xref: /linux/kernel/events/core.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 
467 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469 
470 static int perf_sample_allowed_ns __read_mostly =
471 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472 
473 static void update_perf_cpu_limits(void)
474 {
475 	u64 tmp = perf_sample_period_ns;
476 
477 	tmp *= sysctl_perf_cpu_time_max_percent;
478 	tmp = div_u64(tmp, 100);
479 	if (!tmp)
480 		tmp = 1;
481 
482 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484 
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486 
487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 				       void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 	/*
493 	 * If throttling is disabled don't allow the write:
494 	 */
495 	if (write && (perf_cpu == 100 || perf_cpu == 0))
496 		return -EINVAL;
497 
498 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 	if (ret || !write)
500 		return ret;
501 
502 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 	update_perf_cpu_limits();
505 
506 	return 0;
507 }
508 
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510 
511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539 
540 static u64 __report_avg;
541 static u64 __report_allowed;
542 
543 static void perf_duration_warn(struct irq_work *w)
544 {
545 	printk_ratelimited(KERN_INFO
546 		"perf: interrupt took too long (%lld > %lld), lowering "
547 		"kernel.perf_event_max_sample_rate to %d\n",
548 		__report_avg, __report_allowed,
549 		sysctl_perf_event_sample_rate);
550 }
551 
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553 
554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 	u64 running_len;
558 	u64 avg_len;
559 	u32 max;
560 
561 	if (max_len == 0)
562 		return;
563 
564 	/* Decay the counter by 1 average sample. */
565 	running_len = __this_cpu_read(running_sample_length);
566 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 	running_len += sample_len_ns;
568 	__this_cpu_write(running_sample_length, running_len);
569 
570 	/*
571 	 * Note: this will be biased artificially low until we have
572 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 	 * from having to maintain a count.
574 	 */
575 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 	if (avg_len <= max_len)
577 		return;
578 
579 	__report_avg = avg_len;
580 	__report_allowed = max_len;
581 
582 	/*
583 	 * Compute a throttle threshold 25% below the current duration.
584 	 */
585 	avg_len += avg_len / 4;
586 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 	if (avg_len < max)
588 		max /= (u32)avg_len;
589 	else
590 		max = 1;
591 
592 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 	WRITE_ONCE(max_samples_per_tick, max);
594 
595 	sysctl_perf_event_sample_rate = max * HZ;
596 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597 
598 	if (!irq_work_queue(&perf_duration_work)) {
599 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 			     "kernel.perf_event_max_sample_rate to %d\n",
601 			     __report_avg, __report_allowed,
602 			     sysctl_perf_event_sample_rate);
603 	}
604 }
605 
606 static atomic64_t perf_event_id;
607 
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610 
611 void __weak perf_event_print_debug(void)	{ }
612 
613 static inline u64 perf_clock(void)
614 {
615 	return local_clock();
616 }
617 
618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 	return event->clock();
621 }
622 
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644 
645 static __always_inline enum perf_event_state
646 __perf_effective_state(struct perf_event *event)
647 {
648 	struct perf_event *leader = event->group_leader;
649 
650 	if (leader->state <= PERF_EVENT_STATE_OFF)
651 		return leader->state;
652 
653 	return event->state;
654 }
655 
656 static __always_inline void
657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 	enum perf_event_state state = __perf_effective_state(event);
660 	u64 delta = now - event->tstamp;
661 
662 	*enabled = event->total_time_enabled;
663 	if (state >= PERF_EVENT_STATE_INACTIVE)
664 		*enabled += delta;
665 
666 	*running = event->total_time_running;
667 	if (state >= PERF_EVENT_STATE_ACTIVE)
668 		*running += delta;
669 }
670 
671 static void perf_event_update_time(struct perf_event *event)
672 {
673 	u64 now = perf_event_time(event);
674 
675 	__perf_update_times(event, now, &event->total_time_enabled,
676 					&event->total_time_running);
677 	event->tstamp = now;
678 }
679 
680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 	struct perf_event *sibling;
683 
684 	for_each_sibling_event(sibling, leader)
685 		perf_event_update_time(sibling);
686 }
687 
688 static void
689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 	if (event->state == state)
692 		return;
693 
694 	perf_event_update_time(event);
695 	/*
696 	 * If a group leader gets enabled/disabled all its siblings
697 	 * are affected too.
698 	 */
699 	if ((event->state < 0) ^ (state < 0))
700 		perf_event_update_sibling_time(event);
701 
702 	WRITE_ONCE(event->state, state);
703 }
704 
705 /*
706  * UP store-release, load-acquire
707  */
708 
709 #define __store_release(ptr, val)					\
710 do {									\
711 	barrier();							\
712 	WRITE_ONCE(*(ptr), (val));					\
713 } while (0)
714 
715 #define __load_acquire(ptr)						\
716 ({									\
717 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718 	barrier();							\
719 	___p;								\
720 })
721 
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 		if (_cgroup && !_epc->nr_cgroups)			\
725 			continue;					\
726 		else if (_pmu && _epc->pmu != _pmu)			\
727 			continue;					\
728 		else
729 
730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 	struct perf_event_pmu_context *pmu_ctx;
733 
734 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 		perf_pmu_disable(pmu_ctx->pmu);
736 }
737 
738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 	struct perf_event_pmu_context *pmu_ctx;
741 
742 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 		perf_pmu_enable(pmu_ctx->pmu);
744 }
745 
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748 
749 #ifdef CONFIG_CGROUP_PERF
750 
751 static inline bool
752 perf_cgroup_match(struct perf_event *event)
753 {
754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755 
756 	/* @event doesn't care about cgroup */
757 	if (!event->cgrp)
758 		return true;
759 
760 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761 	if (!cpuctx->cgrp)
762 		return false;
763 
764 	/*
765 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766 	 * also enabled for all its descendant cgroups.  If @cpuctx's
767 	 * cgroup is a descendant of @event's (the test covers identity
768 	 * case), it's a match.
769 	 */
770 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 				    event->cgrp->css.cgroup);
772 }
773 
774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 	css_put(&event->cgrp->css);
777 	event->cgrp = NULL;
778 }
779 
780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 	return event->cgrp != NULL;
783 }
784 
785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 	struct perf_cgroup_info *t;
788 
789 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 	return t->time;
791 }
792 
793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 	struct perf_cgroup_info *t;
796 
797 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 	if (!__load_acquire(&t->active))
799 		return t->time;
800 	now += READ_ONCE(t->timeoffset);
801 	return now;
802 }
803 
804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 	if (adv)
807 		info->time += now - info->timestamp;
808 	info->timestamp = now;
809 	/*
810 	 * see update_context_time()
811 	 */
812 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814 
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 	struct perf_cgroup *cgrp = cpuctx->cgrp;
818 	struct cgroup_subsys_state *css;
819 	struct perf_cgroup_info *info;
820 
821 	if (cgrp) {
822 		u64 now = perf_clock();
823 
824 		for (css = &cgrp->css; css; css = css->parent) {
825 			cgrp = container_of(css, struct perf_cgroup, css);
826 			info = this_cpu_ptr(cgrp->info);
827 
828 			__update_cgrp_time(info, now, true);
829 			if (final)
830 				__store_release(&info->active, 0);
831 		}
832 	}
833 }
834 
835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 	struct perf_cgroup_info *info;
838 
839 	/*
840 	 * ensure we access cgroup data only when needed and
841 	 * when we know the cgroup is pinned (css_get)
842 	 */
843 	if (!is_cgroup_event(event))
844 		return;
845 
846 	info = this_cpu_ptr(event->cgrp->info);
847 	/*
848 	 * Do not update time when cgroup is not active
849 	 */
850 	if (info->active)
851 		__update_cgrp_time(info, perf_clock(), true);
852 }
853 
854 static inline void
855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 	struct perf_event_context *ctx = &cpuctx->ctx;
858 	struct perf_cgroup *cgrp = cpuctx->cgrp;
859 	struct perf_cgroup_info *info;
860 	struct cgroup_subsys_state *css;
861 
862 	/*
863 	 * ctx->lock held by caller
864 	 * ensure we do not access cgroup data
865 	 * unless we have the cgroup pinned (css_get)
866 	 */
867 	if (!cgrp)
868 		return;
869 
870 	WARN_ON_ONCE(!ctx->nr_cgroups);
871 
872 	for (css = &cgrp->css; css; css = css->parent) {
873 		cgrp = container_of(css, struct perf_cgroup, css);
874 		info = this_cpu_ptr(cgrp->info);
875 		__update_cgrp_time(info, ctx->timestamp, false);
876 		__store_release(&info->active, 1);
877 	}
878 }
879 
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 	struct perf_cgroup *cgrp;
887 
888 	/*
889 	 * cpuctx->cgrp is set when the first cgroup event enabled,
890 	 * and is cleared when the last cgroup event disabled.
891 	 */
892 	if (READ_ONCE(cpuctx->cgrp) == NULL)
893 		return;
894 
895 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896 
897 	cgrp = perf_cgroup_from_task(task, NULL);
898 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 		return;
900 
901 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 	perf_ctx_disable(&cpuctx->ctx, true);
903 
904 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 	/*
906 	 * must not be done before ctxswout due
907 	 * to update_cgrp_time_from_cpuctx() in
908 	 * ctx_sched_out()
909 	 */
910 	cpuctx->cgrp = cgrp;
911 	/*
912 	 * set cgrp before ctxsw in to allow
913 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 	 * to not have to pass task around
915 	 */
916 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917 
918 	perf_ctx_enable(&cpuctx->ctx, true);
919 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921 
922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 				struct cgroup_subsys_state *css)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	struct perf_event **storage;
927 	int cpu, heap_size, ret = 0;
928 
929 	/*
930 	 * Allow storage to have sufficient space for an iterator for each
931 	 * possibly nested cgroup plus an iterator for events with no cgroup.
932 	 */
933 	for (heap_size = 1; css; css = css->parent)
934 		heap_size++;
935 
936 	for_each_possible_cpu(cpu) {
937 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 		if (heap_size <= cpuctx->heap_size)
939 			continue;
940 
941 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 				       GFP_KERNEL, cpu_to_node(cpu));
943 		if (!storage) {
944 			ret = -ENOMEM;
945 			break;
946 		}
947 
948 		raw_spin_lock_irq(&cpuctx->ctx.lock);
949 		if (cpuctx->heap_size < heap_size) {
950 			swap(cpuctx->heap, storage);
951 			if (storage == cpuctx->heap_default)
952 				storage = NULL;
953 			cpuctx->heap_size = heap_size;
954 		}
955 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956 
957 		kfree(storage);
958 	}
959 
960 	return ret;
961 }
962 
963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 				      struct perf_event_attr *attr,
965 				      struct perf_event *group_leader)
966 {
967 	struct perf_cgroup *cgrp;
968 	struct cgroup_subsys_state *css;
969 	struct fd f = fdget(fd);
970 	int ret = 0;
971 
972 	if (!fd_file(f))
973 		return -EBADF;
974 
975 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 					 &perf_event_cgrp_subsys);
977 	if (IS_ERR(css)) {
978 		ret = PTR_ERR(css);
979 		goto out;
980 	}
981 
982 	ret = perf_cgroup_ensure_storage(event, css);
983 	if (ret)
984 		goto out;
985 
986 	cgrp = container_of(css, struct perf_cgroup, css);
987 	event->cgrp = cgrp;
988 
989 	/*
990 	 * all events in a group must monitor
991 	 * the same cgroup because a task belongs
992 	 * to only one perf cgroup at a time
993 	 */
994 	if (group_leader && group_leader->cgrp != cgrp) {
995 		perf_detach_cgroup(event);
996 		ret = -EINVAL;
997 	}
998 out:
999 	fdput(f);
1000 	return ret;
1001 }
1002 
1003 static inline void
1004 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1005 {
1006 	struct perf_cpu_context *cpuctx;
1007 
1008 	if (!is_cgroup_event(event))
1009 		return;
1010 
1011 	event->pmu_ctx->nr_cgroups++;
1012 
1013 	/*
1014 	 * Because cgroup events are always per-cpu events,
1015 	 * @ctx == &cpuctx->ctx.
1016 	 */
1017 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1023 }
1024 
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 	struct perf_cpu_context *cpuctx;
1029 
1030 	if (!is_cgroup_event(event))
1031 		return;
1032 
1033 	event->pmu_ctx->nr_cgroups--;
1034 
1035 	/*
1036 	 * Because cgroup events are always per-cpu events,
1037 	 * @ctx == &cpuctx->ctx.
1038 	 */
1039 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1040 
1041 	if (--ctx->nr_cgroups)
1042 		return;
1043 
1044 	cpuctx->cgrp = NULL;
1045 }
1046 
1047 #else /* !CONFIG_CGROUP_PERF */
1048 
1049 static inline bool
1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052 	return true;
1053 }
1054 
1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057 
1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060 	return 0;
1061 }
1062 
1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066 
1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1068 						bool final)
1069 {
1070 }
1071 
1072 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1073 				      struct perf_event_attr *attr,
1074 				      struct perf_event *group_leader)
1075 {
1076 	return -EINVAL;
1077 }
1078 
1079 static inline void
1080 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1081 {
1082 }
1083 
1084 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1085 {
1086 	return 0;
1087 }
1088 
1089 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1090 {
1091 	return 0;
1092 }
1093 
1094 static inline void
1095 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 }
1098 
1099 static inline void
1100 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1101 {
1102 }
1103 
1104 static void perf_cgroup_switch(struct task_struct *task)
1105 {
1106 }
1107 #endif
1108 
1109 /*
1110  * set default to be dependent on timer tick just
1111  * like original code
1112  */
1113 #define PERF_CPU_HRTIMER (1000 / HZ)
1114 /*
1115  * function must be called with interrupts disabled
1116  */
1117 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1118 {
1119 	struct perf_cpu_pmu_context *cpc;
1120 	bool rotations;
1121 
1122 	lockdep_assert_irqs_disabled();
1123 
1124 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1125 	rotations = perf_rotate_context(cpc);
1126 
1127 	raw_spin_lock(&cpc->hrtimer_lock);
1128 	if (rotations)
1129 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1130 	else
1131 		cpc->hrtimer_active = 0;
1132 	raw_spin_unlock(&cpc->hrtimer_lock);
1133 
1134 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1135 }
1136 
1137 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1138 {
1139 	struct hrtimer *timer = &cpc->hrtimer;
1140 	struct pmu *pmu = cpc->epc.pmu;
1141 	u64 interval;
1142 
1143 	/*
1144 	 * check default is sane, if not set then force to
1145 	 * default interval (1/tick)
1146 	 */
1147 	interval = pmu->hrtimer_interval_ms;
1148 	if (interval < 1)
1149 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1150 
1151 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1152 
1153 	raw_spin_lock_init(&cpc->hrtimer_lock);
1154 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1155 	timer->function = perf_mux_hrtimer_handler;
1156 }
1157 
1158 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1159 {
1160 	struct hrtimer *timer = &cpc->hrtimer;
1161 	unsigned long flags;
1162 
1163 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1164 	if (!cpc->hrtimer_active) {
1165 		cpc->hrtimer_active = 1;
1166 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1167 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1168 	}
1169 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1170 
1171 	return 0;
1172 }
1173 
1174 static int perf_mux_hrtimer_restart_ipi(void *arg)
1175 {
1176 	return perf_mux_hrtimer_restart(arg);
1177 }
1178 
1179 void perf_pmu_disable(struct pmu *pmu)
1180 {
1181 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1182 	if (!(*count)++)
1183 		pmu->pmu_disable(pmu);
1184 }
1185 
1186 void perf_pmu_enable(struct pmu *pmu)
1187 {
1188 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1189 	if (!--(*count))
1190 		pmu->pmu_enable(pmu);
1191 }
1192 
1193 static void perf_assert_pmu_disabled(struct pmu *pmu)
1194 {
1195 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1196 }
1197 
1198 static void get_ctx(struct perf_event_context *ctx)
1199 {
1200 	refcount_inc(&ctx->refcount);
1201 }
1202 
1203 static void *alloc_task_ctx_data(struct pmu *pmu)
1204 {
1205 	if (pmu->task_ctx_cache)
1206 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1207 
1208 	return NULL;
1209 }
1210 
1211 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1212 {
1213 	if (pmu->task_ctx_cache && task_ctx_data)
1214 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1215 }
1216 
1217 static void free_ctx(struct rcu_head *head)
1218 {
1219 	struct perf_event_context *ctx;
1220 
1221 	ctx = container_of(head, struct perf_event_context, rcu_head);
1222 	kfree(ctx);
1223 }
1224 
1225 static void put_ctx(struct perf_event_context *ctx)
1226 {
1227 	if (refcount_dec_and_test(&ctx->refcount)) {
1228 		if (ctx->parent_ctx)
1229 			put_ctx(ctx->parent_ctx);
1230 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1231 			put_task_struct(ctx->task);
1232 		call_rcu(&ctx->rcu_head, free_ctx);
1233 	}
1234 }
1235 
1236 /*
1237  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1238  * perf_pmu_migrate_context() we need some magic.
1239  *
1240  * Those places that change perf_event::ctx will hold both
1241  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1242  *
1243  * Lock ordering is by mutex address. There are two other sites where
1244  * perf_event_context::mutex nests and those are:
1245  *
1246  *  - perf_event_exit_task_context()	[ child , 0 ]
1247  *      perf_event_exit_event()
1248  *        put_event()			[ parent, 1 ]
1249  *
1250  *  - perf_event_init_context()		[ parent, 0 ]
1251  *      inherit_task_group()
1252  *        inherit_group()
1253  *          inherit_event()
1254  *            perf_event_alloc()
1255  *              perf_init_event()
1256  *                perf_try_init_event()	[ child , 1 ]
1257  *
1258  * While it appears there is an obvious deadlock here -- the parent and child
1259  * nesting levels are inverted between the two. This is in fact safe because
1260  * life-time rules separate them. That is an exiting task cannot fork, and a
1261  * spawning task cannot (yet) exit.
1262  *
1263  * But remember that these are parent<->child context relations, and
1264  * migration does not affect children, therefore these two orderings should not
1265  * interact.
1266  *
1267  * The change in perf_event::ctx does not affect children (as claimed above)
1268  * because the sys_perf_event_open() case will install a new event and break
1269  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1270  * concerned with cpuctx and that doesn't have children.
1271  *
1272  * The places that change perf_event::ctx will issue:
1273  *
1274  *   perf_remove_from_context();
1275  *   synchronize_rcu();
1276  *   perf_install_in_context();
1277  *
1278  * to affect the change. The remove_from_context() + synchronize_rcu() should
1279  * quiesce the event, after which we can install it in the new location. This
1280  * means that only external vectors (perf_fops, prctl) can perturb the event
1281  * while in transit. Therefore all such accessors should also acquire
1282  * perf_event_context::mutex to serialize against this.
1283  *
1284  * However; because event->ctx can change while we're waiting to acquire
1285  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1286  * function.
1287  *
1288  * Lock order:
1289  *    exec_update_lock
1290  *	task_struct::perf_event_mutex
1291  *	  perf_event_context::mutex
1292  *	    perf_event::child_mutex;
1293  *	      perf_event_context::lock
1294  *	    mmap_lock
1295  *	      perf_event::mmap_mutex
1296  *	        perf_buffer::aux_mutex
1297  *	      perf_addr_filters_head::lock
1298  *
1299  *    cpu_hotplug_lock
1300  *      pmus_lock
1301  *	  cpuctx->mutex / perf_event_context::mutex
1302  */
1303 static struct perf_event_context *
1304 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1305 {
1306 	struct perf_event_context *ctx;
1307 
1308 again:
1309 	rcu_read_lock();
1310 	ctx = READ_ONCE(event->ctx);
1311 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1312 		rcu_read_unlock();
1313 		goto again;
1314 	}
1315 	rcu_read_unlock();
1316 
1317 	mutex_lock_nested(&ctx->mutex, nesting);
1318 	if (event->ctx != ctx) {
1319 		mutex_unlock(&ctx->mutex);
1320 		put_ctx(ctx);
1321 		goto again;
1322 	}
1323 
1324 	return ctx;
1325 }
1326 
1327 static inline struct perf_event_context *
1328 perf_event_ctx_lock(struct perf_event *event)
1329 {
1330 	return perf_event_ctx_lock_nested(event, 0);
1331 }
1332 
1333 static void perf_event_ctx_unlock(struct perf_event *event,
1334 				  struct perf_event_context *ctx)
1335 {
1336 	mutex_unlock(&ctx->mutex);
1337 	put_ctx(ctx);
1338 }
1339 
1340 /*
1341  * This must be done under the ctx->lock, such as to serialize against
1342  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1343  * calling scheduler related locks and ctx->lock nests inside those.
1344  */
1345 static __must_check struct perf_event_context *
1346 unclone_ctx(struct perf_event_context *ctx)
1347 {
1348 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1349 
1350 	lockdep_assert_held(&ctx->lock);
1351 
1352 	if (parent_ctx)
1353 		ctx->parent_ctx = NULL;
1354 	ctx->generation++;
1355 
1356 	return parent_ctx;
1357 }
1358 
1359 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1360 				enum pid_type type)
1361 {
1362 	u32 nr;
1363 	/*
1364 	 * only top level events have the pid namespace they were created in
1365 	 */
1366 	if (event->parent)
1367 		event = event->parent;
1368 
1369 	nr = __task_pid_nr_ns(p, type, event->ns);
1370 	/* avoid -1 if it is idle thread or runs in another ns */
1371 	if (!nr && !pid_alive(p))
1372 		nr = -1;
1373 	return nr;
1374 }
1375 
1376 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1377 {
1378 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1379 }
1380 
1381 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1382 {
1383 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1384 }
1385 
1386 /*
1387  * If we inherit events we want to return the parent event id
1388  * to userspace.
1389  */
1390 static u64 primary_event_id(struct perf_event *event)
1391 {
1392 	u64 id = event->id;
1393 
1394 	if (event->parent)
1395 		id = event->parent->id;
1396 
1397 	return id;
1398 }
1399 
1400 /*
1401  * Get the perf_event_context for a task and lock it.
1402  *
1403  * This has to cope with the fact that until it is locked,
1404  * the context could get moved to another task.
1405  */
1406 static struct perf_event_context *
1407 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1408 {
1409 	struct perf_event_context *ctx;
1410 
1411 retry:
1412 	/*
1413 	 * One of the few rules of preemptible RCU is that one cannot do
1414 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1415 	 * part of the read side critical section was irqs-enabled -- see
1416 	 * rcu_read_unlock_special().
1417 	 *
1418 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1419 	 * side critical section has interrupts disabled.
1420 	 */
1421 	local_irq_save(*flags);
1422 	rcu_read_lock();
1423 	ctx = rcu_dereference(task->perf_event_ctxp);
1424 	if (ctx) {
1425 		/*
1426 		 * If this context is a clone of another, it might
1427 		 * get swapped for another underneath us by
1428 		 * perf_event_task_sched_out, though the
1429 		 * rcu_read_lock() protects us from any context
1430 		 * getting freed.  Lock the context and check if it
1431 		 * got swapped before we could get the lock, and retry
1432 		 * if so.  If we locked the right context, then it
1433 		 * can't get swapped on us any more.
1434 		 */
1435 		raw_spin_lock(&ctx->lock);
1436 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1437 			raw_spin_unlock(&ctx->lock);
1438 			rcu_read_unlock();
1439 			local_irq_restore(*flags);
1440 			goto retry;
1441 		}
1442 
1443 		if (ctx->task == TASK_TOMBSTONE ||
1444 		    !refcount_inc_not_zero(&ctx->refcount)) {
1445 			raw_spin_unlock(&ctx->lock);
1446 			ctx = NULL;
1447 		} else {
1448 			WARN_ON_ONCE(ctx->task != task);
1449 		}
1450 	}
1451 	rcu_read_unlock();
1452 	if (!ctx)
1453 		local_irq_restore(*flags);
1454 	return ctx;
1455 }
1456 
1457 /*
1458  * Get the context for a task and increment its pin_count so it
1459  * can't get swapped to another task.  This also increments its
1460  * reference count so that the context can't get freed.
1461  */
1462 static struct perf_event_context *
1463 perf_pin_task_context(struct task_struct *task)
1464 {
1465 	struct perf_event_context *ctx;
1466 	unsigned long flags;
1467 
1468 	ctx = perf_lock_task_context(task, &flags);
1469 	if (ctx) {
1470 		++ctx->pin_count;
1471 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1472 	}
1473 	return ctx;
1474 }
1475 
1476 static void perf_unpin_context(struct perf_event_context *ctx)
1477 {
1478 	unsigned long flags;
1479 
1480 	raw_spin_lock_irqsave(&ctx->lock, flags);
1481 	--ctx->pin_count;
1482 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1483 }
1484 
1485 /*
1486  * Update the record of the current time in a context.
1487  */
1488 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1489 {
1490 	u64 now = perf_clock();
1491 
1492 	lockdep_assert_held(&ctx->lock);
1493 
1494 	if (adv)
1495 		ctx->time += now - ctx->timestamp;
1496 	ctx->timestamp = now;
1497 
1498 	/*
1499 	 * The above: time' = time + (now - timestamp), can be re-arranged
1500 	 * into: time` = now + (time - timestamp), which gives a single value
1501 	 * offset to compute future time without locks on.
1502 	 *
1503 	 * See perf_event_time_now(), which can be used from NMI context where
1504 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1505 	 * both the above values in a consistent manner.
1506 	 */
1507 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1508 }
1509 
1510 static void update_context_time(struct perf_event_context *ctx)
1511 {
1512 	__update_context_time(ctx, true);
1513 }
1514 
1515 static u64 perf_event_time(struct perf_event *event)
1516 {
1517 	struct perf_event_context *ctx = event->ctx;
1518 
1519 	if (unlikely(!ctx))
1520 		return 0;
1521 
1522 	if (is_cgroup_event(event))
1523 		return perf_cgroup_event_time(event);
1524 
1525 	return ctx->time;
1526 }
1527 
1528 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1529 {
1530 	struct perf_event_context *ctx = event->ctx;
1531 
1532 	if (unlikely(!ctx))
1533 		return 0;
1534 
1535 	if (is_cgroup_event(event))
1536 		return perf_cgroup_event_time_now(event, now);
1537 
1538 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1539 		return ctx->time;
1540 
1541 	now += READ_ONCE(ctx->timeoffset);
1542 	return now;
1543 }
1544 
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547 	struct perf_event_context *ctx = event->ctx;
1548 	enum event_type_t event_type;
1549 
1550 	lockdep_assert_held(&ctx->lock);
1551 
1552 	/*
1553 	 * It's 'group type', really, because if our group leader is
1554 	 * pinned, so are we.
1555 	 */
1556 	if (event->group_leader != event)
1557 		event = event->group_leader;
1558 
1559 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560 	if (!ctx->task)
1561 		event_type |= EVENT_CPU;
1562 
1563 	return event_type;
1564 }
1565 
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571 	RB_CLEAR_NODE(&event->group_node);
1572 	event->group_index = 0;
1573 }
1574 
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582 	if (event->attr.pinned)
1583 		return &ctx->pinned_groups;
1584 	else
1585 		return &ctx->flexible_groups;
1586 }
1587 
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593 	groups->tree = RB_ROOT;
1594 	groups->index = 0;
1595 }
1596 
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599 	struct cgroup *cgroup = NULL;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602 	if (event->cgrp)
1603 		cgroup = event->cgrp->css.cgroup;
1604 #endif
1605 
1606 	return cgroup;
1607 }
1608 
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1617 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1618 		      const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 	if (left_pmu) {
1626 		if (left_pmu < right->pmu_ctx->pmu)
1627 			return -1;
1628 		if (left_pmu > right->pmu_ctx->pmu)
1629 			return 1;
1630 	}
1631 
1632 #ifdef CONFIG_CGROUP_PERF
1633 	{
1634 		const struct cgroup *right_cgroup = event_cgroup(right);
1635 
1636 		if (left_cgroup != right_cgroup) {
1637 			if (!left_cgroup) {
1638 				/*
1639 				 * Left has no cgroup but right does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return -1;
1643 			}
1644 			if (!right_cgroup) {
1645 				/*
1646 				 * Right has no cgroup but left does, no
1647 				 * cgroups come first.
1648 				 */
1649 				return 1;
1650 			}
1651 			/* Two dissimilar cgroups, order by id. */
1652 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1653 				return -1;
1654 
1655 			return 1;
1656 		}
1657 	}
1658 #endif
1659 
1660 	if (left_group_index < right->group_index)
1661 		return -1;
1662 	if (left_group_index > right->group_index)
1663 		return 1;
1664 
1665 	return 0;
1666 }
1667 
1668 #define __node_2_pe(node) \
1669 	rb_entry((node), struct perf_event, group_node)
1670 
1671 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1672 {
1673 	struct perf_event *e = __node_2_pe(a);
1674 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1675 				     e->group_index, __node_2_pe(b)) < 0;
1676 }
1677 
1678 struct __group_key {
1679 	int cpu;
1680 	struct pmu *pmu;
1681 	struct cgroup *cgroup;
1682 };
1683 
1684 static inline int __group_cmp(const void *key, const struct rb_node *node)
1685 {
1686 	const struct __group_key *a = key;
1687 	const struct perf_event *b = __node_2_pe(node);
1688 
1689 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1690 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1691 }
1692 
1693 static inline int
1694 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1695 {
1696 	const struct __group_key *a = key;
1697 	const struct perf_event *b = __node_2_pe(node);
1698 
1699 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1700 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1701 				     b->group_index, b);
1702 }
1703 
1704 /*
1705  * Insert @event into @groups' tree; using
1706  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1707  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1708  */
1709 static void
1710 perf_event_groups_insert(struct perf_event_groups *groups,
1711 			 struct perf_event *event)
1712 {
1713 	event->group_index = ++groups->index;
1714 
1715 	rb_add(&event->group_node, &groups->tree, __group_less);
1716 }
1717 
1718 /*
1719  * Helper function to insert event into the pinned or flexible groups.
1720  */
1721 static void
1722 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1723 {
1724 	struct perf_event_groups *groups;
1725 
1726 	groups = get_event_groups(event, ctx);
1727 	perf_event_groups_insert(groups, event);
1728 }
1729 
1730 /*
1731  * Delete a group from a tree.
1732  */
1733 static void
1734 perf_event_groups_delete(struct perf_event_groups *groups,
1735 			 struct perf_event *event)
1736 {
1737 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1738 		     RB_EMPTY_ROOT(&groups->tree));
1739 
1740 	rb_erase(&event->group_node, &groups->tree);
1741 	init_event_group(event);
1742 }
1743 
1744 /*
1745  * Helper function to delete event from its groups.
1746  */
1747 static void
1748 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1749 {
1750 	struct perf_event_groups *groups;
1751 
1752 	groups = get_event_groups(event, ctx);
1753 	perf_event_groups_delete(groups, event);
1754 }
1755 
1756 /*
1757  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1761 			struct pmu *pmu, struct cgroup *cgrp)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = cpu,
1765 		.pmu = pmu,
1766 		.cgroup = cgrp,
1767 	};
1768 	struct rb_node *node;
1769 
1770 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1771 	if (node)
1772 		return __node_2_pe(node);
1773 
1774 	return NULL;
1775 }
1776 
1777 static struct perf_event *
1778 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1779 {
1780 	struct __group_key key = {
1781 		.cpu = event->cpu,
1782 		.pmu = pmu,
1783 		.cgroup = event_cgroup(event),
1784 	};
1785 	struct rb_node *next;
1786 
1787 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1788 	if (next)
1789 		return __node_2_pe(next);
1790 
1791 	return NULL;
1792 }
1793 
1794 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1795 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1796 	     event; event = perf_event_groups_next(event, pmu))
1797 
1798 /*
1799  * Iterate through the whole groups tree.
1800  */
1801 #define perf_event_groups_for_each(event, groups)			\
1802 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1803 				typeof(*event), group_node); event;	\
1804 		event = rb_entry_safe(rb_next(&event->group_node),	\
1805 				typeof(*event), group_node))
1806 
1807 /*
1808  * Does the event attribute request inherit with PERF_SAMPLE_READ
1809  */
1810 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1811 {
1812 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1813 }
1814 
1815 /*
1816  * Add an event from the lists for its context.
1817  * Must be called with ctx->mutex and ctx->lock held.
1818  */
1819 static void
1820 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1821 {
1822 	lockdep_assert_held(&ctx->lock);
1823 
1824 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1825 	event->attach_state |= PERF_ATTACH_CONTEXT;
1826 
1827 	event->tstamp = perf_event_time(event);
1828 
1829 	/*
1830 	 * If we're a stand alone event or group leader, we go to the context
1831 	 * list, group events are kept attached to the group so that
1832 	 * perf_group_detach can, at all times, locate all siblings.
1833 	 */
1834 	if (event->group_leader == event) {
1835 		event->group_caps = event->event_caps;
1836 		add_event_to_groups(event, ctx);
1837 	}
1838 
1839 	list_add_rcu(&event->event_entry, &ctx->event_list);
1840 	ctx->nr_events++;
1841 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1842 		ctx->nr_user++;
1843 	if (event->attr.inherit_stat)
1844 		ctx->nr_stat++;
1845 	if (has_inherit_and_sample_read(&event->attr))
1846 		local_inc(&ctx->nr_no_switch_fast);
1847 
1848 	if (event->state > PERF_EVENT_STATE_OFF)
1849 		perf_cgroup_event_enable(event, ctx);
1850 
1851 	ctx->generation++;
1852 	event->pmu_ctx->nr_events++;
1853 }
1854 
1855 /*
1856  * Initialize event state based on the perf_event_attr::disabled.
1857  */
1858 static inline void perf_event__state_init(struct perf_event *event)
1859 {
1860 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1861 					      PERF_EVENT_STATE_INACTIVE;
1862 }
1863 
1864 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1865 {
1866 	int entry = sizeof(u64); /* value */
1867 	int size = 0;
1868 	int nr = 1;
1869 
1870 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1871 		size += sizeof(u64);
1872 
1873 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1874 		size += sizeof(u64);
1875 
1876 	if (read_format & PERF_FORMAT_ID)
1877 		entry += sizeof(u64);
1878 
1879 	if (read_format & PERF_FORMAT_LOST)
1880 		entry += sizeof(u64);
1881 
1882 	if (read_format & PERF_FORMAT_GROUP) {
1883 		nr += nr_siblings;
1884 		size += sizeof(u64);
1885 	}
1886 
1887 	/*
1888 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1889 	 * adding more siblings, this will never overflow.
1890 	 */
1891 	return size + nr * entry;
1892 }
1893 
1894 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1895 {
1896 	struct perf_sample_data *data;
1897 	u16 size = 0;
1898 
1899 	if (sample_type & PERF_SAMPLE_IP)
1900 		size += sizeof(data->ip);
1901 
1902 	if (sample_type & PERF_SAMPLE_ADDR)
1903 		size += sizeof(data->addr);
1904 
1905 	if (sample_type & PERF_SAMPLE_PERIOD)
1906 		size += sizeof(data->period);
1907 
1908 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1909 		size += sizeof(data->weight.full);
1910 
1911 	if (sample_type & PERF_SAMPLE_READ)
1912 		size += event->read_size;
1913 
1914 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1915 		size += sizeof(data->data_src.val);
1916 
1917 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1918 		size += sizeof(data->txn);
1919 
1920 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1921 		size += sizeof(data->phys_addr);
1922 
1923 	if (sample_type & PERF_SAMPLE_CGROUP)
1924 		size += sizeof(data->cgroup);
1925 
1926 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1927 		size += sizeof(data->data_page_size);
1928 
1929 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1930 		size += sizeof(data->code_page_size);
1931 
1932 	event->header_size = size;
1933 }
1934 
1935 /*
1936  * Called at perf_event creation and when events are attached/detached from a
1937  * group.
1938  */
1939 static void perf_event__header_size(struct perf_event *event)
1940 {
1941 	event->read_size =
1942 		__perf_event_read_size(event->attr.read_format,
1943 				       event->group_leader->nr_siblings);
1944 	__perf_event_header_size(event, event->attr.sample_type);
1945 }
1946 
1947 static void perf_event__id_header_size(struct perf_event *event)
1948 {
1949 	struct perf_sample_data *data;
1950 	u64 sample_type = event->attr.sample_type;
1951 	u16 size = 0;
1952 
1953 	if (sample_type & PERF_SAMPLE_TID)
1954 		size += sizeof(data->tid_entry);
1955 
1956 	if (sample_type & PERF_SAMPLE_TIME)
1957 		size += sizeof(data->time);
1958 
1959 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1960 		size += sizeof(data->id);
1961 
1962 	if (sample_type & PERF_SAMPLE_ID)
1963 		size += sizeof(data->id);
1964 
1965 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1966 		size += sizeof(data->stream_id);
1967 
1968 	if (sample_type & PERF_SAMPLE_CPU)
1969 		size += sizeof(data->cpu_entry);
1970 
1971 	event->id_header_size = size;
1972 }
1973 
1974 /*
1975  * Check that adding an event to the group does not result in anybody
1976  * overflowing the 64k event limit imposed by the output buffer.
1977  *
1978  * Specifically, check that the read_size for the event does not exceed 16k,
1979  * read_size being the one term that grows with groups size. Since read_size
1980  * depends on per-event read_format, also (re)check the existing events.
1981  *
1982  * This leaves 48k for the constant size fields and things like callchains,
1983  * branch stacks and register sets.
1984  */
1985 static bool perf_event_validate_size(struct perf_event *event)
1986 {
1987 	struct perf_event *sibling, *group_leader = event->group_leader;
1988 
1989 	if (__perf_event_read_size(event->attr.read_format,
1990 				   group_leader->nr_siblings + 1) > 16*1024)
1991 		return false;
1992 
1993 	if (__perf_event_read_size(group_leader->attr.read_format,
1994 				   group_leader->nr_siblings + 1) > 16*1024)
1995 		return false;
1996 
1997 	/*
1998 	 * When creating a new group leader, group_leader->ctx is initialized
1999 	 * after the size has been validated, but we cannot safely use
2000 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2001 	 * leader cannot have any siblings yet, so we can safely skip checking
2002 	 * the non-existent siblings.
2003 	 */
2004 	if (event == group_leader)
2005 		return true;
2006 
2007 	for_each_sibling_event(sibling, group_leader) {
2008 		if (__perf_event_read_size(sibling->attr.read_format,
2009 					   group_leader->nr_siblings + 1) > 16*1024)
2010 			return false;
2011 	}
2012 
2013 	return true;
2014 }
2015 
2016 static void perf_group_attach(struct perf_event *event)
2017 {
2018 	struct perf_event *group_leader = event->group_leader, *pos;
2019 
2020 	lockdep_assert_held(&event->ctx->lock);
2021 
2022 	/*
2023 	 * We can have double attach due to group movement (move_group) in
2024 	 * perf_event_open().
2025 	 */
2026 	if (event->attach_state & PERF_ATTACH_GROUP)
2027 		return;
2028 
2029 	event->attach_state |= PERF_ATTACH_GROUP;
2030 
2031 	if (group_leader == event)
2032 		return;
2033 
2034 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2035 
2036 	group_leader->group_caps &= event->event_caps;
2037 
2038 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2039 	group_leader->nr_siblings++;
2040 	group_leader->group_generation++;
2041 
2042 	perf_event__header_size(group_leader);
2043 
2044 	for_each_sibling_event(pos, group_leader)
2045 		perf_event__header_size(pos);
2046 }
2047 
2048 /*
2049  * Remove an event from the lists for its context.
2050  * Must be called with ctx->mutex and ctx->lock held.
2051  */
2052 static void
2053 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2054 {
2055 	WARN_ON_ONCE(event->ctx != ctx);
2056 	lockdep_assert_held(&ctx->lock);
2057 
2058 	/*
2059 	 * We can have double detach due to exit/hot-unplug + close.
2060 	 */
2061 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2062 		return;
2063 
2064 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2065 
2066 	ctx->nr_events--;
2067 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2068 		ctx->nr_user--;
2069 	if (event->attr.inherit_stat)
2070 		ctx->nr_stat--;
2071 	if (has_inherit_and_sample_read(&event->attr))
2072 		local_dec(&ctx->nr_no_switch_fast);
2073 
2074 	list_del_rcu(&event->event_entry);
2075 
2076 	if (event->group_leader == event)
2077 		del_event_from_groups(event, ctx);
2078 
2079 	/*
2080 	 * If event was in error state, then keep it
2081 	 * that way, otherwise bogus counts will be
2082 	 * returned on read(). The only way to get out
2083 	 * of error state is by explicit re-enabling
2084 	 * of the event
2085 	 */
2086 	if (event->state > PERF_EVENT_STATE_OFF) {
2087 		perf_cgroup_event_disable(event, ctx);
2088 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2089 	}
2090 
2091 	ctx->generation++;
2092 	event->pmu_ctx->nr_events--;
2093 }
2094 
2095 static int
2096 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2097 {
2098 	if (!has_aux(aux_event))
2099 		return 0;
2100 
2101 	if (!event->pmu->aux_output_match)
2102 		return 0;
2103 
2104 	return event->pmu->aux_output_match(aux_event);
2105 }
2106 
2107 static void put_event(struct perf_event *event);
2108 static void event_sched_out(struct perf_event *event,
2109 			    struct perf_event_context *ctx);
2110 
2111 static void perf_put_aux_event(struct perf_event *event)
2112 {
2113 	struct perf_event_context *ctx = event->ctx;
2114 	struct perf_event *iter;
2115 
2116 	/*
2117 	 * If event uses aux_event tear down the link
2118 	 */
2119 	if (event->aux_event) {
2120 		iter = event->aux_event;
2121 		event->aux_event = NULL;
2122 		put_event(iter);
2123 		return;
2124 	}
2125 
2126 	/*
2127 	 * If the event is an aux_event, tear down all links to
2128 	 * it from other events.
2129 	 */
2130 	for_each_sibling_event(iter, event->group_leader) {
2131 		if (iter->aux_event != event)
2132 			continue;
2133 
2134 		iter->aux_event = NULL;
2135 		put_event(event);
2136 
2137 		/*
2138 		 * If it's ACTIVE, schedule it out and put it into ERROR
2139 		 * state so that we don't try to schedule it again. Note
2140 		 * that perf_event_enable() will clear the ERROR status.
2141 		 */
2142 		event_sched_out(iter, ctx);
2143 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2144 	}
2145 }
2146 
2147 static bool perf_need_aux_event(struct perf_event *event)
2148 {
2149 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2150 }
2151 
2152 static int perf_get_aux_event(struct perf_event *event,
2153 			      struct perf_event *group_leader)
2154 {
2155 	/*
2156 	 * Our group leader must be an aux event if we want to be
2157 	 * an aux_output. This way, the aux event will precede its
2158 	 * aux_output events in the group, and therefore will always
2159 	 * schedule first.
2160 	 */
2161 	if (!group_leader)
2162 		return 0;
2163 
2164 	/*
2165 	 * aux_output and aux_sample_size are mutually exclusive.
2166 	 */
2167 	if (event->attr.aux_output && event->attr.aux_sample_size)
2168 		return 0;
2169 
2170 	if (event->attr.aux_output &&
2171 	    !perf_aux_output_match(event, group_leader))
2172 		return 0;
2173 
2174 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 		return 0;
2176 
2177 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 		return 0;
2179 
2180 	/*
2181 	 * Link aux_outputs to their aux event; this is undone in
2182 	 * perf_group_detach() by perf_put_aux_event(). When the
2183 	 * group in torn down, the aux_output events loose their
2184 	 * link to the aux_event and can't schedule any more.
2185 	 */
2186 	event->aux_event = group_leader;
2187 
2188 	return 1;
2189 }
2190 
2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 				    &event->pmu_ctx->flexible_active;
2195 }
2196 
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 	event_sched_out(event, event->ctx);
2206 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208 
2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 	struct perf_event *leader = event->group_leader;
2212 	struct perf_event *sibling, *tmp;
2213 	struct perf_event_context *ctx = event->ctx;
2214 
2215 	lockdep_assert_held(&ctx->lock);
2216 
2217 	/*
2218 	 * We can have double detach due to exit/hot-unplug + close.
2219 	 */
2220 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 		return;
2222 
2223 	event->attach_state &= ~PERF_ATTACH_GROUP;
2224 
2225 	perf_put_aux_event(event);
2226 
2227 	/*
2228 	 * If this is a sibling, remove it from its group.
2229 	 */
2230 	if (leader != event) {
2231 		list_del_init(&event->sibling_list);
2232 		event->group_leader->nr_siblings--;
2233 		event->group_leader->group_generation++;
2234 		goto out;
2235 	}
2236 
2237 	/*
2238 	 * If this was a group event with sibling events then
2239 	 * upgrade the siblings to singleton events by adding them
2240 	 * to whatever list we are on.
2241 	 */
2242 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243 
2244 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 			perf_remove_sibling_event(sibling);
2246 
2247 		sibling->group_leader = sibling;
2248 		list_del_init(&sibling->sibling_list);
2249 
2250 		/* Inherit group flags from the previous leader */
2251 		sibling->group_caps = event->group_caps;
2252 
2253 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 			add_event_to_groups(sibling, event->ctx);
2255 
2256 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 		}
2259 
2260 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 	}
2262 
2263 out:
2264 	for_each_sibling_event(tmp, leader)
2265 		perf_event__header_size(tmp);
2266 
2267 	perf_event__header_size(leader);
2268 }
2269 
2270 static void sync_child_event(struct perf_event *child_event);
2271 
2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 	struct perf_event *parent_event = event->parent;
2275 
2276 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 		return;
2278 
2279 	event->attach_state &= ~PERF_ATTACH_CHILD;
2280 
2281 	if (WARN_ON_ONCE(!parent_event))
2282 		return;
2283 
2284 	lockdep_assert_held(&parent_event->child_mutex);
2285 
2286 	sync_child_event(event);
2287 	list_del_init(&event->child_list);
2288 }
2289 
2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 	return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294 
2295 static inline int
2296 event_filter_match(struct perf_event *event)
2297 {
2298 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 	       perf_cgroup_match(event);
2300 }
2301 
2302 static void
2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308 
2309 	// XXX cpc serialization, probably per-cpu IRQ disabled
2310 
2311 	WARN_ON_ONCE(event->ctx != ctx);
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	/*
2318 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 	 * we can schedule events _OUT_ individually through things like
2320 	 * __perf_remove_from_context().
2321 	 */
2322 	list_del_init(&event->active_list);
2323 
2324 	perf_pmu_disable(event->pmu);
2325 
2326 	event->pmu->del(event, 0);
2327 	event->oncpu = -1;
2328 
2329 	if (event->pending_disable) {
2330 		event->pending_disable = 0;
2331 		perf_cgroup_event_disable(event, ctx);
2332 		state = PERF_EVENT_STATE_OFF;
2333 	}
2334 
2335 	perf_event_set_state(event, state);
2336 
2337 	if (!is_software_event(event))
2338 		cpc->active_oncpu--;
2339 	if (event->attr.freq && event->attr.sample_freq) {
2340 		ctx->nr_freq--;
2341 		epc->nr_freq--;
2342 	}
2343 	if (event->attr.exclusive || !cpc->active_oncpu)
2344 		cpc->exclusive = 0;
2345 
2346 	perf_pmu_enable(event->pmu);
2347 }
2348 
2349 static void
2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 	struct perf_event *event;
2353 
2354 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 		return;
2356 
2357 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358 
2359 	event_sched_out(group_event, ctx);
2360 
2361 	/*
2362 	 * Schedule out siblings (if any):
2363 	 */
2364 	for_each_sibling_event(event, group_event)
2365 		event_sched_out(event, ctx);
2366 }
2367 
2368 static inline void
2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 	if (ctx->is_active & EVENT_TIME) {
2372 		if (ctx->is_active & EVENT_FROZEN)
2373 			return;
2374 		update_context_time(ctx);
2375 		update_cgrp_time_from_cpuctx(cpuctx, final);
2376 	}
2377 }
2378 
2379 static inline void
2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 	__ctx_time_update(cpuctx, ctx, false);
2383 }
2384 
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 	ctx_time_update(cpuctx, ctx);
2392 	if (ctx->is_active & EVENT_TIME)
2393 		ctx->is_active |= EVENT_FROZEN;
2394 }
2395 
2396 static inline void
2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 	if (ctx->is_active & EVENT_TIME) {
2400 		if (ctx->is_active & EVENT_FROZEN)
2401 			return;
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 }
2406 
2407 #define DETACH_GROUP	0x01UL
2408 #define DETACH_CHILD	0x02UL
2409 #define DETACH_DEAD	0x04UL
2410 
2411 /*
2412  * Cross CPU call to remove a performance event
2413  *
2414  * We disable the event on the hardware level first. After that we
2415  * remove it from the context list.
2416  */
2417 static void
2418 __perf_remove_from_context(struct perf_event *event,
2419 			   struct perf_cpu_context *cpuctx,
2420 			   struct perf_event_context *ctx,
2421 			   void *info)
2422 {
2423 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 	unsigned long flags = (unsigned long)info;
2425 
2426 	ctx_time_update(cpuctx, ctx);
2427 
2428 	/*
2429 	 * Ensure event_sched_out() switches to OFF, at the very least
2430 	 * this avoids raising perf_pending_task() at this time.
2431 	 */
2432 	if (flags & DETACH_DEAD)
2433 		event->pending_disable = 1;
2434 	event_sched_out(event, ctx);
2435 	if (flags & DETACH_GROUP)
2436 		perf_group_detach(event);
2437 	if (flags & DETACH_CHILD)
2438 		perf_child_detach(event);
2439 	list_del_event(event, ctx);
2440 	if (flags & DETACH_DEAD)
2441 		event->state = PERF_EVENT_STATE_DEAD;
2442 
2443 	if (!pmu_ctx->nr_events) {
2444 		pmu_ctx->rotate_necessary = 0;
2445 
2446 		if (ctx->task && ctx->is_active) {
2447 			struct perf_cpu_pmu_context *cpc;
2448 
2449 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 			cpc->task_epc = NULL;
2452 		}
2453 	}
2454 
2455 	if (!ctx->nr_events && ctx->is_active) {
2456 		if (ctx == &cpuctx->ctx)
2457 			update_cgrp_time_from_cpuctx(cpuctx, true);
2458 
2459 		ctx->is_active = 0;
2460 		if (ctx->task) {
2461 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 			cpuctx->task_ctx = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 /*
2468  * Remove the event from a task's (or a CPU's) list of events.
