xref: /linux/kernel/events/core.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 
57 #include "internal.h"
58 
59 #include <asm/irq_regs.h>
60 
61 typedef int (*remote_function_f)(void *);
62 
63 struct remote_function_call {
64 	struct task_struct	*p;
65 	remote_function_f	func;
66 	void			*info;
67 	int			ret;
68 };
69 
70 static void remote_function(void *data)
71 {
72 	struct remote_function_call *tfc = data;
73 	struct task_struct *p = tfc->p;
74 
75 	if (p) {
76 		/* -EAGAIN */
77 		if (task_cpu(p) != smp_processor_id())
78 			return;
79 
80 		/*
81 		 * Now that we're on right CPU with IRQs disabled, we can test
82 		 * if we hit the right task without races.
83 		 */
84 
85 		tfc->ret = -ESRCH; /* No such (running) process */
86 		if (p != current)
87 			return;
88 	}
89 
90 	tfc->ret = tfc->func(tfc->info);
91 }
92 
93 /**
94  * task_function_call - call a function on the cpu on which a task runs
95  * @p:		the task to evaluate
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func when the task is currently running. This might
100  * be on the current CPU, which just calls the function directly.  This will
101  * retry due to any failures in smp_call_function_single(), such as if the
102  * task_cpu() goes offline concurrently.
103  *
104  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
105  */
106 static int
107 task_function_call(struct task_struct *p, remote_function_f func, void *info)
108 {
109 	struct remote_function_call data = {
110 		.p	= p,
111 		.func	= func,
112 		.info	= info,
113 		.ret	= -EAGAIN,
114 	};
115 	int ret;
116 
117 	for (;;) {
118 		ret = smp_call_function_single(task_cpu(p), remote_function,
119 					       &data, 1);
120 		if (!ret)
121 			ret = data.ret;
122 
123 		if (ret != -EAGAIN)
124 			break;
125 
126 		cond_resched();
127 	}
128 
129 	return ret;
130 }
131 
132 /**
133  * cpu_function_call - call a function on the cpu
134  * @func:	the function to be called
135  * @info:	the function call argument
136  *
137  * Calls the function @func on the remote cpu.
138  *
139  * returns: @func return value or -ENXIO when the cpu is offline
140  */
141 static int cpu_function_call(int cpu, remote_function_f func, void *info)
142 {
143 	struct remote_function_call data = {
144 		.p	= NULL,
145 		.func	= func,
146 		.info	= info,
147 		.ret	= -ENXIO, /* No such CPU */
148 	};
149 
150 	smp_call_function_single(cpu, remote_function, &data, 1);
151 
152 	return data.ret;
153 }
154 
155 static inline struct perf_cpu_context *
156 __get_cpu_context(struct perf_event_context *ctx)
157 {
158 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
159 }
160 
161 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
162 			  struct perf_event_context *ctx)
163 {
164 	raw_spin_lock(&cpuctx->ctx.lock);
165 	if (ctx)
166 		raw_spin_lock(&ctx->lock);
167 }
168 
169 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
170 			    struct perf_event_context *ctx)
171 {
172 	if (ctx)
173 		raw_spin_unlock(&ctx->lock);
174 	raw_spin_unlock(&cpuctx->ctx.lock);
175 }
176 
177 #define TASK_TOMBSTONE ((void *)-1L)
178 
179 static bool is_kernel_event(struct perf_event *event)
180 {
181 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
182 }
183 
184 /*
185  * On task ctx scheduling...
186  *
187  * When !ctx->nr_events a task context will not be scheduled. This means
188  * we can disable the scheduler hooks (for performance) without leaving
189  * pending task ctx state.
190  *
191  * This however results in two special cases:
192  *
193  *  - removing the last event from a task ctx; this is relatively straight
194  *    forward and is done in __perf_remove_from_context.
195  *
196  *  - adding the first event to a task ctx; this is tricky because we cannot
197  *    rely on ctx->is_active and therefore cannot use event_function_call().
198  *    See perf_install_in_context().
199  *
200  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
201  */
202 
203 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
204 			struct perf_event_context *, void *);
205 
206 struct event_function_struct {
207 	struct perf_event *event;
208 	event_f func;
209 	void *data;
210 };
211 
212 static int event_function(void *info)
213 {
214 	struct event_function_struct *efs = info;
215 	struct perf_event *event = efs->event;
216 	struct perf_event_context *ctx = event->ctx;
217 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
218 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
219 	int ret = 0;
220 
221 	lockdep_assert_irqs_disabled();
222 
223 	perf_ctx_lock(cpuctx, task_ctx);
224 	/*
225 	 * Since we do the IPI call without holding ctx->lock things can have
226 	 * changed, double check we hit the task we set out to hit.
227 	 */
228 	if (ctx->task) {
229 		if (ctx->task != current) {
230 			ret = -ESRCH;
231 			goto unlock;
232 		}
233 
234 		/*
235 		 * We only use event_function_call() on established contexts,
236 		 * and event_function() is only ever called when active (or
237 		 * rather, we'll have bailed in task_function_call() or the
238 		 * above ctx->task != current test), therefore we must have
239 		 * ctx->is_active here.
240 		 */
241 		WARN_ON_ONCE(!ctx->is_active);
242 		/*
243 		 * And since we have ctx->is_active, cpuctx->task_ctx must
244 		 * match.
245 		 */
246 		WARN_ON_ONCE(task_ctx != ctx);
247 	} else {
248 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
249 	}
250 
251 	efs->func(event, cpuctx, ctx, efs->data);
252 unlock:
253 	perf_ctx_unlock(cpuctx, task_ctx);
254 
255 	return ret;
256 }
257 
258 static void event_function_call(struct perf_event *event, event_f func, void *data)
259 {
260 	struct perf_event_context *ctx = event->ctx;
261 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
262 	struct event_function_struct efs = {
263 		.event = event,
264 		.func = func,
265 		.data = data,
266 	};
267 
268 	if (!event->parent) {
269 		/*
270 		 * If this is a !child event, we must hold ctx::mutex to
271 		 * stabilize the the event->ctx relation. See
272 		 * perf_event_ctx_lock().
273 		 */
274 		lockdep_assert_held(&ctx->mutex);
275 	}
276 
277 	if (!task) {
278 		cpu_function_call(event->cpu, event_function, &efs);
279 		return;
280 	}
281 
282 	if (task == TASK_TOMBSTONE)
283 		return;
284 
285 again:
286 	if (!task_function_call(task, event_function, &efs))
287 		return;
288 
289 	raw_spin_lock_irq(&ctx->lock);
290 	/*
291 	 * Reload the task pointer, it might have been changed by
292 	 * a concurrent perf_event_context_sched_out().
293 	 */
294 	task = ctx->task;
295 	if (task == TASK_TOMBSTONE) {
296 		raw_spin_unlock_irq(&ctx->lock);
297 		return;
298 	}
299 	if (ctx->is_active) {
300 		raw_spin_unlock_irq(&ctx->lock);
301 		goto again;
302 	}
303 	func(event, NULL, ctx, data);
304 	raw_spin_unlock_irq(&ctx->lock);
305 }
306 
307 /*
308  * Similar to event_function_call() + event_function(), but hard assumes IRQs
309  * are already disabled and we're on the right CPU.
310  */
311 static void event_function_local(struct perf_event *event, event_f func, void *data)
312 {
313 	struct perf_event_context *ctx = event->ctx;
314 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
315 	struct task_struct *task = READ_ONCE(ctx->task);
316 	struct perf_event_context *task_ctx = NULL;
317 
318 	lockdep_assert_irqs_disabled();
319 
320 	if (task) {
321 		if (task == TASK_TOMBSTONE)
322 			return;
323 
324 		task_ctx = ctx;
325 	}
326 
327 	perf_ctx_lock(cpuctx, task_ctx);
328 
329 	task = ctx->task;
330 	if (task == TASK_TOMBSTONE)
331 		goto unlock;
332 
333 	if (task) {
334 		/*
335 		 * We must be either inactive or active and the right task,
336 		 * otherwise we're screwed, since we cannot IPI to somewhere
337 		 * else.
338 		 */
339 		if (ctx->is_active) {
340 			if (WARN_ON_ONCE(task != current))
341 				goto unlock;
342 
343 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
344 				goto unlock;
345 		}
346 	} else {
347 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
348 	}
349 
350 	func(event, cpuctx, ctx, data);
351 unlock:
352 	perf_ctx_unlock(cpuctx, task_ctx);
353 }
354 
355 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
356 		       PERF_FLAG_FD_OUTPUT  |\
357 		       PERF_FLAG_PID_CGROUP |\
358 		       PERF_FLAG_FD_CLOEXEC)
359 
360 /*
361  * branch priv levels that need permission checks
362  */
363 #define PERF_SAMPLE_BRANCH_PERM_PLM \
364 	(PERF_SAMPLE_BRANCH_KERNEL |\
365 	 PERF_SAMPLE_BRANCH_HV)
366 
367 enum event_type_t {
368 	EVENT_FLEXIBLE = 0x1,
369 	EVENT_PINNED = 0x2,
370 	EVENT_TIME = 0x4,
371 	/* see ctx_resched() for details */
372 	EVENT_CPU = 0x8,
373 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
374 };
375 
376 /*
377  * perf_sched_events : >0 events exist
378  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
379  */
380 
381 static void perf_sched_delayed(struct work_struct *work);
382 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
383 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
384 static DEFINE_MUTEX(perf_sched_mutex);
385 static atomic_t perf_sched_count;
386 
387 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
388 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
389 
390 static atomic_t nr_mmap_events __read_mostly;
391 static atomic_t nr_comm_events __read_mostly;
392 static atomic_t nr_namespaces_events __read_mostly;
393 static atomic_t nr_task_events __read_mostly;
394 static atomic_t nr_freq_events __read_mostly;
395 static atomic_t nr_switch_events __read_mostly;
396 static atomic_t nr_ksymbol_events __read_mostly;
397 static atomic_t nr_bpf_events __read_mostly;
398 static atomic_t nr_cgroup_events __read_mostly;
399 static atomic_t nr_text_poke_events __read_mostly;
400 
401 static LIST_HEAD(pmus);
402 static DEFINE_MUTEX(pmus_lock);
403 static struct srcu_struct pmus_srcu;
404 static cpumask_var_t perf_online_mask;
405 
406 /*
407  * perf event paranoia level:
408  *  -1 - not paranoid at all
409  *   0 - disallow raw tracepoint access for unpriv
410  *   1 - disallow cpu events for unpriv
411  *   2 - disallow kernel profiling for unpriv
412  */
413 int sysctl_perf_event_paranoid __read_mostly = 2;
414 
415 /* Minimum for 512 kiB + 1 user control page */
416 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
417 
418 /*
419  * max perf event sample rate
420  */
421 #define DEFAULT_MAX_SAMPLE_RATE		100000
422 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
423 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
424 
425 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
426 
427 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
428 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
429 
430 static int perf_sample_allowed_ns __read_mostly =
431 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
432 
433 static void update_perf_cpu_limits(void)
434 {
435 	u64 tmp = perf_sample_period_ns;
436 
437 	tmp *= sysctl_perf_cpu_time_max_percent;
438 	tmp = div_u64(tmp, 100);
439 	if (!tmp)
440 		tmp = 1;
441 
442 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
443 }
444 
445 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
446 
447 int perf_proc_update_handler(struct ctl_table *table, int write,
448 		void *buffer, size_t *lenp, loff_t *ppos)
449 {
450 	int ret;
451 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
452 	/*
453 	 * If throttling is disabled don't allow the write:
454 	 */
455 	if (write && (perf_cpu == 100 || perf_cpu == 0))
456 		return -EINVAL;
457 
458 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
459 	if (ret || !write)
460 		return ret;
461 
462 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
463 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
464 	update_perf_cpu_limits();
465 
466 	return 0;
467 }
468 
469 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
470 
471 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
472 		void *buffer, size_t *lenp, loff_t *ppos)
473 {
474 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
475 
476 	if (ret || !write)
477 		return ret;
478 
479 	if (sysctl_perf_cpu_time_max_percent == 100 ||
480 	    sysctl_perf_cpu_time_max_percent == 0) {
481 		printk(KERN_WARNING
482 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
483 		WRITE_ONCE(perf_sample_allowed_ns, 0);
484 	} else {
485 		update_perf_cpu_limits();
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  * perf samples are done in some very critical code paths (NMIs).
493  * If they take too much CPU time, the system can lock up and not
494  * get any real work done.  This will drop the sample rate when
495  * we detect that events are taking too long.
496  */
497 #define NR_ACCUMULATED_SAMPLES 128
498 static DEFINE_PER_CPU(u64, running_sample_length);
499 
500 static u64 __report_avg;
501 static u64 __report_allowed;
502 
503 static void perf_duration_warn(struct irq_work *w)
504 {
505 	printk_ratelimited(KERN_INFO
506 		"perf: interrupt took too long (%lld > %lld), lowering "
507 		"kernel.perf_event_max_sample_rate to %d\n",
508 		__report_avg, __report_allowed,
509 		sysctl_perf_event_sample_rate);
510 }
511 
512 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
513 
514 void perf_sample_event_took(u64 sample_len_ns)
515 {
516 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
517 	u64 running_len;
518 	u64 avg_len;
519 	u32 max;
520 
521 	if (max_len == 0)
522 		return;
523 
524 	/* Decay the counter by 1 average sample. */
525 	running_len = __this_cpu_read(running_sample_length);
526 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
527 	running_len += sample_len_ns;
528 	__this_cpu_write(running_sample_length, running_len);
529 
530 	/*
531 	 * Note: this will be biased artifically low until we have
532 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
533 	 * from having to maintain a count.
534 	 */
535 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
536 	if (avg_len <= max_len)
537 		return;
538 
539 	__report_avg = avg_len;
540 	__report_allowed = max_len;
541 
542 	/*
543 	 * Compute a throttle threshold 25% below the current duration.
544 	 */
545 	avg_len += avg_len / 4;
546 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
547 	if (avg_len < max)
548 		max /= (u32)avg_len;
549 	else
550 		max = 1;
551 
552 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
553 	WRITE_ONCE(max_samples_per_tick, max);
554 
555 	sysctl_perf_event_sample_rate = max * HZ;
556 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
557 
558 	if (!irq_work_queue(&perf_duration_work)) {
559 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
560 			     "kernel.perf_event_max_sample_rate to %d\n",
561 			     __report_avg, __report_allowed,
562 			     sysctl_perf_event_sample_rate);
563 	}
564 }
565 
566 static atomic64_t perf_event_id;
567 
568 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
569 			      enum event_type_t event_type);
570 
571 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
572 			     enum event_type_t event_type,
573 			     struct task_struct *task);
574 
575 static void update_context_time(struct perf_event_context *ctx);
576 static u64 perf_event_time(struct perf_event *event);
577 
578 void __weak perf_event_print_debug(void)	{ }
579 
580 extern __weak const char *perf_pmu_name(void)
581 {
582 	return "pmu";
583 }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 /*
1599  * Compare function for event groups;
1600  *
1601  * Implements complex key that first sorts by CPU and then by virtual index
1602  * which provides ordering when rotating groups for the same CPU.
1603  */
1604 static bool
1605 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1606 {
1607 	if (left->cpu < right->cpu)
1608 		return true;
1609 	if (left->cpu > right->cpu)
1610 		return false;
1611 
1612 #ifdef CONFIG_CGROUP_PERF
1613 	if (left->cgrp != right->cgrp) {
1614 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1615 			/*
1616 			 * Left has no cgroup but right does, no cgroups come
1617 			 * first.
1618 			 */
1619 			return true;
1620 		}
1621 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1622 			/*
1623 			 * Right has no cgroup but left does, no cgroups come
1624 			 * first.
1625 			 */
1626 			return false;
1627 		}
1628 		/* Two dissimilar cgroups, order by id. */
1629 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1630 			return true;
1631 
1632 		return false;
1633 	}
1634 #endif
1635 
1636 	if (left->group_index < right->group_index)
1637 		return true;
1638 	if (left->group_index > right->group_index)
1639 		return false;
1640 
1641 	return false;
1642 }
1643 
1644 /*
1645  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1646  * key (see perf_event_groups_less). This places it last inside the CPU
1647  * subtree.
1648  */
1649 static void
1650 perf_event_groups_insert(struct perf_event_groups *groups,
1651 			 struct perf_event *event)
1652 {
1653 	struct perf_event *node_event;
1654 	struct rb_node *parent;
1655 	struct rb_node **node;
1656 
1657 	event->group_index = ++groups->index;
1658 
1659 	node = &groups->tree.rb_node;
1660 	parent = *node;
1661 
1662 	while (*node) {
1663 		parent = *node;
1664 		node_event = container_of(*node, struct perf_event, group_node);
1665 
1666 		if (perf_event_groups_less(event, node_event))
1667 			node = &parent->rb_left;
1668 		else
1669 			node = &parent->rb_right;
1670 	}
1671 
1672 	rb_link_node(&event->group_node, parent, node);
1673 	rb_insert_color(&event->group_node, &groups->tree);
1674 }
1675 
1676 /*
1677  * Helper function to insert event into the pinned or flexible groups.
1678  */
1679 static void
1680 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682 	struct perf_event_groups *groups;
1683 
1684 	groups = get_event_groups(event, ctx);
1685 	perf_event_groups_insert(groups, event);
1686 }
1687 
1688 /*
1689  * Delete a group from a tree.
1690  */
1691 static void
1692 perf_event_groups_delete(struct perf_event_groups *groups,
1693 			 struct perf_event *event)
1694 {
1695 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1696 		     RB_EMPTY_ROOT(&groups->tree));
1697 
1698 	rb_erase(&event->group_node, &groups->tree);
1699 	init_event_group(event);
1700 }
1701 
1702 /*
1703  * Helper function to delete event from its groups.
1704  */
1705 static void
1706 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1707 {
1708 	struct perf_event_groups *groups;
1709 
1710 	groups = get_event_groups(event, ctx);
1711 	perf_event_groups_delete(groups, event);
1712 }
1713 
1714 /*
1715  * Get the leftmost event in the cpu/cgroup subtree.
1716  */
1717 static struct perf_event *
1718 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1719 			struct cgroup *cgrp)
1720 {
1721 	struct perf_event *node_event = NULL, *match = NULL;
1722 	struct rb_node *node = groups->tree.rb_node;
1723 #ifdef CONFIG_CGROUP_PERF
1724 	u64 node_cgrp_id, cgrp_id = 0;
1725 
1726 	if (cgrp)
1727 		cgrp_id = cgrp->kn->id;
1728 #endif
1729 
1730 	while (node) {
1731 		node_event = container_of(node, struct perf_event, group_node);
1732 
1733 		if (cpu < node_event->cpu) {
1734 			node = node->rb_left;
1735 			continue;
1736 		}
1737 		if (cpu > node_event->cpu) {
1738 			node = node->rb_right;
1739 			continue;
1740 		}
1741 #ifdef CONFIG_CGROUP_PERF
1742 		node_cgrp_id = 0;
1743 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1744 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1745 
1746 		if (cgrp_id < node_cgrp_id) {
1747 			node = node->rb_left;
1748 			continue;
1749 		}
1750 		if (cgrp_id > node_cgrp_id) {
1751 			node = node->rb_right;
1752 			continue;
1753 		}
1754 #endif
1755 		match = node_event;
1756 		node = node->rb_left;
1757 	}
1758 
1759 	return match;
1760 }
1761 
1762 /*
1763  * Like rb_entry_next_safe() for the @cpu subtree.
1764  */
1765 static struct perf_event *
1766 perf_event_groups_next(struct perf_event *event)
1767 {
1768 	struct perf_event *next;
1769 #ifdef CONFIG_CGROUP_PERF
1770 	u64 curr_cgrp_id = 0;
1771 	u64 next_cgrp_id = 0;
1772 #endif
1773 
1774 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1775 	if (next == NULL || next->cpu != event->cpu)
1776 		return NULL;
1777 
1778 #ifdef CONFIG_CGROUP_PERF
1779 	if (event->cgrp && event->cgrp->css.cgroup)
1780 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1781 
1782 	if (next->cgrp && next->cgrp->css.cgroup)
1783 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1784 
1785 	if (curr_cgrp_id != next_cgrp_id)
1786 		return NULL;
1787 #endif
1788 	return next;
1789 }
1790 
1791 /*
1792  * Iterate through the whole groups tree.
1793  */
1794 #define perf_event_groups_for_each(event, groups)			\
1795 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1796 				typeof(*event), group_node); event;	\
1797 		event = rb_entry_safe(rb_next(&event->group_node),	\
1798 				typeof(*event), group_node))
1799 
1800 /*
1801  * Add an event from the lists for its context.
1802  * Must be called with ctx->mutex and ctx->lock held.
1803  */
1804 static void
1805 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1806 {
1807 	lockdep_assert_held(&ctx->lock);
1808 
1809 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1810 	event->attach_state |= PERF_ATTACH_CONTEXT;
1811 
1812 	event->tstamp = perf_event_time(event);
1813 
1814 	/*
1815 	 * If we're a stand alone event or group leader, we go to the context
1816 	 * list, group events are kept attached to the group so that
1817 	 * perf_group_detach can, at all times, locate all siblings.
1818 	 */
1819 	if (event->group_leader == event) {
1820 		event->group_caps = event->event_caps;
1821 		add_event_to_groups(event, ctx);
1822 	}
1823 
1824 	list_add_rcu(&event->event_entry, &ctx->event_list);
1825 	ctx->nr_events++;
1826 	if (event->attr.inherit_stat)
1827 		ctx->nr_stat++;
1828 
1829 	if (event->state > PERF_EVENT_STATE_OFF)
1830 		perf_cgroup_event_enable(event, ctx);
1831 
1832 	ctx->generation++;
1833 }
1834 
1835 /*
1836  * Initialize event state based on the perf_event_attr::disabled.
1837  */
1838 static inline void perf_event__state_init(struct perf_event *event)
1839 {
1840 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1841 					      PERF_EVENT_STATE_INACTIVE;
1842 }
1843 
1844 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1845 {
1846 	int entry = sizeof(u64); /* value */
1847 	int size = 0;
1848 	int nr = 1;
1849 
1850 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1851 		size += sizeof(u64);
1852 
1853 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1854 		size += sizeof(u64);
1855 
1856 	if (event->attr.read_format & PERF_FORMAT_ID)
1857 		entry += sizeof(u64);
1858 
1859 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1860 		nr += nr_siblings;
1861 		size += sizeof(u64);
1862 	}
1863 
1864 	size += entry * nr;
1865 	event->read_size = size;
1866 }
1867 
1868 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1869 {
1870 	struct perf_sample_data *data;
1871 	u16 size = 0;
1872 
1873 	if (sample_type & PERF_SAMPLE_IP)
1874 		size += sizeof(data->ip);
1875 
1876 	if (sample_type & PERF_SAMPLE_ADDR)
1877 		size += sizeof(data->addr);
1878 
1879 	if (sample_type & PERF_SAMPLE_PERIOD)
1880 		size += sizeof(data->period);
1881 
1882 	if (sample_type & PERF_SAMPLE_WEIGHT)
1883 		size += sizeof(data->weight);
1884 
1885 	if (sample_type & PERF_SAMPLE_READ)
1886 		size += event->read_size;
1887 
1888 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1889 		size += sizeof(data->data_src.val);
1890 
1891 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1892 		size += sizeof(data->txn);
1893 
1894 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1895 		size += sizeof(data->phys_addr);
1896 
1897 	if (sample_type & PERF_SAMPLE_CGROUP)
1898 		size += sizeof(data->cgroup);
1899 
1900 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1901 		size += sizeof(data->data_page_size);
1902 
1903 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1904 		size += sizeof(data->code_page_size);
1905 
1906 	event->header_size = size;
1907 }
1908 
1909 /*
1910  * Called at perf_event creation and when events are attached/detached from a
1911  * group.
1912  */
1913 static void perf_event__header_size(struct perf_event *event)
1914 {
1915 	__perf_event_read_size(event,
1916 			       event->group_leader->nr_siblings);
1917 	__perf_event_header_size(event, event->attr.sample_type);
1918 }
1919 
1920 static void perf_event__id_header_size(struct perf_event *event)
1921 {
1922 	struct perf_sample_data *data;
1923 	u64 sample_type = event->attr.sample_type;
1924 	u16 size = 0;
1925 
1926 	if (sample_type & PERF_SAMPLE_TID)
1927 		size += sizeof(data->tid_entry);
1928 
1929 	if (sample_type & PERF_SAMPLE_TIME)
1930 		size += sizeof(data->time);
1931 
1932 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1933 		size += sizeof(data->id);
1934 
1935 	if (sample_type & PERF_SAMPLE_ID)
1936 		size += sizeof(data->id);
1937 
1938 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1939 		size += sizeof(data->stream_id);
1940 
1941 	if (sample_type & PERF_SAMPLE_CPU)
1942 		size += sizeof(data->cpu_entry);
1943 
1944 	event->id_header_size = size;
1945 }
1946 
1947 static bool perf_event_validate_size(struct perf_event *event)
1948 {
1949 	/*
1950 	 * The values computed here will be over-written when we actually
1951 	 * attach the event.
1952 	 */
1953 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1954 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1955 	perf_event__id_header_size(event);
1956 
1957 	/*
1958 	 * Sum the lot; should not exceed the 64k limit we have on records.
1959 	 * Conservative limit to allow for callchains and other variable fields.
1960 	 */
1961 	if (event->read_size + event->header_size +
1962 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1963 		return false;
1964 
1965 	return true;
1966 }
1967 
1968 static void perf_group_attach(struct perf_event *event)
1969 {
1970 	struct perf_event *group_leader = event->group_leader, *pos;
1971 
1972 	lockdep_assert_held(&event->ctx->lock);
1973 
1974 	/*
1975 	 * We can have double attach due to group movement in perf_event_open.
1976 	 */
1977 	if (event->attach_state & PERF_ATTACH_GROUP)
1978 		return;
1979 
1980 	event->attach_state |= PERF_ATTACH_GROUP;
1981 
1982 	if (group_leader == event)
1983 		return;
1984 
1985 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1986 
1987 	group_leader->group_caps &= event->event_caps;
1988 
1989 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1990 	group_leader->nr_siblings++;
1991 
1992 	perf_event__header_size(group_leader);
1993 
1994 	for_each_sibling_event(pos, group_leader)
1995 		perf_event__header_size(pos);
1996 }
1997 
1998 /*
1999  * Remove an event from the lists for its context.
2000  * Must be called with ctx->mutex and ctx->lock held.
2001  */
2002 static void
2003 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2004 {
2005 	WARN_ON_ONCE(event->ctx != ctx);
2006 	lockdep_assert_held(&ctx->lock);
2007 
2008 	/*
2009 	 * We can have double detach due to exit/hot-unplug + close.
2010 	 */
2011 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2012 		return;
2013 
2014 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2015 
2016 	ctx->nr_events--;
2017 	if (event->attr.inherit_stat)
2018 		ctx->nr_stat--;
2019 
2020 	list_del_rcu(&event->event_entry);
2021 
2022 	if (event->group_leader == event)
2023 		del_event_from_groups(event, ctx);
2024 
2025 	/*
2026 	 * If event was in error state, then keep it
2027 	 * that way, otherwise bogus counts will be
2028 	 * returned on read(). The only way to get out
2029 	 * of error state is by explicit re-enabling
2030 	 * of the event
2031 	 */
2032 	if (event->state > PERF_EVENT_STATE_OFF) {
2033 		perf_cgroup_event_disable(event, ctx);
2034 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2035 	}
2036 
2037 	ctx->generation++;
2038 }
2039 
2040 static int
2041 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2042 {
2043 	if (!has_aux(aux_event))
2044 		return 0;
2045 
2046 	if (!event->pmu->aux_output_match)
2047 		return 0;
2048 
2049 	return event->pmu->aux_output_match(aux_event);
2050 }
2051 
2052 static void put_event(struct perf_event *event);
2053 static void event_sched_out(struct perf_event *event,
2054 			    struct perf_cpu_context *cpuctx,
2055 			    struct perf_event_context *ctx);
2056 
2057 static void perf_put_aux_event(struct perf_event *event)
2058 {
2059 	struct perf_event_context *ctx = event->ctx;
2060 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2061 	struct perf_event *iter;
2062 
2063 	/*
2064 	 * If event uses aux_event tear down the link
2065 	 */
2066 	if (event->aux_event) {
2067 		iter = event->aux_event;
2068 		event->aux_event = NULL;
2069 		put_event(iter);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * If the event is an aux_event, tear down all links to
2075 	 * it from other events.
2076 	 */
2077 	for_each_sibling_event(iter, event->group_leader) {
2078 		if (iter->aux_event != event)
2079 			continue;
2080 
2081 		iter->aux_event = NULL;
2082 		put_event(event);
2083 
2084 		/*
2085 		 * If it's ACTIVE, schedule it out and put it into ERROR
2086 		 * state so that we don't try to schedule it again. Note
2087 		 * that perf_event_enable() will clear the ERROR status.
2088 		 */
2089 		event_sched_out(iter, cpuctx, ctx);
2090 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2091 	}
2092 }
2093 
2094 static bool perf_need_aux_event(struct perf_event *event)
2095 {
2096 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2097 }
2098 
2099 static int perf_get_aux_event(struct perf_event *event,
2100 			      struct perf_event *group_leader)
2101 {
2102 	/*
2103 	 * Our group leader must be an aux event if we want to be
2104 	 * an aux_output. This way, the aux event will precede its
2105 	 * aux_output events in the group, and therefore will always
2106 	 * schedule first.
2107 	 */
2108 	if (!group_leader)
2109 		return 0;
2110 
2111 	/*
2112 	 * aux_output and aux_sample_size are mutually exclusive.
2113 	 */
2114 	if (event->attr.aux_output && event->attr.aux_sample_size)
2115 		return 0;
2116 
2117 	if (event->attr.aux_output &&
2118 	    !perf_aux_output_match(event, group_leader))
2119 		return 0;
2120 
2121 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2122 		return 0;
2123 
2124 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2125 		return 0;
2126 
2127 	/*
2128 	 * Link aux_outputs to their aux event; this is undone in
2129 	 * perf_group_detach() by perf_put_aux_event(). When the
2130 	 * group in torn down, the aux_output events loose their
2131 	 * link to the aux_event and can't schedule any more.
2132 	 */
2133 	event->aux_event = group_leader;
2134 
2135 	return 1;
2136 }
2137 
2138 static inline struct list_head *get_event_list(struct perf_event *event)
2139 {
2140 	struct perf_event_context *ctx = event->ctx;
2141 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2142 }
2143 
2144 /*
2145  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2146  * cannot exist on their own, schedule them out and move them into the ERROR
2147  * state. Also see _perf_event_enable(), it will not be able to recover
2148  * this ERROR state.
2149  */
2150 static inline void perf_remove_sibling_event(struct perf_event *event)
2151 {
2152 	struct perf_event_context *ctx = event->ctx;
2153 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2154 
2155 	event_sched_out(event, cpuctx, ctx);
2156 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2157 }
2158 
2159 static void perf_group_detach(struct perf_event *event)
2160 {
2161 	struct perf_event *leader = event->group_leader;
2162 	struct perf_event *sibling, *tmp;
2163 	struct perf_event_context *ctx = event->ctx;
2164 
2165 	lockdep_assert_held(&ctx->lock);
2166 
2167 	/*
2168 	 * We can have double detach due to exit/hot-unplug + close.
2169 	 */
2170 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2171 		return;
2172 
2173 	event->attach_state &= ~PERF_ATTACH_GROUP;
2174 
2175 	perf_put_aux_event(event);
2176 
2177 	/*
2178 	 * If this is a sibling, remove it from its group.
2179 	 */
2180 	if (leader != event) {
2181 		list_del_init(&event->sibling_list);
2182 		event->group_leader->nr_siblings--;
2183 		goto out;
2184 	}
2185 
2186 	/*
2187 	 * If this was a group event with sibling events then
2188 	 * upgrade the siblings to singleton events by adding them
2189 	 * to whatever list we are on.
2190 	 */
2191 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2192 
2193 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2194 			perf_remove_sibling_event(sibling);
2195 
2196 		sibling->group_leader = sibling;
2197 		list_del_init(&sibling->sibling_list);
2198 
2199 		/* Inherit group flags from the previous leader */
2200 		sibling->group_caps = event->group_caps;
2201 
2202 		if (!RB_EMPTY_NODE(&event->group_node)) {
2203 			add_event_to_groups(sibling, event->ctx);
2204 
2205 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2206 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2207 		}
2208 
2209 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2210 	}
2211 
2212 out:
2213 	for_each_sibling_event(tmp, leader)
2214 		perf_event__header_size(tmp);
2215 
2216 	perf_event__header_size(leader);
2217 }
2218 
2219 static bool is_orphaned_event(struct perf_event *event)
2220 {
2221 	return event->state == PERF_EVENT_STATE_DEAD;
2222 }
2223 
2224 static inline int __pmu_filter_match(struct perf_event *event)
2225 {
2226 	struct pmu *pmu = event->pmu;
2227 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2228 }
2229 
2230 /*
2231  * Check whether we should attempt to schedule an event group based on
2232  * PMU-specific filtering. An event group can consist of HW and SW events,
2233  * potentially with a SW leader, so we must check all the filters, to
2234  * determine whether a group is schedulable:
2235  */
2236 static inline int pmu_filter_match(struct perf_event *event)
2237 {
2238 	struct perf_event *sibling;
2239 
2240 	if (!__pmu_filter_match(event))
2241 		return 0;
2242 
2243 	for_each_sibling_event(sibling, event) {
2244 		if (!__pmu_filter_match(sibling))
2245 			return 0;
2246 	}
2247 
2248 	return 1;
2249 }
2250 
2251 static inline int
2252 event_filter_match(struct perf_event *event)
2253 {
2254 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2255 	       perf_cgroup_match(event) && pmu_filter_match(event);
2256 }
2257 
2258 static void
2259 event_sched_out(struct perf_event *event,
2260 		  struct perf_cpu_context *cpuctx,
2261 		  struct perf_event_context *ctx)
2262 {
2263 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2264 
2265 	WARN_ON_ONCE(event->ctx != ctx);
2266 	lockdep_assert_held(&ctx->lock);
2267 
2268 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2269 		return;
2270 
2271 	/*
2272 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2273 	 * we can schedule events _OUT_ individually through things like
2274 	 * __perf_remove_from_context().
2275 	 */
2276 	list_del_init(&event->active_list);
2277 
2278 	perf_pmu_disable(event->pmu);
2279 
2280 	event->pmu->del(event, 0);
2281 	event->oncpu = -1;
2282 
2283 	if (READ_ONCE(event->pending_disable) >= 0) {
2284 		WRITE_ONCE(event->pending_disable, -1);
2285 		perf_cgroup_event_disable(event, ctx);
2286 		state = PERF_EVENT_STATE_OFF;
2287 	}
2288 	perf_event_set_state(event, state);
2289 
2290 	if (!is_software_event(event))
2291 		cpuctx->active_oncpu--;
2292 	if (!--ctx->nr_active)
2293 		perf_event_ctx_deactivate(ctx);
2294 	if (event->attr.freq && event->attr.sample_freq)
2295 		ctx->nr_freq--;
2296 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2297 		cpuctx->exclusive = 0;
2298 
2299 	perf_pmu_enable(event->pmu);
2300 }
2301 
2302 static void
2303 group_sched_out(struct perf_event *group_event,
2304 		struct perf_cpu_context *cpuctx,
2305 		struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event;
2308 
2309 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2310 		return;
2311 
2312 	perf_pmu_disable(ctx->pmu);
2313 
2314 	event_sched_out(group_event, cpuctx, ctx);
2315 
2316 	/*
2317 	 * Schedule out siblings (if any):
2318 	 */
2319 	for_each_sibling_event(event, group_event)
2320 		event_sched_out(event, cpuctx, ctx);
2321 
2322 	perf_pmu_enable(ctx->pmu);
2323 }
2324 
2325 #define DETACH_GROUP	0x01UL
2326 
2327 /*
2328  * Cross CPU call to remove a performance event
2329  *
2330  * We disable the event on the hardware level first. After that we
2331  * remove it from the context list.
2332  */
2333 static void
2334 __perf_remove_from_context(struct perf_event *event,
2335 			   struct perf_cpu_context *cpuctx,
2336 			   struct perf_event_context *ctx,
2337 			   void *info)
2338 {
2339 	unsigned long flags = (unsigned long)info;
2340 
2341 	if (ctx->is_active & EVENT_TIME) {
2342 		update_context_time(ctx);
2343 		update_cgrp_time_from_cpuctx(cpuctx);
2344 	}
2345 
2346 	event_sched_out(event, cpuctx, ctx);
2347 	if (flags & DETACH_GROUP)
2348 		perf_group_detach(event);
2349 	list_del_event(event, ctx);
2350 
2351 	if (!ctx->nr_events && ctx->is_active) {
2352 		ctx->is_active = 0;
2353 		ctx->rotate_necessary = 0;
2354 		if (ctx->task) {
2355 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2356 			cpuctx->task_ctx = NULL;
2357 		}
2358 	}
2359 }
2360 
2361 /*
2362  * Remove the event from a task's (or a CPU's) list of events.
2363  *
2364  * If event->ctx is a cloned context, callers must make sure that
2365  * every task struct that event->ctx->task could possibly point to
2366  * remains valid.  This is OK when called from perf_release since
2367  * that only calls us on the top-level context, which can't be a clone.
2368  * When called from perf_event_exit_task, it's OK because the
2369  * context has been detached from its task.
2370  */
2371 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2372 {
2373 	struct perf_event_context *ctx = event->ctx;
2374 
2375 	lockdep_assert_held(&ctx->mutex);
2376 
2377 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2378 
2379 	/*
2380 	 * The above event_function_call() can NO-OP when it hits
2381 	 * TASK_TOMBSTONE. In that case we must already have been detached
2382 	 * from the context (by perf_event_exit_event()) but the grouping
2383 	 * might still be in-tact.
2384 	 */
2385 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2386 	if ((flags & DETACH_GROUP) &&
2387 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2388 		/*
2389 		 * Since in that case we cannot possibly be scheduled, simply
2390 		 * detach now.
2391 		 */
2392 		raw_spin_lock_irq(&ctx->lock);
2393 		perf_group_detach(event);
2394 		raw_spin_unlock_irq(&ctx->lock);
2395 	}
2396 }
2397 
2398 /*
2399  * Cross CPU call to disable a performance event
2400  */
2401 static void __perf_event_disable(struct perf_event *event,
2402 				 struct perf_cpu_context *cpuctx,
2403 				 struct perf_event_context *ctx,
2404 				 void *info)
2405 {
2406 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2407 		return;
2408 
2409 	if (ctx->is_active & EVENT_TIME) {
2410 		update_context_time(ctx);
2411 		update_cgrp_time_from_event(event);
2412 	}
2413 
2414 	if (event == event->group_leader)
2415 		group_sched_out(event, cpuctx, ctx);
2416 	else
2417 		event_sched_out(event, cpuctx, ctx);
2418 
2419 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2420 	perf_cgroup_event_disable(event, ctx);
2421 }
2422 
2423 /*
2424  * Disable an event.
2425  *
2426  * If event->ctx is a cloned context, callers must make sure that
2427  * every task struct that event->ctx->task could possibly point to
2428  * remains valid.  This condition is satisfied when called through
2429  * perf_event_for_each_child or perf_event_for_each because they
2430  * hold the top-level event's child_mutex, so any descendant that
2431  * goes to exit will block in perf_event_exit_event().
2432  *
2433  * When called from perf_pending_event it's OK because event->ctx
2434  * is the current context on this CPU and preemption is disabled,
2435  * hence we can't get into perf_event_task_sched_out for this context.
2436  */
2437 static void _perf_event_disable(struct perf_event *event)
2438 {
2439 	struct perf_event_context *ctx = event->ctx;
2440 
2441 	raw_spin_lock_irq(&ctx->lock);
2442 	if (event->state <= PERF_EVENT_STATE_OFF) {
2443 		raw_spin_unlock_irq(&ctx->lock);
2444 		return;
2445 	}
2446 	raw_spin_unlock_irq(&ctx->lock);
2447 
2448 	event_function_call(event, __perf_event_disable, NULL);
2449 }
2450 
2451 void perf_event_disable_local(struct perf_event *event)
2452 {
2453 	event_function_local(event, __perf_event_disable, NULL);
2454 }
2455 
2456 /*
2457  * Strictly speaking kernel users cannot create groups and therefore this
2458  * interface does not need the perf_event_ctx_lock() magic.
2459  */
2460 void perf_event_disable(struct perf_event *event)
2461 {
2462 	struct perf_event_context *ctx;
2463 
2464 	ctx = perf_event_ctx_lock(event);
2465 	_perf_event_disable(event);
2466 	perf_event_ctx_unlock(event, ctx);
2467 }
2468 EXPORT_SYMBOL_GPL(perf_event_disable);
2469 
2470 void perf_event_disable_inatomic(struct perf_event *event)
2471 {
2472 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2473 	/* can fail, see perf_pending_event_disable() */
2474 	irq_work_queue(&event->pending);
2475 }
2476 
2477 static void perf_set_shadow_time(struct perf_event *event,
2478 				 struct perf_event_context *ctx)
2479 {
2480 	/*
2481 	 * use the correct time source for the time snapshot
2482 	 *
2483 	 * We could get by without this by leveraging the
2484 	 * fact that to get to this function, the caller
2485 	 * has most likely already called update_context_time()
2486 	 * and update_cgrp_time_xx() and thus both timestamp
2487 	 * are identical (or very close). Given that tstamp is,
2488 	 * already adjusted for cgroup, we could say that:
2489 	 *    tstamp - ctx->timestamp
2490 	 * is equivalent to
2491 	 *    tstamp - cgrp->timestamp.
2492 	 *
2493 	 * Then, in perf_output_read(), the calculation would
2494 	 * work with no changes because:
2495 	 * - event is guaranteed scheduled in
2496 	 * - no scheduled out in between
2497 	 * - thus the timestamp would be the same
2498 	 *
2499 	 * But this is a bit hairy.
2500 	 *
2501 	 * So instead, we have an explicit cgroup call to remain
2502 	 * within the time time source all along. We believe it
2503 	 * is cleaner and simpler to understand.
2504 	 */
2505 	if (is_cgroup_event(event))
2506 		perf_cgroup_set_shadow_time(event, event->tstamp);
2507 	else
2508 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2509 }
2510 
2511 #define MAX_INTERRUPTS (~0ULL)
2512 
2513 static void perf_log_throttle(struct perf_event *event, int enable);
2514 static void perf_log_itrace_start(struct perf_event *event);
2515 
2516 static int
2517 event_sched_in(struct perf_event *event,
2518 		 struct perf_cpu_context *cpuctx,
2519 		 struct perf_event_context *ctx)
2520 {
2521 	int ret = 0;
2522 
2523 	WARN_ON_ONCE(event->ctx != ctx);
2524 
2525 	lockdep_assert_held(&ctx->lock);
2526 
2527 	if (event->state <= PERF_EVENT_STATE_OFF)
2528 		return 0;
2529 
2530 	WRITE_ONCE(event->oncpu, smp_processor_id());
2531 	/*
2532 	 * Order event::oncpu write to happen before the ACTIVE state is
2533 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2534 	 * ->oncpu if it sees ACTIVE.
2535 	 */
2536 	smp_wmb();
2537 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2538 
2539 	/*
2540 	 * Unthrottle events, since we scheduled we might have missed several
2541 	 * ticks already, also for a heavily scheduling task there is little
2542 	 * guarantee it'll get a tick in a timely manner.
2543 	 */
2544 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2545 		perf_log_throttle(event, 1);
2546 		event->hw.interrupts = 0;
2547 	}
2548 
2549 	perf_pmu_disable(event->pmu);
2550 
2551 	perf_set_shadow_time(event, ctx);
2552 
2553 	perf_log_itrace_start(event);
2554 
2555 	if (event->pmu->add(event, PERF_EF_START)) {
2556 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2557 		event->oncpu = -1;
2558 		ret = -EAGAIN;
2559 		goto out;
2560 	}
2561 
2562 	if (!is_software_event(event))
2563 		cpuctx->active_oncpu++;
2564 	if (!ctx->nr_active++)
2565 		perf_event_ctx_activate(ctx);
2566 	if (event->attr.freq && event->attr.sample_freq)
2567 		ctx->nr_freq++;
2568 
2569 	if (event->attr.exclusive)
2570 		cpuctx->exclusive = 1;
2571 
2572 out:
2573 	perf_pmu_enable(event->pmu);
2574 
2575 	return ret;
2576 }
2577 
2578 static int
2579 group_sched_in(struct perf_event *group_event,
2580 	       struct perf_cpu_context *cpuctx,
2581 	       struct perf_event_context *ctx)
2582 {
2583 	struct perf_event *event, *partial_group = NULL;
2584 	struct pmu *pmu = ctx->pmu;
2585 
2586 	if (group_event->state == PERF_EVENT_STATE_OFF)
2587 		return 0;
2588 
2589 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2590 
2591 	if (event_sched_in(group_event, cpuctx, ctx))
2592 		goto error;
2593 
2594 	/*
2595 	 * Schedule in siblings as one group (if any):
2596 	 */
2597 	for_each_sibling_event(event, group_event) {
2598 		if (event_sched_in(event, cpuctx, ctx)) {
2599 			partial_group = event;
2600 			goto group_error;
2601 		}
2602 	}
2603 
2604 	if (!pmu->commit_txn(pmu))
2605 		return 0;
2606 
2607 group_error:
2608 	/*
2609 	 * Groups can be scheduled in as one unit only, so undo any
2610 	 * partial group before returning:
2611 	 * The events up to the failed event are scheduled out normally.
