1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/suspend.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 41 #include "internal.h" 42 43 #include <asm/irq_regs.h> 44 45 struct remote_function_call { 46 struct task_struct *p; 47 int (*func)(void *info); 48 void *info; 49 int ret; 50 }; 51 52 static void remote_function(void *data) 53 { 54 struct remote_function_call *tfc = data; 55 struct task_struct *p = tfc->p; 56 57 if (p) { 58 tfc->ret = -EAGAIN; 59 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 60 return; 61 } 62 63 tfc->ret = tfc->func(tfc->info); 64 } 65 66 /** 67 * task_function_call - call a function on the cpu on which a task runs 68 * @p: the task to evaluate 69 * @func: the function to be called 70 * @info: the function call argument 71 * 72 * Calls the function @func when the task is currently running. This might 73 * be on the current CPU, which just calls the function directly 74 * 75 * returns: @func return value, or 76 * -ESRCH - when the process isn't running 77 * -EAGAIN - when the process moved away 78 */ 79 static int 80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 81 { 82 struct remote_function_call data = { 83 .p = p, 84 .func = func, 85 .info = info, 86 .ret = -ESRCH, /* No such (running) process */ 87 }; 88 89 if (task_curr(p)) 90 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 91 92 return data.ret; 93 } 94 95 /** 96 * cpu_function_call - call a function on the cpu 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func on the remote cpu. 101 * 102 * returns: @func return value or -ENXIO when the cpu is offline 103 */ 104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 105 { 106 struct remote_function_call data = { 107 .p = NULL, 108 .func = func, 109 .info = info, 110 .ret = -ENXIO, /* No such CPU */ 111 }; 112 113 smp_call_function_single(cpu, remote_function, &data, 1); 114 115 return data.ret; 116 } 117 118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 119 PERF_FLAG_FD_OUTPUT |\ 120 PERF_FLAG_PID_CGROUP) 121 122 enum event_type_t { 123 EVENT_FLEXIBLE = 0x1, 124 EVENT_PINNED = 0x2, 125 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 126 }; 127 128 /* 129 * perf_sched_events : >0 events exist 130 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 131 */ 132 struct jump_label_key perf_sched_events __read_mostly; 133 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 134 135 static atomic_t nr_mmap_events __read_mostly; 136 static atomic_t nr_comm_events __read_mostly; 137 static atomic_t nr_task_events __read_mostly; 138 139 static LIST_HEAD(pmus); 140 static DEFINE_MUTEX(pmus_lock); 141 static struct srcu_struct pmus_srcu; 142 143 /* 144 * perf event paranoia level: 145 * -1 - not paranoid at all 146 * 0 - disallow raw tracepoint access for unpriv 147 * 1 - disallow cpu events for unpriv 148 * 2 - disallow kernel profiling for unpriv 149 */ 150 int sysctl_perf_event_paranoid __read_mostly = 1; 151 152 /* Minimum for 512 kiB + 1 user control page */ 153 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 154 155 /* 156 * max perf event sample rate 157 */ 158 #define DEFAULT_MAX_SAMPLE_RATE 100000 159 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 160 static int max_samples_per_tick __read_mostly = 161 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 162 163 int perf_proc_update_handler(struct ctl_table *table, int write, 164 void __user *buffer, size_t *lenp, 165 loff_t *ppos) 166 { 167 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 168 169 if (ret || !write) 170 return ret; 171 172 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 173 174 return 0; 175 } 176 177 static atomic64_t perf_event_id; 178 179 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 180 enum event_type_t event_type); 181 182 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 183 enum event_type_t event_type, 184 struct task_struct *task); 185 186 static void update_context_time(struct perf_event_context *ctx); 187 static u64 perf_event_time(struct perf_event *event); 188 189 void __weak perf_event_print_debug(void) { } 190 191 extern __weak const char *perf_pmu_name(void) 192 { 193 return "pmu"; 194 } 195 196 static inline u64 perf_clock(void) 197 { 198 return local_clock(); 199 } 200 201 static inline struct perf_cpu_context * 202 __get_cpu_context(struct perf_event_context *ctx) 203 { 204 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 205 } 206 207 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 208 struct perf_event_context *ctx) 209 { 210 raw_spin_lock(&cpuctx->ctx.lock); 211 if (ctx) 212 raw_spin_lock(&ctx->lock); 213 } 214 215 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 216 struct perf_event_context *ctx) 217 { 218 if (ctx) 219 raw_spin_unlock(&ctx->lock); 220 raw_spin_unlock(&cpuctx->ctx.lock); 221 } 222 223 #ifdef CONFIG_CGROUP_PERF 224 225 /* 226 * Must ensure cgroup is pinned (css_get) before calling 227 * this function. In other words, we cannot call this function 228 * if there is no cgroup event for the current CPU context. 229 */ 230 static inline struct perf_cgroup * 231 perf_cgroup_from_task(struct task_struct *task) 232 { 233 return container_of(task_subsys_state(task, perf_subsys_id), 234 struct perf_cgroup, css); 235 } 236 237 static inline bool 238 perf_cgroup_match(struct perf_event *event) 239 { 240 struct perf_event_context *ctx = event->ctx; 241 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 242 243 return !event->cgrp || event->cgrp == cpuctx->cgrp; 244 } 245 246 static inline void perf_get_cgroup(struct perf_event *event) 247 { 248 css_get(&event->cgrp->css); 249 } 250 251 static inline void perf_put_cgroup(struct perf_event *event) 252 { 253 css_put(&event->cgrp->css); 254 } 255 256 static inline void perf_detach_cgroup(struct perf_event *event) 257 { 258 perf_put_cgroup(event); 259 event->cgrp = NULL; 260 } 261 262 static inline int is_cgroup_event(struct perf_event *event) 263 { 264 return event->cgrp != NULL; 265 } 266 267 static inline u64 perf_cgroup_event_time(struct perf_event *event) 268 { 269 struct perf_cgroup_info *t; 270 271 t = per_cpu_ptr(event->cgrp->info, event->cpu); 272 return t->time; 273 } 274 275 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 276 { 277 struct perf_cgroup_info *info; 278 u64 now; 279 280 now = perf_clock(); 281 282 info = this_cpu_ptr(cgrp->info); 283 284 info->time += now - info->timestamp; 285 info->timestamp = now; 286 } 287 288 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 289 { 290 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 291 if (cgrp_out) 292 __update_cgrp_time(cgrp_out); 293 } 294 295 static inline void update_cgrp_time_from_event(struct perf_event *event) 296 { 297 struct perf_cgroup *cgrp; 298 299 /* 300 * ensure we access cgroup data only when needed and 301 * when we know the cgroup is pinned (css_get) 302 */ 303 if (!is_cgroup_event(event)) 304 return; 305 306 cgrp = perf_cgroup_from_task(current); 307 /* 308 * Do not update time when cgroup is not active 309 */ 310 if (cgrp == event->cgrp) 311 __update_cgrp_time(event->cgrp); 312 } 313 314 static inline void 315 perf_cgroup_set_timestamp(struct task_struct *task, 316 struct perf_event_context *ctx) 317 { 318 struct perf_cgroup *cgrp; 319 struct perf_cgroup_info *info; 320 321 /* 322 * ctx->lock held by caller 323 * ensure we do not access cgroup data 324 * unless we have the cgroup pinned (css_get) 325 */ 326 if (!task || !ctx->nr_cgroups) 327 return; 328 329 cgrp = perf_cgroup_from_task(task); 330 info = this_cpu_ptr(cgrp->info); 331 info->timestamp = ctx->timestamp; 332 } 333 334 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 335 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 336 337 /* 338 * reschedule events based on the cgroup constraint of task. 339 * 340 * mode SWOUT : schedule out everything 341 * mode SWIN : schedule in based on cgroup for next 342 */ 343 void perf_cgroup_switch(struct task_struct *task, int mode) 344 { 345 struct perf_cpu_context *cpuctx; 346 struct pmu *pmu; 347 unsigned long flags; 348 349 /* 350 * disable interrupts to avoid geting nr_cgroup 351 * changes via __perf_event_disable(). Also 352 * avoids preemption. 