1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add a event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove a event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable a event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable a event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on a event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 if (err) { 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 if (!attr->disabled) 2878 _perf_event_enable(bp); 2879 return 0; 2880 } 2881 2882 static int perf_event_modify_attr(struct perf_event *event, 2883 struct perf_event_attr *attr) 2884 { 2885 if (event->attr.type != attr->type) 2886 return -EINVAL; 2887 2888 switch (event->attr.type) { 2889 case PERF_TYPE_BREAKPOINT: 2890 return perf_event_modify_breakpoint(event, attr); 2891 default: 2892 /* Place holder for future additions. */ 2893 return -EOPNOTSUPP; 2894 } 2895 } 2896 2897 static void ctx_sched_out(struct perf_event_context *ctx, 2898 struct perf_cpu_context *cpuctx, 2899 enum event_type_t event_type) 2900 { 2901 struct perf_event *event, *tmp; 2902 int is_active = ctx->is_active; 2903 2904 lockdep_assert_held(&ctx->lock); 2905 2906 if (likely(!ctx->nr_events)) { 2907 /* 2908 * See __perf_remove_from_context(). 2909 */ 2910 WARN_ON_ONCE(ctx->is_active); 2911 if (ctx->task) 2912 WARN_ON_ONCE(cpuctx->task_ctx); 2913 return; 2914 } 2915 2916 ctx->is_active &= ~event_type; 2917 if (!(ctx->is_active & EVENT_ALL)) 2918 ctx->is_active = 0; 2919 2920 if (ctx->task) { 2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2922 if (!ctx->is_active) 2923 cpuctx->task_ctx = NULL; 2924 } 2925 2926 /* 2927 * Always update time if it was set; not only when it changes. 2928 * Otherwise we can 'forget' to update time for any but the last 2929 * context we sched out. For example: 2930 * 2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2932 * ctx_sched_out(.event_type = EVENT_PINNED) 2933 * 2934 * would only update time for the pinned events. 2935 */ 2936 if (is_active & EVENT_TIME) { 2937 /* update (and stop) ctx time */ 2938 update_context_time(ctx); 2939 update_cgrp_time_from_cpuctx(cpuctx); 2940 } 2941 2942 is_active ^= ctx->is_active; /* changed bits */ 2943 2944 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2945 return; 2946 2947 perf_pmu_disable(ctx->pmu); 2948 if (is_active & EVENT_PINNED) { 2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 2953 if (is_active & EVENT_FLEXIBLE) { 2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2955 group_sched_out(event, cpuctx, ctx); 2956 } 2957 perf_pmu_enable(ctx->pmu); 2958 } 2959 2960 /* 2961 * Test whether two contexts are equivalent, i.e. whether they have both been 2962 * cloned from the same version of the same context. 2963 * 2964 * Equivalence is measured using a generation number in the context that is 2965 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2966 * and list_del_event(). 2967 */ 2968 static int context_equiv(struct perf_event_context *ctx1, 2969 struct perf_event_context *ctx2) 2970 { 2971 lockdep_assert_held(&ctx1->lock); 2972 lockdep_assert_held(&ctx2->lock); 2973 2974 /* Pinning disables the swap optimization */ 2975 if (ctx1->pin_count || ctx2->pin_count) 2976 return 0; 2977 2978 /* If ctx1 is the parent of ctx2 */ 2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2980 return 1; 2981 2982 /* If ctx2 is the parent of ctx1 */ 2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2984 return 1; 2985 2986 /* 2987 * If ctx1 and ctx2 have the same parent; we flatten the parent 2988 * hierarchy, see perf_event_init_context(). 2989 */ 2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2991 ctx1->parent_gen == ctx2->parent_gen) 2992 return 1; 2993 2994 /* Unmatched */ 2995 return 0; 2996 } 2997 2998 static void __perf_event_sync_stat(struct perf_event *event, 2999 struct perf_event *next_event) 3000 { 3001 u64 value; 3002 3003 if (!event->attr.inherit_stat) 3004 return; 3005 3006 /* 3007 * Update the event value, we cannot use perf_event_read() 3008 * because we're in the middle of a context switch and have IRQs 3009 * disabled, which upsets smp_call_function_single(), however 3010 * we know the event must be on the current CPU, therefore we 3011 * don't need to use it. 3012 */ 3013 if (event->state == PERF_EVENT_STATE_ACTIVE) 3014 event->pmu->read(event); 3015 3016 perf_event_update_time(event); 3017 3018 /* 3019 * In order to keep per-task stats reliable we need to flip the event 3020 * values when we flip the contexts. 3021 */ 3022 value = local64_read(&next_event->count); 3023 value = local64_xchg(&event->count, value); 3024 local64_set(&next_event->count, value); 3025 3026 swap(event->total_time_enabled, next_event->total_time_enabled); 3027 swap(event->total_time_running, next_event->total_time_running); 3028 3029 /* 3030 * Since we swizzled the values, update the user visible data too. 3031 */ 3032 perf_event_update_userpage(event); 3033 perf_event_update_userpage(next_event); 3034 } 3035 3036 static void perf_event_sync_stat(struct perf_event_context *ctx, 3037 struct perf_event_context *next_ctx) 3038 { 3039 struct perf_event *event, *next_event; 3040 3041 if (!ctx->nr_stat) 3042 return; 3043 3044 update_context_time(ctx); 3045 3046 event = list_first_entry(&ctx->event_list, 3047 struct perf_event, event_entry); 3048 3049 next_event = list_first_entry(&next_ctx->event_list, 3050 struct perf_event, event_entry); 3051 3052 while (&event->event_entry != &ctx->event_list && 3053 &next_event->event_entry != &next_ctx->event_list) { 3054 3055 __perf_event_sync_stat(event, next_event); 3056 3057 event = list_next_entry(event, event_entry); 3058 next_event = list_next_entry(next_event, event_entry); 3059 } 3060 } 3061 3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3063 struct task_struct *next) 3064 { 3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3066 struct perf_event_context *next_ctx; 3067 struct perf_event_context *parent, *next_parent; 3068 struct perf_cpu_context *cpuctx; 3069 int do_switch = 1; 3070 3071 if (likely(!ctx)) 3072 return; 3073 3074 cpuctx = __get_cpu_context(ctx); 3075 if (!cpuctx->task_ctx) 3076 return; 3077 3078 rcu_read_lock(); 3079 next_ctx = next->perf_event_ctxp[ctxn]; 3080 if (!next_ctx) 3081 goto unlock; 3082 3083 parent = rcu_dereference(ctx->parent_ctx); 3084 next_parent = rcu_dereference(next_ctx->parent_ctx); 3085 3086 /* If neither context have a parent context; they cannot be clones. */ 3087 if (!parent && !next_parent) 3088 goto unlock; 3089 3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3091 /* 3092 * Looks like the two contexts are clones, so we might be 3093 * able to optimize the context switch. We lock both 3094 * contexts and check that they are clones under the 3095 * lock (including re-checking that neither has been 3096 * uncloned in the meantime). It doesn't matter which 3097 * order we take the locks because no other cpu could 3098 * be trying to lock both of these tasks. 3099 */ 3100 raw_spin_lock(&ctx->lock); 3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3102 if (context_equiv(ctx, next_ctx)) { 3103 WRITE_ONCE(ctx->task, next); 3104 WRITE_ONCE(next_ctx->task, task); 3105 3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3107 3108 /* 3109 * RCU_INIT_POINTER here is safe because we've not 3110 * modified the ctx and the above modification of 3111 * ctx->task and ctx->task_ctx_data are immaterial 3112 * since those values are always verified under 3113 * ctx->lock which we're now holding. 3114 */ 3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3117 3118 do_switch = 0; 3119 3120 perf_event_sync_stat(ctx, next_ctx); 3121 } 3122 raw_spin_unlock(&next_ctx->lock); 3123 raw_spin_unlock(&ctx->lock); 3124 } 3125 unlock: 3126 rcu_read_unlock(); 3127 3128 if (do_switch) { 3129 raw_spin_lock(&ctx->lock); 3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3131 raw_spin_unlock(&ctx->lock); 3132 } 3133 } 3134 3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3136 3137 void perf_sched_cb_dec(struct pmu *pmu) 3138 { 3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3140 3141 this_cpu_dec(perf_sched_cb_usages); 3142 3143 if (!--cpuctx->sched_cb_usage) 3144 list_del(&cpuctx->sched_cb_entry); 3145 } 3146 3147 3148 void perf_sched_cb_inc(struct pmu *pmu) 3149 { 3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3151 3152 if (!cpuctx->sched_cb_usage++) 3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3154 3155 this_cpu_inc(perf_sched_cb_usages); 3156 } 3157 3158 /* 3159 * This function provides the context switch callback to the lower code 3160 * layer. It is invoked ONLY when the context switch callback is enabled. 3161 * 3162 * This callback is relevant even to per-cpu events; for example multi event 3163 * PEBS requires this to provide PID/TID information. This requires we flush 3164 * all queued PEBS records before we context switch to a new task. 3165 */ 3166 static void perf_pmu_sched_task(struct task_struct *prev, 3167 struct task_struct *next, 3168 bool sched_in) 3169 { 3170 struct perf_cpu_context *cpuctx; 3171 struct pmu *pmu; 3172 3173 if (prev == next) 3174 return; 3175 3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3178 3179 if (WARN_ON_ONCE(!pmu->sched_task)) 3180 continue; 3181 3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3183 perf_pmu_disable(pmu); 3184 3185 pmu->sched_task(cpuctx->task_ctx, sched_in); 3186 3187 perf_pmu_enable(pmu); 3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3189 } 3190 } 3191 3192 static void perf_event_switch(struct task_struct *task, 3193 struct task_struct *next_prev, bool sched_in); 3194 3195 #define for_each_task_context_nr(ctxn) \ 3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3197 3198 /* 3199 * Called from scheduler to remove the events of the current task, 3200 * with interrupts disabled. 3201 * 3202 * We stop each event and update the event value in event->count. 3203 * 3204 * This does not protect us against NMI, but disable() 3205 * sets the disabled bit in the control field of event _before_ 3206 * accessing the event control register. If a NMI hits, then it will 3207 * not restart the event. 3208 */ 3209 void __perf_event_task_sched_out(struct task_struct *task, 3210 struct task_struct *next) 3211 { 3212 int ctxn; 3213 3214 if (__this_cpu_read(perf_sched_cb_usages)) 3215 perf_pmu_sched_task(task, next, false); 3216 3217 if (atomic_read(&nr_switch_events)) 3218 perf_event_switch(task, next, false); 3219 3220 for_each_task_context_nr(ctxn) 3221 perf_event_context_sched_out(task, ctxn, next); 3222 3223 /* 3224 * if cgroup events exist on this CPU, then we need 3225 * to check if we have to switch out PMU state. 3226 * cgroup event are system-wide mode only 3227 */ 3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3229 perf_cgroup_sched_out(task, next); 3230 } 3231 3232 /* 3233 * Called with IRQs disabled 3234 */ 3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3236 enum event_type_t event_type) 3237 { 3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3239 } 3240 3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3242 int (*func)(struct perf_event *, void *), void *data) 3243 { 3244 struct perf_event **evt, *evt1, *evt2; 3245 int ret; 3246 3247 evt1 = perf_event_groups_first(groups, -1); 3248 evt2 = perf_event_groups_first(groups, cpu); 3249 3250 while (evt1 || evt2) { 3251 if (evt1 && evt2) { 3252 if (evt1->group_index < evt2->group_index) 3253 evt = &evt1; 3254 else 3255 evt = &evt2; 3256 } else if (evt1) { 3257 evt = &evt1; 3258 } else { 3259 evt = &evt2; 3260 } 3261 3262 ret = func(*evt, data); 3263 if (ret) 3264 return ret; 3265 3266 *evt = perf_event_groups_next(*evt); 3267 } 3268 3269 return 0; 3270 } 3271 3272 struct sched_in_data { 3273 struct perf_event_context *ctx; 3274 struct perf_cpu_context *cpuctx; 3275 int can_add_hw; 3276 }; 3277 3278 static int pinned_sched_in(struct perf_event *event, void *data) 3279 { 3280 struct sched_in_data *sid = data; 3281 3282 if (event->state <= PERF_EVENT_STATE_OFF) 3283 return 0; 3284 3285 if (!event_filter_match(event)) 3286 return 0; 3287 3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3291 } 3292 3293 /* 3294 * If this pinned group hasn't been scheduled, 3295 * put it in error state. 3296 */ 3297 if (event->state == PERF_EVENT_STATE_INACTIVE) 3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3299 3300 return 0; 3301 } 3302 3303 static int flexible_sched_in(struct perf_event *event, void *data) 3304 { 3305 struct sched_in_data *sid = data; 3306 3307 if (event->state <= PERF_EVENT_STATE_OFF) 3308 return 0; 3309 3310 if (!event_filter_match(event)) 3311 return 0; 3312 3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3316 else 3317 sid->can_add_hw = 0; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static void 3324 ctx_pinned_sched_in(struct perf_event_context *ctx, 3325 struct perf_cpu_context *cpuctx) 3326 { 3327 struct sched_in_data sid = { 3328 .ctx = ctx, 3329 .cpuctx = cpuctx, 3330 .can_add_hw = 1, 3331 }; 3332 3333 visit_groups_merge(&ctx->pinned_groups, 3334 smp_processor_id(), 3335 pinned_sched_in, &sid); 3336 } 3337 3338 static void 3339 ctx_flexible_sched_in(struct perf_event_context *ctx, 3340 struct perf_cpu_context *cpuctx) 3341 { 3342 struct sched_in_data sid = { 3343 .ctx = ctx, 3344 .cpuctx = cpuctx, 3345 .can_add_hw = 1, 3346 }; 3347 3348 visit_groups_merge(&ctx->flexible_groups, 3349 smp_processor_id(), 3350 flexible_sched_in, &sid); 3351 } 3352 3353 static void 3354 ctx_sched_in(struct perf_event_context *ctx, 3355 struct perf_cpu_context *cpuctx, 3356 enum event_type_t event_type, 3357 struct task_struct *task) 3358 { 3359 int is_active = ctx->is_active; 3360 u64 now; 3361 3362 lockdep_assert_held(&ctx->lock); 3363 3364 if (likely(!ctx->nr_events)) 3365 return; 3366 3367 ctx->is_active |= (event_type | EVENT_TIME); 3368 if (ctx->task) { 3369 if (!is_active) 3370 cpuctx->task_ctx = ctx; 3371 else 3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3373 } 3374 3375 is_active ^= ctx->is_active; /* changed bits */ 3376 3377 if (is_active & EVENT_TIME) { 3378 /* start ctx time */ 3379 now = perf_clock(); 3380 ctx->timestamp = now; 3381 perf_cgroup_set_timestamp(task, ctx); 3382 } 3383 3384 /* 3385 * First go through the list and put on any pinned groups 3386 * in order to give them the best chance of going on. 3387 */ 3388 if (is_active & EVENT_PINNED) 3389 ctx_pinned_sched_in(ctx, cpuctx); 3390 3391 /* Then walk through the lower prio flexible groups */ 3392 if (is_active & EVENT_FLEXIBLE) 3393 ctx_flexible_sched_in(ctx, cpuctx); 3394 } 3395 3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3397 enum event_type_t event_type, 3398 struct task_struct *task) 3399 { 3400 struct perf_event_context *ctx = &cpuctx->ctx; 3401 3402 ctx_sched_in(ctx, cpuctx, event_type, task); 3403 } 3404 3405 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3406 struct task_struct *task) 3407 { 3408 struct perf_cpu_context *cpuctx; 3409 3410 cpuctx = __get_cpu_context(ctx); 3411 if (cpuctx->task_ctx == ctx) 3412 return; 3413 3414 perf_ctx_lock(cpuctx, ctx); 3415 /* 3416 * We must check ctx->nr_events while holding ctx->lock, such 3417 * that we serialize against perf_install_in_context(). 3418 */ 3419 if (!ctx->nr_events) 3420 goto unlock; 3421 3422 perf_pmu_disable(ctx->pmu); 3423 /* 3424 * We want to keep the following priority order: 3425 * cpu pinned (that don't need to move), task pinned, 3426 * cpu flexible, task flexible. 3427 * 3428 * However, if task's ctx is not carrying any pinned 3429 * events, no need to flip the cpuctx's events around. 3430 */ 3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3433 perf_event_sched_in(cpuctx, ctx, task); 3434 perf_pmu_enable(ctx->pmu); 3435 3436 unlock: 3437 perf_ctx_unlock(cpuctx, ctx); 3438 } 3439 3440 /* 3441 * Called from scheduler to add the events of the current task 3442 * with interrupts disabled. 3443 * 3444 * We restore the event value and then enable it. 3445 * 3446 * This does not protect us against NMI, but enable() 3447 * sets the enabled bit in the control field of event _before_ 3448 * accessing the event control register. If a NMI hits, then it will 3449 * keep the event running. 3450 */ 3451 void __perf_event_task_sched_in(struct task_struct *prev, 3452 struct task_struct *task) 3453 { 3454 struct perf_event_context *ctx; 3455 int ctxn; 3456 3457 /* 3458 * If cgroup events exist on this CPU, then we need to check if we have 3459 * to switch in PMU state; cgroup event are system-wide mode only. 3460 * 3461 * Since cgroup events are CPU events, we must schedule these in before 3462 * we schedule in the task events. 3463 */ 3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3465 perf_cgroup_sched_in(prev, task); 3466 3467 for_each_task_context_nr(ctxn) { 3468 ctx = task->perf_event_ctxp[ctxn]; 3469 if (likely(!ctx)) 3470 continue; 3471 3472 perf_event_context_sched_in(ctx, task); 3473 } 3474 3475 if (atomic_read(&nr_switch_events)) 3476 perf_event_switch(task, prev, true); 3477 3478 if (__this_cpu_read(perf_sched_cb_usages)) 3479 perf_pmu_sched_task(prev, task, true); 3480 } 3481 3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3483 { 3484 u64 frequency = event->attr.sample_freq; 3485 u64 sec = NSEC_PER_SEC; 3486 u64 divisor, dividend; 3487 3488 int count_fls, nsec_fls, frequency_fls, sec_fls; 3489 3490 count_fls = fls64(count); 3491 nsec_fls = fls64(nsec); 3492 frequency_fls = fls64(frequency); 3493 sec_fls = 30; 3494 3495 /* 3496 * We got @count in @nsec, with a target of sample_freq HZ 3497 * the target period becomes: 3498 * 3499 * @count * 10^9 3500 * period = ------------------- 3501 * @nsec * sample_freq 3502 * 3503 */ 3504 3505 /* 3506 * Reduce accuracy by one bit such that @a and @b converge 3507 * to a similar magnitude. 3508 */ 3509 #define REDUCE_FLS(a, b) \ 3510 do { \ 3511 if (a##_fls > b##_fls) { \ 3512 a >>= 1; \ 3513 a##_fls--; \ 3514 } else { \ 3515 b >>= 1; \ 3516 b##_fls--; \ 3517 } \ 3518 } while (0) 3519 3520 /* 3521 * Reduce accuracy until either term fits in a u64, then proceed with 3522 * the other, so that finally we can do a u64/u64 division. 3523 */ 3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3525 REDUCE_FLS(nsec, frequency); 3526 REDUCE_FLS(sec, count); 3527 } 3528 3529 if (count_fls + sec_fls > 64) { 3530 divisor = nsec * frequency; 3531 3532 while (count_fls + sec_fls > 64) { 3533 REDUCE_FLS(count, sec); 3534 divisor >>= 1; 3535 } 3536 3537 dividend = count * sec; 3538 } else { 3539 dividend = count * sec; 3540 3541 while (nsec_fls + frequency_fls > 64) { 3542 REDUCE_FLS(nsec, frequency); 3543 dividend >>= 1; 3544 } 3545 3546 divisor = nsec * frequency; 3547 } 3548 3549 if (!divisor) 3550 return dividend; 3551 3552 return div64_u64(dividend, divisor); 3553 } 3554 3555 static DEFINE_PER_CPU(int, perf_throttled_count); 3556 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3557 3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3559 { 3560 struct hw_perf_event *hwc = &event->hw; 3561 s64 period, sample_period; 3562 s64 delta; 3563 3564 period = perf_calculate_period(event, nsec, count); 3565 3566 delta = (s64)(period - hwc->sample_period); 3567 delta = (delta + 7) / 8; /* low pass filter */ 3568 3569 sample_period = hwc->sample_period + delta; 3570 3571 if (!sample_period) 3572 sample_period = 1; 3573 3574 hwc->sample_period = sample_period; 3575 3576 if (local64_read(&hwc->period_left) > 8*sample_period) { 3577 if (disable) 3578 event->pmu->stop(event, PERF_EF_UPDATE); 3579 3580 local64_set(&hwc->period_left, 0); 3581 3582 if (disable) 3583 event->pmu->start(event, PERF_EF_RELOAD); 3584 } 3585 } 3586 3587 /* 3588 * combine freq adjustment with unthrottling to avoid two passes over the 3589 * events. At the same time, make sure, having freq events does not change 3590 * the rate of unthrottling as that would introduce bias. 3591 */ 3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3593 int needs_unthr) 3594 { 3595 struct perf_event *event; 3596 struct hw_perf_event *hwc; 3597 u64 now, period = TICK_NSEC; 3598 s64 delta; 3599 3600 /* 3601 * only need to iterate over all events iff: 3602 * - context have events in frequency mode (needs freq adjust) 3603 * - there are events to unthrottle on this cpu 3604 */ 3605 if (!(ctx->nr_freq || needs_unthr)) 3606 return; 3607 3608 raw_spin_lock(&ctx->lock); 3609 perf_pmu_disable(ctx->pmu); 3610 3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3612 if (event->state != PERF_EVENT_STATE_ACTIVE) 3613 continue; 3614 3615 if (!event_filter_match(event)) 3616 continue; 3617 3618 perf_pmu_disable(event->pmu); 3619 3620 hwc = &event->hw; 3621 3622 if (hwc->interrupts == MAX_INTERRUPTS) { 3623 hwc->interrupts = 0; 3624 perf_log_throttle(event, 1); 3625 event->pmu->start(event, 0); 3626 } 3627 3628 if (!event->attr.freq || !event->attr.sample_freq) 3629 goto next; 3630 3631 /* 3632 * stop the event and update event->count 3633 */ 3634 event->pmu->stop(event, PERF_EF_UPDATE); 3635 3636 now = local64_read(&event->count); 3637 delta = now - hwc->freq_count_stamp; 3638 hwc->freq_count_stamp = now; 3639 3640 /* 3641 * restart the event 3642 * reload only if value has changed 3643 * we have stopped the event so tell that 3644 * to perf_adjust_period() to avoid stopping it 3645 * twice. 3646 */ 3647 if (delta > 0) 3648 perf_adjust_period(event, period, delta, false); 3649 3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3651 next: 3652 perf_pmu_enable(event->pmu); 3653 } 3654 3655 perf_pmu_enable(ctx->pmu); 3656 raw_spin_unlock(&ctx->lock); 3657 } 3658 3659 /* 3660 * Move @event to the tail of the @ctx's elegible events. 3661 */ 3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3663 { 3664 /* 3665 * Rotate the first entry last of non-pinned groups. Rotation might be 3666 * disabled by the inheritance code. 3667 */ 3668 if (ctx->rotate_disable) 3669 return; 3670 3671 perf_event_groups_delete(&ctx->flexible_groups, event); 3672 perf_event_groups_insert(&ctx->flexible_groups, event); 3673 } 3674 3675 static inline struct perf_event * 3676 ctx_first_active(struct perf_event_context *ctx) 3677 { 3678 return list_first_entry_or_null(&ctx->flexible_active, 3679 struct perf_event, active_list); 3680 } 3681 3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3683 { 3684 struct perf_event *cpu_event = NULL, *task_event = NULL; 3685 bool cpu_rotate = false, task_rotate = false; 3686 struct perf_event_context *ctx = NULL; 3687 3688 /* 3689 * Since we run this from IRQ context, nobody can install new 3690 * events, thus the event count values are stable. 3691 */ 3692 3693 if (cpuctx->ctx.nr_events) { 3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3695 cpu_rotate = true; 3696 } 3697 3698 ctx = cpuctx->task_ctx; 3699 if (ctx && ctx->nr_events) { 3700 if (ctx->nr_events != ctx->nr_active) 3701 task_rotate = true; 3702 } 3703 3704 if (!(cpu_rotate || task_rotate)) 3705 return false; 3706 3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3708 perf_pmu_disable(cpuctx->ctx.pmu); 3709 3710 if (task_rotate) 3711 task_event = ctx_first_active(ctx); 3712 if (cpu_rotate) 3713 cpu_event = ctx_first_active(&cpuctx->ctx); 3714 3715 /* 3716 * As per the order given at ctx_resched() first 'pop' task flexible 3717 * and then, if needed CPU flexible. 3718 */ 3719 if (task_event || (ctx && cpu_event)) 3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3721 if (cpu_event) 3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3723 3724 if (task_event) 3725 rotate_ctx(ctx, task_event); 3726 if (cpu_event) 3727 rotate_ctx(&cpuctx->ctx, cpu_event); 3728 3729 perf_event_sched_in(cpuctx, ctx, current); 3730 3731 perf_pmu_enable(cpuctx->ctx.pmu); 3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3733 3734 return true; 3735 } 3736 3737 void perf_event_task_tick(void) 3738 { 3739 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3740 struct perf_event_context *ctx, *tmp; 3741 int throttled; 3742 3743 lockdep_assert_irqs_disabled(); 3744 3745 __this_cpu_inc(perf_throttled_seq); 3746 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3748 3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3750 perf_adjust_freq_unthr_context(ctx, throttled); 3751 } 3752 3753 static int event_enable_on_exec(struct perf_event *event, 3754 struct perf_event_context *ctx) 3755 { 3756 if (!event->attr.enable_on_exec) 3757 return 0; 3758 3759 event->attr.enable_on_exec = 0; 3760 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3761 return 0; 3762 3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3764 3765 return 1; 3766 } 3767 3768 /* 3769 * Enable all of a task's events that have been marked enable-on-exec. 3770 * This expects task == current. 3771 */ 3772 static void perf_event_enable_on_exec(int ctxn) 3773 { 3774 struct perf_event_context *ctx, *clone_ctx = NULL; 3775 enum event_type_t event_type = 0; 3776 struct perf_cpu_context *cpuctx; 3777 struct perf_event *event; 3778 unsigned long flags; 3779 int enabled = 0; 3780 3781 local_irq_save(flags); 3782 ctx = current->perf_event_ctxp[ctxn]; 3783 if (!ctx || !ctx->nr_events) 3784 goto out; 3785 3786 cpuctx = __get_cpu_context(ctx); 3787 perf_ctx_lock(cpuctx, ctx); 3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3789 list_for_each_entry(event, &ctx->event_list, event_entry) { 3790 enabled |= event_enable_on_exec(event, ctx); 3791 event_type |= get_event_type(event); 3792 } 3793 3794 /* 3795 * Unclone and reschedule this context if we enabled any event. 3796 */ 3797 if (enabled) { 3798 clone_ctx = unclone_ctx(ctx); 3799 ctx_resched(cpuctx, ctx, event_type); 3800 } else { 3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3802 } 3803 perf_ctx_unlock(cpuctx, ctx); 3804 3805 out: 3806 local_irq_restore(flags); 3807 3808 if (clone_ctx) 3809 put_ctx(clone_ctx); 3810 } 3811 3812 struct perf_read_data { 3813 struct perf_event *event; 3814 bool group; 3815 int ret; 3816 }; 3817 3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3819 { 3820 u16 local_pkg, event_pkg; 3821 3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3823 int local_cpu = smp_processor_id(); 3824 3825 event_pkg = topology_physical_package_id(event_cpu); 3826 local_pkg = topology_physical_package_id(local_cpu); 3827 3828 if (event_pkg == local_pkg) 3829 return local_cpu; 3830 } 3831 3832 return event_cpu; 3833 } 3834 3835 /* 3836 * Cross CPU call to read the hardware event 3837 */ 3838 static void __perf_event_read(void *info) 3839 { 3840 struct perf_read_data *data = info; 3841 struct perf_event *sub, *event = data->event; 3842 struct perf_event_context *ctx = event->ctx; 3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3844 struct pmu *pmu = event->pmu; 3845 3846 /* 3847 * If this is a task context, we need to check whether it is 3848 * the current task context of this cpu. If not it has been 3849 * scheduled out before the smp call arrived. In that case 3850 * event->count would have been updated to a recent sample 3851 * when the event was scheduled out. 3852 */ 3853 if (ctx->task && cpuctx->task_ctx != ctx) 3854 return; 3855 3856 raw_spin_lock(&ctx->lock); 3857 if (ctx->is_active & EVENT_TIME) { 3858 update_context_time(ctx); 3859 update_cgrp_time_from_event(event); 3860 } 3861 3862 perf_event_update_time(event); 3863 if (data->group) 3864 perf_event_update_sibling_time(event); 3865 3866 if (event->state != PERF_EVENT_STATE_ACTIVE) 3867 goto unlock; 3868 3869 if (!data->group) { 3870 pmu->read(event); 3871 data->ret = 0; 3872 goto unlock; 3873 } 3874 3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3876 3877 pmu->read(event); 3878 3879 for_each_sibling_event(sub, event) { 3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3881 /* 3882 * Use sibling's PMU rather than @event's since 3883 * sibling could be on different (eg: software) PMU. 3884 */ 3885 sub->pmu->read(sub); 3886 } 3887 } 3888 3889 data->ret = pmu->commit_txn(pmu); 3890 3891 unlock: 3892 raw_spin_unlock(&ctx->lock); 3893 } 3894 3895 static inline u64 perf_event_count(struct perf_event *event) 3896 { 3897 return local64_read(&event->count) + atomic64_read(&event->child_count); 3898 } 3899 3900 /* 3901 * NMI-safe method to read a local event, that is an event that 3902 * is: 3903 * - either for the current task, or for this CPU 3904 * - does not have inherit set, for inherited task events 3905 * will not be local and we cannot read them atomically 3906 * - must not have a pmu::count method 3907 */ 3908 int perf_event_read_local(struct perf_event *event, u64 *value, 3909 u64 *enabled, u64 *running) 3910 { 3911 unsigned long flags; 3912 int ret = 0; 3913 3914 /* 3915 * Disabling interrupts avoids all counter scheduling (context 3916 * switches, timer based rotation and IPIs). 3917 */ 3918 local_irq_save(flags); 3919 3920 /* 3921 * It must not be an event with inherit set, we cannot read 3922 * all child counters from atomic context. 3923 */ 3924 if (event->attr.inherit) { 3925 ret = -EOPNOTSUPP; 3926 goto out; 3927 } 3928 3929 /* If this is a per-task event, it must be for current */ 3930 if ((event->attach_state & PERF_ATTACH_TASK) && 3931 event->hw.target != current) { 3932 ret = -EINVAL; 3933 goto out; 3934 } 3935 3936 /* If this is a per-CPU event, it must be for this CPU */ 3937 if (!(event->attach_state & PERF_ATTACH_TASK) && 3938 event->cpu != smp_processor_id()) { 3939 ret = -EINVAL; 3940 goto out; 3941 } 3942 3943 /* 3944 * If the event is currently on this CPU, its either a per-task event, 3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3946 * oncpu == -1). 