1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 typedef int (*remote_function_f)(void *); 53 54 struct remote_function_call { 55 struct task_struct *p; 56 remote_function_f func; 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 /* -EAGAIN */ 68 if (task_cpu(p) != smp_processor_id()) 69 return; 70 71 /* 72 * Now that we're on right CPU with IRQs disabled, we can test 73 * if we hit the right task without races. 74 */ 75 76 tfc->ret = -ESRCH; /* No such (running) process */ 77 if (p != current) 78 return; 79 } 80 81 tfc->ret = tfc->func(tfc->info); 82 } 83 84 /** 85 * task_function_call - call a function on the cpu on which a task runs 86 * @p: the task to evaluate 87 * @func: the function to be called 88 * @info: the function call argument 89 * 90 * Calls the function @func when the task is currently running. This might 91 * be on the current CPU, which just calls the function directly 92 * 93 * returns: @func return value, or 94 * -ESRCH - when the process isn't running 95 * -EAGAIN - when the process moved away 96 */ 97 static int 98 task_function_call(struct task_struct *p, remote_function_f func, void *info) 99 { 100 struct remote_function_call data = { 101 .p = p, 102 .func = func, 103 .info = info, 104 .ret = -EAGAIN, 105 }; 106 int ret; 107 108 do { 109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 110 if (!ret) 111 ret = data.ret; 112 } while (ret == -EAGAIN); 113 114 return ret; 115 } 116 117 /** 118 * cpu_function_call - call a function on the cpu 119 * @func: the function to be called 120 * @info: the function call argument 121 * 122 * Calls the function @func on the remote cpu. 123 * 124 * returns: @func return value or -ENXIO when the cpu is offline 125 */ 126 static int cpu_function_call(int cpu, remote_function_f func, void *info) 127 { 128 struct remote_function_call data = { 129 .p = NULL, 130 .func = func, 131 .info = info, 132 .ret = -ENXIO, /* No such CPU */ 133 }; 134 135 smp_call_function_single(cpu, remote_function, &data, 1); 136 137 return data.ret; 138 } 139 140 static inline struct perf_cpu_context * 141 __get_cpu_context(struct perf_event_context *ctx) 142 { 143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 144 } 145 146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 147 struct perf_event_context *ctx) 148 { 149 raw_spin_lock(&cpuctx->ctx.lock); 150 if (ctx) 151 raw_spin_lock(&ctx->lock); 152 } 153 154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 155 struct perf_event_context *ctx) 156 { 157 if (ctx) 158 raw_spin_unlock(&ctx->lock); 159 raw_spin_unlock(&cpuctx->ctx.lock); 160 } 161 162 #define TASK_TOMBSTONE ((void *)-1L) 163 164 static bool is_kernel_event(struct perf_event *event) 165 { 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 167 } 168 169 /* 170 * On task ctx scheduling... 171 * 172 * When !ctx->nr_events a task context will not be scheduled. This means 173 * we can disable the scheduler hooks (for performance) without leaving 174 * pending task ctx state. 175 * 176 * This however results in two special cases: 177 * 178 * - removing the last event from a task ctx; this is relatively straight 179 * forward and is done in __perf_remove_from_context. 180 * 181 * - adding the first event to a task ctx; this is tricky because we cannot 182 * rely on ctx->is_active and therefore cannot use event_function_call(). 183 * See perf_install_in_context(). 184 * 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 186 */ 187 188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 189 struct perf_event_context *, void *); 190 191 struct event_function_struct { 192 struct perf_event *event; 193 event_f func; 194 void *data; 195 }; 196 197 static int event_function(void *info) 198 { 199 struct event_function_struct *efs = info; 200 struct perf_event *event = efs->event; 201 struct perf_event_context *ctx = event->ctx; 202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 203 struct perf_event_context *task_ctx = cpuctx->task_ctx; 204 int ret = 0; 205 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 perf_ctx_lock(cpuctx, task_ctx); 209 /* 210 * Since we do the IPI call without holding ctx->lock things can have 211 * changed, double check we hit the task we set out to hit. 212 */ 213 if (ctx->task) { 214 if (ctx->task != current) { 215 ret = -ESRCH; 216 goto unlock; 217 } 218 219 /* 220 * We only use event_function_call() on established contexts, 221 * and event_function() is only ever called when active (or 222 * rather, we'll have bailed in task_function_call() or the 223 * above ctx->task != current test), therefore we must have 224 * ctx->is_active here. 225 */ 226 WARN_ON_ONCE(!ctx->is_active); 227 /* 228 * And since we have ctx->is_active, cpuctx->task_ctx must 229 * match. 230 */ 231 WARN_ON_ONCE(task_ctx != ctx); 232 } else { 233 WARN_ON_ONCE(&cpuctx->ctx != ctx); 234 } 235 236 efs->func(event, cpuctx, ctx, efs->data); 237 unlock: 238 perf_ctx_unlock(cpuctx, task_ctx); 239 240 return ret; 241 } 242 243 static void event_function_local(struct perf_event *event, event_f func, void *data) 244 { 245 struct event_function_struct efs = { 246 .event = event, 247 .func = func, 248 .data = data, 249 }; 250 251 int ret = event_function(&efs); 252 WARN_ON_ONCE(ret); 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 305 PERF_FLAG_FD_OUTPUT |\ 306 PERF_FLAG_PID_CGROUP |\ 307 PERF_FLAG_FD_CLOEXEC) 308 309 /* 310 * branch priv levels that need permission checks 311 */ 312 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 313 (PERF_SAMPLE_BRANCH_KERNEL |\ 314 PERF_SAMPLE_BRANCH_HV) 315 316 enum event_type_t { 317 EVENT_FLEXIBLE = 0x1, 318 EVENT_PINNED = 0x2, 319 EVENT_TIME = 0x4, 320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 321 }; 322 323 /* 324 * perf_sched_events : >0 events exist 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 326 */ 327 328 static void perf_sched_delayed(struct work_struct *work); 329 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 331 static DEFINE_MUTEX(perf_sched_mutex); 332 static atomic_t perf_sched_count; 333 334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 335 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 336 337 static atomic_t nr_mmap_events __read_mostly; 338 static atomic_t nr_comm_events __read_mostly; 339 static atomic_t nr_task_events __read_mostly; 340 static atomic_t nr_freq_events __read_mostly; 341 static atomic_t nr_switch_events __read_mostly; 342 343 static LIST_HEAD(pmus); 344 static DEFINE_MUTEX(pmus_lock); 345 static struct srcu_struct pmus_srcu; 346 347 /* 348 * perf event paranoia level: 349 * -1 - not paranoid at all 350 * 0 - disallow raw tracepoint access for unpriv 351 * 1 - disallow cpu events for unpriv 352 * 2 - disallow kernel profiling for unpriv 353 */ 354 int sysctl_perf_event_paranoid __read_mostly = 1; 355 356 /* Minimum for 512 kiB + 1 user control page */ 357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 358 359 /* 360 * max perf event sample rate 361 */ 362 #define DEFAULT_MAX_SAMPLE_RATE 100000 363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 365 366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 367 368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 370 371 static int perf_sample_allowed_ns __read_mostly = 372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 373 374 static void update_perf_cpu_limits(void) 375 { 376 u64 tmp = perf_sample_period_ns; 377 378 tmp *= sysctl_perf_cpu_time_max_percent; 379 tmp = div_u64(tmp, 100); 380 if (!tmp) 381 tmp = 1; 382 383 WRITE_ONCE(perf_sample_allowed_ns, tmp); 384 } 385 386 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 387 388 int perf_proc_update_handler(struct ctl_table *table, int write, 389 void __user *buffer, size_t *lenp, 390 loff_t *ppos) 391 { 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 393 394 if (ret || !write) 395 return ret; 396 397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 399 update_perf_cpu_limits(); 400 401 return 0; 402 } 403 404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 405 406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 407 void __user *buffer, size_t *lenp, 408 loff_t *ppos) 409 { 410 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 411 412 if (ret || !write) 413 return ret; 414 415 if (sysctl_perf_cpu_time_max_percent == 100) { 416 printk(KERN_WARNING 417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 418 WRITE_ONCE(perf_sample_allowed_ns, 0); 419 } else { 420 update_perf_cpu_limits(); 421 } 422 423 return 0; 424 } 425 426 /* 427 * perf samples are done in some very critical code paths (NMIs). 428 * If they take too much CPU time, the system can lock up and not 429 * get any real work done. This will drop the sample rate when 430 * we detect that events are taking too long. 431 */ 432 #define NR_ACCUMULATED_SAMPLES 128 433 static DEFINE_PER_CPU(u64, running_sample_length); 434 435 static u64 __report_avg; 436 static u64 __report_allowed; 437 438 static void perf_duration_warn(struct irq_work *w) 439 { 440 printk_ratelimited(KERN_WARNING 441 "perf: interrupt took too long (%lld > %lld), lowering " 442 "kernel.perf_event_max_sample_rate to %d\n", 443 __report_avg, __report_allowed, 444 sysctl_perf_event_sample_rate); 445 } 446 447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 448 449 void perf_sample_event_took(u64 sample_len_ns) 450 { 451 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 452 u64 running_len; 453 u64 avg_len; 454 u32 max; 455 456 if (max_len == 0) 457 return; 458 459 /* Decay the counter by 1 average sample. */ 460 running_len = __this_cpu_read(running_sample_length); 461 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 462 running_len += sample_len_ns; 463 __this_cpu_write(running_sample_length, running_len); 464 465 /* 466 * Note: this will be biased artifically low until we have 467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 468 * from having to maintain a count. 469 */ 470 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 471 if (avg_len <= max_len) 472 return; 473 474 __report_avg = avg_len; 475 __report_allowed = max_len; 476 477 /* 478 * Compute a throttle threshold 25% below the current duration. 479 */ 480 avg_len += avg_len / 4; 481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 482 if (avg_len < max) 483 max /= (u32)avg_len; 484 else 485 max = 1; 486 487 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 488 WRITE_ONCE(max_samples_per_tick, max); 489 490 sysctl_perf_event_sample_rate = max * HZ; 491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 492 493 if (!irq_work_queue(&perf_duration_work)) { 494 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 495 "kernel.perf_event_max_sample_rate to %d\n", 496 __report_avg, __report_allowed, 497 sysctl_perf_event_sample_rate); 498 } 499 } 500 501 static atomic64_t perf_event_id; 502 503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 504 enum event_type_t event_type); 505 506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 507 enum event_type_t event_type, 508 struct task_struct *task); 509 510 static void update_context_time(struct perf_event_context *ctx); 511 static u64 perf_event_time(struct perf_event *event); 512 513 void __weak perf_event_print_debug(void) { } 514 515 extern __weak const char *perf_pmu_name(void) 516 { 517 return "pmu"; 518 } 519 520 static inline u64 perf_clock(void) 521 { 522 return local_clock(); 523 } 524 525 static inline u64 perf_event_clock(struct perf_event *event) 526 { 527 return event->clock(); 528 } 529 530 #ifdef CONFIG_CGROUP_PERF 531 532 static inline bool 533 perf_cgroup_match(struct perf_event *event) 534 { 535 struct perf_event_context *ctx = event->ctx; 536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 537 538 /* @event doesn't care about cgroup */ 539 if (!event->cgrp) 540 return true; 541 542 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 543 if (!cpuctx->cgrp) 544 return false; 545 546 /* 547 * Cgroup scoping is recursive. An event enabled for a cgroup is 548 * also enabled for all its descendant cgroups. If @cpuctx's 549 * cgroup is a descendant of @event's (the test covers identity 550 * case), it's a match. 551 */ 552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 553 event->cgrp->css.cgroup); 554 } 555 556 static inline void perf_detach_cgroup(struct perf_event *event) 557 { 558 css_put(&event->cgrp->css); 559 event->cgrp = NULL; 560 } 561 562 static inline int is_cgroup_event(struct perf_event *event) 563 { 564 return event->cgrp != NULL; 565 } 566 567 static inline u64 perf_cgroup_event_time(struct perf_event *event) 568 { 569 struct perf_cgroup_info *t; 570 571 t = per_cpu_ptr(event->cgrp->info, event->cpu); 572 return t->time; 573 } 574 575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 576 { 577 struct perf_cgroup_info *info; 578 u64 now; 579 580 now = perf_clock(); 581 582 info = this_cpu_ptr(cgrp->info); 583 584 info->time += now - info->timestamp; 585 info->timestamp = now; 586 } 587 588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 589 { 590 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 591 if (cgrp_out) 592 __update_cgrp_time(cgrp_out); 593 } 594 595 static inline void update_cgrp_time_from_event(struct perf_event *event) 596 { 597 struct perf_cgroup *cgrp; 598 599 /* 600 * ensure we access cgroup data only when needed and 601 * when we know the cgroup is pinned (css_get) 602 */ 603 if (!is_cgroup_event(event)) 604 return; 605 606 cgrp = perf_cgroup_from_task(current, event->ctx); 607 /* 608 * Do not update time when cgroup is not active 609 */ 610 if (cgrp == event->cgrp) 611 __update_cgrp_time(event->cgrp); 612 } 613 614 static inline void 615 perf_cgroup_set_timestamp(struct task_struct *task, 616 struct perf_event_context *ctx) 617 { 618 struct perf_cgroup *cgrp; 619 struct perf_cgroup_info *info; 620 621 /* 622 * ctx->lock held by caller 623 * ensure we do not access cgroup data 624 * unless we have the cgroup pinned (css_get) 625 */ 626 if (!task || !ctx->nr_cgroups) 627 return; 628 629 cgrp = perf_cgroup_from_task(task, ctx); 630 info = this_cpu_ptr(cgrp->info); 631 info->timestamp = ctx->timestamp; 632 } 633 634 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 635 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 636 637 /* 638 * reschedule events based on the cgroup constraint of task. 639 * 640 * mode SWOUT : schedule out everything 641 * mode SWIN : schedule in based on cgroup for next 642 */ 643 static void perf_cgroup_switch(struct task_struct *task, int mode) 644 { 645 struct perf_cpu_context *cpuctx; 646 struct pmu *pmu; 647 unsigned long flags; 648 649 /* 650 * disable interrupts to avoid geting nr_cgroup 651 * changes via __perf_event_disable(). Also 652 * avoids preemption. 653 */ 654 local_irq_save(flags); 655 656 /* 657 * we reschedule only in the presence of cgroup 658 * constrained events. 659 */ 660 661 list_for_each_entry_rcu(pmu, &pmus, entry) { 662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 663 if (cpuctx->unique_pmu != pmu) 664 continue; /* ensure we process each cpuctx once */ 665 666 /* 667 * perf_cgroup_events says at least one 668 * context on this CPU has cgroup events. 669 * 670 * ctx->nr_cgroups reports the number of cgroup 671 * events for a context. 672 */ 673 if (cpuctx->ctx.nr_cgroups > 0) { 674 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 675 perf_pmu_disable(cpuctx->ctx.pmu); 676 677 if (mode & PERF_CGROUP_SWOUT) { 678 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 679 /* 680 * must not be done before ctxswout due 681 * to event_filter_match() in event_sched_out() 682 */ 683 cpuctx->cgrp = NULL; 684 } 685 686 if (mode & PERF_CGROUP_SWIN) { 687 WARN_ON_ONCE(cpuctx->cgrp); 688 /* 689 * set cgrp before ctxsw in to allow 690 * event_filter_match() to not have to pass 691 * task around 692 * we pass the cpuctx->ctx to perf_cgroup_from_task() 693 * because cgorup events are only per-cpu 694 */ 695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 697 } 698 perf_pmu_enable(cpuctx->ctx.pmu); 699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 700 } 701 } 702 703 local_irq_restore(flags); 704 } 705 706 static inline void perf_cgroup_sched_out(struct task_struct *task, 707 struct task_struct *next) 708 { 709 struct perf_cgroup *cgrp1; 710 struct perf_cgroup *cgrp2 = NULL; 711 712 rcu_read_lock(); 713 /* 714 * we come here when we know perf_cgroup_events > 0 715 * we do not need to pass the ctx here because we know 716 * we are holding the rcu lock 717 */ 718 cgrp1 = perf_cgroup_from_task(task, NULL); 719 cgrp2 = perf_cgroup_from_task(next, NULL); 720 721 /* 722 * only schedule out current cgroup events if we know 723 * that we are switching to a different cgroup. Otherwise, 724 * do no touch the cgroup events. 725 */ 726 if (cgrp1 != cgrp2) 727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 728 729 rcu_read_unlock(); 730 } 731 732 static inline void perf_cgroup_sched_in(struct task_struct *prev, 733 struct task_struct *task) 734 { 735 struct perf_cgroup *cgrp1; 736 struct perf_cgroup *cgrp2 = NULL; 737 738 rcu_read_lock(); 739 /* 740 * we come here when we know perf_cgroup_events > 0 741 * we do not need to pass the ctx here because we know 742 * we are holding the rcu lock 743 */ 744 cgrp1 = perf_cgroup_from_task(task, NULL); 745 cgrp2 = perf_cgroup_from_task(prev, NULL); 746 747 /* 748 * only need to schedule in cgroup events if we are changing 749 * cgroup during ctxsw. Cgroup events were not scheduled 750 * out of ctxsw out if that was not the case. 751 */ 752 if (cgrp1 != cgrp2) 753 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 754 755 rcu_read_unlock(); 756 } 757 758 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 759 struct perf_event_attr *attr, 760 struct perf_event *group_leader) 761 { 762 struct perf_cgroup *cgrp; 763 struct cgroup_subsys_state *css; 764 struct fd f = fdget(fd); 765 int ret = 0; 766 767 if (!f.file) 768 return -EBADF; 769 770 css = css_tryget_online_from_dir(f.file->f_path.dentry, 771 &perf_event_cgrp_subsys); 772 if (IS_ERR(css)) { 773 ret = PTR_ERR(css); 774 goto out; 775 } 776 777 cgrp = container_of(css, struct perf_cgroup, css); 778 event->cgrp = cgrp; 779 780 /* 781 * all events in a group must monitor 782 * the same cgroup because a task belongs 783 * to only one perf cgroup at a time 784 */ 785 if (group_leader && group_leader->cgrp != cgrp) { 786 perf_detach_cgroup(event); 787 ret = -EINVAL; 788 } 789 out: 790 fdput(f); 791 return ret; 792 } 793 794 static inline void 795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 796 { 797 struct perf_cgroup_info *t; 798 t = per_cpu_ptr(event->cgrp->info, event->cpu); 799 event->shadow_ctx_time = now - t->timestamp; 800 } 801 802 static inline void 803 perf_cgroup_defer_enabled(struct perf_event *event) 804 { 805 /* 806 * when the current task's perf cgroup does not match 807 * the event's, we need to remember to call the 808 * perf_mark_enable() function the first time a task with 809 * a matching perf cgroup is scheduled in. 810 */ 811 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 812 event->cgrp_defer_enabled = 1; 813 } 814 815 static inline void 816 perf_cgroup_mark_enabled(struct perf_event *event, 817 struct perf_event_context *ctx) 818 { 819 struct perf_event *sub; 820 u64 tstamp = perf_event_time(event); 821 822 if (!event->cgrp_defer_enabled) 823 return; 824 825 event->cgrp_defer_enabled = 0; 826 827 event->tstamp_enabled = tstamp - event->total_time_enabled; 828 list_for_each_entry(sub, &event->sibling_list, group_entry) { 829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 830 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 831 sub->cgrp_defer_enabled = 0; 832 } 833 } 834 } 835 #else /* !CONFIG_CGROUP_PERF */ 836 837 static inline bool 838 perf_cgroup_match(struct perf_event *event) 839 { 840 return true; 841 } 842 843 static inline void perf_detach_cgroup(struct perf_event *event) 844 {} 845 846 static inline int is_cgroup_event(struct perf_event *event) 847 { 848 return 0; 849 } 850 851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 852 { 853 return 0; 854 } 855 856 static inline void update_cgrp_time_from_event(struct perf_event *event) 857 { 858 } 859 860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 861 { 862 } 863 864 static inline void perf_cgroup_sched_out(struct task_struct *task, 865 struct task_struct *next) 866 { 867 } 868 869 static inline void perf_cgroup_sched_in(struct task_struct *prev, 870 struct task_struct *task) 871 { 872 } 873 874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 875 struct perf_event_attr *attr, 876 struct perf_event *group_leader) 877 { 878 return -EINVAL; 879 } 880 881 static inline void 882 perf_cgroup_set_timestamp(struct task_struct *task, 883 struct perf_event_context *ctx) 884 { 885 } 886 887 void 888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 889 { 890 } 891 892 static inline void 893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 894 { 895 } 896 897 static inline u64 perf_cgroup_event_time(struct perf_event *event) 898 { 899 return 0; 900 } 901 902 static inline void 903 perf_cgroup_defer_enabled(struct perf_event *event) 904 { 905 } 906 907 static inline void 908 perf_cgroup_mark_enabled(struct perf_event *event, 909 struct perf_event_context *ctx) 910 { 911 } 912 #endif 913 914 /* 915 * set default to be dependent on timer tick just 916 * like original code 917 */ 918 #define PERF_CPU_HRTIMER (1000 / HZ) 919 /* 920 * function must be called with interrupts disbled 921 */ 922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 923 { 924 struct perf_cpu_context *cpuctx; 925 int rotations = 0; 926 927 WARN_ON(!irqs_disabled()); 928 929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 930 rotations = perf_rotate_context(cpuctx); 931 932 raw_spin_lock(&cpuctx->hrtimer_lock); 933 if (rotations) 934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 935 else 936 cpuctx->hrtimer_active = 0; 937 raw_spin_unlock(&cpuctx->hrtimer_lock); 938 939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 940 } 941 942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 943 { 944 struct hrtimer *timer = &cpuctx->hrtimer; 945 struct pmu *pmu = cpuctx->ctx.pmu; 946 u64 interval; 947 948 /* no multiplexing needed for SW PMU */ 949 if (pmu->task_ctx_nr == perf_sw_context) 950 return; 951 952 /* 953 * check default is sane, if not set then force to 954 * default interval (1/tick) 955 */ 956 interval = pmu->hrtimer_interval_ms; 957 if (interval < 1) 958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 959 960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 961 962 raw_spin_lock_init(&cpuctx->hrtimer_lock); 963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 964 timer->function = perf_mux_hrtimer_handler; 965 } 966 967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 968 { 969 struct hrtimer *timer = &cpuctx->hrtimer; 970 struct pmu *pmu = cpuctx->ctx.pmu; 971 unsigned long flags; 972 973 /* not for SW PMU */ 974 if (pmu->task_ctx_nr == perf_sw_context) 975 return 0; 976 977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 978 if (!cpuctx->hrtimer_active) { 979 cpuctx->hrtimer_active = 1; 980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 982 } 983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 984 985 return 0; 986 } 987 988 void perf_pmu_disable(struct pmu *pmu) 989 { 990 int *count = this_cpu_ptr(pmu->pmu_disable_count); 991 if (!(*count)++) 992 pmu->pmu_disable(pmu); 993 } 994 995 void perf_pmu_enable(struct pmu *pmu) 996 { 997 int *count = this_cpu_ptr(pmu->pmu_disable_count); 998 if (!--(*count)) 999 pmu->pmu_enable(pmu); 1000 } 1001 1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1003 1004 /* 1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1006 * perf_event_task_tick() are fully serialized because they're strictly cpu 1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1008 * disabled, while perf_event_task_tick is called from IRQ context. 1009 */ 1010 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1011 { 1012 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1013 1014 WARN_ON(!irqs_disabled()); 1015 1016 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1017 1018 list_add(&ctx->active_ctx_list, head); 1019 } 1020 1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1022 { 1023 WARN_ON(!irqs_disabled()); 1024 1025 WARN_ON(list_empty(&ctx->active_ctx_list)); 1026 1027 list_del_init(&ctx->active_ctx_list); 1028 } 1029 1030 static void get_ctx(struct perf_event_context *ctx) 1031 { 1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1033 } 1034 1035 static void free_ctx(struct rcu_head *head) 1036 { 1037 struct perf_event_context *ctx; 1038 1039 ctx = container_of(head, struct perf_event_context, rcu_head); 1040 kfree(ctx->task_ctx_data); 1041 kfree(ctx); 1042 } 1043 1044 static void put_ctx(struct perf_event_context *ctx) 1045 { 1046 if (atomic_dec_and_test(&ctx->refcount)) { 1047 if (ctx->parent_ctx) 1048 put_ctx(ctx->parent_ctx); 1049 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1050 put_task_struct(ctx->task); 1051 call_rcu(&ctx->rcu_head, free_ctx); 1052 } 1053 } 1054 1055 /* 1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1057 * perf_pmu_migrate_context() we need some magic. 1058 * 1059 * Those places that change perf_event::ctx will hold both 1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1061 * 1062 * Lock ordering is by mutex address. There are two other sites where 1063 * perf_event_context::mutex nests and those are: 1064 * 1065 * - perf_event_exit_task_context() [ child , 0 ] 1066 * perf_event_exit_event() 1067 * put_event() [ parent, 1 ] 1068 * 1069 * - perf_event_init_context() [ parent, 0 ] 1070 * inherit_task_group() 1071 * inherit_group() 1072 * inherit_event() 1073 * perf_event_alloc() 1074 * perf_init_event() 1075 * perf_try_init_event() [ child , 1 ] 1076 * 1077 * While it appears there is an obvious deadlock here -- the parent and child 1078 * nesting levels are inverted between the two. This is in fact safe because 1079 * life-time rules separate them. That is an exiting task cannot fork, and a 1080 * spawning task cannot (yet) exit. 1081 * 1082 * But remember that that these are parent<->child context relations, and 1083 * migration does not affect children, therefore these two orderings should not 1084 * interact. 1085 * 1086 * The change in perf_event::ctx does not affect children (as claimed above) 1087 * because the sys_perf_event_open() case will install a new event and break 1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1089 * concerned with cpuctx and that doesn't have children. 1090 * 1091 * The places that change perf_event::ctx will issue: 1092 * 1093 * perf_remove_from_context(); 1094 * synchronize_rcu(); 1095 * perf_install_in_context(); 1096 * 1097 * to affect the change. The remove_from_context() + synchronize_rcu() should 1098 * quiesce the event, after which we can install it in the new location. This 1099 * means that only external vectors (perf_fops, prctl) can perturb the event 1100 * while in transit. Therefore all such accessors should also acquire 1101 * perf_event_context::mutex to serialize against this. 1102 * 1103 * However; because event->ctx can change while we're waiting to acquire 1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1105 * function. 1106 * 1107 * Lock order: 1108 * task_struct::perf_event_mutex 1109 * perf_event_context::mutex 1110 * perf_event::child_mutex; 1111 * perf_event_context::lock 1112 * perf_event::mmap_mutex 1113 * mmap_sem 1114 */ 1115 static struct perf_event_context * 1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1117 { 1118 struct perf_event_context *ctx; 1119 1120 again: 1121 rcu_read_lock(); 1122 ctx = ACCESS_ONCE(event->ctx); 1123 if (!atomic_inc_not_zero(&ctx->refcount)) { 1124 rcu_read_unlock(); 1125 goto again; 1126 } 1127 rcu_read_unlock(); 1128 1129 mutex_lock_nested(&ctx->mutex, nesting); 1130 if (event->ctx != ctx) { 1131 mutex_unlock(&ctx->mutex); 1132 put_ctx(ctx); 1133 goto again; 1134 } 1135 1136 return ctx; 1137 } 1138 1139 static inline struct perf_event_context * 1140 perf_event_ctx_lock(struct perf_event *event) 1141 { 1142 return perf_event_ctx_lock_nested(event, 0); 1143 } 1144 1145 static void perf_event_ctx_unlock(struct perf_event *event, 1146 struct perf_event_context *ctx) 1147 { 1148 mutex_unlock(&ctx->mutex); 1149 put_ctx(ctx); 1150 } 1151 1152 /* 1153 * This must be done under the ctx->lock, such as to serialize against 1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1155 * calling scheduler related locks and ctx->lock nests inside those. 1156 */ 1157 static __must_check struct perf_event_context * 1158 unclone_ctx(struct perf_event_context *ctx) 1159 { 1160 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1161 1162 lockdep_assert_held(&ctx->lock); 1163 1164 if (parent_ctx) 1165 ctx->parent_ctx = NULL; 1166 ctx->generation++; 1167 1168 return parent_ctx; 1169 } 1170 1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1172 { 1173 /* 1174 * only top level events have the pid namespace they were created in 1175 */ 1176 if (event->parent) 1177 event = event->parent; 1178 1179 return task_tgid_nr_ns(p, event->ns); 1180 } 1181 1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1183 { 1184 /* 1185 * only top level events have the pid namespace they were created in 1186 */ 1187 if (event->parent) 1188 event = event->parent; 1189 1190 return task_pid_nr_ns(p, event->ns); 1191 } 1192 1193 /* 1194 * If we inherit events we want to return the parent event id 1195 * to userspace. 1196 */ 1197 static u64 primary_event_id(struct perf_event *event) 1198 { 1199 u64 id = event->id; 1200 1201 if (event->parent) 1202 id = event->parent->id; 1203 1204 return id; 1205 } 1206 1207 /* 1208 * Get the perf_event_context for a task and lock it. 1209 * 1210 * This has to cope with with the fact that until it is locked, 1211 * the context could get moved to another task. 1212 */ 1213 static struct perf_event_context * 1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1215 { 1216 struct perf_event_context *ctx; 1217 1218 retry: 1219 /* 1220 * One of the few rules of preemptible RCU is that one cannot do 1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1222 * part of the read side critical section was irqs-enabled -- see 1223 * rcu_read_unlock_special(). 1224 * 1225 * Since ctx->lock nests under rq->lock we must ensure the entire read 1226 * side critical section has interrupts disabled. 1227 */ 1228 local_irq_save(*flags); 1229 rcu_read_lock(); 1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1231 if (ctx) { 1232 /* 1233 * If this context is a clone of another, it might 1234 * get swapped for another underneath us by 1235 * perf_event_task_sched_out, though the 1236 * rcu_read_lock() protects us from any context 1237 * getting freed. Lock the context and check if it 1238 * got swapped before we could get the lock, and retry 1239 * if so. If we locked the right context, then it 1240 * can't get swapped on us any more. 1241 */ 1242 raw_spin_lock(&ctx->lock); 1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1244 raw_spin_unlock(&ctx->lock); 1245 rcu_read_unlock(); 1246 local_irq_restore(*flags); 1247 goto retry; 1248 } 1249 1250 if (ctx->task == TASK_TOMBSTONE || 1251 !atomic_inc_not_zero(&ctx->refcount)) { 1252 raw_spin_unlock(&ctx->lock); 1253 ctx = NULL; 1254 } else { 1255 WARN_ON_ONCE(ctx->task != task); 1256 } 1257 } 1258 rcu_read_unlock(); 1259 if (!ctx) 1260 local_irq_restore(*flags); 1261 return ctx; 1262 } 1263 1264 /* 1265 * Get the context for a task and increment its pin_count so it 1266 * can't get swapped to another task. This also increments its 1267 * reference count so that the context can't get freed. 