2612 	 */
2613 	for_each_sibling_event(event, group_event) {
2614 		if (event == partial_group)
2615 			break;
2616 
2617 		event_sched_out(event, cpuctx, ctx);
2618 	}
2619 	event_sched_out(group_event, cpuctx, ctx);
2620 
2621 error:
2622 	pmu->cancel_txn(pmu);
2623 	return -EAGAIN;
2624 }
2625 
2626 /*
2627  * Work out whether we can put this event group on the CPU now.
2628  */
2629 static int group_can_go_on(struct perf_event *event,
2630 			   struct perf_cpu_context *cpuctx,
2631 			   int can_add_hw)
2632 {
2633 	/*
2634 	 * Groups consisting entirely of software events can always go on.
2635 	 */
2636 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2637 		return 1;
2638 	/*
2639 	 * If an exclusive group is already on, no other hardware
2640 	 * events can go on.
2641 	 */
2642 	if (cpuctx->exclusive)
2643 		return 0;
2644 	/*
2645 	 * If this group is exclusive and there are already
2646 	 * events on the CPU, it can't go on.
2647 	 */
2648 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2649 		return 0;
2650 	/*
2651 	 * Otherwise, try to add it if all previous groups were able
2652 	 * to go on.
2653 	 */
2654 	return can_add_hw;
2655 }
2656 
2657 static void add_event_to_ctx(struct perf_event *event,
2658 			       struct perf_event_context *ctx)
2659 {
2660 	list_add_event(event, ctx);
2661 	perf_group_attach(event);
2662 }
2663 
2664 static void ctx_sched_out(struct perf_event_context *ctx,
2665 			  struct perf_cpu_context *cpuctx,
2666 			  enum event_type_t event_type);
2667 static void
2668 ctx_sched_in(struct perf_event_context *ctx,
2669 	     struct perf_cpu_context *cpuctx,
2670 	     enum event_type_t event_type,
2671 	     struct task_struct *task);
2672 
2673 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 			       struct perf_event_context *ctx,
2675 			       enum event_type_t event_type)
2676 {
2677 	if (!cpuctx->task_ctx)
2678 		return;
2679 
2680 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2681 		return;
2682 
2683 	ctx_sched_out(ctx, cpuctx, event_type);
2684 }
2685 
2686 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2687 				struct perf_event_context *ctx,
2688 				struct task_struct *task)
2689 {
2690 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2691 	if (ctx)
2692 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2693 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2694 	if (ctx)
2695 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2696 }
2697 
2698 /*
2699  * We want to maintain the following priority of scheduling:
2700  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2701  *  - task pinned (EVENT_PINNED)
2702  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2703  *  - task flexible (EVENT_FLEXIBLE).
2704  *
2705  * In order to avoid unscheduling and scheduling back in everything every
2706  * time an event is added, only do it for the groups of equal priority and
2707  * below.
2708  *
2709  * This can be called after a batch operation on task events, in which case
2710  * event_type is a bit mask of the types of events involved. For CPU events,
2711  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2712  */
2713 static void ctx_resched(struct perf_cpu_context *cpuctx,
2714 			struct perf_event_context *task_ctx,
2715 			enum event_type_t event_type)
2716 {
2717 	enum event_type_t ctx_event_type;
2718 	bool cpu_event = !!(event_type & EVENT_CPU);
2719 
2720 	/*
2721 	 * If pinned groups are involved, flexible groups also need to be
2722 	 * scheduled out.
2723 	 */
2724 	if (event_type & EVENT_PINNED)
2725 		event_type |= EVENT_FLEXIBLE;
2726 
2727 	ctx_event_type = event_type & EVENT_ALL;
2728 
2729 	perf_pmu_disable(cpuctx->ctx.pmu);
2730 	if (task_ctx)
2731 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2732 
2733 	/*
2734 	 * Decide which cpu ctx groups to schedule out based on the types
2735 	 * of events that caused rescheduling:
2736 	 *  - EVENT_CPU: schedule out corresponding groups;
2737 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2738 	 *  - otherwise, do nothing more.
2739 	 */
2740 	if (cpu_event)
2741 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2742 	else if (ctx_event_type & EVENT_PINNED)
2743 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2744 
2745 	perf_event_sched_in(cpuctx, task_ctx, current);
2746 	perf_pmu_enable(cpuctx->ctx.pmu);
2747 }
2748 
2749 void perf_pmu_resched(struct pmu *pmu)
2750 {
2751 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2752 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2753 
2754 	perf_ctx_lock(cpuctx, task_ctx);
2755 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2756 	perf_ctx_unlock(cpuctx, task_ctx);
2757 }
2758 
2759 /*
2760  * Cross CPU call to install and enable a performance event
2761  *
2762  * Very similar to remote_function() + event_function() but cannot assume that
2763  * things like ctx->is_active and cpuctx->task_ctx are set.
2764  */
2765 static int  __perf_install_in_context(void *info)
2766 {
2767 	struct perf_event *event = info;
2768 	struct perf_event_context *ctx = event->ctx;
2769 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2770 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2771 	bool reprogram = true;
2772 	int ret = 0;
2773 
2774 	raw_spin_lock(&cpuctx->ctx.lock);
2775 	if (ctx->task) {
2776 		raw_spin_lock(&ctx->lock);
2777 		task_ctx = ctx;
2778 
2779 		reprogram = (ctx->task == current);
2780 
2781 		/*
2782 		 * If the task is running, it must be running on this CPU,
2783 		 * otherwise we cannot reprogram things.
2784 		 *
2785 		 * If its not running, we don't care, ctx->lock will
2786 		 * serialize against it becoming runnable.
2787 		 */
2788 		if (task_curr(ctx->task) && !reprogram) {
2789 			ret = -ESRCH;
2790 			goto unlock;
2791 		}
2792 
2793 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2794 	} else if (task_ctx) {
2795 		raw_spin_lock(&task_ctx->lock);
2796 	}
2797 
2798 #ifdef CONFIG_CGROUP_PERF
2799 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2800 		/*
2801 		 * If the current cgroup doesn't match the event's
2802 		 * cgroup, we should not try to schedule it.
2803 		 */
2804 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2805 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2806 					event->cgrp->css.cgroup);
2807 	}
2808 #endif
2809 
2810 	if (reprogram) {
2811 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2812 		add_event_to_ctx(event, ctx);
2813 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2814 	} else {
2815 		add_event_to_ctx(event, ctx);
2816 	}
2817 
2818 unlock:
2819 	perf_ctx_unlock(cpuctx, task_ctx);
2820 
2821 	return ret;
2822 }
2823 
2824 static bool exclusive_event_installable(struct perf_event *event,
2825 					struct perf_event_context *ctx);
2826 
2827 /*
2828  * Attach a performance event to a context.
2829  *
2830  * Very similar to event_function_call, see comment there.
2831  */
2832 static void
2833 perf_install_in_context(struct perf_event_context *ctx,
2834 			struct perf_event *event,
2835 			int cpu)
2836 {
2837 	struct task_struct *task = READ_ONCE(ctx->task);
2838 
2839 	lockdep_assert_held(&ctx->mutex);
2840 
2841 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2842 
2843 	if (event->cpu != -1)
2844 		event->cpu = cpu;
2845 
2846 	/*
2847 	 * Ensures that if we can observe event->ctx, both the event and ctx
2848 	 * will be 'complete'. See perf_iterate_sb_cpu().
2849 	 */
2850 	smp_store_release(&event->ctx, ctx);
2851 
2852 	/*
2853 	 * perf_event_attr::disabled events will not run and can be initialized
2854 	 * without IPI. Except when this is the first event for the context, in
2855 	 * that case we need the magic of the IPI to set ctx->is_active.
2856 	 *
2857 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2858 	 * event will issue the IPI and reprogram the hardware.
2859 	 */
2860 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2861 		raw_spin_lock_irq(&ctx->lock);
2862 		if (ctx->task == TASK_TOMBSTONE) {
2863 			raw_spin_unlock_irq(&ctx->lock);
2864 			return;
2865 		}
2866 		add_event_to_ctx(event, ctx);
2867 		raw_spin_unlock_irq(&ctx->lock);
2868 		return;
2869 	}
2870 
2871 	if (!task) {
2872 		cpu_function_call(cpu, __perf_install_in_context, event);
2873 		return;
2874 	}
2875 
2876 	/*
2877 	 * Should not happen, we validate the ctx is still alive before calling.
2878 	 */
2879 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2880 		return;
2881 
2882 	/*
2883 	 * Installing events is tricky because we cannot rely on ctx->is_active
2884 	 * to be set in case this is the nr_events 0 -> 1 transition.
2885 	 *
2886 	 * Instead we use task_curr(), which tells us if the task is running.
2887 	 * However, since we use task_curr() outside of rq::lock, we can race
2888 	 * against the actual state. This means the result can be wrong.
2889 	 *
2890 	 * If we get a false positive, we retry, this is harmless.
2891 	 *
2892 	 * If we get a false negative, things are complicated. If we are after
2893 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2894 	 * value must be correct. If we're before, it doesn't matter since
2895 	 * perf_event_context_sched_in() will program the counter.
2896 	 *
2897 	 * However, this hinges on the remote context switch having observed
2898 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2899 	 * ctx::lock in perf_event_context_sched_in().
2900 	 *
2901 	 * We do this by task_function_call(), if the IPI fails to hit the task
2902 	 * we know any future context switch of task must see the
2903 	 * perf_event_ctpx[] store.
2904 	 */
2905 
2906 	/*
2907 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2908 	 * task_cpu() load, such that if the IPI then does not find the task
2909 	 * running, a future context switch of that task must observe the
2910 	 * store.
2911 	 */
2912 	smp_mb();
2913 again:
2914 	if (!task_function_call(task, __perf_install_in_context, event))
2915 		return;
2916 
2917 	raw_spin_lock_irq(&ctx->lock);
2918 	task = ctx->task;
2919 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2920 		/*
2921 		 * Cannot happen because we already checked above (which also
2922 		 * cannot happen), and we hold ctx->mutex, which serializes us
2923 		 * against perf_event_exit_task_context().
2924 		 */
2925 		raw_spin_unlock_irq(&ctx->lock);
2926 		return;
2927 	}
2928 	/*
2929 	 * If the task is not running, ctx->lock will avoid it becoming so,
2930 	 * thus we can safely install the event.
2931 	 */
2932 	if (task_curr(task)) {
2933 		raw_spin_unlock_irq(&ctx->lock);
2934 		goto again;
2935 	}
2936 	add_event_to_ctx(event, ctx);
2937 	raw_spin_unlock_irq(&ctx->lock);
2938 }
2939 
2940 /*
2941  * Cross CPU call to enable a performance event
2942  */
2943 static void __perf_event_enable(struct perf_event *event,
2944 				struct perf_cpu_context *cpuctx,
2945 				struct perf_event_context *ctx,
2946 				void *info)
2947 {
2948 	struct perf_event *leader = event->group_leader;
2949 	struct perf_event_context *task_ctx;
2950 
2951 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2952 	    event->state <= PERF_EVENT_STATE_ERROR)
2953 		return;
2954 
2955 	if (ctx->is_active)
2956 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2957 
2958 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2959 	perf_cgroup_event_enable(event, ctx);
2960 
2961 	if (!ctx->is_active)
2962 		return;
2963 
2964 	if (!event_filter_match(event)) {
2965 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2966 		return;
2967 	}
2968 
2969 	/*
2970 	 * If the event is in a group and isn't the group leader,
2971 	 * then don't put it on unless the group is on.
2972 	 */
2973 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2974 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2975 		return;
2976 	}
2977 
2978 	task_ctx = cpuctx->task_ctx;
2979 	if (ctx->task)
2980 		WARN_ON_ONCE(task_ctx != ctx);
2981 
2982 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2983 }
2984 
2985 /*
2986  * Enable an event.
2987  *
2988  * If event->ctx is a cloned context, callers must make sure that
2989  * every task struct that event->ctx->task could possibly point to
2990  * remains valid.  This condition is satisfied when called through
2991  * perf_event_for_each_child or perf_event_for_each as described
2992  * for perf_event_disable.
2993  */
2994 static void _perf_event_enable(struct perf_event *event)
2995 {
2996 	struct perf_event_context *ctx = event->ctx;
2997 
2998 	raw_spin_lock_irq(&ctx->lock);
2999 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3000 	    event->state <  PERF_EVENT_STATE_ERROR) {
3001 out:
3002 		raw_spin_unlock_irq(&ctx->lock);
3003 		return;
3004 	}
3005 
3006 	/*
3007 	 * If the event is in error state, clear that first.
3008 	 *
3009 	 * That way, if we see the event in error state below, we know that it
3010 	 * has gone back into error state, as distinct from the task having
3011 	 * been scheduled away before the cross-call arrived.
3012 	 */
3013 	if (event->state == PERF_EVENT_STATE_ERROR) {
3014 		/*
3015 		 * Detached SIBLING events cannot leave ERROR state.
3016 		 */
3017 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3018 		    event->group_leader == event)
3019 			goto out;
3020 
3021 		event->state = PERF_EVENT_STATE_OFF;
3022 	}
3023 	raw_spin_unlock_irq(&ctx->lock);
3024 
3025 	event_function_call(event, __perf_event_enable, NULL);
3026 }
3027 
3028 /*
3029  * See perf_event_disable();
3030  */
3031 void perf_event_enable(struct perf_event *event)
3032 {
3033 	struct perf_event_context *ctx;
3034 
3035 	ctx = perf_event_ctx_lock(event);
3036 	_perf_event_enable(event);
3037 	perf_event_ctx_unlock(event, ctx);
3038 }
3039 EXPORT_SYMBOL_GPL(perf_event_enable);
3040 
3041 struct stop_event_data {
3042 	struct perf_event	*event;
3043 	unsigned int		restart;
3044 };
3045 
3046 static int __perf_event_stop(void *info)
3047 {
3048 	struct stop_event_data *sd = info;
3049 	struct perf_event *event = sd->event;
3050 
3051 	/* if it's already INACTIVE, do nothing */
3052 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3053 		return 0;
3054 
3055 	/* matches smp_wmb() in event_sched_in() */
3056 	smp_rmb();
3057 
3058 	/*
3059 	 * There is a window with interrupts enabled before we get here,
3060 	 * so we need to check again lest we try to stop another CPU's event.
3061 	 */
3062 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3063 		return -EAGAIN;
3064 
3065 	event->pmu->stop(event, PERF_EF_UPDATE);
3066 
3067 	/*
3068 	 * May race with the actual stop (through perf_pmu_output_stop()),
3069 	 * but it is only used for events with AUX ring buffer, and such
3070 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3071 	 * see comments in perf_aux_output_begin().
3072 	 *
3073 	 * Since this is happening on an event-local CPU, no trace is lost
3074 	 * while restarting.
3075 	 */
3076 	if (sd->restart)
3077 		event->pmu->start(event, 0);
3078 
3079 	return 0;
3080 }
3081 
3082 static int perf_event_stop(struct perf_event *event, int restart)
3083 {
3084 	struct stop_event_data sd = {
3085 		.event		= event,
3086 		.restart	= restart,
3087 	};
3088 	int ret = 0;
3089 
3090 	do {
3091 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3092 			return 0;
3093 
3094 		/* matches smp_wmb() in event_sched_in() */
3095 		smp_rmb();
3096 
3097 		/*
3098 		 * We only want to restart ACTIVE events, so if the event goes
3099 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3100 		 * fall through with ret==-ENXIO.
3101 		 */
3102 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3103 					__perf_event_stop, &sd);
3104 	} while (ret == -EAGAIN);
3105 
3106 	return ret;
3107 }
3108 
3109 /*
3110  * In order to contain the amount of racy and tricky in the address filter
3111  * configuration management, it is a two part process:
3112  *
3113  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3114  *      we update the addresses of corresponding vmas in
3115  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3116  * (p2) when an event is scheduled in (pmu::add), it calls
3117  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3118  *      if the generation has changed since the previous call.
3119  *
3120  * If (p1) happens while the event is active, we restart it to force (p2).
3121  *
3122  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3123  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3124  *     ioctl;
3125  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3126  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3127  *     for reading;
3128  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3129  *     of exec.
3130  */
3131 void perf_event_addr_filters_sync(struct perf_event *event)
3132 {
3133 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3134 
3135 	if (!has_addr_filter(event))
3136 		return;
3137 
3138 	raw_spin_lock(&ifh->lock);
3139 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3140 		event->pmu->addr_filters_sync(event);
3141 		event->hw.addr_filters_gen = event->addr_filters_gen;
3142 	}
3143 	raw_spin_unlock(&ifh->lock);
3144 }
3145 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3146 
3147 static int _perf_event_refresh(struct perf_event *event, int refresh)
3148 {
3149 	/*
3150 	 * not supported on inherited events
3151 	 */
3152 	if (event->attr.inherit || !is_sampling_event(event))
3153 		return -EINVAL;
3154 
3155 	atomic_add(refresh, &event->event_limit);
3156 	_perf_event_enable(event);
3157 
3158 	return 0;
3159 }
3160 
3161 /*
3162  * See perf_event_disable()
3163  */
3164 int perf_event_refresh(struct perf_event *event, int refresh)
3165 {
3166 	struct perf_event_context *ctx;
3167 	int ret;
3168 
3169 	ctx = perf_event_ctx_lock(event);
3170 	ret = _perf_event_refresh(event, refresh);
3171 	perf_event_ctx_unlock(event, ctx);
3172 
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(perf_event_refresh);
3176 
3177 static int perf_event_modify_breakpoint(struct perf_event *bp,
3178 					 struct perf_event_attr *attr)
3179 {
3180 	int err;
3181 
3182 	_perf_event_disable(bp);
3183 
3184 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3185 
3186 	if (!bp->attr.disabled)
3187 		_perf_event_enable(bp);
3188 
3189 	return err;
3190 }
3191 
3192 static int perf_event_modify_attr(struct perf_event *event,
3193 				  struct perf_event_attr *attr)
3194 {
3195 	if (event->attr.type != attr->type)
3196 		return -EINVAL;
3197 
3198 	switch (event->attr.type) {
3199 	case PERF_TYPE_BREAKPOINT:
3200 		return perf_event_modify_breakpoint(event, attr);
3201 	default:
3202 		/* Place holder for future additions. */
3203 		return -EOPNOTSUPP;
3204 	}
3205 }
3206 
3207 static void ctx_sched_out(struct perf_event_context *ctx,
3208 			  struct perf_cpu_context *cpuctx,
3209 			  enum event_type_t event_type)
3210 {
3211 	struct perf_event *event, *tmp;
3212 	int is_active = ctx->is_active;
3213 
3214 	lockdep_assert_held(&ctx->lock);
3215 
3216 	if (likely(!ctx->nr_events)) {
3217 		/*
3218 		 * See __perf_remove_from_context().
3219 		 */
3220 		WARN_ON_ONCE(ctx->is_active);
3221 		if (ctx->task)
3222 			WARN_ON_ONCE(cpuctx->task_ctx);
3223 		return;
3224 	}
3225 
3226 	ctx->is_active &= ~event_type;
3227 	if (!(ctx->is_active & EVENT_ALL))
3228 		ctx->is_active = 0;
3229 
3230 	if (ctx->task) {
3231 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3232 		if (!ctx->is_active)
3233 			cpuctx->task_ctx = NULL;
3234 	}
3235 
3236 	/*
3237 	 * Always update time if it was set; not only when it changes.
3238 	 * Otherwise we can 'forget' to update time for any but the last
3239 	 * context we sched out. For example:
3240 	 *
3241 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3242 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3243 	 *
3244 	 * would only update time for the pinned events.
3245 	 */
3246 	if (is_active & EVENT_TIME) {
3247 		/* update (and stop) ctx time */
3248 		update_context_time(ctx);
3249 		update_cgrp_time_from_cpuctx(cpuctx);
3250 	}
3251 
3252 	is_active ^= ctx->is_active; /* changed bits */
3253 
3254 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3255 		return;
3256 
3257 	perf_pmu_disable(ctx->pmu);
3258 	if (is_active & EVENT_PINNED) {
3259 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3260 			group_sched_out(event, cpuctx, ctx);
3261 	}
3262 
3263 	if (is_active & EVENT_FLEXIBLE) {
3264 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3265 			group_sched_out(event, cpuctx, ctx);
3266 
3267 		/*
3268 		 * Since we cleared EVENT_FLEXIBLE, also clear
3269 		 * rotate_necessary, is will be reset by
3270 		 * ctx_flexible_sched_in() when needed.
3271 		 */
3272 		ctx->rotate_necessary = 0;
3273 	}
3274 	perf_pmu_enable(ctx->pmu);
3275 }
3276 
3277 /*
3278  * Test whether two contexts are equivalent, i.e. whether they have both been
3279  * cloned from the same version of the same context.
3280  *
3281  * Equivalence is measured using a generation number in the context that is
3282  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3283  * and list_del_event().
3284  */
3285 static int context_equiv(struct perf_event_context *ctx1,
3286 			 struct perf_event_context *ctx2)
3287 {
3288 	lockdep_assert_held(&ctx1->lock);
3289 	lockdep_assert_held(&ctx2->lock);
3290 
3291 	/* Pinning disables the swap optimization */
3292 	if (ctx1->pin_count || ctx2->pin_count)
3293 		return 0;
3294 
3295 	/* If ctx1 is the parent of ctx2 */
3296 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3297 		return 1;
3298 
3299 	/* If ctx2 is the parent of ctx1 */
3300 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3301 		return 1;
3302 
3303 	/*
3304 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3305 	 * hierarchy, see perf_event_init_context().
3306 	 */
3307 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3308 			ctx1->parent_gen == ctx2->parent_gen)
3309 		return 1;
3310 
3311 	/* Unmatched */
3312 	return 0;
3313 }
3314 
3315 static void __perf_event_sync_stat(struct perf_event *event,
3316 				     struct perf_event *next_event)
3317 {
3318 	u64 value;
3319 
3320 	if (!event->attr.inherit_stat)
3321 		return;
3322 
3323 	/*
3324 	 * Update the event value, we cannot use perf_event_read()
3325 	 * because we're in the middle of a context switch and have IRQs
3326 	 * disabled, which upsets smp_call_function_single(), however
3327 	 * we know the event must be on the current CPU, therefore we
3328 	 * don't need to use it.
3329 	 */
3330 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3331 		event->pmu->read(event);
3332 
3333 	perf_event_update_time(event);
3334 
3335 	/*
3336 	 * In order to keep per-task stats reliable we need to flip the event
3337 	 * values when we flip the contexts.
3338 	 */
3339 	value = local64_read(&next_event->count);
3340 	value = local64_xchg(&event->count, value);
3341 	local64_set(&next_event->count, value);
3342 
3343 	swap(event->total_time_enabled, next_event->total_time_enabled);
3344 	swap(event->total_time_running, next_event->total_time_running);
3345 
3346 	/*
3347 	 * Since we swizzled the values, update the user visible data too.
3348 	 */
3349 	perf_event_update_userpage(event);
3350 	perf_event_update_userpage(next_event);
3351 }
3352 
3353 static void perf_event_sync_stat(struct perf_event_context *ctx,
3354 				   struct perf_event_context *next_ctx)
3355 {
3356 	struct perf_event *event, *next_event;
3357 
3358 	if (!ctx->nr_stat)
3359 		return;
3360 
3361 	update_context_time(ctx);
3362 
3363 	event = list_first_entry(&ctx->event_list,
3364 				   struct perf_event, event_entry);
3365 
3366 	next_event = list_first_entry(&next_ctx->event_list,
3367 					struct perf_event, event_entry);
3368 
3369 	while (&event->event_entry != &ctx->event_list &&
3370 	       &next_event->event_entry != &next_ctx->event_list) {
3371 
3372 		__perf_event_sync_stat(event, next_event);
3373 
3374 		event = list_next_entry(event, event_entry);
3375 		next_event = list_next_entry(next_event, event_entry);
3376 	}
3377 }
3378 
3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3380 					 struct task_struct *next)
3381 {
3382 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3383 	struct perf_event_context *next_ctx;
3384 	struct perf_event_context *parent, *next_parent;
3385 	struct perf_cpu_context *cpuctx;
3386 	int do_switch = 1;
3387 	struct pmu *pmu;
3388 
3389 	if (likely(!ctx))
3390 		return;
3391 
3392 	pmu = ctx->pmu;
3393 	cpuctx = __get_cpu_context(ctx);
3394 	if (!cpuctx->task_ctx)
3395 		return;
3396 
3397 	rcu_read_lock();
3398 	next_ctx = next->perf_event_ctxp[ctxn];
3399 	if (!next_ctx)
3400 		goto unlock;
3401 
3402 	parent = rcu_dereference(ctx->parent_ctx);
3403 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3404 
3405 	/* If neither context have a parent context; they cannot be clones. */
3406 	if (!parent && !next_parent)
3407 		goto unlock;
3408 
3409 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3410 		/*
3411 		 * Looks like the two contexts are clones, so we might be
3412 		 * able to optimize the context switch.  We lock both
3413 		 * contexts and check that they are clones under the
3414 		 * lock (including re-checking that neither has been
3415 		 * uncloned in the meantime).  It doesn't matter which
3416 		 * order we take the locks because no other cpu could
3417 		 * be trying to lock both of these tasks.
3418 		 */
3419 		raw_spin_lock(&ctx->lock);
3420 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3421 		if (context_equiv(ctx, next_ctx)) {
3422 
3423 			WRITE_ONCE(ctx->task, next);
3424 			WRITE_ONCE(next_ctx->task, task);
3425 
3426 			perf_pmu_disable(pmu);
3427 
3428 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3429 				pmu->sched_task(ctx, false);
3430 
3431 			/*
3432 			 * PMU specific parts of task perf context can require
3433 			 * additional synchronization. As an example of such
3434 			 * synchronization see implementation details of Intel
3435 			 * LBR call stack data profiling;
3436 			 */
3437 			if (pmu->swap_task_ctx)
3438 				pmu->swap_task_ctx(ctx, next_ctx);
3439 			else
3440 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3441 
3442 			perf_pmu_enable(pmu);
3443 
3444 			/*
3445 			 * RCU_INIT_POINTER here is safe because we've not
3446 			 * modified the ctx and the above modification of
3447 			 * ctx->task and ctx->task_ctx_data are immaterial
3448 			 * since those values are always verified under
3449 			 * ctx->lock which we're now holding.
3450 			 */
3451 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3452 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3453 
3454 			do_switch = 0;
3455 
3456 			perf_event_sync_stat(ctx, next_ctx);
3457 		}
3458 		raw_spin_unlock(&next_ctx->lock);
3459 		raw_spin_unlock(&ctx->lock);
3460 	}
3461 unlock:
3462 	rcu_read_unlock();
3463 
3464 	if (do_switch) {
3465 		raw_spin_lock(&ctx->lock);
3466 		perf_pmu_disable(pmu);
3467 
3468 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3469 			pmu->sched_task(ctx, false);
3470 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3471 
3472 		perf_pmu_enable(pmu);
3473 		raw_spin_unlock(&ctx->lock);
3474 	}
3475 }
3476 
3477 void perf_sched_cb_dec(struct pmu *pmu)
3478 {
3479 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3480 
3481 	--cpuctx->sched_cb_usage;
3482 }
3483 
3484 
3485 void perf_sched_cb_inc(struct pmu *pmu)
3486 {
3487 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3488 
3489 	cpuctx->sched_cb_usage++;
3490 }
3491 
3492 /*
3493  * This function provides the context switch callback to the lower code
3494  * layer. It is invoked ONLY when the context switch callback is enabled.
3495  *
3496  * This callback is relevant even to per-cpu events; for example multi event
3497  * PEBS requires this to provide PID/TID information. This requires we flush
3498  * all queued PEBS records before we context switch to a new task.
3499  */
3500 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3501 {
3502 	struct pmu *pmu;
3503 
3504 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3505 
3506 	if (WARN_ON_ONCE(!pmu->sched_task))
3507 		return;
3508 
3509 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3510 	perf_pmu_disable(pmu);
3511 
3512 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3513 
3514 	perf_pmu_enable(pmu);
3515 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3516 }
3517 
3518 static void perf_event_switch(struct task_struct *task,
3519 			      struct task_struct *next_prev, bool sched_in);
3520 
3521 #define for_each_task_context_nr(ctxn)					\
3522 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3523 
3524 /*
3525  * Called from scheduler to remove the events of the current task,
3526  * with interrupts disabled.
3527  *
3528  * We stop each event and update the event value in event->count.
3529  *
3530  * This does not protect us against NMI, but disable()
3531  * sets the disabled bit in the control field of event _before_
3532  * accessing the event control register. If a NMI hits, then it will
3533  * not restart the event.
3534  */
3535 void __perf_event_task_sched_out(struct task_struct *task,
3536 				 struct task_struct *next)
3537 {
3538 	int ctxn;
3539 
3540 	if (atomic_read(&nr_switch_events))
3541 		perf_event_switch(task, next, false);
3542 
3543 	for_each_task_context_nr(ctxn)
3544 		perf_event_context_sched_out(task, ctxn, next);
3545 
3546 	/*
3547 	 * if cgroup events exist on this CPU, then we need
3548 	 * to check if we have to switch out PMU state.
3549 	 * cgroup event are system-wide mode only
3550 	 */
3551 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3552 		perf_cgroup_sched_out(task, next);
3553 }
3554 
3555 /*
3556  * Called with IRQs disabled
3557  */
3558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3559 			      enum event_type_t event_type)
3560 {
3561 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3562 }
3563 
3564 static bool perf_less_group_idx(const void *l, const void *r)
3565 {
3566 	const struct perf_event *le = *(const struct perf_event **)l;
3567 	const struct perf_event *re = *(const struct perf_event **)r;
3568 
3569 	return le->group_index < re->group_index;
3570 }
3571 
3572 static void swap_ptr(void *l, void *r)
3573 {
3574 	void **lp = l, **rp = r;
3575 
3576 	swap(*lp, *rp);
3577 }
3578 
3579 static const struct min_heap_callbacks perf_min_heap = {
3580 	.elem_size = sizeof(struct perf_event *),
3581 	.less = perf_less_group_idx,
3582 	.swp = swap_ptr,
3583 };
3584 
3585 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3586 {
3587 	struct perf_event **itrs = heap->data;
3588 
3589 	if (event) {
3590 		itrs[heap->nr] = event;
3591 		heap->nr++;
3592 	}
3593 }
3594 
3595 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3596 				struct perf_event_groups *groups, int cpu,
3597 				int (*func)(struct perf_event *, void *),
3598 				void *data)
3599 {
3600 #ifdef CONFIG_CGROUP_PERF
3601 	struct cgroup_subsys_state *css = NULL;
3602 #endif
3603 	/* Space for per CPU and/or any CPU event iterators. */
3604 	struct perf_event *itrs[2];
3605 	struct min_heap event_heap;
3606 	struct perf_event **evt;
3607 	int ret;
3608 
3609 	if (cpuctx) {
3610 		event_heap = (struct min_heap){
3611 			.data = cpuctx->heap,
3612 			.nr = 0,
3613 			.size = cpuctx->heap_size,
3614 		};
3615 
3616 		lockdep_assert_held(&cpuctx->ctx.lock);
3617 
3618 #ifdef CONFIG_CGROUP_PERF
3619 		if (cpuctx->cgrp)
3620 			css = &cpuctx->cgrp->css;
3621 #endif
3622 	} else {
3623 		event_heap = (struct min_heap){
3624 			.data = itrs,
3625 			.nr = 0,
3626 			.size = ARRAY_SIZE(itrs),
3627 		};
3628 		/* Events not within a CPU context may be on any CPU. */
3629 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3630 	}
3631 	evt = event_heap.data;
3632 
3633 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3634 
3635 #ifdef CONFIG_CGROUP_PERF
3636 	for (; css; css = css->parent)
3637 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3638 #endif
3639 
3640 	min_heapify_all(&event_heap, &perf_min_heap);
3641 
3642 	while (event_heap.nr) {
3643 		ret = func(*evt, data);
3644 		if (ret)
3645 			return ret;
3646 
3647 		*evt = perf_event_groups_next(*evt);
3648 		if (*evt)
3649 			min_heapify(&event_heap, 0, &perf_min_heap);
3650 		else
3651 			min_heap_pop(&event_heap, &perf_min_heap);
3652 	}
3653 
3654 	return 0;
3655 }
3656 
3657 static int merge_sched_in(struct perf_event *event, void *data)
3658 {
3659 	struct perf_event_context *ctx = event->ctx;
3660 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3661 	int *can_add_hw = data;
3662 
3663 	if (event->state <= PERF_EVENT_STATE_OFF)
3664 		return 0;
3665 
3666 	if (!event_filter_match(event))
3667 		return 0;
3668 
3669 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3670 		if (!group_sched_in(event, cpuctx, ctx))
3671 			list_add_tail(&event->active_list, get_event_list(event));
3672 	}
3673 
3674 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3675 		if (event->attr.pinned) {
3676 			perf_cgroup_event_disable(event, ctx);
3677 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3678 		}
3679 
3680 		*can_add_hw = 0;
3681 		ctx->rotate_necessary = 1;
3682 		perf_mux_hrtimer_restart(cpuctx);
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static void
3689 ctx_pinned_sched_in(struct perf_event_context *ctx,
3690 		    struct perf_cpu_context *cpuctx)
3691 {
3692 	int can_add_hw = 1;
3693 
3694 	if (ctx != &cpuctx->ctx)
3695 		cpuctx = NULL;
3696 
3697 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3698 			   smp_processor_id(),
3699 			   merge_sched_in, &can_add_hw);
3700 }
3701 
3702 static void
3703 ctx_flexible_sched_in(struct perf_event_context *ctx,
3704 		      struct perf_cpu_context *cpuctx)
3705 {
3706 	int can_add_hw = 1;
3707 
3708 	if (ctx != &cpuctx->ctx)
3709 		cpuctx = NULL;
3710 
3711 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3712 			   smp_processor_id(),
3713 			   merge_sched_in, &can_add_hw);
3714 }
3715 
3716 static void
3717 ctx_sched_in(struct perf_event_context *ctx,
3718 	     struct perf_cpu_context *cpuctx,
3719 	     enum event_type_t event_type,
3720 	     struct task_struct *task)
3721 {
3722 	int is_active = ctx->is_active;
3723 	u64 now;
3724 
3725 	lockdep_assert_held(&ctx->lock);
3726 
3727 	if (likely(!ctx->nr_events))
3728 		return;
3729 
3730 	ctx->is_active |= (event_type | EVENT_TIME);
3731 	if (ctx->task) {
3732 		if (!is_active)
3733 			cpuctx->task_ctx = ctx;
3734 		else
3735 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3736 	}
3737 
3738 	is_active ^= ctx->is_active; /* changed bits */
3739 
3740 	if (is_active & EVENT_TIME) {
3741 		/* start ctx time */
3742 		now = perf_clock();
3743 		ctx->timestamp = now;
3744 		perf_cgroup_set_timestamp(task, ctx);
3745 	}
3746 
3747 	/*
3748 	 * First go through the list and put on any pinned groups
3749 	 * in order to give them the best chance of going on.
3750 	 */
3751 	if (is_active & EVENT_PINNED)
3752 		ctx_pinned_sched_in(ctx, cpuctx);
3753 
3754 	/* Then walk through the lower prio flexible groups */
3755 	if (is_active & EVENT_FLEXIBLE)
3756 		ctx_flexible_sched_in(ctx, cpuctx);
3757 }
3758 
3759 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3760 			     enum event_type_t event_type,
3761 			     struct task_struct *task)
3762 {
3763 	struct perf_event_context *ctx = &cpuctx->ctx;
3764 
3765 	ctx_sched_in(ctx, cpuctx, event_type, task);
3766 }
3767 
3768 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3769 					struct task_struct *task)
3770 {
3771 	struct perf_cpu_context *cpuctx;
3772 	struct pmu *pmu = ctx->pmu;
3773 
3774 	cpuctx = __get_cpu_context(ctx);
3775 	if (cpuctx->task_ctx == ctx) {
3776 		if (cpuctx->sched_cb_usage)
3777 			__perf_pmu_sched_task(cpuctx, true);
3778 		return;
3779 	}
3780 
3781 	perf_ctx_lock(cpuctx, ctx);
3782 	/*
3783 	 * We must check ctx->nr_events while holding ctx->lock, such
3784 	 * that we serialize against perf_install_in_context().
3785 	 */
3786 	if (!ctx->nr_events)
3787 		goto unlock;
3788 
3789 	perf_pmu_disable(pmu);
3790 	/*
3791 	 * We want to keep the following priority order:
3792 	 * cpu pinned (that don't need to move), task pinned,
3793 	 * cpu flexible, task flexible.
3794 	 *
3795 	 * However, if task's ctx is not carrying any pinned
3796 	 * events, no need to flip the cpuctx's events around.
3797 	 */
3798 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3799 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3800 	perf_event_sched_in(cpuctx, ctx, task);
3801 
3802 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3803 		pmu->sched_task(cpuctx->task_ctx, true);
3804 
3805 	perf_pmu_enable(pmu);
3806 
3807 unlock:
3808 	perf_ctx_unlock(cpuctx, ctx);
3809 }
3810 
3811 /*
3812  * Called from scheduler to add the events of the current task
3813  * with interrupts disabled.
3814  *
3815  * We restore the event value and then enable it.
3816  *
3817  * This does not protect us against NMI, but enable()
3818  * sets the enabled bit in the control field of event _before_
3819  * accessing the event control register. If a NMI hits, then it will
3820  * keep the event running.
3821  */
3822 void __perf_event_task_sched_in(struct task_struct *prev,
3823 				struct task_struct *task)
3824 {
3825 	struct perf_event_context *ctx;
3826 	int ctxn;
3827 
3828 	/*
3829 	 * If cgroup events exist on this CPU, then we need to check if we have
3830 	 * to switch in PMU state; cgroup event are system-wide mode only.
3831 	 *
3832 	 * Since cgroup events are CPU events, we must schedule these in before
3833 	 * we schedule in the task events.
3834 	 */
3835 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3836 		perf_cgroup_sched_in(prev, task);
3837 
3838 	for_each_task_context_nr(ctxn) {
3839 		ctx = task->perf_event_ctxp[ctxn];
3840 		if (likely(!ctx))
3841 			continue;
3842 
3843 		perf_event_context_sched_in(ctx, task);
3844 	}
3845 
3846 	if (atomic_read(&nr_switch_events))
3847 		perf_event_switch(task, prev, true);
3848 }
3849 
3850 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3851 {
3852 	u64 frequency = event->attr.sample_freq;
3853 	u64 sec = NSEC_PER_SEC;
3854 	u64 divisor, dividend;
3855 
3856 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3857 
3858 	count_fls = fls64(count);
3859 	nsec_fls = fls64(nsec);
3860 	frequency_fls = fls64(frequency);
3861 	sec_fls = 30;
3862 
3863 	/*
3864 	 * We got @count in @nsec, with a target of sample_freq HZ
3865 	 * the target period becomes:
3866 	 *
3867 	 *             @count * 10^9
3868 	 * period = -------------------
3869 	 *          @nsec * sample_freq
3870 	 *
3871 	 */
3872 
3873 	/*
3874 	 * Reduce accuracy by one bit such that @a and @b converge
3875 	 * to a similar magnitude.
3876 	 */
3877 #define REDUCE_FLS(a, b)		\
3878 do {					\
3879 	if (a##_fls > b##_fls) {	\
3880 		a >>= 1;		\
3881 		a##_fls--;		\
3882 	} else {			\
3883 		b >>= 1;		\
3884 		b##_fls--;		\
3885 	}				\
3886 } while (0)
3887 
3888 	/*
3889 	 * Reduce accuracy until either term fits in a u64, then proceed with
3890 	 * the other, so that finally we can do a u64/u64 division.
3891 	 */
3892 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3893 		REDUCE_FLS(nsec, frequency);
3894 		REDUCE_FLS(sec, count);
3895 	}
3896 
3897 	if (count_fls + sec_fls > 64) {
3898 		divisor = nsec * frequency;
3899 
3900 		while (count_fls + sec_fls > 64) {
3901 			REDUCE_FLS(count, sec);
3902 			divisor >>= 1;
3903 		}
3904 
3905 		dividend = count * sec;
3906 	} else {
3907 		dividend = count * sec;
3908 
3909 		while (nsec_fls + frequency_fls > 64) {
3910 			REDUCE_FLS(nsec, frequency);
3911 			dividend >>= 1;
3912 		}
3913 
3914 		divisor = nsec * frequency;
3915 	}
3916 
3917 	if (!divisor)
3918 		return dividend;
3919 
3920 	return div64_u64(dividend, divisor);
3921 }
3922 
3923 static DEFINE_PER_CPU(int, perf_throttled_count);
3924 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3925 
3926 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3927 {
3928 	struct hw_perf_event *hwc = &event->hw;
3929 	s64 period, sample_period;
3930 	s64 delta;
3931 
3932 	period = perf_calculate_period(event, nsec, count);
3933 
3934 	delta = (s64)(period - hwc->sample_period);
3935 	delta = (delta + 7) / 8; /* low pass filter */
3936 
3937 	sample_period = hwc->sample_period + delta;
3938 
3939 	if (!sample_period)
3940 		sample_period = 1;
3941 
3942 	hwc->sample_period = sample_period;
3943 
3944 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3945 		if (disable)
3946 			event->pmu->stop(event, PERF_EF_UPDATE);
3947 
3948 		local64_set(&hwc->period_left, 0);
3949 
3950 		if (disable)
3951 			event->pmu->start(event, PERF_EF_RELOAD);
3952 	}
3953 }
3954 
3955 /*
3956  * combine freq adjustment with unthrottling to avoid two passes over the
3957  * events. At the same time, make sure, having freq events does not change
3958  * the rate of unthrottling as that would introduce bias.
3959  */
3960 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3961 					   int needs_unthr)
3962 {
3963 	struct perf_event *event;
3964 	struct hw_perf_event *hwc;
3965 	u64 now, period = TICK_NSEC;
3966 	s64 delta;
3967 
3968 	/*
3969 	 * only need to iterate over all events iff:
3970 	 * - context have events in frequency mode (needs freq adjust)
3971 	 * - there are events to unthrottle on this cpu
3972 	 */
3973 	if (!(ctx->nr_freq || needs_unthr))
3974 		return;
3975 
3976 	raw_spin_lock(&ctx->lock);
3977 	perf_pmu_disable(ctx->pmu);
3978 
3979 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3980 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3981 			continue;
3982 
3983 		if (!event_filter_match(event))
3984 			continue;
3985 
3986 		perf_pmu_disable(event->pmu);
3987 
3988 		hwc = &event->hw;
3989 
3990 		if (hwc->interrupts == MAX_INTERRUPTS) {
3991 			hwc->interrupts = 0;
3992 			perf_log_throttle(event, 1);
3993 			event->pmu->start(event, 0);
3994 		}
3995 
3996 		if (!event->attr.freq || !event->attr.sample_freq)
3997 			goto next;
3998 
3999 		/*
4000 		 * stop the event and update event->count
4001 		 */
4002 		event->pmu->stop(event, PERF_EF_UPDATE);
4003 
4004 		now = local64_read(&event->count);
4005 		delta = now - hwc->freq_count_stamp;
4006 		hwc->freq_count_stamp = now;
4007 
4008 		/*
4009 		 * restart the event
4010 		 * reload only if value has changed
4011 		 * we have stopped the event so tell that
4012 		 * to perf_adjust_period() to avoid stopping it
4013 		 * twice.
4014 		 */
4015 		if (delta > 0)
4016 			perf_adjust_period(event, period, delta, false);
4017 
4018 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4019 	next:
4020 		perf_pmu_enable(event->pmu);
4021 	}
4022 
4023 	perf_pmu_enable(ctx->pmu);
4024 	raw_spin_unlock(&ctx->lock);
4025 }
4026 
4027 /*
4028  * Move @event to the tail of the @ctx's elegible events.
4029  */
4030 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4031 {
4032 	/*
4033 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4034 	 * disabled by the inheritance code.
4035 	 */
4036 	if (ctx->rotate_disable)
4037 		return;
4038 
4039 	perf_event_groups_delete(&ctx->flexible_groups, event);
4040 	perf_event_groups_insert(&ctx->flexible_groups, event);
4041 }
4042 
4043 /* pick an event from the flexible_groups to rotate */
4044 static inline struct perf_event *
4045 ctx_event_to_rotate(struct perf_event_context *ctx)
4046 {
4047 	struct perf_event *event;
4048 
4049 	/* pick the first active flexible event */
4050 	event = list_first_entry_or_null(&ctx->flexible_active,
4051 					 struct perf_event, active_list);
4052 
4053 	/* if no active flexible event, pick the first event */
4054 	if (!event) {
4055 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4056 				      typeof(*event), group_node);
4057 	}
4058 
4059 	/*
4060 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4061 	 * finds there are unschedulable events, it will set it again.
4062 	 */
4063 	ctx->rotate_necessary = 0;
4064 
4065 	return event;
4066 }
4067 
4068 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4069 {
4070 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4071 	struct perf_event_context *task_ctx = NULL;
4072 	int cpu_rotate, task_rotate;
4073 
4074 	/*
4075 	 * Since we run this from IRQ context, nobody can install new
4076 	 * events, thus the event count values are stable.
4077 	 */
4078 
4079 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4080 	task_ctx = cpuctx->task_ctx;
4081 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4082 
4083 	if (!(cpu_rotate || task_rotate))
4084 		return false;
4085 
4086 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4087 	perf_pmu_disable(cpuctx->ctx.pmu);
4088 
4089 	if (task_rotate)
4090 		task_event = ctx_event_to_rotate(task_ctx);
4091 	if (cpu_rotate)
4092 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4093 
4094 	/*
4095 	 * As per the order given at ctx_resched() first 'pop' task flexible
4096 	 * and then, if needed CPU flexible.