3947 */ 3948 if (event->oncpu == smp_processor_id()) 3949 event->pmu->read(event); 3950 3951 *value = local64_read(&event->count); 3952 if (enabled || running) { 3953 u64 now = event->shadow_ctx_time + perf_clock(); 3954 u64 __enabled, __running; 3955 3956 __perf_update_times(event, now, &__enabled, &__running); 3957 if (enabled) 3958 *enabled = __enabled; 3959 if (running) 3960 *running = __running; 3961 } 3962 out: 3963 local_irq_restore(flags); 3964 3965 return ret; 3966 } 3967 3968 static int perf_event_read(struct perf_event *event, bool group) 3969 { 3970 enum perf_event_state state = READ_ONCE(event->state); 3971 int event_cpu, ret = 0; 3972 3973 /* 3974 * If event is enabled and currently active on a CPU, update the 3975 * value in the event structure: 3976 */ 3977 again: 3978 if (state == PERF_EVENT_STATE_ACTIVE) { 3979 struct perf_read_data data; 3980 3981 /* 3982 * Orders the ->state and ->oncpu loads such that if we see 3983 * ACTIVE we must also see the right ->oncpu. 3984 * 3985 * Matches the smp_wmb() from event_sched_in(). 3986 */ 3987 smp_rmb(); 3988 3989 event_cpu = READ_ONCE(event->oncpu); 3990 if ((unsigned)event_cpu >= nr_cpu_ids) 3991 return 0; 3992 3993 data = (struct perf_read_data){ 3994 .event = event, 3995 .group = group, 3996 .ret = 0, 3997 }; 3998 3999 preempt_disable(); 4000 event_cpu = __perf_event_read_cpu(event, event_cpu); 4001 4002 /* 4003 * Purposely ignore the smp_call_function_single() return 4004 * value. 4005 * 4006 * If event_cpu isn't a valid CPU it means the event got 4007 * scheduled out and that will have updated the event count. 4008 * 4009 * Therefore, either way, we'll have an up-to-date event count 4010 * after this. 4011 */ 4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4013 preempt_enable(); 4014 ret = data.ret; 4015 4016 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4017 struct perf_event_context *ctx = event->ctx; 4018 unsigned long flags; 4019 4020 raw_spin_lock_irqsave(&ctx->lock, flags); 4021 state = event->state; 4022 if (state != PERF_EVENT_STATE_INACTIVE) { 4023 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4024 goto again; 4025 } 4026 4027 /* 4028 * May read while context is not active (e.g., thread is 4029 * blocked), in that case we cannot update context time 4030 */ 4031 if (ctx->is_active & EVENT_TIME) { 4032 update_context_time(ctx); 4033 update_cgrp_time_from_event(event); 4034 } 4035 4036 perf_event_update_time(event); 4037 if (group) 4038 perf_event_update_sibling_time(event); 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4040 } 4041 4042 return ret; 4043 } 4044 4045 /* 4046 * Initialize the perf_event context in a task_struct: 4047 */ 4048 static void __perf_event_init_context(struct perf_event_context *ctx) 4049 { 4050 raw_spin_lock_init(&ctx->lock); 4051 mutex_init(&ctx->mutex); 4052 INIT_LIST_HEAD(&ctx->active_ctx_list); 4053 perf_event_groups_init(&ctx->pinned_groups); 4054 perf_event_groups_init(&ctx->flexible_groups); 4055 INIT_LIST_HEAD(&ctx->event_list); 4056 INIT_LIST_HEAD(&ctx->pinned_active); 4057 INIT_LIST_HEAD(&ctx->flexible_active); 4058 atomic_set(&ctx->refcount, 1); 4059 } 4060 4061 static struct perf_event_context * 4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4063 { 4064 struct perf_event_context *ctx; 4065 4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4067 if (!ctx) 4068 return NULL; 4069 4070 __perf_event_init_context(ctx); 4071 if (task) { 4072 ctx->task = task; 4073 get_task_struct(task); 4074 } 4075 ctx->pmu = pmu; 4076 4077 return ctx; 4078 } 4079 4080 static struct task_struct * 4081 find_lively_task_by_vpid(pid_t vpid) 4082 { 4083 struct task_struct *task; 4084 4085 rcu_read_lock(); 4086 if (!vpid) 4087 task = current; 4088 else 4089 task = find_task_by_vpid(vpid); 4090 if (task) 4091 get_task_struct(task); 4092 rcu_read_unlock(); 4093 4094 if (!task) 4095 return ERR_PTR(-ESRCH); 4096 4097 return task; 4098 } 4099 4100 /* 4101 * Returns a matching context with refcount and pincount. 4102 */ 4103 static struct perf_event_context * 4104 find_get_context(struct pmu *pmu, struct task_struct *task, 4105 struct perf_event *event) 4106 { 4107 struct perf_event_context *ctx, *clone_ctx = NULL; 4108 struct perf_cpu_context *cpuctx; 4109 void *task_ctx_data = NULL; 4110 unsigned long flags; 4111 int ctxn, err; 4112 int cpu = event->cpu; 4113 4114 if (!task) { 4115 /* Must be root to operate on a CPU event: */ 4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4117 return ERR_PTR(-EACCES); 4118 4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4120 ctx = &cpuctx->ctx; 4121 get_ctx(ctx); 4122 ++ctx->pin_count; 4123 4124 return ctx; 4125 } 4126 4127 err = -EINVAL; 4128 ctxn = pmu->task_ctx_nr; 4129 if (ctxn < 0) 4130 goto errout; 4131 4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4134 if (!task_ctx_data) { 4135 err = -ENOMEM; 4136 goto errout; 4137 } 4138 } 4139 4140 retry: 4141 ctx = perf_lock_task_context(task, ctxn, &flags); 4142 if (ctx) { 4143 clone_ctx = unclone_ctx(ctx); 4144 ++ctx->pin_count; 4145 4146 if (task_ctx_data && !ctx->task_ctx_data) { 4147 ctx->task_ctx_data = task_ctx_data; 4148 task_ctx_data = NULL; 4149 } 4150 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4151 4152 if (clone_ctx) 4153 put_ctx(clone_ctx); 4154 } else { 4155 ctx = alloc_perf_context(pmu, task); 4156 err = -ENOMEM; 4157 if (!ctx) 4158 goto errout; 4159 4160 if (task_ctx_data) { 4161 ctx->task_ctx_data = task_ctx_data; 4162 task_ctx_data = NULL; 4163 } 4164 4165 err = 0; 4166 mutex_lock(&task->perf_event_mutex); 4167 /* 4168 * If it has already passed perf_event_exit_task(). 4169 * we must see PF_EXITING, it takes this mutex too. 4170 */ 4171 if (task->flags & PF_EXITING) 4172 err = -ESRCH; 4173 else if (task->perf_event_ctxp[ctxn]) 4174 err = -EAGAIN; 4175 else { 4176 get_ctx(ctx); 4177 ++ctx->pin_count; 4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4179 } 4180 mutex_unlock(&task->perf_event_mutex); 4181 4182 if (unlikely(err)) { 4183 put_ctx(ctx); 4184 4185 if (err == -EAGAIN) 4186 goto retry; 4187 goto errout; 4188 } 4189 } 4190 4191 kfree(task_ctx_data); 4192 return ctx; 4193 4194 errout: 4195 kfree(task_ctx_data); 4196 return ERR_PTR(err); 4197 } 4198 4199 static void perf_event_free_filter(struct perf_event *event); 4200 static void perf_event_free_bpf_prog(struct perf_event *event); 4201 4202 static void free_event_rcu(struct rcu_head *head) 4203 { 4204 struct perf_event *event; 4205 4206 event = container_of(head, struct perf_event, rcu_head); 4207 if (event->ns) 4208 put_pid_ns(event->ns); 4209 perf_event_free_filter(event); 4210 kfree(event); 4211 } 4212 4213 static void ring_buffer_attach(struct perf_event *event, 4214 struct ring_buffer *rb); 4215 4216 static void detach_sb_event(struct perf_event *event) 4217 { 4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4219 4220 raw_spin_lock(&pel->lock); 4221 list_del_rcu(&event->sb_list); 4222 raw_spin_unlock(&pel->lock); 4223 } 4224 4225 static bool is_sb_event(struct perf_event *event) 4226 { 4227 struct perf_event_attr *attr = &event->attr; 4228 4229 if (event->parent) 4230 return false; 4231 4232 if (event->attach_state & PERF_ATTACH_TASK) 4233 return false; 4234 4235 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4236 attr->comm || attr->comm_exec || 4237 attr->task || 4238 attr->context_switch) 4239 return true; 4240 return false; 4241 } 4242 4243 static void unaccount_pmu_sb_event(struct perf_event *event) 4244 { 4245 if (is_sb_event(event)) 4246 detach_sb_event(event); 4247 } 4248 4249 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4250 { 4251 if (event->parent) 4252 return; 4253 4254 if (is_cgroup_event(event)) 4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4256 } 4257 4258 #ifdef CONFIG_NO_HZ_FULL 4259 static DEFINE_SPINLOCK(nr_freq_lock); 4260 #endif 4261 4262 static void unaccount_freq_event_nohz(void) 4263 { 4264 #ifdef CONFIG_NO_HZ_FULL 4265 spin_lock(&nr_freq_lock); 4266 if (atomic_dec_and_test(&nr_freq_events)) 4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4268 spin_unlock(&nr_freq_lock); 4269 #endif 4270 } 4271 4272 static void unaccount_freq_event(void) 4273 { 4274 if (tick_nohz_full_enabled()) 4275 unaccount_freq_event_nohz(); 4276 else 4277 atomic_dec(&nr_freq_events); 4278 } 4279 4280 static void unaccount_event(struct perf_event *event) 4281 { 4282 bool dec = false; 4283 4284 if (event->parent) 4285 return; 4286 4287 if (event->attach_state & PERF_ATTACH_TASK) 4288 dec = true; 4289 if (event->attr.mmap || event->attr.mmap_data) 4290 atomic_dec(&nr_mmap_events); 4291 if (event->attr.comm) 4292 atomic_dec(&nr_comm_events); 4293 if (event->attr.namespaces) 4294 atomic_dec(&nr_namespaces_events); 4295 if (event->attr.task) 4296 atomic_dec(&nr_task_events); 4297 if (event->attr.freq) 4298 unaccount_freq_event(); 4299 if (event->attr.context_switch) { 4300 dec = true; 4301 atomic_dec(&nr_switch_events); 4302 } 4303 if (is_cgroup_event(event)) 4304 dec = true; 4305 if (has_branch_stack(event)) 4306 dec = true; 4307 4308 if (dec) { 4309 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4310 schedule_delayed_work(&perf_sched_work, HZ); 4311 } 4312 4313 unaccount_event_cpu(event, event->cpu); 4314 4315 unaccount_pmu_sb_event(event); 4316 } 4317 4318 static void perf_sched_delayed(struct work_struct *work) 4319 { 4320 mutex_lock(&perf_sched_mutex); 4321 if (atomic_dec_and_test(&perf_sched_count)) 4322 static_branch_disable(&perf_sched_events); 4323 mutex_unlock(&perf_sched_mutex); 4324 } 4325 4326 /* 4327 * The following implement mutual exclusion of events on "exclusive" pmus 4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4329 * at a time, so we disallow creating events that might conflict, namely: 4330 * 4331 * 1) cpu-wide events in the presence of per-task events, 4332 * 2) per-task events in the presence of cpu-wide events, 4333 * 3) two matching events on the same context. 4334 * 4335 * The former two cases are handled in the allocation path (perf_event_alloc(), 4336 * _free_event()), the latter -- before the first perf_install_in_context(). 4337 */ 4338 static int exclusive_event_init(struct perf_event *event) 4339 { 4340 struct pmu *pmu = event->pmu; 4341 4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4343 return 0; 4344 4345 /* 4346 * Prevent co-existence of per-task and cpu-wide events on the 4347 * same exclusive pmu. 4348 * 4349 * Negative pmu::exclusive_cnt means there are cpu-wide 4350 * events on this "exclusive" pmu, positive means there are 4351 * per-task events. 4352 * 4353 * Since this is called in perf_event_alloc() path, event::ctx 4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4355 * to mean "per-task event", because unlike other attach states it 4356 * never gets cleared. 4357 */ 4358 if (event->attach_state & PERF_ATTACH_TASK) { 4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4360 return -EBUSY; 4361 } else { 4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4363 return -EBUSY; 4364 } 4365 4366 return 0; 4367 } 4368 4369 static void exclusive_event_destroy(struct perf_event *event) 4370 { 4371 struct pmu *pmu = event->pmu; 4372 4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4374 return; 4375 4376 /* see comment in exclusive_event_init() */ 4377 if (event->attach_state & PERF_ATTACH_TASK) 4378 atomic_dec(&pmu->exclusive_cnt); 4379 else 4380 atomic_inc(&pmu->exclusive_cnt); 4381 } 4382 4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4384 { 4385 if ((e1->pmu == e2->pmu) && 4386 (e1->cpu == e2->cpu || 4387 e1->cpu == -1 || 4388 e2->cpu == -1)) 4389 return true; 4390 return false; 4391 } 4392 4393 /* Called under the same ctx::mutex as perf_install_in_context() */ 4394 static bool exclusive_event_installable(struct perf_event *event, 4395 struct perf_event_context *ctx) 4396 { 4397 struct perf_event *iter_event; 4398 struct pmu *pmu = event->pmu; 4399 4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4401 return true; 4402 4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4404 if (exclusive_event_match(iter_event, event)) 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 4411 static void perf_addr_filters_splice(struct perf_event *event, 4412 struct list_head *head); 4413 4414 static void _free_event(struct perf_event *event) 4415 { 4416 irq_work_sync(&event->pending); 4417 4418 unaccount_event(event); 4419 4420 if (event->rb) { 4421 /* 4422 * Can happen when we close an event with re-directed output. 4423 * 4424 * Since we have a 0 refcount, perf_mmap_close() will skip 4425 * over us; possibly making our ring_buffer_put() the last. 4426 */ 4427 mutex_lock(&event->mmap_mutex); 4428 ring_buffer_attach(event, NULL); 4429 mutex_unlock(&event->mmap_mutex); 4430 } 4431 4432 if (is_cgroup_event(event)) 4433 perf_detach_cgroup(event); 4434 4435 if (!event->parent) { 4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4437 put_callchain_buffers(); 4438 } 4439 4440 perf_event_free_bpf_prog(event); 4441 perf_addr_filters_splice(event, NULL); 4442 kfree(event->addr_filters_offs); 4443 4444 if (event->destroy) 4445 event->destroy(event); 4446 4447 if (event->ctx) 4448 put_ctx(event->ctx); 4449 4450 exclusive_event_destroy(event); 4451 module_put(event->pmu->module); 4452 4453 call_rcu(&event->rcu_head, free_event_rcu); 4454 } 4455 4456 /* 4457 * Used to free events which have a known refcount of 1, such as in error paths 4458 * where the event isn't exposed yet and inherited events. 4459 */ 4460 static void free_event(struct perf_event *event) 4461 { 4462 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4463 "unexpected event refcount: %ld; ptr=%p\n", 4464 atomic_long_read(&event->refcount), event)) { 4465 /* leak to avoid use-after-free */ 4466 return; 4467 } 4468 4469 _free_event(event); 4470 } 4471 4472 /* 4473 * Remove user event from the owner task. 4474 */ 4475 static void perf_remove_from_owner(struct perf_event *event) 4476 { 4477 struct task_struct *owner; 4478 4479 rcu_read_lock(); 4480 /* 4481 * Matches the smp_store_release() in perf_event_exit_task(). If we 4482 * observe !owner it means the list deletion is complete and we can 4483 * indeed free this event, otherwise we need to serialize on 4484 * owner->perf_event_mutex. 4485 */ 4486 owner = READ_ONCE(event->owner); 4487 if (owner) { 4488 /* 4489 * Since delayed_put_task_struct() also drops the last 4490 * task reference we can safely take a new reference 4491 * while holding the rcu_read_lock(). 4492 */ 4493 get_task_struct(owner); 4494 } 4495 rcu_read_unlock(); 4496 4497 if (owner) { 4498 /* 4499 * If we're here through perf_event_exit_task() we're already 4500 * holding ctx->mutex which would be an inversion wrt. the 4501 * normal lock order. 4502 * 4503 * However we can safely take this lock because its the child 4504 * ctx->mutex. 4505 */ 4506 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4507 4508 /* 4509 * We have to re-check the event->owner field, if it is cleared 4510 * we raced with perf_event_exit_task(), acquiring the mutex 4511 * ensured they're done, and we can proceed with freeing the 4512 * event. 4513 */ 4514 if (event->owner) { 4515 list_del_init(&event->owner_entry); 4516 smp_store_release(&event->owner, NULL); 4517 } 4518 mutex_unlock(&owner->perf_event_mutex); 4519 put_task_struct(owner); 4520 } 4521 } 4522 4523 static void put_event(struct perf_event *event) 4524 { 4525 if (!atomic_long_dec_and_test(&event->refcount)) 4526 return; 4527 4528 _free_event(event); 4529 } 4530 4531 /* 4532 * Kill an event dead; while event:refcount will preserve the event 4533 * object, it will not preserve its functionality. Once the last 'user' 4534 * gives up the object, we'll destroy the thing. 4535 */ 4536 int perf_event_release_kernel(struct perf_event *event) 4537 { 4538 struct perf_event_context *ctx = event->ctx; 4539 struct perf_event *child, *tmp; 4540 LIST_HEAD(free_list); 4541 4542 /* 4543 * If we got here through err_file: fput(event_file); we will not have 4544 * attached to a context yet. 4545 */ 4546 if (!ctx) { 4547 WARN_ON_ONCE(event->attach_state & 4548 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4549 goto no_ctx; 4550 } 4551 4552 if (!is_kernel_event(event)) 4553 perf_remove_from_owner(event); 4554 4555 ctx = perf_event_ctx_lock(event); 4556 WARN_ON_ONCE(ctx->parent_ctx); 4557 perf_remove_from_context(event, DETACH_GROUP); 4558 4559 raw_spin_lock_irq(&ctx->lock); 4560 /* 4561 * Mark this event as STATE_DEAD, there is no external reference to it 4562 * anymore. 4563 * 4564 * Anybody acquiring event->child_mutex after the below loop _must_ 4565 * also see this, most importantly inherit_event() which will avoid 4566 * placing more children on the list. 4567 * 4568 * Thus this guarantees that we will in fact observe and kill _ALL_ 4569 * child events. 4570 */ 4571 event->state = PERF_EVENT_STATE_DEAD; 4572 raw_spin_unlock_irq(&ctx->lock); 4573 4574 perf_event_ctx_unlock(event, ctx); 4575 4576 again: 4577 mutex_lock(&event->child_mutex); 4578 list_for_each_entry(child, &event->child_list, child_list) { 4579 4580 /* 4581 * Cannot change, child events are not migrated, see the 4582 * comment with perf_event_ctx_lock_nested(). 4583 */ 4584 ctx = READ_ONCE(child->ctx); 4585 /* 4586 * Since child_mutex nests inside ctx::mutex, we must jump 4587 * through hoops. We start by grabbing a reference on the ctx. 4588 * 4589 * Since the event cannot get freed while we hold the 4590 * child_mutex, the context must also exist and have a !0 4591 * reference count. 4592 */ 4593 get_ctx(ctx); 4594 4595 /* 4596 * Now that we have a ctx ref, we can drop child_mutex, and 4597 * acquire ctx::mutex without fear of it going away. Then we 4598 * can re-acquire child_mutex. 4599 */ 4600 mutex_unlock(&event->child_mutex); 4601 mutex_lock(&ctx->mutex); 4602 mutex_lock(&event->child_mutex); 4603 4604 /* 4605 * Now that we hold ctx::mutex and child_mutex, revalidate our 4606 * state, if child is still the first entry, it didn't get freed 4607 * and we can continue doing so. 4608 */ 4609 tmp = list_first_entry_or_null(&event->child_list, 4610 struct perf_event, child_list); 4611 if (tmp == child) { 4612 perf_remove_from_context(child, DETACH_GROUP); 4613 list_move(&child->child_list, &free_list); 4614 /* 4615 * This matches the refcount bump in inherit_event(); 4616 * this can't be the last reference. 4617 */ 4618 put_event(event); 4619 } 4620 4621 mutex_unlock(&event->child_mutex); 4622 mutex_unlock(&ctx->mutex); 4623 put_ctx(ctx); 4624 goto again; 4625 } 4626 mutex_unlock(&event->child_mutex); 4627 4628 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4629 list_del(&child->child_list); 4630 free_event(child); 4631 } 4632 4633 no_ctx: 4634 put_event(event); /* Must be the 'last' reference */ 4635 return 0; 4636 } 4637 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4638 4639 /* 4640 * Called when the last reference to the file is gone. 4641 */ 4642 static int perf_release(struct inode *inode, struct file *file) 4643 { 4644 perf_event_release_kernel(file->private_data); 4645 return 0; 4646 } 4647 4648 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4649 { 4650 struct perf_event *child; 4651 u64 total = 0; 4652 4653 *enabled = 0; 4654 *running = 0; 4655 4656 mutex_lock(&event->child_mutex); 4657 4658 (void)perf_event_read(event, false); 4659 total += perf_event_count(event); 4660 4661 *enabled += event->total_time_enabled + 4662 atomic64_read(&event->child_total_time_enabled); 4663 *running += event->total_time_running + 4664 atomic64_read(&event->child_total_time_running); 4665 4666 list_for_each_entry(child, &event->child_list, child_list) { 4667 (void)perf_event_read(child, false); 4668 total += perf_event_count(child); 4669 *enabled += child->total_time_enabled; 4670 *running += child->total_time_running; 4671 } 4672 mutex_unlock(&event->child_mutex); 4673 4674 return total; 4675 } 4676 4677 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4678 { 4679 struct perf_event_context *ctx; 4680 u64 count; 4681 4682 ctx = perf_event_ctx_lock(event); 4683 count = __perf_event_read_value(event, enabled, running); 4684 perf_event_ctx_unlock(event, ctx); 4685 4686 return count; 4687 } 4688 EXPORT_SYMBOL_GPL(perf_event_read_value); 4689 4690 static int __perf_read_group_add(struct perf_event *leader, 4691 u64 read_format, u64 *values) 4692 { 4693 struct perf_event_context *ctx = leader->ctx; 4694 struct perf_event *sub; 4695 unsigned long flags; 4696 int n = 1; /* skip @nr */ 4697 int ret; 4698 4699 ret = perf_event_read(leader, true); 4700 if (ret) 4701 return ret; 4702 4703 raw_spin_lock_irqsave(&ctx->lock, flags); 4704 4705 /* 4706 * Since we co-schedule groups, {enabled,running} times of siblings 4707 * will be identical to those of the leader, so we only publish one 4708 * set. 4709 */ 4710 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4711 values[n++] += leader->total_time_enabled + 4712 atomic64_read(&leader->child_total_time_enabled); 4713 } 4714 4715 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4716 values[n++] += leader->total_time_running + 4717 atomic64_read(&leader->child_total_time_running); 4718 } 4719 4720 /* 4721 * Write {count,id} tuples for every sibling. 4722 */ 4723 values[n++] += perf_event_count(leader); 4724 if (read_format & PERF_FORMAT_ID) 4725 values[n++] = primary_event_id(leader); 4726 4727 for_each_sibling_event(sub, leader) { 4728 values[n++] += perf_event_count(sub); 4729 if (read_format & PERF_FORMAT_ID) 4730 values[n++] = primary_event_id(sub); 4731 } 4732 4733 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4734 return 0; 4735 } 4736 4737 static int perf_read_group(struct perf_event *event, 4738 u64 read_format, char __user *buf) 4739 { 4740 struct perf_event *leader = event->group_leader, *child; 4741 struct perf_event_context *ctx = leader->ctx; 4742 int ret; 4743 u64 *values; 4744 4745 lockdep_assert_held(&ctx->mutex); 4746 4747 values = kzalloc(event->read_size, GFP_KERNEL); 4748 if (!values) 4749 return -ENOMEM; 4750 4751 values[0] = 1 + leader->nr_siblings; 4752 4753 /* 4754 * By locking the child_mutex of the leader we effectively 4755 * lock the child list of all siblings.. XXX explain how. 4756 */ 4757 mutex_lock(&leader->child_mutex); 4758 4759 ret = __perf_read_group_add(leader, read_format, values); 4760 if (ret) 4761 goto unlock; 4762 4763 list_for_each_entry(child, &leader->child_list, child_list) { 4764 ret = __perf_read_group_add(child, read_format, values); 4765 if (ret) 4766 goto unlock; 4767 } 4768 4769 mutex_unlock(&leader->child_mutex); 4770 4771 ret = event->read_size; 4772 if (copy_to_user(buf, values, event->read_size)) 4773 ret = -EFAULT; 4774 goto out; 4775 4776 unlock: 4777 mutex_unlock(&leader->child_mutex); 4778 out: 4779 kfree(values); 4780 return ret; 4781 } 4782 4783 static int perf_read_one(struct perf_event *event, 4784 u64 read_format, char __user *buf) 4785 { 4786 u64 enabled, running; 4787 u64 values[4]; 4788 int n = 0; 4789 4790 values[n++] = __perf_event_read_value(event, &enabled, &running); 4791 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4792 values[n++] = enabled; 4793 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4794 values[n++] = running; 4795 if (read_format & PERF_FORMAT_ID) 4796 values[n++] = primary_event_id(event); 4797 4798 if (copy_to_user(buf, values, n * sizeof(u64))) 4799 return -EFAULT; 4800 4801 return n * sizeof(u64); 4802 } 4803 4804 static bool is_event_hup(struct perf_event *event) 4805 { 4806 bool no_children; 4807 4808 if (event->state > PERF_EVENT_STATE_EXIT) 4809 return false; 4810 4811 mutex_lock(&event->child_mutex); 4812 no_children = list_empty(&event->child_list); 4813 mutex_unlock(&event->child_mutex); 4814 return no_children; 4815 } 4816 4817 /* 4818 * Read the performance event - simple non blocking version for now 4819 */ 4820 static ssize_t 4821 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4822 { 4823 u64 read_format = event->attr.read_format; 4824 int ret; 4825 4826 /* 4827 * Return end-of-file for a read on a event that is in 4828 * error state (i.e. because it was pinned but it couldn't be 4829 * scheduled on to the CPU at some point). 4830 */ 4831 if (event->state == PERF_EVENT_STATE_ERROR) 4832 return 0; 4833 4834 if (count < event->read_size) 4835 return -ENOSPC; 4836 4837 WARN_ON_ONCE(event->ctx->parent_ctx); 4838 if (read_format & PERF_FORMAT_GROUP) 4839 ret = perf_read_group(event, read_format, buf); 4840 else 4841 ret = perf_read_one(event, read_format, buf); 4842 4843 return ret; 4844 } 4845 4846 static ssize_t 4847 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4848 { 4849 struct perf_event *event = file->private_data; 4850 struct perf_event_context *ctx; 4851 int ret; 4852 4853 ctx = perf_event_ctx_lock(event); 4854 ret = __perf_read(event, buf, count); 4855 perf_event_ctx_unlock(event, ctx); 4856 4857 return ret; 4858 } 4859 4860 static __poll_t perf_poll(struct file *file, poll_table *wait) 4861 { 4862 struct perf_event *event = file->private_data; 4863 struct ring_buffer *rb; 4864 __poll_t events = EPOLLHUP; 4865 4866 poll_wait(file, &event->waitq, wait); 4867 4868 if (is_event_hup(event)) 4869 return events; 4870 4871 /* 4872 * Pin the event->rb by taking event->mmap_mutex; otherwise 4873 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4874 */ 4875 mutex_lock(&event->mmap_mutex); 4876 rb = event->rb; 4877 if (rb) 4878 events = atomic_xchg(&rb->poll, 0); 4879 mutex_unlock(&event->mmap_mutex); 4880 return events; 4881 } 4882 4883 static void _perf_event_reset(struct perf_event *event) 4884 { 4885 (void)perf_event_read(event, false); 4886 local64_set(&event->count, 0); 4887 perf_event_update_userpage(event); 4888 } 4889 4890 /* 4891 * Holding the top-level event's child_mutex means that any 4892 * descendant process that has inherited this event will block 4893 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4894 * task existence requirements of perf_event_enable/disable. 4895 */ 4896 static void perf_event_for_each_child(struct perf_event *event, 4897 void (*func)(struct perf_event *)) 4898 { 4899 struct perf_event *child; 4900 4901 WARN_ON_ONCE(event->ctx->parent_ctx); 4902 4903 mutex_lock(&event->child_mutex); 4904 func(event); 4905 list_for_each_entry(child, &event->child_list, child_list) 4906 func(child); 4907 mutex_unlock(&event->child_mutex); 4908 } 4909 4910 static void perf_event_for_each(struct perf_event *event, 4911 void (*func)(struct perf_event *)) 4912 { 4913 struct perf_event_context *ctx = event->ctx; 4914 struct perf_event *sibling; 4915 4916 lockdep_assert_held(&ctx->mutex); 4917 4918 event = event->group_leader; 4919 4920 perf_event_for_each_child(event, func); 4921 for_each_sibling_event(sibling, event) 4922 perf_event_for_each_child(sibling, func); 4923 } 4924 4925 static void __perf_event_period(struct perf_event *event, 4926 struct perf_cpu_context *cpuctx, 4927 struct perf_event_context *ctx, 4928 void *info) 4929 { 4930 u64 value = *((u64 *)info); 4931 bool active; 4932 4933 if (event->attr.freq) { 4934 event->attr.sample_freq = value; 4935 } else { 4936 event->attr.sample_period = value; 4937 event->hw.sample_period = value; 4938 } 4939 4940 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4941 if (active) { 4942 perf_pmu_disable(ctx->pmu); 4943 /* 4944 * We could be throttled; unthrottle now to avoid the tick 4945 * trying to unthrottle while we already re-started the event. 