2469  *
2470  * If event->ctx is a cloned context, callers must make sure that
2471  * every task struct that event->ctx->task could possibly point to
2472  * remains valid.  This is OK when called from perf_release since
2473  * that only calls us on the top-level context, which can't be a clone.
2474  * When called from perf_event_exit_task, it's OK because the
2475  * context has been detached from its task.
2476  */
2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	lockdep_assert_held(&ctx->mutex);
2482 
2483 	/*
2484 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 	 * event_function_call() user.
2487 	 */
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (!ctx->is_active) {
2490 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 					   ctx, (void *)flags);
2492 		raw_spin_unlock_irq(&ctx->lock);
2493 		return;
2494 	}
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 
2497 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499 
2500 /*
2501  * Cross CPU call to disable a performance event
2502  */
2503 static void __perf_event_disable(struct perf_event *event,
2504 				 struct perf_cpu_context *cpuctx,
2505 				 struct perf_event_context *ctx,
2506 				 void *info)
2507 {
2508 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 		return;
2510 
2511 	perf_pmu_disable(event->pmu_ctx->pmu);
2512 	ctx_time_update_event(ctx, event);
2513 
2514 	if (event == event->group_leader)
2515 		group_sched_out(event, ctx);
2516 	else
2517 		event_sched_out(event, ctx);
2518 
2519 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 	perf_cgroup_event_disable(event, ctx);
2521 
2522 	perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524 
2525 /*
2526  * Disable an event.
2527  *
2528  * If event->ctx is a cloned context, callers must make sure that
2529  * every task struct that event->ctx->task could possibly point to
2530  * remains valid.  This condition is satisfied when called through
2531  * perf_event_for_each_child or perf_event_for_each because they
2532  * hold the top-level event's child_mutex, so any descendant that
2533  * goes to exit will block in perf_event_exit_event().
2534  *
2535  * When called from perf_pending_disable it's OK because event->ctx
2536  * is the current context on this CPU and preemption is disabled,
2537  * hence we can't get into perf_event_task_sched_out for this context.
2538  */
2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 	struct perf_event_context *ctx = event->ctx;
2542 
2543 	raw_spin_lock_irq(&ctx->lock);
2544 	if (event->state <= PERF_EVENT_STATE_OFF) {
2545 		raw_spin_unlock_irq(&ctx->lock);
2546 		return;
2547 	}
2548 	raw_spin_unlock_irq(&ctx->lock);
2549 
2550 	event_function_call(event, __perf_event_disable, NULL);
2551 }
2552 
2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 	event_function_local(event, __perf_event_disable, NULL);
2556 }
2557 
2558 /*
2559  * Strictly speaking kernel users cannot create groups and therefore this
2560  * interface does not need the perf_event_ctx_lock() magic.
2561  */
2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 	struct perf_event_context *ctx;
2565 
2566 	ctx = perf_event_ctx_lock(event);
2567 	_perf_event_disable(event);
2568 	perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571 
2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 	event->pending_disable = 1;
2575 	irq_work_queue(&event->pending_disable_irq);
2576 }
2577 
2578 #define MAX_INTERRUPTS (~0ULL)
2579 
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582 
2583 static int
2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 	int ret = 0;
2589 
2590 	WARN_ON_ONCE(event->ctx != ctx);
2591 
2592 	lockdep_assert_held(&ctx->lock);
2593 
2594 	if (event->state <= PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	WRITE_ONCE(event->oncpu, smp_processor_id());
2598 	/*
2599 	 * Order event::oncpu write to happen before the ACTIVE state is
2600 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 	 * ->oncpu if it sees ACTIVE.
2602 	 */
2603 	smp_wmb();
2604 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605 
2606 	/*
2607 	 * Unthrottle events, since we scheduled we might have missed several
2608 	 * ticks already, also for a heavily scheduling task there is little
2609 	 * guarantee it'll get a tick in a timely manner.
2610 	 */
2611 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 		perf_log_throttle(event, 1);
2613 		event->hw.interrupts = 0;
2614 	}
2615 
2616 	perf_pmu_disable(event->pmu);
2617 
2618 	perf_log_itrace_start(event);
2619 
2620 	if (event->pmu->add(event, PERF_EF_START)) {
2621 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 		event->oncpu = -1;
2623 		ret = -EAGAIN;
2624 		goto out;
2625 	}
2626 
2627 	if (!is_software_event(event))
2628 		cpc->active_oncpu++;
2629 	if (event->attr.freq && event->attr.sample_freq) {
2630 		ctx->nr_freq++;
2631 		epc->nr_freq++;
2632 	}
2633 	if (event->attr.exclusive)
2634 		cpc->exclusive = 1;
2635 
2636 out:
2637 	perf_pmu_enable(event->pmu);
2638 
2639 	return ret;
2640 }
2641 
2642 static int
2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 	struct perf_event *event, *partial_group = NULL;
2646 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2647 
2648 	if (group_event->state == PERF_EVENT_STATE_OFF)
2649 		return 0;
2650 
2651 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652 
2653 	if (event_sched_in(group_event, ctx))
2654 		goto error;
2655 
2656 	/*
2657 	 * Schedule in siblings as one group (if any):
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event_sched_in(event, ctx)) {
2661 			partial_group = event;
2662 			goto group_error;
2663 		}
2664 	}
2665 
2666 	if (!pmu->commit_txn(pmu))
2667 		return 0;
2668 
2669 group_error:
2670 	/*
2671 	 * Groups can be scheduled in as one unit only, so undo any
2672 	 * partial group before returning:
2673 	 * The events up to the failed event are scheduled out normally.
2674 	 */
2675 	for_each_sibling_event(event, group_event) {
2676 		if (event == partial_group)
2677 			break;
2678 
2679 		event_sched_out(event, ctx);
2680 	}
2681 	event_sched_out(group_event, ctx);
2682 
2683 error:
2684 	pmu->cancel_txn(pmu);
2685 	return -EAGAIN;
2686 }
2687 
2688 /*
2689  * Work out whether we can put this event group on the CPU now.
2690  */
2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695 
2696 	/*
2697 	 * Groups consisting entirely of software events can always go on.
2698 	 */
2699 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 		return 1;
2701 	/*
2702 	 * If an exclusive group is already on, no other hardware
2703 	 * events can go on.
2704 	 */
2705 	if (cpc->exclusive)
2706 		return 0;
2707 	/*
2708 	 * If this group is exclusive and there are already
2709 	 * events on the CPU, it can't go on.
2710 	 */
2711 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 		return 0;
2713 	/*
2714 	 * Otherwise, try to add it if all previous groups were able
2715 	 * to go on.
2716 	 */
2717 	return can_add_hw;
2718 }
2719 
2720 static void add_event_to_ctx(struct perf_event *event,
2721 			       struct perf_event_context *ctx)
2722 {
2723 	list_add_event(event, ctx);
2724 	perf_group_attach(event);
2725 }
2726 
2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 			       struct pmu *pmu,
2729 			       enum event_type_t event_type)
2730 {
2731 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732 
2733 	if (!cpuctx->task_ctx)
2734 		return;
2735 
2736 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 		return;
2738 
2739 	ctx_sched_out(ctx, pmu, event_type);
2740 }
2741 
2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				struct pmu *pmu)
2745 {
2746 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 	if (ctx)
2748 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 	if (ctx)
2751 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753 
2754 /*
2755  * We want to maintain the following priority of scheduling:
2756  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757  *  - task pinned (EVENT_PINNED)
2758  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759  *  - task flexible (EVENT_FLEXIBLE).
2760  *
2761  * In order to avoid unscheduling and scheduling back in everything every
2762  * time an event is added, only do it for the groups of equal priority and
2763  * below.
2764  *
2765  * This can be called after a batch operation on task events, in which case
2766  * event_type is a bit mask of the types of events involved. For CPU events,
2767  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768  */
2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 			struct perf_event_context *task_ctx,
2771 			struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 	bool cpu_event = !!(event_type & EVENT_CPU);
2774 	struct perf_event_pmu_context *epc;
2775 
2776 	/*
2777 	 * If pinned groups are involved, flexible groups also need to be
2778 	 * scheduled out.
2779 	 */
2780 	if (event_type & EVENT_PINNED)
2781 		event_type |= EVENT_FLEXIBLE;
2782 
2783 	event_type &= EVENT_ALL;
2784 
2785 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 		perf_pmu_disable(epc->pmu);
2787 
2788 	if (task_ctx) {
2789 		for_each_epc(epc, task_ctx, pmu, false)
2790 			perf_pmu_disable(epc->pmu);
2791 
2792 		task_ctx_sched_out(task_ctx, pmu, event_type);
2793 	}
2794 
2795 	/*
2796 	 * Decide which cpu ctx groups to schedule out based on the types
2797 	 * of events that caused rescheduling:
2798 	 *  - EVENT_CPU: schedule out corresponding groups;
2799 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 	 *  - otherwise, do nothing more.
2801 	 */
2802 	if (cpu_event)
2803 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 	else if (event_type & EVENT_PINNED)
2805 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806 
2807 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2808 
2809 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 		perf_pmu_enable(epc->pmu);
2811 
2812 	if (task_ctx) {
2813 		for_each_epc(epc, task_ctx, pmu, false)
2814 			perf_pmu_enable(epc->pmu);
2815 	}
2816 }
2817 
2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822 
2823 	perf_ctx_lock(cpuctx, task_ctx);
2824 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 	perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827 
2828 /*
2829  * Cross CPU call to install and enable a performance event
2830  *
2831  * Very similar to remote_function() + event_function() but cannot assume that
2832  * things like ctx->is_active and cpuctx->task_ctx are set.
2833  */
2834 static int  __perf_install_in_context(void *info)
2835 {
2836 	struct perf_event *event = info;
2837 	struct perf_event_context *ctx = event->ctx;
2838 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 	bool reprogram = true;
2841 	int ret = 0;
2842 
2843 	raw_spin_lock(&cpuctx->ctx.lock);
2844 	if (ctx->task) {
2845 		raw_spin_lock(&ctx->lock);
2846 		task_ctx = ctx;
2847 
2848 		reprogram = (ctx->task == current);
2849 
2850 		/*
2851 		 * If the task is running, it must be running on this CPU,
2852 		 * otherwise we cannot reprogram things.
2853 		 *
2854 		 * If its not running, we don't care, ctx->lock will
2855 		 * serialize against it becoming runnable.
2856 		 */
2857 		if (task_curr(ctx->task) && !reprogram) {
2858 			ret = -ESRCH;
2859 			goto unlock;
2860 		}
2861 
2862 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 	} else if (task_ctx) {
2864 		raw_spin_lock(&task_ctx->lock);
2865 	}
2866 
2867 #ifdef CONFIG_CGROUP_PERF
2868 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 		/*
2870 		 * If the current cgroup doesn't match the event's
2871 		 * cgroup, we should not try to schedule it.
2872 		 */
2873 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 					event->cgrp->css.cgroup);
2876 	}
2877 #endif
2878 
2879 	if (reprogram) {
2880 		ctx_time_freeze(cpuctx, ctx);
2881 		add_event_to_ctx(event, ctx);
2882 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 			    get_event_type(event));
2884 	} else {
2885 		add_event_to_ctx(event, ctx);
2886 	}
2887 
2888 unlock:
2889 	perf_ctx_unlock(cpuctx, task_ctx);
2890 
2891 	return ret;
2892 }
2893 
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 					struct perf_event_context *ctx);
2896 
2897 /*
2898  * Attach a performance event to a context.
2899  *
2900  * Very similar to event_function_call, see comment there.
2901  */
2902 static void
2903 perf_install_in_context(struct perf_event_context *ctx,
2904 			struct perf_event *event,
2905 			int cpu)
2906 {
2907 	struct task_struct *task = READ_ONCE(ctx->task);
2908 
2909 	lockdep_assert_held(&ctx->mutex);
2910 
2911 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912 
2913 	if (event->cpu != -1)
2914 		WARN_ON_ONCE(event->cpu != cpu);
2915 
2916 	/*
2917 	 * Ensures that if we can observe event->ctx, both the event and ctx
2918 	 * will be 'complete'. See perf_iterate_sb_cpu().
2919 	 */
2920 	smp_store_release(&event->ctx, ctx);
2921 
2922 	/*
2923 	 * perf_event_attr::disabled events will not run and can be initialized
2924 	 * without IPI. Except when this is the first event for the context, in
2925 	 * that case we need the magic of the IPI to set ctx->is_active.
2926 	 *
2927 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 	 * event will issue the IPI and reprogram the hardware.
2929 	 */
2930 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 	    ctx->nr_events && !is_cgroup_event(event)) {
2932 		raw_spin_lock_irq(&ctx->lock);
2933 		if (ctx->task == TASK_TOMBSTONE) {
2934 			raw_spin_unlock_irq(&ctx->lock);
2935 			return;
2936 		}
2937 		add_event_to_ctx(event, ctx);
2938 		raw_spin_unlock_irq(&ctx->lock);
2939 		return;
2940 	}
2941 
2942 	if (!task) {
2943 		cpu_function_call(cpu, __perf_install_in_context, event);
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * Should not happen, we validate the ctx is still alive before calling.
2949 	 */
2950 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 		return;
2952 
2953 	/*
2954 	 * Installing events is tricky because we cannot rely on ctx->is_active
2955 	 * to be set in case this is the nr_events 0 -> 1 transition.
2956 	 *
2957 	 * Instead we use task_curr(), which tells us if the task is running.
2958 	 * However, since we use task_curr() outside of rq::lock, we can race
2959 	 * against the actual state. This means the result can be wrong.
2960 	 *
2961 	 * If we get a false positive, we retry, this is harmless.
2962 	 *
2963 	 * If we get a false negative, things are complicated. If we are after
2964 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 	 * value must be correct. If we're before, it doesn't matter since
2966 	 * perf_event_context_sched_in() will program the counter.
2967 	 *
2968 	 * However, this hinges on the remote context switch having observed
2969 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 	 * ctx::lock in perf_event_context_sched_in().
2971 	 *
2972 	 * We do this by task_function_call(), if the IPI fails to hit the task
2973 	 * we know any future context switch of task must see the
2974 	 * perf_event_ctpx[] store.
2975 	 */
2976 
2977 	/*
2978 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 	 * task_cpu() load, such that if the IPI then does not find the task
2980 	 * running, a future context switch of that task must observe the
2981 	 * store.
2982 	 */
2983 	smp_mb();
2984 again:
2985 	if (!task_function_call(task, __perf_install_in_context, event))
2986 		return;
2987 
2988 	raw_spin_lock_irq(&ctx->lock);
2989 	task = ctx->task;
2990 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 		/*
2992 		 * Cannot happen because we already checked above (which also
2993 		 * cannot happen), and we hold ctx->mutex, which serializes us
2994 		 * against perf_event_exit_task_context().
2995 		 */
2996 		raw_spin_unlock_irq(&ctx->lock);
2997 		return;
2998 	}
2999 	/*
3000 	 * If the task is not running, ctx->lock will avoid it becoming so,
3001 	 * thus we can safely install the event.
3002 	 */
3003 	if (task_curr(task)) {
3004 		raw_spin_unlock_irq(&ctx->lock);
3005 		goto again;
3006 	}
3007 	add_event_to_ctx(event, ctx);
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 }
3010 
3011 /*
3012  * Cross CPU call to enable a performance event
3013  */
3014 static void __perf_event_enable(struct perf_event *event,
3015 				struct perf_cpu_context *cpuctx,
3016 				struct perf_event_context *ctx,
3017 				void *info)
3018 {
3019 	struct perf_event *leader = event->group_leader;
3020 	struct perf_event_context *task_ctx;
3021 
3022 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 	    event->state <= PERF_EVENT_STATE_ERROR)
3024 		return;
3025 
3026 	ctx_time_freeze(cpuctx, ctx);
3027 
3028 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 	perf_cgroup_event_enable(event, ctx);
3030 
3031 	if (!ctx->is_active)
3032 		return;
3033 
3034 	if (!event_filter_match(event))
3035 		return;
3036 
3037 	/*
3038 	 * If the event is in a group and isn't the group leader,
3039 	 * then don't put it on unless the group is on.
3040 	 */
3041 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 		return;
3043 
3044 	task_ctx = cpuctx->task_ctx;
3045 	if (ctx->task)
3046 		WARN_ON_ONCE(task_ctx != ctx);
3047 
3048 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050 
3051 /*
3052  * Enable an event.
3053  *
3054  * If event->ctx is a cloned context, callers must make sure that
3055  * every task struct that event->ctx->task could possibly point to
3056  * remains valid.  This condition is satisfied when called through
3057  * perf_event_for_each_child or perf_event_for_each as described
3058  * for perf_event_disable.
3059  */
3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 	struct perf_event_context *ctx = event->ctx;
3063 
3064 	raw_spin_lock_irq(&ctx->lock);
3065 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 	    event->state <  PERF_EVENT_STATE_ERROR) {
3067 out:
3068 		raw_spin_unlock_irq(&ctx->lock);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * If the event is in error state, clear that first.
3074 	 *
3075 	 * That way, if we see the event in error state below, we know that it
3076 	 * has gone back into error state, as distinct from the task having
3077 	 * been scheduled away before the cross-call arrived.
3078 	 */
3079 	if (event->state == PERF_EVENT_STATE_ERROR) {
3080 		/*
3081 		 * Detached SIBLING events cannot leave ERROR state.
3082 		 */
3083 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 		    event->group_leader == event)
3085 			goto out;
3086 
3087 		event->state = PERF_EVENT_STATE_OFF;
3088 	}
3089 	raw_spin_unlock_irq(&ctx->lock);
3090 
3091 	event_function_call(event, __perf_event_enable, NULL);
3092 }
3093 
3094 /*
3095  * See perf_event_disable();
3096  */
3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 	struct perf_event_context *ctx;
3100 
3101 	ctx = perf_event_ctx_lock(event);
3102 	_perf_event_enable(event);
3103 	perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106 
3107 struct stop_event_data {
3108 	struct perf_event	*event;
3109 	unsigned int		restart;
3110 };
3111 
3112 static int __perf_event_stop(void *info)
3113 {
3114 	struct stop_event_data *sd = info;
3115 	struct perf_event *event = sd->event;
3116 
3117 	/* if it's already INACTIVE, do nothing */
3118 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 		return 0;
3120 
3121 	/* matches smp_wmb() in event_sched_in() */
3122 	smp_rmb();
3123 
3124 	/*
3125 	 * There is a window with interrupts enabled before we get here,
3126 	 * so we need to check again lest we try to stop another CPU's event.
3127 	 */
3128 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 		return -EAGAIN;
3130 
3131 	event->pmu->stop(event, PERF_EF_UPDATE);
3132 
3133 	/*
3134 	 * May race with the actual stop (through perf_pmu_output_stop()),
3135 	 * but it is only used for events with AUX ring buffer, and such
3136 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 	 * see comments in perf_aux_output_begin().
3138 	 *
3139 	 * Since this is happening on an event-local CPU, no trace is lost
3140 	 * while restarting.
3141 	 */
3142 	if (sd->restart)
3143 		event->pmu->start(event, 0);
3144 
3145 	return 0;
3146 }
3147 
3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 	struct stop_event_data sd = {
3151 		.event		= event,
3152 		.restart	= restart,
3153 	};
3154 	int ret = 0;
3155 
3156 	do {
3157 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 			return 0;
3159 
3160 		/* matches smp_wmb() in event_sched_in() */
3161 		smp_rmb();
3162 
3163 		/*
3164 		 * We only want to restart ACTIVE events, so if the event goes
3165 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 		 * fall through with ret==-ENXIO.
3167 		 */
3168 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 					__perf_event_stop, &sd);
3170 	} while (ret == -EAGAIN);
3171 
3172 	return ret;
3173 }
3174 
3175 /*
3176  * In order to contain the amount of racy and tricky in the address filter
3177  * configuration management, it is a two part process:
3178  *
3179  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180  *      we update the addresses of corresponding vmas in
3181  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182  * (p2) when an event is scheduled in (pmu::add), it calls
3183  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184  *      if the generation has changed since the previous call.
3185  *
3186  * If (p1) happens while the event is active, we restart it to force (p2).
3187  *
3188  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190  *     ioctl;
3191  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193  *     for reading;
3194  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195  *     of exec.
3196  */
3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200 
3201 	if (!has_addr_filter(event))
3202 		return;
3203 
3204 	raw_spin_lock(&ifh->lock);
3205 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 		event->pmu->addr_filters_sync(event);
3207 		event->hw.addr_filters_gen = event->addr_filters_gen;
3208 	}
3209 	raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212 
3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	/*
3216 	 * not supported on inherited events
3217 	 */
3218 	if (event->attr.inherit || !is_sampling_event(event))
3219 		return -EINVAL;
3220 
3221 	atomic_add(refresh, &event->event_limit);
3222 	_perf_event_enable(event);
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * See perf_event_disable()
3229  */
3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 	struct perf_event_context *ctx;
3233 	int ret;
3234 
3235 	ctx = perf_event_ctx_lock(event);
3236 	ret = _perf_event_refresh(event, refresh);
3237 	perf_event_ctx_unlock(event, ctx);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242 
3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 					 struct perf_event_attr *attr)
3245 {
3246 	int err;
3247 
3248 	_perf_event_disable(bp);
3249 
3250 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3251 
3252 	if (!bp->attr.disabled)
3253 		_perf_event_enable(bp);
3254 
3255 	return err;
3256 }
3257 
3258 /*
3259  * Copy event-type-independent attributes that may be modified.
3260  */
3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 					const struct perf_event_attr *from)
3263 {
3264 	to->sig_data = from->sig_data;
3265 }
3266 
3267 static int perf_event_modify_attr(struct perf_event *event,
3268 				  struct perf_event_attr *attr)
3269 {
3270 	int (*func)(struct perf_event *, struct perf_event_attr *);
3271 	struct perf_event *child;
3272 	int err;
3273 
3274 	if (event->attr.type != attr->type)
3275 		return -EINVAL;
3276 
3277 	switch (event->attr.type) {
3278 	case PERF_TYPE_BREAKPOINT:
3279 		func = perf_event_modify_breakpoint;
3280 		break;
3281 	default:
3282 		/* Place holder for future additions. */
3283 		return -EOPNOTSUPP;
3284 	}
3285 
3286 	WARN_ON_ONCE(event->ctx->parent_ctx);
3287 
3288 	mutex_lock(&event->child_mutex);
3289 	/*
3290 	 * Event-type-independent attributes must be copied before event-type
3291 	 * modification, which will validate that final attributes match the
3292 	 * source attributes after all relevant attributes have been copied.
3293 	 */
3294 	perf_event_modify_copy_attr(&event->attr, attr);
3295 	err = func(event, attr);
3296 	if (err)
3297 		goto out;
3298 	list_for_each_entry(child, &event->child_list, child_list) {
3299 		perf_event_modify_copy_attr(&child->attr, attr);
3300 		err = func(child, attr);
3301 		if (err)
3302 			goto out;
3303 	}
3304 out:
3305 	mutex_unlock(&event->child_mutex);
3306 	return err;
3307 }
3308 
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 				enum event_type_t event_type)
3311 {
3312 	struct perf_event_context *ctx = pmu_ctx->ctx;
3313 	struct perf_event *event, *tmp;
3314 	struct pmu *pmu = pmu_ctx->pmu;
3315 
3316 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 		struct perf_cpu_pmu_context *cpc;
3318 
3319 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 		cpc->task_epc = NULL;
3322 	}
3323 
3324 	if (!(event_type & EVENT_ALL))
3325 		return;
3326 
3327 	perf_pmu_disable(pmu);
3328 	if (event_type & EVENT_PINNED) {
3329 		list_for_each_entry_safe(event, tmp,
3330 					 &pmu_ctx->pinned_active,
3331 					 active_list)
3332 			group_sched_out(event, ctx);
3333 	}
3334 
3335 	if (event_type & EVENT_FLEXIBLE) {
3336 		list_for_each_entry_safe(event, tmp,
3337 					 &pmu_ctx->flexible_active,
3338 					 active_list)
3339 			group_sched_out(event, ctx);
3340 		/*
3341 		 * Since we cleared EVENT_FLEXIBLE, also clear
3342 		 * rotate_necessary, is will be reset by
3343 		 * ctx_flexible_sched_in() when needed.
3344 		 */
3345 		pmu_ctx->rotate_necessary = 0;
3346 	}
3347 	perf_pmu_enable(pmu);
3348 }
3349 
3350 /*
3351  * Be very careful with the @pmu argument since this will change ctx state.
3352  * The @pmu argument works for ctx_resched(), because that is symmetric in
3353  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354  *
3355  * However, if you were to be asymmetrical, you could end up with messed up
3356  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357  * be active.
3358  */
3359 static void
3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 	struct perf_event_pmu_context *pmu_ctx;
3364 	int is_active = ctx->is_active;
3365 	bool cgroup = event_type & EVENT_CGROUP;
3366 
3367 	event_type &= ~EVENT_CGROUP;
3368 
3369 	lockdep_assert_held(&ctx->lock);
3370 
3371 	if (likely(!ctx->nr_events)) {
3372 		/*
3373 		 * See __perf_remove_from_context().
3374 		 */
3375 		WARN_ON_ONCE(ctx->is_active);
3376 		if (ctx->task)
3377 			WARN_ON_ONCE(cpuctx->task_ctx);
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Always update time if it was set; not only when it changes.
3383 	 * Otherwise we can 'forget' to update time for any but the last
3384 	 * context we sched out. For example:
3385 	 *
3386 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3388 	 *
3389 	 * would only update time for the pinned events.
3390 	 */
3391 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392 
3393 	/*
3394 	 * CPU-release for the below ->is_active store,
3395 	 * see __load_acquire() in perf_event_time_now()
3396 	 */
3397 	barrier();
3398 	ctx->is_active &= ~event_type;
3399 
3400 	if (!(ctx->is_active & EVENT_ALL)) {
3401 		/*
3402 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 		 */
3405 		if (ctx->is_active & EVENT_FROZEN)
3406 			ctx->is_active &= EVENT_TIME_FROZEN;
3407 		else
3408 			ctx->is_active = 0;
3409 	}
3410 
3411 	if (ctx->task) {
3412 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 		if (!(ctx->is_active & EVENT_ALL))
3414 			cpuctx->task_ctx = NULL;
3415 	}
3416 
3417 	is_active ^= ctx->is_active; /* changed bits */
3418 
3419 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422 
3423 /*
3424  * Test whether two contexts are equivalent, i.e. whether they have both been
3425  * cloned from the same version of the same context.
3426  *
3427  * Equivalence is measured using a generation number in the context that is
3428  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429  * and list_del_event().
3430  */
3431 static int context_equiv(struct perf_event_context *ctx1,
3432 			 struct perf_event_context *ctx2)
3433 {
3434 	lockdep_assert_held(&ctx1->lock);
3435 	lockdep_assert_held(&ctx2->lock);
3436 
3437 	/* Pinning disables the swap optimization */
3438 	if (ctx1->pin_count || ctx2->pin_count)
3439 		return 0;
3440 
3441 	/* If ctx1 is the parent of ctx2 */
3442 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 		return 1;
3444 
3445 	/* If ctx2 is the parent of ctx1 */
3446 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 		return 1;
3448 
3449 	/*
3450 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 	 * hierarchy, see perf_event_init_context().
3452 	 */
3453 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 			ctx1->parent_gen == ctx2->parent_gen)
3455 		return 1;
3456 
3457 	/* Unmatched */
3458 	return 0;
3459 }
3460 
3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 				     struct perf_event *next_event)
3463 {
3464 	u64 value;
3465 
3466 	if (!event->attr.inherit_stat)
3467 		return;
3468 
3469 	/*
3470 	 * Update the event value, we cannot use perf_event_read()
3471 	 * because we're in the middle of a context switch and have IRQs
3472 	 * disabled, which upsets smp_call_function_single(), however
3473 	 * we know the event must be on the current CPU, therefore we
3474 	 * don't need to use it.
3475 	 */
3476 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 		event->pmu->read(event);
3478 
3479 	perf_event_update_time(event);
3480 
3481 	/*
3482 	 * In order to keep per-task stats reliable we need to flip the event
3483 	 * values when we flip the contexts.
3484 	 */
3485 	value = local64_read(&next_event->count);
3486 	value = local64_xchg(&event->count, value);
3487 	local64_set(&next_event->count, value);
3488 
3489 	swap(event->total_time_enabled, next_event->total_time_enabled);
3490 	swap(event->total_time_running, next_event->total_time_running);
3491 
3492 	/*
3493 	 * Since we swizzled the values, update the user visible data too.
3494 	 */
3495 	perf_event_update_userpage(event);
3496 	perf_event_update_userpage(next_event);
3497 }
3498 
3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 				   struct perf_event_context *next_ctx)
3501 {
3502 	struct perf_event *event, *next_event;
3503 
3504 	if (!ctx->nr_stat)
3505 		return;
3506 
3507 	update_context_time(ctx);
3508 
3509 	event = list_first_entry(&ctx->event_list,
3510 				   struct perf_event, event_entry);
3511 
3512 	next_event = list_first_entry(&next_ctx->event_list,
3513 					struct perf_event, event_entry);
3514 
3515 	while (&event->event_entry != &ctx->event_list &&
3516 	       &next_event->event_entry != &next_ctx->event_list) {
3517 
3518 		__perf_event_sync_stat(event, next_event);
3519 
3520 		event = list_next_entry(event, event_entry);
3521 		next_event = list_next_entry(next_event, event_entry);
3522 	}
3523 }
3524 
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3526 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3527 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3528 	     !list_entry_is_head(pos1, head1, member) &&		\
3529 	     !list_entry_is_head(pos2, head2, member);			\
3530 	     pos1 = list_next_entry(pos1, member),			\
3531 	     pos2 = list_next_entry(pos2, member))
3532 
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 					  struct perf_event_context *next_ctx)
3535 {
3536 	struct perf_event_pmu_context *prev_epc, *next_epc;
3537 
3538 	if (!prev_ctx->nr_task_data)
3539 		return;
3540 
3541 	double_list_for_each_entry(prev_epc, next_epc,
3542 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 				   pmu_ctx_entry) {
3544 
3545 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 			continue;
3547 
3548 		/*
3549 		 * PMU specific parts of task perf context can require
3550 		 * additional synchronization. As an example of such
3551 		 * synchronization see implementation details of Intel
3552 		 * LBR call stack data profiling;
3553 		 */
3554 		if (prev_epc->pmu->swap_task_ctx)
3555 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 		else
3557 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 	}
3559 }
3560 
3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 	struct perf_event_pmu_context *pmu_ctx;
3564 	struct perf_cpu_pmu_context *cpc;
3565 
3566 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568 
3569 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 	}
3572 }
3573 
3574 static void
3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 	struct perf_event_context *ctx = task->perf_event_ctxp;
3578 	struct perf_event_context *next_ctx;
3579 	struct perf_event_context *parent, *next_parent;
3580 	int do_switch = 1;
3581 
3582 	if (likely(!ctx))
3583 		return;
3584 
3585 	rcu_read_lock();
3586 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 	if (!next_ctx)
3588 		goto unlock;
3589 
3590 	parent = rcu_dereference(ctx->parent_ctx);
3591 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3592 
3593 	/* If neither context have a parent context; they cannot be clones. */
3594 	if (!parent && !next_parent)
3595 		goto unlock;
3596 
3597 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 		/*
3599 		 * Looks like the two contexts are clones, so we might be
3600 		 * able to optimize the context switch.  We lock both
3601 		 * contexts and check that they are clones under the
3602 		 * lock (including re-checking that neither has been
3603 		 * uncloned in the meantime).  It doesn't matter which
3604 		 * order we take the locks because no other cpu could
3605 		 * be trying to lock both of these tasks.
3606 		 */
3607 		raw_spin_lock(&ctx->lock);
3608 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 		if (context_equiv(ctx, next_ctx)) {
3610 
3611 			perf_ctx_disable(ctx, false);
3612 
3613 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 			if (local_read(&ctx->nr_no_switch_fast) ||
3615 			    local_read(&next_ctx->nr_no_switch_fast)) {
3616 				/*
3617 				 * Must not swap out ctx when there's pending
3618 				 * events that rely on the ctx->task relation.
3619 				 *
3620 				 * Likewise, when a context contains inherit +
3621 				 * SAMPLE_READ events they should be switched
3622 				 * out using the slow path so that they are
3623 				 * treated as if they were distinct contexts.
3624 				 */
3625 				raw_spin_unlock(&next_ctx->lock);
3626 				rcu_read_unlock();
3627 				goto inside_switch;
3628 			}
3629 
3630 			WRITE_ONCE(ctx->task, next);
3631 			WRITE_ONCE(next_ctx->task, task);
3632 
3633 			perf_ctx_sched_task_cb(ctx, false);
3634 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3635 
3636 			perf_ctx_enable(ctx, false);
3637 
3638 			/*
3639 			 * RCU_INIT_POINTER here is safe because we've not
3640 			 * modified the ctx and the above modification of
3641 			 * ctx->task and ctx->task_ctx_data are immaterial
3642 			 * since those values are always verified under
3643 			 * ctx->lock which we're now holding.
3644 			 */
3645 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647 
3648 			do_switch = 0;
3649 
3650 			perf_event_sync_stat(ctx, next_ctx);
3651 		}
3652 		raw_spin_unlock(&next_ctx->lock);
3653 		raw_spin_unlock(&ctx->lock);
3654 	}
3655 unlock:
3656 	rcu_read_unlock();
3657 
3658 	if (do_switch) {
3659 		raw_spin_lock(&ctx->lock);
3660 		perf_ctx_disable(ctx, false);
3661 
3662 inside_switch:
3663 		perf_ctx_sched_task_cb(ctx, false);
3664 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665 
3666 		perf_ctx_enable(ctx, false);
3667 		raw_spin_unlock(&ctx->lock);
3668 	}
3669 }
3670 
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673 
3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677 
3678 	this_cpu_dec(perf_sched_cb_usages);
3679 	barrier();
3680 
3681 	if (!--cpc->sched_cb_usage)
3682 		list_del(&cpc->sched_cb_entry);
3683 }
3684 
3685 
3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689 
3690 	if (!cpc->sched_cb_usage++)
3691 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692 
3693 	barrier();
3694 	this_cpu_inc(perf_sched_cb_usages);
3695 }
3696 
3697 /*
3698  * This function provides the context switch callback to the lower code
3699  * layer. It is invoked ONLY when the context switch callback is enabled.
3700  *
3701  * This callback is relevant even to per-cpu events; for example multi event
3702  * PEBS requires this to provide PID/TID information. This requires we flush
3703  * all queued PEBS records before we context switch to a new task.
3704  */
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 	struct pmu *pmu;
3709 
3710 	pmu = cpc->epc.pmu;
3711 
3712 	/* software PMUs will not have sched_task */
3713 	if (WARN_ON_ONCE(!pmu->sched_task))
3714 		return;
3715 
3716 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 	perf_pmu_disable(pmu);
3718 
3719 	pmu->sched_task(cpc->task_epc, sched_in);
3720 
3721 	perf_pmu_enable(pmu);
3722 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724 
3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 				struct task_struct *next,
3727 				bool sched_in)
3728 {
3729 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 	struct perf_cpu_pmu_context *cpc;
3731 
3732 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 	if (prev == next || cpuctx->task_ctx)
3734 		return;
3735 
3736 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 		__perf_pmu_sched_task(cpc, sched_in);
3738 }
3739 
3740 static void perf_event_switch(struct task_struct *task,
3741 			      struct task_struct *next_prev, bool sched_in);
3742 
3743 /*
3744  * Called from scheduler to remove the events of the current task,
3745  * with interrupts disabled.
3746  *
3747  * We stop each event and update the event value in event->count.
3748  *
3749  * This does not protect us against NMI, but disable()
3750  * sets the disabled bit in the control field of event _before_
3751  * accessing the event control register. If a NMI hits, then it will
3752  * not restart the event.
3753  */
3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 				 struct task_struct *next)
3756 {
3757 	if (__this_cpu_read(perf_sched_cb_usages))
3758 		perf_pmu_sched_task(task, next, false);
3759 
3760 	if (atomic_read(&nr_switch_events))
3761 		perf_event_switch(task, next, false);
3762 
3763 	perf_event_context_sched_out(task, next);
3764 
3765 	/*
3766 	 * if cgroup events exist on this CPU, then we need
3767 	 * to check if we have to switch out PMU state.
3768 	 * cgroup event are system-wide mode only
3769 	 */
3770 	perf_cgroup_switch(next);
3771 }
3772 
3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 	const struct perf_event *le = *(const struct perf_event **)l;
3776 	const struct perf_event *re = *(const struct perf_event **)r;
3777 
3778 	return le->group_index < re->group_index;
3779 }
3780 
3781 static void swap_ptr(void *l, void *r, void __always_unused *args)
3782 {
3783 	void **lp = l, **rp = r;
3784 
3785 	swap(*lp, *rp);
3786 }
3787 
3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3789 
3790 static const struct min_heap_callbacks perf_min_heap = {
3791 	.less = perf_less_group_idx,
3792 	.swp = swap_ptr,
3793 };
3794 
3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3796 {
3797 	struct perf_event **itrs = heap->data;
3798 
3799 	if (event) {
3800 		itrs[heap->nr] = event;
3801 		heap->nr++;
3802 	}
3803 }
3804 
3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3806 {
3807 	struct perf_cpu_pmu_context *cpc;
3808 
3809 	if (!pmu_ctx->ctx->task)
3810 		return;
3811 
3812 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3813 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3814 	cpc->task_epc = pmu_ctx;
3815 }
3816 
3817 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3818 				struct perf_event_groups *groups, int cpu,
3819 				struct pmu *pmu,
3820 				int (*func)(struct perf_event *, void *),
3821 				void *data)
3822 {
3823 #ifdef CONFIG_CGROUP_PERF
3824 	struct cgroup_subsys_state *css = NULL;
3825 #endif
3826 	struct perf_cpu_context *cpuctx = NULL;
3827 	/* Space for per CPU and/or any CPU event iterators. */
3828 	struct perf_event *itrs[2];
3829 	struct perf_event_min_heap event_heap;
3830 	struct perf_event **evt;
3831 	int ret;
3832 
3833 	if (pmu->filter && pmu->filter(pmu, cpu))
3834 		return 0;
3835 
3836 	if (!ctx->task) {
3837 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3838 		event_heap = (struct perf_event_min_heap){
3839 			.data = cpuctx->heap,
3840 			.nr = 0,
3841 			.size = cpuctx->heap_size,
3842 		};
3843 
3844 		lockdep_assert_held(&cpuctx->ctx.lock);
3845 
3846 #ifdef CONFIG_CGROUP_PERF
3847 		if (cpuctx->cgrp)
3848 			css = &cpuctx->cgrp->css;
3849 #endif
3850 	} else {
3851 		event_heap = (struct perf_event_min_heap){
3852 			.data = itrs,
3853 			.nr = 0,
3854 			.size = ARRAY_SIZE(itrs),
3855 		};
3856 		/* Events not within a CPU context may be on any CPU. */
3857 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3858 	}
3859 	evt = event_heap.data;
3860 
3861 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3862 
3863 #ifdef CONFIG_CGROUP_PERF
3864 	for (; css; css = css->parent)
3865 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3866 #endif
3867 
3868 	if (event_heap.nr) {
3869 		__link_epc((*evt)->pmu_ctx);
3870 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3871 	}
3872 
3873 	min_heapify_all(&event_heap, &perf_min_heap, NULL);
3874 
3875 	while (event_heap.nr) {
3876 		ret = func(*evt, data);
3877 		if (ret)
3878 			return ret;
3879 
3880 		*evt = perf_event_groups_next(*evt, pmu);
3881 		if (*evt)
3882 			min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3883 		else
3884 			min_heap_pop(&event_heap, &perf_min_heap, NULL);
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 /*
3891  * Because the userpage is strictly per-event (there is no concept of context,
3892  * so there cannot be a context indirection), every userpage must be updated
3893  * when context time starts :-(
3894  *
3895  * IOW, we must not miss EVENT_TIME edges.
3896  */
3897 static inline bool event_update_userpage(struct perf_event *event)
3898 {
3899 	if (likely(!atomic_read(&event->mmap_count)))
3900 		return false;
3901 
3902 	perf_event_update_time(event);
3903 	perf_event_update_userpage(event);
3904 
3905 	return true;
3906 }
3907 
3908 static inline void group_update_userpage(struct perf_event *group_event)
3909 {
3910 	struct perf_event *event;
3911 
3912 	if (!event_update_userpage(group_event))
3913 		return;
3914 
3915 	for_each_sibling_event(event, group_event)
3916 		event_update_userpage(event);
3917 }
3918 
3919 static int merge_sched_in(struct perf_event *event, void *data)
3920 {
3921 	struct perf_event_context *ctx = event->ctx;
3922 	int *can_add_hw = data;
3923 
3924 	if (event->state <= PERF_EVENT_STATE_OFF)
3925 		return 0;
3926 
3927 	if (!event_filter_match(event))
3928 		return 0;
3929 
3930 	if (group_can_go_on(event, *can_add_hw)) {
3931 		if (!group_sched_in(event, ctx))
3932 			list_add_tail(&event->active_list, get_event_list(event));
3933 	}
3934 
3935 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3936 		*can_add_hw = 0;
3937 		if (event->attr.pinned) {
3938 			perf_cgroup_event_disable(event, ctx);
3939 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3940 		} else {
3941 			struct perf_cpu_pmu_context *cpc;
3942 
3943 			event->pmu_ctx->rotate_necessary = 1;
3944 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3945 			perf_mux_hrtimer_restart(cpc);
3946 			group_update_userpage(event);
3947 		}
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3954 				struct perf_event_groups *groups,
3955 				struct pmu *pmu)
3956 {
3957 	int can_add_hw = 1;
3958 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3959 			   merge_sched_in, &can_add_hw);
3960 }
3961 
3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3963 			       enum event_type_t event_type)
3964 {
3965 	struct perf_event_context *ctx = pmu_ctx->ctx;
3966 
3967 	if (event_type & EVENT_PINNED)
3968 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3969 	if (event_type & EVENT_FLEXIBLE)
3970 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3971 }
3972 
3973 static void
3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3975 {
3976 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3977 	struct perf_event_pmu_context *pmu_ctx;
3978 	int is_active = ctx->is_active;
3979 	bool cgroup = event_type & EVENT_CGROUP;
3980 
3981 	event_type &= ~EVENT_CGROUP;
3982 
3983 	lockdep_assert_held(&ctx->lock);
3984 
3985 	if (likely(!ctx->nr_events))
3986 		return;
3987 
3988 	if (!(is_active & EVENT_TIME)) {
3989 		/* start ctx time */
3990 		__update_context_time(ctx, false);
3991 		perf_cgroup_set_timestamp(cpuctx);
3992 		/*
3993 		 * CPU-release for the below ->is_active store,
3994 		 * see __load_acquire() in perf_event_time_now()
3995 		 */
3996 		barrier();
3997 	}
3998 
3999 	ctx->is_active |= (event_type | EVENT_TIME);
4000 	if (ctx->task) {
4001 		if (!(is_active & EVENT_ALL))
4002 			cpuctx->task_ctx = ctx;
4003 		else
4004 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4005 	}
4006 
4007 	is_active ^= ctx->is_active; /* changed bits */
4008 
4009 	/*
4010 	 * First go through the list and put on any pinned groups
4011 	 * in order to give them the best chance of going on.
4012 	 */
4013 	if (is_active & EVENT_PINNED) {
4014 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4015 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4016 	}
4017 
4018 	/* Then walk through the lower prio flexible groups */
4019 	if (is_active & EVENT_FLEXIBLE) {
4020 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4021 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4022 	}
4023 }
4024 
4025 static void perf_event_context_sched_in(struct task_struct *task)
4026 {
4027 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4028 	struct perf_event_context *ctx;
4029 
4030 	rcu_read_lock();
4031 	ctx = rcu_dereference(task->perf_event_ctxp);
4032 	if (!ctx)
4033 		goto rcu_unlock;
4034 
4035 	if (cpuctx->task_ctx == ctx) {
4036 		perf_ctx_lock(cpuctx, ctx);
4037 		perf_ctx_disable(ctx, false);
4038 
4039 		perf_ctx_sched_task_cb(ctx, true);
4040 
4041 		perf_ctx_enable(ctx, false);
4042 		perf_ctx_unlock(cpuctx, ctx);
4043 		goto rcu_unlock;
4044 	}
4045 
4046 	perf_ctx_lock(cpuctx, ctx);
4047 	/*
4048 	 * We must check ctx->nr_events while holding ctx->lock, such
4049 	 * that we serialize against perf_install_in_context().
4050 	 */
4051 	if (!ctx->nr_events)
4052 		goto unlock;
4053 
4054 	perf_ctx_disable(ctx, false);
4055 	/*
4056 	 * We want to keep the following priority order:
4057 	 * cpu pinned (that don't need to move), task pinned,
4058 	 * cpu flexible, task flexible.
4059 	 *
4060 	 * However, if task's ctx is not carrying any pinned
4061 	 * events, no need to flip the cpuctx's events around.
4062 	 */
4063 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4064 		perf_ctx_disable(&cpuctx->ctx, false);
4065 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4066 	}
4067 
4068 	perf_event_sched_in(cpuctx, ctx, NULL);
4069 
4070 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4071 
4072 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4073 		perf_ctx_enable(&cpuctx->ctx, false);
4074 
4075 	perf_ctx_enable(ctx, false);
4076 
4077 unlock:
4078 	perf_ctx_unlock(cpuctx, ctx);
4079 rcu_unlock:
4080 	rcu_read_unlock();
4081 }
4082 
4083 /*
4084  * Called from scheduler to add the events of the current task
4085  * with interrupts disabled.
4086  *
4087  * We restore the event value and then enable it.
4088  *
4089  * This does not protect us against NMI, but enable()
4090  * sets the enabled bit in the control field of event _before_
4091  * accessing the event control register. If a NMI hits, then it will
4092  * keep the event running.
4093  */
4094 void __perf_event_task_sched_in(struct task_struct *prev,
4095 				struct task_struct *task)
4096 {
4097 	perf_event_context_sched_in(task);
4098 
4099 	if (atomic_read(&nr_switch_events))
4100 		perf_event_switch(task, prev, true);
4101 
4102 	if (__this_cpu_read(perf_sched_cb_usages))
4103 		perf_pmu_sched_task(prev, task, true);
4104 }
4105 
4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4107 {
4108 	u64 frequency = event->attr.sample_freq;
4109 	u64 sec = NSEC_PER_SEC;
4110 	u64 divisor, dividend;
4111 
4112 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4113 
4114 	count_fls = fls64(count);
4115 	nsec_fls = fls64(nsec);
4116 	frequency_fls = fls64(frequency);
4117 	sec_fls = 30;
4118 
4119 	/*
4120 	 * We got @count in @nsec, with a target of sample_freq HZ
4121 	 * the target period becomes:
4122 	 *
4123 	 *             @count * 10^9
4124 	 * period = -------------------
4125 	 *          @nsec * sample_freq
4126 	 *
4127 	 */
4128 
4129 	/*
4130 	 * Reduce accuracy by one bit such that @a and @b converge
4131 	 * to a similar magnitude.
4132 	 */
4133 #define REDUCE_FLS(a, b)		\
4134 do {					\
4135 	if (a##_fls > b##_fls) {	\
4136 		a >>= 1;		\
4137 		a##_fls--;		\
4138 	} else {			\
4139 		b >>= 1;		\
4140 		b##_fls--;		\
4141 	}				\
4142 } while (0)
4143 
4144 	/*
4145 	 * Reduce accuracy until either term fits in a u64, then proceed with
4146 	 * the other, so that finally we can do a u64/u64 division.
4147 	 */
4148 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4149 		REDUCE_FLS(nsec, frequency);
4150 		REDUCE_FLS(sec, count);
4151 	}
4152 
4153 	if (count_fls + sec_fls > 64) {
4154 		divisor = nsec * frequency;
4155 
4156 		while (count_fls + sec_fls > 64) {
4157 			REDUCE_FLS(count, sec);
4158 			divisor >>= 1;
4159 		}
4160 
4161 		dividend = count * sec;
4162 	} else {
4163 		dividend = count * sec;
4164 
4165 		while (nsec_fls + frequency_fls > 64) {
4166 			REDUCE_FLS(nsec, frequency);
4167 			dividend >>= 1;
4168 		}
4169 
4170 		divisor = nsec * frequency;
4171 	}
4172 
4173 	if (!divisor)
4174 		return dividend;
4175 
4176 	return div64_u64(dividend, divisor);
4177 }
4178 
4179 static DEFINE_PER_CPU(int, perf_throttled_count);
4180 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4181 
4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4183 {
4184 	struct hw_perf_event *hwc = &event->hw;
4185 	s64 period, sample_period;
4186 	s64 delta;
4187 
4188 	period = perf_calculate_period(event, nsec, count);
4189 
4190 	delta = (s64)(period - hwc->sample_period);
4191 	if (delta >= 0)
4192 		delta += 7;
4193 	else
4194 		delta -= 7;
4195 	delta /= 8; /* low pass filter */
4196 
4197 	sample_period = hwc->sample_period + delta;
4198 
4199 	if (!sample_period)
4200 		sample_period = 1;
4201 
4202 	hwc->sample_period = sample_period;
4203 
4204 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4205 		if (disable)
4206 			event->pmu->stop(event, PERF_EF_UPDATE);
4207 
4208 		local64_set(&hwc->period_left, 0);
4209 
4210 		if (disable)
4211 			event->pmu->start(event, PERF_EF_RELOAD);
4212 	}
4213 }
4214 
4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4216 {
4217 	struct perf_event *event;
4218 	struct hw_perf_event *hwc;
4219 	u64 now, period = TICK_NSEC;
4220 	s64 delta;
4221 
4222 	list_for_each_entry(event, event_list, active_list) {
4223 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4224 			continue;
4225 
4226 		// XXX use visit thingy to avoid the -1,cpu match
4227 		if (!event_filter_match(event))
4228 			continue;
4229 
4230 		hwc = &event->hw;
4231 
4232 		if (hwc->interrupts == MAX_INTERRUPTS) {
4233 			hwc->interrupts = 0;
4234 			perf_log_throttle(event, 1);
4235 			if (!event->attr.freq || !event->attr.sample_freq)
4236 				event->pmu->start(event, 0);
4237 		}
4238 
4239 		if (!event->attr.freq || !event->attr.sample_freq)
4240 			continue;
4241 
4242 		/*
4243 		 * stop the event and update event->count
4244 		 */
4245 		event->pmu->stop(event, PERF_EF_UPDATE);
4246 
4247 		now = local64_read(&event->count);
4248 		delta = now - hwc->freq_count_stamp;
4249 		hwc->freq_count_stamp = now;
4250 
4251 		/*
4252 		 * restart the event
4253 		 * reload only if value has changed
4254 		 * we have stopped the event so tell that
4255 		 * to perf_adjust_period() to avoid stopping it
4256 		 * twice.
