xref: /linux/kernel/events/core.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		/* -EAGAIN */
68 		if (task_cpu(p) != smp_processor_id())
69 			return;
70 
71 		/*
72 		 * Now that we're on right CPU with IRQs disabled, we can test
73 		 * if we hit the right task without races.
74 		 */
75 
76 		tfc->ret = -ESRCH; /* No such (running) process */
77 		if (p != current)
78 			return;
79 	}
80 
81 	tfc->ret = tfc->func(tfc->info);
82 }
83 
84 /**
85  * task_function_call - call a function on the cpu on which a task runs
86  * @p:		the task to evaluate
87  * @func:	the function to be called
88  * @info:	the function call argument
89  *
90  * Calls the function @func when the task is currently running. This might
91  * be on the current CPU, which just calls the function directly
92  *
93  * returns: @func return value, or
94  *	    -ESRCH  - when the process isn't running
95  *	    -EAGAIN - when the process moved away
96  */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 	struct remote_function_call data = {
101 		.p	= p,
102 		.func	= func,
103 		.info	= info,
104 		.ret	= -EAGAIN,
105 	};
106 	int ret;
107 
108 	do {
109 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 		if (!ret)
111 			ret = data.ret;
112 	} while (ret == -EAGAIN);
113 
114 	return ret;
115 }
116 
117 /**
118  * cpu_function_call - call a function on the cpu
119  * @func:	the function to be called
120  * @info:	the function call argument
121  *
122  * Calls the function @func on the remote cpu.
123  *
124  * returns: @func return value or -ENXIO when the cpu is offline
125  */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 	struct remote_function_call data = {
129 		.p	= NULL,
130 		.func	= func,
131 		.info	= info,
132 		.ret	= -ENXIO, /* No such CPU */
133 	};
134 
135 	smp_call_function_single(cpu, remote_function, &data, 1);
136 
137 	return data.ret;
138 }
139 
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145 
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 			  struct perf_event_context *ctx)
148 {
149 	raw_spin_lock(&cpuctx->ctx.lock);
150 	if (ctx)
151 		raw_spin_lock(&ctx->lock);
152 }
153 
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 			    struct perf_event_context *ctx)
156 {
157 	if (ctx)
158 		raw_spin_unlock(&ctx->lock);
159 	raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161 
162 #define TASK_TOMBSTONE ((void *)-1L)
163 
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168 
169 /*
170  * On task ctx scheduling...
171  *
172  * When !ctx->nr_events a task context will not be scheduled. This means
173  * we can disable the scheduler hooks (for performance) without leaving
174  * pending task ctx state.
175  *
176  * This however results in two special cases:
177  *
178  *  - removing the last event from a task ctx; this is relatively straight
179  *    forward and is done in __perf_remove_from_context.
180  *
181  *  - adding the first event to a task ctx; this is tricky because we cannot
182  *    rely on ctx->is_active and therefore cannot use event_function_call().
183  *    See perf_install_in_context().
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -ESRCH;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 		       PERF_FLAG_FD_OUTPUT  |\
306 		       PERF_FLAG_PID_CGROUP |\
307 		       PERF_FLAG_FD_CLOEXEC)
308 
309 /*
310  * branch priv levels that need permission checks
311  */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 	(PERF_SAMPLE_BRANCH_KERNEL |\
314 	 PERF_SAMPLE_BRANCH_HV)
315 
316 enum event_type_t {
317 	EVENT_FLEXIBLE = 0x1,
318 	EVENT_PINNED = 0x2,
319 	EVENT_TIME = 0x4,
320 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322 
323 /*
324  * perf_sched_events : >0 events exist
325  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326  */
327 
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333 
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336 
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342 
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346 
347 /*
348  * perf event paranoia level:
349  *  -1 - not paranoid at all
350  *   0 - disallow raw tracepoint access for unpriv
351  *   1 - disallow cpu events for unpriv
352  *   2 - disallow kernel profiling for unpriv
353  */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355 
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 
359 /*
360  * max perf event sample rate
361  */
362 #define DEFAULT_MAX_SAMPLE_RATE		100000
363 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
365 
366 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
367 
368 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
370 
371 static int perf_sample_allowed_ns __read_mostly =
372 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373 
374 static void update_perf_cpu_limits(void)
375 {
376 	u64 tmp = perf_sample_period_ns;
377 
378 	tmp *= sysctl_perf_cpu_time_max_percent;
379 	tmp = div_u64(tmp, 100);
380 	if (!tmp)
381 		tmp = 1;
382 
383 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384 }
385 
386 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387 
388 int perf_proc_update_handler(struct ctl_table *table, int write,
389 		void __user *buffer, size_t *lenp,
390 		loff_t *ppos)
391 {
392 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393 
394 	if (ret || !write)
395 		return ret;
396 
397 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 	update_perf_cpu_limits();
400 
401 	return 0;
402 }
403 
404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405 
406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 				void __user *buffer, size_t *lenp,
408 				loff_t *ppos)
409 {
410 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411 
412 	if (ret || !write)
413 		return ret;
414 
415 	if (sysctl_perf_cpu_time_max_percent == 100) {
416 		printk(KERN_WARNING
417 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 		WRITE_ONCE(perf_sample_allowed_ns, 0);
419 	} else {
420 		update_perf_cpu_limits();
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * perf samples are done in some very critical code paths (NMIs).
428  * If they take too much CPU time, the system can lock up and not
429  * get any real work done.  This will drop the sample rate when
430  * we detect that events are taking too long.
431  */
432 #define NR_ACCUMULATED_SAMPLES 128
433 static DEFINE_PER_CPU(u64, running_sample_length);
434 
435 static u64 __report_avg;
436 static u64 __report_allowed;
437 
438 static void perf_duration_warn(struct irq_work *w)
439 {
440 	printk_ratelimited(KERN_WARNING
441 		"perf: interrupt took too long (%lld > %lld), lowering "
442 		"kernel.perf_event_max_sample_rate to %d\n",
443 		__report_avg, __report_allowed,
444 		sysctl_perf_event_sample_rate);
445 }
446 
447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448 
449 void perf_sample_event_took(u64 sample_len_ns)
450 {
451 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 	u64 running_len;
453 	u64 avg_len;
454 	u32 max;
455 
456 	if (max_len == 0)
457 		return;
458 
459 	/* Decay the counter by 1 average sample. */
460 	running_len = __this_cpu_read(running_sample_length);
461 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 	running_len += sample_len_ns;
463 	__this_cpu_write(running_sample_length, running_len);
464 
465 	/*
466 	 * Note: this will be biased artifically low until we have
467 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 	 * from having to maintain a count.
469 	 */
470 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 	if (avg_len <= max_len)
472 		return;
473 
474 	__report_avg = avg_len;
475 	__report_allowed = max_len;
476 
477 	/*
478 	 * Compute a throttle threshold 25% below the current duration.
479 	 */
480 	avg_len += avg_len / 4;
481 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 	if (avg_len < max)
483 		max /= (u32)avg_len;
484 	else
485 		max = 1;
486 
487 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 	WRITE_ONCE(max_samples_per_tick, max);
489 
490 	sysctl_perf_event_sample_rate = max * HZ;
491 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492 
493 	if (!irq_work_queue(&perf_duration_work)) {
494 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495 			     "kernel.perf_event_max_sample_rate to %d\n",
496 			     __report_avg, __report_allowed,
497 			     sysctl_perf_event_sample_rate);
498 	}
499 }
500 
501 static atomic64_t perf_event_id;
502 
503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 			      enum event_type_t event_type);
505 
506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
507 			     enum event_type_t event_type,
508 			     struct task_struct *task);
509 
510 static void update_context_time(struct perf_event_context *ctx);
511 static u64 perf_event_time(struct perf_event *event);
512 
513 void __weak perf_event_print_debug(void)	{ }
514 
515 extern __weak const char *perf_pmu_name(void)
516 {
517 	return "pmu";
518 }
519 
520 static inline u64 perf_clock(void)
521 {
522 	return local_clock();
523 }
524 
525 static inline u64 perf_event_clock(struct perf_event *event)
526 {
527 	return event->clock();
528 }
529 
530 #ifdef CONFIG_CGROUP_PERF
531 
532 static inline bool
533 perf_cgroup_match(struct perf_event *event)
534 {
535 	struct perf_event_context *ctx = event->ctx;
536 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537 
538 	/* @event doesn't care about cgroup */
539 	if (!event->cgrp)
540 		return true;
541 
542 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
543 	if (!cpuctx->cgrp)
544 		return false;
545 
546 	/*
547 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
548 	 * also enabled for all its descendant cgroups.  If @cpuctx's
549 	 * cgroup is a descendant of @event's (the test covers identity
550 	 * case), it's a match.
551 	 */
552 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 				    event->cgrp->css.cgroup);
554 }
555 
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {
558 	css_put(&event->cgrp->css);
559 	event->cgrp = NULL;
560 }
561 
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 	return event->cgrp != NULL;
565 }
566 
567 static inline u64 perf_cgroup_event_time(struct perf_event *event)
568 {
569 	struct perf_cgroup_info *t;
570 
571 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 	return t->time;
573 }
574 
575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576 {
577 	struct perf_cgroup_info *info;
578 	u64 now;
579 
580 	now = perf_clock();
581 
582 	info = this_cpu_ptr(cgrp->info);
583 
584 	info->time += now - info->timestamp;
585 	info->timestamp = now;
586 }
587 
588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589 {
590 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 	if (cgrp_out)
592 		__update_cgrp_time(cgrp_out);
593 }
594 
595 static inline void update_cgrp_time_from_event(struct perf_event *event)
596 {
597 	struct perf_cgroup *cgrp;
598 
599 	/*
600 	 * ensure we access cgroup data only when needed and
601 	 * when we know the cgroup is pinned (css_get)
602 	 */
603 	if (!is_cgroup_event(event))
604 		return;
605 
606 	cgrp = perf_cgroup_from_task(current, event->ctx);
607 	/*
608 	 * Do not update time when cgroup is not active
609 	 */
610 	if (cgrp == event->cgrp)
611 		__update_cgrp_time(event->cgrp);
612 }
613 
614 static inline void
615 perf_cgroup_set_timestamp(struct task_struct *task,
616 			  struct perf_event_context *ctx)
617 {
618 	struct perf_cgroup *cgrp;
619 	struct perf_cgroup_info *info;
620 
621 	/*
622 	 * ctx->lock held by caller
623 	 * ensure we do not access cgroup data
624 	 * unless we have the cgroup pinned (css_get)
625 	 */
626 	if (!task || !ctx->nr_cgroups)
627 		return;
628 
629 	cgrp = perf_cgroup_from_task(task, ctx);
630 	info = this_cpu_ptr(cgrp->info);
631 	info->timestamp = ctx->timestamp;
632 }
633 
634 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
635 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
636 
637 /*
638  * reschedule events based on the cgroup constraint of task.
639  *
640  * mode SWOUT : schedule out everything
641  * mode SWIN : schedule in based on cgroup for next
642  */
643 static void perf_cgroup_switch(struct task_struct *task, int mode)
644 {
645 	struct perf_cpu_context *cpuctx;
646 	struct pmu *pmu;
647 	unsigned long flags;
648 
649 	/*
650 	 * disable interrupts to avoid geting nr_cgroup
651 	 * changes via __perf_event_disable(). Also
652 	 * avoids preemption.
653 	 */
654 	local_irq_save(flags);
655 
656 	/*
657 	 * we reschedule only in the presence of cgroup
658 	 * constrained events.
659 	 */
660 
661 	list_for_each_entry_rcu(pmu, &pmus, entry) {
662 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 		if (cpuctx->unique_pmu != pmu)
664 			continue; /* ensure we process each cpuctx once */
665 
666 		/*
667 		 * perf_cgroup_events says at least one
668 		 * context on this CPU has cgroup events.
669 		 *
670 		 * ctx->nr_cgroups reports the number of cgroup
671 		 * events for a context.
672 		 */
673 		if (cpuctx->ctx.nr_cgroups > 0) {
674 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 			perf_pmu_disable(cpuctx->ctx.pmu);
676 
677 			if (mode & PERF_CGROUP_SWOUT) {
678 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 				/*
680 				 * must not be done before ctxswout due
681 				 * to event_filter_match() in event_sched_out()
682 				 */
683 				cpuctx->cgrp = NULL;
684 			}
685 
686 			if (mode & PERF_CGROUP_SWIN) {
687 				WARN_ON_ONCE(cpuctx->cgrp);
688 				/*
689 				 * set cgrp before ctxsw in to allow
690 				 * event_filter_match() to not have to pass
691 				 * task around
692 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 				 * because cgorup events are only per-cpu
694 				 */
695 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
696 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 			}
698 			perf_pmu_enable(cpuctx->ctx.pmu);
699 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
700 		}
701 	}
702 
703 	local_irq_restore(flags);
704 }
705 
706 static inline void perf_cgroup_sched_out(struct task_struct *task,
707 					 struct task_struct *next)
708 {
709 	struct perf_cgroup *cgrp1;
710 	struct perf_cgroup *cgrp2 = NULL;
711 
712 	rcu_read_lock();
713 	/*
714 	 * we come here when we know perf_cgroup_events > 0
715 	 * we do not need to pass the ctx here because we know
716 	 * we are holding the rcu lock
717 	 */
718 	cgrp1 = perf_cgroup_from_task(task, NULL);
719 	cgrp2 = perf_cgroup_from_task(next, NULL);
720 
721 	/*
722 	 * only schedule out current cgroup events if we know
723 	 * that we are switching to a different cgroup. Otherwise,
724 	 * do no touch the cgroup events.
725 	 */
726 	if (cgrp1 != cgrp2)
727 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728 
729 	rcu_read_unlock();
730 }
731 
732 static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 					struct task_struct *task)
734 {
735 	struct perf_cgroup *cgrp1;
736 	struct perf_cgroup *cgrp2 = NULL;
737 
738 	rcu_read_lock();
739 	/*
740 	 * we come here when we know perf_cgroup_events > 0
741 	 * we do not need to pass the ctx here because we know
742 	 * we are holding the rcu lock
743 	 */
744 	cgrp1 = perf_cgroup_from_task(task, NULL);
745 	cgrp2 = perf_cgroup_from_task(prev, NULL);
746 
747 	/*
748 	 * only need to schedule in cgroup events if we are changing
749 	 * cgroup during ctxsw. Cgroup events were not scheduled
750 	 * out of ctxsw out if that was not the case.
751 	 */
752 	if (cgrp1 != cgrp2)
753 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754 
755 	rcu_read_unlock();
756 }
757 
758 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 				      struct perf_event_attr *attr,
760 				      struct perf_event *group_leader)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct cgroup_subsys_state *css;
764 	struct fd f = fdget(fd);
765 	int ret = 0;
766 
767 	if (!f.file)
768 		return -EBADF;
769 
770 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
771 					 &perf_event_cgrp_subsys);
772 	if (IS_ERR(css)) {
773 		ret = PTR_ERR(css);
774 		goto out;
775 	}
776 
777 	cgrp = container_of(css, struct perf_cgroup, css);
778 	event->cgrp = cgrp;
779 
780 	/*
781 	 * all events in a group must monitor
782 	 * the same cgroup because a task belongs
783 	 * to only one perf cgroup at a time
784 	 */
785 	if (group_leader && group_leader->cgrp != cgrp) {
786 		perf_detach_cgroup(event);
787 		ret = -EINVAL;
788 	}
789 out:
790 	fdput(f);
791 	return ret;
792 }
793 
794 static inline void
795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796 {
797 	struct perf_cgroup_info *t;
798 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 	event->shadow_ctx_time = now - t->timestamp;
800 }
801 
802 static inline void
803 perf_cgroup_defer_enabled(struct perf_event *event)
804 {
805 	/*
806 	 * when the current task's perf cgroup does not match
807 	 * the event's, we need to remember to call the
808 	 * perf_mark_enable() function the first time a task with
809 	 * a matching perf cgroup is scheduled in.
810 	 */
811 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 		event->cgrp_defer_enabled = 1;
813 }
814 
815 static inline void
816 perf_cgroup_mark_enabled(struct perf_event *event,
817 			 struct perf_event_context *ctx)
818 {
819 	struct perf_event *sub;
820 	u64 tstamp = perf_event_time(event);
821 
822 	if (!event->cgrp_defer_enabled)
823 		return;
824 
825 	event->cgrp_defer_enabled = 0;
826 
827 	event->tstamp_enabled = tstamp - event->total_time_enabled;
828 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 			sub->cgrp_defer_enabled = 0;
832 		}
833 	}
834 }
835 #else /* !CONFIG_CGROUP_PERF */
836 
837 static inline bool
838 perf_cgroup_match(struct perf_event *event)
839 {
840 	return true;
841 }
842 
843 static inline void perf_detach_cgroup(struct perf_event *event)
844 {}
845 
846 static inline int is_cgroup_event(struct perf_event *event)
847 {
848 	return 0;
849 }
850 
851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852 {
853 	return 0;
854 }
855 
856 static inline void update_cgrp_time_from_event(struct perf_event *event)
857 {
858 }
859 
860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861 {
862 }
863 
864 static inline void perf_cgroup_sched_out(struct task_struct *task,
865 					 struct task_struct *next)
866 {
867 }
868 
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 					struct task_struct *task)
871 {
872 }
873 
874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 				      struct perf_event_attr *attr,
876 				      struct perf_event *group_leader)
877 {
878 	return -EINVAL;
879 }
880 
881 static inline void
882 perf_cgroup_set_timestamp(struct task_struct *task,
883 			  struct perf_event_context *ctx)
884 {
885 }
886 
887 void
888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889 {
890 }
891 
892 static inline void
893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894 {
895 }
896 
897 static inline u64 perf_cgroup_event_time(struct perf_event *event)
898 {
899 	return 0;
900 }
901 
902 static inline void
903 perf_cgroup_defer_enabled(struct perf_event *event)
904 {
905 }
906 
907 static inline void
908 perf_cgroup_mark_enabled(struct perf_event *event,
909 			 struct perf_event_context *ctx)
910 {
911 }
912 #endif
913 
914 /*
915  * set default to be dependent on timer tick just
916  * like original code
917  */
918 #define PERF_CPU_HRTIMER (1000 / HZ)
919 /*
920  * function must be called with interrupts disbled
921  */
922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 {
924 	struct perf_cpu_context *cpuctx;
925 	int rotations = 0;
926 
927 	WARN_ON(!irqs_disabled());
928 
929 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
930 	rotations = perf_rotate_context(cpuctx);
931 
932 	raw_spin_lock(&cpuctx->hrtimer_lock);
933 	if (rotations)
934 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
935 	else
936 		cpuctx->hrtimer_active = 0;
937 	raw_spin_unlock(&cpuctx->hrtimer_lock);
938 
939 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 }
941 
942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943 {
944 	struct hrtimer *timer = &cpuctx->hrtimer;
945 	struct pmu *pmu = cpuctx->ctx.pmu;
946 	u64 interval;
947 
948 	/* no multiplexing needed for SW PMU */
949 	if (pmu->task_ctx_nr == perf_sw_context)
950 		return;
951 
952 	/*
953 	 * check default is sane, if not set then force to
954 	 * default interval (1/tick)
955 	 */
956 	interval = pmu->hrtimer_interval_ms;
957 	if (interval < 1)
958 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959 
960 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961 
962 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964 	timer->function = perf_mux_hrtimer_handler;
965 }
966 
967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968 {
969 	struct hrtimer *timer = &cpuctx->hrtimer;
970 	struct pmu *pmu = cpuctx->ctx.pmu;
971 	unsigned long flags;
972 
973 	/* not for SW PMU */
974 	if (pmu->task_ctx_nr == perf_sw_context)
975 		return 0;
976 
977 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 	if (!cpuctx->hrtimer_active) {
979 		cpuctx->hrtimer_active = 1;
980 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 	}
983 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984 
985 	return 0;
986 }
987 
988 void perf_pmu_disable(struct pmu *pmu)
989 {
990 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 	if (!(*count)++)
992 		pmu->pmu_disable(pmu);
993 }
994 
995 void perf_pmu_enable(struct pmu *pmu)
996 {
997 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 	if (!--(*count))
999 		pmu->pmu_enable(pmu);
1000 }
1001 
1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003 
1004 /*
1005  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006  * perf_event_task_tick() are fully serialized because they're strictly cpu
1007  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008  * disabled, while perf_event_task_tick is called from IRQ context.
1009  */
1010 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011 {
1012 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013 
1014 	WARN_ON(!irqs_disabled());
1015 
1016 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1017 
1018 	list_add(&ctx->active_ctx_list, head);
1019 }
1020 
1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022 {
1023 	WARN_ON(!irqs_disabled());
1024 
1025 	WARN_ON(list_empty(&ctx->active_ctx_list));
1026 
1027 	list_del_init(&ctx->active_ctx_list);
1028 }
1029 
1030 static void get_ctx(struct perf_event_context *ctx)
1031 {
1032 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 }
1034 
1035 static void free_ctx(struct rcu_head *head)
1036 {
1037 	struct perf_event_context *ctx;
1038 
1039 	ctx = container_of(head, struct perf_event_context, rcu_head);
1040 	kfree(ctx->task_ctx_data);
1041 	kfree(ctx);
1042 }
1043 
1044 static void put_ctx(struct perf_event_context *ctx)
1045 {
1046 	if (atomic_dec_and_test(&ctx->refcount)) {
1047 		if (ctx->parent_ctx)
1048 			put_ctx(ctx->parent_ctx);
1049 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050 			put_task_struct(ctx->task);
1051 		call_rcu(&ctx->rcu_head, free_ctx);
1052 	}
1053 }
1054 
1055 /*
1056  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057  * perf_pmu_migrate_context() we need some magic.
1058  *
1059  * Those places that change perf_event::ctx will hold both
1060  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061  *
1062  * Lock ordering is by mutex address. There are two other sites where
1063  * perf_event_context::mutex nests and those are:
1064  *
1065  *  - perf_event_exit_task_context()	[ child , 0 ]
1066  *      perf_event_exit_event()
1067  *        put_event()			[ parent, 1 ]
1068  *
1069  *  - perf_event_init_context()		[ parent, 0 ]
1070  *      inherit_task_group()
1071  *        inherit_group()
1072  *          inherit_event()
1073  *            perf_event_alloc()
1074  *              perf_init_event()
1075  *                perf_try_init_event()	[ child , 1 ]
1076  *
1077  * While it appears there is an obvious deadlock here -- the parent and child
1078  * nesting levels are inverted between the two. This is in fact safe because
1079  * life-time rules separate them. That is an exiting task cannot fork, and a
1080  * spawning task cannot (yet) exit.
1081  *
1082  * But remember that that these are parent<->child context relations, and
1083  * migration does not affect children, therefore these two orderings should not
1084  * interact.
1085  *
1086  * The change in perf_event::ctx does not affect children (as claimed above)
1087  * because the sys_perf_event_open() case will install a new event and break
1088  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089  * concerned with cpuctx and that doesn't have children.
1090  *
1091  * The places that change perf_event::ctx will issue:
1092  *
1093  *   perf_remove_from_context();
1094  *   synchronize_rcu();
1095  *   perf_install_in_context();
1096  *
1097  * to affect the change. The remove_from_context() + synchronize_rcu() should
1098  * quiesce the event, after which we can install it in the new location. This
1099  * means that only external vectors (perf_fops, prctl) can perturb the event
1100  * while in transit. Therefore all such accessors should also acquire
1101  * perf_event_context::mutex to serialize against this.
1102  *
1103  * However; because event->ctx can change while we're waiting to acquire
1104  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105  * function.
1106  *
1107  * Lock order:
1108  *	task_struct::perf_event_mutex
1109  *	  perf_event_context::mutex
1110  *	    perf_event::child_mutex;
1111  *	      perf_event_context::lock
1112  *	    perf_event::mmap_mutex
1113  *	    mmap_sem
1114  */
1115 static struct perf_event_context *
1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1117 {
1118 	struct perf_event_context *ctx;
1119 
1120 again:
1121 	rcu_read_lock();
1122 	ctx = ACCESS_ONCE(event->ctx);
1123 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 		rcu_read_unlock();
1125 		goto again;
1126 	}
1127 	rcu_read_unlock();
1128 
1129 	mutex_lock_nested(&ctx->mutex, nesting);
1130 	if (event->ctx != ctx) {
1131 		mutex_unlock(&ctx->mutex);
1132 		put_ctx(ctx);
1133 		goto again;
1134 	}
1135 
1136 	return ctx;
1137 }
1138 
1139 static inline struct perf_event_context *
1140 perf_event_ctx_lock(struct perf_event *event)
1141 {
1142 	return perf_event_ctx_lock_nested(event, 0);
1143 }
1144 
1145 static void perf_event_ctx_unlock(struct perf_event *event,
1146 				  struct perf_event_context *ctx)
1147 {
1148 	mutex_unlock(&ctx->mutex);
1149 	put_ctx(ctx);
1150 }
1151 
1152 /*
1153  * This must be done under the ctx->lock, such as to serialize against
1154  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155  * calling scheduler related locks and ctx->lock nests inside those.
1156  */
1157 static __must_check struct perf_event_context *
1158 unclone_ctx(struct perf_event_context *ctx)
1159 {
1160 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161 
1162 	lockdep_assert_held(&ctx->lock);
1163 
1164 	if (parent_ctx)
1165 		ctx->parent_ctx = NULL;
1166 	ctx->generation++;
1167 
1168 	return parent_ctx;
1169 }
1170 
1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172 {
1173 	/*
1174 	 * only top level events have the pid namespace they were created in
1175 	 */
1176 	if (event->parent)
1177 		event = event->parent;
1178 
1179 	return task_tgid_nr_ns(p, event->ns);
1180 }
1181 
1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183 {
1184 	/*
1185 	 * only top level events have the pid namespace they were created in
1186 	 */
1187 	if (event->parent)
1188 		event = event->parent;
1189 
1190 	return task_pid_nr_ns(p, event->ns);
1191 }
1192 
1193 /*
1194  * If we inherit events we want to return the parent event id
1195  * to userspace.
1196  */
1197 static u64 primary_event_id(struct perf_event *event)
1198 {
1199 	u64 id = event->id;
1200 
1201 	if (event->parent)
1202 		id = event->parent->id;
1203 
1204 	return id;
1205 }
1206 
1207 /*
1208  * Get the perf_event_context for a task and lock it.
1209  *
1210  * This has to cope with with the fact that until it is locked,
1211  * the context could get moved to another task.
1212  */
1213 static struct perf_event_context *
1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215 {
1216 	struct perf_event_context *ctx;
1217 
1218 retry:
1219 	/*
1220 	 * One of the few rules of preemptible RCU is that one cannot do
1221 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222 	 * part of the read side critical section was irqs-enabled -- see
1223 	 * rcu_read_unlock_special().
1224 	 *
1225 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226 	 * side critical section has interrupts disabled.
1227 	 */
1228 	local_irq_save(*flags);
1229 	rcu_read_lock();
1230 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 	if (ctx) {
1232 		/*
1233 		 * If this context is a clone of another, it might
1234 		 * get swapped for another underneath us by
1235 		 * perf_event_task_sched_out, though the
1236 		 * rcu_read_lock() protects us from any context
1237 		 * getting freed.  Lock the context and check if it
1238 		 * got swapped before we could get the lock, and retry
1239 		 * if so.  If we locked the right context, then it
1240 		 * can't get swapped on us any more.
1241 		 */
1242 		raw_spin_lock(&ctx->lock);
1243 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244 			raw_spin_unlock(&ctx->lock);
1245 			rcu_read_unlock();
1246 			local_irq_restore(*flags);
1247 			goto retry;
1248 		}
1249 
1250 		if (ctx->task == TASK_TOMBSTONE ||
1251 		    !atomic_inc_not_zero(&ctx->refcount)) {
1252 			raw_spin_unlock(&ctx->lock);
1253 			ctx = NULL;
1254 		} else {
1255 			WARN_ON_ONCE(ctx->task != task);
1256 		}
1257 	}
1258 	rcu_read_unlock();
1259 	if (!ctx)
1260 		local_irq_restore(*flags);
1261 	return ctx;
1262 }
1263 
1264 /*
1265  * Get the context for a task and increment its pin_count so it
1266  * can't get swapped to another task.  This also increments its
1267  * reference count so that the context can't get freed.
1268  */
1269 static struct perf_event_context *
1270 perf_pin_task_context(struct task_struct *task, int ctxn)
1271 {
1272 	struct perf_event_context *ctx;
1273 	unsigned long flags;
1274 
1275 	ctx = perf_lock_task_context(task, ctxn, &flags);
1276 	if (ctx) {
1277 		++ctx->pin_count;
1278 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 	}
1280 	return ctx;
1281 }
1282 
1283 static void perf_unpin_context(struct perf_event_context *ctx)
1284 {
1285 	unsigned long flags;
1286 
1287 	raw_spin_lock_irqsave(&ctx->lock, flags);
1288 	--ctx->pin_count;
1289 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 }
1291 
1292 /*
1293  * Update the record of the current time in a context.
1294  */
1295 static void update_context_time(struct perf_event_context *ctx)
1296 {
1297 	u64 now = perf_clock();
1298 
1299 	ctx->time += now - ctx->timestamp;
1300 	ctx->timestamp = now;
1301 }
1302 
1303 static u64 perf_event_time(struct perf_event *event)
1304 {
1305 	struct perf_event_context *ctx = event->ctx;
1306 
1307 	if (is_cgroup_event(event))
1308 		return perf_cgroup_event_time(event);
1309 
1310 	return ctx ? ctx->time : 0;
1311 }
1312 
1313 /*
1314  * Update the total_time_enabled and total_time_running fields for a event.
1315  */
1316 static void update_event_times(struct perf_event *event)
1317 {
1318 	struct perf_event_context *ctx = event->ctx;
1319 	u64 run_end;
1320 
1321 	lockdep_assert_held(&ctx->lock);
1322 
1323 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 		return;
1326 
1327 	/*
1328 	 * in cgroup mode, time_enabled represents
1329 	 * the time the event was enabled AND active
1330 	 * tasks were in the monitored cgroup. This is
1331 	 * independent of the activity of the context as
1332 	 * there may be a mix of cgroup and non-cgroup events.
1333 	 *
1334 	 * That is why we treat cgroup events differently
1335 	 * here.
1336 	 */
1337 	if (is_cgroup_event(event))
1338 		run_end = perf_cgroup_event_time(event);
1339 	else if (ctx->is_active)
1340 		run_end = ctx->time;
1341 	else
1342 		run_end = event->tstamp_stopped;
1343 
1344 	event->total_time_enabled = run_end - event->tstamp_enabled;
1345 
1346 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 		run_end = event->tstamp_stopped;
1348 	else
1349 		run_end = perf_event_time(event);
1350 
1351 	event->total_time_running = run_end - event->tstamp_running;
1352 
1353 }
1354 
1355 /*
1356  * Update total_time_enabled and total_time_running for all events in a group.
1357  */
1358 static void update_group_times(struct perf_event *leader)
1359 {
1360 	struct perf_event *event;
1361 
1362 	update_event_times(leader);
1363 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 		update_event_times(event);
1365 }
1366 
1367 static struct list_head *
1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 	if (event->attr.pinned)
1371 		return &ctx->pinned_groups;
1372 	else
1373 		return &ctx->flexible_groups;
1374 }
1375 
1376 /*
1377  * Add a event from the lists for its context.
1378  * Must be called with ctx->mutex and ctx->lock held.
1379  */
1380 static void
1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382 {
1383 	lockdep_assert_held(&ctx->lock);
1384 
1385 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 	event->attach_state |= PERF_ATTACH_CONTEXT;
1387 
1388 	/*
1389 	 * If we're a stand alone event or group leader, we go to the context
1390 	 * list, group events are kept attached to the group so that
1391 	 * perf_group_detach can, at all times, locate all siblings.
1392 	 */
1393 	if (event->group_leader == event) {
1394 		struct list_head *list;
1395 
1396 		if (is_software_event(event))
1397 			event->group_flags |= PERF_GROUP_SOFTWARE;
1398 
1399 		list = ctx_group_list(event, ctx);
1400 		list_add_tail(&event->group_entry, list);
1401 	}
1402 
1403 	if (is_cgroup_event(event))
1404 		ctx->nr_cgroups++;
1405 
1406 	list_add_rcu(&event->event_entry, &ctx->event_list);
1407 	ctx->nr_events++;
1408 	if (event->attr.inherit_stat)
1409 		ctx->nr_stat++;
1410 
1411 	ctx->generation++;
1412 }
1413 
1414 /*
1415  * Initialize event state based on the perf_event_attr::disabled.
1416  */
1417 static inline void perf_event__state_init(struct perf_event *event)
1418 {
1419 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 					      PERF_EVENT_STATE_INACTIVE;
1421 }
1422 
1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 {
1425 	int entry = sizeof(u64); /* value */
1426 	int size = 0;
1427 	int nr = 1;
1428 
1429 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 		size += sizeof(u64);
1431 
1432 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 		size += sizeof(u64);
1434 
1435 	if (event->attr.read_format & PERF_FORMAT_ID)
1436 		entry += sizeof(u64);
1437 
1438 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1439 		nr += nr_siblings;
1440 		size += sizeof(u64);
1441 	}
1442 
1443 	size += entry * nr;
1444 	event->read_size = size;
1445 }
1446 
1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 {
1449 	struct perf_sample_data *data;
1450 	u16 size = 0;
1451 
1452 	if (sample_type & PERF_SAMPLE_IP)
1453 		size += sizeof(data->ip);
1454 
1455 	if (sample_type & PERF_SAMPLE_ADDR)
1456 		size += sizeof(data->addr);
1457 
1458 	if (sample_type & PERF_SAMPLE_PERIOD)
1459 		size += sizeof(data->period);
1460 
1461 	if (sample_type & PERF_SAMPLE_WEIGHT)
1462 		size += sizeof(data->weight);
1463 
1464 	if (sample_type & PERF_SAMPLE_READ)
1465 		size += event->read_size;
1466 
1467 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 		size += sizeof(data->data_src.val);
1469 
1470 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 		size += sizeof(data->txn);
1472 
1473 	event->header_size = size;
1474 }
1475 
1476 /*
1477  * Called at perf_event creation and when events are attached/detached from a
1478  * group.
1479  */
1480 static void perf_event__header_size(struct perf_event *event)
1481 {
1482 	__perf_event_read_size(event,
1483 			       event->group_leader->nr_siblings);
1484 	__perf_event_header_size(event, event->attr.sample_type);
1485 }
1486 
1487 static void perf_event__id_header_size(struct perf_event *event)
1488 {
1489 	struct perf_sample_data *data;
1490 	u64 sample_type = event->attr.sample_type;
1491 	u16 size = 0;
1492 
1493 	if (sample_type & PERF_SAMPLE_TID)
1494 		size += sizeof(data->tid_entry);
1495 
1496 	if (sample_type & PERF_SAMPLE_TIME)
1497 		size += sizeof(data->time);
1498 
1499 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 		size += sizeof(data->id);
1501 
1502 	if (sample_type & PERF_SAMPLE_ID)
1503 		size += sizeof(data->id);
1504 
1505 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 		size += sizeof(data->stream_id);
1507 
1508 	if (sample_type & PERF_SAMPLE_CPU)
1509 		size += sizeof(data->cpu_entry);
1510 
1511 	event->id_header_size = size;
1512 }
1513 
1514 static bool perf_event_validate_size(struct perf_event *event)
1515 {
1516 	/*
1517 	 * The values computed here will be over-written when we actually
1518 	 * attach the event.