353 */ 354 local_irq_save(flags); 355 356 /* 357 * we reschedule only in the presence of cgroup 358 * constrained events. 359 */ 360 rcu_read_lock(); 361 362 list_for_each_entry_rcu(pmu, &pmus, entry) { 363 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 364 365 /* 366 * perf_cgroup_events says at least one 367 * context on this CPU has cgroup events. 368 * 369 * ctx->nr_cgroups reports the number of cgroup 370 * events for a context. 371 */ 372 if (cpuctx->ctx.nr_cgroups > 0) { 373 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 374 perf_pmu_disable(cpuctx->ctx.pmu); 375 376 if (mode & PERF_CGROUP_SWOUT) { 377 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 378 /* 379 * must not be done before ctxswout due 380 * to event_filter_match() in event_sched_out() 381 */ 382 cpuctx->cgrp = NULL; 383 } 384 385 if (mode & PERF_CGROUP_SWIN) { 386 WARN_ON_ONCE(cpuctx->cgrp); 387 /* set cgrp before ctxsw in to 388 * allow event_filter_match() to not 389 * have to pass task around 390 */ 391 cpuctx->cgrp = perf_cgroup_from_task(task); 392 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 393 } 394 perf_pmu_enable(cpuctx->ctx.pmu); 395 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 396 } 397 } 398 399 rcu_read_unlock(); 400 401 local_irq_restore(flags); 402 } 403 404 static inline void perf_cgroup_sched_out(struct task_struct *task, 405 struct task_struct *next) 406 { 407 struct perf_cgroup *cgrp1; 408 struct perf_cgroup *cgrp2 = NULL; 409 410 /* 411 * we come here when we know perf_cgroup_events > 0 412 */ 413 cgrp1 = perf_cgroup_from_task(task); 414 415 /* 416 * next is NULL when called from perf_event_enable_on_exec() 417 * that will systematically cause a cgroup_switch() 418 */ 419 if (next) 420 cgrp2 = perf_cgroup_from_task(next); 421 422 /* 423 * only schedule out current cgroup events if we know 424 * that we are switching to a different cgroup. Otherwise, 425 * do no touch the cgroup events. 426 */ 427 if (cgrp1 != cgrp2) 428 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 429 } 430 431 static inline void perf_cgroup_sched_in(struct task_struct *prev, 432 struct task_struct *task) 433 { 434 struct perf_cgroup *cgrp1; 435 struct perf_cgroup *cgrp2 = NULL; 436 437 /* 438 * we come here when we know perf_cgroup_events > 0 439 */ 440 cgrp1 = perf_cgroup_from_task(task); 441 442 /* prev can never be NULL */ 443 cgrp2 = perf_cgroup_from_task(prev); 444 445 /* 446 * only need to schedule in cgroup events if we are changing 447 * cgroup during ctxsw. Cgroup events were not scheduled 448 * out of ctxsw out if that was not the case. 449 */ 450 if (cgrp1 != cgrp2) 451 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 452 } 453 454 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 455 struct perf_event_attr *attr, 456 struct perf_event *group_leader) 457 { 458 struct perf_cgroup *cgrp; 459 struct cgroup_subsys_state *css; 460 struct file *file; 461 int ret = 0, fput_needed; 462 463 file = fget_light(fd, &fput_needed); 464 if (!file) 465 return -EBADF; 466 467 css = cgroup_css_from_dir(file, perf_subsys_id); 468 if (IS_ERR(css)) { 469 ret = PTR_ERR(css); 470 goto out; 471 } 472 473 cgrp = container_of(css, struct perf_cgroup, css); 474 event->cgrp = cgrp; 475 476 /* must be done before we fput() the file */ 477 perf_get_cgroup(event); 478 479 /* 480 * all events in a group must monitor 481 * the same cgroup because a task belongs 482 * to only one perf cgroup at a time 483 */ 484 if (group_leader && group_leader->cgrp != cgrp) { 485 perf_detach_cgroup(event); 486 ret = -EINVAL; 487 } 488 out: 489 fput_light(file, fput_needed); 490 return ret; 491 } 492 493 static inline void 494 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 495 { 496 struct perf_cgroup_info *t; 497 t = per_cpu_ptr(event->cgrp->info, event->cpu); 498 event->shadow_ctx_time = now - t->timestamp; 499 } 500 501 static inline void 502 perf_cgroup_defer_enabled(struct perf_event *event) 503 { 504 /* 505 * when the current task's perf cgroup does not match 506 * the event's, we need to remember to call the 507 * perf_mark_enable() function the first time a task with 508 * a matching perf cgroup is scheduled in. 509 */ 510 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 511 event->cgrp_defer_enabled = 1; 512 } 513 514 static inline void 515 perf_cgroup_mark_enabled(struct perf_event *event, 516 struct perf_event_context *ctx) 517 { 518 struct perf_event *sub; 519 u64 tstamp = perf_event_time(event); 520 521 if (!event->cgrp_defer_enabled) 522 return; 523 524 event->cgrp_defer_enabled = 0; 525 526 event->tstamp_enabled = tstamp - event->total_time_enabled; 527 list_for_each_entry(sub, &event->sibling_list, group_entry) { 528 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 529 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 530 sub->cgrp_defer_enabled = 0; 531 } 532 } 533 } 534 #else /* !CONFIG_CGROUP_PERF */ 535 536 static inline bool 537 perf_cgroup_match(struct perf_event *event) 538 { 539 return true; 540 } 541 542 static inline void perf_detach_cgroup(struct perf_event *event) 543 {} 544 545 static inline int is_cgroup_event(struct perf_event *event) 546 { 547 return 0; 548 } 549 550 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 551 { 552 return 0; 553 } 554 555 static inline void update_cgrp_time_from_event(struct perf_event *event) 556 { 557 } 558 559 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 560 { 561 } 562 563 static inline void perf_cgroup_sched_out(struct task_struct *task, 564 struct task_struct *next) 565 { 566 } 567 568 static inline void perf_cgroup_sched_in(struct task_struct *prev, 569 struct task_struct *task) 570 { 571 } 572 573 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 574 struct perf_event_attr *attr, 575 struct perf_event *group_leader) 576 { 577 return -EINVAL; 578 } 579 580 static inline void 581 perf_cgroup_set_timestamp(struct task_struct *task, 582 struct perf_event_context *ctx) 583 { 584 } 585 586 void 587 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 588 { 589 } 590 591 static inline void 592 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 593 { 594 } 595 596 static inline u64 perf_cgroup_event_time(struct perf_event *event) 597 { 598 return 0; 599 } 600 601 static inline void 602 perf_cgroup_defer_enabled(struct perf_event *event) 603 { 604 } 605 606 static inline void 607 perf_cgroup_mark_enabled(struct perf_event *event, 608 struct perf_event_context *ctx) 609 { 610 } 611 #endif 612 613 void perf_pmu_disable(struct pmu *pmu) 614 { 615 int *count = this_cpu_ptr(pmu->pmu_disable_count); 616 if (!(*count)++) 617 pmu->pmu_disable(pmu); 618 } 619 620 void perf_pmu_enable(struct pmu *pmu) 621 { 622 int *count = this_cpu_ptr(pmu->pmu_disable_count); 623 if (!