4097 	 */
4098 	if (task_event || (task_ctx && cpu_event))
4099 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4100 	if (cpu_event)
4101 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4102 
4103 	if (task_event)
4104 		rotate_ctx(task_ctx, task_event);
4105 	if (cpu_event)
4106 		rotate_ctx(&cpuctx->ctx, cpu_event);
4107 
4108 	perf_event_sched_in(cpuctx, task_ctx, current);
4109 
4110 	perf_pmu_enable(cpuctx->ctx.pmu);
4111 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4112 
4113 	return true;
4114 }
4115 
4116 void perf_event_task_tick(void)
4117 {
4118 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4119 	struct perf_event_context *ctx, *tmp;
4120 	int throttled;
4121 
4122 	lockdep_assert_irqs_disabled();
4123 
4124 	__this_cpu_inc(perf_throttled_seq);
4125 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4126 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4127 
4128 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4129 		perf_adjust_freq_unthr_context(ctx, throttled);
4130 }
4131 
4132 static int event_enable_on_exec(struct perf_event *event,
4133 				struct perf_event_context *ctx)
4134 {
4135 	if (!event->attr.enable_on_exec)
4136 		return 0;
4137 
4138 	event->attr.enable_on_exec = 0;
4139 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4140 		return 0;
4141 
4142 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4143 
4144 	return 1;
4145 }
4146 
4147 /*
4148  * Enable all of a task's events that have been marked enable-on-exec.
4149  * This expects task == current.
4150  */
4151 static void perf_event_enable_on_exec(int ctxn)
4152 {
4153 	struct perf_event_context *ctx, *clone_ctx = NULL;
4154 	enum event_type_t event_type = 0;
4155 	struct perf_cpu_context *cpuctx;
4156 	struct perf_event *event;
4157 	unsigned long flags;
4158 	int enabled = 0;
4159 
4160 	local_irq_save(flags);
4161 	ctx = current->perf_event_ctxp[ctxn];
4162 	if (!ctx || !ctx->nr_events)
4163 		goto out;
4164 
4165 	cpuctx = __get_cpu_context(ctx);
4166 	perf_ctx_lock(cpuctx, ctx);
4167 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4168 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4169 		enabled |= event_enable_on_exec(event, ctx);
4170 		event_type |= get_event_type(event);
4171 	}
4172 
4173 	/*
4174 	 * Unclone and reschedule this context if we enabled any event.
4175 	 */
4176 	if (enabled) {
4177 		clone_ctx = unclone_ctx(ctx);
4178 		ctx_resched(cpuctx, ctx, event_type);
4179 	} else {
4180 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4181 	}
4182 	perf_ctx_unlock(cpuctx, ctx);
4183 
4184 out:
4185 	local_irq_restore(flags);
4186 
4187 	if (clone_ctx)
4188 		put_ctx(clone_ctx);
4189 }
4190 
4191 struct perf_read_data {
4192 	struct perf_event *event;
4193 	bool group;
4194 	int ret;
4195 };
4196 
4197 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4198 {
4199 	u16 local_pkg, event_pkg;
4200 
4201 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4202 		int local_cpu = smp_processor_id();
4203 
4204 		event_pkg = topology_physical_package_id(event_cpu);
4205 		local_pkg = topology_physical_package_id(local_cpu);
4206 
4207 		if (event_pkg == local_pkg)
4208 			return local_cpu;
4209 	}
4210 
4211 	return event_cpu;
4212 }
4213 
4214 /*
4215  * Cross CPU call to read the hardware event
4216  */
4217 static void __perf_event_read(void *info)
4218 {
4219 	struct perf_read_data *data = info;
4220 	struct perf_event *sub, *event = data->event;
4221 	struct perf_event_context *ctx = event->ctx;
4222 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4223 	struct pmu *pmu = event->pmu;
4224 
4225 	/*
4226 	 * If this is a task context, we need to check whether it is
4227 	 * the current task context of this cpu.  If not it has been
4228 	 * scheduled out before the smp call arrived.  In that case
4229 	 * event->count would have been updated to a recent sample
4230 	 * when the event was scheduled out.
4231 	 */
4232 	if (ctx->task && cpuctx->task_ctx != ctx)
4233 		return;
4234 
4235 	raw_spin_lock(&ctx->lock);
4236 	if (ctx->is_active & EVENT_TIME) {
4237 		update_context_time(ctx);
4238 		update_cgrp_time_from_event(event);
4239 	}
4240 
4241 	perf_event_update_time(event);
4242 	if (data->group)
4243 		perf_event_update_sibling_time(event);
4244 
4245 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4246 		goto unlock;
4247 
4248 	if (!data->group) {
4249 		pmu->read(event);
4250 		data->ret = 0;
4251 		goto unlock;
4252 	}
4253 
4254 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4255 
4256 	pmu->read(event);
4257 
4258 	for_each_sibling_event(sub, event) {
4259 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4260 			/*
4261 			 * Use sibling's PMU rather than @event's since
4262 			 * sibling could be on different (eg: software) PMU.
4263 			 */
4264 			sub->pmu->read(sub);
4265 		}
4266 	}
4267 
4268 	data->ret = pmu->commit_txn(pmu);
4269 
4270 unlock:
4271 	raw_spin_unlock(&ctx->lock);
4272 }
4273 
4274 static inline u64 perf_event_count(struct perf_event *event)
4275 {
4276 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4277 }
4278 
4279 /*
4280  * NMI-safe method to read a local event, that is an event that
4281  * is:
4282  *   - either for the current task, or for this CPU
4283  *   - does not have inherit set, for inherited task events
4284  *     will not be local and we cannot read them atomically
4285  *   - must not have a pmu::count method
4286  */
4287 int perf_event_read_local(struct perf_event *event, u64 *value,
4288 			  u64 *enabled, u64 *running)
4289 {
4290 	unsigned long flags;
4291 	int ret = 0;
4292 
4293 	/*
4294 	 * Disabling interrupts avoids all counter scheduling (context
4295 	 * switches, timer based rotation and IPIs).
4296 	 */
4297 	local_irq_save(flags);
4298 
4299 	/*
4300 	 * It must not be an event with inherit set, we cannot read
4301 	 * all child counters from atomic context.
4302 	 */
4303 	if (event->attr.inherit) {
4304 		ret = -EOPNOTSUPP;
4305 		goto out;
4306 	}
4307 
4308 	/* If this is a per-task event, it must be for current */
4309 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4310 	    event->hw.target != current) {
4311 		ret = -EINVAL;
4312 		goto out;
4313 	}
4314 
4315 	/* If this is a per-CPU event, it must be for this CPU */
4316 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4317 	    event->cpu != smp_processor_id()) {
4318 		ret = -EINVAL;
4319 		goto out;
4320 	}
4321 
4322 	/* If this is a pinned event it must be running on this CPU */
4323 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4324 		ret = -EBUSY;
4325 		goto out;
4326 	}
4327 
4328 	/*
4329 	 * If the event is currently on this CPU, its either a per-task event,
4330 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4331 	 * oncpu == -1).
4332 	 */
4333 	if (event->oncpu == smp_processor_id())
4334 		event->pmu->read(event);
4335 
4336 	*value = local64_read(&event->count);
4337 	if (enabled || running) {
4338 		u64 now = event->shadow_ctx_time + perf_clock();
4339 		u64 __enabled, __running;
4340 
4341 		__perf_update_times(event, now, &__enabled, &__running);
4342 		if (enabled)
4343 			*enabled = __enabled;
4344 		if (running)
4345 			*running = __running;
4346 	}
4347 out:
4348 	local_irq_restore(flags);
4349 
4350 	return ret;
4351 }
4352 
4353 static int perf_event_read(struct perf_event *event, bool group)
4354 {
4355 	enum perf_event_state state = READ_ONCE(event->state);
4356 	int event_cpu, ret = 0;
4357 
4358 	/*
4359 	 * If event is enabled and currently active on a CPU, update the
4360 	 * value in the event structure:
4361 	 */
4362 again:
4363 	if (state == PERF_EVENT_STATE_ACTIVE) {
4364 		struct perf_read_data data;
4365 
4366 		/*
4367 		 * Orders the ->state and ->oncpu loads such that if we see
4368 		 * ACTIVE we must also see the right ->oncpu.
4369 		 *
4370 		 * Matches the smp_wmb() from event_sched_in().
4371 		 */
4372 		smp_rmb();
4373 
4374 		event_cpu = READ_ONCE(event->oncpu);
4375 		if ((unsigned)event_cpu >= nr_cpu_ids)
4376 			return 0;
4377 
4378 		data = (struct perf_read_data){
4379 			.event = event,
4380 			.group = group,
4381 			.ret = 0,
4382 		};
4383 
4384 		preempt_disable();
4385 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4386 
4387 		/*
4388 		 * Purposely ignore the smp_call_function_single() return
4389 		 * value.
4390 		 *
4391 		 * If event_cpu isn't a valid CPU it means the event got
4392 		 * scheduled out and that will have updated the event count.
4393 		 *
4394 		 * Therefore, either way, we'll have an up-to-date event count
4395 		 * after this.
4396 		 */
4397 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4398 		preempt_enable();
4399 		ret = data.ret;
4400 
4401 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4402 		struct perf_event_context *ctx = event->ctx;
4403 		unsigned long flags;
4404 
4405 		raw_spin_lock_irqsave(&ctx->lock, flags);
4406 		state = event->state;
4407 		if (state != PERF_EVENT_STATE_INACTIVE) {
4408 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4409 			goto again;
4410 		}
4411 
4412 		/*
4413 		 * May read while context is not active (e.g., thread is
4414 		 * blocked), in that case we cannot update context time
4415 		 */
4416 		if (ctx->is_active & EVENT_TIME) {
4417 			update_context_time(ctx);
4418 			update_cgrp_time_from_event(event);
4419 		}
4420 
4421 		perf_event_update_time(event);
4422 		if (group)
4423 			perf_event_update_sibling_time(event);
4424 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4425 	}
4426 
4427 	return ret;
4428 }
4429 
4430 /*
4431  * Initialize the perf_event context in a task_struct:
4432  */
4433 static void __perf_event_init_context(struct perf_event_context *ctx)
4434 {
4435 	raw_spin_lock_init(&ctx->lock);
4436 	mutex_init(&ctx->mutex);
4437 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4438 	perf_event_groups_init(&ctx->pinned_groups);
4439 	perf_event_groups_init(&ctx->flexible_groups);
4440 	INIT_LIST_HEAD(&ctx->event_list);
4441 	INIT_LIST_HEAD(&ctx->pinned_active);
4442 	INIT_LIST_HEAD(&ctx->flexible_active);
4443 	refcount_set(&ctx->refcount, 1);
4444 }
4445 
4446 static struct perf_event_context *
4447 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4448 {
4449 	struct perf_event_context *ctx;
4450 
4451 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4452 	if (!ctx)
4453 		return NULL;
4454 
4455 	__perf_event_init_context(ctx);
4456 	if (task)
4457 		ctx->task = get_task_struct(task);
4458 	ctx->pmu = pmu;
4459 
4460 	return ctx;
4461 }
4462 
4463 static struct task_struct *
4464 find_lively_task_by_vpid(pid_t vpid)
4465 {
4466 	struct task_struct *task;
4467 
4468 	rcu_read_lock();
4469 	if (!vpid)
4470 		task = current;
4471 	else
4472 		task = find_task_by_vpid(vpid);
4473 	if (task)
4474 		get_task_struct(task);
4475 	rcu_read_unlock();
4476 
4477 	if (!task)
4478 		return ERR_PTR(-ESRCH);
4479 
4480 	return task;
4481 }
4482 
4483 /*
4484  * Returns a matching context with refcount and pincount.
4485  */
4486 static struct perf_event_context *
4487 find_get_context(struct pmu *pmu, struct task_struct *task,
4488 		struct perf_event *event)
4489 {
4490 	struct perf_event_context *ctx, *clone_ctx = NULL;
4491 	struct perf_cpu_context *cpuctx;
4492 	void *task_ctx_data = NULL;
4493 	unsigned long flags;
4494 	int ctxn, err;
4495 	int cpu = event->cpu;
4496 
4497 	if (!task) {
4498 		/* Must be root to operate on a CPU event: */
4499 		err = perf_allow_cpu(&event->attr);
4500 		if (err)
4501 			return ERR_PTR(err);
4502 
4503 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4504 		ctx = &cpuctx->ctx;
4505 		get_ctx(ctx);
4506 		++ctx->pin_count;
4507 
4508 		return ctx;
4509 	}
4510 
4511 	err = -EINVAL;
4512 	ctxn = pmu->task_ctx_nr;
4513 	if (ctxn < 0)
4514 		goto errout;
4515 
4516 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4517 		task_ctx_data = alloc_task_ctx_data(pmu);
4518 		if (!task_ctx_data) {
4519 			err = -ENOMEM;
4520 			goto errout;
4521 		}
4522 	}
4523 
4524 retry:
4525 	ctx = perf_lock_task_context(task, ctxn, &flags);
4526 	if (ctx) {
4527 		clone_ctx = unclone_ctx(ctx);
4528 		++ctx->pin_count;
4529 
4530 		if (task_ctx_data && !ctx->task_ctx_data) {
4531 			ctx->task_ctx_data = task_ctx_data;
4532 			task_ctx_data = NULL;
4533 		}
4534 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4535 
4536 		if (clone_ctx)
4537 			put_ctx(clone_ctx);
4538 	} else {
4539 		ctx = alloc_perf_context(pmu, task);
4540 		err = -ENOMEM;
4541 		if (!ctx)
4542 			goto errout;
4543 
4544 		if (task_ctx_data) {
4545 			ctx->task_ctx_data = task_ctx_data;
4546 			task_ctx_data = NULL;
4547 		}
4548 
4549 		err = 0;
4550 		mutex_lock(&task->perf_event_mutex);
4551 		/*
4552 		 * If it has already passed perf_event_exit_task().
4553 		 * we must see PF_EXITING, it takes this mutex too.
4554 		 */
4555 		if (task->flags & PF_EXITING)
4556 			err = -ESRCH;
4557 		else if (task->perf_event_ctxp[ctxn])
4558 			err = -EAGAIN;
4559 		else {
4560 			get_ctx(ctx);
4561 			++ctx->pin_count;
4562 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4563 		}
4564 		mutex_unlock(&task->perf_event_mutex);
4565 
4566 		if (unlikely(err)) {
4567 			put_ctx(ctx);
4568 
4569 			if (err == -EAGAIN)
4570 				goto retry;
4571 			goto errout;
4572 		}
4573 	}
4574 
4575 	free_task_ctx_data(pmu, task_ctx_data);
4576 	return ctx;
4577 
4578 errout:
4579 	free_task_ctx_data(pmu, task_ctx_data);
4580 	return ERR_PTR(err);
4581 }
4582 
4583 static void perf_event_free_filter(struct perf_event *event);
4584 static void perf_event_free_bpf_prog(struct perf_event *event);
4585 
4586 static void free_event_rcu(struct rcu_head *head)
4587 {
4588 	struct perf_event *event;
4589 
4590 	event = container_of(head, struct perf_event, rcu_head);
4591 	if (event->ns)
4592 		put_pid_ns(event->ns);
4593 	perf_event_free_filter(event);
4594 	kfree(event);
4595 }
4596 
4597 static void ring_buffer_attach(struct perf_event *event,
4598 			       struct perf_buffer *rb);
4599 
4600 static void detach_sb_event(struct perf_event *event)
4601 {
4602 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4603 
4604 	raw_spin_lock(&pel->lock);
4605 	list_del_rcu(&event->sb_list);
4606 	raw_spin_unlock(&pel->lock);
4607 }
4608 
4609 static bool is_sb_event(struct perf_event *event)
4610 {
4611 	struct perf_event_attr *attr = &event->attr;
4612 
4613 	if (event->parent)
4614 		return false;
4615 
4616 	if (event->attach_state & PERF_ATTACH_TASK)
4617 		return false;
4618 
4619 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4620 	    attr->comm || attr->comm_exec ||
4621 	    attr->task || attr->ksymbol ||
4622 	    attr->context_switch || attr->text_poke ||
4623 	    attr->bpf_event)
4624 		return true;
4625 	return false;
4626 }
4627 
4628 static void unaccount_pmu_sb_event(struct perf_event *event)
4629 {
4630 	if (is_sb_event(event))
4631 		detach_sb_event(event);
4632 }
4633 
4634 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4635 {
4636 	if (event->parent)
4637 		return;
4638 
4639 	if (is_cgroup_event(event))
4640 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4641 }
4642 
4643 #ifdef CONFIG_NO_HZ_FULL
4644 static DEFINE_SPINLOCK(nr_freq_lock);
4645 #endif
4646 
4647 static void unaccount_freq_event_nohz(void)
4648 {
4649 #ifdef CONFIG_NO_HZ_FULL
4650 	spin_lock(&nr_freq_lock);
4651 	if (atomic_dec_and_test(&nr_freq_events))
4652 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4653 	spin_unlock(&nr_freq_lock);
4654 #endif
4655 }
4656 
4657 static void unaccount_freq_event(void)
4658 {
4659 	if (tick_nohz_full_enabled())
4660 		unaccount_freq_event_nohz();
4661 	else
4662 		atomic_dec(&nr_freq_events);
4663 }
4664 
4665 static void unaccount_event(struct perf_event *event)
4666 {
4667 	bool dec = false;
4668 
4669 	if (event->parent)
4670 		return;
4671 
4672 	if (event->attach_state & PERF_ATTACH_TASK)
4673 		dec = true;
4674 	if (event->attr.mmap || event->attr.mmap_data)
4675 		atomic_dec(&nr_mmap_events);
4676 	if (event->attr.comm)
4677 		atomic_dec(&nr_comm_events);
4678 	if (event->attr.namespaces)
4679 		atomic_dec(&nr_namespaces_events);
4680 	if (event->attr.cgroup)
4681 		atomic_dec(&nr_cgroup_events);
4682 	if (event->attr.task)
4683 		atomic_dec(&nr_task_events);
4684 	if (event->attr.freq)
4685 		unaccount_freq_event();
4686 	if (event->attr.context_switch) {
4687 		dec = true;
4688 		atomic_dec(&nr_switch_events);
4689 	}
4690 	if (is_cgroup_event(event))
4691 		dec = true;
4692 	if (has_branch_stack(event))
4693 		dec = true;
4694 	if (event->attr.ksymbol)
4695 		atomic_dec(&nr_ksymbol_events);
4696 	if (event->attr.bpf_event)
4697 		atomic_dec(&nr_bpf_events);
4698 	if (event->attr.text_poke)
4699 		atomic_dec(&nr_text_poke_events);
4700 
4701 	if (dec) {
4702 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4703 			schedule_delayed_work(&perf_sched_work, HZ);
4704 	}
4705 
4706 	unaccount_event_cpu(event, event->cpu);
4707 
4708 	unaccount_pmu_sb_event(event);
4709 }
4710 
4711 static void perf_sched_delayed(struct work_struct *work)
4712 {
4713 	mutex_lock(&perf_sched_mutex);
4714 	if (atomic_dec_and_test(&perf_sched_count))
4715 		static_branch_disable(&perf_sched_events);
4716 	mutex_unlock(&perf_sched_mutex);
4717 }
4718 
4719 /*
4720  * The following implement mutual exclusion of events on "exclusive" pmus
4721  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4722  * at a time, so we disallow creating events that might conflict, namely:
4723  *
4724  *  1) cpu-wide events in the presence of per-task events,
4725  *  2) per-task events in the presence of cpu-wide events,
4726  *  3) two matching events on the same context.
4727  *
4728  * The former two cases are handled in the allocation path (perf_event_alloc(),
4729  * _free_event()), the latter -- before the first perf_install_in_context().
4730  */
4731 static int exclusive_event_init(struct perf_event *event)
4732 {
4733 	struct pmu *pmu = event->pmu;
4734 
4735 	if (!is_exclusive_pmu(pmu))
4736 		return 0;
4737 
4738 	/*
4739 	 * Prevent co-existence of per-task and cpu-wide events on the
4740 	 * same exclusive pmu.
4741 	 *
4742 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4743 	 * events on this "exclusive" pmu, positive means there are
4744 	 * per-task events.
4745 	 *
4746 	 * Since this is called in perf_event_alloc() path, event::ctx
4747 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4748 	 * to mean "per-task event", because unlike other attach states it
4749 	 * never gets cleared.
4750 	 */
4751 	if (event->attach_state & PERF_ATTACH_TASK) {
4752 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4753 			return -EBUSY;
4754 	} else {
4755 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4756 			return -EBUSY;
4757 	}
4758 
4759 	return 0;
4760 }
4761 
4762 static void exclusive_event_destroy(struct perf_event *event)
4763 {
4764 	struct pmu *pmu = event->pmu;
4765 
4766 	if (!is_exclusive_pmu(pmu))
4767 		return;
4768 
4769 	/* see comment in exclusive_event_init() */
4770 	if (event->attach_state & PERF_ATTACH_TASK)
4771 		atomic_dec(&pmu->exclusive_cnt);
4772 	else
4773 		atomic_inc(&pmu->exclusive_cnt);
4774 }
4775 
4776 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4777 {
4778 	if ((e1->pmu == e2->pmu) &&
4779 	    (e1->cpu == e2->cpu ||
4780 	     e1->cpu == -1 ||
4781 	     e2->cpu == -1))
4782 		return true;
4783 	return false;
4784 }
4785 
4786 static bool exclusive_event_installable(struct perf_event *event,
4787 					struct perf_event_context *ctx)
4788 {
4789 	struct perf_event *iter_event;
4790 	struct pmu *pmu = event->pmu;
4791 
4792 	lockdep_assert_held(&ctx->mutex);
4793 
4794 	if (!is_exclusive_pmu(pmu))
4795 		return true;
4796 
4797 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4798 		if (exclusive_event_match(iter_event, event))
4799 			return false;
4800 	}
4801 
4802 	return true;
4803 }
4804 
4805 static void perf_addr_filters_splice(struct perf_event *event,
4806 				       struct list_head *head);
4807 
4808 static void _free_event(struct perf_event *event)
4809 {
4810 	irq_work_sync(&event->pending);
4811 
4812 	unaccount_event(event);
4813 
4814 	security_perf_event_free(event);
4815 
4816 	if (event->rb) {
4817 		/*
4818 		 * Can happen when we close an event with re-directed output.
4819 		 *
4820 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4821 		 * over us; possibly making our ring_buffer_put() the last.
4822 		 */
4823 		mutex_lock(&event->mmap_mutex);
4824 		ring_buffer_attach(event, NULL);
4825 		mutex_unlock(&event->mmap_mutex);
4826 	}
4827 
4828 	if (is_cgroup_event(event))
4829 		perf_detach_cgroup(event);
4830 
4831 	if (!event->parent) {
4832 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4833 			put_callchain_buffers();
4834 	}
4835 
4836 	perf_event_free_bpf_prog(event);
4837 	perf_addr_filters_splice(event, NULL);
4838 	kfree(event->addr_filter_ranges);
4839 
4840 	if (event->destroy)
4841 		event->destroy(event);
4842 
4843 	/*
4844 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4845 	 * hw.target.
4846 	 */
4847 	if (event->hw.target)
4848 		put_task_struct(event->hw.target);
4849 
4850 	/*
4851 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4852 	 * all task references must be cleaned up.
4853 	 */
4854 	if (event->ctx)
4855 		put_ctx(event->ctx);
4856 
4857 	exclusive_event_destroy(event);
4858 	module_put(event->pmu->module);
4859 
4860 	call_rcu(&event->rcu_head, free_event_rcu);
4861 }
4862 
4863 /*
4864  * Used to free events which have a known refcount of 1, such as in error paths
4865  * where the event isn't exposed yet and inherited events.
4866  */
4867 static void free_event(struct perf_event *event)
4868 {
4869 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4870 				"unexpected event refcount: %ld; ptr=%p\n",
4871 				atomic_long_read(&event->refcount), event)) {
4872 		/* leak to avoid use-after-free */
4873 		return;
4874 	}
4875 
4876 	_free_event(event);
4877 }
4878 
4879 /*
4880  * Remove user event from the owner task.
4881  */
4882 static void perf_remove_from_owner(struct perf_event *event)
4883 {
4884 	struct task_struct *owner;
4885 
4886 	rcu_read_lock();
4887 	/*
4888 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4889 	 * observe !owner it means the list deletion is complete and we can
4890 	 * indeed free this event, otherwise we need to serialize on
4891 	 * owner->perf_event_mutex.
4892 	 */
4893 	owner = READ_ONCE(event->owner);
4894 	if (owner) {
4895 		/*
4896 		 * Since delayed_put_task_struct() also drops the last
4897 		 * task reference we can safely take a new reference
4898 		 * while holding the rcu_read_lock().
4899 		 */
4900 		get_task_struct(owner);
4901 	}
4902 	rcu_read_unlock();
4903 
4904 	if (owner) {
4905 		/*
4906 		 * If we're here through perf_event_exit_task() we're already
4907 		 * holding ctx->mutex which would be an inversion wrt. the
4908 		 * normal lock order.
4909 		 *
4910 		 * However we can safely take this lock because its the child
4911 		 * ctx->mutex.
4912 		 */
4913 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4914 
4915 		/*
4916 		 * We have to re-check the event->owner field, if it is cleared
4917 		 * we raced with perf_event_exit_task(), acquiring the mutex
4918 		 * ensured they're done, and we can proceed with freeing the
4919 		 * event.
4920 		 */
4921 		if (event->owner) {
4922 			list_del_init(&event->owner_entry);
4923 			smp_store_release(&event->owner, NULL);
4924 		}
4925 		mutex_unlock(&owner->perf_event_mutex);
4926 		put_task_struct(owner);
4927 	}
4928 }
4929 
4930 static void put_event(struct perf_event *event)
4931 {
4932 	if (!atomic_long_dec_and_test(&event->refcount))
4933 		return;
4934 
4935 	_free_event(event);
4936 }
4937 
4938 /*
4939  * Kill an event dead; while event:refcount will preserve the event
4940  * object, it will not preserve its functionality. Once the last 'user'
4941  * gives up the object, we'll destroy the thing.
4942  */
4943 int perf_event_release_kernel(struct perf_event *event)
4944 {
4945 	struct perf_event_context *ctx = event->ctx;
4946 	struct perf_event *child, *tmp;
4947 	LIST_HEAD(free_list);
4948 
4949 	/*
4950 	 * If we got here through err_file: fput(event_file); we will not have
4951 	 * attached to a context yet.
4952 	 */
4953 	if (!ctx) {
4954 		WARN_ON_ONCE(event->attach_state &
4955 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4956 		goto no_ctx;
4957 	}
4958 
4959 	if (!is_kernel_event(event))
4960 		perf_remove_from_owner(event);
4961 
4962 	ctx = perf_event_ctx_lock(event);
4963 	WARN_ON_ONCE(ctx->parent_ctx);
4964 	perf_remove_from_context(event, DETACH_GROUP);
4965 
4966 	raw_spin_lock_irq(&ctx->lock);
4967 	/*
4968 	 * Mark this event as STATE_DEAD, there is no external reference to it
4969 	 * anymore.
4970 	 *
4971 	 * Anybody acquiring event->child_mutex after the below loop _must_
4972 	 * also see this, most importantly inherit_event() which will avoid
4973 	 * placing more children on the list.
4974 	 *
4975 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4976 	 * child events.
4977 	 */
4978 	event->state = PERF_EVENT_STATE_DEAD;
4979 	raw_spin_unlock_irq(&ctx->lock);
4980 
4981 	perf_event_ctx_unlock(event, ctx);
4982 
4983 again:
4984 	mutex_lock(&event->child_mutex);
4985 	list_for_each_entry(child, &event->child_list, child_list) {
4986 
4987 		/*
4988 		 * Cannot change, child events are not migrated, see the
4989 		 * comment with perf_event_ctx_lock_nested().
4990 		 */
4991 		ctx = READ_ONCE(child->ctx);
4992 		/*
4993 		 * Since child_mutex nests inside ctx::mutex, we must jump
4994 		 * through hoops. We start by grabbing a reference on the ctx.
4995 		 *
4996 		 * Since the event cannot get freed while we hold the
4997 		 * child_mutex, the context must also exist and have a !0
4998 		 * reference count.
4999 		 */
5000 		get_ctx(ctx);
5001 
5002 		/*
5003 		 * Now that we have a ctx ref, we can drop child_mutex, and
5004 		 * acquire ctx::mutex without fear of it going away. Then we
5005 		 * can re-acquire child_mutex.
5006 		 */
5007 		mutex_unlock(&event->child_mutex);
5008 		mutex_lock(&ctx->mutex);
5009 		mutex_lock(&event->child_mutex);
5010 
5011 		/*
5012 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5013 		 * state, if child is still the first entry, it didn't get freed
5014 		 * and we can continue doing so.
5015 		 */
5016 		tmp = list_first_entry_or_null(&event->child_list,
5017 					       struct perf_event, child_list);
5018 		if (tmp == child) {
5019 			perf_remove_from_context(child, DETACH_GROUP);
5020 			list_move(&child->child_list, &free_list);
5021 			/*
5022 			 * This matches the refcount bump in inherit_event();
5023 			 * this can't be the last reference.
5024 			 */
5025 			put_event(event);
5026 		}
5027 
5028 		mutex_unlock(&event->child_mutex);
5029 		mutex_unlock(&ctx->mutex);
5030 		put_ctx(ctx);
5031 		goto again;
5032 	}
5033 	mutex_unlock(&event->child_mutex);
5034 
5035 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5036 		void *var = &child->ctx->refcount;
5037 
5038 		list_del(&child->child_list);
5039 		free_event(child);
5040 
5041 		/*
5042 		 * Wake any perf_event_free_task() waiting for this event to be
5043 		 * freed.
5044 		 */
5045 		smp_mb(); /* pairs with wait_var_event() */
5046 		wake_up_var(var);
5047 	}
5048 
5049 no_ctx:
5050 	put_event(event); /* Must be the 'last' reference */
5051 	return 0;
5052 }
5053 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5054 
5055 /*
5056  * Called when the last reference to the file is gone.
5057  */
5058 static int perf_release(struct inode *inode, struct file *file)
5059 {
5060 	perf_event_release_kernel(file->private_data);
5061 	return 0;
5062 }
5063 
5064 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5065 {
5066 	struct perf_event *child;
5067 	u64 total = 0;
5068 
5069 	*enabled = 0;
5070 	*running = 0;
5071 
5072 	mutex_lock(&event->child_mutex);
5073 
5074 	(void)perf_event_read(event, false);
5075 	total += perf_event_count(event);
5076 
5077 	*enabled += event->total_time_enabled +
5078 			atomic64_read(&event->child_total_time_enabled);
5079 	*running += event->total_time_running +
5080 			atomic64_read(&event->child_total_time_running);
5081 
5082 	list_for_each_entry(child, &event->child_list, child_list) {
5083 		(void)perf_event_read(child, false);
5084 		total += perf_event_count(child);
5085 		*enabled += child->total_time_enabled;
5086 		*running += child->total_time_running;
5087 	}
5088 	mutex_unlock(&event->child_mutex);
5089 
5090 	return total;
5091 }
5092 
5093 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5094 {
5095 	struct perf_event_context *ctx;
5096 	u64 count;
5097 
5098 	ctx = perf_event_ctx_lock(event);
5099 	count = __perf_event_read_value(event, enabled, running);
5100 	perf_event_ctx_unlock(event, ctx);
5101 
5102 	return count;
5103 }
5104 EXPORT_SYMBOL_GPL(perf_event_read_value);
5105 
5106 static int __perf_read_group_add(struct perf_event *leader,
5107 					u64 read_format, u64 *values)
5108 {
5109 	struct perf_event_context *ctx = leader->ctx;
5110 	struct perf_event *sub;
5111 	unsigned long flags;
5112 	int n = 1; /* skip @nr */
5113 	int ret;
5114 
5115 	ret = perf_event_read(leader, true);
5116 	if (ret)
5117 		return ret;
5118 
5119 	raw_spin_lock_irqsave(&ctx->lock, flags);
5120 
5121 	/*
5122 	 * Since we co-schedule groups, {enabled,running} times of siblings
5123 	 * will be identical to those of the leader, so we only publish one
5124 	 * set.
5125 	 */
5126 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5127 		values[n++] += leader->total_time_enabled +
5128 			atomic64_read(&leader->child_total_time_enabled);
5129 	}
5130 
5131 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5132 		values[n++] += leader->total_time_running +
5133 			atomic64_read(&leader->child_total_time_running);
5134 	}
5135 
5136 	/*
5137 	 * Write {count,id} tuples for every sibling.
5138 	 */
5139 	values[n++] += perf_event_count(leader);
5140 	if (read_format & PERF_FORMAT_ID)
5141 		values[n++] = primary_event_id(leader);
5142 
5143 	for_each_sibling_event(sub, leader) {
5144 		values[n++] += perf_event_count(sub);
5145 		if (read_format & PERF_FORMAT_ID)
5146 			values[n++] = primary_event_id(sub);
5147 	}
5148 
5149 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5150 	return 0;
5151 }
5152 
5153 static int perf_read_group(struct perf_event *event,
5154 				   u64 read_format, char __user *buf)
5155 {
5156 	struct perf_event *leader = event->group_leader, *child;
5157 	struct perf_event_context *ctx = leader->ctx;
5158 	int ret;
5159 	u64 *values;
5160 
5161 	lockdep_assert_held(&ctx->mutex);
5162 
5163 	values = kzalloc(event->read_size, GFP_KERNEL);
5164 	if (!values)
5165 		return -ENOMEM;
5166 
5167 	values[0] = 1 + leader->nr_siblings;
5168 
5169 	/*
5170 	 * By locking the child_mutex of the leader we effectively
5171 	 * lock the child list of all siblings.. XXX explain how.
5172 	 */
5173 	mutex_lock(&leader->child_mutex);
5174 
5175 	ret = __perf_read_group_add(leader, read_format, values);
5176 	if (ret)
5177 		goto unlock;
5178 
5179 	list_for_each_entry(child, &leader->child_list, child_list) {
5180 		ret = __perf_read_group_add(child, read_format, values);
5181 		if (ret)
5182 			goto unlock;
5183 	}
5184 
5185 	mutex_unlock(&leader->child_mutex);
5186 
5187 	ret = event->read_size;
5188 	if (copy_to_user(buf, values, event->read_size))
5189 		ret = -EFAULT;
5190 	goto out;
5191 
5192 unlock:
5193 	mutex_unlock(&leader->child_mutex);
5194 out:
5195 	kfree(values);
5196 	return ret;
5197 }
5198 
5199 static int perf_read_one(struct perf_event *event,
5200 				 u64 read_format, char __user *buf)
5201 {
5202 	u64 enabled, running;
5203 	u64 values[4];
5204 	int n = 0;
5205 
5206 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5207 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5208 		values[n++] = enabled;
5209 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5210 		values[n++] = running;
5211 	if (read_format & PERF_FORMAT_ID)
5212 		values[n++] = primary_event_id(event);
5213 
5214 	if (copy_to_user(buf, values, n * sizeof(u64)))
5215 		return -EFAULT;
5216 
5217 	return n * sizeof(u64);
5218 }
5219 
5220 static bool is_event_hup(struct perf_event *event)
5221 {
5222 	bool no_children;
5223 
5224 	if (event->state > PERF_EVENT_STATE_EXIT)
5225 		return false;
5226 
5227 	mutex_lock(&event->child_mutex);
5228 	no_children = list_empty(&event->child_list);
5229 	mutex_unlock(&event->child_mutex);
5230 	return no_children;
5231 }
5232 
5233 /*
5234  * Read the performance event - simple non blocking version for now
5235  */
5236 static ssize_t
5237 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5238 {
5239 	u64 read_format = event->attr.read_format;
5240 	int ret;
5241 
5242 	/*
5243 	 * Return end-of-file for a read on an event that is in
5244 	 * error state (i.e. because it was pinned but it couldn't be
5245 	 * scheduled on to the CPU at some point).
5246 	 */
5247 	if (event->state == PERF_EVENT_STATE_ERROR)
5248 		return 0;
5249 
5250 	if (count < event->read_size)
5251 		return -ENOSPC;
5252 
5253 	WARN_ON_ONCE(event->ctx->parent_ctx);
5254 	if (read_format & PERF_FORMAT_GROUP)
5255 		ret = perf_read_group(event, read_format, buf);
5256 	else
5257 		ret = perf_read_one(event, read_format, buf);
5258 
5259 	return ret;
5260 }
5261 
5262 static ssize_t
5263 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5264 {
5265 	struct perf_event *event = file->private_data;
5266 	struct perf_event_context *ctx;
5267 	int ret;
5268 
5269 	ret = security_perf_event_read(event);
5270 	if (ret)
5271 		return ret;
5272 
5273 	ctx = perf_event_ctx_lock(event);
5274 	ret = __perf_read(event, buf, count);
5275 	perf_event_ctx_unlock(event, ctx);
5276 
5277 	return ret;
5278 }
5279 
5280 static __poll_t perf_poll(struct file *file, poll_table *wait)
5281 {
5282 	struct perf_event *event = file->private_data;
5283 	struct perf_buffer *rb;
5284 	__poll_t events = EPOLLHUP;
5285 
5286 	poll_wait(file, &event->waitq, wait);
5287 
5288 	if (is_event_hup(event))
5289 		return events;
5290 
5291 	/*
5292 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5293 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5294 	 */
5295 	mutex_lock(&event->mmap_mutex);
5296 	rb = event->rb;
5297 	if (rb)
5298 		events = atomic_xchg(&rb->poll, 0);
5299 	mutex_unlock(&event->mmap_mutex);
5300 	return events;
5301 }
5302 
5303 static void _perf_event_reset(struct perf_event *event)
5304 {
5305 	(void)perf_event_read(event, false);
5306 	local64_set(&event->count, 0);
5307 	perf_event_update_userpage(event);
5308 }
5309 
5310 /* Assume it's not an event with inherit set. */
5311 u64 perf_event_pause(struct perf_event *event, bool reset)
5312 {
5313 	struct perf_event_context *ctx;
5314 	u64 count;
5315 
5316 	ctx = perf_event_ctx_lock(event);
5317 	WARN_ON_ONCE(event->attr.inherit);
5318 	_perf_event_disable(event);
5319 	count = local64_read(&event->count);
5320 	if (reset)
5321 		local64_set(&event->count, 0);
5322 	perf_event_ctx_unlock(event, ctx);
5323 
5324 	return count;
5325 }
5326 EXPORT_SYMBOL_GPL(perf_event_pause);
5327 
5328 /*
5329  * Holding the top-level event's child_mutex means that any
5330  * descendant process that has inherited this event will block
5331  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5332  * task existence requirements of perf_event_enable/disable.
5333  */
5334 static void perf_event_for_each_child(struct perf_event *event,
5335 					void (*func)(struct perf_event *))
5336 {
5337 	struct perf_event *child;
5338 
5339 	WARN_ON_ONCE(event->ctx->parent_ctx);
5340 
5341 	mutex_lock(&event->child_mutex);
5342 	func(event);
5343 	list_for_each_entry(child, &event->child_list, child_list)
5344 		func(child);
5345 	mutex_unlock(&event->child_mutex);
5346 }
5347 
5348 static void perf_event_for_each(struct perf_event *event,
5349 				  void (*func)(struct perf_event *))
5350 {
5351 	struct perf_event_context *ctx = event->ctx;
5352 	struct perf_event *sibling;
5353 
5354 	lockdep_assert_held(&ctx->mutex);
5355 
5356 	event = event->group_leader;
5357 
5358 	perf_event_for_each_child(event, func);
5359 	for_each_sibling_event(sibling, event)
5360 		perf_event_for_each_child(sibling, func);
5361 }
5362 
5363 static void __perf_event_period(struct perf_event *event,
5364 				struct perf_cpu_context *cpuctx,
5365 				struct perf_event_context *ctx,
5366 				void *info)
5367 {
5368 	u64 value = *((u64 *)info);
5369 	bool active;
5370 
5371 	if (event->attr.freq) {
5372 		event->attr.sample_freq = value;
5373 	} else {
5374 		event->attr.sample_period = value;
5375 		event->hw.sample_period = value;
5376 	}
5377 
5378 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5379 	if (active) {
5380 		perf_pmu_disable(ctx->pmu);
5381 		/*
5382 		 * We could be throttled; unthrottle now to avoid the tick
5383 		 * trying to unthrottle while we already re-started the event.
5384 		 */
5385 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5386 			event->hw.interrupts = 0;
5387 			perf_log_throttle(event, 1);
5388 		}
5389 		event->pmu->stop(event, PERF_EF_UPDATE);
5390 	}
5391 
5392 	local64_set(&event->hw.period_left, 0);
5393 
5394 	if (active) {
5395 		event->pmu->start(event, PERF_EF_RELOAD);
5396 		perf_pmu_enable(ctx->pmu);
5397 	}
5398 }
5399 
5400 static int perf_event_check_period(struct perf_event *event, u64 value)
5401 {
5402 	return event->pmu->check_period(event, value);
5403 }
5404 
5405 static int _perf_event_period(struct perf_event *event, u64 value)
5406 {
5407 	if (!is_sampling_event(event))
5408 		return -EINVAL;
5409 
5410 	if (!value)
5411 		return -EINVAL;
5412 
5413 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5414 		return -EINVAL;
5415 
5416 	if (perf_event_check_period(event, value))
5417 		return -EINVAL;
5418 
5419 	if (!event->attr.freq && (value & (1ULL << 63)))
5420 		return -EINVAL;
5421 
5422 	event_function_call(event, __perf_event_period, &value);
5423 
5424 	return 0;
5425 }
5426 
5427 int perf_event_period(struct perf_event *event, u64 value)
5428 {
5429 	struct perf_event_context *ctx;
5430 	int ret;
5431 
5432 	ctx = perf_event_ctx_lock(event);
5433 	ret = _perf_event_period(event, value);
5434 	perf_event_ctx_unlock(event, ctx);
5435 
5436 	return ret;
5437 }
5438 EXPORT_SYMBOL_GPL(perf_event_period);
5439 
5440 static const struct file_operations perf_fops;
5441 
5442 static inline int perf_fget_light(int fd, struct fd *p)
5443 {
5444 	struct fd f = fdget(fd);
5445 	if (!f.file)
5446 		return -EBADF;
5447 
5448 	if (f.file->f_op != &perf_fops) {
5449 		fdput(f);
5450 		return -EBADF;
5451 	}
5452 	*p = f;
5453 	return 0;
5454 }
5455 
5456 static int perf_event_set_output(struct perf_event *event,
5457 				 struct perf_event *output_event);
5458 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5460 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5461 			  struct perf_event_attr *attr);
5462 
5463 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5464 {
5465 	void (*func)(struct perf_event *);
5466 	u32 flags = arg;
5467 
5468 	switch (cmd) {
5469 	case PERF_EVENT_IOC_ENABLE:
5470 		func = _perf_event_enable;
5471 		break;
5472 	case PERF_EVENT_IOC_DISABLE:
5473 		func = _perf_event_disable;
5474 		break;
5475 	case PERF_EVENT_IOC_RESET:
5476 		func = _perf_event_reset;
5477 		break;
5478 
5479 	case PERF_EVENT_IOC_REFRESH:
5480 		return _perf_event_refresh(event, arg);
5481 
5482 	case PERF_EVENT_IOC_PERIOD:
5483 	{
5484 		u64 value;
5485 
5486 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5487 			return -EFAULT;
5488 
5489 		return _perf_event_period(event, value);
5490 	}
5491 	case PERF_EVENT_IOC_ID:
5492 	{
5493 		u64 id = primary_event_id(event);
5494 
5495 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5496 			return -EFAULT;
5497 		return 0;
5498 	}
5499 
5500 	case PERF_EVENT_IOC_SET_OUTPUT:
5501 	{
5502 		int ret;
5503 		if (arg != -1) {
5504 			struct perf_event *output_event;
5505 			struct fd output;
5506 			ret = perf_fget_light(arg, &output);
5507 			if (ret)
5508 				return ret;
5509 			output_event = output.file->private_data;
5510 			ret = perf_event_set_output(event, output_event);
5511 			fdput(output);
5512 		} else {
5513 			ret = perf_event_set_output(event, NULL);
5514 		}
5515 		return ret;
5516 	}
5517 
5518 	case PERF_EVENT_IOC_SET_FILTER:
5519 		return perf_event_set_filter(event, (void __user *)arg);
5520 
5521 	case PERF_EVENT_IOC_SET_BPF:
5522 		return perf_event_set_bpf_prog(event, arg);
5523 
5524 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5525 		struct perf_buffer *rb;
5526 
5527 		rcu_read_lock();
5528 		rb = rcu_dereference(event->rb);
5529 		if (!rb || !rb->nr_pages) {
5530 			rcu_read_unlock();
5531 			return -EINVAL;
5532 		}
5533 		rb_toggle_paused(rb, !!arg);
5534 		rcu_read_unlock();
5535 		return 0;
5536 	}
5537 
5538 	case PERF_EVENT_IOC_QUERY_BPF:
5539 		return perf_event_query_prog_array(event, (void __user *)arg);
5540 
5541 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5542 		struct perf_event_attr new_attr;
5543 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5544 					 &new_attr);
5545 
5546 		if (err)
5547 			return err;
5548 
5549 		return perf_event_modify_attr(event,  &new_attr);
5550 	}
5551 	default:
5552 		return -ENOTTY;
5553 	}
5554 
5555 	if (flags & PERF_IOC_FLAG_GROUP)
5556 		perf_event_for_each(event, func);
5557 	else
5558 		perf_event_for_each_child(event, func);
5559 
5560 	return 0;
5561 }
5562 
5563 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5564 {
5565 	struct perf_event *event = file->private_data;
5566 	struct perf_event_context *ctx;
5567 	long ret;
5568 
5569 	/* Treat ioctl like writes as it is likely a mutating operation. */
5570 	ret = security_perf_event_write(event);
5571 	if (ret)
5572 		return ret;
5573 
5574 	ctx = perf_event_ctx_lock(event);
5575 	ret = _perf_ioctl(event, cmd, arg);
5576 	perf_event_ctx_unlock(event, ctx);
5577 
5578 	return ret;
5579 }
5580 
5581 #ifdef CONFIG_COMPAT
5582 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5583 				unsigned long arg)
5584 {
5585 	switch (_IOC_NR(cmd)) {
5586 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5587 	case _IOC_NR(PERF_EVENT_IOC_ID):
5588 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5589 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5590 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5591 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5592 			cmd &= ~IOCSIZE_MASK;
5593 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5594 		}
5595 		break;
5596 	}
5597 	return perf_ioctl(file, cmd, arg);
5598 }
5599 #else
5600 # define perf_compat_ioctl NULL
5601 #endif
5602 
5603 int perf_event_task_enable(void)
5604 {
5605 	struct perf_event_context *ctx;
5606 	struct perf_event *event;
5607 
5608 	mutex_lock(&current->perf_event_mutex);
5609 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5610 		ctx = perf_event_ctx_lock(event);
5611 		perf_event_for_each_child(event, _perf_event_enable);
5612 		perf_event_ctx_unlock(event, ctx);
5613 	}
5614 	mutex_unlock(&current->perf_event_mutex);
5615 
5616 	return 0;
5617 }
5618 
5619 int perf_event_task_disable(void)
5620 {
5621 	struct perf_event_context *ctx;
5622 	struct perf_event *event;
5623 
5624 	mutex_lock(&current->perf_event_mutex);
5625 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5626 		ctx = perf_event_ctx_lock(event);
5627 		perf_event_for_each_child(event, _perf_event_disable);
5628 		perf_event_ctx_unlock(event, ctx);
5629 	}
5630 	mutex_unlock(&current->perf_event_mutex);
5631 
5632 	return 0;
5633 }
5634 
5635 static int perf_event_index(struct perf_event *event)
5636 {
5637 	if (event->hw.state & PERF_HES_STOPPED)
5638 		return 0;
5639 
5640 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5641 		return 0;
5642 
5643 	return event->pmu->event_idx(event);
5644 }
5645 
5646 static void calc_timer_values(struct perf_event *event,
5647 				u64 *now,
5648 				u64 *enabled,
5649 				u64 *running)
5650 {
5651 	u64 ctx_time;
5652 
5653 	*now = perf_clock();
5654 	ctx_time = event->shadow_ctx_time + *now;
5655 	__perf_update_times(event, ctx_time, enabled, running);
5656 }
5657 
5658 static void perf_event_init_userpage(struct perf_event *event)
5659 {
5660 	struct perf_event_mmap_page *userpg;
5661 	struct perf_buffer *rb;
5662 
5663 	rcu_read_lock();
5664 	rb = rcu_dereference(event->rb);
5665 	if (!rb)
5666 		goto unlock;
5667 
5668 	userpg = rb->user_page;
5669 
5670 	/* Allow new userspace to detect that bit 0 is deprecated */
5671 	userpg->cap_bit0_is_deprecated = 1;
5672 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5673 	userpg->data_offset = PAGE_SIZE;
5674 	userpg->data_size = perf_data_size(rb);
5675 
5676 unlock:
5677 	rcu_read_unlock();
5678 }
5679 
5680 void __weak arch_perf_update_userpage(
5681 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5682 {
5683 }
5684 
5685 /*
5686  * Callers need to ensure there can be no nesting of this function, otherwise
5687  * the seqlock logic goes bad. We can not serialize this because the arch
5688  * code calls this from NMI context.