1268 */ 1269 static struct perf_event_context * 1270 perf_pin_task_context(struct task_struct *task, int ctxn) 1271 { 1272 struct perf_event_context *ctx; 1273 unsigned long flags; 1274 1275 ctx = perf_lock_task_context(task, ctxn, &flags); 1276 if (ctx) { 1277 ++ctx->pin_count; 1278 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1279 } 1280 return ctx; 1281 } 1282 1283 static void perf_unpin_context(struct perf_event_context *ctx) 1284 { 1285 unsigned long flags; 1286 1287 raw_spin_lock_irqsave(&ctx->lock, flags); 1288 --ctx->pin_count; 1289 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1290 } 1291 1292 /* 1293 * Update the record of the current time in a context. 1294 */ 1295 static void update_context_time(struct perf_event_context *ctx) 1296 { 1297 u64 now = perf_clock(); 1298 1299 ctx->time += now - ctx->timestamp; 1300 ctx->timestamp = now; 1301 } 1302 1303 static u64 perf_event_time(struct perf_event *event) 1304 { 1305 struct perf_event_context *ctx = event->ctx; 1306 1307 if (is_cgroup_event(event)) 1308 return perf_cgroup_event_time(event); 1309 1310 return ctx ? ctx->time : 0; 1311 } 1312 1313 /* 1314 * Update the total_time_enabled and total_time_running fields for a event. 1315 */ 1316 static void update_event_times(struct perf_event *event) 1317 { 1318 struct perf_event_context *ctx = event->ctx; 1319 u64 run_end; 1320 1321 lockdep_assert_held(&ctx->lock); 1322 1323 if (event->state < PERF_EVENT_STATE_INACTIVE || 1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1325 return; 1326 1327 /* 1328 * in cgroup mode, time_enabled represents 1329 * the time the event was enabled AND active 1330 * tasks were in the monitored cgroup. This is 1331 * independent of the activity of the context as 1332 * there may be a mix of cgroup and non-cgroup events. 1333 * 1334 * That is why we treat cgroup events differently 1335 * here. 1336 */ 1337 if (is_cgroup_event(event)) 1338 run_end = perf_cgroup_event_time(event); 1339 else if (ctx->is_active) 1340 run_end = ctx->time; 1341 else 1342 run_end = event->tstamp_stopped; 1343 1344 event->total_time_enabled = run_end - event->tstamp_enabled; 1345 1346 if (event->state == PERF_EVENT_STATE_INACTIVE) 1347 run_end = event->tstamp_stopped; 1348 else 1349 run_end = perf_event_time(event); 1350 1351 event->total_time_running = run_end - event->tstamp_running; 1352 1353 } 1354 1355 /* 1356 * Update total_time_enabled and total_time_running for all events in a group. 1357 */ 1358 static void update_group_times(struct perf_event *leader) 1359 { 1360 struct perf_event *event; 1361 1362 update_event_times(leader); 1363 list_for_each_entry(event, &leader->sibling_list, group_entry) 1364 update_event_times(event); 1365 } 1366 1367 static struct list_head * 1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1369 { 1370 if (event->attr.pinned) 1371 return &ctx->pinned_groups; 1372 else 1373 return &ctx->flexible_groups; 1374 } 1375 1376 /* 1377 * Add a event from the lists for its context. 1378 * Must be called with ctx->mutex and ctx->lock held. 1379 */ 1380 static void 1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1382 { 1383 lockdep_assert_held(&ctx->lock); 1384 1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1386 event->attach_state |= PERF_ATTACH_CONTEXT; 1387 1388 /* 1389 * If we're a stand alone event or group leader, we go to the context 1390 * list, group events are kept attached to the group so that 1391 * perf_group_detach can, at all times, locate all siblings. 1392 */ 1393 if (event->group_leader == event) { 1394 struct list_head *list; 1395 1396 if (is_software_event(event)) 1397 event->group_flags |= PERF_GROUP_SOFTWARE; 1398 1399 list = ctx_group_list(event, ctx); 1400 list_add_tail(&event->group_entry, list); 1401 } 1402 1403 if (is_cgroup_event(event)) 1404 ctx->nr_cgroups++; 1405 1406 list_add_rcu(&event->event_entry, &ctx->event_list); 1407 ctx->nr_events++; 1408 if (event->attr.inherit_stat) 1409 ctx->nr_stat++; 1410 1411 ctx->generation++; 1412 } 1413 1414 /* 1415 * Initialize event state based on the perf_event_attr::disabled. 1416 */ 1417 static inline void perf_event__state_init(struct perf_event *event) 1418 { 1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1420 PERF_EVENT_STATE_INACTIVE; 1421 } 1422 1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1424 { 1425 int entry = sizeof(u64); /* value */ 1426 int size = 0; 1427 int nr = 1; 1428 1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1430 size += sizeof(u64); 1431 1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1433 size += sizeof(u64); 1434 1435 if (event->attr.read_format & PERF_FORMAT_ID) 1436 entry += sizeof(u64); 1437 1438 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1439 nr += nr_siblings; 1440 size += sizeof(u64); 1441 } 1442 1443 size += entry * nr; 1444 event->read_size = size; 1445 } 1446 1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1448 { 1449 struct perf_sample_data *data; 1450 u16 size = 0; 1451 1452 if (sample_type & PERF_SAMPLE_IP) 1453 size += sizeof(data->ip); 1454 1455 if (sample_type & PERF_SAMPLE_ADDR) 1456 size += sizeof(data->addr); 1457 1458 if (sample_type & PERF_SAMPLE_PERIOD) 1459 size += sizeof(data->period); 1460 1461 if (sample_type & PERF_SAMPLE_WEIGHT) 1462 size += sizeof(data->weight); 1463 1464 if (sample_type & PERF_SAMPLE_READ) 1465 size += event->read_size; 1466 1467 if (sample_type & PERF_SAMPLE_DATA_SRC) 1468 size += sizeof(data->data_src.val); 1469 1470 if (sample_type & PERF_SAMPLE_TRANSACTION) 1471 size += sizeof(data->txn); 1472 1473 event->header_size = size; 1474 } 1475 1476 /* 1477 * Called at perf_event creation and when events are attached/detached from a 1478 * group. 1479 */ 1480 static void perf_event__header_size(struct perf_event *event) 1481 { 1482 __perf_event_read_size(event, 1483 event->group_leader->nr_siblings); 1484 __perf_event_header_size(event, event->attr.sample_type); 1485 } 1486 1487 static void perf_event__id_header_size(struct perf_event *event) 1488 { 1489 struct perf_sample_data *data; 1490 u64 sample_type = event->attr.sample_type; 1491 u16 size = 0; 1492 1493 if (sample_type & PERF_SAMPLE_TID) 1494 size += sizeof(data->tid_entry); 1495 1496 if (sample_type & PERF_SAMPLE_TIME) 1497 size += sizeof(data->time); 1498 1499 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1500 size += sizeof(data->id); 1501 1502 if (sample_type & PERF_SAMPLE_ID) 1503 size += sizeof(data->id); 1504 1505 if (sample_type & PERF_SAMPLE_STREAM_ID) 1506 size += sizeof(data->stream_id); 1507 1508 if (sample_type & PERF_SAMPLE_CPU) 1509 size += sizeof(data->cpu_entry); 1510 1511 event->id_header_size = size; 1512 } 1513 1514 static bool perf_event_validate_size(struct perf_event *event) 1515 { 1516 /* 1517 * The values computed here will be over-written when we actually 1518 * attach the event. 1519 */ 1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1522 perf_event__id_header_size(event); 1523 1524 /* 1525 * Sum the lot; should not exceed the 64k limit we have on records. 1526 * Conservative limit to allow for callchains and other variable fields. 1527 */ 1528 if (event->read_size + event->header_size + 1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1530 return false; 1531 1532 return true; 1533 } 1534 1535 static void perf_group_attach(struct perf_event *event) 1536 { 1537 struct perf_event *group_leader = event->group_leader, *pos; 1538 1539 /* 1540 * We can have double attach due to group movement in perf_event_open. 1541 */ 1542 if (event->attach_state & PERF_ATTACH_GROUP) 1543 return; 1544 1545 event->attach_state |= PERF_ATTACH_GROUP; 1546 1547 if (group_leader == event) 1548 return; 1549 1550 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1551 1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1553 !is_software_event(event)) 1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1555 1556 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1557 group_leader->nr_siblings++; 1558 1559 perf_event__header_size(group_leader); 1560 1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1562 perf_event__header_size(pos); 1563 } 1564 1565 /* 1566 * Remove a event from the lists for its context. 1567 * Must be called with ctx->mutex and ctx->lock held. 1568 */ 1569 static void 1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1571 { 1572 struct perf_cpu_context *cpuctx; 1573 1574 WARN_ON_ONCE(event->ctx != ctx); 1575 lockdep_assert_held(&ctx->lock); 1576 1577 /* 1578 * We can have double detach due to exit/hot-unplug + close. 1579 */ 1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1581 return; 1582 1583 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1584 1585 if (is_cgroup_event(event)) { 1586 ctx->nr_cgroups--; 1587 /* 1588 * Because cgroup events are always per-cpu events, this will 1589 * always be called from the right CPU. 1590 */ 1591 cpuctx = __get_cpu_context(ctx); 1592 /* 1593 * If there are no more cgroup events then clear cgrp to avoid 1594 * stale pointer in update_cgrp_time_from_cpuctx(). 1595 */ 1596 if (!ctx->nr_cgroups) 1597 cpuctx->cgrp = NULL; 1598 } 1599 1600 ctx->nr_events--; 1601 if (event->attr.inherit_stat) 1602 ctx->nr_stat--; 1603 1604 list_del_rcu(&event->event_entry); 1605 1606 if (event->group_leader == event) 1607 list_del_init(&event->group_entry); 1608 1609 update_group_times(event); 1610 1611 /* 1612 * If event was in error state, then keep it 1613 * that way, otherwise bogus counts will be 1614 * returned on read(). The only way to get out 1615 * of error state is by explicit re-enabling 1616 * of the event 1617 */ 1618 if (event->state > PERF_EVENT_STATE_OFF) 1619 event->state = PERF_EVENT_STATE_OFF; 1620 1621 ctx->generation++; 1622 } 1623 1624 static void perf_group_detach(struct perf_event *event) 1625 { 1626 struct perf_event *sibling, *tmp; 1627 struct list_head *list = NULL; 1628 1629 /* 1630 * We can have double detach due to exit/hot-unplug + close. 1631 */ 1632 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1633 return; 1634 1635 event->attach_state &= ~PERF_ATTACH_GROUP; 1636 1637 /* 1638 * If this is a sibling, remove it from its group. 1639 */ 1640 if (event->group_leader != event) { 1641 list_del_init(&event->group_entry); 1642 event->group_leader->nr_siblings--; 1643 goto out; 1644 } 1645 1646 if (!list_empty(&event->group_entry)) 1647 list = &event->group_entry; 1648 1649 /* 1650 * If this was a group event with sibling events then 1651 * upgrade the siblings to singleton events by adding them 1652 * to whatever list we are on. 1653 */ 1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1655 if (list) 1656 list_move_tail(&sibling->group_entry, list); 1657 sibling->group_leader = sibling; 1658 1659 /* Inherit group flags from the previous leader */ 1660 sibling->group_flags = event->group_flags; 1661 1662 WARN_ON_ONCE(sibling->ctx != event->ctx); 1663 } 1664 1665 out: 1666 perf_event__header_size(event->group_leader); 1667 1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1669 perf_event__header_size(tmp); 1670 } 1671 1672 static bool is_orphaned_event(struct perf_event *event) 1673 { 1674 return event->state == PERF_EVENT_STATE_DEAD; 1675 } 1676 1677 static inline int pmu_filter_match(struct perf_event *event) 1678 { 1679 struct pmu *pmu = event->pmu; 1680 return pmu->filter_match ? pmu->filter_match(event) : 1; 1681 } 1682 1683 static inline int 1684 event_filter_match(struct perf_event *event) 1685 { 1686 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1687 && perf_cgroup_match(event) && pmu_filter_match(event); 1688 } 1689 1690 static void 1691 event_sched_out(struct perf_event *event, 1692 struct perf_cpu_context *cpuctx, 1693 struct perf_event_context *ctx) 1694 { 1695 u64 tstamp = perf_event_time(event); 1696 u64 delta; 1697 1698 WARN_ON_ONCE(event->ctx != ctx); 1699 lockdep_assert_held(&ctx->lock); 1700 1701 /* 1702 * An event which could not be activated because of 1703 * filter mismatch still needs to have its timings 1704 * maintained, otherwise bogus information is return 1705 * via read() for time_enabled, time_running: 1706 */ 1707 if (event->state == PERF_EVENT_STATE_INACTIVE 1708 && !event_filter_match(event)) { 1709 delta = tstamp - event->tstamp_stopped; 1710 event->tstamp_running += delta; 1711 event->tstamp_stopped = tstamp; 1712 } 1713 1714 if (event->state != PERF_EVENT_STATE_ACTIVE) 1715 return; 1716 1717 perf_pmu_disable(event->pmu); 1718 1719 event->tstamp_stopped = tstamp; 1720 event->pmu->del(event, 0); 1721 event->oncpu = -1; 1722 event->state = PERF_EVENT_STATE_INACTIVE; 1723 if (event->pending_disable) { 1724 event->pending_disable = 0; 1725 event->state = PERF_EVENT_STATE_OFF; 1726 } 1727 1728 if (!is_software_event(event)) 1729 cpuctx->active_oncpu--; 1730 if (!--ctx->nr_active) 1731 perf_event_ctx_deactivate(ctx); 1732 if (event->attr.freq && event->attr.sample_freq) 1733 ctx->nr_freq--; 1734 if (event->attr.exclusive || !cpuctx->active_oncpu) 1735 cpuctx->exclusive = 0; 1736 1737 perf_pmu_enable(event->pmu); 1738 } 1739 1740 static void 1741 group_sched_out(struct perf_event *group_event, 1742 struct perf_cpu_context *cpuctx, 1743 struct perf_event_context *ctx) 1744 { 1745 struct perf_event *event; 1746 int state = group_event->state; 1747 1748 event_sched_out(group_event, cpuctx, ctx); 1749 1750 /* 1751 * Schedule out siblings (if any): 1752 */ 1753 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1754 event_sched_out(event, cpuctx, ctx); 1755 1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1757 cpuctx->exclusive = 0; 1758 } 1759 1760 #define DETACH_GROUP 0x01UL 1761 1762 /* 1763 * Cross CPU call to remove a performance event 1764 * 1765 * We disable the event on the hardware level first. After that we 1766 * remove it from the context list. 1767 */ 1768 static void 1769 __perf_remove_from_context(struct perf_event *event, 1770 struct perf_cpu_context *cpuctx, 1771 struct perf_event_context *ctx, 1772 void *info) 1773 { 1774 unsigned long flags = (unsigned long)info; 1775 1776 event_sched_out(event, cpuctx, ctx); 1777 if (flags & DETACH_GROUP) 1778 perf_group_detach(event); 1779 list_del_event(event, ctx); 1780 1781 if (!ctx->nr_events && ctx->is_active) { 1782 ctx->is_active = 0; 1783 if (ctx->task) { 1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1785 cpuctx->task_ctx = NULL; 1786 } 1787 } 1788 } 1789 1790 /* 1791 * Remove the event from a task's (or a CPU's) list of events. 1792 * 1793 * If event->ctx is a cloned context, callers must make sure that 1794 * every task struct that event->ctx->task could possibly point to 1795 * remains valid. This is OK when called from perf_release since 1796 * that only calls us on the top-level context, which can't be a clone. 1797 * When called from perf_event_exit_task, it's OK because the 1798 * context has been detached from its task. 1799 */ 1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1801 { 1802 lockdep_assert_held(&event->ctx->mutex); 1803 1804 event_function_call(event, __perf_remove_from_context, (void *)flags); 1805 } 1806 1807 /* 1808 * Cross CPU call to disable a performance event 1809 */ 1810 static void __perf_event_disable(struct perf_event *event, 1811 struct perf_cpu_context *cpuctx, 1812 struct perf_event_context *ctx, 1813 void *info) 1814 { 1815 if (event->state < PERF_EVENT_STATE_INACTIVE) 1816 return; 1817 1818 update_context_time(ctx); 1819 update_cgrp_time_from_event(event); 1820 update_group_times(event); 1821 if (event == event->group_leader) 1822 group_sched_out(event, cpuctx, ctx); 1823 else 1824 event_sched_out(event, cpuctx, ctx); 1825 event->state = PERF_EVENT_STATE_OFF; 1826 } 1827 1828 /* 1829 * Disable a event. 1830 * 1831 * If event->ctx is a cloned context, callers must make sure that 1832 * every task struct that event->ctx->task could possibly point to 1833 * remains valid. This condition is satisifed when called through 1834 * perf_event_for_each_child or perf_event_for_each because they 1835 * hold the top-level event's child_mutex, so any descendant that 1836 * goes to exit will block in perf_event_exit_event(). 1837 * 1838 * When called from perf_pending_event it's OK because event->ctx 1839 * is the current context on this CPU and preemption is disabled, 1840 * hence we can't get into perf_event_task_sched_out for this context. 1841 */ 1842 static void _perf_event_disable(struct perf_event *event) 1843 { 1844 struct perf_event_context *ctx = event->ctx; 1845 1846 raw_spin_lock_irq(&ctx->lock); 1847 if (event->state <= PERF_EVENT_STATE_OFF) { 1848 raw_spin_unlock_irq(&ctx->lock); 1849 return; 1850 } 1851 raw_spin_unlock_irq(&ctx->lock); 1852 1853 event_function_call(event, __perf_event_disable, NULL); 1854 } 1855 1856 void perf_event_disable_local(struct perf_event *event) 1857 { 1858 event_function_local(event, __perf_event_disable, NULL); 1859 } 1860 1861 /* 1862 * Strictly speaking kernel users cannot create groups and therefore this 1863 * interface does not need the perf_event_ctx_lock() magic. 1864 */ 1865 void perf_event_disable(struct perf_event *event) 1866 { 1867 struct perf_event_context *ctx; 1868 1869 ctx = perf_event_ctx_lock(event); 1870 _perf_event_disable(event); 1871 perf_event_ctx_unlock(event, ctx); 1872 } 1873 EXPORT_SYMBOL_GPL(perf_event_disable); 1874 1875 static void perf_set_shadow_time(struct perf_event *event, 1876 struct perf_event_context *ctx, 1877 u64 tstamp) 1878 { 1879 /* 1880 * use the correct time source for the time snapshot 1881 * 1882 * We could get by without this by leveraging the 1883 * fact that to get to this function, the caller 1884 * has most likely already called update_context_time() 1885 * and update_cgrp_time_xx() and thus both timestamp 1886 * are identical (or very close). Given that tstamp is, 1887 * already adjusted for cgroup, we could say that: 1888 * tstamp - ctx->timestamp 1889 * is equivalent to 1890 * tstamp - cgrp->timestamp. 1891 * 1892 * Then, in perf_output_read(), the calculation would 1893 * work with no changes because: 1894 * - event is guaranteed scheduled in 1895 * - no scheduled out in between 1896 * - thus the timestamp would be the same 1897 * 1898 * But this is a bit hairy. 1899 * 1900 * So instead, we have an explicit cgroup call to remain 1901 * within the time time source all along. We believe it 1902 * is cleaner and simpler to understand. 1903 */ 1904 if (is_cgroup_event(event)) 1905 perf_cgroup_set_shadow_time(event, tstamp); 1906 else 1907 event->shadow_ctx_time = tstamp - ctx->timestamp; 1908 } 1909 1910 #define MAX_INTERRUPTS (~0ULL) 1911 1912 static void perf_log_throttle(struct perf_event *event, int enable); 1913 static void perf_log_itrace_start(struct perf_event *event); 1914 1915 static int 1916 event_sched_in(struct perf_event *event, 1917 struct perf_cpu_context *cpuctx, 1918 struct perf_event_context *ctx) 1919 { 1920 u64 tstamp = perf_event_time(event); 1921 int ret = 0; 1922 1923 lockdep_assert_held(&ctx->lock); 1924 1925 if (event->state <= PERF_EVENT_STATE_OFF) 1926 return 0; 1927 1928 event->state = PERF_EVENT_STATE_ACTIVE; 1929 event->oncpu = smp_processor_id(); 1930 1931 /* 1932 * Unthrottle events, since we scheduled we might have missed several 1933 * ticks already, also for a heavily scheduling task there is little 1934 * guarantee it'll get a tick in a timely manner. 1935 */ 1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1937 perf_log_throttle(event, 1); 1938 event->hw.interrupts = 0; 1939 } 1940 1941 /* 1942 * The new state must be visible before we turn it on in the hardware: 1943 */ 1944 smp_wmb(); 1945 1946 perf_pmu_disable(event->pmu); 1947 1948 perf_set_shadow_time(event, ctx, tstamp); 1949 1950 perf_log_itrace_start(event); 1951 1952 if (event->pmu->add(event, PERF_EF_START)) { 1953 event->state = PERF_EVENT_STATE_INACTIVE; 1954 event->oncpu = -1; 1955 ret = -EAGAIN; 1956 goto out; 1957 } 1958 1959 event->tstamp_running += tstamp - event->tstamp_stopped; 1960 1961 if (!is_software_event(event)) 1962 cpuctx->active_oncpu++; 1963 if (!ctx->nr_active++) 1964 perf_event_ctx_activate(ctx); 1965 if (event->attr.freq && event->attr.sample_freq) 1966 ctx->nr_freq++; 1967 1968 if (event->attr.exclusive) 1969 cpuctx->exclusive = 1; 1970 1971 out: 1972 perf_pmu_enable(event->pmu); 1973 1974 return ret; 1975 } 1976 1977 static int 1978 group_sched_in(struct perf_event *group_event, 1979 struct perf_cpu_context *cpuctx, 1980 struct perf_event_context *ctx) 1981 { 1982 struct perf_event *event, *partial_group = NULL; 1983 struct pmu *pmu = ctx->pmu; 1984 u64 now = ctx->time; 1985 bool simulate = false; 1986 1987 if (group_event->state == PERF_EVENT_STATE_OFF) 1988 return 0; 1989 1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1991 1992 if (event_sched_in(group_event, cpuctx, ctx)) { 1993 pmu->cancel_txn(pmu); 1994 perf_mux_hrtimer_restart(cpuctx); 1995 return -EAGAIN; 1996 } 1997 1998 /* 1999 * Schedule in siblings as one group (if any): 2000 */ 2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2002 if (event_sched_in(event, cpuctx, ctx)) { 2003 partial_group = event; 2004 goto group_error; 2005 } 2006 } 2007 2008 if (!pmu->commit_txn(pmu)) 2009 return 0; 2010 2011 group_error: 2012 /* 2013 * Groups can be scheduled in as one unit only, so undo any 2014 * partial group before returning: 2015 * The events up to the failed event are scheduled out normally, 2016 * tstamp_stopped will be updated. 2017 * 2018 * The failed events and the remaining siblings need to have 2019 * their timings updated as if they had gone thru event_sched_in() 2020 * and event_sched_out(). This is required to get consistent timings 2021 * across the group. This also takes care of the case where the group 2022 * could never be scheduled by ensuring tstamp_stopped is set to mark 2023 * the time the event was actually stopped, such that time delta 2024 * calculation in update_event_times() is correct. 2025 */ 2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2027 if (event == partial_group) 2028 simulate = true; 2029 2030 if (simulate) { 2031 event->tstamp_running += now - event->tstamp_stopped; 2032 event->tstamp_stopped = now; 2033 } else { 2034 event_sched_out(event, cpuctx, ctx); 2035 } 2036 } 2037 event_sched_out(group_event, cpuctx, ctx); 2038 2039 pmu->cancel_txn(pmu); 2040 2041 perf_mux_hrtimer_restart(cpuctx); 2042 2043 return -EAGAIN; 2044 } 2045 2046 /* 2047 * Work out whether we can put this event group on the CPU now. 2048 */ 2049 static int group_can_go_on(struct perf_event *event, 2050 struct perf_cpu_context *cpuctx, 2051 int can_add_hw) 2052 { 2053 /* 2054 * Groups consisting entirely of software events can always go on. 2055 */ 2056 if (event->group_flags & PERF_GROUP_SOFTWARE) 2057 return 1; 2058 /* 2059 * If an exclusive group is already on, no other hardware 2060 * events can go on. 2061 */ 2062 if (cpuctx->exclusive) 2063 return 0; 2064 /* 2065 * If this group is exclusive and there are already 2066 * events on the CPU, it can't go on. 2067 */ 2068 if (event->attr.exclusive && cpuctx->active_oncpu) 2069 return 0; 2070 /* 2071 * Otherwise, try to add it if all previous groups were able 2072 * to go on. 2073 */ 2074 return can_add_hw; 2075 } 2076 2077 static void add_event_to_ctx(struct perf_event *event, 2078 struct perf_event_context *ctx) 2079 { 2080 u64 tstamp = perf_event_time(event); 2081 2082 list_add_event(event, ctx); 2083 perf_group_attach(event); 2084 event->tstamp_enabled = tstamp; 2085 event->tstamp_running = tstamp; 2086 event->tstamp_stopped = tstamp; 2087 } 2088 2089 static void ctx_sched_out(struct perf_event_context *ctx, 2090 struct perf_cpu_context *cpuctx, 2091 enum event_type_t event_type); 2092 static void 2093 ctx_sched_in(struct perf_event_context *ctx, 2094 struct perf_cpu_context *cpuctx, 2095 enum event_type_t event_type, 2096 struct task_struct *task); 2097 2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2099 struct perf_event_context *ctx) 2100 { 2101 if (!cpuctx->task_ctx) 2102 return; 2103 2104 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2105 return; 2106 2107 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2108 } 2109 2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2111 struct perf_event_context *ctx, 2112 struct task_struct *task) 2113 { 2114 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2115 if (ctx) 2116 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2117 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2118 if (ctx) 2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2120 } 2121 2122 static void ctx_resched(struct perf_cpu_context *cpuctx, 2123 struct perf_event_context *task_ctx) 2124 { 2125 perf_pmu_disable(cpuctx->ctx.pmu); 2126 if (task_ctx) 2127 task_ctx_sched_out(cpuctx, task_ctx); 2128 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2129 perf_event_sched_in(cpuctx, task_ctx, current); 2130 perf_pmu_enable(cpuctx->ctx.pmu); 2131 } 2132 2133 /* 2134 * Cross CPU call to install and enable a performance event 2135 * 2136 * Very similar to remote_function() + event_function() but cannot assume that 2137 * things like ctx->is_active and cpuctx->task_ctx are set. 2138 */ 2139 static int __perf_install_in_context(void *info) 2140 { 2141 struct perf_event *event = info; 2142 struct perf_event_context *ctx = event->ctx; 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2145 bool activate = true; 2146 int ret = 0; 2147 2148 raw_spin_lock(&cpuctx->ctx.lock); 2149 if (ctx->task) { 2150 raw_spin_lock(&ctx->lock); 2151 task_ctx = ctx; 2152 2153 /* If we're on the wrong CPU, try again */ 2154 if (task_cpu(ctx->task) != smp_processor_id()) { 2155 ret = -ESRCH; 2156 goto unlock; 2157 } 2158 2159 /* 2160 * If we're on the right CPU, see if the task we target is 2161 * current, if not we don't have to activate the ctx, a future 2162 * context switch will do that for us. 2163 */ 2164 if (ctx->task != current) 2165 activate = false; 2166 else 2167 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2168 2169 } else if (task_ctx) { 2170 raw_spin_lock(&task_ctx->lock); 2171 } 2172 2173 if (activate) { 2174 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2175 add_event_to_ctx(event, ctx); 2176 ctx_resched(cpuctx, task_ctx); 2177 } else { 2178 add_event_to_ctx(event, ctx); 2179 } 2180 2181 unlock: 2182 perf_ctx_unlock(cpuctx, task_ctx); 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * Attach a performance event to a context. 2189 * 2190 * Very similar to event_function_call, see comment there. 2191 */ 2192 static void 2193 perf_install_in_context(struct perf_event_context *ctx, 2194 struct perf_event *event, 2195 int cpu) 2196 { 2197 struct task_struct *task = READ_ONCE(ctx->task); 2198 2199 lockdep_assert_held(&ctx->mutex); 2200 2201 event->ctx = ctx; 2202 if (event->cpu != -1) 2203 event->cpu = cpu; 2204 2205 if (!task) { 2206 cpu_function_call(cpu, __perf_install_in_context, event); 2207 return; 2208 } 2209 2210 /* 2211 * Should not happen, we validate the ctx is still alive before calling. 2212 */ 2213 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2214 return; 2215 2216 /* 2217 * Installing events is tricky because we cannot rely on ctx->is_active 2218 * to be set in case this is the nr_events 0 -> 1 transition. 2219 */ 2220 again: 2221 /* 2222 * Cannot use task_function_call() because we need to run on the task's 2223 * CPU regardless of whether its current or not. 2224 */ 2225 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2226 return; 2227 2228 raw_spin_lock_irq(&ctx->lock); 2229 task = ctx->task; 2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2231 /* 2232 * Cannot happen because we already checked above (which also 2233 * cannot happen), and we hold ctx->mutex, which serializes us 2234 * against perf_event_exit_task_context(). 2235 */ 2236 raw_spin_unlock_irq(&ctx->lock); 2237 return; 2238 } 2239 raw_spin_unlock_irq(&ctx->lock); 2240 /* 2241 * Since !ctx->is_active doesn't mean anything, we must IPI 2242 * unconditionally. 2243 */ 2244 goto again; 2245 } 2246 2247 /* 2248 * Put a event into inactive state and update time fields. 2249 * Enabling the leader of a group effectively enables all 2250 * the group members that aren't explicitly disabled, so we 2251 * have to update their ->tstamp_enabled also. 2252 * Note: this works for group members as well as group leaders 2253 * since the non-leader members' sibling_lists will be empty. 2254 */ 2255 static void __perf_event_mark_enabled(struct perf_event *event) 2256 { 2257 struct perf_event *sub; 2258 u64 tstamp = perf_event_time(event); 2259 2260 event->state = PERF_EVENT_STATE_INACTIVE; 2261 event->tstamp_enabled = tstamp - event->total_time_enabled; 2262 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2263 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2264 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2265 } 2266 } 2267 2268 /* 2269 * Cross CPU call to enable a performance event 2270 */ 2271 static void __perf_event_enable(struct perf_event *event, 2272 struct perf_cpu_context *cpuctx, 2273 struct perf_event_context *ctx, 2274 void *info) 2275 { 2276 struct perf_event *leader = event->group_leader; 2277 struct perf_event_context *task_ctx; 2278 2279 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2280 event->state <= PERF_EVENT_STATE_ERROR) 2281 return; 2282 2283 if (ctx->is_active) 2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2285 2286 __perf_event_mark_enabled(event); 2287 2288 if (!ctx->is_active) 2289 return; 2290 2291 if (!event_filter_match(event)) { 2292 if (is_cgroup_event(event)) 2293 perf_cgroup_defer_enabled(event); 2294 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2295 return; 2296 } 2297 2298 /* 2299 * If the event is in a group and isn't the group leader, 2300 * then don't put it on unless the group is on. 2301 */ 2302 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2304 return; 2305 } 2306 2307 task_ctx = cpuctx->task_ctx; 2308 if (ctx->task) 2309 WARN_ON_ONCE(task_ctx != ctx); 2310 2311 ctx_resched(cpuctx, task_ctx); 2312 } 2313 2314 /* 2315 * Enable a event. 2316 * 2317 * If event->ctx is a cloned context, callers must make sure that 2318 * every task struct that event->ctx->task could possibly point to 2319 * remains valid. This condition is satisfied when called through 2320 * perf_event_for_each_child or perf_event_for_each as described 2321 * for perf_event_disable. 2322 */ 2323 static void _perf_event_enable(struct perf_event *event) 2324 { 2325 struct perf_event_context *ctx = event->ctx; 2326 2327 raw_spin_lock_irq(&ctx->lock); 2328 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2329 event->state < PERF_EVENT_STATE_ERROR) { 2330 raw_spin_unlock_irq(&ctx->lock); 2331 return; 2332 } 2333 2334 /* 2335 * If the event is in error state, clear that first. 2336 * 2337 * That way, if we see the event in error state below, we know that it 2338 * has gone back into error state, as distinct from the task having 2339 * been scheduled away before the cross-call arrived. 2340 */ 2341 if (event->state == PERF_EVENT_STATE_ERROR) 2342 event->state = PERF_EVENT_STATE_OFF; 2343 raw_spin_unlock_irq(&ctx->lock); 2344 2345 event_function_call(event, __perf_event_enable, NULL); 2346 } 2347 2348 /* 2349 * See perf_event_disable(); 2350 */ 2351 void perf_event_enable(struct perf_event *event) 2352 { 2353 struct perf_event_context *ctx; 2354 2355 ctx = perf_event_ctx_lock(event); 2356 _perf_event_enable(event); 2357 perf_event_ctx_unlock(event, ctx); 2358 } 2359 EXPORT_SYMBOL_GPL(perf_event_enable); 2360 2361 static int _perf_event_refresh(struct perf_event *event, int refresh) 2362 { 2363 /* 2364 * not supported on inherited events 2365 */ 2366 if (event->attr.inherit || !is_sampling_event(event)) 2367 return -EINVAL; 2368 2369 atomic_add(refresh, &event->event_limit); 2370 _perf_event_enable(event); 2371 2372 return 0; 2373 } 2374 2375 /* 2376 * See perf_event_disable() 2377 */ 2378 int perf_event_refresh(struct perf_event *event, int refresh) 2379 { 2380 struct perf_event_context *ctx; 2381 int ret; 2382 2383 ctx = perf_event_ctx_lock(event); 2384 ret = _perf_event_refresh(event, refresh); 2385 perf_event_ctx_unlock(event, ctx); 2386 2387 return ret; 2388 } 2389 EXPORT_SYMBOL_GPL(perf_event_refresh); 2390 2391 static void ctx_sched_out(struct perf_event_context *ctx, 2392 struct perf_cpu_context *cpuctx, 2393 enum event_type_t event_type) 2394 { 2395 int is_active = ctx->is_active; 2396 struct perf_event *event; 2397 2398 lockdep_assert_held(&ctx->lock); 2399 2400 if (likely(!ctx->nr_events)) { 2401 /* 2402 * See __perf_remove_from_context(). 