1519 	 */
1520 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 	perf_event__id_header_size(event);
1523 
1524 	/*
1525 	 * Sum the lot; should not exceed the 64k limit we have on records.
1526 	 * Conservative limit to allow for callchains and other variable fields.
1527 	 */
1528 	if (event->read_size + event->header_size +
1529 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 		return false;
1531 
1532 	return true;
1533 }
1534 
1535 static void perf_group_attach(struct perf_event *event)
1536 {
1537 	struct perf_event *group_leader = event->group_leader, *pos;
1538 
1539 	/*
1540 	 * We can have double attach due to group movement in perf_event_open.
1541 	 */
1542 	if (event->attach_state & PERF_ATTACH_GROUP)
1543 		return;
1544 
1545 	event->attach_state |= PERF_ATTACH_GROUP;
1546 
1547 	if (group_leader == event)
1548 		return;
1549 
1550 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551 
1552 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 			!is_software_event(event))
1554 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555 
1556 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 	group_leader->nr_siblings++;
1558 
1559 	perf_event__header_size(group_leader);
1560 
1561 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 		perf_event__header_size(pos);
1563 }
1564 
1565 /*
1566  * Remove a event from the lists for its context.
1567  * Must be called with ctx->mutex and ctx->lock held.
1568  */
1569 static void
1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571 {
1572 	struct perf_cpu_context *cpuctx;
1573 
1574 	WARN_ON_ONCE(event->ctx != ctx);
1575 	lockdep_assert_held(&ctx->lock);
1576 
1577 	/*
1578 	 * We can have double detach due to exit/hot-unplug + close.
1579 	 */
1580 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581 		return;
1582 
1583 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584 
1585 	if (is_cgroup_event(event)) {
1586 		ctx->nr_cgroups--;
1587 		/*
1588 		 * Because cgroup events are always per-cpu events, this will
1589 		 * always be called from the right CPU.
1590 		 */
1591 		cpuctx = __get_cpu_context(ctx);
1592 		/*
1593 		 * If there are no more cgroup events then clear cgrp to avoid
1594 		 * stale pointer in update_cgrp_time_from_cpuctx().
1595 		 */
1596 		if (!ctx->nr_cgroups)
1597 			cpuctx->cgrp = NULL;
1598 	}
1599 
1600 	ctx->nr_events--;
1601 	if (event->attr.inherit_stat)
1602 		ctx->nr_stat--;
1603 
1604 	list_del_rcu(&event->event_entry);
1605 
1606 	if (event->group_leader == event)
1607 		list_del_init(&event->group_entry);
1608 
1609 	update_group_times(event);
1610 
1611 	/*
1612 	 * If event was in error state, then keep it
1613 	 * that way, otherwise bogus counts will be
1614 	 * returned on read(). The only way to get out
1615 	 * of error state is by explicit re-enabling
1616 	 * of the event
1617 	 */
1618 	if (event->state > PERF_EVENT_STATE_OFF)
1619 		event->state = PERF_EVENT_STATE_OFF;
1620 
1621 	ctx->generation++;
1622 }
1623 
1624 static void perf_group_detach(struct perf_event *event)
1625 {
1626 	struct perf_event *sibling, *tmp;
1627 	struct list_head *list = NULL;
1628 
1629 	/*
1630 	 * We can have double detach due to exit/hot-unplug + close.
1631 	 */
1632 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 		return;
1634 
1635 	event->attach_state &= ~PERF_ATTACH_GROUP;
1636 
1637 	/*
1638 	 * If this is a sibling, remove it from its group.
1639 	 */
1640 	if (event->group_leader != event) {
1641 		list_del_init(&event->group_entry);
1642 		event->group_leader->nr_siblings--;
1643 		goto out;
1644 	}
1645 
1646 	if (!list_empty(&event->group_entry))
1647 		list = &event->group_entry;
1648 
1649 	/*
1650 	 * If this was a group event with sibling events then
1651 	 * upgrade the siblings to singleton events by adding them
1652 	 * to whatever list we are on.
1653 	 */
1654 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 		if (list)
1656 			list_move_tail(&sibling->group_entry, list);
1657 		sibling->group_leader = sibling;
1658 
1659 		/* Inherit group flags from the previous leader */
1660 		sibling->group_flags = event->group_flags;
1661 
1662 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1663 	}
1664 
1665 out:
1666 	perf_event__header_size(event->group_leader);
1667 
1668 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 		perf_event__header_size(tmp);
1670 }
1671 
1672 static bool is_orphaned_event(struct perf_event *event)
1673 {
1674 	return event->state == PERF_EVENT_STATE_DEAD;
1675 }
1676 
1677 static inline int pmu_filter_match(struct perf_event *event)
1678 {
1679 	struct pmu *pmu = event->pmu;
1680 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1681 }
1682 
1683 static inline int
1684 event_filter_match(struct perf_event *event)
1685 {
1686 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1687 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1688 }
1689 
1690 static void
1691 event_sched_out(struct perf_event *event,
1692 		  struct perf_cpu_context *cpuctx,
1693 		  struct perf_event_context *ctx)
1694 {
1695 	u64 tstamp = perf_event_time(event);
1696 	u64 delta;
1697 
1698 	WARN_ON_ONCE(event->ctx != ctx);
1699 	lockdep_assert_held(&ctx->lock);
1700 
1701 	/*
1702 	 * An event which could not be activated because of
1703 	 * filter mismatch still needs to have its timings
1704 	 * maintained, otherwise bogus information is return
1705 	 * via read() for time_enabled, time_running:
1706 	 */
1707 	if (event->state == PERF_EVENT_STATE_INACTIVE
1708 	    && !event_filter_match(event)) {
1709 		delta = tstamp - event->tstamp_stopped;
1710 		event->tstamp_running += delta;
1711 		event->tstamp_stopped = tstamp;
1712 	}
1713 
1714 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1715 		return;
1716 
1717 	perf_pmu_disable(event->pmu);
1718 
1719 	event->tstamp_stopped = tstamp;
1720 	event->pmu->del(event, 0);
1721 	event->oncpu = -1;
1722 	event->state = PERF_EVENT_STATE_INACTIVE;
1723 	if (event->pending_disable) {
1724 		event->pending_disable = 0;
1725 		event->state = PERF_EVENT_STATE_OFF;
1726 	}
1727 
1728 	if (!is_software_event(event))
1729 		cpuctx->active_oncpu--;
1730 	if (!--ctx->nr_active)
1731 		perf_event_ctx_deactivate(ctx);
1732 	if (event->attr.freq && event->attr.sample_freq)
1733 		ctx->nr_freq--;
1734 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1735 		cpuctx->exclusive = 0;
1736 
1737 	perf_pmu_enable(event->pmu);
1738 }
1739 
1740 static void
1741 group_sched_out(struct perf_event *group_event,
1742 		struct perf_cpu_context *cpuctx,
1743 		struct perf_event_context *ctx)
1744 {
1745 	struct perf_event *event;
1746 	int state = group_event->state;
1747 
1748 	event_sched_out(group_event, cpuctx, ctx);
1749 
1750 	/*
1751 	 * Schedule out siblings (if any):
1752 	 */
1753 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 		event_sched_out(event, cpuctx, ctx);
1755 
1756 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 		cpuctx->exclusive = 0;
1758 }
1759 
1760 #define DETACH_GROUP	0x01UL
1761 
1762 /*
1763  * Cross CPU call to remove a performance event
1764  *
1765  * We disable the event on the hardware level first. After that we
1766  * remove it from the context list.
1767  */
1768 static void
1769 __perf_remove_from_context(struct perf_event *event,
1770 			   struct perf_cpu_context *cpuctx,
1771 			   struct perf_event_context *ctx,
1772 			   void *info)
1773 {
1774 	unsigned long flags = (unsigned long)info;
1775 
1776 	event_sched_out(event, cpuctx, ctx);
1777 	if (flags & DETACH_GROUP)
1778 		perf_group_detach(event);
1779 	list_del_event(event, ctx);
1780 
1781 	if (!ctx->nr_events && ctx->is_active) {
1782 		ctx->is_active = 0;
1783 		if (ctx->task) {
1784 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 			cpuctx->task_ctx = NULL;
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * Remove the event from a task's (or a CPU's) list of events.
1792  *
1793  * If event->ctx is a cloned context, callers must make sure that
1794  * every task struct that event->ctx->task could possibly point to
1795  * remains valid.  This is OK when called from perf_release since
1796  * that only calls us on the top-level context, which can't be a clone.
1797  * When called from perf_event_exit_task, it's OK because the
1798  * context has been detached from its task.
1799  */
1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1801 {
1802 	lockdep_assert_held(&event->ctx->mutex);
1803 
1804 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1805 }
1806 
1807 /*
1808  * Cross CPU call to disable a performance event
1809  */
1810 static void __perf_event_disable(struct perf_event *event,
1811 				 struct perf_cpu_context *cpuctx,
1812 				 struct perf_event_context *ctx,
1813 				 void *info)
1814 {
1815 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 		return;
1817 
1818 	update_context_time(ctx);
1819 	update_cgrp_time_from_event(event);
1820 	update_group_times(event);
1821 	if (event == event->group_leader)
1822 		group_sched_out(event, cpuctx, ctx);
1823 	else
1824 		event_sched_out(event, cpuctx, ctx);
1825 	event->state = PERF_EVENT_STATE_OFF;
1826 }
1827 
1828 /*
1829  * Disable a event.
1830  *
1831  * If event->ctx is a cloned context, callers must make sure that
1832  * every task struct that event->ctx->task could possibly point to
1833  * remains valid.  This condition is satisifed when called through
1834  * perf_event_for_each_child or perf_event_for_each because they
1835  * hold the top-level event's child_mutex, so any descendant that
1836  * goes to exit will block in perf_event_exit_event().
1837  *
1838  * When called from perf_pending_event it's OK because event->ctx
1839  * is the current context on this CPU and preemption is disabled,
1840  * hence we can't get into perf_event_task_sched_out for this context.
1841  */
1842 static void _perf_event_disable(struct perf_event *event)
1843 {
1844 	struct perf_event_context *ctx = event->ctx;
1845 
1846 	raw_spin_lock_irq(&ctx->lock);
1847 	if (event->state <= PERF_EVENT_STATE_OFF) {
1848 		raw_spin_unlock_irq(&ctx->lock);
1849 		return;
1850 	}
1851 	raw_spin_unlock_irq(&ctx->lock);
1852 
1853 	event_function_call(event, __perf_event_disable, NULL);
1854 }
1855 
1856 void perf_event_disable_local(struct perf_event *event)
1857 {
1858 	event_function_local(event, __perf_event_disable, NULL);
1859 }
1860 
1861 /*
1862  * Strictly speaking kernel users cannot create groups and therefore this
1863  * interface does not need the perf_event_ctx_lock() magic.
1864  */
1865 void perf_event_disable(struct perf_event *event)
1866 {
1867 	struct perf_event_context *ctx;
1868 
1869 	ctx = perf_event_ctx_lock(event);
1870 	_perf_event_disable(event);
1871 	perf_event_ctx_unlock(event, ctx);
1872 }
1873 EXPORT_SYMBOL_GPL(perf_event_disable);
1874 
1875 static void perf_set_shadow_time(struct perf_event *event,
1876 				 struct perf_event_context *ctx,
1877 				 u64 tstamp)
1878 {
1879 	/*
1880 	 * use the correct time source for the time snapshot
1881 	 *
1882 	 * We could get by without this by leveraging the
1883 	 * fact that to get to this function, the caller
1884 	 * has most likely already called update_context_time()
1885 	 * and update_cgrp_time_xx() and thus both timestamp
1886 	 * are identical (or very close). Given that tstamp is,
1887 	 * already adjusted for cgroup, we could say that:
1888 	 *    tstamp - ctx->timestamp
1889 	 * is equivalent to
1890 	 *    tstamp - cgrp->timestamp.
1891 	 *
1892 	 * Then, in perf_output_read(), the calculation would
1893 	 * work with no changes because:
1894 	 * - event is guaranteed scheduled in
1895 	 * - no scheduled out in between
1896 	 * - thus the timestamp would be the same
1897 	 *
1898 	 * But this is a bit hairy.
1899 	 *
1900 	 * So instead, we have an explicit cgroup call to remain
1901 	 * within the time time source all along. We believe it
1902 	 * is cleaner and simpler to understand.
1903 	 */
1904 	if (is_cgroup_event(event))
1905 		perf_cgroup_set_shadow_time(event, tstamp);
1906 	else
1907 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1908 }
1909 
1910 #define MAX_INTERRUPTS (~0ULL)
1911 
1912 static void perf_log_throttle(struct perf_event *event, int enable);
1913 static void perf_log_itrace_start(struct perf_event *event);
1914 
1915 static int
1916 event_sched_in(struct perf_event *event,
1917 		 struct perf_cpu_context *cpuctx,
1918 		 struct perf_event_context *ctx)
1919 {
1920 	u64 tstamp = perf_event_time(event);
1921 	int ret = 0;
1922 
1923 	lockdep_assert_held(&ctx->lock);
1924 
1925 	if (event->state <= PERF_EVENT_STATE_OFF)
1926 		return 0;
1927 
1928 	event->state = PERF_EVENT_STATE_ACTIVE;
1929 	event->oncpu = smp_processor_id();
1930 
1931 	/*
1932 	 * Unthrottle events, since we scheduled we might have missed several
1933 	 * ticks already, also for a heavily scheduling task there is little
1934 	 * guarantee it'll get a tick in a timely manner.
1935 	 */
1936 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 		perf_log_throttle(event, 1);
1938 		event->hw.interrupts = 0;
1939 	}
1940 
1941 	/*
1942 	 * The new state must be visible before we turn it on in the hardware:
1943 	 */
1944 	smp_wmb();
1945 
1946 	perf_pmu_disable(event->pmu);
1947 
1948 	perf_set_shadow_time(event, ctx, tstamp);
1949 
1950 	perf_log_itrace_start(event);
1951 
1952 	if (event->pmu->add(event, PERF_EF_START)) {
1953 		event->state = PERF_EVENT_STATE_INACTIVE;
1954 		event->oncpu = -1;
1955 		ret = -EAGAIN;
1956 		goto out;
1957 	}
1958 
1959 	event->tstamp_running += tstamp - event->tstamp_stopped;
1960 
1961 	if (!is_software_event(event))
1962 		cpuctx->active_oncpu++;
1963 	if (!ctx->nr_active++)
1964 		perf_event_ctx_activate(ctx);
1965 	if (event->attr.freq && event->attr.sample_freq)
1966 		ctx->nr_freq++;
1967 
1968 	if (event->attr.exclusive)
1969 		cpuctx->exclusive = 1;
1970 
1971 out:
1972 	perf_pmu_enable(event->pmu);
1973 
1974 	return ret;
1975 }
1976 
1977 static int
1978 group_sched_in(struct perf_event *group_event,
1979 	       struct perf_cpu_context *cpuctx,
1980 	       struct perf_event_context *ctx)
1981 {
1982 	struct perf_event *event, *partial_group = NULL;
1983 	struct pmu *pmu = ctx->pmu;
1984 	u64 now = ctx->time;
1985 	bool simulate = false;
1986 
1987 	if (group_event->state == PERF_EVENT_STATE_OFF)
1988 		return 0;
1989 
1990 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991 
1992 	if (event_sched_in(group_event, cpuctx, ctx)) {
1993 		pmu->cancel_txn(pmu);
1994 		perf_mux_hrtimer_restart(cpuctx);
1995 		return -EAGAIN;
1996 	}
1997 
1998 	/*
1999 	 * Schedule in siblings as one group (if any):
2000 	 */
2001 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002 		if (event_sched_in(event, cpuctx, ctx)) {
2003 			partial_group = event;
2004 			goto group_error;
2005 		}
2006 	}
2007 
2008 	if (!pmu->commit_txn(pmu))
2009 		return 0;
2010 
2011 group_error:
2012 	/*
2013 	 * Groups can be scheduled in as one unit only, so undo any
2014 	 * partial group before returning:
2015 	 * The events up to the failed event are scheduled out normally,
2016 	 * tstamp_stopped will be updated.
2017 	 *
2018 	 * The failed events and the remaining siblings need to have
2019 	 * their timings updated as if they had gone thru event_sched_in()
2020 	 * and event_sched_out(). This is required to get consistent timings
2021 	 * across the group. This also takes care of the case where the group
2022 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 	 * the time the event was actually stopped, such that time delta
2024 	 * calculation in update_event_times() is correct.
2025 	 */
2026 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 		if (event == partial_group)
2028 			simulate = true;
2029 
2030 		if (simulate) {
2031 			event->tstamp_running += now - event->tstamp_stopped;
2032 			event->tstamp_stopped = now;
2033 		} else {
2034 			event_sched_out(event, cpuctx, ctx);
2035 		}
2036 	}
2037 	event_sched_out(group_event, cpuctx, ctx);
2038 
2039 	pmu->cancel_txn(pmu);
2040 
2041 	perf_mux_hrtimer_restart(cpuctx);
2042 
2043 	return -EAGAIN;
2044 }
2045 
2046 /*
2047  * Work out whether we can put this event group on the CPU now.
2048  */
2049 static int group_can_go_on(struct perf_event *event,
2050 			   struct perf_cpu_context *cpuctx,
2051 			   int can_add_hw)
2052 {
2053 	/*
2054 	 * Groups consisting entirely of software events can always go on.
2055 	 */
2056 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 		return 1;
2058 	/*
2059 	 * If an exclusive group is already on, no other hardware
2060 	 * events can go on.
2061 	 */
2062 	if (cpuctx->exclusive)
2063 		return 0;
2064 	/*
2065 	 * If this group is exclusive and there are already
2066 	 * events on the CPU, it can't go on.
2067 	 */
2068 	if (event->attr.exclusive && cpuctx->active_oncpu)
2069 		return 0;
2070 	/*
2071 	 * Otherwise, try to add it if all previous groups were able
2072 	 * to go on.
2073 	 */
2074 	return can_add_hw;
2075 }
2076 
2077 static void add_event_to_ctx(struct perf_event *event,
2078 			       struct perf_event_context *ctx)
2079 {
2080 	u64 tstamp = perf_event_time(event);
2081 
2082 	list_add_event(event, ctx);
2083 	perf_group_attach(event);
2084 	event->tstamp_enabled = tstamp;
2085 	event->tstamp_running = tstamp;
2086 	event->tstamp_stopped = tstamp;
2087 }
2088 
2089 static void ctx_sched_out(struct perf_event_context *ctx,
2090 			  struct perf_cpu_context *cpuctx,
2091 			  enum event_type_t event_type);
2092 static void
2093 ctx_sched_in(struct perf_event_context *ctx,
2094 	     struct perf_cpu_context *cpuctx,
2095 	     enum event_type_t event_type,
2096 	     struct task_struct *task);
2097 
2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2099 			       struct perf_event_context *ctx)
2100 {
2101 	if (!cpuctx->task_ctx)
2102 		return;
2103 
2104 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2105 		return;
2106 
2107 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2108 }
2109 
2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2111 				struct perf_event_context *ctx,
2112 				struct task_struct *task)
2113 {
2114 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2115 	if (ctx)
2116 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2117 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2118 	if (ctx)
2119 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120 }
2121 
2122 static void ctx_resched(struct perf_cpu_context *cpuctx,
2123 			struct perf_event_context *task_ctx)
2124 {
2125 	perf_pmu_disable(cpuctx->ctx.pmu);
2126 	if (task_ctx)
2127 		task_ctx_sched_out(cpuctx, task_ctx);
2128 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2129 	perf_event_sched_in(cpuctx, task_ctx, current);
2130 	perf_pmu_enable(cpuctx->ctx.pmu);
2131 }
2132 
2133 /*
2134  * Cross CPU call to install and enable a performance event
2135  *
2136  * Very similar to remote_function() + event_function() but cannot assume that
2137  * things like ctx->is_active and cpuctx->task_ctx are set.
2138  */
2139 static int  __perf_install_in_context(void *info)
2140 {
2141 	struct perf_event *event = info;
2142 	struct perf_event_context *ctx = event->ctx;
2143 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 	bool activate = true;
2146 	int ret = 0;
2147 
2148 	raw_spin_lock(&cpuctx->ctx.lock);
2149 	if (ctx->task) {
2150 		raw_spin_lock(&ctx->lock);
2151 		task_ctx = ctx;
2152 
2153 		/* If we're on the wrong CPU, try again */
2154 		if (task_cpu(ctx->task) != smp_processor_id()) {
2155 			ret = -ESRCH;
2156 			goto unlock;
2157 		}
2158 
2159 		/*
2160 		 * If we're on the right CPU, see if the task we target is
2161 		 * current, if not we don't have to activate the ctx, a future
2162 		 * context switch will do that for us.
2163 		 */
2164 		if (ctx->task != current)
2165 			activate = false;
2166 		else
2167 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2168 
2169 	} else if (task_ctx) {
2170 		raw_spin_lock(&task_ctx->lock);
2171 	}
2172 
2173 	if (activate) {
2174 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2175 		add_event_to_ctx(event, ctx);
2176 		ctx_resched(cpuctx, task_ctx);
2177 	} else {
2178 		add_event_to_ctx(event, ctx);
2179 	}
2180 
2181 unlock:
2182 	perf_ctx_unlock(cpuctx, task_ctx);
2183 
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Attach a performance event to a context.
2189  *
2190  * Very similar to event_function_call, see comment there.
2191  */
2192 static void
2193 perf_install_in_context(struct perf_event_context *ctx,
2194 			struct perf_event *event,
2195 			int cpu)
2196 {
2197 	struct task_struct *task = READ_ONCE(ctx->task);
2198 
2199 	lockdep_assert_held(&ctx->mutex);
2200 
2201 	event->ctx = ctx;
2202 	if (event->cpu != -1)
2203 		event->cpu = cpu;
2204 
2205 	if (!task) {
2206 		cpu_function_call(cpu, __perf_install_in_context, event);
2207 		return;
2208 	}
2209 
2210 	/*
2211 	 * Should not happen, we validate the ctx is still alive before calling.
2212 	 */
2213 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2214 		return;
2215 
2216 	/*
2217 	 * Installing events is tricky because we cannot rely on ctx->is_active
2218 	 * to be set in case this is the nr_events 0 -> 1 transition.
2219 	 */
2220 again:
2221 	/*
2222 	 * Cannot use task_function_call() because we need to run on the task's
2223 	 * CPU regardless of whether its current or not.
2224 	 */
2225 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2226 		return;
2227 
2228 	raw_spin_lock_irq(&ctx->lock);
2229 	task = ctx->task;
2230 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 		/*
2232 		 * Cannot happen because we already checked above (which also
2233 		 * cannot happen), and we hold ctx->mutex, which serializes us
2234 		 * against perf_event_exit_task_context().
2235 		 */
2236 		raw_spin_unlock_irq(&ctx->lock);
2237 		return;
2238 	}
2239 	raw_spin_unlock_irq(&ctx->lock);
2240 	/*
2241 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2242 	 * unconditionally.
2243 	 */
2244 	goto again;
2245 }
2246 
2247 /*
2248  * Put a event into inactive state and update time fields.
2249  * Enabling the leader of a group effectively enables all
2250  * the group members that aren't explicitly disabled, so we
2251  * have to update their ->tstamp_enabled also.
2252  * Note: this works for group members as well as group leaders
2253  * since the non-leader members' sibling_lists will be empty.
2254  */
2255 static void __perf_event_mark_enabled(struct perf_event *event)
2256 {
2257 	struct perf_event *sub;
2258 	u64 tstamp = perf_event_time(event);
2259 
2260 	event->state = PERF_EVENT_STATE_INACTIVE;
2261 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2262 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2264 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2265 	}
2266 }
2267 
2268 /*
2269  * Cross CPU call to enable a performance event
2270  */
2271 static void __perf_event_enable(struct perf_event *event,
2272 				struct perf_cpu_context *cpuctx,
2273 				struct perf_event_context *ctx,
2274 				void *info)
2275 {
2276 	struct perf_event *leader = event->group_leader;
2277 	struct perf_event_context *task_ctx;
2278 
2279 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2280 	    event->state <= PERF_EVENT_STATE_ERROR)
2281 		return;
2282 
2283 	if (ctx->is_active)
2284 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285 
2286 	__perf_event_mark_enabled(event);
2287 
2288 	if (!ctx->is_active)
2289 		return;
2290 
2291 	if (!event_filter_match(event)) {
2292 		if (is_cgroup_event(event))
2293 			perf_cgroup_defer_enabled(event);
2294 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295 		return;
2296 	}
2297 
2298 	/*
2299 	 * If the event is in a group and isn't the group leader,
2300 	 * then don't put it on unless the group is on.
2301 	 */
2302 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2303 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 		return;
2305 	}
2306 
2307 	task_ctx = cpuctx->task_ctx;
2308 	if (ctx->task)
2309 		WARN_ON_ONCE(task_ctx != ctx);
2310 
2311 	ctx_resched(cpuctx, task_ctx);
2312 }
2313 
2314 /*
2315  * Enable a event.
2316  *
2317  * If event->ctx is a cloned context, callers must make sure that
2318  * every task struct that event->ctx->task could possibly point to
2319  * remains valid.  This condition is satisfied when called through
2320  * perf_event_for_each_child or perf_event_for_each as described
2321  * for perf_event_disable.
2322  */
2323 static void _perf_event_enable(struct perf_event *event)
2324 {
2325 	struct perf_event_context *ctx = event->ctx;
2326 
2327 	raw_spin_lock_irq(&ctx->lock);
2328 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2329 	    event->state <  PERF_EVENT_STATE_ERROR) {
2330 		raw_spin_unlock_irq(&ctx->lock);
2331 		return;
2332 	}
2333 
2334 	/*
2335 	 * If the event is in error state, clear that first.
2336 	 *
2337 	 * That way, if we see the event in error state below, we know that it
2338 	 * has gone back into error state, as distinct from the task having
2339 	 * been scheduled away before the cross-call arrived.
2340 	 */
2341 	if (event->state == PERF_EVENT_STATE_ERROR)
2342 		event->state = PERF_EVENT_STATE_OFF;
2343 	raw_spin_unlock_irq(&ctx->lock);
2344 
2345 	event_function_call(event, __perf_event_enable, NULL);
2346 }
2347 
2348 /*
2349  * See perf_event_disable();
2350  */
2351 void perf_event_enable(struct perf_event *event)
2352 {
2353 	struct perf_event_context *ctx;
2354 
2355 	ctx = perf_event_ctx_lock(event);
2356 	_perf_event_enable(event);
2357 	perf_event_ctx_unlock(event, ctx);
2358 }
2359 EXPORT_SYMBOL_GPL(perf_event_enable);
2360 
2361 static int _perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 	/*
2364 	 * not supported on inherited events
2365 	 */
2366 	if (event->attr.inherit || !is_sampling_event(event))
2367 		return -EINVAL;
2368 
2369 	atomic_add(refresh, &event->event_limit);
2370 	_perf_event_enable(event);
2371 
2372 	return 0;
2373 }
2374 
2375 /*
2376  * See perf_event_disable()
2377  */
2378 int perf_event_refresh(struct perf_event *event, int refresh)
2379 {
2380 	struct perf_event_context *ctx;
2381 	int ret;
2382 
2383 	ctx = perf_event_ctx_lock(event);
2384 	ret = _perf_event_refresh(event, refresh);
2385 	perf_event_ctx_unlock(event, ctx);
2386 
2387 	return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_refresh);
2390 
2391 static void ctx_sched_out(struct perf_event_context *ctx,
2392 			  struct perf_cpu_context *cpuctx,
2393 			  enum event_type_t event_type)
2394 {
2395 	int is_active = ctx->is_active;
2396 	struct perf_event *event;
2397 
2398 	lockdep_assert_held(&ctx->lock);
2399 
2400 	if (likely(!ctx->nr_events)) {
2401 		/*
2402 		 * See __perf_remove_from_context().
2403 		 */
2404 		WARN_ON_ONCE(ctx->is_active);
2405 		if (ctx->task)
2406 			WARN_ON_ONCE(cpuctx->task_ctx);
2407 		return;
2408 	}
2409 
2410 	ctx->is_active &= ~event_type;
2411 	if (!(ctx->is_active & EVENT_ALL))
2412 		ctx->is_active = 0;
2413 
2414 	if (ctx->task) {
2415 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2416 		if (!ctx->is_active)
2417 			cpuctx->task_ctx = NULL;
2418 	}
2419 
2420 	/*
2421 	 * Always update time if it was set; not only when it changes.
2422 	 * Otherwise we can 'forget' to update time for any but the last
2423 	 * context we sched out. For example:
2424 	 *
2425 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2426 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2427 	 *
2428 	 * would only update time for the pinned events.
2429 	 */
2430 	if (is_active & EVENT_TIME) {
2431 		/* update (and stop) ctx time */
2432 		update_context_time(ctx);
2433 		update_cgrp_time_from_cpuctx(cpuctx);
2434 	}
2435 
2436 	is_active ^= ctx->is_active; /* changed bits */
2437 
2438 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2439 		return;
2440 
2441 	perf_pmu_disable(ctx->pmu);
2442 	if (is_active & EVENT_PINNED) {
2443 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2444 			group_sched_out(event, cpuctx, ctx);
2445 	}
2446 
2447 	if (is_active & EVENT_FLEXIBLE) {
2448 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2449 			group_sched_out(event, cpuctx, ctx);
2450 	}
2451 	perf_pmu_enable(ctx->pmu);
2452 }
2453 
2454 /*
2455  * Test whether two contexts are equivalent, i.e. whether they have both been
2456  * cloned from the same version of the same context.
2457  *
2458  * Equivalence is measured using a generation number in the context that is
2459  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2460  * and list_del_event().
2461  */
2462 static int context_equiv(struct perf_event_context *ctx1,
2463 			 struct perf_event_context *ctx2)
2464 {
2465 	lockdep_assert_held(&ctx1->lock);
2466 	lockdep_assert_held(&ctx2->lock);
2467 
2468 	/* Pinning disables the swap optimization */
2469 	if (ctx1->pin_count || ctx2->pin_count)
2470 		return 0;
2471 
2472 	/* If ctx1 is the parent of ctx2 */
2473 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2474 		return 1;
2475 
2476 	/* If ctx2 is the parent of ctx1 */
2477 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2478 		return 1;
2479 
2480 	/*
2481 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2482 	 * hierarchy, see perf_event_init_context().
2483 	 */
2484 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2485 			ctx1->parent_gen == ctx2->parent_gen)
2486 		return 1;
2487 
2488 	/* Unmatched */
2489 	return 0;
2490 }
2491 
2492 static void __perf_event_sync_stat(struct perf_event *event,
2493 				     struct perf_event *next_event)
2494 {
2495 	u64 value;
2496 
2497 	if (!event->attr.inherit_stat)
2498 		return;
2499 
2500 	/*
2501 	 * Update the event value, we cannot use perf_event_read()
2502 	 * because we're in the middle of a context switch and have IRQs
2503 	 * disabled, which upsets smp_call_function_single(), however
2504 	 * we know the event must be on the current CPU, therefore we
2505 	 * don't need to use it.
2506 	 */
2507 	switch (event->state) {
2508 	case PERF_EVENT_STATE_ACTIVE:
2509 		event->pmu->read(event);
2510 		/* fall-through */
2511 
2512 	case PERF_EVENT_STATE_INACTIVE:
2513 		update_event_times(event);
2514 		break;
2515 
2516 	default:
2517 		break;
2518 	}
2519 
2520 	/*
2521 	 * In order to keep per-task stats reliable we need to flip the event
2522 	 * values when we flip the contexts.
2523 	 */
2524 	value = local64_read(&next_event->count);
2525 	value = local64_xchg(&event->count, value);
2526 	local64_set(&next_event->count, value);
2527 
2528 	swap(event->total_time_enabled, next_event->total_time_enabled);
2529 	swap(event->total_time_running, next_event->total_time_running);
2530 
2531 	/*
2532 	 * Since we swizzled the values, update the user visible data too.
2533 	 */
2534 	perf_event_update_userpage(event);
2535 	perf_event_update_userpage(next_event);
2536 }
2537 
2538 static void perf_event_sync_stat(struct perf_event_context *ctx,
2539 				   struct perf_event_context *next_ctx)
2540 {
2541 	struct perf_event *event, *next_event;
2542 
2543 	if (!ctx->nr_stat)
2544 		return;
2545 
2546 	update_context_time(ctx);
2547 
2548 	event = list_first_entry(&ctx->event_list,
2549 				   struct perf_event, event_entry);
2550 
2551 	next_event = list_first_entry(&next_ctx->event_list,
2552 					struct perf_event, event_entry);
2553 
2554 	while (&event->event_entry != &ctx->event_list &&
2555 	       &next_event->event_entry != &next_ctx->event_list) {
2556 
2557 		__perf_event_sync_stat(event, next_event);
2558 
2559 		event = list_next_entry(event, event_entry);
2560 		next_event = list_next_entry(next_event, event_entry);
2561 	}
2562 }
2563 
2564 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2565 					 struct task_struct *next)
2566 {
2567 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2568 	struct perf_event_context *next_ctx;
2569 	struct perf_event_context *parent, *next_parent;
2570 	struct perf_cpu_context *cpuctx;
2571 	int do_switch = 1;
2572 
2573 	if (likely(!ctx))
2574 		return;
2575 
2576 	cpuctx = __get_cpu_context(ctx);
2577 	if (!cpuctx->task_ctx)
2578 		return;
2579 
2580 	rcu_read_lock();
2581 	next_ctx = next->perf_event_ctxp[ctxn];
2582 	if (!next_ctx)
2583 		goto unlock;
2584 
2585 	parent = rcu_dereference(ctx->parent_ctx);
2586 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2587 
2588 	/* If neither context have a parent context; they cannot be clones. */
2589 	if (!parent && !next_parent)
2590 		goto unlock;
2591 
2592 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2593 		/*
2594 		 * Looks like the two contexts are clones, so we might be
2595 		 * able to optimize the context switch.  We lock both
2596 		 * contexts and check that they are clones under the
2597 		 * lock (including re-checking that neither has been
2598 		 * uncloned in the meantime).  It doesn't matter which
2599 		 * order we take the locks because no other cpu could
2600 		 * be trying to lock both of these tasks.
2601 		 */
2602 		raw_spin_lock(&ctx->lock);
2603 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2604 		if (context_equiv(ctx, next_ctx)) {
2605 			WRITE_ONCE(ctx->task, next);
2606 			WRITE_ONCE(next_ctx->task, task);
2607 
2608 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2609 
2610 			/*
2611 			 * RCU_INIT_POINTER here is safe because we've not
2612 			 * modified the ctx and the above modification of
2613 			 * ctx->task and ctx->task_ctx_data are immaterial
2614 			 * since those values are always verified under
2615 			 * ctx->lock which we're now holding.