4257 		 */
4258 		if (delta > 0)
4259 			perf_adjust_period(event, period, delta, false);
4260 
4261 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4262 	}
4263 }
4264 
4265 /*
4266  * combine freq adjustment with unthrottling to avoid two passes over the
4267  * events. At the same time, make sure, having freq events does not change
4268  * the rate of unthrottling as that would introduce bias.
4269  */
4270 static void
4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4272 {
4273 	struct perf_event_pmu_context *pmu_ctx;
4274 
4275 	/*
4276 	 * only need to iterate over all events iff:
4277 	 * - context have events in frequency mode (needs freq adjust)
4278 	 * - there are events to unthrottle on this cpu
4279 	 */
4280 	if (!(ctx->nr_freq || unthrottle))
4281 		return;
4282 
4283 	raw_spin_lock(&ctx->lock);
4284 
4285 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4286 		if (!(pmu_ctx->nr_freq || unthrottle))
4287 			continue;
4288 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4289 			continue;
4290 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4291 			continue;
4292 
4293 		perf_pmu_disable(pmu_ctx->pmu);
4294 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4295 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4296 		perf_pmu_enable(pmu_ctx->pmu);
4297 	}
4298 
4299 	raw_spin_unlock(&ctx->lock);
4300 }
4301 
4302 /*
4303  * Move @event to the tail of the @ctx's elegible events.
4304  */
4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4306 {
4307 	/*
4308 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4309 	 * disabled by the inheritance code.
4310 	 */
4311 	if (ctx->rotate_disable)
4312 		return;
4313 
4314 	perf_event_groups_delete(&ctx->flexible_groups, event);
4315 	perf_event_groups_insert(&ctx->flexible_groups, event);
4316 }
4317 
4318 /* pick an event from the flexible_groups to rotate */
4319 static inline struct perf_event *
4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4321 {
4322 	struct perf_event *event;
4323 	struct rb_node *node;
4324 	struct rb_root *tree;
4325 	struct __group_key key = {
4326 		.pmu = pmu_ctx->pmu,
4327 	};
4328 
4329 	/* pick the first active flexible event */
4330 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4331 					 struct perf_event, active_list);
4332 	if (event)
4333 		goto out;
4334 
4335 	/* if no active flexible event, pick the first event */
4336 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4337 
4338 	if (!pmu_ctx->ctx->task) {
4339 		key.cpu = smp_processor_id();
4340 
4341 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 		if (node)
4343 			event = __node_2_pe(node);
4344 		goto out;
4345 	}
4346 
4347 	key.cpu = -1;
4348 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 	if (node) {
4350 		event = __node_2_pe(node);
4351 		goto out;
4352 	}
4353 
4354 	key.cpu = smp_processor_id();
4355 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4356 	if (node)
4357 		event = __node_2_pe(node);
4358 
4359 out:
4360 	/*
4361 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4362 	 * finds there are unschedulable events, it will set it again.
4363 	 */
4364 	pmu_ctx->rotate_necessary = 0;
4365 
4366 	return event;
4367 }
4368 
4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4370 {
4371 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4372 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4373 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4374 	int cpu_rotate, task_rotate;
4375 	struct pmu *pmu;
4376 
4377 	/*
4378 	 * Since we run this from IRQ context, nobody can install new
4379 	 * events, thus the event count values are stable.
4380 	 */
4381 
4382 	cpu_epc = &cpc->epc;
4383 	pmu = cpu_epc->pmu;
4384 	task_epc = cpc->task_epc;
4385 
4386 	cpu_rotate = cpu_epc->rotate_necessary;
4387 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4388 
4389 	if (!(cpu_rotate || task_rotate))
4390 		return false;
4391 
4392 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4393 	perf_pmu_disable(pmu);
4394 
4395 	if (task_rotate)
4396 		task_event = ctx_event_to_rotate(task_epc);
4397 	if (cpu_rotate)
4398 		cpu_event = ctx_event_to_rotate(cpu_epc);
4399 
4400 	/*
4401 	 * As per the order given at ctx_resched() first 'pop' task flexible
4402 	 * and then, if needed CPU flexible.
4403 	 */
4404 	if (task_event || (task_epc && cpu_event)) {
4405 		update_context_time(task_epc->ctx);
4406 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4407 	}
4408 
4409 	if (cpu_event) {
4410 		update_context_time(&cpuctx->ctx);
4411 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4412 		rotate_ctx(&cpuctx->ctx, cpu_event);
4413 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4414 	}
4415 
4416 	if (task_event)
4417 		rotate_ctx(task_epc->ctx, task_event);
4418 
4419 	if (task_event || (task_epc && cpu_event))
4420 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4421 
4422 	perf_pmu_enable(pmu);
4423 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4424 
4425 	return true;
4426 }
4427 
4428 void perf_event_task_tick(void)
4429 {
4430 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4431 	struct perf_event_context *ctx;
4432 	int throttled;
4433 
4434 	lockdep_assert_irqs_disabled();
4435 
4436 	__this_cpu_inc(perf_throttled_seq);
4437 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4438 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4439 
4440 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4441 
4442 	rcu_read_lock();
4443 	ctx = rcu_dereference(current->perf_event_ctxp);
4444 	if (ctx)
4445 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4446 	rcu_read_unlock();
4447 }
4448 
4449 static int event_enable_on_exec(struct perf_event *event,
4450 				struct perf_event_context *ctx)
4451 {
4452 	if (!event->attr.enable_on_exec)
4453 		return 0;
4454 
4455 	event->attr.enable_on_exec = 0;
4456 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4457 		return 0;
4458 
4459 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4460 
4461 	return 1;
4462 }
4463 
4464 /*
4465  * Enable all of a task's events that have been marked enable-on-exec.
4466  * This expects task == current.
4467  */
4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4469 {
4470 	struct perf_event_context *clone_ctx = NULL;
4471 	enum event_type_t event_type = 0;
4472 	struct perf_cpu_context *cpuctx;
4473 	struct perf_event *event;
4474 	unsigned long flags;
4475 	int enabled = 0;
4476 
4477 	local_irq_save(flags);
4478 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4479 		goto out;
4480 
4481 	if (!ctx->nr_events)
4482 		goto out;
4483 
4484 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4485 	perf_ctx_lock(cpuctx, ctx);
4486 	ctx_time_freeze(cpuctx, ctx);
4487 
4488 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4489 		enabled |= event_enable_on_exec(event, ctx);
4490 		event_type |= get_event_type(event);
4491 	}
4492 
4493 	/*
4494 	 * Unclone and reschedule this context if we enabled any event.
4495 	 */
4496 	if (enabled) {
4497 		clone_ctx = unclone_ctx(ctx);
4498 		ctx_resched(cpuctx, ctx, NULL, event_type);
4499 	}
4500 	perf_ctx_unlock(cpuctx, ctx);
4501 
4502 out:
4503 	local_irq_restore(flags);
4504 
4505 	if (clone_ctx)
4506 		put_ctx(clone_ctx);
4507 }
4508 
4509 static void perf_remove_from_owner(struct perf_event *event);
4510 static void perf_event_exit_event(struct perf_event *event,
4511 				  struct perf_event_context *ctx);
4512 
4513 /*
4514  * Removes all events from the current task that have been marked
4515  * remove-on-exec, and feeds their values back to parent events.
4516  */
4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4518 {
4519 	struct perf_event_context *clone_ctx = NULL;
4520 	struct perf_event *event, *next;
4521 	unsigned long flags;
4522 	bool modified = false;
4523 
4524 	mutex_lock(&ctx->mutex);
4525 
4526 	if (WARN_ON_ONCE(ctx->task != current))
4527 		goto unlock;
4528 
4529 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4530 		if (!event->attr.remove_on_exec)
4531 			continue;
4532 
4533 		if (!is_kernel_event(event))
4534 			perf_remove_from_owner(event);
4535 
4536 		modified = true;
4537 
4538 		perf_event_exit_event(event, ctx);
4539 	}
4540 
4541 	raw_spin_lock_irqsave(&ctx->lock, flags);
4542 	if (modified)
4543 		clone_ctx = unclone_ctx(ctx);
4544 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4545 
4546 unlock:
4547 	mutex_unlock(&ctx->mutex);
4548 
4549 	if (clone_ctx)
4550 		put_ctx(clone_ctx);
4551 }
4552 
4553 struct perf_read_data {
4554 	struct perf_event *event;
4555 	bool group;
4556 	int ret;
4557 };
4558 
4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4560 
4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4562 {
4563 	int local_cpu = smp_processor_id();
4564 	u16 local_pkg, event_pkg;
4565 
4566 	if ((unsigned)event_cpu >= nr_cpu_ids)
4567 		return event_cpu;
4568 
4569 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4570 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4571 
4572 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4573 			return local_cpu;
4574 	}
4575 
4576 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4577 		event_pkg = topology_physical_package_id(event_cpu);
4578 		local_pkg = topology_physical_package_id(local_cpu);
4579 
4580 		if (event_pkg == local_pkg)
4581 			return local_cpu;
4582 	}
4583 
4584 	return event_cpu;
4585 }
4586 
4587 /*
4588  * Cross CPU call to read the hardware event
4589  */
4590 static void __perf_event_read(void *info)
4591 {
4592 	struct perf_read_data *data = info;
4593 	struct perf_event *sub, *event = data->event;
4594 	struct perf_event_context *ctx = event->ctx;
4595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4596 	struct pmu *pmu = event->pmu;
4597 
4598 	/*
4599 	 * If this is a task context, we need to check whether it is
4600 	 * the current task context of this cpu.  If not it has been
4601 	 * scheduled out before the smp call arrived.  In that case
4602 	 * event->count would have been updated to a recent sample
4603 	 * when the event was scheduled out.
4604 	 */
4605 	if (ctx->task && cpuctx->task_ctx != ctx)
4606 		return;
4607 
4608 	raw_spin_lock(&ctx->lock);
4609 	ctx_time_update_event(ctx, event);
4610 
4611 	perf_event_update_time(event);
4612 	if (data->group)
4613 		perf_event_update_sibling_time(event);
4614 
4615 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4616 		goto unlock;
4617 
4618 	if (!data->group) {
4619 		pmu->read(event);
4620 		data->ret = 0;
4621 		goto unlock;
4622 	}
4623 
4624 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4625 
4626 	pmu->read(event);
4627 
4628 	for_each_sibling_event(sub, event) {
4629 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4630 			/*
4631 			 * Use sibling's PMU rather than @event's since
4632 			 * sibling could be on different (eg: software) PMU.
4633 			 */
4634 			sub->pmu->read(sub);
4635 		}
4636 	}
4637 
4638 	data->ret = pmu->commit_txn(pmu);
4639 
4640 unlock:
4641 	raw_spin_unlock(&ctx->lock);
4642 }
4643 
4644 static inline u64 perf_event_count(struct perf_event *event, bool self)
4645 {
4646 	if (self)
4647 		return local64_read(&event->count);
4648 
4649 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4650 }
4651 
4652 static void calc_timer_values(struct perf_event *event,
4653 				u64 *now,
4654 				u64 *enabled,
4655 				u64 *running)
4656 {
4657 	u64 ctx_time;
4658 
4659 	*now = perf_clock();
4660 	ctx_time = perf_event_time_now(event, *now);
4661 	__perf_update_times(event, ctx_time, enabled, running);
4662 }
4663 
4664 /*
4665  * NMI-safe method to read a local event, that is an event that
4666  * is:
4667  *   - either for the current task, or for this CPU
4668  *   - does not have inherit set, for inherited task events
4669  *     will not be local and we cannot read them atomically
4670  *   - must not have a pmu::count method
4671  */
4672 int perf_event_read_local(struct perf_event *event, u64 *value,
4673 			  u64 *enabled, u64 *running)
4674 {
4675 	unsigned long flags;
4676 	int event_oncpu;
4677 	int event_cpu;
4678 	int ret = 0;
4679 
4680 	/*
4681 	 * Disabling interrupts avoids all counter scheduling (context
4682 	 * switches, timer based rotation and IPIs).
4683 	 */
4684 	local_irq_save(flags);
4685 
4686 	/*
4687 	 * It must not be an event with inherit set, we cannot read
4688 	 * all child counters from atomic context.
4689 	 */
4690 	if (event->attr.inherit) {
4691 		ret = -EOPNOTSUPP;
4692 		goto out;
4693 	}
4694 
4695 	/* If this is a per-task event, it must be for current */
4696 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4697 	    event->hw.target != current) {
4698 		ret = -EINVAL;
4699 		goto out;
4700 	}
4701 
4702 	/*
4703 	 * Get the event CPU numbers, and adjust them to local if the event is
4704 	 * a per-package event that can be read locally
4705 	 */
4706 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4707 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4708 
4709 	/* If this is a per-CPU event, it must be for this CPU */
4710 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4711 	    event_cpu != smp_processor_id()) {
4712 		ret = -EINVAL;
4713 		goto out;
4714 	}
4715 
4716 	/* If this is a pinned event it must be running on this CPU */
4717 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4718 		ret = -EBUSY;
4719 		goto out;
4720 	}
4721 
4722 	/*
4723 	 * If the event is currently on this CPU, its either a per-task event,
4724 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4725 	 * oncpu == -1).
4726 	 */
4727 	if (event_oncpu == smp_processor_id())
4728 		event->pmu->read(event);
4729 
4730 	*value = local64_read(&event->count);
4731 	if (enabled || running) {
4732 		u64 __enabled, __running, __now;
4733 
4734 		calc_timer_values(event, &__now, &__enabled, &__running);
4735 		if (enabled)
4736 			*enabled = __enabled;
4737 		if (running)
4738 			*running = __running;
4739 	}
4740 out:
4741 	local_irq_restore(flags);
4742 
4743 	return ret;
4744 }
4745 
4746 static int perf_event_read(struct perf_event *event, bool group)
4747 {
4748 	enum perf_event_state state = READ_ONCE(event->state);
4749 	int event_cpu, ret = 0;
4750 
4751 	/*
4752 	 * If event is enabled and currently active on a CPU, update the
4753 	 * value in the event structure:
4754 	 */
4755 again:
4756 	if (state == PERF_EVENT_STATE_ACTIVE) {
4757 		struct perf_read_data data;
4758 
4759 		/*
4760 		 * Orders the ->state and ->oncpu loads such that if we see
4761 		 * ACTIVE we must also see the right ->oncpu.
4762 		 *
4763 		 * Matches the smp_wmb() from event_sched_in().
4764 		 */
4765 		smp_rmb();
4766 
4767 		event_cpu = READ_ONCE(event->oncpu);
4768 		if ((unsigned)event_cpu >= nr_cpu_ids)
4769 			return 0;
4770 
4771 		data = (struct perf_read_data){
4772 			.event = event,
4773 			.group = group,
4774 			.ret = 0,
4775 		};
4776 
4777 		preempt_disable();
4778 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4779 
4780 		/*
4781 		 * Purposely ignore the smp_call_function_single() return
4782 		 * value.
4783 		 *
4784 		 * If event_cpu isn't a valid CPU it means the event got
4785 		 * scheduled out and that will have updated the event count.
4786 		 *
4787 		 * Therefore, either way, we'll have an up-to-date event count
4788 		 * after this.
4789 		 */
4790 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4791 		preempt_enable();
4792 		ret = data.ret;
4793 
4794 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4795 		struct perf_event_context *ctx = event->ctx;
4796 		unsigned long flags;
4797 
4798 		raw_spin_lock_irqsave(&ctx->lock, flags);
4799 		state = event->state;
4800 		if (state != PERF_EVENT_STATE_INACTIVE) {
4801 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4802 			goto again;
4803 		}
4804 
4805 		/*
4806 		 * May read while context is not active (e.g., thread is
4807 		 * blocked), in that case we cannot update context time
4808 		 */
4809 		ctx_time_update_event(ctx, event);
4810 
4811 		perf_event_update_time(event);
4812 		if (group)
4813 			perf_event_update_sibling_time(event);
4814 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 /*
4821  * Initialize the perf_event context in a task_struct:
4822  */
4823 static void __perf_event_init_context(struct perf_event_context *ctx)
4824 {
4825 	raw_spin_lock_init(&ctx->lock);
4826 	mutex_init(&ctx->mutex);
4827 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4828 	perf_event_groups_init(&ctx->pinned_groups);
4829 	perf_event_groups_init(&ctx->flexible_groups);
4830 	INIT_LIST_HEAD(&ctx->event_list);
4831 	refcount_set(&ctx->refcount, 1);
4832 }
4833 
4834 static void
4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4836 {
4837 	epc->pmu = pmu;
4838 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4839 	INIT_LIST_HEAD(&epc->pinned_active);
4840 	INIT_LIST_HEAD(&epc->flexible_active);
4841 	atomic_set(&epc->refcount, 1);
4842 }
4843 
4844 static struct perf_event_context *
4845 alloc_perf_context(struct task_struct *task)
4846 {
4847 	struct perf_event_context *ctx;
4848 
4849 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4850 	if (!ctx)
4851 		return NULL;
4852 
4853 	__perf_event_init_context(ctx);
4854 	if (task)
4855 		ctx->task = get_task_struct(task);
4856 
4857 	return ctx;
4858 }
4859 
4860 static struct task_struct *
4861 find_lively_task_by_vpid(pid_t vpid)
4862 {
4863 	struct task_struct *task;
4864 
4865 	rcu_read_lock();
4866 	if (!vpid)
4867 		task = current;
4868 	else
4869 		task = find_task_by_vpid(vpid);
4870 	if (task)
4871 		get_task_struct(task);
4872 	rcu_read_unlock();
4873 
4874 	if (!task)
4875 		return ERR_PTR(-ESRCH);
4876 
4877 	return task;
4878 }
4879 
4880 /*
4881  * Returns a matching context with refcount and pincount.
4882  */
4883 static struct perf_event_context *
4884 find_get_context(struct task_struct *task, struct perf_event *event)
4885 {
4886 	struct perf_event_context *ctx, *clone_ctx = NULL;
4887 	struct perf_cpu_context *cpuctx;
4888 	unsigned long flags;
4889 	int err;
4890 
4891 	if (!task) {
4892 		/* Must be root to operate on a CPU event: */
4893 		err = perf_allow_cpu(&event->attr);
4894 		if (err)
4895 			return ERR_PTR(err);
4896 
4897 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4898 		ctx = &cpuctx->ctx;
4899 		get_ctx(ctx);
4900 		raw_spin_lock_irqsave(&ctx->lock, flags);
4901 		++ctx->pin_count;
4902 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4903 
4904 		return ctx;
4905 	}
4906 
4907 	err = -EINVAL;
4908 retry:
4909 	ctx = perf_lock_task_context(task, &flags);
4910 	if (ctx) {
4911 		clone_ctx = unclone_ctx(ctx);
4912 		++ctx->pin_count;
4913 
4914 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4915 
4916 		if (clone_ctx)
4917 			put_ctx(clone_ctx);
4918 	} else {
4919 		ctx = alloc_perf_context(task);
4920 		err = -ENOMEM;
4921 		if (!ctx)
4922 			goto errout;
4923 
4924 		err = 0;
4925 		mutex_lock(&task->perf_event_mutex);
4926 		/*
4927 		 * If it has already passed perf_event_exit_task().
4928 		 * we must see PF_EXITING, it takes this mutex too.
4929 		 */
4930 		if (task->flags & PF_EXITING)
4931 			err = -ESRCH;
4932 		else if (task->perf_event_ctxp)
4933 			err = -EAGAIN;
4934 		else {
4935 			get_ctx(ctx);
4936 			++ctx->pin_count;
4937 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4938 		}
4939 		mutex_unlock(&task->perf_event_mutex);
4940 
4941 		if (unlikely(err)) {
4942 			put_ctx(ctx);
4943 
4944 			if (err == -EAGAIN)
4945 				goto retry;
4946 			goto errout;
4947 		}
4948 	}
4949 
4950 	return ctx;
4951 
4952 errout:
4953 	return ERR_PTR(err);
4954 }
4955 
4956 static struct perf_event_pmu_context *
4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4958 		     struct perf_event *event)
4959 {
4960 	struct perf_event_pmu_context *new = NULL, *epc;
4961 	void *task_ctx_data = NULL;
4962 
4963 	if (!ctx->task) {
4964 		/*
4965 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 		 * relies on the fact that find_get_pmu_context() cannot fail
4967 		 * for CPU contexts.
4968 		 */
4969 		struct perf_cpu_pmu_context *cpc;
4970 
4971 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 		epc = &cpc->epc;
4973 		raw_spin_lock_irq(&ctx->lock);
4974 		if (!epc->ctx) {
4975 			atomic_set(&epc->refcount, 1);
4976 			epc->embedded = 1;
4977 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4978 			epc->ctx = ctx;
4979 		} else {
4980 			WARN_ON_ONCE(epc->ctx != ctx);
4981 			atomic_inc(&epc->refcount);
4982 		}
4983 		raw_spin_unlock_irq(&ctx->lock);
4984 		return epc;
4985 	}
4986 
4987 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4988 	if (!new)
4989 		return ERR_PTR(-ENOMEM);
4990 
4991 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4992 		task_ctx_data = alloc_task_ctx_data(pmu);
4993 		if (!task_ctx_data) {
4994 			kfree(new);
4995 			return ERR_PTR(-ENOMEM);
4996 		}
4997 	}
4998 
4999 	__perf_init_event_pmu_context(new, pmu);
5000 
5001 	/*
5002 	 * XXX
5003 	 *
5004 	 * lockdep_assert_held(&ctx->mutex);
5005 	 *
5006 	 * can't because perf_event_init_task() doesn't actually hold the
5007 	 * child_ctx->mutex.
5008 	 */
5009 
5010 	raw_spin_lock_irq(&ctx->lock);
5011 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5012 		if (epc->pmu == pmu) {
5013 			WARN_ON_ONCE(epc->ctx != ctx);
5014 			atomic_inc(&epc->refcount);
5015 			goto found_epc;
5016 		}
5017 	}
5018 
5019 	epc = new;
5020 	new = NULL;
5021 
5022 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5023 	epc->ctx = ctx;
5024 
5025 found_epc:
5026 	if (task_ctx_data && !epc->task_ctx_data) {
5027 		epc->task_ctx_data = task_ctx_data;
5028 		task_ctx_data = NULL;
5029 		ctx->nr_task_data++;
5030 	}
5031 	raw_spin_unlock_irq(&ctx->lock);
5032 
5033 	free_task_ctx_data(pmu, task_ctx_data);
5034 	kfree(new);
5035 
5036 	return epc;
5037 }
5038 
5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040 {
5041 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042 }
5043 
5044 static void free_epc_rcu(struct rcu_head *head)
5045 {
5046 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047 
5048 	kfree(epc->task_ctx_data);
5049 	kfree(epc);
5050 }
5051 
5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053 {
5054 	struct perf_event_context *ctx = epc->ctx;
5055 	unsigned long flags;
5056 
5057 	/*
5058 	 * XXX
5059 	 *
5060 	 * lockdep_assert_held(&ctx->mutex);
5061 	 *
5062 	 * can't because of the call-site in _free_event()/put_event()
5063 	 * which isn't always called under ctx->mutex.
5064 	 */
5065 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066 		return;
5067 
5068 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069 
5070 	list_del_init(&epc->pmu_ctx_entry);
5071 	epc->ctx = NULL;
5072 
5073 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075 
5076 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077 
5078 	if (epc->embedded)
5079 		return;
5080 
5081 	call_rcu(&epc->rcu_head, free_epc_rcu);
5082 }
5083 
5084 static void perf_event_free_filter(struct perf_event *event);
5085 
5086 static void free_event_rcu(struct rcu_head *head)
5087 {
5088 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089 
5090 	if (event->ns)
5091 		put_pid_ns(event->ns);
5092 	perf_event_free_filter(event);
5093 	kmem_cache_free(perf_event_cache, event);
5094 }
5095 
5096 static void ring_buffer_attach(struct perf_event *event,
5097 			       struct perf_buffer *rb);
5098 
5099 static void detach_sb_event(struct perf_event *event)
5100 {
5101 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102 
5103 	raw_spin_lock(&pel->lock);
5104 	list_del_rcu(&event->sb_list);
5105 	raw_spin_unlock(&pel->lock);
5106 }
5107 
5108 static bool is_sb_event(struct perf_event *event)
5109 {
5110 	struct perf_event_attr *attr = &event->attr;
5111 
5112 	if (event->parent)
5113 		return false;
5114 
5115 	if (event->attach_state & PERF_ATTACH_TASK)
5116 		return false;
5117 
5118 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119 	    attr->comm || attr->comm_exec ||
5120 	    attr->task || attr->ksymbol ||
5121 	    attr->context_switch || attr->text_poke ||
5122 	    attr->bpf_event)
5123 		return true;
5124 	return false;
5125 }
5126 
5127 static void unaccount_pmu_sb_event(struct perf_event *event)
5128 {
5129 	if (is_sb_event(event))
5130 		detach_sb_event(event);
5131 }
5132 
5133 #ifdef CONFIG_NO_HZ_FULL
5134 static DEFINE_SPINLOCK(nr_freq_lock);
5135 #endif
5136 
5137 static void unaccount_freq_event_nohz(void)
5138 {
5139 #ifdef CONFIG_NO_HZ_FULL
5140 	spin_lock(&nr_freq_lock);
5141 	if (atomic_dec_and_test(&nr_freq_events))
5142 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143 	spin_unlock(&nr_freq_lock);
5144 #endif
5145 }
5146 
5147 static void unaccount_freq_event(void)
5148 {
5149 	if (tick_nohz_full_enabled())
5150 		unaccount_freq_event_nohz();
5151 	else
5152 		atomic_dec(&nr_freq_events);
5153 }
5154 
5155 static void unaccount_event(struct perf_event *event)
5156 {
5157 	bool dec = false;
5158 
5159 	if (event->parent)
5160 		return;
5161 
5162 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163 		dec = true;
5164 	if (event->attr.mmap || event->attr.mmap_data)
5165 		atomic_dec(&nr_mmap_events);
5166 	if (event->attr.build_id)
5167 		atomic_dec(&nr_build_id_events);
5168 	if (event->attr.comm)
5169 		atomic_dec(&nr_comm_events);
5170 	if (event->attr.namespaces)
5171 		atomic_dec(&nr_namespaces_events);
5172 	if (event->attr.cgroup)
5173 		atomic_dec(&nr_cgroup_events);
5174 	if (event->attr.task)
5175 		atomic_dec(&nr_task_events);
5176 	if (event->attr.freq)
5177 		unaccount_freq_event();
5178 	if (event->attr.context_switch) {
5179 		dec = true;
5180 		atomic_dec(&nr_switch_events);
5181 	}
5182 	if (is_cgroup_event(event))
5183 		dec = true;
5184 	if (has_branch_stack(event))
5185 		dec = true;
5186 	if (event->attr.ksymbol)
5187 		atomic_dec(&nr_ksymbol_events);
5188 	if (event->attr.bpf_event)
5189 		atomic_dec(&nr_bpf_events);
5190 	if (event->attr.text_poke)
5191 		atomic_dec(&nr_text_poke_events);
5192 
5193 	if (dec) {
5194 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195 			schedule_delayed_work(&perf_sched_work, HZ);
5196 	}
5197 
5198 	unaccount_pmu_sb_event(event);
5199 }
5200 
5201 static void perf_sched_delayed(struct work_struct *work)
5202 {
5203 	mutex_lock(&perf_sched_mutex);
5204 	if (atomic_dec_and_test(&perf_sched_count))
5205 		static_branch_disable(&perf_sched_events);
5206 	mutex_unlock(&perf_sched_mutex);
5207 }
5208 
5209 /*
5210  * The following implement mutual exclusion of events on "exclusive" pmus
5211  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212  * at a time, so we disallow creating events that might conflict, namely:
5213  *
5214  *  1) cpu-wide events in the presence of per-task events,
5215  *  2) per-task events in the presence of cpu-wide events,
5216  *  3) two matching events on the same perf_event_context.
5217  *
5218  * The former two cases are handled in the allocation path (perf_event_alloc(),
5219  * _free_event()), the latter -- before the first perf_install_in_context().
5220  */
5221 static int exclusive_event_init(struct perf_event *event)
5222 {
5223 	struct pmu *pmu = event->pmu;
5224 
5225 	if (!is_exclusive_pmu(pmu))
5226 		return 0;
5227 
5228 	/*
5229 	 * Prevent co-existence of per-task and cpu-wide events on the
5230 	 * same exclusive pmu.
5231 	 *
5232 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5233 	 * events on this "exclusive" pmu, positive means there are
5234 	 * per-task events.
5235 	 *
5236 	 * Since this is called in perf_event_alloc() path, event::ctx
5237 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238 	 * to mean "per-task event", because unlike other attach states it
5239 	 * never gets cleared.
5240 	 */
5241 	if (event->attach_state & PERF_ATTACH_TASK) {
5242 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243 			return -EBUSY;
5244 	} else {
5245 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246 			return -EBUSY;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 static void exclusive_event_destroy(struct perf_event *event)
5253 {
5254 	struct pmu *pmu = event->pmu;
5255 
5256 	if (!is_exclusive_pmu(pmu))
5257 		return;
5258 
5259 	/* see comment in exclusive_event_init() */
5260 	if (event->attach_state & PERF_ATTACH_TASK)
5261 		atomic_dec(&pmu->exclusive_cnt);
5262 	else
5263 		atomic_inc(&pmu->exclusive_cnt);
5264 }
5265 
5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267 {
5268 	if ((e1->pmu == e2->pmu) &&
5269 	    (e1->cpu == e2->cpu ||
5270 	     e1->cpu == -1 ||
5271 	     e2->cpu == -1))
5272 		return true;
5273 	return false;
5274 }
5275 
5276 static bool exclusive_event_installable(struct perf_event *event,
5277 					struct perf_event_context *ctx)
5278 {
5279 	struct perf_event *iter_event;
5280 	struct pmu *pmu = event->pmu;
5281 
5282 	lockdep_assert_held(&ctx->mutex);
5283 
5284 	if (!is_exclusive_pmu(pmu))
5285 		return true;
5286 
5287 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288 		if (exclusive_event_match(iter_event, event))
5289 			return false;
5290 	}
5291 
5292 	return true;
5293 }
5294 
5295 static void perf_addr_filters_splice(struct perf_event *event,
5296 				       struct list_head *head);
5297 
5298 static void perf_pending_task_sync(struct perf_event *event)
5299 {
5300 	struct callback_head *head = &event->pending_task;
5301 
5302 	if (!event->pending_work)
5303 		return;
5304 	/*
5305 	 * If the task is queued to the current task's queue, we
5306 	 * obviously can't wait for it to complete. Simply cancel it.
5307 	 */
5308 	if (task_work_cancel(current, head)) {
5309 		event->pending_work = 0;
5310 		local_dec(&event->ctx->nr_no_switch_fast);
5311 		return;
5312 	}
5313 
5314 	/*
5315 	 * All accesses related to the event are within the same RCU section in
5316 	 * perf_pending_task(). The RCU grace period before the event is freed
5317 	 * will make sure all those accesses are complete by then.
5318 	 */
5319 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320 }
5321 
5322 static void _free_event(struct perf_event *event)
5323 {
5324 	irq_work_sync(&event->pending_irq);
5325 	irq_work_sync(&event->pending_disable_irq);
5326 	perf_pending_task_sync(event);
5327 
5328 	unaccount_event(event);
5329 
5330 	security_perf_event_free(event);
5331 
5332 	if (event->rb) {
5333 		/*
5334 		 * Can happen when we close an event with re-directed output.
5335 		 *
5336 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5337 		 * over us; possibly making our ring_buffer_put() the last.
5338 		 */
5339 		mutex_lock(&event->mmap_mutex);
5340 		ring_buffer_attach(event, NULL);
5341 		mutex_unlock(&event->mmap_mutex);
5342 	}
5343 
5344 	if (is_cgroup_event(event))
5345 		perf_detach_cgroup(event);
5346 
5347 	if (!event->parent) {
5348 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349 			put_callchain_buffers();
5350 	}
5351 
5352 	perf_event_free_bpf_prog(event);
5353 	perf_addr_filters_splice(event, NULL);
5354 	kfree(event->addr_filter_ranges);
5355 
5356 	if (event->destroy)
5357 		event->destroy(event);
5358 
5359 	/*
5360 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5361 	 * hw.target.
5362 	 */
5363 	if (event->hw.target)
5364 		put_task_struct(event->hw.target);
5365 
5366 	if (event->pmu_ctx)
5367 		put_pmu_ctx(event->pmu_ctx);
5368 
5369 	/*
5370 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371 	 * all task references must be cleaned up.
5372 	 */
5373 	if (event->ctx)
5374 		put_ctx(event->ctx);
5375 
5376 	exclusive_event_destroy(event);
5377 	module_put(event->pmu->module);
5378 
5379 	call_rcu(&event->rcu_head, free_event_rcu);
5380 }
5381 
5382 /*
5383  * Used to free events which have a known refcount of 1, such as in error paths
5384  * where the event isn't exposed yet and inherited events.
5385  */
5386 static void free_event(struct perf_event *event)
5387 {
5388 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389 				"unexpected event refcount: %ld; ptr=%p\n",
5390 				atomic_long_read(&event->refcount), event)) {
5391 		/* leak to avoid use-after-free */
5392 		return;
5393 	}
5394 
5395 	_free_event(event);
5396 }
5397 
5398 /*
5399  * Remove user event from the owner task.
5400  */
5401 static void perf_remove_from_owner(struct perf_event *event)
5402 {
5403 	struct task_struct *owner;
5404 
5405 	rcu_read_lock();
5406 	/*
5407 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408 	 * observe !owner it means the list deletion is complete and we can
5409 	 * indeed free this event, otherwise we need to serialize on
5410 	 * owner->perf_event_mutex.
5411 	 */
5412 	owner = READ_ONCE(event->owner);
5413 	if (owner) {
5414 		/*
5415 		 * Since delayed_put_task_struct() also drops the last
5416 		 * task reference we can safely take a new reference
5417 		 * while holding the rcu_read_lock().
5418 		 */
5419 		get_task_struct(owner);
5420 	}
5421 	rcu_read_unlock();
5422 
5423 	if (owner) {
5424 		/*
5425 		 * If we're here through perf_event_exit_task() we're already
5426 		 * holding ctx->mutex which would be an inversion wrt. the
5427 		 * normal lock order.
5428 		 *
5429 		 * However we can safely take this lock because its the child
5430 		 * ctx->mutex.
5431 		 */
5432 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433 
5434 		/*
5435 		 * We have to re-check the event->owner field, if it is cleared
5436 		 * we raced with perf_event_exit_task(), acquiring the mutex
5437 		 * ensured they're done, and we can proceed with freeing the
5438 		 * event.
5439 		 */
5440 		if (event->owner) {
5441 			list_del_init(&event->owner_entry);
5442 			smp_store_release(&event->owner, NULL);
5443 		}
5444 		mutex_unlock(&owner->perf_event_mutex);
5445 		put_task_struct(owner);
5446 	}
5447 }
5448 
5449 static void put_event(struct perf_event *event)
5450 {
5451 	if (!atomic_long_dec_and_test(&event->refcount))
5452 		return;
5453 
5454 	_free_event(event);
5455 }
5456 
5457 /*
5458  * Kill an event dead; while event:refcount will preserve the event
5459  * object, it will not preserve its functionality. Once the last 'user'
5460  * gives up the object, we'll destroy the thing.
5461  */
5462 int perf_event_release_kernel(struct perf_event *event)
5463 {
5464 	struct perf_event_context *ctx = event->ctx;
5465 	struct perf_event *child, *tmp;
5466 	LIST_HEAD(free_list);
5467 
5468 	/*
5469 	 * If we got here through err_alloc: free_event(event); we will not
5470 	 * have attached to a context yet.
5471 	 */
5472 	if (!ctx) {
5473 		WARN_ON_ONCE(event->attach_state &
5474 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475 		goto no_ctx;
5476 	}
5477 
5478 	if (!is_kernel_event(event))
5479 		perf_remove_from_owner(event);
5480 
5481 	ctx = perf_event_ctx_lock(event);
5482 	WARN_ON_ONCE(ctx->parent_ctx);
5483 
5484 	/*
5485 	 * Mark this event as STATE_DEAD, there is no external reference to it
5486 	 * anymore.
5487 	 *
5488 	 * Anybody acquiring event->child_mutex after the below loop _must_
5489 	 * also see this, most importantly inherit_event() which will avoid
5490 	 * placing more children on the list.
5491 	 *
5492 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5493 	 * child events.
5494 	 */
5495 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496 
5497 	perf_event_ctx_unlock(event, ctx);
5498 
5499 again:
5500 	mutex_lock(&event->child_mutex);
5501 	list_for_each_entry(child, &event->child_list, child_list) {
5502 		void *var = NULL;
5503 
5504 		/*
5505 		 * Cannot change, child events are not migrated, see the
5506 		 * comment with perf_event_ctx_lock_nested().
5507 		 */
5508 		ctx = READ_ONCE(child->ctx);
5509 		/*
5510 		 * Since child_mutex nests inside ctx::mutex, we must jump
5511 		 * through hoops. We start by grabbing a reference on the ctx.
5512 		 *
5513 		 * Since the event cannot get freed while we hold the
5514 		 * child_mutex, the context must also exist and have a !0
5515 		 * reference count.
5516 		 */
5517 		get_ctx(ctx);
5518 
5519 		/*
5520 		 * Now that we have a ctx ref, we can drop child_mutex, and
5521 		 * acquire ctx::mutex without fear of it going away. Then we
5522 		 * can re-acquire child_mutex.
5523 		 */
5524 		mutex_unlock(&event->child_mutex);
5525 		mutex_lock(&ctx->mutex);
5526 		mutex_lock(&event->child_mutex);
5527 
5528 		/*
5529 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530 		 * state, if child is still the first entry, it didn't get freed
5531 		 * and we can continue doing so.
5532 		 */
5533 		tmp = list_first_entry_or_null(&event->child_list,
5534 					       struct perf_event, child_list);
5535 		if (tmp == child) {
5536 			perf_remove_from_context(child, DETACH_GROUP);
5537 			list_move(&child->child_list, &free_list);
5538 			/*
5539 			 * This matches the refcount bump in inherit_event();
5540 			 * this can't be the last reference.
5541 			 */
5542 			put_event(event);
5543 		} else {
5544 			var = &ctx->refcount;
5545 		}
5546 
5547 		mutex_unlock(&event->child_mutex);
5548 		mutex_unlock(&ctx->mutex);
5549 		put_ctx(ctx);
5550 
5551 		if (var) {
5552 			/*
5553 			 * If perf_event_free_task() has deleted all events from the
5554 			 * ctx while the child_mutex got released above, make sure to
5555 			 * notify about the preceding put_ctx().
5556 			 */
5557 			smp_mb(); /* pairs with wait_var_event() */
5558 			wake_up_var(var);
5559 		}
5560 		goto again;
5561 	}
5562 	mutex_unlock(&event->child_mutex);
5563 
5564 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565 		void *var = &child->ctx->refcount;
5566 
5567 		list_del(&child->child_list);
5568 		free_event(child);
5569 
5570 		/*
5571 		 * Wake any perf_event_free_task() waiting for this event to be
5572 		 * freed.
5573 		 */
5574 		smp_mb(); /* pairs with wait_var_event() */
5575 		wake_up_var(var);
5576 	}
5577 
5578 no_ctx:
5579 	put_event(event); /* Must be the 'last' reference */
5580 	return 0;
5581 }
5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583 
5584 /*
5585  * Called when the last reference to the file is gone.
5586  */
5587 static int perf_release(struct inode *inode, struct file *file)
5588 {
5589 	perf_event_release_kernel(file->private_data);
5590 	return 0;
5591 }
5592 
5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594 {
5595 	struct perf_event *child;
5596 	u64 total = 0;
5597 
5598 	*enabled = 0;
5599 	*running = 0;
5600 
5601 	mutex_lock(&event->child_mutex);
5602 
5603 	(void)perf_event_read(event, false);
5604 	total += perf_event_count(event, false);
5605 
5606 	*enabled += event->total_time_enabled +
5607 			atomic64_read(&event->child_total_time_enabled);
5608 	*running += event->total_time_running +
5609 			atomic64_read(&event->child_total_time_running);
5610 
5611 	list_for_each_entry(child, &event->child_list, child_list) {
5612 		(void)perf_event_read(child, false);
5613 		total += perf_event_count(child, false);
5614 		*enabled += child->total_time_enabled;
5615 		*running += child->total_time_running;
5616 	}
5617 	mutex_unlock(&event->child_mutex);
5618 
5619 	return total;
5620 }
5621 
5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623 {
5624 	struct perf_event_context *ctx;
5625 	u64 count;
5626 
5627 	ctx = perf_event_ctx_lock(event);
5628 	count = __perf_event_read_value(event, enabled, running);
5629 	perf_event_ctx_unlock(event, ctx);
5630 
5631 	return count;
5632 }
5633 EXPORT_SYMBOL_GPL(perf_event_read_value);
5634 
5635 static int __perf_read_group_add(struct perf_event *leader,
5636 					u64 read_format, u64 *values)
5637 {
5638 	struct perf_event_context *ctx = leader->ctx;
5639 	struct perf_event *sub, *parent;
5640 	unsigned long flags;
5641 	int n = 1; /* skip @nr */
5642 	int ret;
5643 
5644 	ret = perf_event_read(leader, true);
5645 	if (ret)
5646 		return ret;
5647 
5648 	raw_spin_lock_irqsave(&ctx->lock, flags);
5649 	/*
5650 	 * Verify the grouping between the parent and child (inherited)
5651 	 * events is still in tact.
5652 	 *
5653 	 * Specifically:
5654 	 *  - leader->ctx->lock pins leader->sibling_list
5655 	 *  - parent->child_mutex pins parent->child_list
5656 	 *  - parent->ctx->mutex pins parent->sibling_list
5657 	 *
5658 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5659 	 * ctx->mutex), group destruction is not atomic between children, also
5660 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5661 	 * group.
5662 	 *
5663 	 * Therefore it is possible to have parent and child groups in a
5664 	 * different configuration and summing over such a beast makes no sense
5665 	 * what so ever.
5666 	 *
5667 	 * Reject this.
5668 	 */
5669 	parent = leader->parent;
5670 	if (parent &&
5671 	    (parent->group_generation != leader->group_generation ||
5672 	     parent->nr_siblings != leader->nr_siblings)) {
5673 		ret = -ECHILD;
5674 		goto unlock;
5675 	}
5676 
5677 	/*
5678 	 * Since we co-schedule groups, {enabled,running} times of siblings
5679 	 * will be identical to those of the leader, so we only publish one
5680 	 * set.
5681 	 */
5682 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683 		values[n++] += leader->total_time_enabled +
5684 			atomic64_read(&leader->child_total_time_enabled);
5685 	}
5686 
5687 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688 		values[n++] += leader->total_time_running +
5689 			atomic64_read(&leader->child_total_time_running);
5690 	}
5691 
5692 	/*
5693 	 * Write {count,id} tuples for every sibling.
5694 	 */
5695 	values[n++] += perf_event_count(leader, false);
5696 	if (read_format & PERF_FORMAT_ID)
5697 		values[n++] = primary_event_id(leader);
5698 	if (read_format & PERF_FORMAT_LOST)
5699 		values[n++] = atomic64_read(&leader->lost_samples);
5700 
5701 	for_each_sibling_event(sub, leader) {
5702 		values[n++] += perf_event_count(sub, false);
5703 		if (read_format & PERF_FORMAT_ID)
5704 			values[n++] = primary_event_id(sub);
5705 		if (read_format & PERF_FORMAT_LOST)
5706 			values[n++] = atomic64_read(&sub->lost_samples);
5707 	}
5708 
5709 unlock:
5710 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711 	return ret;
5712 }
5713 
5714 static int perf_read_group(struct perf_event *event,
5715 				   u64 read_format, char __user *buf)
5716 {
5717 	struct perf_event *leader = event->group_leader, *child;
5718 	struct perf_event_context *ctx = leader->ctx;
5719 	int ret;
5720 	u64 *values;
5721 
5722 	lockdep_assert_held(&ctx->mutex);
5723 
5724 	values = kzalloc(event->read_size, GFP_KERNEL);
5725 	if (!values)
5726 		return -ENOMEM;
5727 
5728 	values[0] = 1 + leader->nr_siblings;
5729 
5730 	mutex_lock(&leader->child_mutex);
5731 
5732 	ret = __perf_read_group_add(leader, read_format, values);
5733 	if (ret)
5734 		goto unlock;
5735 
5736 	list_for_each_entry(child, &leader->child_list, child_list) {
5737 		ret = __perf_read_group_add(child, read_format, values);
5738 		if (ret)
5739 			goto unlock;
5740 	}
5741 
5742 	mutex_unlock(&leader->child_mutex);
5743 
5744 	ret = event->read_size;
5745 	if (copy_to_user(buf, values, event->read_size))
5746 		ret = -EFAULT;
5747 	goto out;
5748 
5749 unlock:
5750 	mutex_unlock(&leader->child_mutex);
5751 out:
5752 	kfree(values);
5753 	return ret;
5754 }
5755 
5756 static int perf_read_one(struct perf_event *event,
5757 				 u64 read_format, char __user *buf)
5758 {
5759 	u64 enabled, running;
5760 	u64 values[5];
5761 	int n = 0;
5762 
5763 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5764 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765 		values[n++] = enabled;
5766 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767 		values[n++] = running;
5768 	if (read_format & PERF_FORMAT_ID)
5769 		values[n++] = primary_event_id(event);
5770 	if (read_format & PERF_FORMAT_LOST)
5771 		values[n++] = atomic64_read(&event->lost_samples);
5772 
5773 	if (copy_to_user(buf, values, n * sizeof(u64)))
5774 		return -EFAULT;
5775 
5776 	return n * sizeof(u64);
5777 }
5778 
5779 static bool is_event_hup(struct perf_event *event)
5780 {
5781 	bool no_children;
5782 
5783 	if (event->state > PERF_EVENT_STATE_EXIT)
5784 		return false;
5785 
5786 	mutex_lock(&event->child_mutex);
5787 	no_children = list_empty(&event->child_list);
5788 	mutex_unlock(&event->child_mutex);
5789 	return no_children;
5790 }
5791 
5792 /*
5793  * Read the performance event - simple non blocking version for now
5794  */
5795 static ssize_t
5796 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797 {
5798 	u64 read_format = event->attr.read_format;
5799 	int ret;
5800 
5801 	/*
5802 	 * Return end-of-file for a read on an event that is in
5803 	 * error state (i.e. because it was pinned but it couldn't be
5804 	 * scheduled on to the CPU at some point).
5805 	 */
5806 	if (event->state == PERF_EVENT_STATE_ERROR)
5807 		return 0;
5808 
5809 	if (count < event->read_size)
5810 		return -ENOSPC;
5811 
5812 	WARN_ON_ONCE(event->ctx->parent_ctx);
5813 	if (read_format & PERF_FORMAT_GROUP)
5814 		ret = perf_read_group(event, read_format, buf);
5815 	else
5816 		ret = perf_read_one(event, read_format, buf);
5817 
5818 	return ret;
5819 }
5820 
5821 static ssize_t
5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823 {
5824 	struct perf_event *event = file->private_data;
5825 	struct perf_event_context *ctx;
5826 	int ret;
5827 
5828 	ret = security_perf_event_read(event);
5829 	if (ret)
5830 		return ret;
5831 
5832 	ctx = perf_event_ctx_lock(event);
5833 	ret = __perf_read(event, buf, count);
5834 	perf_event_ctx_unlock(event, ctx);
5835 
5836 	return ret;
5837 }
5838 
5839 static __poll_t perf_poll(struct file *file, poll_table *wait)
5840 {
5841 	struct perf_event *event = file->private_data;
5842 	struct perf_buffer *rb;
5843 	__poll_t events = EPOLLHUP;
5844 
5845 	poll_wait(file, &event->waitq, wait);
5846 
5847 	if (is_event_hup(event))
5848 		return events;
5849 
5850 	/*
5851 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853 	 */
5854 	mutex_lock(&event->mmap_mutex);
5855 	rb = event->rb;
5856 	if (rb)
5857 		events = atomic_xchg(&rb->poll, 0);
5858 	mutex_unlock(&event->mmap_mutex);
5859 	return events;
5860 }
5861 
5862 static void _perf_event_reset(struct perf_event *event)
5863 {
5864 	(void)perf_event_read(event, false);
5865 	local64_set(&event->count, 0);
5866 	perf_event_update_userpage(event);
5867 }
5868 
5869 /* Assume it's not an event with inherit set. */
5870 u64 perf_event_pause(struct perf_event *event, bool reset)
5871 {
5872 	struct perf_event_context *ctx;
5873 	u64 count;
5874 
5875 	ctx = perf_event_ctx_lock(event);
5876 	WARN_ON_ONCE(event->attr.inherit);
5877 	_perf_event_disable(event);
5878 	count = local64_read(&event->count);
5879 	if (reset)
5880 		local64_set(&event->count, 0);
5881 	perf_event_ctx_unlock(event, ctx);
5882 
5883 	return count;
5884 }
5885 EXPORT_SYMBOL_GPL(perf_event_pause);
5886 
5887 /*
5888  * Holding the top-level event's child_mutex means that any
5889  * descendant process that has inherited this event will block
5890  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891  * task existence requirements of perf_event_enable/disable.