--(*count)) 624 pmu->pmu_enable(pmu); 625 } 626 627 static DEFINE_PER_CPU(struct list_head, rotation_list); 628 629 /* 630 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 631 * because they're strictly cpu affine and rotate_start is called with IRQs 632 * disabled, while rotate_context is called from IRQ context. 633 */ 634 static void perf_pmu_rotate_start(struct pmu *pmu) 635 { 636 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 637 struct list_head *head = &__get_cpu_var(rotation_list); 638 639 WARN_ON(!irqs_disabled()); 640 641 if (list_empty(&cpuctx->rotation_list)) 642 list_add(&cpuctx->rotation_list, head); 643 } 644 645 static void get_ctx(struct perf_event_context *ctx) 646 { 647 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 648 } 649 650 static void put_ctx(struct perf_event_context *ctx) 651 { 652 if (atomic_dec_and_test(&ctx->refcount)) { 653 if (ctx->parent_ctx) 654 put_ctx(ctx->parent_ctx); 655 if (ctx->task) 656 put_task_struct(ctx->task); 657 kfree_rcu(ctx, rcu_head); 658 } 659 } 660 661 static void unclone_ctx(struct perf_event_context *ctx) 662 { 663 if (ctx->parent_ctx) { 664 put_ctx(ctx->parent_ctx); 665 ctx->parent_ctx = NULL; 666 } 667 } 668 669 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 670 { 671 /* 672 * only top level events have the pid namespace they were created in 673 */ 674 if (event->parent) 675 event = event->parent; 676 677 return task_tgid_nr_ns(p, event->ns); 678 } 679 680 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 681 { 682 /* 683 * only top level events have the pid namespace they were created in 684 */ 685 if (event->parent) 686 event = event->parent; 687 688 return task_pid_nr_ns(p, event->ns); 689 } 690 691 /* 692 * If we inherit events we want to return the parent event id 693 * to userspace. 694 */ 695 static u64 primary_event_id(struct perf_event *event) 696 { 697 u64 id = event->id; 698 699 if (event->parent) 700 id = event->parent->id; 701 702 return id; 703 } 704 705 /* 706 * Get the perf_event_context for a task and lock it. 707 * This has to cope with with the fact that until it is locked, 708 * the context could get moved to another task. 709 */ 710 static struct perf_event_context * 711 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 712 { 713 struct perf_event_context *ctx; 714 715 rcu_read_lock(); 716 retry: 717 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 718 if (ctx) { 719 /* 720 * If this context is a clone of another, it might 721 * get swapped for another underneath us by 722 * perf_event_task_sched_out, though the 723 * rcu_read_lock() protects us from any context 724 * getting freed. Lock the context and check if it 725 * got swapped before we could get the lock, and retry 726 * if so. If we locked the right context, then it 727 * can't get swapped on us any more. 728 */ 729 raw_spin_lock_irqsave(&ctx->lock, *flags); 730 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 731 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 732 goto retry; 733 } 734 735 if (!atomic_inc_not_zero(&ctx->refcount)) { 736 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 737 ctx = NULL; 738 } 739 } 740 rcu_read_unlock(); 741 return ctx; 742 } 743 744 /* 745 * Get the context for a task and increment its pin_count so it 746 * can't get swapped to another task. This also increments its 747 * reference count so that the context can't get freed. 748 */ 749 static struct perf_event_context * 750 perf_pin_task_context(struct task_struct *task, int ctxn) 751 { 752 struct perf_event_context *ctx; 753 unsigned long flags; 754 755 ctx = perf_lock_task_context(task, ctxn, &flags); 756 if (ctx) { 757 ++ctx->pin_count; 758 raw_spin_unlock_irqrestore(&ctx->lock, flags); 759 } 760 return ctx; 761 } 762 763 static void perf_unpin_context(struct perf_event_context *ctx) 764 { 765 unsigned long flags; 766 767 raw_spin_lock_irqsave(&ctx->lock, flags); 768 --ctx->pin_count; 769 raw_spin_unlock_irqrestore(&ctx->lock, flags); 770 } 771 772 /* 773 * Update the record of the current time in a context. 774 */ 775 static void update_context_time(struct perf_event_context *ctx) 776 { 777 u64 now = perf_clock(); 778 779 ctx->time += now - ctx->timestamp; 780 ctx->timestamp = now; 781 } 782 783 static u64 perf_event_time(struct perf_event *event) 784 { 785 struct perf_event_context *ctx = event->ctx; 786 787 if (is_cgroup_event(event)) 788 return perf_cgroup_event_time(event); 789 790 return ctx ? ctx->time : 0; 791 } 792 793 /* 794 * Update the total_time_enabled and total_time_running fields for a event. 795 * The caller of this function needs to hold the ctx->lock. 796 */ 797 static void update_event_times(struct perf_event *event) 798 { 799 struct perf_event_context *ctx = event->ctx; 800 u64 run_end; 801 802 if (event->state < PERF_EVENT_STATE_INACTIVE || 803 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 804 return; 805 /* 806 * in cgroup mode, time_enabled represents 807 * the time the event was enabled AND active 808 * tasks were in the monitored cgroup. This is 809 * independent of the activity of the context as 810 * there may be a mix of cgroup and non-cgroup events. 811 * 812 * That is why we treat cgroup events differently 813 * here. 814 */ 815 if (is_cgroup_event(event)) 816 run_end = perf_event_time(event); 817 else if (ctx->is_active) 818 run_end = ctx->time; 819 else 820 run_end = event->tstamp_stopped; 821 822 event->total_time_enabled = run_end - event->tstamp_enabled; 823 824 if (event->state == PERF_EVENT_STATE_INACTIVE) 825 run_end = event->tstamp_stopped; 826 else 827 run_end = perf_event_time(event); 828 829 event->total_time_running = run_end - event->tstamp_running; 830 831 } 832 833 /* 834 * Update total_time_enabled and total_time_running for all events in a group. 835 */ 836 static void update_group_times(struct perf_event *leader) 837 { 838 struct perf_event *event; 839 840 update_event_times(leader); 841 list_for_each_entry(event, &leader->sibling_list, group_entry) 842 update_event_times(event); 843 } 844 845 static struct list_head * 846 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 847 { 848 if (event->attr.pinned) 849 return &ctx->pinned_groups; 850 else 851 return &ctx->flexible_groups; 852 } 853 854 /* 855 * Add a event from the lists for its context. 856 * Must be called with ctx->mutex and ctx->lock held. 857 */ 858 static void 859 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 860 { 861 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 862 event->attach_state |= PERF_ATTACH_CONTEXT; 863 864 /* 865 * If we're a stand alone event or group leader, we go to the context 866 * list, group events are kept attached to the group so that 867 * perf_group_detach can, at all times, locate all siblings. 868 */ 869 if (event->group_leader == event) { 870 struct list_head *list; 871 872 if (is_software_event(event)) 873 event->group_flags |= PERF_GROUP_SOFTWARE; 874 875 list = ctx_group_list(event, ctx); 876 list_add_tail(&event->group_entry, list); 877 } 878 879 if (is_cgroup_event(event)) 880 ctx->nr_cgroups++; 881 882 list_add_rcu(&event->event_entry, &ctx->event_list); 883 if (!ctx->nr_events) 884 perf_pmu_rotate_start(ctx->pmu); 885 ctx->nr_events++; 886 if (event->attr.inherit_stat) 887 ctx->nr_stat++; 888 } 889 890 /* 891 * Called at perf_event creation and when events are attached/detached from a 892 * group. 