5689  */
5690 void perf_event_update_userpage(struct perf_event *event)
5691 {
5692 	struct perf_event_mmap_page *userpg;
5693 	struct perf_buffer *rb;
5694 	u64 enabled, running, now;
5695 
5696 	rcu_read_lock();
5697 	rb = rcu_dereference(event->rb);
5698 	if (!rb)
5699 		goto unlock;
5700 
5701 	/*
5702 	 * compute total_time_enabled, total_time_running
5703 	 * based on snapshot values taken when the event
5704 	 * was last scheduled in.
5705 	 *
5706 	 * we cannot simply called update_context_time()
5707 	 * because of locking issue as we can be called in
5708 	 * NMI context
5709 	 */
5710 	calc_timer_values(event, &now, &enabled, &running);
5711 
5712 	userpg = rb->user_page;
5713 	/*
5714 	 * Disable preemption to guarantee consistent time stamps are stored to
5715 	 * the user page.
5716 	 */
5717 	preempt_disable();
5718 	++userpg->lock;
5719 	barrier();
5720 	userpg->index = perf_event_index(event);
5721 	userpg->offset = perf_event_count(event);
5722 	if (userpg->index)
5723 		userpg->offset -= local64_read(&event->hw.prev_count);
5724 
5725 	userpg->time_enabled = enabled +
5726 			atomic64_read(&event->child_total_time_enabled);
5727 
5728 	userpg->time_running = running +
5729 			atomic64_read(&event->child_total_time_running);
5730 
5731 	arch_perf_update_userpage(event, userpg, now);
5732 
5733 	barrier();
5734 	++userpg->lock;
5735 	preempt_enable();
5736 unlock:
5737 	rcu_read_unlock();
5738 }
5739 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5740 
5741 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5742 {
5743 	struct perf_event *event = vmf->vma->vm_file->private_data;
5744 	struct perf_buffer *rb;
5745 	vm_fault_t ret = VM_FAULT_SIGBUS;
5746 
5747 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5748 		if (vmf->pgoff == 0)
5749 			ret = 0;
5750 		return ret;
5751 	}
5752 
5753 	rcu_read_lock();
5754 	rb = rcu_dereference(event->rb);
5755 	if (!rb)
5756 		goto unlock;
5757 
5758 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5759 		goto unlock;
5760 
5761 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5762 	if (!vmf->page)
5763 		goto unlock;
5764 
5765 	get_page(vmf->page);
5766 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5767 	vmf->page->index   = vmf->pgoff;
5768 
5769 	ret = 0;
5770 unlock:
5771 	rcu_read_unlock();
5772 
5773 	return ret;
5774 }
5775 
5776 static void ring_buffer_attach(struct perf_event *event,
5777 			       struct perf_buffer *rb)
5778 {
5779 	struct perf_buffer *old_rb = NULL;
5780 	unsigned long flags;
5781 
5782 	if (event->rb) {
5783 		/*
5784 		 * Should be impossible, we set this when removing
5785 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5786 		 */
5787 		WARN_ON_ONCE(event->rcu_pending);
5788 
5789 		old_rb = event->rb;
5790 		spin_lock_irqsave(&old_rb->event_lock, flags);
5791 		list_del_rcu(&event->rb_entry);
5792 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5793 
5794 		event->rcu_batches = get_state_synchronize_rcu();
5795 		event->rcu_pending = 1;
5796 	}
5797 
5798 	if (rb) {
5799 		if (event->rcu_pending) {
5800 			cond_synchronize_rcu(event->rcu_batches);
5801 			event->rcu_pending = 0;
5802 		}
5803 
5804 		spin_lock_irqsave(&rb->event_lock, flags);
5805 		list_add_rcu(&event->rb_entry, &rb->event_list);
5806 		spin_unlock_irqrestore(&rb->event_lock, flags);
5807 	}
5808 
5809 	/*
5810 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5811 	 * before swizzling the event::rb pointer; if it's getting
5812 	 * unmapped, its aux_mmap_count will be 0 and it won't
5813 	 * restart. See the comment in __perf_pmu_output_stop().
5814 	 *
5815 	 * Data will inevitably be lost when set_output is done in
5816 	 * mid-air, but then again, whoever does it like this is
5817 	 * not in for the data anyway.
5818 	 */
5819 	if (has_aux(event))
5820 		perf_event_stop(event, 0);
5821 
5822 	rcu_assign_pointer(event->rb, rb);
5823 
5824 	if (old_rb) {
5825 		ring_buffer_put(old_rb);
5826 		/*
5827 		 * Since we detached before setting the new rb, so that we
5828 		 * could attach the new rb, we could have missed a wakeup.
5829 		 * Provide it now.
5830 		 */
5831 		wake_up_all(&event->waitq);
5832 	}
5833 }
5834 
5835 static void ring_buffer_wakeup(struct perf_event *event)
5836 {
5837 	struct perf_buffer *rb;
5838 
5839 	rcu_read_lock();
5840 	rb = rcu_dereference(event->rb);
5841 	if (rb) {
5842 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5843 			wake_up_all(&event->waitq);
5844 	}
5845 	rcu_read_unlock();
5846 }
5847 
5848 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5849 {
5850 	struct perf_buffer *rb;
5851 
5852 	rcu_read_lock();
5853 	rb = rcu_dereference(event->rb);
5854 	if (rb) {
5855 		if (!refcount_inc_not_zero(&rb->refcount))
5856 			rb = NULL;
5857 	}
5858 	rcu_read_unlock();
5859 
5860 	return rb;
5861 }
5862 
5863 void ring_buffer_put(struct perf_buffer *rb)
5864 {
5865 	if (!refcount_dec_and_test(&rb->refcount))
5866 		return;
5867 
5868 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5869 
5870 	call_rcu(&rb->rcu_head, rb_free_rcu);
5871 }
5872 
5873 static void perf_mmap_open(struct vm_area_struct *vma)
5874 {
5875 	struct perf_event *event = vma->vm_file->private_data;
5876 
5877 	atomic_inc(&event->mmap_count);
5878 	atomic_inc(&event->rb->mmap_count);
5879 
5880 	if (vma->vm_pgoff)
5881 		atomic_inc(&event->rb->aux_mmap_count);
5882 
5883 	if (event->pmu->event_mapped)
5884 		event->pmu->event_mapped(event, vma->vm_mm);
5885 }
5886 
5887 static void perf_pmu_output_stop(struct perf_event *event);
5888 
5889 /*
5890  * A buffer can be mmap()ed multiple times; either directly through the same
5891  * event, or through other events by use of perf_event_set_output().
5892  *
5893  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5894  * the buffer here, where we still have a VM context. This means we need
5895  * to detach all events redirecting to us.
5896  */
5897 static void perf_mmap_close(struct vm_area_struct *vma)
5898 {
5899 	struct perf_event *event = vma->vm_file->private_data;
5900 	struct perf_buffer *rb = ring_buffer_get(event);
5901 	struct user_struct *mmap_user = rb->mmap_user;
5902 	int mmap_locked = rb->mmap_locked;
5903 	unsigned long size = perf_data_size(rb);
5904 	bool detach_rest = false;
5905 
5906 	if (event->pmu->event_unmapped)
5907 		event->pmu->event_unmapped(event, vma->vm_mm);
5908 
5909 	/*
5910 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5911 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5912 	 * serialize with perf_mmap here.
5913 	 */
5914 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5915 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5916 		/*
5917 		 * Stop all AUX events that are writing to this buffer,
5918 		 * so that we can free its AUX pages and corresponding PMU
5919 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5920 		 * they won't start any more (see perf_aux_output_begin()).
5921 		 */
5922 		perf_pmu_output_stop(event);
5923 
5924 		/* now it's safe to free the pages */
5925 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5926 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5927 
5928 		/* this has to be the last one */
5929 		rb_free_aux(rb);
5930 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5931 
5932 		mutex_unlock(&event->mmap_mutex);
5933 	}
5934 
5935 	if (atomic_dec_and_test(&rb->mmap_count))
5936 		detach_rest = true;
5937 
5938 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5939 		goto out_put;
5940 
5941 	ring_buffer_attach(event, NULL);
5942 	mutex_unlock(&event->mmap_mutex);
5943 
5944 	/* If there's still other mmap()s of this buffer, we're done. */
5945 	if (!detach_rest)
5946 		goto out_put;
5947 
5948 	/*
5949 	 * No other mmap()s, detach from all other events that might redirect
5950 	 * into the now unreachable buffer. Somewhat complicated by the
5951 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5952 	 */
5953 again:
5954 	rcu_read_lock();
5955 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5956 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5957 			/*
5958 			 * This event is en-route to free_event() which will
5959 			 * detach it and remove it from the list.
5960 			 */
5961 			continue;
5962 		}
5963 		rcu_read_unlock();
5964 
5965 		mutex_lock(&event->mmap_mutex);
5966 		/*
5967 		 * Check we didn't race with perf_event_set_output() which can
5968 		 * swizzle the rb from under us while we were waiting to
5969 		 * acquire mmap_mutex.
5970 		 *
5971 		 * If we find a different rb; ignore this event, a next
5972 		 * iteration will no longer find it on the list. We have to
5973 		 * still restart the iteration to make sure we're not now
5974 		 * iterating the wrong list.
5975 		 */
5976 		if (event->rb == rb)
5977 			ring_buffer_attach(event, NULL);
5978 
5979 		mutex_unlock(&event->mmap_mutex);
5980 		put_event(event);
5981 
5982 		/*
5983 		 * Restart the iteration; either we're on the wrong list or
5984 		 * destroyed its integrity by doing a deletion.
5985 		 */
5986 		goto again;
5987 	}
5988 	rcu_read_unlock();
5989 
5990 	/*
5991 	 * It could be there's still a few 0-ref events on the list; they'll
5992 	 * get cleaned up by free_event() -- they'll also still have their
5993 	 * ref on the rb and will free it whenever they are done with it.
5994 	 *
5995 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5996 	 * undo the VM accounting.
5997 	 */
5998 
5999 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6000 			&mmap_user->locked_vm);
6001 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6002 	free_uid(mmap_user);
6003 
6004 out_put:
6005 	ring_buffer_put(rb); /* could be last */
6006 }
6007 
6008 static const struct vm_operations_struct perf_mmap_vmops = {
6009 	.open		= perf_mmap_open,
6010 	.close		= perf_mmap_close, /* non mergeable */
6011 	.fault		= perf_mmap_fault,
6012 	.page_mkwrite	= perf_mmap_fault,
6013 };
6014 
6015 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6016 {
6017 	struct perf_event *event = file->private_data;
6018 	unsigned long user_locked, user_lock_limit;
6019 	struct user_struct *user = current_user();
6020 	struct perf_buffer *rb = NULL;
6021 	unsigned long locked, lock_limit;
6022 	unsigned long vma_size;
6023 	unsigned long nr_pages;
6024 	long user_extra = 0, extra = 0;
6025 	int ret = 0, flags = 0;
6026 
6027 	/*
6028 	 * Don't allow mmap() of inherited per-task counters. This would
6029 	 * create a performance issue due to all children writing to the
6030 	 * same rb.
6031 	 */
6032 	if (event->cpu == -1 && event->attr.inherit)
6033 		return -EINVAL;
6034 
6035 	if (!(vma->vm_flags & VM_SHARED))
6036 		return -EINVAL;
6037 
6038 	ret = security_perf_event_read(event);
6039 	if (ret)
6040 		return ret;
6041 
6042 	vma_size = vma->vm_end - vma->vm_start;
6043 
6044 	if (vma->vm_pgoff == 0) {
6045 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6046 	} else {
6047 		/*
6048 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6049 		 * mapped, all subsequent mappings should have the same size
6050 		 * and offset. Must be above the normal perf buffer.
6051 		 */
6052 		u64 aux_offset, aux_size;
6053 
6054 		if (!event->rb)
6055 			return -EINVAL;
6056 
6057 		nr_pages = vma_size / PAGE_SIZE;
6058 
6059 		mutex_lock(&event->mmap_mutex);
6060 		ret = -EINVAL;
6061 
6062 		rb = event->rb;
6063 		if (!rb)
6064 			goto aux_unlock;
6065 
6066 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6067 		aux_size = READ_ONCE(rb->user_page->aux_size);
6068 
6069 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6070 			goto aux_unlock;
6071 
6072 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6073 			goto aux_unlock;
6074 
6075 		/* already mapped with a different offset */
6076 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6077 			goto aux_unlock;
6078 
6079 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6080 			goto aux_unlock;
6081 
6082 		/* already mapped with a different size */
6083 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6084 			goto aux_unlock;
6085 
6086 		if (!is_power_of_2(nr_pages))
6087 			goto aux_unlock;
6088 
6089 		if (!atomic_inc_not_zero(&rb->mmap_count))
6090 			goto aux_unlock;
6091 
6092 		if (rb_has_aux(rb)) {
6093 			atomic_inc(&rb->aux_mmap_count);
6094 			ret = 0;
6095 			goto unlock;
6096 		}
6097 
6098 		atomic_set(&rb->aux_mmap_count, 1);
6099 		user_extra = nr_pages;
6100 
6101 		goto accounting;
6102 	}
6103 
6104 	/*
6105 	 * If we have rb pages ensure they're a power-of-two number, so we
6106 	 * can do bitmasks instead of modulo.
6107 	 */
6108 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6109 		return -EINVAL;
6110 
6111 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6112 		return -EINVAL;
6113 
6114 	WARN_ON_ONCE(event->ctx->parent_ctx);
6115 again:
6116 	mutex_lock(&event->mmap_mutex);
6117 	if (event->rb) {
6118 		if (event->rb->nr_pages != nr_pages) {
6119 			ret = -EINVAL;
6120 			goto unlock;
6121 		}
6122 
6123 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6124 			/*
6125 			 * Raced against perf_mmap_close() through
6126 			 * perf_event_set_output(). Try again, hope for better
6127 			 * luck.
6128 			 */
6129 			mutex_unlock(&event->mmap_mutex);
6130 			goto again;
6131 		}
6132 
6133 		goto unlock;
6134 	}
6135 
6136 	user_extra = nr_pages + 1;
6137 
6138 accounting:
6139 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6140 
6141 	/*
6142 	 * Increase the limit linearly with more CPUs:
6143 	 */
6144 	user_lock_limit *= num_online_cpus();
6145 
6146 	user_locked = atomic_long_read(&user->locked_vm);
6147 
6148 	/*
6149 	 * sysctl_perf_event_mlock may have changed, so that
6150 	 *     user->locked_vm > user_lock_limit
6151 	 */
6152 	if (user_locked > user_lock_limit)
6153 		user_locked = user_lock_limit;
6154 	user_locked += user_extra;
6155 
6156 	if (user_locked > user_lock_limit) {
6157 		/*
6158 		 * charge locked_vm until it hits user_lock_limit;
6159 		 * charge the rest from pinned_vm
6160 		 */
6161 		extra = user_locked - user_lock_limit;
6162 		user_extra -= extra;
6163 	}
6164 
6165 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6166 	lock_limit >>= PAGE_SHIFT;
6167 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6168 
6169 	if ((locked > lock_limit) && perf_is_paranoid() &&
6170 		!capable(CAP_IPC_LOCK)) {
6171 		ret = -EPERM;
6172 		goto unlock;
6173 	}
6174 
6175 	WARN_ON(!rb && event->rb);
6176 
6177 	if (vma->vm_flags & VM_WRITE)
6178 		flags |= RING_BUFFER_WRITABLE;
6179 
6180 	if (!rb) {
6181 		rb = rb_alloc(nr_pages,
6182 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6183 			      event->cpu, flags);
6184 
6185 		if (!rb) {
6186 			ret = -ENOMEM;
6187 			goto unlock;
6188 		}
6189 
6190 		atomic_set(&rb->mmap_count, 1);
6191 		rb->mmap_user = get_current_user();
6192 		rb->mmap_locked = extra;
6193 
6194 		ring_buffer_attach(event, rb);
6195 
6196 		perf_event_init_userpage(event);
6197 		perf_event_update_userpage(event);
6198 	} else {
6199 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6200 				   event->attr.aux_watermark, flags);
6201 		if (!ret)
6202 			rb->aux_mmap_locked = extra;
6203 	}
6204 
6205 unlock:
6206 	if (!ret) {
6207 		atomic_long_add(user_extra, &user->locked_vm);
6208 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6209 
6210 		atomic_inc(&event->mmap_count);
6211 	} else if (rb) {
6212 		atomic_dec(&rb->mmap_count);
6213 	}
6214 aux_unlock:
6215 	mutex_unlock(&event->mmap_mutex);
6216 
6217 	/*
6218 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6219 	 * vma.
6220 	 */
6221 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6222 	vma->vm_ops = &perf_mmap_vmops;
6223 
6224 	if (event->pmu->event_mapped)
6225 		event->pmu->event_mapped(event, vma->vm_mm);
6226 
6227 	return ret;
6228 }
6229 
6230 static int perf_fasync(int fd, struct file *filp, int on)
6231 {
6232 	struct inode *inode = file_inode(filp);
6233 	struct perf_event *event = filp->private_data;
6234 	int retval;
6235 
6236 	inode_lock(inode);
6237 	retval = fasync_helper(fd, filp, on, &event->fasync);
6238 	inode_unlock(inode);
6239 
6240 	if (retval < 0)
6241 		return retval;
6242 
6243 	return 0;
6244 }
6245 
6246 static const struct file_operations perf_fops = {
6247 	.llseek			= no_llseek,
6248 	.release		= perf_release,
6249 	.read			= perf_read,
6250 	.poll			= perf_poll,
6251 	.unlocked_ioctl		= perf_ioctl,
6252 	.compat_ioctl		= perf_compat_ioctl,
6253 	.mmap			= perf_mmap,
6254 	.fasync			= perf_fasync,
6255 };
6256 
6257 /*
6258  * Perf event wakeup
6259  *
6260  * If there's data, ensure we set the poll() state and publish everything
6261  * to user-space before waking everybody up.
6262  */
6263 
6264 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6265 {
6266 	/* only the parent has fasync state */
6267 	if (event->parent)
6268 		event = event->parent;
6269 	return &event->fasync;
6270 }
6271 
6272 void perf_event_wakeup(struct perf_event *event)
6273 {
6274 	ring_buffer_wakeup(event);
6275 
6276 	if (event->pending_kill) {
6277 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6278 		event->pending_kill = 0;
6279 	}
6280 }
6281 
6282 static void perf_pending_event_disable(struct perf_event *event)
6283 {
6284 	int cpu = READ_ONCE(event->pending_disable);
6285 
6286 	if (cpu < 0)
6287 		return;
6288 
6289 	if (cpu == smp_processor_id()) {
6290 		WRITE_ONCE(event->pending_disable, -1);
6291 		perf_event_disable_local(event);
6292 		return;
6293 	}
6294 
6295 	/*
6296 	 *  CPU-A			CPU-B
6297 	 *
6298 	 *  perf_event_disable_inatomic()
6299 	 *    @pending_disable = CPU-A;
6300 	 *    irq_work_queue();
6301 	 *
6302 	 *  sched-out
6303 	 *    @pending_disable = -1;
6304 	 *
6305 	 *				sched-in
6306 	 *				perf_event_disable_inatomic()
6307 	 *				  @pending_disable = CPU-B;
6308 	 *				  irq_work_queue(); // FAILS
6309 	 *
6310 	 *  irq_work_run()
6311 	 *    perf_pending_event()
6312 	 *
6313 	 * But the event runs on CPU-B and wants disabling there.
6314 	 */
6315 	irq_work_queue_on(&event->pending, cpu);
6316 }
6317 
6318 static void perf_pending_event(struct irq_work *entry)
6319 {
6320 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6321 	int rctx;
6322 
6323 	rctx = perf_swevent_get_recursion_context();
6324 	/*
6325 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6326 	 * and we won't recurse 'further'.
6327 	 */
6328 
6329 	perf_pending_event_disable(event);
6330 
6331 	if (event->pending_wakeup) {
6332 		event->pending_wakeup = 0;
6333 		perf_event_wakeup(event);
6334 	}
6335 
6336 	if (rctx >= 0)
6337 		perf_swevent_put_recursion_context(rctx);
6338 }
6339 
6340 /*
6341  * We assume there is only KVM supporting the callbacks.
6342  * Later on, we might change it to a list if there is
6343  * another virtualization implementation supporting the callbacks.
6344  */
6345 struct perf_guest_info_callbacks *perf_guest_cbs;
6346 
6347 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6348 {
6349 	perf_guest_cbs = cbs;
6350 	return 0;
6351 }
6352 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6353 
6354 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6355 {
6356 	perf_guest_cbs = NULL;
6357 	return 0;
6358 }
6359 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6360 
6361 static void
6362 perf_output_sample_regs(struct perf_output_handle *handle,
6363 			struct pt_regs *regs, u64 mask)
6364 {
6365 	int bit;
6366 	DECLARE_BITMAP(_mask, 64);
6367 
6368 	bitmap_from_u64(_mask, mask);
6369 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6370 		u64 val;
6371 
6372 		val = perf_reg_value(regs, bit);
6373 		perf_output_put(handle, val);
6374 	}
6375 }
6376 
6377 static void perf_sample_regs_user(struct perf_regs *regs_user,
6378 				  struct pt_regs *regs)
6379 {
6380 	if (user_mode(regs)) {
6381 		regs_user->abi = perf_reg_abi(current);
6382 		regs_user->regs = regs;
6383 	} else if (!(current->flags & PF_KTHREAD)) {
6384 		perf_get_regs_user(regs_user, regs);
6385 	} else {
6386 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6387 		regs_user->regs = NULL;
6388 	}
6389 }
6390 
6391 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6392 				  struct pt_regs *regs)
6393 {
6394 	regs_intr->regs = regs;
6395 	regs_intr->abi  = perf_reg_abi(current);
6396 }
6397 
6398 
6399 /*
6400  * Get remaining task size from user stack pointer.
6401  *
6402  * It'd be better to take stack vma map and limit this more
6403  * precisely, but there's no way to get it safely under interrupt,
6404  * so using TASK_SIZE as limit.
6405  */
6406 static u64 perf_ustack_task_size(struct pt_regs *regs)
6407 {
6408 	unsigned long addr = perf_user_stack_pointer(regs);
6409 
6410 	if (!addr || addr >= TASK_SIZE)
6411 		return 0;
6412 
6413 	return TASK_SIZE - addr;
6414 }
6415 
6416 static u16
6417 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6418 			struct pt_regs *regs)
6419 {
6420 	u64 task_size;
6421 
6422 	/* No regs, no stack pointer, no dump. */
6423 	if (!regs)
6424 		return 0;
6425 
6426 	/*
6427 	 * Check if we fit in with the requested stack size into the:
6428 	 * - TASK_SIZE
6429 	 *   If we don't, we limit the size to the TASK_SIZE.
6430 	 *
6431 	 * - remaining sample size
6432 	 *   If we don't, we customize the stack size to
6433 	 *   fit in to the remaining sample size.
6434 	 */
6435 
6436 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6437 	stack_size = min(stack_size, (u16) task_size);
6438 
6439 	/* Current header size plus static size and dynamic size. */
6440 	header_size += 2 * sizeof(u64);
6441 
6442 	/* Do we fit in with the current stack dump size? */
6443 	if ((u16) (header_size + stack_size) < header_size) {
6444 		/*
6445 		 * If we overflow the maximum size for the sample,
6446 		 * we customize the stack dump size to fit in.
6447 		 */
6448 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6449 		stack_size = round_up(stack_size, sizeof(u64));
6450 	}
6451 
6452 	return stack_size;
6453 }
6454 
6455 static void
6456 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6457 			  struct pt_regs *regs)
6458 {
6459 	/* Case of a kernel thread, nothing to dump */
6460 	if (!regs) {
6461 		u64 size = 0;
6462 		perf_output_put(handle, size);
6463 	} else {
6464 		unsigned long sp;
6465 		unsigned int rem;
6466 		u64 dyn_size;
6467 		mm_segment_t fs;
6468 
6469 		/*
6470 		 * We dump:
6471 		 * static size
6472 		 *   - the size requested by user or the best one we can fit
6473 		 *     in to the sample max size
6474 		 * data
6475 		 *   - user stack dump data
6476 		 * dynamic size
6477 		 *   - the actual dumped size
6478 		 */
6479 
6480 		/* Static size. */
6481 		perf_output_put(handle, dump_size);
6482 
6483 		/* Data. */
6484 		sp = perf_user_stack_pointer(regs);
6485 		fs = force_uaccess_begin();
6486 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6487 		force_uaccess_end(fs);
6488 		dyn_size = dump_size - rem;
6489 
6490 		perf_output_skip(handle, rem);
6491 
6492 		/* Dynamic size. */
6493 		perf_output_put(handle, dyn_size);
6494 	}
6495 }
6496 
6497 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6498 					  struct perf_sample_data *data,
6499 					  size_t size)
6500 {
6501 	struct perf_event *sampler = event->aux_event;
6502 	struct perf_buffer *rb;
6503 
6504 	data->aux_size = 0;
6505 
6506 	if (!sampler)
6507 		goto out;
6508 
6509 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6510 		goto out;
6511 
6512 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6513 		goto out;
6514 
6515 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6516 	if (!rb)
6517 		goto out;
6518 
6519 	/*
6520 	 * If this is an NMI hit inside sampling code, don't take
6521 	 * the sample. See also perf_aux_sample_output().
6522 	 */
6523 	if (READ_ONCE(rb->aux_in_sampling)) {
6524 		data->aux_size = 0;
6525 	} else {
6526 		size = min_t(size_t, size, perf_aux_size(rb));
6527 		data->aux_size = ALIGN(size, sizeof(u64));
6528 	}
6529 	ring_buffer_put(rb);
6530 
6531 out:
6532 	return data->aux_size;
6533 }
6534 
6535 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6536 			   struct perf_event *event,
6537 			   struct perf_output_handle *handle,
6538 			   unsigned long size)
6539 {
6540 	unsigned long flags;
6541 	long ret;
6542 
6543 	/*
6544 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6545 	 * paths. If we start calling them in NMI context, they may race with
6546 	 * the IRQ ones, that is, for example, re-starting an event that's just
6547 	 * been stopped, which is why we're using a separate callback that
6548 	 * doesn't change the event state.
6549 	 *
6550 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6551 	 */
6552 	local_irq_save(flags);
6553 	/*
6554 	 * Guard against NMI hits inside the critical section;
6555 	 * see also perf_prepare_sample_aux().
6556 	 */
6557 	WRITE_ONCE(rb->aux_in_sampling, 1);
6558 	barrier();
6559 
6560 	ret = event->pmu->snapshot_aux(event, handle, size);
6561 
6562 	barrier();
6563 	WRITE_ONCE(rb->aux_in_sampling, 0);
6564 	local_irq_restore(flags);
6565 
6566 	return ret;
6567 }
6568 
6569 static void perf_aux_sample_output(struct perf_event *event,
6570 				   struct perf_output_handle *handle,
6571 				   struct perf_sample_data *data)
6572 {
6573 	struct perf_event *sampler = event->aux_event;
6574 	struct perf_buffer *rb;
6575 	unsigned long pad;
6576 	long size;
6577 
6578 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6579 		return;
6580 
6581 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6582 	if (!rb)
6583 		return;
6584 
6585 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6586 
6587 	/*
6588 	 * An error here means that perf_output_copy() failed (returned a
6589 	 * non-zero surplus that it didn't copy), which in its current
6590 	 * enlightened implementation is not possible. If that changes, we'd
6591 	 * like to know.
6592 	 */
6593 	if (WARN_ON_ONCE(size < 0))
6594 		goto out_put;
6595 
6596 	/*
6597 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6598 	 * perf_prepare_sample_aux(), so should not be more than that.
6599 	 */
6600 	pad = data->aux_size - size;
6601 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6602 		pad = 8;
6603 
6604 	if (pad) {
6605 		u64 zero = 0;
6606 		perf_output_copy(handle, &zero, pad);
6607 	}
6608 
6609 out_put:
6610 	ring_buffer_put(rb);
6611 }
6612 
6613 static void __perf_event_header__init_id(struct perf_event_header *header,
6614 					 struct perf_sample_data *data,
6615 					 struct perf_event *event)
6616 {
6617 	u64 sample_type = event->attr.sample_type;
6618 
6619 	data->type = sample_type;
6620 	header->size += event->id_header_size;
6621 
6622 	if (sample_type & PERF_SAMPLE_TID) {
6623 		/* namespace issues */
6624 		data->tid_entry.pid = perf_event_pid(event, current);
6625 		data->tid_entry.tid = perf_event_tid(event, current);
6626 	}
6627 
6628 	if (sample_type & PERF_SAMPLE_TIME)
6629 		data->time = perf_event_clock(event);
6630 
6631 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6632 		data->id = primary_event_id(event);
6633 
6634 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6635 		data->stream_id = event->id;
6636 
6637 	if (sample_type & PERF_SAMPLE_CPU) {
6638 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6639 		data->cpu_entry.reserved = 0;
6640 	}
6641 }
6642 
6643 void perf_event_header__init_id(struct perf_event_header *header,
6644 				struct perf_sample_data *data,
6645 				struct perf_event *event)
6646 {
6647 	if (event->attr.sample_id_all)
6648 		__perf_event_header__init_id(header, data, event);
6649 }
6650 
6651 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6652 					   struct perf_sample_data *data)
6653 {
6654 	u64 sample_type = data->type;
6655 
6656 	if (sample_type & PERF_SAMPLE_TID)
6657 		perf_output_put(handle, data->tid_entry);
6658 
6659 	if (sample_type & PERF_SAMPLE_TIME)
6660 		perf_output_put(handle, data->time);
6661 
6662 	if (sample_type & PERF_SAMPLE_ID)
6663 		perf_output_put(handle, data->id);
6664 
6665 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6666 		perf_output_put(handle, data->stream_id);
6667 
6668 	if (sample_type & PERF_SAMPLE_CPU)
6669 		perf_output_put(handle, data->cpu_entry);
6670 
6671 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6672 		perf_output_put(handle, data->id);
6673 }
6674 
6675 void perf_event__output_id_sample(struct perf_event *event,
6676 				  struct perf_output_handle *handle,
6677 				  struct perf_sample_data *sample)
6678 {
6679 	if (event->attr.sample_id_all)
6680 		__perf_event__output_id_sample(handle, sample);
6681 }
6682 
6683 static void perf_output_read_one(struct perf_output_handle *handle,
6684 				 struct perf_event *event,
6685 				 u64 enabled, u64 running)
6686 {
6687 	u64 read_format = event->attr.read_format;
6688 	u64 values[4];
6689 	int n = 0;
6690 
6691 	values[n++] = perf_event_count(event);
6692 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6693 		values[n++] = enabled +
6694 			atomic64_read(&event->child_total_time_enabled);
6695 	}
6696 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6697 		values[n++] = running +
6698 			atomic64_read(&event->child_total_time_running);
6699 	}
6700 	if (read_format & PERF_FORMAT_ID)
6701 		values[n++] = primary_event_id(event);
6702 
6703 	__output_copy(handle, values, n * sizeof(u64));
6704 }
6705 
6706 static void perf_output_read_group(struct perf_output_handle *handle,
6707 			    struct perf_event *event,
6708 			    u64 enabled, u64 running)
6709 {
6710 	struct perf_event *leader = event->group_leader, *sub;
6711 	u64 read_format = event->attr.read_format;
6712 	u64 values[5];
6713 	int n = 0;
6714 
6715 	values[n++] = 1 + leader->nr_siblings;
6716 
6717 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6718 		values[n++] = enabled;
6719 
6720 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6721 		values[n++] = running;
6722 
6723 	if ((leader != event) &&
6724 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6725 		leader->pmu->read(leader);
6726 
6727 	values[n++] = perf_event_count(leader);
6728 	if (read_format & PERF_FORMAT_ID)
6729 		values[n++] = primary_event_id(leader);
6730 
6731 	__output_copy(handle, values, n * sizeof(u64));
6732 
6733 	for_each_sibling_event(sub, leader) {
6734 		n = 0;
6735 
6736 		if ((sub != event) &&
6737 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6738 			sub->pmu->read(sub);
6739 
6740 		values[n++] = perf_event_count(sub);
6741 		if (read_format & PERF_FORMAT_ID)
6742 			values[n++] = primary_event_id(sub);
6743 
6744 		__output_copy(handle, values, n * sizeof(u64));
6745 	}
6746 }
6747 
6748 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6749 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6750 
6751 /*
6752  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6753  *
6754  * The problem is that its both hard and excessively expensive to iterate the
6755  * child list, not to mention that its impossible to IPI the children running
6756  * on another CPU, from interrupt/NMI context.
6757  */
6758 static void perf_output_read(struct perf_output_handle *handle,
6759 			     struct perf_event *event)
6760 {
6761 	u64 enabled = 0, running = 0, now;
6762 	u64 read_format = event->attr.read_format;
6763 
6764 	/*
6765 	 * compute total_time_enabled, total_time_running
6766 	 * based on snapshot values taken when the event
6767 	 * was last scheduled in.
6768 	 *
6769 	 * we cannot simply called update_context_time()
6770 	 * because of locking issue as we are called in
6771 	 * NMI context
6772 	 */
6773 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6774 		calc_timer_values(event, &now, &enabled, &running);
6775 
6776 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6777 		perf_output_read_group(handle, event, enabled, running);
6778 	else
6779 		perf_output_read_one(handle, event, enabled, running);
6780 }
6781 
6782 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6783 {
6784 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6785 }
6786 
6787 void perf_output_sample(struct perf_output_handle *handle,
6788 			struct perf_event_header *header,
6789 			struct perf_sample_data *data,
6790 			struct perf_event *event)
6791 {
6792 	u64 sample_type = data->type;
6793 
6794 	perf_output_put(handle, *header);
6795 
6796 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6797 		perf_output_put(handle, data->id);
6798 
6799 	if (sample_type & PERF_SAMPLE_IP)
6800 		perf_output_put(handle, data->ip);
6801 
6802 	if (sample_type & PERF_SAMPLE_TID)
6803 		perf_output_put(handle, data->tid_entry);
6804 
6805 	if (sample_type & PERF_SAMPLE_TIME)
6806 		perf_output_put(handle, data->time);
6807 
6808 	if (sample_type & PERF_SAMPLE_ADDR)
6809 		perf_output_put(handle, data->addr);
6810 
6811 	if (sample_type & PERF_SAMPLE_ID)
6812 		perf_output_put(handle, data->id);
6813 
6814 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6815 		perf_output_put(handle, data->stream_id);
6816 
6817 	if (sample_type & PERF_SAMPLE_CPU)
6818 		perf_output_put(handle, data->cpu_entry);
6819 
6820 	if (sample_type & PERF_SAMPLE_PERIOD)
6821 		perf_output_put(handle, data->period);
6822 
6823 	if (sample_type & PERF_SAMPLE_READ)
6824 		perf_output_read(handle, event);
6825 
6826 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6827 		int size = 1;
6828 
6829 		size += data->callchain->nr;
6830 		size *= sizeof(u64);
6831 		__output_copy(handle, data->callchain, size);
6832 	}
6833 
6834 	if (sample_type & PERF_SAMPLE_RAW) {
6835 		struct perf_raw_record *raw = data->raw;
6836 
6837 		if (raw) {
6838 			struct perf_raw_frag *frag = &raw->frag;
6839 
6840 			perf_output_put(handle, raw->size);
6841 			do {
6842 				if (frag->copy) {
6843 					__output_custom(handle, frag->copy,
6844 							frag->data, frag->size);
6845 				} else {
6846 					__output_copy(handle, frag->data,
6847 						      frag->size);
6848 				}
6849 				if (perf_raw_frag_last(frag))
6850 					break;
6851 				frag = frag->next;
6852 			} while (1);
6853 			if (frag->pad)
6854 				__output_skip(handle, NULL, frag->pad);
6855 		} else {
6856 			struct {
6857 				u32	size;
6858 				u32	data;
6859 			} raw = {
6860 				.size = sizeof(u32),
6861 				.data = 0,
6862 			};
6863 			perf_output_put(handle, raw);
6864 		}
6865 	}
6866 
6867 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6868 		if (data->br_stack) {
6869 			size_t size;
6870 
6871 			size = data->br_stack->nr
6872 			     * sizeof(struct perf_branch_entry);
6873 
6874 			perf_output_put(handle, data->br_stack->nr);
6875 			if (perf_sample_save_hw_index(event))
6876 				perf_output_put(handle, data->br_stack->hw_idx);
6877 			perf_output_copy(handle, data->br_stack->entries, size);
6878 		} else {
6879 			/*
6880 			 * we always store at least the value of nr
6881 			 */
6882 			u64 nr = 0;
6883 			perf_output_put(handle, nr);
6884 		}
6885 	}
6886 
6887 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6888 		u64 abi = data->regs_user.abi;
6889 
6890 		/*
6891 		 * If there are no regs to dump, notice it through
6892 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6893 		 */
6894 		perf_output_put(handle, abi);
6895 
6896 		if (abi) {
6897 			u64 mask = event->attr.sample_regs_user;
6898 			perf_output_sample_regs(handle,
6899 						data->regs_user.regs,
6900 						mask);
6901 		}
6902 	}
6903 
6904 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6905 		perf_output_sample_ustack(handle,
6906 					  data->stack_user_size,
6907 					  data->regs_user.regs);
6908 	}
6909 
6910 	if (sample_type & PERF_SAMPLE_WEIGHT)
6911 		perf_output_put(handle, data->weight);
6912 
6913 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6914 		perf_output_put(handle, data->data_src.val);
6915 
6916 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6917 		perf_output_put(handle, data->txn);
6918 
6919 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6920 		u64 abi = data->regs_intr.abi;
6921 		/*
6922 		 * If there are no regs to dump, notice it through
6923 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6924 		 */
6925 		perf_output_put(handle, abi);
6926 
6927 		if (abi) {
6928 			u64 mask = event->attr.sample_regs_intr;
6929 
6930 			perf_output_sample_regs(handle,
6931 						data->regs_intr.regs,
6932 						mask);
6933 		}
6934 	}
6935 
6936 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6937 		perf_output_put(handle, data->phys_addr);
6938 
6939 	if (sample_type & PERF_SAMPLE_CGROUP)
6940 		perf_output_put(handle, data->cgroup);
6941 
6942 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
6943 		perf_output_put(handle, data->data_page_size);
6944 
6945 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
6946 		perf_output_put(handle, data->code_page_size);
6947 
6948 	if (sample_type & PERF_SAMPLE_AUX) {
6949 		perf_output_put(handle, data->aux_size);
6950 
6951 		if (data->aux_size)
6952 			perf_aux_sample_output(event, handle, data);
6953 	}
6954 
6955 	if (!event->attr.watermark) {
6956 		int wakeup_events = event->attr.wakeup_events;
6957 
6958 		if (wakeup_events) {
6959 			struct perf_buffer *rb = handle->rb;
6960 			int events = local_inc_return(&rb->events);
6961 
6962 			if (events >= wakeup_events) {
6963 				local_sub(wakeup_events, &rb->events);
6964 				local_inc(&rb->wakeup);
6965 			}
6966 		}
6967 	}
6968 }
6969 
6970 static u64 perf_virt_to_phys(u64 virt)
6971 {
6972 	u64 phys_addr = 0;
6973 	struct page *p = NULL;
6974 
6975 	if (!virt)
6976 		return 0;
6977 
6978 	if (virt >= TASK_SIZE) {
6979 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6980 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6981 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6982 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6983 	} else {
6984 		/*
6985 		 * Walking the pages tables for user address.
6986 		 * Interrupts are disabled, so it prevents any tear down
6987 		 * of the page tables.
6988 		 * Try IRQ-safe get_user_page_fast_only first.
6989 		 * If failed, leave phys_addr as 0.
6990 		 */
6991 		if (current->mm != NULL) {
6992 			pagefault_disable();
6993 			if (get_user_page_fast_only(virt, 0, &p))
6994 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6995 			pagefault_enable();
6996 		}
6997 
6998 		if (p)
6999 			put_page(p);
7000 	}
7001 
7002 	return phys_addr;
7003 }
7004 
7005 /*
7006  * Return the pagetable size of a given virtual address.
7007  */
7008 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7009 {
7010 	u64 size = 0;
7011 
7012 #ifdef CONFIG_HAVE_FAST_GUP
7013 	pgd_t *pgdp, pgd;
7014 	p4d_t *p4dp, p4d;
7015 	pud_t *pudp, pud;
7016 	pmd_t *pmdp, pmd;
7017 	pte_t *ptep, pte;
7018 
7019 	pgdp = pgd_offset(mm, addr);
7020 	pgd = READ_ONCE(*pgdp);
7021 	if (pgd_none(pgd))
7022 		return 0;
7023 
7024 	if (pgd_leaf(pgd))
7025 		return pgd_leaf_size(pgd);
7026 
7027 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7028 	p4d = READ_ONCE(*p4dp);
7029 	if (!p4d_present(p4d))
7030 		return 0;
7031 
7032 	if (p4d_leaf(p4d))
7033 		return p4d_leaf_size(p4d);
7034 
7035 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7036 	pud = READ_ONCE(*pudp);
7037 	if (!pud_present(pud))
7038 		return 0;
7039 
7040 	if (pud_leaf(pud))
7041 		return pud_leaf_size(pud);
7042 
7043 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7044 	pmd = READ_ONCE(*pmdp);
7045 	if (!pmd_present(pmd))
7046 		return 0;
7047 
7048 	if (pmd_leaf(pmd))
7049 		return pmd_leaf_size(pmd);
7050 
7051 	ptep = pte_offset_map(&pmd, addr);
7052 	pte = ptep_get_lockless(ptep);
7053 	if (pte_present(pte))
7054 		size = pte_leaf_size(pte);
7055 	pte_unmap(ptep);
7056 #endif /* CONFIG_HAVE_FAST_GUP */
7057 
7058 	return size;
7059 }
7060 
7061 static u64 perf_get_page_size(unsigned long addr)
7062 {
7063 	struct mm_struct *mm;
7064 	unsigned long flags;
7065 	u64 size;
7066 
7067 	if (!addr)
7068 		return 0;
7069 
7070 	/*
7071 	 * Software page-table walkers must disable IRQs,
7072 	 * which prevents any tear down of the page tables.
7073 	 */
7074 	local_irq_save(flags);
7075 
7076 	mm = current->mm;
7077 	if (!mm) {
7078 		/*
7079 		 * For kernel threads and the like, use init_mm so that
7080 		 * we can find kernel memory.