5892  */
5893 static void perf_event_for_each_child(struct perf_event *event,
5894 					void (*func)(struct perf_event *))
5895 {
5896 	struct perf_event *child;
5897 
5898 	WARN_ON_ONCE(event->ctx->parent_ctx);
5899 
5900 	mutex_lock(&event->child_mutex);
5901 	func(event);
5902 	list_for_each_entry(child, &event->child_list, child_list)
5903 		func(child);
5904 	mutex_unlock(&event->child_mutex);
5905 }
5906 
5907 static void perf_event_for_each(struct perf_event *event,
5908 				  void (*func)(struct perf_event *))
5909 {
5910 	struct perf_event_context *ctx = event->ctx;
5911 	struct perf_event *sibling;
5912 
5913 	lockdep_assert_held(&ctx->mutex);
5914 
5915 	event = event->group_leader;
5916 
5917 	perf_event_for_each_child(event, func);
5918 	for_each_sibling_event(sibling, event)
5919 		perf_event_for_each_child(sibling, func);
5920 }
5921 
5922 static void __perf_event_period(struct perf_event *event,
5923 				struct perf_cpu_context *cpuctx,
5924 				struct perf_event_context *ctx,
5925 				void *info)
5926 {
5927 	u64 value = *((u64 *)info);
5928 	bool active;
5929 
5930 	if (event->attr.freq) {
5931 		event->attr.sample_freq = value;
5932 	} else {
5933 		event->attr.sample_period = value;
5934 		event->hw.sample_period = value;
5935 	}
5936 
5937 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938 	if (active) {
5939 		perf_pmu_disable(event->pmu);
5940 		/*
5941 		 * We could be throttled; unthrottle now to avoid the tick
5942 		 * trying to unthrottle while we already re-started the event.
5943 		 */
5944 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5945 			event->hw.interrupts = 0;
5946 			perf_log_throttle(event, 1);
5947 		}
5948 		event->pmu->stop(event, PERF_EF_UPDATE);
5949 	}
5950 
5951 	local64_set(&event->hw.period_left, 0);
5952 
5953 	if (active) {
5954 		event->pmu->start(event, PERF_EF_RELOAD);
5955 		perf_pmu_enable(event->pmu);
5956 	}
5957 }
5958 
5959 static int perf_event_check_period(struct perf_event *event, u64 value)
5960 {
5961 	return event->pmu->check_period(event, value);
5962 }
5963 
5964 static int _perf_event_period(struct perf_event *event, u64 value)
5965 {
5966 	if (!is_sampling_event(event))
5967 		return -EINVAL;
5968 
5969 	if (!value)
5970 		return -EINVAL;
5971 
5972 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5973 		return -EINVAL;
5974 
5975 	if (perf_event_check_period(event, value))
5976 		return -EINVAL;
5977 
5978 	if (!event->attr.freq && (value & (1ULL << 63)))
5979 		return -EINVAL;
5980 
5981 	event_function_call(event, __perf_event_period, &value);
5982 
5983 	return 0;
5984 }
5985 
5986 int perf_event_period(struct perf_event *event, u64 value)
5987 {
5988 	struct perf_event_context *ctx;
5989 	int ret;
5990 
5991 	ctx = perf_event_ctx_lock(event);
5992 	ret = _perf_event_period(event, value);
5993 	perf_event_ctx_unlock(event, ctx);
5994 
5995 	return ret;
5996 }
5997 EXPORT_SYMBOL_GPL(perf_event_period);
5998 
5999 static const struct file_operations perf_fops;
6000 
6001 static inline int perf_fget_light(int fd, struct fd *p)
6002 {
6003 	struct fd f = fdget(fd);
6004 	if (!fd_file(f))
6005 		return -EBADF;
6006 
6007 	if (fd_file(f)->f_op != &perf_fops) {
6008 		fdput(f);
6009 		return -EBADF;
6010 	}
6011 	*p = f;
6012 	return 0;
6013 }
6014 
6015 static int perf_event_set_output(struct perf_event *event,
6016 				 struct perf_event *output_event);
6017 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6018 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6019 			  struct perf_event_attr *attr);
6020 
6021 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6022 {
6023 	void (*func)(struct perf_event *);
6024 	u32 flags = arg;
6025 
6026 	switch (cmd) {
6027 	case PERF_EVENT_IOC_ENABLE:
6028 		func = _perf_event_enable;
6029 		break;
6030 	case PERF_EVENT_IOC_DISABLE:
6031 		func = _perf_event_disable;
6032 		break;
6033 	case PERF_EVENT_IOC_RESET:
6034 		func = _perf_event_reset;
6035 		break;
6036 
6037 	case PERF_EVENT_IOC_REFRESH:
6038 		return _perf_event_refresh(event, arg);
6039 
6040 	case PERF_EVENT_IOC_PERIOD:
6041 	{
6042 		u64 value;
6043 
6044 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6045 			return -EFAULT;
6046 
6047 		return _perf_event_period(event, value);
6048 	}
6049 	case PERF_EVENT_IOC_ID:
6050 	{
6051 		u64 id = primary_event_id(event);
6052 
6053 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6054 			return -EFAULT;
6055 		return 0;
6056 	}
6057 
6058 	case PERF_EVENT_IOC_SET_OUTPUT:
6059 	{
6060 		int ret;
6061 		if (arg != -1) {
6062 			struct perf_event *output_event;
6063 			struct fd output;
6064 			ret = perf_fget_light(arg, &output);
6065 			if (ret)
6066 				return ret;
6067 			output_event = fd_file(output)->private_data;
6068 			ret = perf_event_set_output(event, output_event);
6069 			fdput(output);
6070 		} else {
6071 			ret = perf_event_set_output(event, NULL);
6072 		}
6073 		return ret;
6074 	}
6075 
6076 	case PERF_EVENT_IOC_SET_FILTER:
6077 		return perf_event_set_filter(event, (void __user *)arg);
6078 
6079 	case PERF_EVENT_IOC_SET_BPF:
6080 	{
6081 		struct bpf_prog *prog;
6082 		int err;
6083 
6084 		prog = bpf_prog_get(arg);
6085 		if (IS_ERR(prog))
6086 			return PTR_ERR(prog);
6087 
6088 		err = perf_event_set_bpf_prog(event, prog, 0);
6089 		if (err) {
6090 			bpf_prog_put(prog);
6091 			return err;
6092 		}
6093 
6094 		return 0;
6095 	}
6096 
6097 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6098 		struct perf_buffer *rb;
6099 
6100 		rcu_read_lock();
6101 		rb = rcu_dereference(event->rb);
6102 		if (!rb || !rb->nr_pages) {
6103 			rcu_read_unlock();
6104 			return -EINVAL;
6105 		}
6106 		rb_toggle_paused(rb, !!arg);
6107 		rcu_read_unlock();
6108 		return 0;
6109 	}
6110 
6111 	case PERF_EVENT_IOC_QUERY_BPF:
6112 		return perf_event_query_prog_array(event, (void __user *)arg);
6113 
6114 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6115 		struct perf_event_attr new_attr;
6116 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6117 					 &new_attr);
6118 
6119 		if (err)
6120 			return err;
6121 
6122 		return perf_event_modify_attr(event,  &new_attr);
6123 	}
6124 	default:
6125 		return -ENOTTY;
6126 	}
6127 
6128 	if (flags & PERF_IOC_FLAG_GROUP)
6129 		perf_event_for_each(event, func);
6130 	else
6131 		perf_event_for_each_child(event, func);
6132 
6133 	return 0;
6134 }
6135 
6136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6137 {
6138 	struct perf_event *event = file->private_data;
6139 	struct perf_event_context *ctx;
6140 	long ret;
6141 
6142 	/* Treat ioctl like writes as it is likely a mutating operation. */
6143 	ret = security_perf_event_write(event);
6144 	if (ret)
6145 		return ret;
6146 
6147 	ctx = perf_event_ctx_lock(event);
6148 	ret = _perf_ioctl(event, cmd, arg);
6149 	perf_event_ctx_unlock(event, ctx);
6150 
6151 	return ret;
6152 }
6153 
6154 #ifdef CONFIG_COMPAT
6155 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6156 				unsigned long arg)
6157 {
6158 	switch (_IOC_NR(cmd)) {
6159 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6160 	case _IOC_NR(PERF_EVENT_IOC_ID):
6161 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6162 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6163 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6164 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6165 			cmd &= ~IOCSIZE_MASK;
6166 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6167 		}
6168 		break;
6169 	}
6170 	return perf_ioctl(file, cmd, arg);
6171 }
6172 #else
6173 # define perf_compat_ioctl NULL
6174 #endif
6175 
6176 int perf_event_task_enable(void)
6177 {
6178 	struct perf_event_context *ctx;
6179 	struct perf_event *event;
6180 
6181 	mutex_lock(&current->perf_event_mutex);
6182 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6183 		ctx = perf_event_ctx_lock(event);
6184 		perf_event_for_each_child(event, _perf_event_enable);
6185 		perf_event_ctx_unlock(event, ctx);
6186 	}
6187 	mutex_unlock(&current->perf_event_mutex);
6188 
6189 	return 0;
6190 }
6191 
6192 int perf_event_task_disable(void)
6193 {
6194 	struct perf_event_context *ctx;
6195 	struct perf_event *event;
6196 
6197 	mutex_lock(&current->perf_event_mutex);
6198 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6199 		ctx = perf_event_ctx_lock(event);
6200 		perf_event_for_each_child(event, _perf_event_disable);
6201 		perf_event_ctx_unlock(event, ctx);
6202 	}
6203 	mutex_unlock(&current->perf_event_mutex);
6204 
6205 	return 0;
6206 }
6207 
6208 static int perf_event_index(struct perf_event *event)
6209 {
6210 	if (event->hw.state & PERF_HES_STOPPED)
6211 		return 0;
6212 
6213 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6214 		return 0;
6215 
6216 	return event->pmu->event_idx(event);
6217 }
6218 
6219 static void perf_event_init_userpage(struct perf_event *event)
6220 {
6221 	struct perf_event_mmap_page *userpg;
6222 	struct perf_buffer *rb;
6223 
6224 	rcu_read_lock();
6225 	rb = rcu_dereference(event->rb);
6226 	if (!rb)
6227 		goto unlock;
6228 
6229 	userpg = rb->user_page;
6230 
6231 	/* Allow new userspace to detect that bit 0 is deprecated */
6232 	userpg->cap_bit0_is_deprecated = 1;
6233 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6234 	userpg->data_offset = PAGE_SIZE;
6235 	userpg->data_size = perf_data_size(rb);
6236 
6237 unlock:
6238 	rcu_read_unlock();
6239 }
6240 
6241 void __weak arch_perf_update_userpage(
6242 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6243 {
6244 }
6245 
6246 /*
6247  * Callers need to ensure there can be no nesting of this function, otherwise
6248  * the seqlock logic goes bad. We can not serialize this because the arch
6249  * code calls this from NMI context.
6250  */
6251 void perf_event_update_userpage(struct perf_event *event)
6252 {
6253 	struct perf_event_mmap_page *userpg;
6254 	struct perf_buffer *rb;
6255 	u64 enabled, running, now;
6256 
6257 	rcu_read_lock();
6258 	rb = rcu_dereference(event->rb);
6259 	if (!rb)
6260 		goto unlock;
6261 
6262 	/*
6263 	 * compute total_time_enabled, total_time_running
6264 	 * based on snapshot values taken when the event
6265 	 * was last scheduled in.
6266 	 *
6267 	 * we cannot simply called update_context_time()
6268 	 * because of locking issue as we can be called in
6269 	 * NMI context
6270 	 */
6271 	calc_timer_values(event, &now, &enabled, &running);
6272 
6273 	userpg = rb->user_page;
6274 	/*
6275 	 * Disable preemption to guarantee consistent time stamps are stored to
6276 	 * the user page.
6277 	 */
6278 	preempt_disable();
6279 	++userpg->lock;
6280 	barrier();
6281 	userpg->index = perf_event_index(event);
6282 	userpg->offset = perf_event_count(event, false);
6283 	if (userpg->index)
6284 		userpg->offset -= local64_read(&event->hw.prev_count);
6285 
6286 	userpg->time_enabled = enabled +
6287 			atomic64_read(&event->child_total_time_enabled);
6288 
6289 	userpg->time_running = running +
6290 			atomic64_read(&event->child_total_time_running);
6291 
6292 	arch_perf_update_userpage(event, userpg, now);
6293 
6294 	barrier();
6295 	++userpg->lock;
6296 	preempt_enable();
6297 unlock:
6298 	rcu_read_unlock();
6299 }
6300 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6301 
6302 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6303 {
6304 	struct perf_event *event = vmf->vma->vm_file->private_data;
6305 	struct perf_buffer *rb;
6306 	vm_fault_t ret = VM_FAULT_SIGBUS;
6307 
6308 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6309 		if (vmf->pgoff == 0)
6310 			ret = 0;
6311 		return ret;
6312 	}
6313 
6314 	rcu_read_lock();
6315 	rb = rcu_dereference(event->rb);
6316 	if (!rb)
6317 		goto unlock;
6318 
6319 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6320 		goto unlock;
6321 
6322 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6323 	if (!vmf->page)
6324 		goto unlock;
6325 
6326 	get_page(vmf->page);
6327 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6328 	vmf->page->index   = vmf->pgoff;
6329 
6330 	ret = 0;
6331 unlock:
6332 	rcu_read_unlock();
6333 
6334 	return ret;
6335 }
6336 
6337 static void ring_buffer_attach(struct perf_event *event,
6338 			       struct perf_buffer *rb)
6339 {
6340 	struct perf_buffer *old_rb = NULL;
6341 	unsigned long flags;
6342 
6343 	WARN_ON_ONCE(event->parent);
6344 
6345 	if (event->rb) {
6346 		/*
6347 		 * Should be impossible, we set this when removing
6348 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6349 		 */
6350 		WARN_ON_ONCE(event->rcu_pending);
6351 
6352 		old_rb = event->rb;
6353 		spin_lock_irqsave(&old_rb->event_lock, flags);
6354 		list_del_rcu(&event->rb_entry);
6355 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6356 
6357 		event->rcu_batches = get_state_synchronize_rcu();
6358 		event->rcu_pending = 1;
6359 	}
6360 
6361 	if (rb) {
6362 		if (event->rcu_pending) {
6363 			cond_synchronize_rcu(event->rcu_batches);
6364 			event->rcu_pending = 0;
6365 		}
6366 
6367 		spin_lock_irqsave(&rb->event_lock, flags);
6368 		list_add_rcu(&event->rb_entry, &rb->event_list);
6369 		spin_unlock_irqrestore(&rb->event_lock, flags);
6370 	}
6371 
6372 	/*
6373 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6374 	 * before swizzling the event::rb pointer; if it's getting
6375 	 * unmapped, its aux_mmap_count will be 0 and it won't
6376 	 * restart. See the comment in __perf_pmu_output_stop().
6377 	 *
6378 	 * Data will inevitably be lost when set_output is done in
6379 	 * mid-air, but then again, whoever does it like this is
6380 	 * not in for the data anyway.
6381 	 */
6382 	if (has_aux(event))
6383 		perf_event_stop(event, 0);
6384 
6385 	rcu_assign_pointer(event->rb, rb);
6386 
6387 	if (old_rb) {
6388 		ring_buffer_put(old_rb);
6389 		/*
6390 		 * Since we detached before setting the new rb, so that we
6391 		 * could attach the new rb, we could have missed a wakeup.
6392 		 * Provide it now.
6393 		 */
6394 		wake_up_all(&event->waitq);
6395 	}
6396 }
6397 
6398 static void ring_buffer_wakeup(struct perf_event *event)
6399 {
6400 	struct perf_buffer *rb;
6401 
6402 	if (event->parent)
6403 		event = event->parent;
6404 
6405 	rcu_read_lock();
6406 	rb = rcu_dereference(event->rb);
6407 	if (rb) {
6408 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6409 			wake_up_all(&event->waitq);
6410 	}
6411 	rcu_read_unlock();
6412 }
6413 
6414 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6415 {
6416 	struct perf_buffer *rb;
6417 
6418 	if (event->parent)
6419 		event = event->parent;
6420 
6421 	rcu_read_lock();
6422 	rb = rcu_dereference(event->rb);
6423 	if (rb) {
6424 		if (!refcount_inc_not_zero(&rb->refcount))
6425 			rb = NULL;
6426 	}
6427 	rcu_read_unlock();
6428 
6429 	return rb;
6430 }
6431 
6432 void ring_buffer_put(struct perf_buffer *rb)
6433 {
6434 	if (!refcount_dec_and_test(&rb->refcount))
6435 		return;
6436 
6437 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6438 
6439 	call_rcu(&rb->rcu_head, rb_free_rcu);
6440 }
6441 
6442 static void perf_mmap_open(struct vm_area_struct *vma)
6443 {
6444 	struct perf_event *event = vma->vm_file->private_data;
6445 
6446 	atomic_inc(&event->mmap_count);
6447 	atomic_inc(&event->rb->mmap_count);
6448 
6449 	if (vma->vm_pgoff)
6450 		atomic_inc(&event->rb->aux_mmap_count);
6451 
6452 	if (event->pmu->event_mapped)
6453 		event->pmu->event_mapped(event, vma->vm_mm);
6454 }
6455 
6456 static void perf_pmu_output_stop(struct perf_event *event);
6457 
6458 /*
6459  * A buffer can be mmap()ed multiple times; either directly through the same
6460  * event, or through other events by use of perf_event_set_output().
6461  *
6462  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6463  * the buffer here, where we still have a VM context. This means we need
6464  * to detach all events redirecting to us.
6465  */
6466 static void perf_mmap_close(struct vm_area_struct *vma)
6467 {
6468 	struct perf_event *event = vma->vm_file->private_data;
6469 	struct perf_buffer *rb = ring_buffer_get(event);
6470 	struct user_struct *mmap_user = rb->mmap_user;
6471 	int mmap_locked = rb->mmap_locked;
6472 	unsigned long size = perf_data_size(rb);
6473 	bool detach_rest = false;
6474 
6475 	if (event->pmu->event_unmapped)
6476 		event->pmu->event_unmapped(event, vma->vm_mm);
6477 
6478 	/*
6479 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6480 	 * to avoid complications.
6481 	 */
6482 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6483 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6484 		/*
6485 		 * Stop all AUX events that are writing to this buffer,
6486 		 * so that we can free its AUX pages and corresponding PMU
6487 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6488 		 * they won't start any more (see perf_aux_output_begin()).
6489 		 */
6490 		perf_pmu_output_stop(event);
6491 
6492 		/* now it's safe to free the pages */
6493 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6494 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6495 
6496 		/* this has to be the last one */
6497 		rb_free_aux(rb);
6498 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6499 
6500 		mutex_unlock(&rb->aux_mutex);
6501 	}
6502 
6503 	if (atomic_dec_and_test(&rb->mmap_count))
6504 		detach_rest = true;
6505 
6506 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6507 		goto out_put;
6508 
6509 	ring_buffer_attach(event, NULL);
6510 	mutex_unlock(&event->mmap_mutex);
6511 
6512 	/* If there's still other mmap()s of this buffer, we're done. */
6513 	if (!detach_rest)
6514 		goto out_put;
6515 
6516 	/*
6517 	 * No other mmap()s, detach from all other events that might redirect
6518 	 * into the now unreachable buffer. Somewhat complicated by the
6519 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6520 	 */
6521 again:
6522 	rcu_read_lock();
6523 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6524 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6525 			/*
6526 			 * This event is en-route to free_event() which will
6527 			 * detach it and remove it from the list.
6528 			 */
6529 			continue;
6530 		}
6531 		rcu_read_unlock();
6532 
6533 		mutex_lock(&event->mmap_mutex);
6534 		/*
6535 		 * Check we didn't race with perf_event_set_output() which can
6536 		 * swizzle the rb from under us while we were waiting to
6537 		 * acquire mmap_mutex.
6538 		 *
6539 		 * If we find a different rb; ignore this event, a next
6540 		 * iteration will no longer find it on the list. We have to
6541 		 * still restart the iteration to make sure we're not now
6542 		 * iterating the wrong list.
6543 		 */
6544 		if (event->rb == rb)
6545 			ring_buffer_attach(event, NULL);
6546 
6547 		mutex_unlock(&event->mmap_mutex);
6548 		put_event(event);
6549 
6550 		/*
6551 		 * Restart the iteration; either we're on the wrong list or
6552 		 * destroyed its integrity by doing a deletion.
6553 		 */
6554 		goto again;
6555 	}
6556 	rcu_read_unlock();
6557 
6558 	/*
6559 	 * It could be there's still a few 0-ref events on the list; they'll
6560 	 * get cleaned up by free_event() -- they'll also still have their
6561 	 * ref on the rb and will free it whenever they are done with it.
6562 	 *
6563 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6564 	 * undo the VM accounting.
6565 	 */
6566 
6567 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6568 			&mmap_user->locked_vm);
6569 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6570 	free_uid(mmap_user);
6571 
6572 out_put:
6573 	ring_buffer_put(rb); /* could be last */
6574 }
6575 
6576 static const struct vm_operations_struct perf_mmap_vmops = {
6577 	.open		= perf_mmap_open,
6578 	.close		= perf_mmap_close, /* non mergeable */
6579 	.fault		= perf_mmap_fault,
6580 	.page_mkwrite	= perf_mmap_fault,
6581 };
6582 
6583 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6584 {
6585 	struct perf_event *event = file->private_data;
6586 	unsigned long user_locked, user_lock_limit;
6587 	struct user_struct *user = current_user();
6588 	struct mutex *aux_mutex = NULL;
6589 	struct perf_buffer *rb = NULL;
6590 	unsigned long locked, lock_limit;
6591 	unsigned long vma_size;
6592 	unsigned long nr_pages;
6593 	long user_extra = 0, extra = 0;
6594 	int ret = 0, flags = 0;
6595 
6596 	/*
6597 	 * Don't allow mmap() of inherited per-task counters. This would
6598 	 * create a performance issue due to all children writing to the
6599 	 * same rb.
6600 	 */
6601 	if (event->cpu == -1 && event->attr.inherit)
6602 		return -EINVAL;
6603 
6604 	if (!(vma->vm_flags & VM_SHARED))
6605 		return -EINVAL;
6606 
6607 	ret = security_perf_event_read(event);
6608 	if (ret)
6609 		return ret;
6610 
6611 	vma_size = vma->vm_end - vma->vm_start;
6612 
6613 	if (vma->vm_pgoff == 0) {
6614 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6615 	} else {
6616 		/*
6617 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6618 		 * mapped, all subsequent mappings should have the same size
6619 		 * and offset. Must be above the normal perf buffer.
6620 		 */
6621 		u64 aux_offset, aux_size;
6622 
6623 		if (!event->rb)
6624 			return -EINVAL;
6625 
6626 		nr_pages = vma_size / PAGE_SIZE;
6627 		if (nr_pages > INT_MAX)
6628 			return -ENOMEM;
6629 
6630 		mutex_lock(&event->mmap_mutex);
6631 		ret = -EINVAL;
6632 
6633 		rb = event->rb;
6634 		if (!rb)
6635 			goto aux_unlock;
6636 
6637 		aux_mutex = &rb->aux_mutex;
6638 		mutex_lock(aux_mutex);
6639 
6640 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6641 		aux_size = READ_ONCE(rb->user_page->aux_size);
6642 
6643 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6644 			goto aux_unlock;
6645 
6646 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6647 			goto aux_unlock;
6648 
6649 		/* already mapped with a different offset */
6650 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6651 			goto aux_unlock;
6652 
6653 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6654 			goto aux_unlock;
6655 
6656 		/* already mapped with a different size */
6657 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6658 			goto aux_unlock;
6659 
6660 		if (!is_power_of_2(nr_pages))
6661 			goto aux_unlock;
6662 
6663 		if (!atomic_inc_not_zero(&rb->mmap_count))
6664 			goto aux_unlock;
6665 
6666 		if (rb_has_aux(rb)) {
6667 			atomic_inc(&rb->aux_mmap_count);
6668 			ret = 0;
6669 			goto unlock;
6670 		}
6671 
6672 		atomic_set(&rb->aux_mmap_count, 1);
6673 		user_extra = nr_pages;
6674 
6675 		goto accounting;
6676 	}
6677 
6678 	/*
6679 	 * If we have rb pages ensure they're a power-of-two number, so we
6680 	 * can do bitmasks instead of modulo.
6681 	 */
6682 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6683 		return -EINVAL;
6684 
6685 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6686 		return -EINVAL;
6687 
6688 	WARN_ON_ONCE(event->ctx->parent_ctx);
6689 again:
6690 	mutex_lock(&event->mmap_mutex);
6691 	if (event->rb) {
6692 		if (data_page_nr(event->rb) != nr_pages) {
6693 			ret = -EINVAL;
6694 			goto unlock;
6695 		}
6696 
6697 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6698 			/*
6699 			 * Raced against perf_mmap_close(); remove the
6700 			 * event and try again.
6701 			 */
6702 			ring_buffer_attach(event, NULL);
6703 			mutex_unlock(&event->mmap_mutex);
6704 			goto again;
6705 		}
6706 
6707 		goto unlock;
6708 	}
6709 
6710 	user_extra = nr_pages + 1;
6711 
6712 accounting:
6713 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6714 
6715 	/*
6716 	 * Increase the limit linearly with more CPUs:
6717 	 */
6718 	user_lock_limit *= num_online_cpus();
6719 
6720 	user_locked = atomic_long_read(&user->locked_vm);
6721 
6722 	/*
6723 	 * sysctl_perf_event_mlock may have changed, so that
6724 	 *     user->locked_vm > user_lock_limit
6725 	 */
6726 	if (user_locked > user_lock_limit)
6727 		user_locked = user_lock_limit;
6728 	user_locked += user_extra;
6729 
6730 	if (user_locked > user_lock_limit) {
6731 		/*
6732 		 * charge locked_vm until it hits user_lock_limit;
6733 		 * charge the rest from pinned_vm
6734 		 */
6735 		extra = user_locked - user_lock_limit;
6736 		user_extra -= extra;
6737 	}
6738 
6739 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6740 	lock_limit >>= PAGE_SHIFT;
6741 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6742 
6743 	if ((locked > lock_limit) && perf_is_paranoid() &&
6744 		!capable(CAP_IPC_LOCK)) {
6745 		ret = -EPERM;
6746 		goto unlock;
6747 	}
6748 
6749 	WARN_ON(!rb && event->rb);
6750 
6751 	if (vma->vm_flags & VM_WRITE)
6752 		flags |= RING_BUFFER_WRITABLE;
6753 
6754 	if (!rb) {
6755 		rb = rb_alloc(nr_pages,
6756 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6757 			      event->cpu, flags);
6758 
6759 		if (!rb) {
6760 			ret = -ENOMEM;
6761 			goto unlock;
6762 		}
6763 
6764 		atomic_set(&rb->mmap_count, 1);
6765 		rb->mmap_user = get_current_user();
6766 		rb->mmap_locked = extra;
6767 
6768 		ring_buffer_attach(event, rb);
6769 
6770 		perf_event_update_time(event);
6771 		perf_event_init_userpage(event);
6772 		perf_event_update_userpage(event);
6773 	} else {
6774 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6775 				   event->attr.aux_watermark, flags);
6776 		if (!ret)
6777 			rb->aux_mmap_locked = extra;
6778 	}
6779 
6780 unlock:
6781 	if (!ret) {
6782 		atomic_long_add(user_extra, &user->locked_vm);
6783 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6784 
6785 		atomic_inc(&event->mmap_count);
6786 	} else if (rb) {
6787 		atomic_dec(&rb->mmap_count);
6788 	}
6789 aux_unlock:
6790 	if (aux_mutex)
6791 		mutex_unlock(aux_mutex);
6792 	mutex_unlock(&event->mmap_mutex);
6793 
6794 	/*
6795 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6796 	 * vma.
6797 	 */
6798 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6799 	vma->vm_ops = &perf_mmap_vmops;
6800 
6801 	if (event->pmu->event_mapped)
6802 		event->pmu->event_mapped(event, vma->vm_mm);
6803 
6804 	return ret;
6805 }
6806 
6807 static int perf_fasync(int fd, struct file *filp, int on)
6808 {
6809 	struct inode *inode = file_inode(filp);
6810 	struct perf_event *event = filp->private_data;
6811 	int retval;
6812 
6813 	inode_lock(inode);
6814 	retval = fasync_helper(fd, filp, on, &event->fasync);
6815 	inode_unlock(inode);
6816 
6817 	if (retval < 0)
6818 		return retval;
6819 
6820 	return 0;
6821 }
6822 
6823 static const struct file_operations perf_fops = {
6824 	.release		= perf_release,
6825 	.read			= perf_read,
6826 	.poll			= perf_poll,
6827 	.unlocked_ioctl		= perf_ioctl,
6828 	.compat_ioctl		= perf_compat_ioctl,
6829 	.mmap			= perf_mmap,
6830 	.fasync			= perf_fasync,
6831 };
6832 
6833 /*
6834  * Perf event wakeup
6835  *
6836  * If there's data, ensure we set the poll() state and publish everything
6837  * to user-space before waking everybody up.
6838  */
6839 
6840 void perf_event_wakeup(struct perf_event *event)
6841 {
6842 	ring_buffer_wakeup(event);
6843 
6844 	if (event->pending_kill) {
6845 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6846 		event->pending_kill = 0;
6847 	}
6848 }
6849 
6850 static void perf_sigtrap(struct perf_event *event)
6851 {
6852 	/*
6853 	 * We'd expect this to only occur if the irq_work is delayed and either
6854 	 * ctx->task or current has changed in the meantime. This can be the
6855 	 * case on architectures that do not implement arch_irq_work_raise().
6856 	 */
6857 	if (WARN_ON_ONCE(event->ctx->task != current))
6858 		return;
6859 
6860 	/*
6861 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6862 	 * task exiting.
6863 	 */
6864 	if (current->flags & PF_EXITING)
6865 		return;
6866 
6867 	send_sig_perf((void __user *)event->pending_addr,
6868 		      event->orig_type, event->attr.sig_data);
6869 }
6870 
6871 /*
6872  * Deliver the pending work in-event-context or follow the context.
6873  */
6874 static void __perf_pending_disable(struct perf_event *event)
6875 {
6876 	int cpu = READ_ONCE(event->oncpu);
6877 
6878 	/*
6879 	 * If the event isn't running; we done. event_sched_out() will have
6880 	 * taken care of things.
6881 	 */
6882 	if (cpu < 0)
6883 		return;
6884 
6885 	/*
6886 	 * Yay, we hit home and are in the context of the event.
6887 	 */
6888 	if (cpu == smp_processor_id()) {
6889 		if (event->pending_disable) {
6890 			event->pending_disable = 0;
6891 			perf_event_disable_local(event);
6892 		}
6893 		return;
6894 	}
6895 
6896 	/*
6897 	 *  CPU-A			CPU-B
6898 	 *
6899 	 *  perf_event_disable_inatomic()
6900 	 *    @pending_disable = CPU-A;
6901 	 *    irq_work_queue();
6902 	 *
6903 	 *  sched-out
6904 	 *    @pending_disable = -1;
6905 	 *
6906 	 *				sched-in
6907 	 *				perf_event_disable_inatomic()
6908 	 *				  @pending_disable = CPU-B;
6909 	 *				  irq_work_queue(); // FAILS
6910 	 *
6911 	 *  irq_work_run()
6912 	 *    perf_pending_disable()
6913 	 *
6914 	 * But the event runs on CPU-B and wants disabling there.
6915 	 */
6916 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6917 }
6918 
6919 static void perf_pending_disable(struct irq_work *entry)
6920 {
6921 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6922 	int rctx;
6923 
6924 	/*
6925 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6926 	 * and we won't recurse 'further'.
6927 	 */
6928 	rctx = perf_swevent_get_recursion_context();
6929 	__perf_pending_disable(event);
6930 	if (rctx >= 0)
6931 		perf_swevent_put_recursion_context(rctx);
6932 }
6933 
6934 static void perf_pending_irq(struct irq_work *entry)
6935 {
6936 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6937 	int rctx;
6938 
6939 	/*
6940 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6941 	 * and we won't recurse 'further'.
6942 	 */
6943 	rctx = perf_swevent_get_recursion_context();
6944 
6945 	/*
6946 	 * The wakeup isn't bound to the context of the event -- it can happen
6947 	 * irrespective of where the event is.
6948 	 */
6949 	if (event->pending_wakeup) {
6950 		event->pending_wakeup = 0;
6951 		perf_event_wakeup(event);
6952 	}
6953 
6954 	if (rctx >= 0)
6955 		perf_swevent_put_recursion_context(rctx);
6956 }
6957 
6958 static void perf_pending_task(struct callback_head *head)
6959 {
6960 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6961 	int rctx;
6962 
6963 	/*
6964 	 * All accesses to the event must belong to the same implicit RCU read-side
6965 	 * critical section as the ->pending_work reset. See comment in
6966 	 * perf_pending_task_sync().
6967 	 */
6968 	rcu_read_lock();
6969 	/*
6970 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6971 	 * and we won't recurse 'further'.
6972 	 */
6973 	rctx = perf_swevent_get_recursion_context();
6974 
6975 	if (event->pending_work) {
6976 		event->pending_work = 0;
6977 		perf_sigtrap(event);
6978 		local_dec(&event->ctx->nr_no_switch_fast);
6979 		rcuwait_wake_up(&event->pending_work_wait);
6980 	}
6981 	rcu_read_unlock();
6982 
6983 	if (rctx >= 0)
6984 		perf_swevent_put_recursion_context(rctx);
6985 }
6986 
6987 #ifdef CONFIG_GUEST_PERF_EVENTS
6988 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6989 
6990 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6991 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6992 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6993 
6994 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6995 {
6996 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6997 		return;
6998 
6999 	rcu_assign_pointer(perf_guest_cbs, cbs);
7000 	static_call_update(__perf_guest_state, cbs->state);
7001 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7002 
7003 	/* Implementing ->handle_intel_pt_intr is optional. */
7004 	if (cbs->handle_intel_pt_intr)
7005 		static_call_update(__perf_guest_handle_intel_pt_intr,
7006 				   cbs->handle_intel_pt_intr);
7007 }
7008 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7009 
7010 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7011 {
7012 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7013 		return;
7014 
7015 	rcu_assign_pointer(perf_guest_cbs, NULL);
7016 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7017 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7018 	static_call_update(__perf_guest_handle_intel_pt_intr,
7019 			   (void *)&__static_call_return0);
7020 	synchronize_rcu();
7021 }
7022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7023 #endif
7024 
7025 static void
7026 perf_output_sample_regs(struct perf_output_handle *handle,
7027 			struct pt_regs *regs, u64 mask)
7028 {
7029 	int bit;
7030 	DECLARE_BITMAP(_mask, 64);
7031 
7032 	bitmap_from_u64(_mask, mask);
7033 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7034 		u64 val;
7035 
7036 		val = perf_reg_value(regs, bit);
7037 		perf_output_put(handle, val);
7038 	}
7039 }
7040 
7041 static void perf_sample_regs_user(struct perf_regs *regs_user,
7042 				  struct pt_regs *regs)
7043 {
7044 	if (user_mode(regs)) {
7045 		regs_user->abi = perf_reg_abi(current);
7046 		regs_user->regs = regs;
7047 	} else if (!(current->flags & PF_KTHREAD)) {
7048 		perf_get_regs_user(regs_user, regs);
7049 	} else {
7050 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7051 		regs_user->regs = NULL;
7052 	}
7053 }
7054 
7055 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7056 				  struct pt_regs *regs)
7057 {
7058 	regs_intr->regs = regs;
7059 	regs_intr->abi  = perf_reg_abi(current);
7060 }
7061 
7062 
7063 /*
7064  * Get remaining task size from user stack pointer.
7065  *
7066  * It'd be better to take stack vma map and limit this more
7067  * precisely, but there's no way to get it safely under interrupt,
7068  * so using TASK_SIZE as limit.
7069  */
7070 static u64 perf_ustack_task_size(struct pt_regs *regs)
7071 {
7072 	unsigned long addr = perf_user_stack_pointer(regs);
7073 
7074 	if (!addr || addr >= TASK_SIZE)
7075 		return 0;
7076 
7077 	return TASK_SIZE - addr;
7078 }
7079 
7080 static u16
7081 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7082 			struct pt_regs *regs)
7083 {
7084 	u64 task_size;
7085 
7086 	/* No regs, no stack pointer, no dump. */
7087 	if (!regs)
7088 		return 0;
7089 
7090 	/*
7091 	 * Check if we fit in with the requested stack size into the:
7092 	 * - TASK_SIZE
7093 	 *   If we don't, we limit the size to the TASK_SIZE.
7094 	 *
7095 	 * - remaining sample size
7096 	 *   If we don't, we customize the stack size to
7097 	 *   fit in to the remaining sample size.
7098 	 */
7099 
7100 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7101 	stack_size = min(stack_size, (u16) task_size);
7102 
7103 	/* Current header size plus static size and dynamic size. */
7104 	header_size += 2 * sizeof(u64);
7105 
7106 	/* Do we fit in with the current stack dump size? */
7107 	if ((u16) (header_size + stack_size) < header_size) {
7108 		/*
7109 		 * If we overflow the maximum size for the sample,
7110 		 * we customize the stack dump size to fit in.
7111 		 */
7112 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7113 		stack_size = round_up(stack_size, sizeof(u64));
7114 	}
7115 
7116 	return stack_size;
7117 }
7118 
7119 static void
7120 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7121 			  struct pt_regs *regs)
7122 {
7123 	/* Case of a kernel thread, nothing to dump */
7124 	if (!regs) {
7125 		u64 size = 0;
7126 		perf_output_put(handle, size);
7127 	} else {
7128 		unsigned long sp;
7129 		unsigned int rem;
7130 		u64 dyn_size;
7131 
7132 		/*
7133 		 * We dump:
7134 		 * static size
7135 		 *   - the size requested by user or the best one we can fit
7136 		 *     in to the sample max size
7137 		 * data
7138 		 *   - user stack dump data
7139 		 * dynamic size
7140 		 *   - the actual dumped size
7141 		 */
7142 
7143 		/* Static size. */
7144 		perf_output_put(handle, dump_size);
7145 
7146 		/* Data. */
7147 		sp = perf_user_stack_pointer(regs);
7148 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7149 		dyn_size = dump_size - rem;
7150 
7151 		perf_output_skip(handle, rem);
7152 
7153 		/* Dynamic size. */
7154 		perf_output_put(handle, dyn_size);
7155 	}
7156 }
7157 
7158 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7159 					  struct perf_sample_data *data,
7160 					  size_t size)
7161 {
7162 	struct perf_event *sampler = event->aux_event;
7163 	struct perf_buffer *rb;
7164 
7165 	data->aux_size = 0;
7166 
7167 	if (!sampler)
7168 		goto out;
7169 
7170 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7171 		goto out;
7172 
7173 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7174 		goto out;
7175 
7176 	rb = ring_buffer_get(sampler);
7177 	if (!rb)
7178 		goto out;
7179 
7180 	/*
7181 	 * If this is an NMI hit inside sampling code, don't take
7182 	 * the sample. See also perf_aux_sample_output().
7183 	 */
7184 	if (READ_ONCE(rb->aux_in_sampling)) {
7185 		data->aux_size = 0;
7186 	} else {
7187 		size = min_t(size_t, size, perf_aux_size(rb));
7188 		data->aux_size = ALIGN(size, sizeof(u64));
7189 	}
7190 	ring_buffer_put(rb);
7191 
7192 out:
7193 	return data->aux_size;
7194 }
7195 
7196 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7197                                  struct perf_event *event,
7198                                  struct perf_output_handle *handle,
7199                                  unsigned long size)
7200 {
7201 	unsigned long flags;
7202 	long ret;
7203 
7204 	/*
7205 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7206 	 * paths. If we start calling them in NMI context, they may race with
7207 	 * the IRQ ones, that is, for example, re-starting an event that's just
7208 	 * been stopped, which is why we're using a separate callback that
7209 	 * doesn't change the event state.
7210 	 *
7211 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7212 	 */
7213 	local_irq_save(flags);
7214 	/*
7215 	 * Guard against NMI hits inside the critical section;
7216 	 * see also perf_prepare_sample_aux().
7217 	 */
7218 	WRITE_ONCE(rb->aux_in_sampling, 1);
7219 	barrier();
7220 
7221 	ret = event->pmu->snapshot_aux(event, handle, size);
7222 
7223 	barrier();
7224 	WRITE_ONCE(rb->aux_in_sampling, 0);
7225 	local_irq_restore(flags);
7226 
7227 	return ret;
7228 }
7229 
7230 static void perf_aux_sample_output(struct perf_event *event,
7231 				   struct perf_output_handle *handle,
7232 				   struct perf_sample_data *data)
7233 {
7234 	struct perf_event *sampler = event->aux_event;
7235 	struct perf_buffer *rb;
7236 	unsigned long pad;
7237 	long size;
7238 
7239 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7240 		return;
7241 
7242 	rb = ring_buffer_get(sampler);
7243 	if (!rb)
7244 		return;
7245 
7246 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7247 
7248 	/*
7249 	 * An error here means that perf_output_copy() failed (returned a
7250 	 * non-zero surplus that it didn't copy), which in its current
7251 	 * enlightened implementation is not possible. If that changes, we'd
7252 	 * like to know.
7253 	 */
7254 	if (WARN_ON_ONCE(size < 0))
7255 		goto out_put;
7256 
7257 	/*
7258 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7259 	 * perf_prepare_sample_aux(), so should not be more than that.
7260 	 */
7261 	pad = data->aux_size - size;
7262 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7263 		pad = 8;
7264 
7265 	if (pad) {
7266 		u64 zero = 0;
7267 		perf_output_copy(handle, &zero, pad);
7268 	}
7269 
7270 out_put:
7271 	ring_buffer_put(rb);
7272 }
7273 
7274 /*
7275  * A set of common sample data types saved even for non-sample records
7276  * when event->attr.sample_id_all is set.
7277  */
7278 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7279 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7280 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7281 
7282 static void __perf_event_header__init_id(struct perf_sample_data *data,
7283 					 struct perf_event *event,
7284 					 u64 sample_type)
7285 {
7286 	data->type = event->attr.sample_type;
7287 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7288 
7289 	if (sample_type & PERF_SAMPLE_TID) {
7290 		/* namespace issues */
7291 		data->tid_entry.pid = perf_event_pid(event, current);
7292 		data->tid_entry.tid = perf_event_tid(event, current);
7293 	}
7294 
7295 	if (sample_type & PERF_SAMPLE_TIME)
7296 		data->time = perf_event_clock(event);
7297 
7298 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7299 		data->id = primary_event_id(event);
7300 
7301 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7302 		data->stream_id = event->id;
7303 
7304 	if (sample_type & PERF_SAMPLE_CPU) {
7305 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7306 		data->cpu_entry.reserved = 0;
7307 	}
7308 }
7309 
7310 void perf_event_header__init_id(struct perf_event_header *header,
7311 				struct perf_sample_data *data,
7312 				struct perf_event *event)
7313 {
7314 	if (event->attr.sample_id_all) {
7315 		header->size += event->id_header_size;
7316 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7317 	}
7318 }
7319 
7320 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7321 					   struct perf_sample_data *data)
7322 {
7323 	u64 sample_type = data->type;
7324 
7325 	if (sample_type & PERF_SAMPLE_TID)
7326 		perf_output_put(handle, data->tid_entry);
7327 
7328 	if (sample_type & PERF_SAMPLE_TIME)
7329 		perf_output_put(handle, data->time);
7330 
7331 	if (sample_type & PERF_SAMPLE_ID)
7332 		perf_output_put(handle, data->id);
7333 
7334 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7335 		perf_output_put(handle, data->stream_id);
7336 
7337 	if (sample_type & PERF_SAMPLE_CPU)
7338 		perf_output_put(handle, data->cpu_entry);
7339 
7340 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7341 		perf_output_put(handle, data->id);
7342 }
7343 
7344 void perf_event__output_id_sample(struct perf_event *event,
7345 				  struct perf_output_handle *handle,
7346 				  struct perf_sample_data *sample)
7347 {
7348 	if (event->attr.sample_id_all)
7349 		__perf_event__output_id_sample(handle, sample);
7350 }
7351 
7352 static void perf_output_read_one(struct perf_output_handle *handle,
7353 				 struct perf_event *event,
7354 				 u64 enabled, u64 running)
7355 {
7356 	u64 read_format = event->attr.read_format;
7357 	u64 values[5];
7358 	int n = 0;
7359 
7360 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7361 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7362 		values[n++] = enabled +
7363 			atomic64_read(&event->child_total_time_enabled);
7364 	}
7365 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7366 		values[n++] = running +
7367 			atomic64_read(&event->child_total_time_running);
7368 	}
7369 	if (read_format & PERF_FORMAT_ID)
7370 		values[n++] = primary_event_id(event);
7371 	if (read_format & PERF_FORMAT_LOST)
7372 		values[n++] = atomic64_read(&event->lost_samples);
7373 
7374 	__output_copy(handle, values, n * sizeof(u64));
7375 }
7376 
7377 static void perf_output_read_group(struct perf_output_handle *handle,
7378 				   struct perf_event *event,
7379 				   u64 enabled, u64 running)
7380 {
7381 	struct perf_event *leader = event->group_leader, *sub;
7382 	u64 read_format = event->attr.read_format;
7383 	unsigned long flags;
7384 	u64 values[6];
7385 	int n = 0;
7386 	bool self = has_inherit_and_sample_read(&event->attr);
7387 
7388 	/*
7389 	 * Disabling interrupts avoids all counter scheduling
7390 	 * (context switches, timer based rotation and IPIs).
7391 	 */
7392 	local_irq_save(flags);
7393 
7394 	values[n++] = 1 + leader->nr_siblings;
7395 
7396 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7397 		values[n++] = enabled;
7398 
7399 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7400 		values[n++] = running;
7401 
7402 	if ((leader != event) &&
7403 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7404 		leader->pmu->read(leader);
7405 
7406 	values[n++] = perf_event_count(leader, self);
7407 	if (read_format & PERF_FORMAT_ID)
7408 		values[n++] = primary_event_id(leader);
7409 	if (read_format & PERF_FORMAT_LOST)
7410 		values[n++] = atomic64_read(&leader->lost_samples);
7411 
7412 	__output_copy(handle, values, n * sizeof(u64));
7413 
7414 	for_each_sibling_event(sub, leader) {
7415 		n = 0;
7416 
7417 		if ((sub != event) &&
7418 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7419 			sub->pmu->read(sub);
7420 
7421 		values[n++] = perf_event_count(sub, self);
7422 		if (read_format & PERF_FORMAT_ID)
7423 			values[n++] = primary_event_id(sub);
7424 		if (read_format & PERF_FORMAT_LOST)
7425 			values[n++] = atomic64_read(&sub->lost_samples);
7426 
7427 		__output_copy(handle, values, n * sizeof(u64));
7428 	}
7429 
7430 	local_irq_restore(flags);
7431 }
7432 
7433 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7434 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7435 
7436 /*
7437  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7438  *
7439  * The problem is that its both hard and excessively expensive to iterate the
7440  * child list, not to mention that its impossible to IPI the children running
7441  * on another CPU, from interrupt/NMI context.
7442  *
7443  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7444  * counts rather than attempting to accumulate some value across all children on
7445  * all cores.
7446  */
7447 static void perf_output_read(struct perf_output_handle *handle,
7448 			     struct perf_event *event)
7449 {
7450 	u64 enabled = 0, running = 0, now;
7451 	u64 read_format = event->attr.read_format;
7452 
7453 	/*
7454 	 * compute total_time_enabled, total_time_running
7455 	 * based on snapshot values taken when the event
7456 	 * was last scheduled in.
7457 	 *
7458 	 * we cannot simply called update_context_time()
7459 	 * because of locking issue as we are called in
7460 	 * NMI context
7461 	 */
7462 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7463 		calc_timer_values(event, &now, &enabled, &running);
7464 
7465 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7466 		perf_output_read_group(handle, event, enabled, running);
7467 	else
7468 		perf_output_read_one(handle, event, enabled, running);
7469 }
7470 
7471 void perf_output_sample(struct perf_output_handle *handle,
7472 			struct perf_event_header *header,
7473 			struct perf_sample_data *data,
7474 			struct perf_event *event)
7475 {
7476 	u64 sample_type = data->type;
7477 
7478 	perf_output_put(handle, *header);
7479 
7480 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7481 		perf_output_put(handle, data->id);
7482 
7483 	if (sample_type & PERF_SAMPLE_IP)
7484 		perf_output_put(handle, data->ip);
7485 
7486 	if (sample_type & PERF_SAMPLE_TID)
7487 		perf_output_put(handle, data->tid_entry);
7488 
7489 	if (sample_type & PERF_SAMPLE_TIME)
7490 		perf_output_put(handle, data->time);
7491 
7492 	if (sample_type & PERF_SAMPLE_ADDR)
7493 		perf_output_put(handle, data->addr);
7494 
7495 	if (sample_type & PERF_SAMPLE_ID)
7496 		perf_output_put(handle, data->id);
7497 
7498 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7499 		perf_output_put(handle, data->stream_id);
7500 
7501 	if (sample_type & PERF_SAMPLE_CPU)
7502 		perf_output_put(handle, data->cpu_entry);
7503 
7504 	if (sample_type & PERF_SAMPLE_PERIOD)
7505 		perf_output_put(handle, data->period);
7506 
7507 	if (sample_type & PERF_SAMPLE_READ)
7508 		perf_output_read(handle, event);
7509 
7510 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7511 		int size = 1;
7512 
7513 		size += data->callchain->nr;
7514 		size *= sizeof(u64);
7515 		__output_copy(handle, data->callchain, size);
7516 	}
7517 
7518 	if (sample_type & PERF_SAMPLE_RAW) {
7519 		struct perf_raw_record *raw = data->raw;
7520 
7521 		if (raw) {
7522 			struct perf_raw_frag *frag = &raw->frag;
7523 
7524 			perf_output_put(handle, raw->size);
7525 			do {
7526 				if (frag->copy) {
7527 					__output_custom(handle, frag->copy,
7528 							frag->data, frag->size);
7529 				} else {
7530 					__output_copy(handle, frag->data,
7531 						      frag->size);
7532 				}
7533 				if (perf_raw_frag_last(frag))
7534 					break;
7535 				frag = frag->next;
7536 			} while (1);
7537 			if (frag->pad)
7538 				__output_skip(handle, NULL, frag->pad);
7539 		} else {
7540 			struct {
7541 				u32	size;
7542 				u32	data;
7543 			} raw = {
7544 				.size = sizeof(u32),
7545 				.data = 0,
7546 			};
7547 			perf_output_put(handle, raw);
7548 		}
7549 	}
7550 
7551 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7552 		if (data->br_stack) {
7553 			size_t size;
7554 
7555 			size = data->br_stack->nr
7556 			     * sizeof(struct perf_branch_entry);
7557 
7558 			perf_output_put(handle, data->br_stack->nr);
7559 			if (branch_sample_hw_index(event))
7560 				perf_output_put(handle, data->br_stack->hw_idx);
7561 			perf_output_copy(handle, data->br_stack->entries, size);
7562 			/*
7563 			 * Add the extension space which is appended
7564 			 * right after the struct perf_branch_stack.