2403 */ 2404 WARN_ON_ONCE(ctx->is_active); 2405 if (ctx->task) 2406 WARN_ON_ONCE(cpuctx->task_ctx); 2407 return; 2408 } 2409 2410 ctx->is_active &= ~event_type; 2411 if (!(ctx->is_active & EVENT_ALL)) 2412 ctx->is_active = 0; 2413 2414 if (ctx->task) { 2415 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2416 if (!ctx->is_active) 2417 cpuctx->task_ctx = NULL; 2418 } 2419 2420 /* 2421 * Always update time if it was set; not only when it changes. 2422 * Otherwise we can 'forget' to update time for any but the last 2423 * context we sched out. For example: 2424 * 2425 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2426 * ctx_sched_out(.event_type = EVENT_PINNED) 2427 * 2428 * would only update time for the pinned events. 2429 */ 2430 if (is_active & EVENT_TIME) { 2431 /* update (and stop) ctx time */ 2432 update_context_time(ctx); 2433 update_cgrp_time_from_cpuctx(cpuctx); 2434 } 2435 2436 is_active ^= ctx->is_active; /* changed bits */ 2437 2438 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2439 return; 2440 2441 perf_pmu_disable(ctx->pmu); 2442 if (is_active & EVENT_PINNED) { 2443 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2444 group_sched_out(event, cpuctx, ctx); 2445 } 2446 2447 if (is_active & EVENT_FLEXIBLE) { 2448 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2449 group_sched_out(event, cpuctx, ctx); 2450 } 2451 perf_pmu_enable(ctx->pmu); 2452 } 2453 2454 /* 2455 * Test whether two contexts are equivalent, i.e. whether they have both been 2456 * cloned from the same version of the same context. 2457 * 2458 * Equivalence is measured using a generation number in the context that is 2459 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2460 * and list_del_event(). 2461 */ 2462 static int context_equiv(struct perf_event_context *ctx1, 2463 struct perf_event_context *ctx2) 2464 { 2465 lockdep_assert_held(&ctx1->lock); 2466 lockdep_assert_held(&ctx2->lock); 2467 2468 /* Pinning disables the swap optimization */ 2469 if (ctx1->pin_count || ctx2->pin_count) 2470 return 0; 2471 2472 /* If ctx1 is the parent of ctx2 */ 2473 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2474 return 1; 2475 2476 /* If ctx2 is the parent of ctx1 */ 2477 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2478 return 1; 2479 2480 /* 2481 * If ctx1 and ctx2 have the same parent; we flatten the parent 2482 * hierarchy, see perf_event_init_context(). 2483 */ 2484 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2485 ctx1->parent_gen == ctx2->parent_gen) 2486 return 1; 2487 2488 /* Unmatched */ 2489 return 0; 2490 } 2491 2492 static void __perf_event_sync_stat(struct perf_event *event, 2493 struct perf_event *next_event) 2494 { 2495 u64 value; 2496 2497 if (!event->attr.inherit_stat) 2498 return; 2499 2500 /* 2501 * Update the event value, we cannot use perf_event_read() 2502 * because we're in the middle of a context switch and have IRQs 2503 * disabled, which upsets smp_call_function_single(), however 2504 * we know the event must be on the current CPU, therefore we 2505 * don't need to use it. 2506 */ 2507 switch (event->state) { 2508 case PERF_EVENT_STATE_ACTIVE: 2509 event->pmu->read(event); 2510 /* fall-through */ 2511 2512 case PERF_EVENT_STATE_INACTIVE: 2513 update_event_times(event); 2514 break; 2515 2516 default: 2517 break; 2518 } 2519 2520 /* 2521 * In order to keep per-task stats reliable we need to flip the event 2522 * values when we flip the contexts. 2523 */ 2524 value = local64_read(&next_event->count); 2525 value = local64_xchg(&event->count, value); 2526 local64_set(&next_event->count, value); 2527 2528 swap(event->total_time_enabled, next_event->total_time_enabled); 2529 swap(event->total_time_running, next_event->total_time_running); 2530 2531 /* 2532 * Since we swizzled the values, update the user visible data too. 2533 */ 2534 perf_event_update_userpage(event); 2535 perf_event_update_userpage(next_event); 2536 } 2537 2538 static void perf_event_sync_stat(struct perf_event_context *ctx, 2539 struct perf_event_context *next_ctx) 2540 { 2541 struct perf_event *event, *next_event; 2542 2543 if (!ctx->nr_stat) 2544 return; 2545 2546 update_context_time(ctx); 2547 2548 event = list_first_entry(&ctx->event_list, 2549 struct perf_event, event_entry); 2550 2551 next_event = list_first_entry(&next_ctx->event_list, 2552 struct perf_event, event_entry); 2553 2554 while (&event->event_entry != &ctx->event_list && 2555 &next_event->event_entry != &next_ctx->event_list) { 2556 2557 __perf_event_sync_stat(event, next_event); 2558 2559 event = list_next_entry(event, event_entry); 2560 next_event = list_next_entry(next_event, event_entry); 2561 } 2562 } 2563 2564 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2565 struct task_struct *next) 2566 { 2567 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2568 struct perf_event_context *next_ctx; 2569 struct perf_event_context *parent, *next_parent; 2570 struct perf_cpu_context *cpuctx; 2571 int do_switch = 1; 2572 2573 if (likely(!ctx)) 2574 return; 2575 2576 cpuctx = __get_cpu_context(ctx); 2577 if (!cpuctx->task_ctx) 2578 return; 2579 2580 rcu_read_lock(); 2581 next_ctx = next->perf_event_ctxp[ctxn]; 2582 if (!next_ctx) 2583 goto unlock; 2584 2585 parent = rcu_dereference(ctx->parent_ctx); 2586 next_parent = rcu_dereference(next_ctx->parent_ctx); 2587 2588 /* If neither context have a parent context; they cannot be clones. */ 2589 if (!parent && !next_parent) 2590 goto unlock; 2591 2592 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2593 /* 2594 * Looks like the two contexts are clones, so we might be 2595 * able to optimize the context switch. We lock both 2596 * contexts and check that they are clones under the 2597 * lock (including re-checking that neither has been 2598 * uncloned in the meantime). It doesn't matter which 2599 * order we take the locks because no other cpu could 2600 * be trying to lock both of these tasks. 2601 */ 2602 raw_spin_lock(&ctx->lock); 2603 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2604 if (context_equiv(ctx, next_ctx)) { 2605 WRITE_ONCE(ctx->task, next); 2606 WRITE_ONCE(next_ctx->task, task); 2607 2608 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2609 2610 /* 2611 * RCU_INIT_POINTER here is safe because we've not 2612 * modified the ctx and the above modification of 2613 * ctx->task and ctx->task_ctx_data are immaterial 2614 * since those values are always verified under 2615 * ctx->lock which we're now holding. 2616 */ 2617 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2618 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2619 2620 do_switch = 0; 2621 2622 perf_event_sync_stat(ctx, next_ctx); 2623 } 2624 raw_spin_unlock(&next_ctx->lock); 2625 raw_spin_unlock(&ctx->lock); 2626 } 2627 unlock: 2628 rcu_read_unlock(); 2629 2630 if (do_switch) { 2631 raw_spin_lock(&ctx->lock); 2632 task_ctx_sched_out(cpuctx, ctx); 2633 raw_spin_unlock(&ctx->lock); 2634 } 2635 } 2636 2637 void perf_sched_cb_dec(struct pmu *pmu) 2638 { 2639 this_cpu_dec(perf_sched_cb_usages); 2640 } 2641 2642 void perf_sched_cb_inc(struct pmu *pmu) 2643 { 2644 this_cpu_inc(perf_sched_cb_usages); 2645 } 2646 2647 /* 2648 * This function provides the context switch callback to the lower code 2649 * layer. It is invoked ONLY when the context switch callback is enabled. 2650 */ 2651 static void perf_pmu_sched_task(struct task_struct *prev, 2652 struct task_struct *next, 2653 bool sched_in) 2654 { 2655 struct perf_cpu_context *cpuctx; 2656 struct pmu *pmu; 2657 unsigned long flags; 2658 2659 if (prev == next) 2660 return; 2661 2662 local_irq_save(flags); 2663 2664 rcu_read_lock(); 2665 2666 list_for_each_entry_rcu(pmu, &pmus, entry) { 2667 if (pmu->sched_task) { 2668 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2669 2670 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2671 2672 perf_pmu_disable(pmu); 2673 2674 pmu->sched_task(cpuctx->task_ctx, sched_in); 2675 2676 perf_pmu_enable(pmu); 2677 2678 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2679 } 2680 } 2681 2682 rcu_read_unlock(); 2683 2684 local_irq_restore(flags); 2685 } 2686 2687 static void perf_event_switch(struct task_struct *task, 2688 struct task_struct *next_prev, bool sched_in); 2689 2690 #define for_each_task_context_nr(ctxn) \ 2691 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2692 2693 /* 2694 * Called from scheduler to remove the events of the current task, 2695 * with interrupts disabled. 2696 * 2697 * We stop each event and update the event value in event->count. 2698 * 2699 * This does not protect us against NMI, but disable() 2700 * sets the disabled bit in the control field of event _before_ 2701 * accessing the event control register. If a NMI hits, then it will 2702 * not restart the event. 2703 */ 2704 void __perf_event_task_sched_out(struct task_struct *task, 2705 struct task_struct *next) 2706 { 2707 int ctxn; 2708 2709 if (__this_cpu_read(perf_sched_cb_usages)) 2710 perf_pmu_sched_task(task, next, false); 2711 2712 if (atomic_read(&nr_switch_events)) 2713 perf_event_switch(task, next, false); 2714 2715 for_each_task_context_nr(ctxn) 2716 perf_event_context_sched_out(task, ctxn, next); 2717 2718 /* 2719 * if cgroup events exist on this CPU, then we need 2720 * to check if we have to switch out PMU state. 2721 * cgroup event are system-wide mode only 2722 */ 2723 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2724 perf_cgroup_sched_out(task, next); 2725 } 2726 2727 /* 2728 * Called with IRQs disabled 2729 */ 2730 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2731 enum event_type_t event_type) 2732 { 2733 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2734 } 2735 2736 static void 2737 ctx_pinned_sched_in(struct perf_event_context *ctx, 2738 struct perf_cpu_context *cpuctx) 2739 { 2740 struct perf_event *event; 2741 2742 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2743 if (event->state <= PERF_EVENT_STATE_OFF) 2744 continue; 2745 if (!event_filter_match(event)) 2746 continue; 2747 2748 /* may need to reset tstamp_enabled */ 2749 if (is_cgroup_event(event)) 2750 perf_cgroup_mark_enabled(event, ctx); 2751 2752 if (group_can_go_on(event, cpuctx, 1)) 2753 group_sched_in(event, cpuctx, ctx); 2754 2755 /* 2756 * If this pinned group hasn't been scheduled, 2757 * put it in error state. 2758 */ 2759 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2760 update_group_times(event); 2761 event->state = PERF_EVENT_STATE_ERROR; 2762 } 2763 } 2764 } 2765 2766 static void 2767 ctx_flexible_sched_in(struct perf_event_context *ctx, 2768 struct perf_cpu_context *cpuctx) 2769 { 2770 struct perf_event *event; 2771 int can_add_hw = 1; 2772 2773 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2774 /* Ignore events in OFF or ERROR state */ 2775 if (event->state <= PERF_EVENT_STATE_OFF) 2776 continue; 2777 /* 2778 * Listen to the 'cpu' scheduling filter constraint 2779 * of events: 2780 */ 2781 if (!event_filter_match(event)) 2782 continue; 2783 2784 /* may need to reset tstamp_enabled */ 2785 if (is_cgroup_event(event)) 2786 perf_cgroup_mark_enabled(event, ctx); 2787 2788 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2789 if (group_sched_in(event, cpuctx, ctx)) 2790 can_add_hw = 0; 2791 } 2792 } 2793 } 2794 2795 static void 2796 ctx_sched_in(struct perf_event_context *ctx, 2797 struct perf_cpu_context *cpuctx, 2798 enum event_type_t event_type, 2799 struct task_struct *task) 2800 { 2801 int is_active = ctx->is_active; 2802 u64 now; 2803 2804 lockdep_assert_held(&ctx->lock); 2805 2806 if (likely(!ctx->nr_events)) 2807 return; 2808 2809 ctx->is_active |= (event_type | EVENT_TIME); 2810 if (ctx->task) { 2811 if (!is_active) 2812 cpuctx->task_ctx = ctx; 2813 else 2814 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2815 } 2816 2817 is_active ^= ctx->is_active; /* changed bits */ 2818 2819 if (is_active & EVENT_TIME) { 2820 /* start ctx time */ 2821 now = perf_clock(); 2822 ctx->timestamp = now; 2823 perf_cgroup_set_timestamp(task, ctx); 2824 } 2825 2826 /* 2827 * First go through the list and put on any pinned groups 2828 * in order to give them the best chance of going on. 2829 */ 2830 if (is_active & EVENT_PINNED) 2831 ctx_pinned_sched_in(ctx, cpuctx); 2832 2833 /* Then walk through the lower prio flexible groups */ 2834 if (is_active & EVENT_FLEXIBLE) 2835 ctx_flexible_sched_in(ctx, cpuctx); 2836 } 2837 2838 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2839 enum event_type_t event_type, 2840 struct task_struct *task) 2841 { 2842 struct perf_event_context *ctx = &cpuctx->ctx; 2843 2844 ctx_sched_in(ctx, cpuctx, event_type, task); 2845 } 2846 2847 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2848 struct task_struct *task) 2849 { 2850 struct perf_cpu_context *cpuctx; 2851 2852 cpuctx = __get_cpu_context(ctx); 2853 if (cpuctx->task_ctx == ctx) 2854 return; 2855 2856 perf_ctx_lock(cpuctx, ctx); 2857 perf_pmu_disable(ctx->pmu); 2858 /* 2859 * We want to keep the following priority order: 2860 * cpu pinned (that don't need to move), task pinned, 2861 * cpu flexible, task flexible. 2862 */ 2863 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2864 perf_event_sched_in(cpuctx, ctx, task); 2865 perf_pmu_enable(ctx->pmu); 2866 perf_ctx_unlock(cpuctx, ctx); 2867 } 2868 2869 /* 2870 * Called from scheduler to add the events of the current task 2871 * with interrupts disabled. 2872 * 2873 * We restore the event value and then enable it. 2874 * 2875 * This does not protect us against NMI, but enable() 2876 * sets the enabled bit in the control field of event _before_ 2877 * accessing the event control register. If a NMI hits, then it will 2878 * keep the event running. 2879 */ 2880 void __perf_event_task_sched_in(struct task_struct *prev, 2881 struct task_struct *task) 2882 { 2883 struct perf_event_context *ctx; 2884 int ctxn; 2885 2886 /* 2887 * If cgroup events exist on this CPU, then we need to check if we have 2888 * to switch in PMU state; cgroup event are system-wide mode only. 2889 * 2890 * Since cgroup events are CPU events, we must schedule these in before 2891 * we schedule in the task events. 2892 */ 2893 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2894 perf_cgroup_sched_in(prev, task); 2895 2896 for_each_task_context_nr(ctxn) { 2897 ctx = task->perf_event_ctxp[ctxn]; 2898 if (likely(!ctx)) 2899 continue; 2900 2901 perf_event_context_sched_in(ctx, task); 2902 } 2903 2904 if (atomic_read(&nr_switch_events)) 2905 perf_event_switch(task, prev, true); 2906 2907 if (__this_cpu_read(perf_sched_cb_usages)) 2908 perf_pmu_sched_task(prev, task, true); 2909 } 2910 2911 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2912 { 2913 u64 frequency = event->attr.sample_freq; 2914 u64 sec = NSEC_PER_SEC; 2915 u64 divisor, dividend; 2916 2917 int count_fls, nsec_fls, frequency_fls, sec_fls; 2918 2919 count_fls = fls64(count); 2920 nsec_fls = fls64(nsec); 2921 frequency_fls = fls64(frequency); 2922 sec_fls = 30; 2923 2924 /* 2925 * We got @count in @nsec, with a target of sample_freq HZ 2926 * the target period becomes: 2927 * 2928 * @count * 10^9 2929 * period = ------------------- 2930 * @nsec * sample_freq 2931 * 2932 */ 2933 2934 /* 2935 * Reduce accuracy by one bit such that @a and @b converge 2936 * to a similar magnitude. 2937 */ 2938 #define REDUCE_FLS(a, b) \ 2939 do { \ 2940 if (a##_fls > b##_fls) { \ 2941 a >>= 1; \ 2942 a##_fls--; \ 2943 } else { \ 2944 b >>= 1; \ 2945 b##_fls--; \ 2946 } \ 2947 } while (0) 2948 2949 /* 2950 * Reduce accuracy until either term fits in a u64, then proceed with 2951 * the other, so that finally we can do a u64/u64 division. 2952 */ 2953 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2954 REDUCE_FLS(nsec, frequency); 2955 REDUCE_FLS(sec, count); 2956 } 2957 2958 if (count_fls + sec_fls > 64) { 2959 divisor = nsec * frequency; 2960 2961 while (count_fls + sec_fls > 64) { 2962 REDUCE_FLS(count, sec); 2963 divisor >>= 1; 2964 } 2965 2966 dividend = count * sec; 2967 } else { 2968 dividend = count * sec; 2969 2970 while (nsec_fls + frequency_fls > 64) { 2971 REDUCE_FLS(nsec, frequency); 2972 dividend >>= 1; 2973 } 2974 2975 divisor = nsec * frequency; 2976 } 2977 2978 if (!divisor) 2979 return dividend; 2980 2981 return div64_u64(dividend, divisor); 2982 } 2983 2984 static DEFINE_PER_CPU(int, perf_throttled_count); 2985 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2986 2987 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2988 { 2989 struct hw_perf_event *hwc = &event->hw; 2990 s64 period, sample_period; 2991 s64 delta; 2992 2993 period = perf_calculate_period(event, nsec, count); 2994 2995 delta = (s64)(period - hwc->sample_period); 2996 delta = (delta + 7) / 8; /* low pass filter */ 2997 2998 sample_period = hwc->sample_period + delta; 2999 3000 if (!sample_period) 3001 sample_period = 1; 3002 3003 hwc->sample_period = sample_period; 3004 3005 if (local64_read(&hwc->period_left) > 8*sample_period) { 3006 if (disable) 3007 event->pmu->stop(event, PERF_EF_UPDATE); 3008 3009 local64_set(&hwc->period_left, 0); 3010 3011 if (disable) 3012 event->pmu->start(event, PERF_EF_RELOAD); 3013 } 3014 } 3015 3016 /* 3017 * combine freq adjustment with unthrottling to avoid two passes over the 3018 * events. At the same time, make sure, having freq events does not change 3019 * the rate of unthrottling as that would introduce bias. 3020 */ 3021 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3022 int needs_unthr) 3023 { 3024 struct perf_event *event; 3025 struct hw_perf_event *hwc; 3026 u64 now, period = TICK_NSEC; 3027 s64 delta; 3028 3029 /* 3030 * only need to iterate over all events iff: 3031 * - context have events in frequency mode (needs freq adjust) 3032 * - there are events to unthrottle on this cpu 3033 */ 3034 if (!(ctx->nr_freq || needs_unthr)) 3035 return; 3036 3037 raw_spin_lock(&ctx->lock); 3038 perf_pmu_disable(ctx->pmu); 3039 3040 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3041 if (event->state != PERF_EVENT_STATE_ACTIVE) 3042 continue; 3043 3044 if (!event_filter_match(event)) 3045 continue; 3046 3047 perf_pmu_disable(event->pmu); 3048 3049 hwc = &event->hw; 3050 3051 if (hwc->interrupts == MAX_INTERRUPTS) { 3052 hwc->interrupts = 0; 3053 perf_log_throttle(event, 1); 3054 event->pmu->start(event, 0); 3055 } 3056 3057 if (!event->attr.freq || !event->attr.sample_freq) 3058 goto next; 3059 3060 /* 3061 * stop the event and update event->count 3062 */ 3063 event->pmu->stop(event, PERF_EF_UPDATE); 3064 3065 now = local64_read(&event->count); 3066 delta = now - hwc->freq_count_stamp; 3067 hwc->freq_count_stamp = now; 3068 3069 /* 3070 * restart the event 3071 * reload only if value has changed 3072 * we have stopped the event so tell that 3073 * to perf_adjust_period() to avoid stopping it 3074 * twice. 3075 */ 3076 if (delta > 0) 3077 perf_adjust_period(event, period, delta, false); 3078 3079 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3080 next: 3081 perf_pmu_enable(event->pmu); 3082 } 3083 3084 perf_pmu_enable(ctx->pmu); 3085 raw_spin_unlock(&ctx->lock); 3086 } 3087 3088 /* 3089 * Round-robin a context's events: 3090 */ 3091 static void rotate_ctx(struct perf_event_context *ctx) 3092 { 3093 /* 3094 * Rotate the first entry last of non-pinned groups. Rotation might be 3095 * disabled by the inheritance code. 3096 */ 3097 if (!ctx->rotate_disable) 3098 list_rotate_left(&ctx->flexible_groups); 3099 } 3100 3101 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3102 { 3103 struct perf_event_context *ctx = NULL; 3104 int rotate = 0; 3105 3106 if (cpuctx->ctx.nr_events) { 3107 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3108 rotate = 1; 3109 } 3110 3111 ctx = cpuctx->task_ctx; 3112 if (ctx && ctx->nr_events) { 3113 if (ctx->nr_events != ctx->nr_active) 3114 rotate = 1; 3115 } 3116 3117 if (!rotate) 3118 goto done; 3119 3120 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3121 perf_pmu_disable(cpuctx->ctx.pmu); 3122 3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3124 if (ctx) 3125 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3126 3127 rotate_ctx(&cpuctx->ctx); 3128 if (ctx) 3129 rotate_ctx(ctx); 3130 3131 perf_event_sched_in(cpuctx, ctx, current); 3132 3133 perf_pmu_enable(cpuctx->ctx.pmu); 3134 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3135 done: 3136 3137 return rotate; 3138 } 3139 3140 void perf_event_task_tick(void) 3141 { 3142 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3143 struct perf_event_context *ctx, *tmp; 3144 int throttled; 3145 3146 WARN_ON(!irqs_disabled()); 3147 3148 __this_cpu_inc(perf_throttled_seq); 3149 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3150 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3151 3152 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3153 perf_adjust_freq_unthr_context(ctx, throttled); 3154 } 3155 3156 static int event_enable_on_exec(struct perf_event *event, 3157 struct perf_event_context *ctx) 3158 { 3159 if (!event->attr.enable_on_exec) 3160 return 0; 3161 3162 event->attr.enable_on_exec = 0; 3163 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3164 return 0; 3165 3166 __perf_event_mark_enabled(event); 3167 3168 return 1; 3169 } 3170 3171 /* 3172 * Enable all of a task's events that have been marked enable-on-exec. 3173 * This expects task == current. 3174 */ 3175 static void perf_event_enable_on_exec(int ctxn) 3176 { 3177 struct perf_event_context *ctx, *clone_ctx = NULL; 3178 struct perf_cpu_context *cpuctx; 3179 struct perf_event *event; 3180 unsigned long flags; 3181 int enabled = 0; 3182 3183 local_irq_save(flags); 3184 ctx = current->perf_event_ctxp[ctxn]; 3185 if (!ctx || !ctx->nr_events) 3186 goto out; 3187 3188 cpuctx = __get_cpu_context(ctx); 3189 perf_ctx_lock(cpuctx, ctx); 3190 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3191 list_for_each_entry(event, &ctx->event_list, event_entry) 3192 enabled |= event_enable_on_exec(event, ctx); 3193 3194 /* 3195 * Unclone and reschedule this context if we enabled any event. 3196 */ 3197 if (enabled) { 3198 clone_ctx = unclone_ctx(ctx); 3199 ctx_resched(cpuctx, ctx); 3200 } 3201 perf_ctx_unlock(cpuctx, ctx); 3202 3203 out: 3204 local_irq_restore(flags); 3205 3206 if (clone_ctx) 3207 put_ctx(clone_ctx); 3208 } 3209 3210 void perf_event_exec(void) 3211 { 3212 int ctxn; 3213 3214 rcu_read_lock(); 3215 for_each_task_context_nr(ctxn) 3216 perf_event_enable_on_exec(ctxn); 3217 rcu_read_unlock(); 3218 } 3219 3220 struct perf_read_data { 3221 struct perf_event *event; 3222 bool group; 3223 int ret; 3224 }; 3225 3226 /* 3227 * Cross CPU call to read the hardware event 3228 */ 3229 static void __perf_event_read(void *info) 3230 { 3231 struct perf_read_data *data = info; 3232 struct perf_event *sub, *event = data->event; 3233 struct perf_event_context *ctx = event->ctx; 3234 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3235 struct pmu *pmu = event->pmu; 3236 3237 /* 3238 * If this is a task context, we need to check whether it is 3239 * the current task context of this cpu. If not it has been 3240 * scheduled out before the smp call arrived. In that case 3241 * event->count would have been updated to a recent sample 3242 * when the event was scheduled out. 3243 */ 3244 if (ctx->task && cpuctx->task_ctx != ctx) 3245 return; 3246 3247 raw_spin_lock(&ctx->lock); 3248 if (ctx->is_active) { 3249 update_context_time(ctx); 3250 update_cgrp_time_from_event(event); 3251 } 3252 3253 update_event_times(event); 3254 if (event->state != PERF_EVENT_STATE_ACTIVE) 3255 goto unlock; 3256 3257 if (!data->group) { 3258 pmu->read(event); 3259 data->ret = 0; 3260 goto unlock; 3261 } 3262 3263 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3264 3265 pmu->read(event); 3266 3267 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3268 update_event_times(sub); 3269 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3270 /* 3271 * Use sibling's PMU rather than @event's since 3272 * sibling could be on different (eg: software) PMU. 3273 */ 3274 sub->pmu->read(sub); 3275 } 3276 } 3277 3278 data->ret = pmu->commit_txn(pmu); 3279 3280 unlock: 3281 raw_spin_unlock(&ctx->lock); 3282 } 3283 3284 static inline u64 perf_event_count(struct perf_event *event) 3285 { 3286 if (event->pmu->count) 3287 return event->pmu->count(event); 3288 3289 return __perf_event_count(event); 3290 } 3291 3292 /* 3293 * NMI-safe method to read a local event, that is an event that 3294 * is: 3295 * - either for the current task, or for this CPU 3296 * - does not have inherit set, for inherited task events 3297 * will not be local and we cannot read them atomically 3298 * - must not have a pmu::count method 3299 */ 3300 u64 perf_event_read_local(struct perf_event *event) 3301 { 3302 unsigned long flags; 3303 u64 val; 3304 3305 /* 3306 * Disabling interrupts avoids all counter scheduling (context 3307 * switches, timer based rotation and IPIs). 3308 */ 3309 local_irq_save(flags); 3310 3311 /* If this is a per-task event, it must be for current */ 3312 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3313 event->hw.target != current); 3314 3315 /* If this is a per-CPU event, it must be for this CPU */ 3316 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3317 event->cpu != smp_processor_id()); 3318 3319 /* 3320 * It must not be an event with inherit set, we cannot read 3321 * all child counters from atomic context. 3322 */ 3323 WARN_ON_ONCE(event->attr.inherit); 3324 3325 /* 3326 * It must not have a pmu::count method, those are not 3327 * NMI safe. 3328 */ 3329 WARN_ON_ONCE(event->pmu->count); 3330 3331 /* 3332 * If the event is currently on this CPU, its either a per-task event, 3333 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3334 * oncpu == -1). 3335 */ 3336 if (event->oncpu == smp_processor_id()) 3337 event->pmu->read(event); 3338 3339 val = local64_read(&event->count); 3340 local_irq_restore(flags); 3341 3342 return val; 3343 } 3344 3345 static int perf_event_read(struct perf_event *event, bool group) 3346 { 3347 int ret = 0; 3348 3349 /* 3350 * If event is enabled and currently active on a CPU, update the 3351 * value in the event structure: 3352 */ 3353 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3354 struct perf_read_data data = { 3355 .event = event, 3356 .group = group, 3357 .ret = 0, 3358 }; 3359 smp_call_function_single(event->oncpu, 3360 __perf_event_read, &data, 1); 3361 ret = data.ret; 3362 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3363 struct perf_event_context *ctx = event->ctx; 3364 unsigned long flags; 3365 3366 raw_spin_lock_irqsave(&ctx->lock, flags); 3367 /* 3368 * may read while context is not active 3369 * (e.g., thread is blocked), in that case 3370 * we cannot update context time 3371 */ 3372 if (ctx->is_active) { 3373 update_context_time(ctx); 3374 update_cgrp_time_from_event(event); 3375 } 3376 if (group) 3377 update_group_times(event); 3378 else 3379 update_event_times(event); 3380 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3381 } 3382 3383 return ret; 3384 } 3385 3386 /* 3387 * Initialize the perf_event context in a task_struct: 3388 */ 3389 static void __perf_event_init_context(struct perf_event_context *ctx) 3390 { 3391 raw_spin_lock_init(&ctx->lock); 3392 mutex_init(&ctx->mutex); 3393 INIT_LIST_HEAD(&ctx->active_ctx_list); 3394 INIT_LIST_HEAD(&ctx->pinned_groups); 3395 INIT_LIST_HEAD(&ctx->flexible_groups); 3396 INIT_LIST_HEAD(&ctx->event_list); 3397 atomic_set(&ctx->refcount, 1); 3398 } 3399 3400 static struct perf_event_context * 3401 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3402 { 3403 struct perf_event_context *ctx; 3404 3405 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3406 if (!ctx) 3407 return NULL; 3408 3409 __perf_event_init_context(ctx); 3410 if (task) { 3411 ctx->task = task; 3412 get_task_struct(task); 3413 } 3414 ctx->pmu = pmu; 3415 3416 return ctx; 3417 } 3418 3419 static struct task_struct * 3420 find_lively_task_by_vpid(pid_t vpid) 3421 { 3422 struct task_struct *task; 3423 int err; 3424 3425 rcu_read_lock(); 3426 if (!vpid) 3427 task = current; 3428 else 3429 task = find_task_by_vpid(vpid); 3430 if (task) 3431 get_task_struct(task); 3432 rcu_read_unlock(); 3433 3434 if (!task) 3435 return ERR_PTR(-ESRCH); 3436 3437 /* Reuse ptrace permission checks for now. */ 3438 err = -EACCES; 3439 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3440 goto errout; 3441 3442 return task; 3443 errout: 3444 put_task_struct(task); 3445 return ERR_PTR(err); 3446 3447 } 3448 3449 /* 3450 * Returns a matching context with refcount and pincount. 3451 */ 3452 static struct perf_event_context * 3453 find_get_context(struct pmu *pmu, struct task_struct *task, 3454 struct perf_event *event) 3455 { 3456 struct perf_event_context *ctx, *clone_ctx = NULL; 3457 struct perf_cpu_context *cpuctx; 3458 void *task_ctx_data = NULL; 3459 unsigned long flags; 3460 int ctxn, err; 3461 int cpu = event->cpu; 3462 3463 if (!task) { 3464 /* Must be root to operate on a CPU event: */ 3465 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3466 return ERR_PTR(-EACCES); 3467 3468 /* 3469 * We could be clever and allow to attach a event to an 3470 * offline CPU and activate it when the CPU comes up, but 3471 * that's for later. 3472 */ 3473 if (!cpu_online(cpu)) 3474 return ERR_PTR(-ENODEV); 3475 3476 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3477 ctx = &cpuctx->ctx; 3478 get_ctx(ctx); 3479 ++ctx->pin_count; 3480 3481 return ctx; 3482 } 3483 3484 err = -EINVAL; 3485 ctxn = pmu->task_ctx_nr; 3486 if (ctxn < 0) 3487 goto errout; 3488 3489 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3490 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3491 if (!task_ctx_data) { 3492 err = -ENOMEM; 3493 goto errout; 3494 } 3495 } 3496 3497 retry: 3498 ctx = perf_lock_task_context(task, ctxn, &flags); 3499 if (ctx) { 3500 clone_ctx = unclone_ctx(ctx); 3501 ++ctx->pin_count; 3502 3503 if (task_ctx_data && !ctx->task_ctx_data) { 3504 ctx->task_ctx_data = task_ctx_data; 3505 task_ctx_data = NULL; 3506 } 3507 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3508 3509 if (clone_ctx) 3510 put_ctx(clone_ctx); 3511 } else { 3512 ctx = alloc_perf_context(pmu, task); 3513 err = -ENOMEM; 3514 if (!ctx) 3515 goto errout; 3516 3517 if (task_ctx_data) { 3518 ctx->task_ctx_data = task_ctx_data; 3519 task_ctx_data = NULL; 3520 } 3521 3522 err = 0; 3523 mutex_lock(&task->perf_event_mutex); 3524 /* 3525 * If it has already passed perf_event_exit_task(). 