893 */ 894 static void perf_event__read_size(struct perf_event *event) 895 { 896 int entry = sizeof(u64); /* value */ 897 int size = 0; 898 int nr = 1; 899 900 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 901 size += sizeof(u64); 902 903 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 904 size += sizeof(u64); 905 906 if (event->attr.read_format & PERF_FORMAT_ID) 907 entry += sizeof(u64); 908 909 if (event->attr.read_format & PERF_FORMAT_GROUP) { 910 nr += event->group_leader->nr_siblings; 911 size += sizeof(u64); 912 } 913 914 size += entry * nr; 915 event->read_size = size; 916 } 917 918 static void perf_event__header_size(struct perf_event *event) 919 { 920 struct perf_sample_data *data; 921 u64 sample_type = event->attr.sample_type; 922 u16 size = 0; 923 924 perf_event__read_size(event); 925 926 if (sample_type & PERF_SAMPLE_IP) 927 size += sizeof(data->ip); 928 929 if (sample_type & PERF_SAMPLE_ADDR) 930 size += sizeof(data->addr); 931 932 if (sample_type & PERF_SAMPLE_PERIOD) 933 size += sizeof(data->period); 934 935 if (sample_type & PERF_SAMPLE_READ) 936 size += event->read_size; 937 938 event->header_size = size; 939 } 940 941 static void perf_event__id_header_size(struct perf_event *event) 942 { 943 struct perf_sample_data *data; 944 u64 sample_type = event->attr.sample_type; 945 u16 size = 0; 946 947 if (sample_type & PERF_SAMPLE_TID) 948 size += sizeof(data->tid_entry); 949 950 if (sample_type & PERF_SAMPLE_TIME) 951 size += sizeof(data->time); 952 953 if (sample_type & PERF_SAMPLE_ID) 954 size += sizeof(data->id); 955 956 if (sample_type & PERF_SAMPLE_STREAM_ID) 957 size += sizeof(data->stream_id); 958 959 if (sample_type & PERF_SAMPLE_CPU) 960 size += sizeof(data->cpu_entry); 961 962 event->id_header_size = size; 963 } 964 965 static void perf_group_attach(struct perf_event *event) 966 { 967 struct perf_event *group_leader = event->group_leader, *pos; 968 969 /* 970 * We can have double attach due to group movement in perf_event_open. 971 */ 972 if (event->attach_state & PERF_ATTACH_GROUP) 973 return; 974 975 event->attach_state |= PERF_ATTACH_GROUP; 976 977 if (group_leader == event) 978 return; 979 980 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 981 !is_software_event(event)) 982 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 983 984 list_add_tail(&event->group_entry, &group_leader->sibling_list); 985 group_leader->nr_siblings++; 986 987 perf_event__header_size(group_leader); 988 989 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 990 perf_event__header_size(pos); 991 } 992 993 /* 994 * Remove a event from the lists for its context. 995 * Must be called with ctx->mutex and ctx->lock held. 996 */ 997 static void 998 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 999 { 1000 struct perf_cpu_context *cpuctx; 1001 /* 1002 * We can have double detach due to exit/hot-unplug + close. 1003 */ 1004 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1005 return; 1006 1007 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1008 1009 if (is_cgroup_event(event)) { 1010 ctx->nr_cgroups--; 1011 cpuctx = __get_cpu_context(ctx); 1012 /* 1013 * if there are no more cgroup events 1014 * then cler cgrp to avoid stale pointer 1015 * in update_cgrp_time_from_cpuctx() 1016 */ 1017 if (!ctx->nr_cgroups) 1018 cpuctx->cgrp = NULL; 1019 } 1020 1021 ctx->nr_events--; 1022 if (event->attr.inherit_stat) 1023 ctx->nr_stat--; 1024 1025 list_del_rcu(&event->event_entry); 1026 1027 if (event->group_leader == event) 1028 list_del_init(&event->group_entry); 1029 1030 update_group_times(event); 1031 1032 /* 1033 * If event was in error state, then keep it 1034 * that way, otherwise bogus counts will be 1035 * returned on read(). The only way to get out 1036 * of error state is by explicit re-enabling 1037 * of the event 1038 */ 1039 if (event->state > PERF_EVENT_STATE_OFF) 1040 event->state = PERF_EVENT_STATE_OFF; 1041 } 1042 1043 static void perf_group_detach(struct perf_event *event) 1044 { 1045 struct perf_event *sibling, *tmp; 1046 struct list_head *list = NULL; 1047 1048 /* 1049 * We can have double detach due to exit/hot-unplug + close. 1050 */ 1051 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1052 return; 1053 1054 event->attach_state &= ~PERF_ATTACH_GROUP; 1055 1056 /* 1057 * If this is a sibling, remove it from its group. 1058 */ 1059 if (event->group_leader != event) { 1060 list_del_init(&event->group_entry); 1061 event->group_leader->nr_siblings--; 1062 goto out; 1063 } 1064 1065 if (!list_empty(&event->group_entry)) 1066 list = &event->group_entry; 1067 1068 /* 1069 * If this was a group event with sibling events then 1070 * upgrade the siblings to singleton events by adding them 1071 * to whatever list we are on. 1072 */ 1073 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1074 if (list) 1075 list_move_tail(&sibling->group_entry, list); 1076 sibling->group_leader = sibling; 1077 1078 /* Inherit group flags from the previous leader */ 1079 sibling->group_flags = event->group_flags; 1080 } 1081 1082 out: 1083 perf_event__header_size(event->group_leader); 1084 1085 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1086 perf_event__header_size(tmp); 1087 } 1088 1089 static inline int 1090 event_filter_match(struct perf_event *event) 1091 { 1092 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1093 && perf_cgroup_match(event); 1094 } 1095 1096 static void 1097 event_sched_out(struct perf_event *event, 1098 struct perf_cpu_context *cpuctx, 1099 struct perf_event_context *ctx) 1100 { 1101 u64 tstamp = perf_event_time(event); 1102 u64 delta; 1103 /* 1104 * An event which could not be activated because of 1105 * filter mismatch still needs to have its timings 1106 * maintained, otherwise bogus information is return 1107 * via read() for time_enabled, time_running: 1108 */ 1109 if (event->state == PERF_EVENT_STATE_INACTIVE 1110 && !event_filter_match(event)) { 1111 delta = tstamp - event->tstamp_stopped; 1112 event->tstamp_running += delta; 1113 event->tstamp_stopped = tstamp; 1114 } 1115 1116 if (event->state != PERF_EVENT_STATE_ACTIVE) 1117 return; 1118 1119 event->state = PERF_EVENT_STATE_INACTIVE; 1120 if (event->pending_disable) { 1121 event->pending_disable = 0; 1122 event->state = PERF_EVENT_STATE_OFF; 1123 } 1124 event->tstamp_stopped = tstamp; 1125 event->pmu->del(event, 0); 1126 event->oncpu = -1; 1127 1128 if (!is_software_event(event)) 1129 cpuctx->active_oncpu--; 1130 ctx->nr_active--; 1131 if (event->attr.exclusive || !cpuctx->active_oncpu) 1132 cpuctx->exclusive = 0; 1133 } 1134 1135 static void 1136 group_sched_out(struct perf_event *group_event, 1137 struct perf_cpu_context *cpuctx, 1138 struct perf_event_context *ctx) 1139 { 1140 struct perf_event *event; 1141 int state = group_event->state; 1142 1143 event_sched_out(group_event, cpuctx, ctx); 1144 1145 /* 1146 * Schedule out siblings (if any): 1147 */ 1148 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1149 event_sched_out(event, cpuctx, ctx); 1150 1151 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1152 cpuctx->exclusive = 0; 1153 } 1154 1155 /* 1156 * Cross CPU call to remove a performance event 1157 * 1158 * We disable the event on the hardware level first. After that we 1159 * remove it from the context list. 1160 */ 1161 static int __perf_remove_from_context(void *info) 1162 { 1163 struct perf_event *event = info; 1164 struct perf_event_context *ctx = event->ctx; 1165 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1166 1167 raw_spin_lock(&ctx->lock); 1168 event_sched_out(event, cpuctx, ctx); 1169 list_del_event(event, ctx); 1170 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1171 ctx->is_active = 0; 1172 cpuctx->task_ctx = NULL; 1173 } 1174 raw_spin_unlock(&ctx->lock); 1175 1176 return 0; 1177 } 1178 1179 1180 /* 1181 * Remove the event from a task's (or a CPU's) list of events. 