7081 		 */
7082 		mm = &init_mm;
7083 	}
7084 
7085 	size = perf_get_pgtable_size(mm, addr);
7086 
7087 	local_irq_restore(flags);
7088 
7089 	return size;
7090 }
7091 
7092 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7093 
7094 struct perf_callchain_entry *
7095 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7096 {
7097 	bool kernel = !event->attr.exclude_callchain_kernel;
7098 	bool user   = !event->attr.exclude_callchain_user;
7099 	/* Disallow cross-task user callchains. */
7100 	bool crosstask = event->ctx->task && event->ctx->task != current;
7101 	const u32 max_stack = event->attr.sample_max_stack;
7102 	struct perf_callchain_entry *callchain;
7103 
7104 	if (!kernel && !user)
7105 		return &__empty_callchain;
7106 
7107 	callchain = get_perf_callchain(regs, 0, kernel, user,
7108 				       max_stack, crosstask, true);
7109 	return callchain ?: &__empty_callchain;
7110 }
7111 
7112 void perf_prepare_sample(struct perf_event_header *header,
7113 			 struct perf_sample_data *data,
7114 			 struct perf_event *event,
7115 			 struct pt_regs *regs)
7116 {
7117 	u64 sample_type = event->attr.sample_type;
7118 
7119 	header->type = PERF_RECORD_SAMPLE;
7120 	header->size = sizeof(*header) + event->header_size;
7121 
7122 	header->misc = 0;
7123 	header->misc |= perf_misc_flags(regs);
7124 
7125 	__perf_event_header__init_id(header, data, event);
7126 
7127 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7128 		data->ip = perf_instruction_pointer(regs);
7129 
7130 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7131 		int size = 1;
7132 
7133 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7134 			data->callchain = perf_callchain(event, regs);
7135 
7136 		size += data->callchain->nr;
7137 
7138 		header->size += size * sizeof(u64);
7139 	}
7140 
7141 	if (sample_type & PERF_SAMPLE_RAW) {
7142 		struct perf_raw_record *raw = data->raw;
7143 		int size;
7144 
7145 		if (raw) {
7146 			struct perf_raw_frag *frag = &raw->frag;
7147 			u32 sum = 0;
7148 
7149 			do {
7150 				sum += frag->size;
7151 				if (perf_raw_frag_last(frag))
7152 					break;
7153 				frag = frag->next;
7154 			} while (1);
7155 
7156 			size = round_up(sum + sizeof(u32), sizeof(u64));
7157 			raw->size = size - sizeof(u32);
7158 			frag->pad = raw->size - sum;
7159 		} else {
7160 			size = sizeof(u64);
7161 		}
7162 
7163 		header->size += size;
7164 	}
7165 
7166 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7167 		int size = sizeof(u64); /* nr */
7168 		if (data->br_stack) {
7169 			if (perf_sample_save_hw_index(event))
7170 				size += sizeof(u64);
7171 
7172 			size += data->br_stack->nr
7173 			      * sizeof(struct perf_branch_entry);
7174 		}
7175 		header->size += size;
7176 	}
7177 
7178 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7179 		perf_sample_regs_user(&data->regs_user, regs);
7180 
7181 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7182 		/* regs dump ABI info */
7183 		int size = sizeof(u64);
7184 
7185 		if (data->regs_user.regs) {
7186 			u64 mask = event->attr.sample_regs_user;
7187 			size += hweight64(mask) * sizeof(u64);
7188 		}
7189 
7190 		header->size += size;
7191 	}
7192 
7193 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7194 		/*
7195 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7196 		 * processed as the last one or have additional check added
7197 		 * in case new sample type is added, because we could eat
7198 		 * up the rest of the sample size.
7199 		 */
7200 		u16 stack_size = event->attr.sample_stack_user;
7201 		u16 size = sizeof(u64);
7202 
7203 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7204 						     data->regs_user.regs);
7205 
7206 		/*
7207 		 * If there is something to dump, add space for the dump
7208 		 * itself and for the field that tells the dynamic size,
7209 		 * which is how many have been actually dumped.
7210 		 */
7211 		if (stack_size)
7212 			size += sizeof(u64) + stack_size;
7213 
7214 		data->stack_user_size = stack_size;
7215 		header->size += size;
7216 	}
7217 
7218 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7219 		/* regs dump ABI info */
7220 		int size = sizeof(u64);
7221 
7222 		perf_sample_regs_intr(&data->regs_intr, regs);
7223 
7224 		if (data->regs_intr.regs) {
7225 			u64 mask = event->attr.sample_regs_intr;
7226 
7227 			size += hweight64(mask) * sizeof(u64);
7228 		}
7229 
7230 		header->size += size;
7231 	}
7232 
7233 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7234 		data->phys_addr = perf_virt_to_phys(data->addr);
7235 
7236 #ifdef CONFIG_CGROUP_PERF
7237 	if (sample_type & PERF_SAMPLE_CGROUP) {
7238 		struct cgroup *cgrp;
7239 
7240 		/* protected by RCU */
7241 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7242 		data->cgroup = cgroup_id(cgrp);
7243 	}
7244 #endif
7245 
7246 	/*
7247 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7248 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7249 	 * but the value will not dump to the userspace.
7250 	 */
7251 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7252 		data->data_page_size = perf_get_page_size(data->addr);
7253 
7254 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7255 		data->code_page_size = perf_get_page_size(data->ip);
7256 
7257 	if (sample_type & PERF_SAMPLE_AUX) {
7258 		u64 size;
7259 
7260 		header->size += sizeof(u64); /* size */
7261 
7262 		/*
7263 		 * Given the 16bit nature of header::size, an AUX sample can
7264 		 * easily overflow it, what with all the preceding sample bits.
7265 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7266 		 * per sample in total (rounded down to 8 byte boundary).
7267 		 */
7268 		size = min_t(size_t, U16_MAX - header->size,
7269 			     event->attr.aux_sample_size);
7270 		size = rounddown(size, 8);
7271 		size = perf_prepare_sample_aux(event, data, size);
7272 
7273 		WARN_ON_ONCE(size + header->size > U16_MAX);
7274 		header->size += size;
7275 	}
7276 	/*
7277 	 * If you're adding more sample types here, you likely need to do
7278 	 * something about the overflowing header::size, like repurpose the
7279 	 * lowest 3 bits of size, which should be always zero at the moment.
7280 	 * This raises a more important question, do we really need 512k sized
7281 	 * samples and why, so good argumentation is in order for whatever you
7282 	 * do here next.
7283 	 */
7284 	WARN_ON_ONCE(header->size & 7);
7285 }
7286 
7287 static __always_inline int
7288 __perf_event_output(struct perf_event *event,
7289 		    struct perf_sample_data *data,
7290 		    struct pt_regs *regs,
7291 		    int (*output_begin)(struct perf_output_handle *,
7292 					struct perf_sample_data *,
7293 					struct perf_event *,
7294 					unsigned int))
7295 {
7296 	struct perf_output_handle handle;
7297 	struct perf_event_header header;
7298 	int err;
7299 
7300 	/* protect the callchain buffers */
7301 	rcu_read_lock();
7302 
7303 	perf_prepare_sample(&header, data, event, regs);
7304 
7305 	err = output_begin(&handle, data, event, header.size);
7306 	if (err)
7307 		goto exit;
7308 
7309 	perf_output_sample(&handle, &header, data, event);
7310 
7311 	perf_output_end(&handle);
7312 
7313 exit:
7314 	rcu_read_unlock();
7315 	return err;
7316 }
7317 
7318 void
7319 perf_event_output_forward(struct perf_event *event,
7320 			 struct perf_sample_data *data,
7321 			 struct pt_regs *regs)
7322 {
7323 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7324 }
7325 
7326 void
7327 perf_event_output_backward(struct perf_event *event,
7328 			   struct perf_sample_data *data,
7329 			   struct pt_regs *regs)
7330 {
7331 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7332 }
7333 
7334 int
7335 perf_event_output(struct perf_event *event,
7336 		  struct perf_sample_data *data,
7337 		  struct pt_regs *regs)
7338 {
7339 	return __perf_event_output(event, data, regs, perf_output_begin);
7340 }
7341 
7342 /*
7343  * read event_id
7344  */
7345 
7346 struct perf_read_event {
7347 	struct perf_event_header	header;
7348 
7349 	u32				pid;
7350 	u32				tid;
7351 };
7352 
7353 static void
7354 perf_event_read_event(struct perf_event *event,
7355 			struct task_struct *task)
7356 {
7357 	struct perf_output_handle handle;
7358 	struct perf_sample_data sample;
7359 	struct perf_read_event read_event = {
7360 		.header = {
7361 			.type = PERF_RECORD_READ,
7362 			.misc = 0,
7363 			.size = sizeof(read_event) + event->read_size,
7364 		},
7365 		.pid = perf_event_pid(event, task),
7366 		.tid = perf_event_tid(event, task),
7367 	};
7368 	int ret;
7369 
7370 	perf_event_header__init_id(&read_event.header, &sample, event);
7371 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7372 	if (ret)
7373 		return;
7374 
7375 	perf_output_put(&handle, read_event);
7376 	perf_output_read(&handle, event);
7377 	perf_event__output_id_sample(event, &handle, &sample);
7378 
7379 	perf_output_end(&handle);
7380 }
7381 
7382 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7383 
7384 static void
7385 perf_iterate_ctx(struct perf_event_context *ctx,
7386 		   perf_iterate_f output,
7387 		   void *data, bool all)
7388 {
7389 	struct perf_event *event;
7390 
7391 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7392 		if (!all) {
7393 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7394 				continue;
7395 			if (!event_filter_match(event))
7396 				continue;
7397 		}
7398 
7399 		output(event, data);
7400 	}
7401 }
7402 
7403 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7404 {
7405 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7406 	struct perf_event *event;
7407 
7408 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7409 		/*
7410 		 * Skip events that are not fully formed yet; ensure that
7411 		 * if we observe event->ctx, both event and ctx will be
7412 		 * complete enough. See perf_install_in_context().
7413 		 */
7414 		if (!smp_load_acquire(&event->ctx))
7415 			continue;
7416 
7417 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7418 			continue;
7419 		if (!event_filter_match(event))
7420 			continue;
7421 		output(event, data);
7422 	}
7423 }
7424 
7425 /*
7426  * Iterate all events that need to receive side-band events.
7427  *
7428  * For new callers; ensure that account_pmu_sb_event() includes
7429  * your event, otherwise it might not get delivered.
7430  */
7431 static void
7432 perf_iterate_sb(perf_iterate_f output, void *data,
7433 	       struct perf_event_context *task_ctx)
7434 {
7435 	struct perf_event_context *ctx;
7436 	int ctxn;
7437 
7438 	rcu_read_lock();
7439 	preempt_disable();
7440 
7441 	/*
7442 	 * If we have task_ctx != NULL we only notify the task context itself.
7443 	 * The task_ctx is set only for EXIT events before releasing task
7444 	 * context.
7445 	 */
7446 	if (task_ctx) {
7447 		perf_iterate_ctx(task_ctx, output, data, false);
7448 		goto done;
7449 	}
7450 
7451 	perf_iterate_sb_cpu(output, data);
7452 
7453 	for_each_task_context_nr(ctxn) {
7454 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7455 		if (ctx)
7456 			perf_iterate_ctx(ctx, output, data, false);
7457 	}
7458 done:
7459 	preempt_enable();
7460 	rcu_read_unlock();
7461 }
7462 
7463 /*
7464  * Clear all file-based filters at exec, they'll have to be
7465  * re-instated when/if these objects are mmapped again.
7466  */
7467 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7468 {
7469 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7470 	struct perf_addr_filter *filter;
7471 	unsigned int restart = 0, count = 0;
7472 	unsigned long flags;
7473 
7474 	if (!has_addr_filter(event))
7475 		return;
7476 
7477 	raw_spin_lock_irqsave(&ifh->lock, flags);
7478 	list_for_each_entry(filter, &ifh->list, entry) {
7479 		if (filter->path.dentry) {
7480 			event->addr_filter_ranges[count].start = 0;
7481 			event->addr_filter_ranges[count].size = 0;
7482 			restart++;
7483 		}
7484 
7485 		count++;
7486 	}
7487 
7488 	if (restart)
7489 		event->addr_filters_gen++;
7490 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7491 
7492 	if (restart)
7493 		perf_event_stop(event, 1);
7494 }
7495 
7496 void perf_event_exec(void)
7497 {
7498 	struct perf_event_context *ctx;
7499 	int ctxn;
7500 
7501 	rcu_read_lock();
7502 	for_each_task_context_nr(ctxn) {
7503 		ctx = current->perf_event_ctxp[ctxn];
7504 		if (!ctx)
7505 			continue;
7506 
7507 		perf_event_enable_on_exec(ctxn);
7508 
7509 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7510 				   true);
7511 	}
7512 	rcu_read_unlock();
7513 }
7514 
7515 struct remote_output {
7516 	struct perf_buffer	*rb;
7517 	int			err;
7518 };
7519 
7520 static void __perf_event_output_stop(struct perf_event *event, void *data)
7521 {
7522 	struct perf_event *parent = event->parent;
7523 	struct remote_output *ro = data;
7524 	struct perf_buffer *rb = ro->rb;
7525 	struct stop_event_data sd = {
7526 		.event	= event,
7527 	};
7528 
7529 	if (!has_aux(event))
7530 		return;
7531 
7532 	if (!parent)
7533 		parent = event;
7534 
7535 	/*
7536 	 * In case of inheritance, it will be the parent that links to the
7537 	 * ring-buffer, but it will be the child that's actually using it.
7538 	 *
7539 	 * We are using event::rb to determine if the event should be stopped,
7540 	 * however this may race with ring_buffer_attach() (through set_output),
7541 	 * which will make us skip the event that actually needs to be stopped.
7542 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7543 	 * its rb pointer.
7544 	 */
7545 	if (rcu_dereference(parent->rb) == rb)
7546 		ro->err = __perf_event_stop(&sd);
7547 }
7548 
7549 static int __perf_pmu_output_stop(void *info)
7550 {
7551 	struct perf_event *event = info;
7552 	struct pmu *pmu = event->ctx->pmu;
7553 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7554 	struct remote_output ro = {
7555 		.rb	= event->rb,
7556 	};
7557 
7558 	rcu_read_lock();
7559 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7560 	if (cpuctx->task_ctx)
7561 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7562 				   &ro, false);
7563 	rcu_read_unlock();
7564 
7565 	return ro.err;
7566 }
7567 
7568 static void perf_pmu_output_stop(struct perf_event *event)
7569 {
7570 	struct perf_event *iter;
7571 	int err, cpu;
7572 
7573 restart:
7574 	rcu_read_lock();
7575 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7576 		/*
7577 		 * For per-CPU events, we need to make sure that neither they
7578 		 * nor their children are running; for cpu==-1 events it's
7579 		 * sufficient to stop the event itself if it's active, since
7580 		 * it can't have children.
7581 		 */
7582 		cpu = iter->cpu;
7583 		if (cpu == -1)
7584 			cpu = READ_ONCE(iter->oncpu);
7585 
7586 		if (cpu == -1)
7587 			continue;
7588 
7589 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7590 		if (err == -EAGAIN) {
7591 			rcu_read_unlock();
7592 			goto restart;
7593 		}
7594 	}
7595 	rcu_read_unlock();
7596 }
7597 
7598 /*
7599  * task tracking -- fork/exit
7600  *
7601  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7602  */
7603 
7604 struct perf_task_event {
7605 	struct task_struct		*task;
7606 	struct perf_event_context	*task_ctx;
7607 
7608 	struct {
7609 		struct perf_event_header	header;
7610 
7611 		u32				pid;
7612 		u32				ppid;
7613 		u32				tid;
7614 		u32				ptid;
7615 		u64				time;
7616 	} event_id;
7617 };
7618 
7619 static int perf_event_task_match(struct perf_event *event)
7620 {
7621 	return event->attr.comm  || event->attr.mmap ||
7622 	       event->attr.mmap2 || event->attr.mmap_data ||
7623 	       event->attr.task;
7624 }
7625 
7626 static void perf_event_task_output(struct perf_event *event,
7627 				   void *data)
7628 {
7629 	struct perf_task_event *task_event = data;
7630 	struct perf_output_handle handle;
7631 	struct perf_sample_data	sample;
7632 	struct task_struct *task = task_event->task;
7633 	int ret, size = task_event->event_id.header.size;
7634 
7635 	if (!perf_event_task_match(event))
7636 		return;
7637 
7638 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7639 
7640 	ret = perf_output_begin(&handle, &sample, event,
7641 				task_event->event_id.header.size);
7642 	if (ret)
7643 		goto out;
7644 
7645 	task_event->event_id.pid = perf_event_pid(event, task);
7646 	task_event->event_id.tid = perf_event_tid(event, task);
7647 
7648 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7649 		task_event->event_id.ppid = perf_event_pid(event,
7650 							task->real_parent);
7651 		task_event->event_id.ptid = perf_event_pid(event,
7652 							task->real_parent);
7653 	} else {  /* PERF_RECORD_FORK */
7654 		task_event->event_id.ppid = perf_event_pid(event, current);
7655 		task_event->event_id.ptid = perf_event_tid(event, current);
7656 	}
7657 
7658 	task_event->event_id.time = perf_event_clock(event);
7659 
7660 	perf_output_put(&handle, task_event->event_id);
7661 
7662 	perf_event__output_id_sample(event, &handle, &sample);
7663 
7664 	perf_output_end(&handle);
7665 out:
7666 	task_event->event_id.header.size = size;
7667 }
7668 
7669 static void perf_event_task(struct task_struct *task,
7670 			      struct perf_event_context *task_ctx,
7671 			      int new)
7672 {
7673 	struct perf_task_event task_event;
7674 
7675 	if (!atomic_read(&nr_comm_events) &&
7676 	    !atomic_read(&nr_mmap_events) &&
7677 	    !atomic_read(&nr_task_events))
7678 		return;
7679 
7680 	task_event = (struct perf_task_event){
7681 		.task	  = task,
7682 		.task_ctx = task_ctx,
7683 		.event_id    = {
7684 			.header = {
7685 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7686 				.misc = 0,
7687 				.size = sizeof(task_event.event_id),
7688 			},
7689 			/* .pid  */
7690 			/* .ppid */
7691 			/* .tid  */
7692 			/* .ptid */
7693 			/* .time */
7694 		},
7695 	};
7696 
7697 	perf_iterate_sb(perf_event_task_output,
7698 		       &task_event,
7699 		       task_ctx);
7700 }
7701 
7702 void perf_event_fork(struct task_struct *task)
7703 {
7704 	perf_event_task(task, NULL, 1);
7705 	perf_event_namespaces(task);
7706 }
7707 
7708 /*
7709  * comm tracking
7710  */
7711 
7712 struct perf_comm_event {
7713 	struct task_struct	*task;
7714 	char			*comm;
7715 	int			comm_size;
7716 
7717 	struct {
7718 		struct perf_event_header	header;
7719 
7720 		u32				pid;
7721 		u32				tid;
7722 	} event_id;
7723 };
7724 
7725 static int perf_event_comm_match(struct perf_event *event)
7726 {
7727 	return event->attr.comm;
7728 }
7729 
7730 static void perf_event_comm_output(struct perf_event *event,
7731 				   void *data)
7732 {
7733 	struct perf_comm_event *comm_event = data;
7734 	struct perf_output_handle handle;
7735 	struct perf_sample_data sample;
7736 	int size = comm_event->event_id.header.size;
7737 	int ret;
7738 
7739 	if (!perf_event_comm_match(event))
7740 		return;
7741 
7742 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7743 	ret = perf_output_begin(&handle, &sample, event,
7744 				comm_event->event_id.header.size);
7745 
7746 	if (ret)
7747 		goto out;
7748 
7749 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7750 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7751 
7752 	perf_output_put(&handle, comm_event->event_id);
7753 	__output_copy(&handle, comm_event->comm,
7754 				   comm_event->comm_size);
7755 
7756 	perf_event__output_id_sample(event, &handle, &sample);
7757 
7758 	perf_output_end(&handle);
7759 out:
7760 	comm_event->event_id.header.size = size;
7761 }
7762 
7763 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7764 {
7765 	char comm[TASK_COMM_LEN];
7766 	unsigned int size;
7767 
7768 	memset(comm, 0, sizeof(comm));
7769 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7770 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7771 
7772 	comm_event->comm = comm;
7773 	comm_event->comm_size = size;
7774 
7775 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7776 
7777 	perf_iterate_sb(perf_event_comm_output,
7778 		       comm_event,
7779 		       NULL);
7780 }
7781 
7782 void perf_event_comm(struct task_struct *task, bool exec)
7783 {
7784 	struct perf_comm_event comm_event;
7785 
7786 	if (!atomic_read(&nr_comm_events))
7787 		return;
7788 
7789 	comm_event = (struct perf_comm_event){
7790 		.task	= task,
7791 		/* .comm      */
7792 		/* .comm_size */
7793 		.event_id  = {
7794 			.header = {
7795 				.type = PERF_RECORD_COMM,
7796 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7797 				/* .size */
7798 			},
7799 			/* .pid */
7800 			/* .tid */
7801 		},
7802 	};
7803 
7804 	perf_event_comm_event(&comm_event);
7805 }
7806 
7807 /*
7808  * namespaces tracking
7809  */
7810 
7811 struct perf_namespaces_event {
7812 	struct task_struct		*task;
7813 
7814 	struct {
7815 		struct perf_event_header	header;
7816 
7817 		u32				pid;
7818 		u32				tid;
7819 		u64				nr_namespaces;
7820 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7821 	} event_id;
7822 };
7823 
7824 static int perf_event_namespaces_match(struct perf_event *event)
7825 {
7826 	return event->attr.namespaces;
7827 }
7828 
7829 static void perf_event_namespaces_output(struct perf_event *event,
7830 					 void *data)
7831 {
7832 	struct perf_namespaces_event *namespaces_event = data;
7833 	struct perf_output_handle handle;
7834 	struct perf_sample_data sample;
7835 	u16 header_size = namespaces_event->event_id.header.size;
7836 	int ret;
7837 
7838 	if (!perf_event_namespaces_match(event))
7839 		return;
7840 
7841 	perf_event_header__init_id(&namespaces_event->event_id.header,
7842 				   &sample, event);
7843 	ret = perf_output_begin(&handle, &sample, event,
7844 				namespaces_event->event_id.header.size);
7845 	if (ret)
7846 		goto out;
7847 
7848 	namespaces_event->event_id.pid = perf_event_pid(event,
7849 							namespaces_event->task);
7850 	namespaces_event->event_id.tid = perf_event_tid(event,
7851 							namespaces_event->task);
7852 
7853 	perf_output_put(&handle, namespaces_event->event_id);
7854 
7855 	perf_event__output_id_sample(event, &handle, &sample);
7856 
7857 	perf_output_end(&handle);
7858 out:
7859 	namespaces_event->event_id.header.size = header_size;
7860 }
7861 
7862 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7863 				   struct task_struct *task,
7864 				   const struct proc_ns_operations *ns_ops)
7865 {
7866 	struct path ns_path;
7867 	struct inode *ns_inode;
7868 	int error;
7869 
7870 	error = ns_get_path(&ns_path, task, ns_ops);
7871 	if (!error) {
7872 		ns_inode = ns_path.dentry->d_inode;
7873 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7874 		ns_link_info->ino = ns_inode->i_ino;
7875 		path_put(&ns_path);
7876 	}
7877 }
7878 
7879 void perf_event_namespaces(struct task_struct *task)
7880 {
7881 	struct perf_namespaces_event namespaces_event;
7882 	struct perf_ns_link_info *ns_link_info;
7883 
7884 	if (!atomic_read(&nr_namespaces_events))
7885 		return;
7886 
7887 	namespaces_event = (struct perf_namespaces_event){
7888 		.task	= task,
7889 		.event_id  = {
7890 			.header = {
7891 				.type = PERF_RECORD_NAMESPACES,
7892 				.misc = 0,
7893 				.size = sizeof(namespaces_event.event_id),
7894 			},
7895 			/* .pid */
7896 			/* .tid */
7897 			.nr_namespaces = NR_NAMESPACES,
7898 			/* .link_info[NR_NAMESPACES] */
7899 		},
7900 	};
7901 
7902 	ns_link_info = namespaces_event.event_id.link_info;
7903 
7904 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7905 			       task, &mntns_operations);
7906 
7907 #ifdef CONFIG_USER_NS
7908 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7909 			       task, &userns_operations);
7910 #endif
7911 #ifdef CONFIG_NET_NS
7912 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7913 			       task, &netns_operations);
7914 #endif
7915 #ifdef CONFIG_UTS_NS
7916 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7917 			       task, &utsns_operations);
7918 #endif
7919 #ifdef CONFIG_IPC_NS
7920 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7921 			       task, &ipcns_operations);
7922 #endif
7923 #ifdef CONFIG_PID_NS
7924 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7925 			       task, &pidns_operations);
7926 #endif
7927 #ifdef CONFIG_CGROUPS
7928 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7929 			       task, &cgroupns_operations);
7930 #endif
7931 
7932 	perf_iterate_sb(perf_event_namespaces_output,
7933 			&namespaces_event,
7934 			NULL);
7935 }
7936 
7937 /*
7938  * cgroup tracking
7939  */
7940 #ifdef CONFIG_CGROUP_PERF
7941 
7942 struct perf_cgroup_event {
7943 	char				*path;
7944 	int				path_size;
7945 	struct {
7946 		struct perf_event_header	header;
7947 		u64				id;
7948 		char				path[];
7949 	} event_id;
7950 };
7951 
7952 static int perf_event_cgroup_match(struct perf_event *event)
7953 {
7954 	return event->attr.cgroup;
7955 }
7956 
7957 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7958 {
7959 	struct perf_cgroup_event *cgroup_event = data;
7960 	struct perf_output_handle handle;
7961 	struct perf_sample_data sample;
7962 	u16 header_size = cgroup_event->event_id.header.size;
7963 	int ret;
7964 
7965 	if (!perf_event_cgroup_match(event))
7966 		return;
7967 
7968 	perf_event_header__init_id(&cgroup_event->event_id.header,
7969 				   &sample, event);
7970 	ret = perf_output_begin(&handle, &sample, event,
7971 				cgroup_event->event_id.header.size);
7972 	if (ret)
7973 		goto out;
7974 
7975 	perf_output_put(&handle, cgroup_event->event_id);
7976 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7977 
7978 	perf_event__output_id_sample(event, &handle, &sample);
7979 
7980 	perf_output_end(&handle);
7981 out:
7982 	cgroup_event->event_id.header.size = header_size;
7983 }
7984 
7985 static void perf_event_cgroup(struct cgroup *cgrp)
7986 {
7987 	struct perf_cgroup_event cgroup_event;
7988 	char path_enomem[16] = "//enomem";
7989 	char *pathname;
7990 	size_t size;
7991 
7992 	if (!atomic_read(&nr_cgroup_events))
7993 		return;
7994 
7995 	cgroup_event = (struct perf_cgroup_event){
7996 		.event_id  = {
7997 			.header = {
7998 				.type = PERF_RECORD_CGROUP,
7999 				.misc = 0,
8000 				.size = sizeof(cgroup_event.event_id),
8001 			},
8002 			.id = cgroup_id(cgrp),
8003 		},
8004 	};
8005 
8006 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8007 	if (pathname == NULL) {
8008 		cgroup_event.path = path_enomem;
8009 	} else {
8010 		/* just to be sure to have enough space for alignment */
8011 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8012 		cgroup_event.path = pathname;
8013 	}
8014 
8015 	/*
8016 	 * Since our buffer works in 8 byte units we need to align our string
8017 	 * size to a multiple of 8. However, we must guarantee the tail end is
8018 	 * zero'd out to avoid leaking random bits to userspace.
8019 	 */
8020 	size = strlen(cgroup_event.path) + 1;
8021 	while (!IS_ALIGNED(size, sizeof(u64)))
8022 		cgroup_event.path[size++] = '\0';
8023 
8024 	cgroup_event.event_id.header.size += size;
8025 	cgroup_event.path_size = size;
8026 
8027 	perf_iterate_sb(perf_event_cgroup_output,
8028 			&cgroup_event,
8029 			NULL);
8030 
8031 	kfree(pathname);
8032 }
8033 
8034 #endif
8035 
8036 /*
8037  * mmap tracking
8038  */
8039 
8040 struct perf_mmap_event {
8041 	struct vm_area_struct	*vma;
8042 
8043 	const char		*file_name;
8044 	int			file_size;
8045 	int			maj, min;
8046 	u64			ino;
8047 	u64			ino_generation;
8048 	u32			prot, flags;
8049 
8050 	struct {
8051 		struct perf_event_header	header;
8052 
8053 		u32				pid;
8054 		u32				tid;
8055 		u64				start;
8056 		u64				len;
8057 		u64				pgoff;
8058 	} event_id;
8059 };
8060 
8061 static int perf_event_mmap_match(struct perf_event *event,
8062 				 void *data)
8063 {
8064 	struct perf_mmap_event *mmap_event = data;
8065 	struct vm_area_struct *vma = mmap_event->vma;
8066 	int executable = vma->vm_flags & VM_EXEC;
8067 
8068 	return (!executable && event->attr.mmap_data) ||
8069 	       (executable && (event->attr.mmap || event->attr.mmap2));
8070 }
8071 
8072 static void perf_event_mmap_output(struct perf_event *event,
8073 				   void *data)
8074 {
8075 	struct perf_mmap_event *mmap_event = data;
8076 	struct perf_output_handle handle;
8077 	struct perf_sample_data sample;
8078 	int size = mmap_event->event_id.header.size;
8079 	u32 type = mmap_event->event_id.header.type;
8080 	int ret;
8081 
8082 	if (!perf_event_mmap_match(event, data))
8083 		return;
8084 
8085 	if (event->attr.mmap2) {
8086 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8087 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8088 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8089 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8090 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8091 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8092 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8093 	}
8094 
8095 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8096 	ret = perf_output_begin(&handle, &sample, event,
8097 				mmap_event->event_id.header.size);
8098 	if (ret)
8099 		goto out;
8100 
8101 	mmap_event->event_id.pid = perf_event_pid(event, current);
8102 	mmap_event->event_id.tid = perf_event_tid(event, current);
8103 
8104 	perf_output_put(&handle, mmap_event->event_id);
8105 
8106 	if (event->attr.mmap2) {
8107 		perf_output_put(&handle, mmap_event->maj);
8108 		perf_output_put(&handle, mmap_event->min);
8109 		perf_output_put(&handle, mmap_event->ino);
8110 		perf_output_put(&handle, mmap_event->ino_generation);
8111 		perf_output_put(&handle, mmap_event->prot);
8112 		perf_output_put(&handle, mmap_event->flags);
8113 	}
8114 
8115 	__output_copy(&handle, mmap_event->file_name,
8116 				   mmap_event->file_size);
8117 
8118 	perf_event__output_id_sample(event, &handle, &sample);
8119 
8120 	perf_output_end(&handle);
8121 out:
8122 	mmap_event->event_id.header.size = size;
8123 	mmap_event->event_id.header.type = type;
8124 }
8125 
8126 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8127 {
8128 	struct vm_area_struct *vma = mmap_event->vma;
8129 	struct file *file = vma->vm_file;
8130 	int maj = 0, min = 0;
8131 	u64 ino = 0, gen = 0;
8132 	u32 prot = 0, flags = 0;
8133 	unsigned int size;
8134 	char tmp[16];
8135 	char *buf = NULL;
8136 	char *name;
8137 
8138 	if (vma->vm_flags & VM_READ)
8139 		prot |= PROT_READ;
8140 	if (vma->vm_flags & VM_WRITE)
8141 		prot |= PROT_WRITE;
8142 	if (vma->vm_flags & VM_EXEC)
8143 		prot |= PROT_EXEC;
8144 
8145 	if (vma->vm_flags & VM_MAYSHARE)
8146 		flags = MAP_SHARED;
8147 	else
8148 		flags = MAP_PRIVATE;
8149 
8150 	if (vma->vm_flags & VM_DENYWRITE)
8151 		flags |= MAP_DENYWRITE;
8152 	if (vma->vm_flags & VM_MAYEXEC)
8153 		flags |= MAP_EXECUTABLE;
8154 	if (vma->vm_flags & VM_LOCKED)
8155 		flags |= MAP_LOCKED;
8156 	if (is_vm_hugetlb_page(vma))
8157 		flags |= MAP_HUGETLB;
8158 
8159 	if (file) {
8160 		struct inode *inode;
8161 		dev_t dev;
8162 
8163 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8164 		if (!buf) {
8165 			name = "//enomem";
8166 			goto cpy_name;
8167 		}
8168 		/*
8169 		 * d_path() works from the end of the rb backwards, so we
8170 		 * need to add enough zero bytes after the string to handle
8171 		 * the 64bit alignment we do later.
8172 		 */
8173 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8174 		if (IS_ERR(name)) {
8175 			name = "//toolong";
8176 			goto cpy_name;
8177 		}
8178 		inode = file_inode(vma->vm_file);
8179 		dev = inode->i_sb->s_dev;
8180 		ino = inode->i_ino;
8181 		gen = inode->i_generation;
8182 		maj = MAJOR(dev);
8183 		min = MINOR(dev);
8184 
8185 		goto got_name;
8186 	} else {
8187 		if (vma->vm_ops && vma->vm_ops->name) {
8188 			name = (char *) vma->vm_ops->name(vma);
8189 			if (name)
8190 				goto cpy_name;
8191 		}
8192 
8193 		name = (char *)arch_vma_name(vma);
8194 		if (name)
8195 			goto cpy_name;
8196 
8197 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8198 				vma->vm_end >= vma->vm_mm->brk) {
8199 			name = "[heap]";
8200 			goto cpy_name;
8201 		}
8202 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8203 				vma->vm_end >= vma->vm_mm->start_stack) {
8204 			name = "[stack]";
8205 			goto cpy_name;
8206 		}
8207 
8208 		name = "//anon";
8209 		goto cpy_name;
8210 	}
8211 
8212 cpy_name:
8213 	strlcpy(tmp, name, sizeof(tmp));
8214 	name = tmp;
8215 got_name:
8216 	/*
8217 	 * Since our buffer works in 8 byte units we need to align our string
8218 	 * size to a multiple of 8. However, we must guarantee the tail end is
8219 	 * zero'd out to avoid leaking random bits to userspace.
8220 	 */
8221 	size = strlen(name)+1;
8222 	while (!IS_ALIGNED(size, sizeof(u64)))
8223 		name[size++] = '\0';
8224 
8225 	mmap_event->file_name = name;
8226 	mmap_event->file_size = size;
8227 	mmap_event->maj = maj;
8228 	mmap_event->min = min;
8229 	mmap_event->ino = ino;
8230 	mmap_event->ino_generation = gen;
8231 	mmap_event->prot = prot;
8232 	mmap_event->flags = flags;
8233 
8234 	if (!(vma->vm_flags & VM_EXEC))
8235 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8236 
8237 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8238 
8239 	perf_iterate_sb(perf_event_mmap_output,
8240 		       mmap_event,
8241 		       NULL);
8242 
8243 	kfree(buf);
8244 }
8245 
8246 /*
8247  * Check whether inode and address range match filter criteria.
8248  */
8249 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8250 				     struct file *file, unsigned long offset,
8251 				     unsigned long size)
8252 {
8253 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8254 	if (!filter->path.dentry)
8255 		return false;
8256 
8257 	if (d_inode(filter->path.dentry) != file_inode(file))
8258 		return false;
8259 
8260 	if (filter->offset > offset + size)
8261 		return false;
8262 
8263 	if (filter->offset + filter->size < offset)
8264 		return false;
8265 
8266 	return true;
8267 }
8268 
8269 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8270 					struct vm_area_struct *vma,
8271 					struct perf_addr_filter_range *fr)
8272 {
8273 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8274 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8275 	struct file *file = vma->vm_file;
8276 
8277 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8278 		return false;
8279 
8280 	if (filter->offset < off) {
8281 		fr->start = vma->vm_start;
8282 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8283 	} else {
8284 		fr->start = vma->vm_start + filter->offset - off;
8285 		fr->size = min(vma->vm_end - fr->start, filter->size);
8286 	}
8287 
8288 	return true;
8289 }
8290 
8291 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8292 {
8293 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8294 	struct vm_area_struct *vma = data;
8295 	struct perf_addr_filter *filter;
8296 	unsigned int restart = 0, count = 0;
8297 	unsigned long flags;
8298 
8299 	if (!has_addr_filter(event))
8300 		return;
8301 
8302 	if (!vma->vm_file)
8303 		return;
8304 
8305 	raw_spin_lock_irqsave(&ifh->lock, flags);
8306 	list_for_each_entry(filter, &ifh->list, entry) {
8307 		if (perf_addr_filter_vma_adjust(filter, vma,
8308 						&event->addr_filter_ranges[count]))
8309 			restart++;
8310 
8311 		count++;
8312 	}
8313 
8314 	if (restart)
8315 		event->addr_filters_gen++;
8316 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8317 
8318 	if (restart)
8319 		perf_event_stop(event, 1);
8320 }
8321 
8322 /*
8323  * Adjust all task's events' filters to the new vma
8324  */
8325 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8326 {
8327 	struct perf_event_context *ctx;
8328 	int ctxn;
8329 
8330 	/*
8331 	 * Data tracing isn't supported yet and as such there is no need
8332 	 * to keep track of anything that isn't related to executable code:
8333 	 */
8334 	if (!(vma->vm_flags & VM_EXEC))
8335 		return;
8336 
8337 	rcu_read_lock();
8338 	for_each_task_context_nr(ctxn) {
8339 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8340 		if (!ctx)
8341 			continue;
8342 
8343 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8344 	}
8345 	rcu_read_unlock();
8346 }
8347 
8348 void perf_event_mmap(struct vm_area_struct *vma)
8349 {
8350 	struct perf_mmap_event mmap_event;
8351 
8352 	if (!atomic_read(&nr_mmap_events))
8353 		return;
8354 
8355 	mmap_event = (struct perf_mmap_event){
8356 		.vma	= vma,
8357 		/* .file_name */
8358 		/* .file_size */
8359 		.event_id  = {
8360 			.header = {
8361 				.type = PERF_RECORD_MMAP,
8362 				.misc = PERF_RECORD_MISC_USER,
8363 				/* .size */
8364 			},
8365 			/* .pid */
8366 			/* .tid */
8367 			.start  = vma->vm_start,
8368 			.len    = vma->vm_end - vma->vm_start,
8369 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8370 		},
8371 		/* .maj (attr_mmap2 only) */
8372 		/* .min (attr_mmap2 only) */
8373 		/* .ino (attr_mmap2 only) */
8374 		/* .ino_generation (attr_mmap2 only) */
8375 		/* .prot (attr_mmap2 only) */
8376 		/* .flags (attr_mmap2 only) */
8377 	};
8378 
8379 	perf_addr_filters_adjust(vma);
8380 	perf_event_mmap_event(&mmap_event);
8381 }
8382 
8383 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8384 			  unsigned long size, u64 flags)
8385 {
8386 	struct perf_output_handle handle;
8387 	struct perf_sample_data sample;
8388 	struct perf_aux_event {
8389 		struct perf_event_header	header;
8390 		u64				offset;
8391 		u64				size;
8392 		u64				flags;
8393 	} rec = {
8394 		.header = {
8395 			.type = PERF_RECORD_AUX,
8396 			.misc = 0,
8397 			.size = sizeof(rec),
8398 		},
8399 		.offset		= head,
8400 		.size		= size,
8401 		.flags		= flags,
8402 	};
8403 	int ret;
8404 
8405 	perf_event_header__init_id(&rec.header, &sample, event);
8406 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8407 
8408 	if (ret)
8409 		return;
8410 
8411 	perf_output_put(&handle, rec);
8412 	perf_event__output_id_sample(event, &handle, &sample);
8413 
8414 	perf_output_end(&handle);
8415 }
8416 
8417 /*
8418  * Lost/dropped samples logging
8419  */
8420 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8421 {
8422 	struct perf_output_handle handle;
8423 	struct perf_sample_data sample;
8424 	int ret;
8425 
8426 	struct {
8427 		struct perf_event_header	header;
8428 		u64				lost;
8429 	} lost_samples_event = {
8430 		.header = {
8431 			.type = PERF_RECORD_LOST_SAMPLES,
8432 			.misc = 0,
8433 			.size = sizeof(lost_samples_event),
8434 		},
8435 		.lost		= lost,
8436 	};
8437 
8438 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8439 
8440 	ret = perf_output_begin(&handle, &sample, event,
8441 				lost_samples_event.header.size);
8442 	if (ret)
8443 		return;
8444 
8445 	perf_output_put(&handle, lost_samples_event);
8446 	perf_event__output_id_sample(event, &handle, &sample);
8447 	perf_output_end(&handle);
8448 }
8449 
8450 /*
8451  * context_switch tracking
8452  */
8453 
8454 struct perf_switch_event {
8455 	struct task_struct	*task;
8456 	struct task_struct	*next_prev;
8457 
8458 	struct {
8459 		struct perf_event_header	header;
8460 		u32				next_prev_pid;
8461 		u32				next_prev_tid;
8462 	} event_id;
8463 };
8464 
8465 static int perf_event_switch_match(struct perf_event *event)
8466 {
8467 	return event->attr.context_switch;
8468 }
8469 
8470 static void perf_event_switch_output(struct perf_event *event, void *data)
8471 {
8472 	struct perf_switch_event *se = data;
8473 	struct perf_output_handle handle;
8474 	struct perf_sample_data sample;
8475 	int ret;
8476 
8477 	if (!perf_event_switch_match(event))
8478 		return;
8479 
8480 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8481 	if (event->ctx->task) {
8482 		se->event_id.header.type = PERF_RECORD_SWITCH;
8483 		se->event_id.header.size = sizeof(se->event_id.header);
8484 	} else {
8485 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8486 		se->event_id.header.size = sizeof(se->event_id);
8487 		se->event_id.next_prev_pid =
8488 					perf_event_pid(event, se->next_prev);
8489 		se->event_id.next_prev_tid =
8490 					perf_event_tid(event, se->next_prev);
8491 	}
8492 
8493 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8494 
8495 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8496 	if (ret)
8497 		return;
8498 
8499 	if (event->ctx->task)
8500 		perf_output_put(&handle, se->event_id.header);
8501 	else
8502 		perf_output_put(&handle, se->event_id);
8503 
8504 	perf_event__output_id_sample(event, &handle, &sample);
8505 
8506 	perf_output_end(&handle);
8507 }
8508 
8509 static void perf_event_switch(struct task_struct *task,
8510 			      struct task_struct *next_prev, bool sched_in)
8511 {
8512 	struct perf_switch_event switch_event;
8513 
8514 	/* N.B. caller checks nr_switch_events != 0 */
8515 
8516 	switch_event = (struct perf_switch_event){
8517 		.task		= task,
8518 		.next_prev	= next_prev,
8519 		.event_id	= {
8520 			.header = {
8521 				/* .type */
8522 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8523 				/* .size */
8524 			},
8525 			/* .next_prev_pid */
8526 			/* .next_prev_tid */
8527 		},
8528 	};
8529 
8530 	if (!sched_in && task->state == TASK_RUNNING)
8531 		switch_event.event_id.header.misc |=
8532 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8533 
8534 	perf_iterate_sb(perf_event_switch_output,
8535 		       &switch_event,
8536 		       NULL);
8537 }
8538 
8539 /*
8540  * IRQ throttle logging
8541  */
8542 
8543 static void perf_log_throttle(struct perf_event *event, int enable)
8544 {
8545 	struct perf_output_handle handle;
8546 	struct perf_sample_data sample;
8547 	int ret;
8548 
8549 	struct {
8550 		struct perf_event_header	header;
8551 		u64				time;
8552 		u64				id;
8553 		u64				stream_id;
8554 	} throttle_event = {
8555 		.header = {
8556 			.type = PERF_RECORD_THROTTLE,
8557 			.misc = 0,
8558 			.size = sizeof(throttle_event),
8559 		},
8560 		.time		= perf_event_clock(event),
8561 		.id		= primary_event_id(event),
8562 		.stream_id	= event->id,
8563 	};
8564 
8565 	if (enable)
8566 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8567 
8568 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8569 
8570 	ret = perf_output_begin(&handle, &sample, event,
8571 				throttle_event.header.size);
8572 	if (ret)
8573 		return;
8574 
8575 	perf_output_put(&handle, throttle_event);
8576 	perf_event__output_id_sample(event, &handle, &sample);
8577 	perf_output_end(&handle);
8578 }
8579 
8580 /*
8581  * ksymbol register/unregister tracking
8582  */
8583 
8584 struct perf_ksymbol_event {
8585 	const char	*name;
8586 	int		name_len;
8587 	struct {
8588 		struct perf_event_header        header;
8589 		u64				addr;
8590 		u32				len;
8591 		u16				ksym_type;
8592 		u16				flags;
8593 	} event_id;
8594 };
8595 
8596 static int perf_event_ksymbol_match(struct perf_event *event)
8597 {
8598 	return event->attr.ksymbol;
8599 }
8600 
8601 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8602 {
8603 	struct perf_ksymbol_event *ksymbol_event = data;
8604 	struct perf_output_handle handle;
8605 	struct perf_sample_data sample;
8606 	int ret;
8607 
8608 	if (!perf_event_ksymbol_match(event))
8609 		return;
8610 
8611 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8612 				   &sample, event);
8613 	ret = perf_output_begin(&handle, &sample, event,
8614 				ksymbol_event->event_id.header.size);
8615 	if (ret)
8616 		return;
8617 
8618 	perf_output_put(&handle, ksymbol_event->event_id);
8619 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8620 	perf_event__output_id_sample(event, &handle, &sample);
8621 
8622 	perf_output_end(&handle);
8623 }
8624 
8625 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8626 			const char *sym)
8627 {
8628 	struct perf_ksymbol_event ksymbol_event;
8629 	char name[KSYM_NAME_LEN];
8630 	u16 flags = 0;
8631 	int name_len;
8632 
8633 	if (!atomic_read(&nr_ksymbol_events))
8634 		return;
8635 
8636 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8637 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8638 		goto err;
8639 
8640 	strlcpy(name, sym, KSYM_NAME_LEN);
8641 	name_len = strlen(name) + 1;
8642 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8643 		name[name_len++] = '\0';
8644 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8645 
8646 	if (unregister)
8647 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8648 
8649 	ksymbol_event = (struct perf_ksymbol_event){
8650 		.name = name,
8651 		.name_len = name_len,
8652 		.event_id = {
8653 			.header = {
8654 				.type = PERF_RECORD_KSYMBOL,
8655 				.size = sizeof(ksymbol_event.event_id) +
8656 					name_len,
8657 			},
8658 			.addr = addr,
8659 			.len = len,
8660 			.ksym_type = ksym_type,
8661 			.flags = flags,
8662 		},
8663 	};
8664 
8665 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8666 	return;
8667 err:
8668 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8669 }
8670 
8671 /*
8672  * bpf program load/unload tracking
8673  */
8674 
8675 struct perf_bpf_event {
8676 	struct bpf_prog	*prog;
8677 	struct {
8678 		struct perf_event_header        header;
8679 		u16				type;
8680 		u16				flags;
8681 		u32				id;
8682 		u8				tag[BPF_TAG_SIZE];
8683 	} event_id;
8684 };
8685 
8686 static int perf_event_bpf_match(struct perf_event *event)
8687 {
8688 	return event->attr.bpf_event;
8689 }
8690 
8691 static void perf_event_bpf_output(struct perf_event *event, void *data)
8692 {
8693 	struct perf_bpf_event *bpf_event = data;
8694 	struct perf_output_handle handle;
8695 	struct perf_sample_data sample;
8696 	int ret;
8697 
8698 	if (!perf_event_bpf_match(event))
8699 		return;
8700 
8701 	perf_event_header__init_id(&bpf_event->event_id.header,
8702 				   &sample, event);
8703 	ret = perf_output_begin(&handle, data, event,
8704 				bpf_event->event_id.header.size);
8705 	if (ret)
8706 		return;
8707 
8708 	perf_output_put(&handle, bpf_event->event_id);
8709 	perf_event__output_id_sample(event, &handle, &sample);
8710 
8711 	perf_output_end(&handle);
8712 }
8713 
8714 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8715 					 enum perf_bpf_event_type type)
8716 {
8717 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8718 	int i;
8719 
8720 	if (prog->aux->func_cnt == 0) {
8721 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8722 				   (u64)(unsigned long)prog->bpf_func,
8723 				   prog->jited_len, unregister,
8724 				   prog->aux->ksym.name);
8725 	} else {
8726 		for (i = 0; i < prog->aux->func_cnt; i++) {
8727 			struct bpf_prog *subprog = prog->aux->func[i];
8728 
8729 			perf_event_ksymbol(
8730 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8731 				(u64)(unsigned long)subprog->bpf_func,
8732 				subprog->jited_len, unregister,
8733 				prog->aux->ksym.name);
8734 		}
8735 	}
8736 }
8737 
8738 void perf_event_bpf_event(struct bpf_prog *prog,
8739 			  enum perf_bpf_event_type type,
8740 			  u16 flags)
8741 {
8742 	struct perf_bpf_event bpf_event;
8743 
8744 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8745 	    type >= PERF_BPF_EVENT_MAX)
8746 		return;
8747 
8748 	switch (type) {
8749 	case PERF_BPF_EVENT_PROG_LOAD:
8750 	case PERF_BPF_EVENT_PROG_UNLOAD:
8751 		if (atomic_read(&nr_ksymbol_events))
8752 			perf_event_bpf_emit_ksymbols(prog, type);
8753 		break;
8754 	default:
8755 		break;
8756 	}
8757 
8758 	if (!atomic_read(&nr_bpf_events))
8759 		return;
8760 
8761 	bpf_event = (struct perf_bpf_event){
8762 		.prog = prog,
8763 		.event_id = {
8764 			.header = {
8765 				.type = PERF_RECORD_BPF_EVENT,
8766 				.size = sizeof(bpf_event.event_id),
8767 			},
8768 			.type = type,
8769 			.flags = flags,
8770 			.id = prog->aux->id,
8771 		},
8772 	};
8773 
8774 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8775 
8776 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8777 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8778 }
8779 
8780 struct perf_text_poke_event {
8781 	const void		*old_bytes;
8782 	const void		*new_bytes;
8783 	size_t			pad;
8784 	u16			old_len;
8785 	u16			new_len;
8786 
8787 	struct {
8788 		struct perf_event_header	header;
8789 
8790 		u64				addr;
8791 	} event_id;
8792 };
8793 
8794 static int perf_event_text_poke_match(struct perf_event *event)
8795 {
8796 	return event->attr.text_poke;
8797 }
8798 
8799 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8800 {
8801 	struct perf_text_poke_event *text_poke_event = data;
8802 	struct perf_output_handle handle;
8803 	struct perf_sample_data sample;
8804 	u64 padding = 0;
8805 	int ret;
8806 
8807 	if (!perf_event_text_poke_match(event))
8808 		return;
8809 
8810 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8811 
8812 	ret = perf_output_begin(&handle, &sample, event,
8813 				text_poke_event->event_id.header.size);
8814 	if (ret)
8815 		return;
8816 
8817 	perf_output_put(&handle, text_poke_event->event_id);
8818 	perf_output_put(&handle, text_poke_event->old_len);
8819 	perf_output_put(&handle, text_poke_event->new_len);
8820 
8821 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8822 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8823 
8824 	if (text_poke_event->pad)
8825 		__output_copy(&handle, &padding, text_poke_event->pad);
8826 
8827 	perf_event__output_id_sample(event, &handle, &sample);
8828 
8829 	perf_output_end(&handle);
8830 }
8831 
8832 void perf_event_text_poke(const void *addr, const void *old_bytes,
8833 			  size_t old_len, const void *new_bytes, size_t new_len)
8834 {
8835 	struct perf_text_poke_event text_poke_event;
8836 	size_t tot, pad;
8837 
8838 	if (!atomic_read(&nr_text_poke_events))
8839 		return;
8840 
8841 	tot  = sizeof(text_poke_event.old_len) + old_len;
8842 	tot += sizeof(text_poke_event.new_len) + new_len;
8843 	pad  = ALIGN(tot, sizeof(u64)) - tot;
8844 
8845 	text_poke_event = (struct perf_text_poke_event){
8846 		.old_bytes    = old_bytes,
8847 		.new_bytes    = new_bytes,
8848 		.pad          = pad,
8849 		.old_len      = old_len,
8850 		.new_len      = new_len,
8851 		.event_id  = {
8852 			.header = {
8853 				.type = PERF_RECORD_TEXT_POKE,
8854 				.misc = PERF_RECORD_MISC_KERNEL,
8855 				.size = sizeof(text_poke_event.event_id) + tot + pad,
8856 			},
8857 			.addr = (unsigned long)addr,
8858 		},
8859 	};
8860 
8861 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8862 }
8863 
8864 void perf_event_itrace_started(struct perf_event *event)
8865 {
8866 	event->attach_state |= PERF_ATTACH_ITRACE;
8867 }
8868 
8869 static void perf_log_itrace_start(struct perf_event *event)
8870 {
8871 	struct perf_output_handle handle;
8872 	struct perf_sample_data sample;
8873 	struct perf_aux_event {
8874 		struct perf_event_header        header;
8875 		u32				pid;
8876 		u32				tid;
8877 	} rec;
8878 	int ret;
8879 
8880 	if (event->parent)
8881 		event = event->parent;
8882 
8883 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8884 	    event->attach_state & PERF_ATTACH_ITRACE)
8885 		return;
8886 
8887 	rec.header.type	= PERF_RECORD_ITRACE_START;
8888 	rec.header.misc	= 0;
8889 	rec.header.size	= sizeof(rec);
8890 	rec.pid	= perf_event_pid(event, current);
8891 	rec.tid	= perf_event_tid(event, current);
8892 
8893 	perf_event_header__init_id(&rec.header, &sample, event);
8894 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8895 
8896 	if (ret)
8897 		return;
8898 
8899 	perf_output_put(&handle, rec);
8900 	perf_event__output_id_sample(event, &handle, &sample);
8901 
8902 	perf_output_end(&handle);
8903 }
8904 
8905 static int
8906 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8907 {
8908 	struct hw_perf_event *hwc = &event->hw;
8909 	int ret = 0;
8910 	u64 seq;
8911 
8912 	seq = __this_cpu_read(perf_throttled_seq);
8913 	if (seq != hwc->interrupts_seq) {
8914 		hwc->interrupts_seq = seq;
8915 		hwc->interrupts = 1;
8916 	} else {
8917 		hwc->interrupts++;
8918 		if (unlikely(throttle
8919 			     && hwc->interrupts >= max_samples_per_tick)) {
8920 			__this_cpu_inc(perf_throttled_count);
8921 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8922 			hwc->interrupts = MAX_INTERRUPTS;
8923 			perf_log_throttle(event, 0);
8924 			ret = 1;
8925 		}
8926 	}
8927 
8928 	if (event->attr.freq) {
8929 		u64 now = perf_clock();
8930 		s64 delta = now - hwc->freq_time_stamp;
8931 
8932 		hwc->freq_time_stamp = now;
8933 
8934 		if (delta > 0 && delta < 2*TICK_NSEC)
8935 			perf_adjust_period(event, delta, hwc->last_period, true);
8936 	}
8937 
8938 	return ret;
8939 }
8940 
8941 int perf_event_account_interrupt(struct perf_event *event)
8942 {
8943 	return __perf_event_account_interrupt(event, 1);
8944 }
8945 
8946 /*
8947  * Generic event overflow handling, sampling.