3526 * we must see PF_EXITING, it takes this mutex too. 3527 */ 3528 if (task->flags & PF_EXITING) 3529 err = -ESRCH; 3530 else if (task->perf_event_ctxp[ctxn]) 3531 err = -EAGAIN; 3532 else { 3533 get_ctx(ctx); 3534 ++ctx->pin_count; 3535 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3536 } 3537 mutex_unlock(&task->perf_event_mutex); 3538 3539 if (unlikely(err)) { 3540 put_ctx(ctx); 3541 3542 if (err == -EAGAIN) 3543 goto retry; 3544 goto errout; 3545 } 3546 } 3547 3548 kfree(task_ctx_data); 3549 return ctx; 3550 3551 errout: 3552 kfree(task_ctx_data); 3553 return ERR_PTR(err); 3554 } 3555 3556 static void perf_event_free_filter(struct perf_event *event); 3557 static void perf_event_free_bpf_prog(struct perf_event *event); 3558 3559 static void free_event_rcu(struct rcu_head *head) 3560 { 3561 struct perf_event *event; 3562 3563 event = container_of(head, struct perf_event, rcu_head); 3564 if (event->ns) 3565 put_pid_ns(event->ns); 3566 perf_event_free_filter(event); 3567 kfree(event); 3568 } 3569 3570 static void ring_buffer_attach(struct perf_event *event, 3571 struct ring_buffer *rb); 3572 3573 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3574 { 3575 if (event->parent) 3576 return; 3577 3578 if (is_cgroup_event(event)) 3579 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3580 } 3581 3582 #ifdef CONFIG_NO_HZ_FULL 3583 static DEFINE_SPINLOCK(nr_freq_lock); 3584 #endif 3585 3586 static void unaccount_freq_event_nohz(void) 3587 { 3588 #ifdef CONFIG_NO_HZ_FULL 3589 spin_lock(&nr_freq_lock); 3590 if (atomic_dec_and_test(&nr_freq_events)) 3591 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3592 spin_unlock(&nr_freq_lock); 3593 #endif 3594 } 3595 3596 static void unaccount_freq_event(void) 3597 { 3598 if (tick_nohz_full_enabled()) 3599 unaccount_freq_event_nohz(); 3600 else 3601 atomic_dec(&nr_freq_events); 3602 } 3603 3604 static void unaccount_event(struct perf_event *event) 3605 { 3606 bool dec = false; 3607 3608 if (event->parent) 3609 return; 3610 3611 if (event->attach_state & PERF_ATTACH_TASK) 3612 dec = true; 3613 if (event->attr.mmap || event->attr.mmap_data) 3614 atomic_dec(&nr_mmap_events); 3615 if (event->attr.comm) 3616 atomic_dec(&nr_comm_events); 3617 if (event->attr.task) 3618 atomic_dec(&nr_task_events); 3619 if (event->attr.freq) 3620 unaccount_freq_event(); 3621 if (event->attr.context_switch) { 3622 dec = true; 3623 atomic_dec(&nr_switch_events); 3624 } 3625 if (is_cgroup_event(event)) 3626 dec = true; 3627 if (has_branch_stack(event)) 3628 dec = true; 3629 3630 if (dec) { 3631 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3632 schedule_delayed_work(&perf_sched_work, HZ); 3633 } 3634 3635 unaccount_event_cpu(event, event->cpu); 3636 } 3637 3638 static void perf_sched_delayed(struct work_struct *work) 3639 { 3640 mutex_lock(&perf_sched_mutex); 3641 if (atomic_dec_and_test(&perf_sched_count)) 3642 static_branch_disable(&perf_sched_events); 3643 mutex_unlock(&perf_sched_mutex); 3644 } 3645 3646 /* 3647 * The following implement mutual exclusion of events on "exclusive" pmus 3648 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3649 * at a time, so we disallow creating events that might conflict, namely: 3650 * 3651 * 1) cpu-wide events in the presence of per-task events, 3652 * 2) per-task events in the presence of cpu-wide events, 3653 * 3) two matching events on the same context. 3654 * 3655 * The former two cases are handled in the allocation path (perf_event_alloc(), 3656 * _free_event()), the latter -- before the first perf_install_in_context(). 3657 */ 3658 static int exclusive_event_init(struct perf_event *event) 3659 { 3660 struct pmu *pmu = event->pmu; 3661 3662 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3663 return 0; 3664 3665 /* 3666 * Prevent co-existence of per-task and cpu-wide events on the 3667 * same exclusive pmu. 3668 * 3669 * Negative pmu::exclusive_cnt means there are cpu-wide 3670 * events on this "exclusive" pmu, positive means there are 3671 * per-task events. 3672 * 3673 * Since this is called in perf_event_alloc() path, event::ctx 3674 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3675 * to mean "per-task event", because unlike other attach states it 3676 * never gets cleared. 3677 */ 3678 if (event->attach_state & PERF_ATTACH_TASK) { 3679 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3680 return -EBUSY; 3681 } else { 3682 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3683 return -EBUSY; 3684 } 3685 3686 return 0; 3687 } 3688 3689 static void exclusive_event_destroy(struct perf_event *event) 3690 { 3691 struct pmu *pmu = event->pmu; 3692 3693 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3694 return; 3695 3696 /* see comment in exclusive_event_init() */ 3697 if (event->attach_state & PERF_ATTACH_TASK) 3698 atomic_dec(&pmu->exclusive_cnt); 3699 else 3700 atomic_inc(&pmu->exclusive_cnt); 3701 } 3702 3703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3704 { 3705 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3706 (e1->cpu == e2->cpu || 3707 e1->cpu == -1 || 3708 e2->cpu == -1)) 3709 return true; 3710 return false; 3711 } 3712 3713 /* Called under the same ctx::mutex as perf_install_in_context() */ 3714 static bool exclusive_event_installable(struct perf_event *event, 3715 struct perf_event_context *ctx) 3716 { 3717 struct perf_event *iter_event; 3718 struct pmu *pmu = event->pmu; 3719 3720 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3721 return true; 3722 3723 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3724 if (exclusive_event_match(iter_event, event)) 3725 return false; 3726 } 3727 3728 return true; 3729 } 3730 3731 static void _free_event(struct perf_event *event) 3732 { 3733 irq_work_sync(&event->pending); 3734 3735 unaccount_event(event); 3736 3737 if (event->rb) { 3738 /* 3739 * Can happen when we close an event with re-directed output. 3740 * 3741 * Since we have a 0 refcount, perf_mmap_close() will skip 3742 * over us; possibly making our ring_buffer_put() the last. 3743 */ 3744 mutex_lock(&event->mmap_mutex); 3745 ring_buffer_attach(event, NULL); 3746 mutex_unlock(&event->mmap_mutex); 3747 } 3748 3749 if (is_cgroup_event(event)) 3750 perf_detach_cgroup(event); 3751 3752 if (!event->parent) { 3753 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3754 put_callchain_buffers(); 3755 } 3756 3757 perf_event_free_bpf_prog(event); 3758 3759 if (event->destroy) 3760 event->destroy(event); 3761 3762 if (event->ctx) 3763 put_ctx(event->ctx); 3764 3765 if (event->pmu) { 3766 exclusive_event_destroy(event); 3767 module_put(event->pmu->module); 3768 } 3769 3770 call_rcu(&event->rcu_head, free_event_rcu); 3771 } 3772 3773 /* 3774 * Used to free events which have a known refcount of 1, such as in error paths 3775 * where the event isn't exposed yet and inherited events. 3776 */ 3777 static void free_event(struct perf_event *event) 3778 { 3779 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3780 "unexpected event refcount: %ld; ptr=%p\n", 3781 atomic_long_read(&event->refcount), event)) { 3782 /* leak to avoid use-after-free */ 3783 return; 3784 } 3785 3786 _free_event(event); 3787 } 3788 3789 /* 3790 * Remove user event from the owner task. 3791 */ 3792 static void perf_remove_from_owner(struct perf_event *event) 3793 { 3794 struct task_struct *owner; 3795 3796 rcu_read_lock(); 3797 /* 3798 * Matches the smp_store_release() in perf_event_exit_task(). If we 3799 * observe !owner it means the list deletion is complete and we can 3800 * indeed free this event, otherwise we need to serialize on 3801 * owner->perf_event_mutex. 3802 */ 3803 owner = lockless_dereference(event->owner); 3804 if (owner) { 3805 /* 3806 * Since delayed_put_task_struct() also drops the last 3807 * task reference we can safely take a new reference 3808 * while holding the rcu_read_lock(). 3809 */ 3810 get_task_struct(owner); 3811 } 3812 rcu_read_unlock(); 3813 3814 if (owner) { 3815 /* 3816 * If we're here through perf_event_exit_task() we're already 3817 * holding ctx->mutex which would be an inversion wrt. the 3818 * normal lock order. 3819 * 3820 * However we can safely take this lock because its the child 3821 * ctx->mutex. 3822 */ 3823 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3824 3825 /* 3826 * We have to re-check the event->owner field, if it is cleared 3827 * we raced with perf_event_exit_task(), acquiring the mutex 3828 * ensured they're done, and we can proceed with freeing the 3829 * event. 3830 */ 3831 if (event->owner) { 3832 list_del_init(&event->owner_entry); 3833 smp_store_release(&event->owner, NULL); 3834 } 3835 mutex_unlock(&owner->perf_event_mutex); 3836 put_task_struct(owner); 3837 } 3838 } 3839 3840 static void put_event(struct perf_event *event) 3841 { 3842 if (!atomic_long_dec_and_test(&event->refcount)) 3843 return; 3844 3845 _free_event(event); 3846 } 3847 3848 /* 3849 * Kill an event dead; while event:refcount will preserve the event 3850 * object, it will not preserve its functionality. Once the last 'user' 3851 * gives up the object, we'll destroy the thing. 3852 */ 3853 int perf_event_release_kernel(struct perf_event *event) 3854 { 3855 struct perf_event_context *ctx = event->ctx; 3856 struct perf_event *child, *tmp; 3857 3858 /* 3859 * If we got here through err_file: fput(event_file); we will not have 3860 * attached to a context yet. 3861 */ 3862 if (!ctx) { 3863 WARN_ON_ONCE(event->attach_state & 3864 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3865 goto no_ctx; 3866 } 3867 3868 if (!is_kernel_event(event)) 3869 perf_remove_from_owner(event); 3870 3871 ctx = perf_event_ctx_lock(event); 3872 WARN_ON_ONCE(ctx->parent_ctx); 3873 perf_remove_from_context(event, DETACH_GROUP); 3874 3875 raw_spin_lock_irq(&ctx->lock); 3876 /* 3877 * Mark this even as STATE_DEAD, there is no external reference to it 3878 * anymore. 3879 * 3880 * Anybody acquiring event->child_mutex after the below loop _must_ 3881 * also see this, most importantly inherit_event() which will avoid 3882 * placing more children on the list. 3883 * 3884 * Thus this guarantees that we will in fact observe and kill _ALL_ 3885 * child events. 3886 */ 3887 event->state = PERF_EVENT_STATE_DEAD; 3888 raw_spin_unlock_irq(&ctx->lock); 3889 3890 perf_event_ctx_unlock(event, ctx); 3891 3892 again: 3893 mutex_lock(&event->child_mutex); 3894 list_for_each_entry(child, &event->child_list, child_list) { 3895 3896 /* 3897 * Cannot change, child events are not migrated, see the 3898 * comment with perf_event_ctx_lock_nested(). 3899 */ 3900 ctx = lockless_dereference(child->ctx); 3901 /* 3902 * Since child_mutex nests inside ctx::mutex, we must jump 3903 * through hoops. We start by grabbing a reference on the ctx. 3904 * 3905 * Since the event cannot get freed while we hold the 3906 * child_mutex, the context must also exist and have a !0 3907 * reference count. 3908 */ 3909 get_ctx(ctx); 3910 3911 /* 3912 * Now that we have a ctx ref, we can drop child_mutex, and 3913 * acquire ctx::mutex without fear of it going away. Then we 3914 * can re-acquire child_mutex. 3915 */ 3916 mutex_unlock(&event->child_mutex); 3917 mutex_lock(&ctx->mutex); 3918 mutex_lock(&event->child_mutex); 3919 3920 /* 3921 * Now that we hold ctx::mutex and child_mutex, revalidate our 3922 * state, if child is still the first entry, it didn't get freed 3923 * and we can continue doing so. 3924 */ 3925 tmp = list_first_entry_or_null(&event->child_list, 3926 struct perf_event, child_list); 3927 if (tmp == child) { 3928 perf_remove_from_context(child, DETACH_GROUP); 3929 list_del(&child->child_list); 3930 free_event(child); 3931 /* 3932 * This matches the refcount bump in inherit_event(); 3933 * this can't be the last reference. 3934 */ 3935 put_event(event); 3936 } 3937 3938 mutex_unlock(&event->child_mutex); 3939 mutex_unlock(&ctx->mutex); 3940 put_ctx(ctx); 3941 goto again; 3942 } 3943 mutex_unlock(&event->child_mutex); 3944 3945 no_ctx: 3946 put_event(event); /* Must be the 'last' reference */ 3947 return 0; 3948 } 3949 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3950 3951 /* 3952 * Called when the last reference to the file is gone. 3953 */ 3954 static int perf_release(struct inode *inode, struct file *file) 3955 { 3956 perf_event_release_kernel(file->private_data); 3957 return 0; 3958 } 3959 3960 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3961 { 3962 struct perf_event *child; 3963 u64 total = 0; 3964 3965 *enabled = 0; 3966 *running = 0; 3967 3968 mutex_lock(&event->child_mutex); 3969 3970 (void)perf_event_read(event, false); 3971 total += perf_event_count(event); 3972 3973 *enabled += event->total_time_enabled + 3974 atomic64_read(&event->child_total_time_enabled); 3975 *running += event->total_time_running + 3976 atomic64_read(&event->child_total_time_running); 3977 3978 list_for_each_entry(child, &event->child_list, child_list) { 3979 (void)perf_event_read(child, false); 3980 total += perf_event_count(child); 3981 *enabled += child->total_time_enabled; 3982 *running += child->total_time_running; 3983 } 3984 mutex_unlock(&event->child_mutex); 3985 3986 return total; 3987 } 3988 EXPORT_SYMBOL_GPL(perf_event_read_value); 3989 3990 static int __perf_read_group_add(struct perf_event *leader, 3991 u64 read_format, u64 *values) 3992 { 3993 struct perf_event *sub; 3994 int n = 1; /* skip @nr */ 3995 int ret; 3996 3997 ret = perf_event_read(leader, true); 3998 if (ret) 3999 return ret; 4000 4001 /* 4002 * Since we co-schedule groups, {enabled,running} times of siblings 4003 * will be identical to those of the leader, so we only publish one 4004 * set. 4005 */ 4006 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4007 values[n++] += leader->total_time_enabled + 4008 atomic64_read(&leader->child_total_time_enabled); 4009 } 4010 4011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4012 values[n++] += leader->total_time_running + 4013 atomic64_read(&leader->child_total_time_running); 4014 } 4015 4016 /* 4017 * Write {count,id} tuples for every sibling. 4018 */ 4019 values[n++] += perf_event_count(leader); 4020 if (read_format & PERF_FORMAT_ID) 4021 values[n++] = primary_event_id(leader); 4022 4023 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4024 values[n++] += perf_event_count(sub); 4025 if (read_format & PERF_FORMAT_ID) 4026 values[n++] = primary_event_id(sub); 4027 } 4028 4029 return 0; 4030 } 4031 4032 static int perf_read_group(struct perf_event *event, 4033 u64 read_format, char __user *buf) 4034 { 4035 struct perf_event *leader = event->group_leader, *child; 4036 struct perf_event_context *ctx = leader->ctx; 4037 int ret; 4038 u64 *values; 4039 4040 lockdep_assert_held(&ctx->mutex); 4041 4042 values = kzalloc(event->read_size, GFP_KERNEL); 4043 if (!values) 4044 return -ENOMEM; 4045 4046 values[0] = 1 + leader->nr_siblings; 4047 4048 /* 4049 * By locking the child_mutex of the leader we effectively 4050 * lock the child list of all siblings.. XXX explain how. 4051 */ 4052 mutex_lock(&leader->child_mutex); 4053 4054 ret = __perf_read_group_add(leader, read_format, values); 4055 if (ret) 4056 goto unlock; 4057 4058 list_for_each_entry(child, &leader->child_list, child_list) { 4059 ret = __perf_read_group_add(child, read_format, values); 4060 if (ret) 4061 goto unlock; 4062 } 4063 4064 mutex_unlock(&leader->child_mutex); 4065 4066 ret = event->read_size; 4067 if (copy_to_user(buf, values, event->read_size)) 4068 ret = -EFAULT; 4069 goto out; 4070 4071 unlock: 4072 mutex_unlock(&leader->child_mutex); 4073 out: 4074 kfree(values); 4075 return ret; 4076 } 4077 4078 static int perf_read_one(struct perf_event *event, 4079 u64 read_format, char __user *buf) 4080 { 4081 u64 enabled, running; 4082 u64 values[4]; 4083 int n = 0; 4084 4085 values[n++] = perf_event_read_value(event, &enabled, &running); 4086 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4087 values[n++] = enabled; 4088 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4089 values[n++] = running; 4090 if (read_format & PERF_FORMAT_ID) 4091 values[n++] = primary_event_id(event); 4092 4093 if (copy_to_user(buf, values, n * sizeof(u64))) 4094 return -EFAULT; 4095 4096 return n * sizeof(u64); 4097 } 4098 4099 static bool is_event_hup(struct perf_event *event) 4100 { 4101 bool no_children; 4102 4103 if (event->state > PERF_EVENT_STATE_EXIT) 4104 return false; 4105 4106 mutex_lock(&event->child_mutex); 4107 no_children = list_empty(&event->child_list); 4108 mutex_unlock(&event->child_mutex); 4109 return no_children; 4110 } 4111 4112 /* 4113 * Read the performance event - simple non blocking version for now 4114 */ 4115 static ssize_t 4116 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4117 { 4118 u64 read_format = event->attr.read_format; 4119 int ret; 4120 4121 /* 4122 * Return end-of-file for a read on a event that is in 4123 * error state (i.e. because it was pinned but it couldn't be 4124 * scheduled on to the CPU at some point). 4125 */ 4126 if (event->state == PERF_EVENT_STATE_ERROR) 4127 return 0; 4128 4129 if (count < event->read_size) 4130 return -ENOSPC; 4131 4132 WARN_ON_ONCE(event->ctx->parent_ctx); 4133 if (read_format & PERF_FORMAT_GROUP) 4134 ret = perf_read_group(event, read_format, buf); 4135 else 4136 ret = perf_read_one(event, read_format, buf); 4137 4138 return ret; 4139 } 4140 4141 static ssize_t 4142 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4143 { 4144 struct perf_event *event = file->private_data; 4145 struct perf_event_context *ctx; 4146 int ret; 4147 4148 ctx = perf_event_ctx_lock(event); 4149 ret = __perf_read(event, buf, count); 4150 perf_event_ctx_unlock(event, ctx); 4151 4152 return ret; 4153 } 4154 4155 static unsigned int perf_poll(struct file *file, poll_table *wait) 4156 { 4157 struct perf_event *event = file->private_data; 4158 struct ring_buffer *rb; 4159 unsigned int events = POLLHUP; 4160 4161 poll_wait(file, &event->waitq, wait); 4162 4163 if (is_event_hup(event)) 4164 return events; 4165 4166 /* 4167 * Pin the event->rb by taking event->mmap_mutex; otherwise 4168 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4169 */ 4170 mutex_lock(&event->mmap_mutex); 4171 rb = event->rb; 4172 if (rb) 4173 events = atomic_xchg(&rb->poll, 0); 4174 mutex_unlock(&event->mmap_mutex); 4175 return events; 4176 } 4177 4178 static void _perf_event_reset(struct perf_event *event) 4179 { 4180 (void)perf_event_read(event, false); 4181 local64_set(&event->count, 0); 4182 perf_event_update_userpage(event); 4183 } 4184 4185 /* 4186 * Holding the top-level event's child_mutex means that any 4187 * descendant process that has inherited this event will block 4188 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4189 * task existence requirements of perf_event_enable/disable. 4190 */ 4191 static void perf_event_for_each_child(struct perf_event *event, 4192 void (*func)(struct perf_event *)) 4193 { 4194 struct perf_event *child; 4195 4196 WARN_ON_ONCE(event->ctx->parent_ctx); 4197 4198 mutex_lock(&event->child_mutex); 4199 func(event); 4200 list_for_each_entry(child, &event->child_list, child_list) 4201 func(child); 4202 mutex_unlock(&event->child_mutex); 4203 } 4204 4205 static void perf_event_for_each(struct perf_event *event, 4206 void (*func)(struct perf_event *)) 4207 { 4208 struct perf_event_context *ctx = event->ctx; 4209 struct perf_event *sibling; 4210 4211 lockdep_assert_held(&ctx->mutex); 4212 4213 event = event->group_leader; 4214 4215 perf_event_for_each_child(event, func); 4216 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4217 perf_event_for_each_child(sibling, func); 4218 } 4219 4220 static void __perf_event_period(struct perf_event *event, 4221 struct perf_cpu_context *cpuctx, 4222 struct perf_event_context *ctx, 4223 void *info) 4224 { 4225 u64 value = *((u64 *)info); 4226 bool active; 4227 4228 if (event->attr.freq) { 4229 event->attr.sample_freq = value; 4230 } else { 4231 event->attr.sample_period = value; 4232 event->hw.sample_period = value; 4233 } 4234 4235 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4236 if (active) { 4237 perf_pmu_disable(ctx->pmu); 4238 /* 4239 * We could be throttled; unthrottle now to avoid the tick 4240 * trying to unthrottle while we already re-started the event. 4241 */ 4242 if (event->hw.interrupts == MAX_INTERRUPTS) { 4243 event->hw.interrupts = 0; 4244 perf_log_throttle(event, 1); 4245 } 4246 event->pmu->stop(event, PERF_EF_UPDATE); 4247 } 4248 4249 local64_set(&event->hw.period_left, 0); 4250 4251 if (active) { 4252 event->pmu->start(event, PERF_EF_RELOAD); 4253 perf_pmu_enable(ctx->pmu); 4254 } 4255 } 4256 4257 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4258 { 4259 u64 value; 4260 4261 if (!is_sampling_event(event)) 4262 return -EINVAL; 4263 4264 if (copy_from_user(&value, arg, sizeof(value))) 4265 return -EFAULT; 4266 4267 if (!value) 4268 return -EINVAL; 4269 4270 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4271 return -EINVAL; 4272 4273 event_function_call(event, __perf_event_period, &value); 4274 4275 return 0; 4276 } 4277 4278 static const struct file_operations perf_fops; 4279 4280 static inline int perf_fget_light(int fd, struct fd *p) 4281 { 4282 struct fd f = fdget(fd); 4283 if (!f.file) 4284 return -EBADF; 4285 4286 if (f.file->f_op != &perf_fops) { 4287 fdput(f); 4288 return -EBADF; 4289 } 4290 *p = f; 4291 return 0; 4292 } 4293 4294 static int perf_event_set_output(struct perf_event *event, 4295 struct perf_event *output_event); 4296 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4297 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4298 4299 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4300 { 4301 void (*func)(struct perf_event *); 4302 u32 flags = arg; 4303 4304 switch (cmd) { 4305 case PERF_EVENT_IOC_ENABLE: 4306 func = _perf_event_enable; 4307 break; 4308 case PERF_EVENT_IOC_DISABLE: 4309 func = _perf_event_disable; 4310 break; 4311 case PERF_EVENT_IOC_RESET: 4312 func = _perf_event_reset; 4313 break; 4314 4315 case PERF_EVENT_IOC_REFRESH: 4316 return _perf_event_refresh(event, arg); 4317 4318 case PERF_EVENT_IOC_PERIOD: 4319 return perf_event_period(event, (u64 __user *)arg); 4320 4321 case PERF_EVENT_IOC_ID: 4322 { 4323 u64 id = primary_event_id(event); 4324 4325 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4326 return -EFAULT; 4327 return 0; 4328 } 4329 4330 case PERF_EVENT_IOC_SET_OUTPUT: 4331 { 4332 int ret; 4333 if (arg != -1) { 4334 struct perf_event *output_event; 4335 struct fd output; 4336 ret = perf_fget_light(arg, &output); 4337 if (ret) 4338 return ret; 4339 output_event = output.file->private_data; 4340 ret = perf_event_set_output(event, output_event); 4341 fdput(output); 4342 } else { 4343 ret = perf_event_set_output(event, NULL); 4344 } 4345 return ret; 4346 } 4347 4348 case PERF_EVENT_IOC_SET_FILTER: 4349 return perf_event_set_filter(event, (void __user *)arg); 4350 4351 case PERF_EVENT_IOC_SET_BPF: 4352 return perf_event_set_bpf_prog(event, arg); 4353 4354 default: 4355 return -ENOTTY; 4356 } 4357 4358 if (flags & PERF_IOC_FLAG_GROUP) 4359 perf_event_for_each(event, func); 4360 else 4361 perf_event_for_each_child(event, func); 4362 4363 return 0; 4364 } 4365 4366 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4367 { 4368 struct perf_event *event = file->private_data; 4369 struct perf_event_context *ctx; 4370 long ret; 4371 4372 ctx = perf_event_ctx_lock(event); 4373 ret = _perf_ioctl(event, cmd, arg); 4374 perf_event_ctx_unlock(event, ctx); 4375 4376 return ret; 4377 } 4378 4379 #ifdef CONFIG_COMPAT 4380 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4381 unsigned long arg) 4382 { 4383 switch (_IOC_NR(cmd)) { 4384 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4385 case _IOC_NR(PERF_EVENT_IOC_ID): 4386 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4387 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4388 cmd &= ~IOCSIZE_MASK; 4389 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4390 } 4391 break; 4392 } 4393 return perf_ioctl(file, cmd, arg); 4394 } 4395 #else 4396 # define perf_compat_ioctl NULL 4397 #endif 4398 4399 int perf_event_task_enable(void) 4400 { 4401 struct perf_event_context *ctx; 4402 struct perf_event *event; 4403 4404 mutex_lock(¤t->perf_event_mutex); 4405 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4406 ctx = perf_event_ctx_lock(event); 4407 perf_event_for_each_child(event, _perf_event_enable); 4408 perf_event_ctx_unlock(event, ctx); 4409 } 4410 mutex_unlock(¤t->perf_event_mutex); 4411 4412 return 0; 4413 } 4414 4415 int perf_event_task_disable(void) 4416 { 4417 struct perf_event_context *ctx; 4418 struct perf_event *event; 4419 4420 mutex_lock(¤t->perf_event_mutex); 4421 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4422 ctx = perf_event_ctx_lock(event); 4423 perf_event_for_each_child(event, _perf_event_disable); 4424 perf_event_ctx_unlock(event, ctx); 4425 } 4426 mutex_unlock(¤t->perf_event_mutex); 4427 4428 return 0; 4429 } 4430 4431 static int perf_event_index(struct perf_event *event) 4432 { 4433 if (event->hw.state & PERF_HES_STOPPED) 4434 return 0; 4435 4436 if (event->state != PERF_EVENT_STATE_ACTIVE) 4437 return 0; 4438 4439 return event->pmu->event_idx(event); 4440 } 4441 4442 static void calc_timer_values(struct perf_event *event, 4443 u64 *now, 4444 u64 *enabled, 4445 u64 *running) 4446 { 4447 u64 ctx_time; 4448 4449 *now = perf_clock(); 4450 ctx_time = event->shadow_ctx_time + *now; 4451 *enabled = ctx_time - event->tstamp_enabled; 4452 *running = ctx_time - event->tstamp_running; 4453 } 4454 4455 static void perf_event_init_userpage(struct perf_event *event) 4456 { 4457 struct perf_event_mmap_page *userpg; 4458 struct ring_buffer *rb; 4459 4460 rcu_read_lock(); 4461 rb = rcu_dereference(event->rb); 4462 if (!rb) 4463 goto unlock; 4464 4465 userpg = rb->user_page; 4466 4467 /* Allow new userspace to detect that bit 0 is deprecated */ 4468 userpg->cap_bit0_is_deprecated = 1; 4469 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4470 userpg->data_offset = PAGE_SIZE; 4471 userpg->data_size = perf_data_size(rb); 4472 4473 unlock: 4474 rcu_read_unlock(); 4475 } 4476 4477 void __weak arch_perf_update_userpage( 4478 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4479 { 4480 } 4481 4482 /* 4483 * Callers need to ensure there can be no nesting of this function, otherwise 4484 * the seqlock logic goes bad. We can not serialize this because the arch 4485 * code calls this from NMI context. 4486 */ 4487 void perf_event_update_userpage(struct perf_event *event) 4488 { 4489 struct perf_event_mmap_page *userpg; 4490 struct ring_buffer *rb; 4491 u64 enabled, running, now; 4492 4493 rcu_read_lock(); 4494 rb = rcu_dereference(event->rb); 4495 if (!rb) 4496 goto unlock; 4497 4498 /* 4499 * compute total_time_enabled, total_time_running 4500 * based on snapshot values taken when the event 4501 * was last scheduled in. 4502 * 4503 * we cannot simply called update_context_time() 4504 * because of locking issue as we can be called in 4505 * NMI context 4506 */ 4507 calc_timer_values(event, &now, &enabled, &running); 4508 4509 userpg = rb->user_page; 4510 /* 4511 * Disable preemption so as to not let the corresponding user-space 4512 * spin too long if we get preempted. 4513 */ 4514 preempt_disable(); 4515 ++userpg->lock; 4516 barrier(); 4517 userpg->index = perf_event_index(event); 4518 userpg->offset = perf_event_count(event); 4519 if (userpg->index) 4520 userpg->offset -= local64_read(&event->hw.prev_count); 4521 4522 userpg->time_enabled = enabled + 4523 atomic64_read(&event->child_total_time_enabled); 4524 4525 userpg->time_running = running + 4526 atomic64_read(&event->child_total_time_running); 4527 4528 arch_perf_update_userpage(event, userpg, now); 4529 4530 barrier(); 4531 ++userpg->lock; 4532 preempt_enable(); 4533 unlock: 4534 rcu_read_unlock(); 4535 } 4536 4537 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4538 { 4539 struct perf_event *event = vma->vm_file->private_data; 4540 struct ring_buffer *rb; 4541 int ret = VM_FAULT_SIGBUS; 4542 4543 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4544 if (vmf->pgoff == 0) 4545 ret = 0; 4546 return ret; 4547 } 4548 4549 rcu_read_lock(); 4550 rb = rcu_dereference(event->rb); 4551 if (!rb) 4552 goto unlock; 4553 4554 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4555 goto unlock; 4556 4557 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4558 if (!vmf->page) 4559 goto unlock; 4560 4561 get_page(vmf->page); 4562 vmf->page->mapping = vma->vm_file->f_mapping; 4563 vmf->page->index = vmf->pgoff; 4564 4565 ret = 0; 4566 unlock: 4567 rcu_read_unlock(); 4568 4569 return ret; 4570 } 4571 4572 static void ring_buffer_attach(struct perf_event *event, 4573 struct ring_buffer *rb) 4574 { 4575 struct ring_buffer *old_rb = NULL; 4576 unsigned long flags; 4577 4578 if (event->rb) { 4579 /* 4580 * Should be impossible, we set this when removing 4581 * event->rb_entry and wait/clear when adding event->rb_entry. 4582 */ 4583 WARN_ON_ONCE(event->rcu_pending); 4584 4585 old_rb = event->rb; 4586 spin_lock_irqsave(&old_rb->event_lock, flags); 4587 list_del_rcu(&event->rb_entry); 4588 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4589 4590 event->rcu_batches = get_state_synchronize_rcu(); 4591 event->rcu_pending = 1; 4592 } 4593 4594 if (rb) { 4595 if (event->rcu_pending) { 4596 cond_synchronize_rcu(event->rcu_batches); 4597 event->rcu_pending = 0; 4598 } 4599 4600 spin_lock_irqsave(&rb->event_lock, flags); 4601 list_add_rcu(&event->rb_entry, &rb->event_list); 4602 spin_unlock_irqrestore(&rb->event_lock, flags); 4603 } 4604 4605 rcu_assign_pointer(event->rb, rb); 4606 4607 if (old_rb) { 4608 ring_buffer_put(old_rb); 4609 /* 4610 * Since we detached before setting the new rb, so that we 4611 * could attach the new rb, we could have missed a wakeup. 4612 * Provide it now. 4613 */ 4614 wake_up_all(&event->waitq); 4615 } 4616 } 4617 4618 static void ring_buffer_wakeup(struct perf_event *event) 4619 { 4620 struct ring_buffer *rb; 4621 4622 rcu_read_lock(); 4623 rb = rcu_dereference(event->rb); 4624 if (rb) { 4625 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4626 wake_up_all(&event->waitq); 4627 } 4628 rcu_read_unlock(); 4629 } 4630 4631 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4632 { 4633 struct ring_buffer *rb; 4634 4635 rcu_read_lock(); 4636 rb = rcu_dereference(event->rb); 4637 if (rb) { 4638 if (!atomic_inc_not_zero(&rb->refcount)) 4639 rb = NULL; 4640 } 4641 rcu_read_unlock(); 4642 4643 return rb; 4644 } 4645 4646 void ring_buffer_put(struct ring_buffer *rb) 4647 { 4648 if (!atomic_dec_and_test(&rb->refcount)) 4649 return; 4650 4651 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4652 4653 call_rcu(&rb->rcu_head, rb_free_rcu); 4654 } 4655 4656 static void perf_mmap_open(struct vm_area_struct *vma) 4657 { 4658 struct perf_event *event = vma->vm_file->private_data; 4659 4660 atomic_inc(&event->mmap_count); 4661 atomic_inc(&event->rb->mmap_count); 4662 4663 if (vma->vm_pgoff) 4664 atomic_inc(&event->rb->aux_mmap_count); 4665 4666 if (event->pmu->event_mapped) 4667 event->pmu->event_mapped(event); 4668 } 4669 4670 /* 4671 * A buffer can be mmap()ed multiple times; either directly through the same 4672 * event, or through other events by use of perf_event_set_output(). 4673 * 4674 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4675 * the buffer here, where we still have a VM context. This means we need 4676 * to detach all events redirecting to us. 4677 */ 4678 static void perf_mmap_close(struct vm_area_struct *vma) 4679 { 4680 struct perf_event *event = vma->vm_file->private_data; 4681 4682 struct ring_buffer *rb = ring_buffer_get(event); 4683 struct user_struct *mmap_user = rb->mmap_user; 4684 int mmap_locked = rb->mmap_locked; 4685 unsigned long size = perf_data_size(rb); 4686 4687 if (event->pmu->event_unmapped) 4688 event->pmu->event_unmapped(event); 4689 4690 /* 4691 * rb->aux_mmap_count will always drop before rb->mmap_count and 4692 * event->mmap_count, so it is ok to use event->mmap_mutex to 4693 * serialize with perf_mmap here. 4694 */ 4695 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4696 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4697 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4698 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4699 4700 rb_free_aux(rb); 4701 mutex_unlock(&event->mmap_mutex); 4702 } 4703 4704 atomic_dec(&rb->mmap_count); 4705 4706 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4707 goto out_put; 4708 4709 ring_buffer_attach(event, NULL); 4710 mutex_unlock(&event->mmap_mutex); 4711 4712 /* If there's still other mmap()s of this buffer, we're done. */ 4713 if (atomic_read(&rb->mmap_count)) 4714 goto out_put; 4715 4716 /* 4717 * No other mmap()s, detach from all other events that might redirect 4718 * into the now unreachable buffer. Somewhat complicated by the 4719 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4720 */ 4721 again: 4722 rcu_read_lock(); 4723 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4724 if (!atomic_long_inc_not_zero(&event->refcount)) { 4725 /* 4726 * This event is en-route to free_event() which will 4727 * detach it and remove it from the list. 4728 */ 4729 continue; 4730 } 4731 rcu_read_unlock(); 4732 4733 mutex_lock(&event->mmap_mutex); 4734 /* 4735 * Check we didn't race with perf_event_set_output() which can 4736 * swizzle the rb from under us while we were waiting to 4737 * acquire mmap_mutex. 