1182 * 1183 * CPU events are removed with a smp call. For task events we only 1184 * call when the task is on a CPU. 1185 * 1186 * If event->ctx is a cloned context, callers must make sure that 1187 * every task struct that event->ctx->task could possibly point to 1188 * remains valid. This is OK when called from perf_release since 1189 * that only calls us on the top-level context, which can't be a clone. 1190 * When called from perf_event_exit_task, it's OK because the 1191 * context has been detached from its task. 1192 */ 1193 static void perf_remove_from_context(struct perf_event *event) 1194 { 1195 struct perf_event_context *ctx = event->ctx; 1196 struct task_struct *task = ctx->task; 1197 1198 lockdep_assert_held(&ctx->mutex); 1199 1200 if (!task) { 1201 /* 1202 * Per cpu events are removed via an smp call and 1203 * the removal is always successful. 1204 */ 1205 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1206 return; 1207 } 1208 1209 retry: 1210 if (!task_function_call(task, __perf_remove_from_context, event)) 1211 return; 1212 1213 raw_spin_lock_irq(&ctx->lock); 1214 /* 1215 * If we failed to find a running task, but find the context active now 1216 * that we've acquired the ctx->lock, retry. 1217 */ 1218 if (ctx->is_active) { 1219 raw_spin_unlock_irq(&ctx->lock); 1220 goto retry; 1221 } 1222 1223 /* 1224 * Since the task isn't running, its safe to remove the event, us 1225 * holding the ctx->lock ensures the task won't get scheduled in. 1226 */ 1227 list_del_event(event, ctx); 1228 raw_spin_unlock_irq(&ctx->lock); 1229 } 1230 1231 /* 1232 * Cross CPU call to disable a performance event 1233 */ 1234 static int __perf_event_disable(void *info) 1235 { 1236 struct perf_event *event = info; 1237 struct perf_event_context *ctx = event->ctx; 1238 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1239 1240 /* 1241 * If this is a per-task event, need to check whether this 1242 * event's task is the current task on this cpu. 1243 * 1244 * Can trigger due to concurrent perf_event_context_sched_out() 1245 * flipping contexts around. 1246 */ 1247 if (ctx->task && cpuctx->task_ctx != ctx) 1248 return -EINVAL; 1249 1250 raw_spin_lock(&ctx->lock); 1251 1252 /* 1253 * If the event is on, turn it off. 1254 * If it is in error state, leave it in error state. 1255 */ 1256 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1257 update_context_time(ctx); 1258 update_cgrp_time_from_event(event); 1259 update_group_times(event); 1260 if (event == event->group_leader) 1261 group_sched_out(event, cpuctx, ctx); 1262 else 1263 event_sched_out(event, cpuctx, ctx); 1264 event->state = PERF_EVENT_STATE_OFF; 1265 } 1266 1267 raw_spin_unlock(&ctx->lock); 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Disable a event. 1274 * 1275 * If event->ctx is a cloned context, callers must make sure that 1276 * every task struct that event->ctx->task could possibly point to 1277 * remains valid. This condition is satisifed when called through 1278 * perf_event_for_each_child or perf_event_for_each because they 1279 * hold the top-level event's child_mutex, so any descendant that 1280 * goes to exit will block in sync_child_event. 1281 * When called from perf_pending_event it's OK because event->ctx 1282 * is the current context on this CPU and preemption is disabled, 1283 * hence we can't get into perf_event_task_sched_out for this context. 1284 */ 1285 void perf_event_disable(struct perf_event *event) 1286 { 1287 struct perf_event_context *ctx = event->ctx; 1288 struct task_struct *task = ctx->task; 1289 1290 if (!task) { 1291 /* 1292 * Disable the event on the cpu that it's on 1293 */ 1294 cpu_function_call(event->cpu, __perf_event_disable, event); 1295 return; 1296 } 1297 1298 retry: 1299 if (!task_function_call(task, __perf_event_disable, event)) 1300 return; 1301 1302 raw_spin_lock_irq(&ctx->lock); 1303 /* 1304 * If the event is still active, we need to retry the cross-call. 1305 */ 1306 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1307 raw_spin_unlock_irq(&ctx->lock); 1308 /* 1309 * Reload the task pointer, it might have been changed by 1310 * a concurrent perf_event_context_sched_out(). 1311 */ 1312 task = ctx->task; 1313 goto retry; 1314 } 1315 1316 /* 1317 * Since we have the lock this context can't be scheduled 1318 * in, so we can change the state safely. 1319 */ 1320 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1321 update_group_times(event); 1322 event->state = PERF_EVENT_STATE_OFF; 1323 } 1324 raw_spin_unlock_irq(&ctx->lock); 1325 } 1326 1327 static void perf_set_shadow_time(struct perf_event *event, 1328 struct perf_event_context *ctx, 1329 u64 tstamp) 1330 { 1331 /* 1332 * use the correct time source for the time snapshot 1333 * 1334 * We could get by without this by leveraging the 1335 * fact that to get to this function, the caller 1336 * has most likely already called update_context_time() 1337 * and update_cgrp_time_xx() and thus both timestamp 1338 * are identical (or very close). Given that tstamp is, 1339 * already adjusted for cgroup, we could say that: 1340 * tstamp - ctx->timestamp 1341 * is equivalent to 1342 * tstamp - cgrp->timestamp. 1343 * 1344 * Then, in perf_output_read(), the calculation would 1345 * work with no changes because: 1346 * - event is guaranteed scheduled in 1347 * - no scheduled out in between 1348 * - thus the timestamp would be the same 1349 * 1350 * But this is a bit hairy. 1351 * 1352 * So instead, we have an explicit cgroup call to remain 1353 * within the time time source all along. We believe it 1354 * is cleaner and simpler to understand. 1355 */ 1356 if (is_cgroup_event(event)) 1357 perf_cgroup_set_shadow_time(event, tstamp); 1358 else 1359 event->shadow_ctx_time = tstamp - ctx->timestamp; 1360 } 1361 1362 #define MAX_INTERRUPTS (~0ULL) 1363 1364 static void perf_log_throttle(struct perf_event *event, int enable); 1365 1366 static int 1367 event_sched_in(struct perf_event *event, 1368 struct perf_cpu_context *cpuctx, 1369 struct perf_event_context *ctx) 1370 { 1371 u64 tstamp = perf_event_time(event); 1372 1373 if (event->state <= PERF_EVENT_STATE_OFF) 1374 return 0; 1375 1376 event->state = PERF_EVENT_STATE_ACTIVE; 1377 event->oncpu = smp_processor_id(); 1378 1379 /* 1380 * Unthrottle events, since we scheduled we might have missed several 1381 * ticks already, also for a heavily scheduling task there is little 1382 * guarantee it'll get a tick in a timely manner. 