8948  */
8949 
8950 static int __perf_event_overflow(struct perf_event *event,
8951 				   int throttle, struct perf_sample_data *data,
8952 				   struct pt_regs *regs)
8953 {
8954 	int events = atomic_read(&event->event_limit);
8955 	int ret = 0;
8956 
8957 	/*
8958 	 * Non-sampling counters might still use the PMI to fold short
8959 	 * hardware counters, ignore those.
8960 	 */
8961 	if (unlikely(!is_sampling_event(event)))
8962 		return 0;
8963 
8964 	ret = __perf_event_account_interrupt(event, throttle);
8965 
8966 	/*
8967 	 * XXX event_limit might not quite work as expected on inherited
8968 	 * events
8969 	 */
8970 
8971 	event->pending_kill = POLL_IN;
8972 	if (events && atomic_dec_and_test(&event->event_limit)) {
8973 		ret = 1;
8974 		event->pending_kill = POLL_HUP;
8975 
8976 		perf_event_disable_inatomic(event);
8977 	}
8978 
8979 	READ_ONCE(event->overflow_handler)(event, data, regs);
8980 
8981 	if (*perf_event_fasync(event) && event->pending_kill) {
8982 		event->pending_wakeup = 1;
8983 		irq_work_queue(&event->pending);
8984 	}
8985 
8986 	return ret;
8987 }
8988 
8989 int perf_event_overflow(struct perf_event *event,
8990 			  struct perf_sample_data *data,
8991 			  struct pt_regs *regs)
8992 {
8993 	return __perf_event_overflow(event, 1, data, regs);
8994 }
8995 
8996 /*
8997  * Generic software event infrastructure
8998  */
8999 
9000 struct swevent_htable {
9001 	struct swevent_hlist		*swevent_hlist;
9002 	struct mutex			hlist_mutex;
9003 	int				hlist_refcount;
9004 
9005 	/* Recursion avoidance in each contexts */
9006 	int				recursion[PERF_NR_CONTEXTS];
9007 };
9008 
9009 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9010 
9011 /*
9012  * We directly increment event->count and keep a second value in
9013  * event->hw.period_left to count intervals. This period event
9014  * is kept in the range [-sample_period, 0] so that we can use the
9015  * sign as trigger.
9016  */
9017 
9018 u64 perf_swevent_set_period(struct perf_event *event)
9019 {
9020 	struct hw_perf_event *hwc = &event->hw;
9021 	u64 period = hwc->last_period;
9022 	u64 nr, offset;
9023 	s64 old, val;
9024 
9025 	hwc->last_period = hwc->sample_period;
9026 
9027 again:
9028 	old = val = local64_read(&hwc->period_left);
9029 	if (val < 0)
9030 		return 0;
9031 
9032 	nr = div64_u64(period + val, period);
9033 	offset = nr * period;
9034 	val -= offset;
9035 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9036 		goto again;
9037 
9038 	return nr;
9039 }
9040 
9041 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9042 				    struct perf_sample_data *data,
9043 				    struct pt_regs *regs)
9044 {
9045 	struct hw_perf_event *hwc = &event->hw;
9046 	int throttle = 0;
9047 
9048 	if (!overflow)
9049 		overflow = perf_swevent_set_period(event);
9050 
9051 	if (hwc->interrupts == MAX_INTERRUPTS)
9052 		return;
9053 
9054 	for (; overflow; overflow--) {
9055 		if (__perf_event_overflow(event, throttle,
9056 					    data, regs)) {
9057 			/*
9058 			 * We inhibit the overflow from happening when
9059 			 * hwc->interrupts == MAX_INTERRUPTS.
9060 			 */
9061 			break;
9062 		}
9063 		throttle = 1;
9064 	}
9065 }
9066 
9067 static void perf_swevent_event(struct perf_event *event, u64 nr,
9068 			       struct perf_sample_data *data,
9069 			       struct pt_regs *regs)
9070 {
9071 	struct hw_perf_event *hwc = &event->hw;
9072 
9073 	local64_add(nr, &event->count);
9074 
9075 	if (!regs)
9076 		return;
9077 
9078 	if (!is_sampling_event(event))
9079 		return;
9080 
9081 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9082 		data->period = nr;
9083 		return perf_swevent_overflow(event, 1, data, regs);
9084 	} else
9085 		data->period = event->hw.last_period;
9086 
9087 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9088 		return perf_swevent_overflow(event, 1, data, regs);
9089 
9090 	if (local64_add_negative(nr, &hwc->period_left))
9091 		return;
9092 
9093 	perf_swevent_overflow(event, 0, data, regs);
9094 }
9095 
9096 static int perf_exclude_event(struct perf_event *event,
9097 			      struct pt_regs *regs)
9098 {
9099 	if (event->hw.state & PERF_HES_STOPPED)
9100 		return 1;
9101 
9102 	if (regs) {
9103 		if (event->attr.exclude_user && user_mode(regs))
9104 			return 1;
9105 
9106 		if (event->attr.exclude_kernel && !user_mode(regs))
9107 			return 1;
9108 	}
9109 
9110 	return 0;
9111 }
9112 
9113 static int perf_swevent_match(struct perf_event *event,
9114 				enum perf_type_id type,
9115 				u32 event_id,
9116 				struct perf_sample_data *data,
9117 				struct pt_regs *regs)
9118 {
9119 	if (event->attr.type != type)
9120 		return 0;
9121 
9122 	if (event->attr.config != event_id)
9123 		return 0;
9124 
9125 	if (perf_exclude_event(event, regs))
9126 		return 0;
9127 
9128 	return 1;
9129 }
9130 
9131 static inline u64 swevent_hash(u64 type, u32 event_id)
9132 {
9133 	u64 val = event_id | (type << 32);
9134 
9135 	return hash_64(val, SWEVENT_HLIST_BITS);
9136 }
9137 
9138 static inline struct hlist_head *
9139 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9140 {
9141 	u64 hash = swevent_hash(type, event_id);
9142 
9143 	return &hlist->heads[hash];
9144 }
9145 
9146 /* For the read side: events when they trigger */
9147 static inline struct hlist_head *
9148 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9149 {
9150 	struct swevent_hlist *hlist;
9151 
9152 	hlist = rcu_dereference(swhash->swevent_hlist);
9153 	if (!hlist)
9154 		return NULL;
9155 
9156 	return __find_swevent_head(hlist, type, event_id);
9157 }
9158 
9159 /* For the event head insertion and removal in the hlist */
9160 static inline struct hlist_head *
9161 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9162 {
9163 	struct swevent_hlist *hlist;
9164 	u32 event_id = event->attr.config;
9165 	u64 type = event->attr.type;
9166 
9167 	/*
9168 	 * Event scheduling is always serialized against hlist allocation
9169 	 * and release. Which makes the protected version suitable here.
9170 	 * The context lock guarantees that.
9171 	 */
9172 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9173 					  lockdep_is_held(&event->ctx->lock));
9174 	if (!hlist)
9175 		return NULL;
9176 
9177 	return __find_swevent_head(hlist, type, event_id);
9178 }
9179 
9180 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9181 				    u64 nr,
9182 				    struct perf_sample_data *data,
9183 				    struct pt_regs *regs)
9184 {
9185 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9186 	struct perf_event *event;
9187 	struct hlist_head *head;
9188 
9189 	rcu_read_lock();
9190 	head = find_swevent_head_rcu(swhash, type, event_id);
9191 	if (!head)
9192 		goto end;
9193 
9194 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9195 		if (perf_swevent_match(event, type, event_id, data, regs))
9196 			perf_swevent_event(event, nr, data, regs);
9197 	}
9198 end:
9199 	rcu_read_unlock();
9200 }
9201 
9202 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9203 
9204 int perf_swevent_get_recursion_context(void)
9205 {
9206 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9207 
9208 	return get_recursion_context(swhash->recursion);
9209 }
9210 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9211 
9212 void perf_swevent_put_recursion_context(int rctx)
9213 {
9214 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9215 
9216 	put_recursion_context(swhash->recursion, rctx);
9217 }
9218 
9219 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9220 {
9221 	struct perf_sample_data data;
9222 
9223 	if (WARN_ON_ONCE(!regs))
9224 		return;
9225 
9226 	perf_sample_data_init(&data, addr, 0);
9227 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9228 }
9229 
9230 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9231 {
9232 	int rctx;
9233 
9234 	preempt_disable_notrace();
9235 	rctx = perf_swevent_get_recursion_context();
9236 	if (unlikely(rctx < 0))
9237 		goto fail;
9238 
9239 	___perf_sw_event(event_id, nr, regs, addr);
9240 
9241 	perf_swevent_put_recursion_context(rctx);
9242 fail:
9243 	preempt_enable_notrace();
9244 }
9245 
9246 static void perf_swevent_read(struct perf_event *event)
9247 {
9248 }
9249 
9250 static int perf_swevent_add(struct perf_event *event, int flags)
9251 {
9252 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9253 	struct hw_perf_event *hwc = &event->hw;
9254 	struct hlist_head *head;
9255 
9256 	if (is_sampling_event(event)) {
9257 		hwc->last_period = hwc->sample_period;
9258 		perf_swevent_set_period(event);
9259 	}
9260 
9261 	hwc->state = !(flags & PERF_EF_START);
9262 
9263 	head = find_swevent_head(swhash, event);
9264 	if (WARN_ON_ONCE(!head))
9265 		return -EINVAL;
9266 
9267 	hlist_add_head_rcu(&event->hlist_entry, head);
9268 	perf_event_update_userpage(event);
9269 
9270 	return 0;
9271 }
9272 
9273 static void perf_swevent_del(struct perf_event *event, int flags)
9274 {
9275 	hlist_del_rcu(&event->hlist_entry);
9276 }
9277 
9278 static void perf_swevent_start(struct perf_event *event, int flags)
9279 {
9280 	event->hw.state = 0;
9281 }
9282 
9283 static void perf_swevent_stop(struct perf_event *event, int flags)
9284 {
9285 	event->hw.state = PERF_HES_STOPPED;
9286 }
9287 
9288 /* Deref the hlist from the update side */
9289 static inline struct swevent_hlist *
9290 swevent_hlist_deref(struct swevent_htable *swhash)
9291 {
9292 	return rcu_dereference_protected(swhash->swevent_hlist,
9293 					 lockdep_is_held(&swhash->hlist_mutex));
9294 }
9295 
9296 static void swevent_hlist_release(struct swevent_htable *swhash)
9297 {
9298 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9299 
9300 	if (!hlist)
9301 		return;
9302 
9303 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9304 	kfree_rcu(hlist, rcu_head);
9305 }
9306 
9307 static void swevent_hlist_put_cpu(int cpu)
9308 {
9309 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9310 
9311 	mutex_lock(&swhash->hlist_mutex);
9312 
9313 	if (!--swhash->hlist_refcount)
9314 		swevent_hlist_release(swhash);
9315 
9316 	mutex_unlock(&swhash->hlist_mutex);
9317 }
9318 
9319 static void swevent_hlist_put(void)
9320 {
9321 	int cpu;
9322 
9323 	for_each_possible_cpu(cpu)
9324 		swevent_hlist_put_cpu(cpu);
9325 }
9326 
9327 static int swevent_hlist_get_cpu(int cpu)
9328 {
9329 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9330 	int err = 0;
9331 
9332 	mutex_lock(&swhash->hlist_mutex);
9333 	if (!swevent_hlist_deref(swhash) &&
9334 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9335 		struct swevent_hlist *hlist;
9336 
9337 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9338 		if (!hlist) {
9339 			err = -ENOMEM;
9340 			goto exit;
9341 		}
9342 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9343 	}
9344 	swhash->hlist_refcount++;
9345 exit:
9346 	mutex_unlock(&swhash->hlist_mutex);
9347 
9348 	return err;
9349 }
9350 
9351 static int swevent_hlist_get(void)
9352 {
9353 	int err, cpu, failed_cpu;
9354 
9355 	mutex_lock(&pmus_lock);
9356 	for_each_possible_cpu(cpu) {
9357 		err = swevent_hlist_get_cpu(cpu);
9358 		if (err) {
9359 			failed_cpu = cpu;
9360 			goto fail;
9361 		}
9362 	}
9363 	mutex_unlock(&pmus_lock);
9364 	return 0;
9365 fail:
9366 	for_each_possible_cpu(cpu) {
9367 		if (cpu == failed_cpu)
9368 			break;
9369 		swevent_hlist_put_cpu(cpu);
9370 	}
9371 	mutex_unlock(&pmus_lock);
9372 	return err;
9373 }
9374 
9375 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9376 
9377 static void sw_perf_event_destroy(struct perf_event *event)
9378 {
9379 	u64 event_id = event->attr.config;
9380 
9381 	WARN_ON(event->parent);
9382 
9383 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9384 	swevent_hlist_put();
9385 }
9386 
9387 static int perf_swevent_init(struct perf_event *event)
9388 {
9389 	u64 event_id = event->attr.config;
9390 
9391 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9392 		return -ENOENT;
9393 
9394 	/*
9395 	 * no branch sampling for software events
9396 	 */
9397 	if (has_branch_stack(event))
9398 		return -EOPNOTSUPP;
9399 
9400 	switch (event_id) {
9401 	case PERF_COUNT_SW_CPU_CLOCK:
9402 	case PERF_COUNT_SW_TASK_CLOCK:
9403 		return -ENOENT;
9404 
9405 	default:
9406 		break;
9407 	}
9408 
9409 	if (event_id >= PERF_COUNT_SW_MAX)
9410 		return -ENOENT;
9411 
9412 	if (!event->parent) {
9413 		int err;
9414 
9415 		err = swevent_hlist_get();
9416 		if (err)
9417 			return err;
9418 
9419 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9420 		event->destroy = sw_perf_event_destroy;
9421 	}
9422 
9423 	return 0;
9424 }
9425 
9426 static struct pmu perf_swevent = {
9427 	.task_ctx_nr	= perf_sw_context,
9428 
9429 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9430 
9431 	.event_init	= perf_swevent_init,
9432 	.add		= perf_swevent_add,
9433 	.del		= perf_swevent_del,
9434 	.start		= perf_swevent_start,
9435 	.stop		= perf_swevent_stop,
9436 	.read		= perf_swevent_read,
9437 };
9438 
9439 #ifdef CONFIG_EVENT_TRACING
9440 
9441 static int perf_tp_filter_match(struct perf_event *event,
9442 				struct perf_sample_data *data)
9443 {
9444 	void *record = data->raw->frag.data;
9445 
9446 	/* only top level events have filters set */
9447 	if (event->parent)
9448 		event = event->parent;
9449 
9450 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9451 		return 1;
9452 	return 0;
9453 }
9454 
9455 static int perf_tp_event_match(struct perf_event *event,
9456 				struct perf_sample_data *data,
9457 				struct pt_regs *regs)
9458 {
9459 	if (event->hw.state & PERF_HES_STOPPED)
9460 		return 0;
9461 	/*
9462 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9463 	 */
9464 	if (event->attr.exclude_kernel && !user_mode(regs))
9465 		return 0;
9466 
9467 	if (!perf_tp_filter_match(event, data))
9468 		return 0;
9469 
9470 	return 1;
9471 }
9472 
9473 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9474 			       struct trace_event_call *call, u64 count,
9475 			       struct pt_regs *regs, struct hlist_head *head,
9476 			       struct task_struct *task)
9477 {
9478 	if (bpf_prog_array_valid(call)) {
9479 		*(struct pt_regs **)raw_data = regs;
9480 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9481 			perf_swevent_put_recursion_context(rctx);
9482 			return;
9483 		}
9484 	}
9485 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9486 		      rctx, task);
9487 }
9488 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9489 
9490 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9491 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9492 		   struct task_struct *task)
9493 {
9494 	struct perf_sample_data data;
9495 	struct perf_event *event;
9496 
9497 	struct perf_raw_record raw = {
9498 		.frag = {
9499 			.size = entry_size,
9500 			.data = record,
9501 		},
9502 	};
9503 
9504 	perf_sample_data_init(&data, 0, 0);
9505 	data.raw = &raw;
9506 
9507 	perf_trace_buf_update(record, event_type);
9508 
9509 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9510 		if (perf_tp_event_match(event, &data, regs))
9511 			perf_swevent_event(event, count, &data, regs);
9512 	}
9513 
9514 	/*
9515 	 * If we got specified a target task, also iterate its context and
9516 	 * deliver this event there too.
9517 	 */
9518 	if (task && task != current) {
9519 		struct perf_event_context *ctx;
9520 		struct trace_entry *entry = record;
9521 
9522 		rcu_read_lock();
9523 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9524 		if (!ctx)
9525 			goto unlock;
9526 
9527 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9528 			if (event->cpu != smp_processor_id())
9529 				continue;
9530 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9531 				continue;
9532 			if (event->attr.config != entry->type)
9533 				continue;
9534 			if (perf_tp_event_match(event, &data, regs))
9535 				perf_swevent_event(event, count, &data, regs);
9536 		}
9537 unlock:
9538 		rcu_read_unlock();
9539 	}
9540 
9541 	perf_swevent_put_recursion_context(rctx);
9542 }
9543 EXPORT_SYMBOL_GPL(perf_tp_event);
9544 
9545 static void tp_perf_event_destroy(struct perf_event *event)
9546 {
9547 	perf_trace_destroy(event);
9548 }
9549 
9550 static int perf_tp_event_init(struct perf_event *event)
9551 {
9552 	int err;
9553 
9554 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9555 		return -ENOENT;
9556 
9557 	/*
9558 	 * no branch sampling for tracepoint events
9559 	 */
9560 	if (has_branch_stack(event))
9561 		return -EOPNOTSUPP;
9562 
9563 	err = perf_trace_init(event);
9564 	if (err)
9565 		return err;
9566 
9567 	event->destroy = tp_perf_event_destroy;
9568 
9569 	return 0;
9570 }
9571 
9572 static struct pmu perf_tracepoint = {
9573 	.task_ctx_nr	= perf_sw_context,
9574 
9575 	.event_init	= perf_tp_event_init,
9576 	.add		= perf_trace_add,
9577 	.del		= perf_trace_del,
9578 	.start		= perf_swevent_start,
9579 	.stop		= perf_swevent_stop,
9580 	.read		= perf_swevent_read,
9581 };
9582 
9583 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9584 /*
9585  * Flags in config, used by dynamic PMU kprobe and uprobe
9586  * The flags should match following PMU_FORMAT_ATTR().
9587  *
9588  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9589  *                               if not set, create kprobe/uprobe
9590  *
9591  * The following values specify a reference counter (or semaphore in the
9592  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9593  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9594  *
9595  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9596  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9597  */
9598 enum perf_probe_config {
9599 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9600 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9601 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9602 };
9603 
9604 PMU_FORMAT_ATTR(retprobe, "config:0");
9605 #endif
9606 
9607 #ifdef CONFIG_KPROBE_EVENTS
9608 static struct attribute *kprobe_attrs[] = {
9609 	&format_attr_retprobe.attr,
9610 	NULL,
9611 };
9612 
9613 static struct attribute_group kprobe_format_group = {
9614 	.name = "format",
9615 	.attrs = kprobe_attrs,
9616 };
9617 
9618 static const struct attribute_group *kprobe_attr_groups[] = {
9619 	&kprobe_format_group,
9620 	NULL,
9621 };
9622 
9623 static int perf_kprobe_event_init(struct perf_event *event);
9624 static struct pmu perf_kprobe = {
9625 	.task_ctx_nr	= perf_sw_context,
9626 	.event_init	= perf_kprobe_event_init,
9627 	.add		= perf_trace_add,
9628 	.del		= perf_trace_del,
9629 	.start		= perf_swevent_start,
9630 	.stop		= perf_swevent_stop,
9631 	.read		= perf_swevent_read,
9632 	.attr_groups	= kprobe_attr_groups,
9633 };
9634 
9635 static int perf_kprobe_event_init(struct perf_event *event)
9636 {
9637 	int err;
9638 	bool is_retprobe;
9639 
9640 	if (event->attr.type != perf_kprobe.type)
9641 		return -ENOENT;
9642 
9643 	if (!perfmon_capable())
9644 		return -EACCES;
9645 
9646 	/*
9647 	 * no branch sampling for probe events
9648 	 */
9649 	if (has_branch_stack(event))
9650 		return -EOPNOTSUPP;
9651 
9652 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9653 	err = perf_kprobe_init(event, is_retprobe);
9654 	if (err)
9655 		return err;
9656 
9657 	event->destroy = perf_kprobe_destroy;
9658 
9659 	return 0;
9660 }
9661 #endif /* CONFIG_KPROBE_EVENTS */
9662 
9663 #ifdef CONFIG_UPROBE_EVENTS
9664 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9665 
9666 static struct attribute *uprobe_attrs[] = {
9667 	&format_attr_retprobe.attr,
9668 	&format_attr_ref_ctr_offset.attr,
9669 	NULL,
9670 };
9671 
9672 static struct attribute_group uprobe_format_group = {
9673 	.name = "format",
9674 	.attrs = uprobe_attrs,
9675 };
9676 
9677 static const struct attribute_group *uprobe_attr_groups[] = {
9678 	&uprobe_format_group,
9679 	NULL,
9680 };
9681 
9682 static int perf_uprobe_event_init(struct perf_event *event);
9683 static struct pmu perf_uprobe = {
9684 	.task_ctx_nr	= perf_sw_context,
9685 	.event_init	= perf_uprobe_event_init,
9686 	.add		= perf_trace_add,
9687 	.del		= perf_trace_del,
9688 	.start		= perf_swevent_start,
9689 	.stop		= perf_swevent_stop,
9690 	.read		= perf_swevent_read,
9691 	.attr_groups	= uprobe_attr_groups,
9692 };
9693 
9694 static int perf_uprobe_event_init(struct perf_event *event)
9695 {
9696 	int err;
9697 	unsigned long ref_ctr_offset;
9698 	bool is_retprobe;
9699 
9700 	if (event->attr.type != perf_uprobe.type)
9701 		return -ENOENT;
9702 
9703 	if (!perfmon_capable())
9704 		return -EACCES;
9705 
9706 	/*
9707 	 * no branch sampling for probe events
9708 	 */
9709 	if (has_branch_stack(event))
9710 		return -EOPNOTSUPP;
9711 
9712 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9713 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9714 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9715 	if (err)
9716 		return err;
9717 
9718 	event->destroy = perf_uprobe_destroy;
9719 
9720 	return 0;
9721 }
9722 #endif /* CONFIG_UPROBE_EVENTS */
9723 
9724 static inline void perf_tp_register(void)
9725 {
9726 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9727 #ifdef CONFIG_KPROBE_EVENTS
9728 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9729 #endif
9730 #ifdef CONFIG_UPROBE_EVENTS
9731 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9732 #endif
9733 }
9734 
9735 static void perf_event_free_filter(struct perf_event *event)
9736 {
9737 	ftrace_profile_free_filter(event);
9738 }
9739 
9740 #ifdef CONFIG_BPF_SYSCALL
9741 static void bpf_overflow_handler(struct perf_event *event,
9742 				 struct perf_sample_data *data,
9743 				 struct pt_regs *regs)
9744 {
9745 	struct bpf_perf_event_data_kern ctx = {
9746 		.data = data,
9747 		.event = event,
9748 	};
9749 	int ret = 0;
9750 
9751 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9752 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9753 		goto out;
9754 	rcu_read_lock();
9755 	ret = BPF_PROG_RUN(event->prog, &ctx);
9756 	rcu_read_unlock();
9757 out:
9758 	__this_cpu_dec(bpf_prog_active);
9759 	if (!ret)
9760 		return;
9761 
9762 	event->orig_overflow_handler(event, data, regs);
9763 }
9764 
9765 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9766 {
9767 	struct bpf_prog *prog;
9768 
9769 	if (event->overflow_handler_context)
9770 		/* hw breakpoint or kernel counter */
9771 		return -EINVAL;
9772 
9773 	if (event->prog)
9774 		return -EEXIST;
9775 
9776 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9777 	if (IS_ERR(prog))
9778 		return PTR_ERR(prog);
9779 
9780 	if (event->attr.precise_ip &&
9781 	    prog->call_get_stack &&
9782 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9783 	     event->attr.exclude_callchain_kernel ||
9784 	     event->attr.exclude_callchain_user)) {
9785 		/*
9786 		 * On perf_event with precise_ip, calling bpf_get_stack()
9787 		 * may trigger unwinder warnings and occasional crashes.
9788 		 * bpf_get_[stack|stackid] works around this issue by using
9789 		 * callchain attached to perf_sample_data. If the
9790 		 * perf_event does not full (kernel and user) callchain
9791 		 * attached to perf_sample_data, do not allow attaching BPF
9792 		 * program that calls bpf_get_[stack|stackid].
9793 		 */
9794 		bpf_prog_put(prog);
9795 		return -EPROTO;
9796 	}
9797 
9798 	event->prog = prog;
9799 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9800 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9801 	return 0;
9802 }
9803 
9804 static void perf_event_free_bpf_handler(struct perf_event *event)
9805 {
9806 	struct bpf_prog *prog = event->prog;
9807 
9808 	if (!prog)
9809 		return;
9810 
9811 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9812 	event->prog = NULL;
9813 	bpf_prog_put(prog);
9814 }
9815 #else
9816 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9817 {
9818 	return -EOPNOTSUPP;
9819 }
9820 static void perf_event_free_bpf_handler(struct perf_event *event)
9821 {
9822 }
9823 #endif
9824 
9825 /*
9826  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9827  * with perf_event_open()
9828  */
9829 static inline bool perf_event_is_tracing(struct perf_event *event)
9830 {
9831 	if (event->pmu == &perf_tracepoint)
9832 		return true;
9833 #ifdef CONFIG_KPROBE_EVENTS
9834 	if (event->pmu == &perf_kprobe)
9835 		return true;
9836 #endif
9837 #ifdef CONFIG_UPROBE_EVENTS
9838 	if (event->pmu == &perf_uprobe)
9839 		return true;
9840 #endif
9841 	return false;
9842 }
9843 
9844 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9845 {
9846 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9847 	struct bpf_prog *prog;
9848 	int ret;
9849 
9850 	if (!perf_event_is_tracing(event))
9851 		return perf_event_set_bpf_handler(event, prog_fd);
9852 
9853 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9854 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9855 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9856 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9857 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9858 		return -EINVAL;
9859 
9860 	prog = bpf_prog_get(prog_fd);
9861 	if (IS_ERR(prog))
9862 		return PTR_ERR(prog);
9863 
9864 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9865 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9866 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9867 		/* valid fd, but invalid bpf program type */
9868 		bpf_prog_put(prog);
9869 		return -EINVAL;
9870 	}
9871 
9872 	/* Kprobe override only works for kprobes, not uprobes. */
9873 	if (prog->kprobe_override &&
9874 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9875 		bpf_prog_put(prog);
9876 		return -EINVAL;
9877 	}
9878 
9879 	if (is_tracepoint || is_syscall_tp) {
9880 		int off = trace_event_get_offsets(event->tp_event);
9881 
9882 		if (prog->aux->max_ctx_offset > off) {
9883 			bpf_prog_put(prog);
9884 			return -EACCES;
9885 		}
9886 	}
9887 
9888 	ret = perf_event_attach_bpf_prog(event, prog);
9889 	if (ret)
9890 		bpf_prog_put(prog);
9891 	return ret;
9892 }
9893 
9894 static void perf_event_free_bpf_prog(struct perf_event *event)
9895 {
9896 	if (!perf_event_is_tracing(event)) {
9897 		perf_event_free_bpf_handler(event);
9898 		return;
9899 	}
9900 	perf_event_detach_bpf_prog(event);
9901 }
9902 
9903 #else
9904 
9905 static inline void perf_tp_register(void)
9906 {
9907 }
9908 
9909 static void perf_event_free_filter(struct perf_event *event)
9910 {
9911 }
9912 
9913 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9914 {
9915 	return -ENOENT;
9916 }
9917 
9918 static void perf_event_free_bpf_prog(struct perf_event *event)
9919 {
9920 }
9921 #endif /* CONFIG_EVENT_TRACING */
9922 
9923 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9924 void perf_bp_event(struct perf_event *bp, void *data)
9925 {
9926 	struct perf_sample_data sample;
9927 	struct pt_regs *regs = data;
9928 
9929 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9930 
9931 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9932 		perf_swevent_event(bp, 1, &sample, regs);
9933 }
9934 #endif
9935 
9936 /*
9937  * Allocate a new address filter
9938  */
9939 static struct perf_addr_filter *
9940 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9941 {
9942 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9943 	struct perf_addr_filter *filter;
9944 
9945 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9946 	if (!filter)
9947 		return NULL;
9948 
9949 	INIT_LIST_HEAD(&filter->entry);
9950 	list_add_tail(&filter->entry, filters);
9951 
9952 	return filter;
9953 }
9954 
9955 static void free_filters_list(struct list_head *filters)
9956 {
9957 	struct perf_addr_filter *filter, *iter;
9958 
9959 	list_for_each_entry_safe(filter, iter, filters, entry) {
9960 		path_put(&filter->path);
9961 		list_del(&filter->entry);
9962 		kfree(filter);
9963 	}
9964 }
9965 
9966 /*
9967  * Free existing address filters and optionally install new ones
9968  */
9969 static void perf_addr_filters_splice(struct perf_event *event,
9970 				     struct list_head *head)
9971 {
9972 	unsigned long flags;
9973 	LIST_HEAD(list);
9974 
9975 	if (!has_addr_filter(event))
9976 		return;
9977 
9978 	/* don't bother with children, they don't have their own filters */
9979 	if (event->parent)
9980 		return;
9981 
9982 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9983 
9984 	list_splice_init(&event->addr_filters.list, &list);
9985 	if (head)
9986 		list_splice(head, &event->addr_filters.list);
9987 
9988 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9989 
9990 	free_filters_list(&list);
9991 }
9992 
9993 /*
9994  * Scan through mm's vmas and see if one of them matches the
9995  * @filter; if so, adjust filter's address range.
9996  * Called with mm::mmap_lock down for reading.
9997  */
9998 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9999 				   struct mm_struct *mm,
10000 				   struct perf_addr_filter_range *fr)
10001 {
10002 	struct vm_area_struct *vma;
10003 
10004 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10005 		if (!vma->vm_file)
10006 			continue;
10007 
10008 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10009 			return;
10010 	}
10011 }
10012 
10013 /*
10014  * Update event's address range filters based on the
10015  * task's existing mappings, if any.
10016  */
10017 static void perf_event_addr_filters_apply(struct perf_event *event)
10018 {
10019 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10020 	struct task_struct *task = READ_ONCE(event->ctx->task);
10021 	struct perf_addr_filter *filter;
10022 	struct mm_struct *mm = NULL;
10023 	unsigned int count = 0;
10024 	unsigned long flags;
10025 
10026 	/*
10027 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10028 	 * will stop on the parent's child_mutex that our caller is also holding
10029 	 */
10030 	if (task == TASK_TOMBSTONE)
10031 		return;
10032 
10033 	if (ifh->nr_file_filters) {
10034 		mm = get_task_mm(event->ctx->task);
10035 		if (!mm)
10036 			goto restart;
10037 
10038 		mmap_read_lock(mm);
10039 	}
10040 
10041 	raw_spin_lock_irqsave(&ifh->lock, flags);
10042 	list_for_each_entry(filter, &ifh->list, entry) {
10043 		if (filter->path.dentry) {
10044 			/*
10045 			 * Adjust base offset if the filter is associated to a
10046 			 * binary that needs to be mapped:
10047 			 */
10048 			event->addr_filter_ranges[count].start = 0;
10049 			event->addr_filter_ranges[count].size = 0;
10050 
10051 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10052 		} else {
10053 			event->addr_filter_ranges[count].start = filter->offset;
10054 			event->addr_filter_ranges[count].size  = filter->size;
10055 		}
10056 
10057 		count++;
10058 	}
10059 
10060 	event->addr_filters_gen++;
10061 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10062 
10063 	if (ifh->nr_file_filters) {
10064 		mmap_read_unlock(mm);
10065 
10066 		mmput(mm);
10067 	}
10068 
10069 restart:
10070 	perf_event_stop(event, 1);
10071 }
10072 
10073 /*
10074  * Address range filtering: limiting the data to certain
10075  * instruction address ranges. Filters are ioctl()ed to us from
10076  * userspace as ascii strings.
10077  *
10078  * Filter string format:
10079  *
10080  * ACTION RANGE_SPEC
10081  * where ACTION is one of the
10082  *  * "filter": limit the trace to this region
10083  *  * "start": start tracing from this address
10084  *  * "stop": stop tracing at this address/region;
10085  * RANGE_SPEC is
10086  *  * for kernel addresses: <start address>[/<size>]
10087  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10088  *
10089  * if <size> is not specified or is zero, the range is treated as a single
10090  * address; not valid for ACTION=="filter".
10091  */
10092 enum {
10093 	IF_ACT_NONE = -1,
10094 	IF_ACT_FILTER,
10095 	IF_ACT_START,
10096 	IF_ACT_STOP,
10097 	IF_SRC_FILE,
10098 	IF_SRC_KERNEL,
10099 	IF_SRC_FILEADDR,
10100 	IF_SRC_KERNELADDR,
10101 };
10102 
10103 enum {
10104 	IF_STATE_ACTION = 0,
10105 	IF_STATE_SOURCE,
10106 	IF_STATE_END,
10107 };
10108 
10109 static const match_table_t if_tokens = {
10110 	{ IF_ACT_FILTER,	"filter" },
10111 	{ IF_ACT_START,		"start" },
10112 	{ IF_ACT_STOP,		"stop" },
10113 	{ IF_SRC_FILE,		"%u/%u@%s" },
10114 	{ IF_SRC_KERNEL,	"%u/%u" },
10115 	{ IF_SRC_FILEADDR,	"%u@%s" },
10116 	{ IF_SRC_KERNELADDR,	"%u" },
10117 	{ IF_ACT_NONE,		NULL },
10118 };
10119 
10120 /*
10121  * Address filter string parser
10122  */
10123 static int
10124 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10125 			     struct list_head *filters)
10126 {
10127 	struct perf_addr_filter *filter = NULL;
10128 	char *start, *orig, *filename = NULL;
10129 	substring_t args[MAX_OPT_ARGS];
10130 	int state = IF_STATE_ACTION, token;
10131 	unsigned int kernel = 0;
10132 	int ret = -EINVAL;
10133 
10134 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10135 	if (!fstr)
10136 		return -ENOMEM;
10137 
10138 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10139 		static const enum perf_addr_filter_action_t actions[] = {
10140 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10141 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10142 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10143 		};
10144 		ret = -EINVAL;
10145 
10146 		if (!*start)
10147 			continue;
10148 
10149 		/* filter definition begins */
10150 		if (state == IF_STATE_ACTION) {
10151 			filter = perf_addr_filter_new(event, filters);
10152 			if (!filter)
10153 				goto fail;
10154 		}
10155 
10156 		token = match_token(start, if_tokens, args);
10157 		switch (token) {
10158 		case IF_ACT_FILTER:
10159 		case IF_ACT_START:
10160 		case IF_ACT_STOP:
10161 			if (state != IF_STATE_ACTION)
10162 				goto fail;
10163 
10164 			filter->action = actions[token];
10165 			state = IF_STATE_SOURCE;
10166 			break;
10167 
10168 		case IF_SRC_KERNELADDR:
10169 		case IF_SRC_KERNEL:
10170 			kernel = 1;
10171 			fallthrough;
10172 
10173 		case IF_SRC_FILEADDR:
10174 		case IF_SRC_FILE:
10175 			if (state != IF_STATE_SOURCE)
10176 				goto fail;
10177 
10178 			*args[0].to = 0;
10179 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10180 			if (ret)
10181 				goto fail;
10182 
10183 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10184 				*args[1].to = 0;
10185 				ret = kstrtoul(args[1].from, 0, &filter->size);
10186 				if (ret)
10187 					goto fail;
10188 			}
10189 
10190 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10191 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10192 
10193 				kfree(filename);
10194 				filename = match_strdup(&args[fpos]);
10195 				if (!filename) {
10196 					ret = -ENOMEM;
10197 					goto fail;
10198 				}
10199 			}
10200 
10201 			state = IF_STATE_END;
10202 			break;
10203 
10204 		default:
10205 			goto fail;
10206 		}
10207 
10208 		/*
10209 		 * Filter definition is fully parsed, validate and install it.