2616 			 */
2617 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2618 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2619 
2620 			do_switch = 0;
2621 
2622 			perf_event_sync_stat(ctx, next_ctx);
2623 		}
2624 		raw_spin_unlock(&next_ctx->lock);
2625 		raw_spin_unlock(&ctx->lock);
2626 	}
2627 unlock:
2628 	rcu_read_unlock();
2629 
2630 	if (do_switch) {
2631 		raw_spin_lock(&ctx->lock);
2632 		task_ctx_sched_out(cpuctx, ctx);
2633 		raw_spin_unlock(&ctx->lock);
2634 	}
2635 }
2636 
2637 void perf_sched_cb_dec(struct pmu *pmu)
2638 {
2639 	this_cpu_dec(perf_sched_cb_usages);
2640 }
2641 
2642 void perf_sched_cb_inc(struct pmu *pmu)
2643 {
2644 	this_cpu_inc(perf_sched_cb_usages);
2645 }
2646 
2647 /*
2648  * This function provides the context switch callback to the lower code
2649  * layer. It is invoked ONLY when the context switch callback is enabled.
2650  */
2651 static void perf_pmu_sched_task(struct task_struct *prev,
2652 				struct task_struct *next,
2653 				bool sched_in)
2654 {
2655 	struct perf_cpu_context *cpuctx;
2656 	struct pmu *pmu;
2657 	unsigned long flags;
2658 
2659 	if (prev == next)
2660 		return;
2661 
2662 	local_irq_save(flags);
2663 
2664 	rcu_read_lock();
2665 
2666 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2667 		if (pmu->sched_task) {
2668 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2669 
2670 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2671 
2672 			perf_pmu_disable(pmu);
2673 
2674 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2675 
2676 			perf_pmu_enable(pmu);
2677 
2678 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2679 		}
2680 	}
2681 
2682 	rcu_read_unlock();
2683 
2684 	local_irq_restore(flags);
2685 }
2686 
2687 static void perf_event_switch(struct task_struct *task,
2688 			      struct task_struct *next_prev, bool sched_in);
2689 
2690 #define for_each_task_context_nr(ctxn)					\
2691 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2692 
2693 /*
2694  * Called from scheduler to remove the events of the current task,
2695  * with interrupts disabled.
2696  *
2697  * We stop each event and update the event value in event->count.
2698  *
2699  * This does not protect us against NMI, but disable()
2700  * sets the disabled bit in the control field of event _before_
2701  * accessing the event control register. If a NMI hits, then it will
2702  * not restart the event.
2703  */
2704 void __perf_event_task_sched_out(struct task_struct *task,
2705 				 struct task_struct *next)
2706 {
2707 	int ctxn;
2708 
2709 	if (__this_cpu_read(perf_sched_cb_usages))
2710 		perf_pmu_sched_task(task, next, false);
2711 
2712 	if (atomic_read(&nr_switch_events))
2713 		perf_event_switch(task, next, false);
2714 
2715 	for_each_task_context_nr(ctxn)
2716 		perf_event_context_sched_out(task, ctxn, next);
2717 
2718 	/*
2719 	 * if cgroup events exist on this CPU, then we need
2720 	 * to check if we have to switch out PMU state.
2721 	 * cgroup event are system-wide mode only
2722 	 */
2723 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2724 		perf_cgroup_sched_out(task, next);
2725 }
2726 
2727 /*
2728  * Called with IRQs disabled
2729  */
2730 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2731 			      enum event_type_t event_type)
2732 {
2733 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2734 }
2735 
2736 static void
2737 ctx_pinned_sched_in(struct perf_event_context *ctx,
2738 		    struct perf_cpu_context *cpuctx)
2739 {
2740 	struct perf_event *event;
2741 
2742 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2743 		if (event->state <= PERF_EVENT_STATE_OFF)
2744 			continue;
2745 		if (!event_filter_match(event))
2746 			continue;
2747 
2748 		/* may need to reset tstamp_enabled */
2749 		if (is_cgroup_event(event))
2750 			perf_cgroup_mark_enabled(event, ctx);
2751 
2752 		if (group_can_go_on(event, cpuctx, 1))
2753 			group_sched_in(event, cpuctx, ctx);
2754 
2755 		/*
2756 		 * If this pinned group hasn't been scheduled,
2757 		 * put it in error state.
2758 		 */
2759 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2760 			update_group_times(event);
2761 			event->state = PERF_EVENT_STATE_ERROR;
2762 		}
2763 	}
2764 }
2765 
2766 static void
2767 ctx_flexible_sched_in(struct perf_event_context *ctx,
2768 		      struct perf_cpu_context *cpuctx)
2769 {
2770 	struct perf_event *event;
2771 	int can_add_hw = 1;
2772 
2773 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2774 		/* Ignore events in OFF or ERROR state */
2775 		if (event->state <= PERF_EVENT_STATE_OFF)
2776 			continue;
2777 		/*
2778 		 * Listen to the 'cpu' scheduling filter constraint
2779 		 * of events:
2780 		 */
2781 		if (!event_filter_match(event))
2782 			continue;
2783 
2784 		/* may need to reset tstamp_enabled */
2785 		if (is_cgroup_event(event))
2786 			perf_cgroup_mark_enabled(event, ctx);
2787 
2788 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2789 			if (group_sched_in(event, cpuctx, ctx))
2790 				can_add_hw = 0;
2791 		}
2792 	}
2793 }
2794 
2795 static void
2796 ctx_sched_in(struct perf_event_context *ctx,
2797 	     struct perf_cpu_context *cpuctx,
2798 	     enum event_type_t event_type,
2799 	     struct task_struct *task)
2800 {
2801 	int is_active = ctx->is_active;
2802 	u64 now;
2803 
2804 	lockdep_assert_held(&ctx->lock);
2805 
2806 	if (likely(!ctx->nr_events))
2807 		return;
2808 
2809 	ctx->is_active |= (event_type | EVENT_TIME);
2810 	if (ctx->task) {
2811 		if (!is_active)
2812 			cpuctx->task_ctx = ctx;
2813 		else
2814 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2815 	}
2816 
2817 	is_active ^= ctx->is_active; /* changed bits */
2818 
2819 	if (is_active & EVENT_TIME) {
2820 		/* start ctx time */
2821 		now = perf_clock();
2822 		ctx->timestamp = now;
2823 		perf_cgroup_set_timestamp(task, ctx);
2824 	}
2825 
2826 	/*
2827 	 * First go through the list and put on any pinned groups
2828 	 * in order to give them the best chance of going on.
2829 	 */
2830 	if (is_active & EVENT_PINNED)
2831 		ctx_pinned_sched_in(ctx, cpuctx);
2832 
2833 	/* Then walk through the lower prio flexible groups */
2834 	if (is_active & EVENT_FLEXIBLE)
2835 		ctx_flexible_sched_in(ctx, cpuctx);
2836 }
2837 
2838 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2839 			     enum event_type_t event_type,
2840 			     struct task_struct *task)
2841 {
2842 	struct perf_event_context *ctx = &cpuctx->ctx;
2843 
2844 	ctx_sched_in(ctx, cpuctx, event_type, task);
2845 }
2846 
2847 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2848 					struct task_struct *task)
2849 {
2850 	struct perf_cpu_context *cpuctx;
2851 
2852 	cpuctx = __get_cpu_context(ctx);
2853 	if (cpuctx->task_ctx == ctx)
2854 		return;
2855 
2856 	perf_ctx_lock(cpuctx, ctx);
2857 	perf_pmu_disable(ctx->pmu);
2858 	/*
2859 	 * We want to keep the following priority order:
2860 	 * cpu pinned (that don't need to move), task pinned,
2861 	 * cpu flexible, task flexible.
2862 	 */
2863 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2864 	perf_event_sched_in(cpuctx, ctx, task);
2865 	perf_pmu_enable(ctx->pmu);
2866 	perf_ctx_unlock(cpuctx, ctx);
2867 }
2868 
2869 /*
2870  * Called from scheduler to add the events of the current task
2871  * with interrupts disabled.
2872  *
2873  * We restore the event value and then enable it.
2874  *
2875  * This does not protect us against NMI, but enable()
2876  * sets the enabled bit in the control field of event _before_
2877  * accessing the event control register. If a NMI hits, then it will
2878  * keep the event running.
2879  */
2880 void __perf_event_task_sched_in(struct task_struct *prev,
2881 				struct task_struct *task)
2882 {
2883 	struct perf_event_context *ctx;
2884 	int ctxn;
2885 
2886 	/*
2887 	 * If cgroup events exist on this CPU, then we need to check if we have
2888 	 * to switch in PMU state; cgroup event are system-wide mode only.
2889 	 *
2890 	 * Since cgroup events are CPU events, we must schedule these in before
2891 	 * we schedule in the task events.
2892 	 */
2893 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2894 		perf_cgroup_sched_in(prev, task);
2895 
2896 	for_each_task_context_nr(ctxn) {
2897 		ctx = task->perf_event_ctxp[ctxn];
2898 		if (likely(!ctx))
2899 			continue;
2900 
2901 		perf_event_context_sched_in(ctx, task);
2902 	}
2903 
2904 	if (atomic_read(&nr_switch_events))
2905 		perf_event_switch(task, prev, true);
2906 
2907 	if (__this_cpu_read(perf_sched_cb_usages))
2908 		perf_pmu_sched_task(prev, task, true);
2909 }
2910 
2911 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2912 {
2913 	u64 frequency = event->attr.sample_freq;
2914 	u64 sec = NSEC_PER_SEC;
2915 	u64 divisor, dividend;
2916 
2917 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2918 
2919 	count_fls = fls64(count);
2920 	nsec_fls = fls64(nsec);
2921 	frequency_fls = fls64(frequency);
2922 	sec_fls = 30;
2923 
2924 	/*
2925 	 * We got @count in @nsec, with a target of sample_freq HZ
2926 	 * the target period becomes:
2927 	 *
2928 	 *             @count * 10^9
2929 	 * period = -------------------
2930 	 *          @nsec * sample_freq
2931 	 *
2932 	 */
2933 
2934 	/*
2935 	 * Reduce accuracy by one bit such that @a and @b converge
2936 	 * to a similar magnitude.
2937 	 */
2938 #define REDUCE_FLS(a, b)		\
2939 do {					\
2940 	if (a##_fls > b##_fls) {	\
2941 		a >>= 1;		\
2942 		a##_fls--;		\
2943 	} else {			\
2944 		b >>= 1;		\
2945 		b##_fls--;		\
2946 	}				\
2947 } while (0)
2948 
2949 	/*
2950 	 * Reduce accuracy until either term fits in a u64, then proceed with
2951 	 * the other, so that finally we can do a u64/u64 division.
2952 	 */
2953 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2954 		REDUCE_FLS(nsec, frequency);
2955 		REDUCE_FLS(sec, count);
2956 	}
2957 
2958 	if (count_fls + sec_fls > 64) {
2959 		divisor = nsec * frequency;
2960 
2961 		while (count_fls + sec_fls > 64) {
2962 			REDUCE_FLS(count, sec);
2963 			divisor >>= 1;
2964 		}
2965 
2966 		dividend = count * sec;
2967 	} else {
2968 		dividend = count * sec;
2969 
2970 		while (nsec_fls + frequency_fls > 64) {
2971 			REDUCE_FLS(nsec, frequency);
2972 			dividend >>= 1;
2973 		}
2974 
2975 		divisor = nsec * frequency;
2976 	}
2977 
2978 	if (!divisor)
2979 		return dividend;
2980 
2981 	return div64_u64(dividend, divisor);
2982 }
2983 
2984 static DEFINE_PER_CPU(int, perf_throttled_count);
2985 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2986 
2987 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2988 {
2989 	struct hw_perf_event *hwc = &event->hw;
2990 	s64 period, sample_period;
2991 	s64 delta;
2992 
2993 	period = perf_calculate_period(event, nsec, count);
2994 
2995 	delta = (s64)(period - hwc->sample_period);
2996 	delta = (delta + 7) / 8; /* low pass filter */
2997 
2998 	sample_period = hwc->sample_period + delta;
2999 
3000 	if (!sample_period)
3001 		sample_period = 1;
3002 
3003 	hwc->sample_period = sample_period;
3004 
3005 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3006 		if (disable)
3007 			event->pmu->stop(event, PERF_EF_UPDATE);
3008 
3009 		local64_set(&hwc->period_left, 0);
3010 
3011 		if (disable)
3012 			event->pmu->start(event, PERF_EF_RELOAD);
3013 	}
3014 }
3015 
3016 /*
3017  * combine freq adjustment with unthrottling to avoid two passes over the
3018  * events. At the same time, make sure, having freq events does not change
3019  * the rate of unthrottling as that would introduce bias.
3020  */
3021 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3022 					   int needs_unthr)
3023 {
3024 	struct perf_event *event;
3025 	struct hw_perf_event *hwc;
3026 	u64 now, period = TICK_NSEC;
3027 	s64 delta;
3028 
3029 	/*
3030 	 * only need to iterate over all events iff:
3031 	 * - context have events in frequency mode (needs freq adjust)
3032 	 * - there are events to unthrottle on this cpu
3033 	 */
3034 	if (!(ctx->nr_freq || needs_unthr))
3035 		return;
3036 
3037 	raw_spin_lock(&ctx->lock);
3038 	perf_pmu_disable(ctx->pmu);
3039 
3040 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3041 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3042 			continue;
3043 
3044 		if (!event_filter_match(event))
3045 			continue;
3046 
3047 		perf_pmu_disable(event->pmu);
3048 
3049 		hwc = &event->hw;
3050 
3051 		if (hwc->interrupts == MAX_INTERRUPTS) {
3052 			hwc->interrupts = 0;
3053 			perf_log_throttle(event, 1);
3054 			event->pmu->start(event, 0);
3055 		}
3056 
3057 		if (!event->attr.freq || !event->attr.sample_freq)
3058 			goto next;
3059 
3060 		/*
3061 		 * stop the event and update event->count
3062 		 */
3063 		event->pmu->stop(event, PERF_EF_UPDATE);
3064 
3065 		now = local64_read(&event->count);
3066 		delta = now - hwc->freq_count_stamp;
3067 		hwc->freq_count_stamp = now;
3068 
3069 		/*
3070 		 * restart the event
3071 		 * reload only if value has changed
3072 		 * we have stopped the event so tell that
3073 		 * to perf_adjust_period() to avoid stopping it
3074 		 * twice.
3075 		 */
3076 		if (delta > 0)
3077 			perf_adjust_period(event, period, delta, false);
3078 
3079 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3080 	next:
3081 		perf_pmu_enable(event->pmu);
3082 	}
3083 
3084 	perf_pmu_enable(ctx->pmu);
3085 	raw_spin_unlock(&ctx->lock);
3086 }
3087 
3088 /*
3089  * Round-robin a context's events:
3090  */
3091 static void rotate_ctx(struct perf_event_context *ctx)
3092 {
3093 	/*
3094 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3095 	 * disabled by the inheritance code.
3096 	 */
3097 	if (!ctx->rotate_disable)
3098 		list_rotate_left(&ctx->flexible_groups);
3099 }
3100 
3101 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3102 {
3103 	struct perf_event_context *ctx = NULL;
3104 	int rotate = 0;
3105 
3106 	if (cpuctx->ctx.nr_events) {
3107 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3108 			rotate = 1;
3109 	}
3110 
3111 	ctx = cpuctx->task_ctx;
3112 	if (ctx && ctx->nr_events) {
3113 		if (ctx->nr_events != ctx->nr_active)
3114 			rotate = 1;
3115 	}
3116 
3117 	if (!rotate)
3118 		goto done;
3119 
3120 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3121 	perf_pmu_disable(cpuctx->ctx.pmu);
3122 
3123 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 	if (ctx)
3125 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3126 
3127 	rotate_ctx(&cpuctx->ctx);
3128 	if (ctx)
3129 		rotate_ctx(ctx);
3130 
3131 	perf_event_sched_in(cpuctx, ctx, current);
3132 
3133 	perf_pmu_enable(cpuctx->ctx.pmu);
3134 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3135 done:
3136 
3137 	return rotate;
3138 }
3139 
3140 void perf_event_task_tick(void)
3141 {
3142 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3143 	struct perf_event_context *ctx, *tmp;
3144 	int throttled;
3145 
3146 	WARN_ON(!irqs_disabled());
3147 
3148 	__this_cpu_inc(perf_throttled_seq);
3149 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3150 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3151 
3152 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3153 		perf_adjust_freq_unthr_context(ctx, throttled);
3154 }
3155 
3156 static int event_enable_on_exec(struct perf_event *event,
3157 				struct perf_event_context *ctx)
3158 {
3159 	if (!event->attr.enable_on_exec)
3160 		return 0;
3161 
3162 	event->attr.enable_on_exec = 0;
3163 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3164 		return 0;
3165 
3166 	__perf_event_mark_enabled(event);
3167 
3168 	return 1;
3169 }
3170 
3171 /*
3172  * Enable all of a task's events that have been marked enable-on-exec.
3173  * This expects task == current.
3174  */
3175 static void perf_event_enable_on_exec(int ctxn)
3176 {
3177 	struct perf_event_context *ctx, *clone_ctx = NULL;
3178 	struct perf_cpu_context *cpuctx;
3179 	struct perf_event *event;
3180 	unsigned long flags;
3181 	int enabled = 0;
3182 
3183 	local_irq_save(flags);
3184 	ctx = current->perf_event_ctxp[ctxn];
3185 	if (!ctx || !ctx->nr_events)
3186 		goto out;
3187 
3188 	cpuctx = __get_cpu_context(ctx);
3189 	perf_ctx_lock(cpuctx, ctx);
3190 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3191 	list_for_each_entry(event, &ctx->event_list, event_entry)
3192 		enabled |= event_enable_on_exec(event, ctx);
3193 
3194 	/*
3195 	 * Unclone and reschedule this context if we enabled any event.
3196 	 */
3197 	if (enabled) {
3198 		clone_ctx = unclone_ctx(ctx);
3199 		ctx_resched(cpuctx, ctx);
3200 	}
3201 	perf_ctx_unlock(cpuctx, ctx);
3202 
3203 out:
3204 	local_irq_restore(flags);
3205 
3206 	if (clone_ctx)
3207 		put_ctx(clone_ctx);
3208 }
3209 
3210 void perf_event_exec(void)
3211 {
3212 	int ctxn;
3213 
3214 	rcu_read_lock();
3215 	for_each_task_context_nr(ctxn)
3216 		perf_event_enable_on_exec(ctxn);
3217 	rcu_read_unlock();
3218 }
3219 
3220 struct perf_read_data {
3221 	struct perf_event *event;
3222 	bool group;
3223 	int ret;
3224 };
3225 
3226 /*
3227  * Cross CPU call to read the hardware event
3228  */
3229 static void __perf_event_read(void *info)
3230 {
3231 	struct perf_read_data *data = info;
3232 	struct perf_event *sub, *event = data->event;
3233 	struct perf_event_context *ctx = event->ctx;
3234 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3235 	struct pmu *pmu = event->pmu;
3236 
3237 	/*
3238 	 * If this is a task context, we need to check whether it is
3239 	 * the current task context of this cpu.  If not it has been
3240 	 * scheduled out before the smp call arrived.  In that case
3241 	 * event->count would have been updated to a recent sample
3242 	 * when the event was scheduled out.
3243 	 */
3244 	if (ctx->task && cpuctx->task_ctx != ctx)
3245 		return;
3246 
3247 	raw_spin_lock(&ctx->lock);
3248 	if (ctx->is_active) {
3249 		update_context_time(ctx);
3250 		update_cgrp_time_from_event(event);
3251 	}
3252 
3253 	update_event_times(event);
3254 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3255 		goto unlock;
3256 
3257 	if (!data->group) {
3258 		pmu->read(event);
3259 		data->ret = 0;
3260 		goto unlock;
3261 	}
3262 
3263 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3264 
3265 	pmu->read(event);
3266 
3267 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3268 		update_event_times(sub);
3269 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3270 			/*
3271 			 * Use sibling's PMU rather than @event's since
3272 			 * sibling could be on different (eg: software) PMU.
3273 			 */
3274 			sub->pmu->read(sub);
3275 		}
3276 	}
3277 
3278 	data->ret = pmu->commit_txn(pmu);
3279 
3280 unlock:
3281 	raw_spin_unlock(&ctx->lock);
3282 }
3283 
3284 static inline u64 perf_event_count(struct perf_event *event)
3285 {
3286 	if (event->pmu->count)
3287 		return event->pmu->count(event);
3288 
3289 	return __perf_event_count(event);
3290 }
3291 
3292 /*
3293  * NMI-safe method to read a local event, that is an event that
3294  * is:
3295  *   - either for the current task, or for this CPU
3296  *   - does not have inherit set, for inherited task events
3297  *     will not be local and we cannot read them atomically
3298  *   - must not have a pmu::count method
3299  */
3300 u64 perf_event_read_local(struct perf_event *event)
3301 {
3302 	unsigned long flags;
3303 	u64 val;
3304 
3305 	/*
3306 	 * Disabling interrupts avoids all counter scheduling (context
3307 	 * switches, timer based rotation and IPIs).
3308 	 */
3309 	local_irq_save(flags);
3310 
3311 	/* If this is a per-task event, it must be for current */
3312 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3313 		     event->hw.target != current);
3314 
3315 	/* If this is a per-CPU event, it must be for this CPU */
3316 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3317 		     event->cpu != smp_processor_id());
3318 
3319 	/*
3320 	 * It must not be an event with inherit set, we cannot read
3321 	 * all child counters from atomic context.
3322 	 */
3323 	WARN_ON_ONCE(event->attr.inherit);
3324 
3325 	/*
3326 	 * It must not have a pmu::count method, those are not
3327 	 * NMI safe.
3328 	 */
3329 	WARN_ON_ONCE(event->pmu->count);
3330 
3331 	/*
3332 	 * If the event is currently on this CPU, its either a per-task event,
3333 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3334 	 * oncpu == -1).
3335 	 */
3336 	if (event->oncpu == smp_processor_id())
3337 		event->pmu->read(event);
3338 
3339 	val = local64_read(&event->count);
3340 	local_irq_restore(flags);
3341 
3342 	return val;
3343 }
3344 
3345 static int perf_event_read(struct perf_event *event, bool group)
3346 {
3347 	int ret = 0;
3348 
3349 	/*
3350 	 * If event is enabled and currently active on a CPU, update the
3351 	 * value in the event structure:
3352 	 */
3353 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3354 		struct perf_read_data data = {
3355 			.event = event,
3356 			.group = group,
3357 			.ret = 0,
3358 		};
3359 		smp_call_function_single(event->oncpu,
3360 					 __perf_event_read, &data, 1);
3361 		ret = data.ret;
3362 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3363 		struct perf_event_context *ctx = event->ctx;
3364 		unsigned long flags;
3365 
3366 		raw_spin_lock_irqsave(&ctx->lock, flags);
3367 		/*
3368 		 * may read while context is not active
3369 		 * (e.g., thread is blocked), in that case
3370 		 * we cannot update context time
3371 		 */
3372 		if (ctx->is_active) {
3373 			update_context_time(ctx);
3374 			update_cgrp_time_from_event(event);
3375 		}
3376 		if (group)
3377 			update_group_times(event);
3378 		else
3379 			update_event_times(event);
3380 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3381 	}
3382 
3383 	return ret;
3384 }
3385 
3386 /*
3387  * Initialize the perf_event context in a task_struct:
3388  */
3389 static void __perf_event_init_context(struct perf_event_context *ctx)
3390 {
3391 	raw_spin_lock_init(&ctx->lock);
3392 	mutex_init(&ctx->mutex);
3393 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3394 	INIT_LIST_HEAD(&ctx->pinned_groups);
3395 	INIT_LIST_HEAD(&ctx->flexible_groups);
3396 	INIT_LIST_HEAD(&ctx->event_list);
3397 	atomic_set(&ctx->refcount, 1);
3398 }
3399 
3400 static struct perf_event_context *
3401 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3402 {
3403 	struct perf_event_context *ctx;
3404 
3405 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3406 	if (!ctx)
3407 		return NULL;
3408 
3409 	__perf_event_init_context(ctx);
3410 	if (task) {
3411 		ctx->task = task;
3412 		get_task_struct(task);
3413 	}
3414 	ctx->pmu = pmu;
3415 
3416 	return ctx;
3417 }
3418 
3419 static struct task_struct *
3420 find_lively_task_by_vpid(pid_t vpid)
3421 {
3422 	struct task_struct *task;
3423 	int err;
3424 
3425 	rcu_read_lock();
3426 	if (!vpid)
3427 		task = current;
3428 	else
3429 		task = find_task_by_vpid(vpid);
3430 	if (task)
3431 		get_task_struct(task);
3432 	rcu_read_unlock();
3433 
3434 	if (!task)
3435 		return ERR_PTR(-ESRCH);
3436 
3437 	/* Reuse ptrace permission checks for now. */
3438 	err = -EACCES;
3439 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3440 		goto errout;
3441 
3442 	return task;
3443 errout:
3444 	put_task_struct(task);
3445 	return ERR_PTR(err);
3446 
3447 }
3448 
3449 /*
3450  * Returns a matching context with refcount and pincount.
3451  */
3452 static struct perf_event_context *
3453 find_get_context(struct pmu *pmu, struct task_struct *task,
3454 		struct perf_event *event)
3455 {
3456 	struct perf_event_context *ctx, *clone_ctx = NULL;
3457 	struct perf_cpu_context *cpuctx;
3458 	void *task_ctx_data = NULL;
3459 	unsigned long flags;
3460 	int ctxn, err;
3461 	int cpu = event->cpu;
3462 
3463 	if (!task) {
3464 		/* Must be root to operate on a CPU event: */
3465 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3466 			return ERR_PTR(-EACCES);
3467 
3468 		/*
3469 		 * We could be clever and allow to attach a event to an
3470 		 * offline CPU and activate it when the CPU comes up, but
3471 		 * that's for later.
3472 		 */
3473 		if (!cpu_online(cpu))
3474 			return ERR_PTR(-ENODEV);
3475 
3476 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3477 		ctx = &cpuctx->ctx;
3478 		get_ctx(ctx);
3479 		++ctx->pin_count;
3480 
3481 		return ctx;
3482 	}
3483 
3484 	err = -EINVAL;
3485 	ctxn = pmu->task_ctx_nr;
3486 	if (ctxn < 0)
3487 		goto errout;
3488 
3489 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3490 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3491 		if (!task_ctx_data) {
3492 			err = -ENOMEM;
3493 			goto errout;
3494 		}
3495 	}
3496 
3497 retry:
3498 	ctx = perf_lock_task_context(task, ctxn, &flags);
3499 	if (ctx) {
3500 		clone_ctx = unclone_ctx(ctx);
3501 		++ctx->pin_count;
3502 
3503 		if (task_ctx_data && !ctx->task_ctx_data) {
3504 			ctx->task_ctx_data = task_ctx_data;
3505 			task_ctx_data = NULL;
3506 		}
3507 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3508 
3509 		if (clone_ctx)
3510 			put_ctx(clone_ctx);
3511 	} else {
3512 		ctx = alloc_perf_context(pmu, task);
3513 		err = -ENOMEM;
3514 		if (!ctx)
3515 			goto errout;
3516 
3517 		if (task_ctx_data) {
3518 			ctx->task_ctx_data = task_ctx_data;
3519 			task_ctx_data = NULL;
3520 		}
3521 
3522 		err = 0;
3523 		mutex_lock(&task->perf_event_mutex);
3524 		/*
3525 		 * If it has already passed perf_event_exit_task().
3526 		 * we must see PF_EXITING, it takes this mutex too.
3527 		 */
3528 		if (task->flags & PF_EXITING)
3529 			err = -ESRCH;
3530 		else if (task->perf_event_ctxp[ctxn])
3531 			err = -EAGAIN;
3532 		else {
3533 			get_ctx(ctx);
3534 			++ctx->pin_count;
3535 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3536 		}
3537 		mutex_unlock(&task->perf_event_mutex);
3538 
3539 		if (unlikely(err)) {
3540 			put_ctx(ctx);
3541 
3542 			if (err == -EAGAIN)
3543 				goto retry;
3544 			goto errout;
3545 		}
3546 	}
3547 
3548 	kfree(task_ctx_data);
3549 	return ctx;
3550 
3551 errout:
3552 	kfree(task_ctx_data);
3553 	return ERR_PTR(err);
3554 }
3555 
3556 static void perf_event_free_filter(struct perf_event *event);
3557 static void perf_event_free_bpf_prog(struct perf_event *event);
3558 
3559 static void free_event_rcu(struct rcu_head *head)
3560 {
3561 	struct perf_event *event;
3562 
3563 	event = container_of(head, struct perf_event, rcu_head);
3564 	if (event->ns)
3565 		put_pid_ns(event->ns);
3566 	perf_event_free_filter(event);
3567 	kfree(event);
3568 }
3569 
3570 static void ring_buffer_attach(struct perf_event *event,
3571 			       struct ring_buffer *rb);
3572 
3573 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3574 {
3575 	if (event->parent)
3576 		return;
3577 
3578 	if (is_cgroup_event(event))
3579 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3580 }
3581 
3582 #ifdef CONFIG_NO_HZ_FULL
3583 static DEFINE_SPINLOCK(nr_freq_lock);
3584 #endif
3585 
3586 static void unaccount_freq_event_nohz(void)
3587 {
3588 #ifdef CONFIG_NO_HZ_FULL
3589 	spin_lock(&nr_freq_lock);
3590 	if (atomic_dec_and_test(&nr_freq_events))
3591 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3592 	spin_unlock(&nr_freq_lock);
3593 #endif
3594 }
3595 
3596 static void unaccount_freq_event(void)
3597 {
3598 	if (tick_nohz_full_enabled())
3599 		unaccount_freq_event_nohz();
3600 	else
3601 		atomic_dec(&nr_freq_events);
3602 }
3603 
3604 static void unaccount_event(struct perf_event *event)
3605 {
3606 	bool dec = false;
3607 
3608 	if (event->parent)
3609 		return;
3610 
3611 	if (event->attach_state & PERF_ATTACH_TASK)
3612 		dec = true;
3613 	if (event->attr.mmap || event->attr.mmap_data)
3614 		atomic_dec(&nr_mmap_events);
3615 	if (event->attr.comm)
3616 		atomic_dec(&nr_comm_events);
3617 	if (event->attr.task)
3618 		atomic_dec(&nr_task_events);
3619 	if (event->attr.freq)
3620 		unaccount_freq_event();
3621 	if (event->attr.context_switch) {
3622 		dec = true;
3623 		atomic_dec(&nr_switch_events);
3624 	}
3625 	if (is_cgroup_event(event))
3626 		dec = true;
3627 	if (has_branch_stack(event))
3628 		dec = true;
3629 
3630 	if (dec) {
3631 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3632 			schedule_delayed_work(&perf_sched_work, HZ);
3633 	}
3634 
3635 	unaccount_event_cpu(event, event->cpu);
3636 }
3637 
3638 static void perf_sched_delayed(struct work_struct *work)
3639 {
3640 	mutex_lock(&perf_sched_mutex);
3641 	if (atomic_dec_and_test(&perf_sched_count))
3642 		static_branch_disable(&perf_sched_events);
3643 	mutex_unlock(&perf_sched_mutex);
3644 }
3645 
3646 /*
3647  * The following implement mutual exclusion of events on "exclusive" pmus
3648  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3649  * at a time, so we disallow creating events that might conflict, namely:
3650  *
3651  *  1) cpu-wide events in the presence of per-task events,
3652  *  2) per-task events in the presence of cpu-wide events,
3653  *  3) two matching events on the same context.
3654  *
3655  * The former two cases are handled in the allocation path (perf_event_alloc(),
3656  * _free_event()), the latter -- before the first perf_install_in_context().
3657  */
3658 static int exclusive_event_init(struct perf_event *event)
3659 {
3660 	struct pmu *pmu = event->pmu;
3661 
3662 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3663 		return 0;
3664 
3665 	/*
3666 	 * Prevent co-existence of per-task and cpu-wide events on the
3667 	 * same exclusive pmu.
3668 	 *
3669 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3670 	 * events on this "exclusive" pmu, positive means there are
3671 	 * per-task events.
3672 	 *
3673 	 * Since this is called in perf_event_alloc() path, event::ctx
3674 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3675 	 * to mean "per-task event", because unlike other attach states it
3676 	 * never gets cleared.
3677 	 */
3678 	if (event->attach_state & PERF_ATTACH_TASK) {
3679 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3680 			return -EBUSY;
3681 	} else {
3682 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3683 			return -EBUSY;
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static void exclusive_event_destroy(struct perf_event *event)
3690 {
3691 	struct pmu *pmu = event->pmu;
3692 
3693 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3694 		return;
3695 
3696 	/* see comment in exclusive_event_init() */
3697 	if (event->attach_state & PERF_ATTACH_TASK)
3698 		atomic_dec(&pmu->exclusive_cnt);
3699 	else
3700 		atomic_inc(&pmu->exclusive_cnt);
3701 }
3702 
3703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3704 {
3705 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3706 	    (e1->cpu == e2->cpu ||
3707 	     e1->cpu == -1 ||
3708 	     e2->cpu == -1))
3709 		return true;
3710 	return false;
3711 }
3712 
3713 /* Called under the same ctx::mutex as perf_install_in_context() */
3714 static bool exclusive_event_installable(struct perf_event *event,
3715 					struct perf_event_context *ctx)
3716 {
3717 	struct perf_event *iter_event;
3718 	struct pmu *pmu = event->pmu;
3719 
3720 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3721 		return true;
3722 
3723 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3724 		if (exclusive_event_match(iter_event, event))
3725 			return false;
3726 	}
3727 
3728 	return true;
3729 }
3730 
3731 static void _free_event(struct perf_event *event)
3732 {
3733 	irq_work_sync(&event->pending);
3734 
3735 	unaccount_event(event);
3736 
3737 	if (event->rb) {
3738 		/*
3739 		 * Can happen when we close an event with re-directed output.
3740 		 *
3741 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3742 		 * over us; possibly making our ring_buffer_put() the last.
3743 		 */
3744 		mutex_lock(&event->mmap_mutex);
3745 		ring_buffer_attach(event, NULL);
3746 		mutex_unlock(&event->mmap_mutex);
3747 	}
3748 
3749 	if (is_cgroup_event(event))
3750 		perf_detach_cgroup(event);
3751 
3752 	if (!event->parent) {
3753 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3754 			put_callchain_buffers();
3755 	}
3756 
3757 	perf_event_free_bpf_prog(event);
3758 
3759 	if (event->destroy)
3760 		event->destroy(event);
3761 
3762 	if (event->ctx)
3763 		put_ctx(event->ctx);
3764 
3765 	if (event->pmu) {
3766 		exclusive_event_destroy(event);
3767 		module_put(event->pmu->module);
3768 	}
3769 
3770 	call_rcu(&event->rcu_head, free_event_rcu);
3771 }
3772 
3773 /*
3774  * Used to free events which have a known refcount of 1, such as in error paths
3775  * where the event isn't exposed yet and inherited events.
3776  */
3777 static void free_event(struct perf_event *event)
3778 {
3779 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3780 				"unexpected event refcount: %ld; ptr=%p\n",
3781 				atomic_long_read(&event->refcount), event)) {
3782 		/* leak to avoid use-after-free */
3783 		return;
3784 	}
3785 
3786 	_free_event(event);
3787 }
3788 
3789 /*
3790  * Remove user event from the owner task.