7565 			 */
7566 			if (data->br_stack_cntr) {
7567 				size = data->br_stack->nr * sizeof(u64);
7568 				perf_output_copy(handle, data->br_stack_cntr, size);
7569 			}
7570 		} else {
7571 			/*
7572 			 * we always store at least the value of nr
7573 			 */
7574 			u64 nr = 0;
7575 			perf_output_put(handle, nr);
7576 		}
7577 	}
7578 
7579 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7580 		u64 abi = data->regs_user.abi;
7581 
7582 		/*
7583 		 * If there are no regs to dump, notice it through
7584 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7585 		 */
7586 		perf_output_put(handle, abi);
7587 
7588 		if (abi) {
7589 			u64 mask = event->attr.sample_regs_user;
7590 			perf_output_sample_regs(handle,
7591 						data->regs_user.regs,
7592 						mask);
7593 		}
7594 	}
7595 
7596 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7597 		perf_output_sample_ustack(handle,
7598 					  data->stack_user_size,
7599 					  data->regs_user.regs);
7600 	}
7601 
7602 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7603 		perf_output_put(handle, data->weight.full);
7604 
7605 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7606 		perf_output_put(handle, data->data_src.val);
7607 
7608 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7609 		perf_output_put(handle, data->txn);
7610 
7611 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7612 		u64 abi = data->regs_intr.abi;
7613 		/*
7614 		 * If there are no regs to dump, notice it through
7615 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7616 		 */
7617 		perf_output_put(handle, abi);
7618 
7619 		if (abi) {
7620 			u64 mask = event->attr.sample_regs_intr;
7621 
7622 			perf_output_sample_regs(handle,
7623 						data->regs_intr.regs,
7624 						mask);
7625 		}
7626 	}
7627 
7628 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7629 		perf_output_put(handle, data->phys_addr);
7630 
7631 	if (sample_type & PERF_SAMPLE_CGROUP)
7632 		perf_output_put(handle, data->cgroup);
7633 
7634 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7635 		perf_output_put(handle, data->data_page_size);
7636 
7637 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7638 		perf_output_put(handle, data->code_page_size);
7639 
7640 	if (sample_type & PERF_SAMPLE_AUX) {
7641 		perf_output_put(handle, data->aux_size);
7642 
7643 		if (data->aux_size)
7644 			perf_aux_sample_output(event, handle, data);
7645 	}
7646 
7647 	if (!event->attr.watermark) {
7648 		int wakeup_events = event->attr.wakeup_events;
7649 
7650 		if (wakeup_events) {
7651 			struct perf_buffer *rb = handle->rb;
7652 			int events = local_inc_return(&rb->events);
7653 
7654 			if (events >= wakeup_events) {
7655 				local_sub(wakeup_events, &rb->events);
7656 				local_inc(&rb->wakeup);
7657 			}
7658 		}
7659 	}
7660 }
7661 
7662 static u64 perf_virt_to_phys(u64 virt)
7663 {
7664 	u64 phys_addr = 0;
7665 
7666 	if (!virt)
7667 		return 0;
7668 
7669 	if (virt >= TASK_SIZE) {
7670 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7671 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7672 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7673 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7674 	} else {
7675 		/*
7676 		 * Walking the pages tables for user address.
7677 		 * Interrupts are disabled, so it prevents any tear down
7678 		 * of the page tables.
7679 		 * Try IRQ-safe get_user_page_fast_only first.
7680 		 * If failed, leave phys_addr as 0.
7681 		 */
7682 		if (current->mm != NULL) {
7683 			struct page *p;
7684 
7685 			pagefault_disable();
7686 			if (get_user_page_fast_only(virt, 0, &p)) {
7687 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7688 				put_page(p);
7689 			}
7690 			pagefault_enable();
7691 		}
7692 	}
7693 
7694 	return phys_addr;
7695 }
7696 
7697 /*
7698  * Return the pagetable size of a given virtual address.
7699  */
7700 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7701 {
7702 	u64 size = 0;
7703 
7704 #ifdef CONFIG_HAVE_GUP_FAST
7705 	pgd_t *pgdp, pgd;
7706 	p4d_t *p4dp, p4d;
7707 	pud_t *pudp, pud;
7708 	pmd_t *pmdp, pmd;
7709 	pte_t *ptep, pte;
7710 
7711 	pgdp = pgd_offset(mm, addr);
7712 	pgd = READ_ONCE(*pgdp);
7713 	if (pgd_none(pgd))
7714 		return 0;
7715 
7716 	if (pgd_leaf(pgd))
7717 		return pgd_leaf_size(pgd);
7718 
7719 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7720 	p4d = READ_ONCE(*p4dp);
7721 	if (!p4d_present(p4d))
7722 		return 0;
7723 
7724 	if (p4d_leaf(p4d))
7725 		return p4d_leaf_size(p4d);
7726 
7727 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7728 	pud = READ_ONCE(*pudp);
7729 	if (!pud_present(pud))
7730 		return 0;
7731 
7732 	if (pud_leaf(pud))
7733 		return pud_leaf_size(pud);
7734 
7735 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7736 again:
7737 	pmd = pmdp_get_lockless(pmdp);
7738 	if (!pmd_present(pmd))
7739 		return 0;
7740 
7741 	if (pmd_leaf(pmd))
7742 		return pmd_leaf_size(pmd);
7743 
7744 	ptep = pte_offset_map(&pmd, addr);
7745 	if (!ptep)
7746 		goto again;
7747 
7748 	pte = ptep_get_lockless(ptep);
7749 	if (pte_present(pte))
7750 		size = __pte_leaf_size(pmd, pte);
7751 	pte_unmap(ptep);
7752 #endif /* CONFIG_HAVE_GUP_FAST */
7753 
7754 	return size;
7755 }
7756 
7757 static u64 perf_get_page_size(unsigned long addr)
7758 {
7759 	struct mm_struct *mm;
7760 	unsigned long flags;
7761 	u64 size;
7762 
7763 	if (!addr)
7764 		return 0;
7765 
7766 	/*
7767 	 * Software page-table walkers must disable IRQs,
7768 	 * which prevents any tear down of the page tables.
7769 	 */
7770 	local_irq_save(flags);
7771 
7772 	mm = current->mm;
7773 	if (!mm) {
7774 		/*
7775 		 * For kernel threads and the like, use init_mm so that
7776 		 * we can find kernel memory.
7777 		 */
7778 		mm = &init_mm;
7779 	}
7780 
7781 	size = perf_get_pgtable_size(mm, addr);
7782 
7783 	local_irq_restore(flags);
7784 
7785 	return size;
7786 }
7787 
7788 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7789 
7790 struct perf_callchain_entry *
7791 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7792 {
7793 	bool kernel = !event->attr.exclude_callchain_kernel;
7794 	bool user   = !event->attr.exclude_callchain_user;
7795 	/* Disallow cross-task user callchains. */
7796 	bool crosstask = event->ctx->task && event->ctx->task != current;
7797 	const u32 max_stack = event->attr.sample_max_stack;
7798 	struct perf_callchain_entry *callchain;
7799 
7800 	if (!kernel && !user)
7801 		return &__empty_callchain;
7802 
7803 	callchain = get_perf_callchain(regs, 0, kernel, user,
7804 				       max_stack, crosstask, true);
7805 	return callchain ?: &__empty_callchain;
7806 }
7807 
7808 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7809 {
7810 	return d * !!(flags & s);
7811 }
7812 
7813 void perf_prepare_sample(struct perf_sample_data *data,
7814 			 struct perf_event *event,
7815 			 struct pt_regs *regs)
7816 {
7817 	u64 sample_type = event->attr.sample_type;
7818 	u64 filtered_sample_type;
7819 
7820 	/*
7821 	 * Add the sample flags that are dependent to others.  And clear the
7822 	 * sample flags that have already been done by the PMU driver.
7823 	 */
7824 	filtered_sample_type = sample_type;
7825 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7826 					   PERF_SAMPLE_IP);
7827 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7828 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7829 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7830 					   PERF_SAMPLE_REGS_USER);
7831 	filtered_sample_type &= ~data->sample_flags;
7832 
7833 	if (filtered_sample_type == 0) {
7834 		/* Make sure it has the correct data->type for output */
7835 		data->type = event->attr.sample_type;
7836 		return;
7837 	}
7838 
7839 	__perf_event_header__init_id(data, event, filtered_sample_type);
7840 
7841 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7842 		data->ip = perf_instruction_pointer(regs);
7843 		data->sample_flags |= PERF_SAMPLE_IP;
7844 	}
7845 
7846 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7847 		perf_sample_save_callchain(data, event, regs);
7848 
7849 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7850 		data->raw = NULL;
7851 		data->dyn_size += sizeof(u64);
7852 		data->sample_flags |= PERF_SAMPLE_RAW;
7853 	}
7854 
7855 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7856 		data->br_stack = NULL;
7857 		data->dyn_size += sizeof(u64);
7858 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7859 	}
7860 
7861 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7862 		perf_sample_regs_user(&data->regs_user, regs);
7863 
7864 	/*
7865 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7866 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7867 	 * the dyn_size if it's not requested by users.
7868 	 */
7869 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7870 		/* regs dump ABI info */
7871 		int size = sizeof(u64);
7872 
7873 		if (data->regs_user.regs) {
7874 			u64 mask = event->attr.sample_regs_user;
7875 			size += hweight64(mask) * sizeof(u64);
7876 		}
7877 
7878 		data->dyn_size += size;
7879 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7880 	}
7881 
7882 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7883 		/*
7884 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7885 		 * processed as the last one or have additional check added
7886 		 * in case new sample type is added, because we could eat
7887 		 * up the rest of the sample size.
7888 		 */
7889 		u16 stack_size = event->attr.sample_stack_user;
7890 		u16 header_size = perf_sample_data_size(data, event);
7891 		u16 size = sizeof(u64);
7892 
7893 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7894 						     data->regs_user.regs);
7895 
7896 		/*
7897 		 * If there is something to dump, add space for the dump
7898 		 * itself and for the field that tells the dynamic size,
7899 		 * which is how many have been actually dumped.
7900 		 */
7901 		if (stack_size)
7902 			size += sizeof(u64) + stack_size;
7903 
7904 		data->stack_user_size = stack_size;
7905 		data->dyn_size += size;
7906 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7907 	}
7908 
7909 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7910 		data->weight.full = 0;
7911 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7912 	}
7913 
7914 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7915 		data->data_src.val = PERF_MEM_NA;
7916 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7917 	}
7918 
7919 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7920 		data->txn = 0;
7921 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7922 	}
7923 
7924 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7925 		data->addr = 0;
7926 		data->sample_flags |= PERF_SAMPLE_ADDR;
7927 	}
7928 
7929 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7930 		/* regs dump ABI info */
7931 		int size = sizeof(u64);
7932 
7933 		perf_sample_regs_intr(&data->regs_intr, regs);
7934 
7935 		if (data->regs_intr.regs) {
7936 			u64 mask = event->attr.sample_regs_intr;
7937 
7938 			size += hweight64(mask) * sizeof(u64);
7939 		}
7940 
7941 		data->dyn_size += size;
7942 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7943 	}
7944 
7945 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7946 		data->phys_addr = perf_virt_to_phys(data->addr);
7947 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7948 	}
7949 
7950 #ifdef CONFIG_CGROUP_PERF
7951 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7952 		struct cgroup *cgrp;
7953 
7954 		/* protected by RCU */
7955 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7956 		data->cgroup = cgroup_id(cgrp);
7957 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7958 	}
7959 #endif
7960 
7961 	/*
7962 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7963 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7964 	 * but the value will not dump to the userspace.
7965 	 */
7966 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7967 		data->data_page_size = perf_get_page_size(data->addr);
7968 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7969 	}
7970 
7971 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7972 		data->code_page_size = perf_get_page_size(data->ip);
7973 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7974 	}
7975 
7976 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7977 		u64 size;
7978 		u16 header_size = perf_sample_data_size(data, event);
7979 
7980 		header_size += sizeof(u64); /* size */
7981 
7982 		/*
7983 		 * Given the 16bit nature of header::size, an AUX sample can
7984 		 * easily overflow it, what with all the preceding sample bits.
7985 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7986 		 * per sample in total (rounded down to 8 byte boundary).
7987 		 */
7988 		size = min_t(size_t, U16_MAX - header_size,
7989 			     event->attr.aux_sample_size);
7990 		size = rounddown(size, 8);
7991 		size = perf_prepare_sample_aux(event, data, size);
7992 
7993 		WARN_ON_ONCE(size + header_size > U16_MAX);
7994 		data->dyn_size += size + sizeof(u64); /* size above */
7995 		data->sample_flags |= PERF_SAMPLE_AUX;
7996 	}
7997 }
7998 
7999 void perf_prepare_header(struct perf_event_header *header,
8000 			 struct perf_sample_data *data,
8001 			 struct perf_event *event,
8002 			 struct pt_regs *regs)
8003 {
8004 	header->type = PERF_RECORD_SAMPLE;
8005 	header->size = perf_sample_data_size(data, event);
8006 	header->misc = perf_misc_flags(regs);
8007 
8008 	/*
8009 	 * If you're adding more sample types here, you likely need to do
8010 	 * something about the overflowing header::size, like repurpose the
8011 	 * lowest 3 bits of size, which should be always zero at the moment.
8012 	 * This raises a more important question, do we really need 512k sized
8013 	 * samples and why, so good argumentation is in order for whatever you
8014 	 * do here next.
8015 	 */
8016 	WARN_ON_ONCE(header->size & 7);
8017 }
8018 
8019 static __always_inline int
8020 __perf_event_output(struct perf_event *event,
8021 		    struct perf_sample_data *data,
8022 		    struct pt_regs *regs,
8023 		    int (*output_begin)(struct perf_output_handle *,
8024 					struct perf_sample_data *,
8025 					struct perf_event *,
8026 					unsigned int))
8027 {
8028 	struct perf_output_handle handle;
8029 	struct perf_event_header header;
8030 	int err;
8031 
8032 	/* protect the callchain buffers */
8033 	rcu_read_lock();
8034 
8035 	perf_prepare_sample(data, event, regs);
8036 	perf_prepare_header(&header, data, event, regs);
8037 
8038 	err = output_begin(&handle, data, event, header.size);
8039 	if (err)
8040 		goto exit;
8041 
8042 	perf_output_sample(&handle, &header, data, event);
8043 
8044 	perf_output_end(&handle);
8045 
8046 exit:
8047 	rcu_read_unlock();
8048 	return err;
8049 }
8050 
8051 void
8052 perf_event_output_forward(struct perf_event *event,
8053 			 struct perf_sample_data *data,
8054 			 struct pt_regs *regs)
8055 {
8056 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8057 }
8058 
8059 void
8060 perf_event_output_backward(struct perf_event *event,
8061 			   struct perf_sample_data *data,
8062 			   struct pt_regs *regs)
8063 {
8064 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8065 }
8066 
8067 int
8068 perf_event_output(struct perf_event *event,
8069 		  struct perf_sample_data *data,
8070 		  struct pt_regs *regs)
8071 {
8072 	return __perf_event_output(event, data, regs, perf_output_begin);
8073 }
8074 
8075 /*
8076  * read event_id
8077  */
8078 
8079 struct perf_read_event {
8080 	struct perf_event_header	header;
8081 
8082 	u32				pid;
8083 	u32				tid;
8084 };
8085 
8086 static void
8087 perf_event_read_event(struct perf_event *event,
8088 			struct task_struct *task)
8089 {
8090 	struct perf_output_handle handle;
8091 	struct perf_sample_data sample;
8092 	struct perf_read_event read_event = {
8093 		.header = {
8094 			.type = PERF_RECORD_READ,
8095 			.misc = 0,
8096 			.size = sizeof(read_event) + event->read_size,
8097 		},
8098 		.pid = perf_event_pid(event, task),
8099 		.tid = perf_event_tid(event, task),
8100 	};
8101 	int ret;
8102 
8103 	perf_event_header__init_id(&read_event.header, &sample, event);
8104 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8105 	if (ret)
8106 		return;
8107 
8108 	perf_output_put(&handle, read_event);
8109 	perf_output_read(&handle, event);
8110 	perf_event__output_id_sample(event, &handle, &sample);
8111 
8112 	perf_output_end(&handle);
8113 }
8114 
8115 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8116 
8117 static void
8118 perf_iterate_ctx(struct perf_event_context *ctx,
8119 		   perf_iterate_f output,
8120 		   void *data, bool all)
8121 {
8122 	struct perf_event *event;
8123 
8124 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8125 		if (!all) {
8126 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8127 				continue;
8128 			if (!event_filter_match(event))
8129 				continue;
8130 		}
8131 
8132 		output(event, data);
8133 	}
8134 }
8135 
8136 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8137 {
8138 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8139 	struct perf_event *event;
8140 
8141 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8142 		/*
8143 		 * Skip events that are not fully formed yet; ensure that
8144 		 * if we observe event->ctx, both event and ctx will be
8145 		 * complete enough. See perf_install_in_context().
8146 		 */
8147 		if (!smp_load_acquire(&event->ctx))
8148 			continue;
8149 
8150 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8151 			continue;
8152 		if (!event_filter_match(event))
8153 			continue;
8154 		output(event, data);
8155 	}
8156 }
8157 
8158 /*
8159  * Iterate all events that need to receive side-band events.
8160  *
8161  * For new callers; ensure that account_pmu_sb_event() includes
8162  * your event, otherwise it might not get delivered.
8163  */
8164 static void
8165 perf_iterate_sb(perf_iterate_f output, void *data,
8166 	       struct perf_event_context *task_ctx)
8167 {
8168 	struct perf_event_context *ctx;
8169 
8170 	rcu_read_lock();
8171 	preempt_disable();
8172 
8173 	/*
8174 	 * If we have task_ctx != NULL we only notify the task context itself.
8175 	 * The task_ctx is set only for EXIT events before releasing task
8176 	 * context.
8177 	 */
8178 	if (task_ctx) {
8179 		perf_iterate_ctx(task_ctx, output, data, false);
8180 		goto done;
8181 	}
8182 
8183 	perf_iterate_sb_cpu(output, data);
8184 
8185 	ctx = rcu_dereference(current->perf_event_ctxp);
8186 	if (ctx)
8187 		perf_iterate_ctx(ctx, output, data, false);
8188 done:
8189 	preempt_enable();
8190 	rcu_read_unlock();
8191 }
8192 
8193 /*
8194  * Clear all file-based filters at exec, they'll have to be
8195  * re-instated when/if these objects are mmapped again.
8196  */
8197 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8198 {
8199 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8200 	struct perf_addr_filter *filter;
8201 	unsigned int restart = 0, count = 0;
8202 	unsigned long flags;
8203 
8204 	if (!has_addr_filter(event))
8205 		return;
8206 
8207 	raw_spin_lock_irqsave(&ifh->lock, flags);
8208 	list_for_each_entry(filter, &ifh->list, entry) {
8209 		if (filter->path.dentry) {
8210 			event->addr_filter_ranges[count].start = 0;
8211 			event->addr_filter_ranges[count].size = 0;
8212 			restart++;
8213 		}
8214 
8215 		count++;
8216 	}
8217 
8218 	if (restart)
8219 		event->addr_filters_gen++;
8220 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8221 
8222 	if (restart)
8223 		perf_event_stop(event, 1);
8224 }
8225 
8226 void perf_event_exec(void)
8227 {
8228 	struct perf_event_context *ctx;
8229 
8230 	ctx = perf_pin_task_context(current);
8231 	if (!ctx)
8232 		return;
8233 
8234 	perf_event_enable_on_exec(ctx);
8235 	perf_event_remove_on_exec(ctx);
8236 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8237 
8238 	perf_unpin_context(ctx);
8239 	put_ctx(ctx);
8240 }
8241 
8242 struct remote_output {
8243 	struct perf_buffer	*rb;
8244 	int			err;
8245 };
8246 
8247 static void __perf_event_output_stop(struct perf_event *event, void *data)
8248 {
8249 	struct perf_event *parent = event->parent;
8250 	struct remote_output *ro = data;
8251 	struct perf_buffer *rb = ro->rb;
8252 	struct stop_event_data sd = {
8253 		.event	= event,
8254 	};
8255 
8256 	if (!has_aux(event))
8257 		return;
8258 
8259 	if (!parent)
8260 		parent = event;
8261 
8262 	/*
8263 	 * In case of inheritance, it will be the parent that links to the
8264 	 * ring-buffer, but it will be the child that's actually using it.
8265 	 *
8266 	 * We are using event::rb to determine if the event should be stopped,
8267 	 * however this may race with ring_buffer_attach() (through set_output),
8268 	 * which will make us skip the event that actually needs to be stopped.
8269 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8270 	 * its rb pointer.
8271 	 */
8272 	if (rcu_dereference(parent->rb) == rb)
8273 		ro->err = __perf_event_stop(&sd);
8274 }
8275 
8276 static int __perf_pmu_output_stop(void *info)
8277 {
8278 	struct perf_event *event = info;
8279 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8280 	struct remote_output ro = {
8281 		.rb	= event->rb,
8282 	};
8283 
8284 	rcu_read_lock();
8285 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8286 	if (cpuctx->task_ctx)
8287 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8288 				   &ro, false);
8289 	rcu_read_unlock();
8290 
8291 	return ro.err;
8292 }
8293 
8294 static void perf_pmu_output_stop(struct perf_event *event)
8295 {
8296 	struct perf_event *iter;
8297 	int err, cpu;
8298 
8299 restart:
8300 	rcu_read_lock();
8301 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8302 		/*
8303 		 * For per-CPU events, we need to make sure that neither they
8304 		 * nor their children are running; for cpu==-1 events it's
8305 		 * sufficient to stop the event itself if it's active, since
8306 		 * it can't have children.
8307 		 */
8308 		cpu = iter->cpu;
8309 		if (cpu == -1)
8310 			cpu = READ_ONCE(iter->oncpu);
8311 
8312 		if (cpu == -1)
8313 			continue;
8314 
8315 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8316 		if (err == -EAGAIN) {
8317 			rcu_read_unlock();
8318 			goto restart;
8319 		}
8320 	}
8321 	rcu_read_unlock();
8322 }
8323 
8324 /*
8325  * task tracking -- fork/exit
8326  *
8327  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8328  */
8329 
8330 struct perf_task_event {
8331 	struct task_struct		*task;
8332 	struct perf_event_context	*task_ctx;
8333 
8334 	struct {
8335 		struct perf_event_header	header;
8336 
8337 		u32				pid;
8338 		u32				ppid;
8339 		u32				tid;
8340 		u32				ptid;
8341 		u64				time;
8342 	} event_id;
8343 };
8344 
8345 static int perf_event_task_match(struct perf_event *event)
8346 {
8347 	return event->attr.comm  || event->attr.mmap ||
8348 	       event->attr.mmap2 || event->attr.mmap_data ||
8349 	       event->attr.task;
8350 }
8351 
8352 static void perf_event_task_output(struct perf_event *event,
8353 				   void *data)
8354 {
8355 	struct perf_task_event *task_event = data;
8356 	struct perf_output_handle handle;
8357 	struct perf_sample_data	sample;
8358 	struct task_struct *task = task_event->task;
8359 	int ret, size = task_event->event_id.header.size;
8360 
8361 	if (!perf_event_task_match(event))
8362 		return;
8363 
8364 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8365 
8366 	ret = perf_output_begin(&handle, &sample, event,
8367 				task_event->event_id.header.size);
8368 	if (ret)
8369 		goto out;
8370 
8371 	task_event->event_id.pid = perf_event_pid(event, task);
8372 	task_event->event_id.tid = perf_event_tid(event, task);
8373 
8374 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8375 		task_event->event_id.ppid = perf_event_pid(event,
8376 							task->real_parent);
8377 		task_event->event_id.ptid = perf_event_pid(event,
8378 							task->real_parent);
8379 	} else {  /* PERF_RECORD_FORK */
8380 		task_event->event_id.ppid = perf_event_pid(event, current);
8381 		task_event->event_id.ptid = perf_event_tid(event, current);
8382 	}
8383 
8384 	task_event->event_id.time = perf_event_clock(event);
8385 
8386 	perf_output_put(&handle, task_event->event_id);
8387 
8388 	perf_event__output_id_sample(event, &handle, &sample);
8389 
8390 	perf_output_end(&handle);
8391 out:
8392 	task_event->event_id.header.size = size;
8393 }
8394 
8395 static void perf_event_task(struct task_struct *task,
8396 			      struct perf_event_context *task_ctx,
8397 			      int new)
8398 {
8399 	struct perf_task_event task_event;
8400 
8401 	if (!atomic_read(&nr_comm_events) &&
8402 	    !atomic_read(&nr_mmap_events) &&
8403 	    !atomic_read(&nr_task_events))
8404 		return;
8405 
8406 	task_event = (struct perf_task_event){
8407 		.task	  = task,
8408 		.task_ctx = task_ctx,
8409 		.event_id    = {
8410 			.header = {
8411 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8412 				.misc = 0,
8413 				.size = sizeof(task_event.event_id),
8414 			},
8415 			/* .pid  */
8416 			/* .ppid */
8417 			/* .tid  */
8418 			/* .ptid */
8419 			/* .time */
8420 		},
8421 	};
8422 
8423 	perf_iterate_sb(perf_event_task_output,
8424 		       &task_event,
8425 		       task_ctx);
8426 }
8427 
8428 void perf_event_fork(struct task_struct *task)
8429 {
8430 	perf_event_task(task, NULL, 1);
8431 	perf_event_namespaces(task);
8432 }
8433 
8434 /*
8435  * comm tracking
8436  */
8437 
8438 struct perf_comm_event {
8439 	struct task_struct	*task;
8440 	char			*comm;
8441 	int			comm_size;
8442 
8443 	struct {
8444 		struct perf_event_header	header;
8445 
8446 		u32				pid;
8447 		u32				tid;
8448 	} event_id;
8449 };
8450 
8451 static int perf_event_comm_match(struct perf_event *event)
8452 {
8453 	return event->attr.comm;
8454 }
8455 
8456 static void perf_event_comm_output(struct perf_event *event,
8457 				   void *data)
8458 {
8459 	struct perf_comm_event *comm_event = data;
8460 	struct perf_output_handle handle;
8461 	struct perf_sample_data sample;
8462 	int size = comm_event->event_id.header.size;
8463 	int ret;
8464 
8465 	if (!perf_event_comm_match(event))
8466 		return;
8467 
8468 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8469 	ret = perf_output_begin(&handle, &sample, event,
8470 				comm_event->event_id.header.size);
8471 
8472 	if (ret)
8473 		goto out;
8474 
8475 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8476 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8477 
8478 	perf_output_put(&handle, comm_event->event_id);
8479 	__output_copy(&handle, comm_event->comm,
8480 				   comm_event->comm_size);
8481 
8482 	perf_event__output_id_sample(event, &handle, &sample);
8483 
8484 	perf_output_end(&handle);
8485 out:
8486 	comm_event->event_id.header.size = size;
8487 }
8488 
8489 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8490 {
8491 	char comm[TASK_COMM_LEN];
8492 	unsigned int size;
8493 
8494 	memset(comm, 0, sizeof(comm));
8495 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8496 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8497 
8498 	comm_event->comm = comm;
8499 	comm_event->comm_size = size;
8500 
8501 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8502 
8503 	perf_iterate_sb(perf_event_comm_output,
8504 		       comm_event,
8505 		       NULL);
8506 }
8507 
8508 void perf_event_comm(struct task_struct *task, bool exec)
8509 {
8510 	struct perf_comm_event comm_event;
8511 
8512 	if (!atomic_read(&nr_comm_events))
8513 		return;
8514 
8515 	comm_event = (struct perf_comm_event){
8516 		.task	= task,
8517 		/* .comm      */
8518 		/* .comm_size */
8519 		.event_id  = {
8520 			.header = {
8521 				.type = PERF_RECORD_COMM,
8522 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8523 				/* .size */
8524 			},
8525 			/* .pid */
8526 			/* .tid */
8527 		},
8528 	};
8529 
8530 	perf_event_comm_event(&comm_event);
8531 }
8532 
8533 /*
8534  * namespaces tracking
8535  */
8536 
8537 struct perf_namespaces_event {
8538 	struct task_struct		*task;
8539 
8540 	struct {
8541 		struct perf_event_header	header;
8542 
8543 		u32				pid;
8544 		u32				tid;
8545 		u64				nr_namespaces;
8546 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8547 	} event_id;
8548 };
8549 
8550 static int perf_event_namespaces_match(struct perf_event *event)
8551 {
8552 	return event->attr.namespaces;
8553 }
8554 
8555 static void perf_event_namespaces_output(struct perf_event *event,
8556 					 void *data)
8557 {
8558 	struct perf_namespaces_event *namespaces_event = data;
8559 	struct perf_output_handle handle;
8560 	struct perf_sample_data sample;
8561 	u16 header_size = namespaces_event->event_id.header.size;
8562 	int ret;
8563 
8564 	if (!perf_event_namespaces_match(event))
8565 		return;
8566 
8567 	perf_event_header__init_id(&namespaces_event->event_id.header,
8568 				   &sample, event);
8569 	ret = perf_output_begin(&handle, &sample, event,
8570 				namespaces_event->event_id.header.size);
8571 	if (ret)
8572 		goto out;
8573 
8574 	namespaces_event->event_id.pid = perf_event_pid(event,
8575 							namespaces_event->task);
8576 	namespaces_event->event_id.tid = perf_event_tid(event,
8577 							namespaces_event->task);
8578 
8579 	perf_output_put(&handle, namespaces_event->event_id);
8580 
8581 	perf_event__output_id_sample(event, &handle, &sample);
8582 
8583 	perf_output_end(&handle);
8584 out:
8585 	namespaces_event->event_id.header.size = header_size;
8586 }
8587 
8588 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8589 				   struct task_struct *task,
8590 				   const struct proc_ns_operations *ns_ops)
8591 {
8592 	struct path ns_path;
8593 	struct inode *ns_inode;
8594 	int error;
8595 
8596 	error = ns_get_path(&ns_path, task, ns_ops);
8597 	if (!error) {
8598 		ns_inode = ns_path.dentry->d_inode;
8599 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8600 		ns_link_info->ino = ns_inode->i_ino;
8601 		path_put(&ns_path);
8602 	}
8603 }
8604 
8605 void perf_event_namespaces(struct task_struct *task)
8606 {
8607 	struct perf_namespaces_event namespaces_event;
8608 	struct perf_ns_link_info *ns_link_info;
8609 
8610 	if (!atomic_read(&nr_namespaces_events))
8611 		return;
8612 
8613 	namespaces_event = (struct perf_namespaces_event){
8614 		.task	= task,
8615 		.event_id  = {
8616 			.header = {
8617 				.type = PERF_RECORD_NAMESPACES,
8618 				.misc = 0,
8619 				.size = sizeof(namespaces_event.event_id),
8620 			},
8621 			/* .pid */
8622 			/* .tid */
8623 			.nr_namespaces = NR_NAMESPACES,
8624 			/* .link_info[NR_NAMESPACES] */
8625 		},
8626 	};
8627 
8628 	ns_link_info = namespaces_event.event_id.link_info;
8629 
8630 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8631 			       task, &mntns_operations);
8632 
8633 #ifdef CONFIG_USER_NS
8634 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8635 			       task, &userns_operations);
8636 #endif
8637 #ifdef CONFIG_NET_NS
8638 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8639 			       task, &netns_operations);
8640 #endif
8641 #ifdef CONFIG_UTS_NS
8642 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8643 			       task, &utsns_operations);
8644 #endif
8645 #ifdef CONFIG_IPC_NS
8646 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8647 			       task, &ipcns_operations);
8648 #endif
8649 #ifdef CONFIG_PID_NS
8650 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8651 			       task, &pidns_operations);
8652 #endif
8653 #ifdef CONFIG_CGROUPS
8654 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8655 			       task, &cgroupns_operations);
8656 #endif
8657 
8658 	perf_iterate_sb(perf_event_namespaces_output,
8659 			&namespaces_event,
8660 			NULL);
8661 }
8662 
8663 /*
8664  * cgroup tracking
8665  */
8666 #ifdef CONFIG_CGROUP_PERF
8667 
8668 struct perf_cgroup_event {
8669 	char				*path;
8670 	int				path_size;
8671 	struct {
8672 		struct perf_event_header	header;
8673 		u64				id;
8674 		char				path[];
8675 	} event_id;
8676 };
8677 
8678 static int perf_event_cgroup_match(struct perf_event *event)
8679 {
8680 	return event->attr.cgroup;
8681 }
8682 
8683 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8684 {
8685 	struct perf_cgroup_event *cgroup_event = data;
8686 	struct perf_output_handle handle;
8687 	struct perf_sample_data sample;
8688 	u16 header_size = cgroup_event->event_id.header.size;
8689 	int ret;
8690 
8691 	if (!perf_event_cgroup_match(event))
8692 		return;
8693 
8694 	perf_event_header__init_id(&cgroup_event->event_id.header,
8695 				   &sample, event);
8696 	ret = perf_output_begin(&handle, &sample, event,
8697 				cgroup_event->event_id.header.size);
8698 	if (ret)
8699 		goto out;
8700 
8701 	perf_output_put(&handle, cgroup_event->event_id);
8702 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8703 
8704 	perf_event__output_id_sample(event, &handle, &sample);
8705 
8706 	perf_output_end(&handle);
8707 out:
8708 	cgroup_event->event_id.header.size = header_size;
8709 }
8710 
8711 static void perf_event_cgroup(struct cgroup *cgrp)
8712 {
8713 	struct perf_cgroup_event cgroup_event;
8714 	char path_enomem[16] = "//enomem";
8715 	char *pathname;
8716 	size_t size;
8717 
8718 	if (!atomic_read(&nr_cgroup_events))
8719 		return;
8720 
8721 	cgroup_event = (struct perf_cgroup_event){
8722 		.event_id  = {
8723 			.header = {
8724 				.type = PERF_RECORD_CGROUP,
8725 				.misc = 0,
8726 				.size = sizeof(cgroup_event.event_id),
8727 			},
8728 			.id = cgroup_id(cgrp),
8729 		},
8730 	};
8731 
8732 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8733 	if (pathname == NULL) {
8734 		cgroup_event.path = path_enomem;
8735 	} else {
8736 		/* just to be sure to have enough space for alignment */
8737 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8738 		cgroup_event.path = pathname;
8739 	}
8740 
8741 	/*
8742 	 * Since our buffer works in 8 byte units we need to align our string
8743 	 * size to a multiple of 8. However, we must guarantee the tail end is
8744 	 * zero'd out to avoid leaking random bits to userspace.
8745 	 */
8746 	size = strlen(cgroup_event.path) + 1;
8747 	while (!IS_ALIGNED(size, sizeof(u64)))
8748 		cgroup_event.path[size++] = '\0';
8749 
8750 	cgroup_event.event_id.header.size += size;
8751 	cgroup_event.path_size = size;
8752 
8753 	perf_iterate_sb(perf_event_cgroup_output,
8754 			&cgroup_event,
8755 			NULL);
8756 
8757 	kfree(pathname);
8758 }
8759 
8760 #endif
8761 
8762 /*
8763  * mmap tracking
8764  */
8765 
8766 struct perf_mmap_event {
8767 	struct vm_area_struct	*vma;
8768 
8769 	const char		*file_name;
8770 	int			file_size;
8771 	int			maj, min;
8772 	u64			ino;
8773 	u64			ino_generation;
8774 	u32			prot, flags;
8775 	u8			build_id[BUILD_ID_SIZE_MAX];
8776 	u32			build_id_size;
8777 
8778 	struct {
8779 		struct perf_event_header	header;
8780 
8781 		u32				pid;
8782 		u32				tid;
8783 		u64				start;
8784 		u64				len;
8785 		u64				pgoff;
8786 	} event_id;
8787 };
8788 
8789 static int perf_event_mmap_match(struct perf_event *event,
8790 				 void *data)
8791 {
8792 	struct perf_mmap_event *mmap_event = data;
8793 	struct vm_area_struct *vma = mmap_event->vma;
8794 	int executable = vma->vm_flags & VM_EXEC;
8795 
8796 	return (!executable && event->attr.mmap_data) ||
8797 	       (executable && (event->attr.mmap || event->attr.mmap2));
8798 }
8799 
8800 static void perf_event_mmap_output(struct perf_event *event,
8801 				   void *data)
8802 {
8803 	struct perf_mmap_event *mmap_event = data;
8804 	struct perf_output_handle handle;
8805 	struct perf_sample_data sample;
8806 	int size = mmap_event->event_id.header.size;
8807 	u32 type = mmap_event->event_id.header.type;
8808 	bool use_build_id;
8809 	int ret;
8810 
8811 	if (!perf_event_mmap_match(event, data))
8812 		return;
8813 
8814 	if (event->attr.mmap2) {
8815 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8816 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8817 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8818 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8819 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8820 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8821 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8822 	}
8823 
8824 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8825 	ret = perf_output_begin(&handle, &sample, event,
8826 				mmap_event->event_id.header.size);
8827 	if (ret)
8828 		goto out;
8829 
8830 	mmap_event->event_id.pid = perf_event_pid(event, current);
8831 	mmap_event->event_id.tid = perf_event_tid(event, current);
8832 
8833 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8834 
8835 	if (event->attr.mmap2 && use_build_id)
8836 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8837 
8838 	perf_output_put(&handle, mmap_event->event_id);
8839 
8840 	if (event->attr.mmap2) {
8841 		if (use_build_id) {
8842 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8843 
8844 			__output_copy(&handle, size, 4);
8845 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8846 		} else {
8847 			perf_output_put(&handle, mmap_event->maj);
8848 			perf_output_put(&handle, mmap_event->min);
8849 			perf_output_put(&handle, mmap_event->ino);
8850 			perf_output_put(&handle, mmap_event->ino_generation);
8851 		}
8852 		perf_output_put(&handle, mmap_event->prot);
8853 		perf_output_put(&handle, mmap_event->flags);
8854 	}
8855 
8856 	__output_copy(&handle, mmap_event->file_name,
8857 				   mmap_event->file_size);
8858 
8859 	perf_event__output_id_sample(event, &handle, &sample);
8860 
8861 	perf_output_end(&handle);
8862 out:
8863 	mmap_event->event_id.header.size = size;
8864 	mmap_event->event_id.header.type = type;
8865 }
8866 
8867 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8868 {
8869 	struct vm_area_struct *vma = mmap_event->vma;
8870 	struct file *file = vma->vm_file;
8871 	int maj = 0, min = 0;
8872 	u64 ino = 0, gen = 0;
8873 	u32 prot = 0, flags = 0;
8874 	unsigned int size;
8875 	char tmp[16];
8876 	char *buf = NULL;
8877 	char *name = NULL;
8878 
8879 	if (vma->vm_flags & VM_READ)
8880 		prot |= PROT_READ;
8881 	if (vma->vm_flags & VM_WRITE)
8882 		prot |= PROT_WRITE;
8883 	if (vma->vm_flags & VM_EXEC)
8884 		prot |= PROT_EXEC;
8885 
8886 	if (vma->vm_flags & VM_MAYSHARE)
8887 		flags = MAP_SHARED;
8888 	else
8889 		flags = MAP_PRIVATE;
8890 
8891 	if (vma->vm_flags & VM_LOCKED)
8892 		flags |= MAP_LOCKED;
8893 	if (is_vm_hugetlb_page(vma))
8894 		flags |= MAP_HUGETLB;
8895 
8896 	if (file) {
8897 		struct inode *inode;
8898 		dev_t dev;
8899 
8900 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8901 		if (!buf) {
8902 			name = "//enomem";
8903 			goto cpy_name;
8904 		}
8905 		/*
8906 		 * d_path() works from the end of the rb backwards, so we
8907 		 * need to add enough zero bytes after the string to handle
8908 		 * the 64bit alignment we do later.
8909 		 */
8910 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8911 		if (IS_ERR(name)) {
8912 			name = "//toolong";
8913 			goto cpy_name;
8914 		}
8915 		inode = file_inode(vma->vm_file);
8916 		dev = inode->i_sb->s_dev;
8917 		ino = inode->i_ino;
8918 		gen = inode->i_generation;
8919 		maj = MAJOR(dev);
8920 		min = MINOR(dev);
8921 
8922 		goto got_name;
8923 	} else {
8924 		if (vma->vm_ops && vma->vm_ops->name)
8925 			name = (char *) vma->vm_ops->name(vma);
8926 		if (!name)
8927 			name = (char *)arch_vma_name(vma);
8928 		if (!name) {
8929 			if (vma_is_initial_heap(vma))
8930 				name = "[heap]";
8931 			else if (vma_is_initial_stack(vma))
8932 				name = "[stack]";
8933 			else
8934 				name = "//anon";
8935 		}
8936 	}
8937 
8938 cpy_name:
8939 	strscpy(tmp, name, sizeof(tmp));
8940 	name = tmp;
8941 got_name:
8942 	/*
8943 	 * Since our buffer works in 8 byte units we need to align our string
8944 	 * size to a multiple of 8. However, we must guarantee the tail end is
8945 	 * zero'd out to avoid leaking random bits to userspace.
8946 	 */
8947 	size = strlen(name)+1;
8948 	while (!IS_ALIGNED(size, sizeof(u64)))
8949 		name[size++] = '\0';
8950 
8951 	mmap_event->file_name = name;
8952 	mmap_event->file_size = size;
8953 	mmap_event->maj = maj;
8954 	mmap_event->min = min;
8955 	mmap_event->ino = ino;
8956 	mmap_event->ino_generation = gen;
8957 	mmap_event->prot = prot;
8958 	mmap_event->flags = flags;
8959 
8960 	if (!(vma->vm_flags & VM_EXEC))
8961 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8962 
8963 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8964 
8965 	if (atomic_read(&nr_build_id_events))
8966 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
8967 
8968 	perf_iterate_sb(perf_event_mmap_output,
8969 		       mmap_event,
8970 		       NULL);
8971 
8972 	kfree(buf);
8973 }
8974 
8975 /*
8976  * Check whether inode and address range match filter criteria.