4946 */ 4947 if (event->hw.interrupts == MAX_INTERRUPTS) { 4948 event->hw.interrupts = 0; 4949 perf_log_throttle(event, 1); 4950 } 4951 event->pmu->stop(event, PERF_EF_UPDATE); 4952 } 4953 4954 local64_set(&event->hw.period_left, 0); 4955 4956 if (active) { 4957 event->pmu->start(event, PERF_EF_RELOAD); 4958 perf_pmu_enable(ctx->pmu); 4959 } 4960 } 4961 4962 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4963 { 4964 u64 value; 4965 4966 if (!is_sampling_event(event)) 4967 return -EINVAL; 4968 4969 if (copy_from_user(&value, arg, sizeof(value))) 4970 return -EFAULT; 4971 4972 if (!value) 4973 return -EINVAL; 4974 4975 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4976 return -EINVAL; 4977 4978 event_function_call(event, __perf_event_period, &value); 4979 4980 return 0; 4981 } 4982 4983 static const struct file_operations perf_fops; 4984 4985 static inline int perf_fget_light(int fd, struct fd *p) 4986 { 4987 struct fd f = fdget(fd); 4988 if (!f.file) 4989 return -EBADF; 4990 4991 if (f.file->f_op != &perf_fops) { 4992 fdput(f); 4993 return -EBADF; 4994 } 4995 *p = f; 4996 return 0; 4997 } 4998 4999 static int perf_event_set_output(struct perf_event *event, 5000 struct perf_event *output_event); 5001 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5002 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5003 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5004 struct perf_event_attr *attr); 5005 5006 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5007 { 5008 void (*func)(struct perf_event *); 5009 u32 flags = arg; 5010 5011 switch (cmd) { 5012 case PERF_EVENT_IOC_ENABLE: 5013 func = _perf_event_enable; 5014 break; 5015 case PERF_EVENT_IOC_DISABLE: 5016 func = _perf_event_disable; 5017 break; 5018 case PERF_EVENT_IOC_RESET: 5019 func = _perf_event_reset; 5020 break; 5021 5022 case PERF_EVENT_IOC_REFRESH: 5023 return _perf_event_refresh(event, arg); 5024 5025 case PERF_EVENT_IOC_PERIOD: 5026 return perf_event_period(event, (u64 __user *)arg); 5027 5028 case PERF_EVENT_IOC_ID: 5029 { 5030 u64 id = primary_event_id(event); 5031 5032 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5033 return -EFAULT; 5034 return 0; 5035 } 5036 5037 case PERF_EVENT_IOC_SET_OUTPUT: 5038 { 5039 int ret; 5040 if (arg != -1) { 5041 struct perf_event *output_event; 5042 struct fd output; 5043 ret = perf_fget_light(arg, &output); 5044 if (ret) 5045 return ret; 5046 output_event = output.file->private_data; 5047 ret = perf_event_set_output(event, output_event); 5048 fdput(output); 5049 } else { 5050 ret = perf_event_set_output(event, NULL); 5051 } 5052 return ret; 5053 } 5054 5055 case PERF_EVENT_IOC_SET_FILTER: 5056 return perf_event_set_filter(event, (void __user *)arg); 5057 5058 case PERF_EVENT_IOC_SET_BPF: 5059 return perf_event_set_bpf_prog(event, arg); 5060 5061 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5062 struct ring_buffer *rb; 5063 5064 rcu_read_lock(); 5065 rb = rcu_dereference(event->rb); 5066 if (!rb || !rb->nr_pages) { 5067 rcu_read_unlock(); 5068 return -EINVAL; 5069 } 5070 rb_toggle_paused(rb, !!arg); 5071 rcu_read_unlock(); 5072 return 0; 5073 } 5074 5075 case PERF_EVENT_IOC_QUERY_BPF: 5076 return perf_event_query_prog_array(event, (void __user *)arg); 5077 5078 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5079 struct perf_event_attr new_attr; 5080 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5081 &new_attr); 5082 5083 if (err) 5084 return err; 5085 5086 return perf_event_modify_attr(event, &new_attr); 5087 } 5088 default: 5089 return -ENOTTY; 5090 } 5091 5092 if (flags & PERF_IOC_FLAG_GROUP) 5093 perf_event_for_each(event, func); 5094 else 5095 perf_event_for_each_child(event, func); 5096 5097 return 0; 5098 } 5099 5100 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5101 { 5102 struct perf_event *event = file->private_data; 5103 struct perf_event_context *ctx; 5104 long ret; 5105 5106 ctx = perf_event_ctx_lock(event); 5107 ret = _perf_ioctl(event, cmd, arg); 5108 perf_event_ctx_unlock(event, ctx); 5109 5110 return ret; 5111 } 5112 5113 #ifdef CONFIG_COMPAT 5114 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5115 unsigned long arg) 5116 { 5117 switch (_IOC_NR(cmd)) { 5118 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5119 case _IOC_NR(PERF_EVENT_IOC_ID): 5120 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5121 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5122 cmd &= ~IOCSIZE_MASK; 5123 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5124 } 5125 break; 5126 } 5127 return perf_ioctl(file, cmd, arg); 5128 } 5129 #else 5130 # define perf_compat_ioctl NULL 5131 #endif 5132 5133 int perf_event_task_enable(void) 5134 { 5135 struct perf_event_context *ctx; 5136 struct perf_event *event; 5137 5138 mutex_lock(¤t->perf_event_mutex); 5139 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5140 ctx = perf_event_ctx_lock(event); 5141 perf_event_for_each_child(event, _perf_event_enable); 5142 perf_event_ctx_unlock(event, ctx); 5143 } 5144 mutex_unlock(¤t->perf_event_mutex); 5145 5146 return 0; 5147 } 5148 5149 int perf_event_task_disable(void) 5150 { 5151 struct perf_event_context *ctx; 5152 struct perf_event *event; 5153 5154 mutex_lock(¤t->perf_event_mutex); 5155 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5156 ctx = perf_event_ctx_lock(event); 5157 perf_event_for_each_child(event, _perf_event_disable); 5158 perf_event_ctx_unlock(event, ctx); 5159 } 5160 mutex_unlock(¤t->perf_event_mutex); 5161 5162 return 0; 5163 } 5164 5165 static int perf_event_index(struct perf_event *event) 5166 { 5167 if (event->hw.state & PERF_HES_STOPPED) 5168 return 0; 5169 5170 if (event->state != PERF_EVENT_STATE_ACTIVE) 5171 return 0; 5172 5173 return event->pmu->event_idx(event); 5174 } 5175 5176 static void calc_timer_values(struct perf_event *event, 5177 u64 *now, 5178 u64 *enabled, 5179 u64 *running) 5180 { 5181 u64 ctx_time; 5182 5183 *now = perf_clock(); 5184 ctx_time = event->shadow_ctx_time + *now; 5185 __perf_update_times(event, ctx_time, enabled, running); 5186 } 5187 5188 static void perf_event_init_userpage(struct perf_event *event) 5189 { 5190 struct perf_event_mmap_page *userpg; 5191 struct ring_buffer *rb; 5192 5193 rcu_read_lock(); 5194 rb = rcu_dereference(event->rb); 5195 if (!rb) 5196 goto unlock; 5197 5198 userpg = rb->user_page; 5199 5200 /* Allow new userspace to detect that bit 0 is deprecated */ 5201 userpg->cap_bit0_is_deprecated = 1; 5202 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5203 userpg->data_offset = PAGE_SIZE; 5204 userpg->data_size = perf_data_size(rb); 5205 5206 unlock: 5207 rcu_read_unlock(); 5208 } 5209 5210 void __weak arch_perf_update_userpage( 5211 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5212 { 5213 } 5214 5215 /* 5216 * Callers need to ensure there can be no nesting of this function, otherwise 5217 * the seqlock logic goes bad. We can not serialize this because the arch 5218 * code calls this from NMI context. 5219 */ 5220 void perf_event_update_userpage(struct perf_event *event) 5221 { 5222 struct perf_event_mmap_page *userpg; 5223 struct ring_buffer *rb; 5224 u64 enabled, running, now; 5225 5226 rcu_read_lock(); 5227 rb = rcu_dereference(event->rb); 5228 if (!rb) 5229 goto unlock; 5230 5231 /* 5232 * compute total_time_enabled, total_time_running 5233 * based on snapshot values taken when the event 5234 * was last scheduled in. 5235 * 5236 * we cannot simply called update_context_time() 5237 * because of locking issue as we can be called in 5238 * NMI context 5239 */ 5240 calc_timer_values(event, &now, &enabled, &running); 5241 5242 userpg = rb->user_page; 5243 /* 5244 * Disable preemption so as to not let the corresponding user-space 5245 * spin too long if we get preempted. 5246 */ 5247 preempt_disable(); 5248 ++userpg->lock; 5249 barrier(); 5250 userpg->index = perf_event_index(event); 5251 userpg->offset = perf_event_count(event); 5252 if (userpg->index) 5253 userpg->offset -= local64_read(&event->hw.prev_count); 5254 5255 userpg->time_enabled = enabled + 5256 atomic64_read(&event->child_total_time_enabled); 5257 5258 userpg->time_running = running + 5259 atomic64_read(&event->child_total_time_running); 5260 5261 arch_perf_update_userpage(event, userpg, now); 5262 5263 barrier(); 5264 ++userpg->lock; 5265 preempt_enable(); 5266 unlock: 5267 rcu_read_unlock(); 5268 } 5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5270 5271 static int perf_mmap_fault(struct vm_fault *vmf) 5272 { 5273 struct perf_event *event = vmf->vma->vm_file->private_data; 5274 struct ring_buffer *rb; 5275 int ret = VM_FAULT_SIGBUS; 5276 5277 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5278 if (vmf->pgoff == 0) 5279 ret = 0; 5280 return ret; 5281 } 5282 5283 rcu_read_lock(); 5284 rb = rcu_dereference(event->rb); 5285 if (!rb) 5286 goto unlock; 5287 5288 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5289 goto unlock; 5290 5291 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5292 if (!vmf->page) 5293 goto unlock; 5294 5295 get_page(vmf->page); 5296 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5297 vmf->page->index = vmf->pgoff; 5298 5299 ret = 0; 5300 unlock: 5301 rcu_read_unlock(); 5302 5303 return ret; 5304 } 5305 5306 static void ring_buffer_attach(struct perf_event *event, 5307 struct ring_buffer *rb) 5308 { 5309 struct ring_buffer *old_rb = NULL; 5310 unsigned long flags; 5311 5312 if (event->rb) { 5313 /* 5314 * Should be impossible, we set this when removing 5315 * event->rb_entry and wait/clear when adding event->rb_entry. 5316 */ 5317 WARN_ON_ONCE(event->rcu_pending); 5318 5319 old_rb = event->rb; 5320 spin_lock_irqsave(&old_rb->event_lock, flags); 5321 list_del_rcu(&event->rb_entry); 5322 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5323 5324 event->rcu_batches = get_state_synchronize_rcu(); 5325 event->rcu_pending = 1; 5326 } 5327 5328 if (rb) { 5329 if (event->rcu_pending) { 5330 cond_synchronize_rcu(event->rcu_batches); 5331 event->rcu_pending = 0; 5332 } 5333 5334 spin_lock_irqsave(&rb->event_lock, flags); 5335 list_add_rcu(&event->rb_entry, &rb->event_list); 5336 spin_unlock_irqrestore(&rb->event_lock, flags); 5337 } 5338 5339 /* 5340 * Avoid racing with perf_mmap_close(AUX): stop the event 5341 * before swizzling the event::rb pointer; if it's getting 5342 * unmapped, its aux_mmap_count will be 0 and it won't 5343 * restart. See the comment in __perf_pmu_output_stop(). 5344 * 5345 * Data will inevitably be lost when set_output is done in 5346 * mid-air, but then again, whoever does it like this is 5347 * not in for the data anyway. 5348 */ 5349 if (has_aux(event)) 5350 perf_event_stop(event, 0); 5351 5352 rcu_assign_pointer(event->rb, rb); 5353 5354 if (old_rb) { 5355 ring_buffer_put(old_rb); 5356 /* 5357 * Since we detached before setting the new rb, so that we 5358 * could attach the new rb, we could have missed a wakeup. 5359 * Provide it now. 5360 */ 5361 wake_up_all(&event->waitq); 5362 } 5363 } 5364 5365 static void ring_buffer_wakeup(struct perf_event *event) 5366 { 5367 struct ring_buffer *rb; 5368 5369 rcu_read_lock(); 5370 rb = rcu_dereference(event->rb); 5371 if (rb) { 5372 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5373 wake_up_all(&event->waitq); 5374 } 5375 rcu_read_unlock(); 5376 } 5377 5378 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5379 { 5380 struct ring_buffer *rb; 5381 5382 rcu_read_lock(); 5383 rb = rcu_dereference(event->rb); 5384 if (rb) { 5385 if (!atomic_inc_not_zero(&rb->refcount)) 5386 rb = NULL; 5387 } 5388 rcu_read_unlock(); 5389 5390 return rb; 5391 } 5392 5393 void ring_buffer_put(struct ring_buffer *rb) 5394 { 5395 if (!atomic_dec_and_test(&rb->refcount)) 5396 return; 5397 5398 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5399 5400 call_rcu(&rb->rcu_head, rb_free_rcu); 5401 } 5402 5403 static void perf_mmap_open(struct vm_area_struct *vma) 5404 { 5405 struct perf_event *event = vma->vm_file->private_data; 5406 5407 atomic_inc(&event->mmap_count); 5408 atomic_inc(&event->rb->mmap_count); 5409 5410 if (vma->vm_pgoff) 5411 atomic_inc(&event->rb->aux_mmap_count); 5412 5413 if (event->pmu->event_mapped) 5414 event->pmu->event_mapped(event, vma->vm_mm); 5415 } 5416 5417 static void perf_pmu_output_stop(struct perf_event *event); 5418 5419 /* 5420 * A buffer can be mmap()ed multiple times; either directly through the same 5421 * event, or through other events by use of perf_event_set_output(). 5422 * 5423 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5424 * the buffer here, where we still have a VM context. This means we need 5425 * to detach all events redirecting to us. 5426 */ 5427 static void perf_mmap_close(struct vm_area_struct *vma) 5428 { 5429 struct perf_event *event = vma->vm_file->private_data; 5430 5431 struct ring_buffer *rb = ring_buffer_get(event); 5432 struct user_struct *mmap_user = rb->mmap_user; 5433 int mmap_locked = rb->mmap_locked; 5434 unsigned long size = perf_data_size(rb); 5435 5436 if (event->pmu->event_unmapped) 5437 event->pmu->event_unmapped(event, vma->vm_mm); 5438 5439 /* 5440 * rb->aux_mmap_count will always drop before rb->mmap_count and 5441 * event->mmap_count, so it is ok to use event->mmap_mutex to 5442 * serialize with perf_mmap here. 5443 */ 5444 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5445 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5446 /* 5447 * Stop all AUX events that are writing to this buffer, 5448 * so that we can free its AUX pages and corresponding PMU 5449 * data. Note that after rb::aux_mmap_count dropped to zero, 5450 * they won't start any more (see perf_aux_output_begin()). 5451 */ 5452 perf_pmu_output_stop(event); 5453 5454 /* now it's safe to free the pages */ 5455 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5456 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5457 5458 /* this has to be the last one */ 5459 rb_free_aux(rb); 5460 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5461 5462 mutex_unlock(&event->mmap_mutex); 5463 } 5464 5465 atomic_dec(&rb->mmap_count); 5466 5467 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5468 goto out_put; 5469 5470 ring_buffer_attach(event, NULL); 5471 mutex_unlock(&event->mmap_mutex); 5472 5473 /* If there's still other mmap()s of this buffer, we're done. */ 5474 if (atomic_read(&rb->mmap_count)) 5475 goto out_put; 5476 5477 /* 5478 * No other mmap()s, detach from all other events that might redirect 5479 * into the now unreachable buffer. Somewhat complicated by the 5480 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5481 */ 5482 again: 5483 rcu_read_lock(); 5484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5485 if (!atomic_long_inc_not_zero(&event->refcount)) { 5486 /* 5487 * This event is en-route to free_event() which will 5488 * detach it and remove it from the list. 5489 */ 5490 continue; 5491 } 5492 rcu_read_unlock(); 5493 5494 mutex_lock(&event->mmap_mutex); 5495 /* 5496 * Check we didn't race with perf_event_set_output() which can 5497 * swizzle the rb from under us while we were waiting to 5498 * acquire mmap_mutex. 5499 * 5500 * If we find a different rb; ignore this event, a next 5501 * iteration will no longer find it on the list. We have to 5502 * still restart the iteration to make sure we're not now 5503 * iterating the wrong list. 5504 */ 5505 if (event->rb == rb) 5506 ring_buffer_attach(event, NULL); 5507 5508 mutex_unlock(&event->mmap_mutex); 5509 put_event(event); 5510 5511 /* 5512 * Restart the iteration; either we're on the wrong list or 5513 * destroyed its integrity by doing a deletion. 5514 */ 5515 goto again; 5516 } 5517 rcu_read_unlock(); 5518 5519 /* 5520 * It could be there's still a few 0-ref events on the list; they'll 5521 * get cleaned up by free_event() -- they'll also still have their 5522 * ref on the rb and will free it whenever they are done with it. 5523 * 5524 * Aside from that, this buffer is 'fully' detached and unmapped, 5525 * undo the VM accounting. 5526 */ 5527 5528 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5529 vma->vm_mm->pinned_vm -= mmap_locked; 5530 free_uid(mmap_user); 5531 5532 out_put: 5533 ring_buffer_put(rb); /* could be last */ 5534 } 5535 5536 static const struct vm_operations_struct perf_mmap_vmops = { 5537 .open = perf_mmap_open, 5538 .close = perf_mmap_close, /* non mergable */ 5539 .fault = perf_mmap_fault, 5540 .page_mkwrite = perf_mmap_fault, 5541 }; 5542 5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5544 { 5545 struct perf_event *event = file->private_data; 5546 unsigned long user_locked, user_lock_limit; 5547 struct user_struct *user = current_user(); 5548 unsigned long locked, lock_limit; 5549 struct ring_buffer *rb = NULL; 5550 unsigned long vma_size; 5551 unsigned long nr_pages; 5552 long user_extra = 0, extra = 0; 5553 int ret = 0, flags = 0; 5554 5555 /* 5556 * Don't allow mmap() of inherited per-task counters. This would 5557 * create a performance issue due to all children writing to the 5558 * same rb. 5559 */ 5560 if (event->cpu == -1 && event->attr.inherit) 5561 return -EINVAL; 5562 5563 if (!(vma->vm_flags & VM_SHARED)) 5564 return -EINVAL; 5565 5566 vma_size = vma->vm_end - vma->vm_start; 5567 5568 if (vma->vm_pgoff == 0) { 5569 nr_pages = (vma_size / PAGE_SIZE) - 1; 5570 } else { 5571 /* 5572 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5573 * mapped, all subsequent mappings should have the same size 5574 * and offset. Must be above the normal perf buffer. 5575 */ 5576 u64 aux_offset, aux_size; 5577 5578 if (!event->rb) 5579 return -EINVAL; 5580 5581 nr_pages = vma_size / PAGE_SIZE; 5582 5583 mutex_lock(&event->mmap_mutex); 5584 ret = -EINVAL; 5585 5586 rb = event->rb; 5587 if (!rb) 5588 goto aux_unlock; 5589 5590 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5591 aux_size = READ_ONCE(rb->user_page->aux_size); 5592 5593 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5594 goto aux_unlock; 5595 5596 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5597 goto aux_unlock; 5598 5599 /* already mapped with a different offset */ 5600 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5601 goto aux_unlock; 5602 5603 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5604 goto aux_unlock; 5605 5606 /* already mapped with a different size */ 5607 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5608 goto aux_unlock; 5609 5610 if (!is_power_of_2(nr_pages)) 5611 goto aux_unlock; 5612 5613 if (!atomic_inc_not_zero(&rb->mmap_count)) 5614 goto aux_unlock; 5615 5616 if (rb_has_aux(rb)) { 5617 atomic_inc(&rb->aux_mmap_count); 5618 ret = 0; 5619 goto unlock; 5620 } 5621 5622 atomic_set(&rb->aux_mmap_count, 1); 5623 user_extra = nr_pages; 5624 5625 goto accounting; 5626 } 5627 5628 /* 5629 * If we have rb pages ensure they're a power-of-two number, so we 5630 * can do bitmasks instead of modulo. 5631 */ 5632 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5633 return -EINVAL; 5634 5635 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5636 return -EINVAL; 5637 5638 WARN_ON_ONCE(event->ctx->parent_ctx); 5639 again: 5640 mutex_lock(&event->mmap_mutex); 5641 if (event->rb) { 5642 if (event->rb->nr_pages != nr_pages) { 5643 ret = -EINVAL; 5644 goto unlock; 5645 } 5646 5647 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5648 /* 5649 * Raced against perf_mmap_close() through 5650 * perf_event_set_output(). Try again, hope for better 5651 * luck. 5652 */ 5653 mutex_unlock(&event->mmap_mutex); 5654 goto again; 5655 } 5656 5657 goto unlock; 5658 } 5659 5660 user_extra = nr_pages + 1; 5661 5662 accounting: 5663 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5664 5665 /* 5666 * Increase the limit linearly with more CPUs: 5667 */ 5668 user_lock_limit *= num_online_cpus(); 5669 5670 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5671 5672 if (user_locked > user_lock_limit) 5673 extra = user_locked - user_lock_limit; 5674 5675 lock_limit = rlimit(RLIMIT_MEMLOCK); 5676 lock_limit >>= PAGE_SHIFT; 5677 locked = vma->vm_mm->pinned_vm + extra; 5678 5679 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5680 !capable(CAP_IPC_LOCK)) { 5681 ret = -EPERM; 5682 goto unlock; 5683 } 5684 5685 WARN_ON(!rb && event->rb); 5686 5687 if (vma->vm_flags & VM_WRITE) 5688 flags |= RING_BUFFER_WRITABLE; 5689 5690 if (!rb) { 5691 rb = rb_alloc(nr_pages, 5692 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5693 event->cpu, flags); 5694 5695 if (!rb) { 5696 ret = -ENOMEM; 5697 goto unlock; 5698 } 5699 5700 atomic_set(&rb->mmap_count, 1); 5701 rb->mmap_user = get_current_user(); 5702 rb->mmap_locked = extra; 5703 5704 ring_buffer_attach(event, rb); 5705 5706 perf_event_init_userpage(event); 5707 perf_event_update_userpage(event); 5708 } else { 5709 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5710 event->attr.aux_watermark, flags); 5711 if (!ret) 5712 rb->aux_mmap_locked = extra; 5713 } 5714 5715 unlock: 5716 if (!ret) { 5717 atomic_long_add(user_extra, &user->locked_vm); 5718 vma->vm_mm->pinned_vm += extra; 5719 5720 atomic_inc(&event->mmap_count); 5721 } else if (rb) { 5722 atomic_dec(&rb->mmap_count); 5723 } 5724 aux_unlock: 5725 mutex_unlock(&event->mmap_mutex); 5726 5727 /* 5728 * Since pinned accounting is per vm we cannot allow fork() to copy our 5729 * vma. 5730 */ 5731 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5732 vma->vm_ops = &perf_mmap_vmops; 5733 5734 if (event->pmu->event_mapped) 5735 event->pmu->event_mapped(event, vma->vm_mm); 5736 5737 return ret; 5738 } 5739 5740 static int perf_fasync(int fd, struct file *filp, int on) 5741 { 5742 struct inode *inode = file_inode(filp); 5743 struct perf_event *event = filp->private_data; 5744 int retval; 5745 5746 inode_lock(inode); 5747 retval = fasync_helper(fd, filp, on, &event->fasync); 5748 inode_unlock(inode); 5749 5750 if (retval < 0) 5751 return retval; 5752 5753 return 0; 5754 } 5755 5756 static const struct file_operations perf_fops = { 5757 .llseek = no_llseek, 5758 .release = perf_release, 5759 .read = perf_read, 5760 .poll = perf_poll, 5761 .unlocked_ioctl = perf_ioctl, 5762 .compat_ioctl = perf_compat_ioctl, 5763 .mmap = perf_mmap, 5764 .fasync = perf_fasync, 5765 }; 5766 5767 /* 5768 * Perf event wakeup 5769 * 5770 * If there's data, ensure we set the poll() state and publish everything 5771 * to user-space before waking everybody up. 5772 */ 5773 5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5775 { 5776 /* only the parent has fasync state */ 5777 if (event->parent) 5778 event = event->parent; 5779 return &event->fasync; 5780 } 5781 5782 void perf_event_wakeup(struct perf_event *event) 5783 { 5784 ring_buffer_wakeup(event); 5785 5786 if (event->pending_kill) { 5787 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5788 event->pending_kill = 0; 5789 } 5790 } 5791 5792 static void perf_pending_event(struct irq_work *entry) 5793 { 5794 struct perf_event *event = container_of(entry, 5795 struct perf_event, pending); 5796 int rctx; 5797 5798 rctx = perf_swevent_get_recursion_context(); 5799 /* 5800 * If we 'fail' here, that's OK, it means recursion is already disabled 5801 * and we won't recurse 'further'. 5802 */ 5803 5804 if (event->pending_disable) { 5805 event->pending_disable = 0; 5806 perf_event_disable_local(event); 5807 } 5808 5809 if (event->pending_wakeup) { 5810 event->pending_wakeup = 0; 5811 perf_event_wakeup(event); 5812 } 5813 5814 if (rctx >= 0) 5815 perf_swevent_put_recursion_context(rctx); 5816 } 5817 5818 /* 5819 * We assume there is only KVM supporting the callbacks. 5820 * Later on, we might change it to a list if there is 5821 * another virtualization implementation supporting the callbacks. 5822 */ 5823 struct perf_guest_info_callbacks *perf_guest_cbs; 5824 5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5826 { 5827 perf_guest_cbs = cbs; 5828 return 0; 5829 } 5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5831 5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5833 { 5834 perf_guest_cbs = NULL; 5835 return 0; 5836 } 5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5838 5839 static void 5840 perf_output_sample_regs(struct perf_output_handle *handle, 5841 struct pt_regs *regs, u64 mask) 5842 { 5843 int bit; 5844 DECLARE_BITMAP(_mask, 64); 5845 5846 bitmap_from_u64(_mask, mask); 5847 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5848 u64 val; 5849 5850 val = perf_reg_value(regs, bit); 5851 perf_output_put(handle, val); 5852 } 5853 } 5854 5855 static void perf_sample_regs_user(struct perf_regs *regs_user, 5856 struct pt_regs *regs, 5857 struct pt_regs *regs_user_copy) 5858 { 5859 if (user_mode(regs)) { 5860 regs_user->abi = perf_reg_abi(current); 5861 regs_user->regs = regs; 5862 } else if (current->mm) { 5863 perf_get_regs_user(regs_user, regs, regs_user_copy); 5864 } else { 5865 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5866 regs_user->regs = NULL; 5867 } 5868 } 5869 5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5871 struct pt_regs *regs) 5872 { 5873 regs_intr->regs = regs; 5874 regs_intr->abi = perf_reg_abi(current); 5875 } 5876 5877 5878 /* 5879 * Get remaining task size from user stack pointer. 5880 * 5881 * It'd be better to take stack vma map and limit this more 5882 * precisly, but there's no way to get it safely under interrupt, 5883 * so using TASK_SIZE as limit. 5884 */ 5885 static u64 perf_ustack_task_size(struct pt_regs *regs) 5886 { 5887 unsigned long addr = perf_user_stack_pointer(regs); 5888 5889 if (!addr || addr >= TASK_SIZE) 5890 return 0; 5891 5892 return TASK_SIZE - addr; 5893 } 5894 5895 static u16 5896 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5897 struct pt_regs *regs) 5898 { 5899 u64 task_size; 5900 5901 /* No regs, no stack pointer, no dump. */ 5902 if (!regs) 5903 return 0; 5904 5905 /* 5906 * Check if we fit in with the requested stack size into the: 5907 * - TASK_SIZE 5908 * If we don't, we limit the size to the TASK_SIZE. 5909 * 5910 * - remaining sample size 5911 * If we don't, we customize the stack size to 5912 * fit in to the remaining sample size. 5913 */ 5914 5915 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5916 stack_size = min(stack_size, (u16) task_size); 5917 5918 /* Current header size plus static size and dynamic size. */ 5919 header_size += 2 * sizeof(u64); 5920 5921 /* Do we fit in with the current stack dump size? */ 5922 if ((u16) (header_size + stack_size) < header_size) { 5923 /* 5924 * If we overflow the maximum size for the sample, 5925 * we customize the stack dump size to fit in. 5926 */ 5927 stack_size = USHRT_MAX - header_size - sizeof(u64); 5928 stack_size = round_up(stack_size, sizeof(u64)); 5929 } 5930 5931 return stack_size; 5932 } 5933 5934 static void 5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5936 struct pt_regs *regs) 5937 { 5938 /* Case of a kernel thread, nothing to dump */ 5939 if (!regs) { 5940 u64 size = 0; 5941 perf_output_put(handle, size); 5942 } else { 5943 unsigned long sp; 5944 unsigned int rem; 5945 u64 dyn_size; 5946 5947 /* 5948 * We dump: 5949 * static size 5950 * - the size requested by user or the best one we can fit 5951 * in to the sample max size 5952 * data 5953 * - user stack dump data 5954 * dynamic size 5955 * - the actual dumped size 5956 */ 5957 5958 /* Static size. */ 5959 perf_output_put(handle, dump_size); 5960 5961 /* Data. */ 5962 sp = perf_user_stack_pointer(regs); 5963 rem = __output_copy_user(handle, (void *) sp, dump_size); 5964 dyn_size = dump_size - rem; 5965 5966 perf_output_skip(handle, rem); 5967 5968 /* Dynamic size. */ 5969 perf_output_put(handle, dyn_size); 5970 } 5971 } 5972 5973 static void __perf_event_header__init_id(struct perf_event_header *header, 5974 struct perf_sample_data *data, 5975 struct perf_event *event) 5976 { 5977 u64 sample_type = event->attr.sample_type; 5978 5979 data->type = sample_type; 5980 header->size += event->id_header_size; 5981 5982 if (sample_type & PERF_SAMPLE_TID) { 5983 /* namespace issues */ 5984 data->tid_entry.pid = perf_event_pid(event, current); 5985 data->tid_entry.tid = perf_event_tid(event, current); 5986 } 5987 5988 if (sample_type & PERF_SAMPLE_TIME) 5989 data->time = perf_event_clock(event); 5990 5991 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5992 data->id = primary_event_id(event); 5993 5994 if (sample_type & PERF_SAMPLE_STREAM_ID) 5995 data->stream_id = event->id; 5996 5997 if (sample_type & PERF_SAMPLE_CPU) { 5998 data->cpu_entry.cpu = raw_smp_processor_id(); 5999 data->cpu_entry.reserved = 0; 6000 } 6001 } 6002 6003 void perf_event_header__init_id(struct perf_event_header *header, 6004 struct perf_sample_data *data, 6005 struct perf_event *event) 6006 { 6007 if (event->attr.sample_id_all) 6008 __perf_event_header__init_id(header, data, event); 6009 } 6010 6011 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6012 struct perf_sample_data *data) 6013 { 6014 u64 sample_type = data->type; 6015 6016 if (sample_type & PERF_SAMPLE_TID) 6017 perf_output_put(handle, data->tid_entry); 6018 6019 if (sample_type & PERF_SAMPLE_TIME) 6020 perf_output_put(handle, data->time); 6021 6022 if (sample_type & PERF_SAMPLE_ID) 6023 perf_output_put(handle, data->id); 6024 6025 if (sample_type & PERF_SAMPLE_STREAM_ID) 6026 perf_output_put(handle, data->stream_id); 6027 6028 if (sample_type & PERF_SAMPLE_CPU) 6029 perf_output_put(handle, data->cpu_entry); 6030 6031 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6032 perf_output_put(handle, data->id); 6033 } 6034 6035 void perf_event__output_id_sample(struct perf_event *event, 6036 struct perf_output_handle *handle, 6037 struct perf_sample_data *sample) 6038 { 6039 if (event->attr.sample_id_all) 6040 __perf_event__output_id_sample(handle, sample); 6041 } 6042 6043 static void perf_output_read_one(struct perf_output_handle *handle, 6044 struct perf_event *event, 6045 u64 enabled, u64 running) 6046 { 6047 u64 read_format = event->attr.read_format; 6048 u64 values[4]; 6049 int n = 0; 6050 6051 values[n++] = perf_event_count(event); 6052 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6053 values[n++] = enabled + 6054 atomic64_read(&event->child_total_time_enabled); 6055 } 6056 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6057 values[n++] = running + 6058 atomic64_read(&event->child_total_time_running); 6059 } 6060 if (read_format & PERF_FORMAT_ID) 6061 values[n++] = primary_event_id(event); 6062 6063 __output_copy(handle, values, n * sizeof(u64)); 6064 } 6065 6066 static void perf_output_read_group(struct perf_output_handle *handle, 6067 struct perf_event *event, 6068 u64 enabled, u64 running) 6069 { 6070 struct perf_event *leader = event->group_leader, *sub; 6071 u64 read_format = event->attr.read_format; 6072 u64 values[5]; 6073 int n = 0; 6074 6075 values[n++] = 1 + leader->nr_siblings; 6076 6077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6078 values[n++] = enabled; 6079 6080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6081 values[n++] = running; 6082 6083 if ((leader != event) && 6084 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6085 leader->pmu->read(leader); 6086 6087 values[n++] = perf_event_count(leader); 6088 if (read_format & PERF_FORMAT_ID) 6089 values[n++] = primary_event_id(leader); 6090 6091 __output_copy(handle, values, n * sizeof(u64)); 6092 6093 for_each_sibling_event(sub, leader) { 6094 n = 0; 6095 6096 if ((sub != event) && 6097 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6098 sub->pmu->read(sub); 6099 6100 values[n++] = perf_event_count(sub); 6101 if (read_format & PERF_FORMAT_ID) 6102 values[n++] = primary_event_id(sub); 6103 6104 __output_copy(handle, values, n * sizeof(u64)); 6105 } 6106 } 6107 6108 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6109 PERF_FORMAT_TOTAL_TIME_RUNNING) 6110 6111 /* 6112 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6113 * 6114 * The problem is that its both hard and excessively expensive to iterate the 6115 * child list, not to mention that its impossible to IPI the children running 6116 * on another CPU, from interrupt/NMI context. 