3791  */
3792 static void perf_remove_from_owner(struct perf_event *event)
3793 {
3794 	struct task_struct *owner;
3795 
3796 	rcu_read_lock();
3797 	/*
3798 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3799 	 * observe !owner it means the list deletion is complete and we can
3800 	 * indeed free this event, otherwise we need to serialize on
3801 	 * owner->perf_event_mutex.
3802 	 */
3803 	owner = lockless_dereference(event->owner);
3804 	if (owner) {
3805 		/*
3806 		 * Since delayed_put_task_struct() also drops the last
3807 		 * task reference we can safely take a new reference
3808 		 * while holding the rcu_read_lock().
3809 		 */
3810 		get_task_struct(owner);
3811 	}
3812 	rcu_read_unlock();
3813 
3814 	if (owner) {
3815 		/*
3816 		 * If we're here through perf_event_exit_task() we're already
3817 		 * holding ctx->mutex which would be an inversion wrt. the
3818 		 * normal lock order.
3819 		 *
3820 		 * However we can safely take this lock because its the child
3821 		 * ctx->mutex.
3822 		 */
3823 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3824 
3825 		/*
3826 		 * We have to re-check the event->owner field, if it is cleared
3827 		 * we raced with perf_event_exit_task(), acquiring the mutex
3828 		 * ensured they're done, and we can proceed with freeing the
3829 		 * event.
3830 		 */
3831 		if (event->owner) {
3832 			list_del_init(&event->owner_entry);
3833 			smp_store_release(&event->owner, NULL);
3834 		}
3835 		mutex_unlock(&owner->perf_event_mutex);
3836 		put_task_struct(owner);
3837 	}
3838 }
3839 
3840 static void put_event(struct perf_event *event)
3841 {
3842 	if (!atomic_long_dec_and_test(&event->refcount))
3843 		return;
3844 
3845 	_free_event(event);
3846 }
3847 
3848 /*
3849  * Kill an event dead; while event:refcount will preserve the event
3850  * object, it will not preserve its functionality. Once the last 'user'
3851  * gives up the object, we'll destroy the thing.
3852  */
3853 int perf_event_release_kernel(struct perf_event *event)
3854 {
3855 	struct perf_event_context *ctx = event->ctx;
3856 	struct perf_event *child, *tmp;
3857 
3858 	/*
3859 	 * If we got here through err_file: fput(event_file); we will not have
3860 	 * attached to a context yet.
3861 	 */
3862 	if (!ctx) {
3863 		WARN_ON_ONCE(event->attach_state &
3864 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3865 		goto no_ctx;
3866 	}
3867 
3868 	if (!is_kernel_event(event))
3869 		perf_remove_from_owner(event);
3870 
3871 	ctx = perf_event_ctx_lock(event);
3872 	WARN_ON_ONCE(ctx->parent_ctx);
3873 	perf_remove_from_context(event, DETACH_GROUP);
3874 
3875 	raw_spin_lock_irq(&ctx->lock);
3876 	/*
3877 	 * Mark this even as STATE_DEAD, there is no external reference to it
3878 	 * anymore.
3879 	 *
3880 	 * Anybody acquiring event->child_mutex after the below loop _must_
3881 	 * also see this, most importantly inherit_event() which will avoid
3882 	 * placing more children on the list.
3883 	 *
3884 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3885 	 * child events.
3886 	 */
3887 	event->state = PERF_EVENT_STATE_DEAD;
3888 	raw_spin_unlock_irq(&ctx->lock);
3889 
3890 	perf_event_ctx_unlock(event, ctx);
3891 
3892 again:
3893 	mutex_lock(&event->child_mutex);
3894 	list_for_each_entry(child, &event->child_list, child_list) {
3895 
3896 		/*
3897 		 * Cannot change, child events are not migrated, see the
3898 		 * comment with perf_event_ctx_lock_nested().
3899 		 */
3900 		ctx = lockless_dereference(child->ctx);
3901 		/*
3902 		 * Since child_mutex nests inside ctx::mutex, we must jump
3903 		 * through hoops. We start by grabbing a reference on the ctx.
3904 		 *
3905 		 * Since the event cannot get freed while we hold the
3906 		 * child_mutex, the context must also exist and have a !0
3907 		 * reference count.
3908 		 */
3909 		get_ctx(ctx);
3910 
3911 		/*
3912 		 * Now that we have a ctx ref, we can drop child_mutex, and
3913 		 * acquire ctx::mutex without fear of it going away. Then we
3914 		 * can re-acquire child_mutex.
3915 		 */
3916 		mutex_unlock(&event->child_mutex);
3917 		mutex_lock(&ctx->mutex);
3918 		mutex_lock(&event->child_mutex);
3919 
3920 		/*
3921 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3922 		 * state, if child is still the first entry, it didn't get freed
3923 		 * and we can continue doing so.
3924 		 */
3925 		tmp = list_first_entry_or_null(&event->child_list,
3926 					       struct perf_event, child_list);
3927 		if (tmp == child) {
3928 			perf_remove_from_context(child, DETACH_GROUP);
3929 			list_del(&child->child_list);
3930 			free_event(child);
3931 			/*
3932 			 * This matches the refcount bump in inherit_event();
3933 			 * this can't be the last reference.
3934 			 */
3935 			put_event(event);
3936 		}
3937 
3938 		mutex_unlock(&event->child_mutex);
3939 		mutex_unlock(&ctx->mutex);
3940 		put_ctx(ctx);
3941 		goto again;
3942 	}
3943 	mutex_unlock(&event->child_mutex);
3944 
3945 no_ctx:
3946 	put_event(event); /* Must be the 'last' reference */
3947 	return 0;
3948 }
3949 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3950 
3951 /*
3952  * Called when the last reference to the file is gone.
3953  */
3954 static int perf_release(struct inode *inode, struct file *file)
3955 {
3956 	perf_event_release_kernel(file->private_data);
3957 	return 0;
3958 }
3959 
3960 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3961 {
3962 	struct perf_event *child;
3963 	u64 total = 0;
3964 
3965 	*enabled = 0;
3966 	*running = 0;
3967 
3968 	mutex_lock(&event->child_mutex);
3969 
3970 	(void)perf_event_read(event, false);
3971 	total += perf_event_count(event);
3972 
3973 	*enabled += event->total_time_enabled +
3974 			atomic64_read(&event->child_total_time_enabled);
3975 	*running += event->total_time_running +
3976 			atomic64_read(&event->child_total_time_running);
3977 
3978 	list_for_each_entry(child, &event->child_list, child_list) {
3979 		(void)perf_event_read(child, false);
3980 		total += perf_event_count(child);
3981 		*enabled += child->total_time_enabled;
3982 		*running += child->total_time_running;
3983 	}
3984 	mutex_unlock(&event->child_mutex);
3985 
3986 	return total;
3987 }
3988 EXPORT_SYMBOL_GPL(perf_event_read_value);
3989 
3990 static int __perf_read_group_add(struct perf_event *leader,
3991 					u64 read_format, u64 *values)
3992 {
3993 	struct perf_event *sub;
3994 	int n = 1; /* skip @nr */
3995 	int ret;
3996 
3997 	ret = perf_event_read(leader, true);
3998 	if (ret)
3999 		return ret;
4000 
4001 	/*
4002 	 * Since we co-schedule groups, {enabled,running} times of siblings
4003 	 * will be identical to those of the leader, so we only publish one
4004 	 * set.
4005 	 */
4006 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4007 		values[n++] += leader->total_time_enabled +
4008 			atomic64_read(&leader->child_total_time_enabled);
4009 	}
4010 
4011 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4012 		values[n++] += leader->total_time_running +
4013 			atomic64_read(&leader->child_total_time_running);
4014 	}
4015 
4016 	/*
4017 	 * Write {count,id} tuples for every sibling.
4018 	 */
4019 	values[n++] += perf_event_count(leader);
4020 	if (read_format & PERF_FORMAT_ID)
4021 		values[n++] = primary_event_id(leader);
4022 
4023 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4024 		values[n++] += perf_event_count(sub);
4025 		if (read_format & PERF_FORMAT_ID)
4026 			values[n++] = primary_event_id(sub);
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 static int perf_read_group(struct perf_event *event,
4033 				   u64 read_format, char __user *buf)
4034 {
4035 	struct perf_event *leader = event->group_leader, *child;
4036 	struct perf_event_context *ctx = leader->ctx;
4037 	int ret;
4038 	u64 *values;
4039 
4040 	lockdep_assert_held(&ctx->mutex);
4041 
4042 	values = kzalloc(event->read_size, GFP_KERNEL);
4043 	if (!values)
4044 		return -ENOMEM;
4045 
4046 	values[0] = 1 + leader->nr_siblings;
4047 
4048 	/*
4049 	 * By locking the child_mutex of the leader we effectively
4050 	 * lock the child list of all siblings.. XXX explain how.
4051 	 */
4052 	mutex_lock(&leader->child_mutex);
4053 
4054 	ret = __perf_read_group_add(leader, read_format, values);
4055 	if (ret)
4056 		goto unlock;
4057 
4058 	list_for_each_entry(child, &leader->child_list, child_list) {
4059 		ret = __perf_read_group_add(child, read_format, values);
4060 		if (ret)
4061 			goto unlock;
4062 	}
4063 
4064 	mutex_unlock(&leader->child_mutex);
4065 
4066 	ret = event->read_size;
4067 	if (copy_to_user(buf, values, event->read_size))
4068 		ret = -EFAULT;
4069 	goto out;
4070 
4071 unlock:
4072 	mutex_unlock(&leader->child_mutex);
4073 out:
4074 	kfree(values);
4075 	return ret;
4076 }
4077 
4078 static int perf_read_one(struct perf_event *event,
4079 				 u64 read_format, char __user *buf)
4080 {
4081 	u64 enabled, running;
4082 	u64 values[4];
4083 	int n = 0;
4084 
4085 	values[n++] = perf_event_read_value(event, &enabled, &running);
4086 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4087 		values[n++] = enabled;
4088 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4089 		values[n++] = running;
4090 	if (read_format & PERF_FORMAT_ID)
4091 		values[n++] = primary_event_id(event);
4092 
4093 	if (copy_to_user(buf, values, n * sizeof(u64)))
4094 		return -EFAULT;
4095 
4096 	return n * sizeof(u64);
4097 }
4098 
4099 static bool is_event_hup(struct perf_event *event)
4100 {
4101 	bool no_children;
4102 
4103 	if (event->state > PERF_EVENT_STATE_EXIT)
4104 		return false;
4105 
4106 	mutex_lock(&event->child_mutex);
4107 	no_children = list_empty(&event->child_list);
4108 	mutex_unlock(&event->child_mutex);
4109 	return no_children;
4110 }
4111 
4112 /*
4113  * Read the performance event - simple non blocking version for now
4114  */
4115 static ssize_t
4116 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4117 {
4118 	u64 read_format = event->attr.read_format;
4119 	int ret;
4120 
4121 	/*
4122 	 * Return end-of-file for a read on a event that is in
4123 	 * error state (i.e. because it was pinned but it couldn't be
4124 	 * scheduled on to the CPU at some point).
4125 	 */
4126 	if (event->state == PERF_EVENT_STATE_ERROR)
4127 		return 0;
4128 
4129 	if (count < event->read_size)
4130 		return -ENOSPC;
4131 
4132 	WARN_ON_ONCE(event->ctx->parent_ctx);
4133 	if (read_format & PERF_FORMAT_GROUP)
4134 		ret = perf_read_group(event, read_format, buf);
4135 	else
4136 		ret = perf_read_one(event, read_format, buf);
4137 
4138 	return ret;
4139 }
4140 
4141 static ssize_t
4142 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4143 {
4144 	struct perf_event *event = file->private_data;
4145 	struct perf_event_context *ctx;
4146 	int ret;
4147 
4148 	ctx = perf_event_ctx_lock(event);
4149 	ret = __perf_read(event, buf, count);
4150 	perf_event_ctx_unlock(event, ctx);
4151 
4152 	return ret;
4153 }
4154 
4155 static unsigned int perf_poll(struct file *file, poll_table *wait)
4156 {
4157 	struct perf_event *event = file->private_data;
4158 	struct ring_buffer *rb;
4159 	unsigned int events = POLLHUP;
4160 
4161 	poll_wait(file, &event->waitq, wait);
4162 
4163 	if (is_event_hup(event))
4164 		return events;
4165 
4166 	/*
4167 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4168 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4169 	 */
4170 	mutex_lock(&event->mmap_mutex);
4171 	rb = event->rb;
4172 	if (rb)
4173 		events = atomic_xchg(&rb->poll, 0);
4174 	mutex_unlock(&event->mmap_mutex);
4175 	return events;
4176 }
4177 
4178 static void _perf_event_reset(struct perf_event *event)
4179 {
4180 	(void)perf_event_read(event, false);
4181 	local64_set(&event->count, 0);
4182 	perf_event_update_userpage(event);
4183 }
4184 
4185 /*
4186  * Holding the top-level event's child_mutex means that any
4187  * descendant process that has inherited this event will block
4188  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4189  * task existence requirements of perf_event_enable/disable.
4190  */
4191 static void perf_event_for_each_child(struct perf_event *event,
4192 					void (*func)(struct perf_event *))
4193 {
4194 	struct perf_event *child;
4195 
4196 	WARN_ON_ONCE(event->ctx->parent_ctx);
4197 
4198 	mutex_lock(&event->child_mutex);
4199 	func(event);
4200 	list_for_each_entry(child, &event->child_list, child_list)
4201 		func(child);
4202 	mutex_unlock(&event->child_mutex);
4203 }
4204 
4205 static void perf_event_for_each(struct perf_event *event,
4206 				  void (*func)(struct perf_event *))
4207 {
4208 	struct perf_event_context *ctx = event->ctx;
4209 	struct perf_event *sibling;
4210 
4211 	lockdep_assert_held(&ctx->mutex);
4212 
4213 	event = event->group_leader;
4214 
4215 	perf_event_for_each_child(event, func);
4216 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4217 		perf_event_for_each_child(sibling, func);
4218 }
4219 
4220 static void __perf_event_period(struct perf_event *event,
4221 				struct perf_cpu_context *cpuctx,
4222 				struct perf_event_context *ctx,
4223 				void *info)
4224 {
4225 	u64 value = *((u64 *)info);
4226 	bool active;
4227 
4228 	if (event->attr.freq) {
4229 		event->attr.sample_freq = value;
4230 	} else {
4231 		event->attr.sample_period = value;
4232 		event->hw.sample_period = value;
4233 	}
4234 
4235 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4236 	if (active) {
4237 		perf_pmu_disable(ctx->pmu);
4238 		/*
4239 		 * We could be throttled; unthrottle now to avoid the tick
4240 		 * trying to unthrottle while we already re-started the event.
4241 		 */
4242 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4243 			event->hw.interrupts = 0;
4244 			perf_log_throttle(event, 1);
4245 		}
4246 		event->pmu->stop(event, PERF_EF_UPDATE);
4247 	}
4248 
4249 	local64_set(&event->hw.period_left, 0);
4250 
4251 	if (active) {
4252 		event->pmu->start(event, PERF_EF_RELOAD);
4253 		perf_pmu_enable(ctx->pmu);
4254 	}
4255 }
4256 
4257 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4258 {
4259 	u64 value;
4260 
4261 	if (!is_sampling_event(event))
4262 		return -EINVAL;
4263 
4264 	if (copy_from_user(&value, arg, sizeof(value)))
4265 		return -EFAULT;
4266 
4267 	if (!value)
4268 		return -EINVAL;
4269 
4270 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4271 		return -EINVAL;
4272 
4273 	event_function_call(event, __perf_event_period, &value);
4274 
4275 	return 0;
4276 }
4277 
4278 static const struct file_operations perf_fops;
4279 
4280 static inline int perf_fget_light(int fd, struct fd *p)
4281 {
4282 	struct fd f = fdget(fd);
4283 	if (!f.file)
4284 		return -EBADF;
4285 
4286 	if (f.file->f_op != &perf_fops) {
4287 		fdput(f);
4288 		return -EBADF;
4289 	}
4290 	*p = f;
4291 	return 0;
4292 }
4293 
4294 static int perf_event_set_output(struct perf_event *event,
4295 				 struct perf_event *output_event);
4296 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4297 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4298 
4299 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4300 {
4301 	void (*func)(struct perf_event *);
4302 	u32 flags = arg;
4303 
4304 	switch (cmd) {
4305 	case PERF_EVENT_IOC_ENABLE:
4306 		func = _perf_event_enable;
4307 		break;
4308 	case PERF_EVENT_IOC_DISABLE:
4309 		func = _perf_event_disable;
4310 		break;
4311 	case PERF_EVENT_IOC_RESET:
4312 		func = _perf_event_reset;
4313 		break;
4314 
4315 	case PERF_EVENT_IOC_REFRESH:
4316 		return _perf_event_refresh(event, arg);
4317 
4318 	case PERF_EVENT_IOC_PERIOD:
4319 		return perf_event_period(event, (u64 __user *)arg);
4320 
4321 	case PERF_EVENT_IOC_ID:
4322 	{
4323 		u64 id = primary_event_id(event);
4324 
4325 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4326 			return -EFAULT;
4327 		return 0;
4328 	}
4329 
4330 	case PERF_EVENT_IOC_SET_OUTPUT:
4331 	{
4332 		int ret;
4333 		if (arg != -1) {
4334 			struct perf_event *output_event;
4335 			struct fd output;
4336 			ret = perf_fget_light(arg, &output);
4337 			if (ret)
4338 				return ret;
4339 			output_event = output.file->private_data;
4340 			ret = perf_event_set_output(event, output_event);
4341 			fdput(output);
4342 		} else {
4343 			ret = perf_event_set_output(event, NULL);
4344 		}
4345 		return ret;
4346 	}
4347 
4348 	case PERF_EVENT_IOC_SET_FILTER:
4349 		return perf_event_set_filter(event, (void __user *)arg);
4350 
4351 	case PERF_EVENT_IOC_SET_BPF:
4352 		return perf_event_set_bpf_prog(event, arg);
4353 
4354 	default:
4355 		return -ENOTTY;
4356 	}
4357 
4358 	if (flags & PERF_IOC_FLAG_GROUP)
4359 		perf_event_for_each(event, func);
4360 	else
4361 		perf_event_for_each_child(event, func);
4362 
4363 	return 0;
4364 }
4365 
4366 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4367 {
4368 	struct perf_event *event = file->private_data;
4369 	struct perf_event_context *ctx;
4370 	long ret;
4371 
4372 	ctx = perf_event_ctx_lock(event);
4373 	ret = _perf_ioctl(event, cmd, arg);
4374 	perf_event_ctx_unlock(event, ctx);
4375 
4376 	return ret;
4377 }
4378 
4379 #ifdef CONFIG_COMPAT
4380 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4381 				unsigned long arg)
4382 {
4383 	switch (_IOC_NR(cmd)) {
4384 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4385 	case _IOC_NR(PERF_EVENT_IOC_ID):
4386 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4387 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4388 			cmd &= ~IOCSIZE_MASK;
4389 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4390 		}
4391 		break;
4392 	}
4393 	return perf_ioctl(file, cmd, arg);
4394 }
4395 #else
4396 # define perf_compat_ioctl NULL
4397 #endif
4398 
4399 int perf_event_task_enable(void)
4400 {
4401 	struct perf_event_context *ctx;
4402 	struct perf_event *event;
4403 
4404 	mutex_lock(&current->perf_event_mutex);
4405 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4406 		ctx = perf_event_ctx_lock(event);
4407 		perf_event_for_each_child(event, _perf_event_enable);
4408 		perf_event_ctx_unlock(event, ctx);
4409 	}
4410 	mutex_unlock(&current->perf_event_mutex);
4411 
4412 	return 0;
4413 }
4414 
4415 int perf_event_task_disable(void)
4416 {
4417 	struct perf_event_context *ctx;
4418 	struct perf_event *event;
4419 
4420 	mutex_lock(&current->perf_event_mutex);
4421 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4422 		ctx = perf_event_ctx_lock(event);
4423 		perf_event_for_each_child(event, _perf_event_disable);
4424 		perf_event_ctx_unlock(event, ctx);
4425 	}
4426 	mutex_unlock(&current->perf_event_mutex);
4427 
4428 	return 0;
4429 }
4430 
4431 static int perf_event_index(struct perf_event *event)
4432 {
4433 	if (event->hw.state & PERF_HES_STOPPED)
4434 		return 0;
4435 
4436 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4437 		return 0;
4438 
4439 	return event->pmu->event_idx(event);
4440 }
4441 
4442 static void calc_timer_values(struct perf_event *event,
4443 				u64 *now,
4444 				u64 *enabled,
4445 				u64 *running)
4446 {
4447 	u64 ctx_time;
4448 
4449 	*now = perf_clock();
4450 	ctx_time = event->shadow_ctx_time + *now;
4451 	*enabled = ctx_time - event->tstamp_enabled;
4452 	*running = ctx_time - event->tstamp_running;
4453 }
4454 
4455 static void perf_event_init_userpage(struct perf_event *event)
4456 {
4457 	struct perf_event_mmap_page *userpg;
4458 	struct ring_buffer *rb;
4459 
4460 	rcu_read_lock();
4461 	rb = rcu_dereference(event->rb);
4462 	if (!rb)
4463 		goto unlock;
4464 
4465 	userpg = rb->user_page;
4466 
4467 	/* Allow new userspace to detect that bit 0 is deprecated */
4468 	userpg->cap_bit0_is_deprecated = 1;
4469 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4470 	userpg->data_offset = PAGE_SIZE;
4471 	userpg->data_size = perf_data_size(rb);
4472 
4473 unlock:
4474 	rcu_read_unlock();
4475 }
4476 
4477 void __weak arch_perf_update_userpage(
4478 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4479 {
4480 }
4481 
4482 /*
4483  * Callers need to ensure there can be no nesting of this function, otherwise
4484  * the seqlock logic goes bad. We can not serialize this because the arch
4485  * code calls this from NMI context.
4486  */
4487 void perf_event_update_userpage(struct perf_event *event)
4488 {
4489 	struct perf_event_mmap_page *userpg;
4490 	struct ring_buffer *rb;
4491 	u64 enabled, running, now;
4492 
4493 	rcu_read_lock();
4494 	rb = rcu_dereference(event->rb);
4495 	if (!rb)
4496 		goto unlock;
4497 
4498 	/*
4499 	 * compute total_time_enabled, total_time_running
4500 	 * based on snapshot values taken when the event
4501 	 * was last scheduled in.
4502 	 *
4503 	 * we cannot simply called update_context_time()
4504 	 * because of locking issue as we can be called in
4505 	 * NMI context
4506 	 */
4507 	calc_timer_values(event, &now, &enabled, &running);
4508 
4509 	userpg = rb->user_page;
4510 	/*
4511 	 * Disable preemption so as to not let the corresponding user-space
4512 	 * spin too long if we get preempted.
4513 	 */
4514 	preempt_disable();
4515 	++userpg->lock;
4516 	barrier();
4517 	userpg->index = perf_event_index(event);
4518 	userpg->offset = perf_event_count(event);
4519 	if (userpg->index)
4520 		userpg->offset -= local64_read(&event->hw.prev_count);
4521 
4522 	userpg->time_enabled = enabled +
4523 			atomic64_read(&event->child_total_time_enabled);
4524 
4525 	userpg->time_running = running +
4526 			atomic64_read(&event->child_total_time_running);
4527 
4528 	arch_perf_update_userpage(event, userpg, now);
4529 
4530 	barrier();
4531 	++userpg->lock;
4532 	preempt_enable();
4533 unlock:
4534 	rcu_read_unlock();
4535 }
4536 
4537 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4538 {
4539 	struct perf_event *event = vma->vm_file->private_data;
4540 	struct ring_buffer *rb;
4541 	int ret = VM_FAULT_SIGBUS;
4542 
4543 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4544 		if (vmf->pgoff == 0)
4545 			ret = 0;
4546 		return ret;
4547 	}
4548 
4549 	rcu_read_lock();
4550 	rb = rcu_dereference(event->rb);
4551 	if (!rb)
4552 		goto unlock;
4553 
4554 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4555 		goto unlock;
4556 
4557 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4558 	if (!vmf->page)
4559 		goto unlock;
4560 
4561 	get_page(vmf->page);
4562 	vmf->page->mapping = vma->vm_file->f_mapping;
4563 	vmf->page->index   = vmf->pgoff;
4564 
4565 	ret = 0;
4566 unlock:
4567 	rcu_read_unlock();
4568 
4569 	return ret;
4570 }
4571 
4572 static void ring_buffer_attach(struct perf_event *event,
4573 			       struct ring_buffer *rb)
4574 {
4575 	struct ring_buffer *old_rb = NULL;
4576 	unsigned long flags;
4577 
4578 	if (event->rb) {
4579 		/*
4580 		 * Should be impossible, we set this when removing
4581 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4582 		 */
4583 		WARN_ON_ONCE(event->rcu_pending);
4584 
4585 		old_rb = event->rb;
4586 		spin_lock_irqsave(&old_rb->event_lock, flags);
4587 		list_del_rcu(&event->rb_entry);
4588 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4589 
4590 		event->rcu_batches = get_state_synchronize_rcu();
4591 		event->rcu_pending = 1;
4592 	}
4593 
4594 	if (rb) {
4595 		if (event->rcu_pending) {
4596 			cond_synchronize_rcu(event->rcu_batches);
4597 			event->rcu_pending = 0;
4598 		}
4599 
4600 		spin_lock_irqsave(&rb->event_lock, flags);
4601 		list_add_rcu(&event->rb_entry, &rb->event_list);
4602 		spin_unlock_irqrestore(&rb->event_lock, flags);
4603 	}
4604 
4605 	rcu_assign_pointer(event->rb, rb);
4606 
4607 	if (old_rb) {
4608 		ring_buffer_put(old_rb);
4609 		/*
4610 		 * Since we detached before setting the new rb, so that we
4611 		 * could attach the new rb, we could have missed a wakeup.
4612 		 * Provide it now.
4613 		 */
4614 		wake_up_all(&event->waitq);
4615 	}
4616 }
4617 
4618 static void ring_buffer_wakeup(struct perf_event *event)
4619 {
4620 	struct ring_buffer *rb;
4621 
4622 	rcu_read_lock();
4623 	rb = rcu_dereference(event->rb);
4624 	if (rb) {
4625 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4626 			wake_up_all(&event->waitq);
4627 	}
4628 	rcu_read_unlock();
4629 }
4630 
4631 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4632 {
4633 	struct ring_buffer *rb;
4634 
4635 	rcu_read_lock();
4636 	rb = rcu_dereference(event->rb);
4637 	if (rb) {
4638 		if (!atomic_inc_not_zero(&rb->refcount))
4639 			rb = NULL;
4640 	}
4641 	rcu_read_unlock();
4642 
4643 	return rb;
4644 }
4645 
4646 void ring_buffer_put(struct ring_buffer *rb)
4647 {
4648 	if (!atomic_dec_and_test(&rb->refcount))
4649 		return;
4650 
4651 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4652 
4653 	call_rcu(&rb->rcu_head, rb_free_rcu);
4654 }
4655 
4656 static void perf_mmap_open(struct vm_area_struct *vma)
4657 {
4658 	struct perf_event *event = vma->vm_file->private_data;
4659 
4660 	atomic_inc(&event->mmap_count);
4661 	atomic_inc(&event->rb->mmap_count);
4662 
4663 	if (vma->vm_pgoff)
4664 		atomic_inc(&event->rb->aux_mmap_count);
4665 
4666 	if (event->pmu->event_mapped)
4667 		event->pmu->event_mapped(event);
4668 }
4669 
4670 /*
4671  * A buffer can be mmap()ed multiple times; either directly through the same
4672  * event, or through other events by use of perf_event_set_output().
4673  *
4674  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4675  * the buffer here, where we still have a VM context. This means we need
4676  * to detach all events redirecting to us.
4677  */
4678 static void perf_mmap_close(struct vm_area_struct *vma)
4679 {
4680 	struct perf_event *event = vma->vm_file->private_data;
4681 
4682 	struct ring_buffer *rb = ring_buffer_get(event);
4683 	struct user_struct *mmap_user = rb->mmap_user;
4684 	int mmap_locked = rb->mmap_locked;
4685 	unsigned long size = perf_data_size(rb);
4686 
4687 	if (event->pmu->event_unmapped)
4688 		event->pmu->event_unmapped(event);
4689 
4690 	/*
4691 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4692 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4693 	 * serialize with perf_mmap here.
4694 	 */
4695 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4696 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4697 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4698 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4699 
4700 		rb_free_aux(rb);
4701 		mutex_unlock(&event->mmap_mutex);
4702 	}
4703 
4704 	atomic_dec(&rb->mmap_count);
4705 
4706 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4707 		goto out_put;
4708 
4709 	ring_buffer_attach(event, NULL);
4710 	mutex_unlock(&event->mmap_mutex);
4711 
4712 	/* If there's still other mmap()s of this buffer, we're done. */
4713 	if (atomic_read(&rb->mmap_count))
4714 		goto out_put;
4715 
4716 	/*
4717 	 * No other mmap()s, detach from all other events that might redirect
4718 	 * into the now unreachable buffer. Somewhat complicated by the
4719 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4720 	 */
4721 again:
4722 	rcu_read_lock();
4723 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4724 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4725 			/*
4726 			 * This event is en-route to free_event() which will
4727 			 * detach it and remove it from the list.
4728 			 */
4729 			continue;
4730 		}
4731 		rcu_read_unlock();
4732 
4733 		mutex_lock(&event->mmap_mutex);
4734 		/*
4735 		 * Check we didn't race with perf_event_set_output() which can
4736 		 * swizzle the rb from under us while we were waiting to
4737 		 * acquire mmap_mutex.
4738 		 *
4739 		 * If we find a different rb; ignore this event, a next
4740 		 * iteration will no longer find it on the list. We have to
4741 		 * still restart the iteration to make sure we're not now
4742 		 * iterating the wrong list.
4743 		 */
4744 		if (event->rb == rb)
4745 			ring_buffer_attach(event, NULL);
4746 
4747 		mutex_unlock(&event->mmap_mutex);
4748 		put_event(event);
4749 
4750 		/*
4751 		 * Restart the iteration; either we're on the wrong list or
4752 		 * destroyed its integrity by doing a deletion.
4753 		 */
4754 		goto again;
4755 	}
4756 	rcu_read_unlock();
4757 
4758 	/*
4759 	 * It could be there's still a few 0-ref events on the list; they'll
4760 	 * get cleaned up by free_event() -- they'll also still have their
4761 	 * ref on the rb and will free it whenever they are done with it.
4762 	 *
4763 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4764 	 * undo the VM accounting.
4765 	 */
4766 
4767 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4768 	vma->vm_mm->pinned_vm -= mmap_locked;
4769 	free_uid(mmap_user);
4770 
4771 out_put:
4772 	ring_buffer_put(rb); /* could be last */
4773 }
4774 
4775 static const struct vm_operations_struct perf_mmap_vmops = {
4776 	.open		= perf_mmap_open,
4777 	.close		= perf_mmap_close, /* non mergable */
4778 	.fault		= perf_mmap_fault,
4779 	.page_mkwrite	= perf_mmap_fault,
4780 };
4781 
4782 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4783 {
4784 	struct perf_event *event = file->private_data;
4785 	unsigned long user_locked, user_lock_limit;
4786 	struct user_struct *user = current_user();
4787 	unsigned long locked, lock_limit;
4788 	struct ring_buffer *rb = NULL;
4789 	unsigned long vma_size;
4790 	unsigned long nr_pages;
4791 	long user_extra = 0, extra = 0;
4792 	int ret = 0, flags = 0;
4793 
4794 	/*
4795 	 * Don't allow mmap() of inherited per-task counters. This would
4796 	 * create a performance issue due to all children writing to the
4797 	 * same rb.
4798 	 */
4799 	if (event->cpu == -1 && event->attr.inherit)
4800 		return -EINVAL;
4801 
4802 	if (!(vma->vm_flags & VM_SHARED))
4803 		return -EINVAL;
4804 
4805 	vma_size = vma->vm_end - vma->vm_start;
4806 
4807 	if (vma->vm_pgoff == 0) {
4808 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4809 	} else {
4810 		/*
4811 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4812 		 * mapped, all subsequent mappings should have the same size
4813 		 * and offset. Must be above the normal perf buffer.
4814 		 */
4815 		u64 aux_offset, aux_size;
4816 
4817 		if (!event->rb)
4818 			return -EINVAL;
4819 
4820 		nr_pages = vma_size / PAGE_SIZE;
4821 
4822 		mutex_lock(&event->mmap_mutex);
4823 		ret = -EINVAL;
4824 
4825 		rb = event->rb;
4826 		if (!rb)
4827 			goto aux_unlock;
4828 
4829 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4830 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4831 
4832 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4833 			goto aux_unlock;
4834 
4835 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4836 			goto aux_unlock;
4837 
4838 		/* already mapped with a different offset */
4839 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4840 			goto aux_unlock;
4841 
4842 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4843 			goto aux_unlock;
4844 
4845 		/* already mapped with a different size */
4846 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4847 			goto aux_unlock;
4848 
4849 		if (!is_power_of_2(nr_pages))
4850 			goto aux_unlock;
4851 
4852 		if (!atomic_inc_not_zero(&rb->mmap_count))
4853 			goto aux_unlock;
4854 
4855 		if (rb_has_aux(rb)) {
4856 			atomic_inc(&rb->aux_mmap_count);
4857 			ret = 0;
4858 			goto unlock;
4859 		}
4860 
4861 		atomic_set(&rb->aux_mmap_count, 1);
4862 		user_extra = nr_pages;
4863 
4864 		goto accounting;
4865 	}
4866 
4867 	/*
4868 	 * If we have rb pages ensure they're a power-of-two number, so we
4869 	 * can do bitmasks instead of modulo.
4870 	 */
4871 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4872 		return -EINVAL;
4873 
4874 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4875 		return -EINVAL;
4876 
4877 	WARN_ON_ONCE(event->ctx->parent_ctx);
4878 again:
4879 	mutex_lock(&event->mmap_mutex);
4880 	if (event->rb) {
4881 		if (event->rb->nr_pages != nr_pages) {
4882 			ret = -EINVAL;
4883 			goto unlock;
4884 		}
4885 
4886 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4887 			/*
4888 			 * Raced against perf_mmap_close() through
4889 			 * perf_event_set_output(). Try again, hope for better
4890 			 * luck.