4738 * 4739 * If we find a different rb; ignore this event, a next 4740 * iteration will no longer find it on the list. We have to 4741 * still restart the iteration to make sure we're not now 4742 * iterating the wrong list. 4743 */ 4744 if (event->rb == rb) 4745 ring_buffer_attach(event, NULL); 4746 4747 mutex_unlock(&event->mmap_mutex); 4748 put_event(event); 4749 4750 /* 4751 * Restart the iteration; either we're on the wrong list or 4752 * destroyed its integrity by doing a deletion. 4753 */ 4754 goto again; 4755 } 4756 rcu_read_unlock(); 4757 4758 /* 4759 * It could be there's still a few 0-ref events on the list; they'll 4760 * get cleaned up by free_event() -- they'll also still have their 4761 * ref on the rb and will free it whenever they are done with it. 4762 * 4763 * Aside from that, this buffer is 'fully' detached and unmapped, 4764 * undo the VM accounting. 4765 */ 4766 4767 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4768 vma->vm_mm->pinned_vm -= mmap_locked; 4769 free_uid(mmap_user); 4770 4771 out_put: 4772 ring_buffer_put(rb); /* could be last */ 4773 } 4774 4775 static const struct vm_operations_struct perf_mmap_vmops = { 4776 .open = perf_mmap_open, 4777 .close = perf_mmap_close, /* non mergable */ 4778 .fault = perf_mmap_fault, 4779 .page_mkwrite = perf_mmap_fault, 4780 }; 4781 4782 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4783 { 4784 struct perf_event *event = file->private_data; 4785 unsigned long user_locked, user_lock_limit; 4786 struct user_struct *user = current_user(); 4787 unsigned long locked, lock_limit; 4788 struct ring_buffer *rb = NULL; 4789 unsigned long vma_size; 4790 unsigned long nr_pages; 4791 long user_extra = 0, extra = 0; 4792 int ret = 0, flags = 0; 4793 4794 /* 4795 * Don't allow mmap() of inherited per-task counters. This would 4796 * create a performance issue due to all children writing to the 4797 * same rb. 4798 */ 4799 if (event->cpu == -1 && event->attr.inherit) 4800 return -EINVAL; 4801 4802 if (!(vma->vm_flags & VM_SHARED)) 4803 return -EINVAL; 4804 4805 vma_size = vma->vm_end - vma->vm_start; 4806 4807 if (vma->vm_pgoff == 0) { 4808 nr_pages = (vma_size / PAGE_SIZE) - 1; 4809 } else { 4810 /* 4811 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4812 * mapped, all subsequent mappings should have the same size 4813 * and offset. Must be above the normal perf buffer. 4814 */ 4815 u64 aux_offset, aux_size; 4816 4817 if (!event->rb) 4818 return -EINVAL; 4819 4820 nr_pages = vma_size / PAGE_SIZE; 4821 4822 mutex_lock(&event->mmap_mutex); 4823 ret = -EINVAL; 4824 4825 rb = event->rb; 4826 if (!rb) 4827 goto aux_unlock; 4828 4829 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4830 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4831 4832 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4833 goto aux_unlock; 4834 4835 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4836 goto aux_unlock; 4837 4838 /* already mapped with a different offset */ 4839 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4840 goto aux_unlock; 4841 4842 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4843 goto aux_unlock; 4844 4845 /* already mapped with a different size */ 4846 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4847 goto aux_unlock; 4848 4849 if (!is_power_of_2(nr_pages)) 4850 goto aux_unlock; 4851 4852 if (!atomic_inc_not_zero(&rb->mmap_count)) 4853 goto aux_unlock; 4854 4855 if (rb_has_aux(rb)) { 4856 atomic_inc(&rb->aux_mmap_count); 4857 ret = 0; 4858 goto unlock; 4859 } 4860 4861 atomic_set(&rb->aux_mmap_count, 1); 4862 user_extra = nr_pages; 4863 4864 goto accounting; 4865 } 4866 4867 /* 4868 * If we have rb pages ensure they're a power-of-two number, so we 4869 * can do bitmasks instead of modulo. 4870 */ 4871 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4872 return -EINVAL; 4873 4874 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4875 return -EINVAL; 4876 4877 WARN_ON_ONCE(event->ctx->parent_ctx); 4878 again: 4879 mutex_lock(&event->mmap_mutex); 4880 if (event->rb) { 4881 if (event->rb->nr_pages != nr_pages) { 4882 ret = -EINVAL; 4883 goto unlock; 4884 } 4885 4886 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4887 /* 4888 * Raced against perf_mmap_close() through 4889 * perf_event_set_output(). Try again, hope for better 4890 * luck. 4891 */ 4892 mutex_unlock(&event->mmap_mutex); 4893 goto again; 4894 } 4895 4896 goto unlock; 4897 } 4898 4899 user_extra = nr_pages + 1; 4900 4901 accounting: 4902 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4903 4904 /* 4905 * Increase the limit linearly with more CPUs: 4906 */ 4907 user_lock_limit *= num_online_cpus(); 4908 4909 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4910 4911 if (user_locked > user_lock_limit) 4912 extra = user_locked - user_lock_limit; 4913 4914 lock_limit = rlimit(RLIMIT_MEMLOCK); 4915 lock_limit >>= PAGE_SHIFT; 4916 locked = vma->vm_mm->pinned_vm + extra; 4917 4918 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4919 !capable(CAP_IPC_LOCK)) { 4920 ret = -EPERM; 4921 goto unlock; 4922 } 4923 4924 WARN_ON(!rb && event->rb); 4925 4926 if (vma->vm_flags & VM_WRITE) 4927 flags |= RING_BUFFER_WRITABLE; 4928 4929 if (!rb) { 4930 rb = rb_alloc(nr_pages, 4931 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4932 event->cpu, flags); 4933 4934 if (!rb) { 4935 ret = -ENOMEM; 4936 goto unlock; 4937 } 4938 4939 atomic_set(&rb->mmap_count, 1); 4940 rb->mmap_user = get_current_user(); 4941 rb->mmap_locked = extra; 4942 4943 ring_buffer_attach(event, rb); 4944 4945 perf_event_init_userpage(event); 4946 perf_event_update_userpage(event); 4947 } else { 4948 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4949 event->attr.aux_watermark, flags); 4950 if (!ret) 4951 rb->aux_mmap_locked = extra; 4952 } 4953 4954 unlock: 4955 if (!ret) { 4956 atomic_long_add(user_extra, &user->locked_vm); 4957 vma->vm_mm->pinned_vm += extra; 4958 4959 atomic_inc(&event->mmap_count); 4960 } else if (rb) { 4961 atomic_dec(&rb->mmap_count); 4962 } 4963 aux_unlock: 4964 mutex_unlock(&event->mmap_mutex); 4965 4966 /* 4967 * Since pinned accounting is per vm we cannot allow fork() to copy our 4968 * vma. 4969 */ 4970 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4971 vma->vm_ops = &perf_mmap_vmops; 4972 4973 if (event->pmu->event_mapped) 4974 event->pmu->event_mapped(event); 4975 4976 return ret; 4977 } 4978 4979 static int perf_fasync(int fd, struct file *filp, int on) 4980 { 4981 struct inode *inode = file_inode(filp); 4982 struct perf_event *event = filp->private_data; 4983 int retval; 4984 4985 inode_lock(inode); 4986 retval = fasync_helper(fd, filp, on, &event->fasync); 4987 inode_unlock(inode); 4988 4989 if (retval < 0) 4990 return retval; 4991 4992 return 0; 4993 } 4994 4995 static const struct file_operations perf_fops = { 4996 .llseek = no_llseek, 4997 .release = perf_release, 4998 .read = perf_read, 4999 .poll = perf_poll, 5000 .unlocked_ioctl = perf_ioctl, 5001 .compat_ioctl = perf_compat_ioctl, 5002 .mmap = perf_mmap, 5003 .fasync = perf_fasync, 5004 }; 5005 5006 /* 5007 * Perf event wakeup 5008 * 5009 * If there's data, ensure we set the poll() state and publish everything 5010 * to user-space before waking everybody up. 5011 */ 5012 5013 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5014 { 5015 /* only the parent has fasync state */ 5016 if (event->parent) 5017 event = event->parent; 5018 return &event->fasync; 5019 } 5020 5021 void perf_event_wakeup(struct perf_event *event) 5022 { 5023 ring_buffer_wakeup(event); 5024 5025 if (event->pending_kill) { 5026 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5027 event->pending_kill = 0; 5028 } 5029 } 5030 5031 static void perf_pending_event(struct irq_work *entry) 5032 { 5033 struct perf_event *event = container_of(entry, 5034 struct perf_event, pending); 5035 int rctx; 5036 5037 rctx = perf_swevent_get_recursion_context(); 5038 /* 5039 * If we 'fail' here, that's OK, it means recursion is already disabled 5040 * and we won't recurse 'further'. 5041 */ 5042 5043 if (event->pending_disable) { 5044 event->pending_disable = 0; 5045 perf_event_disable_local(event); 5046 } 5047 5048 if (event->pending_wakeup) { 5049 event->pending_wakeup = 0; 5050 perf_event_wakeup(event); 5051 } 5052 5053 if (rctx >= 0) 5054 perf_swevent_put_recursion_context(rctx); 5055 } 5056 5057 /* 5058 * We assume there is only KVM supporting the callbacks. 5059 * Later on, we might change it to a list if there is 5060 * another virtualization implementation supporting the callbacks. 5061 */ 5062 struct perf_guest_info_callbacks *perf_guest_cbs; 5063 5064 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5065 { 5066 perf_guest_cbs = cbs; 5067 return 0; 5068 } 5069 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5070 5071 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5072 { 5073 perf_guest_cbs = NULL; 5074 return 0; 5075 } 5076 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5077 5078 static void 5079 perf_output_sample_regs(struct perf_output_handle *handle, 5080 struct pt_regs *regs, u64 mask) 5081 { 5082 int bit; 5083 5084 for_each_set_bit(bit, (const unsigned long *) &mask, 5085 sizeof(mask) * BITS_PER_BYTE) { 5086 u64 val; 5087 5088 val = perf_reg_value(regs, bit); 5089 perf_output_put(handle, val); 5090 } 5091 } 5092 5093 static void perf_sample_regs_user(struct perf_regs *regs_user, 5094 struct pt_regs *regs, 5095 struct pt_regs *regs_user_copy) 5096 { 5097 if (user_mode(regs)) { 5098 regs_user->abi = perf_reg_abi(current); 5099 regs_user->regs = regs; 5100 } else if (current->mm) { 5101 perf_get_regs_user(regs_user, regs, regs_user_copy); 5102 } else { 5103 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5104 regs_user->regs = NULL; 5105 } 5106 } 5107 5108 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5109 struct pt_regs *regs) 5110 { 5111 regs_intr->regs = regs; 5112 regs_intr->abi = perf_reg_abi(current); 5113 } 5114 5115 5116 /* 5117 * Get remaining task size from user stack pointer. 5118 * 5119 * It'd be better to take stack vma map and limit this more 5120 * precisly, but there's no way to get it safely under interrupt, 5121 * so using TASK_SIZE as limit. 5122 */ 5123 static u64 perf_ustack_task_size(struct pt_regs *regs) 5124 { 5125 unsigned long addr = perf_user_stack_pointer(regs); 5126 5127 if (!addr || addr >= TASK_SIZE) 5128 return 0; 5129 5130 return TASK_SIZE - addr; 5131 } 5132 5133 static u16 5134 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5135 struct pt_regs *regs) 5136 { 5137 u64 task_size; 5138 5139 /* No regs, no stack pointer, no dump. */ 5140 if (!regs) 5141 return 0; 5142 5143 /* 5144 * Check if we fit in with the requested stack size into the: 5145 * - TASK_SIZE 5146 * If we don't, we limit the size to the TASK_SIZE. 5147 * 5148 * - remaining sample size 5149 * If we don't, we customize the stack size to 5150 * fit in to the remaining sample size. 5151 */ 5152 5153 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5154 stack_size = min(stack_size, (u16) task_size); 5155 5156 /* Current header size plus static size and dynamic size. */ 5157 header_size += 2 * sizeof(u64); 5158 5159 /* Do we fit in with the current stack dump size? */ 5160 if ((u16) (header_size + stack_size) < header_size) { 5161 /* 5162 * If we overflow the maximum size for the sample, 5163 * we customize the stack dump size to fit in. 5164 */ 5165 stack_size = USHRT_MAX - header_size - sizeof(u64); 5166 stack_size = round_up(stack_size, sizeof(u64)); 5167 } 5168 5169 return stack_size; 5170 } 5171 5172 static void 5173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5174 struct pt_regs *regs) 5175 { 5176 /* Case of a kernel thread, nothing to dump */ 5177 if (!regs) { 5178 u64 size = 0; 5179 perf_output_put(handle, size); 5180 } else { 5181 unsigned long sp; 5182 unsigned int rem; 5183 u64 dyn_size; 5184 5185 /* 5186 * We dump: 5187 * static size 5188 * - the size requested by user or the best one we can fit 5189 * in to the sample max size 5190 * data 5191 * - user stack dump data 5192 * dynamic size 5193 * - the actual dumped size 5194 */ 5195 5196 /* Static size. */ 5197 perf_output_put(handle, dump_size); 5198 5199 /* Data. */ 5200 sp = perf_user_stack_pointer(regs); 5201 rem = __output_copy_user(handle, (void *) sp, dump_size); 5202 dyn_size = dump_size - rem; 5203 5204 perf_output_skip(handle, rem); 5205 5206 /* Dynamic size. */ 5207 perf_output_put(handle, dyn_size); 5208 } 5209 } 5210 5211 static void __perf_event_header__init_id(struct perf_event_header *header, 5212 struct perf_sample_data *data, 5213 struct perf_event *event) 5214 { 5215 u64 sample_type = event->attr.sample_type; 5216 5217 data->type = sample_type; 5218 header->size += event->id_header_size; 5219 5220 if (sample_type & PERF_SAMPLE_TID) { 5221 /* namespace issues */ 5222 data->tid_entry.pid = perf_event_pid(event, current); 5223 data->tid_entry.tid = perf_event_tid(event, current); 5224 } 5225 5226 if (sample_type & PERF_SAMPLE_TIME) 5227 data->time = perf_event_clock(event); 5228 5229 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5230 data->id = primary_event_id(event); 5231 5232 if (sample_type & PERF_SAMPLE_STREAM_ID) 5233 data->stream_id = event->id; 5234 5235 if (sample_type & PERF_SAMPLE_CPU) { 5236 data->cpu_entry.cpu = raw_smp_processor_id(); 5237 data->cpu_entry.reserved = 0; 5238 } 5239 } 5240 5241 void perf_event_header__init_id(struct perf_event_header *header, 5242 struct perf_sample_data *data, 5243 struct perf_event *event) 5244 { 5245 if (event->attr.sample_id_all) 5246 __perf_event_header__init_id(header, data, event); 5247 } 5248 5249 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5250 struct perf_sample_data *data) 5251 { 5252 u64 sample_type = data->type; 5253 5254 if (sample_type & PERF_SAMPLE_TID) 5255 perf_output_put(handle, data->tid_entry); 5256 5257 if (sample_type & PERF_SAMPLE_TIME) 5258 perf_output_put(handle, data->time); 5259 5260 if (sample_type & PERF_SAMPLE_ID) 5261 perf_output_put(handle, data->id); 5262 5263 if (sample_type & PERF_SAMPLE_STREAM_ID) 5264 perf_output_put(handle, data->stream_id); 5265 5266 if (sample_type & PERF_SAMPLE_CPU) 5267 perf_output_put(handle, data->cpu_entry); 5268 5269 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5270 perf_output_put(handle, data->id); 5271 } 5272 5273 void perf_event__output_id_sample(struct perf_event *event, 5274 struct perf_output_handle *handle, 5275 struct perf_sample_data *sample) 5276 { 5277 if (event->attr.sample_id_all) 5278 __perf_event__output_id_sample(handle, sample); 5279 } 5280 5281 static void perf_output_read_one(struct perf_output_handle *handle, 5282 struct perf_event *event, 5283 u64 enabled, u64 running) 5284 { 5285 u64 read_format = event->attr.read_format; 5286 u64 values[4]; 5287 int n = 0; 5288 5289 values[n++] = perf_event_count(event); 5290 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5291 values[n++] = enabled + 5292 atomic64_read(&event->child_total_time_enabled); 5293 } 5294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5295 values[n++] = running + 5296 atomic64_read(&event->child_total_time_running); 5297 } 5298 if (read_format & PERF_FORMAT_ID) 5299 values[n++] = primary_event_id(event); 5300 5301 __output_copy(handle, values, n * sizeof(u64)); 5302 } 5303 5304 /* 5305 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5306 */ 5307 static void perf_output_read_group(struct perf_output_handle *handle, 5308 struct perf_event *event, 5309 u64 enabled, u64 running) 5310 { 5311 struct perf_event *leader = event->group_leader, *sub; 5312 u64 read_format = event->attr.read_format; 5313 u64 values[5]; 5314 int n = 0; 5315 5316 values[n++] = 1 + leader->nr_siblings; 5317 5318 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5319 values[n++] = enabled; 5320 5321 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5322 values[n++] = running; 5323 5324 if (leader != event) 5325 leader->pmu->read(leader); 5326 5327 values[n++] = perf_event_count(leader); 5328 if (read_format & PERF_FORMAT_ID) 5329 values[n++] = primary_event_id(leader); 5330 5331 __output_copy(handle, values, n * sizeof(u64)); 5332 5333 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5334 n = 0; 5335 5336 if ((sub != event) && 5337 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5338 sub->pmu->read(sub); 5339 5340 values[n++] = perf_event_count(sub); 5341 if (read_format & PERF_FORMAT_ID) 5342 values[n++] = primary_event_id(sub); 5343 5344 __output_copy(handle, values, n * sizeof(u64)); 5345 } 5346 } 5347 5348 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5349 PERF_FORMAT_TOTAL_TIME_RUNNING) 5350 5351 static void perf_output_read(struct perf_output_handle *handle, 5352 struct perf_event *event) 5353 { 5354 u64 enabled = 0, running = 0, now; 5355 u64 read_format = event->attr.read_format; 5356 5357 /* 5358 * compute total_time_enabled, total_time_running 5359 * based on snapshot values taken when the event 5360 * was last scheduled in. 5361 * 5362 * we cannot simply called update_context_time() 5363 * because of locking issue as we are called in 5364 * NMI context 5365 */ 5366 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5367 calc_timer_values(event, &now, &enabled, &running); 5368 5369 if (event->attr.read_format & PERF_FORMAT_GROUP) 5370 perf_output_read_group(handle, event, enabled, running); 5371 else 5372 perf_output_read_one(handle, event, enabled, running); 5373 } 5374 5375 void perf_output_sample(struct perf_output_handle *handle, 5376 struct perf_event_header *header, 5377 struct perf_sample_data *data, 5378 struct perf_event *event) 5379 { 5380 u64 sample_type = data->type; 5381 5382 perf_output_put(handle, *header); 5383 5384 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5385 perf_output_put(handle, data->id); 5386 5387 if (sample_type & PERF_SAMPLE_IP) 5388 perf_output_put(handle, data->ip); 5389 5390 if (sample_type & PERF_SAMPLE_TID) 5391 perf_output_put(handle, data->tid_entry); 5392 5393 if (sample_type & PERF_SAMPLE_TIME) 5394 perf_output_put(handle, data->time); 5395 5396 if (sample_type & PERF_SAMPLE_ADDR) 5397 perf_output_put(handle, data->addr); 5398 5399 if (sample_type & PERF_SAMPLE_ID) 5400 perf_output_put(handle, data->id); 5401 5402 if (sample_type & PERF_SAMPLE_STREAM_ID) 5403 perf_output_put(handle, data->stream_id); 5404 5405 if (sample_type & PERF_SAMPLE_CPU) 5406 perf_output_put(handle, data->cpu_entry); 5407 5408 if (sample_type & PERF_SAMPLE_PERIOD) 5409 perf_output_put(handle, data->period); 5410 5411 if (sample_type & PERF_SAMPLE_READ) 5412 perf_output_read(handle, event); 5413 5414 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5415 if (data->callchain) { 5416 int size = 1; 5417 5418 if (data->callchain) 5419 size += data->callchain->nr; 5420 5421 size *= sizeof(u64); 5422 5423 __output_copy(handle, data->callchain, size); 5424 } else { 5425 u64 nr = 0; 5426 perf_output_put(handle, nr); 5427 } 5428 } 5429 5430 if (sample_type & PERF_SAMPLE_RAW) { 5431 if (data->raw) { 5432 u32 raw_size = data->raw->size; 5433 u32 real_size = round_up(raw_size + sizeof(u32), 5434 sizeof(u64)) - sizeof(u32); 5435 u64 zero = 0; 5436 5437 perf_output_put(handle, real_size); 5438 __output_copy(handle, data->raw->data, raw_size); 5439 if (real_size - raw_size) 5440 __output_copy(handle, &zero, real_size - raw_size); 5441 } else { 5442 struct { 5443 u32 size; 5444 u32 data; 5445 } raw = { 5446 .size = sizeof(u32), 5447 .data = 0, 5448 }; 5449 perf_output_put(handle, raw); 5450 } 5451 } 5452 5453 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5454 if (data->br_stack) { 5455 size_t size; 5456 5457 size = data->br_stack->nr 5458 * sizeof(struct perf_branch_entry); 5459 5460 perf_output_put(handle, data->br_stack->nr); 5461 perf_output_copy(handle, data->br_stack->entries, size); 5462 } else { 5463 /* 5464 * we always store at least the value of nr 5465 */ 5466 u64 nr = 0; 5467 perf_output_put(handle, nr); 5468 } 5469 } 5470 5471 if (sample_type & PERF_SAMPLE_REGS_USER) { 5472 u64 abi = data->regs_user.abi; 5473 5474 /* 5475 * If there are no regs to dump, notice it through 5476 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5477 */ 5478 perf_output_put(handle, abi); 5479 5480 if (abi) { 5481 u64 mask = event->attr.sample_regs_user; 5482 perf_output_sample_regs(handle, 5483 data->regs_user.regs, 5484 mask); 5485 } 5486 } 5487 5488 if (sample_type & PERF_SAMPLE_STACK_USER) { 5489 perf_output_sample_ustack(handle, 5490 data->stack_user_size, 5491 data->regs_user.regs); 5492 } 5493 5494 if (sample_type & PERF_SAMPLE_WEIGHT) 5495 perf_output_put(handle, data->weight); 5496 5497 if (sample_type & PERF_SAMPLE_DATA_SRC) 5498 perf_output_put(handle, data->data_src.val); 5499 5500 if (sample_type & PERF_SAMPLE_TRANSACTION) 5501 perf_output_put(handle, data->txn); 5502 5503 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5504 u64 abi = data->regs_intr.abi; 5505 /* 5506 * If there are no regs to dump, notice it through 5507 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5508 */ 5509 perf_output_put(handle, abi); 5510 5511 if (abi) { 5512 u64 mask = event->attr.sample_regs_intr; 5513 5514 perf_output_sample_regs(handle, 5515 data->regs_intr.regs, 5516 mask); 5517 } 5518 } 5519 5520 if (!event->attr.watermark) { 5521 int wakeup_events = event->attr.wakeup_events; 5522 5523 if (wakeup_events) { 5524 struct ring_buffer *rb = handle->rb; 5525 int events = local_inc_return(&rb->events); 5526 5527 if (events >= wakeup_events) { 5528 local_sub(wakeup_events, &rb->events); 5529 local_inc(&rb->wakeup); 5530 } 5531 } 5532 } 5533 } 5534 5535 void perf_prepare_sample(struct perf_event_header *header, 5536 struct perf_sample_data *data, 5537 struct perf_event *event, 5538 struct pt_regs *regs) 5539 { 5540 u64 sample_type = event->attr.sample_type; 5541 5542 header->type = PERF_RECORD_SAMPLE; 5543 header->size = sizeof(*header) + event->header_size; 5544 5545 header->misc = 0; 5546 header->misc |= perf_misc_flags(regs); 5547 5548 __perf_event_header__init_id(header, data, event); 5549 5550 if (sample_type & PERF_SAMPLE_IP) 5551 data->ip = perf_instruction_pointer(regs); 5552 5553 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5554 int size = 1; 5555 5556 data->callchain = perf_callchain(event, regs); 5557 5558 if (data->callchain) 5559 size += data->callchain->nr; 5560 5561 header->size += size * sizeof(u64); 5562 } 5563 5564 if (sample_type & PERF_SAMPLE_RAW) { 5565 int size = sizeof(u32); 5566 5567 if (data->raw) 5568 size += data->raw->size; 5569 else 5570 size += sizeof(u32); 5571 5572 header->size += round_up(size, sizeof(u64)); 5573 } 5574 5575 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5576 int size = sizeof(u64); /* nr */ 5577 if (data->br_stack) { 5578 size += data->br_stack->nr 5579 * sizeof(struct perf_branch_entry); 5580 } 5581 header->size += size; 5582 } 5583 5584 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5585 perf_sample_regs_user(&data->regs_user, regs, 5586 &data->regs_user_copy); 5587 5588 if (sample_type & PERF_SAMPLE_REGS_USER) { 5589 /* regs dump ABI info */ 5590 int size = sizeof(u64); 5591 5592 if (data->regs_user.regs) { 5593 u64 mask = event->attr.sample_regs_user; 5594 size += hweight64(mask) * sizeof(u64); 5595 } 5596 5597 header->size += size; 5598 } 5599 5600 if (sample_type & PERF_SAMPLE_STACK_USER) { 5601 /* 5602 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5603 * processed as the last one or have additional check added 5604 * in case new sample type is added, because we could eat 5605 * up the rest of the sample size. 5606 */ 5607 u16 stack_size = event->attr.sample_stack_user; 5608 u16 size = sizeof(u64); 5609 5610 stack_size = perf_sample_ustack_size(stack_size, header->size, 5611 data->regs_user.regs); 5612 5613 /* 5614 * If there is something to dump, add space for the dump 5615 * itself and for the field that tells the dynamic size, 5616 * which is how many have been actually dumped. 5617 */ 5618 if (stack_size) 5619 size += sizeof(u64) + stack_size; 5620 5621 data->stack_user_size = stack_size; 5622 header->size += size; 5623 } 5624 5625 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5626 /* regs dump ABI info */ 5627 int size = sizeof(u64); 5628 5629 perf_sample_regs_intr(&data->regs_intr, regs); 5630 5631 if (data->regs_intr.regs) { 5632 u64 mask = event->attr.sample_regs_intr; 5633 5634 size += hweight64(mask) * sizeof(u64); 5635 } 5636 5637 header->size += size; 5638 } 5639 } 5640 5641 void perf_event_output(struct perf_event *event, 5642 struct perf_sample_data *data, 5643 struct pt_regs *regs) 5644 { 5645 struct perf_output_handle handle; 5646 struct perf_event_header header; 5647 5648 /* protect the callchain buffers */ 5649 rcu_read_lock(); 5650 5651 perf_prepare_sample(&header, data, event, regs); 5652 5653 if (perf_output_begin(&handle, event, header.size)) 5654 goto exit; 5655 5656 perf_output_sample(&handle, &header, data, event); 5657 5658 perf_output_end(&handle); 5659 5660 exit: 5661 rcu_read_unlock(); 5662 } 5663 5664 /* 5665 * read event_id 5666 */ 5667 5668 struct perf_read_event { 5669 struct perf_event_header header; 5670 5671 u32 pid; 5672 u32 tid; 5673 }; 5674 5675 static void 5676 perf_event_read_event(struct perf_event *event, 5677 struct task_struct *task) 5678 { 5679 struct perf_output_handle handle; 5680 struct perf_sample_data sample; 5681 struct perf_read_event read_event = { 5682 .header = { 5683 .type = PERF_RECORD_READ, 5684 .misc = 0, 5685 .size = sizeof(read_event) + event->read_size, 5686 }, 5687 .pid = perf_event_pid(event, task), 5688 .tid = perf_event_tid(event, task), 5689 }; 5690 int ret; 5691 5692 perf_event_header__init_id(&read_event.header, &sample, event); 5693 ret = perf_output_begin(&handle, event, read_event.header.size); 5694 if (ret) 5695 return; 5696 5697 perf_output_put(&handle, read_event); 5698 perf_output_read(&handle, event); 5699 perf_event__output_id_sample(event, &handle, &sample); 5700 5701 perf_output_end(&handle); 5702 } 5703 5704 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5705 5706 static void 5707 perf_event_aux_ctx(struct perf_event_context *ctx, 5708 perf_event_aux_output_cb output, 5709 void *data) 5710 { 5711 struct perf_event *event; 5712 5713 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5714 if (event->state < PERF_EVENT_STATE_INACTIVE) 5715 continue; 5716 if (!event_filter_match(event)) 5717 continue; 5718 output(event, data); 5719 } 5720 } 5721 5722 static void 5723 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5724 struct perf_event_context *task_ctx) 5725 { 5726 rcu_read_lock(); 5727 preempt_disable(); 5728 perf_event_aux_ctx(task_ctx, output, data); 5729 preempt_enable(); 5730 rcu_read_unlock(); 5731 } 5732 5733 static void 5734 perf_event_aux(perf_event_aux_output_cb output, void *data, 5735 struct perf_event_context *task_ctx) 5736 { 5737 struct perf_cpu_context *cpuctx; 5738 struct perf_event_context *ctx; 5739 struct pmu *pmu; 5740 int ctxn; 5741 5742 /* 5743 * If we have task_ctx != NULL we only notify 5744 * the task context itself. The task_ctx is set 5745 * only for EXIT events before releasing task 5746 * context. 5747 */ 5748 if (task_ctx) { 5749 perf_event_aux_task_ctx(output, data, task_ctx); 5750 return; 5751 } 5752 5753 rcu_read_lock(); 5754 list_for_each_entry_rcu(pmu, &pmus, entry) { 5755 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5756 if (cpuctx->unique_pmu != pmu) 5757 goto next; 5758 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5759 ctxn = pmu->task_ctx_nr; 5760 if (ctxn < 0) 5761 goto next; 5762 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5763 if (ctx) 5764 perf_event_aux_ctx(ctx, output, data); 5765 next: 5766 put_cpu_ptr(pmu->pmu_cpu_context); 5767 } 5768 rcu_read_unlock(); 5769 } 5770 5771 /* 5772 * task tracking -- fork/exit 5773 * 5774 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5775 */ 5776 5777 struct perf_task_event { 5778 struct task_struct *task; 5779 struct perf_event_context *task_ctx; 5780 5781 struct { 5782 struct perf_event_header header; 5783 5784 u32 pid; 5785 u32 ppid; 5786 u32 tid; 5787 u32 ptid; 5788 u64 time; 5789 } event_id; 5790 }; 5791 5792 static int perf_event_task_match(struct perf_event *event) 5793 { 5794 return event->attr.comm || event->attr.mmap || 5795 event->attr.mmap2 || event->attr.mmap_data || 5796 event->attr.task; 5797 } 5798 5799 static void perf_event_task_output(struct perf_event *event, 5800 void *data) 5801 { 5802 struct perf_task_event *task_event = data; 5803 struct perf_output_handle handle; 5804 struct perf_sample_data sample; 5805 struct task_struct *task = task_event->task; 5806 int ret, size = task_event->event_id.header.size; 5807 5808 if (!perf_event_task_match(event)) 5809 return; 5810 5811 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5812 5813 ret = perf_output_begin(&handle, event, 5814 task_event->event_id.header.size); 5815 if (ret) 5816 goto out; 5817 5818 task_event->event_id.pid = perf_event_pid(event, task); 5819 task_event->event_id.ppid = perf_event_pid(event, current); 5820 5821 task_event->event_id.tid = perf_event_tid(event, task); 5822 task_event->event_id.ptid = perf_event_tid(event, current); 5823 5824 task_event->event_id.time = perf_event_clock(event); 5825 5826 perf_output_put(&handle, task_event->event_id); 5827 5828 perf_event__output_id_sample(event, &handle, &sample); 5829 5830 perf_output_end(&handle); 5831 out: 5832 task_event->event_id.header.size = size; 5833 } 5834 5835 static void perf_event_task(struct task_struct *task, 5836 struct perf_event_context *task_ctx, 5837 int new) 5838 { 5839 struct perf_task_event task_event; 5840 5841 if (!atomic_read(&nr_comm_events) && 5842 !atomic_read(&nr_mmap_events) && 5843 !atomic_read(&nr_task_events)) 5844 return; 5845 5846 task_event = (struct perf_task_event){ 5847 .task = task, 5848 .task_ctx = task_ctx, 5849 .event_id = { 5850 .header = { 5851 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5852 .misc = 0, 5853 .size = sizeof(task_event.event_id), 5854 }, 5855 /* .pid */ 5856 /* .ppid */ 5857 /* .tid */ 5858 /* .ptid */ 5859 /* .time */ 5860 }, 5861 }; 5862 5863 perf_event_aux(perf_event_task_output, 5864 &task_event, 5865 task_ctx); 5866 } 5867 5868 void perf_event_fork(struct task_struct *task) 5869 { 5870 perf_event_task(task, NULL, 1); 5871 } 5872 5873 /* 5874 * comm tracking 5875 */ 5876 5877 struct perf_comm_event { 5878 struct task_struct *task; 5879 char *comm; 5880 int comm_size; 5881 5882 struct { 5883 struct perf_event_header header; 5884 5885 u32 pid; 5886 u32 tid; 5887 } event_id; 5888 }; 5889 5890 static int perf_event_comm_match(struct perf_event *event) 5891 { 5892 return event->attr.comm; 5893 } 5894 5895 static void perf_event_comm_output(struct perf_event *event, 5896 void *data) 5897 { 5898 struct perf_comm_event *comm_event = data; 5899 struct perf_output_handle handle; 5900 struct perf_sample_data sample; 5901 int size = comm_event->event_id.header.size; 5902 int ret; 5903 5904 if (!perf_event_comm_match(event)) 5905 return; 5906 5907 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5908 ret = perf_output_begin(&handle, event, 5909 comm_event->event_id.header.size); 5910 5911 if (ret) 5912 goto out; 5913 5914 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5915 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5916 5917 perf_output_put(&handle, comm_event->event_id); 5918 __output_copy(&handle, comm_event->comm, 5919 comm_event->comm_size); 5920 5921 perf_event__output_id_sample(event, &handle, &sample); 5922 5923 perf_output_end(&handle); 5924 out: 5925 comm_event->event_id.header.size = size; 5926 } 5927 5928 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5929 { 5930 char comm[TASK_COMM_LEN]; 5931 unsigned int size; 5932 5933 memset(comm, 0, sizeof(comm)); 5934 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5935 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5936 5937 comm_event->comm = comm; 5938 comm_event->comm_size = size; 5939 5940 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5941 5942 perf_event_aux(perf_event_comm_output, 5943 comm_event, 5944 NULL); 5945 } 5946 5947 void perf_event_comm(struct task_struct *task, bool exec) 5948 { 5949 struct perf_comm_event comm_event; 5950 5951 if (!atomic_read(&nr_comm_events)) 5952 return; 5953 5954 comm_event = (struct perf_comm_event){ 5955 .task = task, 5956 /* .comm */ 5957 /* .comm_size */ 5958 .event_id = { 5959 .header = { 5960 .type = PERF_RECORD_COMM, 5961 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5962 /* .size */ 5963 }, 5964 /* .pid */ 5965 /* .tid */ 5966 }, 5967 }; 5968 5969 perf_event_comm_event(&comm_event); 5970 } 5971 5972 /* 5973 * mmap tracking 5974 */ 5975 5976 struct perf_mmap_event { 5977 struct vm_area_struct *vma; 5978 5979 const char *file_name; 5980 int file_size; 5981 int maj, min; 5982 u64 ino; 5983 u64 ino_generation; 5984 u32 prot, flags; 5985 5986 struct { 5987 struct perf_event_header header; 5988 5989 u32 pid; 5990 u32 tid; 5991 u64 start; 5992 u64 len; 5993 u64 pgoff; 5994 } event_id; 5995 }; 5996 5997 static int perf_event_mmap_match(struct perf_event *event, 5998 void *data) 5999 { 6000 struct perf_mmap_event *mmap_event = data; 6001 struct vm_area_struct *vma = mmap_event->vma; 6002 int executable = vma->vm_flags & VM_EXEC; 6003 6004 return (!executable && event->attr.mmap_data) || 6005 (executable && (event->attr.mmap || event->attr.mmap2)); 6006 } 6007 6008 static void perf_event_mmap_output(struct perf_event *event, 6009 void *data) 6010 { 6011 struct perf_mmap_event *mmap_event = data; 6012 struct perf_output_handle handle; 6013 struct perf_sample_data sample; 6014 int size = mmap_event->event_id.header.size; 6015 int ret; 6016 6017 if (!perf_event_mmap_match(event, data)) 6018 return; 6019 6020 if (event->attr.mmap2) { 6021 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6022 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6023 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6024 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6025 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6026 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6027 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6028 } 6029 6030 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6031 ret = perf_output_begin(&handle, event, 6032 mmap_event->event_id.header.size); 6033 if (ret) 6034 goto out; 6035 6036 mmap_event->event_id.pid = perf_event_pid(event, current); 6037 mmap_event->event_id.tid = perf_event_tid(event, current); 6038 6039 perf_output_put(&handle, mmap_event->event_id); 6040 6041 if (event->attr.mmap2) { 6042 perf_output_put(&handle, mmap_event->maj); 6043 perf_output_put(&handle, mmap_event->min); 6044 perf_output_put(&handle, mmap_event->ino); 6045 perf_output_put(&handle, mmap_event->ino_generation); 6046 perf_output_put(&handle, mmap_event->prot); 6047 perf_output_put(&handle, mmap_event->flags); 6048 } 6049 6050 __output_copy(&handle, mmap_event->file_name, 6051 mmap_event->file_size); 6052 6053 perf_event__output_id_sample(event, &handle, &sample); 6054 6055 perf_output_end(&handle); 6056 out: 6057 mmap_event->event_id.header.size = size; 6058 } 6059 6060 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6061 { 6062 struct vm_area_struct *vma = mmap_event->vma; 6063 struct file *file = vma->vm_file; 6064 int maj = 0, min = 0; 6065 u64 ino = 0, gen = 0; 6066 u32 prot = 0, flags = 0; 6067 unsigned int size; 6068 char tmp[16]; 6069 char *buf = NULL; 6070 char *name; 6071 6072 if (file) { 6073 struct inode *inode; 6074 dev_t dev; 6075 6076 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6077 if (!buf) { 6078 name = "//enomem"; 6079 goto cpy_name; 6080 } 6081 /* 6082 * d_path() works from the end of the rb backwards, so we 6083 * need to add enough zero bytes after the string to handle 6084 * the 64bit alignment we do later. 