1383 */ 1384 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1385 perf_log_throttle(event, 1); 1386 event->hw.interrupts = 0; 1387 } 1388 1389 /* 1390 * The new state must be visible before we turn it on in the hardware: 1391 */ 1392 smp_wmb(); 1393 1394 if (event->pmu->add(event, PERF_EF_START)) { 1395 event->state = PERF_EVENT_STATE_INACTIVE; 1396 event->oncpu = -1; 1397 return -EAGAIN; 1398 } 1399 1400 event->tstamp_running += tstamp - event->tstamp_stopped; 1401 1402 perf_set_shadow_time(event, ctx, tstamp); 1403 1404 if (!is_software_event(event)) 1405 cpuctx->active_oncpu++; 1406 ctx->nr_active++; 1407 1408 if (event->attr.exclusive) 1409 cpuctx->exclusive = 1; 1410 1411 return 0; 1412 } 1413 1414 static int 1415 group_sched_in(struct perf_event *group_event, 1416 struct perf_cpu_context *cpuctx, 1417 struct perf_event_context *ctx) 1418 { 1419 struct perf_event *event, *partial_group = NULL; 1420 struct pmu *pmu = group_event->pmu; 1421 u64 now = ctx->time; 1422 bool simulate = false; 1423 1424 if (group_event->state == PERF_EVENT_STATE_OFF) 1425 return 0; 1426 1427 pmu->start_txn(pmu); 1428 1429 if (event_sched_in(group_event, cpuctx, ctx)) { 1430 pmu->cancel_txn(pmu); 1431 return -EAGAIN; 1432 } 1433 1434 /* 1435 * Schedule in siblings as one group (if any): 1436 */ 1437 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1438 if (event_sched_in(event, cpuctx, ctx)) { 1439 partial_group = event; 1440 goto group_error; 1441 } 1442 } 1443 1444 if (!pmu->commit_txn(pmu)) 1445 return 0; 1446 1447 group_error: 1448 /* 1449 * Groups can be scheduled in as one unit only, so undo any 1450 * partial group before returning: 1451 * The events up to the failed event are scheduled out normally, 1452 * tstamp_stopped will be updated. 1453 * 1454 * The failed events and the remaining siblings need to have 1455 * their timings updated as if they had gone thru event_sched_in() 1456 * and event_sched_out(). This is required to get consistent timings 1457 * across the group. This also takes care of the case where the group 1458 * could never be scheduled by ensuring tstamp_stopped is set to mark 1459 * the time the event was actually stopped, such that time delta 1460 * calculation in update_event_times() is correct. 1461 */ 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1463 if (event == partial_group) 1464 simulate = true; 1465 1466 if (simulate) { 1467 event->tstamp_running += now - event->tstamp_stopped; 1468 event->tstamp_stopped = now; 1469 } else { 1470 event_sched_out(event, cpuctx, ctx); 1471 } 1472 } 1473 event_sched_out(group_event, cpuctx, ctx); 1474 1475 pmu->cancel_txn(pmu); 1476 1477 return -EAGAIN; 1478 } 1479 1480 /* 1481 * Work out whether we can put this event group on the CPU now. 1482 */ 1483 static int group_can_go_on(struct perf_event *event, 1484 struct perf_cpu_context *cpuctx, 1485 int can_add_hw) 1486 { 1487 /* 1488 * Groups consisting entirely of software events can always go on. 1489 */ 1490 if (event->group_flags & PERF_GROUP_SOFTWARE) 1491 return 1; 1492 /* 1493 * If an exclusive group is already on, no other hardware 1494 * events can go on. 1495 */ 1496 if (cpuctx->exclusive) 1497 return 0; 1498 /* 1499 * If this group is exclusive and there are already 1500 * events on the CPU, it can't go on. 1501 */ 1502 if (event->attr.exclusive && cpuctx->active_oncpu) 1503 return 0; 1504 /* 1505 * Otherwise, try to add it if all previous groups were able 1506 * to go on. 1507 */ 1508 return can_add_hw; 1509 } 1510 1511 static void add_event_to_ctx(struct perf_event *event, 1512 struct perf_event_context *ctx) 1513 { 1514 u64 tstamp = perf_event_time(event); 1515 1516 list_add_event(event, ctx); 1517 perf_group_attach(event); 1518 event->tstamp_enabled = tstamp; 1519 event->tstamp_running = tstamp; 1520 event->tstamp_stopped = tstamp; 1521 } 1522 1523 static void task_ctx_sched_out(struct perf_event_context *ctx); 1524 static void 1525 ctx_sched_in(struct perf_event_context *ctx, 1526 struct perf_cpu_context *cpuctx, 1527 enum event_type_t event_type, 1528 struct task_struct *task); 1529 1530 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1531 struct perf_event_context *ctx, 1532 struct task_struct *task) 1533 { 1534 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1535 if (ctx) 1536 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1537 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1538 if (ctx) 1539 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1540 } 1541 1542 /* 1543 * Cross CPU call to install and enable a performance event 1544 * 1545 * Must be called with ctx->mutex held 1546 */ 1547 static int __perf_install_in_context(void *info) 1548 { 1549 struct perf_event *event = info; 1550 struct perf_event_context *ctx = event->ctx; 1551 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1552 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1553 struct task_struct *task = current; 1554 1555 perf_ctx_lock(cpuctx, task_ctx); 1556 perf_pmu_disable(cpuctx->ctx.pmu); 1557 1558 /* 1559 * If there was an active task_ctx schedule it out. 1560 */ 1561 if (task_ctx) 1562 task_ctx_sched_out(task_ctx); 1563 1564 /* 1565 * If the context we're installing events in is not the 1566 * active task_ctx, flip them. 1567 */ 1568 if (ctx->task && task_ctx != ctx) { 1569 if (task_ctx) 1570 raw_spin_unlock(&task_ctx->lock); 1571 raw_spin_lock(&ctx->lock); 1572 task_ctx = ctx; 1573 } 1574 1575 if (task_ctx) { 1576 cpuctx->task_ctx = task_ctx; 1577 task = task_ctx->task; 1578 } 1579 1580 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1581 1582 update_context_time(ctx); 1583 /* 1584 * update cgrp time only if current cgrp 1585 * matches event->cgrp. Must be done before 1586 * calling add_event_to_ctx() 1587 */ 1588 update_cgrp_time_from_event(event); 1589 1590 add_event_to_ctx(event, ctx); 1591 1592 /* 1593 * Schedule everything back in 1594 */ 1595 perf_event_sched_in(cpuctx, task_ctx, task); 1596 1597 perf_pmu_enable(cpuctx->ctx.pmu); 1598 perf_ctx_unlock(cpuctx, task_ctx); 1599 1600 return 0; 1601 } 1602 1603 /* 1604 * Attach a performance event to a context 1605 * 1606 * First we add the event to the list with the hardware enable bit 1607 * in event->hw_config cleared. 1608 * 1609 * If the event is attached to a task which is on a CPU we use a smp 1610 * call to enable it in the task context. The task might have been 1611 * scheduled away, but we check this in the smp call again. 1612 */ 1613 static void 1614 perf_install_in_context(struct perf_event_context *ctx, 1615 struct perf_event *event, 1616 int cpu) 1617 { 1618 struct task_struct *task = ctx->task; 1619 1620 lockdep_assert_held(&ctx->mutex); 1621 1622 event->ctx = ctx; 1623 1624 if (!task) { 1625 /* 1626 * Per cpu events are installed via an smp call and 1627 * the install is always successful. 1628 */ 1629 cpu_function_call(cpu, __perf_install_in_context, event); 1630 return; 1631 } 1632 1633 retry: 1634 if (!task_function_call(task, __perf_install_in_context, event)) 1635 return; 1636 1637 raw_spin_lock_irq(&ctx->lock); 1638 /* 1639 * If we failed to find a running task, but find the context active now 1640 * that we've acquired the ctx->lock, retry. 1641 */ 1642 if (ctx->is_active) { 1643 raw_spin_unlock_irq(&ctx->lock); 1644 goto retry; 1645 } 1646 1647 /* 1648 * Since the task isn't running, its safe to add the event, us holding 1649 * the ctx->lock ensures the task won't get scheduled in. 1650 */ 1651 add_event_to_ctx(event, ctx); 1652 raw_spin_unlock_irq(&ctx->lock); 1653 } 1654 1655 /* 1656 * Put a event into inactive state and update time fields. 1657 * Enabling the leader of a group effectively enables all 1658 * the group members that aren't explicitly disabled, so we 1659 * have to update their ->tstamp_enabled also. 1660 * Note: this works for group members as well as group leaders 1661 * since the non-leader members' sibling_lists will be empty. 