150 	perf_event_init_cpu(smp_processor_id());
11151 	register_reboot_notifier(&perf_reboot_notifier);
11152 
11153 	ret = init_hw_breakpoint();
11154 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11155 
11156 	/*
11157 	 * Build time assertion that we keep the data_head at the intended
11158 	 * location.  IOW, validation we got the __reserved[] size right.
11159 	 */
11160 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11161 		     != 1024);
11162 }
11163 
11164 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11165 			      char *page)
11166 {
11167 	struct perf_pmu_events_attr *pmu_attr =
11168 		container_of(attr, struct perf_pmu_events_attr, attr);
11169 
11170 	if (pmu_attr->event_str)
11171 		return sprintf(page, "%s\n", pmu_attr->event_str);
11172 
11173 	return 0;
11174 }
11175 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11176 
11177 static int __init perf_event_sysfs_init(void)
11178 {
11179 	struct pmu *pmu;
11180 	int ret;
11181 
11182 	mutex_lock(&pmus_lock);
11183 
11184 	ret = bus_register(&pmu_bus);
11185 	if (ret)
11186 		goto unlock;
11187 
11188 	list_for_each_entry(pmu, &pmus, entry) {
11189 		if (!pmu->name || pmu->type < 0)
11190 			continue;
11191 
11192 		ret = pmu_dev_alloc(pmu);
11193 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11194 	}
11195 	pmu_bus_running = 1;
11196 	ret = 0;
11197 
11198 unlock:
11199 	mutex_unlock(&pmus_lock);
11200 
11201 	return ret;
11202 }
11203 device_initcall(perf_event_sysfs_init);
11204 
11205 #ifdef CONFIG_CGROUP_PERF
11206 static struct cgroup_subsys_state *
11207 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11208 {
11209 	struct perf_cgroup *jc;
11210 
11211 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11212 	if (!jc)
11213 		return ERR_PTR(-ENOMEM);
11214 
11215 	jc->info = alloc_percpu(struct perf_cgroup_info);
11216 	if (!jc->info) {
11217 		kfree(jc);
11218 		return ERR_PTR(-ENOMEM);
11219 	}
11220 
11221 	return &jc->css;
11222 }
11223 
11224 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11225 {
11226 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11227 
11228 	free_percpu(jc->info);
11229 	kfree(jc);
11230 }
11231 
11232 static int __perf_cgroup_move(void *info)
11233 {
11234 	struct task_struct *task = info;
11235 	rcu_read_lock();
11236 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11237 	rcu_read_unlock();
11238 	return 0;
11239 }
11240 
11241 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11242 {
11243 	struct task_struct *task;
11244 	struct cgroup_subsys_state *css;
11245 
11246 	cgroup_taskset_for_each(task, css, tset)
11247 		task_function_call(task, __perf_cgroup_move, task);
11248 }
11249 
11250 struct cgroup_subsys perf_event_cgrp_subsys = {
11251 	.css_alloc	= perf_cgroup_css_alloc,
11252 	.css_free	= perf_cgroup_css_free,
11253 	.attach		= perf_cgroup_attach,
11254 	/*
11255 	 * Implicitly enable on dfl hierarchy so that perf events can
11256 	 * always be filtered by cgroup2 path as long as perf_event
11257 	 * controller is not mounted on a legacy hierarchy.
11258 	 */
11259 	.implicit_on_dfl = true,
11260 	.threaded	= true,
11261 };
11262 #endif /* CONFIG_CGROUP_PERF */
11263