4891 			 */
4892 			mutex_unlock(&event->mmap_mutex);
4893 			goto again;
4894 		}
4895 
4896 		goto unlock;
4897 	}
4898 
4899 	user_extra = nr_pages + 1;
4900 
4901 accounting:
4902 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4903 
4904 	/*
4905 	 * Increase the limit linearly with more CPUs:
4906 	 */
4907 	user_lock_limit *= num_online_cpus();
4908 
4909 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4910 
4911 	if (user_locked > user_lock_limit)
4912 		extra = user_locked - user_lock_limit;
4913 
4914 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4915 	lock_limit >>= PAGE_SHIFT;
4916 	locked = vma->vm_mm->pinned_vm + extra;
4917 
4918 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4919 		!capable(CAP_IPC_LOCK)) {
4920 		ret = -EPERM;
4921 		goto unlock;
4922 	}
4923 
4924 	WARN_ON(!rb && event->rb);
4925 
4926 	if (vma->vm_flags & VM_WRITE)
4927 		flags |= RING_BUFFER_WRITABLE;
4928 
4929 	if (!rb) {
4930 		rb = rb_alloc(nr_pages,
4931 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4932 			      event->cpu, flags);
4933 
4934 		if (!rb) {
4935 			ret = -ENOMEM;
4936 			goto unlock;
4937 		}
4938 
4939 		atomic_set(&rb->mmap_count, 1);
4940 		rb->mmap_user = get_current_user();
4941 		rb->mmap_locked = extra;
4942 
4943 		ring_buffer_attach(event, rb);
4944 
4945 		perf_event_init_userpage(event);
4946 		perf_event_update_userpage(event);
4947 	} else {
4948 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4949 				   event->attr.aux_watermark, flags);
4950 		if (!ret)
4951 			rb->aux_mmap_locked = extra;
4952 	}
4953 
4954 unlock:
4955 	if (!ret) {
4956 		atomic_long_add(user_extra, &user->locked_vm);
4957 		vma->vm_mm->pinned_vm += extra;
4958 
4959 		atomic_inc(&event->mmap_count);
4960 	} else if (rb) {
4961 		atomic_dec(&rb->mmap_count);
4962 	}
4963 aux_unlock:
4964 	mutex_unlock(&event->mmap_mutex);
4965 
4966 	/*
4967 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4968 	 * vma.
4969 	 */
4970 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4971 	vma->vm_ops = &perf_mmap_vmops;
4972 
4973 	if (event->pmu->event_mapped)
4974 		event->pmu->event_mapped(event);
4975 
4976 	return ret;
4977 }
4978 
4979 static int perf_fasync(int fd, struct file *filp, int on)
4980 {
4981 	struct inode *inode = file_inode(filp);
4982 	struct perf_event *event = filp->private_data;
4983 	int retval;
4984 
4985 	inode_lock(inode);
4986 	retval = fasync_helper(fd, filp, on, &event->fasync);
4987 	inode_unlock(inode);
4988 
4989 	if (retval < 0)
4990 		return retval;
4991 
4992 	return 0;
4993 }
4994 
4995 static const struct file_operations perf_fops = {
4996 	.llseek			= no_llseek,
4997 	.release		= perf_release,
4998 	.read			= perf_read,
4999 	.poll			= perf_poll,
5000 	.unlocked_ioctl		= perf_ioctl,
5001 	.compat_ioctl		= perf_compat_ioctl,
5002 	.mmap			= perf_mmap,
5003 	.fasync			= perf_fasync,
5004 };
5005 
5006 /*
5007  * Perf event wakeup
5008  *
5009  * If there's data, ensure we set the poll() state and publish everything
5010  * to user-space before waking everybody up.
5011  */
5012 
5013 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5014 {
5015 	/* only the parent has fasync state */
5016 	if (event->parent)
5017 		event = event->parent;
5018 	return &event->fasync;
5019 }
5020 
5021 void perf_event_wakeup(struct perf_event *event)
5022 {
5023 	ring_buffer_wakeup(event);
5024 
5025 	if (event->pending_kill) {
5026 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5027 		event->pending_kill = 0;
5028 	}
5029 }
5030 
5031 static void perf_pending_event(struct irq_work *entry)
5032 {
5033 	struct perf_event *event = container_of(entry,
5034 			struct perf_event, pending);
5035 	int rctx;
5036 
5037 	rctx = perf_swevent_get_recursion_context();
5038 	/*
5039 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5040 	 * and we won't recurse 'further'.
5041 	 */
5042 
5043 	if (event->pending_disable) {
5044 		event->pending_disable = 0;
5045 		perf_event_disable_local(event);
5046 	}
5047 
5048 	if (event->pending_wakeup) {
5049 		event->pending_wakeup = 0;
5050 		perf_event_wakeup(event);
5051 	}
5052 
5053 	if (rctx >= 0)
5054 		perf_swevent_put_recursion_context(rctx);
5055 }
5056 
5057 /*
5058  * We assume there is only KVM supporting the callbacks.
5059  * Later on, we might change it to a list if there is
5060  * another virtualization implementation supporting the callbacks.
5061  */
5062 struct perf_guest_info_callbacks *perf_guest_cbs;
5063 
5064 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5065 {
5066 	perf_guest_cbs = cbs;
5067 	return 0;
5068 }
5069 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5070 
5071 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5072 {
5073 	perf_guest_cbs = NULL;
5074 	return 0;
5075 }
5076 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5077 
5078 static void
5079 perf_output_sample_regs(struct perf_output_handle *handle,
5080 			struct pt_regs *regs, u64 mask)
5081 {
5082 	int bit;
5083 
5084 	for_each_set_bit(bit, (const unsigned long *) &mask,
5085 			 sizeof(mask) * BITS_PER_BYTE) {
5086 		u64 val;
5087 
5088 		val = perf_reg_value(regs, bit);
5089 		perf_output_put(handle, val);
5090 	}
5091 }
5092 
5093 static void perf_sample_regs_user(struct perf_regs *regs_user,
5094 				  struct pt_regs *regs,
5095 				  struct pt_regs *regs_user_copy)
5096 {
5097 	if (user_mode(regs)) {
5098 		regs_user->abi = perf_reg_abi(current);
5099 		regs_user->regs = regs;
5100 	} else if (current->mm) {
5101 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5102 	} else {
5103 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5104 		regs_user->regs = NULL;
5105 	}
5106 }
5107 
5108 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5109 				  struct pt_regs *regs)
5110 {
5111 	regs_intr->regs = regs;
5112 	regs_intr->abi  = perf_reg_abi(current);
5113 }
5114 
5115 
5116 /*
5117  * Get remaining task size from user stack pointer.
5118  *
5119  * It'd be better to take stack vma map and limit this more
5120  * precisly, but there's no way to get it safely under interrupt,
5121  * so using TASK_SIZE as limit.
5122  */
5123 static u64 perf_ustack_task_size(struct pt_regs *regs)
5124 {
5125 	unsigned long addr = perf_user_stack_pointer(regs);
5126 
5127 	if (!addr || addr >= TASK_SIZE)
5128 		return 0;
5129 
5130 	return TASK_SIZE - addr;
5131 }
5132 
5133 static u16
5134 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5135 			struct pt_regs *regs)
5136 {
5137 	u64 task_size;
5138 
5139 	/* No regs, no stack pointer, no dump. */
5140 	if (!regs)
5141 		return 0;
5142 
5143 	/*
5144 	 * Check if we fit in with the requested stack size into the:
5145 	 * - TASK_SIZE
5146 	 *   If we don't, we limit the size to the TASK_SIZE.
5147 	 *
5148 	 * - remaining sample size
5149 	 *   If we don't, we customize the stack size to
5150 	 *   fit in to the remaining sample size.
5151 	 */
5152 
5153 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5154 	stack_size = min(stack_size, (u16) task_size);
5155 
5156 	/* Current header size plus static size and dynamic size. */
5157 	header_size += 2 * sizeof(u64);
5158 
5159 	/* Do we fit in with the current stack dump size? */
5160 	if ((u16) (header_size + stack_size) < header_size) {
5161 		/*
5162 		 * If we overflow the maximum size for the sample,
5163 		 * we customize the stack dump size to fit in.
5164 		 */
5165 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5166 		stack_size = round_up(stack_size, sizeof(u64));
5167 	}
5168 
5169 	return stack_size;
5170 }
5171 
5172 static void
5173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5174 			  struct pt_regs *regs)
5175 {
5176 	/* Case of a kernel thread, nothing to dump */
5177 	if (!regs) {
5178 		u64 size = 0;
5179 		perf_output_put(handle, size);
5180 	} else {
5181 		unsigned long sp;
5182 		unsigned int rem;
5183 		u64 dyn_size;
5184 
5185 		/*
5186 		 * We dump:
5187 		 * static size
5188 		 *   - the size requested by user or the best one we can fit
5189 		 *     in to the sample max size
5190 		 * data
5191 		 *   - user stack dump data
5192 		 * dynamic size
5193 		 *   - the actual dumped size
5194 		 */
5195 
5196 		/* Static size. */
5197 		perf_output_put(handle, dump_size);
5198 
5199 		/* Data. */
5200 		sp = perf_user_stack_pointer(regs);
5201 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5202 		dyn_size = dump_size - rem;
5203 
5204 		perf_output_skip(handle, rem);
5205 
5206 		/* Dynamic size. */
5207 		perf_output_put(handle, dyn_size);
5208 	}
5209 }
5210 
5211 static void __perf_event_header__init_id(struct perf_event_header *header,
5212 					 struct perf_sample_data *data,
5213 					 struct perf_event *event)
5214 {
5215 	u64 sample_type = event->attr.sample_type;
5216 
5217 	data->type = sample_type;
5218 	header->size += event->id_header_size;
5219 
5220 	if (sample_type & PERF_SAMPLE_TID) {
5221 		/* namespace issues */
5222 		data->tid_entry.pid = perf_event_pid(event, current);
5223 		data->tid_entry.tid = perf_event_tid(event, current);
5224 	}
5225 
5226 	if (sample_type & PERF_SAMPLE_TIME)
5227 		data->time = perf_event_clock(event);
5228 
5229 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5230 		data->id = primary_event_id(event);
5231 
5232 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5233 		data->stream_id = event->id;
5234 
5235 	if (sample_type & PERF_SAMPLE_CPU) {
5236 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5237 		data->cpu_entry.reserved = 0;
5238 	}
5239 }
5240 
5241 void perf_event_header__init_id(struct perf_event_header *header,
5242 				struct perf_sample_data *data,
5243 				struct perf_event *event)
5244 {
5245 	if (event->attr.sample_id_all)
5246 		__perf_event_header__init_id(header, data, event);
5247 }
5248 
5249 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5250 					   struct perf_sample_data *data)
5251 {
5252 	u64 sample_type = data->type;
5253 
5254 	if (sample_type & PERF_SAMPLE_TID)
5255 		perf_output_put(handle, data->tid_entry);
5256 
5257 	if (sample_type & PERF_SAMPLE_TIME)
5258 		perf_output_put(handle, data->time);
5259 
5260 	if (sample_type & PERF_SAMPLE_ID)
5261 		perf_output_put(handle, data->id);
5262 
5263 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5264 		perf_output_put(handle, data->stream_id);
5265 
5266 	if (sample_type & PERF_SAMPLE_CPU)
5267 		perf_output_put(handle, data->cpu_entry);
5268 
5269 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5270 		perf_output_put(handle, data->id);
5271 }
5272 
5273 void perf_event__output_id_sample(struct perf_event *event,
5274 				  struct perf_output_handle *handle,
5275 				  struct perf_sample_data *sample)
5276 {
5277 	if (event->attr.sample_id_all)
5278 		__perf_event__output_id_sample(handle, sample);
5279 }
5280 
5281 static void perf_output_read_one(struct perf_output_handle *handle,
5282 				 struct perf_event *event,
5283 				 u64 enabled, u64 running)
5284 {
5285 	u64 read_format = event->attr.read_format;
5286 	u64 values[4];
5287 	int n = 0;
5288 
5289 	values[n++] = perf_event_count(event);
5290 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5291 		values[n++] = enabled +
5292 			atomic64_read(&event->child_total_time_enabled);
5293 	}
5294 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5295 		values[n++] = running +
5296 			atomic64_read(&event->child_total_time_running);
5297 	}
5298 	if (read_format & PERF_FORMAT_ID)
5299 		values[n++] = primary_event_id(event);
5300 
5301 	__output_copy(handle, values, n * sizeof(u64));
5302 }
5303 
5304 /*
5305  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5306  */
5307 static void perf_output_read_group(struct perf_output_handle *handle,
5308 			    struct perf_event *event,
5309 			    u64 enabled, u64 running)
5310 {
5311 	struct perf_event *leader = event->group_leader, *sub;
5312 	u64 read_format = event->attr.read_format;
5313 	u64 values[5];
5314 	int n = 0;
5315 
5316 	values[n++] = 1 + leader->nr_siblings;
5317 
5318 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5319 		values[n++] = enabled;
5320 
5321 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5322 		values[n++] = running;
5323 
5324 	if (leader != event)
5325 		leader->pmu->read(leader);
5326 
5327 	values[n++] = perf_event_count(leader);
5328 	if (read_format & PERF_FORMAT_ID)
5329 		values[n++] = primary_event_id(leader);
5330 
5331 	__output_copy(handle, values, n * sizeof(u64));
5332 
5333 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5334 		n = 0;
5335 
5336 		if ((sub != event) &&
5337 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5338 			sub->pmu->read(sub);
5339 
5340 		values[n++] = perf_event_count(sub);
5341 		if (read_format & PERF_FORMAT_ID)
5342 			values[n++] = primary_event_id(sub);
5343 
5344 		__output_copy(handle, values, n * sizeof(u64));
5345 	}
5346 }
5347 
5348 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5349 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5350 
5351 static void perf_output_read(struct perf_output_handle *handle,
5352 			     struct perf_event *event)
5353 {
5354 	u64 enabled = 0, running = 0, now;
5355 	u64 read_format = event->attr.read_format;
5356 
5357 	/*
5358 	 * compute total_time_enabled, total_time_running
5359 	 * based on snapshot values taken when the event
5360 	 * was last scheduled in.
5361 	 *
5362 	 * we cannot simply called update_context_time()
5363 	 * because of locking issue as we are called in
5364 	 * NMI context
5365 	 */
5366 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5367 		calc_timer_values(event, &now, &enabled, &running);
5368 
5369 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5370 		perf_output_read_group(handle, event, enabled, running);
5371 	else
5372 		perf_output_read_one(handle, event, enabled, running);
5373 }
5374 
5375 void perf_output_sample(struct perf_output_handle *handle,
5376 			struct perf_event_header *header,
5377 			struct perf_sample_data *data,
5378 			struct perf_event *event)
5379 {
5380 	u64 sample_type = data->type;
5381 
5382 	perf_output_put(handle, *header);
5383 
5384 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5385 		perf_output_put(handle, data->id);
5386 
5387 	if (sample_type & PERF_SAMPLE_IP)
5388 		perf_output_put(handle, data->ip);
5389 
5390 	if (sample_type & PERF_SAMPLE_TID)
5391 		perf_output_put(handle, data->tid_entry);
5392 
5393 	if (sample_type & PERF_SAMPLE_TIME)
5394 		perf_output_put(handle, data->time);
5395 
5396 	if (sample_type & PERF_SAMPLE_ADDR)
5397 		perf_output_put(handle, data->addr);
5398 
5399 	if (sample_type & PERF_SAMPLE_ID)
5400 		perf_output_put(handle, data->id);
5401 
5402 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5403 		perf_output_put(handle, data->stream_id);
5404 
5405 	if (sample_type & PERF_SAMPLE_CPU)
5406 		perf_output_put(handle, data->cpu_entry);
5407 
5408 	if (sample_type & PERF_SAMPLE_PERIOD)
5409 		perf_output_put(handle, data->period);
5410 
5411 	if (sample_type & PERF_SAMPLE_READ)
5412 		perf_output_read(handle, event);
5413 
5414 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5415 		if (data->callchain) {
5416 			int size = 1;
5417 
5418 			if (data->callchain)
5419 				size += data->callchain->nr;
5420 
5421 			size *= sizeof(u64);
5422 
5423 			__output_copy(handle, data->callchain, size);
5424 		} else {
5425 			u64 nr = 0;
5426 			perf_output_put(handle, nr);
5427 		}
5428 	}
5429 
5430 	if (sample_type & PERF_SAMPLE_RAW) {
5431 		if (data->raw) {
5432 			u32 raw_size = data->raw->size;
5433 			u32 real_size = round_up(raw_size + sizeof(u32),
5434 						 sizeof(u64)) - sizeof(u32);
5435 			u64 zero = 0;
5436 
5437 			perf_output_put(handle, real_size);
5438 			__output_copy(handle, data->raw->data, raw_size);
5439 			if (real_size - raw_size)
5440 				__output_copy(handle, &zero, real_size - raw_size);
5441 		} else {
5442 			struct {
5443 				u32	size;
5444 				u32	data;
5445 			} raw = {
5446 				.size = sizeof(u32),
5447 				.data = 0,
5448 			};
5449 			perf_output_put(handle, raw);
5450 		}
5451 	}
5452 
5453 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5454 		if (data->br_stack) {
5455 			size_t size;
5456 
5457 			size = data->br_stack->nr
5458 			     * sizeof(struct perf_branch_entry);
5459 
5460 			perf_output_put(handle, data->br_stack->nr);
5461 			perf_output_copy(handle, data->br_stack->entries, size);
5462 		} else {
5463 			/*
5464 			 * we always store at least the value of nr
5465 			 */
5466 			u64 nr = 0;
5467 			perf_output_put(handle, nr);
5468 		}
5469 	}
5470 
5471 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5472 		u64 abi = data->regs_user.abi;
5473 
5474 		/*
5475 		 * If there are no regs to dump, notice it through
5476 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5477 		 */
5478 		perf_output_put(handle, abi);
5479 
5480 		if (abi) {
5481 			u64 mask = event->attr.sample_regs_user;
5482 			perf_output_sample_regs(handle,
5483 						data->regs_user.regs,
5484 						mask);
5485 		}
5486 	}
5487 
5488 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5489 		perf_output_sample_ustack(handle,
5490 					  data->stack_user_size,
5491 					  data->regs_user.regs);
5492 	}
5493 
5494 	if (sample_type & PERF_SAMPLE_WEIGHT)
5495 		perf_output_put(handle, data->weight);
5496 
5497 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5498 		perf_output_put(handle, data->data_src.val);
5499 
5500 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5501 		perf_output_put(handle, data->txn);
5502 
5503 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5504 		u64 abi = data->regs_intr.abi;
5505 		/*
5506 		 * If there are no regs to dump, notice it through
5507 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5508 		 */
5509 		perf_output_put(handle, abi);
5510 
5511 		if (abi) {
5512 			u64 mask = event->attr.sample_regs_intr;
5513 
5514 			perf_output_sample_regs(handle,
5515 						data->regs_intr.regs,
5516 						mask);
5517 		}
5518 	}
5519 
5520 	if (!event->attr.watermark) {
5521 		int wakeup_events = event->attr.wakeup_events;
5522 
5523 		if (wakeup_events) {
5524 			struct ring_buffer *rb = handle->rb;
5525 			int events = local_inc_return(&rb->events);
5526 
5527 			if (events >= wakeup_events) {
5528 				local_sub(wakeup_events, &rb->events);
5529 				local_inc(&rb->wakeup);
5530 			}
5531 		}
5532 	}
5533 }
5534 
5535 void perf_prepare_sample(struct perf_event_header *header,
5536 			 struct perf_sample_data *data,
5537 			 struct perf_event *event,
5538 			 struct pt_regs *regs)
5539 {
5540 	u64 sample_type = event->attr.sample_type;
5541 
5542 	header->type = PERF_RECORD_SAMPLE;
5543 	header->size = sizeof(*header) + event->header_size;
5544 
5545 	header->misc = 0;
5546 	header->misc |= perf_misc_flags(regs);
5547 
5548 	__perf_event_header__init_id(header, data, event);
5549 
5550 	if (sample_type & PERF_SAMPLE_IP)
5551 		data->ip = perf_instruction_pointer(regs);
5552 
5553 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5554 		int size = 1;
5555 
5556 		data->callchain = perf_callchain(event, regs);
5557 
5558 		if (data->callchain)
5559 			size += data->callchain->nr;
5560 
5561 		header->size += size * sizeof(u64);
5562 	}
5563 
5564 	if (sample_type & PERF_SAMPLE_RAW) {
5565 		int size = sizeof(u32);
5566 
5567 		if (data->raw)
5568 			size += data->raw->size;
5569 		else
5570 			size += sizeof(u32);
5571 
5572 		header->size += round_up(size, sizeof(u64));
5573 	}
5574 
5575 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5576 		int size = sizeof(u64); /* nr */
5577 		if (data->br_stack) {
5578 			size += data->br_stack->nr
5579 			      * sizeof(struct perf_branch_entry);
5580 		}
5581 		header->size += size;
5582 	}
5583 
5584 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5585 		perf_sample_regs_user(&data->regs_user, regs,
5586 				      &data->regs_user_copy);
5587 
5588 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5589 		/* regs dump ABI info */
5590 		int size = sizeof(u64);
5591 
5592 		if (data->regs_user.regs) {
5593 			u64 mask = event->attr.sample_regs_user;
5594 			size += hweight64(mask) * sizeof(u64);
5595 		}
5596 
5597 		header->size += size;
5598 	}
5599 
5600 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5601 		/*
5602 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5603 		 * processed as the last one or have additional check added
5604 		 * in case new sample type is added, because we could eat
5605 		 * up the rest of the sample size.
5606 		 */
5607 		u16 stack_size = event->attr.sample_stack_user;
5608 		u16 size = sizeof(u64);
5609 
5610 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5611 						     data->regs_user.regs);
5612 
5613 		/*
5614 		 * If there is something to dump, add space for the dump
5615 		 * itself and for the field that tells the dynamic size,
5616 		 * which is how many have been actually dumped.
5617 		 */
5618 		if (stack_size)
5619 			size += sizeof(u64) + stack_size;
5620 
5621 		data->stack_user_size = stack_size;
5622 		header->size += size;
5623 	}
5624 
5625 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5626 		/* regs dump ABI info */
5627 		int size = sizeof(u64);
5628 
5629 		perf_sample_regs_intr(&data->regs_intr, regs);
5630 
5631 		if (data->regs_intr.regs) {
5632 			u64 mask = event->attr.sample_regs_intr;
5633 
5634 			size += hweight64(mask) * sizeof(u64);
5635 		}
5636 
5637 		header->size += size;
5638 	}
5639 }
5640 
5641 void perf_event_output(struct perf_event *event,
5642 			struct perf_sample_data *data,
5643 			struct pt_regs *regs)
5644 {
5645 	struct perf_output_handle handle;
5646 	struct perf_event_header header;
5647 
5648 	/* protect the callchain buffers */
5649 	rcu_read_lock();
5650 
5651 	perf_prepare_sample(&header, data, event, regs);
5652 
5653 	if (perf_output_begin(&handle, event, header.size))
5654 		goto exit;
5655 
5656 	perf_output_sample(&handle, &header, data, event);
5657 
5658 	perf_output_end(&handle);
5659 
5660 exit:
5661 	rcu_read_unlock();
5662 }
5663 
5664 /*
5665  * read event_id
5666  */
5667 
5668 struct perf_read_event {
5669 	struct perf_event_header	header;
5670 
5671 	u32				pid;
5672 	u32				tid;
5673 };
5674 
5675 static void
5676 perf_event_read_event(struct perf_event *event,
5677 			struct task_struct *task)
5678 {
5679 	struct perf_output_handle handle;
5680 	struct perf_sample_data sample;
5681 	struct perf_read_event read_event = {
5682 		.header = {
5683 			.type = PERF_RECORD_READ,
5684 			.misc = 0,
5685 			.size = sizeof(read_event) + event->read_size,
5686 		},
5687 		.pid = perf_event_pid(event, task),
5688 		.tid = perf_event_tid(event, task),
5689 	};
5690 	int ret;
5691 
5692 	perf_event_header__init_id(&read_event.header, &sample, event);
5693 	ret = perf_output_begin(&handle, event, read_event.header.size);
5694 	if (ret)
5695 		return;
5696 
5697 	perf_output_put(&handle, read_event);
5698 	perf_output_read(&handle, event);
5699 	perf_event__output_id_sample(event, &handle, &sample);
5700 
5701 	perf_output_end(&handle);
5702 }
5703 
5704 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5705 
5706 static void
5707 perf_event_aux_ctx(struct perf_event_context *ctx,
5708 		   perf_event_aux_output_cb output,
5709 		   void *data)
5710 {
5711 	struct perf_event *event;
5712 
5713 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5714 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5715 			continue;
5716 		if (!event_filter_match(event))
5717 			continue;
5718 		output(event, data);
5719 	}
5720 }
5721 
5722 static void
5723 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5724 			struct perf_event_context *task_ctx)
5725 {
5726 	rcu_read_lock();
5727 	preempt_disable();
5728 	perf_event_aux_ctx(task_ctx, output, data);
5729 	preempt_enable();
5730 	rcu_read_unlock();
5731 }
5732 
5733 static void
5734 perf_event_aux(perf_event_aux_output_cb output, void *data,
5735 	       struct perf_event_context *task_ctx)
5736 {
5737 	struct perf_cpu_context *cpuctx;
5738 	struct perf_event_context *ctx;
5739 	struct pmu *pmu;
5740 	int ctxn;
5741 
5742 	/*
5743 	 * If we have task_ctx != NULL we only notify
5744 	 * the task context itself. The task_ctx is set
5745 	 * only for EXIT events before releasing task
5746 	 * context.
5747 	 */
5748 	if (task_ctx) {
5749 		perf_event_aux_task_ctx(output, data, task_ctx);
5750 		return;
5751 	}
5752 
5753 	rcu_read_lock();
5754 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5755 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5756 		if (cpuctx->unique_pmu != pmu)
5757 			goto next;
5758 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5759 		ctxn = pmu->task_ctx_nr;
5760 		if (ctxn < 0)
5761 			goto next;
5762 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5763 		if (ctx)
5764 			perf_event_aux_ctx(ctx, output, data);
5765 next:
5766 		put_cpu_ptr(pmu->pmu_cpu_context);
5767 	}
5768 	rcu_read_unlock();
5769 }
5770 
5771 /*
5772  * task tracking -- fork/exit
5773  *
5774  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5775  */
5776 
5777 struct perf_task_event {
5778 	struct task_struct		*task;
5779 	struct perf_event_context	*task_ctx;
5780 
5781 	struct {
5782 		struct perf_event_header	header;
5783 
5784 		u32				pid;
5785 		u32				ppid;
5786 		u32				tid;
5787 		u32				ptid;
5788 		u64				time;
5789 	} event_id;
5790 };
5791 
5792 static int perf_event_task_match(struct perf_event *event)
5793 {
5794 	return event->attr.comm  || event->attr.mmap ||
5795 	       event->attr.mmap2 || event->attr.mmap_data ||
5796 	       event->attr.task;
5797 }
5798 
5799 static void perf_event_task_output(struct perf_event *event,
5800 				   void *data)
5801 {
5802 	struct perf_task_event *task_event = data;
5803 	struct perf_output_handle handle;
5804 	struct perf_sample_data	sample;
5805 	struct task_struct *task = task_event->task;
5806 	int ret, size = task_event->event_id.header.size;
5807 
5808 	if (!perf_event_task_match(event))
5809 		return;
5810 
5811 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5812 
5813 	ret = perf_output_begin(&handle, event,
5814 				task_event->event_id.header.size);
5815 	if (ret)
5816 		goto out;
5817 
5818 	task_event->event_id.pid = perf_event_pid(event, task);
5819 	task_event->event_id.ppid = perf_event_pid(event, current);
5820 
5821 	task_event->event_id.tid = perf_event_tid(event, task);
5822 	task_event->event_id.ptid = perf_event_tid(event, current);
5823 
5824 	task_event->event_id.time = perf_event_clock(event);
5825 
5826 	perf_output_put(&handle, task_event->event_id);
5827 
5828 	perf_event__output_id_sample(event, &handle, &sample);
5829 
5830 	perf_output_end(&handle);
5831 out:
5832 	task_event->event_id.header.size = size;
5833 }
5834 
5835 static void perf_event_task(struct task_struct *task,
5836 			      struct perf_event_context *task_ctx,
5837 			      int new)
5838 {
5839 	struct perf_task_event task_event;
5840 
5841 	if (!atomic_read(&nr_comm_events) &&
5842 	    !atomic_read(&nr_mmap_events) &&
5843 	    !atomic_read(&nr_task_events))
5844 		return;
5845 
5846 	task_event = (struct perf_task_event){
5847 		.task	  = task,
5848 		.task_ctx = task_ctx,
5849 		.event_id    = {
5850 			.header = {
5851 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5852 				.misc = 0,
5853 				.size = sizeof(task_event.event_id),
5854 			},
5855 			/* .pid  */
5856 			/* .ppid */
5857 			/* .tid  */
5858 			/* .ptid */
5859 			/* .time */
5860 		},
5861 	};
5862 
5863 	perf_event_aux(perf_event_task_output,
5864 		       &task_event,
5865 		       task_ctx);
5866 }
5867 
5868 void perf_event_fork(struct task_struct *task)
5869 {
5870 	perf_event_task(task, NULL, 1);
5871 }
5872 
5873 /*
5874  * comm tracking
5875  */
5876 
5877 struct perf_comm_event {
5878 	struct task_struct	*task;
5879 	char			*comm;
5880 	int			comm_size;
5881 
5882 	struct {
5883 		struct perf_event_header	header;
5884 
5885 		u32				pid;
5886 		u32				tid;
5887 	} event_id;
5888 };
5889 
5890 static int perf_event_comm_match(struct perf_event *event)
5891 {
5892 	return event->attr.comm;
5893 }
5894 
5895 static void perf_event_comm_output(struct perf_event *event,
5896 				   void *data)
5897 {
5898 	struct perf_comm_event *comm_event = data;
5899 	struct perf_output_handle handle;
5900 	struct perf_sample_data sample;
5901 	int size = comm_event->event_id.header.size;
5902 	int ret;
5903 
5904 	if (!perf_event_comm_match(event))
5905 		return;
5906 
5907 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5908 	ret = perf_output_begin(&handle, event,
5909 				comm_event->event_id.header.size);
5910 
5911 	if (ret)
5912 		goto out;
5913 
5914 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5915 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5916 
5917 	perf_output_put(&handle, comm_event->event_id);
5918 	__output_copy(&handle, comm_event->comm,
5919 				   comm_event->comm_size);
5920 
5921 	perf_event__output_id_sample(event, &handle, &sample);
5922 
5923 	perf_output_end(&handle);
5924 out:
5925 	comm_event->event_id.header.size = size;
5926 }
5927 
5928 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5929 {
5930 	char comm[TASK_COMM_LEN];
5931 	unsigned int size;
5932 
5933 	memset(comm, 0, sizeof(comm));
5934 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5935 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5936 
5937 	comm_event->comm = comm;
5938 	comm_event->comm_size = size;
5939 
5940 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5941 
5942 	perf_event_aux(perf_event_comm_output,
5943 		       comm_event,
5944 		       NULL);
5945 }
5946 
5947 void perf_event_comm(struct task_struct *task, bool exec)
5948 {
5949 	struct perf_comm_event comm_event;
5950 
5951 	if (!atomic_read(&nr_comm_events))
5952 		return;
5953 
5954 	comm_event = (struct perf_comm_event){
5955 		.task	= task,
5956 		/* .comm      */
5957 		/* .comm_size */
5958 		.event_id  = {
5959 			.header = {
5960 				.type = PERF_RECORD_COMM,
5961 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5962 				/* .size */
5963 			},
5964 			/* .pid */
5965 			/* .tid */
5966 		},
5967 	};
5968 
5969 	perf_event_comm_event(&comm_event);
5970 }
5971 
5972 /*
5973  * mmap tracking
5974  */
5975 
5976 struct perf_mmap_event {
5977 	struct vm_area_struct	*vma;
5978 
5979 	const char		*file_name;
5980 	int			file_size;
5981 	int			maj, min;
5982 	u64			ino;
5983 	u64			ino_generation;
5984 	u32			prot, flags;
5985 
5986 	struct {
5987 		struct perf_event_header	header;
5988 
5989 		u32				pid;
5990 		u32				tid;
5991 		u64				start;
5992 		u64				len;
5993 		u64				pgoff;
5994 	} event_id;
5995 };
5996 
5997 static int perf_event_mmap_match(struct perf_event *event,
5998 				 void *data)
5999 {
6000 	struct perf_mmap_event *mmap_event = data;
6001 	struct vm_area_struct *vma = mmap_event->vma;
6002 	int executable = vma->vm_flags & VM_EXEC;
6003 
6004 	return (!executable && event->attr.mmap_data) ||
6005 	       (executable && (event->attr.mmap || event->attr.mmap2));
6006 }
6007 
6008 static void perf_event_mmap_output(struct perf_event *event,
6009 				   void *data)
6010 {
6011 	struct perf_mmap_event *mmap_event = data;
6012 	struct perf_output_handle handle;
6013 	struct perf_sample_data sample;
6014 	int size = mmap_event->event_id.header.size;
6015 	int ret;
6016 
6017 	if (!perf_event_mmap_match(event, data))
6018 		return;
6019 
6020 	if (event->attr.mmap2) {
6021 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6022 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6023 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6024 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6025 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6026 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6027 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6028 	}
6029 
6030 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6031 	ret = perf_output_begin(&handle, event,
6032 				mmap_event->event_id.header.size);
6033 	if (ret)
6034 		goto out;
6035 
6036 	mmap_event->event_id.pid = perf_event_pid(event, current);
6037 	mmap_event->event_id.tid = perf_event_tid(event, current);
6038 
6039 	perf_output_put(&handle, mmap_event->event_id);
6040 
6041 	if (event->attr.mmap2) {
6042 		perf_output_put(&handle, mmap_event->maj);
6043 		perf_output_put(&handle, mmap_event->min);
6044 		perf_output_put(&handle, mmap_event->ino);
6045 		perf_output_put(&handle, mmap_event->ino_generation);
6046 		perf_output_put(&handle, mmap_event->prot);
6047 		perf_output_put(&handle, mmap_event->flags);
6048 	}
6049 
6050 	__output_copy(&handle, mmap_event->file_name,
6051 				   mmap_event->file_size);
6052 
6053 	perf_event__output_id_sample(event, &handle, &sample);
6054 
6055 	perf_output_end(&handle);
6056 out:
6057 	mmap_event->event_id.header.size = size;
6058 }
6059 
6060 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6061 {
6062 	struct vm_area_struct *vma = mmap_event->vma;
6063 	struct file *file = vma->vm_file;
6064 	int maj = 0, min = 0;
6065 	u64 ino = 0, gen = 0;
6066 	u32 prot = 0, flags = 0;
6067 	unsigned int size;
6068 	char tmp[16];
6069 	char *buf = NULL;
6070 	char *name;
6071 
6072 	if (file) {
6073 		struct inode *inode;
6074 		dev_t dev;
6075 
6076 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6077 		if (!buf) {
6078 			name = "//enomem";
6079 			goto cpy_name;
6080 		}
6081 		/*
6082 		 * d_path() works from the end of the rb backwards, so we
6083 		 * need to add enough zero bytes after the string to handle
6084 		 * the 64bit alignment we do later.