8977  */
8978 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8979 				     struct file *file, unsigned long offset,
8980 				     unsigned long size)
8981 {
8982 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8983 	if (!filter->path.dentry)
8984 		return false;
8985 
8986 	if (d_inode(filter->path.dentry) != file_inode(file))
8987 		return false;
8988 
8989 	if (filter->offset > offset + size)
8990 		return false;
8991 
8992 	if (filter->offset + filter->size < offset)
8993 		return false;
8994 
8995 	return true;
8996 }
8997 
8998 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8999 					struct vm_area_struct *vma,
9000 					struct perf_addr_filter_range *fr)
9001 {
9002 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9003 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9004 	struct file *file = vma->vm_file;
9005 
9006 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9007 		return false;
9008 
9009 	if (filter->offset < off) {
9010 		fr->start = vma->vm_start;
9011 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9012 	} else {
9013 		fr->start = vma->vm_start + filter->offset - off;
9014 		fr->size = min(vma->vm_end - fr->start, filter->size);
9015 	}
9016 
9017 	return true;
9018 }
9019 
9020 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9021 {
9022 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9023 	struct vm_area_struct *vma = data;
9024 	struct perf_addr_filter *filter;
9025 	unsigned int restart = 0, count = 0;
9026 	unsigned long flags;
9027 
9028 	if (!has_addr_filter(event))
9029 		return;
9030 
9031 	if (!vma->vm_file)
9032 		return;
9033 
9034 	raw_spin_lock_irqsave(&ifh->lock, flags);
9035 	list_for_each_entry(filter, &ifh->list, entry) {
9036 		if (perf_addr_filter_vma_adjust(filter, vma,
9037 						&event->addr_filter_ranges[count]))
9038 			restart++;
9039 
9040 		count++;
9041 	}
9042 
9043 	if (restart)
9044 		event->addr_filters_gen++;
9045 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9046 
9047 	if (restart)
9048 		perf_event_stop(event, 1);
9049 }
9050 
9051 /*
9052  * Adjust all task's events' filters to the new vma
9053  */
9054 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9055 {
9056 	struct perf_event_context *ctx;
9057 
9058 	/*
9059 	 * Data tracing isn't supported yet and as such there is no need
9060 	 * to keep track of anything that isn't related to executable code:
9061 	 */
9062 	if (!(vma->vm_flags & VM_EXEC))
9063 		return;
9064 
9065 	rcu_read_lock();
9066 	ctx = rcu_dereference(current->perf_event_ctxp);
9067 	if (ctx)
9068 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9069 	rcu_read_unlock();
9070 }
9071 
9072 void perf_event_mmap(struct vm_area_struct *vma)
9073 {
9074 	struct perf_mmap_event mmap_event;
9075 
9076 	if (!atomic_read(&nr_mmap_events))
9077 		return;
9078 
9079 	mmap_event = (struct perf_mmap_event){
9080 		.vma	= vma,
9081 		/* .file_name */
9082 		/* .file_size */
9083 		.event_id  = {
9084 			.header = {
9085 				.type = PERF_RECORD_MMAP,
9086 				.misc = PERF_RECORD_MISC_USER,
9087 				/* .size */
9088 			},
9089 			/* .pid */
9090 			/* .tid */
9091 			.start  = vma->vm_start,
9092 			.len    = vma->vm_end - vma->vm_start,
9093 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9094 		},
9095 		/* .maj (attr_mmap2 only) */
9096 		/* .min (attr_mmap2 only) */
9097 		/* .ino (attr_mmap2 only) */
9098 		/* .ino_generation (attr_mmap2 only) */
9099 		/* .prot (attr_mmap2 only) */
9100 		/* .flags (attr_mmap2 only) */
9101 	};
9102 
9103 	perf_addr_filters_adjust(vma);
9104 	perf_event_mmap_event(&mmap_event);
9105 }
9106 
9107 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9108 			  unsigned long size, u64 flags)
9109 {
9110 	struct perf_output_handle handle;
9111 	struct perf_sample_data sample;
9112 	struct perf_aux_event {
9113 		struct perf_event_header	header;
9114 		u64				offset;
9115 		u64				size;
9116 		u64				flags;
9117 	} rec = {
9118 		.header = {
9119 			.type = PERF_RECORD_AUX,
9120 			.misc = 0,
9121 			.size = sizeof(rec),
9122 		},
9123 		.offset		= head,
9124 		.size		= size,
9125 		.flags		= flags,
9126 	};
9127 	int ret;
9128 
9129 	perf_event_header__init_id(&rec.header, &sample, event);
9130 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9131 
9132 	if (ret)
9133 		return;
9134 
9135 	perf_output_put(&handle, rec);
9136 	perf_event__output_id_sample(event, &handle, &sample);
9137 
9138 	perf_output_end(&handle);
9139 }
9140 
9141 /*
9142  * Lost/dropped samples logging
9143  */
9144 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9145 {
9146 	struct perf_output_handle handle;
9147 	struct perf_sample_data sample;
9148 	int ret;
9149 
9150 	struct {
9151 		struct perf_event_header	header;
9152 		u64				lost;
9153 	} lost_samples_event = {
9154 		.header = {
9155 			.type = PERF_RECORD_LOST_SAMPLES,
9156 			.misc = 0,
9157 			.size = sizeof(lost_samples_event),
9158 		},
9159 		.lost		= lost,
9160 	};
9161 
9162 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9163 
9164 	ret = perf_output_begin(&handle, &sample, event,
9165 				lost_samples_event.header.size);
9166 	if (ret)
9167 		return;
9168 
9169 	perf_output_put(&handle, lost_samples_event);
9170 	perf_event__output_id_sample(event, &handle, &sample);
9171 	perf_output_end(&handle);
9172 }
9173 
9174 /*
9175  * context_switch tracking
9176  */
9177 
9178 struct perf_switch_event {
9179 	struct task_struct	*task;
9180 	struct task_struct	*next_prev;
9181 
9182 	struct {
9183 		struct perf_event_header	header;
9184 		u32				next_prev_pid;
9185 		u32				next_prev_tid;
9186 	} event_id;
9187 };
9188 
9189 static int perf_event_switch_match(struct perf_event *event)
9190 {
9191 	return event->attr.context_switch;
9192 }
9193 
9194 static void perf_event_switch_output(struct perf_event *event, void *data)
9195 {
9196 	struct perf_switch_event *se = data;
9197 	struct perf_output_handle handle;
9198 	struct perf_sample_data sample;
9199 	int ret;
9200 
9201 	if (!perf_event_switch_match(event))
9202 		return;
9203 
9204 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9205 	if (event->ctx->task) {
9206 		se->event_id.header.type = PERF_RECORD_SWITCH;
9207 		se->event_id.header.size = sizeof(se->event_id.header);
9208 	} else {
9209 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9210 		se->event_id.header.size = sizeof(se->event_id);
9211 		se->event_id.next_prev_pid =
9212 					perf_event_pid(event, se->next_prev);
9213 		se->event_id.next_prev_tid =
9214 					perf_event_tid(event, se->next_prev);
9215 	}
9216 
9217 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9218 
9219 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9220 	if (ret)
9221 		return;
9222 
9223 	if (event->ctx->task)
9224 		perf_output_put(&handle, se->event_id.header);
9225 	else
9226 		perf_output_put(&handle, se->event_id);
9227 
9228 	perf_event__output_id_sample(event, &handle, &sample);
9229 
9230 	perf_output_end(&handle);
9231 }
9232 
9233 static void perf_event_switch(struct task_struct *task,
9234 			      struct task_struct *next_prev, bool sched_in)
9235 {
9236 	struct perf_switch_event switch_event;
9237 
9238 	/* N.B. caller checks nr_switch_events != 0 */
9239 
9240 	switch_event = (struct perf_switch_event){
9241 		.task		= task,
9242 		.next_prev	= next_prev,
9243 		.event_id	= {
9244 			.header = {
9245 				/* .type */
9246 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9247 				/* .size */
9248 			},
9249 			/* .next_prev_pid */
9250 			/* .next_prev_tid */
9251 		},
9252 	};
9253 
9254 	if (!sched_in && task_is_runnable(task)) {
9255 		switch_event.event_id.header.misc |=
9256 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9257 	}
9258 
9259 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9260 }
9261 
9262 /*
9263  * IRQ throttle logging
9264  */
9265 
9266 static void perf_log_throttle(struct perf_event *event, int enable)
9267 {
9268 	struct perf_output_handle handle;
9269 	struct perf_sample_data sample;
9270 	int ret;
9271 
9272 	struct {
9273 		struct perf_event_header	header;
9274 		u64				time;
9275 		u64				id;
9276 		u64				stream_id;
9277 	} throttle_event = {
9278 		.header = {
9279 			.type = PERF_RECORD_THROTTLE,
9280 			.misc = 0,
9281 			.size = sizeof(throttle_event),
9282 		},
9283 		.time		= perf_event_clock(event),
9284 		.id		= primary_event_id(event),
9285 		.stream_id	= event->id,
9286 	};
9287 
9288 	if (enable)
9289 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9290 
9291 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9292 
9293 	ret = perf_output_begin(&handle, &sample, event,
9294 				throttle_event.header.size);
9295 	if (ret)
9296 		return;
9297 
9298 	perf_output_put(&handle, throttle_event);
9299 	perf_event__output_id_sample(event, &handle, &sample);
9300 	perf_output_end(&handle);
9301 }
9302 
9303 /*
9304  * ksymbol register/unregister tracking
9305  */
9306 
9307 struct perf_ksymbol_event {
9308 	const char	*name;
9309 	int		name_len;
9310 	struct {
9311 		struct perf_event_header        header;
9312 		u64				addr;
9313 		u32				len;
9314 		u16				ksym_type;
9315 		u16				flags;
9316 	} event_id;
9317 };
9318 
9319 static int perf_event_ksymbol_match(struct perf_event *event)
9320 {
9321 	return event->attr.ksymbol;
9322 }
9323 
9324 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9325 {
9326 	struct perf_ksymbol_event *ksymbol_event = data;
9327 	struct perf_output_handle handle;
9328 	struct perf_sample_data sample;
9329 	int ret;
9330 
9331 	if (!perf_event_ksymbol_match(event))
9332 		return;
9333 
9334 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9335 				   &sample, event);
9336 	ret = perf_output_begin(&handle, &sample, event,
9337 				ksymbol_event->event_id.header.size);
9338 	if (ret)
9339 		return;
9340 
9341 	perf_output_put(&handle, ksymbol_event->event_id);
9342 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9343 	perf_event__output_id_sample(event, &handle, &sample);
9344 
9345 	perf_output_end(&handle);
9346 }
9347 
9348 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9349 			const char *sym)
9350 {
9351 	struct perf_ksymbol_event ksymbol_event;
9352 	char name[KSYM_NAME_LEN];
9353 	u16 flags = 0;
9354 	int name_len;
9355 
9356 	if (!atomic_read(&nr_ksymbol_events))
9357 		return;
9358 
9359 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9360 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9361 		goto err;
9362 
9363 	strscpy(name, sym, KSYM_NAME_LEN);
9364 	name_len = strlen(name) + 1;
9365 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9366 		name[name_len++] = '\0';
9367 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9368 
9369 	if (unregister)
9370 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9371 
9372 	ksymbol_event = (struct perf_ksymbol_event){
9373 		.name = name,
9374 		.name_len = name_len,
9375 		.event_id = {
9376 			.header = {
9377 				.type = PERF_RECORD_KSYMBOL,
9378 				.size = sizeof(ksymbol_event.event_id) +
9379 					name_len,
9380 			},
9381 			.addr = addr,
9382 			.len = len,
9383 			.ksym_type = ksym_type,
9384 			.flags = flags,
9385 		},
9386 	};
9387 
9388 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9389 	return;
9390 err:
9391 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9392 }
9393 
9394 /*
9395  * bpf program load/unload tracking
9396  */
9397 
9398 struct perf_bpf_event {
9399 	struct bpf_prog	*prog;
9400 	struct {
9401 		struct perf_event_header        header;
9402 		u16				type;
9403 		u16				flags;
9404 		u32				id;
9405 		u8				tag[BPF_TAG_SIZE];
9406 	} event_id;
9407 };
9408 
9409 static int perf_event_bpf_match(struct perf_event *event)
9410 {
9411 	return event->attr.bpf_event;
9412 }
9413 
9414 static void perf_event_bpf_output(struct perf_event *event, void *data)
9415 {
9416 	struct perf_bpf_event *bpf_event = data;
9417 	struct perf_output_handle handle;
9418 	struct perf_sample_data sample;
9419 	int ret;
9420 
9421 	if (!perf_event_bpf_match(event))
9422 		return;
9423 
9424 	perf_event_header__init_id(&bpf_event->event_id.header,
9425 				   &sample, event);
9426 	ret = perf_output_begin(&handle, &sample, event,
9427 				bpf_event->event_id.header.size);
9428 	if (ret)
9429 		return;
9430 
9431 	perf_output_put(&handle, bpf_event->event_id);
9432 	perf_event__output_id_sample(event, &handle, &sample);
9433 
9434 	perf_output_end(&handle);
9435 }
9436 
9437 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9438 					 enum perf_bpf_event_type type)
9439 {
9440 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9441 	int i;
9442 
9443 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9444 			   (u64)(unsigned long)prog->bpf_func,
9445 			   prog->jited_len, unregister,
9446 			   prog->aux->ksym.name);
9447 
9448 	for (i = 1; i < prog->aux->func_cnt; i++) {
9449 		struct bpf_prog *subprog = prog->aux->func[i];
9450 
9451 		perf_event_ksymbol(
9452 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9453 			(u64)(unsigned long)subprog->bpf_func,
9454 			subprog->jited_len, unregister,
9455 			subprog->aux->ksym.name);
9456 	}
9457 }
9458 
9459 void perf_event_bpf_event(struct bpf_prog *prog,
9460 			  enum perf_bpf_event_type type,
9461 			  u16 flags)
9462 {
9463 	struct perf_bpf_event bpf_event;
9464 
9465 	switch (type) {
9466 	case PERF_BPF_EVENT_PROG_LOAD:
9467 	case PERF_BPF_EVENT_PROG_UNLOAD:
9468 		if (atomic_read(&nr_ksymbol_events))
9469 			perf_event_bpf_emit_ksymbols(prog, type);
9470 		break;
9471 	default:
9472 		return;
9473 	}
9474 
9475 	if (!atomic_read(&nr_bpf_events))
9476 		return;
9477 
9478 	bpf_event = (struct perf_bpf_event){
9479 		.prog = prog,
9480 		.event_id = {
9481 			.header = {
9482 				.type = PERF_RECORD_BPF_EVENT,
9483 				.size = sizeof(bpf_event.event_id),
9484 			},
9485 			.type = type,
9486 			.flags = flags,
9487 			.id = prog->aux->id,
9488 		},
9489 	};
9490 
9491 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9492 
9493 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9494 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9495 }
9496 
9497 struct perf_text_poke_event {
9498 	const void		*old_bytes;
9499 	const void		*new_bytes;
9500 	size_t			pad;
9501 	u16			old_len;
9502 	u16			new_len;
9503 
9504 	struct {
9505 		struct perf_event_header	header;
9506 
9507 		u64				addr;
9508 	} event_id;
9509 };
9510 
9511 static int perf_event_text_poke_match(struct perf_event *event)
9512 {
9513 	return event->attr.text_poke;
9514 }
9515 
9516 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9517 {
9518 	struct perf_text_poke_event *text_poke_event = data;
9519 	struct perf_output_handle handle;
9520 	struct perf_sample_data sample;
9521 	u64 padding = 0;
9522 	int ret;
9523 
9524 	if (!perf_event_text_poke_match(event))
9525 		return;
9526 
9527 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9528 
9529 	ret = perf_output_begin(&handle, &sample, event,
9530 				text_poke_event->event_id.header.size);
9531 	if (ret)
9532 		return;
9533 
9534 	perf_output_put(&handle, text_poke_event->event_id);
9535 	perf_output_put(&handle, text_poke_event->old_len);
9536 	perf_output_put(&handle, text_poke_event->new_len);
9537 
9538 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9539 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9540 
9541 	if (text_poke_event->pad)
9542 		__output_copy(&handle, &padding, text_poke_event->pad);
9543 
9544 	perf_event__output_id_sample(event, &handle, &sample);
9545 
9546 	perf_output_end(&handle);
9547 }
9548 
9549 void perf_event_text_poke(const void *addr, const void *old_bytes,
9550 			  size_t old_len, const void *new_bytes, size_t new_len)
9551 {
9552 	struct perf_text_poke_event text_poke_event;
9553 	size_t tot, pad;
9554 
9555 	if (!atomic_read(&nr_text_poke_events))
9556 		return;
9557 
9558 	tot  = sizeof(text_poke_event.old_len) + old_len;
9559 	tot += sizeof(text_poke_event.new_len) + new_len;
9560 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9561 
9562 	text_poke_event = (struct perf_text_poke_event){
9563 		.old_bytes    = old_bytes,
9564 		.new_bytes    = new_bytes,
9565 		.pad          = pad,
9566 		.old_len      = old_len,
9567 		.new_len      = new_len,
9568 		.event_id  = {
9569 			.header = {
9570 				.type = PERF_RECORD_TEXT_POKE,
9571 				.misc = PERF_RECORD_MISC_KERNEL,
9572 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9573 			},
9574 			.addr = (unsigned long)addr,
9575 		},
9576 	};
9577 
9578 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9579 }
9580 
9581 void perf_event_itrace_started(struct perf_event *event)
9582 {
9583 	event->attach_state |= PERF_ATTACH_ITRACE;
9584 }
9585 
9586 static void perf_log_itrace_start(struct perf_event *event)
9587 {
9588 	struct perf_output_handle handle;
9589 	struct perf_sample_data sample;
9590 	struct perf_aux_event {
9591 		struct perf_event_header        header;
9592 		u32				pid;
9593 		u32				tid;
9594 	} rec;
9595 	int ret;
9596 
9597 	if (event->parent)
9598 		event = event->parent;
9599 
9600 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9601 	    event->attach_state & PERF_ATTACH_ITRACE)
9602 		return;
9603 
9604 	rec.header.type	= PERF_RECORD_ITRACE_START;
9605 	rec.header.misc	= 0;
9606 	rec.header.size	= sizeof(rec);
9607 	rec.pid	= perf_event_pid(event, current);
9608 	rec.tid	= perf_event_tid(event, current);
9609 
9610 	perf_event_header__init_id(&rec.header, &sample, event);
9611 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9612 
9613 	if (ret)
9614 		return;
9615 
9616 	perf_output_put(&handle, rec);
9617 	perf_event__output_id_sample(event, &handle, &sample);
9618 
9619 	perf_output_end(&handle);
9620 }
9621 
9622 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9623 {
9624 	struct perf_output_handle handle;
9625 	struct perf_sample_data sample;
9626 	struct perf_aux_event {
9627 		struct perf_event_header        header;
9628 		u64				hw_id;
9629 	} rec;
9630 	int ret;
9631 
9632 	if (event->parent)
9633 		event = event->parent;
9634 
9635 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9636 	rec.header.misc	= 0;
9637 	rec.header.size	= sizeof(rec);
9638 	rec.hw_id	= hw_id;
9639 
9640 	perf_event_header__init_id(&rec.header, &sample, event);
9641 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9642 
9643 	if (ret)
9644 		return;
9645 
9646 	perf_output_put(&handle, rec);
9647 	perf_event__output_id_sample(event, &handle, &sample);
9648 
9649 	perf_output_end(&handle);
9650 }
9651 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9652 
9653 static int
9654 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9655 {
9656 	struct hw_perf_event *hwc = &event->hw;
9657 	int ret = 0;
9658 	u64 seq;
9659 
9660 	seq = __this_cpu_read(perf_throttled_seq);
9661 	if (seq != hwc->interrupts_seq) {
9662 		hwc->interrupts_seq = seq;
9663 		hwc->interrupts = 1;
9664 	} else {
9665 		hwc->interrupts++;
9666 		if (unlikely(throttle &&
9667 			     hwc->interrupts > max_samples_per_tick)) {
9668 			__this_cpu_inc(perf_throttled_count);
9669 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9670 			hwc->interrupts = MAX_INTERRUPTS;
9671 			perf_log_throttle(event, 0);
9672 			ret = 1;
9673 		}
9674 	}
9675 
9676 	if (event->attr.freq) {
9677 		u64 now = perf_clock();
9678 		s64 delta = now - hwc->freq_time_stamp;
9679 
9680 		hwc->freq_time_stamp = now;
9681 
9682 		if (delta > 0 && delta < 2*TICK_NSEC)
9683 			perf_adjust_period(event, delta, hwc->last_period, true);
9684 	}
9685 
9686 	return ret;
9687 }
9688 
9689 int perf_event_account_interrupt(struct perf_event *event)
9690 {
9691 	return __perf_event_account_interrupt(event, 1);
9692 }
9693 
9694 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9695 {
9696 	/*
9697 	 * Due to interrupt latency (AKA "skid"), we may enter the
9698 	 * kernel before taking an overflow, even if the PMU is only
9699 	 * counting user events.
9700 	 */
9701 	if (event->attr.exclude_kernel && !user_mode(regs))
9702 		return false;
9703 
9704 	return true;
9705 }
9706 
9707 #ifdef CONFIG_BPF_SYSCALL
9708 static int bpf_overflow_handler(struct perf_event *event,
9709 				struct perf_sample_data *data,
9710 				struct pt_regs *regs)
9711 {
9712 	struct bpf_perf_event_data_kern ctx = {
9713 		.data = data,
9714 		.event = event,
9715 	};
9716 	struct bpf_prog *prog;
9717 	int ret = 0;
9718 
9719 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9720 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9721 		goto out;
9722 	rcu_read_lock();
9723 	prog = READ_ONCE(event->prog);
9724 	if (prog) {
9725 		perf_prepare_sample(data, event, regs);
9726 		ret = bpf_prog_run(prog, &ctx);
9727 	}
9728 	rcu_read_unlock();
9729 out:
9730 	__this_cpu_dec(bpf_prog_active);
9731 
9732 	return ret;
9733 }
9734 
9735 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9736 					     struct bpf_prog *prog,
9737 					     u64 bpf_cookie)
9738 {
9739 	if (event->overflow_handler_context)
9740 		/* hw breakpoint or kernel counter */
9741 		return -EINVAL;
9742 
9743 	if (event->prog)
9744 		return -EEXIST;
9745 
9746 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9747 		return -EINVAL;
9748 
9749 	if (event->attr.precise_ip &&
9750 	    prog->call_get_stack &&
9751 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9752 	     event->attr.exclude_callchain_kernel ||
9753 	     event->attr.exclude_callchain_user)) {
9754 		/*
9755 		 * On perf_event with precise_ip, calling bpf_get_stack()
9756 		 * may trigger unwinder warnings and occasional crashes.
9757 		 * bpf_get_[stack|stackid] works around this issue by using
9758 		 * callchain attached to perf_sample_data. If the
9759 		 * perf_event does not full (kernel and user) callchain
9760 		 * attached to perf_sample_data, do not allow attaching BPF
9761 		 * program that calls bpf_get_[stack|stackid].
9762 		 */
9763 		return -EPROTO;
9764 	}
9765 
9766 	event->prog = prog;
9767 	event->bpf_cookie = bpf_cookie;
9768 	return 0;
9769 }
9770 
9771 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9772 {
9773 	struct bpf_prog *prog = event->prog;
9774 
9775 	if (!prog)
9776 		return;
9777 
9778 	event->prog = NULL;
9779 	bpf_prog_put(prog);
9780 }
9781 #else
9782 static inline int bpf_overflow_handler(struct perf_event *event,
9783 				       struct perf_sample_data *data,
9784 				       struct pt_regs *regs)
9785 {
9786 	return 1;
9787 }
9788 
9789 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9790 					     struct bpf_prog *prog,
9791 					     u64 bpf_cookie)
9792 {
9793 	return -EOPNOTSUPP;
9794 }
9795 
9796 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9797 {
9798 }
9799 #endif
9800 
9801 /*
9802  * Generic event overflow handling, sampling.
9803  */
9804 
9805 static int __perf_event_overflow(struct perf_event *event,
9806 				 int throttle, struct perf_sample_data *data,
9807 				 struct pt_regs *regs)
9808 {
9809 	int events = atomic_read(&event->event_limit);
9810 	int ret = 0;
9811 
9812 	/*
9813 	 * Non-sampling counters might still use the PMI to fold short
9814 	 * hardware counters, ignore those.
9815 	 */
9816 	if (unlikely(!is_sampling_event(event)))
9817 		return 0;
9818 
9819 	ret = __perf_event_account_interrupt(event, throttle);
9820 
9821 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9822 	    !bpf_overflow_handler(event, data, regs))
9823 		return ret;
9824 
9825 	/*
9826 	 * XXX event_limit might not quite work as expected on inherited
9827 	 * events
9828 	 */
9829 
9830 	event->pending_kill = POLL_IN;
9831 	if (events && atomic_dec_and_test(&event->event_limit)) {
9832 		ret = 1;
9833 		event->pending_kill = POLL_HUP;
9834 		perf_event_disable_inatomic(event);
9835 	}
9836 
9837 	if (event->attr.sigtrap) {
9838 		/*
9839 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9840 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9841 		 * it is the first event, on the other hand, we should also not
9842 		 * trigger the WARN or override the data address.
9843 		 */
9844 		bool valid_sample = sample_is_allowed(event, regs);
9845 		unsigned int pending_id = 1;
9846 		enum task_work_notify_mode notify_mode;
9847 
9848 		if (regs)
9849 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9850 
9851 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9852 
9853 		if (!event->pending_work &&
9854 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9855 			event->pending_work = pending_id;
9856 			local_inc(&event->ctx->nr_no_switch_fast);
9857 
9858 			event->pending_addr = 0;
9859 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9860 				event->pending_addr = data->addr;
9861 
9862 		} else if (event->attr.exclude_kernel && valid_sample) {
9863 			/*
9864 			 * Should not be able to return to user space without
9865 			 * consuming pending_work; with exceptions:
9866 			 *
9867 			 *  1. Where !exclude_kernel, events can overflow again
9868 			 *     in the kernel without returning to user space.
9869 			 *
9870 			 *  2. Events that can overflow again before the IRQ-
9871 			 *     work without user space progress (e.g. hrtimer).
9872 			 *     To approximate progress (with false negatives),
9873 			 *     check 32-bit hash of the current IP.
9874 			 */
9875 			WARN_ON_ONCE(event->pending_work != pending_id);
9876 		}
9877 	}
9878 
9879 	READ_ONCE(event->overflow_handler)(event, data, regs);
9880 
9881 	if (*perf_event_fasync(event) && event->pending_kill) {
9882 		event->pending_wakeup = 1;
9883 		irq_work_queue(&event->pending_irq);
9884 	}
9885 
9886 	return ret;
9887 }
9888 
9889 int perf_event_overflow(struct perf_event *event,
9890 			struct perf_sample_data *data,
9891 			struct pt_regs *regs)
9892 {
9893 	return __perf_event_overflow(event, 1, data, regs);
9894 }
9895 
9896 /*
9897  * Generic software event infrastructure
9898  */
9899 
9900 struct swevent_htable {
9901 	struct swevent_hlist		*swevent_hlist;
9902 	struct mutex			hlist_mutex;
9903 	int				hlist_refcount;
9904 };
9905 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9906 
9907 /*
9908  * We directly increment event->count and keep a second value in
9909  * event->hw.period_left to count intervals. This period event
9910  * is kept in the range [-sample_period, 0] so that we can use the
9911  * sign as trigger.
9912  */
9913 
9914 u64 perf_swevent_set_period(struct perf_event *event)
9915 {
9916 	struct hw_perf_event *hwc = &event->hw;
9917 	u64 period = hwc->last_period;
9918 	u64 nr, offset;
9919 	s64 old, val;
9920 
9921 	hwc->last_period = hwc->sample_period;
9922 
9923 	old = local64_read(&hwc->period_left);
9924 	do {
9925 		val = old;
9926 		if (val < 0)
9927 			return 0;
9928 
9929 		nr = div64_u64(period + val, period);
9930 		offset = nr * period;
9931 		val -= offset;
9932 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9933 
9934 	return nr;
9935 }
9936 
9937 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9938 				    struct perf_sample_data *data,
9939 				    struct pt_regs *regs)
9940 {
9941 	struct hw_perf_event *hwc = &event->hw;
9942 	int throttle = 0;
9943 
9944 	if (!overflow)
9945 		overflow = perf_swevent_set_period(event);
9946 
9947 	if (hwc->interrupts == MAX_INTERRUPTS)
9948 		return;
9949 
9950 	for (; overflow; overflow--) {
9951 		if (__perf_event_overflow(event, throttle,
9952 					    data, regs)) {
9953 			/*
9954 			 * We inhibit the overflow from happening when
9955 			 * hwc->interrupts == MAX_INTERRUPTS.
9956 			 */
9957 			break;
9958 		}
9959 		throttle = 1;
9960 	}
9961 }
9962 
9963 static void perf_swevent_event(struct perf_event *event, u64 nr,
9964 			       struct perf_sample_data *data,
9965 			       struct pt_regs *regs)
9966 {
9967 	struct hw_perf_event *hwc = &event->hw;
9968 
9969 	local64_add(nr, &event->count);
9970 
9971 	if (!regs)
9972 		return;
9973 
9974 	if (!is_sampling_event(event))
9975 		return;
9976 
9977 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9978 		data->period = nr;
9979 		return perf_swevent_overflow(event, 1, data, regs);
9980 	} else
9981 		data->period = event->hw.last_period;
9982 
9983 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9984 		return perf_swevent_overflow(event, 1, data, regs);
9985 
9986 	if (local64_add_negative(nr, &hwc->period_left))
9987 		return;
9988 
9989 	perf_swevent_overflow(event, 0, data, regs);
9990 }
9991 
9992 static int perf_exclude_event(struct perf_event *event,
9993 			      struct pt_regs *regs)
9994 {
9995 	if (event->hw.state & PERF_HES_STOPPED)
9996 		return 1;
9997 
9998 	if (regs) {
9999 		if (event->attr.exclude_user && user_mode(regs))
10000 			return 1;
10001 
10002 		if (event->attr.exclude_kernel && !user_mode(regs))
10003 			return 1;
10004 	}
10005 
10006 	return 0;
10007 }
10008 
10009 static int perf_swevent_match(struct perf_event *event,
10010 				enum perf_type_id type,
10011 				u32 event_id,
10012 				struct perf_sample_data *data,
10013 				struct pt_regs *regs)
10014 {
10015 	if (event->attr.type != type)
10016 		return 0;
10017 
10018 	if (event->attr.config != event_id)
10019 		return 0;
10020 
10021 	if (perf_exclude_event(event, regs))
10022 		return 0;
10023 
10024 	return 1;
10025 }
10026 
10027 static inline u64 swevent_hash(u64 type, u32 event_id)
10028 {
10029 	u64 val = event_id | (type << 32);
10030 
10031 	return hash_64(val, SWEVENT_HLIST_BITS);
10032 }
10033 
10034 static inline struct hlist_head *
10035 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10036 {
10037 	u64 hash = swevent_hash(type, event_id);
10038 
10039 	return &hlist->heads[hash];
10040 }
10041 
10042 /* For the read side: events when they trigger */
10043 static inline struct hlist_head *
10044 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10045 {
10046 	struct swevent_hlist *hlist;
10047 
10048 	hlist = rcu_dereference(swhash->swevent_hlist);
10049 	if (!hlist)
10050 		return NULL;
10051 
10052 	return __find_swevent_head(hlist, type, event_id);
10053 }
10054 
10055 /* For the event head insertion and removal in the hlist */
10056 static inline struct hlist_head *
10057 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10058 {
10059 	struct swevent_hlist *hlist;
10060 	u32 event_id = event->attr.config;
10061 	u64 type = event->attr.type;
10062 
10063 	/*
10064 	 * Event scheduling is always serialized against hlist allocation
10065 	 * and release. Which makes the protected version suitable here.
10066 	 * The context lock guarantees that.
10067 	 */
10068 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10069 					  lockdep_is_held(&event->ctx->lock));
10070 	if (!hlist)
10071 		return NULL;
10072 
10073 	return __find_swevent_head(hlist, type, event_id);
10074 }
10075 
10076 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10077 				    u64 nr,
10078 				    struct perf_sample_data *data,
10079 				    struct pt_regs *regs)
10080 {
10081 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10082 	struct perf_event *event;
10083 	struct hlist_head *head;
10084 
10085 	rcu_read_lock();
10086 	head = find_swevent_head_rcu(swhash, type, event_id);
10087 	if (!head)
10088 		goto end;
10089 
10090 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10091 		if (perf_swevent_match(event, type, event_id, data, regs))
10092 			perf_swevent_event(event, nr, data, regs);
10093 	}
10094 end:
10095 	rcu_read_unlock();
10096 }
10097 
10098 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10099 
10100 int perf_swevent_get_recursion_context(void)
10101 {
10102 	return get_recursion_context(current->perf_recursion);
10103 }
10104 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10105 
10106 void perf_swevent_put_recursion_context(int rctx)
10107 {
10108 	put_recursion_context(current->perf_recursion, rctx);
10109 }
10110 
10111 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10112 {
10113 	struct perf_sample_data data;
10114 
10115 	if (WARN_ON_ONCE(!regs))
10116 		return;
10117 
10118 	perf_sample_data_init(&data, addr, 0);
10119 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10120 }
10121 
10122 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10123 {
10124 	int rctx;
10125 
10126 	preempt_disable_notrace();
10127 	rctx = perf_swevent_get_recursion_context();
10128 	if (unlikely(rctx < 0))
10129 		goto fail;
10130 
10131 	___perf_sw_event(event_id, nr, regs, addr);
10132 
10133 	perf_swevent_put_recursion_context(rctx);
10134 fail:
10135 	preempt_enable_notrace();
10136 }
10137 
10138 static void perf_swevent_read(struct perf_event *event)
10139 {
10140 }
10141 
10142 static int perf_swevent_add(struct perf_event *event, int flags)
10143 {
10144 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10145 	struct hw_perf_event *hwc = &event->hw;
10146 	struct hlist_head *head;
10147 
10148 	if (is_sampling_event(event)) {
10149 		hwc->last_period = hwc->sample_period;
10150 		perf_swevent_set_period(event);
10151 	}
10152 
10153 	hwc->state = !(flags & PERF_EF_START);
10154 
10155 	head = find_swevent_head(swhash, event);
10156 	if (WARN_ON_ONCE(!head))
10157 		return -EINVAL;
10158 
10159 	hlist_add_head_rcu(&event->hlist_entry, head);
10160 	perf_event_update_userpage(event);
10161 
10162 	return 0;
10163 }
10164 
10165 static void perf_swevent_del(struct perf_event *event, int flags)
10166 {
10167 	hlist_del_rcu(&event->hlist_entry);
10168 }
10169 
10170 static void perf_swevent_start(struct perf_event *event, int flags)
10171 {
10172 	event->hw.state = 0;
10173 }
10174 
10175 static void perf_swevent_stop(struct perf_event *event, int flags)
10176 {
10177 	event->hw.state = PERF_HES_STOPPED;
10178 }
10179 
10180 /* Deref the hlist from the update side */
10181 static inline struct swevent_hlist *
10182 swevent_hlist_deref(struct swevent_htable *swhash)
10183 {
10184 	return rcu_dereference_protected(swhash->swevent_hlist,
10185 					 lockdep_is_held(&swhash->hlist_mutex));
10186 }
10187 
10188 static void swevent_hlist_release(struct swevent_htable *swhash)
10189 {
10190 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10191 
10192 	if (!hlist)
10193 		return;
10194 
10195 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10196 	kfree_rcu(hlist, rcu_head);
10197 }
10198 
10199 static void swevent_hlist_put_cpu(int cpu)
10200 {
10201 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10202 
10203 	mutex_lock(&swhash->hlist_mutex);
10204 
10205 	if (!--swhash->hlist_refcount)
10206 		swevent_hlist_release(swhash);
10207 
10208 	mutex_unlock(&swhash->hlist_mutex);
10209 }
10210 
10211 static void swevent_hlist_put(void)
10212 {
10213 	int cpu;
10214 
10215 	for_each_possible_cpu(cpu)
10216 		swevent_hlist_put_cpu(cpu);
10217 }
10218 
10219 static int swevent_hlist_get_cpu(int cpu)
10220 {
10221 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10222 	int err = 0;
10223 
10224 	mutex_lock(&swhash->hlist_mutex);
10225 	if (!swevent_hlist_deref(swhash) &&
10226 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10227 		struct swevent_hlist *hlist;
10228 
10229 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10230 		if (!hlist) {
10231 			err = -ENOMEM;
10232 			goto exit;
10233 		}
10234 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10235 	}
10236 	swhash->hlist_refcount++;
10237 exit:
10238 	mutex_unlock(&swhash->hlist_mutex);
10239 
10240 	return err;
10241 }
10242 
10243 static int swevent_hlist_get(void)
10244 {
10245 	int err, cpu, failed_cpu;
10246 
10247 	mutex_lock(&pmus_lock);
10248 	for_each_possible_cpu(cpu) {
10249 		err = swevent_hlist_get_cpu(cpu);
10250 		if (err) {
10251 			failed_cpu = cpu;
10252 			goto fail;
10253 		}
10254 	}
10255 	mutex_unlock(&pmus_lock);
10256 	return 0;
10257 fail:
10258 	for_each_possible_cpu(cpu) {
10259 		if (cpu == failed_cpu)
10260 			break;
10261 		swevent_hlist_put_cpu(cpu);
10262 	}
10263 	mutex_unlock(&pmus_lock);
10264 	return err;
10265 }
10266 
10267 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10268 
10269 static void sw_perf_event_destroy(struct perf_event *event)
10270 {
10271 	u64 event_id = event->attr.config;
10272 
10273 	WARN_ON(event->parent);
10274 
10275 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10276 	swevent_hlist_put();
10277 }
10278 
10279 static struct pmu perf_cpu_clock; /* fwd declaration */
10280 static struct pmu perf_task_clock;
10281 
10282 static int perf_swevent_init(struct perf_event *event)
10283 {
10284 	u64 event_id = event->attr.config;
10285 
10286 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10287 		return -ENOENT;
10288 
10289 	/*
10290 	 * no branch sampling for software events
10291 	 */
10292 	if (has_branch_stack(event))
10293 		return -EOPNOTSUPP;
10294 
10295 	switch (event_id) {
10296 	case PERF_COUNT_SW_CPU_CLOCK:
10297 		event->attr.type = perf_cpu_clock.type;
10298 		return -ENOENT;
10299 	case PERF_COUNT_SW_TASK_CLOCK:
10300 		event->attr.type = perf_task_clock.type;
10301 		return -ENOENT;
10302 
10303 	default:
10304 		break;
10305 	}
10306 
10307 	if (event_id >= PERF_COUNT_SW_MAX)
10308 		return -ENOENT;
10309 
10310 	if (!event->parent) {
10311 		int err;
10312 
10313 		err = swevent_hlist_get();
10314 		if (err)
10315 			return err;
10316 
10317 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10318 		event->destroy = sw_perf_event_destroy;
10319 	}
10320 
10321 	return 0;
10322 }
10323 
10324 static struct pmu perf_swevent = {
10325 	.task_ctx_nr	= perf_sw_context,
10326 
10327 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10328 
10329 	.event_init	= perf_swevent_init,
10330 	.add		= perf_swevent_add,
10331 	.del		= perf_swevent_del,
10332 	.start		= perf_swevent_start,
10333 	.stop		= perf_swevent_stop,
10334 	.read		= perf_swevent_read,
10335 };
10336 
10337 #ifdef CONFIG_EVENT_TRACING
10338 
10339 static void tp_perf_event_destroy(struct perf_event *event)
10340 {
10341 	perf_trace_destroy(event);
10342 }
10343 
10344 static int perf_tp_event_init(struct perf_event *event)
10345 {
10346 	int err;
10347 
10348 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10349 		return -ENOENT;
10350 
10351 	/*
10352 	 * no branch sampling for tracepoint events
10353 	 */
10354 	if (has_branch_stack(event))
10355 		return -EOPNOTSUPP;
10356 
10357 	err = perf_trace_init(event);
10358 	if (err)
10359 		return err;
10360 
10361 	event->destroy = tp_perf_event_destroy;
10362 
10363 	return 0;
10364 }
10365 
10366 static struct pmu perf_tracepoint = {
10367 	.task_ctx_nr	= perf_sw_context,
10368 
10369 	.event_init	= perf_tp_event_init,
10370 	.add		= perf_trace_add,
10371 	.del		= perf_trace_del,
10372 	.start		= perf_swevent_start,
10373 	.stop		= perf_swevent_stop,
10374 	.read		= perf_swevent_read,
10375 };
10376 
10377 static int perf_tp_filter_match(struct perf_event *event,
10378 				struct perf_sample_data *data)
10379 {
10380 	void *record = data->raw->frag.data;
10381 
10382 	/* only top level events have filters set */
10383 	if (event->parent)
10384 		event = event->parent;
10385 
10386 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10387 		return 1;
10388 	return 0;
10389 }
10390 
10391 static int perf_tp_event_match(struct perf_event *event,
10392 				struct perf_sample_data *data,
10393 				struct pt_regs *regs)
10394 {
10395 	if (event->hw.state & PERF_HES_STOPPED)
10396 		return 0;
10397 	/*
10398 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10399 	 */
10400 	if (event->attr.exclude_kernel && !user_mode(regs))
10401 		return 0;
10402 
10403 	if (!perf_tp_filter_match(event, data))
10404 		return 0;
10405 
10406 	return 1;
10407 }
10408 
10409 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10410 			       struct trace_event_call *call, u64 count,
10411 			       struct pt_regs *regs, struct hlist_head *head,
10412 			       struct task_struct *task)
10413 {
10414 	if (bpf_prog_array_valid(call)) {
10415 		*(struct pt_regs **)raw_data = regs;
10416 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10417 			perf_swevent_put_recursion_context(rctx);
10418 			return;
10419 		}
10420 	}
10421 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10422 		      rctx, task);
10423 }
10424 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10425 
10426 static void __perf_tp_event_target_task(u64 count, void *record,
10427 					struct pt_regs *regs,
10428 					struct perf_sample_data *data,
10429 					struct perf_event *event)
10430 {
10431 	struct trace_entry *entry = record;
10432 
10433 	if (event->attr.config != entry->type)
10434 		return;
10435 	/* Cannot deliver synchronous signal to other task. */
10436 	if (event->attr.sigtrap)
10437 		return;
10438 	if (perf_tp_event_match(event, data, regs))
10439 		perf_swevent_event(event, count, data, regs);
10440 }
10441 
10442 static void perf_tp_event_target_task(u64 count, void *record,
10443 				      struct pt_regs *regs,
10444 				      struct perf_sample_data *data,
10445 				      struct perf_event_context *ctx)
10446 {
10447 	unsigned int cpu = smp_processor_id();
10448 	struct pmu *pmu = &perf_tracepoint;
10449 	struct perf_event *event, *sibling;
10450 
10451 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10452 		__perf_tp_event_target_task(count, record, regs, data, event);
10453 		for_each_sibling_event(sibling, event)
10454 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10455 	}
10456 
10457 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10458 		__perf_tp_event_target_task(count, record, regs, data, event);
10459 		for_each_sibling_event(sibling, event)
10460 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10461 	}
10462 }
10463 
10464 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10465 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10466 		   struct task_struct *task)
10467 {
10468 	struct perf_sample_data data;
10469 	struct perf_event *event;
10470 
10471 	struct perf_raw_record raw = {
10472 		.frag = {
10473 			.size = entry_size,
10474 			.data = record,
10475 		},
10476 	};
10477 
10478 	perf_sample_data_init(&data, 0, 0);
10479 	perf_sample_save_raw_data(&data, &raw);
10480 
10481 	perf_trace_buf_update(record, event_type);
10482 
10483 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10484 		if (perf_tp_event_match(event, &data, regs)) {
10485 			perf_swevent_event(event, count, &data, regs);
10486 
10487 			/*
10488 			 * Here use the same on-stack perf_sample_data,
10489 			 * some members in data are event-specific and
10490 			 * need to be re-computed for different sweveents.
10491 			 * Re-initialize data->sample_flags safely to avoid
10492 			 * the problem that next event skips preparing data
10493 			 * because data->sample_flags is set.
10494 			 */
10495 			perf_sample_data_init(&data, 0, 0);
10496 			perf_sample_save_raw_data(&data, &raw);
10497 		}
10498 	}
10499 
10500 	/*
10501 	 * If we got specified a target task, also iterate its context and
10502 	 * deliver this event there too.
10503 	 */
10504 	if (task && task != current) {
10505 		struct perf_event_context *ctx;
10506 
10507 		rcu_read_lock();
10508 		ctx = rcu_dereference(task->perf_event_ctxp);
10509 		if (!ctx)
10510 			goto unlock;
10511 
10512 		raw_spin_lock(&ctx->lock);
10513 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10514 		raw_spin_unlock(&ctx->lock);
10515 unlock:
10516 		rcu_read_unlock();
10517 	}
10518 
10519 	perf_swevent_put_recursion_context(rctx);
10520 }
10521 EXPORT_SYMBOL_GPL(perf_tp_event);
10522 
10523 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10524 /*
10525  * Flags in config, used by dynamic PMU kprobe and uprobe
10526  * The flags should match following PMU_FORMAT_ATTR().
10527  *
10528  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10529  *                               if not set, create kprobe/uprobe
10530  *
10531  * The following values specify a reference counter (or semaphore in the
10532  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10533  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10534  *
10535  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10536  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10537  */
10538 enum perf_probe_config {
10539 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10540 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10541 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10542 };
10543 
10544 PMU_FORMAT_ATTR(retprobe, "config:0");
10545 #endif
10546 
10547 #ifdef CONFIG_KPROBE_EVENTS
10548 static struct attribute *kprobe_attrs[] = {
10549 	&format_attr_retprobe.attr,
10550 	NULL,
10551 };
10552 
10553 static struct attribute_group kprobe_format_group = {
10554 	.name = "format",
10555 	.attrs = kprobe_attrs,
10556 };
10557 
10558 static const struct attribute_group *kprobe_attr_groups[] = {
10559 	&kprobe_format_group,
10560 	NULL,
10561 };
10562 
10563 static int perf_kprobe_event_init(struct perf_event *event);
10564 static struct pmu perf_kprobe = {
10565 	.task_ctx_nr	= perf_sw_context,
10566 	.event_init	= perf_kprobe_event_init,
10567 	.add		= perf_trace_add,
10568 	.del		= perf_trace_del,
10569 	.start		= perf_swevent_start,
10570 	.stop		= perf_swevent_stop,
10571 	.read		= perf_swevent_read,
10572 	.attr_groups	= kprobe_attr_groups,
10573 };
10574 
10575 static int perf_kprobe_event_init(struct perf_event *event)
10576 {
10577 	int err;
10578 	bool is_retprobe;
10579 
10580 	if (event->attr.type != perf_kprobe.type)
10581 		return -ENOENT;
10582 
10583 	if (!perfmon_capable())
10584 		return -EACCES;
10585 
10586 	/*
10587 	 * no branch sampling for probe events
10588 	 */
10589 	if (has_branch_stack(event))
10590 		return -EOPNOTSUPP;
10591 
10592 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10593 	err = perf_kprobe_init(event, is_retprobe);
10594 	if (err)
10595 		return err;
10596 
10597 	event->destroy = perf_kprobe_destroy;
10598 
10599 	return 0;
10600 }
10601 #endif /* CONFIG_KPROBE_EVENTS */
10602 
10603 #ifdef CONFIG_UPROBE_EVENTS
10604 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10605 
10606 static struct attribute *uprobe_attrs[] = {
10607 	&format_attr_retprobe.attr,
10608 	&format_attr_ref_ctr_offset.attr,
10609 	NULL,
10610 };
10611 
10612 static struct attribute_group uprobe_format_group = {
10613 	.name = "format",
10614 	.attrs = uprobe_attrs,
10615 };
10616 
10617 static const struct attribute_group *uprobe_attr_groups[] = {
10618 	&uprobe_format_group,
10619 	NULL,
10620 };
10621 
10622 static int perf_uprobe_event_init(struct perf_event *event);
10623 static struct pmu perf_uprobe = {
10624 	.task_ctx_nr	= perf_sw_context,
10625 	.event_init	= perf_uprobe_event_init,
10626 	.add		= perf_trace_add,
10627 	.del		= perf_trace_del,
10628 	.start		= perf_swevent_start,
10629 	.stop		= perf_swevent_stop,
10630 	.read		= perf_swevent_read,
10631 	.attr_groups	= uprobe_attr_groups,
10632 };
10633 
10634 static int perf_uprobe_event_init(struct perf_event *event)
10635 {
10636 	int err;
10637 	unsigned long ref_ctr_offset;
10638 	bool is_retprobe;
10639 
10640 	if (event->attr.type != perf_uprobe.type)
10641 		return -ENOENT;
10642 
10643 	if (!perfmon_capable())
10644 		return -EACCES;
10645 
10646 	/*
10647 	 * no branch sampling for probe events
10648 	 */
10649 	if (has_branch_stack(event))
10650 		return -EOPNOTSUPP;
10651 
10652 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10653 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10654 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10655 	if (err)
10656 		return err;
10657 
10658 	event->destroy = perf_uprobe_destroy;
10659 
10660 	return 0;
10661 }
10662 #endif /* CONFIG_UPROBE_EVENTS */
10663 
10664 static inline void perf_tp_register(void)
10665 {
10666 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10667 #ifdef CONFIG_KPROBE_EVENTS
10668 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10669 #endif
10670 #ifdef CONFIG_UPROBE_EVENTS
10671 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10672 #endif
10673 }
10674 
10675 static void perf_event_free_filter(struct perf_event *event)
10676 {
10677 	ftrace_profile_free_filter(event);
10678 }
10679 
10680 /*
10681  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10682  * with perf_event_open()
10683  */
10684 static inline bool perf_event_is_tracing(struct perf_event *event)
10685 {
10686 	if (event->pmu == &perf_tracepoint)
10687 		return true;
10688 #ifdef CONFIG_KPROBE_EVENTS
10689 	if (event->pmu == &perf_kprobe)
10690 		return true;
10691 #endif
10692 #ifdef CONFIG_UPROBE_EVENTS
10693 	if (event->pmu == &perf_uprobe)
10694 		return true;
10695 #endif
10696 	return false;
10697 }
10698 
10699 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10700 			    u64 bpf_cookie)
10701 {
10702 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10703 
10704 	if (!perf_event_is_tracing(event))
10705 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10706 
10707 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10708 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10709 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10710 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10711 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10712 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10713 		return -EINVAL;
10714 
10715 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10716 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10717 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10718 		return -EINVAL;
10719 
10720 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10721 		/* only uprobe programs are allowed to be sleepable */
10722 		return -EINVAL;
10723 
10724 	/* Kprobe override only works for kprobes, not uprobes. */
10725 	if (prog->kprobe_override && !is_kprobe)
10726 		return -EINVAL;
10727 
10728 	if (is_tracepoint || is_syscall_tp) {
10729 		int off = trace_event_get_offsets(event->tp_event);
10730 
10731 		if (prog->aux->max_ctx_offset > off)
10732 			return -EACCES;
10733 	}
10734 
10735 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10736 }
10737 
10738 void perf_event_free_bpf_prog(struct perf_event *event)
10739 {
10740 	if (!perf_event_is_tracing(event)) {
10741 		perf_event_free_bpf_handler(event);
10742 		return;
10743 	}
10744 	perf_event_detach_bpf_prog(event);
10745 }
10746 
10747 #else
10748 
10749 static inline void perf_tp_register(void)
10750 {
10751 }
10752 
10753 static void perf_event_free_filter(struct perf_event *event)
10754 {
10755 }
10756 
10757 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10758 			    u64 bpf_cookie)
10759 {
10760 	return -ENOENT;
10761 }
10762 
10763 void perf_event_free_bpf_prog(struct perf_event *event)
10764 {
10765 }
10766 #endif /* CONFIG_EVENT_TRACING */
10767 
10768 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10769 void perf_bp_event(struct perf_event *bp, void *data)
10770 {
10771 	struct perf_sample_data sample;
10772 	struct pt_regs *regs = data;
10773 
10774 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10775 
10776 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10777 		perf_swevent_event(bp, 1, &sample, regs);
10778 }
10779 #endif
10780 
10781 /*
10782  * Allocate a new address filter
10783  */
10784 static struct perf_addr_filter *
10785 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10786 {
10787 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10788 	struct perf_addr_filter *filter;
10789 
10790 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10791 	if (!filter)
10792 		return NULL;
10793 
10794 	INIT_LIST_HEAD(&filter->entry);
10795 	list_add_tail(&filter->entry, filters);
10796 
10797 	return filter;
10798 }
10799 
10800 static void free_filters_list(struct list_head *filters)
10801 {
10802 	struct perf_addr_filter *filter, *iter;
10803 
10804 	list_for_each_entry_safe(filter, iter, filters, entry) {
10805 		path_put(&filter->path);
10806 		list_del(&filter->entry);
10807 		kfree(filter);
10808 	}
10809 }
10810 
10811 /*
10812  * Free existing address filters and optionally install new ones
10813  */
10814 static void perf_addr_filters_splice(struct perf_event *event,
10815 				     struct list_head *head)
10816 {
10817 	unsigned long flags;
10818 	LIST_HEAD(list);
10819 
10820 	if (!has_addr_filter(event))
10821 		return;
10822 
10823 	/* don't bother with children, they don't have their own filters */
10824 	if (event->parent)
10825 		return;
10826 
10827 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10828 
10829 	list_splice_init(&event->addr_filters.list, &list);
10830 	if (head)
10831 		list_splice(head, &event->addr_filters.list);
10832 
10833 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10834 
10835 	free_filters_list(&list);
10836 }
10837 
10838 /*
10839  * Scan through mm's vmas and see if one of them matches the
10840  * @filter; if so, adjust filter's address range.
10841  * Called with mm::mmap_lock down for reading.
10842  */
10843 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10844 				   struct mm_struct *mm,
10845 				   struct perf_addr_filter_range *fr)
10846 {
10847 	struct vm_area_struct *vma;
10848 	VMA_ITERATOR(vmi, mm, 0);
10849 
10850 	for_each_vma(vmi, vma) {
10851 		if (!vma->vm_file)
10852 			continue;
10853 
10854 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10855 			return;
10856 	}
10857 }
10858 
10859 /*
10860  * Update event's address range filters based on the
10861  * task's existing mappings, if any.
10862  */
10863 static void perf_event_addr_filters_apply(struct perf_event *event)
10864 {
10865 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10866 	struct task_struct *task = READ_ONCE(event->ctx->task);
10867 	struct perf_addr_filter *filter;
10868 	struct mm_struct *mm = NULL;
10869 	unsigned int count = 0;
10870 	unsigned long flags;
10871 
10872 	/*
10873 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10874 	 * will stop on the parent's child_mutex that our caller is also holding
10875 	 */
10876 	if (task == TASK_TOMBSTONE)
10877 		return;
10878 
10879 	if (ifh->nr_file_filters) {
10880 		mm = get_task_mm(task);
10881 		if (!mm)
10882 			goto restart;
10883 
10884 		mmap_read_lock(mm);
10885 	}
10886 
10887 	raw_spin_lock_irqsave(&ifh->lock, flags);
10888 	list_for_each_entry(filter, &ifh->list, entry) {
10889 		if (filter->path.dentry) {
10890 			/*
10891 			 * Adjust base offset if the filter is associated to a
10892 			 * binary that needs to be mapped:
10893 			 */
10894 			event->addr_filter_ranges[count].start = 0;
10895 			event->addr_filter_ranges[count].size = 0;
10896 
10897 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10898 		} else {
10899 			event->addr_filter_ranges[count].start = filter->offset;
10900 			event->addr_filter_ranges[count].size  = filter->size;
10901 		}
10902 
10903 		count++;
10904 	}
10905 
10906 	event->addr_filters_gen++;
10907 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10908 
10909 	if (ifh->nr_file_filters) {
10910 		mmap_read_unlock(mm);
10911 
10912 		mmput(mm);
10913 	}
10914 
10915 restart:
10916 	perf_event_stop(event, 1);
10917 }
10918 
10919 /*
10920  * Address range filtering: limiting the data to certain
10921  * instruction address ranges. Filters are ioctl()ed to us from
10922  * userspace as ascii strings.