6117 */ 6118 static void perf_output_read(struct perf_output_handle *handle, 6119 struct perf_event *event) 6120 { 6121 u64 enabled = 0, running = 0, now; 6122 u64 read_format = event->attr.read_format; 6123 6124 /* 6125 * compute total_time_enabled, total_time_running 6126 * based on snapshot values taken when the event 6127 * was last scheduled in. 6128 * 6129 * we cannot simply called update_context_time() 6130 * because of locking issue as we are called in 6131 * NMI context 6132 */ 6133 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6134 calc_timer_values(event, &now, &enabled, &running); 6135 6136 if (event->attr.read_format & PERF_FORMAT_GROUP) 6137 perf_output_read_group(handle, event, enabled, running); 6138 else 6139 perf_output_read_one(handle, event, enabled, running); 6140 } 6141 6142 void perf_output_sample(struct perf_output_handle *handle, 6143 struct perf_event_header *header, 6144 struct perf_sample_data *data, 6145 struct perf_event *event) 6146 { 6147 u64 sample_type = data->type; 6148 6149 perf_output_put(handle, *header); 6150 6151 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6152 perf_output_put(handle, data->id); 6153 6154 if (sample_type & PERF_SAMPLE_IP) 6155 perf_output_put(handle, data->ip); 6156 6157 if (sample_type & PERF_SAMPLE_TID) 6158 perf_output_put(handle, data->tid_entry); 6159 6160 if (sample_type & PERF_SAMPLE_TIME) 6161 perf_output_put(handle, data->time); 6162 6163 if (sample_type & PERF_SAMPLE_ADDR) 6164 perf_output_put(handle, data->addr); 6165 6166 if (sample_type & PERF_SAMPLE_ID) 6167 perf_output_put(handle, data->id); 6168 6169 if (sample_type & PERF_SAMPLE_STREAM_ID) 6170 perf_output_put(handle, data->stream_id); 6171 6172 if (sample_type & PERF_SAMPLE_CPU) 6173 perf_output_put(handle, data->cpu_entry); 6174 6175 if (sample_type & PERF_SAMPLE_PERIOD) 6176 perf_output_put(handle, data->period); 6177 6178 if (sample_type & PERF_SAMPLE_READ) 6179 perf_output_read(handle, event); 6180 6181 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6182 int size = 1; 6183 6184 size += data->callchain->nr; 6185 size *= sizeof(u64); 6186 __output_copy(handle, data->callchain, size); 6187 } 6188 6189 if (sample_type & PERF_SAMPLE_RAW) { 6190 struct perf_raw_record *raw = data->raw; 6191 6192 if (raw) { 6193 struct perf_raw_frag *frag = &raw->frag; 6194 6195 perf_output_put(handle, raw->size); 6196 do { 6197 if (frag->copy) { 6198 __output_custom(handle, frag->copy, 6199 frag->data, frag->size); 6200 } else { 6201 __output_copy(handle, frag->data, 6202 frag->size); 6203 } 6204 if (perf_raw_frag_last(frag)) 6205 break; 6206 frag = frag->next; 6207 } while (1); 6208 if (frag->pad) 6209 __output_skip(handle, NULL, frag->pad); 6210 } else { 6211 struct { 6212 u32 size; 6213 u32 data; 6214 } raw = { 6215 .size = sizeof(u32), 6216 .data = 0, 6217 }; 6218 perf_output_put(handle, raw); 6219 } 6220 } 6221 6222 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6223 if (data->br_stack) { 6224 size_t size; 6225 6226 size = data->br_stack->nr 6227 * sizeof(struct perf_branch_entry); 6228 6229 perf_output_put(handle, data->br_stack->nr); 6230 perf_output_copy(handle, data->br_stack->entries, size); 6231 } else { 6232 /* 6233 * we always store at least the value of nr 6234 */ 6235 u64 nr = 0; 6236 perf_output_put(handle, nr); 6237 } 6238 } 6239 6240 if (sample_type & PERF_SAMPLE_REGS_USER) { 6241 u64 abi = data->regs_user.abi; 6242 6243 /* 6244 * If there are no regs to dump, notice it through 6245 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6246 */ 6247 perf_output_put(handle, abi); 6248 6249 if (abi) { 6250 u64 mask = event->attr.sample_regs_user; 6251 perf_output_sample_regs(handle, 6252 data->regs_user.regs, 6253 mask); 6254 } 6255 } 6256 6257 if (sample_type & PERF_SAMPLE_STACK_USER) { 6258 perf_output_sample_ustack(handle, 6259 data->stack_user_size, 6260 data->regs_user.regs); 6261 } 6262 6263 if (sample_type & PERF_SAMPLE_WEIGHT) 6264 perf_output_put(handle, data->weight); 6265 6266 if (sample_type & PERF_SAMPLE_DATA_SRC) 6267 perf_output_put(handle, data->data_src.val); 6268 6269 if (sample_type & PERF_SAMPLE_TRANSACTION) 6270 perf_output_put(handle, data->txn); 6271 6272 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6273 u64 abi = data->regs_intr.abi; 6274 /* 6275 * If there are no regs to dump, notice it through 6276 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6277 */ 6278 perf_output_put(handle, abi); 6279 6280 if (abi) { 6281 u64 mask = event->attr.sample_regs_intr; 6282 6283 perf_output_sample_regs(handle, 6284 data->regs_intr.regs, 6285 mask); 6286 } 6287 } 6288 6289 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6290 perf_output_put(handle, data->phys_addr); 6291 6292 if (!event->attr.watermark) { 6293 int wakeup_events = event->attr.wakeup_events; 6294 6295 if (wakeup_events) { 6296 struct ring_buffer *rb = handle->rb; 6297 int events = local_inc_return(&rb->events); 6298 6299 if (events >= wakeup_events) { 6300 local_sub(wakeup_events, &rb->events); 6301 local_inc(&rb->wakeup); 6302 } 6303 } 6304 } 6305 } 6306 6307 static u64 perf_virt_to_phys(u64 virt) 6308 { 6309 u64 phys_addr = 0; 6310 struct page *p = NULL; 6311 6312 if (!virt) 6313 return 0; 6314 6315 if (virt >= TASK_SIZE) { 6316 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6317 if (virt_addr_valid((void *)(uintptr_t)virt) && 6318 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6319 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6320 } else { 6321 /* 6322 * Walking the pages tables for user address. 6323 * Interrupts are disabled, so it prevents any tear down 6324 * of the page tables. 6325 * Try IRQ-safe __get_user_pages_fast first. 6326 * If failed, leave phys_addr as 0. 6327 */ 6328 if ((current->mm != NULL) && 6329 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6330 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6331 6332 if (p) 6333 put_page(p); 6334 } 6335 6336 return phys_addr; 6337 } 6338 6339 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6340 6341 static struct perf_callchain_entry * 6342 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6343 { 6344 bool kernel = !event->attr.exclude_callchain_kernel; 6345 bool user = !event->attr.exclude_callchain_user; 6346 /* Disallow cross-task user callchains. */ 6347 bool crosstask = event->ctx->task && event->ctx->task != current; 6348 const u32 max_stack = event->attr.sample_max_stack; 6349 struct perf_callchain_entry *callchain; 6350 6351 if (!kernel && !user) 6352 return &__empty_callchain; 6353 6354 callchain = get_perf_callchain(regs, 0, kernel, user, 6355 max_stack, crosstask, true); 6356 return callchain ?: &__empty_callchain; 6357 } 6358 6359 void perf_prepare_sample(struct perf_event_header *header, 6360 struct perf_sample_data *data, 6361 struct perf_event *event, 6362 struct pt_regs *regs) 6363 { 6364 u64 sample_type = event->attr.sample_type; 6365 6366 header->type = PERF_RECORD_SAMPLE; 6367 header->size = sizeof(*header) + event->header_size; 6368 6369 header->misc = 0; 6370 header->misc |= perf_misc_flags(regs); 6371 6372 __perf_event_header__init_id(header, data, event); 6373 6374 if (sample_type & PERF_SAMPLE_IP) 6375 data->ip = perf_instruction_pointer(regs); 6376 6377 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6378 int size = 1; 6379 6380 data->callchain = perf_callchain(event, regs); 6381 size += data->callchain->nr; 6382 6383 header->size += size * sizeof(u64); 6384 } 6385 6386 if (sample_type & PERF_SAMPLE_RAW) { 6387 struct perf_raw_record *raw = data->raw; 6388 int size; 6389 6390 if (raw) { 6391 struct perf_raw_frag *frag = &raw->frag; 6392 u32 sum = 0; 6393 6394 do { 6395 sum += frag->size; 6396 if (perf_raw_frag_last(frag)) 6397 break; 6398 frag = frag->next; 6399 } while (1); 6400 6401 size = round_up(sum + sizeof(u32), sizeof(u64)); 6402 raw->size = size - sizeof(u32); 6403 frag->pad = raw->size - sum; 6404 } else { 6405 size = sizeof(u64); 6406 } 6407 6408 header->size += size; 6409 } 6410 6411 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6412 int size = sizeof(u64); /* nr */ 6413 if (data->br_stack) { 6414 size += data->br_stack->nr 6415 * sizeof(struct perf_branch_entry); 6416 } 6417 header->size += size; 6418 } 6419 6420 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6421 perf_sample_regs_user(&data->regs_user, regs, 6422 &data->regs_user_copy); 6423 6424 if (sample_type & PERF_SAMPLE_REGS_USER) { 6425 /* regs dump ABI info */ 6426 int size = sizeof(u64); 6427 6428 if (data->regs_user.regs) { 6429 u64 mask = event->attr.sample_regs_user; 6430 size += hweight64(mask) * sizeof(u64); 6431 } 6432 6433 header->size += size; 6434 } 6435 6436 if (sample_type & PERF_SAMPLE_STACK_USER) { 6437 /* 6438 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6439 * processed as the last one or have additional check added 6440 * in case new sample type is added, because we could eat 6441 * up the rest of the sample size. 6442 */ 6443 u16 stack_size = event->attr.sample_stack_user; 6444 u16 size = sizeof(u64); 6445 6446 stack_size = perf_sample_ustack_size(stack_size, header->size, 6447 data->regs_user.regs); 6448 6449 /* 6450 * If there is something to dump, add space for the dump 6451 * itself and for the field that tells the dynamic size, 6452 * which is how many have been actually dumped. 6453 */ 6454 if (stack_size) 6455 size += sizeof(u64) + stack_size; 6456 6457 data->stack_user_size = stack_size; 6458 header->size += size; 6459 } 6460 6461 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6462 /* regs dump ABI info */ 6463 int size = sizeof(u64); 6464 6465 perf_sample_regs_intr(&data->regs_intr, regs); 6466 6467 if (data->regs_intr.regs) { 6468 u64 mask = event->attr.sample_regs_intr; 6469 6470 size += hweight64(mask) * sizeof(u64); 6471 } 6472 6473 header->size += size; 6474 } 6475 6476 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6477 data->phys_addr = perf_virt_to_phys(data->addr); 6478 } 6479 6480 static void __always_inline 6481 __perf_event_output(struct perf_event *event, 6482 struct perf_sample_data *data, 6483 struct pt_regs *regs, 6484 int (*output_begin)(struct perf_output_handle *, 6485 struct perf_event *, 6486 unsigned int)) 6487 { 6488 struct perf_output_handle handle; 6489 struct perf_event_header header; 6490 6491 /* protect the callchain buffers */ 6492 rcu_read_lock(); 6493 6494 perf_prepare_sample(&header, data, event, regs); 6495 6496 if (output_begin(&handle, event, header.size)) 6497 goto exit; 6498 6499 perf_output_sample(&handle, &header, data, event); 6500 6501 perf_output_end(&handle); 6502 6503 exit: 6504 rcu_read_unlock(); 6505 } 6506 6507 void 6508 perf_event_output_forward(struct perf_event *event, 6509 struct perf_sample_data *data, 6510 struct pt_regs *regs) 6511 { 6512 __perf_event_output(event, data, regs, perf_output_begin_forward); 6513 } 6514 6515 void 6516 perf_event_output_backward(struct perf_event *event, 6517 struct perf_sample_data *data, 6518 struct pt_regs *regs) 6519 { 6520 __perf_event_output(event, data, regs, perf_output_begin_backward); 6521 } 6522 6523 void 6524 perf_event_output(struct perf_event *event, 6525 struct perf_sample_data *data, 6526 struct pt_regs *regs) 6527 { 6528 __perf_event_output(event, data, regs, perf_output_begin); 6529 } 6530 6531 /* 6532 * read event_id 6533 */ 6534 6535 struct perf_read_event { 6536 struct perf_event_header header; 6537 6538 u32 pid; 6539 u32 tid; 6540 }; 6541 6542 static void 6543 perf_event_read_event(struct perf_event *event, 6544 struct task_struct *task) 6545 { 6546 struct perf_output_handle handle; 6547 struct perf_sample_data sample; 6548 struct perf_read_event read_event = { 6549 .header = { 6550 .type = PERF_RECORD_READ, 6551 .misc = 0, 6552 .size = sizeof(read_event) + event->read_size, 6553 }, 6554 .pid = perf_event_pid(event, task), 6555 .tid = perf_event_tid(event, task), 6556 }; 6557 int ret; 6558 6559 perf_event_header__init_id(&read_event.header, &sample, event); 6560 ret = perf_output_begin(&handle, event, read_event.header.size); 6561 if (ret) 6562 return; 6563 6564 perf_output_put(&handle, read_event); 6565 perf_output_read(&handle, event); 6566 perf_event__output_id_sample(event, &handle, &sample); 6567 6568 perf_output_end(&handle); 6569 } 6570 6571 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6572 6573 static void 6574 perf_iterate_ctx(struct perf_event_context *ctx, 6575 perf_iterate_f output, 6576 void *data, bool all) 6577 { 6578 struct perf_event *event; 6579 6580 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6581 if (!all) { 6582 if (event->state < PERF_EVENT_STATE_INACTIVE) 6583 continue; 6584 if (!event_filter_match(event)) 6585 continue; 6586 } 6587 6588 output(event, data); 6589 } 6590 } 6591 6592 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6593 { 6594 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6595 struct perf_event *event; 6596 6597 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6598 /* 6599 * Skip events that are not fully formed yet; ensure that 6600 * if we observe event->ctx, both event and ctx will be 6601 * complete enough. See perf_install_in_context(). 6602 */ 6603 if (!smp_load_acquire(&event->ctx)) 6604 continue; 6605 6606 if (event->state < PERF_EVENT_STATE_INACTIVE) 6607 continue; 6608 if (!event_filter_match(event)) 6609 continue; 6610 output(event, data); 6611 } 6612 } 6613 6614 /* 6615 * Iterate all events that need to receive side-band events. 6616 * 6617 * For new callers; ensure that account_pmu_sb_event() includes 6618 * your event, otherwise it might not get delivered. 6619 */ 6620 static void 6621 perf_iterate_sb(perf_iterate_f output, void *data, 6622 struct perf_event_context *task_ctx) 6623 { 6624 struct perf_event_context *ctx; 6625 int ctxn; 6626 6627 rcu_read_lock(); 6628 preempt_disable(); 6629 6630 /* 6631 * If we have task_ctx != NULL we only notify the task context itself. 6632 * The task_ctx is set only for EXIT events before releasing task 6633 * context. 6634 */ 6635 if (task_ctx) { 6636 perf_iterate_ctx(task_ctx, output, data, false); 6637 goto done; 6638 } 6639 6640 perf_iterate_sb_cpu(output, data); 6641 6642 for_each_task_context_nr(ctxn) { 6643 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6644 if (ctx) 6645 perf_iterate_ctx(ctx, output, data, false); 6646 } 6647 done: 6648 preempt_enable(); 6649 rcu_read_unlock(); 6650 } 6651 6652 /* 6653 * Clear all file-based filters at exec, they'll have to be 6654 * re-instated when/if these objects are mmapped again. 6655 */ 6656 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6657 { 6658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6659 struct perf_addr_filter *filter; 6660 unsigned int restart = 0, count = 0; 6661 unsigned long flags; 6662 6663 if (!has_addr_filter(event)) 6664 return; 6665 6666 raw_spin_lock_irqsave(&ifh->lock, flags); 6667 list_for_each_entry(filter, &ifh->list, entry) { 6668 if (filter->inode) { 6669 event->addr_filters_offs[count] = 0; 6670 restart++; 6671 } 6672 6673 count++; 6674 } 6675 6676 if (restart) 6677 event->addr_filters_gen++; 6678 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6679 6680 if (restart) 6681 perf_event_stop(event, 1); 6682 } 6683 6684 void perf_event_exec(void) 6685 { 6686 struct perf_event_context *ctx; 6687 int ctxn; 6688 6689 rcu_read_lock(); 6690 for_each_task_context_nr(ctxn) { 6691 ctx = current->perf_event_ctxp[ctxn]; 6692 if (!ctx) 6693 continue; 6694 6695 perf_event_enable_on_exec(ctxn); 6696 6697 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6698 true); 6699 } 6700 rcu_read_unlock(); 6701 } 6702 6703 struct remote_output { 6704 struct ring_buffer *rb; 6705 int err; 6706 }; 6707 6708 static void __perf_event_output_stop(struct perf_event *event, void *data) 6709 { 6710 struct perf_event *parent = event->parent; 6711 struct remote_output *ro = data; 6712 struct ring_buffer *rb = ro->rb; 6713 struct stop_event_data sd = { 6714 .event = event, 6715 }; 6716 6717 if (!has_aux(event)) 6718 return; 6719 6720 if (!parent) 6721 parent = event; 6722 6723 /* 6724 * In case of inheritance, it will be the parent that links to the 6725 * ring-buffer, but it will be the child that's actually using it. 6726 * 6727 * We are using event::rb to determine if the event should be stopped, 6728 * however this may race with ring_buffer_attach() (through set_output), 6729 * which will make us skip the event that actually needs to be stopped. 6730 * So ring_buffer_attach() has to stop an aux event before re-assigning 6731 * its rb pointer. 6732 */ 6733 if (rcu_dereference(parent->rb) == rb) 6734 ro->err = __perf_event_stop(&sd); 6735 } 6736 6737 static int __perf_pmu_output_stop(void *info) 6738 { 6739 struct perf_event *event = info; 6740 struct pmu *pmu = event->pmu; 6741 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6742 struct remote_output ro = { 6743 .rb = event->rb, 6744 }; 6745 6746 rcu_read_lock(); 6747 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6748 if (cpuctx->task_ctx) 6749 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6750 &ro, false); 6751 rcu_read_unlock(); 6752 6753 return ro.err; 6754 } 6755 6756 static void perf_pmu_output_stop(struct perf_event *event) 6757 { 6758 struct perf_event *iter; 6759 int err, cpu; 6760 6761 restart: 6762 rcu_read_lock(); 6763 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6764 /* 6765 * For per-CPU events, we need to make sure that neither they 6766 * nor their children are running; for cpu==-1 events it's 6767 * sufficient to stop the event itself if it's active, since 6768 * it can't have children. 6769 */ 6770 cpu = iter->cpu; 6771 if (cpu == -1) 6772 cpu = READ_ONCE(iter->oncpu); 6773 6774 if (cpu == -1) 6775 continue; 6776 6777 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6778 if (err == -EAGAIN) { 6779 rcu_read_unlock(); 6780 goto restart; 6781 } 6782 } 6783 rcu_read_unlock(); 6784 } 6785 6786 /* 6787 * task tracking -- fork/exit 6788 * 6789 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6790 */ 6791 6792 struct perf_task_event { 6793 struct task_struct *task; 6794 struct perf_event_context *task_ctx; 6795 6796 struct { 6797 struct perf_event_header header; 6798 6799 u32 pid; 6800 u32 ppid; 6801 u32 tid; 6802 u32 ptid; 6803 u64 time; 6804 } event_id; 6805 }; 6806 6807 static int perf_event_task_match(struct perf_event *event) 6808 { 6809 return event->attr.comm || event->attr.mmap || 6810 event->attr.mmap2 || event->attr.mmap_data || 6811 event->attr.task; 6812 } 6813 6814 static void perf_event_task_output(struct perf_event *event, 6815 void *data) 6816 { 6817 struct perf_task_event *task_event = data; 6818 struct perf_output_handle handle; 6819 struct perf_sample_data sample; 6820 struct task_struct *task = task_event->task; 6821 int ret, size = task_event->event_id.header.size; 6822 6823 if (!perf_event_task_match(event)) 6824 return; 6825 6826 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6827 6828 ret = perf_output_begin(&handle, event, 6829 task_event->event_id.header.size); 6830 if (ret) 6831 goto out; 6832 6833 task_event->event_id.pid = perf_event_pid(event, task); 6834 task_event->event_id.ppid = perf_event_pid(event, current); 6835 6836 task_event->event_id.tid = perf_event_tid(event, task); 6837 task_event->event_id.ptid = perf_event_tid(event, current); 6838 6839 task_event->event_id.time = perf_event_clock(event); 6840 6841 perf_output_put(&handle, task_event->event_id); 6842 6843 perf_event__output_id_sample(event, &handle, &sample); 6844 6845 perf_output_end(&handle); 6846 out: 6847 task_event->event_id.header.size = size; 6848 } 6849 6850 static void perf_event_task(struct task_struct *task, 6851 struct perf_event_context *task_ctx, 6852 int new) 6853 { 6854 struct perf_task_event task_event; 6855 6856 if (!atomic_read(&nr_comm_events) && 6857 !atomic_read(&nr_mmap_events) && 6858 !atomic_read(&nr_task_events)) 6859 return; 6860 6861 task_event = (struct perf_task_event){ 6862 .task = task, 6863 .task_ctx = task_ctx, 6864 .event_id = { 6865 .header = { 6866 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6867 .misc = 0, 6868 .size = sizeof(task_event.event_id), 6869 }, 6870 /* .pid */ 6871 /* .ppid */ 6872 /* .tid */ 6873 /* .ptid */ 6874 /* .time */ 6875 }, 6876 }; 6877 6878 perf_iterate_sb(perf_event_task_output, 6879 &task_event, 6880 task_ctx); 6881 } 6882 6883 void perf_event_fork(struct task_struct *task) 6884 { 6885 perf_event_task(task, NULL, 1); 6886 perf_event_namespaces(task); 6887 } 6888 6889 /* 6890 * comm tracking 6891 */ 6892 6893 struct perf_comm_event { 6894 struct task_struct *task; 6895 char *comm; 6896 int comm_size; 6897 6898 struct { 6899 struct perf_event_header header; 6900 6901 u32 pid; 6902 u32 tid; 6903 } event_id; 6904 }; 6905 6906 static int perf_event_comm_match(struct perf_event *event) 6907 { 6908 return event->attr.comm; 6909 } 6910 6911 static void perf_event_comm_output(struct perf_event *event, 6912 void *data) 6913 { 6914 struct perf_comm_event *comm_event = data; 6915 struct perf_output_handle handle; 6916 struct perf_sample_data sample; 6917 int size = comm_event->event_id.header.size; 6918 int ret; 6919 6920 if (!perf_event_comm_match(event)) 6921 return; 6922 6923 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6924 ret = perf_output_begin(&handle, event, 6925 comm_event->event_id.header.size); 6926 6927 if (ret) 6928 goto out; 6929 6930 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6931 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6932 6933 perf_output_put(&handle, comm_event->event_id); 6934 __output_copy(&handle, comm_event->comm, 6935 comm_event->comm_size); 6936 6937 perf_event__output_id_sample(event, &handle, &sample); 6938 6939 perf_output_end(&handle); 6940 out: 6941 comm_event->event_id.header.size = size; 6942 } 6943 6944 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6945 { 6946 char comm[TASK_COMM_LEN]; 6947 unsigned int size; 6948 6949 memset(comm, 0, sizeof(comm)); 6950 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6951 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6952 6953 comm_event->comm = comm; 6954 comm_event->comm_size = size; 6955 6956 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6957 6958 perf_iterate_sb(perf_event_comm_output, 6959 comm_event, 6960 NULL); 6961 } 6962 6963 void perf_event_comm(struct task_struct *task, bool exec) 6964 { 6965 struct perf_comm_event comm_event; 6966 6967 if (!atomic_read(&nr_comm_events)) 6968 return; 6969 6970 comm_event = (struct perf_comm_event){ 6971 .task = task, 6972 /* .comm */ 6973 /* .comm_size */ 6974 .event_id = { 6975 .header = { 6976 .type = PERF_RECORD_COMM, 6977 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6978 /* .size */ 6979 }, 6980 /* .pid */ 6981 /* .tid */ 6982 }, 6983 }; 6984 6985 perf_event_comm_event(&comm_event); 6986 } 6987 6988 /* 6989 * namespaces tracking 6990 */ 6991 6992 struct perf_namespaces_event { 6993 struct task_struct *task; 6994 6995 struct { 6996 struct perf_event_header header; 6997 6998 u32 pid; 6999 u32 tid; 7000 u64 nr_namespaces; 7001 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7002 } event_id; 7003 }; 7004 7005 static int perf_event_namespaces_match(struct perf_event *event) 7006 { 7007 return event->attr.namespaces; 7008 } 7009 7010 static void perf_event_namespaces_output(struct perf_event *event, 7011 void *data) 7012 { 7013 struct perf_namespaces_event *namespaces_event = data; 7014 struct perf_output_handle handle; 7015 struct perf_sample_data sample; 7016 u16 header_size = namespaces_event->event_id.header.size; 7017 int ret; 7018 7019 if (!perf_event_namespaces_match(event)) 7020 return; 7021 7022 perf_event_header__init_id(&namespaces_event->event_id.header, 7023 &sample, event); 7024 ret = perf_output_begin(&handle, event, 7025 namespaces_event->event_id.header.size); 7026 if (ret) 7027 goto out; 7028 7029 namespaces_event->event_id.pid = perf_event_pid(event, 7030 namespaces_event->task); 7031 namespaces_event->event_id.tid = perf_event_tid(event, 7032 namespaces_event->task); 7033 7034 perf_output_put(&handle, namespaces_event->event_id); 7035 7036 perf_event__output_id_sample(event, &handle, &sample); 7037 7038 perf_output_end(&handle); 7039 out: 7040 namespaces_event->event_id.header.size = header_size; 7041 } 7042 7043 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7044 struct task_struct *task, 7045 const struct proc_ns_operations *ns_ops) 7046 { 7047 struct path ns_path; 7048 struct inode *ns_inode; 7049 void *error; 7050 7051 error = ns_get_path(&ns_path, task, ns_ops); 7052 if (!error) { 7053 ns_inode = ns_path.dentry->d_inode; 7054 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7055 ns_link_info->ino = ns_inode->i_ino; 7056 path_put(&ns_path); 7057 } 7058 } 7059 7060 void perf_event_namespaces(struct task_struct *task) 7061 { 7062 struct perf_namespaces_event namespaces_event; 7063 struct perf_ns_link_info *ns_link_info; 7064 7065 if (!atomic_read(&nr_namespaces_events)) 7066 return; 7067 7068 namespaces_event = (struct perf_namespaces_event){ 7069 .task = task, 7070 .event_id = { 7071 .header = { 7072 .type = PERF_RECORD_NAMESPACES, 7073 .misc = 0, 7074 .size = sizeof(namespaces_event.event_id), 7075 }, 7076 /* .pid */ 7077 /* .tid */ 7078 .nr_namespaces = NR_NAMESPACES, 7079 /* .link_info[NR_NAMESPACES] */ 7080 }, 7081 }; 7082 7083 ns_link_info = namespaces_event.event_id.link_info; 7084 7085 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7086 task, &mntns_operations); 7087 7088 #ifdef CONFIG_USER_NS 7089 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7090 task, &userns_operations); 7091 #endif 7092 #ifdef CONFIG_NET_NS 7093 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7094 task, &netns_operations); 7095 #endif 7096 #ifdef CONFIG_UTS_NS 7097 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7098 task, &utsns_operations); 7099 #endif 7100 #ifdef CONFIG_IPC_NS 7101 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7102 task, &ipcns_operations); 7103 #endif 7104 #ifdef CONFIG_PID_NS 7105 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7106 task, &pidns_operations); 7107 #endif 7108 #ifdef CONFIG_CGROUPS 7109 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7110 task, &cgroupns_operations); 7111 #endif 7112 7113 perf_iterate_sb(perf_event_namespaces_output, 7114 &namespaces_event, 7115 NULL); 7116 } 7117 7118 /* 7119 * mmap tracking 7120 */ 7121 7122 struct perf_mmap_event { 7123 struct vm_area_struct *vma; 7124 7125 const char *file_name; 7126 int file_size; 7127 int maj, min; 7128 u64 ino; 7129 u64 ino_generation; 7130 u32 prot, flags; 7131 7132 struct { 7133 struct perf_event_header header; 7134 7135 u32 pid; 7136 u32 tid; 7137 u64 start; 7138 u64 len; 7139 u64 pgoff; 7140 } event_id; 7141 }; 7142 7143 static int perf_event_mmap_match(struct perf_event *event, 7144 void *data) 7145 { 7146 struct perf_mmap_event *mmap_event = data; 7147 struct vm_area_struct *vma = mmap_event->vma; 7148 int executable = vma->vm_flags & VM_EXEC; 7149 7150 return (!executable && event->attr.mmap_data) || 7151 (executable && (event->attr.mmap || event->attr.mmap2)); 7152 } 7153 7154 static void perf_event_mmap_output(struct perf_event *event, 7155 void *data) 7156 { 7157 struct perf_mmap_event *mmap_event = data; 7158 struct perf_output_handle handle; 7159 struct perf_sample_data sample; 7160 int size = mmap_event->event_id.header.size; 7161 int ret; 7162 7163 if (!perf_event_mmap_match(event, data)) 7164 return; 7165 7166 if (event->attr.mmap2) { 7167 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7168 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7169 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7170 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7171 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7172 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7173 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7174 } 7175 7176 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7177 ret = perf_output_begin(&handle, event, 7178 mmap_event->event_id.header.size); 7179 if (ret) 7180 goto out; 7181 7182 mmap_event->event_id.pid = perf_event_pid(event, current); 7183 mmap_event->event_id.tid = perf_event_tid(event, current); 7184 7185 perf_output_put(&handle, mmap_event->event_id); 7186 7187 if (event->attr.mmap2) { 7188 perf_output_put(&handle, mmap_event->maj); 7189 perf_output_put(&handle, mmap_event->min); 7190 perf_output_put(&handle, mmap_event->ino); 7191 perf_output_put(&handle, mmap_event->ino_generation); 7192 perf_output_put(&handle, mmap_event->prot); 7193 perf_output_put(&handle, mmap_event->flags); 7194 } 7195 7196 __output_copy(&handle, mmap_event->file_name, 7197 mmap_event->file_size); 7198 7199 perf_event__output_id_sample(event, &handle, &sample); 7200 7201 perf_output_end(&handle); 7202 out: 7203 mmap_event->event_id.header.size = size; 7204 } 7205 7206 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7207 { 7208 struct vm_area_struct *vma = mmap_event->vma; 7209 struct file *file = vma->vm_file; 7210 int maj = 0, min = 0; 7211 u64 ino = 0, gen = 0; 7212 u32 prot = 0, flags = 0; 7213 unsigned int size; 7214 char tmp[16]; 7215 char *buf = NULL; 7216 char *name; 7217 7218 if (vma->vm_flags & VM_READ) 7219 prot |= PROT_READ; 7220 if (vma->vm_flags & VM_WRITE) 7221 prot |= PROT_WRITE; 7222 if (vma->vm_flags & VM_EXEC) 7223 prot |= PROT_EXEC; 7224 7225 if (vma->vm_flags & VM_MAYSHARE) 7226 flags = MAP_SHARED; 7227 else 7228 flags = MAP_PRIVATE; 7229 7230 if (vma->vm_flags & VM_DENYWRITE) 7231 flags |= MAP_DENYWRITE; 7232 if (vma->vm_flags & VM_MAYEXEC) 7233 flags |= MAP_EXECUTABLE; 7234 if (vma->vm_flags & VM_LOCKED) 7235 flags |= MAP_LOCKED; 7236 if (vma->vm_flags & VM_HUGETLB) 7237 flags |= MAP_HUGETLB; 7238 7239 if (file) { 7240 struct inode *inode; 7241 dev_t dev; 7242 7243 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7244 if (!buf) { 7245 name = "//enomem"; 7246 goto cpy_name; 7247 } 7248 /* 7249 * d_path() works from the end of the rb backwards, so we 7250 * need to add enough zero bytes after the string to handle 7251 * the 64bit alignment we do later. 7252 */ 7253 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7254 if (IS_ERR(name)) { 7255 name = "//toolong"; 7256 goto cpy_name; 7257 } 7258 inode = file_inode(vma->vm_file); 7259 dev = inode->i_sb->s_dev; 7260 ino = inode->i_ino; 7261 gen = inode->i_generation; 7262 maj = MAJOR(dev); 7263 min = MINOR(dev); 7264 7265 goto got_name; 7266 } else { 7267 if (vma->vm_ops && vma->vm_ops->name) { 7268 name = (char *) vma->vm_ops->name(vma); 7269 if (name) 7270 goto cpy_name; 7271 } 7272 7273 name = (char *)arch_vma_name(vma); 7274 if (name) 7275 goto cpy_name; 7276 7277 if (vma->vm_start <= vma->vm_mm->start_brk && 7278 vma->vm_end >= vma->vm_mm->brk) { 7279 name = "[heap]"; 7280 goto cpy_name; 7281 } 7282 if (vma->vm_start <= vma->vm_mm->start_stack && 7283 vma->vm_end >= vma->vm_mm->start_stack) { 7284 name = "[stack]"; 7285 goto cpy_name; 7286 } 7287 7288 name = "//anon"; 7289 goto cpy_name; 7290 } 7291 7292 cpy_name: 7293 strlcpy(tmp, name, sizeof(tmp)); 7294 name = tmp; 7295 got_name: 7296 /* 7297 * Since our buffer works in 8 byte units we need to align our string 7298 * size to a multiple of 8. However, we must guarantee the tail end is 7299 * zero'd out to avoid leaking random bits to userspace. 