6085 		 */
6086 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6087 		if (IS_ERR(name)) {
6088 			name = "//toolong";
6089 			goto cpy_name;
6090 		}
6091 		inode = file_inode(vma->vm_file);
6092 		dev = inode->i_sb->s_dev;
6093 		ino = inode->i_ino;
6094 		gen = inode->i_generation;
6095 		maj = MAJOR(dev);
6096 		min = MINOR(dev);
6097 
6098 		if (vma->vm_flags & VM_READ)
6099 			prot |= PROT_READ;
6100 		if (vma->vm_flags & VM_WRITE)
6101 			prot |= PROT_WRITE;
6102 		if (vma->vm_flags & VM_EXEC)
6103 			prot |= PROT_EXEC;
6104 
6105 		if (vma->vm_flags & VM_MAYSHARE)
6106 			flags = MAP_SHARED;
6107 		else
6108 			flags = MAP_PRIVATE;
6109 
6110 		if (vma->vm_flags & VM_DENYWRITE)
6111 			flags |= MAP_DENYWRITE;
6112 		if (vma->vm_flags & VM_MAYEXEC)
6113 			flags |= MAP_EXECUTABLE;
6114 		if (vma->vm_flags & VM_LOCKED)
6115 			flags |= MAP_LOCKED;
6116 		if (vma->vm_flags & VM_HUGETLB)
6117 			flags |= MAP_HUGETLB;
6118 
6119 		goto got_name;
6120 	} else {
6121 		if (vma->vm_ops && vma->vm_ops->name) {
6122 			name = (char *) vma->vm_ops->name(vma);
6123 			if (name)
6124 				goto cpy_name;
6125 		}
6126 
6127 		name = (char *)arch_vma_name(vma);
6128 		if (name)
6129 			goto cpy_name;
6130 
6131 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6132 				vma->vm_end >= vma->vm_mm->brk) {
6133 			name = "[heap]";
6134 			goto cpy_name;
6135 		}
6136 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6137 				vma->vm_end >= vma->vm_mm->start_stack) {
6138 			name = "[stack]";
6139 			goto cpy_name;
6140 		}
6141 
6142 		name = "//anon";
6143 		goto cpy_name;
6144 	}
6145 
6146 cpy_name:
6147 	strlcpy(tmp, name, sizeof(tmp));
6148 	name = tmp;
6149 got_name:
6150 	/*
6151 	 * Since our buffer works in 8 byte units we need to align our string
6152 	 * size to a multiple of 8. However, we must guarantee the tail end is
6153 	 * zero'd out to avoid leaking random bits to userspace.
6154 	 */
6155 	size = strlen(name)+1;
6156 	while (!IS_ALIGNED(size, sizeof(u64)))
6157 		name[size++] = '\0';
6158 
6159 	mmap_event->file_name = name;
6160 	mmap_event->file_size = size;
6161 	mmap_event->maj = maj;
6162 	mmap_event->min = min;
6163 	mmap_event->ino = ino;
6164 	mmap_event->ino_generation = gen;
6165 	mmap_event->prot = prot;
6166 	mmap_event->flags = flags;
6167 
6168 	if (!(vma->vm_flags & VM_EXEC))
6169 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6170 
6171 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6172 
6173 	perf_event_aux(perf_event_mmap_output,
6174 		       mmap_event,
6175 		       NULL);
6176 
6177 	kfree(buf);
6178 }
6179 
6180 void perf_event_mmap(struct vm_area_struct *vma)
6181 {
6182 	struct perf_mmap_event mmap_event;
6183 
6184 	if (!atomic_read(&nr_mmap_events))
6185 		return;
6186 
6187 	mmap_event = (struct perf_mmap_event){
6188 		.vma	= vma,
6189 		/* .file_name */
6190 		/* .file_size */
6191 		.event_id  = {
6192 			.header = {
6193 				.type = PERF_RECORD_MMAP,
6194 				.misc = PERF_RECORD_MISC_USER,
6195 				/* .size */
6196 			},
6197 			/* .pid */
6198 			/* .tid */
6199 			.start  = vma->vm_start,
6200 			.len    = vma->vm_end - vma->vm_start,
6201 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6202 		},
6203 		/* .maj (attr_mmap2 only) */
6204 		/* .min (attr_mmap2 only) */
6205 		/* .ino (attr_mmap2 only) */
6206 		/* .ino_generation (attr_mmap2 only) */
6207 		/* .prot (attr_mmap2 only) */
6208 		/* .flags (attr_mmap2 only) */
6209 	};
6210 
6211 	perf_event_mmap_event(&mmap_event);
6212 }
6213 
6214 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6215 			  unsigned long size, u64 flags)
6216 {
6217 	struct perf_output_handle handle;
6218 	struct perf_sample_data sample;
6219 	struct perf_aux_event {
6220 		struct perf_event_header	header;
6221 		u64				offset;
6222 		u64				size;
6223 		u64				flags;
6224 	} rec = {
6225 		.header = {
6226 			.type = PERF_RECORD_AUX,
6227 			.misc = 0,
6228 			.size = sizeof(rec),
6229 		},
6230 		.offset		= head,
6231 		.size		= size,
6232 		.flags		= flags,
6233 	};
6234 	int ret;
6235 
6236 	perf_event_header__init_id(&rec.header, &sample, event);
6237 	ret = perf_output_begin(&handle, event, rec.header.size);
6238 
6239 	if (ret)
6240 		return;
6241 
6242 	perf_output_put(&handle, rec);
6243 	perf_event__output_id_sample(event, &handle, &sample);
6244 
6245 	perf_output_end(&handle);
6246 }
6247 
6248 /*
6249  * Lost/dropped samples logging
6250  */
6251 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6252 {
6253 	struct perf_output_handle handle;
6254 	struct perf_sample_data sample;
6255 	int ret;
6256 
6257 	struct {
6258 		struct perf_event_header	header;
6259 		u64				lost;
6260 	} lost_samples_event = {
6261 		.header = {
6262 			.type = PERF_RECORD_LOST_SAMPLES,
6263 			.misc = 0,
6264 			.size = sizeof(lost_samples_event),
6265 		},
6266 		.lost		= lost,
6267 	};
6268 
6269 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6270 
6271 	ret = perf_output_begin(&handle, event,
6272 				lost_samples_event.header.size);
6273 	if (ret)
6274 		return;
6275 
6276 	perf_output_put(&handle, lost_samples_event);
6277 	perf_event__output_id_sample(event, &handle, &sample);
6278 	perf_output_end(&handle);
6279 }
6280 
6281 /*
6282  * context_switch tracking
6283  */
6284 
6285 struct perf_switch_event {
6286 	struct task_struct	*task;
6287 	struct task_struct	*next_prev;
6288 
6289 	struct {
6290 		struct perf_event_header	header;
6291 		u32				next_prev_pid;
6292 		u32				next_prev_tid;
6293 	} event_id;
6294 };
6295 
6296 static int perf_event_switch_match(struct perf_event *event)
6297 {
6298 	return event->attr.context_switch;
6299 }
6300 
6301 static void perf_event_switch_output(struct perf_event *event, void *data)
6302 {
6303 	struct perf_switch_event *se = data;
6304 	struct perf_output_handle handle;
6305 	struct perf_sample_data sample;
6306 	int ret;
6307 
6308 	if (!perf_event_switch_match(event))
6309 		return;
6310 
6311 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6312 	if (event->ctx->task) {
6313 		se->event_id.header.type = PERF_RECORD_SWITCH;
6314 		se->event_id.header.size = sizeof(se->event_id.header);
6315 	} else {
6316 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6317 		se->event_id.header.size = sizeof(se->event_id);
6318 		se->event_id.next_prev_pid =
6319 					perf_event_pid(event, se->next_prev);
6320 		se->event_id.next_prev_tid =
6321 					perf_event_tid(event, se->next_prev);
6322 	}
6323 
6324 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6325 
6326 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6327 	if (ret)
6328 		return;
6329 
6330 	if (event->ctx->task)
6331 		perf_output_put(&handle, se->event_id.header);
6332 	else
6333 		perf_output_put(&handle, se->event_id);
6334 
6335 	perf_event__output_id_sample(event, &handle, &sample);
6336 
6337 	perf_output_end(&handle);
6338 }
6339 
6340 static void perf_event_switch(struct task_struct *task,
6341 			      struct task_struct *next_prev, bool sched_in)
6342 {
6343 	struct perf_switch_event switch_event;
6344 
6345 	/* N.B. caller checks nr_switch_events != 0 */
6346 
6347 	switch_event = (struct perf_switch_event){
6348 		.task		= task,
6349 		.next_prev	= next_prev,
6350 		.event_id	= {
6351 			.header = {
6352 				/* .type */
6353 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6354 				/* .size */
6355 			},
6356 			/* .next_prev_pid */
6357 			/* .next_prev_tid */
6358 		},
6359 	};
6360 
6361 	perf_event_aux(perf_event_switch_output,
6362 		       &switch_event,
6363 		       NULL);
6364 }
6365 
6366 /*
6367  * IRQ throttle logging
6368  */
6369 
6370 static void perf_log_throttle(struct perf_event *event, int enable)
6371 {
6372 	struct perf_output_handle handle;
6373 	struct perf_sample_data sample;
6374 	int ret;
6375 
6376 	struct {
6377 		struct perf_event_header	header;
6378 		u64				time;
6379 		u64				id;
6380 		u64				stream_id;
6381 	} throttle_event = {
6382 		.header = {
6383 			.type = PERF_RECORD_THROTTLE,
6384 			.misc = 0,
6385 			.size = sizeof(throttle_event),
6386 		},
6387 		.time		= perf_event_clock(event),
6388 		.id		= primary_event_id(event),
6389 		.stream_id	= event->id,
6390 	};
6391 
6392 	if (enable)
6393 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6394 
6395 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6396 
6397 	ret = perf_output_begin(&handle, event,
6398 				throttle_event.header.size);
6399 	if (ret)
6400 		return;
6401 
6402 	perf_output_put(&handle, throttle_event);
6403 	perf_event__output_id_sample(event, &handle, &sample);
6404 	perf_output_end(&handle);
6405 }
6406 
6407 static void perf_log_itrace_start(struct perf_event *event)
6408 {
6409 	struct perf_output_handle handle;
6410 	struct perf_sample_data sample;
6411 	struct perf_aux_event {
6412 		struct perf_event_header        header;
6413 		u32				pid;
6414 		u32				tid;
6415 	} rec;
6416 	int ret;
6417 
6418 	if (event->parent)
6419 		event = event->parent;
6420 
6421 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6422 	    event->hw.itrace_started)
6423 		return;
6424 
6425 	rec.header.type	= PERF_RECORD_ITRACE_START;
6426 	rec.header.misc	= 0;
6427 	rec.header.size	= sizeof(rec);
6428 	rec.pid	= perf_event_pid(event, current);
6429 	rec.tid	= perf_event_tid(event, current);
6430 
6431 	perf_event_header__init_id(&rec.header, &sample, event);
6432 	ret = perf_output_begin(&handle, event, rec.header.size);
6433 
6434 	if (ret)
6435 		return;
6436 
6437 	perf_output_put(&handle, rec);
6438 	perf_event__output_id_sample(event, &handle, &sample);
6439 
6440 	perf_output_end(&handle);
6441 }
6442 
6443 /*
6444  * Generic event overflow handling, sampling.
6445  */
6446 
6447 static int __perf_event_overflow(struct perf_event *event,
6448 				   int throttle, struct perf_sample_data *data,
6449 				   struct pt_regs *regs)
6450 {
6451 	int events = atomic_read(&event->event_limit);
6452 	struct hw_perf_event *hwc = &event->hw;
6453 	u64 seq;
6454 	int ret = 0;
6455 
6456 	/*
6457 	 * Non-sampling counters might still use the PMI to fold short
6458 	 * hardware counters, ignore those.
6459 	 */
6460 	if (unlikely(!is_sampling_event(event)))
6461 		return 0;
6462 
6463 	seq = __this_cpu_read(perf_throttled_seq);
6464 	if (seq != hwc->interrupts_seq) {
6465 		hwc->interrupts_seq = seq;
6466 		hwc->interrupts = 1;
6467 	} else {
6468 		hwc->interrupts++;
6469 		if (unlikely(throttle
6470 			     && hwc->interrupts >= max_samples_per_tick)) {
6471 			__this_cpu_inc(perf_throttled_count);
6472 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6473 			hwc->interrupts = MAX_INTERRUPTS;
6474 			perf_log_throttle(event, 0);
6475 			ret = 1;
6476 		}
6477 	}
6478 
6479 	if (event->attr.freq) {
6480 		u64 now = perf_clock();
6481 		s64 delta = now - hwc->freq_time_stamp;
6482 
6483 		hwc->freq_time_stamp = now;
6484 
6485 		if (delta > 0 && delta < 2*TICK_NSEC)
6486 			perf_adjust_period(event, delta, hwc->last_period, true);
6487 	}
6488 
6489 	/*
6490 	 * XXX event_limit might not quite work as expected on inherited
6491 	 * events
6492 	 */
6493 
6494 	event->pending_kill = POLL_IN;
6495 	if (events && atomic_dec_and_test(&event->event_limit)) {
6496 		ret = 1;
6497 		event->pending_kill = POLL_HUP;
6498 		event->pending_disable = 1;
6499 		irq_work_queue(&event->pending);
6500 	}
6501 
6502 	if (event->overflow_handler)
6503 		event->overflow_handler(event, data, regs);
6504 	else
6505 		perf_event_output(event, data, regs);
6506 
6507 	if (*perf_event_fasync(event) && event->pending_kill) {
6508 		event->pending_wakeup = 1;
6509 		irq_work_queue(&event->pending);
6510 	}
6511 
6512 	return ret;
6513 }
6514 
6515 int perf_event_overflow(struct perf_event *event,
6516 			  struct perf_sample_data *data,
6517 			  struct pt_regs *regs)
6518 {
6519 	return __perf_event_overflow(event, 1, data, regs);
6520 }
6521 
6522 /*
6523  * Generic software event infrastructure
6524  */
6525 
6526 struct swevent_htable {
6527 	struct swevent_hlist		*swevent_hlist;
6528 	struct mutex			hlist_mutex;
6529 	int				hlist_refcount;
6530 
6531 	/* Recursion avoidance in each contexts */
6532 	int				recursion[PERF_NR_CONTEXTS];
6533 };
6534 
6535 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6536 
6537 /*
6538  * We directly increment event->count and keep a second value in
6539  * event->hw.period_left to count intervals. This period event
6540  * is kept in the range [-sample_period, 0] so that we can use the
6541  * sign as trigger.
6542  */
6543 
6544 u64 perf_swevent_set_period(struct perf_event *event)
6545 {
6546 	struct hw_perf_event *hwc = &event->hw;
6547 	u64 period = hwc->last_period;
6548 	u64 nr, offset;
6549 	s64 old, val;
6550 
6551 	hwc->last_period = hwc->sample_period;
6552 
6553 again:
6554 	old = val = local64_read(&hwc->period_left);
6555 	if (val < 0)
6556 		return 0;
6557 
6558 	nr = div64_u64(period + val, period);
6559 	offset = nr * period;
6560 	val -= offset;
6561 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6562 		goto again;
6563 
6564 	return nr;
6565 }
6566 
6567 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6568 				    struct perf_sample_data *data,
6569 				    struct pt_regs *regs)
6570 {
6571 	struct hw_perf_event *hwc = &event->hw;
6572 	int throttle = 0;
6573 
6574 	if (!overflow)
6575 		overflow = perf_swevent_set_period(event);
6576 
6577 	if (hwc->interrupts == MAX_INTERRUPTS)
6578 		return;
6579 
6580 	for (; overflow; overflow--) {
6581 		if (__perf_event_overflow(event, throttle,
6582 					    data, regs)) {
6583 			/*
6584 			 * We inhibit the overflow from happening when
6585 			 * hwc->interrupts == MAX_INTERRUPTS.
6586 			 */
6587 			break;
6588 		}
6589 		throttle = 1;
6590 	}
6591 }
6592 
6593 static void perf_swevent_event(struct perf_event *event, u64 nr,
6594 			       struct perf_sample_data *data,
6595 			       struct pt_regs *regs)
6596 {
6597 	struct hw_perf_event *hwc = &event->hw;
6598 
6599 	local64_add(nr, &event->count);
6600 
6601 	if (!regs)
6602 		return;
6603 
6604 	if (!is_sampling_event(event))
6605 		return;
6606 
6607 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6608 		data->period = nr;
6609 		return perf_swevent_overflow(event, 1, data, regs);
6610 	} else
6611 		data->period = event->hw.last_period;
6612 
6613 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6614 		return perf_swevent_overflow(event, 1, data, regs);
6615 
6616 	if (local64_add_negative(nr, &hwc->period_left))
6617 		return;
6618 
6619 	perf_swevent_overflow(event, 0, data, regs);
6620 }
6621 
6622 static int perf_exclude_event(struct perf_event *event,
6623 			      struct pt_regs *regs)
6624 {
6625 	if (event->hw.state & PERF_HES_STOPPED)
6626 		return 1;
6627 
6628 	if (regs) {
6629 		if (event->attr.exclude_user && user_mode(regs))
6630 			return 1;
6631 
6632 		if (event->attr.exclude_kernel && !user_mode(regs))
6633 			return 1;
6634 	}
6635 
6636 	return 0;
6637 }
6638 
6639 static int perf_swevent_match(struct perf_event *event,
6640 				enum perf_type_id type,
6641 				u32 event_id,
6642 				struct perf_sample_data *data,
6643 				struct pt_regs *regs)
6644 {
6645 	if (event->attr.type != type)
6646 		return 0;
6647 
6648 	if (event->attr.config != event_id)
6649 		return 0;
6650 
6651 	if (perf_exclude_event(event, regs))
6652 		return 0;
6653 
6654 	return 1;
6655 }
6656 
6657 static inline u64 swevent_hash(u64 type, u32 event_id)
6658 {
6659 	u64 val = event_id | (type << 32);
6660 
6661 	return hash_64(val, SWEVENT_HLIST_BITS);
6662 }
6663 
6664 static inline struct hlist_head *
6665 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6666 {
6667 	u64 hash = swevent_hash(type, event_id);
6668 
6669 	return &hlist->heads[hash];
6670 }
6671 
6672 /* For the read side: events when they trigger */
6673 static inline struct hlist_head *
6674 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6675 {
6676 	struct swevent_hlist *hlist;
6677 
6678 	hlist = rcu_dereference(swhash->swevent_hlist);
6679 	if (!hlist)
6680 		return NULL;
6681 
6682 	return __find_swevent_head(hlist, type, event_id);
6683 }
6684 
6685 /* For the event head insertion and removal in the hlist */
6686 static inline struct hlist_head *
6687 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6688 {
6689 	struct swevent_hlist *hlist;
6690 	u32 event_id = event->attr.config;
6691 	u64 type = event->attr.type;
6692 
6693 	/*
6694 	 * Event scheduling is always serialized against hlist allocation
6695 	 * and release. Which makes the protected version suitable here.
6696 	 * The context lock guarantees that.
6697 	 */
6698 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6699 					  lockdep_is_held(&event->ctx->lock));
6700 	if (!hlist)
6701 		return NULL;
6702 
6703 	return __find_swevent_head(hlist, type, event_id);
6704 }
6705 
6706 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6707 				    u64 nr,
6708 				    struct perf_sample_data *data,
6709 				    struct pt_regs *regs)
6710 {
6711 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6712 	struct perf_event *event;
6713 	struct hlist_head *head;
6714 
6715 	rcu_read_lock();
6716 	head = find_swevent_head_rcu(swhash, type, event_id);
6717 	if (!head)
6718 		goto end;
6719 
6720 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6721 		if (perf_swevent_match(event, type, event_id, data, regs))
6722 			perf_swevent_event(event, nr, data, regs);
6723 	}
6724 end:
6725 	rcu_read_unlock();
6726 }
6727 
6728 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6729 
6730 int perf_swevent_get_recursion_context(void)
6731 {
6732 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733 
6734 	return get_recursion_context(swhash->recursion);
6735 }
6736 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6737 
6738 inline void perf_swevent_put_recursion_context(int rctx)
6739 {
6740 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6741 
6742 	put_recursion_context(swhash->recursion, rctx);
6743 }
6744 
6745 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6746 {
6747 	struct perf_sample_data data;
6748 
6749 	if (WARN_ON_ONCE(!regs))
6750 		return;
6751 
6752 	perf_sample_data_init(&data, addr, 0);
6753 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6754 }
6755 
6756 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6757 {
6758 	int rctx;
6759 
6760 	preempt_disable_notrace();
6761 	rctx = perf_swevent_get_recursion_context();
6762 	if (unlikely(rctx < 0))
6763 		goto fail;
6764 
6765 	___perf_sw_event(event_id, nr, regs, addr);
6766 
6767 	perf_swevent_put_recursion_context(rctx);
6768 fail:
6769 	preempt_enable_notrace();
6770 }
6771 
6772 static void perf_swevent_read(struct perf_event *event)
6773 {
6774 }
6775 
6776 static int perf_swevent_add(struct perf_event *event, int flags)
6777 {
6778 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6779 	struct hw_perf_event *hwc = &event->hw;
6780 	struct hlist_head *head;
6781 
6782 	if (is_sampling_event(event)) {
6783 		hwc->last_period = hwc->sample_period;
6784 		perf_swevent_set_period(event);
6785 	}
6786 
6787 	hwc->state = !(flags & PERF_EF_START);
6788 
6789 	head = find_swevent_head(swhash, event);
6790 	if (WARN_ON_ONCE(!head))
6791 		return -EINVAL;
6792 
6793 	hlist_add_head_rcu(&event->hlist_entry, head);
6794 	perf_event_update_userpage(event);
6795 
6796 	return 0;
6797 }
6798 
6799 static void perf_swevent_del(struct perf_event *event, int flags)
6800 {
6801 	hlist_del_rcu(&event->hlist_entry);
6802 }
6803 
6804 static void perf_swevent_start(struct perf_event *event, int flags)
6805 {
6806 	event->hw.state = 0;
6807 }
6808 
6809 static void perf_swevent_stop(struct perf_event *event, int flags)
6810 {
6811 	event->hw.state = PERF_HES_STOPPED;
6812 }
6813 
6814 /* Deref the hlist from the update side */
6815 static inline struct swevent_hlist *
6816 swevent_hlist_deref(struct swevent_htable *swhash)
6817 {
6818 	return rcu_dereference_protected(swhash->swevent_hlist,
6819 					 lockdep_is_held(&swhash->hlist_mutex));
6820 }
6821 
6822 static void swevent_hlist_release(struct swevent_htable *swhash)
6823 {
6824 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6825 
6826 	if (!hlist)
6827 		return;
6828 
6829 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6830 	kfree_rcu(hlist, rcu_head);
6831 }
6832 
6833 static void swevent_hlist_put_cpu(int cpu)
6834 {
6835 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6836 
6837 	mutex_lock(&swhash->hlist_mutex);
6838 
6839 	if (!--swhash->hlist_refcount)
6840 		swevent_hlist_release(swhash);
6841 
6842 	mutex_unlock(&swhash->hlist_mutex);
6843 }
6844 
6845 static void swevent_hlist_put(void)
6846 {
6847 	int cpu;
6848 
6849 	for_each_possible_cpu(cpu)
6850 		swevent_hlist_put_cpu(cpu);
6851 }
6852 
6853 static int swevent_hlist_get_cpu(int cpu)
6854 {
6855 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6856 	int err = 0;
6857 
6858 	mutex_lock(&swhash->hlist_mutex);
6859 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6860 		struct swevent_hlist *hlist;
6861 
6862 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6863 		if (!hlist) {
6864 			err = -ENOMEM;
6865 			goto exit;
6866 		}
6867 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6868 	}
6869 	swhash->hlist_refcount++;
6870 exit:
6871 	mutex_unlock(&swhash->hlist_mutex);
6872 
6873 	return err;
6874 }
6875 
6876 static int swevent_hlist_get(void)
6877 {
6878 	int err, cpu, failed_cpu;
6879 
6880 	get_online_cpus();
6881 	for_each_possible_cpu(cpu) {
6882 		err = swevent_hlist_get_cpu(cpu);
6883 		if (err) {
6884 			failed_cpu = cpu;
6885 			goto fail;
6886 		}
6887 	}
6888 	put_online_cpus();
6889 
6890 	return 0;
6891 fail:
6892 	for_each_possible_cpu(cpu) {
6893 		if (cpu == failed_cpu)
6894 			break;
6895 		swevent_hlist_put_cpu(cpu);
6896 	}
6897 
6898 	put_online_cpus();
6899 	return err;
6900 }
6901 
6902 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6903 
6904 static void sw_perf_event_destroy(struct perf_event *event)
6905 {
6906 	u64 event_id = event->attr.config;
6907 
6908 	WARN_ON(event->parent);
6909 
6910 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6911 	swevent_hlist_put();
6912 }
6913 
6914 static int perf_swevent_init(struct perf_event *event)
6915 {
6916 	u64 event_id = event->attr.config;
6917 
6918 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6919 		return -ENOENT;
6920 
6921 	/*
6922 	 * no branch sampling for software events
6923 	 */
6924 	if (has_branch_stack(event))
6925 		return -EOPNOTSUPP;
6926 
6927 	switch (event_id) {
6928 	case PERF_COUNT_SW_CPU_CLOCK:
6929 	case PERF_COUNT_SW_TASK_CLOCK:
6930 		return -ENOENT;
6931 
6932 	default:
6933 		break;
6934 	}
6935 
6936 	if (event_id >= PERF_COUNT_SW_MAX)
6937 		return -ENOENT;
6938 
6939 	if (!event->parent) {
6940 		int err;
6941 
6942 		err = swevent_hlist_get();
6943 		if (err)
6944 			return err;
6945 
6946 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6947 		event->destroy = sw_perf_event_destroy;
6948 	}
6949 
6950 	return 0;
6951 }
6952 
6953 static struct pmu perf_swevent = {
6954 	.task_ctx_nr	= perf_sw_context,
6955 
6956 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6957 
6958 	.event_init	= perf_swevent_init,
6959 	.add		= perf_swevent_add,
6960 	.del		= perf_swevent_del,
6961 	.start		= perf_swevent_start,
6962 	.stop		= perf_swevent_stop,
6963 	.read		= perf_swevent_read,
6964 };
6965 
6966 #ifdef CONFIG_EVENT_TRACING
6967 
6968 static int perf_tp_filter_match(struct perf_event *event,
6969 				struct perf_sample_data *data)
6970 {
6971 	void *record = data->raw->data;
6972 
6973 	/* only top level events have filters set */
6974 	if (event->parent)
6975 		event = event->parent;
6976 
6977 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6978 		return 1;
6979 	return 0;
6980 }
6981 
6982 static int perf_tp_event_match(struct perf_event *event,
6983 				struct perf_sample_data *data,
6984 				struct pt_regs *regs)
6985 {
6986 	if (event->hw.state & PERF_HES_STOPPED)
6987 		return 0;
6988 	/*
6989 	 * All tracepoints are from kernel-space.
6990 	 */
6991 	if (event->attr.exclude_kernel)
6992 		return 0;
6993 
6994 	if (!perf_tp_filter_match(event, data))
6995 		return 0;
6996 
6997 	return 1;
6998 }
6999 
7000 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7001 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7002 		   struct task_struct *task)
7003 {
7004 	struct perf_sample_data data;
7005 	struct perf_event *event;
7006 
7007 	struct perf_raw_record raw = {
7008 		.size = entry_size,
7009 		.data = record,
7010 	};
7011 
7012 	perf_sample_data_init(&data, addr, 0);
7013 	data.raw = &raw;
7014 
7015 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7016 		if (perf_tp_event_match(event, &data, regs))
7017 			perf_swevent_event(event, count, &data, regs);
7018 	}
7019 
7020 	/*
7021 	 * If we got specified a target task, also iterate its context and
7022 	 * deliver this event there too.
7023 	 */
7024 	if (task && task != current) {
7025 		struct perf_event_context *ctx;
7026 		struct trace_entry *entry = record;
7027 
7028 		rcu_read_lock();
7029 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7030 		if (!ctx)
7031 			goto unlock;
7032 
7033 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7034 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7035 				continue;
7036 			if (event->attr.config != entry->type)
7037 				continue;
7038 			if (perf_tp_event_match(event, &data, regs))
7039 				perf_swevent_event(event, count, &data, regs);
7040 		}
7041 unlock:
7042 		rcu_read_unlock();
7043 	}
7044 
7045 	perf_swevent_put_recursion_context(rctx);
7046 }
7047 EXPORT_SYMBOL_GPL(perf_tp_event);
7048 
7049 static void tp_perf_event_destroy(struct perf_event *event)
7050 {
7051 	perf_trace_destroy(event);
7052 }
7053 
7054 static int perf_tp_event_init(struct perf_event *event)
7055 {
7056 	int err;
7057 
7058 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7059 		return -ENOENT;
7060 
7061 	/*
7062 	 * no branch sampling for tracepoint events
7063 	 */
7064 	if (has_branch_stack(event))
7065 		return -EOPNOTSUPP;
7066 
7067 	err = perf_trace_init(event);
7068 	if (err)
7069 		return err;
7070 
7071 	event->destroy = tp_perf_event_destroy;
7072 
7073 	return 0;
7074 }
7075 
7076 static struct pmu perf_tracepoint = {
7077 	.task_ctx_nr	= perf_sw_context,
7078 
7079 	.event_init	= perf_tp_event_init,
7080 	.add		= perf_trace_add,
7081 	.del		= perf_trace_del,
7082 	.start		= perf_swevent_start,
7083 	.stop		= perf_swevent_stop,
7084 	.read		= perf_swevent_read,
7085 };
7086 
7087 static inline void perf_tp_register(void)
7088 {
7089 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7090 }
7091 
7092 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7093 {
7094 	char *filter_str;
7095 	int ret;
7096 
7097 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7098 		return -EINVAL;
7099 
7100 	filter_str = strndup_user(arg, PAGE_SIZE);
7101 	if (IS_ERR(filter_str))
7102 		return PTR_ERR(filter_str);
7103 
7104 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7105 
7106 	kfree(filter_str);
7107 	return ret;
7108 }
7109 
7110 static void perf_event_free_filter(struct perf_event *event)
7111 {
7112 	ftrace_profile_free_filter(event);
7113 }
7114 
7115 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7116 {
7117 	struct bpf_prog *prog;
7118 
7119 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7120 		return -EINVAL;
7121 
7122 	if (event->tp_event->prog)
7123 		return -EEXIST;
7124 
7125 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7126 		/* bpf programs can only be attached to u/kprobes */
7127 		return -EINVAL;
7128 
7129 	prog = bpf_prog_get(prog_fd);
7130 	if (IS_ERR(prog))
7131 		return PTR_ERR(prog);
7132 
7133 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7134 		/* valid fd, but invalid bpf program type */
7135 		bpf_prog_put(prog);
7136 		return -EINVAL;
7137 	}
7138 
7139 	event->tp_event->prog = prog;
7140 
7141 	return 0;
7142 }
7143 
7144 static void perf_event_free_bpf_prog(struct perf_event *event)
7145 {
7146 	struct bpf_prog *prog;
7147 
7148 	if (!event->tp_event)
7149 		return;
7150 
7151 	prog = event->tp_event->prog;
7152 	if (prog) {
7153 		event->tp_event->prog = NULL;
7154 		bpf_prog_put(prog);
7155 	}
7156 }
7157 
7158 #else
7159 
7160 static inline void perf_tp_register(void)
7161 {
7162 }
7163 
7164 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7165 {
7166 	return -ENOENT;
7167 }
7168 
7169 static void perf_event_free_filter(struct perf_event *event)
7170 {
7171 }
7172 
7173 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7174 {
7175 	return -ENOENT;
7176 }
7177 
7178 static void perf_event_free_bpf_prog(struct perf_event *event)
7179 {
7180 }
7181 #endif /* CONFIG_EVENT_TRACING */
7182 
7183 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7184 void perf_bp_event(struct perf_event *bp, void *data)
7185 {
7186 	struct perf_sample_data sample;
7187 	struct pt_regs *regs = data;
7188 
7189 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7190 
7191 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7192 		perf_swevent_event(bp, 1, &sample, regs);
7193 }
7194 #endif
7195 
7196 /*
7197  * hrtimer based swevent callback
7198  */
7199 
7200 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7201 {
7202 	enum hrtimer_restart ret = HRTIMER_RESTART;
7203 	struct perf_sample_data data;
7204 	struct pt_regs *regs;
7205 	struct perf_event *event;
7206 	u64 period;
7207 
7208 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7209 
7210 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7211 		return HRTIMER_NORESTART;
7212 
7213 	event->pmu->read(event);
7214 
7215 	perf_sample_data_init(&data, 0, event->hw.last_period);
7216 	regs = get_irq_regs();
7217 
7218 	if (regs && !perf_exclude_event(event, regs)) {
7219 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7220 			if (__perf_event_overflow(event, 1, &data, regs))
7221 				ret = HRTIMER_NORESTART;
7222 	}
7223 
7224 	period = max_t(u64, 10000, event->hw.sample_period);
7225 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7226 
7227 	return ret;
7228 }
7229 
7230 static void perf_swevent_start_hrtimer(struct perf_event *event)
7231 {
7232 	struct hw_perf_event *hwc = &event->hw;
7233 	s64 period;
7234 
7235 	if (!is_sampling_event(event))
7236 		return;
7237 
7238 	period = local64_read(&hwc->period_left);
7239 	if (period) {
7240 		if (period < 0)
7241 			period = 10000;
7242 
7243 		local64_set(&hwc->period_left, 0);
7244 	} else {
7245 		period = max_t(u64, 10000, hwc->sample_period);
7246 	}
7247 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7248 		      HRTIMER_MODE_REL_PINNED);
7249 }
7250 
7251 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7252 {
7253 	struct hw_perf_event *hwc = &event->hw;
7254 
7255 	if (is_sampling_event(event)) {
7256 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7257 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7258 
7259 		hrtimer_cancel(&hwc->hrtimer);
7260 	}
7261 }
7262 
7263 static void perf_swevent_init_hrtimer(struct perf_event *event)
7264 {
7265 	struct hw_perf_event *hwc = &event->hw;
7266 
7267 	if (!is_sampling_event(event))
7268 		return;
7269 
7270 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7271 	hwc->hrtimer.function = perf_swevent_hrtimer;
7272 
7273 	/*
7274 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7275 	 * mapping and avoid the whole period adjust feedback stuff.