10210 		 * Make sure that it doesn't contradict itself or the event's
10211 		 * attribute.
10212 		 */
10213 		if (state == IF_STATE_END) {
10214 			ret = -EINVAL;
10215 			if (kernel && event->attr.exclude_kernel)
10216 				goto fail;
10217 
10218 			/*
10219 			 * ACTION "filter" must have a non-zero length region
10220 			 * specified.
10221 			 */
10222 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10223 			    !filter->size)
10224 				goto fail;
10225 
10226 			if (!kernel) {
10227 				if (!filename)
10228 					goto fail;
10229 
10230 				/*
10231 				 * For now, we only support file-based filters
10232 				 * in per-task events; doing so for CPU-wide
10233 				 * events requires additional context switching
10234 				 * trickery, since same object code will be
10235 				 * mapped at different virtual addresses in
10236 				 * different processes.
10237 				 */
10238 				ret = -EOPNOTSUPP;
10239 				if (!event->ctx->task)
10240 					goto fail;
10241 
10242 				/* look up the path and grab its inode */
10243 				ret = kern_path(filename, LOOKUP_FOLLOW,
10244 						&filter->path);
10245 				if (ret)
10246 					goto fail;
10247 
10248 				ret = -EINVAL;
10249 				if (!filter->path.dentry ||
10250 				    !S_ISREG(d_inode(filter->path.dentry)
10251 					     ->i_mode))
10252 					goto fail;
10253 
10254 				event->addr_filters.nr_file_filters++;
10255 			}
10256 
10257 			/* ready to consume more filters */
10258 			state = IF_STATE_ACTION;
10259 			filter = NULL;
10260 		}
10261 	}
10262 
10263 	if (state != IF_STATE_ACTION)
10264 		goto fail;
10265 
10266 	kfree(filename);
10267 	kfree(orig);
10268 
10269 	return 0;
10270 
10271 fail:
10272 	kfree(filename);
10273 	free_filters_list(filters);
10274 	kfree(orig);
10275 
10276 	return ret;
10277 }
10278 
10279 static int
10280 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10281 {
10282 	LIST_HEAD(filters);
10283 	int ret;
10284 
10285 	/*
10286 	 * Since this is called in perf_ioctl() path, we're already holding
10287 	 * ctx::mutex.
10288 	 */
10289 	lockdep_assert_held(&event->ctx->mutex);
10290 
10291 	if (WARN_ON_ONCE(event->parent))
10292 		return -EINVAL;
10293 
10294 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10295 	if (ret)
10296 		goto fail_clear_files;
10297 
10298 	ret = event->pmu->addr_filters_validate(&filters);
10299 	if (ret)
10300 		goto fail_free_filters;
10301 
10302 	/* remove existing filters, if any */
10303 	perf_addr_filters_splice(event, &filters);
10304 
10305 	/* install new filters */
10306 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10307 
10308 	return ret;
10309 
10310 fail_free_filters:
10311 	free_filters_list(&filters);
10312 
10313 fail_clear_files:
10314 	event->addr_filters.nr_file_filters = 0;
10315 
10316 	return ret;
10317 }
10318 
10319 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10320 {
10321 	int ret = -EINVAL;
10322 	char *filter_str;
10323 
10324 	filter_str = strndup_user(arg, PAGE_SIZE);
10325 	if (IS_ERR(filter_str))
10326 		return PTR_ERR(filter_str);
10327 
10328 #ifdef CONFIG_EVENT_TRACING
10329 	if (perf_event_is_tracing(event)) {
10330 		struct perf_event_context *ctx = event->ctx;
10331 
10332 		/*
10333 		 * Beware, here be dragons!!
10334 		 *
10335 		 * the tracepoint muck will deadlock against ctx->mutex, but
10336 		 * the tracepoint stuff does not actually need it. So
10337 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10338 		 * already have a reference on ctx.
10339 		 *
10340 		 * This can result in event getting moved to a different ctx,
10341 		 * but that does not affect the tracepoint state.
10342 		 */
10343 		mutex_unlock(&ctx->mutex);
10344 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10345 		mutex_lock(&ctx->mutex);
10346 	} else
10347 #endif
10348 	if (has_addr_filter(event))
10349 		ret = perf_event_set_addr_filter(event, filter_str);
10350 
10351 	kfree(filter_str);
10352 	return ret;
10353 }
10354 
10355 /*
10356  * hrtimer based swevent callback
10357  */
10358 
10359 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10360 {
10361 	enum hrtimer_restart ret = HRTIMER_RESTART;
10362 	struct perf_sample_data data;
10363 	struct pt_regs *regs;
10364 	struct perf_event *event;
10365 	u64 period;
10366 
10367 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10368 
10369 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10370 		return HRTIMER_NORESTART;
10371 
10372 	event->pmu->read(event);
10373 
10374 	perf_sample_data_init(&data, 0, event->hw.last_period);
10375 	regs = get_irq_regs();
10376 
10377 	if (regs && !perf_exclude_event(event, regs)) {
10378 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10379 			if (__perf_event_overflow(event, 1, &data, regs))
10380 				ret = HRTIMER_NORESTART;
10381 	}
10382 
10383 	period = max_t(u64, 10000, event->hw.sample_period);
10384 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10385 
10386 	return ret;
10387 }
10388 
10389 static void perf_swevent_start_hrtimer(struct perf_event *event)
10390 {
10391 	struct hw_perf_event *hwc = &event->hw;
10392 	s64 period;
10393 
10394 	if (!is_sampling_event(event))
10395 		return;
10396 
10397 	period = local64_read(&hwc->period_left);
10398 	if (period) {
10399 		if (period < 0)
10400 			period = 10000;
10401 
10402 		local64_set(&hwc->period_left, 0);
10403 	} else {
10404 		period = max_t(u64, 10000, hwc->sample_period);
10405 	}
10406 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10407 		      HRTIMER_MODE_REL_PINNED_HARD);
10408 }
10409 
10410 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10411 {
10412 	struct hw_perf_event *hwc = &event->hw;
10413 
10414 	if (is_sampling_event(event)) {
10415 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10416 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10417 
10418 		hrtimer_cancel(&hwc->hrtimer);
10419 	}
10420 }
10421 
10422 static void perf_swevent_init_hrtimer(struct perf_event *event)
10423 {
10424 	struct hw_perf_event *hwc = &event->hw;
10425 
10426 	if (!is_sampling_event(event))
10427 		return;
10428 
10429 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10430 	hwc->hrtimer.function = perf_swevent_hrtimer;
10431 
10432 	/*
10433 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10434 	 * mapping and avoid the whole period adjust feedback stuff.
10435 	 */
10436 	if (event->attr.freq) {
10437 		long freq = event->attr.sample_freq;
10438 
10439 		event->attr.sample_period = NSEC_PER_SEC / freq;
10440 		hwc->sample_period = event->attr.sample_period;
10441 		local64_set(&hwc->period_left, hwc->sample_period);
10442 		hwc->last_period = hwc->sample_period;
10443 		event->attr.freq = 0;
10444 	}
10445 }
10446 
10447 /*
10448  * Software event: cpu wall time clock
10449  */
10450 
10451 static void cpu_clock_event_update(struct perf_event *event)
10452 {
10453 	s64 prev;
10454 	u64 now;
10455 
10456 	now = local_clock();
10457 	prev = local64_xchg(&event->hw.prev_count, now);
10458 	local64_add(now - prev, &event->count);
10459 }
10460 
10461 static void cpu_clock_event_start(struct perf_event *event, int flags)
10462 {
10463 	local64_set(&event->hw.prev_count, local_clock());
10464 	perf_swevent_start_hrtimer(event);
10465 }
10466 
10467 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10468 {
10469 	perf_swevent_cancel_hrtimer(event);
10470 	cpu_clock_event_update(event);
10471 }
10472 
10473 static int cpu_clock_event_add(struct perf_event *event, int flags)
10474 {
10475 	if (flags & PERF_EF_START)
10476 		cpu_clock_event_start(event, flags);
10477 	perf_event_update_userpage(event);
10478 
10479 	return 0;
10480 }
10481 
10482 static void cpu_clock_event_del(struct perf_event *event, int flags)
10483 {
10484 	cpu_clock_event_stop(event, flags);
10485 }
10486 
10487 static void cpu_clock_event_read(struct perf_event *event)
10488 {
10489 	cpu_clock_event_update(event);
10490 }
10491 
10492 static int cpu_clock_event_init(struct perf_event *event)
10493 {
10494 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10495 		return -ENOENT;
10496 
10497 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10498 		return -ENOENT;
10499 
10500 	/*
10501 	 * no branch sampling for software events
10502 	 */
10503 	if (has_branch_stack(event))
10504 		return -EOPNOTSUPP;
10505 
10506 	perf_swevent_init_hrtimer(event);
10507 
10508 	return 0;
10509 }
10510 
10511 static struct pmu perf_cpu_clock = {
10512 	.task_ctx_nr	= perf_sw_context,
10513 
10514 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10515 
10516 	.event_init	= cpu_clock_event_init,
10517 	.add		= cpu_clock_event_add,
10518 	.del		= cpu_clock_event_del,
10519 	.start		= cpu_clock_event_start,
10520 	.stop		= cpu_clock_event_stop,
10521 	.read		= cpu_clock_event_read,
10522 };
10523 
10524 /*
10525  * Software event: task time clock
10526  */
10527 
10528 static void task_clock_event_update(struct perf_event *event, u64 now)
10529 {
10530 	u64 prev;
10531 	s64 delta;
10532 
10533 	prev = local64_xchg(&event->hw.prev_count, now);
10534 	delta = now - prev;
10535 	local64_add(delta, &event->count);
10536 }
10537 
10538 static void task_clock_event_start(struct perf_event *event, int flags)
10539 {
10540 	local64_set(&event->hw.prev_count, event->ctx->time);
10541 	perf_swevent_start_hrtimer(event);
10542 }
10543 
10544 static void task_clock_event_stop(struct perf_event *event, int flags)
10545 {
10546 	perf_swevent_cancel_hrtimer(event);
10547 	task_clock_event_update(event, event->ctx->time);
10548 }
10549 
10550 static int task_clock_event_add(struct perf_event *event, int flags)
10551 {
10552 	if (flags & PERF_EF_START)
10553 		task_clock_event_start(event, flags);
10554 	perf_event_update_userpage(event);
10555 
10556 	return 0;
10557 }
10558 
10559 static void task_clock_event_del(struct perf_event *event, int flags)
10560 {
10561 	task_clock_event_stop(event, PERF_EF_UPDATE);
10562 }
10563 
10564 static void task_clock_event_read(struct perf_event *event)
10565 {
10566 	u64 now = perf_clock();
10567 	u64 delta = now - event->ctx->timestamp;
10568 	u64 time = event->ctx->time + delta;
10569 
10570 	task_clock_event_update(event, time);
10571 }
10572 
10573 static int task_clock_event_init(struct perf_event *event)
10574 {
10575 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10576 		return -ENOENT;
10577 
10578 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10579 		return -ENOENT;
10580 
10581 	/*
10582 	 * no branch sampling for software events
10583 	 */
10584 	if (has_branch_stack(event))
10585 		return -EOPNOTSUPP;
10586 
10587 	perf_swevent_init_hrtimer(event);
10588 
10589 	return 0;
10590 }
10591 
10592 static struct pmu perf_task_clock = {
10593 	.task_ctx_nr	= perf_sw_context,
10594 
10595 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10596 
10597 	.event_init	= task_clock_event_init,
10598 	.add		= task_clock_event_add,
10599 	.del		= task_clock_event_del,
10600 	.start		= task_clock_event_start,
10601 	.stop		= task_clock_event_stop,
10602 	.read		= task_clock_event_read,
10603 };
10604 
10605 static void perf_pmu_nop_void(struct pmu *pmu)
10606 {
10607 }
10608 
10609 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10610 {
10611 }
10612 
10613 static int perf_pmu_nop_int(struct pmu *pmu)
10614 {
10615 	return 0;
10616 }
10617 
10618 static int perf_event_nop_int(struct perf_event *event, u64 value)
10619 {
10620 	return 0;
10621 }
10622 
10623 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10624 
10625 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10626 {
10627 	__this_cpu_write(nop_txn_flags, flags);
10628 
10629 	if (flags & ~PERF_PMU_TXN_ADD)
10630 		return;
10631 
10632 	perf_pmu_disable(pmu);
10633 }
10634 
10635 static int perf_pmu_commit_txn(struct pmu *pmu)
10636 {
10637 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10638 
10639 	__this_cpu_write(nop_txn_flags, 0);
10640 
10641 	if (flags & ~PERF_PMU_TXN_ADD)
10642 		return 0;
10643 
10644 	perf_pmu_enable(pmu);
10645 	return 0;
10646 }
10647 
10648 static void perf_pmu_cancel_txn(struct pmu *pmu)
10649 {
10650 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10651 
10652 	__this_cpu_write(nop_txn_flags, 0);
10653 
10654 	if (flags & ~PERF_PMU_TXN_ADD)
10655 		return;
10656 
10657 	perf_pmu_enable(pmu);
10658 }
10659 
10660 static int perf_event_idx_default(struct perf_event *event)
10661 {
10662 	return 0;
10663 }
10664 
10665 /*
10666  * Ensures all contexts with the same task_ctx_nr have the same
10667  * pmu_cpu_context too.
10668  */
10669 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10670 {
10671 	struct pmu *pmu;
10672 
10673 	if (ctxn < 0)
10674 		return NULL;
10675 
10676 	list_for_each_entry(pmu, &pmus, entry) {
10677 		if (pmu->task_ctx_nr == ctxn)
10678 			return pmu->pmu_cpu_context;
10679 	}
10680 
10681 	return NULL;
10682 }
10683 
10684 static void free_pmu_context(struct pmu *pmu)
10685 {
10686 	/*
10687 	 * Static contexts such as perf_sw_context have a global lifetime
10688 	 * and may be shared between different PMUs. Avoid freeing them
10689 	 * when a single PMU is going away.
10690 	 */
10691 	if (pmu->task_ctx_nr > perf_invalid_context)
10692 		return;
10693 
10694 	free_percpu(pmu->pmu_cpu_context);
10695 }
10696 
10697 /*
10698  * Let userspace know that this PMU supports address range filtering:
10699  */
10700 static ssize_t nr_addr_filters_show(struct device *dev,
10701 				    struct device_attribute *attr,
10702 				    char *page)
10703 {
10704 	struct pmu *pmu = dev_get_drvdata(dev);
10705 
10706 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10707 }
10708 DEVICE_ATTR_RO(nr_addr_filters);
10709 
10710 static struct idr pmu_idr;
10711 
10712 static ssize_t
10713 type_show(struct device *dev, struct device_attribute *attr, char *page)
10714 {
10715 	struct pmu *pmu = dev_get_drvdata(dev);
10716 
10717 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10718 }
10719 static DEVICE_ATTR_RO(type);
10720 
10721 static ssize_t
10722 perf_event_mux_interval_ms_show(struct device *dev,
10723 				struct device_attribute *attr,
10724 				char *page)
10725 {
10726 	struct pmu *pmu = dev_get_drvdata(dev);
10727 
10728 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10729 }
10730 
10731 static DEFINE_MUTEX(mux_interval_mutex);
10732 
10733 static ssize_t
10734 perf_event_mux_interval_ms_store(struct device *dev,
10735 				 struct device_attribute *attr,
10736 				 const char *buf, size_t count)
10737 {
10738 	struct pmu *pmu = dev_get_drvdata(dev);
10739 	int timer, cpu, ret;
10740 
10741 	ret = kstrtoint(buf, 0, &timer);
10742 	if (ret)
10743 		return ret;
10744 
10745 	if (timer < 1)
10746 		return -EINVAL;
10747 
10748 	/* same value, noting to do */
10749 	if (timer == pmu->hrtimer_interval_ms)
10750 		return count;
10751 
10752 	mutex_lock(&mux_interval_mutex);
10753 	pmu->hrtimer_interval_ms = timer;
10754 
10755 	/* update all cpuctx for this PMU */
10756 	cpus_read_lock();
10757 	for_each_online_cpu(cpu) {
10758 		struct perf_cpu_context *cpuctx;
10759 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10760 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10761 
10762 		cpu_function_call(cpu,
10763 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10764 	}
10765 	cpus_read_unlock();
10766 	mutex_unlock(&mux_interval_mutex);
10767 
10768 	return count;
10769 }
10770 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10771 
10772 static struct attribute *pmu_dev_attrs[] = {
10773 	&dev_attr_type.attr,
10774 	&dev_attr_perf_event_mux_interval_ms.attr,
10775 	NULL,
10776 };
10777 ATTRIBUTE_GROUPS(pmu_dev);
10778 
10779 static int pmu_bus_running;
10780 static struct bus_type pmu_bus = {
10781 	.name		= "event_source",
10782 	.dev_groups	= pmu_dev_groups,
10783 };
10784 
10785 static void pmu_dev_release(struct device *dev)
10786 {
10787 	kfree(dev);
10788 }
10789 
10790 static int pmu_dev_alloc(struct pmu *pmu)
10791 {
10792 	int ret = -ENOMEM;
10793 
10794 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10795 	if (!pmu->dev)
10796 		goto out;
10797 
10798 	pmu->dev->groups = pmu->attr_groups;
10799 	device_initialize(pmu->dev);
10800 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10801 	if (ret)
10802 		goto free_dev;
10803 
10804 	dev_set_drvdata(pmu->dev, pmu);
10805 	pmu->dev->bus = &pmu_bus;
10806 	pmu->dev->release = pmu_dev_release;
10807 	ret = device_add(pmu->dev);
10808 	if (ret)
10809 		goto free_dev;
10810 
10811 	/* For PMUs with address filters, throw in an extra attribute: */
10812 	if (pmu->nr_addr_filters)
10813 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10814 
10815 	if (ret)
10816 		goto del_dev;
10817 
10818 	if (pmu->attr_update)
10819 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10820 
10821 	if (ret)
10822 		goto del_dev;
10823 
10824 out:
10825 	return ret;
10826 
10827 del_dev:
10828 	device_del(pmu->dev);
10829 
10830 free_dev:
10831 	put_device(pmu->dev);
10832 	goto out;
10833 }
10834 
10835 static struct lock_class_key cpuctx_mutex;
10836 static struct lock_class_key cpuctx_lock;
10837 
10838 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10839 {
10840 	int cpu, ret, max = PERF_TYPE_MAX;
10841 
10842 	mutex_lock(&pmus_lock);
10843 	ret = -ENOMEM;
10844 	pmu->pmu_disable_count = alloc_percpu(int);
10845 	if (!pmu->pmu_disable_count)
10846 		goto unlock;
10847 
10848 	pmu->type = -1;
10849 	if (!name)
10850 		goto skip_type;
10851 	pmu->name = name;
10852 
10853 	if (type != PERF_TYPE_SOFTWARE) {
10854 		if (type >= 0)
10855 			max = type;
10856 
10857 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10858 		if (ret < 0)
10859 			goto free_pdc;
10860 
10861 		WARN_ON(type >= 0 && ret != type);
10862 
10863 		type = ret;
10864 	}
10865 	pmu->type = type;
10866 
10867 	if (pmu_bus_running) {
10868 		ret = pmu_dev_alloc(pmu);
10869 		if (ret)
10870 			goto free_idr;
10871 	}
10872 
10873 skip_type:
10874 	if (pmu->task_ctx_nr == perf_hw_context) {
10875 		static int hw_context_taken = 0;
10876 
10877 		/*
10878 		 * Other than systems with heterogeneous CPUs, it never makes
10879 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10880 		 * uncore must use perf_invalid_context.
10881 		 */
10882 		if (WARN_ON_ONCE(hw_context_taken &&
10883 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10884 			pmu->task_ctx_nr = perf_invalid_context;
10885 
10886 		hw_context_taken = 1;
10887 	}
10888 
10889 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10890 	if (pmu->pmu_cpu_context)
10891 		goto got_cpu_context;
10892 
10893 	ret = -ENOMEM;
10894 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10895 	if (!pmu->pmu_cpu_context)
10896 		goto free_dev;
10897 
10898 	for_each_possible_cpu(cpu) {
10899 		struct perf_cpu_context *cpuctx;
10900 
10901 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10902 		__perf_event_init_context(&cpuctx->ctx);
10903 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10904 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10905 		cpuctx->ctx.pmu = pmu;
10906 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10907 
10908 		__perf_mux_hrtimer_init(cpuctx, cpu);
10909 
10910 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10911 		cpuctx->heap = cpuctx->heap_default;
10912 	}
10913 
10914 got_cpu_context:
10915 	if (!pmu->start_txn) {
10916 		if (pmu->pmu_enable) {
10917 			/*
10918 			 * If we have pmu_enable/pmu_disable calls, install
10919 			 * transaction stubs that use that to try and batch
10920 			 * hardware accesses.
10921 			 */
10922 			pmu->start_txn  = perf_pmu_start_txn;
10923 			pmu->commit_txn = perf_pmu_commit_txn;
10924 			pmu->cancel_txn = perf_pmu_cancel_txn;
10925 		} else {
10926 			pmu->start_txn  = perf_pmu_nop_txn;
10927 			pmu->commit_txn = perf_pmu_nop_int;
10928 			pmu->cancel_txn = perf_pmu_nop_void;
10929 		}
10930 	}
10931 
10932 	if (!pmu->pmu_enable) {
10933 		pmu->pmu_enable  = perf_pmu_nop_void;
10934 		pmu->pmu_disable = perf_pmu_nop_void;
10935 	}
10936 
10937 	if (!pmu->check_period)
10938 		pmu->check_period = perf_event_nop_int;
10939 
10940 	if (!pmu->event_idx)
10941 		pmu->event_idx = perf_event_idx_default;
10942 
10943 	/*
10944 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10945 	 * since these cannot be in the IDR. This way the linear search
10946 	 * is fast, provided a valid software event is provided.
10947 	 */
10948 	if (type == PERF_TYPE_SOFTWARE || !name)
10949 		list_add_rcu(&pmu->entry, &pmus);
10950 	else
10951 		list_add_tail_rcu(&pmu->entry, &pmus);
10952 
10953 	atomic_set(&pmu->exclusive_cnt, 0);
10954 	ret = 0;
10955 unlock:
10956 	mutex_unlock(&pmus_lock);
10957 
10958 	return ret;
10959 
10960 free_dev:
10961 	device_del(pmu->dev);
10962 	put_device(pmu->dev);
10963 
10964 free_idr:
10965 	if (pmu->type != PERF_TYPE_SOFTWARE)
10966 		idr_remove(&pmu_idr, pmu->type);
10967 
10968 free_pdc:
10969 	free_percpu(pmu->pmu_disable_count);
10970 	goto unlock;
10971 }
10972 EXPORT_SYMBOL_GPL(perf_pmu_register);
10973 
10974 void perf_pmu_unregister(struct pmu *pmu)
10975 {
10976 	mutex_lock(&pmus_lock);
10977 	list_del_rcu(&pmu->entry);
10978 
10979 	/*
10980 	 * We dereference the pmu list under both SRCU and regular RCU, so
10981 	 * synchronize against both of those.
10982 	 */
10983 	synchronize_srcu(&pmus_srcu);
10984 	synchronize_rcu();
10985 
10986 	free_percpu(pmu->pmu_disable_count);
10987 	if (pmu->type != PERF_TYPE_SOFTWARE)
10988 		idr_remove(&pmu_idr, pmu->type);
10989 	if (pmu_bus_running) {
10990 		if (pmu->nr_addr_filters)
10991 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10992 		device_del(pmu->dev);
10993 		put_device(pmu->dev);
10994 	}
10995 	free_pmu_context(pmu);
10996 	mutex_unlock(&pmus_lock);
10997 }
10998 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10999 
11000 static inline bool has_extended_regs(struct perf_event *event)
11001 {
11002 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11003 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11004 }
11005 
11006 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11007 {
11008 	struct perf_event_context *ctx = NULL;
11009 	int ret;
11010 
11011 	if (!try_module_get(pmu->module))
11012 		return -ENODEV;
11013 
11014 	/*
11015 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11016 	 * for example, validate if the group fits on the PMU. Therefore,
11017 	 * if this is a sibling event, acquire the ctx->mutex to protect
11018 	 * the sibling_list.
11019 	 */
11020 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11021 		/*
11022 		 * This ctx->mutex can nest when we're called through
11023 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11024 		 */
11025 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11026 						 SINGLE_DEPTH_NESTING);
11027 		BUG_ON(!ctx);
11028 	}
11029 
11030 	event->pmu = pmu;
11031 	ret = pmu->event_init(event);
11032 
11033 	if (ctx)
11034 		perf_event_ctx_unlock(event->group_leader, ctx);
11035 
11036 	if (!ret) {
11037 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11038 		    has_extended_regs(event))
11039 			ret = -EOPNOTSUPP;
11040 
11041 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11042 		    event_has_any_exclude_flag(event))
11043 			ret = -EINVAL;
11044 
11045 		if (ret && event->destroy)
11046 			event->destroy(event);
11047 	}
11048 
11049 	if (ret)
11050 		module_put(pmu->module);
11051 
11052 	return ret;
11053 }
11054 
11055 static struct pmu *perf_init_event(struct perf_event *event)
11056 {
11057 	int idx, type, ret;
11058 	struct pmu *pmu;
11059 
11060 	idx = srcu_read_lock(&pmus_srcu);
11061 
11062 	/* Try parent's PMU first: */
11063 	if (event->parent && event->parent->pmu) {
11064 		pmu = event->parent->pmu;
11065 		ret = perf_try_init_event(pmu, event);
11066 		if (!ret)
11067 			goto unlock;
11068 	}
11069 
11070 	/*
11071 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11072 	 * are often aliases for PERF_TYPE_RAW.
11073 	 */
11074 	type = event->attr.type;
11075 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11076 		type = PERF_TYPE_RAW;
11077 
11078 again:
11079 	rcu_read_lock();
11080 	pmu = idr_find(&pmu_idr, type);
11081 	rcu_read_unlock();
11082 	if (pmu) {
11083 		ret = perf_try_init_event(pmu, event);
11084 		if (ret == -ENOENT && event->attr.type != type) {
11085 			type = event->attr.type;
11086 			goto again;
11087 		}
11088 
11089 		if (ret)
11090 			pmu = ERR_PTR(ret);
11091 
11092 		goto unlock;
11093 	}
11094 
11095 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11096 		ret = perf_try_init_event(pmu, event);
11097 		if (!ret)
11098 			goto unlock;
11099 
11100 		if (ret != -ENOENT) {
11101 			pmu = ERR_PTR(ret);
11102 			goto unlock;
11103 		}
11104 	}
11105 	pmu = ERR_PTR(-ENOENT);
11106 unlock:
11107 	srcu_read_unlock(&pmus_srcu, idx);
11108 
11109 	return pmu;
11110 }
11111 
11112 static void attach_sb_event(struct perf_event *event)
11113 {
11114 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11115 
11116 	raw_spin_lock(&pel->lock);
11117 	list_add_rcu(&event->sb_list, &pel->list);
11118 	raw_spin_unlock(&pel->lock);
11119 }
11120 
11121 /*
11122  * We keep a list of all !task (and therefore per-cpu) events
11123  * that need to receive side-band records.
11124  *
11125  * This avoids having to scan all the various PMU per-cpu contexts
11126  * looking for them.
11127  */
11128 static void account_pmu_sb_event(struct perf_event *event)
11129 {
11130 	if (is_sb_event(event))
11131 		attach_sb_event(event);
11132 }
11133 
11134 static void account_event_cpu(struct perf_event *event, int cpu)
11135 {
11136 	if (event->parent)
11137 		return;
11138 
11139 	if (is_cgroup_event(event))
11140 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11141 }
11142 
11143 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11144 static void account_freq_event_nohz(void)
11145 {
11146 #ifdef CONFIG_NO_HZ_FULL
11147 	/* Lock so we don't race with concurrent unaccount */
11148 	spin_lock(&nr_freq_lock);
11149 	if (atomic_inc_return(&nr_freq_events) == 1)
11150 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11151 	spin_unlock(&nr_freq_lock);
11152 #endif
11153 }
11154 
11155 static void account_freq_event(void)
11156 {
11157 	if (tick_nohz_full_enabled())
11158 		account_freq_event_nohz();
11159 	else
11160 		atomic_inc(&nr_freq_events);
11161 }
11162 
11163 
11164 static void account_event(struct perf_event *event)
11165 {
11166 	bool inc = false;
11167 
11168 	if (event->parent)
11169 		return;
11170 
11171 	if (event->attach_state & PERF_ATTACH_TASK)
11172 		inc = true;
11173 	if (event->attr.mmap || event->attr.mmap_data)
11174 		atomic_inc(&nr_mmap_events);
11175 	if (event->attr.comm)
11176 		atomic_inc(&nr_comm_events);
11177 	if (event->attr.namespaces)
11178 		atomic_inc(&nr_namespaces_events);
11179 	if (event->attr.cgroup)
11180 		atomic_inc(&nr_cgroup_events);
11181 	if (event->attr.task)
11182 		atomic_inc(&nr_task_events);
11183 	if (event->attr.freq)
11184 		account_freq_event();
11185 	if (event->attr.context_switch) {
11186 		atomic_inc(&nr_switch_events);
11187 		inc = true;
11188 	}
11189 	if (has_branch_stack(event))
11190 		inc = true;
11191 	if (is_cgroup_event(event))
11192 		inc = true;
11193 	if (event->attr.ksymbol)
11194 		atomic_inc(&nr_ksymbol_events);
11195 	if (event->attr.bpf_event)
11196 		atomic_inc(&nr_bpf_events);
11197 	if (event->attr.text_poke)
11198 		atomic_inc(&nr_text_poke_events);
11199 
11200 	if (inc) {
11201 		/*
11202 		 * We need the mutex here because static_branch_enable()
11203 		 * must complete *before* the perf_sched_count increment
11204 		 * becomes visible.
11205 		 */
11206 		if (atomic_inc_not_zero(&perf_sched_count))
11207 			goto enabled;
11208 
11209 		mutex_lock(&perf_sched_mutex);
11210 		if (!atomic_read(&perf_sched_count)) {
11211 			static_branch_enable(&perf_sched_events);
11212 			/*
11213 			 * Guarantee that all CPUs observe they key change and
11214 			 * call the perf scheduling hooks before proceeding to
11215 			 * install events that need them.
11216 			 */
11217 			synchronize_rcu();
11218 		}
11219 		/*
11220 		 * Now that we have waited for the sync_sched(), allow further
11221 		 * increments to by-pass the mutex.
11222 		 */
11223 		atomic_inc(&perf_sched_count);
11224 		mutex_unlock(&perf_sched_mutex);
11225 	}
11226 enabled:
11227 
11228 	account_event_cpu(event, event->cpu);
11229 
11230 	account_pmu_sb_event(event);
11231 }
11232 
11233 /*
11234  * Allocate and initialize an event structure
11235  */
11236 static struct perf_event *
11237 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11238 		 struct task_struct *task,
11239 		 struct perf_event *group_leader,
11240 		 struct perf_event *parent_event,
11241 		 perf_overflow_handler_t overflow_handler,
11242 		 void *context, int cgroup_fd)
11243 {
11244 	struct pmu *pmu;
11245 	struct perf_event *event;
11246 	struct hw_perf_event *hwc;
11247 	long err = -EINVAL;
11248 
11249 	if ((unsigned)cpu >= nr_cpu_ids) {
11250 		if (!task || cpu != -1)
11251 			return ERR_PTR(-EINVAL);
11252 	}
11253 
11254 	event = kzalloc(sizeof(*event), GFP_KERNEL);
11255 	if (!event)
11256 		return ERR_PTR(-ENOMEM);
11257 
11258 	/*
11259 	 * Single events are their own group leaders, with an
11260 	 * empty sibling list:
11261 	 */
11262 	if (!group_leader)
11263 		group_leader = event;
11264 
11265 	mutex_init(&event->child_mutex);
11266 	INIT_LIST_HEAD(&event->child_list);
11267 
11268 	INIT_LIST_HEAD(&event->event_entry);
11269 	INIT_LIST_HEAD(&event->sibling_list);
11270 	INIT_LIST_HEAD(&event->active_list);
11271 	init_event_group(event);
11272 	INIT_LIST_HEAD(&event->rb_entry);
11273 	INIT_LIST_HEAD(&event->active_entry);
11274 	INIT_LIST_HEAD(&event->addr_filters.list);
11275 	INIT_HLIST_NODE(&event->hlist_entry);
11276 
11277 
11278 	init_waitqueue_head(&event->waitq);
11279 	event->pending_disable = -1;
11280 	init_irq_work(&event->pending, perf_pending_event);
11281 
11282 	mutex_init(&event->mmap_mutex);
11283 	raw_spin_lock_init(&event->addr_filters.lock);
11284 
11285 	atomic_long_set(&event->refcount, 1);
11286 	event->cpu		= cpu;
11287 	event->attr		= *attr;
11288 	event->group_leader	= group_leader;
11289 	event->pmu		= NULL;
11290 	event->oncpu		= -1;
11291 
11292 	event->parent		= parent_event;
11293 
11294 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11295 	event->id		= atomic64_inc_return(&perf_event_id);
11296 
11297 	event->state		= PERF_EVENT_STATE_INACTIVE;
11298 
11299 	if (task) {
11300 		event->attach_state = PERF_ATTACH_TASK;
11301 		/*
11302 		 * XXX pmu::event_init needs to know what task to account to
11303 		 * and we cannot use the ctx information because we need the
11304 		 * pmu before we get a ctx.
11305 		 */
11306 		event->hw.target = get_task_struct(task);
11307 	}
11308 
11309 	event->clock = &local_clock;
11310 	if (parent_event)
11311 		event->clock = parent_event->clock;
11312 
11313 	if (!overflow_handler && parent_event) {
11314 		overflow_handler = parent_event->overflow_handler;
11315 		context = parent_event->overflow_handler_context;
11316 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11317 		if (overflow_handler == bpf_overflow_handler) {
11318 			struct bpf_prog *prog = parent_event->prog;
11319 
11320 			bpf_prog_inc(prog);
11321 			event->prog = prog;
11322 			event->orig_overflow_handler =
11323 				parent_event->orig_overflow_handler;
11324 		}
11325 #endif
11326 	}
11327 
11328 	if (overflow_handler) {
11329 		event->overflow_handler	= overflow_handler;
11330 		event->overflow_handler_context = context;
11331 	} else if (is_write_backward(event)){
11332 		event->overflow_handler = perf_event_output_backward;
11333 		event->overflow_handler_context = NULL;
11334 	} else {
11335 		event->overflow_handler = perf_event_output_forward;
11336 		event->overflow_handler_context = NULL;
11337 	}
11338 
11339 	perf_event__state_init(event);
11340 
11341 	pmu = NULL;
11342 
11343 	hwc = &event->hw;
11344 	hwc->sample_period = attr->sample_period;
11345 	if (attr->freq && attr->sample_freq)
11346 		hwc->sample_period = 1;
11347 	hwc->last_period = hwc->sample_period;
11348 
11349 	local64_set(&hwc->period_left, hwc->sample_period);
11350 
11351 	/*
11352 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11353 	 * See perf_output_read().
11354 	 */
11355 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11356 		goto err_ns;
11357 
11358 	if (!has_branch_stack(event))
11359 		event->attr.branch_sample_type = 0;
11360 
11361 	pmu = perf_init_event(event);
11362 	if (IS_ERR(pmu)) {
11363 		err = PTR_ERR(pmu);
11364 		goto err_ns;
11365 	}
11366 
11367 	/*
11368 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11369 	 * be different on other CPUs in the uncore mask.
11370 	 */
11371 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11372 		err = -EINVAL;
11373 		goto err_pmu;
11374 	}
11375 
11376 	if (event->attr.aux_output &&
11377 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11378 		err = -EOPNOTSUPP;
11379 		goto err_pmu;
11380 	}
11381 
11382 	if (cgroup_fd != -1) {
11383 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11384 		if (err)
11385 			goto err_pmu;
11386 	}
11387 
11388 	err = exclusive_event_init(event);
11389 	if (err)
11390 		goto err_pmu;
11391 
11392 	if (has_addr_filter(event)) {
11393 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11394 						    sizeof(struct perf_addr_filter_range),
11395 						    GFP_KERNEL);
11396 		if (!event->addr_filter_ranges) {
11397 			err = -ENOMEM;
11398 			goto err_per_task;
11399 		}
11400 
11401 		/*
11402 		 * Clone the parent's vma offsets: they are valid until exec()
11403 		 * even if the mm is not shared with the parent.
11404 		 */
11405 		if (event->parent) {
11406 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11407 
11408 			raw_spin_lock_irq(&ifh->lock);
11409 			memcpy(event->addr_filter_ranges,
11410 			       event->parent->addr_filter_ranges,
11411 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11412 			raw_spin_unlock_irq(&ifh->lock);
11413 		}
11414 
11415 		/* force hw sync on the address filters */
11416 		event->addr_filters_gen = 1;
11417 	}
11418 
11419 	if (!event->parent) {
11420 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11421 			err = get_callchain_buffers(attr->sample_max_stack);
11422 			if (err)
11423 				goto err_addr_filters;
11424 		}
11425 	}
11426 
11427 	err = security_perf_event_alloc(event);
11428 	if (err)
11429 		goto err_callchain_buffer;
11430 
11431 	/* symmetric to unaccount_event() in _free_event() */
11432 	account_event(event);
11433 
11434 	return event;
11435 
11436 err_callchain_buffer:
11437 	if (!event->parent) {
11438 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11439 			put_callchain_buffers();
11440 	}
11441 err_addr_filters:
11442 	kfree(event->addr_filter_ranges);
11443 
11444 err_per_task:
11445 	exclusive_event_destroy(event);
11446 
11447 err_pmu:
11448 	if (is_cgroup_event(event))
11449 		perf_detach_cgroup(event);
11450 	if (event->destroy)
11451 		event->destroy(event);
11452 	module_put(pmu->module);
11453 err_ns:
11454 	if (event->ns)
11455 		put_pid_ns(event->ns);
11456 	if (event->hw.target)
11457 		put_task_struct(event->hw.target);
11458 	kfree(event);
11459 
11460 	return ERR_PTR(err);
11461 }
11462 
11463 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11464 			  struct perf_event_attr *attr)
11465 {
11466 	u32 size;
11467 	int ret;
11468 
11469 	/* Zero the full structure, so that a short copy will be nice. */
11470 	memset(attr, 0, sizeof(*attr));
11471 
11472 	ret = get_user(size, &uattr->size);
11473 	if (ret)
11474 		return ret;
11475 
11476 	/* ABI compatibility quirk: */
11477 	if (!size)
11478 		size = PERF_ATTR_SIZE_VER0;
11479 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11480 		goto err_size;
11481 
11482 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11483 	if (ret) {
11484 		if (ret == -E2BIG)
11485 			goto err_size;
11486 		return ret;
11487 	}
11488 
11489 	attr->size = size;
11490 
11491 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11492 		return -EINVAL;
11493 
11494 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11495 		return -EINVAL;
11496 
11497 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11498 		return -EINVAL;
11499 
11500 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11501 		u64 mask = attr->branch_sample_type;
11502 
11503 		/* only using defined bits */
11504 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11505 			return -EINVAL;
11506 
11507 		/* at least one branch bit must be set */
11508 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11509 			return -EINVAL;
11510 
11511 		/* propagate priv level, when not set for branch */
11512 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11513 
11514 			/* exclude_kernel checked on syscall entry */
11515 			if (!attr->exclude_kernel)
11516 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11517 
11518 			if (!attr->exclude_user)
11519 				mask |= PERF_SAMPLE_BRANCH_USER;
11520 
11521 			if (!attr->exclude_hv)
11522 				mask |= PERF_SAMPLE_BRANCH_HV;
11523 			/*
11524 			 * adjust user setting (for HW filter setup)
11525 			 */
11526 			attr->branch_sample_type = mask;
11527 		}
11528 		/* privileged levels capture (kernel, hv): check permissions */
11529 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11530 			ret = perf_allow_kernel(attr);
11531 			if (ret)
11532 				return ret;
11533 		}
11534 	}
11535 
11536 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11537 		ret = perf_reg_validate(attr->sample_regs_user);
11538 		if (ret)
11539 			return ret;
11540 	}
11541 
11542 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11543 		if (!arch_perf_have_user_stack_dump())
11544 			return -ENOSYS;
11545 
11546 		/*
11547 		 * We have __u32 type for the size, but so far
11548 		 * we can only use __u16 as maximum due to the
11549 		 * __u16 sample size limit.
11550 		 */
11551 		if (attr->sample_stack_user >= USHRT_MAX)
11552 			return -EINVAL;
11553 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11554 			return -EINVAL;
11555 	}
11556 
11557 	if (!attr->sample_max_stack)
11558 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11559 
11560 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11561 		ret = perf_reg_validate(attr->sample_regs_intr);
11562 
11563 #ifndef CONFIG_CGROUP_PERF
11564 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11565 		return -EINVAL;
11566 #endif
11567 
11568 out:
11569 	return ret;
11570 
11571 err_size:
11572 	put_user(sizeof(*attr), &uattr->size);
11573 	ret = -E2BIG;
11574 	goto out;
11575 }
11576 
11577 static int
11578 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11579 {
11580 	struct perf_buffer *rb = NULL;
11581 	int ret = -EINVAL;
11582 
11583 	if (!output_event)
11584 		goto set;
11585 
11586 	/* don't allow circular references */
11587 	if (event == output_event)
11588 		goto out;
11589 
11590 	/*
11591 	 * Don't allow cross-cpu buffers
11592 	 */
11593 	if (output_event->cpu != event->cpu)
11594 		goto out;
11595 
11596 	/*
11597 	 * If its not a per-cpu rb, it must be the same task.
11598 	 */
11599 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11600 		goto out;
11601 
11602 	/*
11603 	 * Mixing clocks in the same buffer is trouble you don't need.
11604 	 */
11605 	if (output_event->clock != event->clock)
11606 		goto out;
11607 
11608 	/*
11609 	 * Either writing ring buffer from beginning or from end.
11610 	 * Mixing is not allowed.
11611 	 */
11612 	if (is_write_backward(output_event) != is_write_backward(event))
11613 		goto out;
11614 
11615 	/*
11616 	 * If both events generate aux data, they must be on the same PMU
11617 	 */
11618 	if (has_aux(event) && has_aux(output_event) &&
11619 	    event->pmu != output_event->pmu)
11620 		goto out;
11621 
11622 set:
11623 	mutex_lock(&event->mmap_mutex);
11624 	/* Can't redirect output if we've got an active mmap() */
11625 	if (atomic_read(&event->mmap_count))
11626 		goto unlock;
11627 
11628 	if (output_event) {
11629 		/* get the rb we want to redirect to */
11630 		rb = ring_buffer_get(output_event);
11631 		if (!rb)
11632 			goto unlock;
11633 	}
11634 
11635 	ring_buffer_attach(event, rb);
11636 
11637 	ret = 0;
11638 unlock:
11639 	mutex_unlock(&event->mmap_mutex);
11640 
11641 out:
11642 	return ret;
11643 }
11644 
11645 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11646 {
11647 	if (b < a)
11648 		swap(a, b);
11649 
11650 	mutex_lock(a);
11651 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11652 }
11653 
11654 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11655 {
11656 	bool nmi_safe = false;
11657 
11658 	switch (clk_id) {
11659 	case CLOCK_MONOTONIC:
11660 		event->clock = &ktime_get_mono_fast_ns;
11661 		nmi_safe = true;
11662 		break;
11663 
11664 	case CLOCK_MONOTONIC_RAW:
11665 		event->clock = &ktime_get_raw_fast_ns;
11666 		nmi_safe = true;
11667 		break;
11668 
11669 	case CLOCK_REALTIME:
11670 		event->clock = &ktime_get_real_ns;
11671 		break;
11672 
11673 	case CLOCK_BOOTTIME:
11674 		event->clock = &ktime_get_boottime_ns;
11675 		break;
11676 
11677 	case CLOCK_TAI:
11678 		event->clock = &ktime_get_clocktai_ns;
11679 		break;
11680 
11681 	default:
11682 		return -EINVAL;
11683 	}
11684 
11685 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11686 		return -EINVAL;
11687 
11688 	return 0;
11689 }
11690 
11691 /*
11692  * Variation on perf_event_ctx_lock_nested(), except we take two context
11693  * mutexes.