6085 */ 6086 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6087 if (IS_ERR(name)) { 6088 name = "//toolong"; 6089 goto cpy_name; 6090 } 6091 inode = file_inode(vma->vm_file); 6092 dev = inode->i_sb->s_dev; 6093 ino = inode->i_ino; 6094 gen = inode->i_generation; 6095 maj = MAJOR(dev); 6096 min = MINOR(dev); 6097 6098 if (vma->vm_flags & VM_READ) 6099 prot |= PROT_READ; 6100 if (vma->vm_flags & VM_WRITE) 6101 prot |= PROT_WRITE; 6102 if (vma->vm_flags & VM_EXEC) 6103 prot |= PROT_EXEC; 6104 6105 if (vma->vm_flags & VM_MAYSHARE) 6106 flags = MAP_SHARED; 6107 else 6108 flags = MAP_PRIVATE; 6109 6110 if (vma->vm_flags & VM_DENYWRITE) 6111 flags |= MAP_DENYWRITE; 6112 if (vma->vm_flags & VM_MAYEXEC) 6113 flags |= MAP_EXECUTABLE; 6114 if (vma->vm_flags & VM_LOCKED) 6115 flags |= MAP_LOCKED; 6116 if (vma->vm_flags & VM_HUGETLB) 6117 flags |= MAP_HUGETLB; 6118 6119 goto got_name; 6120 } else { 6121 if (vma->vm_ops && vma->vm_ops->name) { 6122 name = (char *) vma->vm_ops->name(vma); 6123 if (name) 6124 goto cpy_name; 6125 } 6126 6127 name = (char *)arch_vma_name(vma); 6128 if (name) 6129 goto cpy_name; 6130 6131 if (vma->vm_start <= vma->vm_mm->start_brk && 6132 vma->vm_end >= vma->vm_mm->brk) { 6133 name = "[heap]"; 6134 goto cpy_name; 6135 } 6136 if (vma->vm_start <= vma->vm_mm->start_stack && 6137 vma->vm_end >= vma->vm_mm->start_stack) { 6138 name = "[stack]"; 6139 goto cpy_name; 6140 } 6141 6142 name = "//anon"; 6143 goto cpy_name; 6144 } 6145 6146 cpy_name: 6147 strlcpy(tmp, name, sizeof(tmp)); 6148 name = tmp; 6149 got_name: 6150 /* 6151 * Since our buffer works in 8 byte units we need to align our string 6152 * size to a multiple of 8. However, we must guarantee the tail end is 6153 * zero'd out to avoid leaking random bits to userspace. 6154 */ 6155 size = strlen(name)+1; 6156 while (!IS_ALIGNED(size, sizeof(u64))) 6157 name[size++] = '\0'; 6158 6159 mmap_event->file_name = name; 6160 mmap_event->file_size = size; 6161 mmap_event->maj = maj; 6162 mmap_event->min = min; 6163 mmap_event->ino = ino; 6164 mmap_event->ino_generation = gen; 6165 mmap_event->prot = prot; 6166 mmap_event->flags = flags; 6167 6168 if (!(vma->vm_flags & VM_EXEC)) 6169 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6170 6171 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6172 6173 perf_event_aux(perf_event_mmap_output, 6174 mmap_event, 6175 NULL); 6176 6177 kfree(buf); 6178 } 6179 6180 void perf_event_mmap(struct vm_area_struct *vma) 6181 { 6182 struct perf_mmap_event mmap_event; 6183 6184 if (!atomic_read(&nr_mmap_events)) 6185 return; 6186 6187 mmap_event = (struct perf_mmap_event){ 6188 .vma = vma, 6189 /* .file_name */ 6190 /* .file_size */ 6191 .event_id = { 6192 .header = { 6193 .type = PERF_RECORD_MMAP, 6194 .misc = PERF_RECORD_MISC_USER, 6195 /* .size */ 6196 }, 6197 /* .pid */ 6198 /* .tid */ 6199 .start = vma->vm_start, 6200 .len = vma->vm_end - vma->vm_start, 6201 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6202 }, 6203 /* .maj (attr_mmap2 only) */ 6204 /* .min (attr_mmap2 only) */ 6205 /* .ino (attr_mmap2 only) */ 6206 /* .ino_generation (attr_mmap2 only) */ 6207 /* .prot (attr_mmap2 only) */ 6208 /* .flags (attr_mmap2 only) */ 6209 }; 6210 6211 perf_event_mmap_event(&mmap_event); 6212 } 6213 6214 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6215 unsigned long size, u64 flags) 6216 { 6217 struct perf_output_handle handle; 6218 struct perf_sample_data sample; 6219 struct perf_aux_event { 6220 struct perf_event_header header; 6221 u64 offset; 6222 u64 size; 6223 u64 flags; 6224 } rec = { 6225 .header = { 6226 .type = PERF_RECORD_AUX, 6227 .misc = 0, 6228 .size = sizeof(rec), 6229 }, 6230 .offset = head, 6231 .size = size, 6232 .flags = flags, 6233 }; 6234 int ret; 6235 6236 perf_event_header__init_id(&rec.header, &sample, event); 6237 ret = perf_output_begin(&handle, event, rec.header.size); 6238 6239 if (ret) 6240 return; 6241 6242 perf_output_put(&handle, rec); 6243 perf_event__output_id_sample(event, &handle, &sample); 6244 6245 perf_output_end(&handle); 6246 } 6247 6248 /* 6249 * Lost/dropped samples logging 6250 */ 6251 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6252 { 6253 struct perf_output_handle handle; 6254 struct perf_sample_data sample; 6255 int ret; 6256 6257 struct { 6258 struct perf_event_header header; 6259 u64 lost; 6260 } lost_samples_event = { 6261 .header = { 6262 .type = PERF_RECORD_LOST_SAMPLES, 6263 .misc = 0, 6264 .size = sizeof(lost_samples_event), 6265 }, 6266 .lost = lost, 6267 }; 6268 6269 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6270 6271 ret = perf_output_begin(&handle, event, 6272 lost_samples_event.header.size); 6273 if (ret) 6274 return; 6275 6276 perf_output_put(&handle, lost_samples_event); 6277 perf_event__output_id_sample(event, &handle, &sample); 6278 perf_output_end(&handle); 6279 } 6280 6281 /* 6282 * context_switch tracking 6283 */ 6284 6285 struct perf_switch_event { 6286 struct task_struct *task; 6287 struct task_struct *next_prev; 6288 6289 struct { 6290 struct perf_event_header header; 6291 u32 next_prev_pid; 6292 u32 next_prev_tid; 6293 } event_id; 6294 }; 6295 6296 static int perf_event_switch_match(struct perf_event *event) 6297 { 6298 return event->attr.context_switch; 6299 } 6300 6301 static void perf_event_switch_output(struct perf_event *event, void *data) 6302 { 6303 struct perf_switch_event *se = data; 6304 struct perf_output_handle handle; 6305 struct perf_sample_data sample; 6306 int ret; 6307 6308 if (!perf_event_switch_match(event)) 6309 return; 6310 6311 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6312 if (event->ctx->task) { 6313 se->event_id.header.type = PERF_RECORD_SWITCH; 6314 se->event_id.header.size = sizeof(se->event_id.header); 6315 } else { 6316 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6317 se->event_id.header.size = sizeof(se->event_id); 6318 se->event_id.next_prev_pid = 6319 perf_event_pid(event, se->next_prev); 6320 se->event_id.next_prev_tid = 6321 perf_event_tid(event, se->next_prev); 6322 } 6323 6324 perf_event_header__init_id(&se->event_id.header, &sample, event); 6325 6326 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6327 if (ret) 6328 return; 6329 6330 if (event->ctx->task) 6331 perf_output_put(&handle, se->event_id.header); 6332 else 6333 perf_output_put(&handle, se->event_id); 6334 6335 perf_event__output_id_sample(event, &handle, &sample); 6336 6337 perf_output_end(&handle); 6338 } 6339 6340 static void perf_event_switch(struct task_struct *task, 6341 struct task_struct *next_prev, bool sched_in) 6342 { 6343 struct perf_switch_event switch_event; 6344 6345 /* N.B. caller checks nr_switch_events != 0 */ 6346 6347 switch_event = (struct perf_switch_event){ 6348 .task = task, 6349 .next_prev = next_prev, 6350 .event_id = { 6351 .header = { 6352 /* .type */ 6353 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6354 /* .size */ 6355 }, 6356 /* .next_prev_pid */ 6357 /* .next_prev_tid */ 6358 }, 6359 }; 6360 6361 perf_event_aux(perf_event_switch_output, 6362 &switch_event, 6363 NULL); 6364 } 6365 6366 /* 6367 * IRQ throttle logging 6368 */ 6369 6370 static void perf_log_throttle(struct perf_event *event, int enable) 6371 { 6372 struct perf_output_handle handle; 6373 struct perf_sample_data sample; 6374 int ret; 6375 6376 struct { 6377 struct perf_event_header header; 6378 u64 time; 6379 u64 id; 6380 u64 stream_id; 6381 } throttle_event = { 6382 .header = { 6383 .type = PERF_RECORD_THROTTLE, 6384 .misc = 0, 6385 .size = sizeof(throttle_event), 6386 }, 6387 .time = perf_event_clock(event), 6388 .id = primary_event_id(event), 6389 .stream_id = event->id, 6390 }; 6391 6392 if (enable) 6393 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6394 6395 perf_event_header__init_id(&throttle_event.header, &sample, event); 6396 6397 ret = perf_output_begin(&handle, event, 6398 throttle_event.header.size); 6399 if (ret) 6400 return; 6401 6402 perf_output_put(&handle, throttle_event); 6403 perf_event__output_id_sample(event, &handle, &sample); 6404 perf_output_end(&handle); 6405 } 6406 6407 static void perf_log_itrace_start(struct perf_event *event) 6408 { 6409 struct perf_output_handle handle; 6410 struct perf_sample_data sample; 6411 struct perf_aux_event { 6412 struct perf_event_header header; 6413 u32 pid; 6414 u32 tid; 6415 } rec; 6416 int ret; 6417 6418 if (event->parent) 6419 event = event->parent; 6420 6421 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6422 event->hw.itrace_started) 6423 return; 6424 6425 rec.header.type = PERF_RECORD_ITRACE_START; 6426 rec.header.misc = 0; 6427 rec.header.size = sizeof(rec); 6428 rec.pid = perf_event_pid(event, current); 6429 rec.tid = perf_event_tid(event, current); 6430 6431 perf_event_header__init_id(&rec.header, &sample, event); 6432 ret = perf_output_begin(&handle, event, rec.header.size); 6433 6434 if (ret) 6435 return; 6436 6437 perf_output_put(&handle, rec); 6438 perf_event__output_id_sample(event, &handle, &sample); 6439 6440 perf_output_end(&handle); 6441 } 6442 6443 /* 6444 * Generic event overflow handling, sampling. 6445 */ 6446 6447 static int __perf_event_overflow(struct perf_event *event, 6448 int throttle, struct perf_sample_data *data, 6449 struct pt_regs *regs) 6450 { 6451 int events = atomic_read(&event->event_limit); 6452 struct hw_perf_event *hwc = &event->hw; 6453 u64 seq; 6454 int ret = 0; 6455 6456 /* 6457 * Non-sampling counters might still use the PMI to fold short 6458 * hardware counters, ignore those. 6459 */ 6460 if (unlikely(!is_sampling_event(event))) 6461 return 0; 6462 6463 seq = __this_cpu_read(perf_throttled_seq); 6464 if (seq != hwc->interrupts_seq) { 6465 hwc->interrupts_seq = seq; 6466 hwc->interrupts = 1; 6467 } else { 6468 hwc->interrupts++; 6469 if (unlikely(throttle 6470 && hwc->interrupts >= max_samples_per_tick)) { 6471 __this_cpu_inc(perf_throttled_count); 6472 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6473 hwc->interrupts = MAX_INTERRUPTS; 6474 perf_log_throttle(event, 0); 6475 ret = 1; 6476 } 6477 } 6478 6479 if (event->attr.freq) { 6480 u64 now = perf_clock(); 6481 s64 delta = now - hwc->freq_time_stamp; 6482 6483 hwc->freq_time_stamp = now; 6484 6485 if (delta > 0 && delta < 2*TICK_NSEC) 6486 perf_adjust_period(event, delta, hwc->last_period, true); 6487 } 6488 6489 /* 6490 * XXX event_limit might not quite work as expected on inherited 6491 * events 6492 */ 6493 6494 event->pending_kill = POLL_IN; 6495 if (events && atomic_dec_and_test(&event->event_limit)) { 6496 ret = 1; 6497 event->pending_kill = POLL_HUP; 6498 event->pending_disable = 1; 6499 irq_work_queue(&event->pending); 6500 } 6501 6502 if (event->overflow_handler) 6503 event->overflow_handler(event, data, regs); 6504 else 6505 perf_event_output(event, data, regs); 6506 6507 if (*perf_event_fasync(event) && event->pending_kill) { 6508 event->pending_wakeup = 1; 6509 irq_work_queue(&event->pending); 6510 } 6511 6512 return ret; 6513 } 6514 6515 int perf_event_overflow(struct perf_event *event, 6516 struct perf_sample_data *data, 6517 struct pt_regs *regs) 6518 { 6519 return __perf_event_overflow(event, 1, data, regs); 6520 } 6521 6522 /* 6523 * Generic software event infrastructure 6524 */ 6525 6526 struct swevent_htable { 6527 struct swevent_hlist *swevent_hlist; 6528 struct mutex hlist_mutex; 6529 int hlist_refcount; 6530 6531 /* Recursion avoidance in each contexts */ 6532 int recursion[PERF_NR_CONTEXTS]; 6533 }; 6534 6535 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6536 6537 /* 6538 * We directly increment event->count and keep a second value in 6539 * event->hw.period_left to count intervals. This period event 6540 * is kept in the range [-sample_period, 0] so that we can use the 6541 * sign as trigger. 6542 */ 6543 6544 u64 perf_swevent_set_period(struct perf_event *event) 6545 { 6546 struct hw_perf_event *hwc = &event->hw; 6547 u64 period = hwc->last_period; 6548 u64 nr, offset; 6549 s64 old, val; 6550 6551 hwc->last_period = hwc->sample_period; 6552 6553 again: 6554 old = val = local64_read(&hwc->period_left); 6555 if (val < 0) 6556 return 0; 6557 6558 nr = div64_u64(period + val, period); 6559 offset = nr * period; 6560 val -= offset; 6561 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6562 goto again; 6563 6564 return nr; 6565 } 6566 6567 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6568 struct perf_sample_data *data, 6569 struct pt_regs *regs) 6570 { 6571 struct hw_perf_event *hwc = &event->hw; 6572 int throttle = 0; 6573 6574 if (!overflow) 6575 overflow = perf_swevent_set_period(event); 6576 6577 if (hwc->interrupts == MAX_INTERRUPTS) 6578 return; 6579 6580 for (; overflow; overflow--) { 6581 if (__perf_event_overflow(event, throttle, 6582 data, regs)) { 6583 /* 6584 * We inhibit the overflow from happening when 6585 * hwc->interrupts == MAX_INTERRUPTS. 6586 */ 6587 break; 6588 } 6589 throttle = 1; 6590 } 6591 } 6592 6593 static void perf_swevent_event(struct perf_event *event, u64 nr, 6594 struct perf_sample_data *data, 6595 struct pt_regs *regs) 6596 { 6597 struct hw_perf_event *hwc = &event->hw; 6598 6599 local64_add(nr, &event->count); 6600 6601 if (!regs) 6602 return; 6603 6604 if (!is_sampling_event(event)) 6605 return; 6606 6607 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6608 data->period = nr; 6609 return perf_swevent_overflow(event, 1, data, regs); 6610 } else 6611 data->period = event->hw.last_period; 6612 6613 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6614 return perf_swevent_overflow(event, 1, data, regs); 6615 6616 if (local64_add_negative(nr, &hwc->period_left)) 6617 return; 6618 6619 perf_swevent_overflow(event, 0, data, regs); 6620 } 6621 6622 static int perf_exclude_event(struct perf_event *event, 6623 struct pt_regs *regs) 6624 { 6625 if (event->hw.state & PERF_HES_STOPPED) 6626 return 1; 6627 6628 if (regs) { 6629 if (event->attr.exclude_user && user_mode(regs)) 6630 return 1; 6631 6632 if (event->attr.exclude_kernel && !user_mode(regs)) 6633 return 1; 6634 } 6635 6636 return 0; 6637 } 6638 6639 static int perf_swevent_match(struct perf_event *event, 6640 enum perf_type_id type, 6641 u32 event_id, 6642 struct perf_sample_data *data, 6643 struct pt_regs *regs) 6644 { 6645 if (event->attr.type != type) 6646 return 0; 6647 6648 if (event->attr.config != event_id) 6649 return 0; 6650 6651 if (perf_exclude_event(event, regs)) 6652 return 0; 6653 6654 return 1; 6655 } 6656 6657 static inline u64 swevent_hash(u64 type, u32 event_id) 6658 { 6659 u64 val = event_id | (type << 32); 6660 6661 return hash_64(val, SWEVENT_HLIST_BITS); 6662 } 6663 6664 static inline struct hlist_head * 6665 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6666 { 6667 u64 hash = swevent_hash(type, event_id); 6668 6669 return &hlist->heads[hash]; 6670 } 6671 6672 /* For the read side: events when they trigger */ 6673 static inline struct hlist_head * 6674 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6675 { 6676 struct swevent_hlist *hlist; 6677 6678 hlist = rcu_dereference(swhash->swevent_hlist); 6679 if (!hlist) 6680 return NULL; 6681 6682 return __find_swevent_head(hlist, type, event_id); 6683 } 6684 6685 /* For the event head insertion and removal in the hlist */ 6686 static inline struct hlist_head * 6687 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6688 { 6689 struct swevent_hlist *hlist; 6690 u32 event_id = event->attr.config; 6691 u64 type = event->attr.type; 6692 6693 /* 6694 * Event scheduling is always serialized against hlist allocation 6695 * and release. Which makes the protected version suitable here. 6696 * The context lock guarantees that. 6697 */ 6698 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6699 lockdep_is_held(&event->ctx->lock)); 6700 if (!hlist) 6701 return NULL; 6702 6703 return __find_swevent_head(hlist, type, event_id); 6704 } 6705 6706 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6707 u64 nr, 6708 struct perf_sample_data *data, 6709 struct pt_regs *regs) 6710 { 6711 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6712 struct perf_event *event; 6713 struct hlist_head *head; 6714 6715 rcu_read_lock(); 6716 head = find_swevent_head_rcu(swhash, type, event_id); 6717 if (!head) 6718 goto end; 6719 6720 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6721 if (perf_swevent_match(event, type, event_id, data, regs)) 6722 perf_swevent_event(event, nr, data, regs); 6723 } 6724 end: 6725 rcu_read_unlock(); 6726 } 6727 6728 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6729 6730 int perf_swevent_get_recursion_context(void) 6731 { 6732 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6733 6734 return get_recursion_context(swhash->recursion); 6735 } 6736 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6737 6738 inline void perf_swevent_put_recursion_context(int rctx) 6739 { 6740 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6741 6742 put_recursion_context(swhash->recursion, rctx); 6743 } 6744 6745 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6746 { 6747 struct perf_sample_data data; 6748 6749 if (WARN_ON_ONCE(!regs)) 6750 return; 6751 6752 perf_sample_data_init(&data, addr, 0); 6753 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6754 } 6755 6756 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6757 { 6758 int rctx; 6759 6760 preempt_disable_notrace(); 6761 rctx = perf_swevent_get_recursion_context(); 6762 if (unlikely(rctx < 0)) 6763 goto fail; 6764 6765 ___perf_sw_event(event_id, nr, regs, addr); 6766 6767 perf_swevent_put_recursion_context(rctx); 6768 fail: 6769 preempt_enable_notrace(); 6770 } 6771 6772 static void perf_swevent_read(struct perf_event *event) 6773 { 6774 } 6775 6776 static int perf_swevent_add(struct perf_event *event, int flags) 6777 { 6778 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6779 struct hw_perf_event *hwc = &event->hw; 6780 struct hlist_head *head; 6781 6782 if (is_sampling_event(event)) { 6783 hwc->last_period = hwc->sample_period; 6784 perf_swevent_set_period(event); 6785 } 6786 6787 hwc->state = !(flags & PERF_EF_START); 6788 6789 head = find_swevent_head(swhash, event); 6790 if (WARN_ON_ONCE(!head)) 6791 return -EINVAL; 6792 6793 hlist_add_head_rcu(&event->hlist_entry, head); 6794 perf_event_update_userpage(event); 6795 6796 return 0; 6797 } 6798 6799 static void perf_swevent_del(struct perf_event *event, int flags) 6800 { 6801 hlist_del_rcu(&event->hlist_entry); 6802 } 6803 6804 static void perf_swevent_start(struct perf_event *event, int flags) 6805 { 6806 event->hw.state = 0; 6807 } 6808 6809 static void perf_swevent_stop(struct perf_event *event, int flags) 6810 { 6811 event->hw.state = PERF_HES_STOPPED; 6812 } 6813 6814 /* Deref the hlist from the update side */ 6815 static inline struct swevent_hlist * 6816 swevent_hlist_deref(struct swevent_htable *swhash) 6817 { 6818 return rcu_dereference_protected(swhash->swevent_hlist, 6819 lockdep_is_held(&swhash->hlist_mutex)); 6820 } 6821 6822 static void swevent_hlist_release(struct swevent_htable *swhash) 6823 { 6824 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6825 6826 if (!hlist) 6827 return; 6828 6829 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6830 kfree_rcu(hlist, rcu_head); 6831 } 6832 6833 static void swevent_hlist_put_cpu(int cpu) 6834 { 6835 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6836 6837 mutex_lock(&swhash->hlist_mutex); 6838 6839 if (!--swhash->hlist_refcount) 6840 swevent_hlist_release(swhash); 6841 6842 mutex_unlock(&swhash->hlist_mutex); 6843 } 6844 6845 static void swevent_hlist_put(void) 6846 { 6847 int cpu; 6848 6849 for_each_possible_cpu(cpu) 6850 swevent_hlist_put_cpu(cpu); 6851 } 6852 6853 static int swevent_hlist_get_cpu(int cpu) 6854 { 6855 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6856 int err = 0; 6857 6858 mutex_lock(&swhash->hlist_mutex); 6859 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6860 struct swevent_hlist *hlist; 6861 6862 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6863 if (!hlist) { 6864 err = -ENOMEM; 6865 goto exit; 6866 } 6867 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6868 } 6869 swhash->hlist_refcount++; 6870 exit: 6871 mutex_unlock(&swhash->hlist_mutex); 6872 6873 return err; 6874 } 6875 6876 static int swevent_hlist_get(void) 6877 { 6878 int err, cpu, failed_cpu; 6879 6880 get_online_cpus(); 6881 for_each_possible_cpu(cpu) { 6882 err = swevent_hlist_get_cpu(cpu); 6883 if (err) { 6884 failed_cpu = cpu; 6885 goto fail; 6886 } 6887 } 6888 put_online_cpus(); 6889 6890 return 0; 6891 fail: 6892 for_each_possible_cpu(cpu) { 6893 if (cpu == failed_cpu) 6894 break; 6895 swevent_hlist_put_cpu(cpu); 6896 } 6897 6898 put_online_cpus(); 6899 return err; 6900 } 6901 6902 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6903 6904 static void sw_perf_event_destroy(struct perf_event *event) 6905 { 6906 u64 event_id = event->attr.config; 6907 6908 WARN_ON(event->parent); 6909 6910 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6911 swevent_hlist_put(); 6912 } 6913 6914 static int perf_swevent_init(struct perf_event *event) 6915 { 6916 u64 event_id = event->attr.config; 6917 6918 if (event->attr.type != PERF_TYPE_SOFTWARE) 6919 return -ENOENT; 6920 6921 /* 6922 * no branch sampling for software events 6923 */ 6924 if (has_branch_stack(event)) 6925 return -EOPNOTSUPP; 6926 6927 switch (event_id) { 6928 case PERF_COUNT_SW_CPU_CLOCK: 6929 case PERF_COUNT_SW_TASK_CLOCK: 6930 return -ENOENT; 6931 6932 default: 6933 break; 6934 } 6935 6936 if (event_id >= PERF_COUNT_SW_MAX) 6937 return -ENOENT; 6938 6939 if (!event->parent) { 6940 int err; 6941 6942 err = swevent_hlist_get(); 6943 if (err) 6944 return err; 6945 6946 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6947 event->destroy = sw_perf_event_destroy; 6948 } 6949 6950 return 0; 6951 } 6952 6953 static struct pmu perf_swevent = { 6954 .task_ctx_nr = perf_sw_context, 6955 6956 .capabilities = PERF_PMU_CAP_NO_NMI, 6957 6958 .event_init = perf_swevent_init, 6959 .add = perf_swevent_add, 6960 .del = perf_swevent_del, 6961 .start = perf_swevent_start, 6962 .stop = perf_swevent_stop, 6963 .read = perf_swevent_read, 6964 }; 6965 6966 #ifdef CONFIG_EVENT_TRACING 6967 6968 static int perf_tp_filter_match(struct perf_event *event, 6969 struct perf_sample_data *data) 6970 { 6971 void *record = data->raw->data; 6972 6973 /* only top level events have filters set */ 6974 if (event->parent) 6975 event = event->parent; 6976 6977 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6978 return 1; 6979 return 0; 6980 } 6981 6982 static int perf_tp_event_match(struct perf_event *event, 6983 struct perf_sample_data *data, 6984 struct pt_regs *regs) 6985 { 6986 if (event->hw.state & PERF_HES_STOPPED) 6987 return 0; 6988 /* 6989 * All tracepoints are from kernel-space. 6990 */ 6991 if (event->attr.exclude_kernel) 6992 return 0; 6993 6994 if (!perf_tp_filter_match(event, data)) 6995 return 0; 6996 6997 return 1; 6998 } 6999 7000 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 7001 struct pt_regs *regs, struct hlist_head *head, int rctx, 7002 struct task_struct *task) 7003 { 7004 struct perf_sample_data data; 7005 struct perf_event *event; 7006 7007 struct perf_raw_record raw = { 7008 .size = entry_size, 7009 .data = record, 7010 }; 7011 7012 perf_sample_data_init(&data, addr, 0); 7013 data.raw = &raw; 7014 7015 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7016 if (perf_tp_event_match(event, &data, regs)) 7017 perf_swevent_event(event, count, &data, regs); 7018 } 7019 7020 /* 7021 * If we got specified a target task, also iterate its context and 7022 * deliver this event there too. 7023 */ 7024 if (task && task != current) { 7025 struct perf_event_context *ctx; 7026 struct trace_entry *entry = record; 7027 7028 rcu_read_lock(); 7029 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7030 if (!ctx) 7031 goto unlock; 7032 7033 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7034 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7035 continue; 7036 if (event->attr.config != entry->type) 7037 continue; 7038 if (perf_tp_event_match(event, &data, regs)) 7039 perf_swevent_event(event, count, &data, regs); 7040 } 7041 unlock: 7042 rcu_read_unlock(); 7043 } 7044 7045 perf_swevent_put_recursion_context(rctx); 7046 } 7047 EXPORT_SYMBOL_GPL(perf_tp_event); 7048 7049 static void tp_perf_event_destroy(struct perf_event *event) 7050 { 7051 perf_trace_destroy(event); 7052 } 7053 7054 static int perf_tp_event_init(struct perf_event *event) 7055 { 7056 int err; 7057 7058 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7059 return -ENOENT; 7060 7061 /* 7062 * no branch sampling for tracepoint events 7063 */ 7064 if (has_branch_stack(event)) 7065 return -EOPNOTSUPP; 7066 7067 err = perf_trace_init(event); 7068 if (err) 7069 return err; 7070 7071 event->destroy = tp_perf_event_destroy; 7072 7073 return 0; 7074 } 7075 7076 static struct pmu perf_tracepoint = { 7077 .task_ctx_nr = perf_sw_context, 7078 7079 .event_init = perf_tp_event_init, 7080 .add = perf_trace_add, 7081 .del = perf_trace_del, 7082 .start = perf_swevent_start, 7083 .stop = perf_swevent_stop, 7084 .read = perf_swevent_read, 7085 }; 7086 7087 static inline void perf_tp_register(void) 7088 { 7089 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7090 } 7091 7092 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7093 { 7094 char *filter_str; 7095 int ret; 7096 7097 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7098 return -EINVAL; 7099 7100 filter_str = strndup_user(arg, PAGE_SIZE); 7101 if (IS_ERR(filter_str)) 7102 return PTR_ERR(filter_str); 7103 7104 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7105 7106 kfree(filter_str); 7107 return ret; 7108 } 7109 7110 static void perf_event_free_filter(struct perf_event *event) 7111 { 7112 ftrace_profile_free_filter(event); 7113 } 7114 7115 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7116 { 7117 struct bpf_prog *prog; 7118 7119 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7120 return -EINVAL; 7121 7122 if (event->tp_event->prog) 7123 return -EEXIST; 7124 7125 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7126 /* bpf programs can only be attached to u/kprobes */ 7127 return -EINVAL; 7128 7129 prog = bpf_prog_get(prog_fd); 7130 if (IS_ERR(prog)) 7131 return PTR_ERR(prog); 7132 7133 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7134 /* valid fd, but invalid bpf program type */ 7135 bpf_prog_put(prog); 7136 return -EINVAL; 7137 } 7138 7139 event->tp_event->prog = prog; 7140 7141 return 0; 7142 } 7143 7144 static void perf_event_free_bpf_prog(struct perf_event *event) 7145 { 7146 struct bpf_prog *prog; 7147 7148 if (!event->tp_event) 7149 return; 7150 7151 prog = event->tp_event->prog; 7152 if (prog) { 7153 event->tp_event->prog = NULL; 7154 bpf_prog_put(prog); 7155 } 7156 } 7157 7158 #else 7159 7160 static inline void perf_tp_register(void) 7161 { 7162 } 7163 7164 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7165 { 7166 return -ENOENT; 7167 } 7168 7169 static void perf_event_free_filter(struct perf_event *event) 7170 { 7171 } 7172 7173 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7174 { 7175 return -ENOENT; 7176 } 7177 7178 static void perf_event_free_bpf_prog(struct perf_event *event) 7179 { 7180 } 7181 #endif /* CONFIG_EVENT_TRACING */ 7182 7183 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7184 void perf_bp_event(struct perf_event *bp, void *data) 7185 { 7186 struct perf_sample_data sample; 7187 struct pt_regs *regs = data; 7188 7189 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7190 7191 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7192 perf_swevent_event(bp, 1, &sample, regs); 7193 } 7194 #endif 7195 7196 /* 7197 * hrtimer based swevent callback 7198 */ 7199 7200 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7201 { 7202 enum hrtimer_restart ret = HRTIMER_RESTART; 7203 struct perf_sample_data data; 7204 struct pt_regs *regs; 7205 struct perf_event *event; 7206 u64 period; 7207 7208 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7209 7210 if (event->state != PERF_EVENT_STATE_ACTIVE) 7211 return HRTIMER_NORESTART; 7212 7213 event->pmu->read(event); 7214 7215 perf_sample_data_init(&data, 0, event->hw.last_period); 7216 regs = get_irq_regs(); 7217 7218 if (regs && !perf_exclude_event(event, regs)) { 7219 if (!