7300 */ 7301 size = strlen(name)+1; 7302 while (!IS_ALIGNED(size, sizeof(u64))) 7303 name[size++] = '\0'; 7304 7305 mmap_event->file_name = name; 7306 mmap_event->file_size = size; 7307 mmap_event->maj = maj; 7308 mmap_event->min = min; 7309 mmap_event->ino = ino; 7310 mmap_event->ino_generation = gen; 7311 mmap_event->prot = prot; 7312 mmap_event->flags = flags; 7313 7314 if (!(vma->vm_flags & VM_EXEC)) 7315 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7316 7317 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7318 7319 perf_iterate_sb(perf_event_mmap_output, 7320 mmap_event, 7321 NULL); 7322 7323 kfree(buf); 7324 } 7325 7326 /* 7327 * Check whether inode and address range match filter criteria. 7328 */ 7329 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7330 struct file *file, unsigned long offset, 7331 unsigned long size) 7332 { 7333 if (filter->inode != file_inode(file)) 7334 return false; 7335 7336 if (filter->offset > offset + size) 7337 return false; 7338 7339 if (filter->offset + filter->size < offset) 7340 return false; 7341 7342 return true; 7343 } 7344 7345 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7346 { 7347 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7348 struct vm_area_struct *vma = data; 7349 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7350 struct file *file = vma->vm_file; 7351 struct perf_addr_filter *filter; 7352 unsigned int restart = 0, count = 0; 7353 7354 if (!has_addr_filter(event)) 7355 return; 7356 7357 if (!file) 7358 return; 7359 7360 raw_spin_lock_irqsave(&ifh->lock, flags); 7361 list_for_each_entry(filter, &ifh->list, entry) { 7362 if (perf_addr_filter_match(filter, file, off, 7363 vma->vm_end - vma->vm_start)) { 7364 event->addr_filters_offs[count] = vma->vm_start; 7365 restart++; 7366 } 7367 7368 count++; 7369 } 7370 7371 if (restart) 7372 event->addr_filters_gen++; 7373 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7374 7375 if (restart) 7376 perf_event_stop(event, 1); 7377 } 7378 7379 /* 7380 * Adjust all task's events' filters to the new vma 7381 */ 7382 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7383 { 7384 struct perf_event_context *ctx; 7385 int ctxn; 7386 7387 /* 7388 * Data tracing isn't supported yet and as such there is no need 7389 * to keep track of anything that isn't related to executable code: 7390 */ 7391 if (!(vma->vm_flags & VM_EXEC)) 7392 return; 7393 7394 rcu_read_lock(); 7395 for_each_task_context_nr(ctxn) { 7396 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7397 if (!ctx) 7398 continue; 7399 7400 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7401 } 7402 rcu_read_unlock(); 7403 } 7404 7405 void perf_event_mmap(struct vm_area_struct *vma) 7406 { 7407 struct perf_mmap_event mmap_event; 7408 7409 if (!atomic_read(&nr_mmap_events)) 7410 return; 7411 7412 mmap_event = (struct perf_mmap_event){ 7413 .vma = vma, 7414 /* .file_name */ 7415 /* .file_size */ 7416 .event_id = { 7417 .header = { 7418 .type = PERF_RECORD_MMAP, 7419 .misc = PERF_RECORD_MISC_USER, 7420 /* .size */ 7421 }, 7422 /* .pid */ 7423 /* .tid */ 7424 .start = vma->vm_start, 7425 .len = vma->vm_end - vma->vm_start, 7426 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7427 }, 7428 /* .maj (attr_mmap2 only) */ 7429 /* .min (attr_mmap2 only) */ 7430 /* .ino (attr_mmap2 only) */ 7431 /* .ino_generation (attr_mmap2 only) */ 7432 /* .prot (attr_mmap2 only) */ 7433 /* .flags (attr_mmap2 only) */ 7434 }; 7435 7436 perf_addr_filters_adjust(vma); 7437 perf_event_mmap_event(&mmap_event); 7438 } 7439 7440 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7441 unsigned long size, u64 flags) 7442 { 7443 struct perf_output_handle handle; 7444 struct perf_sample_data sample; 7445 struct perf_aux_event { 7446 struct perf_event_header header; 7447 u64 offset; 7448 u64 size; 7449 u64 flags; 7450 } rec = { 7451 .header = { 7452 .type = PERF_RECORD_AUX, 7453 .misc = 0, 7454 .size = sizeof(rec), 7455 }, 7456 .offset = head, 7457 .size = size, 7458 .flags = flags, 7459 }; 7460 int ret; 7461 7462 perf_event_header__init_id(&rec.header, &sample, event); 7463 ret = perf_output_begin(&handle, event, rec.header.size); 7464 7465 if (ret) 7466 return; 7467 7468 perf_output_put(&handle, rec); 7469 perf_event__output_id_sample(event, &handle, &sample); 7470 7471 perf_output_end(&handle); 7472 } 7473 7474 /* 7475 * Lost/dropped samples logging 7476 */ 7477 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7478 { 7479 struct perf_output_handle handle; 7480 struct perf_sample_data sample; 7481 int ret; 7482 7483 struct { 7484 struct perf_event_header header; 7485 u64 lost; 7486 } lost_samples_event = { 7487 .header = { 7488 .type = PERF_RECORD_LOST_SAMPLES, 7489 .misc = 0, 7490 .size = sizeof(lost_samples_event), 7491 }, 7492 .lost = lost, 7493 }; 7494 7495 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7496 7497 ret = perf_output_begin(&handle, event, 7498 lost_samples_event.header.size); 7499 if (ret) 7500 return; 7501 7502 perf_output_put(&handle, lost_samples_event); 7503 perf_event__output_id_sample(event, &handle, &sample); 7504 perf_output_end(&handle); 7505 } 7506 7507 /* 7508 * context_switch tracking 7509 */ 7510 7511 struct perf_switch_event { 7512 struct task_struct *task; 7513 struct task_struct *next_prev; 7514 7515 struct { 7516 struct perf_event_header header; 7517 u32 next_prev_pid; 7518 u32 next_prev_tid; 7519 } event_id; 7520 }; 7521 7522 static int perf_event_switch_match(struct perf_event *event) 7523 { 7524 return event->attr.context_switch; 7525 } 7526 7527 static void perf_event_switch_output(struct perf_event *event, void *data) 7528 { 7529 struct perf_switch_event *se = data; 7530 struct perf_output_handle handle; 7531 struct perf_sample_data sample; 7532 int ret; 7533 7534 if (!perf_event_switch_match(event)) 7535 return; 7536 7537 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7538 if (event->ctx->task) { 7539 se->event_id.header.type = PERF_RECORD_SWITCH; 7540 se->event_id.header.size = sizeof(se->event_id.header); 7541 } else { 7542 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7543 se->event_id.header.size = sizeof(se->event_id); 7544 se->event_id.next_prev_pid = 7545 perf_event_pid(event, se->next_prev); 7546 se->event_id.next_prev_tid = 7547 perf_event_tid(event, se->next_prev); 7548 } 7549 7550 perf_event_header__init_id(&se->event_id.header, &sample, event); 7551 7552 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7553 if (ret) 7554 return; 7555 7556 if (event->ctx->task) 7557 perf_output_put(&handle, se->event_id.header); 7558 else 7559 perf_output_put(&handle, se->event_id); 7560 7561 perf_event__output_id_sample(event, &handle, &sample); 7562 7563 perf_output_end(&handle); 7564 } 7565 7566 static void perf_event_switch(struct task_struct *task, 7567 struct task_struct *next_prev, bool sched_in) 7568 { 7569 struct perf_switch_event switch_event; 7570 7571 /* N.B. caller checks nr_switch_events != 0 */ 7572 7573 switch_event = (struct perf_switch_event){ 7574 .task = task, 7575 .next_prev = next_prev, 7576 .event_id = { 7577 .header = { 7578 /* .type */ 7579 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7580 /* .size */ 7581 }, 7582 /* .next_prev_pid */ 7583 /* .next_prev_tid */ 7584 }, 7585 }; 7586 7587 perf_iterate_sb(perf_event_switch_output, 7588 &switch_event, 7589 NULL); 7590 } 7591 7592 /* 7593 * IRQ throttle logging 7594 */ 7595 7596 static void perf_log_throttle(struct perf_event *event, int enable) 7597 { 7598 struct perf_output_handle handle; 7599 struct perf_sample_data sample; 7600 int ret; 7601 7602 struct { 7603 struct perf_event_header header; 7604 u64 time; 7605 u64 id; 7606 u64 stream_id; 7607 } throttle_event = { 7608 .header = { 7609 .type = PERF_RECORD_THROTTLE, 7610 .misc = 0, 7611 .size = sizeof(throttle_event), 7612 }, 7613 .time = perf_event_clock(event), 7614 .id = primary_event_id(event), 7615 .stream_id = event->id, 7616 }; 7617 7618 if (enable) 7619 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7620 7621 perf_event_header__init_id(&throttle_event.header, &sample, event); 7622 7623 ret = perf_output_begin(&handle, event, 7624 throttle_event.header.size); 7625 if (ret) 7626 return; 7627 7628 perf_output_put(&handle, throttle_event); 7629 perf_event__output_id_sample(event, &handle, &sample); 7630 perf_output_end(&handle); 7631 } 7632 7633 void perf_event_itrace_started(struct perf_event *event) 7634 { 7635 event->attach_state |= PERF_ATTACH_ITRACE; 7636 } 7637 7638 static void perf_log_itrace_start(struct perf_event *event) 7639 { 7640 struct perf_output_handle handle; 7641 struct perf_sample_data sample; 7642 struct perf_aux_event { 7643 struct perf_event_header header; 7644 u32 pid; 7645 u32 tid; 7646 } rec; 7647 int ret; 7648 7649 if (event->parent) 7650 event = event->parent; 7651 7652 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7653 event->attach_state & PERF_ATTACH_ITRACE) 7654 return; 7655 7656 rec.header.type = PERF_RECORD_ITRACE_START; 7657 rec.header.misc = 0; 7658 rec.header.size = sizeof(rec); 7659 rec.pid = perf_event_pid(event, current); 7660 rec.tid = perf_event_tid(event, current); 7661 7662 perf_event_header__init_id(&rec.header, &sample, event); 7663 ret = perf_output_begin(&handle, event, rec.header.size); 7664 7665 if (ret) 7666 return; 7667 7668 perf_output_put(&handle, rec); 7669 perf_event__output_id_sample(event, &handle, &sample); 7670 7671 perf_output_end(&handle); 7672 } 7673 7674 static int 7675 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7676 { 7677 struct hw_perf_event *hwc = &event->hw; 7678 int ret = 0; 7679 u64 seq; 7680 7681 seq = __this_cpu_read(perf_throttled_seq); 7682 if (seq != hwc->interrupts_seq) { 7683 hwc->interrupts_seq = seq; 7684 hwc->interrupts = 1; 7685 } else { 7686 hwc->interrupts++; 7687 if (unlikely(throttle 7688 && hwc->interrupts >= max_samples_per_tick)) { 7689 __this_cpu_inc(perf_throttled_count); 7690 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7691 hwc->interrupts = MAX_INTERRUPTS; 7692 perf_log_throttle(event, 0); 7693 ret = 1; 7694 } 7695 } 7696 7697 if (event->attr.freq) { 7698 u64 now = perf_clock(); 7699 s64 delta = now - hwc->freq_time_stamp; 7700 7701 hwc->freq_time_stamp = now; 7702 7703 if (delta > 0 && delta < 2*TICK_NSEC) 7704 perf_adjust_period(event, delta, hwc->last_period, true); 7705 } 7706 7707 return ret; 7708 } 7709 7710 int perf_event_account_interrupt(struct perf_event *event) 7711 { 7712 return __perf_event_account_interrupt(event, 1); 7713 } 7714 7715 /* 7716 * Generic event overflow handling, sampling. 7717 */ 7718 7719 static int __perf_event_overflow(struct perf_event *event, 7720 int throttle, struct perf_sample_data *data, 7721 struct pt_regs *regs) 7722 { 7723 int events = atomic_read(&event->event_limit); 7724 int ret = 0; 7725 7726 /* 7727 * Non-sampling counters might still use the PMI to fold short 7728 * hardware counters, ignore those. 7729 */ 7730 if (unlikely(!is_sampling_event(event))) 7731 return 0; 7732 7733 ret = __perf_event_account_interrupt(event, throttle); 7734 7735 /* 7736 * XXX event_limit might not quite work as expected on inherited 7737 * events 7738 */ 7739 7740 event->pending_kill = POLL_IN; 7741 if (events && atomic_dec_and_test(&event->event_limit)) { 7742 ret = 1; 7743 event->pending_kill = POLL_HUP; 7744 7745 perf_event_disable_inatomic(event); 7746 } 7747 7748 READ_ONCE(event->overflow_handler)(event, data, regs); 7749 7750 if (*perf_event_fasync(event) && event->pending_kill) { 7751 event->pending_wakeup = 1; 7752 irq_work_queue(&event->pending); 7753 } 7754 7755 return ret; 7756 } 7757 7758 int perf_event_overflow(struct perf_event *event, 7759 struct perf_sample_data *data, 7760 struct pt_regs *regs) 7761 { 7762 return __perf_event_overflow(event, 1, data, regs); 7763 } 7764 7765 /* 7766 * Generic software event infrastructure 7767 */ 7768 7769 struct swevent_htable { 7770 struct swevent_hlist *swevent_hlist; 7771 struct mutex hlist_mutex; 7772 int hlist_refcount; 7773 7774 /* Recursion avoidance in each contexts */ 7775 int recursion[PERF_NR_CONTEXTS]; 7776 }; 7777 7778 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7779 7780 /* 7781 * We directly increment event->count and keep a second value in 7782 * event->hw.period_left to count intervals. This period event 7783 * is kept in the range [-sample_period, 0] so that we can use the 7784 * sign as trigger. 7785 */ 7786 7787 u64 perf_swevent_set_period(struct perf_event *event) 7788 { 7789 struct hw_perf_event *hwc = &event->hw; 7790 u64 period = hwc->last_period; 7791 u64 nr, offset; 7792 s64 old, val; 7793 7794 hwc->last_period = hwc->sample_period; 7795 7796 again: 7797 old = val = local64_read(&hwc->period_left); 7798 if (val < 0) 7799 return 0; 7800 7801 nr = div64_u64(period + val, period); 7802 offset = nr * period; 7803 val -= offset; 7804 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7805 goto again; 7806 7807 return nr; 7808 } 7809 7810 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7811 struct perf_sample_data *data, 7812 struct pt_regs *regs) 7813 { 7814 struct hw_perf_event *hwc = &event->hw; 7815 int throttle = 0; 7816 7817 if (!overflow) 7818 overflow = perf_swevent_set_period(event); 7819 7820 if (hwc->interrupts == MAX_INTERRUPTS) 7821 return; 7822 7823 for (; overflow; overflow--) { 7824 if (__perf_event_overflow(event, throttle, 7825 data, regs)) { 7826 /* 7827 * We inhibit the overflow from happening when 7828 * hwc->interrupts == MAX_INTERRUPTS. 7829 */ 7830 break; 7831 } 7832 throttle = 1; 7833 } 7834 } 7835 7836 static void perf_swevent_event(struct perf_event *event, u64 nr, 7837 struct perf_sample_data *data, 7838 struct pt_regs *regs) 7839 { 7840 struct hw_perf_event *hwc = &event->hw; 7841 7842 local64_add(nr, &event->count); 7843 7844 if (!regs) 7845 return; 7846 7847 if (!is_sampling_event(event)) 7848 return; 7849 7850 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7851 data->period = nr; 7852 return perf_swevent_overflow(event, 1, data, regs); 7853 } else 7854 data->period = event->hw.last_period; 7855 7856 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7857 return perf_swevent_overflow(event, 1, data, regs); 7858 7859 if (local64_add_negative(nr, &hwc->period_left)) 7860 return; 7861 7862 perf_swevent_overflow(event, 0, data, regs); 7863 } 7864 7865 static int perf_exclude_event(struct perf_event *event, 7866 struct pt_regs *regs) 7867 { 7868 if (event->hw.state & PERF_HES_STOPPED) 7869 return 1; 7870 7871 if (regs) { 7872 if (event->attr.exclude_user && user_mode(regs)) 7873 return 1; 7874 7875 if (event->attr.exclude_kernel && !user_mode(regs)) 7876 return 1; 7877 } 7878 7879 return 0; 7880 } 7881 7882 static int perf_swevent_match(struct perf_event *event, 7883 enum perf_type_id type, 7884 u32 event_id, 7885 struct perf_sample_data *data, 7886 struct pt_regs *regs) 7887 { 7888 if (event->attr.type != type) 7889 return 0; 7890 7891 if (event->attr.config != event_id) 7892 return 0; 7893 7894 if (perf_exclude_event(event, regs)) 7895 return 0; 7896 7897 return 1; 7898 } 7899 7900 static inline u64 swevent_hash(u64 type, u32 event_id) 7901 { 7902 u64 val = event_id | (type << 32); 7903 7904 return hash_64(val, SWEVENT_HLIST_BITS); 7905 } 7906 7907 static inline struct hlist_head * 7908 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7909 { 7910 u64 hash = swevent_hash(type, event_id); 7911 7912 return &hlist->heads[hash]; 7913 } 7914 7915 /* For the read side: events when they trigger */ 7916 static inline struct hlist_head * 7917 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7918 { 7919 struct swevent_hlist *hlist; 7920 7921 hlist = rcu_dereference(swhash->swevent_hlist); 7922 if (!hlist) 7923 return NULL; 7924 7925 return __find_swevent_head(hlist, type, event_id); 7926 } 7927 7928 /* For the event head insertion and removal in the hlist */ 7929 static inline struct hlist_head * 7930 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7931 { 7932 struct swevent_hlist *hlist; 7933 u32 event_id = event->attr.config; 7934 u64 type = event->attr.type; 7935 7936 /* 7937 * Event scheduling is always serialized against hlist allocation 7938 * and release. Which makes the protected version suitable here. 7939 * The context lock guarantees that. 7940 */ 7941 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7942 lockdep_is_held(&event->ctx->lock)); 7943 if (!hlist) 7944 return NULL; 7945 7946 return __find_swevent_head(hlist, type, event_id); 7947 } 7948 7949 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7950 u64 nr, 7951 struct perf_sample_data *data, 7952 struct pt_regs *regs) 7953 { 7954 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7955 struct perf_event *event; 7956 struct hlist_head *head; 7957 7958 rcu_read_lock(); 7959 head = find_swevent_head_rcu(swhash, type, event_id); 7960 if (!head) 7961 goto end; 7962 7963 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7964 if (perf_swevent_match(event, type, event_id, data, regs)) 7965 perf_swevent_event(event, nr, data, regs); 7966 } 7967 end: 7968 rcu_read_unlock(); 7969 } 7970 7971 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7972 7973 int perf_swevent_get_recursion_context(void) 7974 { 7975 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7976 7977 return get_recursion_context(swhash->recursion); 7978 } 7979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7980 7981 void perf_swevent_put_recursion_context(int rctx) 7982 { 7983 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7984 7985 put_recursion_context(swhash->recursion, rctx); 7986 } 7987 7988 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7989 { 7990 struct perf_sample_data data; 7991 7992 if (WARN_ON_ONCE(!regs)) 7993 return; 7994 7995 perf_sample_data_init(&data, addr, 0); 7996 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7997 } 7998 7999 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8000 { 8001 int rctx; 8002 8003 preempt_disable_notrace(); 8004 rctx = perf_swevent_get_recursion_context(); 8005 if (unlikely(rctx < 0)) 8006 goto fail; 8007 8008 ___perf_sw_event(event_id, nr, regs, addr); 8009 8010 perf_swevent_put_recursion_context(rctx); 8011 fail: 8012 preempt_enable_notrace(); 8013 } 8014 8015 static void perf_swevent_read(struct perf_event *event) 8016 { 8017 } 8018 8019 static int perf_swevent_add(struct perf_event *event, int flags) 8020 { 8021 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8022 struct hw_perf_event *hwc = &event->hw; 8023 struct hlist_head *head; 8024 8025 if (is_sampling_event(event)) { 8026 hwc->last_period = hwc->sample_period; 8027 perf_swevent_set_period(event); 8028 } 8029 8030 hwc->state = !(flags & PERF_EF_START); 8031 8032 head = find_swevent_head(swhash, event); 8033 if (WARN_ON_ONCE(!head)) 8034 return -EINVAL; 8035 8036 hlist_add_head_rcu(&event->hlist_entry, head); 8037 perf_event_update_userpage(event); 8038 8039 return 0; 8040 } 8041 8042 static void perf_swevent_del(struct perf_event *event, int flags) 8043 { 8044 hlist_del_rcu(&event->hlist_entry); 8045 } 8046 8047 static void perf_swevent_start(struct perf_event *event, int flags) 8048 { 8049 event->hw.state = 0; 8050 } 8051 8052 static void perf_swevent_stop(struct perf_event *event, int flags) 8053 { 8054 event->hw.state = PERF_HES_STOPPED; 8055 } 8056 8057 /* Deref the hlist from the update side */ 8058 static inline struct swevent_hlist * 8059 swevent_hlist_deref(struct swevent_htable *swhash) 8060 { 8061 return rcu_dereference_protected(swhash->swevent_hlist, 8062 lockdep_is_held(&swhash->hlist_mutex)); 8063 } 8064 8065 static void swevent_hlist_release(struct swevent_htable *swhash) 8066 { 8067 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8068 8069 if (!hlist) 8070 return; 8071 8072 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8073 kfree_rcu(hlist, rcu_head); 8074 } 8075 8076 static void swevent_hlist_put_cpu(int cpu) 8077 { 8078 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8079 8080 mutex_lock(&swhash->hlist_mutex); 8081 8082 if (!--swhash->hlist_refcount) 8083 swevent_hlist_release(swhash); 8084 8085 mutex_unlock(&swhash->hlist_mutex); 8086 } 8087 8088 static void swevent_hlist_put(void) 8089 { 8090 int cpu; 8091 8092 for_each_possible_cpu(cpu) 8093 swevent_hlist_put_cpu(cpu); 8094 } 8095 8096 static int swevent_hlist_get_cpu(int cpu) 8097 { 8098 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8099 int err = 0; 8100 8101 mutex_lock(&swhash->hlist_mutex); 8102 if (!swevent_hlist_deref(swhash) && 8103 cpumask_test_cpu(cpu, perf_online_mask)) { 8104 struct swevent_hlist *hlist; 8105 8106 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8107 if (!hlist) { 8108 err = -ENOMEM; 8109 goto exit; 8110 } 8111 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8112 } 8113 swhash->hlist_refcount++; 8114 exit: 8115 mutex_unlock(&swhash->hlist_mutex); 8116 8117 return err; 8118 } 8119 8120 static int swevent_hlist_get(void) 8121 { 8122 int err, cpu, failed_cpu; 8123 8124 mutex_lock(&pmus_lock); 8125 for_each_possible_cpu(cpu) { 8126 err = swevent_hlist_get_cpu(cpu); 8127 if (err) { 8128 failed_cpu = cpu; 8129 goto fail; 8130 } 8131 } 8132 mutex_unlock(&pmus_lock); 8133 return 0; 8134 fail: 8135 for_each_possible_cpu(cpu) { 8136 if (cpu == failed_cpu) 8137 break; 8138 swevent_hlist_put_cpu(cpu); 8139 } 8140 mutex_unlock(&pmus_lock); 8141 return err; 8142 } 8143 8144 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8145 8146 static void sw_perf_event_destroy(struct perf_event *event) 8147 { 8148 u64 event_id = event->attr.config; 8149 8150 WARN_ON(event->parent); 8151 8152 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8153 swevent_hlist_put(); 8154 } 8155 8156 static int perf_swevent_init(struct perf_event *event) 8157 { 8158 u64 event_id = event->attr.config; 8159 8160 if (event->attr.type != PERF_TYPE_SOFTWARE) 8161 return -ENOENT; 8162 8163 /* 8164 * no branch sampling for software events 8165 */ 8166 if (has_branch_stack(event)) 8167 return -EOPNOTSUPP; 8168 8169 switch (event_id) { 8170 case PERF_COUNT_SW_CPU_CLOCK: 8171 case PERF_COUNT_SW_TASK_CLOCK: 8172 return -ENOENT; 8173 8174 default: 8175 break; 8176 } 8177 8178 if (event_id >= PERF_COUNT_SW_MAX) 8179 return -ENOENT; 8180 8181 if (!event->parent) { 8182 int err; 8183 8184 err = swevent_hlist_get(); 8185 if (err) 8186 return err; 8187 8188 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8189 event->destroy = sw_perf_event_destroy; 8190 } 8191 8192 return 0; 8193 } 8194 8195 static struct pmu perf_swevent = { 8196 .task_ctx_nr = perf_sw_context, 8197 8198 .capabilities = PERF_PMU_CAP_NO_NMI, 8199 8200 .event_init = perf_swevent_init, 8201 .add = perf_swevent_add, 8202 .del = perf_swevent_del, 8203 .start = perf_swevent_start, 8204 .stop = perf_swevent_stop, 8205 .read = perf_swevent_read, 8206 }; 8207 8208 #ifdef CONFIG_EVENT_TRACING 8209 8210 static int perf_tp_filter_match(struct perf_event *event, 8211 struct perf_sample_data *data) 8212 { 8213 void *record = data->raw->frag.data; 8214 8215 /* only top level events have filters set */ 8216 if (event->parent) 8217 event = event->parent; 8218 8219 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8220 return 1; 8221 return 0; 8222 } 8223 8224 static int perf_tp_event_match(struct perf_event *event, 8225 struct perf_sample_data *data, 8226 struct pt_regs *regs) 8227 { 8228 if (event->hw.state & PERF_HES_STOPPED) 8229 return 0; 8230 /* 8231 * All tracepoints are from kernel-space. 8232 */ 8233 if (event->attr.exclude_kernel) 8234 return 0; 8235 8236 if (!perf_tp_filter_match(event, data)) 8237 return 0; 8238 8239 return 1; 8240 } 8241 8242 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8243 struct trace_event_call *call, u64 count, 8244 struct pt_regs *regs, struct hlist_head *head, 8245 struct task_struct *task) 8246 { 8247 if (bpf_prog_array_valid(call)) { 8248 *(struct pt_regs **)raw_data = regs; 8249 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8250 perf_swevent_put_recursion_context(rctx); 8251 return; 8252 } 8253 } 8254 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8255 rctx, task); 8256 } 8257 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8258 8259 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8260 struct pt_regs *regs, struct hlist_head *head, int rctx, 8261 struct task_struct *task) 8262 { 8263 struct perf_sample_data data; 8264 struct perf_event *event; 8265 8266 struct perf_raw_record raw = { 8267 .frag = { 8268 .size = entry_size, 8269 .data = record, 8270 }, 8271 }; 8272 8273 perf_sample_data_init(&data, 0, 0); 8274 data.raw = &raw; 8275 8276 perf_trace_buf_update(record, event_type); 8277 8278 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8279 if (perf_tp_event_match(event, &data, regs)) 8280 perf_swevent_event(event, count, &data, regs); 8281 } 8282 8283 /* 8284 * If we got specified a target task, also iterate its context and 8285 * deliver this event there too. 8286 */ 8287 if (task && task != current) { 8288 struct perf_event_context *ctx; 8289 struct trace_entry *entry = record; 8290 8291 rcu_read_lock(); 8292 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8293 if (!ctx) 8294 goto unlock; 8295 8296 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8297 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8298 continue; 8299 if (event->attr.config != entry->type) 8300 continue; 8301 if (perf_tp_event_match(event, &data, regs)) 8302 perf_swevent_event(event, count, &data, regs); 8303 } 8304 unlock: 8305 rcu_read_unlock(); 8306 } 8307 8308 perf_swevent_put_recursion_context(rctx); 8309 } 8310 EXPORT_SYMBOL_GPL(perf_tp_event); 8311 8312 static void tp_perf_event_destroy(struct perf_event *event) 8313 { 8314 perf_trace_destroy(event); 8315 } 8316 8317 static int perf_tp_event_init(struct perf_event *event) 8318 { 8319 int err; 8320 8321 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8322 return -ENOENT; 8323 8324 /* 8325 * no branch sampling for tracepoint events 8326 */ 8327 if (has_branch_stack(event)) 8328 return -EOPNOTSUPP; 8329 8330 err = perf_trace_init(event); 8331 if (err) 8332 return err; 8333 8334 event->destroy = tp_perf_event_destroy; 8335 8336 return 0; 8337 } 8338 8339 static struct pmu perf_tracepoint = { 8340 .task_ctx_nr = perf_sw_context, 8341 8342 .event_init = perf_tp_event_init, 8343 .add = perf_trace_add, 8344 .del = perf_trace_del, 8345 .start = perf_swevent_start, 8346 .stop = perf_swevent_stop, 8347 .read = perf_swevent_read, 8348 }; 8349 8350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8351 /* 8352 * Flags in config, used by dynamic PMU kprobe and uprobe 8353 * The flags should match following PMU_FORMAT_ATTR(). 