7276 	 */
7277 	if (event->attr.freq) {
7278 		long freq = event->attr.sample_freq;
7279 
7280 		event->attr.sample_period = NSEC_PER_SEC / freq;
7281 		hwc->sample_period = event->attr.sample_period;
7282 		local64_set(&hwc->period_left, hwc->sample_period);
7283 		hwc->last_period = hwc->sample_period;
7284 		event->attr.freq = 0;
7285 	}
7286 }
7287 
7288 /*
7289  * Software event: cpu wall time clock
7290  */
7291 
7292 static void cpu_clock_event_update(struct perf_event *event)
7293 {
7294 	s64 prev;
7295 	u64 now;
7296 
7297 	now = local_clock();
7298 	prev = local64_xchg(&event->hw.prev_count, now);
7299 	local64_add(now - prev, &event->count);
7300 }
7301 
7302 static void cpu_clock_event_start(struct perf_event *event, int flags)
7303 {
7304 	local64_set(&event->hw.prev_count, local_clock());
7305 	perf_swevent_start_hrtimer(event);
7306 }
7307 
7308 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7309 {
7310 	perf_swevent_cancel_hrtimer(event);
7311 	cpu_clock_event_update(event);
7312 }
7313 
7314 static int cpu_clock_event_add(struct perf_event *event, int flags)
7315 {
7316 	if (flags & PERF_EF_START)
7317 		cpu_clock_event_start(event, flags);
7318 	perf_event_update_userpage(event);
7319 
7320 	return 0;
7321 }
7322 
7323 static void cpu_clock_event_del(struct perf_event *event, int flags)
7324 {
7325 	cpu_clock_event_stop(event, flags);
7326 }
7327 
7328 static void cpu_clock_event_read(struct perf_event *event)
7329 {
7330 	cpu_clock_event_update(event);
7331 }
7332 
7333 static int cpu_clock_event_init(struct perf_event *event)
7334 {
7335 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7336 		return -ENOENT;
7337 
7338 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7339 		return -ENOENT;
7340 
7341 	/*
7342 	 * no branch sampling for software events
7343 	 */
7344 	if (has_branch_stack(event))
7345 		return -EOPNOTSUPP;
7346 
7347 	perf_swevent_init_hrtimer(event);
7348 
7349 	return 0;
7350 }
7351 
7352 static struct pmu perf_cpu_clock = {
7353 	.task_ctx_nr	= perf_sw_context,
7354 
7355 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7356 
7357 	.event_init	= cpu_clock_event_init,
7358 	.add		= cpu_clock_event_add,
7359 	.del		= cpu_clock_event_del,
7360 	.start		= cpu_clock_event_start,
7361 	.stop		= cpu_clock_event_stop,
7362 	.read		= cpu_clock_event_read,
7363 };
7364 
7365 /*
7366  * Software event: task time clock
7367  */
7368 
7369 static void task_clock_event_update(struct perf_event *event, u64 now)
7370 {
7371 	u64 prev;
7372 	s64 delta;
7373 
7374 	prev = local64_xchg(&event->hw.prev_count, now);
7375 	delta = now - prev;
7376 	local64_add(delta, &event->count);
7377 }
7378 
7379 static void task_clock_event_start(struct perf_event *event, int flags)
7380 {
7381 	local64_set(&event->hw.prev_count, event->ctx->time);
7382 	perf_swevent_start_hrtimer(event);
7383 }
7384 
7385 static void task_clock_event_stop(struct perf_event *event, int flags)
7386 {
7387 	perf_swevent_cancel_hrtimer(event);
7388 	task_clock_event_update(event, event->ctx->time);
7389 }
7390 
7391 static int task_clock_event_add(struct perf_event *event, int flags)
7392 {
7393 	if (flags & PERF_EF_START)
7394 		task_clock_event_start(event, flags);
7395 	perf_event_update_userpage(event);
7396 
7397 	return 0;
7398 }
7399 
7400 static void task_clock_event_del(struct perf_event *event, int flags)
7401 {
7402 	task_clock_event_stop(event, PERF_EF_UPDATE);
7403 }
7404 
7405 static void task_clock_event_read(struct perf_event *event)
7406 {
7407 	u64 now = perf_clock();
7408 	u64 delta = now - event->ctx->timestamp;
7409 	u64 time = event->ctx->time + delta;
7410 
7411 	task_clock_event_update(event, time);
7412 }
7413 
7414 static int task_clock_event_init(struct perf_event *event)
7415 {
7416 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7417 		return -ENOENT;
7418 
7419 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7420 		return -ENOENT;
7421 
7422 	/*
7423 	 * no branch sampling for software events
7424 	 */
7425 	if (has_branch_stack(event))
7426 		return -EOPNOTSUPP;
7427 
7428 	perf_swevent_init_hrtimer(event);
7429 
7430 	return 0;
7431 }
7432 
7433 static struct pmu perf_task_clock = {
7434 	.task_ctx_nr	= perf_sw_context,
7435 
7436 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7437 
7438 	.event_init	= task_clock_event_init,
7439 	.add		= task_clock_event_add,
7440 	.del		= task_clock_event_del,
7441 	.start		= task_clock_event_start,
7442 	.stop		= task_clock_event_stop,
7443 	.read		= task_clock_event_read,
7444 };
7445 
7446 static void perf_pmu_nop_void(struct pmu *pmu)
7447 {
7448 }
7449 
7450 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7451 {
7452 }
7453 
7454 static int perf_pmu_nop_int(struct pmu *pmu)
7455 {
7456 	return 0;
7457 }
7458 
7459 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7460 
7461 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7462 {
7463 	__this_cpu_write(nop_txn_flags, flags);
7464 
7465 	if (flags & ~PERF_PMU_TXN_ADD)
7466 		return;
7467 
7468 	perf_pmu_disable(pmu);
7469 }
7470 
7471 static int perf_pmu_commit_txn(struct pmu *pmu)
7472 {
7473 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7474 
7475 	__this_cpu_write(nop_txn_flags, 0);
7476 
7477 	if (flags & ~PERF_PMU_TXN_ADD)
7478 		return 0;
7479 
7480 	perf_pmu_enable(pmu);
7481 	return 0;
7482 }
7483 
7484 static void perf_pmu_cancel_txn(struct pmu *pmu)
7485 {
7486 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7487 
7488 	__this_cpu_write(nop_txn_flags, 0);
7489 
7490 	if (flags & ~PERF_PMU_TXN_ADD)
7491 		return;
7492 
7493 	perf_pmu_enable(pmu);
7494 }
7495 
7496 static int perf_event_idx_default(struct perf_event *event)
7497 {
7498 	return 0;
7499 }
7500 
7501 /*
7502  * Ensures all contexts with the same task_ctx_nr have the same
7503  * pmu_cpu_context too.
7504  */
7505 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7506 {
7507 	struct pmu *pmu;
7508 
7509 	if (ctxn < 0)
7510 		return NULL;
7511 
7512 	list_for_each_entry(pmu, &pmus, entry) {
7513 		if (pmu->task_ctx_nr == ctxn)
7514 			return pmu->pmu_cpu_context;
7515 	}
7516 
7517 	return NULL;
7518 }
7519 
7520 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7521 {
7522 	int cpu;
7523 
7524 	for_each_possible_cpu(cpu) {
7525 		struct perf_cpu_context *cpuctx;
7526 
7527 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7528 
7529 		if (cpuctx->unique_pmu == old_pmu)
7530 			cpuctx->unique_pmu = pmu;
7531 	}
7532 }
7533 
7534 static void free_pmu_context(struct pmu *pmu)
7535 {
7536 	struct pmu *i;
7537 
7538 	mutex_lock(&pmus_lock);
7539 	/*
7540 	 * Like a real lame refcount.
7541 	 */
7542 	list_for_each_entry(i, &pmus, entry) {
7543 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7544 			update_pmu_context(i, pmu);
7545 			goto out;
7546 		}
7547 	}
7548 
7549 	free_percpu(pmu->pmu_cpu_context);
7550 out:
7551 	mutex_unlock(&pmus_lock);
7552 }
7553 static struct idr pmu_idr;
7554 
7555 static ssize_t
7556 type_show(struct device *dev, struct device_attribute *attr, char *page)
7557 {
7558 	struct pmu *pmu = dev_get_drvdata(dev);
7559 
7560 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7561 }
7562 static DEVICE_ATTR_RO(type);
7563 
7564 static ssize_t
7565 perf_event_mux_interval_ms_show(struct device *dev,
7566 				struct device_attribute *attr,
7567 				char *page)
7568 {
7569 	struct pmu *pmu = dev_get_drvdata(dev);
7570 
7571 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7572 }
7573 
7574 static DEFINE_MUTEX(mux_interval_mutex);
7575 
7576 static ssize_t
7577 perf_event_mux_interval_ms_store(struct device *dev,
7578 				 struct device_attribute *attr,
7579 				 const char *buf, size_t count)
7580 {
7581 	struct pmu *pmu = dev_get_drvdata(dev);
7582 	int timer, cpu, ret;
7583 
7584 	ret = kstrtoint(buf, 0, &timer);
7585 	if (ret)
7586 		return ret;
7587 
7588 	if (timer < 1)
7589 		return -EINVAL;
7590 
7591 	/* same value, noting to do */
7592 	if (timer == pmu->hrtimer_interval_ms)
7593 		return count;
7594 
7595 	mutex_lock(&mux_interval_mutex);
7596 	pmu->hrtimer_interval_ms = timer;
7597 
7598 	/* update all cpuctx for this PMU */
7599 	get_online_cpus();
7600 	for_each_online_cpu(cpu) {
7601 		struct perf_cpu_context *cpuctx;
7602 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7603 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7604 
7605 		cpu_function_call(cpu,
7606 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7607 	}
7608 	put_online_cpus();
7609 	mutex_unlock(&mux_interval_mutex);
7610 
7611 	return count;
7612 }
7613 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7614 
7615 static struct attribute *pmu_dev_attrs[] = {
7616 	&dev_attr_type.attr,
7617 	&dev_attr_perf_event_mux_interval_ms.attr,
7618 	NULL,
7619 };
7620 ATTRIBUTE_GROUPS(pmu_dev);
7621 
7622 static int pmu_bus_running;
7623 static struct bus_type pmu_bus = {
7624 	.name		= "event_source",
7625 	.dev_groups	= pmu_dev_groups,
7626 };
7627 
7628 static void pmu_dev_release(struct device *dev)
7629 {
7630 	kfree(dev);
7631 }
7632 
7633 static int pmu_dev_alloc(struct pmu *pmu)
7634 {
7635 	int ret = -ENOMEM;
7636 
7637 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7638 	if (!pmu->dev)
7639 		goto out;
7640 
7641 	pmu->dev->groups = pmu->attr_groups;
7642 	device_initialize(pmu->dev);
7643 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7644 	if (ret)
7645 		goto free_dev;
7646 
7647 	dev_set_drvdata(pmu->dev, pmu);
7648 	pmu->dev->bus = &pmu_bus;
7649 	pmu->dev->release = pmu_dev_release;
7650 	ret = device_add(pmu->dev);
7651 	if (ret)
7652 		goto free_dev;
7653 
7654 out:
7655 	return ret;
7656 
7657 free_dev:
7658 	put_device(pmu->dev);
7659 	goto out;
7660 }
7661 
7662 static struct lock_class_key cpuctx_mutex;
7663 static struct lock_class_key cpuctx_lock;
7664 
7665 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7666 {
7667 	int cpu, ret;
7668 
7669 	mutex_lock(&pmus_lock);
7670 	ret = -ENOMEM;
7671 	pmu->pmu_disable_count = alloc_percpu(int);
7672 	if (!pmu->pmu_disable_count)
7673 		goto unlock;
7674 
7675 	pmu->type = -1;
7676 	if (!name)
7677 		goto skip_type;
7678 	pmu->name = name;
7679 
7680 	if (type < 0) {
7681 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7682 		if (type < 0) {
7683 			ret = type;
7684 			goto free_pdc;
7685 		}
7686 	}
7687 	pmu->type = type;
7688 
7689 	if (pmu_bus_running) {
7690 		ret = pmu_dev_alloc(pmu);
7691 		if (ret)
7692 			goto free_idr;
7693 	}
7694 
7695 skip_type:
7696 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7697 	if (pmu->pmu_cpu_context)
7698 		goto got_cpu_context;
7699 
7700 	ret = -ENOMEM;
7701 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7702 	if (!pmu->pmu_cpu_context)
7703 		goto free_dev;
7704 
7705 	for_each_possible_cpu(cpu) {
7706 		struct perf_cpu_context *cpuctx;
7707 
7708 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7709 		__perf_event_init_context(&cpuctx->ctx);
7710 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7711 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7712 		cpuctx->ctx.pmu = pmu;
7713 
7714 		__perf_mux_hrtimer_init(cpuctx, cpu);
7715 
7716 		cpuctx->unique_pmu = pmu;
7717 	}
7718 
7719 got_cpu_context:
7720 	if (!pmu->start_txn) {
7721 		if (pmu->pmu_enable) {
7722 			/*
7723 			 * If we have pmu_enable/pmu_disable calls, install
7724 			 * transaction stubs that use that to try and batch
7725 			 * hardware accesses.
7726 			 */
7727 			pmu->start_txn  = perf_pmu_start_txn;
7728 			pmu->commit_txn = perf_pmu_commit_txn;
7729 			pmu->cancel_txn = perf_pmu_cancel_txn;
7730 		} else {
7731 			pmu->start_txn  = perf_pmu_nop_txn;
7732 			pmu->commit_txn = perf_pmu_nop_int;
7733 			pmu->cancel_txn = perf_pmu_nop_void;
7734 		}
7735 	}
7736 
7737 	if (!pmu->pmu_enable) {
7738 		pmu->pmu_enable  = perf_pmu_nop_void;
7739 		pmu->pmu_disable = perf_pmu_nop_void;
7740 	}
7741 
7742 	if (!pmu->event_idx)
7743 		pmu->event_idx = perf_event_idx_default;
7744 
7745 	list_add_rcu(&pmu->entry, &pmus);
7746 	atomic_set(&pmu->exclusive_cnt, 0);
7747 	ret = 0;
7748 unlock:
7749 	mutex_unlock(&pmus_lock);
7750 
7751 	return ret;
7752 
7753 free_dev:
7754 	device_del(pmu->dev);
7755 	put_device(pmu->dev);
7756 
7757 free_idr:
7758 	if (pmu->type >= PERF_TYPE_MAX)
7759 		idr_remove(&pmu_idr, pmu->type);
7760 
7761 free_pdc:
7762 	free_percpu(pmu->pmu_disable_count);
7763 	goto unlock;
7764 }
7765 EXPORT_SYMBOL_GPL(perf_pmu_register);
7766 
7767 void perf_pmu_unregister(struct pmu *pmu)
7768 {
7769 	mutex_lock(&pmus_lock);
7770 	list_del_rcu(&pmu->entry);
7771 	mutex_unlock(&pmus_lock);
7772 
7773 	/*
7774 	 * We dereference the pmu list under both SRCU and regular RCU, so
7775 	 * synchronize against both of those.
7776 	 */
7777 	synchronize_srcu(&pmus_srcu);
7778 	synchronize_rcu();
7779 
7780 	free_percpu(pmu->pmu_disable_count);
7781 	if (pmu->type >= PERF_TYPE_MAX)
7782 		idr_remove(&pmu_idr, pmu->type);
7783 	device_del(pmu->dev);
7784 	put_device(pmu->dev);
7785 	free_pmu_context(pmu);
7786 }
7787 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7788 
7789 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7790 {
7791 	struct perf_event_context *ctx = NULL;
7792 	int ret;
7793 
7794 	if (!try_module_get(pmu->module))
7795 		return -ENODEV;
7796 
7797 	if (event->group_leader != event) {
7798 		/*
7799 		 * This ctx->mutex can nest when we're called through
7800 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7801 		 */
7802 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7803 						 SINGLE_DEPTH_NESTING);
7804 		BUG_ON(!ctx);
7805 	}
7806 
7807 	event->pmu = pmu;
7808 	ret = pmu->event_init(event);
7809 
7810 	if (ctx)
7811 		perf_event_ctx_unlock(event->group_leader, ctx);
7812 
7813 	if (ret)
7814 		module_put(pmu->module);
7815 
7816 	return ret;
7817 }
7818 
7819 static struct pmu *perf_init_event(struct perf_event *event)
7820 {
7821 	struct pmu *pmu = NULL;
7822 	int idx;
7823 	int ret;
7824 
7825 	idx = srcu_read_lock(&pmus_srcu);
7826 
7827 	rcu_read_lock();
7828 	pmu = idr_find(&pmu_idr, event->attr.type);
7829 	rcu_read_unlock();
7830 	if (pmu) {
7831 		ret = perf_try_init_event(pmu, event);
7832 		if (ret)
7833 			pmu = ERR_PTR(ret);
7834 		goto unlock;
7835 	}
7836 
7837 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7838 		ret = perf_try_init_event(pmu, event);
7839 		if (!ret)
7840 			goto unlock;
7841 
7842 		if (ret != -ENOENT) {
7843 			pmu = ERR_PTR(ret);
7844 			goto unlock;
7845 		}
7846 	}
7847 	pmu = ERR_PTR(-ENOENT);
7848 unlock:
7849 	srcu_read_unlock(&pmus_srcu, idx);
7850 
7851 	return pmu;
7852 }
7853 
7854 static void account_event_cpu(struct perf_event *event, int cpu)
7855 {
7856 	if (event->parent)
7857 		return;
7858 
7859 	if (is_cgroup_event(event))
7860 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7861 }
7862 
7863 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7864 static void account_freq_event_nohz(void)
7865 {
7866 #ifdef CONFIG_NO_HZ_FULL
7867 	/* Lock so we don't race with concurrent unaccount */
7868 	spin_lock(&nr_freq_lock);
7869 	if (atomic_inc_return(&nr_freq_events) == 1)
7870 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7871 	spin_unlock(&nr_freq_lock);
7872 #endif
7873 }
7874 
7875 static void account_freq_event(void)
7876 {
7877 	if (tick_nohz_full_enabled())
7878 		account_freq_event_nohz();
7879 	else
7880 		atomic_inc(&nr_freq_events);
7881 }
7882 
7883 
7884 static void account_event(struct perf_event *event)
7885 {
7886 	bool inc = false;
7887 
7888 	if (event->parent)
7889 		return;
7890 
7891 	if (event->attach_state & PERF_ATTACH_TASK)
7892 		inc = true;
7893 	if (event->attr.mmap || event->attr.mmap_data)
7894 		atomic_inc(&nr_mmap_events);
7895 	if (event->attr.comm)
7896 		atomic_inc(&nr_comm_events);
7897 	if (event->attr.task)
7898 		atomic_inc(&nr_task_events);
7899 	if (event->attr.freq)
7900 		account_freq_event();
7901 	if (event->attr.context_switch) {
7902 		atomic_inc(&nr_switch_events);
7903 		inc = true;
7904 	}
7905 	if (has_branch_stack(event))
7906 		inc = true;
7907 	if (is_cgroup_event(event))
7908 		inc = true;
7909 
7910 	if (inc) {
7911 		if (atomic_inc_not_zero(&perf_sched_count))
7912 			goto enabled;
7913 
7914 		mutex_lock(&perf_sched_mutex);
7915 		if (!atomic_read(&perf_sched_count)) {
7916 			static_branch_enable(&perf_sched_events);
7917 			/*
7918 			 * Guarantee that all CPUs observe they key change and
7919 			 * call the perf scheduling hooks before proceeding to
7920 			 * install events that need them.
7921 			 */
7922 			synchronize_sched();
7923 		}
7924 		/*
7925 		 * Now that we have waited for the sync_sched(), allow further
7926 		 * increments to by-pass the mutex.
7927 		 */
7928 		atomic_inc(&perf_sched_count);
7929 		mutex_unlock(&perf_sched_mutex);
7930 	}
7931 enabled:
7932 
7933 	account_event_cpu(event, event->cpu);
7934 }
7935 
7936 /*
7937  * Allocate and initialize a event structure
7938  */
7939 static struct perf_event *
7940 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7941 		 struct task_struct *task,
7942 		 struct perf_event *group_leader,
7943 		 struct perf_event *parent_event,
7944 		 perf_overflow_handler_t overflow_handler,
7945 		 void *context, int cgroup_fd)
7946 {
7947 	struct pmu *pmu;
7948 	struct perf_event *event;
7949 	struct hw_perf_event *hwc;
7950 	long err = -EINVAL;
7951 
7952 	if ((unsigned)cpu >= nr_cpu_ids) {
7953 		if (!task || cpu != -1)
7954 			return ERR_PTR(-EINVAL);
7955 	}
7956 
7957 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7958 	if (!event)
7959 		return ERR_PTR(-ENOMEM);
7960 
7961 	/*
7962 	 * Single events are their own group leaders, with an
7963 	 * empty sibling list:
7964 	 */
7965 	if (!group_leader)
7966 		group_leader = event;
7967 
7968 	mutex_init(&event->child_mutex);
7969 	INIT_LIST_HEAD(&event->child_list);
7970 
7971 	INIT_LIST_HEAD(&event->group_entry);
7972 	INIT_LIST_HEAD(&event->event_entry);
7973 	INIT_LIST_HEAD(&event->sibling_list);
7974 	INIT_LIST_HEAD(&event->rb_entry);
7975 	INIT_LIST_HEAD(&event->active_entry);
7976 	INIT_HLIST_NODE(&event->hlist_entry);
7977 
7978 
7979 	init_waitqueue_head(&event->waitq);
7980 	init_irq_work(&event->pending, perf_pending_event);
7981 
7982 	mutex_init(&event->mmap_mutex);
7983 
7984 	atomic_long_set(&event->refcount, 1);
7985 	event->cpu		= cpu;
7986 	event->attr		= *attr;
7987 	event->group_leader	= group_leader;
7988 	event->pmu		= NULL;
7989 	event->oncpu		= -1;
7990 
7991 	event->parent		= parent_event;
7992 
7993 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7994 	event->id		= atomic64_inc_return(&perf_event_id);
7995 
7996 	event->state		= PERF_EVENT_STATE_INACTIVE;
7997 
7998 	if (task) {
7999 		event->attach_state = PERF_ATTACH_TASK;
8000 		/*
8001 		 * XXX pmu::event_init needs to know what task to account to
8002 		 * and we cannot use the ctx information because we need the
8003 		 * pmu before we get a ctx.
8004 		 */
8005 		event->hw.target = task;
8006 	}
8007 
8008 	event->clock = &local_clock;
8009 	if (parent_event)
8010 		event->clock = parent_event->clock;
8011 
8012 	if (!overflow_handler && parent_event) {
8013 		overflow_handler = parent_event->overflow_handler;
8014 		context = parent_event->overflow_handler_context;
8015 	}
8016 
8017 	event->overflow_handler	= overflow_handler;
8018 	event->overflow_handler_context = context;
8019 
8020 	perf_event__state_init(event);
8021 
8022 	pmu = NULL;
8023 
8024 	hwc = &event->hw;
8025 	hwc->sample_period = attr->sample_period;
8026 	if (attr->freq && attr->sample_freq)
8027 		hwc->sample_period = 1;
8028 	hwc->last_period = hwc->sample_period;
8029 
8030 	local64_set(&hwc->period_left, hwc->sample_period);
8031 
8032 	/*
8033 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8034 	 */
8035 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8036 		goto err_ns;
8037 
8038 	if (!has_branch_stack(event))
8039 		event->attr.branch_sample_type = 0;
8040 
8041 	if (cgroup_fd != -1) {
8042 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8043 		if (err)
8044 			goto err_ns;
8045 	}
8046 
8047 	pmu = perf_init_event(event);
8048 	if (!pmu)
8049 		goto err_ns;
8050 	else if (IS_ERR(pmu)) {
8051 		err = PTR_ERR(pmu);
8052 		goto err_ns;
8053 	}
8054 
8055 	err = exclusive_event_init(event);
8056 	if (err)
8057 		goto err_pmu;
8058 
8059 	if (!event->parent) {
8060 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8061 			err = get_callchain_buffers();
8062 			if (err)
8063 				goto err_per_task;
8064 		}
8065 	}
8066 
8067 	/* symmetric to unaccount_event() in _free_event() */
8068 	account_event(event);
8069 
8070 	return event;
8071 
8072 err_per_task:
8073 	exclusive_event_destroy(event);
8074 
8075 err_pmu:
8076 	if (event->destroy)
8077 		event->destroy(event);
8078 	module_put(pmu->module);
8079 err_ns:
8080 	if (is_cgroup_event(event))
8081 		perf_detach_cgroup(event);
8082 	if (event->ns)
8083 		put_pid_ns(event->ns);
8084 	kfree(event);
8085 
8086 	return ERR_PTR(err);
8087 }
8088 
8089 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8090 			  struct perf_event_attr *attr)
8091 {
8092 	u32 size;
8093 	int ret;
8094 
8095 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8096 		return -EFAULT;
8097 
8098 	/*
8099 	 * zero the full structure, so that a short copy will be nice.
8100 	 */
8101 	memset(attr, 0, sizeof(*attr));
8102 
8103 	ret = get_user(size, &uattr->size);
8104 	if (ret)
8105 		return ret;
8106 
8107 	if (size > PAGE_SIZE)	/* silly large */
8108 		goto err_size;
8109 
8110 	if (!size)		/* abi compat */
8111 		size = PERF_ATTR_SIZE_VER0;
8112 
8113 	if (size < PERF_ATTR_SIZE_VER0)
8114 		goto err_size;
8115 
8116 	/*
8117 	 * If we're handed a bigger struct than we know of,
8118 	 * ensure all the unknown bits are 0 - i.e. new
8119 	 * user-space does not rely on any kernel feature
8120 	 * extensions we dont know about yet.
8121 	 */
8122 	if (size > sizeof(*attr)) {
8123 		unsigned char __user *addr;
8124 		unsigned char __user *end;
8125 		unsigned char val;
8126 
8127 		addr = (void __user *)uattr + sizeof(*attr);
8128 		end  = (void __user *)uattr + size;
8129 
8130 		for (; addr < end; addr++) {
8131 			ret = get_user(val, addr);
8132 			if (ret)
8133 				return ret;
8134 			if (val)
8135 				goto err_size;
8136 		}
8137 		size = sizeof(*attr);
8138 	}
8139 
8140 	ret = copy_from_user(attr, uattr, size);
8141 	if (ret)
8142 		return -EFAULT;
8143 
8144 	if (attr->__reserved_1)
8145 		return -EINVAL;
8146 
8147 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8148 		return -EINVAL;
8149 
8150 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8151 		return -EINVAL;
8152 
8153 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8154 		u64 mask = attr->branch_sample_type;
8155 
8156 		/* only using defined bits */
8157 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8158 			return -EINVAL;
8159 
8160 		/* at least one branch bit must be set */
8161 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8162 			return -EINVAL;
8163 
8164 		/* propagate priv level, when not set for branch */
8165 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8166 
8167 			/* exclude_kernel checked on syscall entry */
8168 			if (!attr->exclude_kernel)
8169 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8170 
8171 			if (!attr->exclude_user)
8172 				mask |= PERF_SAMPLE_BRANCH_USER;
8173 
8174 			if (!attr->exclude_hv)
8175 				mask |= PERF_SAMPLE_BRANCH_HV;
8176 			/*
8177 			 * adjust user setting (for HW filter setup)
8178 			 */
8179 			attr->branch_sample_type = mask;
8180 		}
8181 		/* privileged levels capture (kernel, hv): check permissions */
8182 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8183 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8184 			return -EACCES;
8185 	}
8186 
8187 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8188 		ret = perf_reg_validate(attr->sample_regs_user);
8189 		if (ret)
8190 			return ret;
8191 	}
8192 
8193 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8194 		if (!arch_perf_have_user_stack_dump())
8195 			return -ENOSYS;
8196 
8197 		/*
8198 		 * We have __u32 type for the size, but so far
8199 		 * we can only use __u16 as maximum due to the
8200 		 * __u16 sample size limit.
8201 		 */
8202 		if (attr->sample_stack_user >= USHRT_MAX)
8203 			ret = -EINVAL;
8204 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8205 			ret = -EINVAL;
8206 	}
8207 
8208 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8209 		ret = perf_reg_validate(attr->sample_regs_intr);
8210 out:
8211 	return ret;
8212 
8213 err_size:
8214 	put_user(sizeof(*attr), &uattr->size);
8215 	ret = -E2BIG;
8216 	goto out;
8217 }
8218 
8219 static int
8220 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8221 {
8222 	struct ring_buffer *rb = NULL;
8223 	int ret = -EINVAL;
8224 
8225 	if (!output_event)
8226 		goto set;
8227 
8228 	/* don't allow circular references */
8229 	if (event == output_event)
8230 		goto out;
8231 
8232 	/*
8233 	 * Don't allow cross-cpu buffers
8234 	 */
8235 	if (output_event->cpu != event->cpu)
8236 		goto out;
8237 
8238 	/*
8239 	 * If its not a per-cpu rb, it must be the same task.
8240 	 */
8241 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8242 		goto out;
8243 
8244 	/*
8245 	 * Mixing clocks in the same buffer is trouble you don't need.
8246 	 */
8247 	if (output_event->clock != event->clock)
8248 		goto out;
8249 
8250 	/*
8251 	 * If both events generate aux data, they must be on the same PMU
8252 	 */
8253 	if (has_aux(event) && has_aux(output_event) &&
8254 	    event->pmu != output_event->pmu)
8255 		goto out;
8256 
8257 set:
8258 	mutex_lock(&event->mmap_mutex);
8259 	/* Can't redirect output if we've got an active mmap() */
8260 	if (atomic_read(&event->mmap_count))
8261 		goto unlock;
8262 
8263 	if (output_event) {
8264 		/* get the rb we want to redirect to */
8265 		rb = ring_buffer_get(output_event);
8266 		if (!rb)
8267 			goto unlock;
8268 	}
8269 
8270 	ring_buffer_attach(event, rb);
8271 
8272 	ret = 0;
8273 unlock:
8274 	mutex_unlock(&event->mmap_mutex);
8275 
8276 out:
8277 	return ret;
8278 }
8279 
8280 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8281 {
8282 	if (b < a)
8283 		swap(a, b);
8284 
8285 	mutex_lock(a);
8286 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8287 }
8288 
8289 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8290 {
8291 	bool nmi_safe = false;
8292 
8293 	switch (clk_id) {
8294 	case CLOCK_MONOTONIC:
8295 		event->clock = &ktime_get_mono_fast_ns;
8296 		nmi_safe = true;
8297 		break;
8298 
8299 	case CLOCK_MONOTONIC_RAW:
8300 		event->clock = &ktime_get_raw_fast_ns;
8301 		nmi_safe = true;
8302 		break;
8303 
8304 	case CLOCK_REALTIME:
8305 		event->clock = &ktime_get_real_ns;
8306 		break;
8307 
8308 	case CLOCK_BOOTTIME:
8309 		event->clock = &ktime_get_boot_ns;
8310 		break;
8311 
8312 	case CLOCK_TAI:
8313 		event->clock = &ktime_get_tai_ns;
8314 		break;
8315 
8316 	default:
8317 		return -EINVAL;
8318 	}
8319 
8320 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8321 		return -EINVAL;
8322 
8323 	return 0;
8324 }
8325 
8326 /**
8327  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8328  *
8329  * @attr_uptr:	event_id type attributes for monitoring/sampling
8330  * @pid:		target pid
8331  * @cpu:		target cpu
8332  * @group_fd:		group leader event fd
8333  */
8334 SYSCALL_DEFINE5(perf_event_open,
8335 		struct perf_event_attr __user *, attr_uptr,
8336 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8337 {
8338 	struct perf_event *group_leader = NULL, *output_event = NULL;
8339 	struct perf_event *event, *sibling;
8340 	struct perf_event_attr attr;
8341 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8342 	struct file *event_file = NULL;
8343 	struct fd group = {NULL, 0};
8344 	struct task_struct *task = NULL;
8345 	struct pmu *pmu;
8346 	int event_fd;
8347 	int move_group = 0;
8348 	int err;
8349 	int f_flags = O_RDWR;
8350 	int cgroup_fd = -1;
8351 
8352 	/* for future expandability... */
8353 	if (flags & ~PERF_FLAG_ALL)
8354 		return -EINVAL;
8355 
8356 	err = perf_copy_attr(attr_uptr, &attr);
8357 	if (err)
8358 		return err;
8359 
8360 	if (!attr.exclude_kernel) {
8361 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8362 			return -EACCES;
8363 	}
8364 
8365 	if (attr.freq) {
8366 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8367 			return -EINVAL;
8368 	} else {
8369 		if (attr.sample_period & (1ULL << 63))
8370 			return -EINVAL;
8371 	}
8372 
8373 	/*
8374 	 * In cgroup mode, the pid argument is used to pass the fd
8375 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8376 	 * designates the cpu on which to monitor threads from that
8377 	 * cgroup.
8378 	 */
8379 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8380 		return -EINVAL;
8381 
8382 	if (flags & PERF_FLAG_FD_CLOEXEC)
8383 		f_flags |= O_CLOEXEC;
8384 
8385 	event_fd = get_unused_fd_flags(f_flags);
8386 	if (event_fd < 0)
8387 		return event_fd;
8388 
8389 	if (group_fd != -1) {
8390 		err = perf_fget_light(group_fd, &group);
8391 		if (err)
8392 			goto err_fd;
8393 		group_leader = group.file->private_data;
8394 		if (flags & PERF_FLAG_FD_OUTPUT)
8395 			output_event = group_leader;
8396 		if (flags & PERF_FLAG_FD_NO_GROUP)
8397 			group_leader = NULL;
8398 	}
8399 
8400 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8401 		task = find_lively_task_by_vpid(pid);
8402 		if (IS_ERR(task)) {
8403 			err = PTR_ERR(task);
8404 			goto err_group_fd;
8405 		}
8406 	}
8407 
8408 	if (task && group_leader &&
8409 	    group_leader->attr.inherit != attr.inherit) {
8410 		err = -EINVAL;
8411 		goto err_task;
8412 	}
8413 
8414 	get_online_cpus();
8415 
8416 	if (flags & PERF_FLAG_PID_CGROUP)
8417 		cgroup_fd = pid;
8418 
8419 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8420 				 NULL, NULL, cgroup_fd);
8421 	if (IS_ERR(event)) {
8422 		err = PTR_ERR(event);
8423 		goto err_cpus;
8424 	}
8425 
8426 	if (is_sampling_event(event)) {
8427 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8428 			err = -ENOTSUPP;
8429 			goto err_alloc;
8430 		}
8431 	}
8432 
8433 	/*
8434 	 * Special case software events and allow them to be part of
8435 	 * any hardware group.
8436 	 */
8437 	pmu = event->pmu;
8438 
8439 	if (attr.use_clockid) {
8440 		err = perf_event_set_clock(event, attr.clockid);
8441 		if (err)
8442 			goto err_alloc;
8443 	}
8444 
8445 	if (group_leader &&
8446 	    (is_software_event(event) != is_software_event(group_leader))) {
8447 		if (is_software_event(event)) {
8448 			/*
8449 			 * If event and group_leader are not both a software
8450 			 * event, and event is, then group leader is not.
8451 			 *
8452 			 * Allow the addition of software events to !software
8453 			 * groups, this is safe because software events never
8454 			 * fail to schedule.
8455 			 */
8456 			pmu = group_leader->pmu;
8457 		} else if (is_software_event(group_leader) &&
8458 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8459 			/*
8460 			 * In case the group is a pure software group, and we
8461 			 * try to add a hardware event, move the whole group to
8462 			 * the hardware context.
8463 			 */
8464 			move_group = 1;
8465 		}
8466 	}
8467 
8468 	/*
8469 	 * Get the target context (task or percpu):
8470 	 */
8471 	ctx = find_get_context(pmu, task, event);
8472 	if (IS_ERR(ctx)) {
8473 		err = PTR_ERR(ctx);
8474 		goto err_alloc;
8475 	}
8476 
8477 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8478 		err = -EBUSY;
8479 		goto err_context;
8480 	}
8481 
8482 	if (task) {
8483 		put_task_struct(task);
8484 		task = NULL;
8485 	}
8486 
8487 	/*
8488 	 * Look up the group leader (we will attach this event to it):
8489 	 */
8490 	if (group_leader) {
8491 		err = -EINVAL;
8492 
8493 		/*
8494 		 * Do not allow a recursive hierarchy (this new sibling
8495 		 * becoming part of another group-sibling):
8496 		 */
8497 		if (group_leader->group_leader != group_leader)
8498 			goto err_context;
8499 
8500 		/* All events in a group should have the same clock */
8501 		if (group_leader->clock != event->clock)
8502 			goto err_context;
8503 
8504 		/*
8505 		 * Do not allow to attach to a group in a different
8506 		 * task or CPU context:
8507 		 */
8508 		if (move_group) {
8509 			/*
8510 			 * Make sure we're both on the same task, or both
8511 			 * per-cpu events.