(event->attr.exclude_idle && is_idle_task(current))) 7220 if (__perf_event_overflow(event, 1, &data, regs)) 7221 ret = HRTIMER_NORESTART; 7222 } 7223 7224 period = max_t(u64, 10000, event->hw.sample_period); 7225 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7226 7227 return ret; 7228 } 7229 7230 static void perf_swevent_start_hrtimer(struct perf_event *event) 7231 { 7232 struct hw_perf_event *hwc = &event->hw; 7233 s64 period; 7234 7235 if (!is_sampling_event(event)) 7236 return; 7237 7238 period = local64_read(&hwc->period_left); 7239 if (period) { 7240 if (period < 0) 7241 period = 10000; 7242 7243 local64_set(&hwc->period_left, 0); 7244 } else { 7245 period = max_t(u64, 10000, hwc->sample_period); 7246 } 7247 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7248 HRTIMER_MODE_REL_PINNED); 7249 } 7250 7251 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7252 { 7253 struct hw_perf_event *hwc = &event->hw; 7254 7255 if (is_sampling_event(event)) { 7256 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7257 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7258 7259 hrtimer_cancel(&hwc->hrtimer); 7260 } 7261 } 7262 7263 static void perf_swevent_init_hrtimer(struct perf_event *event) 7264 { 7265 struct hw_perf_event *hwc = &event->hw; 7266 7267 if (!is_sampling_event(event)) 7268 return; 7269 7270 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7271 hwc->hrtimer.function = perf_swevent_hrtimer; 7272 7273 /* 7274 * Since hrtimers have a fixed rate, we can do a static freq->period 7275 * mapping and avoid the whole period adjust feedback stuff. 7276 */ 7277 if (event->attr.freq) { 7278 long freq = event->attr.sample_freq; 7279 7280 event->attr.sample_period = NSEC_PER_SEC / freq; 7281 hwc->sample_period = event->attr.sample_period; 7282 local64_set(&hwc->period_left, hwc->sample_period); 7283 hwc->last_period = hwc->sample_period; 7284 event->attr.freq = 0; 7285 } 7286 } 7287 7288 /* 7289 * Software event: cpu wall time clock 7290 */ 7291 7292 static void cpu_clock_event_update(struct perf_event *event) 7293 { 7294 s64 prev; 7295 u64 now; 7296 7297 now = local_clock(); 7298 prev = local64_xchg(&event->hw.prev_count, now); 7299 local64_add(now - prev, &event->count); 7300 } 7301 7302 static void cpu_clock_event_start(struct perf_event *event, int flags) 7303 { 7304 local64_set(&event->hw.prev_count, local_clock()); 7305 perf_swevent_start_hrtimer(event); 7306 } 7307 7308 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7309 { 7310 perf_swevent_cancel_hrtimer(event); 7311 cpu_clock_event_update(event); 7312 } 7313 7314 static int cpu_clock_event_add(struct perf_event *event, int flags) 7315 { 7316 if (flags & PERF_EF_START) 7317 cpu_clock_event_start(event, flags); 7318 perf_event_update_userpage(event); 7319 7320 return 0; 7321 } 7322 7323 static void cpu_clock_event_del(struct perf_event *event, int flags) 7324 { 7325 cpu_clock_event_stop(event, flags); 7326 } 7327 7328 static void cpu_clock_event_read(struct perf_event *event) 7329 { 7330 cpu_clock_event_update(event); 7331 } 7332 7333 static int cpu_clock_event_init(struct perf_event *event) 7334 { 7335 if (event->attr.type != PERF_TYPE_SOFTWARE) 7336 return -ENOENT; 7337 7338 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7339 return -ENOENT; 7340 7341 /* 7342 * no branch sampling for software events 7343 */ 7344 if (has_branch_stack(event)) 7345 return -EOPNOTSUPP; 7346 7347 perf_swevent_init_hrtimer(event); 7348 7349 return 0; 7350 } 7351 7352 static struct pmu perf_cpu_clock = { 7353 .task_ctx_nr = perf_sw_context, 7354 7355 .capabilities = PERF_PMU_CAP_NO_NMI, 7356 7357 .event_init = cpu_clock_event_init, 7358 .add = cpu_clock_event_add, 7359 .del = cpu_clock_event_del, 7360 .start = cpu_clock_event_start, 7361 .stop = cpu_clock_event_stop, 7362 .read = cpu_clock_event_read, 7363 }; 7364 7365 /* 7366 * Software event: task time clock 7367 */ 7368 7369 static void task_clock_event_update(struct perf_event *event, u64 now) 7370 { 7371 u64 prev; 7372 s64 delta; 7373 7374 prev = local64_xchg(&event->hw.prev_count, now); 7375 delta = now - prev; 7376 local64_add(delta, &event->count); 7377 } 7378 7379 static void task_clock_event_start(struct perf_event *event, int flags) 7380 { 7381 local64_set(&event->hw.prev_count, event->ctx->time); 7382 perf_swevent_start_hrtimer(event); 7383 } 7384 7385 static void task_clock_event_stop(struct perf_event *event, int flags) 7386 { 7387 perf_swevent_cancel_hrtimer(event); 7388 task_clock_event_update(event, event->ctx->time); 7389 } 7390 7391 static int task_clock_event_add(struct perf_event *event, int flags) 7392 { 7393 if (flags & PERF_EF_START) 7394 task_clock_event_start(event, flags); 7395 perf_event_update_userpage(event); 7396 7397 return 0; 7398 } 7399 7400 static void task_clock_event_del(struct perf_event *event, int flags) 7401 { 7402 task_clock_event_stop(event, PERF_EF_UPDATE); 7403 } 7404 7405 static void task_clock_event_read(struct perf_event *event) 7406 { 7407 u64 now = perf_clock(); 7408 u64 delta = now - event->ctx->timestamp; 7409 u64 time = event->ctx->time + delta; 7410 7411 task_clock_event_update(event, time); 7412 } 7413 7414 static int task_clock_event_init(struct perf_event *event) 7415 { 7416 if (event->attr.type != PERF_TYPE_SOFTWARE) 7417 return -ENOENT; 7418 7419 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7420 return -ENOENT; 7421 7422 /* 7423 * no branch sampling for software events 7424 */ 7425 if (has_branch_stack(event)) 7426 return -EOPNOTSUPP; 7427 7428 perf_swevent_init_hrtimer(event); 7429 7430 return 0; 7431 } 7432 7433 static struct pmu perf_task_clock = { 7434 .task_ctx_nr = perf_sw_context, 7435 7436 .capabilities = PERF_PMU_CAP_NO_NMI, 7437 7438 .event_init = task_clock_event_init, 7439 .add = task_clock_event_add, 7440 .del = task_clock_event_del, 7441 .start = task_clock_event_start, 7442 .stop = task_clock_event_stop, 7443 .read = task_clock_event_read, 7444 }; 7445 7446 static void perf_pmu_nop_void(struct pmu *pmu) 7447 { 7448 } 7449 7450 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7451 { 7452 } 7453 7454 static int perf_pmu_nop_int(struct pmu *pmu) 7455 { 7456 return 0; 7457 } 7458 7459 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7460 7461 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7462 { 7463 __this_cpu_write(nop_txn_flags, flags); 7464 7465 if (flags & ~PERF_PMU_TXN_ADD) 7466 return; 7467 7468 perf_pmu_disable(pmu); 7469 } 7470 7471 static int perf_pmu_commit_txn(struct pmu *pmu) 7472 { 7473 unsigned int flags = __this_cpu_read(nop_txn_flags); 7474 7475 __this_cpu_write(nop_txn_flags, 0); 7476 7477 if (flags & ~PERF_PMU_TXN_ADD) 7478 return 0; 7479 7480 perf_pmu_enable(pmu); 7481 return 0; 7482 } 7483 7484 static void perf_pmu_cancel_txn(struct pmu *pmu) 7485 { 7486 unsigned int flags = __this_cpu_read(nop_txn_flags); 7487 7488 __this_cpu_write(nop_txn_flags, 0); 7489 7490 if (flags & ~PERF_PMU_TXN_ADD) 7491 return; 7492 7493 perf_pmu_enable(pmu); 7494 } 7495 7496 static int perf_event_idx_default(struct perf_event *event) 7497 { 7498 return 0; 7499 } 7500 7501 /* 7502 * Ensures all contexts with the same task_ctx_nr have the same 7503 * pmu_cpu_context too. 7504 */ 7505 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7506 { 7507 struct pmu *pmu; 7508 7509 if (ctxn < 0) 7510 return NULL; 7511 7512 list_for_each_entry(pmu, &pmus, entry) { 7513 if (pmu->task_ctx_nr == ctxn) 7514 return pmu->pmu_cpu_context; 7515 } 7516 7517 return NULL; 7518 } 7519 7520 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7521 { 7522 int cpu; 7523 7524 for_each_possible_cpu(cpu) { 7525 struct perf_cpu_context *cpuctx; 7526 7527 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7528 7529 if (cpuctx->unique_pmu == old_pmu) 7530 cpuctx->unique_pmu = pmu; 7531 } 7532 } 7533 7534 static void free_pmu_context(struct pmu *pmu) 7535 { 7536 struct pmu *i; 7537 7538 mutex_lock(&pmus_lock); 7539 /* 7540 * Like a real lame refcount. 7541 */ 7542 list_for_each_entry(i, &pmus, entry) { 7543 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7544 update_pmu_context(i, pmu); 7545 goto out; 7546 } 7547 } 7548 7549 free_percpu(pmu->pmu_cpu_context); 7550 out: 7551 mutex_unlock(&pmus_lock); 7552 } 7553 static struct idr pmu_idr; 7554 7555 static ssize_t 7556 type_show(struct device *dev, struct device_attribute *attr, char *page) 7557 { 7558 struct pmu *pmu = dev_get_drvdata(dev); 7559 7560 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7561 } 7562 static DEVICE_ATTR_RO(type); 7563 7564 static ssize_t 7565 perf_event_mux_interval_ms_show(struct device *dev, 7566 struct device_attribute *attr, 7567 char *page) 7568 { 7569 struct pmu *pmu = dev_get_drvdata(dev); 7570 7571 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7572 } 7573 7574 static DEFINE_MUTEX(mux_interval_mutex); 7575 7576 static ssize_t 7577 perf_event_mux_interval_ms_store(struct device *dev, 7578 struct device_attribute *attr, 7579 const char *buf, size_t count) 7580 { 7581 struct pmu *pmu = dev_get_drvdata(dev); 7582 int timer, cpu, ret; 7583 7584 ret = kstrtoint(buf, 0, &timer); 7585 if (ret) 7586 return ret; 7587 7588 if (timer < 1) 7589 return -EINVAL; 7590 7591 /* same value, noting to do */ 7592 if (timer == pmu->hrtimer_interval_ms) 7593 return count; 7594 7595 mutex_lock(&mux_interval_mutex); 7596 pmu->hrtimer_interval_ms = timer; 7597 7598 /* update all cpuctx for this PMU */ 7599 get_online_cpus(); 7600 for_each_online_cpu(cpu) { 7601 struct perf_cpu_context *cpuctx; 7602 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7603 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7604 7605 cpu_function_call(cpu, 7606 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7607 } 7608 put_online_cpus(); 7609 mutex_unlock(&mux_interval_mutex); 7610 7611 return count; 7612 } 7613 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7614 7615 static struct attribute *pmu_dev_attrs[] = { 7616 &dev_attr_type.attr, 7617 &dev_attr_perf_event_mux_interval_ms.attr, 7618 NULL, 7619 }; 7620 ATTRIBUTE_GROUPS(pmu_dev); 7621 7622 static int pmu_bus_running; 7623 static struct bus_type pmu_bus = { 7624 .name = "event_source", 7625 .dev_groups = pmu_dev_groups, 7626 }; 7627 7628 static void pmu_dev_release(struct device *dev) 7629 { 7630 kfree(dev); 7631 } 7632 7633 static int pmu_dev_alloc(struct pmu *pmu) 7634 { 7635 int ret = -ENOMEM; 7636 7637 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7638 if (!pmu->dev) 7639 goto out; 7640 7641 pmu->dev->groups = pmu->attr_groups; 7642 device_initialize(pmu->dev); 7643 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7644 if (ret) 7645 goto free_dev; 7646 7647 dev_set_drvdata(pmu->dev, pmu); 7648 pmu->dev->bus = &pmu_bus; 7649 pmu->dev->release = pmu_dev_release; 7650 ret = device_add(pmu->dev); 7651 if (ret) 7652 goto free_dev; 7653 7654 out: 7655 return ret; 7656 7657 free_dev: 7658 put_device(pmu->dev); 7659 goto out; 7660 } 7661 7662 static struct lock_class_key cpuctx_mutex; 7663 static struct lock_class_key cpuctx_lock; 7664 7665 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7666 { 7667 int cpu, ret; 7668 7669 mutex_lock(&pmus_lock); 7670 ret = -ENOMEM; 7671 pmu->pmu_disable_count = alloc_percpu(int); 7672 if (!pmu->pmu_disable_count) 7673 goto unlock; 7674 7675 pmu->type = -1; 7676 if (!name) 7677 goto skip_type; 7678 pmu->name = name; 7679 7680 if (type < 0) { 7681 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7682 if (type < 0) { 7683 ret = type; 7684 goto free_pdc; 7685 } 7686 } 7687 pmu->type = type; 7688 7689 if (pmu_bus_running) { 7690 ret = pmu_dev_alloc(pmu); 7691 if (ret) 7692 goto free_idr; 7693 } 7694 7695 skip_type: 7696 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7697 if (pmu->pmu_cpu_context) 7698 goto got_cpu_context; 7699 7700 ret = -ENOMEM; 7701 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7702 if (!pmu->pmu_cpu_context) 7703 goto free_dev; 7704 7705 for_each_possible_cpu(cpu) { 7706 struct perf_cpu_context *cpuctx; 7707 7708 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7709 __perf_event_init_context(&cpuctx->ctx); 7710 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7711 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7712 cpuctx->ctx.pmu = pmu; 7713 7714 __perf_mux_hrtimer_init(cpuctx, cpu); 7715 7716 cpuctx->unique_pmu = pmu; 7717 } 7718 7719 got_cpu_context: 7720 if (!pmu->start_txn) { 7721 if (pmu->pmu_enable) { 7722 /* 7723 * If we have pmu_enable/pmu_disable calls, install 7724 * transaction stubs that use that to try and batch 7725 * hardware accesses. 7726 */ 7727 pmu->start_txn = perf_pmu_start_txn; 7728 pmu->commit_txn = perf_pmu_commit_txn; 7729 pmu->cancel_txn = perf_pmu_cancel_txn; 7730 } else { 7731 pmu->start_txn = perf_pmu_nop_txn; 7732 pmu->commit_txn = perf_pmu_nop_int; 7733 pmu->cancel_txn = perf_pmu_nop_void; 7734 } 7735 } 7736 7737 if (!pmu->pmu_enable) { 7738 pmu->pmu_enable = perf_pmu_nop_void; 7739 pmu->pmu_disable = perf_pmu_nop_void; 7740 } 7741 7742 if (!pmu->event_idx) 7743 pmu->event_idx = perf_event_idx_default; 7744 7745 list_add_rcu(&pmu->entry, &pmus); 7746 atomic_set(&pmu->exclusive_cnt, 0); 7747 ret = 0; 7748 unlock: 7749 mutex_unlock(&pmus_lock); 7750 7751 return ret; 7752 7753 free_dev: 7754 device_del(pmu->dev); 7755 put_device(pmu->dev); 7756 7757 free_idr: 7758 if (pmu->type >= PERF_TYPE_MAX) 7759 idr_remove(&pmu_idr, pmu->type); 7760 7761 free_pdc: 7762 free_percpu(pmu->pmu_disable_count); 7763 goto unlock; 7764 } 7765 EXPORT_SYMBOL_GPL(perf_pmu_register); 7766 7767 void perf_pmu_unregister(struct pmu *pmu) 7768 { 7769 mutex_lock(&pmus_lock); 7770 list_del_rcu(&pmu->entry); 7771 mutex_unlock(&pmus_lock); 7772 7773 /* 7774 * We dereference the pmu list under both SRCU and regular RCU, so 7775 * synchronize against both of those. 7776 */ 7777 synchronize_srcu(&pmus_srcu); 7778 synchronize_rcu(); 7779 7780 free_percpu(pmu->pmu_disable_count); 7781 if (pmu->type >= PERF_TYPE_MAX) 7782 idr_remove(&pmu_idr, pmu->type); 7783 device_del(pmu->dev); 7784 put_device(pmu->dev); 7785 free_pmu_context(pmu); 7786 } 7787 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7788 7789 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7790 { 7791 struct perf_event_context *ctx = NULL; 7792 int ret; 7793 7794 if (!try_module_get(pmu->module)) 7795 return -ENODEV; 7796 7797 if (event->group_leader != event) { 7798 /* 7799 * This ctx->mutex can nest when we're called through 7800 * inheritance. See the perf_event_ctx_lock_nested() comment. 7801 */ 7802 ctx = perf_event_ctx_lock_nested(event->group_leader, 7803 SINGLE_DEPTH_NESTING); 7804 BUG_ON(!ctx); 7805 } 7806 7807 event->pmu = pmu; 7808 ret = pmu->event_init(event); 7809 7810 if (ctx) 7811 perf_event_ctx_unlock(event->group_leader, ctx); 7812 7813 if (ret) 7814 module_put(pmu->module); 7815 7816 return ret; 7817 } 7818 7819 static struct pmu *perf_init_event(struct perf_event *event) 7820 { 7821 struct pmu *pmu = NULL; 7822 int idx; 7823 int ret; 7824 7825 idx = srcu_read_lock(&pmus_srcu); 7826 7827 rcu_read_lock(); 7828 pmu = idr_find(&pmu_idr, event->attr.type); 7829 rcu_read_unlock(); 7830 if (pmu) { 7831 ret = perf_try_init_event(pmu, event); 7832 if (ret) 7833 pmu = ERR_PTR(ret); 7834 goto unlock; 7835 } 7836 7837 list_for_each_entry_rcu(pmu, &pmus, entry) { 7838 ret = perf_try_init_event(pmu, event); 7839 if (!ret) 7840 goto unlock; 7841 7842 if (ret != -ENOENT) { 7843 pmu = ERR_PTR(ret); 7844 goto unlock; 7845 } 7846 } 7847 pmu = ERR_PTR(-ENOENT); 7848 unlock: 7849 srcu_read_unlock(&pmus_srcu, idx); 7850 7851 return pmu; 7852 } 7853 7854 static void account_event_cpu(struct perf_event *event, int cpu) 7855 { 7856 if (event->parent) 7857 return; 7858 7859 if (is_cgroup_event(event)) 7860 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7861 } 7862 7863 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 7864 static void account_freq_event_nohz(void) 7865 { 7866 #ifdef CONFIG_NO_HZ_FULL 7867 /* Lock so we don't race with concurrent unaccount */ 7868 spin_lock(&nr_freq_lock); 7869 if (atomic_inc_return(&nr_freq_events) == 1) 7870 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 7871 spin_unlock(&nr_freq_lock); 7872 #endif 7873 } 7874 7875 static void account_freq_event(void) 7876 { 7877 if (tick_nohz_full_enabled()) 7878 account_freq_event_nohz(); 7879 else 7880 atomic_inc(&nr_freq_events); 7881 } 7882 7883 7884 static void account_event(struct perf_event *event) 7885 { 7886 bool inc = false; 7887 7888 if (event->parent) 7889 return; 7890 7891 if (event->attach_state & PERF_ATTACH_TASK) 7892 inc = true; 7893 if (event->attr.mmap || event->attr.mmap_data) 7894 atomic_inc(&nr_mmap_events); 7895 if (event->attr.comm) 7896 atomic_inc(&nr_comm_events); 7897 if (event->attr.task) 7898 atomic_inc(&nr_task_events); 7899 if (event->attr.freq) 7900 account_freq_event(); 7901 if (event->attr.context_switch) { 7902 atomic_inc(&nr_switch_events); 7903 inc = true; 7904 } 7905 if (has_branch_stack(event)) 7906 inc = true; 7907 if (is_cgroup_event(event)) 7908 inc = true; 7909 7910 if (inc) { 7911 if (atomic_inc_not_zero(&perf_sched_count)) 7912 goto enabled; 7913 7914 mutex_lock(&perf_sched_mutex); 7915 if (!atomic_read(&perf_sched_count)) { 7916 static_branch_enable(&perf_sched_events); 7917 /* 7918 * Guarantee that all CPUs observe they key change and 7919 * call the perf scheduling hooks before proceeding to 7920 * install events that need them. 7921 */ 7922 synchronize_sched(); 7923 } 7924 /* 7925 * Now that we have waited for the sync_sched(), allow further 7926 * increments to by-pass the mutex. 7927 */ 7928 atomic_inc(&perf_sched_count); 7929 mutex_unlock(&perf_sched_mutex); 7930 } 7931 enabled: 7932 7933 account_event_cpu(event, event->cpu); 7934 } 7935 7936 /* 7937 * Allocate and initialize a event structure 7938 */ 7939 static struct perf_event * 7940 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7941 struct task_struct *task, 7942 struct perf_event *group_leader, 7943 struct perf_event *parent_event, 7944 perf_overflow_handler_t overflow_handler, 7945 void *context, int cgroup_fd) 7946 { 7947 struct pmu *pmu; 7948 struct perf_event *event; 7949 struct hw_perf_event *hwc; 7950 long err = -EINVAL; 7951 7952 if ((unsigned)cpu >= nr_cpu_ids) { 7953 if (!task || cpu != -1) 7954 return ERR_PTR(-EINVAL); 7955 } 7956 7957 event = kzalloc(sizeof(*event), GFP_KERNEL); 7958 if (!event) 7959 return ERR_PTR(-ENOMEM); 7960 7961 /* 7962 * Single events are their own group leaders, with an 7963 * empty sibling list: 7964 */ 7965 if (!group_leader) 7966 group_leader = event; 7967 7968 mutex_init(&event->child_mutex); 7969 INIT_LIST_HEAD(&event->child_list); 7970 7971 INIT_LIST_HEAD(&event->group_entry); 7972 INIT_LIST_HEAD(&event->event_entry); 7973 INIT_LIST_HEAD(&event->sibling_list); 7974 INIT_LIST_HEAD(&event->rb_entry); 7975 INIT_LIST_HEAD(&event->active_entry); 7976 INIT_HLIST_NODE(&event->hlist_entry); 7977 7978 7979 init_waitqueue_head(&event->waitq); 7980 init_irq_work(&event->pending, perf_pending_event); 7981 7982 mutex_init(&event->mmap_mutex); 7983 7984 atomic_long_set(&event->refcount, 1); 7985 event->cpu = cpu; 7986 event->attr = *attr; 7987 event->group_leader = group_leader; 7988 event->pmu = NULL; 7989 event->oncpu = -1; 7990 7991 event->parent = parent_event; 7992 7993 event->ns = get_pid_ns(task_active_pid_ns(current)); 7994 event->id = atomic64_inc_return(&perf_event_id); 7995 7996 event->state = PERF_EVENT_STATE_INACTIVE; 7997 7998 if (task) { 7999 event->attach_state = PERF_ATTACH_TASK; 8000 /* 8001 * XXX pmu::event_init needs to know what task to account to 8002 * and we cannot use the ctx information because we need the 8003 * pmu before we get a ctx. 8004 */ 8005 event->hw.target = task; 8006 } 8007 8008 event->clock = &local_clock; 8009 if (parent_event) 8010 event->clock = parent_event->clock; 8011 8012 if (!overflow_handler && parent_event) { 8013 overflow_handler = parent_event->overflow_handler; 8014 context = parent_event->overflow_handler_context; 8015 } 8016 8017 event->overflow_handler = overflow_handler; 8018 event->overflow_handler_context = context; 8019 8020 perf_event__state_init(event); 8021 8022 pmu = NULL; 8023 8024 hwc = &event->hw; 8025 hwc->sample_period = attr->sample_period; 8026 if (attr->freq && attr->sample_freq) 8027 hwc->sample_period = 1; 8028 hwc->last_period = hwc->sample_period; 8029 8030 local64_set(&hwc->period_left, hwc->sample_period); 8031 8032 /* 8033 * we currently do not support PERF_FORMAT_GROUP on inherited events 8034 */ 8035 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8036 goto err_ns; 8037 8038 if (!has_branch_stack(event)) 8039 event->attr.branch_sample_type = 0; 8040 8041 if (cgroup_fd != -1) { 8042 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8043 if (err) 8044 goto err_ns; 8045 } 8046 8047 pmu = perf_init_event(event); 8048 if (!pmu) 8049 goto err_ns; 8050 else if (IS_ERR(pmu)) { 8051 err = PTR_ERR(pmu); 8052 goto err_ns; 8053 } 8054 8055 err = exclusive_event_init(event); 8056 if (err) 8057 goto err_pmu; 8058 8059 if (!event->parent) { 8060 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8061 err = get_callchain_buffers(); 8062 if (err) 8063 goto err_per_task; 8064 } 8065 } 8066 8067 /* symmetric to unaccount_event() in _free_event() */ 8068 account_event(event); 8069 8070 return event; 8071 8072 err_per_task: 8073 exclusive_event_destroy(event); 8074 8075 err_pmu: 8076 if (event->destroy) 8077 event->destroy(event); 8078 module_put(pmu->module); 8079 err_ns: 8080 if (is_cgroup_event(event)) 8081 perf_detach_cgroup(event); 8082 if (event->ns) 8083 put_pid_ns(event->ns); 8084 kfree(event); 8085 8086 return ERR_PTR(err); 8087 } 8088 8089 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8090 struct perf_event_attr *attr) 8091 { 8092 u32 size; 8093 int ret; 8094 8095 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8096 return -EFAULT; 8097 8098 /* 8099 * zero the full structure, so that a short copy will be nice. 8100 */ 8101 memset(attr, 0, sizeof(*attr)); 8102 8103 ret = get_user(size, &uattr->size); 8104 if (ret) 8105 return ret; 8106 8107 if (size > PAGE_SIZE) /* silly large */ 8108 goto err_size; 8109 8110 if (!size) /* abi compat */ 8111 size = PERF_ATTR_SIZE_VER0; 8112 8113 if (size < PERF_ATTR_SIZE_VER0) 8114 goto err_size; 8115 8116 /* 8117 * If we're handed a bigger struct than we know of, 8118 * ensure all the unknown bits are 0 - i.e. new 8119 * user-space does not rely on any kernel feature 8120 * extensions we dont know about yet. 8121 */ 8122 if (size > sizeof(*attr)) { 8123 unsigned char __user *addr; 8124 unsigned char __user *end; 8125 unsigned char val; 8126 8127 addr = (void __user *)uattr + sizeof(*attr); 8128 end = (void __user *)uattr + size; 8129 8130 for (; addr < end; addr++) { 8131 ret = get_user(val, addr); 8132 if (ret) 8133 return ret; 8134 if (val) 8135 goto err_size; 8136 } 8137 size = sizeof(*attr); 8138 } 8139 8140 ret = copy_from_user(attr, uattr, size); 8141 if (ret) 8142 return -EFAULT; 8143 8144 if (attr->__reserved_1) 8145 return -EINVAL; 8146 8147 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8148 return -EINVAL; 8149 8150 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8151 return -EINVAL; 8152 8153 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8154 u64 mask = attr->branch_sample_type; 8155 8156 /* only using defined bits */ 8157 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8158 return -EINVAL; 8159 8160 /* at least one branch bit must be set */ 8161 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8162 return -EINVAL; 8163 8164 /* propagate priv level, when not set for branch */ 8165 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8166 8167 /* exclude_kernel checked on syscall entry */ 8168 if (!attr->exclude_kernel) 8169 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8170 8171 if (!attr->exclude_user) 8172 mask |= PERF_SAMPLE_BRANCH_USER; 8173 8174 if (!attr->exclude_hv) 8175 mask |= PERF_SAMPLE_BRANCH_HV; 8176 /* 8177 * adjust user setting (for HW filter setup) 8178 */ 8179 attr->branch_sample_type = mask; 8180 } 8181 /* privileged levels capture (kernel, hv): check permissions */ 8182 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8183 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8184 return -EACCES; 8185 } 8186 8187 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8188 ret = perf_reg_validate(attr->sample_regs_user); 8189 if (ret) 8190 return ret; 8191 } 8192 8193 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8194 if (!arch_perf_have_user_stack_dump()) 8195 return -ENOSYS; 8196 8197 /* 8198 * We have __u32 type for the size, but so far 8199 * we can only use __u16 as maximum due to the 8200 * __u16 sample size limit. 8201 */ 8202 if (attr->sample_stack_user >= USHRT_MAX) 8203 ret = -EINVAL; 8204 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8205 ret = -EINVAL; 8206 } 8207 8208 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8209 ret = perf_reg_validate(attr->sample_regs_intr); 8210 out: 8211 return ret; 8212 8213 err_size: 8214 put_user(sizeof(*attr), &uattr->size); 8215 ret = -E2BIG; 8216 goto out; 8217 } 8218 8219 static int 8220 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8221 { 8222 struct ring_buffer *rb = NULL; 8223 int ret = -EINVAL; 8224 8225 if (!output_event) 8226 goto set; 8227 8228 /* don't allow circular references */ 8229 if (event == output_event) 8230 goto out; 8231 8232 /* 8233 * Don't allow cross-cpu buffers 8234 */ 8235 if (output_event->cpu != event->cpu) 8236 goto out; 8237 8238 /* 8239 * If its not a per-cpu rb, it must be the same task. 8240 */ 8241 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8242 goto out; 8243 8244 /* 8245 * Mixing clocks in the same buffer is trouble you don't need. 8246 */ 8247 if (output_event->clock != event->clock) 8248 goto out; 8249 8250 /* 8251 * If both events generate aux data, they must be on the same PMU 8252 */ 8253 if (has_aux(event) && has_aux(output_event) && 8254 event->pmu != output_event->pmu) 8255 goto out; 8256 8257 set: 8258 mutex_lock(&event->mmap_mutex); 8259 /* Can't redirect output if we've got an active mmap() */ 8260 if (atomic_read(&event->mmap_count)) 8261 goto unlock; 8262 8263 if (output_event) { 8264 /* get the rb we want to redirect to */ 8265 rb = ring_buffer_get(output_event); 8266 if (!rb) 8267 goto unlock; 8268 } 8269 8270 ring_buffer_attach(event, rb); 8271 8272 ret = 0; 8273 unlock: 8274 mutex_unlock(&event->mmap_mutex); 8275 8276 out: 8277 return ret; 8278 } 8279 8280 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8281 { 8282 if (b < a) 8283 swap(a, b); 8284 8285 mutex_lock(a); 8286 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8287 } 8288 8289 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8290 { 8291 bool nmi_safe = false; 8292 8293 switch (clk_id) { 8294 case CLOCK_MONOTONIC: 8295 event->clock = &ktime_get_mono_fast_ns; 8296 nmi_safe = true; 8297 break; 8298 8299 case CLOCK_MONOTONIC_RAW: 8300 event->clock = &ktime_get_raw_fast_ns; 8301 nmi_safe = true; 8302 break; 8303 8304 case CLOCK_REALTIME: 8305 event->clock = &ktime_get_real_ns; 8306 break; 8307 8308 case CLOCK_BOOTTIME: 8309 event->clock = &ktime_get_boot_ns; 8310 break; 8311 8312 case CLOCK_TAI: 8313 event->clock = &ktime_get_tai_ns; 8314 break; 8315 8316 default: 8317 return -EINVAL; 8318 } 8319 8320 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8321 return -EINVAL; 8322 8323 return 0; 8324 } 8325 8326 /** 8327 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8328 * 8329 * @attr_uptr: event_id type attributes for monitoring/sampling 8330 * @pid: target pid 8331 * @cpu: target cpu 8332 * @group_fd: group leader event fd 8333 */ 8334 SYSCALL_DEFINE5(perf_event_open, 8335 struct perf_event_attr __user *, attr_uptr, 8336 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8337 { 8338 struct perf_event *group_leader = NULL, *output_event = NULL; 8339 struct perf_event *event, *sibling; 8340 struct perf_event_attr attr; 8341 struct perf_event_context *ctx, *uninitialized_var(gctx); 8342 struct file *event_file = NULL; 8343 struct fd group = {NULL, 0}; 8344 struct task_struct *task = NULL; 8345 struct pmu *pmu; 8346 int event_fd; 8347 int move_group = 0; 8348 int err; 8349 int f_flags = O_RDWR; 8350 int cgroup_fd = -1; 8351 8352 /* for future expandability... */ 8353 if (flags & ~PERF_FLAG_ALL) 8354 return -EINVAL; 8355 8356 err = perf_copy_attr(attr_uptr, &attr); 8357 if (err) 8358 return err; 8359 8360 if (!attr.exclude_kernel) { 8361 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8362 return -EACCES; 8363 } 8364 8365 if (attr.freq) { 8366 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8367 return -EINVAL; 8368 } else { 8369 if (attr.sample_period & (1ULL << 63)) 8370 return -EINVAL; 8371 } 8372 8373 /* 8374 * In cgroup mode, the pid argument is used to pass the fd 8375 * opened to the cgroup directory in cgroupfs. The cpu argument 8376 * designates the cpu on which to monitor threads from that 8377 * cgroup. 8378 */ 8379 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8380 return -EINVAL; 8381 8382 if (flags & PERF_FLAG_FD_CLOEXEC) 8383 f_flags |= O_CLOEXEC; 8384 8385 event_fd = get_unused_fd_flags(f_flags); 8386 if (event_fd < 0) 8387 return event_fd; 8388 8389 if (group_fd != -1) { 8390 err = perf_fget_light(group_fd, &group); 8391 if (err) 8392 goto err_fd; 8393 group_leader = group.file->private_data; 8394 if (flags & PERF_FLAG_FD_OUTPUT) 8395 output_event = group_leader; 8396 if (flags & PERF_FLAG_FD_NO_GROUP) 8397 group_leader = NULL; 8398 } 8399 8400 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8401 task = find_lively_task_by_vpid(pid); 8402 if (IS_ERR(task)) { 8403 err = PTR_ERR(task); 8404 goto err_group_fd; 8405 } 8406 } 8407 8408 if (task && group_leader && 8409 group_leader->attr.inherit != attr.inherit) { 8410 err = -EINVAL; 8411 goto err_task; 8412 } 8413 8414 get_online_cpus(); 8415 8416 if (flags & PERF_FLAG_PID_CGROUP) 8417 cgroup_fd = pid; 8418 8419 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8420 NULL, NULL, cgroup_fd); 8421 if (IS_ERR(event)) { 8422 err = PTR_ERR(event); 8423 goto err_cpus; 8424 } 8425 8426 if (is_sampling_event(event)) { 8427 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8428 err = -ENOTSUPP; 8429 goto err_alloc; 8430 } 8431 } 8432 8433 /* 8434 * Special case software events and allow them to be part of 8435 * any hardware group. 8436 */ 8437 pmu = event->pmu; 8438 8439 if (attr.use_clockid) { 8440 err = perf_event_set_clock(event, attr.clockid); 8441 if (err) 8442 goto err_alloc; 8443 } 8444 8445 if (group_leader && 8446 (is_software_event(event) != is_software_event(group_leader))) { 8447 if (is_software_event(event)) { 8448 /* 8449 * If event and group_leader are not both a software 8450 * event, and event is, then group leader is not. 8451 * 8452 * Allow the addition of software events to !software 8453 * groups, this is safe because software events never 8454 * fail to schedule. 8455 */ 8456 pmu = group_leader->pmu; 8457 } else if (is_software_event(group_leader) && 8458 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8459 /* 8460 * In case the group is a pure software group, and we 8461 * try to add a hardware event, move the whole group to 8462 * the hardware context. 