10923  *
10924  * Filter string format:
10925  *
10926  * ACTION RANGE_SPEC
10927  * where ACTION is one of the
10928  *  * "filter": limit the trace to this region
10929  *  * "start": start tracing from this address
10930  *  * "stop": stop tracing at this address/region;
10931  * RANGE_SPEC is
10932  *  * for kernel addresses: <start address>[/<size>]
10933  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10934  *
10935  * if <size> is not specified or is zero, the range is treated as a single
10936  * address; not valid for ACTION=="filter".
10937  */
10938 enum {
10939 	IF_ACT_NONE = -1,
10940 	IF_ACT_FILTER,
10941 	IF_ACT_START,
10942 	IF_ACT_STOP,
10943 	IF_SRC_FILE,
10944 	IF_SRC_KERNEL,
10945 	IF_SRC_FILEADDR,
10946 	IF_SRC_KERNELADDR,
10947 };
10948 
10949 enum {
10950 	IF_STATE_ACTION = 0,
10951 	IF_STATE_SOURCE,
10952 	IF_STATE_END,
10953 };
10954 
10955 static const match_table_t if_tokens = {
10956 	{ IF_ACT_FILTER,	"filter" },
10957 	{ IF_ACT_START,		"start" },
10958 	{ IF_ACT_STOP,		"stop" },
10959 	{ IF_SRC_FILE,		"%u/%u@%s" },
10960 	{ IF_SRC_KERNEL,	"%u/%u" },
10961 	{ IF_SRC_FILEADDR,	"%u@%s" },
10962 	{ IF_SRC_KERNELADDR,	"%u" },
10963 	{ IF_ACT_NONE,		NULL },
10964 };
10965 
10966 /*
10967  * Address filter string parser
10968  */
10969 static int
10970 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10971 			     struct list_head *filters)
10972 {
10973 	struct perf_addr_filter *filter = NULL;
10974 	char *start, *orig, *filename = NULL;
10975 	substring_t args[MAX_OPT_ARGS];
10976 	int state = IF_STATE_ACTION, token;
10977 	unsigned int kernel = 0;
10978 	int ret = -EINVAL;
10979 
10980 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10981 	if (!fstr)
10982 		return -ENOMEM;
10983 
10984 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10985 		static const enum perf_addr_filter_action_t actions[] = {
10986 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10987 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10988 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10989 		};
10990 		ret = -EINVAL;
10991 
10992 		if (!*start)
10993 			continue;
10994 
10995 		/* filter definition begins */
10996 		if (state == IF_STATE_ACTION) {
10997 			filter = perf_addr_filter_new(event, filters);
10998 			if (!filter)
10999 				goto fail;
11000 		}
11001 
11002 		token = match_token(start, if_tokens, args);
11003 		switch (token) {
11004 		case IF_ACT_FILTER:
11005 		case IF_ACT_START:
11006 		case IF_ACT_STOP:
11007 			if (state != IF_STATE_ACTION)
11008 				goto fail;
11009 
11010 			filter->action = actions[token];
11011 			state = IF_STATE_SOURCE;
11012 			break;
11013 
11014 		case IF_SRC_KERNELADDR:
11015 		case IF_SRC_KERNEL:
11016 			kernel = 1;
11017 			fallthrough;
11018 
11019 		case IF_SRC_FILEADDR:
11020 		case IF_SRC_FILE:
11021 			if (state != IF_STATE_SOURCE)
11022 				goto fail;
11023 
11024 			*args[0].to = 0;
11025 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11026 			if (ret)
11027 				goto fail;
11028 
11029 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11030 				*args[1].to = 0;
11031 				ret = kstrtoul(args[1].from, 0, &filter->size);
11032 				if (ret)
11033 					goto fail;
11034 			}
11035 
11036 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11037 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11038 
11039 				kfree(filename);
11040 				filename = match_strdup(&args[fpos]);
11041 				if (!filename) {
11042 					ret = -ENOMEM;
11043 					goto fail;
11044 				}
11045 			}
11046 
11047 			state = IF_STATE_END;
11048 			break;
11049 
11050 		default:
11051 			goto fail;
11052 		}
11053 
11054 		/*
11055 		 * Filter definition is fully parsed, validate and install it.
11056 		 * Make sure that it doesn't contradict itself or the event's
11057 		 * attribute.
11058 		 */
11059 		if (state == IF_STATE_END) {
11060 			ret = -EINVAL;
11061 
11062 			/*
11063 			 * ACTION "filter" must have a non-zero length region
11064 			 * specified.
11065 			 */
11066 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11067 			    !filter->size)
11068 				goto fail;
11069 
11070 			if (!kernel) {
11071 				if (!filename)
11072 					goto fail;
11073 
11074 				/*
11075 				 * For now, we only support file-based filters
11076 				 * in per-task events; doing so for CPU-wide
11077 				 * events requires additional context switching
11078 				 * trickery, since same object code will be
11079 				 * mapped at different virtual addresses in
11080 				 * different processes.
11081 				 */
11082 				ret = -EOPNOTSUPP;
11083 				if (!event->ctx->task)
11084 					goto fail;
11085 
11086 				/* look up the path and grab its inode */
11087 				ret = kern_path(filename, LOOKUP_FOLLOW,
11088 						&filter->path);
11089 				if (ret)
11090 					goto fail;
11091 
11092 				ret = -EINVAL;
11093 				if (!filter->path.dentry ||
11094 				    !S_ISREG(d_inode(filter->path.dentry)
11095 					     ->i_mode))
11096 					goto fail;
11097 
11098 				event->addr_filters.nr_file_filters++;
11099 			}
11100 
11101 			/* ready to consume more filters */
11102 			kfree(filename);
11103 			filename = NULL;
11104 			state = IF_STATE_ACTION;
11105 			filter = NULL;
11106 			kernel = 0;
11107 		}
11108 	}
11109 
11110 	if (state != IF_STATE_ACTION)
11111 		goto fail;
11112 
11113 	kfree(filename);
11114 	kfree(orig);
11115 
11116 	return 0;
11117 
11118 fail:
11119 	kfree(filename);
11120 	free_filters_list(filters);
11121 	kfree(orig);
11122 
11123 	return ret;
11124 }
11125 
11126 static int
11127 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11128 {
11129 	LIST_HEAD(filters);
11130 	int ret;
11131 
11132 	/*
11133 	 * Since this is called in perf_ioctl() path, we're already holding
11134 	 * ctx::mutex.
11135 	 */
11136 	lockdep_assert_held(&event->ctx->mutex);
11137 
11138 	if (WARN_ON_ONCE(event->parent))
11139 		return -EINVAL;
11140 
11141 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11142 	if (ret)
11143 		goto fail_clear_files;
11144 
11145 	ret = event->pmu->addr_filters_validate(&filters);
11146 	if (ret)
11147 		goto fail_free_filters;
11148 
11149 	/* remove existing filters, if any */
11150 	perf_addr_filters_splice(event, &filters);
11151 
11152 	/* install new filters */
11153 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11154 
11155 	return ret;
11156 
11157 fail_free_filters:
11158 	free_filters_list(&filters);
11159 
11160 fail_clear_files:
11161 	event->addr_filters.nr_file_filters = 0;
11162 
11163 	return ret;
11164 }
11165 
11166 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11167 {
11168 	int ret = -EINVAL;
11169 	char *filter_str;
11170 
11171 	filter_str = strndup_user(arg, PAGE_SIZE);
11172 	if (IS_ERR(filter_str))
11173 		return PTR_ERR(filter_str);
11174 
11175 #ifdef CONFIG_EVENT_TRACING
11176 	if (perf_event_is_tracing(event)) {
11177 		struct perf_event_context *ctx = event->ctx;
11178 
11179 		/*
11180 		 * Beware, here be dragons!!
11181 		 *
11182 		 * the tracepoint muck will deadlock against ctx->mutex, but
11183 		 * the tracepoint stuff does not actually need it. So
11184 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11185 		 * already have a reference on ctx.
11186 		 *
11187 		 * This can result in event getting moved to a different ctx,
11188 		 * but that does not affect the tracepoint state.
11189 		 */
11190 		mutex_unlock(&ctx->mutex);
11191 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11192 		mutex_lock(&ctx->mutex);
11193 	} else
11194 #endif
11195 	if (has_addr_filter(event))
11196 		ret = perf_event_set_addr_filter(event, filter_str);
11197 
11198 	kfree(filter_str);
11199 	return ret;
11200 }
11201 
11202 /*
11203  * hrtimer based swevent callback
11204  */
11205 
11206 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11207 {
11208 	enum hrtimer_restart ret = HRTIMER_RESTART;
11209 	struct perf_sample_data data;
11210 	struct pt_regs *regs;
11211 	struct perf_event *event;
11212 	u64 period;
11213 
11214 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11215 
11216 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11217 		return HRTIMER_NORESTART;
11218 
11219 	event->pmu->read(event);
11220 
11221 	perf_sample_data_init(&data, 0, event->hw.last_period);
11222 	regs = get_irq_regs();
11223 
11224 	if (regs && !perf_exclude_event(event, regs)) {
11225 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11226 			if (__perf_event_overflow(event, 1, &data, regs))
11227 				ret = HRTIMER_NORESTART;
11228 	}
11229 
11230 	period = max_t(u64, 10000, event->hw.sample_period);
11231 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11232 
11233 	return ret;
11234 }
11235 
11236 static void perf_swevent_start_hrtimer(struct perf_event *event)
11237 {
11238 	struct hw_perf_event *hwc = &event->hw;
11239 	s64 period;
11240 
11241 	if (!is_sampling_event(event))
11242 		return;
11243 
11244 	period = local64_read(&hwc->period_left);
11245 	if (period) {
11246 		if (period < 0)
11247 			period = 10000;
11248 
11249 		local64_set(&hwc->period_left, 0);
11250 	} else {
11251 		period = max_t(u64, 10000, hwc->sample_period);
11252 	}
11253 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11254 		      HRTIMER_MODE_REL_PINNED_HARD);
11255 }
11256 
11257 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11258 {
11259 	struct hw_perf_event *hwc = &event->hw;
11260 
11261 	if (is_sampling_event(event)) {
11262 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11263 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11264 
11265 		hrtimer_cancel(&hwc->hrtimer);
11266 	}
11267 }
11268 
11269 static void perf_swevent_init_hrtimer(struct perf_event *event)
11270 {
11271 	struct hw_perf_event *hwc = &event->hw;
11272 
11273 	if (!is_sampling_event(event))
11274 		return;
11275 
11276 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11277 	hwc->hrtimer.function = perf_swevent_hrtimer;
11278 
11279 	/*
11280 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11281 	 * mapping and avoid the whole period adjust feedback stuff.
11282 	 */
11283 	if (event->attr.freq) {
11284 		long freq = event->attr.sample_freq;
11285 
11286 		event->attr.sample_period = NSEC_PER_SEC / freq;
11287 		hwc->sample_period = event->attr.sample_period;
11288 		local64_set(&hwc->period_left, hwc->sample_period);
11289 		hwc->last_period = hwc->sample_period;
11290 		event->attr.freq = 0;
11291 	}
11292 }
11293 
11294 /*
11295  * Software event: cpu wall time clock
11296  */
11297 
11298 static void cpu_clock_event_update(struct perf_event *event)
11299 {
11300 	s64 prev;
11301 	u64 now;
11302 
11303 	now = local_clock();
11304 	prev = local64_xchg(&event->hw.prev_count, now);
11305 	local64_add(now - prev, &event->count);
11306 }
11307 
11308 static void cpu_clock_event_start(struct perf_event *event, int flags)
11309 {
11310 	local64_set(&event->hw.prev_count, local_clock());
11311 	perf_swevent_start_hrtimer(event);
11312 }
11313 
11314 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11315 {
11316 	perf_swevent_cancel_hrtimer(event);
11317 	cpu_clock_event_update(event);
11318 }
11319 
11320 static int cpu_clock_event_add(struct perf_event *event, int flags)
11321 {
11322 	if (flags & PERF_EF_START)
11323 		cpu_clock_event_start(event, flags);
11324 	perf_event_update_userpage(event);
11325 
11326 	return 0;
11327 }
11328 
11329 static void cpu_clock_event_del(struct perf_event *event, int flags)
11330 {
11331 	cpu_clock_event_stop(event, flags);
11332 }
11333 
11334 static void cpu_clock_event_read(struct perf_event *event)
11335 {
11336 	cpu_clock_event_update(event);
11337 }
11338 
11339 static int cpu_clock_event_init(struct perf_event *event)
11340 {
11341 	if (event->attr.type != perf_cpu_clock.type)
11342 		return -ENOENT;
11343 
11344 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11345 		return -ENOENT;
11346 
11347 	/*
11348 	 * no branch sampling for software events
11349 	 */
11350 	if (has_branch_stack(event))
11351 		return -EOPNOTSUPP;
11352 
11353 	perf_swevent_init_hrtimer(event);
11354 
11355 	return 0;
11356 }
11357 
11358 static struct pmu perf_cpu_clock = {
11359 	.task_ctx_nr	= perf_sw_context,
11360 
11361 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11362 	.dev		= PMU_NULL_DEV,
11363 
11364 	.event_init	= cpu_clock_event_init,
11365 	.add		= cpu_clock_event_add,
11366 	.del		= cpu_clock_event_del,
11367 	.start		= cpu_clock_event_start,
11368 	.stop		= cpu_clock_event_stop,
11369 	.read		= cpu_clock_event_read,
11370 };
11371 
11372 /*
11373  * Software event: task time clock
11374  */
11375 
11376 static void task_clock_event_update(struct perf_event *event, u64 now)
11377 {
11378 	u64 prev;
11379 	s64 delta;
11380 
11381 	prev = local64_xchg(&event->hw.prev_count, now);
11382 	delta = now - prev;
11383 	local64_add(delta, &event->count);
11384 }
11385 
11386 static void task_clock_event_start(struct perf_event *event, int flags)
11387 {
11388 	local64_set(&event->hw.prev_count, event->ctx->time);
11389 	perf_swevent_start_hrtimer(event);
11390 }
11391 
11392 static void task_clock_event_stop(struct perf_event *event, int flags)
11393 {
11394 	perf_swevent_cancel_hrtimer(event);
11395 	task_clock_event_update(event, event->ctx->time);
11396 }
11397 
11398 static int task_clock_event_add(struct perf_event *event, int flags)
11399 {
11400 	if (flags & PERF_EF_START)
11401 		task_clock_event_start(event, flags);
11402 	perf_event_update_userpage(event);
11403 
11404 	return 0;
11405 }
11406 
11407 static void task_clock_event_del(struct perf_event *event, int flags)
11408 {
11409 	task_clock_event_stop(event, PERF_EF_UPDATE);
11410 }
11411 
11412 static void task_clock_event_read(struct perf_event *event)
11413 {
11414 	u64 now = perf_clock();
11415 	u64 delta = now - event->ctx->timestamp;
11416 	u64 time = event->ctx->time + delta;
11417 
11418 	task_clock_event_update(event, time);
11419 }
11420 
11421 static int task_clock_event_init(struct perf_event *event)
11422 {
11423 	if (event->attr.type != perf_task_clock.type)
11424 		return -ENOENT;
11425 
11426 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11427 		return -ENOENT;
11428 
11429 	/*
11430 	 * no branch sampling for software events
11431 	 */
11432 	if (has_branch_stack(event))
11433 		return -EOPNOTSUPP;
11434 
11435 	perf_swevent_init_hrtimer(event);
11436 
11437 	return 0;
11438 }
11439 
11440 static struct pmu perf_task_clock = {
11441 	.task_ctx_nr	= perf_sw_context,
11442 
11443 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11444 	.dev		= PMU_NULL_DEV,
11445 
11446 	.event_init	= task_clock_event_init,
11447 	.add		= task_clock_event_add,
11448 	.del		= task_clock_event_del,
11449 	.start		= task_clock_event_start,
11450 	.stop		= task_clock_event_stop,
11451 	.read		= task_clock_event_read,
11452 };
11453 
11454 static void perf_pmu_nop_void(struct pmu *pmu)
11455 {
11456 }
11457 
11458 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11459 {
11460 }
11461 
11462 static int perf_pmu_nop_int(struct pmu *pmu)
11463 {
11464 	return 0;
11465 }
11466 
11467 static int perf_event_nop_int(struct perf_event *event, u64 value)
11468 {
11469 	return 0;
11470 }
11471 
11472 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11473 
11474 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11475 {
11476 	__this_cpu_write(nop_txn_flags, flags);
11477 
11478 	if (flags & ~PERF_PMU_TXN_ADD)
11479 		return;
11480 
11481 	perf_pmu_disable(pmu);
11482 }
11483 
11484 static int perf_pmu_commit_txn(struct pmu *pmu)
11485 {
11486 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11487 
11488 	__this_cpu_write(nop_txn_flags, 0);
11489 
11490 	if (flags & ~PERF_PMU_TXN_ADD)
11491 		return 0;
11492 
11493 	perf_pmu_enable(pmu);
11494 	return 0;
11495 }
11496 
11497 static void perf_pmu_cancel_txn(struct pmu *pmu)
11498 {
11499 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11500 
11501 	__this_cpu_write(nop_txn_flags, 0);
11502 
11503 	if (flags & ~PERF_PMU_TXN_ADD)
11504 		return;
11505 
11506 	perf_pmu_enable(pmu);
11507 }
11508 
11509 static int perf_event_idx_default(struct perf_event *event)
11510 {
11511 	return 0;
11512 }
11513 
11514 static void free_pmu_context(struct pmu *pmu)
11515 {
11516 	free_percpu(pmu->cpu_pmu_context);
11517 }
11518 
11519 /*
11520  * Let userspace know that this PMU supports address range filtering:
11521  */
11522 static ssize_t nr_addr_filters_show(struct device *dev,
11523 				    struct device_attribute *attr,
11524 				    char *page)
11525 {
11526 	struct pmu *pmu = dev_get_drvdata(dev);
11527 
11528 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11529 }
11530 DEVICE_ATTR_RO(nr_addr_filters);
11531 
11532 static struct idr pmu_idr;
11533 
11534 static ssize_t
11535 type_show(struct device *dev, struct device_attribute *attr, char *page)
11536 {
11537 	struct pmu *pmu = dev_get_drvdata(dev);
11538 
11539 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11540 }
11541 static DEVICE_ATTR_RO(type);
11542 
11543 static ssize_t
11544 perf_event_mux_interval_ms_show(struct device *dev,
11545 				struct device_attribute *attr,
11546 				char *page)
11547 {
11548 	struct pmu *pmu = dev_get_drvdata(dev);
11549 
11550 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11551 }
11552 
11553 static DEFINE_MUTEX(mux_interval_mutex);
11554 
11555 static ssize_t
11556 perf_event_mux_interval_ms_store(struct device *dev,
11557 				 struct device_attribute *attr,
11558 				 const char *buf, size_t count)
11559 {
11560 	struct pmu *pmu = dev_get_drvdata(dev);
11561 	int timer, cpu, ret;
11562 
11563 	ret = kstrtoint(buf, 0, &timer);
11564 	if (ret)
11565 		return ret;
11566 
11567 	if (timer < 1)
11568 		return -EINVAL;
11569 
11570 	/* same value, noting to do */
11571 	if (timer == pmu->hrtimer_interval_ms)
11572 		return count;
11573 
11574 	mutex_lock(&mux_interval_mutex);
11575 	pmu->hrtimer_interval_ms = timer;
11576 
11577 	/* update all cpuctx for this PMU */
11578 	cpus_read_lock();
11579 	for_each_online_cpu(cpu) {
11580 		struct perf_cpu_pmu_context *cpc;
11581 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11582 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11583 
11584 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11585 	}
11586 	cpus_read_unlock();
11587 	mutex_unlock(&mux_interval_mutex);
11588 
11589 	return count;
11590 }
11591 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11592 
11593 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11594 {
11595 	switch (scope) {
11596 	case PERF_PMU_SCOPE_CORE:
11597 		return topology_sibling_cpumask(cpu);
11598 	case PERF_PMU_SCOPE_DIE:
11599 		return topology_die_cpumask(cpu);
11600 	case PERF_PMU_SCOPE_CLUSTER:
11601 		return topology_cluster_cpumask(cpu);
11602 	case PERF_PMU_SCOPE_PKG:
11603 		return topology_core_cpumask(cpu);
11604 	case PERF_PMU_SCOPE_SYS_WIDE:
11605 		return cpu_online_mask;
11606 	}
11607 
11608 	return NULL;
11609 }
11610 
11611 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11612 {
11613 	switch (scope) {
11614 	case PERF_PMU_SCOPE_CORE:
11615 		return perf_online_core_mask;
11616 	case PERF_PMU_SCOPE_DIE:
11617 		return perf_online_die_mask;
11618 	case PERF_PMU_SCOPE_CLUSTER:
11619 		return perf_online_cluster_mask;
11620 	case PERF_PMU_SCOPE_PKG:
11621 		return perf_online_pkg_mask;
11622 	case PERF_PMU_SCOPE_SYS_WIDE:
11623 		return perf_online_sys_mask;
11624 	}
11625 
11626 	return NULL;
11627 }
11628 
11629 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11630 			    char *buf)
11631 {
11632 	struct pmu *pmu = dev_get_drvdata(dev);
11633 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11634 
11635 	if (mask)
11636 		return cpumap_print_to_pagebuf(true, buf, mask);
11637 	return 0;
11638 }
11639 
11640 static DEVICE_ATTR_RO(cpumask);
11641 
11642 static struct attribute *pmu_dev_attrs[] = {
11643 	&dev_attr_type.attr,
11644 	&dev_attr_perf_event_mux_interval_ms.attr,
11645 	&dev_attr_nr_addr_filters.attr,
11646 	&dev_attr_cpumask.attr,
11647 	NULL,
11648 };
11649 
11650 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11651 {
11652 	struct device *dev = kobj_to_dev(kobj);
11653 	struct pmu *pmu = dev_get_drvdata(dev);
11654 
11655 	if (n == 2 && !pmu->nr_addr_filters)
11656 		return 0;
11657 
11658 	/* cpumask */
11659 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11660 		return 0;
11661 
11662 	return a->mode;
11663 }
11664 
11665 static struct attribute_group pmu_dev_attr_group = {
11666 	.is_visible = pmu_dev_is_visible,
11667 	.attrs = pmu_dev_attrs,
11668 };
11669 
11670 static const struct attribute_group *pmu_dev_groups[] = {
11671 	&pmu_dev_attr_group,
11672 	NULL,
11673 };
11674 
11675 static int pmu_bus_running;
11676 static struct bus_type pmu_bus = {
11677 	.name		= "event_source",
11678 	.dev_groups	= pmu_dev_groups,
11679 };
11680 
11681 static void pmu_dev_release(struct device *dev)
11682 {
11683 	kfree(dev);
11684 }
11685 
11686 static int pmu_dev_alloc(struct pmu *pmu)
11687 {
11688 	int ret = -ENOMEM;
11689 
11690 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11691 	if (!pmu->dev)
11692 		goto out;
11693 
11694 	pmu->dev->groups = pmu->attr_groups;
11695 	device_initialize(pmu->dev);
11696 
11697 	dev_set_drvdata(pmu->dev, pmu);
11698 	pmu->dev->bus = &pmu_bus;
11699 	pmu->dev->parent = pmu->parent;
11700 	pmu->dev->release = pmu_dev_release;
11701 
11702 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11703 	if (ret)
11704 		goto free_dev;
11705 
11706 	ret = device_add(pmu->dev);
11707 	if (ret)
11708 		goto free_dev;
11709 
11710 	if (pmu->attr_update) {
11711 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11712 		if (ret)
11713 			goto del_dev;
11714 	}
11715 
11716 out:
11717 	return ret;
11718 
11719 del_dev:
11720 	device_del(pmu->dev);
11721 
11722 free_dev:
11723 	put_device(pmu->dev);
11724 	goto out;
11725 }
11726 
11727 static struct lock_class_key cpuctx_mutex;
11728 static struct lock_class_key cpuctx_lock;
11729 
11730 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11731 {
11732 	int cpu, ret, max = PERF_TYPE_MAX;
11733 
11734 	mutex_lock(&pmus_lock);
11735 	ret = -ENOMEM;
11736 	pmu->pmu_disable_count = alloc_percpu(int);
11737 	if (!pmu->pmu_disable_count)
11738 		goto unlock;
11739 
11740 	pmu->type = -1;
11741 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11742 		ret = -EINVAL;
11743 		goto free_pdc;
11744 	}
11745 
11746 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11747 		ret = -EINVAL;
11748 		goto free_pdc;
11749 	}
11750 
11751 	pmu->name = name;
11752 
11753 	if (type >= 0)
11754 		max = type;
11755 
11756 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11757 	if (ret < 0)
11758 		goto free_pdc;
11759 
11760 	WARN_ON(type >= 0 && ret != type);
11761 
11762 	type = ret;
11763 	pmu->type = type;
11764 
11765 	if (pmu_bus_running && !pmu->dev) {
11766 		ret = pmu_dev_alloc(pmu);
11767 		if (ret)
11768 			goto free_idr;
11769 	}
11770 
11771 	ret = -ENOMEM;
11772 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11773 	if (!pmu->cpu_pmu_context)
11774 		goto free_dev;
11775 
11776 	for_each_possible_cpu(cpu) {
11777 		struct perf_cpu_pmu_context *cpc;
11778 
11779 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11780 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11781 		__perf_mux_hrtimer_init(cpc, cpu);
11782 	}
11783 
11784 	if (!pmu->start_txn) {
11785 		if (pmu->pmu_enable) {
11786 			/*
11787 			 * If we have pmu_enable/pmu_disable calls, install
11788 			 * transaction stubs that use that to try and batch
11789 			 * hardware accesses.
11790 			 */
11791 			pmu->start_txn  = perf_pmu_start_txn;
11792 			pmu->commit_txn = perf_pmu_commit_txn;
11793 			pmu->cancel_txn = perf_pmu_cancel_txn;
11794 		} else {
11795 			pmu->start_txn  = perf_pmu_nop_txn;
11796 			pmu->commit_txn = perf_pmu_nop_int;
11797 			pmu->cancel_txn = perf_pmu_nop_void;
11798 		}
11799 	}
11800 
11801 	if (!pmu->pmu_enable) {
11802 		pmu->pmu_enable  = perf_pmu_nop_void;
11803 		pmu->pmu_disable = perf_pmu_nop_void;
11804 	}
11805 
11806 	if (!pmu->check_period)
11807 		pmu->check_period = perf_event_nop_int;
11808 
11809 	if (!pmu->event_idx)
11810 		pmu->event_idx = perf_event_idx_default;
11811 
11812 	list_add_rcu(&pmu->entry, &pmus);
11813 	atomic_set(&pmu->exclusive_cnt, 0);
11814 	ret = 0;
11815 unlock:
11816 	mutex_unlock(&pmus_lock);
11817 
11818 	return ret;
11819 
11820 free_dev:
11821 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11822 		device_del(pmu->dev);
11823 		put_device(pmu->dev);
11824 	}
11825 
11826 free_idr:
11827 	idr_remove(&pmu_idr, pmu->type);
11828 
11829 free_pdc:
11830 	free_percpu(pmu->pmu_disable_count);
11831 	goto unlock;
11832 }
11833 EXPORT_SYMBOL_GPL(perf_pmu_register);
11834 
11835 void perf_pmu_unregister(struct pmu *pmu)
11836 {
11837 	mutex_lock(&pmus_lock);
11838 	list_del_rcu(&pmu->entry);
11839 
11840 	/*
11841 	 * We dereference the pmu list under both SRCU and regular RCU, so
11842 	 * synchronize against both of those.
11843 	 */
11844 	synchronize_srcu(&pmus_srcu);
11845 	synchronize_rcu();
11846 
11847 	free_percpu(pmu->pmu_disable_count);
11848 	idr_remove(&pmu_idr, pmu->type);
11849 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11850 		if (pmu->nr_addr_filters)
11851 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11852 		device_del(pmu->dev);
11853 		put_device(pmu->dev);
11854 	}
11855 	free_pmu_context(pmu);
11856 	mutex_unlock(&pmus_lock);
11857 }
11858 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11859 
11860 static inline bool has_extended_regs(struct perf_event *event)
11861 {
11862 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11863 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11864 }
11865 
11866 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11867 {
11868 	struct perf_event_context *ctx = NULL;
11869 	int ret;
11870 
11871 	if (!try_module_get(pmu->module))
11872 		return -ENODEV;
11873 
11874 	/*
11875 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11876 	 * for example, validate if the group fits on the PMU. Therefore,
11877 	 * if this is a sibling event, acquire the ctx->mutex to protect
11878 	 * the sibling_list.
11879 	 */
11880 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11881 		/*
11882 		 * This ctx->mutex can nest when we're called through
11883 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11884 		 */
11885 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11886 						 SINGLE_DEPTH_NESTING);
11887 		BUG_ON(!ctx);
11888 	}
11889 
11890 	event->pmu = pmu;
11891 	ret = pmu->event_init(event);
11892 
11893 	if (ctx)
11894 		perf_event_ctx_unlock(event->group_leader, ctx);
11895 
11896 	if (!ret) {
11897 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11898 		    has_extended_regs(event))
11899 			ret = -EOPNOTSUPP;
11900 
11901 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11902 		    event_has_any_exclude_flag(event))
11903 			ret = -EINVAL;
11904 
11905 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11906 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11907 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11908 			int cpu;
11909 
11910 			if (pmu_cpumask && cpumask) {
11911 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
11912 				if (cpu >= nr_cpu_ids)
11913 					ret = -ENODEV;
11914 				else
11915 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11916 			} else {
11917 				ret = -ENODEV;
11918 			}
11919 		}
11920 
11921 		if (ret && event->destroy)
11922 			event->destroy(event);
11923 	}
11924 
11925 	if (ret)
11926 		module_put(pmu->module);
11927 
11928 	return ret;
11929 }
11930 
11931 static struct pmu *perf_init_event(struct perf_event *event)
11932 {
11933 	bool extended_type = false;
11934 	int idx, type, ret;
11935 	struct pmu *pmu;
11936 
11937 	idx = srcu_read_lock(&pmus_srcu);
11938 
11939 	/*
11940 	 * Save original type before calling pmu->event_init() since certain
11941 	 * pmus overwrites event->attr.type to forward event to another pmu.
11942 	 */
11943 	event->orig_type = event->attr.type;
11944 
11945 	/* Try parent's PMU first: */
11946 	if (event->parent && event->parent->pmu) {
11947 		pmu = event->parent->pmu;
11948 		ret = perf_try_init_event(pmu, event);
11949 		if (!ret)
11950 			goto unlock;
11951 	}
11952 
11953 	/*
11954 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11955 	 * are often aliases for PERF_TYPE_RAW.
11956 	 */
11957 	type = event->attr.type;
11958 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11959 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11960 		if (!type) {
11961 			type = PERF_TYPE_RAW;
11962 		} else {
11963 			extended_type = true;
11964 			event->attr.config &= PERF_HW_EVENT_MASK;
11965 		}
11966 	}
11967 
11968 again:
11969 	rcu_read_lock();
11970 	pmu = idr_find(&pmu_idr, type);
11971 	rcu_read_unlock();
11972 	if (pmu) {
11973 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11974 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11975 			goto fail;
11976 
11977 		ret = perf_try_init_event(pmu, event);
11978 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11979 			type = event->attr.type;
11980 			goto again;
11981 		}
11982 
11983 		if (ret)
11984 			pmu = ERR_PTR(ret);
11985 
11986 		goto unlock;
11987 	}
11988 
11989 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11990 		ret = perf_try_init_event(pmu, event);
11991 		if (!ret)
11992 			goto unlock;
11993 
11994 		if (ret != -ENOENT) {
11995 			pmu = ERR_PTR(ret);
11996 			goto unlock;
11997 		}
11998 	}
11999 fail:
12000 	pmu = ERR_PTR(-ENOENT);
12001 unlock:
12002 	srcu_read_unlock(&pmus_srcu, idx);
12003 
12004 	return pmu;
12005 }
12006 
12007 static void attach_sb_event(struct perf_event *event)
12008 {
12009 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12010 
12011 	raw_spin_lock(&pel->lock);
12012 	list_add_rcu(&event->sb_list, &pel->list);
12013 	raw_spin_unlock(&pel->lock);
12014 }
12015 
12016 /*
12017  * We keep a list of all !task (and therefore per-cpu) events
12018  * that need to receive side-band records.
12019  *
12020  * This avoids having to scan all the various PMU per-cpu contexts
12021  * looking for them.
12022  */
12023 static void account_pmu_sb_event(struct perf_event *event)
12024 {
12025 	if (is_sb_event(event))
12026 		attach_sb_event(event);
12027 }
12028 
12029 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12030 static void account_freq_event_nohz(void)
12031 {
12032 #ifdef CONFIG_NO_HZ_FULL
12033 	/* Lock so we don't race with concurrent unaccount */
12034 	spin_lock(&nr_freq_lock);
12035 	if (atomic_inc_return(&nr_freq_events) == 1)
12036 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12037 	spin_unlock(&nr_freq_lock);
12038 #endif
12039 }
12040 
12041 static void account_freq_event(void)
12042 {
12043 	if (tick_nohz_full_enabled())
12044 		account_freq_event_nohz();
12045 	else
12046 		atomic_inc(&nr_freq_events);
12047 }
12048 
12049 
12050 static void account_event(struct perf_event *event)
12051 {
12052 	bool inc = false;
12053 
12054 	if (event->parent)
12055 		return;
12056 
12057 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12058 		inc = true;
12059 	if (event->attr.mmap || event->attr.mmap_data)
12060 		atomic_inc(&nr_mmap_events);
12061 	if (event->attr.build_id)
12062 		atomic_inc(&nr_build_id_events);
12063 	if (event->attr.comm)
12064 		atomic_inc(&nr_comm_events);
12065 	if (event->attr.namespaces)
12066 		atomic_inc(&nr_namespaces_events);
12067 	if (event->attr.cgroup)
12068 		atomic_inc(&nr_cgroup_events);
12069 	if (event->attr.task)
12070 		atomic_inc(&nr_task_events);
12071 	if (event->attr.freq)
12072 		account_freq_event();
12073 	if (event->attr.context_switch) {
12074 		atomic_inc(&nr_switch_events);
12075 		inc = true;
12076 	}
12077 	if (has_branch_stack(event))
12078 		inc = true;
12079 	if (is_cgroup_event(event))
12080 		inc = true;
12081 	if (event->attr.ksymbol)
12082 		atomic_inc(&nr_ksymbol_events);
12083 	if (event->attr.bpf_event)
12084 		atomic_inc(&nr_bpf_events);
12085 	if (event->attr.text_poke)
12086 		atomic_inc(&nr_text_poke_events);
12087 
12088 	if (inc) {
12089 		/*
12090 		 * We need the mutex here because static_branch_enable()
12091 		 * must complete *before* the perf_sched_count increment
12092 		 * becomes visible.
12093 		 */
12094 		if (atomic_inc_not_zero(&perf_sched_count))
12095 			goto enabled;
12096 
12097 		mutex_lock(&perf_sched_mutex);
12098 		if (!atomic_read(&perf_sched_count)) {
12099 			static_branch_enable(&perf_sched_events);
12100 			/*
12101 			 * Guarantee that all CPUs observe they key change and
12102 			 * call the perf scheduling hooks before proceeding to
12103 			 * install events that need them.
12104 			 */
12105 			synchronize_rcu();
12106 		}
12107 		/*
12108 		 * Now that we have waited for the sync_sched(), allow further
12109 		 * increments to by-pass the mutex.
12110 		 */
12111 		atomic_inc(&perf_sched_count);
12112 		mutex_unlock(&perf_sched_mutex);
12113 	}
12114 enabled:
12115 
12116 	account_pmu_sb_event(event);
12117 }
12118 
12119 /*
12120  * Allocate and initialize an event structure
12121  */
12122 static struct perf_event *
12123 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12124 		 struct task_struct *task,
12125 		 struct perf_event *group_leader,
12126 		 struct perf_event *parent_event,
12127 		 perf_overflow_handler_t overflow_handler,
12128 		 void *context, int cgroup_fd)
12129 {
12130 	struct pmu *pmu;
12131 	struct perf_event *event;
12132 	struct hw_perf_event *hwc;
12133 	long err = -EINVAL;
12134 	int node;
12135 
12136 	if ((unsigned)cpu >= nr_cpu_ids) {
12137 		if (!task || cpu != -1)
12138 			return ERR_PTR(-EINVAL);
12139 	}
12140 	if (attr->sigtrap && !task) {
12141 		/* Requires a task: avoid signalling random tasks. */
12142 		return ERR_PTR(-EINVAL);
12143 	}
12144 
12145 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12146 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12147 				      node);
12148 	if (!event)
12149 		return ERR_PTR(-ENOMEM);
12150 
12151 	/*
12152 	 * Single events are their own group leaders, with an
12153 	 * empty sibling list:
12154 	 */
12155 	if (!group_leader)
12156 		group_leader = event;
12157 
12158 	mutex_init(&event->child_mutex);
12159 	INIT_LIST_HEAD(&event->child_list);
12160 
12161 	INIT_LIST_HEAD(&event->event_entry);
12162 	INIT_LIST_HEAD(&event->sibling_list);
12163 	INIT_LIST_HEAD(&event->active_list);
12164 	init_event_group(event);
12165 	INIT_LIST_HEAD(&event->rb_entry);
12166 	INIT_LIST_HEAD(&event->active_entry);
12167 	INIT_LIST_HEAD(&event->addr_filters.list);
12168 	INIT_HLIST_NODE(&event->hlist_entry);
12169 
12170 
12171 	init_waitqueue_head(&event->waitq);
12172 	init_irq_work(&event->pending_irq, perf_pending_irq);
12173 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12174 	init_task_work(&event->pending_task, perf_pending_task);
12175 	rcuwait_init(&event->pending_work_wait);
12176 
12177 	mutex_init(&event->mmap_mutex);
12178 	raw_spin_lock_init(&event->addr_filters.lock);
12179 
12180 	atomic_long_set(&event->refcount, 1);
12181 	event->cpu		= cpu;
12182 	event->attr		= *attr;
12183 	event->group_leader	= group_leader;
12184 	event->pmu		= NULL;
12185 	event->oncpu		= -1;
12186 
12187 	event->parent		= parent_event;
12188 
12189 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12190 	event->id		= atomic64_inc_return(&perf_event_id);
12191 
12192 	event->state		= PERF_EVENT_STATE_INACTIVE;
12193 
12194 	if (parent_event)
12195 		event->event_caps = parent_event->event_caps;
12196 
12197 	if (task) {
12198 		event->attach_state = PERF_ATTACH_TASK;
12199 		/*
12200 		 * XXX pmu::event_init needs to know what task to account to
12201 		 * and we cannot use the ctx information because we need the
12202 		 * pmu before we get a ctx.
12203 		 */
12204 		event->hw.target = get_task_struct(task);
12205 	}
12206 
12207 	event->clock = &local_clock;
12208 	if (parent_event)
12209 		event->clock = parent_event->clock;
12210 
12211 	if (!overflow_handler && parent_event) {
12212 		overflow_handler = parent_event->overflow_handler;
12213 		context = parent_event->overflow_handler_context;
12214 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12215 		if (parent_event->prog) {
12216 			struct bpf_prog *prog = parent_event->prog;
12217 
12218 			bpf_prog_inc(prog);
12219 			event->prog = prog;
12220 		}
12221 #endif
12222 	}
12223 
12224 	if (overflow_handler) {
12225 		event->overflow_handler	= overflow_handler;
12226 		event->overflow_handler_context = context;
12227 	} else if (is_write_backward(event)){
12228 		event->overflow_handler = perf_event_output_backward;
12229 		event->overflow_handler_context = NULL;
12230 	} else {
12231 		event->overflow_handler = perf_event_output_forward;
12232 		event->overflow_handler_context = NULL;
12233 	}
12234 
12235 	perf_event__state_init(event);
12236 
12237 	pmu = NULL;
12238 
12239 	hwc = &event->hw;
12240 	hwc->sample_period = attr->sample_period;
12241 	if (attr->freq && attr->sample_freq)
12242 		hwc->sample_period = 1;
12243 	hwc->last_period = hwc->sample_period;
12244 
12245 	local64_set(&hwc->period_left, hwc->sample_period);
12246 
12247 	/*
12248 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12249 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12250 	 * collect per-thread samples.
12251 	 * See perf_output_read().
12252 	 */
12253 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12254 		goto err_ns;
12255 
12256 	if (!has_branch_stack(event))
12257 		event->attr.branch_sample_type = 0;
12258 
12259 	pmu = perf_init_event(event);
12260 	if (IS_ERR(pmu)) {
12261 		err = PTR_ERR(pmu);
12262 		goto err_ns;
12263 	}
12264 
12265 	/*
12266 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12267 	 * events (they don't make sense as the cgroup will be different
12268 	 * on other CPUs in the uncore mask).
12269 	 */
12270 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12271 		err = -EINVAL;
12272 		goto err_pmu;
12273 	}
12274 
12275 	if (event->attr.aux_output &&
12276 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12277 		err = -EOPNOTSUPP;
12278 		goto err_pmu;
12279 	}
12280 
12281 	if (cgroup_fd != -1) {
12282 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12283 		if (err)
12284 			goto err_pmu;
12285 	}
12286 
12287 	err = exclusive_event_init(event);
12288 	if (err)
12289 		goto err_pmu;
12290 
12291 	if (has_addr_filter(event)) {
12292 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12293 						    sizeof(struct perf_addr_filter_range),
12294 						    GFP_KERNEL);
12295 		if (!event->addr_filter_ranges) {
12296 			err = -ENOMEM;
12297 			goto err_per_task;
12298 		}
12299 
12300 		/*
12301 		 * Clone the parent's vma offsets: they are valid until exec()
12302 		 * even if the mm is not shared with the parent.
12303 		 */
12304 		if (event->parent) {
12305 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12306 
12307 			raw_spin_lock_irq(&ifh->lock);
12308 			memcpy(event->addr_filter_ranges,
12309 			       event->parent->addr_filter_ranges,
12310 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12311 			raw_spin_unlock_irq(&ifh->lock);
12312 		}
12313 
12314 		/* force hw sync on the address filters */
12315 		event->addr_filters_gen = 1;
12316 	}
12317 
12318 	if (!event->parent) {
12319 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12320 			err = get_callchain_buffers(attr->sample_max_stack);
12321 			if (err)
12322 				goto err_addr_filters;
12323 		}
12324 	}
12325 
12326 	err = security_perf_event_alloc(event);
12327 	if (err)
12328 		goto err_callchain_buffer;
12329 
12330 	/* symmetric to unaccount_event() in _free_event() */
12331 	account_event(event);
12332 
12333 	return event;
12334 
12335 err_callchain_buffer:
12336 	if (!event->parent) {
12337 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12338 			put_callchain_buffers();
12339 	}
12340 err_addr_filters:
12341 	kfree(event->addr_filter_ranges);
12342 
12343 err_per_task:
12344 	exclusive_event_destroy(event);
12345 
12346 err_pmu:
12347 	if (is_cgroup_event(event))
12348 		perf_detach_cgroup(event);
12349 	if (event->destroy)
12350 		event->destroy(event);
12351 	module_put(pmu->module);
12352 err_ns:
12353 	if (event->hw.target)
12354 		put_task_struct(event->hw.target);
12355 	call_rcu(&event->rcu_head, free_event_rcu);
12356 
12357 	return ERR_PTR(err);
12358 }
12359 
12360 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12361 			  struct perf_event_attr *attr)
12362 {
12363 	u32 size;
12364 	int ret;
12365 
12366 	/* Zero the full structure, so that a short copy will be nice. */
12367 	memset(attr, 0, sizeof(*attr));
12368 
12369 	ret = get_user(size, &uattr->size);
12370 	if (ret)
12371 		return ret;
12372 
12373 	/* ABI compatibility quirk: */
12374 	if (!size)
12375 		size = PERF_ATTR_SIZE_VER0;
12376 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12377 		goto err_size;
12378 
12379 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12380 	if (ret) {
12381 		if (ret == -E2BIG)
12382 			goto err_size;
12383 		return ret;
12384 	}
12385 
12386 	attr->size = size;
12387 
12388 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12389 		return -EINVAL;
12390 
12391 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12392 		return -EINVAL;
12393 
12394 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12395 		return -EINVAL;
12396 
12397 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12398 		u64 mask = attr->branch_sample_type;
12399 
12400 		/* only using defined bits */
12401 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12402 			return -EINVAL;
12403 
12404 		/* at least one branch bit must be set */
12405 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12406 			return -EINVAL;
12407 
12408 		/* propagate priv level, when not set for branch */
12409 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12410 
12411 			/* exclude_kernel checked on syscall entry */
12412 			if (!attr->exclude_kernel)
12413 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12414 
12415 			if (!attr->exclude_user)
12416 				mask |= PERF_SAMPLE_BRANCH_USER;
12417 
12418 			if (!attr->exclude_hv)
12419 				mask |= PERF_SAMPLE_BRANCH_HV;
12420 			/*
12421 			 * adjust user setting (for HW filter setup)
12422 			 */
12423 			attr->branch_sample_type = mask;
12424 		}
12425 		/* privileged levels capture (kernel, hv): check permissions */
12426 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12427 			ret = perf_allow_kernel(attr);
12428 			if (ret)
12429 				return ret;
12430 		}
12431 	}
12432 
12433 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12434 		ret = perf_reg_validate(attr->sample_regs_user);
12435 		if (ret)
12436 			return ret;
12437 	}
12438 
12439 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12440 		if (!arch_perf_have_user_stack_dump())
12441 			return -ENOSYS;
12442 
12443 		/*
12444 		 * We have __u32 type for the size, but so far
12445 		 * we can only use __u16 as maximum due to the
12446 		 * __u16 sample size limit.
12447 		 */
12448 		if (attr->sample_stack_user >= USHRT_MAX)
12449 			return -EINVAL;
12450 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12451 			return -EINVAL;
12452 	}
12453 
12454 	if (!attr->sample_max_stack)
12455 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12456 
12457 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12458 		ret = perf_reg_validate(attr->sample_regs_intr);
12459 
12460 #ifndef CONFIG_CGROUP_PERF
12461 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12462 		return -EINVAL;
12463 #endif
12464 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12465 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12466 		return -EINVAL;
12467 
12468 	if (!attr->inherit && attr->inherit_thread)
12469 		return -EINVAL;
12470 
12471 	if (attr->remove_on_exec && attr->enable_on_exec)
12472 		return -EINVAL;
12473 
12474 	if (attr->sigtrap && !attr->remove_on_exec)
12475 		return -EINVAL;
12476 
12477 out:
12478 	return ret;
12479 
12480 err_size:
12481 	put_user(sizeof(*attr), &uattr->size);
12482 	ret = -E2BIG;
12483 	goto out;
12484 }
12485 
12486 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12487 {
12488 	if (b < a)
12489 		swap(a, b);
12490 
12491 	mutex_lock(a);
12492 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12493 }
12494 
12495 static int
12496 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12497 {
12498 	struct perf_buffer *rb = NULL;
12499 	int ret = -EINVAL;
12500 
12501 	if (!output_event) {
12502 		mutex_lock(&event->mmap_mutex);
12503 		goto set;
12504 	}
12505 
12506 	/* don't allow circular references */
12507 	if (event == output_event)
12508 		goto out;
12509 
12510 	/*
12511 	 * Don't allow cross-cpu buffers
12512 	 */
12513 	if (output_event->cpu != event->cpu)
12514 		goto out;
12515 
12516 	/*
12517 	 * If its not a per-cpu rb, it must be the same task.
12518 	 */
12519 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12520 		goto out;
12521 
12522 	/*
12523 	 * Mixing clocks in the same buffer is trouble you don't need.
12524 	 */
12525 	if (output_event->clock != event->clock)
12526 		goto out;
12527 
12528 	/*
12529 	 * Either writing ring buffer from beginning or from end.
12530 	 * Mixing is not allowed.
12531 	 */
12532 	if (is_write_backward(output_event) != is_write_backward(event))
12533 		goto out;
12534 
12535 	/*
12536 	 * If both events generate aux data, they must be on the same PMU
12537 	 */
12538 	if (has_aux(event) && has_aux(output_event) &&
12539 	    event->pmu != output_event->pmu)
12540 		goto out;
12541 
12542 	/*
12543 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12544 	 * output_event is already on rb->event_list, and the list iteration
12545 	 * restarts after every removal, it is guaranteed this new event is
12546 	 * observed *OR* if output_event is already removed, it's guaranteed we
12547 	 * observe !rb->mmap_count.
12548 	 */
12549 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12550 set:
12551 	/* Can't redirect output if we've got an active mmap() */
12552 	if (atomic_read(&event->mmap_count))
12553 		goto unlock;
12554 
12555 	if (output_event) {
12556 		/* get the rb we want to redirect to */
12557 		rb = ring_buffer_get(output_event);
12558 		if (!rb)
12559 			goto unlock;
12560 
12561 		/* did we race against perf_mmap_close() */
12562 		if (!atomic_read(&rb->mmap_count)) {
12563 			ring_buffer_put(rb);
12564 			goto unlock;
12565 		}
12566 	}
12567 
12568 	ring_buffer_attach(event, rb);
12569 
12570 	ret = 0;
12571 unlock:
12572 	mutex_unlock(&event->mmap_mutex);
12573 	if (output_event)
12574 		mutex_unlock(&output_event->mmap_mutex);
12575 
12576 out:
12577 	return ret;
12578 }
12579 
12580 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12581 {
12582 	bool nmi_safe = false;
12583 
12584 	switch (clk_id) {
12585 	case CLOCK_MONOTONIC:
12586 		event->clock = &ktime_get_mono_fast_ns;
12587 		nmi_safe = true;
12588 		break;
12589 
12590 	case CLOCK_MONOTONIC_RAW:
12591 		event->clock = &ktime_get_raw_fast_ns;
12592 		nmi_safe = true;
12593 		break;
12594 
12595 	case CLOCK_REALTIME:
12596 		event->clock = &ktime_get_real_ns;
12597 		break;
12598 
12599 	case CLOCK_BOOTTIME:
12600 		event->clock = &ktime_get_boottime_ns;
12601 		break;
12602 
12603 	case CLOCK_TAI:
12604 		event->clock = &ktime_get_clocktai_ns;
12605 		break;
12606 
12607 	default:
12608 		return -EINVAL;
12609 	}
12610 
12611 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12612 		return -EINVAL;
12613 
12614 	return 0;
12615 }
12616 
12617 static bool
12618 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12619 {
12620 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12621 	bool is_capable = perfmon_capable();
12622 
12623 	if (attr->sigtrap) {
12624 		/*
12625 		 * perf_event_attr::sigtrap sends signals to the other task.