1662 */ 1663 static void __perf_event_mark_enabled(struct perf_event *event, 1664 struct perf_event_context *ctx) 1665 { 1666 struct perf_event *sub; 1667 u64 tstamp = perf_event_time(event); 1668 1669 event->state = PERF_EVENT_STATE_INACTIVE; 1670 event->tstamp_enabled = tstamp - event->total_time_enabled; 1671 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1672 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1673 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1674 } 1675 } 1676 1677 /* 1678 * Cross CPU call to enable a performance event 1679 */ 1680 static int __perf_event_enable(void *info) 1681 { 1682 struct perf_event *event = info; 1683 struct perf_event_context *ctx = event->ctx; 1684 struct perf_event *leader = event->group_leader; 1685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1686 int err; 1687 1688 if (WARN_ON_ONCE(!ctx->is_active)) 1689 return -EINVAL; 1690 1691 raw_spin_lock(&ctx->lock); 1692 update_context_time(ctx); 1693 1694 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1695 goto unlock; 1696 1697 /* 1698 * set current task's cgroup time reference point 1699 */ 1700 perf_cgroup_set_timestamp(current, ctx); 1701 1702 __perf_event_mark_enabled(event, ctx); 1703 1704 if (!event_filter_match(event)) { 1705 if (is_cgroup_event(event)) 1706 perf_cgroup_defer_enabled(event); 1707 goto unlock; 1708 } 1709 1710 /* 1711 * If the event is in a group and isn't the group leader, 1712 * then don't put it on unless the group is on. 1713 */ 1714 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1715 goto unlock; 1716 1717 if (!group_can_go_on(event, cpuctx, 1)) { 1718 err = -EEXIST; 1719 } else { 1720 if (event == leader) 1721 err = group_sched_in(event, cpuctx, ctx); 1722 else 1723 err = event_sched_in(event, cpuctx, ctx); 1724 } 1725 1726 if (err) { 1727 /* 1728 * If this event can't go on and it's part of a 1729 * group, then the whole group has to come off. 1730 */ 1731 if (leader != event) 1732 group_sched_out(leader, cpuctx, ctx); 1733 if (leader->attr.pinned) { 1734 update_group_times(leader); 1735 leader->state = PERF_EVENT_STATE_ERROR; 1736 } 1737 } 1738 1739 unlock: 1740 raw_spin_unlock(&ctx->lock); 1741 1742 return 0; 1743 } 1744 1745 /* 1746 * Enable a event. 1747 * 1748 * If event->ctx is a cloned context, callers must make sure that 1749 * every task struct that event->ctx->task could possibly point to 1750 * remains valid. This condition is satisfied when called through 1751 * perf_event_for_each_child or perf_event_for_each as described 1752 * for perf_event_disable. 1753 */ 1754 void perf_event_enable(struct perf_event *event) 1755 { 1756 struct perf_event_context *ctx = event->ctx; 1757 struct task_struct *task = ctx->task; 1758 1759 if (!task) { 1760 /* 1761 * Enable the event on the cpu that it's on 1762 */ 1763 cpu_function_call(event->cpu, __perf_event_enable, event); 1764 return; 1765 } 1766 1767 raw_spin_lock_irq(&ctx->lock); 1768 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1769 goto out; 1770 1771 /* 1772 * If the event is in error state, clear that first. 1773 * That way, if we see the event in error state below, we 1774 * know that it has gone back into error state, as distinct 1775 * from the task having been scheduled away before the 1776 * cross-call arrived. 1777 */ 1778 if (event->state == PERF_EVENT_STATE_ERROR) 1779 event->state = PERF_EVENT_STATE_OFF; 1780 1781 retry: 1782 if (!ctx->is_active) { 1783 __perf_event_mark_enabled(event, ctx); 1784 goto out; 1785 } 1786 1787 raw_spin_unlock_irq(&ctx->lock); 1788 1789 if (!task_function_call(task, __perf_event_enable, event)) 1790 return; 1791 1792 raw_spin_lock_irq(&ctx->lock); 1793 1794 /* 1795 * If the context is active and the event is still off, 1796 * we need to retry the cross-call. 1797 */ 1798 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1799 /* 1800 * task could have been flipped by a concurrent 1801 * perf_event_context_sched_out() 1802 */ 1803 task = ctx->task; 1804 goto retry; 1805 } 1806 1807 out: 1808 raw_spin_unlock_irq(&ctx->lock); 1809 } 1810 1811 int perf_event_refresh(struct perf_event *event, int refresh) 1812 { 1813 /* 1814 * not supported on inherited events 1815 */ 1816 if (event->attr.inherit || !is_sampling_event(event)) 1817 return -EINVAL; 1818 1819 atomic_add(refresh, &event->event_limit); 1820 perf_event_enable(event); 1821 1822 return 0; 1823 } 1824 EXPORT_SYMBOL_GPL(perf_event_refresh); 1825 1826 static void ctx_sched_out(struct perf_event_context *ctx, 1827 struct perf_cpu_context *cpuctx, 1828 enum event_type_t event_type) 1829 { 1830 struct perf_event *event; 1831 int is_active = ctx->is_active; 1832 1833 ctx->is_active &= ~event_type; 1834 if (likely(!ctx->nr_events)) 1835 return; 1836 1837 update_context_time(ctx); 1838 update_cgrp_time_from_cpuctx(cpuctx); 1839 if (!ctx->nr_active) 1840 return; 1841 1842 perf_pmu_disable(ctx->pmu); 1843 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1844 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1845 group_sched_out(event, cpuctx, ctx); 1846 } 1847 1848 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1849 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1850 group_sched_out(event, cpuctx, ctx); 1851 } 1852 perf_pmu_enable(ctx->pmu); 1853 } 1854 1855 /* 1856 * Test whether two contexts are equivalent, i.e. whether they 1857 * have both been cloned from the same version of the same context 1858 * and they both have the same number of enabled events. 1859 * If the number of enabled events is the same, then the set 1860 * of enabled events should be the same, because these are both 1861 * inherited contexts, therefore we can't access individual events 1862 * in them directly with an fd; we can only enable/disable all 1863 * events via prctl, or enable/disable all events in a family 1864 * via ioctl, which will have the same effect on both contexts. 1865 */ 1866 static int context_equiv(struct perf_event_context *ctx1, 1867 struct perf_event_context *ctx2) 1868 { 1869 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1870 && ctx1->parent_gen == ctx2->parent_gen 1871 && !ctx1->pin_count && !ctx2->pin_count; 1872 } 1873 1874 static void __perf_event_sync_stat(struct perf_event *event, 1875 struct perf_event *next_event) 1876 { 1877 u64 value; 1878 1879 if (!event->attr.inherit_stat) 1880 return; 1881 1882 /* 1883 * Update the event value, we cannot use perf_event_read() 1884 * because we're in the middle of a context switch and have IRQs 1885 * disabled, which upsets smp_call_function_single(), however 1886 * we know the event must be on the current CPU, therefore we 1887 * don't need to use it. 1888 */ 1889 switch (event->state) { 1890 case PERF_EVENT_STATE_ACTIVE: 1891 event->pmu->read(event); 1892 /* fall-through */ 1893 1894 case PERF_EVENT_STATE_INACTIVE: 1895 update_event_times(event); 1896 break; 1897 1898 default: 1899 break; 1900 } 1901 1902 /* 1903 * In order to keep per-task stats reliable we need to flip the event 1904 * values when we flip the contexts. 