8354 * 8355 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8356 * if not set, create kprobe/uprobe 8357 */ 8358 enum perf_probe_config { 8359 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8360 }; 8361 8362 PMU_FORMAT_ATTR(retprobe, "config:0"); 8363 8364 static struct attribute *probe_attrs[] = { 8365 &format_attr_retprobe.attr, 8366 NULL, 8367 }; 8368 8369 static struct attribute_group probe_format_group = { 8370 .name = "format", 8371 .attrs = probe_attrs, 8372 }; 8373 8374 static const struct attribute_group *probe_attr_groups[] = { 8375 &probe_format_group, 8376 NULL, 8377 }; 8378 #endif 8379 8380 #ifdef CONFIG_KPROBE_EVENTS 8381 static int perf_kprobe_event_init(struct perf_event *event); 8382 static struct pmu perf_kprobe = { 8383 .task_ctx_nr = perf_sw_context, 8384 .event_init = perf_kprobe_event_init, 8385 .add = perf_trace_add, 8386 .del = perf_trace_del, 8387 .start = perf_swevent_start, 8388 .stop = perf_swevent_stop, 8389 .read = perf_swevent_read, 8390 .attr_groups = probe_attr_groups, 8391 }; 8392 8393 static int perf_kprobe_event_init(struct perf_event *event) 8394 { 8395 int err; 8396 bool is_retprobe; 8397 8398 if (event->attr.type != perf_kprobe.type) 8399 return -ENOENT; 8400 /* 8401 * no branch sampling for probe events 8402 */ 8403 if (has_branch_stack(event)) 8404 return -EOPNOTSUPP; 8405 8406 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8407 err = perf_kprobe_init(event, is_retprobe); 8408 if (err) 8409 return err; 8410 8411 event->destroy = perf_kprobe_destroy; 8412 8413 return 0; 8414 } 8415 #endif /* CONFIG_KPROBE_EVENTS */ 8416 8417 #ifdef CONFIG_UPROBE_EVENTS 8418 static int perf_uprobe_event_init(struct perf_event *event); 8419 static struct pmu perf_uprobe = { 8420 .task_ctx_nr = perf_sw_context, 8421 .event_init = perf_uprobe_event_init, 8422 .add = perf_trace_add, 8423 .del = perf_trace_del, 8424 .start = perf_swevent_start, 8425 .stop = perf_swevent_stop, 8426 .read = perf_swevent_read, 8427 .attr_groups = probe_attr_groups, 8428 }; 8429 8430 static int perf_uprobe_event_init(struct perf_event *event) 8431 { 8432 int err; 8433 bool is_retprobe; 8434 8435 if (event->attr.type != perf_uprobe.type) 8436 return -ENOENT; 8437 /* 8438 * no branch sampling for probe events 8439 */ 8440 if (has_branch_stack(event)) 8441 return -EOPNOTSUPP; 8442 8443 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8444 err = perf_uprobe_init(event, is_retprobe); 8445 if (err) 8446 return err; 8447 8448 event->destroy = perf_uprobe_destroy; 8449 8450 return 0; 8451 } 8452 #endif /* CONFIG_UPROBE_EVENTS */ 8453 8454 static inline void perf_tp_register(void) 8455 { 8456 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8457 #ifdef CONFIG_KPROBE_EVENTS 8458 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8459 #endif 8460 #ifdef CONFIG_UPROBE_EVENTS 8461 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8462 #endif 8463 } 8464 8465 static void perf_event_free_filter(struct perf_event *event) 8466 { 8467 ftrace_profile_free_filter(event); 8468 } 8469 8470 #ifdef CONFIG_BPF_SYSCALL 8471 static void bpf_overflow_handler(struct perf_event *event, 8472 struct perf_sample_data *data, 8473 struct pt_regs *regs) 8474 { 8475 struct bpf_perf_event_data_kern ctx = { 8476 .data = data, 8477 .event = event, 8478 }; 8479 int ret = 0; 8480 8481 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8482 preempt_disable(); 8483 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8484 goto out; 8485 rcu_read_lock(); 8486 ret = BPF_PROG_RUN(event->prog, &ctx); 8487 rcu_read_unlock(); 8488 out: 8489 __this_cpu_dec(bpf_prog_active); 8490 preempt_enable(); 8491 if (!ret) 8492 return; 8493 8494 event->orig_overflow_handler(event, data, regs); 8495 } 8496 8497 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8498 { 8499 struct bpf_prog *prog; 8500 8501 if (event->overflow_handler_context) 8502 /* hw breakpoint or kernel counter */ 8503 return -EINVAL; 8504 8505 if (event->prog) 8506 return -EEXIST; 8507 8508 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8509 if (IS_ERR(prog)) 8510 return PTR_ERR(prog); 8511 8512 event->prog = prog; 8513 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8514 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8515 return 0; 8516 } 8517 8518 static void perf_event_free_bpf_handler(struct perf_event *event) 8519 { 8520 struct bpf_prog *prog = event->prog; 8521 8522 if (!prog) 8523 return; 8524 8525 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8526 event->prog = NULL; 8527 bpf_prog_put(prog); 8528 } 8529 #else 8530 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8531 { 8532 return -EOPNOTSUPP; 8533 } 8534 static void perf_event_free_bpf_handler(struct perf_event *event) 8535 { 8536 } 8537 #endif 8538 8539 /* 8540 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8541 * with perf_event_open() 8542 */ 8543 static inline bool perf_event_is_tracing(struct perf_event *event) 8544 { 8545 if (event->pmu == &perf_tracepoint) 8546 return true; 8547 #ifdef CONFIG_KPROBE_EVENTS 8548 if (event->pmu == &perf_kprobe) 8549 return true; 8550 #endif 8551 #ifdef CONFIG_UPROBE_EVENTS 8552 if (event->pmu == &perf_uprobe) 8553 return true; 8554 #endif 8555 return false; 8556 } 8557 8558 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8559 { 8560 bool is_kprobe, is_tracepoint, is_syscall_tp; 8561 struct bpf_prog *prog; 8562 int ret; 8563 8564 if (!perf_event_is_tracing(event)) 8565 return perf_event_set_bpf_handler(event, prog_fd); 8566 8567 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8568 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8569 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8570 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8571 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8572 return -EINVAL; 8573 8574 prog = bpf_prog_get(prog_fd); 8575 if (IS_ERR(prog)) 8576 return PTR_ERR(prog); 8577 8578 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8579 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8580 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8581 /* valid fd, but invalid bpf program type */ 8582 bpf_prog_put(prog); 8583 return -EINVAL; 8584 } 8585 8586 /* Kprobe override only works for kprobes, not uprobes. */ 8587 if (prog->kprobe_override && 8588 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8589 bpf_prog_put(prog); 8590 return -EINVAL; 8591 } 8592 8593 if (is_tracepoint || is_syscall_tp) { 8594 int off = trace_event_get_offsets(event->tp_event); 8595 8596 if (prog->aux->max_ctx_offset > off) { 8597 bpf_prog_put(prog); 8598 return -EACCES; 8599 } 8600 } 8601 8602 ret = perf_event_attach_bpf_prog(event, prog); 8603 if (ret) 8604 bpf_prog_put(prog); 8605 return ret; 8606 } 8607 8608 static void perf_event_free_bpf_prog(struct perf_event *event) 8609 { 8610 if (!perf_event_is_tracing(event)) { 8611 perf_event_free_bpf_handler(event); 8612 return; 8613 } 8614 perf_event_detach_bpf_prog(event); 8615 } 8616 8617 #else 8618 8619 static inline void perf_tp_register(void) 8620 { 8621 } 8622 8623 static void perf_event_free_filter(struct perf_event *event) 8624 { 8625 } 8626 8627 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8628 { 8629 return -ENOENT; 8630 } 8631 8632 static void perf_event_free_bpf_prog(struct perf_event *event) 8633 { 8634 } 8635 #endif /* CONFIG_EVENT_TRACING */ 8636 8637 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8638 void perf_bp_event(struct perf_event *bp, void *data) 8639 { 8640 struct perf_sample_data sample; 8641 struct pt_regs *regs = data; 8642 8643 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8644 8645 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8646 perf_swevent_event(bp, 1, &sample, regs); 8647 } 8648 #endif 8649 8650 /* 8651 * Allocate a new address filter 8652 */ 8653 static struct perf_addr_filter * 8654 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8655 { 8656 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8657 struct perf_addr_filter *filter; 8658 8659 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8660 if (!filter) 8661 return NULL; 8662 8663 INIT_LIST_HEAD(&filter->entry); 8664 list_add_tail(&filter->entry, filters); 8665 8666 return filter; 8667 } 8668 8669 static void free_filters_list(struct list_head *filters) 8670 { 8671 struct perf_addr_filter *filter, *iter; 8672 8673 list_for_each_entry_safe(filter, iter, filters, entry) { 8674 if (filter->inode) 8675 iput(filter->inode); 8676 list_del(&filter->entry); 8677 kfree(filter); 8678 } 8679 } 8680 8681 /* 8682 * Free existing address filters and optionally install new ones 8683 */ 8684 static void perf_addr_filters_splice(struct perf_event *event, 8685 struct list_head *head) 8686 { 8687 unsigned long flags; 8688 LIST_HEAD(list); 8689 8690 if (!has_addr_filter(event)) 8691 return; 8692 8693 /* don't bother with children, they don't have their own filters */ 8694 if (event->parent) 8695 return; 8696 8697 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8698 8699 list_splice_init(&event->addr_filters.list, &list); 8700 if (head) 8701 list_splice(head, &event->addr_filters.list); 8702 8703 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8704 8705 free_filters_list(&list); 8706 } 8707 8708 /* 8709 * Scan through mm's vmas and see if one of them matches the 8710 * @filter; if so, adjust filter's address range. 8711 * Called with mm::mmap_sem down for reading. 8712 */ 8713 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8714 struct mm_struct *mm) 8715 { 8716 struct vm_area_struct *vma; 8717 8718 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8719 struct file *file = vma->vm_file; 8720 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8721 unsigned long vma_size = vma->vm_end - vma->vm_start; 8722 8723 if (!file) 8724 continue; 8725 8726 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8727 continue; 8728 8729 return vma->vm_start; 8730 } 8731 8732 return 0; 8733 } 8734 8735 /* 8736 * Update event's address range filters based on the 8737 * task's existing mappings, if any. 8738 */ 8739 static void perf_event_addr_filters_apply(struct perf_event *event) 8740 { 8741 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8742 struct task_struct *task = READ_ONCE(event->ctx->task); 8743 struct perf_addr_filter *filter; 8744 struct mm_struct *mm = NULL; 8745 unsigned int count = 0; 8746 unsigned long flags; 8747 8748 /* 8749 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8750 * will stop on the parent's child_mutex that our caller is also holding 8751 */ 8752 if (task == TASK_TOMBSTONE) 8753 return; 8754 8755 if (!ifh->nr_file_filters) 8756 return; 8757 8758 mm = get_task_mm(event->ctx->task); 8759 if (!mm) 8760 goto restart; 8761 8762 down_read(&mm->mmap_sem); 8763 8764 raw_spin_lock_irqsave(&ifh->lock, flags); 8765 list_for_each_entry(filter, &ifh->list, entry) { 8766 event->addr_filters_offs[count] = 0; 8767 8768 /* 8769 * Adjust base offset if the filter is associated to a binary 8770 * that needs to be mapped: 8771 */ 8772 if (filter->inode) 8773 event->addr_filters_offs[count] = 8774 perf_addr_filter_apply(filter, mm); 8775 8776 count++; 8777 } 8778 8779 event->addr_filters_gen++; 8780 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8781 8782 up_read(&mm->mmap_sem); 8783 8784 mmput(mm); 8785 8786 restart: 8787 perf_event_stop(event, 1); 8788 } 8789 8790 /* 8791 * Address range filtering: limiting the data to certain 8792 * instruction address ranges. Filters are ioctl()ed to us from 8793 * userspace as ascii strings. 8794 * 8795 * Filter string format: 8796 * 8797 * ACTION RANGE_SPEC 8798 * where ACTION is one of the 8799 * * "filter": limit the trace to this region 8800 * * "start": start tracing from this address 8801 * * "stop": stop tracing at this address/region; 8802 * RANGE_SPEC is 8803 * * for kernel addresses: <start address>[/<size>] 8804 * * for object files: <start address>[/<size>]@</path/to/object/file> 8805 * 8806 * if <size> is not specified, the range is treated as a single address. 8807 */ 8808 enum { 8809 IF_ACT_NONE = -1, 8810 IF_ACT_FILTER, 8811 IF_ACT_START, 8812 IF_ACT_STOP, 8813 IF_SRC_FILE, 8814 IF_SRC_KERNEL, 8815 IF_SRC_FILEADDR, 8816 IF_SRC_KERNELADDR, 8817 }; 8818 8819 enum { 8820 IF_STATE_ACTION = 0, 8821 IF_STATE_SOURCE, 8822 IF_STATE_END, 8823 }; 8824 8825 static const match_table_t if_tokens = { 8826 { IF_ACT_FILTER, "filter" }, 8827 { IF_ACT_START, "start" }, 8828 { IF_ACT_STOP, "stop" }, 8829 { IF_SRC_FILE, "%u/%u@%s" }, 8830 { IF_SRC_KERNEL, "%u/%u" }, 8831 { IF_SRC_FILEADDR, "%u@%s" }, 8832 { IF_SRC_KERNELADDR, "%u" }, 8833 { IF_ACT_NONE, NULL }, 8834 }; 8835 8836 /* 8837 * Address filter string parser 8838 */ 8839 static int 8840 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8841 struct list_head *filters) 8842 { 8843 struct perf_addr_filter *filter = NULL; 8844 char *start, *orig, *filename = NULL; 8845 struct path path; 8846 substring_t args[MAX_OPT_ARGS]; 8847 int state = IF_STATE_ACTION, token; 8848 unsigned int kernel = 0; 8849 int ret = -EINVAL; 8850 8851 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8852 if (!fstr) 8853 return -ENOMEM; 8854 8855 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8856 ret = -EINVAL; 8857 8858 if (!*start) 8859 continue; 8860 8861 /* filter definition begins */ 8862 if (state == IF_STATE_ACTION) { 8863 filter = perf_addr_filter_new(event, filters); 8864 if (!filter) 8865 goto fail; 8866 } 8867 8868 token = match_token(start, if_tokens, args); 8869 switch (token) { 8870 case IF_ACT_FILTER: 8871 case IF_ACT_START: 8872 filter->filter = 1; 8873 8874 case IF_ACT_STOP: 8875 if (state != IF_STATE_ACTION) 8876 goto fail; 8877 8878 state = IF_STATE_SOURCE; 8879 break; 8880 8881 case IF_SRC_KERNELADDR: 8882 case IF_SRC_KERNEL: 8883 kernel = 1; 8884 8885 case IF_SRC_FILEADDR: 8886 case IF_SRC_FILE: 8887 if (state != IF_STATE_SOURCE) 8888 goto fail; 8889 8890 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8891 filter->range = 1; 8892 8893 *args[0].to = 0; 8894 ret = kstrtoul(args[0].from, 0, &filter->offset); 8895 if (ret) 8896 goto fail; 8897 8898 if (filter->range) { 8899 *args[1].to = 0; 8900 ret = kstrtoul(args[1].from, 0, &filter->size); 8901 if (ret) 8902 goto fail; 8903 } 8904 8905 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8906 int fpos = filter->range ? 2 : 1; 8907 8908 filename = match_strdup(&args[fpos]); 8909 if (!filename) { 8910 ret = -ENOMEM; 8911 goto fail; 8912 } 8913 } 8914 8915 state = IF_STATE_END; 8916 break; 8917 8918 default: 8919 goto fail; 8920 } 8921 8922 /* 8923 * Filter definition is fully parsed, validate and install it. 8924 * Make sure that it doesn't contradict itself or the event's 8925 * attribute. 8926 */ 8927 if (state == IF_STATE_END) { 8928 ret = -EINVAL; 8929 if (kernel && event->attr.exclude_kernel) 8930 goto fail; 8931 8932 if (!kernel) { 8933 if (!filename) 8934 goto fail; 8935 8936 /* 8937 * For now, we only support file-based filters 8938 * in per-task events; doing so for CPU-wide 8939 * events requires additional context switching 8940 * trickery, since same object code will be 8941 * mapped at different virtual addresses in 8942 * different processes. 8943 */ 8944 ret = -EOPNOTSUPP; 8945 if (!event->ctx->task) 8946 goto fail_free_name; 8947 8948 /* look up the path and grab its inode */ 8949 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8950 if (ret) 8951 goto fail_free_name; 8952 8953 filter->inode = igrab(d_inode(path.dentry)); 8954 path_put(&path); 8955 kfree(filename); 8956 filename = NULL; 8957 8958 ret = -EINVAL; 8959 if (!filter->inode || 8960 !S_ISREG(filter->inode->i_mode)) 8961 /* free_filters_list() will iput() */ 8962 goto fail; 8963 8964 event->addr_filters.nr_file_filters++; 8965 } 8966 8967 /* ready to consume more filters */ 8968 state = IF_STATE_ACTION; 8969 filter = NULL; 8970 } 8971 } 8972 8973 if (state != IF_STATE_ACTION) 8974 goto fail; 8975 8976 kfree(orig); 8977 8978 return 0; 8979 8980 fail_free_name: 8981 kfree(filename); 8982 fail: 8983 free_filters_list(filters); 8984 kfree(orig); 8985 8986 return ret; 8987 } 8988 8989 static int 8990 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8991 { 8992 LIST_HEAD(filters); 8993 int ret; 8994 8995 /* 8996 * Since this is called in perf_ioctl() path, we're already holding 8997 * ctx::mutex. 8998 */ 8999 lockdep_assert_held(&event->ctx->mutex); 9000 9001 if (WARN_ON_ONCE(event->parent)) 9002 return -EINVAL; 9003 9004 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9005 if (ret) 9006 goto fail_clear_files; 9007 9008 ret = event->pmu->addr_filters_validate(&filters); 9009 if (ret) 9010 goto fail_free_filters; 9011 9012 /* remove existing filters, if any */ 9013 perf_addr_filters_splice(event, &filters); 9014 9015 /* install new filters */ 9016 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9017 9018 return ret; 9019 9020 fail_free_filters: 9021 free_filters_list(&filters); 9022 9023 fail_clear_files: 9024 event->addr_filters.nr_file_filters = 0; 9025 9026 return ret; 9027 } 9028 9029 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9030 { 9031 int ret = -EINVAL; 9032 char *filter_str; 9033 9034 filter_str = strndup_user(arg, PAGE_SIZE); 9035 if (IS_ERR(filter_str)) 9036 return PTR_ERR(filter_str); 9037 9038 #ifdef CONFIG_EVENT_TRACING 9039 if (perf_event_is_tracing(event)) { 9040 struct perf_event_context *ctx = event->ctx; 9041 9042 /* 9043 * Beware, here be dragons!! 9044 * 9045 * the tracepoint muck will deadlock against ctx->mutex, but 9046 * the tracepoint stuff does not actually need it. So 9047 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9048 * already have a reference on ctx. 9049 * 9050 * This can result in event getting moved to a different ctx, 9051 * but that does not affect the tracepoint state. 9052 */ 9053 mutex_unlock(&ctx->mutex); 9054 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9055 mutex_lock(&ctx->mutex); 9056 } else 9057 #endif 9058 if (has_addr_filter(event)) 9059 ret = perf_event_set_addr_filter(event, filter_str); 9060 9061 kfree(filter_str); 9062 return ret; 9063 } 9064 9065 /* 9066 * hrtimer based swevent callback 9067 */ 9068 9069 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9070 { 9071 enum hrtimer_restart ret = HRTIMER_RESTART; 9072 struct perf_sample_data data; 9073 struct pt_regs *regs; 9074 struct perf_event *event; 9075 u64 period; 9076 9077 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9078 9079 if (event->state != PERF_EVENT_STATE_ACTIVE) 9080 return HRTIMER_NORESTART; 9081 9082 event->pmu->read(event); 9083 9084 perf_sample_data_init(&data, 0, event->hw.last_period); 9085 regs = get_irq_regs(); 9086 9087 if (regs && !perf_exclude_event(event, regs)) { 9088 if (!(event->attr.exclude_idle && is_idle_task(current))) 9089 if (__perf_event_overflow(event, 1, &data, regs)) 9090 ret = HRTIMER_NORESTART; 9091 } 9092 9093 period = max_t(u64, 10000, event->hw.sample_period); 9094 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9095 9096 return ret; 9097 } 9098 9099 static void perf_swevent_start_hrtimer(struct perf_event *event) 9100 { 9101 struct hw_perf_event *hwc = &event->hw; 9102 s64 period; 9103 9104 if (!is_sampling_event(event)) 9105 return; 9106 9107 period = local64_read(&hwc->period_left); 9108 if (period) { 9109 if (period < 0) 9110 period = 10000; 9111 9112 local64_set(&hwc->period_left, 0); 9113 } else { 9114 period = max_t(u64, 10000, hwc->sample_period); 9115 } 9116 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9117 HRTIMER_MODE_REL_PINNED); 9118 } 9119 9120 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9121 { 9122 struct hw_perf_event *hwc = &event->hw; 9123 9124 if (is_sampling_event(event)) { 9125 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9126 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9127 9128 hrtimer_cancel(&hwc->hrtimer); 9129 } 9130 } 9131 9132 static void perf_swevent_init_hrtimer(struct perf_event *event) 9133 { 9134 struct hw_perf_event *hwc = &event->hw; 9135 9136 if (!is_sampling_event(event)) 9137 return; 9138 9139 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9140 hwc->hrtimer.function = perf_swevent_hrtimer; 9141 9142 /* 9143 * Since hrtimers have a fixed rate, we can do a static freq->period 9144 * mapping and avoid the whole period adjust feedback stuff. 9145 */ 9146 if (event->attr.freq) { 9147 long freq = event->attr.sample_freq; 9148 9149 event->attr.sample_period = NSEC_PER_SEC / freq; 9150 hwc->sample_period = event->attr.sample_period; 9151 local64_set(&hwc->period_left, hwc->sample_period); 9152 hwc->last_period = hwc->sample_period; 9153 event->attr.freq = 0; 9154 } 9155 } 9156 9157 /* 9158 * Software event: cpu wall time clock 9159 */ 9160 9161 static void cpu_clock_event_update(struct perf_event *event) 9162 { 9163 s64 prev; 9164 u64 now; 9165 9166 now = local_clock(); 9167 prev = local64_xchg(&event->hw.prev_count, now); 9168 local64_add(now - prev, &event->count); 9169 } 9170 9171 static void cpu_clock_event_start(struct perf_event *event, int flags) 9172 { 9173 local64_set(&event->hw.prev_count, local_clock()); 9174 perf_swevent_start_hrtimer(event); 9175 } 9176 9177 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9178 { 9179 perf_swevent_cancel_hrtimer(event); 9180 cpu_clock_event_update(event); 9181 } 9182 9183 static int cpu_clock_event_add(struct perf_event *event, int flags) 9184 { 9185 if (flags & PERF_EF_START) 9186 cpu_clock_event_start(event, flags); 9187 perf_event_update_userpage(event); 9188 9189 return 0; 9190 } 9191 9192 static void cpu_clock_event_del(struct perf_event *event, int flags) 9193 { 9194 cpu_clock_event_stop(event, flags); 9195 } 9196 9197 static void cpu_clock_event_read(struct perf_event *event) 9198 { 9199 cpu_clock_event_update(event); 9200 } 9201 9202 static int cpu_clock_event_init(struct perf_event *event) 9203 { 9204 if (event->attr.type != PERF_TYPE_SOFTWARE) 9205 return -ENOENT; 9206 9207 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9208 return -ENOENT; 9209 9210 /* 9211 * no branch sampling for software events 9212 */ 9213 if (has_branch_stack(event)) 9214 return -EOPNOTSUPP; 9215 9216 perf_swevent_init_hrtimer(event); 9217 9218 return 0; 9219 } 9220 9221 static struct pmu perf_cpu_clock = { 9222 .task_ctx_nr = perf_sw_context, 9223 9224 .capabilities = PERF_PMU_CAP_NO_NMI, 9225 9226 .event_init = cpu_clock_event_init, 9227 .add = cpu_clock_event_add, 9228 .del = cpu_clock_event_del, 9229 .start = cpu_clock_event_start, 9230 .stop = cpu_clock_event_stop, 9231 .read = cpu_clock_event_read, 9232 }; 9233 9234 /* 9235 * Software event: task time clock 9236 */ 9237 9238 static void task_clock_event_update(struct perf_event *event, u64 now) 9239 { 9240 u64 prev; 9241 s64 delta; 9242 9243 prev = local64_xchg(&event->hw.prev_count, now); 9244 delta = now - prev; 9245 local64_add(delta, &event->count); 9246 } 9247 9248 static void task_clock_event_start(struct perf_event *event, int flags) 9249 { 9250 local64_set(&event->hw.prev_count, event->ctx->time); 9251 perf_swevent_start_hrtimer(event); 9252 } 9253 9254 static void task_clock_event_stop(struct perf_event *event, int flags) 9255 { 9256 perf_swevent_cancel_hrtimer(event); 9257 task_clock_event_update(event, event->ctx->time); 9258 } 9259 9260 static int task_clock_event_add(struct perf_event *event, int flags) 9261 { 9262 if (flags & PERF_EF_START) 9263 task_clock_event_start(event, flags); 9264 perf_event_update_userpage(event); 9265 9266 return 0; 9267 } 9268 9269 static void task_clock_event_del(struct perf_event *event, int flags) 9270 { 9271 task_clock_event_stop(event, PERF_EF_UPDATE); 9272 } 9273 9274 static void task_clock_event_read(struct perf_event *event) 9275 { 9276 u64 now = perf_clock(); 9277 u64 delta = now - event->ctx->timestamp; 9278 u64 time = event->ctx->time + delta; 9279 9280 task_clock_event_update(event, time); 9281 } 9282 9283 static int task_clock_event_init(struct perf_event *event) 9284 { 9285 if (event->attr.type != PERF_TYPE_SOFTWARE) 9286 return -ENOENT; 9287 9288 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9289 return -ENOENT; 9290 9291 /* 9292 * no branch sampling for software events 9293 */ 9294 if (has_branch_stack(event)) 9295 return -EOPNOTSUPP; 9296 9297 perf_swevent_init_hrtimer(event); 9298 9299 return 0; 9300 } 9301 9302 static struct pmu perf_task_clock = { 9303 .task_ctx_nr = perf_sw_context, 9304 9305 .capabilities = PERF_PMU_CAP_NO_NMI, 9306 9307 .event_init = task_clock_event_init, 9308 .add = task_clock_event_add, 9309 .del = task_clock_event_del, 9310 .start = task_clock_event_start, 9311 .stop = task_clock_event_stop, 9312 .read = task_clock_event_read, 9313 }; 9314 9315 static void perf_pmu_nop_void(struct pmu *pmu) 9316 { 9317 } 9318 9319 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9320 { 9321 } 9322 9323 static int perf_pmu_nop_int(struct pmu *pmu) 9324 { 9325 return 0; 9326 } 9327 9328 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9329 9330 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9331 { 9332 __this_cpu_write(nop_txn_flags, flags); 9333 9334 if (flags & ~PERF_PMU_TXN_ADD) 9335 return; 9336 9337 perf_pmu_disable(pmu); 9338 } 9339 9340 static int perf_pmu_commit_txn(struct pmu *pmu) 9341 { 9342 unsigned int flags = __this_cpu_read(nop_txn_flags); 9343 9344 __this_cpu_write(nop_txn_flags, 0); 9345 9346 if (flags & ~PERF_PMU_TXN_ADD) 9347 return 0; 9348 9349 perf_pmu_enable(pmu); 9350 return 0; 9351 } 9352 9353 static void perf_pmu_cancel_txn(struct pmu *pmu) 9354 { 9355 unsigned int flags = __this_cpu_read(nop_txn_flags); 9356 9357 __this_cpu_write(nop_txn_flags, 0); 9358 9359 if (flags & ~PERF_PMU_TXN_ADD) 9360 return; 9361 9362 perf_pmu_enable(pmu); 9363 } 9364 9365 static int perf_event_idx_default(struct perf_event *event) 9366 { 9367 return 0; 9368 } 9369 9370 /* 9371 * Ensures all contexts with the same task_ctx_nr have the same 9372 * pmu_cpu_context too. 9373 */ 9374 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9375 { 9376 struct pmu *pmu; 9377 9378 if (ctxn < 0) 9379 return NULL; 9380 9381 list_for_each_entry(pmu, &pmus, entry) { 9382 if (pmu->task_ctx_nr == ctxn) 9383 return pmu->pmu_cpu_context; 9384 } 9385 9386 return NULL; 9387 } 9388 9389 static void free_pmu_context(struct pmu *pmu) 9390 { 9391 /* 9392 * Static contexts such as perf_sw_context have a global lifetime 9393 * and may be shared between different PMUs. Avoid freeing them 9394 * when a single PMU is going away. 9395 */ 9396 if (pmu->task_ctx_nr > perf_invalid_context) 9397 return; 9398 9399 mutex_lock(&pmus_lock); 9400 free_percpu(pmu->pmu_cpu_context); 9401 mutex_unlock(&pmus_lock); 9402 } 9403 9404 /* 9405 * Let userspace know that this PMU supports address range filtering: 9406 */ 9407 static ssize_t nr_addr_filters_show(struct device *dev, 9408 struct device_attribute *attr, 9409 char *page) 9410 { 9411 struct pmu *pmu = dev_get_drvdata(dev); 9412 9413 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9414 } 9415 DEVICE_ATTR_RO(nr_addr_filters); 9416 9417 static struct idr pmu_idr; 9418 9419 static ssize_t 9420 type_show(struct device *dev, struct device_attribute *attr, char *page) 9421 { 9422 struct pmu *pmu = dev_get_drvdata(dev); 9423 9424 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9425 } 9426 static DEVICE_ATTR_RO(type); 9427 9428 static ssize_t 9429 perf_event_mux_interval_ms_show(struct device *dev, 9430 struct device_attribute *attr, 9431 char *page) 9432 { 9433 struct pmu *pmu = dev_get_drvdata(dev); 9434 9435 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9436 } 9437 9438 static DEFINE_MUTEX(mux_interval_mutex); 9439 9440 static ssize_t 9441 perf_event_mux_interval_ms_store(struct device *dev, 9442 struct device_attribute *attr, 9443 const char *buf, size_t count) 9444 { 9445 struct pmu *pmu = dev_get_drvdata(dev); 9446 int timer, cpu, ret; 9447 9448 ret = kstrtoint(buf, 0, &timer); 9449 if (ret) 9450 return ret; 9451 9452 if (timer < 1) 9453 return -EINVAL; 9454 9455 /* same value, noting to do */ 9456 if (timer == pmu->hrtimer_interval_ms) 9457 return count; 9458 9459 mutex_lock(&mux_interval_mutex); 9460 pmu->hrtimer_interval_ms = timer; 9461 9462 /* update all cpuctx for this PMU */ 9463 cpus_read_lock(); 9464 for_each_online_cpu(cpu) { 9465 struct perf_cpu_context *cpuctx; 9466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9467 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9468 9469 cpu_function_call(cpu, 9470 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9471 } 9472 cpus_read_unlock(); 9473 mutex_unlock(&mux_interval_mutex); 9474 9475 return count; 9476 } 9477 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9478 9479 static struct attribute *pmu_dev_attrs[] = { 9480 &dev_attr_type.attr, 9481 &dev_attr_perf_event_mux_interval_ms.attr, 9482 NULL, 9483 }; 9484 ATTRIBUTE_GROUPS(pmu_dev); 9485 9486 static int pmu_bus_running; 9487 static struct bus_type pmu_bus = { 9488 .name = "event_source", 9489 .dev_groups = pmu_dev_groups, 9490 }; 9491 9492 static void pmu_dev_release(struct device *dev) 9493 { 9494 kfree(dev); 9495 } 9496 9497 static int pmu_dev_alloc(struct pmu *pmu) 9498 { 9499 int ret = -ENOMEM; 9500 9501 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9502 if (!pmu->dev) 9503 goto out; 9504 9505 pmu->dev->groups = pmu->attr_groups; 9506 device_initialize(pmu->dev); 9507 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9508 if (ret) 9509 goto free_dev; 9510 9511 dev_set_drvdata(pmu->dev, pmu); 9512 pmu->dev->bus = &pmu_bus; 9513 pmu->dev->release = pmu_dev_release; 9514 ret = device_add(pmu->dev); 9515 if (ret) 9516 goto free_dev; 9517 9518 /* For PMUs with address filters, throw in an extra attribute: */ 9519 if (pmu->nr_addr_filters) 9520 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9521 9522 if (ret) 9523 goto del_dev; 9524 9525 out: 9526 return ret; 9527 9528 del_dev: 9529 device_del(pmu->dev); 9530 9531 free_dev: 9532 put_device(pmu->dev); 9533 goto out; 9534 } 9535 9536 static struct lock_class_key cpuctx_mutex; 9537 static struct lock_class_key cpuctx_lock; 9538 9539 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9540 { 9541 int cpu, ret; 9542 9543 mutex_lock(&pmus_lock); 9544 ret = -ENOMEM; 9545 pmu->pmu_disable_count = alloc_percpu(int); 9546 if (!pmu->pmu_disable_count) 9547 goto unlock; 9548 9549 pmu->type = -1; 9550 if (!name) 9551 goto skip_type; 9552 pmu->name = name; 9553 9554 if (type < 0) { 9555 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9556 if (type < 0) { 9557 ret = type; 9558 goto free_pdc; 9559 } 9560 } 9561 pmu->type = type; 9562 9563 if (pmu_bus_running) { 9564 ret = pmu_dev_alloc(pmu); 9565 if (ret) 9566 goto free_idr; 9567 } 9568 9569 skip_type: 9570 if (pmu->task_ctx_nr == perf_hw_context) { 9571 static int hw_context_taken = 0; 9572 9573 /* 9574 * Other than systems with heterogeneous CPUs, it never makes 9575 * sense for two PMUs to share perf_hw_context. PMUs which are 9576 * uncore must use perf_invalid_context. 9577 */ 9578 if (WARN_ON_ONCE(hw_context_taken && 9579 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9580 pmu->task_ctx_nr = perf_invalid_context; 9581 9582 hw_context_taken = 1; 9583 } 9584 9585 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9586 if (pmu->pmu_cpu_context) 9587 goto got_cpu_context; 9588 9589 ret = -ENOMEM; 9590 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9591 if (!pmu->pmu_cpu_context) 9592 goto free_dev; 9593 9594 for_each_possible_cpu(cpu) { 9595 struct perf_cpu_context *cpuctx; 9596 9597 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9598 __perf_event_init_context(&cpuctx->ctx); 9599 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9600 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9601 cpuctx->ctx.pmu = pmu; 9602 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9603 9604 __perf_mux_hrtimer_init(cpuctx, cpu); 9605 } 9606 9607 got_cpu_context: 9608 if (!pmu->start_txn) { 9609 if (pmu->pmu_enable) { 9610 /* 9611 * If we have pmu_enable/pmu_disable calls, install 9612 * transaction stubs that use that to try and batch 9613 * hardware accesses. 9614 */ 9615 pmu->start_txn = perf_pmu_start_txn; 9616 pmu->commit_txn = perf_pmu_commit_txn; 9617 pmu->cancel_txn = perf_pmu_cancel_txn; 9618 } else { 9619 pmu->start_txn = perf_pmu_nop_txn; 9620 pmu->commit_txn = perf_pmu_nop_int; 9621 pmu->cancel_txn = perf_pmu_nop_void; 9622 } 9623 } 9624 9625 if (!pmu->pmu_enable) { 9626 pmu->pmu_enable = perf_pmu_nop_void; 9627 pmu->pmu_disable = perf_pmu_nop_void; 9628 } 9629 9630 if (!pmu->event_idx) 9631 pmu->event_idx = perf_event_idx_default; 9632 9633 list_add_rcu(&pmu->entry, &pmus); 9634 atomic_set(&pmu->exclusive_cnt, 0); 9635 ret = 0; 9636 unlock: 9637 mutex_unlock(&pmus_lock); 9638 9639 return ret; 9640 9641 free_dev: 9642 device_del(pmu->dev); 9643 put_device(pmu->dev); 9644 9645 free_idr: 9646 if (pmu->type >= PERF_TYPE_MAX) 9647 idr_remove(&pmu_idr, pmu->type); 9648 9649 free_pdc: 9650 free_percpu(pmu->pmu_disable_count); 9651 goto unlock; 9652 } 9653 EXPORT_SYMBOL_GPL(perf_pmu_register); 9654 9655 void perf_pmu_unregister(struct pmu *pmu) 9656 { 9657 int remove_device; 9658 9659 mutex_lock(&pmus_lock); 9660 remove_device = pmu_bus_running; 9661 list_del_rcu(&pmu->entry); 9662 mutex_unlock(&pmus_lock); 9663 9664 /* 9665 * We dereference the pmu list under both SRCU and regular RCU, so 9666 * synchronize against both of those. 