12626 		 * Require the current task to also have CAP_KILL.
12627 		 */
12628 		rcu_read_lock();
12629 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12630 		rcu_read_unlock();
12631 
12632 		/*
12633 		 * If the required capabilities aren't available, checks for
12634 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12635 		 * can effectively change the target task.
12636 		 */
12637 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12638 	}
12639 
12640 	/*
12641 	 * Preserve ptrace permission check for backwards compatibility. The
12642 	 * ptrace check also includes checks that the current task and other
12643 	 * task have matching uids, and is therefore not done here explicitly.
12644 	 */
12645 	return is_capable || ptrace_may_access(task, ptrace_mode);
12646 }
12647 
12648 /**
12649  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12650  *
12651  * @attr_uptr:	event_id type attributes for monitoring/sampling
12652  * @pid:		target pid
12653  * @cpu:		target cpu
12654  * @group_fd:		group leader event fd
12655  * @flags:		perf event open flags
12656  */
12657 SYSCALL_DEFINE5(perf_event_open,
12658 		struct perf_event_attr __user *, attr_uptr,
12659 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12660 {
12661 	struct perf_event *group_leader = NULL, *output_event = NULL;
12662 	struct perf_event_pmu_context *pmu_ctx;
12663 	struct perf_event *event, *sibling;
12664 	struct perf_event_attr attr;
12665 	struct perf_event_context *ctx;
12666 	struct file *event_file = NULL;
12667 	struct fd group = EMPTY_FD;
12668 	struct task_struct *task = NULL;
12669 	struct pmu *pmu;
12670 	int event_fd;
12671 	int move_group = 0;
12672 	int err;
12673 	int f_flags = O_RDWR;
12674 	int cgroup_fd = -1;
12675 
12676 	/* for future expandability... */
12677 	if (flags & ~PERF_FLAG_ALL)
12678 		return -EINVAL;
12679 
12680 	err = perf_copy_attr(attr_uptr, &attr);
12681 	if (err)
12682 		return err;
12683 
12684 	/* Do we allow access to perf_event_open(2) ? */
12685 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12686 	if (err)
12687 		return err;
12688 
12689 	if (!attr.exclude_kernel) {
12690 		err = perf_allow_kernel(&attr);
12691 		if (err)
12692 			return err;
12693 	}
12694 
12695 	if (attr.namespaces) {
12696 		if (!perfmon_capable())
12697 			return -EACCES;
12698 	}
12699 
12700 	if (attr.freq) {
12701 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12702 			return -EINVAL;
12703 	} else {
12704 		if (attr.sample_period & (1ULL << 63))
12705 			return -EINVAL;
12706 	}
12707 
12708 	/* Only privileged users can get physical addresses */
12709 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12710 		err = perf_allow_kernel(&attr);
12711 		if (err)
12712 			return err;
12713 	}
12714 
12715 	/* REGS_INTR can leak data, lockdown must prevent this */
12716 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12717 		err = security_locked_down(LOCKDOWN_PERF);
12718 		if (err)
12719 			return err;
12720 	}
12721 
12722 	/*
12723 	 * In cgroup mode, the pid argument is used to pass the fd
12724 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12725 	 * designates the cpu on which to monitor threads from that
12726 	 * cgroup.
12727 	 */
12728 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12729 		return -EINVAL;
12730 
12731 	if (flags & PERF_FLAG_FD_CLOEXEC)
12732 		f_flags |= O_CLOEXEC;
12733 
12734 	event_fd = get_unused_fd_flags(f_flags);
12735 	if (event_fd < 0)
12736 		return event_fd;
12737 
12738 	if (group_fd != -1) {
12739 		err = perf_fget_light(group_fd, &group);
12740 		if (err)
12741 			goto err_fd;
12742 		group_leader = fd_file(group)->private_data;
12743 		if (flags & PERF_FLAG_FD_OUTPUT)
12744 			output_event = group_leader;
12745 		if (flags & PERF_FLAG_FD_NO_GROUP)
12746 			group_leader = NULL;
12747 	}
12748 
12749 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12750 		task = find_lively_task_by_vpid(pid);
12751 		if (IS_ERR(task)) {
12752 			err = PTR_ERR(task);
12753 			goto err_group_fd;
12754 		}
12755 	}
12756 
12757 	if (task && group_leader &&
12758 	    group_leader->attr.inherit != attr.inherit) {
12759 		err = -EINVAL;
12760 		goto err_task;
12761 	}
12762 
12763 	if (flags & PERF_FLAG_PID_CGROUP)
12764 		cgroup_fd = pid;
12765 
12766 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12767 				 NULL, NULL, cgroup_fd);
12768 	if (IS_ERR(event)) {
12769 		err = PTR_ERR(event);
12770 		goto err_task;
12771 	}
12772 
12773 	if (is_sampling_event(event)) {
12774 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12775 			err = -EOPNOTSUPP;
12776 			goto err_alloc;
12777 		}
12778 	}
12779 
12780 	/*
12781 	 * Special case software events and allow them to be part of
12782 	 * any hardware group.
12783 	 */
12784 	pmu = event->pmu;
12785 
12786 	if (attr.use_clockid) {
12787 		err = perf_event_set_clock(event, attr.clockid);
12788 		if (err)
12789 			goto err_alloc;
12790 	}
12791 
12792 	if (pmu->task_ctx_nr == perf_sw_context)
12793 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12794 
12795 	if (task) {
12796 		err = down_read_interruptible(&task->signal->exec_update_lock);
12797 		if (err)
12798 			goto err_alloc;
12799 
12800 		/*
12801 		 * We must hold exec_update_lock across this and any potential
12802 		 * perf_install_in_context() call for this new event to
12803 		 * serialize against exec() altering our credentials (and the
12804 		 * perf_event_exit_task() that could imply).
12805 		 */
12806 		err = -EACCES;
12807 		if (!perf_check_permission(&attr, task))
12808 			goto err_cred;
12809 	}
12810 
12811 	/*
12812 	 * Get the target context (task or percpu):
12813 	 */
12814 	ctx = find_get_context(task, event);
12815 	if (IS_ERR(ctx)) {
12816 		err = PTR_ERR(ctx);
12817 		goto err_cred;
12818 	}
12819 
12820 	mutex_lock(&ctx->mutex);
12821 
12822 	if (ctx->task == TASK_TOMBSTONE) {
12823 		err = -ESRCH;
12824 		goto err_locked;
12825 	}
12826 
12827 	if (!task) {
12828 		/*
12829 		 * Check if the @cpu we're creating an event for is online.
12830 		 *
12831 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12832 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12833 		 */
12834 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12835 
12836 		if (!cpuctx->online) {
12837 			err = -ENODEV;
12838 			goto err_locked;
12839 		}
12840 	}
12841 
12842 	if (group_leader) {
12843 		err = -EINVAL;
12844 
12845 		/*
12846 		 * Do not allow a recursive hierarchy (this new sibling
12847 		 * becoming part of another group-sibling):
12848 		 */
12849 		if (group_leader->group_leader != group_leader)
12850 			goto err_locked;
12851 
12852 		/* All events in a group should have the same clock */
12853 		if (group_leader->clock != event->clock)
12854 			goto err_locked;
12855 
12856 		/*
12857 		 * Make sure we're both events for the same CPU;
12858 		 * grouping events for different CPUs is broken; since
12859 		 * you can never concurrently schedule them anyhow.
12860 		 */
12861 		if (group_leader->cpu != event->cpu)
12862 			goto err_locked;
12863 
12864 		/*
12865 		 * Make sure we're both on the same context; either task or cpu.
12866 		 */
12867 		if (group_leader->ctx != ctx)
12868 			goto err_locked;
12869 
12870 		/*
12871 		 * Only a group leader can be exclusive or pinned
12872 		 */
12873 		if (attr.exclusive || attr.pinned)
12874 			goto err_locked;
12875 
12876 		if (is_software_event(event) &&
12877 		    !in_software_context(group_leader)) {
12878 			/*
12879 			 * If the event is a sw event, but the group_leader
12880 			 * is on hw context.
12881 			 *
12882 			 * Allow the addition of software events to hw
12883 			 * groups, this is safe because software events
12884 			 * never fail to schedule.
12885 			 *
12886 			 * Note the comment that goes with struct
12887 			 * perf_event_pmu_context.
12888 			 */
12889 			pmu = group_leader->pmu_ctx->pmu;
12890 		} else if (!is_software_event(event)) {
12891 			if (is_software_event(group_leader) &&
12892 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12893 				/*
12894 				 * In case the group is a pure software group, and we
12895 				 * try to add a hardware event, move the whole group to
12896 				 * the hardware context.
12897 				 */
12898 				move_group = 1;
12899 			}
12900 
12901 			/* Don't allow group of multiple hw events from different pmus */
12902 			if (!in_software_context(group_leader) &&
12903 			    group_leader->pmu_ctx->pmu != pmu)
12904 				goto err_locked;
12905 		}
12906 	}
12907 
12908 	/*
12909 	 * Now that we're certain of the pmu; find the pmu_ctx.
12910 	 */
12911 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12912 	if (IS_ERR(pmu_ctx)) {
12913 		err = PTR_ERR(pmu_ctx);
12914 		goto err_locked;
12915 	}
12916 	event->pmu_ctx = pmu_ctx;
12917 
12918 	if (output_event) {
12919 		err = perf_event_set_output(event, output_event);
12920 		if (err)
12921 			goto err_context;
12922 	}
12923 
12924 	if (!perf_event_validate_size(event)) {
12925 		err = -E2BIG;
12926 		goto err_context;
12927 	}
12928 
12929 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12930 		err = -EINVAL;
12931 		goto err_context;
12932 	}
12933 
12934 	/*
12935 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12936 	 * because we need to serialize with concurrent event creation.
12937 	 */
12938 	if (!exclusive_event_installable(event, ctx)) {
12939 		err = -EBUSY;
12940 		goto err_context;
12941 	}
12942 
12943 	WARN_ON_ONCE(ctx->parent_ctx);
12944 
12945 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12946 	if (IS_ERR(event_file)) {
12947 		err = PTR_ERR(event_file);
12948 		event_file = NULL;
12949 		goto err_context;
12950 	}
12951 
12952 	/*
12953 	 * This is the point on no return; we cannot fail hereafter. This is
12954 	 * where we start modifying current state.
12955 	 */
12956 
12957 	if (move_group) {
12958 		perf_remove_from_context(group_leader, 0);
12959 		put_pmu_ctx(group_leader->pmu_ctx);
12960 
12961 		for_each_sibling_event(sibling, group_leader) {
12962 			perf_remove_from_context(sibling, 0);
12963 			put_pmu_ctx(sibling->pmu_ctx);
12964 		}
12965 
12966 		/*
12967 		 * Install the group siblings before the group leader.
12968 		 *
12969 		 * Because a group leader will try and install the entire group
12970 		 * (through the sibling list, which is still in-tact), we can
12971 		 * end up with siblings installed in the wrong context.
12972 		 *
12973 		 * By installing siblings first we NO-OP because they're not
12974 		 * reachable through the group lists.
12975 		 */
12976 		for_each_sibling_event(sibling, group_leader) {
12977 			sibling->pmu_ctx = pmu_ctx;
12978 			get_pmu_ctx(pmu_ctx);
12979 			perf_event__state_init(sibling);
12980 			perf_install_in_context(ctx, sibling, sibling->cpu);
12981 		}
12982 
12983 		/*
12984 		 * Removing from the context ends up with disabled
12985 		 * event. What we want here is event in the initial
12986 		 * startup state, ready to be add into new context.
12987 		 */
12988 		group_leader->pmu_ctx = pmu_ctx;
12989 		get_pmu_ctx(pmu_ctx);
12990 		perf_event__state_init(group_leader);
12991 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12992 	}
12993 
12994 	/*
12995 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12996 	 * that we're serialized against further additions and before
12997 	 * perf_install_in_context() which is the point the event is active and
12998 	 * can use these values.
12999 	 */
13000 	perf_event__header_size(event);
13001 	perf_event__id_header_size(event);
13002 
13003 	event->owner = current;
13004 
13005 	perf_install_in_context(ctx, event, event->cpu);
13006 	perf_unpin_context(ctx);
13007 
13008 	mutex_unlock(&ctx->mutex);
13009 
13010 	if (task) {
13011 		up_read(&task->signal->exec_update_lock);
13012 		put_task_struct(task);
13013 	}
13014 
13015 	mutex_lock(&current->perf_event_mutex);
13016 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13017 	mutex_unlock(&current->perf_event_mutex);
13018 
13019 	/*
13020 	 * Drop the reference on the group_event after placing the
13021 	 * new event on the sibling_list. This ensures destruction
13022 	 * of the group leader will find the pointer to itself in
13023 	 * perf_group_detach().
13024 	 */
13025 	fdput(group);
13026 	fd_install(event_fd, event_file);
13027 	return event_fd;
13028 
13029 err_context:
13030 	put_pmu_ctx(event->pmu_ctx);
13031 	event->pmu_ctx = NULL; /* _free_event() */
13032 err_locked:
13033 	mutex_unlock(&ctx->mutex);
13034 	perf_unpin_context(ctx);
13035 	put_ctx(ctx);
13036 err_cred:
13037 	if (task)
13038 		up_read(&task->signal->exec_update_lock);
13039 err_alloc:
13040 	free_event(event);
13041 err_task:
13042 	if (task)
13043 		put_task_struct(task);
13044 err_group_fd:
13045 	fdput(group);
13046 err_fd:
13047 	put_unused_fd(event_fd);
13048 	return err;
13049 }
13050 
13051 /**
13052  * perf_event_create_kernel_counter
13053  *
13054  * @attr: attributes of the counter to create
13055  * @cpu: cpu in which the counter is bound
13056  * @task: task to profile (NULL for percpu)
13057  * @overflow_handler: callback to trigger when we hit the event
13058  * @context: context data could be used in overflow_handler callback
13059  */
13060 struct perf_event *
13061 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13062 				 struct task_struct *task,
13063 				 perf_overflow_handler_t overflow_handler,
13064 				 void *context)
13065 {
13066 	struct perf_event_pmu_context *pmu_ctx;
13067 	struct perf_event_context *ctx;
13068 	struct perf_event *event;
13069 	struct pmu *pmu;
13070 	int err;
13071 
13072 	/*
13073 	 * Grouping is not supported for kernel events, neither is 'AUX',
13074 	 * make sure the caller's intentions are adjusted.
13075 	 */
13076 	if (attr->aux_output)
13077 		return ERR_PTR(-EINVAL);
13078 
13079 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13080 				 overflow_handler, context, -1);
13081 	if (IS_ERR(event)) {
13082 		err = PTR_ERR(event);
13083 		goto err;
13084 	}
13085 
13086 	/* Mark owner so we could distinguish it from user events. */
13087 	event->owner = TASK_TOMBSTONE;
13088 	pmu = event->pmu;
13089 
13090 	if (pmu->task_ctx_nr == perf_sw_context)
13091 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13092 
13093 	/*
13094 	 * Get the target context (task or percpu):
13095 	 */
13096 	ctx = find_get_context(task, event);
13097 	if (IS_ERR(ctx)) {
13098 		err = PTR_ERR(ctx);
13099 		goto err_alloc;
13100 	}
13101 
13102 	WARN_ON_ONCE(ctx->parent_ctx);
13103 	mutex_lock(&ctx->mutex);
13104 	if (ctx->task == TASK_TOMBSTONE) {
13105 		err = -ESRCH;
13106 		goto err_unlock;
13107 	}
13108 
13109 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13110 	if (IS_ERR(pmu_ctx)) {
13111 		err = PTR_ERR(pmu_ctx);
13112 		goto err_unlock;
13113 	}
13114 	event->pmu_ctx = pmu_ctx;
13115 
13116 	if (!task) {
13117 		/*
13118 		 * Check if the @cpu we're creating an event for is online.
13119 		 *
13120 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13121 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13122 		 */
13123 		struct perf_cpu_context *cpuctx =
13124 			container_of(ctx, struct perf_cpu_context, ctx);
13125 		if (!cpuctx->online) {
13126 			err = -ENODEV;
13127 			goto err_pmu_ctx;
13128 		}
13129 	}
13130 
13131 	if (!exclusive_event_installable(event, ctx)) {
13132 		err = -EBUSY;
13133 		goto err_pmu_ctx;
13134 	}
13135 
13136 	perf_install_in_context(ctx, event, event->cpu);
13137 	perf_unpin_context(ctx);
13138 	mutex_unlock(&ctx->mutex);
13139 
13140 	return event;
13141 
13142 err_pmu_ctx:
13143 	put_pmu_ctx(pmu_ctx);
13144 	event->pmu_ctx = NULL; /* _free_event() */
13145 err_unlock:
13146 	mutex_unlock(&ctx->mutex);
13147 	perf_unpin_context(ctx);
13148 	put_ctx(ctx);
13149 err_alloc:
13150 	free_event(event);
13151 err:
13152 	return ERR_PTR(err);
13153 }
13154 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13155 
13156 static void __perf_pmu_remove(struct perf_event_context *ctx,
13157 			      int cpu, struct pmu *pmu,
13158 			      struct perf_event_groups *groups,
13159 			      struct list_head *events)
13160 {
13161 	struct perf_event *event, *sibling;
13162 
13163 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13164 		perf_remove_from_context(event, 0);
13165 		put_pmu_ctx(event->pmu_ctx);
13166 		list_add(&event->migrate_entry, events);
13167 
13168 		for_each_sibling_event(sibling, event) {
13169 			perf_remove_from_context(sibling, 0);
13170 			put_pmu_ctx(sibling->pmu_ctx);
13171 			list_add(&sibling->migrate_entry, events);
13172 		}
13173 	}
13174 }
13175 
13176 static void __perf_pmu_install_event(struct pmu *pmu,
13177 				     struct perf_event_context *ctx,
13178 				     int cpu, struct perf_event *event)
13179 {
13180 	struct perf_event_pmu_context *epc;
13181 	struct perf_event_context *old_ctx = event->ctx;
13182 
13183 	get_ctx(ctx); /* normally find_get_context() */
13184 
13185 	event->cpu = cpu;
13186 	epc = find_get_pmu_context(pmu, ctx, event);
13187 	event->pmu_ctx = epc;
13188 
13189 	if (event->state >= PERF_EVENT_STATE_OFF)
13190 		event->state = PERF_EVENT_STATE_INACTIVE;
13191 	perf_install_in_context(ctx, event, cpu);
13192 
13193 	/*
13194 	 * Now that event->ctx is updated and visible, put the old ctx.
13195 	 */
13196 	put_ctx(old_ctx);
13197 }
13198 
13199 static void __perf_pmu_install(struct perf_event_context *ctx,
13200 			       int cpu, struct pmu *pmu, struct list_head *events)
13201 {
13202 	struct perf_event *event, *tmp;
13203 
13204 	/*
13205 	 * Re-instate events in 2 passes.
13206 	 *
13207 	 * Skip over group leaders and only install siblings on this first
13208 	 * pass, siblings will not get enabled without a leader, however a
13209 	 * leader will enable its siblings, even if those are still on the old
13210 	 * context.
13211 	 */
13212 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13213 		if (event->group_leader == event)
13214 			continue;
13215 
13216 		list_del(&event->migrate_entry);
13217 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13218 	}
13219 
13220 	/*
13221 	 * Once all the siblings are setup properly, install the group leaders
13222 	 * to make it go.
13223 	 */
13224 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13225 		list_del(&event->migrate_entry);
13226 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13227 	}
13228 }
13229 
13230 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13231 {
13232 	struct perf_event_context *src_ctx, *dst_ctx;
13233 	LIST_HEAD(events);
13234 
13235 	/*
13236 	 * Since per-cpu context is persistent, no need to grab an extra
13237 	 * reference.
13238 	 */
13239 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13240 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13241 
13242 	/*
13243 	 * See perf_event_ctx_lock() for comments on the details
13244 	 * of swizzling perf_event::ctx.
13245 	 */
13246 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13247 
13248 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13249 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13250 
13251 	if (!list_empty(&events)) {
13252 		/*
13253 		 * Wait for the events to quiesce before re-instating them.
13254 		 */
13255 		synchronize_rcu();
13256 
13257 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13258 	}
13259 
13260 	mutex_unlock(&dst_ctx->mutex);
13261 	mutex_unlock(&src_ctx->mutex);
13262 }
13263 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13264 
13265 static void sync_child_event(struct perf_event *child_event)
13266 {
13267 	struct perf_event *parent_event = child_event->parent;
13268 	u64 child_val;
13269 
13270 	if (child_event->attr.inherit_stat) {
13271 		struct task_struct *task = child_event->ctx->task;
13272 
13273 		if (task && task != TASK_TOMBSTONE)
13274 			perf_event_read_event(child_event, task);
13275 	}
13276 
13277 	child_val = perf_event_count(child_event, false);
13278 
13279 	/*
13280 	 * Add back the child's count to the parent's count:
13281 	 */
13282 	atomic64_add(child_val, &parent_event->child_count);
13283 	atomic64_add(child_event->total_time_enabled,
13284 		     &parent_event->child_total_time_enabled);
13285 	atomic64_add(child_event->total_time_running,
13286 		     &parent_event->child_total_time_running);
13287 }
13288 
13289 static void
13290 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13291 {
13292 	struct perf_event *parent_event = event->parent;
13293 	unsigned long detach_flags = 0;
13294 
13295 	if (parent_event) {
13296 		/*
13297 		 * Do not destroy the 'original' grouping; because of the
13298 		 * context switch optimization the original events could've
13299 		 * ended up in a random child task.
13300 		 *
13301 		 * If we were to destroy the original group, all group related
13302 		 * operations would cease to function properly after this
13303 		 * random child dies.
13304 		 *
13305 		 * Do destroy all inherited groups, we don't care about those
13306 		 * and being thorough is better.
13307 		 */
13308 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13309 		mutex_lock(&parent_event->child_mutex);
13310 	}
13311 
13312 	perf_remove_from_context(event, detach_flags);
13313 
13314 	raw_spin_lock_irq(&ctx->lock);
13315 	if (event->state > PERF_EVENT_STATE_EXIT)
13316 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13317 	raw_spin_unlock_irq(&ctx->lock);
13318 
13319 	/*
13320 	 * Child events can be freed.
13321 	 */
13322 	if (parent_event) {
13323 		mutex_unlock(&parent_event->child_mutex);
13324 		/*
13325 		 * Kick perf_poll() for is_event_hup();
13326 		 */
13327 		perf_event_wakeup(parent_event);
13328 		free_event(event);
13329 		put_event(parent_event);
13330 		return;
13331 	}
13332 
13333 	/*
13334 	 * Parent events are governed by their filedesc, retain them.
13335 	 */
13336 	perf_event_wakeup(event);
13337 }
13338 
13339 static void perf_event_exit_task_context(struct task_struct *child)
13340 {
13341 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13342 	struct perf_event *child_event, *next;
13343 
13344 	WARN_ON_ONCE(child != current);
13345 
13346 	child_ctx = perf_pin_task_context(child);
13347 	if (!child_ctx)
13348 		return;
13349 
13350 	/*
13351 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13352 	 * ctx::mutex over the entire thing. This serializes against almost
13353 	 * everything that wants to access the ctx.
13354 	 *
13355 	 * The exception is sys_perf_event_open() /
13356 	 * perf_event_create_kernel_count() which does find_get_context()
13357 	 * without ctx::mutex (it cannot because of the move_group double mutex
13358 	 * lock thing). See the comments in perf_install_in_context().
13359 	 */
13360 	mutex_lock(&child_ctx->mutex);
13361 
13362 	/*
13363 	 * In a single ctx::lock section, de-schedule the events and detach the
13364 	 * context from the task such that we cannot ever get it scheduled back
13365 	 * in.
13366 	 */
13367 	raw_spin_lock_irq(&child_ctx->lock);
13368 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13369 
13370 	/*
13371 	 * Now that the context is inactive, destroy the task <-> ctx relation
13372 	 * and mark the context dead.
13373 	 */
13374 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13375 	put_ctx(child_ctx); /* cannot be last */
13376 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13377 	put_task_struct(current); /* cannot be last */
13378 
13379 	clone_ctx = unclone_ctx(child_ctx);
13380 	raw_spin_unlock_irq(&child_ctx->lock);
13381 
13382 	if (clone_ctx)
13383 		put_ctx(clone_ctx);
13384 
13385 	/*
13386 	 * Report the task dead after unscheduling the events so that we
13387 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13388 	 * get a few PERF_RECORD_READ events.
13389 	 */
13390 	perf_event_task(child, child_ctx, 0);
13391 
13392 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13393 		perf_event_exit_event(child_event, child_ctx);
13394 
13395 	mutex_unlock(&child_ctx->mutex);
13396 
13397 	put_ctx(child_ctx);
13398 }
13399 
13400 /*
13401  * When a child task exits, feed back event values to parent events.
13402  *
13403  * Can be called with exec_update_lock held when called from
13404  * setup_new_exec().
13405  */
13406 void perf_event_exit_task(struct task_struct *child)
13407 {
13408 	struct perf_event *event, *tmp;
13409 
13410 	mutex_lock(&child->perf_event_mutex);
13411 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13412 				 owner_entry) {
13413 		list_del_init(&event->owner_entry);
13414 
13415 		/*
13416 		 * Ensure the list deletion is visible before we clear
13417 		 * the owner, closes a race against perf_release() where
13418 		 * we need to serialize on the owner->perf_event_mutex.
13419 		 */
13420 		smp_store_release(&event->owner, NULL);
13421 	}
13422 	mutex_unlock(&child->perf_event_mutex);
13423 
13424 	perf_event_exit_task_context(child);
13425 
13426 	/*
13427 	 * The perf_event_exit_task_context calls perf_event_task
13428 	 * with child's task_ctx, which generates EXIT events for
13429 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13430 	 * At this point we need to send EXIT events to cpu contexts.
13431 	 */
13432 	perf_event_task(child, NULL, 0);
13433 }
13434 
13435 static void perf_free_event(struct perf_event *event,
13436 			    struct perf_event_context *ctx)
13437 {
13438 	struct perf_event *parent = event->parent;
13439 
13440 	if (WARN_ON_ONCE(!parent))
13441 		return;
13442 
13443 	mutex_lock(&parent->child_mutex);
13444 	list_del_init(&event->child_list);
13445 	mutex_unlock(&parent->child_mutex);
13446 
13447 	put_event(parent);
13448 
13449 	raw_spin_lock_irq(&ctx->lock);
13450 	perf_group_detach(event);
13451 	list_del_event(event, ctx);
13452 	raw_spin_unlock_irq(&ctx->lock);
13453 	free_event(event);
13454 }
13455 
13456 /*
13457  * Free a context as created by inheritance by perf_event_init_task() below,
13458  * used by fork() in case of fail.
13459  *
13460  * Even though the task has never lived, the context and events have been
13461  * exposed through the child_list, so we must take care tearing it all down.
13462  */
13463 void perf_event_free_task(struct task_struct *task)
13464 {
13465 	struct perf_event_context *ctx;
13466 	struct perf_event *event, *tmp;
13467 
13468 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13469 	if (!ctx)
13470 		return;
13471 
13472 	mutex_lock(&ctx->mutex);
13473 	raw_spin_lock_irq(&ctx->lock);
13474 	/*
13475 	 * Destroy the task <-> ctx relation and mark the context dead.
13476 	 *
13477 	 * This is important because even though the task hasn't been
13478 	 * exposed yet the context has been (through child_list).
13479 	 */
13480 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13481 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13482 	put_task_struct(task); /* cannot be last */
13483 	raw_spin_unlock_irq(&ctx->lock);
13484 
13485 
13486 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13487 		perf_free_event(event, ctx);
13488 
13489 	mutex_unlock(&ctx->mutex);
13490 
13491 	/*
13492 	 * perf_event_release_kernel() could've stolen some of our
13493 	 * child events and still have them on its free_list. In that
13494 	 * case we must wait for these events to have been freed (in
13495 	 * particular all their references to this task must've been
13496 	 * dropped).
13497 	 *
13498 	 * Without this copy_process() will unconditionally free this
13499 	 * task (irrespective of its reference count) and
13500 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13501 	 * use-after-free.
13502 	 *
13503 	 * Wait for all events to drop their context reference.
13504 	 */
13505 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13506 	put_ctx(ctx); /* must be last */
13507 }
13508 
13509 void perf_event_delayed_put(struct task_struct *task)
13510 {
13511 	WARN_ON_ONCE(task->perf_event_ctxp);
13512 }
13513 
13514 struct file *perf_event_get(unsigned int fd)
13515 {
13516 	struct file *file = fget(fd);
13517 	if (!file)
13518 		return ERR_PTR(-EBADF);
13519 
13520 	if (file->f_op != &perf_fops) {
13521 		fput(file);
13522 		return ERR_PTR(-EBADF);
13523 	}
13524 
13525 	return file;
13526 }
13527 
13528 const struct perf_event *perf_get_event(struct file *file)
13529 {
13530 	if (file->f_op != &perf_fops)
13531 		return ERR_PTR(-EINVAL);
13532 
13533 	return file->private_data;
13534 }
13535 
13536 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13537 {
13538 	if (!event)
13539 		return ERR_PTR(-EINVAL);
13540 
13541 	return &event->attr;
13542 }
13543 
13544 int perf_allow_kernel(struct perf_event_attr *attr)
13545 {
13546 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13547 		return -EACCES;
13548 
13549 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13550 }
13551 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13552 
13553 /*
13554  * Inherit an event from parent task to child task.
13555  *
13556  * Returns:
13557  *  - valid pointer on success
13558  *  - NULL for orphaned events
13559  *  - IS_ERR() on error
13560  */
13561 static struct perf_event *
13562 inherit_event(struct perf_event *parent_event,
13563 	      struct task_struct *parent,
13564 	      struct perf_event_context *parent_ctx,
13565 	      struct task_struct *child,
13566 	      struct perf_event *group_leader,
13567 	      struct perf_event_context *child_ctx)
13568 {
13569 	enum perf_event_state parent_state = parent_event->state;
13570 	struct perf_event_pmu_context *pmu_ctx;
13571 	struct perf_event *child_event;
13572 	unsigned long flags;
13573 
13574 	/*
13575 	 * Instead of creating recursive hierarchies of events,
13576 	 * we link inherited events back to the original parent,
13577 	 * which has a filp for sure, which we use as the reference
13578 	 * count:
13579 	 */
13580 	if (parent_event->parent)
13581 		parent_event = parent_event->parent;
13582 
13583 	child_event = perf_event_alloc(&parent_event->attr,
13584 					   parent_event->cpu,
13585 					   child,
13586 					   group_leader, parent_event,
13587 					   NULL, NULL, -1);
13588 	if (IS_ERR(child_event))
13589 		return child_event;
13590 
13591 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13592 	if (IS_ERR(pmu_ctx)) {
13593 		free_event(child_event);
13594 		return ERR_CAST(pmu_ctx);
13595 	}
13596 	child_event->pmu_ctx = pmu_ctx;
13597 
13598 	/*
13599 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13600 	 * must be under the same lock in order to serialize against
13601 	 * perf_event_release_kernel(), such that either we must observe
13602 	 * is_orphaned_event() or they will observe us on the child_list.
13603 	 */
13604 	mutex_lock(&parent_event->child_mutex);
13605 	if (is_orphaned_event(parent_event) ||
13606 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13607 		mutex_unlock(&parent_event->child_mutex);
13608 		/* task_ctx_data is freed with child_ctx */
13609 		free_event(child_event);
13610 		return NULL;
13611 	}
13612 
13613 	get_ctx(child_ctx);
13614 
13615 	/*
13616 	 * Make the child state follow the state of the parent event,
13617 	 * not its attr.disabled bit.  We hold the parent's mutex,
13618 	 * so we won't race with perf_event_{en, dis}able_family.
13619 	 */
13620 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13621 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13622 	else
13623 		child_event->state = PERF_EVENT_STATE_OFF;
13624 
13625 	if (parent_event->attr.freq) {
13626 		u64 sample_period = parent_event->hw.sample_period;
13627 		struct hw_perf_event *hwc = &child_event->hw;
13628 
13629 		hwc->sample_period = sample_period;
13630 		hwc->last_period   = sample_period;
13631 
13632 		local64_set(&hwc->period_left, sample_period);
13633 	}
13634 
13635 	child_event->ctx = child_ctx;
13636 	child_event->overflow_handler = parent_event->overflow_handler;
13637 	child_event->overflow_handler_context
13638 		= parent_event->overflow_handler_context;
13639 
13640 	/*
13641 	 * Precalculate sample_data sizes
13642 	 */
13643 	perf_event__header_size(child_event);
13644 	perf_event__id_header_size(child_event);
13645 
13646 	/*
13647 	 * Link it up in the child's context:
13648 	 */
13649 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13650 	add_event_to_ctx(child_event, child_ctx);
13651 	child_event->attach_state |= PERF_ATTACH_CHILD;
13652 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13653 
13654 	/*
13655 	 * Link this into the parent event's child list
13656 	 */
13657 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13658 	mutex_unlock(&parent_event->child_mutex);
13659 
13660 	return child_event;
13661 }
13662 
13663 /*
13664  * Inherits an event group.
13665  *
13666  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13667  * This matches with perf_event_release_kernel() removing all child events.
13668  *
13669  * Returns:
13670  *  - 0 on success
13671  *  - <0 on error
13672  */
13673 static int inherit_group(struct perf_event *parent_event,
13674 	      struct task_struct *parent,
13675 	      struct perf_event_context *parent_ctx,
13676 	      struct task_struct *child,
13677 	      struct perf_event_context *child_ctx)
13678 {
13679 	struct perf_event *leader;
13680 	struct perf_event *sub;
13681 	struct perf_event *child_ctr;
13682 
13683 	leader = inherit_event(parent_event, parent, parent_ctx,
13684 				 child, NULL, child_ctx);
13685 	if (IS_ERR(leader))
13686 		return PTR_ERR(leader);
13687 	/*
13688 	 * @leader can be NULL here because of is_orphaned_event(). In this
13689 	 * case inherit_event() will create individual events, similar to what
13690 	 * perf_group_detach() would do anyway.
13691 	 */
13692 	for_each_sibling_event(sub, parent_event) {
13693 		child_ctr = inherit_event(sub, parent, parent_ctx,
13694 					    child, leader, child_ctx);
13695 		if (IS_ERR(child_ctr))
13696 			return PTR_ERR(child_ctr);
13697 
13698 		if (sub->aux_event == parent_event && child_ctr &&
13699 		    !perf_get_aux_event(child_ctr, leader))
13700 			return -EINVAL;
13701 	}
13702 	if (leader)
13703 		leader->group_generation = parent_event->group_generation;
13704 	return 0;
13705 }
13706 
13707 /*
13708  * Creates the child task context and tries to inherit the event-group.
13709  *
13710  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13711  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13712  * consistent with perf_event_release_kernel() removing all child events.
13713  *
13714  * Returns:
13715  *  - 0 on success
13716  *  - <0 on error
13717  */
13718 static int
13719 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13720 		   struct perf_event_context *parent_ctx,
13721 		   struct task_struct *child,
13722 		   u64 clone_flags, int *inherited_all)
13723 {
13724 	struct perf_event_context *child_ctx;
13725 	int ret;
13726 
13727 	if (!event->attr.inherit ||
13728 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13729 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13730 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13731 		*inherited_all = 0;
13732 		return 0;
13733 	}
13734 
13735 	child_ctx = child->perf_event_ctxp;
13736 	if (!child_ctx) {
13737 		/*
13738 		 * This is executed from the parent task context, so
13739 		 * inherit events that have been marked for cloning.
13740 		 * First allocate and initialize a context for the
13741 		 * child.
13742 		 */
13743 		child_ctx = alloc_perf_context(child);
13744 		if (!child_ctx)
13745 			return -ENOMEM;
13746 
13747 		child->perf_event_ctxp = child_ctx;
13748 	}
13749 
13750 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13751 	if (ret)
13752 		*inherited_all = 0;
13753 
13754 	return ret;
13755 }
13756 
13757 /*
13758  * Initialize the perf_event context in task_struct
13759  */
13760 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13761 {
13762 	struct perf_event_context *child_ctx, *parent_ctx;
13763 	struct perf_event_context *cloned_ctx;
13764 	struct perf_event *event;
13765 	struct task_struct *parent = current;
13766 	int inherited_all = 1;
13767 	unsigned long flags;
13768 	int ret = 0;
13769 
13770 	if (likely(!parent->perf_event_ctxp))
13771 		return 0;
13772 
13773 	/*
13774 	 * If the parent's context is a clone, pin it so it won't get
13775 	 * swapped under us.
13776 	 */
13777 	parent_ctx = perf_pin_task_context(parent);
13778 	if (!parent_ctx)
13779 		return 0;
13780 
13781 	/*
13782 	 * No need to check if parent_ctx != NULL here; since we saw
13783 	 * it non-NULL earlier, the only reason for it to become NULL
13784 	 * is if we exit, and since we're currently in the middle of
13785 	 * a fork we can't be exiting at the same time.
13786 	 */
13787 
13788 	/*
13789 	 * Lock the parent list. No need to lock the child - not PID
13790 	 * hashed yet and not running, so nobody can access it.
13791 	 */
13792 	mutex_lock(&parent_ctx->mutex);
13793 
13794 	/*
13795 	 * We dont have to disable NMIs - we are only looking at
13796 	 * the list, not manipulating it:
13797 	 */
13798 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13799 		ret = inherit_task_group(event, parent, parent_ctx,
13800 					 child, clone_flags, &inherited_all);
13801 		if (ret)
13802 			goto out_unlock;
13803 	}
13804 
13805 	/*
13806 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13807 	 * to allocations, but we need to prevent rotation because
13808 	 * rotate_ctx() will change the list from interrupt context.
13809 	 */
13810 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13811 	parent_ctx->rotate_disable = 1;
13812 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13813 
13814 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13815 		ret = inherit_task_group(event, parent, parent_ctx,
13816 					 child, clone_flags, &inherited_all);
13817 		if (ret)
13818 			goto out_unlock;
13819 	}
13820 
13821 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13822 	parent_ctx->rotate_disable = 0;
13823 
13824 	child_ctx = child->perf_event_ctxp;
13825 
13826 	if (child_ctx && inherited_all) {
13827 		/*
13828 		 * Mark the child context as a clone of the parent
13829 		 * context, or of whatever the parent is a clone of.
13830 		 *
13831 		 * Note that if the parent is a clone, the holding of
13832 		 * parent_ctx->lock avoids it from being uncloned.
13833 		 */
13834 		cloned_ctx = parent_ctx->parent_ctx;
13835 		if (cloned_ctx) {
13836 			child_ctx->parent_ctx = cloned_ctx;
13837 			child_ctx->parent_gen = parent_ctx->parent_gen;
13838 		} else {
13839 			child_ctx->parent_ctx = parent_ctx;
13840 			child_ctx->parent_gen = parent_ctx->generation;
13841 		}
13842 		get_ctx(child_ctx->parent_ctx);
13843 	}
13844 
13845 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13846 out_unlock:
13847 	mutex_unlock(&parent_ctx->mutex);
13848 
13849 	perf_unpin_context(parent_ctx);
13850 	put_ctx(parent_ctx);
13851 
13852 	return ret;
13853 }
13854 
13855 /*
13856  * Initialize the perf_event context in task_struct
13857  */
13858 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13859 {
13860 	int ret;
13861 
13862 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13863 	child->perf_event_ctxp = NULL;
13864 	mutex_init(&child->perf_event_mutex);
13865 	INIT_LIST_HEAD(&child->perf_event_list);
13866 
13867 	ret = perf_event_init_context(child, clone_flags);
13868 	if (ret) {
13869 		perf_event_free_task(child);
13870 		return ret;
13871 	}
13872 
13873 	return 0;
13874 }
13875 
13876 static void __init perf_event_init_all_cpus(void)
13877 {
13878 	struct swevent_htable *swhash;
13879 	struct perf_cpu_context *cpuctx;
13880 	int cpu;
13881 
13882 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13883 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13884 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13885 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13886 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13887 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13888 
13889 
13890 	for_each_possible_cpu(cpu) {
13891 		swhash = &per_cpu(swevent_htable, cpu);
13892 		mutex_init(&swhash->hlist_mutex);
13893 
13894 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13895 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13896 
13897 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13898 
13899 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13900 		__perf_event_init_context(&cpuctx->ctx);
13901 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13902 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13903 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13904 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13905 		cpuctx->heap = cpuctx->heap_default;
13906 	}
13907 }
13908 
13909 static void perf_swevent_init_cpu(unsigned int cpu)
13910 {
13911 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13912 
13913 	mutex_lock(&swhash->hlist_mutex);
13914 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13915 		struct swevent_hlist *hlist;
13916 
13917 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13918 		WARN_ON(!hlist);
13919 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13920 	}
13921 	mutex_unlock(&swhash->hlist_mutex);
13922 }
13923 
13924 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13925 static void __perf_event_exit_context(void *__info)
13926 {
13927 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13928 	struct perf_event_context *ctx = __info;
13929 	struct perf_event *event;
13930 
13931 	raw_spin_lock(&ctx->lock);
13932 	ctx_sched_out(ctx, NULL, EVENT_TIME);
13933 	list_for_each_entry(event, &ctx->event_list, event_entry)
13934 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13935 	raw_spin_unlock(&ctx->lock);
13936 }
13937 
13938 static void perf_event_clear_cpumask(unsigned int cpu)
13939 {
13940 	int target[PERF_PMU_MAX_SCOPE];
13941 	unsigned int scope;
13942 	struct pmu *pmu;
13943 
13944 	cpumask_clear_cpu(cpu, perf_online_mask);
13945 
13946 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
13947 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
13948 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
13949 
13950 		target[scope] = -1;
13951 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
13952 			continue;
13953 
13954 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
13955 			continue;
13956 		target[scope] = cpumask_any_but(cpumask, cpu);
13957 		if (target[scope] < nr_cpu_ids)
13958 			cpumask_set_cpu(target[scope], pmu_cpumask);
13959 	}
13960 
13961 	/* migrate */
13962 	list_for_each_entry(pmu, &pmus, entry) {
13963 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
13964 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
13965 			continue;
13966 
13967 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
13968 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
13969 	}
13970 }
13971 
13972 static void perf_event_exit_cpu_context(int cpu)
13973 {
13974 	struct perf_cpu_context *cpuctx;
13975 	struct perf_event_context *ctx;
13976 
13977 	// XXX simplify cpuctx->online
13978 	mutex_lock(&pmus_lock);
13979 	/*
13980 	 * Clear the cpumasks, and migrate to other CPUs if possible.
13981 	 * Must be invoked before the __perf_event_exit_context.
13982 	 */
13983 	perf_event_clear_cpumask(cpu);
13984 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13985 	ctx = &cpuctx->ctx;
13986 
13987 	mutex_lock(&ctx->mutex);
13988 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13989 	cpuctx->online = 0;
13990 	mutex_unlock(&ctx->mutex);
13991 	mutex_unlock(&pmus_lock);
13992 }
13993 #else
13994 
13995 static void perf_event_exit_cpu_context(int cpu) { }
13996 
13997 #endif
13998 
13999 static void perf_event_setup_cpumask(unsigned int cpu)
14000 {
14001 	struct cpumask *pmu_cpumask;
14002 	unsigned int scope;
14003 
14004 	/*
14005 	 * Early boot stage, the cpumask hasn't been set yet.
14006 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14007 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14008 	 */
14009 	if (cpumask_empty(perf_online_mask)) {
14010 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14011 			pmu_cpumask = perf_scope_cpumask(scope);
14012 			if (WARN_ON_ONCE(!pmu_cpumask))
14013 				continue;
14014 			cpumask_set_cpu(cpu, pmu_cpumask);
14015 		}
14016 		goto end;
14017 	}
14018 
14019 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14020 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14021 
14022 		pmu_cpumask = perf_scope_cpumask(scope);
14023 
14024 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14025 			continue;
14026 
14027 		if (!cpumask_empty(cpumask) &&
14028 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14029 			cpumask_set_cpu(cpu, pmu_cpumask);
14030 	}
14031 end:
14032 	cpumask_set_cpu(cpu, perf_online_mask);
14033 }
14034 
14035 int perf_event_init_cpu(unsigned int cpu)
14036 {
14037 	struct perf_cpu_context *cpuctx;
14038 	struct perf_event_context *ctx;
14039 
14040 	perf_swevent_init_cpu(cpu);
14041 
14042 	mutex_lock(&pmus_lock);
14043 	perf_event_setup_cpumask(cpu);
14044 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14045 	ctx = &cpuctx->ctx;
14046 
14047 	mutex_lock(&ctx->mutex);
14048 	cpuctx->online = 1;
14049 	mutex_unlock(&ctx->mutex);
14050 	mutex_unlock(&pmus_lock);
14051 
14052 	return 0;
14053 }
14054 
14055 int perf_event_exit_cpu(unsigned int cpu)
14056 {
14057 	perf_event_exit_cpu_context(cpu);
14058 	return 0;
14059 }
14060 
14061 static int
14062 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14063 {
14064 	int cpu;
14065 
14066 	for_each_online_cpu(cpu)
14067 		perf_event_exit_cpu(cpu);
14068 
14069 	return NOTIFY_OK;
14070 }
14071 
14072 /*
14073  * Run the perf reboot notifier at the very last possible moment so that
14074  * the generic watchdog code runs as long as possible.
14075  */
14076 static struct notifier_block perf_reboot_notifier = {
14077 	.notifier_call = perf_reboot,
14078 	.priority = INT_MIN,
14079 };
14080 
14081 void __init perf_event_init(void)
14082 {
14083 	int ret;
14084 
14085 	idr_init(&pmu_idr);
14086 
14087 	perf_event_init_all_cpus();
14088 	init_srcu_struct(&pmus_srcu);
14089 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14090 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14091 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14092 	perf_tp_register();
14093 	perf_event_init_cpu(smp_processor_id());
14094 	register_reboot_notifier(&perf_reboot_notifier);
14095 
14096 	ret = init_hw_breakpoint();
14097 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14098 
14099 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14100 
14101 	/*
14102 	 * Build time assertion that we keep the data_head at the intended
14103 	 * location.  IOW, validation we got the __reserved[] size right.
14104 	 */
14105 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14106 		     != 1024);
14107 }
14108 
14109 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14110 			      char *page)
14111 {
14112 	struct perf_pmu_events_attr *pmu_attr =
14113 		container_of(attr, struct perf_pmu_events_attr, attr);
14114 
14115 	if (pmu_attr->event_str)
14116 		return sprintf(page, "%s\n", pmu_attr->event_str);
14117 
14118 	return 0;
14119 }
14120 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14121 
14122 static int __init perf_event_sysfs_init(void)
14123 {
14124 	struct pmu *pmu;
14125 	int ret;
14126 
14127 	mutex_lock(&pmus_lock);
14128 
14129 	ret = bus_register(&pmu_bus);
14130 	if (ret)
14131 		goto unlock;
14132 
14133 	list_for_each_entry(pmu, &pmus, entry) {
14134 		if (pmu->dev)
14135 			continue;
14136 
14137 		ret = pmu_dev_alloc(pmu);
14138 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14139 	}
14140 	pmu_bus_running = 1;
14141 	ret = 0;
14142 
14143 unlock:
14144 	mutex_unlock(&pmus_lock);
14145 
14146 	return ret;
14147 }
14148 device_initcall(perf_event_sysfs_init);
14149 
14150 #ifdef CONFIG_CGROUP_PERF
14151 static struct cgroup_subsys_state *
14152 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14153 {
14154 	struct perf_cgroup *jc;
14155 
14156 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14157 	if (!jc)
14158 		return ERR_PTR(-ENOMEM);
14159 
14160 	jc->info = alloc_percpu(struct perf_cgroup_info);
14161 	if (!jc->info) {
14162 		kfree(jc);
14163 		return ERR_PTR(-ENOMEM);
14164 	}
14165 
14166 	return &jc->css;
14167 }
14168 
14169 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14170 {
14171 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14172 
14173 	free_percpu(jc->info);
14174 	kfree(jc);
14175 }
14176 
14177 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14178 {
14179 	perf_event_cgroup(css->cgroup);
14180 	return 0;
14181 }
14182 
14183 static int __perf_cgroup_move(void *info)
14184 {
14185 	struct task_struct *task = info;
14186 
14187 	preempt_disable();
14188 	perf_cgroup_switch(task);
14189 	preempt_enable();
14190 
14191 	return 0;
14192 }
14193 
14194 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14195 {
14196 	struct task_struct *task;
14197 	struct cgroup_subsys_state *css;
14198 
14199 	cgroup_taskset_for_each(task, css, tset)
14200 		task_function_call(task, __perf_cgroup_move, task);
14201 }
14202 
14203 struct cgroup_subsys perf_event_cgrp_subsys = {
14204 	.css_alloc	= perf_cgroup_css_alloc,
14205 	.css_free	= perf_cgroup_css_free,
14206 	.css_online	= perf_cgroup_css_online,
14207 	.attach		= perf_cgroup_attach,
14208 	/*
14209 	 * Implicitly enable on dfl hierarchy so that perf events can
14210 	 * always be filtered by cgroup2 path as long as perf_event
14211 	 * controller is not mounted on a legacy hierarchy.
14212 	 */
14213 	.implicit_on_dfl = true,
14214 	.threaded	= true,
14215 };
14216 #endif /* CONFIG_CGROUP_PERF */
14217 
14218 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14219