11694  */
11695 static struct perf_event_context *
11696 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11697 			     struct perf_event_context *ctx)
11698 {
11699 	struct perf_event_context *gctx;
11700 
11701 again:
11702 	rcu_read_lock();
11703 	gctx = READ_ONCE(group_leader->ctx);
11704 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11705 		rcu_read_unlock();
11706 		goto again;
11707 	}
11708 	rcu_read_unlock();
11709 
11710 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11711 
11712 	if (group_leader->ctx != gctx) {
11713 		mutex_unlock(&ctx->mutex);
11714 		mutex_unlock(&gctx->mutex);
11715 		put_ctx(gctx);
11716 		goto again;
11717 	}
11718 
11719 	return gctx;
11720 }
11721 
11722 /**
11723  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11724  *
11725  * @attr_uptr:	event_id type attributes for monitoring/sampling
11726  * @pid:		target pid
11727  * @cpu:		target cpu
11728  * @group_fd:		group leader event fd
11729  */
11730 SYSCALL_DEFINE5(perf_event_open,
11731 		struct perf_event_attr __user *, attr_uptr,
11732 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11733 {
11734 	struct perf_event *group_leader = NULL, *output_event = NULL;
11735 	struct perf_event *event, *sibling;
11736 	struct perf_event_attr attr;
11737 	struct perf_event_context *ctx, *gctx;
11738 	struct file *event_file = NULL;
11739 	struct fd group = {NULL, 0};
11740 	struct task_struct *task = NULL;
11741 	struct pmu *pmu;
11742 	int event_fd;
11743 	int move_group = 0;
11744 	int err;
11745 	int f_flags = O_RDWR;
11746 	int cgroup_fd = -1;
11747 
11748 	/* for future expandability... */
11749 	if (flags & ~PERF_FLAG_ALL)
11750 		return -EINVAL;
11751 
11752 	/* Do we allow access to perf_event_open(2) ? */
11753 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11754 	if (err)
11755 		return err;
11756 
11757 	err = perf_copy_attr(attr_uptr, &attr);
11758 	if (err)
11759 		return err;
11760 
11761 	if (!attr.exclude_kernel) {
11762 		err = perf_allow_kernel(&attr);
11763 		if (err)
11764 			return err;
11765 	}
11766 
11767 	if (attr.namespaces) {
11768 		if (!perfmon_capable())
11769 			return -EACCES;
11770 	}
11771 
11772 	if (attr.freq) {
11773 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11774 			return -EINVAL;
11775 	} else {
11776 		if (attr.sample_period & (1ULL << 63))
11777 			return -EINVAL;
11778 	}
11779 
11780 	/* Only privileged users can get physical addresses */
11781 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11782 		err = perf_allow_kernel(&attr);
11783 		if (err)
11784 			return err;
11785 	}
11786 
11787 	err = security_locked_down(LOCKDOWN_PERF);
11788 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11789 		/* REGS_INTR can leak data, lockdown must prevent this */
11790 		return err;
11791 
11792 	err = 0;
11793 
11794 	/*
11795 	 * In cgroup mode, the pid argument is used to pass the fd
11796 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11797 	 * designates the cpu on which to monitor threads from that
11798 	 * cgroup.
11799 	 */
11800 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11801 		return -EINVAL;
11802 
11803 	if (flags & PERF_FLAG_FD_CLOEXEC)
11804 		f_flags |= O_CLOEXEC;
11805 
11806 	event_fd = get_unused_fd_flags(f_flags);
11807 	if (event_fd < 0)
11808 		return event_fd;
11809 
11810 	if (group_fd != -1) {
11811 		err = perf_fget_light(group_fd, &group);
11812 		if (err)
11813 			goto err_fd;
11814 		group_leader = group.file->private_data;
11815 		if (flags & PERF_FLAG_FD_OUTPUT)
11816 			output_event = group_leader;
11817 		if (flags & PERF_FLAG_FD_NO_GROUP)
11818 			group_leader = NULL;
11819 	}
11820 
11821 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11822 		task = find_lively_task_by_vpid(pid);
11823 		if (IS_ERR(task)) {
11824 			err = PTR_ERR(task);
11825 			goto err_group_fd;
11826 		}
11827 	}
11828 
11829 	if (task && group_leader &&
11830 	    group_leader->attr.inherit != attr.inherit) {
11831 		err = -EINVAL;
11832 		goto err_task;
11833 	}
11834 
11835 	if (flags & PERF_FLAG_PID_CGROUP)
11836 		cgroup_fd = pid;
11837 
11838 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11839 				 NULL, NULL, cgroup_fd);
11840 	if (IS_ERR(event)) {
11841 		err = PTR_ERR(event);
11842 		goto err_task;
11843 	}
11844 
11845 	if (is_sampling_event(event)) {
11846 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11847 			err = -EOPNOTSUPP;
11848 			goto err_alloc;
11849 		}
11850 	}
11851 
11852 	/*
11853 	 * Special case software events and allow them to be part of
11854 	 * any hardware group.
11855 	 */
11856 	pmu = event->pmu;
11857 
11858 	if (attr.use_clockid) {
11859 		err = perf_event_set_clock(event, attr.clockid);
11860 		if (err)
11861 			goto err_alloc;
11862 	}
11863 
11864 	if (pmu->task_ctx_nr == perf_sw_context)
11865 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11866 
11867 	if (group_leader) {
11868 		if (is_software_event(event) &&
11869 		    !in_software_context(group_leader)) {
11870 			/*
11871 			 * If the event is a sw event, but the group_leader
11872 			 * is on hw context.
11873 			 *
11874 			 * Allow the addition of software events to hw
11875 			 * groups, this is safe because software events
11876 			 * never fail to schedule.
11877 			 */
11878 			pmu = group_leader->ctx->pmu;
11879 		} else if (!is_software_event(event) &&
11880 			   is_software_event(group_leader) &&
11881 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11882 			/*
11883 			 * In case the group is a pure software group, and we
11884 			 * try to add a hardware event, move the whole group to
11885 			 * the hardware context.
11886 			 */
11887 			move_group = 1;
11888 		}
11889 	}
11890 
11891 	/*
11892 	 * Get the target context (task or percpu):
11893 	 */
11894 	ctx = find_get_context(pmu, task, event);
11895 	if (IS_ERR(ctx)) {
11896 		err = PTR_ERR(ctx);
11897 		goto err_alloc;
11898 	}
11899 
11900 	/*
11901 	 * Look up the group leader (we will attach this event to it):
11902 	 */
11903 	if (group_leader) {
11904 		err = -EINVAL;
11905 
11906 		/*
11907 		 * Do not allow a recursive hierarchy (this new sibling
11908 		 * becoming part of another group-sibling):
11909 		 */
11910 		if (group_leader->group_leader != group_leader)
11911 			goto err_context;
11912 
11913 		/* All events in a group should have the same clock */
11914 		if (group_leader->clock != event->clock)
11915 			goto err_context;
11916 
11917 		/*
11918 		 * Make sure we're both events for the same CPU;
11919 		 * grouping events for different CPUs is broken; since
11920 		 * you can never concurrently schedule them anyhow.
11921 		 */
11922 		if (group_leader->cpu != event->cpu)
11923 			goto err_context;
11924 
11925 		/*
11926 		 * Make sure we're both on the same task, or both
11927 		 * per-CPU events.
11928 		 */
11929 		if (group_leader->ctx->task != ctx->task)
11930 			goto err_context;
11931 
11932 		/*
11933 		 * Do not allow to attach to a group in a different task
11934 		 * or CPU context. If we're moving SW events, we'll fix
11935 		 * this up later, so allow that.
11936 		 */
11937 		if (!move_group && group_leader->ctx != ctx)
11938 			goto err_context;
11939 
11940 		/*
11941 		 * Only a group leader can be exclusive or pinned
11942 		 */
11943 		if (attr.exclusive || attr.pinned)
11944 			goto err_context;
11945 	}
11946 
11947 	if (output_event) {
11948 		err = perf_event_set_output(event, output_event);
11949 		if (err)
11950 			goto err_context;
11951 	}
11952 
11953 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11954 					f_flags);
11955 	if (IS_ERR(event_file)) {
11956 		err = PTR_ERR(event_file);
11957 		event_file = NULL;
11958 		goto err_context;
11959 	}
11960 
11961 	if (task) {
11962 		err = down_read_interruptible(&task->signal->exec_update_lock);
11963 		if (err)
11964 			goto err_file;
11965 
11966 		/*
11967 		 * Preserve ptrace permission check for backwards compatibility.
11968 		 *
11969 		 * We must hold exec_update_lock across this and any potential
11970 		 * perf_install_in_context() call for this new event to
11971 		 * serialize against exec() altering our credentials (and the
11972 		 * perf_event_exit_task() that could imply).
11973 		 */
11974 		err = -EACCES;
11975 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11976 			goto err_cred;
11977 	}
11978 
11979 	if (move_group) {
11980 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11981 
11982 		if (gctx->task == TASK_TOMBSTONE) {
11983 			err = -ESRCH;
11984 			goto err_locked;
11985 		}
11986 
11987 		/*
11988 		 * Check if we raced against another sys_perf_event_open() call
11989 		 * moving the software group underneath us.
11990 		 */
11991 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11992 			/*
11993 			 * If someone moved the group out from under us, check
11994 			 * if this new event wound up on the same ctx, if so
11995 			 * its the regular !move_group case, otherwise fail.
11996 			 */
11997 			if (gctx != ctx) {
11998 				err = -EINVAL;
11999 				goto err_locked;
12000 			} else {
12001 				perf_event_ctx_unlock(group_leader, gctx);
12002 				move_group = 0;
12003 			}
12004 		}
12005 
12006 		/*
12007 		 * Failure to create exclusive events returns -EBUSY.
12008 		 */
12009 		err = -EBUSY;
12010 		if (!exclusive_event_installable(group_leader, ctx))
12011 			goto err_locked;
12012 
12013 		for_each_sibling_event(sibling, group_leader) {
12014 			if (!exclusive_event_installable(sibling, ctx))
12015 				goto err_locked;
12016 		}
12017 	} else {
12018 		mutex_lock(&ctx->mutex);
12019 	}
12020 
12021 	if (ctx->task == TASK_TOMBSTONE) {
12022 		err = -ESRCH;
12023 		goto err_locked;
12024 	}
12025 
12026 	if (!perf_event_validate_size(event)) {
12027 		err = -E2BIG;
12028 		goto err_locked;
12029 	}
12030 
12031 	if (!task) {
12032 		/*
12033 		 * Check if the @cpu we're creating an event for is online.
12034 		 *
12035 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12036 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12037 		 */
12038 		struct perf_cpu_context *cpuctx =
12039 			container_of(ctx, struct perf_cpu_context, ctx);
12040 
12041 		if (!cpuctx->online) {
12042 			err = -ENODEV;
12043 			goto err_locked;
12044 		}
12045 	}
12046 
12047 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12048 		err = -EINVAL;
12049 		goto err_locked;
12050 	}
12051 
12052 	/*
12053 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12054 	 * because we need to serialize with concurrent event creation.
12055 	 */
12056 	if (!exclusive_event_installable(event, ctx)) {
12057 		err = -EBUSY;
12058 		goto err_locked;
12059 	}
12060 
12061 	WARN_ON_ONCE(ctx->parent_ctx);
12062 
12063 	/*
12064 	 * This is the point on no return; we cannot fail hereafter. This is
12065 	 * where we start modifying current state.
12066 	 */
12067 
12068 	if (move_group) {
12069 		/*
12070 		 * See perf_event_ctx_lock() for comments on the details
12071 		 * of swizzling perf_event::ctx.
12072 		 */
12073 		perf_remove_from_context(group_leader, 0);
12074 		put_ctx(gctx);
12075 
12076 		for_each_sibling_event(sibling, group_leader) {
12077 			perf_remove_from_context(sibling, 0);
12078 			put_ctx(gctx);
12079 		}
12080 
12081 		/*
12082 		 * Wait for everybody to stop referencing the events through
12083 		 * the old lists, before installing it on new lists.
12084 		 */
12085 		synchronize_rcu();
12086 
12087 		/*
12088 		 * Install the group siblings before the group leader.
12089 		 *
12090 		 * Because a group leader will try and install the entire group
12091 		 * (through the sibling list, which is still in-tact), we can
12092 		 * end up with siblings installed in the wrong context.
12093 		 *
12094 		 * By installing siblings first we NO-OP because they're not
12095 		 * reachable through the group lists.
12096 		 */
12097 		for_each_sibling_event(sibling, group_leader) {
12098 			perf_event__state_init(sibling);
12099 			perf_install_in_context(ctx, sibling, sibling->cpu);
12100 			get_ctx(ctx);
12101 		}
12102 
12103 		/*
12104 		 * Removing from the context ends up with disabled
12105 		 * event. What we want here is event in the initial
12106 		 * startup state, ready to be add into new context.
12107 		 */
12108 		perf_event__state_init(group_leader);
12109 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12110 		get_ctx(ctx);
12111 	}
12112 
12113 	/*
12114 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12115 	 * that we're serialized against further additions and before
12116 	 * perf_install_in_context() which is the point the event is active and
12117 	 * can use these values.
12118 	 */
12119 	perf_event__header_size(event);
12120 	perf_event__id_header_size(event);
12121 
12122 	event->owner = current;
12123 
12124 	perf_install_in_context(ctx, event, event->cpu);
12125 	perf_unpin_context(ctx);
12126 
12127 	if (move_group)
12128 		perf_event_ctx_unlock(group_leader, gctx);
12129 	mutex_unlock(&ctx->mutex);
12130 
12131 	if (task) {
12132 		up_read(&task->signal->exec_update_lock);
12133 		put_task_struct(task);
12134 	}
12135 
12136 	mutex_lock(&current->perf_event_mutex);
12137 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12138 	mutex_unlock(&current->perf_event_mutex);
12139 
12140 	/*
12141 	 * Drop the reference on the group_event after placing the
12142 	 * new event on the sibling_list. This ensures destruction
12143 	 * of the group leader will find the pointer to itself in
12144 	 * perf_group_detach().
12145 	 */
12146 	fdput(group);
12147 	fd_install(event_fd, event_file);
12148 	return event_fd;
12149 
12150 err_locked:
12151 	if (move_group)
12152 		perf_event_ctx_unlock(group_leader, gctx);
12153 	mutex_unlock(&ctx->mutex);
12154 err_cred:
12155 	if (task)
12156 		up_read(&task->signal->exec_update_lock);
12157 err_file:
12158 	fput(event_file);
12159 err_context:
12160 	perf_unpin_context(ctx);
12161 	put_ctx(ctx);
12162 err_alloc:
12163 	/*
12164 	 * If event_file is set, the fput() above will have called ->release()
12165 	 * and that will take care of freeing the event.
12166 	 */
12167 	if (!event_file)
12168 		free_event(event);
12169 err_task:
12170 	if (task)
12171 		put_task_struct(task);
12172 err_group_fd:
12173 	fdput(group);
12174 err_fd:
12175 	put_unused_fd(event_fd);
12176 	return err;
12177 }
12178 
12179 /**
12180  * perf_event_create_kernel_counter
12181  *
12182  * @attr: attributes of the counter to create
12183  * @cpu: cpu in which the counter is bound
12184  * @task: task to profile (NULL for percpu)
12185  */
12186 struct perf_event *
12187 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12188 				 struct task_struct *task,
12189 				 perf_overflow_handler_t overflow_handler,
12190 				 void *context)
12191 {
12192 	struct perf_event_context *ctx;
12193 	struct perf_event *event;
12194 	int err;
12195 
12196 	/*
12197 	 * Grouping is not supported for kernel events, neither is 'AUX',
12198 	 * make sure the caller's intentions are adjusted.
12199 	 */
12200 	if (attr->aux_output)
12201 		return ERR_PTR(-EINVAL);
12202 
12203 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12204 				 overflow_handler, context, -1);
12205 	if (IS_ERR(event)) {
12206 		err = PTR_ERR(event);
12207 		goto err;
12208 	}
12209 
12210 	/* Mark owner so we could distinguish it from user events. */
12211 	event->owner = TASK_TOMBSTONE;
12212 
12213 	/*
12214 	 * Get the target context (task or percpu):
12215 	 */
12216 	ctx = find_get_context(event->pmu, task, event);
12217 	if (IS_ERR(ctx)) {
12218 		err = PTR_ERR(ctx);
12219 		goto err_free;
12220 	}
12221 
12222 	WARN_ON_ONCE(ctx->parent_ctx);
12223 	mutex_lock(&ctx->mutex);
12224 	if (ctx->task == TASK_TOMBSTONE) {
12225 		err = -ESRCH;
12226 		goto err_unlock;
12227 	}
12228 
12229 	if (!task) {
12230 		/*
12231 		 * Check if the @cpu we're creating an event for is online.
12232 		 *
12233 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12234 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12235 		 */
12236 		struct perf_cpu_context *cpuctx =
12237 			container_of(ctx, struct perf_cpu_context, ctx);
12238 		if (!cpuctx->online) {
12239 			err = -ENODEV;
12240 			goto err_unlock;
12241 		}
12242 	}
12243 
12244 	if (!exclusive_event_installable(event, ctx)) {
12245 		err = -EBUSY;
12246 		goto err_unlock;
12247 	}
12248 
12249 	perf_install_in_context(ctx, event, event->cpu);
12250 	perf_unpin_context(ctx);
12251 	mutex_unlock(&ctx->mutex);
12252 
12253 	return event;
12254 
12255 err_unlock:
12256 	mutex_unlock(&ctx->mutex);
12257 	perf_unpin_context(ctx);
12258 	put_ctx(ctx);
12259 err_free:
12260 	free_event(event);
12261 err:
12262 	return ERR_PTR(err);
12263 }
12264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12265 
12266 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12267 {
12268 	struct perf_event_context *src_ctx;
12269 	struct perf_event_context *dst_ctx;
12270 	struct perf_event *event, *tmp;
12271 	LIST_HEAD(events);
12272 
12273 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12274 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12275 
12276 	/*
12277 	 * See perf_event_ctx_lock() for comments on the details
12278 	 * of swizzling perf_event::ctx.
12279 	 */
12280 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12281 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12282 				 event_entry) {
12283 		perf_remove_from_context(event, 0);
12284 		unaccount_event_cpu(event, src_cpu);
12285 		put_ctx(src_ctx);
12286 		list_add(&event->migrate_entry, &events);
12287 	}
12288 
12289 	/*
12290 	 * Wait for the events to quiesce before re-instating them.
12291 	 */
12292 	synchronize_rcu();
12293 
12294 	/*
12295 	 * Re-instate events in 2 passes.
12296 	 *
12297 	 * Skip over group leaders and only install siblings on this first
12298 	 * pass, siblings will not get enabled without a leader, however a
12299 	 * leader will enable its siblings, even if those are still on the old
12300 	 * context.
12301 	 */
12302 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12303 		if (event->group_leader == event)
12304 			continue;
12305 
12306 		list_del(&event->migrate_entry);
12307 		if (event->state >= PERF_EVENT_STATE_OFF)
12308 			event->state = PERF_EVENT_STATE_INACTIVE;
12309 		account_event_cpu(event, dst_cpu);
12310 		perf_install_in_context(dst_ctx, event, dst_cpu);
12311 		get_ctx(dst_ctx);
12312 	}
12313 
12314 	/*
12315 	 * Once all the siblings are setup properly, install the group leaders
12316 	 * to make it go.
12317 	 */
12318 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12319 		list_del(&event->migrate_entry);
12320 		if (event->state >= PERF_EVENT_STATE_OFF)
12321 			event->state = PERF_EVENT_STATE_INACTIVE;
12322 		account_event_cpu(event, dst_cpu);
12323 		perf_install_in_context(dst_ctx, event, dst_cpu);
12324 		get_ctx(dst_ctx);
12325 	}
12326 	mutex_unlock(&dst_ctx->mutex);
12327 	mutex_unlock(&src_ctx->mutex);
12328 }
12329 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12330 
12331 static void sync_child_event(struct perf_event *child_event,
12332 			       struct task_struct *child)
12333 {
12334 	struct perf_event *parent_event = child_event->parent;
12335 	u64 child_val;
12336 
12337 	if (child_event->attr.inherit_stat)
12338 		perf_event_read_event(child_event, child);
12339 
12340 	child_val = perf_event_count(child_event);
12341 
12342 	/*
12343 	 * Add back the child's count to the parent's count:
12344 	 */
12345 	atomic64_add(child_val, &parent_event->child_count);
12346 	atomic64_add(child_event->total_time_enabled,
12347 		     &parent_event->child_total_time_enabled);
12348 	atomic64_add(child_event->total_time_running,
12349 		     &parent_event->child_total_time_running);
12350 }
12351 
12352 static void
12353 perf_event_exit_event(struct perf_event *child_event,
12354 		      struct perf_event_context *child_ctx,
12355 		      struct task_struct *child)
12356 {
12357 	struct perf_event *parent_event = child_event->parent;
12358 
12359 	/*
12360 	 * Do not destroy the 'original' grouping; because of the context
12361 	 * switch optimization the original events could've ended up in a
12362 	 * random child task.
12363 	 *
12364 	 * If we were to destroy the original group, all group related
12365 	 * operations would cease to function properly after this random
12366 	 * child dies.
12367 	 *
12368 	 * Do destroy all inherited groups, we don't care about those
12369 	 * and being thorough is better.
12370 	 */
12371 	raw_spin_lock_irq(&child_ctx->lock);
12372 	WARN_ON_ONCE(child_ctx->is_active);
12373 
12374 	if (parent_event)
12375 		perf_group_detach(child_event);
12376 	list_del_event(child_event, child_ctx);
12377 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12378 	raw_spin_unlock_irq(&child_ctx->lock);
12379 
12380 	/*
12381 	 * Parent events are governed by their filedesc, retain them.
12382 	 */
12383 	if (!parent_event) {
12384 		perf_event_wakeup(child_event);
12385 		return;
12386 	}
12387 	/*
12388 	 * Child events can be cleaned up.
12389 	 */
12390 
12391 	sync_child_event(child_event, child);
12392 
12393 	/*
12394 	 * Remove this event from the parent's list
12395 	 */
12396 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12397 	mutex_lock(&parent_event->child_mutex);
12398 	list_del_init(&child_event->child_list);
12399 	mutex_unlock(&parent_event->child_mutex);
12400 
12401 	/*
12402 	 * Kick perf_poll() for is_event_hup().
12403 	 */
12404 	perf_event_wakeup(parent_event);
12405 	free_event(child_event);
12406 	put_event(parent_event);
12407 }
12408 
12409 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12410 {
12411 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12412 	struct perf_event *child_event, *next;
12413 
12414 	WARN_ON_ONCE(child != current);
12415 
12416 	child_ctx = perf_pin_task_context(child, ctxn);
12417 	if (!child_ctx)
12418 		return;
12419 
12420 	/*
12421 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12422 	 * ctx::mutex over the entire thing. This serializes against almost
12423 	 * everything that wants to access the ctx.
12424 	 *
12425 	 * The exception is sys_perf_event_open() /
12426 	 * perf_event_create_kernel_count() which does find_get_context()
12427 	 * without ctx::mutex (it cannot because of the move_group double mutex
12428 	 * lock thing). See the comments in perf_install_in_context().
12429 	 */
12430 	mutex_lock(&child_ctx->mutex);
12431 
12432 	/*
12433 	 * In a single ctx::lock section, de-schedule the events and detach the
12434 	 * context from the task such that we cannot ever get it scheduled back
12435 	 * in.
12436 	 */
12437 	raw_spin_lock_irq(&child_ctx->lock);
12438 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12439 
12440 	/*
12441 	 * Now that the context is inactive, destroy the task <-> ctx relation
12442 	 * and mark the context dead.
12443 	 */
12444 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12445 	put_ctx(child_ctx); /* cannot be last */
12446 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12447 	put_task_struct(current); /* cannot be last */
12448 
12449 	clone_ctx = unclone_ctx(child_ctx);
12450 	raw_spin_unlock_irq(&child_ctx->lock);
12451 
12452 	if (clone_ctx)
12453 		put_ctx(clone_ctx);
12454 
12455 	/*
12456 	 * Report the task dead after unscheduling the events so that we
12457 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12458 	 * get a few PERF_RECORD_READ events.
12459 	 */
12460 	perf_event_task(child, child_ctx, 0);
12461 
12462 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12463 		perf_event_exit_event(child_event, child_ctx, child);
12464 
12465 	mutex_unlock(&child_ctx->mutex);
12466 
12467 	put_ctx(child_ctx);
12468 }
12469 
12470 /*
12471  * When a child task exits, feed back event values to parent events.
12472  *
12473  * Can be called with exec_update_lock held when called from
12474  * setup_new_exec().
12475  */
12476 void perf_event_exit_task(struct task_struct *child)
12477 {
12478 	struct perf_event *event, *tmp;
12479 	int ctxn;
12480 
12481 	mutex_lock(&child->perf_event_mutex);
12482 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12483 				 owner_entry) {
12484 		list_del_init(&event->owner_entry);
12485 
12486 		/*
12487 		 * Ensure the list deletion is visible before we clear
12488 		 * the owner, closes a race against perf_release() where
12489 		 * we need to serialize on the owner->perf_event_mutex.
12490 		 */
12491 		smp_store_release(&event->owner, NULL);
12492 	}
12493 	mutex_unlock(&child->perf_event_mutex);
12494 
12495 	for_each_task_context_nr(ctxn)
12496 		perf_event_exit_task_context(child, ctxn);
12497 
12498 	/*
12499 	 * The perf_event_exit_task_context calls perf_event_task
12500 	 * with child's task_ctx, which generates EXIT events for
12501 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12502 	 * At this point we need to send EXIT events to cpu contexts.
12503 	 */
12504 	perf_event_task(child, NULL, 0);
12505 }
12506 
12507 static void perf_free_event(struct perf_event *event,
12508 			    struct perf_event_context *ctx)
12509 {
12510 	struct perf_event *parent = event->parent;
12511 
12512 	if (WARN_ON_ONCE(!parent))
12513 		return;
12514 
12515 	mutex_lock(&parent->child_mutex);
12516 	list_del_init(&event->child_list);
12517 	mutex_unlock(&parent->child_mutex);
12518 
12519 	put_event(parent);
12520 
12521 	raw_spin_lock_irq(&ctx->lock);
12522 	perf_group_detach(event);
12523 	list_del_event(event, ctx);
12524 	raw_spin_unlock_irq(&ctx->lock);
12525 	free_event(event);
12526 }
12527 
12528 /*
12529  * Free a context as created by inheritance by perf_event_init_task() below,
12530  * used by fork() in case of fail.
12531  *
12532  * Even though the task has never lived, the context and events have been
12533  * exposed through the child_list, so we must take care tearing it all down.
12534  */
12535 void perf_event_free_task(struct task_struct *task)
12536 {
12537 	struct perf_event_context *ctx;
12538 	struct perf_event *event, *tmp;
12539 	int ctxn;
12540 
12541 	for_each_task_context_nr(ctxn) {
12542 		ctx = task->perf_event_ctxp[ctxn];
12543 		if (!ctx)
12544 			continue;
12545 
12546 		mutex_lock(&ctx->mutex);
12547 		raw_spin_lock_irq(&ctx->lock);
12548 		/*
12549 		 * Destroy the task <-> ctx relation and mark the context dead.
12550 		 *
12551 		 * This is important because even though the task hasn't been
12552 		 * exposed yet the context has been (through child_list).
12553 		 */
12554 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12555 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12556 		put_task_struct(task); /* cannot be last */
12557 		raw_spin_unlock_irq(&ctx->lock);
12558 
12559 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12560 			perf_free_event(event, ctx);
12561 
12562 		mutex_unlock(&ctx->mutex);
12563 
12564 		/*
12565 		 * perf_event_release_kernel() could've stolen some of our
12566 		 * child events and still have them on its free_list. In that
12567 		 * case we must wait for these events to have been freed (in
12568 		 * particular all their references to this task must've been
12569 		 * dropped).
12570 		 *
12571 		 * Without this copy_process() will unconditionally free this
12572 		 * task (irrespective of its reference count) and
12573 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12574 		 * use-after-free.
12575 		 *
12576 		 * Wait for all events to drop their context reference.
12577 		 */
12578 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12579 		put_ctx(ctx); /* must be last */
12580 	}
12581 }
12582 
12583 void perf_event_delayed_put(struct task_struct *task)
12584 {
12585 	int ctxn;
12586 
12587 	for_each_task_context_nr(ctxn)
12588 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12589 }
12590 
12591 struct file *perf_event_get(unsigned int fd)
12592 {
12593 	struct file *file = fget(fd);
12594 	if (!file)
12595 		return ERR_PTR(-EBADF);
12596 
12597 	if (file->f_op != &perf_fops) {
12598 		fput(file);
12599 		return ERR_PTR(-EBADF);
12600 	}
12601 
12602 	return file;
12603 }
12604 
12605 const struct perf_event *perf_get_event(struct file *file)
12606 {
12607 	if (file->f_op != &perf_fops)
12608 		return ERR_PTR(-EINVAL);
12609 
12610 	return file->private_data;
12611 }
12612 
12613 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12614 {
12615 	if (!event)
12616 		return ERR_PTR(-EINVAL);
12617 
12618 	return &event->attr;
12619 }
12620 
12621 /*
12622  * Inherit an event from parent task to child task.
12623  *
12624  * Returns:
12625  *  - valid pointer on success
12626  *  - NULL for orphaned events
12627  *  - IS_ERR() on error
12628  */
12629 static struct perf_event *
12630 inherit_event(struct perf_event *parent_event,
12631 	      struct task_struct *parent,
12632 	      struct perf_event_context *parent_ctx,
12633 	      struct task_struct *child,
12634 	      struct perf_event *group_leader,
12635 	      struct perf_event_context *child_ctx)
12636 {
12637 	enum perf_event_state parent_state = parent_event->state;
12638 	struct perf_event *child_event;
12639 	unsigned long flags;
12640 
12641 	/*
12642 	 * Instead of creating recursive hierarchies of events,
12643 	 * we link inherited events back to the original parent,
12644 	 * which has a filp for sure, which we use as the reference
12645 	 * count:
12646 	 */
12647 	if (parent_event->parent)
12648 		parent_event = parent_event->parent;
12649 
12650 	child_event = perf_event_alloc(&parent_event->attr,
12651 					   parent_event->cpu,
12652 					   child,
12653 					   group_leader, parent_event,
12654 					   NULL, NULL, -1);
12655 	if (IS_ERR(child_event))
12656 		return child_event;
12657 
12658 
12659 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12660 	    !child_ctx->task_ctx_data) {
12661 		struct pmu *pmu = child_event->pmu;
12662 
12663 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12664 		if (!child_ctx->task_ctx_data) {
12665 			free_event(child_event);
12666 			return ERR_PTR(-ENOMEM);
12667 		}
12668 	}
12669 
12670 	/*
12671 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12672 	 * must be under the same lock in order to serialize against
12673 	 * perf_event_release_kernel(), such that either we must observe
12674 	 * is_orphaned_event() or they will observe us on the child_list.
12675 	 */
12676 	mutex_lock(&parent_event->child_mutex);
12677 	if (is_orphaned_event(parent_event) ||
12678 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12679 		mutex_unlock(&parent_event->child_mutex);
12680 		/* task_ctx_data is freed with child_ctx */
12681 		free_event(child_event);
12682 		return NULL;
12683 	}
12684 
12685 	get_ctx(child_ctx);
12686 
12687 	/*
12688 	 * Make the child state follow the state of the parent event,
12689 	 * not its attr.disabled bit.  We hold the parent's mutex,
12690 	 * so we won't race with perf_event_{en, dis}able_family.
12691 	 */
12692 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12693 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12694 	else
12695 		child_event->state = PERF_EVENT_STATE_OFF;
12696 
12697 	if (parent_event->attr.freq) {
12698 		u64 sample_period = parent_event->hw.sample_period;
12699 		struct hw_perf_event *hwc = &child_event->hw;
12700 
12701 		hwc->sample_period = sample_period;
12702 		hwc->last_period   = sample_period;
12703 
12704 		local64_set(&hwc->period_left, sample_period);
12705 	}
12706 
12707 	child_event->ctx = child_ctx;
12708 	child_event->overflow_handler = parent_event->overflow_handler;
12709 	child_event->overflow_handler_context
12710 		= parent_event->overflow_handler_context;
12711 
12712 	/*
12713 	 * Precalculate sample_data sizes
12714 	 */
12715 	perf_event__header_size(child_event);
12716 	perf_event__id_header_size(child_event);
12717 
12718 	/*
12719 	 * Link it up in the child's context:
12720 	 */
12721 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12722 	add_event_to_ctx(child_event, child_ctx);
12723 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12724 
12725 	/*
12726 	 * Link this into the parent event's child list
12727 	 */
12728 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12729 	mutex_unlock(&parent_event->child_mutex);
12730 
12731 	return child_event;
12732 }
12733 
12734 /*
12735  * Inherits an event group.
12736  *
12737  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12738  * This matches with perf_event_release_kernel() removing all child events.
12739  *
12740  * Returns:
12741  *  - 0 on success
12742  *  - <0 on error
12743  */
12744 static int inherit_group(struct perf_event *parent_event,
12745 	      struct task_struct *parent,
12746 	      struct perf_event_context *parent_ctx,
12747 	      struct task_struct *child,
12748 	      struct perf_event_context *child_ctx)
12749 {
12750 	struct perf_event *leader;
12751 	struct perf_event *sub;
12752 	struct perf_event *child_ctr;
12753 
12754 	leader = inherit_event(parent_event, parent, parent_ctx,
12755 				 child, NULL, child_ctx);
12756 	if (IS_ERR(leader))
12757 		return PTR_ERR(leader);
12758 	/*
12759 	 * @leader can be NULL here because of is_orphaned_event(). In this
12760 	 * case inherit_event() will create individual events, similar to what
12761 	 * perf_group_detach() would do anyway.
12762 	 */
12763 	for_each_sibling_event(sub, parent_event) {
12764 		child_ctr = inherit_event(sub, parent, parent_ctx,
12765 					    child, leader, child_ctx);
12766 		if (IS_ERR(child_ctr))
12767 			return PTR_ERR(child_ctr);
12768 
12769 		if (sub->aux_event == parent_event && child_ctr &&
12770 		    !perf_get_aux_event(child_ctr, leader))
12771 			return -EINVAL;
12772 	}
12773 	return 0;
12774 }
12775 
12776 /*
12777  * Creates the child task context and tries to inherit the event-group.
12778  *
12779  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12780  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12781  * consistent with perf_event_release_kernel() removing all child events.
12782  *
12783  * Returns:
12784  *  - 0 on success
12785  *  - <0 on error
12786  */
12787 static int
12788 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12789 		   struct perf_event_context *parent_ctx,
12790 		   struct task_struct *child, int ctxn,
12791 		   int *inherited_all)
12792 {
12793 	int ret;
12794 	struct perf_event_context *child_ctx;
12795 
12796 	if (!event->attr.inherit) {
12797 		*inherited_all = 0;
12798 		return 0;
12799 	}
12800 
12801 	child_ctx = child->perf_event_ctxp[ctxn];
12802 	if (!child_ctx) {
12803 		/*
12804 		 * This is executed from the parent task context, so
12805 		 * inherit events that have been marked for cloning.
12806 		 * First allocate and initialize a context for the
12807 		 * child.
12808 		 */
12809 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12810 		if (!child_ctx)
12811 			return -ENOMEM;
12812 
12813 		child->perf_event_ctxp[ctxn] = child_ctx;
12814 	}
12815 
12816 	ret = inherit_group(event, parent, parent_ctx,
12817 			    child, child_ctx);
12818 
12819 	if (ret)
12820 		*inherited_all = 0;
12821 
12822 	return ret;
12823 }
12824 
12825 /*
12826  * Initialize the perf_event context in task_struct
12827  */
12828 static int perf_event_init_context(struct task_struct *child, int ctxn)
12829 {
12830 	struct perf_event_context *child_ctx, *parent_ctx;
12831 	struct perf_event_context *cloned_ctx;
12832 	struct perf_event *event;
12833 	struct task_struct *parent = current;
12834 	int inherited_all = 1;
12835 	unsigned long flags;
12836 	int ret = 0;
12837 
12838 	if (likely(!parent->perf_event_ctxp[ctxn]))
12839 		return 0;
12840 
12841 	/*
12842 	 * If the parent's context is a clone, pin it so it won't get
12843 	 * swapped under us.
12844 	 */
12845 	parent_ctx = perf_pin_task_context(parent, ctxn);
12846 	if (!parent_ctx)
12847 		return 0;
12848 
12849 	/*
12850 	 * No need to check if parent_ctx != NULL here; since we saw
12851 	 * it non-NULL earlier, the only reason for it to become NULL
12852 	 * is if we exit, and since we're currently in the middle of
12853 	 * a fork we can't be exiting at the same time.
12854 	 */
12855 
12856 	/*
12857 	 * Lock the parent list. No need to lock the child - not PID
12858 	 * hashed yet and not running, so nobody can access it.
12859 	 */
12860 	mutex_lock(&parent_ctx->mutex);
12861 
12862 	/*
12863 	 * We dont have to disable NMIs - we are only looking at
12864 	 * the list, not manipulating it:
12865 	 */
12866 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12867 		ret = inherit_task_group(event, parent, parent_ctx,
12868 					 child, ctxn, &inherited_all);
12869 		if (ret)
12870 			goto out_unlock;
12871 	}
12872 
12873 	/*
12874 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12875 	 * to allocations, but we need to prevent rotation because
12876 	 * rotate_ctx() will change the list from interrupt context.
12877 	 */
12878 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12879 	parent_ctx->rotate_disable = 1;
12880 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12881 
12882 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12883 		ret = inherit_task_group(event, parent, parent_ctx,
12884 					 child, ctxn, &inherited_all);
12885 		if (ret)
12886 			goto out_unlock;
12887 	}
12888 
12889 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12890 	parent_ctx->rotate_disable = 0;
12891 
12892 	child_ctx = child->perf_event_ctxp[ctxn];
12893 
12894 	if (child_ctx && inherited_all) {
12895 		/*
12896 		 * Mark the child context as a clone of the parent
12897 		 * context, or of whatever the parent is a clone of.
12898 		 *
12899 		 * Note that if the parent is a clone, the holding of
12900 		 * parent_ctx->lock avoids it from being uncloned.
12901 		 */
12902 		cloned_ctx = parent_ctx->parent_ctx;
12903 		if (cloned_ctx) {
12904 			child_ctx->parent_ctx = cloned_ctx;
12905 			child_ctx->parent_gen = parent_ctx->parent_gen;
12906 		} else {
12907 			child_ctx->parent_ctx = parent_ctx;
12908 			child_ctx->parent_gen = parent_ctx->generation;
12909 		}
12910 		get_ctx(child_ctx->parent_ctx);
12911 	}
12912 
12913 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12914 out_unlock:
12915 	mutex_unlock(&parent_ctx->mutex);
12916 
12917 	perf_unpin_context(parent_ctx);
12918 	put_ctx(parent_ctx);
12919 
12920 	return ret;
12921 }
12922 
12923 /*
12924  * Initialize the perf_event context in task_struct
12925  */
12926 int perf_event_init_task(struct task_struct *child)
12927 {
12928 	int ctxn, ret;
12929 
12930 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12931 	mutex_init(&child->perf_event_mutex);
12932 	INIT_LIST_HEAD(&child->perf_event_list);
12933 
12934 	for_each_task_context_nr(ctxn) {
12935 		ret = perf_event_init_context(child, ctxn);
12936 		if (ret) {
12937 			perf_event_free_task(child);
12938 			return ret;
12939 		}
12940 	}
12941 
12942 	return 0;
12943 }
12944 
12945 static void __init perf_event_init_all_cpus(void)
12946 {
12947 	struct swevent_htable *swhash;
12948 	int cpu;
12949 
12950 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12951 
12952 	for_each_possible_cpu(cpu) {
12953 		swhash = &per_cpu(swevent_htable, cpu);
12954 		mutex_init(&swhash->hlist_mutex);
12955 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12956 
12957 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12958 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12959 
12960 #ifdef CONFIG_CGROUP_PERF
12961 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12962 #endif
12963 	}
12964 }
12965 
12966 static void perf_swevent_init_cpu(unsigned int cpu)
12967 {
12968 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12969 
12970 	mutex_lock(&swhash->hlist_mutex);
12971 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12972 		struct swevent_hlist *hlist;
12973 
12974 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12975 		WARN_ON(!hlist);
12976 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12977 	}
12978 	mutex_unlock(&swhash->hlist_mutex);
12979 }
12980 
12981 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12982 static void __perf_event_exit_context(void *__info)
12983 {
12984 	struct perf_event_context *ctx = __info;
12985 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12986 	struct perf_event *event;
12987 
12988 	raw_spin_lock(&ctx->lock);
12989 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12990 	list_for_each_entry(event, &ctx->event_list, event_entry)
12991 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12992 	raw_spin_unlock(&ctx->lock);
12993 }
12994 
12995 static void perf_event_exit_cpu_context(int cpu)
12996 {
12997 	struct perf_cpu_context *cpuctx;
12998 	struct perf_event_context *ctx;
12999 	struct pmu *pmu;
13000 
13001 	mutex_lock(&pmus_lock);
13002 	list_for_each_entry(pmu, &pmus, entry) {
13003 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13004 		ctx = &cpuctx->ctx;
13005 
13006 		mutex_lock(&ctx->mutex);
13007 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13008 		cpuctx->online = 0;
13009 		mutex_unlock(&ctx->mutex);
13010 	}
13011 	cpumask_clear_cpu(cpu, perf_online_mask);
13012 	mutex_unlock(&pmus_lock);
13013 }
13014 #else
13015 
13016 static void perf_event_exit_cpu_context(int cpu) { }
13017 
13018 #endif
13019 
13020 int perf_event_init_cpu(unsigned int cpu)
13021 {
13022 	struct perf_cpu_context *cpuctx;
13023 	struct perf_event_context *ctx;
13024 	struct pmu *pmu;
13025 
13026 	perf_swevent_init_cpu(cpu);
13027 
13028 	mutex_lock(&pmus_lock);
13029 	cpumask_set_cpu(cpu, perf_online_mask);
13030 	list_for_each_entry(pmu, &pmus, entry) {
13031 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13032 		ctx = &cpuctx->ctx;
13033 
13034 		mutex_lock(&ctx->mutex);
13035 		cpuctx->online = 1;
13036 		mutex_unlock(&ctx->mutex);
13037 	}
13038 	mutex_unlock(&pmus_lock);
13039 
13040 	return 0;
13041 }
13042 
13043 int perf_event_exit_cpu(unsigned int cpu)
13044 {
13045 	perf_event_exit_cpu_context(cpu);
13046 	return 0;
13047 }
13048 
13049 static int
13050 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13051 {
13052 	int cpu;
13053 
13054 	for_each_online_cpu(cpu)
13055 		perf_event_exit_cpu(cpu);
13056 
13057 	return NOTIFY_OK;
13058 }
13059 
13060 /*
13061  * Run the perf reboot notifier at the very last possible moment so that
13062  * the generic watchdog code runs as long as possible.
13063  */
13064 static struct notifier_block perf_reboot_notifier = {
13065 	.notifier_call = perf_reboot,
13066 	.priority = INT_MIN,
13067 };
13068 
13069 void __init perf_event_init(void)
13070 {
13071 	int ret;
13072 
13073 	idr_init(&pmu_idr);
13074 
13075 	perf_event_init_all_cpus();
13076 	init_srcu_struct(&pmus_srcu);
13077 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13078 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13079 	perf_pmu_register(&perf_task_clock, NULL, -1);
13080 	perf_tp_register();
13081 	perf_event_init_cpu(smp_processor_id());
13082 	register_reboot_notifier(&perf_reboot_notifier);
13083 
13084 	ret = init_hw_breakpoint();
13085 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13086 
13087 	/*
13088 	 * Build time assertion that we keep the data_head at the intended
13089 	 * location.  IOW, validation we got the __reserved[] size right.
13090 	 */
13091 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13092 		     != 1024);
13093 }
13094 
13095 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13096 			      char *page)
13097 {
13098 	struct perf_pmu_events_attr *pmu_attr =
13099 		container_of(attr, struct perf_pmu_events_attr, attr);
13100 
13101 	if (pmu_attr->event_str)
13102 		return sprintf(page, "%s\n", pmu_attr->event_str);
13103 
13104 	return 0;
13105 }
13106 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13107 
13108 static int __init perf_event_sysfs_init(void)
13109 {
13110 	struct pmu *pmu;
13111 	int ret;
13112 
13113 	mutex_lock(&pmus_lock);
13114 
13115 	ret = bus_register(&pmu_bus);
13116 	if (ret)
13117 		goto unlock;
13118 
13119 	list_for_each_entry(pmu, &pmus, entry) {
13120 		if (!pmu->name || pmu->type < 0)
13121 			continue;
13122 
13123 		ret = pmu_dev_alloc(pmu);
13124 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13125 	}
13126 	pmu_bus_running = 1;
13127 	ret = 0;
13128 
13129 unlock:
13130 	mutex_unlock(&pmus_lock);
13131 
13132 	return ret;
13133 }
13134 device_initcall(perf_event_sysfs_init);
13135 
13136 #ifdef CONFIG_CGROUP_PERF
13137 static struct cgroup_subsys_state *
13138 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13139 {
13140 	struct perf_cgroup *jc;
13141 
13142 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13143 	if (!jc)
13144 		return ERR_PTR(-ENOMEM);
13145 
13146 	jc->info = alloc_percpu(struct perf_cgroup_info);
13147 	if (!jc->info) {
13148 		kfree(jc);
13149 		return ERR_PTR(-ENOMEM);
13150 	}
13151 
13152 	return &jc->css;
13153 }
13154 
13155 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13156 {
13157 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13158 
13159 	free_percpu(jc->info);
13160 	kfree(jc);
13161 }
13162 
13163 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13164 {
13165 	perf_event_cgroup(css->cgroup);
13166 	return 0;
13167 }
13168 
13169 static int __perf_cgroup_move(void *info)
13170 {
13171 	struct task_struct *task = info;
13172 	rcu_read_lock();
13173 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13174 	rcu_read_unlock();
13175 	return 0;
13176 }
13177 
13178 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13179 {
13180 	struct task_struct *task;
13181 	struct cgroup_subsys_state *css;
13182 
13183 	cgroup_taskset_for_each(task, css, tset)
13184 		task_function_call(task, __perf_cgroup_move, task);
13185 }
13186 
13187 struct cgroup_subsys perf_event_cgrp_subsys = {
13188 	.css_alloc	= perf_cgroup_css_alloc,
13189 	.css_free	= perf_cgroup_css_free,
13190 	.css_online	= perf_cgroup_css_online,
13191 	.attach		= perf_cgroup_attach,
13192 	/*
13193 	 * Implicitly enable on dfl hierarchy so that perf events can
13194 	 * always be filtered by cgroup2 path as long as perf_event
13195 	 * controller is not mounted on a legacy hierarchy.
13196 	 */
13197 	.implicit_on_dfl = true,
13198 	.threaded	= true,
13199 };
13200 #endif /* CONFIG_CGROUP_PERF */
13201