8512 			 */
8513 			if (group_leader->ctx->task != ctx->task)
8514 				goto err_context;
8515 
8516 			/*
8517 			 * Make sure we're both events for the same CPU;
8518 			 * grouping events for different CPUs is broken; since
8519 			 * you can never concurrently schedule them anyhow.
8520 			 */
8521 			if (group_leader->cpu != event->cpu)
8522 				goto err_context;
8523 		} else {
8524 			if (group_leader->ctx != ctx)
8525 				goto err_context;
8526 		}
8527 
8528 		/*
8529 		 * Only a group leader can be exclusive or pinned
8530 		 */
8531 		if (attr.exclusive || attr.pinned)
8532 			goto err_context;
8533 	}
8534 
8535 	if (output_event) {
8536 		err = perf_event_set_output(event, output_event);
8537 		if (err)
8538 			goto err_context;
8539 	}
8540 
8541 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8542 					f_flags);
8543 	if (IS_ERR(event_file)) {
8544 		err = PTR_ERR(event_file);
8545 		event_file = NULL;
8546 		goto err_context;
8547 	}
8548 
8549 	if (move_group) {
8550 		gctx = group_leader->ctx;
8551 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8552 		if (gctx->task == TASK_TOMBSTONE) {
8553 			err = -ESRCH;
8554 			goto err_locked;
8555 		}
8556 	} else {
8557 		mutex_lock(&ctx->mutex);
8558 	}
8559 
8560 	if (ctx->task == TASK_TOMBSTONE) {
8561 		err = -ESRCH;
8562 		goto err_locked;
8563 	}
8564 
8565 	if (!perf_event_validate_size(event)) {
8566 		err = -E2BIG;
8567 		goto err_locked;
8568 	}
8569 
8570 	/*
8571 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8572 	 * because we need to serialize with concurrent event creation.
8573 	 */
8574 	if (!exclusive_event_installable(event, ctx)) {
8575 		/* exclusive and group stuff are assumed mutually exclusive */
8576 		WARN_ON_ONCE(move_group);
8577 
8578 		err = -EBUSY;
8579 		goto err_locked;
8580 	}
8581 
8582 	WARN_ON_ONCE(ctx->parent_ctx);
8583 
8584 	if (move_group) {
8585 		/*
8586 		 * See perf_event_ctx_lock() for comments on the details
8587 		 * of swizzling perf_event::ctx.
8588 		 */
8589 		perf_remove_from_context(group_leader, 0);
8590 
8591 		list_for_each_entry(sibling, &group_leader->sibling_list,
8592 				    group_entry) {
8593 			perf_remove_from_context(sibling, 0);
8594 			put_ctx(gctx);
8595 		}
8596 
8597 		/*
8598 		 * Wait for everybody to stop referencing the events through
8599 		 * the old lists, before installing it on new lists.
8600 		 */
8601 		synchronize_rcu();
8602 
8603 		/*
8604 		 * Install the group siblings before the group leader.
8605 		 *
8606 		 * Because a group leader will try and install the entire group
8607 		 * (through the sibling list, which is still in-tact), we can
8608 		 * end up with siblings installed in the wrong context.
8609 		 *
8610 		 * By installing siblings first we NO-OP because they're not
8611 		 * reachable through the group lists.
8612 		 */
8613 		list_for_each_entry(sibling, &group_leader->sibling_list,
8614 				    group_entry) {
8615 			perf_event__state_init(sibling);
8616 			perf_install_in_context(ctx, sibling, sibling->cpu);
8617 			get_ctx(ctx);
8618 		}
8619 
8620 		/*
8621 		 * Removing from the context ends up with disabled
8622 		 * event. What we want here is event in the initial
8623 		 * startup state, ready to be add into new context.
8624 		 */
8625 		perf_event__state_init(group_leader);
8626 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8627 		get_ctx(ctx);
8628 
8629 		/*
8630 		 * Now that all events are installed in @ctx, nothing
8631 		 * references @gctx anymore, so drop the last reference we have
8632 		 * on it.
8633 		 */
8634 		put_ctx(gctx);
8635 	}
8636 
8637 	/*
8638 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8639 	 * that we're serialized against further additions and before
8640 	 * perf_install_in_context() which is the point the event is active and
8641 	 * can use these values.
8642 	 */
8643 	perf_event__header_size(event);
8644 	perf_event__id_header_size(event);
8645 
8646 	event->owner = current;
8647 
8648 	perf_install_in_context(ctx, event, event->cpu);
8649 	perf_unpin_context(ctx);
8650 
8651 	if (move_group)
8652 		mutex_unlock(&gctx->mutex);
8653 	mutex_unlock(&ctx->mutex);
8654 
8655 	put_online_cpus();
8656 
8657 	mutex_lock(&current->perf_event_mutex);
8658 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8659 	mutex_unlock(&current->perf_event_mutex);
8660 
8661 	/*
8662 	 * Drop the reference on the group_event after placing the
8663 	 * new event on the sibling_list. This ensures destruction
8664 	 * of the group leader will find the pointer to itself in
8665 	 * perf_group_detach().
8666 	 */
8667 	fdput(group);
8668 	fd_install(event_fd, event_file);
8669 	return event_fd;
8670 
8671 err_locked:
8672 	if (move_group)
8673 		mutex_unlock(&gctx->mutex);
8674 	mutex_unlock(&ctx->mutex);
8675 /* err_file: */
8676 	fput(event_file);
8677 err_context:
8678 	perf_unpin_context(ctx);
8679 	put_ctx(ctx);
8680 err_alloc:
8681 	/*
8682 	 * If event_file is set, the fput() above will have called ->release()
8683 	 * and that will take care of freeing the event.
8684 	 */
8685 	if (!event_file)
8686 		free_event(event);
8687 err_cpus:
8688 	put_online_cpus();
8689 err_task:
8690 	if (task)
8691 		put_task_struct(task);
8692 err_group_fd:
8693 	fdput(group);
8694 err_fd:
8695 	put_unused_fd(event_fd);
8696 	return err;
8697 }
8698 
8699 /**
8700  * perf_event_create_kernel_counter
8701  *
8702  * @attr: attributes of the counter to create
8703  * @cpu: cpu in which the counter is bound
8704  * @task: task to profile (NULL for percpu)
8705  */
8706 struct perf_event *
8707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8708 				 struct task_struct *task,
8709 				 perf_overflow_handler_t overflow_handler,
8710 				 void *context)
8711 {
8712 	struct perf_event_context *ctx;
8713 	struct perf_event *event;
8714 	int err;
8715 
8716 	/*
8717 	 * Get the target context (task or percpu):
8718 	 */
8719 
8720 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8721 				 overflow_handler, context, -1);
8722 	if (IS_ERR(event)) {
8723 		err = PTR_ERR(event);
8724 		goto err;
8725 	}
8726 
8727 	/* Mark owner so we could distinguish it from user events. */
8728 	event->owner = TASK_TOMBSTONE;
8729 
8730 	ctx = find_get_context(event->pmu, task, event);
8731 	if (IS_ERR(ctx)) {
8732 		err = PTR_ERR(ctx);
8733 		goto err_free;
8734 	}
8735 
8736 	WARN_ON_ONCE(ctx->parent_ctx);
8737 	mutex_lock(&ctx->mutex);
8738 	if (ctx->task == TASK_TOMBSTONE) {
8739 		err = -ESRCH;
8740 		goto err_unlock;
8741 	}
8742 
8743 	if (!exclusive_event_installable(event, ctx)) {
8744 		err = -EBUSY;
8745 		goto err_unlock;
8746 	}
8747 
8748 	perf_install_in_context(ctx, event, cpu);
8749 	perf_unpin_context(ctx);
8750 	mutex_unlock(&ctx->mutex);
8751 
8752 	return event;
8753 
8754 err_unlock:
8755 	mutex_unlock(&ctx->mutex);
8756 	perf_unpin_context(ctx);
8757 	put_ctx(ctx);
8758 err_free:
8759 	free_event(event);
8760 err:
8761 	return ERR_PTR(err);
8762 }
8763 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8764 
8765 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8766 {
8767 	struct perf_event_context *src_ctx;
8768 	struct perf_event_context *dst_ctx;
8769 	struct perf_event *event, *tmp;
8770 	LIST_HEAD(events);
8771 
8772 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8773 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8774 
8775 	/*
8776 	 * See perf_event_ctx_lock() for comments on the details
8777 	 * of swizzling perf_event::ctx.
8778 	 */
8779 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8780 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8781 				 event_entry) {
8782 		perf_remove_from_context(event, 0);
8783 		unaccount_event_cpu(event, src_cpu);
8784 		put_ctx(src_ctx);
8785 		list_add(&event->migrate_entry, &events);
8786 	}
8787 
8788 	/*
8789 	 * Wait for the events to quiesce before re-instating them.
8790 	 */
8791 	synchronize_rcu();
8792 
8793 	/*
8794 	 * Re-instate events in 2 passes.
8795 	 *
8796 	 * Skip over group leaders and only install siblings on this first
8797 	 * pass, siblings will not get enabled without a leader, however a
8798 	 * leader will enable its siblings, even if those are still on the old
8799 	 * context.
8800 	 */
8801 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8802 		if (event->group_leader == event)
8803 			continue;
8804 
8805 		list_del(&event->migrate_entry);
8806 		if (event->state >= PERF_EVENT_STATE_OFF)
8807 			event->state = PERF_EVENT_STATE_INACTIVE;
8808 		account_event_cpu(event, dst_cpu);
8809 		perf_install_in_context(dst_ctx, event, dst_cpu);
8810 		get_ctx(dst_ctx);
8811 	}
8812 
8813 	/*
8814 	 * Once all the siblings are setup properly, install the group leaders
8815 	 * to make it go.
8816 	 */
8817 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8818 		list_del(&event->migrate_entry);
8819 		if (event->state >= PERF_EVENT_STATE_OFF)
8820 			event->state = PERF_EVENT_STATE_INACTIVE;
8821 		account_event_cpu(event, dst_cpu);
8822 		perf_install_in_context(dst_ctx, event, dst_cpu);
8823 		get_ctx(dst_ctx);
8824 	}
8825 	mutex_unlock(&dst_ctx->mutex);
8826 	mutex_unlock(&src_ctx->mutex);
8827 }
8828 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8829 
8830 static void sync_child_event(struct perf_event *child_event,
8831 			       struct task_struct *child)
8832 {
8833 	struct perf_event *parent_event = child_event->parent;
8834 	u64 child_val;
8835 
8836 	if (child_event->attr.inherit_stat)
8837 		perf_event_read_event(child_event, child);
8838 
8839 	child_val = perf_event_count(child_event);
8840 
8841 	/*
8842 	 * Add back the child's count to the parent's count:
8843 	 */
8844 	atomic64_add(child_val, &parent_event->child_count);
8845 	atomic64_add(child_event->total_time_enabled,
8846 		     &parent_event->child_total_time_enabled);
8847 	atomic64_add(child_event->total_time_running,
8848 		     &parent_event->child_total_time_running);
8849 }
8850 
8851 static void
8852 perf_event_exit_event(struct perf_event *child_event,
8853 		      struct perf_event_context *child_ctx,
8854 		      struct task_struct *child)
8855 {
8856 	struct perf_event *parent_event = child_event->parent;
8857 
8858 	/*
8859 	 * Do not destroy the 'original' grouping; because of the context
8860 	 * switch optimization the original events could've ended up in a
8861 	 * random child task.
8862 	 *
8863 	 * If we were to destroy the original group, all group related
8864 	 * operations would cease to function properly after this random
8865 	 * child dies.
8866 	 *
8867 	 * Do destroy all inherited groups, we don't care about those
8868 	 * and being thorough is better.
8869 	 */
8870 	raw_spin_lock_irq(&child_ctx->lock);
8871 	WARN_ON_ONCE(child_ctx->is_active);
8872 
8873 	if (parent_event)
8874 		perf_group_detach(child_event);
8875 	list_del_event(child_event, child_ctx);
8876 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8877 	raw_spin_unlock_irq(&child_ctx->lock);
8878 
8879 	/*
8880 	 * Parent events are governed by their filedesc, retain them.
8881 	 */
8882 	if (!parent_event) {
8883 		perf_event_wakeup(child_event);
8884 		return;
8885 	}
8886 	/*
8887 	 * Child events can be cleaned up.
8888 	 */
8889 
8890 	sync_child_event(child_event, child);
8891 
8892 	/*
8893 	 * Remove this event from the parent's list
8894 	 */
8895 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8896 	mutex_lock(&parent_event->child_mutex);
8897 	list_del_init(&child_event->child_list);
8898 	mutex_unlock(&parent_event->child_mutex);
8899 
8900 	/*
8901 	 * Kick perf_poll() for is_event_hup().
8902 	 */
8903 	perf_event_wakeup(parent_event);
8904 	free_event(child_event);
8905 	put_event(parent_event);
8906 }
8907 
8908 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8909 {
8910 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8911 	struct perf_event *child_event, *next;
8912 
8913 	WARN_ON_ONCE(child != current);
8914 
8915 	child_ctx = perf_pin_task_context(child, ctxn);
8916 	if (!child_ctx)
8917 		return;
8918 
8919 	/*
8920 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8921 	 * ctx::mutex over the entire thing. This serializes against almost
8922 	 * everything that wants to access the ctx.
8923 	 *
8924 	 * The exception is sys_perf_event_open() /
8925 	 * perf_event_create_kernel_count() which does find_get_context()
8926 	 * without ctx::mutex (it cannot because of the move_group double mutex
8927 	 * lock thing). See the comments in perf_install_in_context().
8928 	 */
8929 	mutex_lock(&child_ctx->mutex);
8930 
8931 	/*
8932 	 * In a single ctx::lock section, de-schedule the events and detach the
8933 	 * context from the task such that we cannot ever get it scheduled back
8934 	 * in.
8935 	 */
8936 	raw_spin_lock_irq(&child_ctx->lock);
8937 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8938 
8939 	/*
8940 	 * Now that the context is inactive, destroy the task <-> ctx relation
8941 	 * and mark the context dead.
8942 	 */
8943 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8944 	put_ctx(child_ctx); /* cannot be last */
8945 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8946 	put_task_struct(current); /* cannot be last */
8947 
8948 	clone_ctx = unclone_ctx(child_ctx);
8949 	raw_spin_unlock_irq(&child_ctx->lock);
8950 
8951 	if (clone_ctx)
8952 		put_ctx(clone_ctx);
8953 
8954 	/*
8955 	 * Report the task dead after unscheduling the events so that we
8956 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8957 	 * get a few PERF_RECORD_READ events.
8958 	 */
8959 	perf_event_task(child, child_ctx, 0);
8960 
8961 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8962 		perf_event_exit_event(child_event, child_ctx, child);
8963 
8964 	mutex_unlock(&child_ctx->mutex);
8965 
8966 	put_ctx(child_ctx);
8967 }
8968 
8969 /*
8970  * When a child task exits, feed back event values to parent events.
8971  */
8972 void perf_event_exit_task(struct task_struct *child)
8973 {
8974 	struct perf_event *event, *tmp;
8975 	int ctxn;
8976 
8977 	mutex_lock(&child->perf_event_mutex);
8978 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8979 				 owner_entry) {
8980 		list_del_init(&event->owner_entry);
8981 
8982 		/*
8983 		 * Ensure the list deletion is visible before we clear
8984 		 * the owner, closes a race against perf_release() where
8985 		 * we need to serialize on the owner->perf_event_mutex.
8986 		 */
8987 		smp_store_release(&event->owner, NULL);
8988 	}
8989 	mutex_unlock(&child->perf_event_mutex);
8990 
8991 	for_each_task_context_nr(ctxn)
8992 		perf_event_exit_task_context(child, ctxn);
8993 
8994 	/*
8995 	 * The perf_event_exit_task_context calls perf_event_task
8996 	 * with child's task_ctx, which generates EXIT events for
8997 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8998 	 * At this point we need to send EXIT events to cpu contexts.
8999 	 */
9000 	perf_event_task(child, NULL, 0);
9001 }
9002 
9003 static void perf_free_event(struct perf_event *event,
9004 			    struct perf_event_context *ctx)
9005 {
9006 	struct perf_event *parent = event->parent;
9007 
9008 	if (WARN_ON_ONCE(!parent))
9009 		return;
9010 
9011 	mutex_lock(&parent->child_mutex);
9012 	list_del_init(&event->child_list);
9013 	mutex_unlock(&parent->child_mutex);
9014 
9015 	put_event(parent);
9016 
9017 	raw_spin_lock_irq(&ctx->lock);
9018 	perf_group_detach(event);
9019 	list_del_event(event, ctx);
9020 	raw_spin_unlock_irq(&ctx->lock);
9021 	free_event(event);
9022 }
9023 
9024 /*
9025  * Free an unexposed, unused context as created by inheritance by
9026  * perf_event_init_task below, used by fork() in case of fail.
9027  *
9028  * Not all locks are strictly required, but take them anyway to be nice and
9029  * help out with the lockdep assertions.
9030  */
9031 void perf_event_free_task(struct task_struct *task)
9032 {
9033 	struct perf_event_context *ctx;
9034 	struct perf_event *event, *tmp;
9035 	int ctxn;
9036 
9037 	for_each_task_context_nr(ctxn) {
9038 		ctx = task->perf_event_ctxp[ctxn];
9039 		if (!ctx)
9040 			continue;
9041 
9042 		mutex_lock(&ctx->mutex);
9043 again:
9044 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9045 				group_entry)
9046 			perf_free_event(event, ctx);
9047 
9048 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9049 				group_entry)
9050 			perf_free_event(event, ctx);
9051 
9052 		if (!list_empty(&ctx->pinned_groups) ||
9053 				!list_empty(&ctx->flexible_groups))
9054 			goto again;
9055 
9056 		mutex_unlock(&ctx->mutex);
9057 
9058 		put_ctx(ctx);
9059 	}
9060 }
9061 
9062 void perf_event_delayed_put(struct task_struct *task)
9063 {
9064 	int ctxn;
9065 
9066 	for_each_task_context_nr(ctxn)
9067 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9068 }
9069 
9070 struct file *perf_event_get(unsigned int fd)
9071 {
9072 	struct file *file;
9073 
9074 	file = fget_raw(fd);
9075 	if (!file)
9076 		return ERR_PTR(-EBADF);
9077 
9078 	if (file->f_op != &perf_fops) {
9079 		fput(file);
9080 		return ERR_PTR(-EBADF);
9081 	}
9082 
9083 	return file;
9084 }
9085 
9086 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9087 {
9088 	if (!event)
9089 		return ERR_PTR(-EINVAL);
9090 
9091 	return &event->attr;
9092 }
9093 
9094 /*
9095  * inherit a event from parent task to child task:
9096  */
9097 static struct perf_event *
9098 inherit_event(struct perf_event *parent_event,
9099 	      struct task_struct *parent,
9100 	      struct perf_event_context *parent_ctx,
9101 	      struct task_struct *child,
9102 	      struct perf_event *group_leader,
9103 	      struct perf_event_context *child_ctx)
9104 {
9105 	enum perf_event_active_state parent_state = parent_event->state;
9106 	struct perf_event *child_event;
9107 	unsigned long flags;
9108 
9109 	/*
9110 	 * Instead of creating recursive hierarchies of events,
9111 	 * we link inherited events back to the original parent,
9112 	 * which has a filp for sure, which we use as the reference
9113 	 * count:
9114 	 */
9115 	if (parent_event->parent)
9116 		parent_event = parent_event->parent;
9117 
9118 	child_event = perf_event_alloc(&parent_event->attr,
9119 					   parent_event->cpu,
9120 					   child,
9121 					   group_leader, parent_event,
9122 					   NULL, NULL, -1);
9123 	if (IS_ERR(child_event))
9124 		return child_event;
9125 
9126 	/*
9127 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9128 	 * must be under the same lock in order to serialize against
9129 	 * perf_event_release_kernel(), such that either we must observe
9130 	 * is_orphaned_event() or they will observe us on the child_list.
9131 	 */
9132 	mutex_lock(&parent_event->child_mutex);
9133 	if (is_orphaned_event(parent_event) ||
9134 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9135 		mutex_unlock(&parent_event->child_mutex);
9136 		free_event(child_event);
9137 		return NULL;
9138 	}
9139 
9140 	get_ctx(child_ctx);
9141 
9142 	/*
9143 	 * Make the child state follow the state of the parent event,
9144 	 * not its attr.disabled bit.  We hold the parent's mutex,
9145 	 * so we won't race with perf_event_{en, dis}able_family.
9146 	 */
9147 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9148 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9149 	else
9150 		child_event->state = PERF_EVENT_STATE_OFF;
9151 
9152 	if (parent_event->attr.freq) {
9153 		u64 sample_period = parent_event->hw.sample_period;
9154 		struct hw_perf_event *hwc = &child_event->hw;
9155 
9156 		hwc->sample_period = sample_period;
9157 		hwc->last_period   = sample_period;
9158 
9159 		local64_set(&hwc->period_left, sample_period);
9160 	}
9161 
9162 	child_event->ctx = child_ctx;
9163 	child_event->overflow_handler = parent_event->overflow_handler;
9164 	child_event->overflow_handler_context
9165 		= parent_event->overflow_handler_context;
9166 
9167 	/*
9168 	 * Precalculate sample_data sizes
9169 	 */
9170 	perf_event__header_size(child_event);
9171 	perf_event__id_header_size(child_event);
9172 
9173 	/*
9174 	 * Link it up in the child's context:
9175 	 */
9176 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9177 	add_event_to_ctx(child_event, child_ctx);
9178 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9179 
9180 	/*
9181 	 * Link this into the parent event's child list
9182 	 */
9183 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9184 	mutex_unlock(&parent_event->child_mutex);
9185 
9186 	return child_event;
9187 }
9188 
9189 static int inherit_group(struct perf_event *parent_event,
9190 	      struct task_struct *parent,
9191 	      struct perf_event_context *parent_ctx,
9192 	      struct task_struct *child,
9193 	      struct perf_event_context *child_ctx)
9194 {
9195 	struct perf_event *leader;
9196 	struct perf_event *sub;
9197 	struct perf_event *child_ctr;
9198 
9199 	leader = inherit_event(parent_event, parent, parent_ctx,
9200 				 child, NULL, child_ctx);
9201 	if (IS_ERR(leader))
9202 		return PTR_ERR(leader);
9203 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9204 		child_ctr = inherit_event(sub, parent, parent_ctx,
9205 					    child, leader, child_ctx);
9206 		if (IS_ERR(child_ctr))
9207 			return PTR_ERR(child_ctr);
9208 	}
9209 	return 0;
9210 }
9211 
9212 static int
9213 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9214 		   struct perf_event_context *parent_ctx,
9215 		   struct task_struct *child, int ctxn,
9216 		   int *inherited_all)
9217 {
9218 	int ret;
9219 	struct perf_event_context *child_ctx;
9220 
9221 	if (!event->attr.inherit) {
9222 		*inherited_all = 0;
9223 		return 0;
9224 	}
9225 
9226 	child_ctx = child->perf_event_ctxp[ctxn];
9227 	if (!child_ctx) {
9228 		/*
9229 		 * This is executed from the parent task context, so
9230 		 * inherit events that have been marked for cloning.
9231 		 * First allocate and initialize a context for the
9232 		 * child.
9233 		 */
9234 
9235 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9236 		if (!child_ctx)
9237 			return -ENOMEM;
9238 
9239 		child->perf_event_ctxp[ctxn] = child_ctx;
9240 	}
9241 
9242 	ret = inherit_group(event, parent, parent_ctx,
9243 			    child, child_ctx);
9244 
9245 	if (ret)
9246 		*inherited_all = 0;
9247 
9248 	return ret;
9249 }
9250 
9251 /*
9252  * Initialize the perf_event context in task_struct
9253  */
9254 static int perf_event_init_context(struct task_struct *child, int ctxn)
9255 {
9256 	struct perf_event_context *child_ctx, *parent_ctx;
9257 	struct perf_event_context *cloned_ctx;
9258 	struct perf_event *event;
9259 	struct task_struct *parent = current;
9260 	int inherited_all = 1;
9261 	unsigned long flags;
9262 	int ret = 0;
9263 
9264 	if (likely(!parent->perf_event_ctxp[ctxn]))
9265 		return 0;
9266 
9267 	/*
9268 	 * If the parent's context is a clone, pin it so it won't get
9269 	 * swapped under us.
9270 	 */
9271 	parent_ctx = perf_pin_task_context(parent, ctxn);
9272 	if (!parent_ctx)
9273 		return 0;
9274 
9275 	/*
9276 	 * No need to check if parent_ctx != NULL here; since we saw
9277 	 * it non-NULL earlier, the only reason for it to become NULL
9278 	 * is if we exit, and since we're currently in the middle of
9279 	 * a fork we can't be exiting at the same time.
9280 	 */
9281 
9282 	/*
9283 	 * Lock the parent list. No need to lock the child - not PID
9284 	 * hashed yet and not running, so nobody can access it.
9285 	 */
9286 	mutex_lock(&parent_ctx->mutex);
9287 
9288 	/*
9289 	 * We dont have to disable NMIs - we are only looking at
9290 	 * the list, not manipulating it:
9291 	 */
9292 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9293 		ret = inherit_task_group(event, parent, parent_ctx,
9294 					 child, ctxn, &inherited_all);
9295 		if (ret)
9296 			break;
9297 	}
9298 
9299 	/*
9300 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9301 	 * to allocations, but we need to prevent rotation because
9302 	 * rotate_ctx() will change the list from interrupt context.
9303 	 */
9304 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9305 	parent_ctx->rotate_disable = 1;
9306 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9307 
9308 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9309 		ret = inherit_task_group(event, parent, parent_ctx,
9310 					 child, ctxn, &inherited_all);
9311 		if (ret)
9312 			break;
9313 	}
9314 
9315 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9316 	parent_ctx->rotate_disable = 0;
9317 
9318 	child_ctx = child->perf_event_ctxp[ctxn];
9319 
9320 	if (child_ctx && inherited_all) {
9321 		/*
9322 		 * Mark the child context as a clone of the parent
9323 		 * context, or of whatever the parent is a clone of.
9324 		 *
9325 		 * Note that if the parent is a clone, the holding of
9326 		 * parent_ctx->lock avoids it from being uncloned.
9327 		 */
9328 		cloned_ctx = parent_ctx->parent_ctx;
9329 		if (cloned_ctx) {
9330 			child_ctx->parent_ctx = cloned_ctx;
9331 			child_ctx->parent_gen = parent_ctx->parent_gen;
9332 		} else {
9333 			child_ctx->parent_ctx = parent_ctx;
9334 			child_ctx->parent_gen = parent_ctx->generation;
9335 		}
9336 		get_ctx(child_ctx->parent_ctx);
9337 	}
9338 
9339 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9340 	mutex_unlock(&parent_ctx->mutex);
9341 
9342 	perf_unpin_context(parent_ctx);
9343 	put_ctx(parent_ctx);
9344 
9345 	return ret;
9346 }
9347 
9348 /*
9349  * Initialize the perf_event context in task_struct
9350  */
9351 int perf_event_init_task(struct task_struct *child)
9352 {
9353 	int ctxn, ret;
9354 
9355 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9356 	mutex_init(&child->perf_event_mutex);
9357 	INIT_LIST_HEAD(&child->perf_event_list);
9358 
9359 	for_each_task_context_nr(ctxn) {
9360 		ret = perf_event_init_context(child, ctxn);
9361 		if (ret) {
9362 			perf_event_free_task(child);
9363 			return ret;
9364 		}
9365 	}
9366 
9367 	return 0;
9368 }
9369 
9370 static void __init perf_event_init_all_cpus(void)
9371 {
9372 	struct swevent_htable *swhash;
9373 	int cpu;
9374 
9375 	for_each_possible_cpu(cpu) {
9376 		swhash = &per_cpu(swevent_htable, cpu);
9377 		mutex_init(&swhash->hlist_mutex);
9378 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9379 	}
9380 }
9381 
9382 static void perf_event_init_cpu(int cpu)
9383 {
9384 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9385 
9386 	mutex_lock(&swhash->hlist_mutex);
9387 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9388 		struct swevent_hlist *hlist;
9389 
9390 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9391 		WARN_ON(!hlist);
9392 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9393 	}
9394 	mutex_unlock(&swhash->hlist_mutex);
9395 }
9396 
9397 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9398 static void __perf_event_exit_context(void *__info)
9399 {
9400 	struct perf_event_context *ctx = __info;
9401 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9402 	struct perf_event *event;
9403 
9404 	raw_spin_lock(&ctx->lock);
9405 	list_for_each_entry(event, &ctx->event_list, event_entry)
9406 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9407 	raw_spin_unlock(&ctx->lock);
9408 }
9409 
9410 static void perf_event_exit_cpu_context(int cpu)
9411 {
9412 	struct perf_event_context *ctx;
9413 	struct pmu *pmu;
9414 	int idx;
9415 
9416 	idx = srcu_read_lock(&pmus_srcu);
9417 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9418 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9419 
9420 		mutex_lock(&ctx->mutex);
9421 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9422 		mutex_unlock(&ctx->mutex);
9423 	}
9424 	srcu_read_unlock(&pmus_srcu, idx);
9425 }
9426 
9427 static void perf_event_exit_cpu(int cpu)
9428 {
9429 	perf_event_exit_cpu_context(cpu);
9430 }
9431 #else
9432 static inline void perf_event_exit_cpu(int cpu) { }
9433 #endif
9434 
9435 static int
9436 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9437 {
9438 	int cpu;
9439 
9440 	for_each_online_cpu(cpu)
9441 		perf_event_exit_cpu(cpu);
9442 
9443 	return NOTIFY_OK;
9444 }
9445 
9446 /*
9447  * Run the perf reboot notifier at the very last possible moment so that
9448  * the generic watchdog code runs as long as possible.
9449  */
9450 static struct notifier_block perf_reboot_notifier = {
9451 	.notifier_call = perf_reboot,
9452 	.priority = INT_MIN,
9453 };
9454 
9455 static int
9456 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9457 {
9458 	unsigned int cpu = (long)hcpu;
9459 
9460 	switch (action & ~CPU_TASKS_FROZEN) {
9461 
9462 	case CPU_UP_PREPARE:
9463 		/*
9464 		 * This must be done before the CPU comes alive, because the
9465 		 * moment we can run tasks we can encounter (software) events.
9466 		 *
9467 		 * Specifically, someone can have inherited events on kthreadd
9468 		 * or a pre-existing worker thread that gets re-bound.
9469 		 */
9470 		perf_event_init_cpu(cpu);
9471 		break;
9472 
9473 	case CPU_DOWN_PREPARE:
9474 		/*
9475 		 * This must be done before the CPU dies because after that an
9476 		 * active event might want to IPI the CPU and that'll not work
9477 		 * so great for dead CPUs.
9478 		 *
9479 		 * XXX smp_call_function_single() return -ENXIO without a warn
9480 		 * so we could possibly deal with this.
9481 		 *
9482 		 * This is safe against new events arriving because
9483 		 * sys_perf_event_open() serializes against hotplug using
9484 		 * get_online_cpus().
9485 		 */
9486 		perf_event_exit_cpu(cpu);
9487 		break;
9488 	default:
9489 		break;
9490 	}
9491 
9492 	return NOTIFY_OK;
9493 }
9494 
9495 void __init perf_event_init(void)
9496 {
9497 	int ret;
9498 
9499 	idr_init(&pmu_idr);
9500 
9501 	perf_event_init_all_cpus();
9502 	init_srcu_struct(&pmus_srcu);
9503 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9504 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9505 	perf_pmu_register(&perf_task_clock, NULL, -1);
9506 	perf_tp_register();
9507 	perf_cpu_notifier(perf_cpu_notify);
9508 	register_reboot_notifier(&perf_reboot_notifier);
9509 
9510 	ret = init_hw_breakpoint();
9511 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9512 
9513 	/*
9514 	 * Build time assertion that we keep the data_head at the intended
9515 	 * location.  IOW, validation we got the __reserved[] size right.
9516 	 */
9517 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9518 		     != 1024);
9519 }
9520 
9521 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9522 			      char *page)
9523 {
9524 	struct perf_pmu_events_attr *pmu_attr =
9525 		container_of(attr, struct perf_pmu_events_attr, attr);
9526 
9527 	if (pmu_attr->event_str)
9528 		return sprintf(page, "%s\n", pmu_attr->event_str);
9529 
9530 	return 0;
9531 }
9532 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9533 
9534 static int __init perf_event_sysfs_init(void)
9535 {
9536 	struct pmu *pmu;
9537 	int ret;
9538 
9539 	mutex_lock(&pmus_lock);
9540 
9541 	ret = bus_register(&pmu_bus);
9542 	if (ret)
9543 		goto unlock;
9544 
9545 	list_for_each_entry(pmu, &pmus, entry) {
9546 		if (!pmu->name || pmu->type < 0)
9547 			continue;
9548 
9549 		ret = pmu_dev_alloc(pmu);
9550 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9551 	}
9552 	pmu_bus_running = 1;
9553 	ret = 0;
9554 
9555 unlock:
9556 	mutex_unlock(&pmus_lock);
9557 
9558 	return ret;
9559 }
9560 device_initcall(perf_event_sysfs_init);
9561 
9562 #ifdef CONFIG_CGROUP_PERF
9563 static struct cgroup_subsys_state *
9564 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9565 {
9566 	struct perf_cgroup *jc;
9567 
9568 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9569 	if (!jc)
9570 		return ERR_PTR(-ENOMEM);
9571 
9572 	jc->info = alloc_percpu(struct perf_cgroup_info);
9573 	if (!jc->info) {
9574 		kfree(jc);
9575 		return ERR_PTR(-ENOMEM);
9576 	}
9577 
9578 	return &jc->css;
9579 }
9580 
9581 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9582 {
9583 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9584 
9585 	free_percpu(jc->info);
9586 	kfree(jc);
9587 }
9588 
9589 static int __perf_cgroup_move(void *info)
9590 {
9591 	struct task_struct *task = info;
9592 	rcu_read_lock();
9593 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9594 	rcu_read_unlock();
9595 	return 0;
9596 }
9597 
9598 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9599 {
9600 	struct task_struct *task;
9601 	struct cgroup_subsys_state *css;
9602 
9603 	cgroup_taskset_for_each(task, css, tset)
9604 		task_function_call(task, __perf_cgroup_move, task);
9605 }
9606 
9607 struct cgroup_subsys perf_event_cgrp_subsys = {
9608 	.css_alloc	= perf_cgroup_css_alloc,
9609 	.css_free	= perf_cgroup_css_free,
9610 	.attach		= perf_cgroup_attach,
9611 };
9612 #endif /* CONFIG_CGROUP_PERF */
9613