8463 */ 8464 move_group = 1; 8465 } 8466 } 8467 8468 /* 8469 * Get the target context (task or percpu): 8470 */ 8471 ctx = find_get_context(pmu, task, event); 8472 if (IS_ERR(ctx)) { 8473 err = PTR_ERR(ctx); 8474 goto err_alloc; 8475 } 8476 8477 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8478 err = -EBUSY; 8479 goto err_context; 8480 } 8481 8482 if (task) { 8483 put_task_struct(task); 8484 task = NULL; 8485 } 8486 8487 /* 8488 * Look up the group leader (we will attach this event to it): 8489 */ 8490 if (group_leader) { 8491 err = -EINVAL; 8492 8493 /* 8494 * Do not allow a recursive hierarchy (this new sibling 8495 * becoming part of another group-sibling): 8496 */ 8497 if (group_leader->group_leader != group_leader) 8498 goto err_context; 8499 8500 /* All events in a group should have the same clock */ 8501 if (group_leader->clock != event->clock) 8502 goto err_context; 8503 8504 /* 8505 * Do not allow to attach to a group in a different 8506 * task or CPU context: 8507 */ 8508 if (move_group) { 8509 /* 8510 * Make sure we're both on the same task, or both 8511 * per-cpu events. 8512 */ 8513 if (group_leader->ctx->task != ctx->task) 8514 goto err_context; 8515 8516 /* 8517 * Make sure we're both events for the same CPU; 8518 * grouping events for different CPUs is broken; since 8519 * you can never concurrently schedule them anyhow. 8520 */ 8521 if (group_leader->cpu != event->cpu) 8522 goto err_context; 8523 } else { 8524 if (group_leader->ctx != ctx) 8525 goto err_context; 8526 } 8527 8528 /* 8529 * Only a group leader can be exclusive or pinned 8530 */ 8531 if (attr.exclusive || attr.pinned) 8532 goto err_context; 8533 } 8534 8535 if (output_event) { 8536 err = perf_event_set_output(event, output_event); 8537 if (err) 8538 goto err_context; 8539 } 8540 8541 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8542 f_flags); 8543 if (IS_ERR(event_file)) { 8544 err = PTR_ERR(event_file); 8545 event_file = NULL; 8546 goto err_context; 8547 } 8548 8549 if (move_group) { 8550 gctx = group_leader->ctx; 8551 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8552 if (gctx->task == TASK_TOMBSTONE) { 8553 err = -ESRCH; 8554 goto err_locked; 8555 } 8556 } else { 8557 mutex_lock(&ctx->mutex); 8558 } 8559 8560 if (ctx->task == TASK_TOMBSTONE) { 8561 err = -ESRCH; 8562 goto err_locked; 8563 } 8564 8565 if (!perf_event_validate_size(event)) { 8566 err = -E2BIG; 8567 goto err_locked; 8568 } 8569 8570 /* 8571 * Must be under the same ctx::mutex as perf_install_in_context(), 8572 * because we need to serialize with concurrent event creation. 8573 */ 8574 if (!exclusive_event_installable(event, ctx)) { 8575 /* exclusive and group stuff are assumed mutually exclusive */ 8576 WARN_ON_ONCE(move_group); 8577 8578 err = -EBUSY; 8579 goto err_locked; 8580 } 8581 8582 WARN_ON_ONCE(ctx->parent_ctx); 8583 8584 if (move_group) { 8585 /* 8586 * See perf_event_ctx_lock() for comments on the details 8587 * of swizzling perf_event::ctx. 8588 */ 8589 perf_remove_from_context(group_leader, 0); 8590 8591 list_for_each_entry(sibling, &group_leader->sibling_list, 8592 group_entry) { 8593 perf_remove_from_context(sibling, 0); 8594 put_ctx(gctx); 8595 } 8596 8597 /* 8598 * Wait for everybody to stop referencing the events through 8599 * the old lists, before installing it on new lists. 8600 */ 8601 synchronize_rcu(); 8602 8603 /* 8604 * Install the group siblings before the group leader. 8605 * 8606 * Because a group leader will try and install the entire group 8607 * (through the sibling list, which is still in-tact), we can 8608 * end up with siblings installed in the wrong context. 8609 * 8610 * By installing siblings first we NO-OP because they're not 8611 * reachable through the group lists. 8612 */ 8613 list_for_each_entry(sibling, &group_leader->sibling_list, 8614 group_entry) { 8615 perf_event__state_init(sibling); 8616 perf_install_in_context(ctx, sibling, sibling->cpu); 8617 get_ctx(ctx); 8618 } 8619 8620 /* 8621 * Removing from the context ends up with disabled 8622 * event. What we want here is event in the initial 8623 * startup state, ready to be add into new context. 8624 */ 8625 perf_event__state_init(group_leader); 8626 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8627 get_ctx(ctx); 8628 8629 /* 8630 * Now that all events are installed in @ctx, nothing 8631 * references @gctx anymore, so drop the last reference we have 8632 * on it. 8633 */ 8634 put_ctx(gctx); 8635 } 8636 8637 /* 8638 * Precalculate sample_data sizes; do while holding ctx::mutex such 8639 * that we're serialized against further additions and before 8640 * perf_install_in_context() which is the point the event is active and 8641 * can use these values. 8642 */ 8643 perf_event__header_size(event); 8644 perf_event__id_header_size(event); 8645 8646 event->owner = current; 8647 8648 perf_install_in_context(ctx, event, event->cpu); 8649 perf_unpin_context(ctx); 8650 8651 if (move_group) 8652 mutex_unlock(&gctx->mutex); 8653 mutex_unlock(&ctx->mutex); 8654 8655 put_online_cpus(); 8656 8657 mutex_lock(¤t->perf_event_mutex); 8658 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8659 mutex_unlock(¤t->perf_event_mutex); 8660 8661 /* 8662 * Drop the reference on the group_event after placing the 8663 * new event on the sibling_list. This ensures destruction 8664 * of the group leader will find the pointer to itself in 8665 * perf_group_detach(). 8666 */ 8667 fdput(group); 8668 fd_install(event_fd, event_file); 8669 return event_fd; 8670 8671 err_locked: 8672 if (move_group) 8673 mutex_unlock(&gctx->mutex); 8674 mutex_unlock(&ctx->mutex); 8675 /* err_file: */ 8676 fput(event_file); 8677 err_context: 8678 perf_unpin_context(ctx); 8679 put_ctx(ctx); 8680 err_alloc: 8681 /* 8682 * If event_file is set, the fput() above will have called ->release() 8683 * and that will take care of freeing the event. 8684 */ 8685 if (!event_file) 8686 free_event(event); 8687 err_cpus: 8688 put_online_cpus(); 8689 err_task: 8690 if (task) 8691 put_task_struct(task); 8692 err_group_fd: 8693 fdput(group); 8694 err_fd: 8695 put_unused_fd(event_fd); 8696 return err; 8697 } 8698 8699 /** 8700 * perf_event_create_kernel_counter 8701 * 8702 * @attr: attributes of the counter to create 8703 * @cpu: cpu in which the counter is bound 8704 * @task: task to profile (NULL for percpu) 8705 */ 8706 struct perf_event * 8707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8708 struct task_struct *task, 8709 perf_overflow_handler_t overflow_handler, 8710 void *context) 8711 { 8712 struct perf_event_context *ctx; 8713 struct perf_event *event; 8714 int err; 8715 8716 /* 8717 * Get the target context (task or percpu): 8718 */ 8719 8720 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8721 overflow_handler, context, -1); 8722 if (IS_ERR(event)) { 8723 err = PTR_ERR(event); 8724 goto err; 8725 } 8726 8727 /* Mark owner so we could distinguish it from user events. */ 8728 event->owner = TASK_TOMBSTONE; 8729 8730 ctx = find_get_context(event->pmu, task, event); 8731 if (IS_ERR(ctx)) { 8732 err = PTR_ERR(ctx); 8733 goto err_free; 8734 } 8735 8736 WARN_ON_ONCE(ctx->parent_ctx); 8737 mutex_lock(&ctx->mutex); 8738 if (ctx->task == TASK_TOMBSTONE) { 8739 err = -ESRCH; 8740 goto err_unlock; 8741 } 8742 8743 if (!exclusive_event_installable(event, ctx)) { 8744 err = -EBUSY; 8745 goto err_unlock; 8746 } 8747 8748 perf_install_in_context(ctx, event, cpu); 8749 perf_unpin_context(ctx); 8750 mutex_unlock(&ctx->mutex); 8751 8752 return event; 8753 8754 err_unlock: 8755 mutex_unlock(&ctx->mutex); 8756 perf_unpin_context(ctx); 8757 put_ctx(ctx); 8758 err_free: 8759 free_event(event); 8760 err: 8761 return ERR_PTR(err); 8762 } 8763 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8764 8765 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8766 { 8767 struct perf_event_context *src_ctx; 8768 struct perf_event_context *dst_ctx; 8769 struct perf_event *event, *tmp; 8770 LIST_HEAD(events); 8771 8772 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8773 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8774 8775 /* 8776 * See perf_event_ctx_lock() for comments on the details 8777 * of swizzling perf_event::ctx. 8778 */ 8779 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8780 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8781 event_entry) { 8782 perf_remove_from_context(event, 0); 8783 unaccount_event_cpu(event, src_cpu); 8784 put_ctx(src_ctx); 8785 list_add(&event->migrate_entry, &events); 8786 } 8787 8788 /* 8789 * Wait for the events to quiesce before re-instating them. 8790 */ 8791 synchronize_rcu(); 8792 8793 /* 8794 * Re-instate events in 2 passes. 8795 * 8796 * Skip over group leaders and only install siblings on this first 8797 * pass, siblings will not get enabled without a leader, however a 8798 * leader will enable its siblings, even if those are still on the old 8799 * context. 8800 */ 8801 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8802 if (event->group_leader == event) 8803 continue; 8804 8805 list_del(&event->migrate_entry); 8806 if (event->state >= PERF_EVENT_STATE_OFF) 8807 event->state = PERF_EVENT_STATE_INACTIVE; 8808 account_event_cpu(event, dst_cpu); 8809 perf_install_in_context(dst_ctx, event, dst_cpu); 8810 get_ctx(dst_ctx); 8811 } 8812 8813 /* 8814 * Once all the siblings are setup properly, install the group leaders 8815 * to make it go. 8816 */ 8817 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8818 list_del(&event->migrate_entry); 8819 if (event->state >= PERF_EVENT_STATE_OFF) 8820 event->state = PERF_EVENT_STATE_INACTIVE; 8821 account_event_cpu(event, dst_cpu); 8822 perf_install_in_context(dst_ctx, event, dst_cpu); 8823 get_ctx(dst_ctx); 8824 } 8825 mutex_unlock(&dst_ctx->mutex); 8826 mutex_unlock(&src_ctx->mutex); 8827 } 8828 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8829 8830 static void sync_child_event(struct perf_event *child_event, 8831 struct task_struct *child) 8832 { 8833 struct perf_event *parent_event = child_event->parent; 8834 u64 child_val; 8835 8836 if (child_event->attr.inherit_stat) 8837 perf_event_read_event(child_event, child); 8838 8839 child_val = perf_event_count(child_event); 8840 8841 /* 8842 * Add back the child's count to the parent's count: 8843 */ 8844 atomic64_add(child_val, &parent_event->child_count); 8845 atomic64_add(child_event->total_time_enabled, 8846 &parent_event->child_total_time_enabled); 8847 atomic64_add(child_event->total_time_running, 8848 &parent_event->child_total_time_running); 8849 } 8850 8851 static void 8852 perf_event_exit_event(struct perf_event *child_event, 8853 struct perf_event_context *child_ctx, 8854 struct task_struct *child) 8855 { 8856 struct perf_event *parent_event = child_event->parent; 8857 8858 /* 8859 * Do not destroy the 'original' grouping; because of the context 8860 * switch optimization the original events could've ended up in a 8861 * random child task. 8862 * 8863 * If we were to destroy the original group, all group related 8864 * operations would cease to function properly after this random 8865 * child dies. 8866 * 8867 * Do destroy all inherited groups, we don't care about those 8868 * and being thorough is better. 8869 */ 8870 raw_spin_lock_irq(&child_ctx->lock); 8871 WARN_ON_ONCE(child_ctx->is_active); 8872 8873 if (parent_event) 8874 perf_group_detach(child_event); 8875 list_del_event(child_event, child_ctx); 8876 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 8877 raw_spin_unlock_irq(&child_ctx->lock); 8878 8879 /* 8880 * Parent events are governed by their filedesc, retain them. 8881 */ 8882 if (!parent_event) { 8883 perf_event_wakeup(child_event); 8884 return; 8885 } 8886 /* 8887 * Child events can be cleaned up. 8888 */ 8889 8890 sync_child_event(child_event, child); 8891 8892 /* 8893 * Remove this event from the parent's list 8894 */ 8895 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8896 mutex_lock(&parent_event->child_mutex); 8897 list_del_init(&child_event->child_list); 8898 mutex_unlock(&parent_event->child_mutex); 8899 8900 /* 8901 * Kick perf_poll() for is_event_hup(). 8902 */ 8903 perf_event_wakeup(parent_event); 8904 free_event(child_event); 8905 put_event(parent_event); 8906 } 8907 8908 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8909 { 8910 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8911 struct perf_event *child_event, *next; 8912 8913 WARN_ON_ONCE(child != current); 8914 8915 child_ctx = perf_pin_task_context(child, ctxn); 8916 if (!child_ctx) 8917 return; 8918 8919 /* 8920 * In order to reduce the amount of tricky in ctx tear-down, we hold 8921 * ctx::mutex over the entire thing. This serializes against almost 8922 * everything that wants to access the ctx. 8923 * 8924 * The exception is sys_perf_event_open() / 8925 * perf_event_create_kernel_count() which does find_get_context() 8926 * without ctx::mutex (it cannot because of the move_group double mutex 8927 * lock thing). See the comments in perf_install_in_context(). 8928 */ 8929 mutex_lock(&child_ctx->mutex); 8930 8931 /* 8932 * In a single ctx::lock section, de-schedule the events and detach the 8933 * context from the task such that we cannot ever get it scheduled back 8934 * in. 8935 */ 8936 raw_spin_lock_irq(&child_ctx->lock); 8937 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 8938 8939 /* 8940 * Now that the context is inactive, destroy the task <-> ctx relation 8941 * and mark the context dead. 8942 */ 8943 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 8944 put_ctx(child_ctx); /* cannot be last */ 8945 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 8946 put_task_struct(current); /* cannot be last */ 8947 8948 clone_ctx = unclone_ctx(child_ctx); 8949 raw_spin_unlock_irq(&child_ctx->lock); 8950 8951 if (clone_ctx) 8952 put_ctx(clone_ctx); 8953 8954 /* 8955 * Report the task dead after unscheduling the events so that we 8956 * won't get any samples after PERF_RECORD_EXIT. We can however still 8957 * get a few PERF_RECORD_READ events. 8958 */ 8959 perf_event_task(child, child_ctx, 0); 8960 8961 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8962 perf_event_exit_event(child_event, child_ctx, child); 8963 8964 mutex_unlock(&child_ctx->mutex); 8965 8966 put_ctx(child_ctx); 8967 } 8968 8969 /* 8970 * When a child task exits, feed back event values to parent events. 8971 */ 8972 void perf_event_exit_task(struct task_struct *child) 8973 { 8974 struct perf_event *event, *tmp; 8975 int ctxn; 8976 8977 mutex_lock(&child->perf_event_mutex); 8978 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8979 owner_entry) { 8980 list_del_init(&event->owner_entry); 8981 8982 /* 8983 * Ensure the list deletion is visible before we clear 8984 * the owner, closes a race against perf_release() where 8985 * we need to serialize on the owner->perf_event_mutex. 8986 */ 8987 smp_store_release(&event->owner, NULL); 8988 } 8989 mutex_unlock(&child->perf_event_mutex); 8990 8991 for_each_task_context_nr(ctxn) 8992 perf_event_exit_task_context(child, ctxn); 8993 8994 /* 8995 * The perf_event_exit_task_context calls perf_event_task 8996 * with child's task_ctx, which generates EXIT events for 8997 * child contexts and sets child->perf_event_ctxp[] to NULL. 8998 * At this point we need to send EXIT events to cpu contexts. 8999 */ 9000 perf_event_task(child, NULL, 0); 9001 } 9002 9003 static void perf_free_event(struct perf_event *event, 9004 struct perf_event_context *ctx) 9005 { 9006 struct perf_event *parent = event->parent; 9007 9008 if (WARN_ON_ONCE(!parent)) 9009 return; 9010 9011 mutex_lock(&parent->child_mutex); 9012 list_del_init(&event->child_list); 9013 mutex_unlock(&parent->child_mutex); 9014 9015 put_event(parent); 9016 9017 raw_spin_lock_irq(&ctx->lock); 9018 perf_group_detach(event); 9019 list_del_event(event, ctx); 9020 raw_spin_unlock_irq(&ctx->lock); 9021 free_event(event); 9022 } 9023 9024 /* 9025 * Free an unexposed, unused context as created by inheritance by 9026 * perf_event_init_task below, used by fork() in case of fail. 9027 * 9028 * Not all locks are strictly required, but take them anyway to be nice and 9029 * help out with the lockdep assertions. 9030 */ 9031 void perf_event_free_task(struct task_struct *task) 9032 { 9033 struct perf_event_context *ctx; 9034 struct perf_event *event, *tmp; 9035 int ctxn; 9036 9037 for_each_task_context_nr(ctxn) { 9038 ctx = task->perf_event_ctxp[ctxn]; 9039 if (!ctx) 9040 continue; 9041 9042 mutex_lock(&ctx->mutex); 9043 again: 9044 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9045 group_entry) 9046 perf_free_event(event, ctx); 9047 9048 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9049 group_entry) 9050 perf_free_event(event, ctx); 9051 9052 if (!list_empty(&ctx->pinned_groups) || 9053 !list_empty(&ctx->flexible_groups)) 9054 goto again; 9055 9056 mutex_unlock(&ctx->mutex); 9057 9058 put_ctx(ctx); 9059 } 9060 } 9061 9062 void perf_event_delayed_put(struct task_struct *task) 9063 { 9064 int ctxn; 9065 9066 for_each_task_context_nr(ctxn) 9067 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9068 } 9069 9070 struct file *perf_event_get(unsigned int fd) 9071 { 9072 struct file *file; 9073 9074 file = fget_raw(fd); 9075 if (!file) 9076 return ERR_PTR(-EBADF); 9077 9078 if (file->f_op != &perf_fops) { 9079 fput(file); 9080 return ERR_PTR(-EBADF); 9081 } 9082 9083 return file; 9084 } 9085 9086 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9087 { 9088 if (!event) 9089 return ERR_PTR(-EINVAL); 9090 9091 return &event->attr; 9092 } 9093 9094 /* 9095 * inherit a event from parent task to child task: 9096 */ 9097 static struct perf_event * 9098 inherit_event(struct perf_event *parent_event, 9099 struct task_struct *parent, 9100 struct perf_event_context *parent_ctx, 9101 struct task_struct *child, 9102 struct perf_event *group_leader, 9103 struct perf_event_context *child_ctx) 9104 { 9105 enum perf_event_active_state parent_state = parent_event->state; 9106 struct perf_event *child_event; 9107 unsigned long flags; 9108 9109 /* 9110 * Instead of creating recursive hierarchies of events, 9111 * we link inherited events back to the original parent, 9112 * which has a filp for sure, which we use as the reference 9113 * count: 9114 */ 9115 if (parent_event->parent) 9116 parent_event = parent_event->parent; 9117 9118 child_event = perf_event_alloc(&parent_event->attr, 9119 parent_event->cpu, 9120 child, 9121 group_leader, parent_event, 9122 NULL, NULL, -1); 9123 if (IS_ERR(child_event)) 9124 return child_event; 9125 9126 /* 9127 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9128 * must be under the same lock in order to serialize against 9129 * perf_event_release_kernel(), such that either we must observe 9130 * is_orphaned_event() or they will observe us on the child_list. 9131 */ 9132 mutex_lock(&parent_event->child_mutex); 9133 if (is_orphaned_event(parent_event) || 9134 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9135 mutex_unlock(&parent_event->child_mutex); 9136 free_event(child_event); 9137 return NULL; 9138 } 9139 9140 get_ctx(child_ctx); 9141 9142 /* 9143 * Make the child state follow the state of the parent event, 9144 * not its attr.disabled bit. We hold the parent's mutex, 9145 * so we won't race with perf_event_{en, dis}able_family. 9146 */ 9147 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9148 child_event->state = PERF_EVENT_STATE_INACTIVE; 9149 else 9150 child_event->state = PERF_EVENT_STATE_OFF; 9151 9152 if (parent_event->attr.freq) { 9153 u64 sample_period = parent_event->hw.sample_period; 9154 struct hw_perf_event *hwc = &child_event->hw; 9155 9156 hwc->sample_period = sample_period; 9157 hwc->last_period = sample_period; 9158 9159 local64_set(&hwc->period_left, sample_period); 9160 } 9161 9162 child_event->ctx = child_ctx; 9163 child_event->overflow_handler = parent_event->overflow_handler; 9164 child_event->overflow_handler_context 9165 = parent_event->overflow_handler_context; 9166 9167 /* 9168 * Precalculate sample_data sizes 9169 */ 9170 perf_event__header_size(child_event); 9171 perf_event__id_header_size(child_event); 9172 9173 /* 9174 * Link it up in the child's context: 9175 */ 9176 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9177 add_event_to_ctx(child_event, child_ctx); 9178 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9179 9180 /* 9181 * Link this into the parent event's child list 9182 */ 9183 list_add_tail(&child_event->child_list, &parent_event->child_list); 9184 mutex_unlock(&parent_event->child_mutex); 9185 9186 return child_event; 9187 } 9188 9189 static int inherit_group(struct perf_event *parent_event, 9190 struct task_struct *parent, 9191 struct perf_event_context *parent_ctx, 9192 struct task_struct *child, 9193 struct perf_event_context *child_ctx) 9194 { 9195 struct perf_event *leader; 9196 struct perf_event *sub; 9197 struct perf_event *child_ctr; 9198 9199 leader = inherit_event(parent_event, parent, parent_ctx, 9200 child, NULL, child_ctx); 9201 if (IS_ERR(leader)) 9202 return PTR_ERR(leader); 9203 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9204 child_ctr = inherit_event(sub, parent, parent_ctx, 9205 child, leader, child_ctx); 9206 if (IS_ERR(child_ctr)) 9207 return PTR_ERR(child_ctr); 9208 } 9209 return 0; 9210 } 9211 9212 static int 9213 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9214 struct perf_event_context *parent_ctx, 9215 struct task_struct *child, int ctxn, 9216 int *inherited_all) 9217 { 9218 int ret; 9219 struct perf_event_context *child_ctx; 9220 9221 if (!event->attr.inherit) { 9222 *inherited_all = 0; 9223 return 0; 9224 } 9225 9226 child_ctx = child->perf_event_ctxp[ctxn]; 9227 if (!child_ctx) { 9228 /* 9229 * This is executed from the parent task context, so 9230 * inherit events that have been marked for cloning. 9231 * First allocate and initialize a context for the 9232 * child. 9233 */ 9234 9235 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9236 if (!child_ctx) 9237 return -ENOMEM; 9238 9239 child->perf_event_ctxp[ctxn] = child_ctx; 9240 } 9241 9242 ret = inherit_group(event, parent, parent_ctx, 9243 child, child_ctx); 9244 9245 if (ret) 9246 *inherited_all = 0; 9247 9248 return ret; 9249 } 9250 9251 /* 9252 * Initialize the perf_event context in task_struct 9253 */ 9254 static int perf_event_init_context(struct task_struct *child, int ctxn) 9255 { 9256 struct perf_event_context *child_ctx, *parent_ctx; 9257 struct perf_event_context *cloned_ctx; 9258 struct perf_event *event; 9259 struct task_struct *parent = current; 9260 int inherited_all = 1; 9261 unsigned long flags; 9262 int ret = 0; 9263 9264 if (likely(!parent->perf_event_ctxp[ctxn])) 9265 return 0; 9266 9267 /* 9268 * If the parent's context is a clone, pin it so it won't get 9269 * swapped under us. 9270 */ 9271 parent_ctx = perf_pin_task_context(parent, ctxn); 9272 if (!parent_ctx) 9273 return 0; 9274 9275 /* 9276 * No need to check if parent_ctx != NULL here; since we saw 9277 * it non-NULL earlier, the only reason for it to become NULL 9278 * is if we exit, and since we're currently in the middle of 9279 * a fork we can't be exiting at the same time. 9280 */ 9281 9282 /* 9283 * Lock the parent list. No need to lock the child - not PID 9284 * hashed yet and not running, so nobody can access it. 9285 */ 9286 mutex_lock(&parent_ctx->mutex); 9287 9288 /* 9289 * We dont have to disable NMIs - we are only looking at 9290 * the list, not manipulating it: 9291 */ 9292 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9293 ret = inherit_task_group(event, parent, parent_ctx, 9294 child, ctxn, &inherited_all); 9295 if (ret) 9296 break; 9297 } 9298 9299 /* 9300 * We can't hold ctx->lock when iterating the ->flexible_group list due 9301 * to allocations, but we need to prevent rotation because 9302 * rotate_ctx() will change the list from interrupt context. 9303 */ 9304 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9305 parent_ctx->rotate_disable = 1; 9306 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9307 9308 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9309 ret = inherit_task_group(event, parent, parent_ctx, 9310 child, ctxn, &inherited_all); 9311 if (ret) 9312 break; 9313 } 9314 9315 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9316 parent_ctx->rotate_disable = 0; 9317 9318 child_ctx = child->perf_event_ctxp[ctxn]; 9319 9320 if (child_ctx && inherited_all) { 9321 /* 9322 * Mark the child context as a clone of the parent 9323 * context, or of whatever the parent is a clone of. 9324 * 9325 * Note that if the parent is a clone, the holding of 9326 * parent_ctx->lock avoids it from being uncloned. 9327 */ 9328 cloned_ctx = parent_ctx->parent_ctx; 9329 if (cloned_ctx) { 9330 child_ctx->parent_ctx = cloned_ctx; 9331 child_ctx->parent_gen = parent_ctx->parent_gen; 9332 } else { 9333 child_ctx->parent_ctx = parent_ctx; 9334 child_ctx->parent_gen = parent_ctx->generation; 9335 } 9336 get_ctx(child_ctx->parent_ctx); 9337 } 9338 9339 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9340 mutex_unlock(&parent_ctx->mutex); 9341 9342 perf_unpin_context(parent_ctx); 9343 put_ctx(parent_ctx); 9344 9345 return ret; 9346 } 9347 9348 /* 9349 * Initialize the perf_event context in task_struct 9350 */ 9351 int perf_event_init_task(struct task_struct *child) 9352 { 9353 int ctxn, ret; 9354 9355 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9356 mutex_init(&child->perf_event_mutex); 9357 INIT_LIST_HEAD(&child->perf_event_list); 9358 9359 for_each_task_context_nr(ctxn) { 9360 ret = perf_event_init_context(child, ctxn); 9361 if (ret) { 9362 perf_event_free_task(child); 9363 return ret; 9364 } 9365 } 9366 9367 return 0; 9368 } 9369 9370 static void __init perf_event_init_all_cpus(void) 9371 { 9372 struct swevent_htable *swhash; 9373 int cpu; 9374 9375 for_each_possible_cpu(cpu) { 9376 swhash = &per_cpu(swevent_htable, cpu); 9377 mutex_init(&swhash->hlist_mutex); 9378 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9379 } 9380 } 9381 9382 static void perf_event_init_cpu(int cpu) 9383 { 9384 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9385 9386 mutex_lock(&swhash->hlist_mutex); 9387 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 9388 struct swevent_hlist *hlist; 9389 9390 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9391 WARN_ON(!hlist); 9392 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9393 } 9394 mutex_unlock(&swhash->hlist_mutex); 9395 } 9396 9397 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9398 static void __perf_event_exit_context(void *__info) 9399 { 9400 struct perf_event_context *ctx = __info; 9401 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 9402 struct perf_event *event; 9403 9404 raw_spin_lock(&ctx->lock); 9405 list_for_each_entry(event, &ctx->event_list, event_entry) 9406 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 9407 raw_spin_unlock(&ctx->lock); 9408 } 9409 9410 static void perf_event_exit_cpu_context(int cpu) 9411 { 9412 struct perf_event_context *ctx; 9413 struct pmu *pmu; 9414 int idx; 9415 9416 idx = srcu_read_lock(&pmus_srcu); 9417 list_for_each_entry_rcu(pmu, &pmus, entry) { 9418 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9419 9420 mutex_lock(&ctx->mutex); 9421 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9422 mutex_unlock(&ctx->mutex); 9423 } 9424 srcu_read_unlock(&pmus_srcu, idx); 9425 } 9426 9427 static void perf_event_exit_cpu(int cpu) 9428 { 9429 perf_event_exit_cpu_context(cpu); 9430 } 9431 #else 9432 static inline void perf_event_exit_cpu(int cpu) { } 9433 #endif 9434 9435 static int 9436 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9437 { 9438 int cpu; 9439 9440 for_each_online_cpu(cpu) 9441 perf_event_exit_cpu(cpu); 9442 9443 return NOTIFY_OK; 9444 } 9445 9446 /* 9447 * Run the perf reboot notifier at the very last possible moment so that 9448 * the generic watchdog code runs as long as possible. 9449 */ 9450 static struct notifier_block perf_reboot_notifier = { 9451 .notifier_call = perf_reboot, 9452 .priority = INT_MIN, 9453 }; 9454 9455 static int 9456 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9457 { 9458 unsigned int cpu = (long)hcpu; 9459 9460 switch (action & ~CPU_TASKS_FROZEN) { 9461 9462 case CPU_UP_PREPARE: 9463 /* 9464 * This must be done before the CPU comes alive, because the 9465 * moment we can run tasks we can encounter (software) events. 9466 * 9467 * Specifically, someone can have inherited events on kthreadd 9468 * or a pre-existing worker thread that gets re-bound. 9469 */ 9470 perf_event_init_cpu(cpu); 9471 break; 9472 9473 case CPU_DOWN_PREPARE: 9474 /* 9475 * This must be done before the CPU dies because after that an 9476 * active event might want to IPI the CPU and that'll not work 9477 * so great for dead CPUs. 9478 * 9479 * XXX smp_call_function_single() return -ENXIO without a warn 9480 * so we could possibly deal with this. 9481 * 9482 * This is safe against new events arriving because 9483 * sys_perf_event_open() serializes against hotplug using 9484 * get_online_cpus(). 9485 */ 9486 perf_event_exit_cpu(cpu); 9487 break; 9488 default: 9489 break; 9490 } 9491 9492 return NOTIFY_OK; 9493 } 9494 9495 void __init perf_event_init(void) 9496 { 9497 int ret; 9498 9499 idr_init(&pmu_idr); 9500 9501 perf_event_init_all_cpus(); 9502 init_srcu_struct(&pmus_srcu); 9503 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9504 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9505 perf_pmu_register(&perf_task_clock, NULL, -1); 9506 perf_tp_register(); 9507 perf_cpu_notifier(perf_cpu_notify); 9508 register_reboot_notifier(&perf_reboot_notifier); 9509 9510 ret = init_hw_breakpoint(); 9511 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9512 9513 /* 9514 * Build time assertion that we keep the data_head at the intended 9515 * location. IOW, validation we got the __reserved[] size right. 9516 */ 9517 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9518 != 1024); 9519 } 9520 9521 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9522 char *page) 9523 { 9524 struct perf_pmu_events_attr *pmu_attr = 9525 container_of(attr, struct perf_pmu_events_attr, attr); 9526 9527 if (pmu_attr->event_str) 9528 return sprintf(page, "%s\n", pmu_attr->event_str); 9529 9530 return 0; 9531 } 9532 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 9533 9534 static int __init perf_event_sysfs_init(void) 9535 { 9536 struct pmu *pmu; 9537 int ret; 9538 9539 mutex_lock(&pmus_lock); 9540 9541 ret = bus_register(&pmu_bus); 9542 if (ret) 9543 goto unlock; 9544 9545 list_for_each_entry(pmu, &pmus, entry) { 9546 if (!pmu->name || pmu->type < 0) 9547 continue; 9548 9549 ret = pmu_dev_alloc(pmu); 9550 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9551 } 9552 pmu_bus_running = 1; 9553 ret = 0; 9554 9555 unlock: 9556 mutex_unlock(&pmus_lock); 9557 9558 return ret; 9559 } 9560 device_initcall(perf_event_sysfs_init); 9561 9562 #ifdef CONFIG_CGROUP_PERF 9563 static struct cgroup_subsys_state * 9564 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9565 { 9566 struct perf_cgroup *jc; 9567 9568 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9569 if (!jc) 9570 return ERR_PTR(-ENOMEM); 9571 9572 jc->info = alloc_percpu(struct perf_cgroup_info); 9573 if (!jc->info) { 9574 kfree(jc); 9575 return ERR_PTR(-ENOMEM); 9576 } 9577 9578 return &jc->css; 9579 } 9580 9581 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9582 { 9583 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9584 9585 free_percpu(jc->info); 9586 kfree(jc); 9587 } 9588 9589 static int __perf_cgroup_move(void *info) 9590 { 9591 struct task_struct *task = info; 9592 rcu_read_lock(); 9593 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9594 rcu_read_unlock(); 9595 return 0; 9596 } 9597 9598 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9599 { 9600 struct task_struct *task; 9601 struct cgroup_subsys_state *css; 9602 9603 cgroup_taskset_for_each(task, css, tset) 9604 task_function_call(task, __perf_cgroup_move, task); 9605 } 9606 9607 struct cgroup_subsys perf_event_cgrp_subsys = { 9608 .css_alloc = perf_cgroup_css_alloc, 9609 .css_free = perf_cgroup_css_free, 9610 .attach = perf_cgroup_attach, 9611 }; 9612 #endif /* CONFIG_CGROUP_PERF */ 9613