9667 */ 9668 synchronize_srcu(&pmus_srcu); 9669 synchronize_rcu(); 9670 9671 free_percpu(pmu->pmu_disable_count); 9672 if (pmu->type >= PERF_TYPE_MAX) 9673 idr_remove(&pmu_idr, pmu->type); 9674 if (remove_device) { 9675 if (pmu->nr_addr_filters) 9676 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9677 device_del(pmu->dev); 9678 put_device(pmu->dev); 9679 } 9680 free_pmu_context(pmu); 9681 } 9682 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9683 9684 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9685 { 9686 struct perf_event_context *ctx = NULL; 9687 int ret; 9688 9689 if (!try_module_get(pmu->module)) 9690 return -ENODEV; 9691 9692 /* 9693 * A number of pmu->event_init() methods iterate the sibling_list to, 9694 * for example, validate if the group fits on the PMU. Therefore, 9695 * if this is a sibling event, acquire the ctx->mutex to protect 9696 * the sibling_list. 9697 */ 9698 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9699 /* 9700 * This ctx->mutex can nest when we're called through 9701 * inheritance. See the perf_event_ctx_lock_nested() comment. 9702 */ 9703 ctx = perf_event_ctx_lock_nested(event->group_leader, 9704 SINGLE_DEPTH_NESTING); 9705 BUG_ON(!ctx); 9706 } 9707 9708 event->pmu = pmu; 9709 ret = pmu->event_init(event); 9710 9711 if (ctx) 9712 perf_event_ctx_unlock(event->group_leader, ctx); 9713 9714 if (ret) 9715 module_put(pmu->module); 9716 9717 return ret; 9718 } 9719 9720 static struct pmu *perf_init_event(struct perf_event *event) 9721 { 9722 struct pmu *pmu; 9723 int idx; 9724 int ret; 9725 9726 idx = srcu_read_lock(&pmus_srcu); 9727 9728 /* Try parent's PMU first: */ 9729 if (event->parent && event->parent->pmu) { 9730 pmu = event->parent->pmu; 9731 ret = perf_try_init_event(pmu, event); 9732 if (!ret) 9733 goto unlock; 9734 } 9735 9736 rcu_read_lock(); 9737 pmu = idr_find(&pmu_idr, event->attr.type); 9738 rcu_read_unlock(); 9739 if (pmu) { 9740 ret = perf_try_init_event(pmu, event); 9741 if (ret) 9742 pmu = ERR_PTR(ret); 9743 goto unlock; 9744 } 9745 9746 list_for_each_entry_rcu(pmu, &pmus, entry) { 9747 ret = perf_try_init_event(pmu, event); 9748 if (!ret) 9749 goto unlock; 9750 9751 if (ret != -ENOENT) { 9752 pmu = ERR_PTR(ret); 9753 goto unlock; 9754 } 9755 } 9756 pmu = ERR_PTR(-ENOENT); 9757 unlock: 9758 srcu_read_unlock(&pmus_srcu, idx); 9759 9760 return pmu; 9761 } 9762 9763 static void attach_sb_event(struct perf_event *event) 9764 { 9765 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9766 9767 raw_spin_lock(&pel->lock); 9768 list_add_rcu(&event->sb_list, &pel->list); 9769 raw_spin_unlock(&pel->lock); 9770 } 9771 9772 /* 9773 * We keep a list of all !task (and therefore per-cpu) events 9774 * that need to receive side-band records. 9775 * 9776 * This avoids having to scan all the various PMU per-cpu contexts 9777 * looking for them. 9778 */ 9779 static void account_pmu_sb_event(struct perf_event *event) 9780 { 9781 if (is_sb_event(event)) 9782 attach_sb_event(event); 9783 } 9784 9785 static void account_event_cpu(struct perf_event *event, int cpu) 9786 { 9787 if (event->parent) 9788 return; 9789 9790 if (is_cgroup_event(event)) 9791 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9792 } 9793 9794 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9795 static void account_freq_event_nohz(void) 9796 { 9797 #ifdef CONFIG_NO_HZ_FULL 9798 /* Lock so we don't race with concurrent unaccount */ 9799 spin_lock(&nr_freq_lock); 9800 if (atomic_inc_return(&nr_freq_events) == 1) 9801 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9802 spin_unlock(&nr_freq_lock); 9803 #endif 9804 } 9805 9806 static void account_freq_event(void) 9807 { 9808 if (tick_nohz_full_enabled()) 9809 account_freq_event_nohz(); 9810 else 9811 atomic_inc(&nr_freq_events); 9812 } 9813 9814 9815 static void account_event(struct perf_event *event) 9816 { 9817 bool inc = false; 9818 9819 if (event->parent) 9820 return; 9821 9822 if (event->attach_state & PERF_ATTACH_TASK) 9823 inc = true; 9824 if (event->attr.mmap || event->attr.mmap_data) 9825 atomic_inc(&nr_mmap_events); 9826 if (event->attr.comm) 9827 atomic_inc(&nr_comm_events); 9828 if (event->attr.namespaces) 9829 atomic_inc(&nr_namespaces_events); 9830 if (event->attr.task) 9831 atomic_inc(&nr_task_events); 9832 if (event->attr.freq) 9833 account_freq_event(); 9834 if (event->attr.context_switch) { 9835 atomic_inc(&nr_switch_events); 9836 inc = true; 9837 } 9838 if (has_branch_stack(event)) 9839 inc = true; 9840 if (is_cgroup_event(event)) 9841 inc = true; 9842 9843 if (inc) { 9844 /* 9845 * We need the mutex here because static_branch_enable() 9846 * must complete *before* the perf_sched_count increment 9847 * becomes visible. 9848 */ 9849 if (atomic_inc_not_zero(&perf_sched_count)) 9850 goto enabled; 9851 9852 mutex_lock(&perf_sched_mutex); 9853 if (!atomic_read(&perf_sched_count)) { 9854 static_branch_enable(&perf_sched_events); 9855 /* 9856 * Guarantee that all CPUs observe they key change and 9857 * call the perf scheduling hooks before proceeding to 9858 * install events that need them. 9859 */ 9860 synchronize_sched(); 9861 } 9862 /* 9863 * Now that we have waited for the sync_sched(), allow further 9864 * increments to by-pass the mutex. 9865 */ 9866 atomic_inc(&perf_sched_count); 9867 mutex_unlock(&perf_sched_mutex); 9868 } 9869 enabled: 9870 9871 account_event_cpu(event, event->cpu); 9872 9873 account_pmu_sb_event(event); 9874 } 9875 9876 /* 9877 * Allocate and initialize a event structure 9878 */ 9879 static struct perf_event * 9880 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9881 struct task_struct *task, 9882 struct perf_event *group_leader, 9883 struct perf_event *parent_event, 9884 perf_overflow_handler_t overflow_handler, 9885 void *context, int cgroup_fd) 9886 { 9887 struct pmu *pmu; 9888 struct perf_event *event; 9889 struct hw_perf_event *hwc; 9890 long err = -EINVAL; 9891 9892 if ((unsigned)cpu >= nr_cpu_ids) { 9893 if (!task || cpu != -1) 9894 return ERR_PTR(-EINVAL); 9895 } 9896 9897 event = kzalloc(sizeof(*event), GFP_KERNEL); 9898 if (!event) 9899 return ERR_PTR(-ENOMEM); 9900 9901 /* 9902 * Single events are their own group leaders, with an 9903 * empty sibling list: 9904 */ 9905 if (!group_leader) 9906 group_leader = event; 9907 9908 mutex_init(&event->child_mutex); 9909 INIT_LIST_HEAD(&event->child_list); 9910 9911 INIT_LIST_HEAD(&event->event_entry); 9912 INIT_LIST_HEAD(&event->sibling_list); 9913 INIT_LIST_HEAD(&event->active_list); 9914 init_event_group(event); 9915 INIT_LIST_HEAD(&event->rb_entry); 9916 INIT_LIST_HEAD(&event->active_entry); 9917 INIT_LIST_HEAD(&event->addr_filters.list); 9918 INIT_HLIST_NODE(&event->hlist_entry); 9919 9920 9921 init_waitqueue_head(&event->waitq); 9922 init_irq_work(&event->pending, perf_pending_event); 9923 9924 mutex_init(&event->mmap_mutex); 9925 raw_spin_lock_init(&event->addr_filters.lock); 9926 9927 atomic_long_set(&event->refcount, 1); 9928 event->cpu = cpu; 9929 event->attr = *attr; 9930 event->group_leader = group_leader; 9931 event->pmu = NULL; 9932 event->oncpu = -1; 9933 9934 event->parent = parent_event; 9935 9936 event->ns = get_pid_ns(task_active_pid_ns(current)); 9937 event->id = atomic64_inc_return(&perf_event_id); 9938 9939 event->state = PERF_EVENT_STATE_INACTIVE; 9940 9941 if (task) { 9942 event->attach_state = PERF_ATTACH_TASK; 9943 /* 9944 * XXX pmu::event_init needs to know what task to account to 9945 * and we cannot use the ctx information because we need the 9946 * pmu before we get a ctx. 9947 */ 9948 event->hw.target = task; 9949 } 9950 9951 event->clock = &local_clock; 9952 if (parent_event) 9953 event->clock = parent_event->clock; 9954 9955 if (!overflow_handler && parent_event) { 9956 overflow_handler = parent_event->overflow_handler; 9957 context = parent_event->overflow_handler_context; 9958 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9959 if (overflow_handler == bpf_overflow_handler) { 9960 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9961 9962 if (IS_ERR(prog)) { 9963 err = PTR_ERR(prog); 9964 goto err_ns; 9965 } 9966 event->prog = prog; 9967 event->orig_overflow_handler = 9968 parent_event->orig_overflow_handler; 9969 } 9970 #endif 9971 } 9972 9973 if (overflow_handler) { 9974 event->overflow_handler = overflow_handler; 9975 event->overflow_handler_context = context; 9976 } else if (is_write_backward(event)){ 9977 event->overflow_handler = perf_event_output_backward; 9978 event->overflow_handler_context = NULL; 9979 } else { 9980 event->overflow_handler = perf_event_output_forward; 9981 event->overflow_handler_context = NULL; 9982 } 9983 9984 perf_event__state_init(event); 9985 9986 pmu = NULL; 9987 9988 hwc = &event->hw; 9989 hwc->sample_period = attr->sample_period; 9990 if (attr->freq && attr->sample_freq) 9991 hwc->sample_period = 1; 9992 hwc->last_period = hwc->sample_period; 9993 9994 local64_set(&hwc->period_left, hwc->sample_period); 9995 9996 /* 9997 * We currently do not support PERF_SAMPLE_READ on inherited events. 9998 * See perf_output_read(). 9999 */ 10000 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10001 goto err_ns; 10002 10003 if (!has_branch_stack(event)) 10004 event->attr.branch_sample_type = 0; 10005 10006 if (cgroup_fd != -1) { 10007 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10008 if (err) 10009 goto err_ns; 10010 } 10011 10012 pmu = perf_init_event(event); 10013 if (IS_ERR(pmu)) { 10014 err = PTR_ERR(pmu); 10015 goto err_ns; 10016 } 10017 10018 err = exclusive_event_init(event); 10019 if (err) 10020 goto err_pmu; 10021 10022 if (has_addr_filter(event)) { 10023 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10024 sizeof(unsigned long), 10025 GFP_KERNEL); 10026 if (!event->addr_filters_offs) { 10027 err = -ENOMEM; 10028 goto err_per_task; 10029 } 10030 10031 /* force hw sync on the address filters */ 10032 event->addr_filters_gen = 1; 10033 } 10034 10035 if (!event->parent) { 10036 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10037 err = get_callchain_buffers(attr->sample_max_stack); 10038 if (err) 10039 goto err_addr_filters; 10040 } 10041 } 10042 10043 /* symmetric to unaccount_event() in _free_event() */ 10044 account_event(event); 10045 10046 return event; 10047 10048 err_addr_filters: 10049 kfree(event->addr_filters_offs); 10050 10051 err_per_task: 10052 exclusive_event_destroy(event); 10053 10054 err_pmu: 10055 if (event->destroy) 10056 event->destroy(event); 10057 module_put(pmu->module); 10058 err_ns: 10059 if (is_cgroup_event(event)) 10060 perf_detach_cgroup(event); 10061 if (event->ns) 10062 put_pid_ns(event->ns); 10063 kfree(event); 10064 10065 return ERR_PTR(err); 10066 } 10067 10068 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10069 struct perf_event_attr *attr) 10070 { 10071 u32 size; 10072 int ret; 10073 10074 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 10075 return -EFAULT; 10076 10077 /* 10078 * zero the full structure, so that a short copy will be nice. 10079 */ 10080 memset(attr, 0, sizeof(*attr)); 10081 10082 ret = get_user(size, &uattr->size); 10083 if (ret) 10084 return ret; 10085 10086 if (size > PAGE_SIZE) /* silly large */ 10087 goto err_size; 10088 10089 if (!size) /* abi compat */ 10090 size = PERF_ATTR_SIZE_VER0; 10091 10092 if (size < PERF_ATTR_SIZE_VER0) 10093 goto err_size; 10094 10095 /* 10096 * If we're handed a bigger struct than we know of, 10097 * ensure all the unknown bits are 0 - i.e. new 10098 * user-space does not rely on any kernel feature 10099 * extensions we dont know about yet. 10100 */ 10101 if (size > sizeof(*attr)) { 10102 unsigned char __user *addr; 10103 unsigned char __user *end; 10104 unsigned char val; 10105 10106 addr = (void __user *)uattr + sizeof(*attr); 10107 end = (void __user *)uattr + size; 10108 10109 for (; addr < end; addr++) { 10110 ret = get_user(val, addr); 10111 if (ret) 10112 return ret; 10113 if (val) 10114 goto err_size; 10115 } 10116 size = sizeof(*attr); 10117 } 10118 10119 ret = copy_from_user(attr, uattr, size); 10120 if (ret) 10121 return -EFAULT; 10122 10123 attr->size = size; 10124 10125 if (attr->__reserved_1) 10126 return -EINVAL; 10127 10128 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10129 return -EINVAL; 10130 10131 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10132 return -EINVAL; 10133 10134 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10135 u64 mask = attr->branch_sample_type; 10136 10137 /* only using defined bits */ 10138 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10139 return -EINVAL; 10140 10141 /* at least one branch bit must be set */ 10142 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10143 return -EINVAL; 10144 10145 /* propagate priv level, when not set for branch */ 10146 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10147 10148 /* exclude_kernel checked on syscall entry */ 10149 if (!attr->exclude_kernel) 10150 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10151 10152 if (!attr->exclude_user) 10153 mask |= PERF_SAMPLE_BRANCH_USER; 10154 10155 if (!attr->exclude_hv) 10156 mask |= PERF_SAMPLE_BRANCH_HV; 10157 /* 10158 * adjust user setting (for HW filter setup) 10159 */ 10160 attr->branch_sample_type = mask; 10161 } 10162 /* privileged levels capture (kernel, hv): check permissions */ 10163 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10164 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10165 return -EACCES; 10166 } 10167 10168 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10169 ret = perf_reg_validate(attr->sample_regs_user); 10170 if (ret) 10171 return ret; 10172 } 10173 10174 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10175 if (!arch_perf_have_user_stack_dump()) 10176 return -ENOSYS; 10177 10178 /* 10179 * We have __u32 type for the size, but so far 10180 * we can only use __u16 as maximum due to the 10181 * __u16 sample size limit. 10182 */ 10183 if (attr->sample_stack_user >= USHRT_MAX) 10184 ret = -EINVAL; 10185 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10186 ret = -EINVAL; 10187 } 10188 10189 if (!attr->sample_max_stack) 10190 attr->sample_max_stack = sysctl_perf_event_max_stack; 10191 10192 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10193 ret = perf_reg_validate(attr->sample_regs_intr); 10194 out: 10195 return ret; 10196 10197 err_size: 10198 put_user(sizeof(*attr), &uattr->size); 10199 ret = -E2BIG; 10200 goto out; 10201 } 10202 10203 static int 10204 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10205 { 10206 struct ring_buffer *rb = NULL; 10207 int ret = -EINVAL; 10208 10209 if (!output_event) 10210 goto set; 10211 10212 /* don't allow circular references */ 10213 if (event == output_event) 10214 goto out; 10215 10216 /* 10217 * Don't allow cross-cpu buffers 10218 */ 10219 if (output_event->cpu != event->cpu) 10220 goto out; 10221 10222 /* 10223 * If its not a per-cpu rb, it must be the same task. 10224 */ 10225 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10226 goto out; 10227 10228 /* 10229 * Mixing clocks in the same buffer is trouble you don't need. 10230 */ 10231 if (output_event->clock != event->clock) 10232 goto out; 10233 10234 /* 10235 * Either writing ring buffer from beginning or from end. 10236 * Mixing is not allowed. 10237 */ 10238 if (is_write_backward(output_event) != is_write_backward(event)) 10239 goto out; 10240 10241 /* 10242 * If both events generate aux data, they must be on the same PMU 10243 */ 10244 if (has_aux(event) && has_aux(output_event) && 10245 event->pmu != output_event->pmu) 10246 goto out; 10247 10248 set: 10249 mutex_lock(&event->mmap_mutex); 10250 /* Can't redirect output if we've got an active mmap() */ 10251 if (atomic_read(&event->mmap_count)) 10252 goto unlock; 10253 10254 if (output_event) { 10255 /* get the rb we want to redirect to */ 10256 rb = ring_buffer_get(output_event); 10257 if (!rb) 10258 goto unlock; 10259 } 10260 10261 ring_buffer_attach(event, rb); 10262 10263 ret = 0; 10264 unlock: 10265 mutex_unlock(&event->mmap_mutex); 10266 10267 out: 10268 return ret; 10269 } 10270 10271 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10272 { 10273 if (b < a) 10274 swap(a, b); 10275 10276 mutex_lock(a); 10277 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10278 } 10279 10280 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10281 { 10282 bool nmi_safe = false; 10283 10284 switch (clk_id) { 10285 case CLOCK_MONOTONIC: 10286 event->clock = &ktime_get_mono_fast_ns; 10287 nmi_safe = true; 10288 break; 10289 10290 case CLOCK_MONOTONIC_RAW: 10291 event->clock = &ktime_get_raw_fast_ns; 10292 nmi_safe = true; 10293 break; 10294 10295 case CLOCK_REALTIME: 10296 event->clock = &ktime_get_real_ns; 10297 break; 10298 10299 case CLOCK_BOOTTIME: 10300 event->clock = &ktime_get_boot_ns; 10301 break; 10302 10303 case CLOCK_TAI: 10304 event->clock = &ktime_get_tai_ns; 10305 break; 10306 10307 default: 10308 return -EINVAL; 10309 } 10310 10311 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10312 return -EINVAL; 10313 10314 return 0; 10315 } 10316 10317 /* 10318 * Variation on perf_event_ctx_lock_nested(), except we take two context 10319 * mutexes. 10320 */ 10321 static struct perf_event_context * 10322 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10323 struct perf_event_context *ctx) 10324 { 10325 struct perf_event_context *gctx; 10326 10327 again: 10328 rcu_read_lock(); 10329 gctx = READ_ONCE(group_leader->ctx); 10330 if (!atomic_inc_not_zero(&gctx->refcount)) { 10331 rcu_read_unlock(); 10332 goto again; 10333 } 10334 rcu_read_unlock(); 10335 10336 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10337 10338 if (group_leader->ctx != gctx) { 10339 mutex_unlock(&ctx->mutex); 10340 mutex_unlock(&gctx->mutex); 10341 put_ctx(gctx); 10342 goto again; 10343 } 10344 10345 return gctx; 10346 } 10347 10348 /** 10349 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10350 * 10351 * @attr_uptr: event_id type attributes for monitoring/sampling 10352 * @pid: target pid 10353 * @cpu: target cpu 10354 * @group_fd: group leader event fd 10355 */ 10356 SYSCALL_DEFINE5(perf_event_open, 10357 struct perf_event_attr __user *, attr_uptr, 10358 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10359 { 10360 struct perf_event *group_leader = NULL, *output_event = NULL; 10361 struct perf_event *event, *sibling; 10362 struct perf_event_attr attr; 10363 struct perf_event_context *ctx, *uninitialized_var(gctx); 10364 struct file *event_file = NULL; 10365 struct fd group = {NULL, 0}; 10366 struct task_struct *task = NULL; 10367 struct pmu *pmu; 10368 int event_fd; 10369 int move_group = 0; 10370 int err; 10371 int f_flags = O_RDWR; 10372 int cgroup_fd = -1; 10373 10374 /* for future expandability... */ 10375 if (flags & ~PERF_FLAG_ALL) 10376 return -EINVAL; 10377 10378 err = perf_copy_attr(attr_uptr, &attr); 10379 if (err) 10380 return err; 10381 10382 if (!attr.exclude_kernel) { 10383 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10384 return -EACCES; 10385 } 10386 10387 if (attr.namespaces) { 10388 if (!capable(CAP_SYS_ADMIN)) 10389 return -EACCES; 10390 } 10391 10392 if (attr.freq) { 10393 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10394 return -EINVAL; 10395 } else { 10396 if (attr.sample_period & (1ULL << 63)) 10397 return -EINVAL; 10398 } 10399 10400 /* Only privileged users can get physical addresses */ 10401 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10402 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10403 return -EACCES; 10404 10405 /* 10406 * In cgroup mode, the pid argument is used to pass the fd 10407 * opened to the cgroup directory in cgroupfs. The cpu argument 10408 * designates the cpu on which to monitor threads from that 10409 * cgroup. 10410 */ 10411 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10412 return -EINVAL; 10413 10414 if (flags & PERF_FLAG_FD_CLOEXEC) 10415 f_flags |= O_CLOEXEC; 10416 10417 event_fd = get_unused_fd_flags(f_flags); 10418 if (event_fd < 0) 10419 return event_fd; 10420 10421 if (group_fd != -1) { 10422 err = perf_fget_light(group_fd, &group); 10423 if (err) 10424 goto err_fd; 10425 group_leader = group.file->private_data; 10426 if (flags & PERF_FLAG_FD_OUTPUT) 10427 output_event = group_leader; 10428 if (flags & PERF_FLAG_FD_NO_GROUP) 10429 group_leader = NULL; 10430 } 10431 10432 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10433 task = find_lively_task_by_vpid(pid); 10434 if (IS_ERR(task)) { 10435 err = PTR_ERR(task); 10436 goto err_group_fd; 10437 } 10438 } 10439 10440 if (task && group_leader && 10441 group_leader->attr.inherit != attr.inherit) { 10442 err = -EINVAL; 10443 goto err_task; 10444 } 10445 10446 if (task) { 10447 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10448 if (err) 10449 goto err_task; 10450 10451 /* 10452 * Reuse ptrace permission checks for now. 10453 * 10454 * We must hold cred_guard_mutex across this and any potential 10455 * perf_install_in_context() call for this new event to 10456 * serialize against exec() altering our credentials (and the 10457 * perf_event_exit_task() that could imply). 10458 */ 10459 err = -EACCES; 10460 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10461 goto err_cred; 10462 } 10463 10464 if (flags & PERF_FLAG_PID_CGROUP) 10465 cgroup_fd = pid; 10466 10467 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10468 NULL, NULL, cgroup_fd); 10469 if (IS_ERR(event)) { 10470 err = PTR_ERR(event); 10471 goto err_cred; 10472 } 10473 10474 if (is_sampling_event(event)) { 10475 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10476 err = -EOPNOTSUPP; 10477 goto err_alloc; 10478 } 10479 } 10480 10481 /* 10482 * Special case software events and allow them to be part of 10483 * any hardware group. 10484 */ 10485 pmu = event->pmu; 10486 10487 if (attr.use_clockid) { 10488 err = perf_event_set_clock(event, attr.clockid); 10489 if (err) 10490 goto err_alloc; 10491 } 10492 10493 if (pmu->task_ctx_nr == perf_sw_context) 10494 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10495 10496 if (group_leader && 10497 (is_software_event(event) != is_software_event(group_leader))) { 10498 if (is_software_event(event)) { 10499 /* 10500 * If event and group_leader are not both a software 10501 * event, and event is, then group leader is not. 10502 * 10503 * Allow the addition of software events to !software 10504 * groups, this is safe because software events never 10505 * fail to schedule. 10506 */ 10507 pmu = group_leader->pmu; 10508 } else if (is_software_event(group_leader) && 10509 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10510 /* 10511 * In case the group is a pure software group, and we 10512 * try to add a hardware event, move the whole group to 10513 * the hardware context. 10514 */ 10515 move_group = 1; 10516 } 10517 } 10518 10519 /* 10520 * Get the target context (task or percpu): 10521 */ 10522 ctx = find_get_context(pmu, task, event); 10523 if (IS_ERR(ctx)) { 10524 err = PTR_ERR(ctx); 10525 goto err_alloc; 10526 } 10527 10528 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10529 err = -EBUSY; 10530 goto err_context; 10531 } 10532 10533 /* 10534 * Look up the group leader (we will attach this event to it): 10535 */ 10536 if (group_leader) { 10537 err = -EINVAL; 10538 10539 /* 10540 * Do not allow a recursive hierarchy (this new sibling 10541 * becoming part of another group-sibling): 10542 */ 10543 if (group_leader->group_leader != group_leader) 10544 goto err_context; 10545 10546 /* All events in a group should have the same clock */ 10547 if (group_leader->clock != event->clock) 10548 goto err_context; 10549 10550 /* 10551 * Make sure we're both events for the same CPU; 10552 * grouping events for different CPUs is broken; since 10553 * you can never concurrently schedule them anyhow. 10554 */ 10555 if (group_leader->cpu != event->cpu) 10556 goto err_context; 10557 10558 /* 10559 * Make sure we're both on the same task, or both 10560 * per-CPU events. 10561 */ 10562 if (group_leader->ctx->task != ctx->task) 10563 goto err_context; 10564 10565 /* 10566 * Do not allow to attach to a group in a different task 10567 * or CPU context. If we're moving SW events, we'll fix 10568 * this up later, so allow that. 10569 */ 10570 if (!move_group && group_leader->ctx != ctx) 10571 goto err_context; 10572 10573 /* 10574 * Only a group leader can be exclusive or pinned 10575 */ 10576 if (attr.exclusive || attr.pinned) 10577 goto err_context; 10578 } 10579 10580 if (output_event) { 10581 err = perf_event_set_output(event, output_event); 10582 if (err) 10583 goto err_context; 10584 } 10585 10586 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10587 f_flags); 10588 if (IS_ERR(event_file)) { 10589 err = PTR_ERR(event_file); 10590 event_file = NULL; 10591 goto err_context; 10592 } 10593 10594 if (move_group) { 10595 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10596 10597 if (gctx->task == TASK_TOMBSTONE) { 10598 err = -ESRCH; 10599 goto err_locked; 10600 } 10601 10602 /* 10603 * Check if we raced against another sys_perf_event_open() call 10604 * moving the software group underneath us. 10605 */ 10606 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10607 /* 10608 * If someone moved the group out from under us, check 10609 * if this new event wound up on the same ctx, if so 10610 * its the regular !move_group case, otherwise fail. 10611 */ 10612 if (gctx != ctx) { 10613 err = -EINVAL; 10614 goto err_locked; 10615 } else { 10616 perf_event_ctx_unlock(group_leader, gctx); 10617 move_group = 0; 10618 } 10619 } 10620 } else { 10621 mutex_lock(&ctx->mutex); 10622 } 10623 10624 if (ctx->task == TASK_TOMBSTONE) { 10625 err = -ESRCH; 10626 goto err_locked; 10627 } 10628 10629 if (!perf_event_validate_size(event)) { 10630 err = -E2BIG; 10631 goto err_locked; 10632 } 10633 10634 if (!task) { 10635 /* 10636 * Check if the @cpu we're creating an event for is online. 10637 * 10638 * We use the perf_cpu_context::ctx::mutex to serialize against 10639 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10640 */ 10641 struct perf_cpu_context *cpuctx = 10642 container_of(ctx, struct perf_cpu_context, ctx); 10643 10644 if (!cpuctx->online) { 10645 err = -ENODEV; 10646 goto err_locked; 10647 } 10648 } 10649 10650 10651 /* 10652 * Must be under the same ctx::mutex as perf_install_in_context(), 10653 * because we need to serialize with concurrent event creation. 10654 */ 10655 if (!exclusive_event_installable(event, ctx)) { 10656 /* exclusive and group stuff are assumed mutually exclusive */ 10657 WARN_ON_ONCE(move_group); 10658 10659 err = -EBUSY; 10660 goto err_locked; 10661 } 10662 10663 WARN_ON_ONCE(ctx->parent_ctx); 10664 10665 /* 10666 * This is the point on no return; we cannot fail hereafter. This is 10667 * where we start modifying current state. 10668 */ 10669 10670 if (move_group) { 10671 /* 10672 * See perf_event_ctx_lock() for comments on the details 10673 * of swizzling perf_event::ctx. 10674 */ 10675 perf_remove_from_context(group_leader, 0); 10676 put_ctx(gctx); 10677 10678 for_each_sibling_event(sibling, group_leader) { 10679 perf_remove_from_context(sibling, 0); 10680 put_ctx(gctx); 10681 } 10682 10683 /* 10684 * Wait for everybody to stop referencing the events through 10685 * the old lists, before installing it on new lists. 10686 */ 10687 synchronize_rcu(); 10688 10689 /* 10690 * Install the group siblings before the group leader. 10691 * 10692 * Because a group leader will try and install the entire group 10693 * (through the sibling list, which is still in-tact), we can 10694 * end up with siblings installed in the wrong context. 10695 * 10696 * By installing siblings first we NO-OP because they're not 10697 * reachable through the group lists. 10698 */ 10699 for_each_sibling_event(sibling, group_leader) { 10700 perf_event__state_init(sibling); 10701 perf_install_in_context(ctx, sibling, sibling->cpu); 10702 get_ctx(ctx); 10703 } 10704 10705 /* 10706 * Removing from the context ends up with disabled 10707 * event. What we want here is event in the initial 10708 * startup state, ready to be add into new context. 10709 */ 10710 perf_event__state_init(group_leader); 10711 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10712 get_ctx(ctx); 10713 } 10714 10715 /* 10716 * Precalculate sample_data sizes; do while holding ctx::mutex such 10717 * that we're serialized against further additions and before 10718 * perf_install_in_context() which is the point the event is active and 10719 * can use these values. 10720 */ 10721 perf_event__header_size(event); 10722 perf_event__id_header_size(event); 10723 10724 event->owner = current; 10725 10726 perf_install_in_context(ctx, event, event->cpu); 10727 perf_unpin_context(ctx); 10728 10729 if (move_group) 10730 perf_event_ctx_unlock(group_leader, gctx); 10731 mutex_unlock(&ctx->mutex); 10732 10733 if (task) { 10734 mutex_unlock(&task->signal->cred_guard_mutex); 10735 put_task_struct(task); 10736 } 10737 10738 mutex_lock(¤t->perf_event_mutex); 10739 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10740 mutex_unlock(¤t->perf_event_mutex); 10741 10742 /* 10743 * Drop the reference on the group_event after placing the 10744 * new event on the sibling_list. This ensures destruction 10745 * of the group leader will find the pointer to itself in 10746 * perf_group_detach(). 10747 */ 10748 fdput(group); 10749 fd_install(event_fd, event_file); 10750 return event_fd; 10751 10752 err_locked: 10753 if (move_group) 10754 perf_event_ctx_unlock(group_leader, gctx); 10755 mutex_unlock(&ctx->mutex); 10756 /* err_file: */ 10757 fput(event_file); 10758 err_context: 10759 perf_unpin_context(ctx); 10760 put_ctx(ctx); 10761 err_alloc: 10762 /* 10763 * If event_file is set, the fput() above will have called ->release() 10764 * and that will take care of freeing the event. 10765 */ 10766 if (!event_file) 10767 free_event(event); 10768 err_cred: 10769 if (task) 10770 mutex_unlock(&task->signal->cred_guard_mutex); 10771 err_task: 10772 if (task) 10773 put_task_struct(task); 10774 err_group_fd: 10775 fdput(group); 10776 err_fd: 10777 put_unused_fd(event_fd); 10778 return err; 10779 } 10780 10781 /** 10782 * perf_event_create_kernel_counter 10783 * 10784 * @attr: attributes of the counter to create 10785 * @cpu: cpu in which the counter is bound 10786 * @task: task to profile (NULL for percpu) 10787 */ 10788 struct perf_event * 10789 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10790 struct task_struct *task, 10791 perf_overflow_handler_t overflow_handler, 10792 void *context) 10793 { 10794 struct perf_event_context *ctx; 10795 struct perf_event *event; 10796 int err; 10797 10798 /* 10799 * Get the target context (task or percpu): 10800 */ 10801 10802 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10803 overflow_handler, context, -1); 10804 if (IS_ERR(event)) { 10805 err = PTR_ERR(event); 10806 goto err; 10807 } 10808 10809 /* Mark owner so we could distinguish it from user events. */ 10810 event->owner = TASK_TOMBSTONE; 10811 10812 ctx = find_get_context(event->pmu, task, event); 10813 if (IS_ERR(ctx)) { 10814 err = PTR_ERR(ctx); 10815 goto err_free; 10816 } 10817 10818 WARN_ON_ONCE(ctx->parent_ctx); 10819 mutex_lock(&ctx->mutex); 10820 if (ctx->task == TASK_TOMBSTONE) { 10821 err = -ESRCH; 10822 goto err_unlock; 10823 } 10824 10825 if (!task) { 10826 /* 10827 * Check if the @cpu we're creating an event for is online. 10828 * 10829 * We use the perf_cpu_context::ctx::mutex to serialize against 10830 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10831 */ 10832 struct perf_cpu_context *cpuctx = 10833 container_of(ctx, struct perf_cpu_context, ctx); 10834 if (!cpuctx->online) { 10835 err = -ENODEV; 10836 goto err_unlock; 10837 } 10838 } 10839 10840 if (!exclusive_event_installable(event, ctx)) { 10841 err = -EBUSY; 10842 goto err_unlock; 10843 } 10844 10845 perf_install_in_context(ctx, event, cpu); 10846 perf_unpin_context(ctx); 10847 mutex_unlock(&ctx->mutex); 10848 10849 return event; 10850 10851 err_unlock: 10852 mutex_unlock(&ctx->mutex); 10853 perf_unpin_context(ctx); 10854 put_ctx(ctx); 10855 err_free: 10856 free_event(event); 10857 err: 10858 return ERR_PTR(err); 10859 } 10860 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10861 10862 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10863 { 10864 struct perf_event_context *src_ctx; 10865 struct perf_event_context *dst_ctx; 10866 struct perf_event *event, *tmp; 10867 LIST_HEAD(events); 10868 10869 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10870 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10871 10872 /* 10873 * See perf_event_ctx_lock() for comments on the details 10874 * of swizzling perf_event::ctx. 10875 */ 10876 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10877 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10878 event_entry) { 10879 perf_remove_from_context(event, 0); 10880 unaccount_event_cpu(event, src_cpu); 10881 put_ctx(src_ctx); 10882 list_add(&event->migrate_entry, &events); 10883 } 10884 10885 /* 10886 * Wait for the events to quiesce before re-instating them. 10887 */ 10888 synchronize_rcu(); 10889 10890 /* 10891 * Re-instate events in 2 passes. 10892 * 10893 * Skip over group leaders and only install siblings on this first 10894 * pass, siblings will not get enabled without a leader, however a 10895 * leader will enable its siblings, even if those are still on the old 10896 * context. 10897 */ 10898 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10899 if (event->group_leader == event) 10900 continue; 10901 10902 list_del(&event->migrate_entry); 10903 if (event->state >= PERF_EVENT_STATE_OFF) 10904 event->state = PERF_EVENT_STATE_INACTIVE; 10905 account_event_cpu(event, dst_cpu); 10906 perf_install_in_context(dst_ctx, event, dst_cpu); 10907 get_ctx(dst_ctx); 10908 } 10909 10910 /* 10911 * Once all the siblings are setup properly, install the group leaders 10912 * to make it go. 10913 */ 10914 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10915 list_del(&event->migrate_entry); 10916 if (event->state >= PERF_EVENT_STATE_OFF) 10917 event->state = PERF_EVENT_STATE_INACTIVE; 10918 account_event_cpu(event, dst_cpu); 10919 perf_install_in_context(dst_ctx, event, dst_cpu); 10920 get_ctx(dst_ctx); 10921 } 10922 mutex_unlock(&dst_ctx->mutex); 10923 mutex_unlock(&src_ctx->mutex); 10924 } 10925 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10926 10927 static void sync_child_event(struct perf_event *child_event, 10928 struct task_struct *child) 10929 { 10930 struct perf_event *parent_event = child_event->parent; 10931 u64 child_val; 10932 10933 if (child_event->attr.inherit_stat) 10934 perf_event_read_event(child_event, child); 10935 10936 child_val = perf_event_count(child_event); 10937 10938 /* 10939 * Add back the child's count to the parent's count: 10940 */ 10941 atomic64_add(child_val, &parent_event->child_count); 10942 atomic64_add(child_event->total_time_enabled, 10943 &parent_event->child_total_time_enabled); 10944 atomic64_add(child_event->total_time_running, 10945 &parent_event->child_total_time_running); 10946 } 10947 10948 static void 10949 perf_event_exit_event(struct perf_event *child_event, 10950 struct perf_event_context *child_ctx, 10951 struct task_struct *child) 10952 { 10953 struct perf_event *parent_event = child_event->parent; 10954 10955 /* 10956 * Do not destroy the 'original' grouping; because of the context 10957 * switch optimization the original events could've ended up in a 10958 * random child task. 10959 * 10960 * If we were to destroy the original group, all group related 10961 * operations would cease to function properly after this random 10962 * child dies. 10963 * 10964 * Do destroy all inherited groups, we don't care about those 10965 * and being thorough is better. 10966 */ 10967 raw_spin_lock_irq(&child_ctx->lock); 10968 WARN_ON_ONCE(child_ctx->is_active); 10969 10970 if (parent_event) 10971 perf_group_detach(child_event); 10972 list_del_event(child_event, child_ctx); 10973 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 10974 raw_spin_unlock_irq(&child_ctx->lock); 10975 10976 /* 10977 * Parent events are governed by their filedesc, retain them. 10978 */ 10979 if (!parent_event) { 10980 perf_event_wakeup(child_event); 10981 return; 10982 } 10983 /* 10984 * Child events can be cleaned up. 10985 */ 10986 10987 sync_child_event(child_event, child); 10988 10989 /* 10990 * Remove this event from the parent's list 10991 */ 10992 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10993 mutex_lock(&parent_event->child_mutex); 10994 list_del_init(&child_event->child_list); 10995 mutex_unlock(&parent_event->child_mutex); 10996 10997 /* 10998 * Kick perf_poll() for is_event_hup(). 10999 */ 11000 perf_event_wakeup(parent_event); 11001 free_event(child_event); 11002 put_event(parent_event); 11003 } 11004 11005 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11006 { 11007 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11008 struct perf_event *child_event, *next; 11009 11010 WARN_ON_ONCE(child != current); 11011 11012 child_ctx = perf_pin_task_context(child, ctxn); 11013 if (!child_ctx) 11014 return; 11015 11016 /* 11017 * In order to reduce the amount of tricky in ctx tear-down, we hold 11018 * ctx::mutex over the entire thing. This serializes against almost 11019 * everything that wants to access the ctx. 11020 * 11021 * The exception is sys_perf_event_open() / 11022 * perf_event_create_kernel_count() which does find_get_context() 11023 * without ctx::mutex (it cannot because of the move_group double mutex 11024 * lock thing). See the comments in perf_install_in_context(). 11025 */ 11026 mutex_lock(&child_ctx->mutex); 11027 11028 /* 11029 * In a single ctx::lock section, de-schedule the events and detach the 11030 * context from the task such that we cannot ever get it scheduled back 11031 * in. 11032 */ 11033 raw_spin_lock_irq(&child_ctx->lock); 11034 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11035 11036 /* 11037 * Now that the context is inactive, destroy the task <-> ctx relation 11038 * and mark the context dead. 11039 */ 11040 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11041 put_ctx(child_ctx); /* cannot be last */ 11042 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11043 put_task_struct(current); /* cannot be last */ 11044 11045 clone_ctx = unclone_ctx(child_ctx); 11046 raw_spin_unlock_irq(&child_ctx->lock); 11047 11048 if (clone_ctx) 11049 put_ctx(clone_ctx); 11050 11051 /* 11052 * Report the task dead after unscheduling the events so that we 11053 * won't get any samples after PERF_RECORD_EXIT. We can however still 11054 * get a few PERF_RECORD_READ events. 11055 */ 11056 perf_event_task(child, child_ctx, 0); 11057 11058 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11059 perf_event_exit_event(child_event, child_ctx, child); 11060 11061 mutex_unlock(&child_ctx->mutex); 11062 11063 put_ctx(child_ctx); 11064 } 11065 11066 /* 11067 * When a child task exits, feed back event values to parent events. 11068 * 11069 * Can be called with cred_guard_mutex held when called from 11070 * install_exec_creds(). 11071 */ 11072 void perf_event_exit_task(struct task_struct *child) 11073 { 11074 struct perf_event *event, *tmp; 11075 int ctxn; 11076 11077 mutex_lock(&child->perf_event_mutex); 11078 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11079 owner_entry) { 11080 list_del_init(&event->owner_entry); 11081 11082 /* 11083 * Ensure the list deletion is visible before we clear 11084 * the owner, closes a race against perf_release() where 11085 * we need to serialize on the owner->perf_event_mutex. 11086 */ 11087 smp_store_release(&event->owner, NULL); 11088 } 11089 mutex_unlock(&child->perf_event_mutex); 11090 11091 for_each_task_context_nr(ctxn) 11092 perf_event_exit_task_context(child, ctxn); 11093 11094 /* 11095 * The perf_event_exit_task_context calls perf_event_task 11096 * with child's task_ctx, which generates EXIT events for 11097 * child contexts and sets child->perf_event_ctxp[] to NULL. 11098 * At this point we need to send EXIT events to cpu contexts. 11099 */ 11100 perf_event_task(child, NULL, 0); 11101 } 11102 11103 static void perf_free_event(struct perf_event *event, 11104 struct perf_event_context *ctx) 11105 { 11106 struct perf_event *parent = event->parent; 11107 11108 if (WARN_ON_ONCE(!parent)) 11109 return; 11110 11111 mutex_lock(&parent->child_mutex); 11112 list_del_init(&event->child_list); 11113 mutex_unlock(&parent->child_mutex); 11114 11115 put_event(parent); 11116 11117 raw_spin_lock_irq(&ctx->lock); 11118 perf_group_detach(event); 11119 list_del_event(event, ctx); 11120 raw_spin_unlock_irq(&ctx->lock); 11121 free_event(event); 11122 } 11123 11124 /* 11125 * Free an unexposed, unused context as created by inheritance by 11126 * perf_event_init_task below, used by fork() in case of fail. 11127 * 11128 * Not all locks are strictly required, but take them anyway to be nice and 11129 * help out with the lockdep assertions. 11130 */ 11131 void perf_event_free_task(struct task_struct *task) 11132 { 11133 struct perf_event_context *ctx; 11134 struct perf_event *event, *tmp; 11135 int ctxn; 11136 11137 for_each_task_context_nr(ctxn) { 11138 ctx = task->perf_event_ctxp[ctxn]; 11139 if (!ctx) 11140 continue; 11141 11142 mutex_lock(&ctx->mutex); 11143 raw_spin_lock_irq(&ctx->lock); 11144 /* 11145 * Destroy the task <-> ctx relation and mark the context dead. 11146 * 11147 * This is important because even though the task hasn't been 11148 * exposed yet the context has been (through child_list). 11149 */ 11150 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11151 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11152 put_task_struct(task); /* cannot be last */ 11153 raw_spin_unlock_irq(&ctx->lock); 11154 11155 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11156 perf_free_event(event, ctx); 11157 11158 mutex_unlock(&ctx->mutex); 11159 put_ctx(ctx); 11160 } 11161 } 11162 11163 void perf_event_delayed_put(struct task_struct *task) 11164 { 11165 int ctxn; 11166 11167 for_each_task_context_nr(ctxn) 11168 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11169 } 11170 11171 struct file *perf_event_get(unsigned int fd) 11172 { 11173 struct file *file; 11174 11175 file = fget_raw(fd); 11176 if (!file) 11177 return ERR_PTR(-EBADF); 11178 11179 if (file->f_op != &perf_fops) { 11180 fput(file); 11181 return ERR_PTR(-EBADF); 11182 } 11183 11184 return file; 11185 } 11186 11187 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11188 { 11189 if (!event) 11190 return ERR_PTR(-EINVAL); 11191 11192 return &event->attr; 11193 } 11194 11195 /* 11196 * Inherit a event from parent task to child task. 11197 * 11198 * Returns: 11199 * - valid pointer on success 11200 * - NULL for orphaned events 11201 * - IS_ERR() on error 11202 */ 11203 static struct perf_event * 11204 inherit_event(struct perf_event *parent_event, 11205 struct task_struct *parent, 11206 struct perf_event_context *parent_ctx, 11207 struct task_struct *child, 11208 struct perf_event *group_leader, 11209 struct perf_event_context *child_ctx) 11210 { 11211 enum perf_event_state parent_state = parent_event->state; 11212 struct perf_event *child_event; 11213 unsigned long flags; 11214 11215 /* 11216 * Instead of creating recursive hierarchies of events, 11217 * we link inherited events back to the original parent, 11218 * which has a filp for sure, which we use as the reference 11219 * count: 11220 */ 11221 if (parent_event->parent) 11222 parent_event = parent_event->parent; 11223 11224 child_event = perf_event_alloc(&parent_event->attr, 11225 parent_event->cpu, 11226 child, 11227 group_leader, parent_event, 11228 NULL, NULL, -1); 11229 if (IS_ERR(child_event)) 11230 return child_event; 11231 11232 11233 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11234 !child_ctx->task_ctx_data) { 11235 struct pmu *pmu = child_event->pmu; 11236 11237 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11238 GFP_KERNEL); 11239 if (!child_ctx->task_ctx_data) { 11240 free_event(child_event); 11241 return NULL; 11242 } 11243 } 11244 11245 /* 11246 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11247 * must be under the same lock in order to serialize against 11248 * perf_event_release_kernel(), such that either we must observe 11249 * is_orphaned_event() or they will observe us on the child_list. 11250 */ 11251 mutex_lock(&parent_event->child_mutex); 11252 if (is_orphaned_event(parent_event) || 11253 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11254 mutex_unlock(&parent_event->child_mutex); 11255 /* task_ctx_data is freed with child_ctx */ 11256 free_event(child_event); 11257 return NULL; 11258 } 11259 11260 get_ctx(child_ctx); 11261 11262 /* 11263 * Make the child state follow the state of the parent event, 11264 * not its attr.disabled bit. We hold the parent's mutex, 11265 * so we won't race with perf_event_{en, dis}able_family. 11266 */ 11267 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11268 child_event->state = PERF_EVENT_STATE_INACTIVE; 11269 else 11270 child_event->state = PERF_EVENT_STATE_OFF; 11271 11272 if (parent_event->attr.freq) { 11273 u64 sample_period = parent_event->hw.sample_period; 11274 struct hw_perf_event *hwc = &child_event->hw; 11275 11276 hwc->sample_period = sample_period; 11277 hwc->last_period = sample_period; 11278 11279 local64_set(&hwc->period_left, sample_period); 11280 } 11281 11282 child_event->ctx = child_ctx; 11283 child_event->overflow_handler = parent_event->overflow_handler; 11284 child_event->overflow_handler_context 11285 = parent_event->overflow_handler_context; 11286 11287 /* 11288 * Precalculate sample_data sizes 11289 */ 11290 perf_event__header_size(child_event); 11291 perf_event__id_header_size(child_event); 11292 11293 /* 11294 * Link it up in the child's context: 11295 */ 11296 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11297 add_event_to_ctx(child_event, child_ctx); 11298 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11299 11300 /* 11301 * Link this into the parent event's child list 11302 */ 11303 list_add_tail(&child_event->child_list, &parent_event->child_list); 11304 mutex_unlock(&parent_event->child_mutex); 11305 11306 return child_event; 11307 } 11308 11309 /* 11310 * Inherits an event group. 11311 * 11312 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11313 * This matches with perf_event_release_kernel() removing all child events. 11314 * 11315 * Returns: 11316 * - 0 on success 11317 * - <0 on error 11318 */ 11319 static int inherit_group(struct perf_event *parent_event, 11320 struct task_struct *parent, 11321 struct perf_event_context *parent_ctx, 11322 struct task_struct *child, 11323 struct perf_event_context *child_ctx) 11324 { 11325 struct perf_event *leader; 11326 struct perf_event *sub; 11327 struct perf_event *child_ctr; 11328 11329 leader = inherit_event(parent_event, parent, parent_ctx, 11330 child, NULL, child_ctx); 11331 if (IS_ERR(leader)) 11332 return PTR_ERR(leader); 11333 /* 11334 * @leader can be NULL here because of is_orphaned_event(). In this 11335 * case inherit_event() will create individual events, similar to what 11336 * perf_group_detach() would do anyway. 11337 */ 11338 for_each_sibling_event(sub, parent_event) { 11339 child_ctr = inherit_event(sub, parent, parent_ctx, 11340 child, leader, child_ctx); 11341 if (IS_ERR(child_ctr)) 11342 return PTR_ERR(child_ctr); 11343 } 11344 return 0; 11345 } 11346 11347 /* 11348 * Creates the child task context and tries to inherit the event-group. 11349 * 11350 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11351 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11352 * consistent with perf_event_release_kernel() removing all child events. 11353 * 11354 * Returns: 11355 * - 0 on success 11356 * - <0 on error 11357 */ 11358 static int 11359 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11360 struct perf_event_context *parent_ctx, 11361 struct task_struct *child, int ctxn, 11362 int *inherited_all) 11363 { 11364 int ret; 11365 struct perf_event_context *child_ctx; 11366 11367 if (!event->attr.inherit) { 11368 *inherited_all = 0; 11369 return 0; 11370 } 11371 11372 child_ctx = child->perf_event_ctxp[ctxn]; 11373 if (!child_ctx) { 11374 /* 11375 * This is executed from the parent task context, so 11376 * inherit events that have been marked for cloning. 11377 * First allocate and initialize a context for the 11378 * child. 11379 */ 11380 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11381 if (!child_ctx) 11382 return -ENOMEM; 11383 11384 child->perf_event_ctxp[ctxn] = child_ctx; 11385 } 11386 11387 ret = inherit_group(event, parent, parent_ctx, 11388 child, child_ctx); 11389 11390 if (ret) 11391 *inherited_all = 0; 11392 11393 return ret; 11394 } 11395 11396 /* 11397 * Initialize the perf_event context in task_struct 11398 */ 11399 static int perf_event_init_context(struct task_struct *child, int ctxn) 11400 { 11401 struct perf_event_context *child_ctx, *parent_ctx; 11402 struct perf_event_context *cloned_ctx; 11403 struct perf_event *event; 11404 struct task_struct *parent = current; 11405 int inherited_all = 1; 11406 unsigned long flags; 11407 int ret = 0; 11408 11409 if (likely(!parent->perf_event_ctxp[ctxn])) 11410 return 0; 11411 11412 /* 11413 * If the parent's context is a clone, pin it so it won't get 11414 * swapped under us. 11415 */ 11416 parent_ctx = perf_pin_task_context(parent, ctxn); 11417 if (!parent_ctx) 11418 return 0; 11419 11420 /* 11421 * No need to check if parent_ctx != NULL here; since we saw 11422 * it non-NULL earlier, the only reason for it to become NULL 11423 * is if we exit, and since we're currently in the middle of 11424 * a fork we can't be exiting at the same time. 11425 */ 11426 11427 /* 11428 * Lock the parent list. No need to lock the child - not PID 11429 * hashed yet and not running, so nobody can access it. 11430 */ 11431 mutex_lock(&parent_ctx->mutex); 11432 11433 /* 11434 * We dont have to disable NMIs - we are only looking at 11435 * the list, not manipulating it: 11436 */ 11437 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11438 ret = inherit_task_group(event, parent, parent_ctx, 11439 child, ctxn, &inherited_all); 11440 if (ret) 11441 goto out_unlock; 11442 } 11443 11444 /* 11445 * We can't hold ctx->lock when iterating the ->flexible_group list due 11446 * to allocations, but we need to prevent rotation because 11447 * rotate_ctx() will change the list from interrupt context. 11448 */ 11449 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11450 parent_ctx->rotate_disable = 1; 11451 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11452 11453 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11454 ret = inherit_task_group(event, parent, parent_ctx, 11455 child, ctxn, &inherited_all); 11456 if (ret) 11457 goto out_unlock; 11458 } 11459 11460 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11461 parent_ctx->rotate_disable = 0; 11462 11463 child_ctx = child->perf_event_ctxp[ctxn]; 11464 11465 if (child_ctx && inherited_all) { 11466 /* 11467 * Mark the child context as a clone of the parent 11468 * context, or of whatever the parent is a clone of. 11469 * 11470 * Note that if the parent is a clone, the holding of 11471 * parent_ctx->lock avoids it from being uncloned. 11472 */ 11473 cloned_ctx = parent_ctx->parent_ctx; 11474 if (cloned_ctx) { 11475 child_ctx->parent_ctx = cloned_ctx; 11476 child_ctx->parent_gen = parent_ctx->parent_gen; 11477 } else { 11478 child_ctx->parent_ctx = parent_ctx; 11479 child_ctx->parent_gen = parent_ctx->generation; 11480 } 11481 get_ctx(child_ctx->parent_ctx); 11482 } 11483 11484 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11485 out_unlock: 11486 mutex_unlock(&parent_ctx->mutex); 11487 11488 perf_unpin_context(parent_ctx); 11489 put_ctx(parent_ctx); 11490 11491 return ret; 11492 } 11493 11494 /* 11495 * Initialize the perf_event context in task_struct 11496 */ 11497 int perf_event_init_task(struct task_struct *child) 11498 { 11499 int ctxn, ret; 11500 11501 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11502 mutex_init(&child->perf_event_mutex); 11503 INIT_LIST_HEAD(&child->perf_event_list); 11504 11505 for_each_task_context_nr(ctxn) { 11506 ret = perf_event_init_context(child, ctxn); 11507 if (ret) { 11508 perf_event_free_task(child); 11509 return ret; 11510 } 11511 } 11512 11513 return 0; 11514 } 11515 11516 static void __init perf_event_init_all_cpus(void) 11517 { 11518 struct swevent_htable *swhash; 11519 int cpu; 11520 11521 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11522 11523 for_each_possible_cpu(cpu) { 11524 swhash = &per_cpu(swevent_htable, cpu); 11525 mutex_init(&swhash->hlist_mutex); 11526 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11527 11528 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11529 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11530 11531 #ifdef CONFIG_CGROUP_PERF 11532 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11533 #endif 11534 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11535 } 11536 } 11537 11538 void perf_swevent_init_cpu(unsigned int cpu) 11539 { 11540 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11541 11542 mutex_lock(&swhash->hlist_mutex); 11543 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11544 struct swevent_hlist *hlist; 11545 11546 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11547 WARN_ON(!hlist); 11548 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11549 } 11550 mutex_unlock(&swhash->hlist_mutex); 11551 } 11552 11553 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11554 static void __perf_event_exit_context(void *__info) 11555 { 11556 struct perf_event_context *ctx = __info; 11557 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11558 struct perf_event *event; 11559 11560 raw_spin_lock(&ctx->lock); 11561 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11562 list_for_each_entry(event, &ctx->event_list, event_entry) 11563 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11564 raw_spin_unlock(&ctx->lock); 11565 } 11566 11567 static void perf_event_exit_cpu_context(int cpu) 11568 { 11569 struct perf_cpu_context *cpuctx; 11570 struct perf_event_context *ctx; 11571 struct pmu *pmu; 11572 11573 mutex_lock(&pmus_lock); 11574 list_for_each_entry(pmu, &pmus, entry) { 11575 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11576 ctx = &cpuctx->ctx; 11577 11578 mutex_lock(&ctx->mutex); 11579 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11580 cpuctx->online = 0; 11581 mutex_unlock(&ctx->mutex); 11582 } 11583 cpumask_clear_cpu(cpu, perf_online_mask); 11584 mutex_unlock(&pmus_lock); 11585 } 11586 #else 11587 11588 static void perf_event_exit_cpu_context(int cpu) { } 11589 11590 #endif 11591 11592 int perf_event_init_cpu(unsigned int cpu) 11593 { 11594 struct perf_cpu_context *cpuctx; 11595 struct perf_event_context *ctx; 11596 struct pmu *pmu; 11597 11598 perf_swevent_init_cpu(cpu); 11599 11600 mutex_lock(&pmus_lock); 11601 cpumask_set_cpu(cpu, perf_online_mask); 11602 list_for_each_entry(pmu, &pmus, entry) { 11603 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11604 ctx = &cpuctx->ctx; 11605 11606 mutex_lock(&ctx->mutex); 11607 cpuctx->online = 1; 11608 mutex_unlock(&ctx->mutex); 11609 } 11610 mutex_unlock(&pmus_lock); 11611 11612 return 0; 11613 } 11614 11615 int perf_event_exit_cpu(unsigned int cpu) 11616 { 11617 perf_event_exit_cpu_context(cpu); 11618 return 0; 11619 } 11620 11621 static int 11622 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11623 { 11624 int cpu; 11625 11626 for_each_online_cpu(cpu) 11627 perf_event_exit_cpu(cpu); 11628 11629 return NOTIFY_OK; 11630 } 11631 11632 /* 11633 * Run the perf reboot notifier at the very last possible moment so that 11634 * the generic watchdog code runs as long as possible. 11635 */ 11636 static struct notifier_block perf_reboot_notifier = { 11637 .notifier_call = perf_reboot, 11638 .priority = INT_MIN, 11639 }; 11640 11641 void __init perf_event_init(void) 11642 { 11643 int ret; 11644 11645 idr_init(&pmu_idr); 11646 11647 perf_event_init_all_cpus(); 11648 init_srcu_struct(&pmus_srcu); 11649 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11650 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11651 perf_pmu_register(&perf_task_clock, NULL, -1); 11652 perf_tp_register(); 11653 perf_event_init_cpu(smp_processor_id()); 11654 register_reboot_notifier(&perf_reboot_notifier); 11655 11656 ret = init_hw_breakpoint(); 11657 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11658 11659 /* 11660 * Build time assertion that we keep the data_head at the intended 11661 * location. IOW, validation we got the __reserved[] size right. 11662 */ 11663 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11664 != 1024); 11665 } 11666 11667 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11668 char *page) 11669 { 11670 struct perf_pmu_events_attr *pmu_attr = 11671 container_of(attr, struct perf_pmu_events_attr, attr); 11672 11673 if (pmu_attr->event_str) 11674 return sprintf(page, "%s\n", pmu_attr->event_str); 11675 11676 return 0; 11677 } 11678 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11679 11680 static int __init perf_event_sysfs_init(void) 11681 { 11682 struct pmu *pmu; 11683 int ret; 11684 11685 mutex_lock(&pmus_lock); 11686 11687 ret = bus_register(&pmu_bus); 11688 if (ret) 11689 goto unlock; 11690 11691 list_for_each_entry(pmu, &pmus, entry) { 11692 if (!pmu->name || pmu->type < 0) 11693 continue; 11694 11695 ret = pmu_dev_alloc(pmu); 11696 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11697 } 11698 pmu_bus_running = 1; 11699 ret = 0; 11700 11701 unlock: 11702 mutex_unlock(&pmus_lock); 11703 11704 return ret; 11705 } 11706 device_initcall(perf_event_sysfs_init); 11707 11708 #ifdef CONFIG_CGROUP_PERF 11709 static struct cgroup_subsys_state * 11710 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11711 { 11712 struct perf_cgroup *jc; 11713 11714 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11715 if (!jc) 11716 return ERR_PTR(-ENOMEM); 11717 11718 jc->info = alloc_percpu(struct perf_cgroup_info); 11719 if (!jc->info) { 11720 kfree(jc); 11721 return ERR_PTR(-ENOMEM); 11722 } 11723 11724 return &jc->css; 11725 } 11726 11727 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11728 { 11729 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11730 11731 free_percpu(jc->info); 11732 kfree(jc); 11733 } 11734 11735 static int __perf_cgroup_move(void *info) 11736 { 11737 struct task_struct *task = info; 11738 rcu_read_lock(); 11739 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11740 rcu_read_unlock(); 11741 return 0; 11742 } 11743 11744 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11745 { 11746 struct task_struct *task; 11747 struct cgroup_subsys_state *css; 11748 11749 cgroup_taskset_for_each(task, css, tset) 11750 task_function_call(task, __perf_cgroup_move, task); 11751 } 11752 11753 struct cgroup_subsys perf_event_cgrp_subsys = { 11754 .css_alloc = perf_cgroup_css_alloc, 11755 .css_free = perf_cgroup_css_free, 11756 .attach = perf_cgroup_attach, 11757 /* 11758 * Implicitly enable on dfl hierarchy so that perf events can 11759 * always be filtered by cgroup2 path as long as perf_event 11760 * controller is not mounted on a legacy hierarchy. 11761 */ 11762 .implicit_on_dfl = true, 11763 .threaded = true, 11764 }; 11765 #endif /* CONFIG_CGROUP_PERF */ 11766