1905 */ 1906 value = local64_read(&next_event->count); 1907 value = local64_xchg(&event->count, value); 1908 local64_set(&next_event->count, value); 1909 1910 swap(event->total_time_enabled, next_event->total_time_enabled); 1911 swap(event->total_time_running, next_event->total_time_running); 1912 1913 /* 1914 * Since we swizzled the values, update the user visible data too. 1915 */ 1916 perf_event_update_userpage(event); 1917 perf_event_update_userpage(next_event); 1918 } 1919 1920 #define list_next_entry(pos, member) \ 1921 list_entry(pos->member.next, typeof(*pos), member) 1922 1923 static void perf_event_sync_stat(struct perf_event_context *ctx, 1924 struct perf_event_context *next_ctx) 1925 { 1926 struct perf_event *event, *next_event; 1927 1928 if (!ctx->nr_stat) 1929 return; 1930 1931 update_context_time(ctx); 1932 1933 event = list_first_entry(&ctx->event_list, 1934 struct perf_event, event_entry); 1935 1936 next_event = list_first_entry(&next_ctx->event_list, 1937 struct perf_event, event_entry); 1938 1939 while (&event->event_entry != &ctx->event_list && 1940 &next_event->event_entry != &next_ctx->event_list) { 1941 1942 __perf_event_sync_stat(event, next_event); 1943 1944 event = list_next_entry(event, event_entry); 1945 next_event = list_next_entry(next_event, event_entry); 1946 } 1947 } 1948 1949 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1950 struct task_struct *next) 1951 { 1952 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1953 struct perf_event_context *next_ctx; 1954 struct perf_event_context *parent; 1955 struct perf_cpu_context *cpuctx; 1956 int do_switch = 1; 1957 1958 if (likely(!ctx)) 1959 return; 1960 1961 cpuctx = __get_cpu_context(ctx); 1962 if (!cpuctx->task_ctx) 1963 return; 1964 1965 rcu_read_lock(); 1966 parent = rcu_dereference(ctx->parent_ctx); 1967 next_ctx = next->perf_event_ctxp[ctxn]; 1968 if (parent && next_ctx && 1969 rcu_dereference(next_ctx->parent_ctx) == parent) { 1970 /* 1971 * Looks like the two contexts are clones, so we might be 1972 * able to optimize the context switch. We lock both 1973 * contexts and check that they are clones under the 1974 * lock (including re-checking that neither has been 1975 * uncloned in the meantime). It doesn't matter which 1976 * order we take the locks because no other cpu could 1977 * be trying to lock both of these tasks. 1978 */ 1979 raw_spin_lock(&ctx->lock); 1980 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1981 if (context_equiv(ctx, next_ctx)) { 1982 /* 1983 * XXX do we need a memory barrier of sorts 1984 * wrt to rcu_dereference() of perf_event_ctxp 1985 */ 1986 task->perf_event_ctxp[ctxn] = next_ctx; 1987 next->perf_event_ctxp[ctxn] = ctx; 1988 ctx->task = next; 1989 next_ctx->task = task; 1990 do_switch = 0; 1991 1992 perf_event_sync_stat(ctx, next_ctx); 1993 } 1994 raw_spin_unlock(&next_ctx->lock); 1995 raw_spin_unlock(&ctx->lock); 1996 } 1997 rcu_read_unlock(); 1998 1999 if (do_switch) { 2000 raw_spin_lock(&ctx->lock); 2001 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2002 cpuctx->task_ctx = NULL; 2003 raw_spin_unlock(&ctx->lock); 2004 } 2005 } 2006 2007 #define for_each_task_context_nr(ctxn) \ 2008 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2009 2010 /* 2011 * Called from scheduler to remove the events of the current task, 2012 * with interrupts disabled. 2013 * 2014 * We stop each event and update the event value in event->count. 2015 * 2016 * This does not protect us against NMI, but disable() 2017 * sets the disabled bit in the control field of event _before_ 2018 * accessing the event control register. If a NMI hits, then it will 2019 * not restart the event. 2020 */ 2021 void __perf_event_task_sched_out(struct task_struct *task, 2022 struct task_struct *next) 2023 { 2024 int ctxn; 2025 2026 for_each_task_context_nr(ctxn) 2027 perf_event_context_sched_out(task, ctxn, next); 2028 2029 /* 2030 * if cgroup events exist on this CPU, then we need 2031 * to check if we have to switch out PMU state. 2032 * cgroup event are system-wide mode only 2033 */ 2034 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2035 perf_cgroup_sched_out(task, next); 2036 } 2037 2038 static void task_ctx_sched_out(struct perf_event_context *ctx) 2039 { 2040 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2041 2042 if (!cpuctx->task_ctx) 2043 return; 2044 2045 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2046 return; 2047 2048 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2049 cpuctx->task_ctx = NULL; 2050 } 2051 2052 /* 2053 * Called with IRQs disabled 2054 */ 2055 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2056 enum event_type_t event_type) 2057 { 2058 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2059 } 2060 2061 static void 2062 ctx_pinned_sched_in(struct perf_event_context *ctx, 2063 struct perf_cpu_context *cpuctx) 2064 { 2065 struct perf_event *event; 2066 2067 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2068 if (event->state <= PERF_EVENT_STATE_OFF) 2069 continue; 2070 if (!event_filter_match(event)) 2071 continue; 2072 2073 /* may need to reset tstamp_enabled */ 2074 if (is_cgroup_event(event)) 2075 perf_cgroup_mark_enabled(event, ctx); 2076 2077 if (group_can_go_on(event, cpuctx, 1)) 2078 group_sched_in(event, cpuctx, ctx); 2079 2080 /* 2081 * If this pinned group hasn't been scheduled, 2082 * put it in error state. 2083 */ 2084 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2085 update_group_times(event); 2086 event->state = PERF_EVENT_STATE_ERROR; 2087 } 2088 } 2089 } 2090 2091 static void 2092 ctx_flexible_sched_in(struct perf_event_context *ctx, 2093 struct perf_cpu_context *cpuctx) 2094 { 2095 struct perf_event *event; 2096 int can_add_hw = 1; 2097 2098 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2099 /* Ignore events in OFF or ERROR state */ 2100 if (event->state <= PERF_EVENT_STATE_OFF) 2101 continue; 2102 /* 2103 * Listen to the 'cpu' scheduling filter constraint 2104 * of events: 2105 */ 2106 if (!event_filter_match(event)) 2107 continue; 2108 2109 /* may need to reset tstamp_enabled */ 2110 if (is_cgroup_event(event)) 2111 perf_cgroup_mark_enabled(event, ctx); 2112 2113 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2114 if (group_sched_in(event, cpuctx, ctx)) 2115 can_add_hw = 0; 2116 } 2117 } 2118 } 2119 2120 static void 2121 ctx_sched_in(struct perf_event_context *ctx, 2122 struct perf_cpu_context *cpuctx, 2123 enum event_type_t event_type, 2124 struct task_struct *task) 2125 { 2126 u64 now; 2127 int is_active = ctx->is_active; 2128 2129 ctx->is_active |= event_type; 2130 if (likely(!ctx->nr_events)) 2131 return; 2132 2133 now = perf_clock(); 2134 ctx->timestamp = now; 2135 perf_cgroup_set_timestamp(task, ctx); 2136 /* 2137 * First go through the list and put on any pinned groups 2138 * in order to give them the best chance of going on. 2139 */ 2140 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2141 ctx_pinned_sched_in(ctx, cpuctx); 2142 2143 /* Then walk through the lower prio flexible groups */ 2144 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2145 ctx_flexible_sched_in(ctx, cpuctx); 2146 } 2147 2148 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2149 enum event_type_t event_type, 2150 struct task_struct *task) 2151 { 2152 struct perf_event_context *ctx = &cpuctx->ctx; 2153 2154 ctx_sched_in(ctx, cpuctx, event_type, task); 2155 } 2156 2157 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2158 struct task_struct *task) 2159 { 2160 struct perf_cpu_context *cpuctx; 2161 2162 cpuctx = __get_cpu_context(ctx); 2163 if (cpuctx->task_ctx == ctx) 2164 return; 2165 2166 perf_ctx_lock(cpuctx, ctx); 2167 perf_pmu_disable(ctx->pmu); 2168 /* 2169 * We want to keep the following priority order: 2170 * cpu pinned (that don't need to move), task pinned, 2171 * cpu flexible, task flexible. 2172 */ 2173 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2174 2175 perf_event_sched_in(cpuctx, ctx, task); 2176 2177 cpuctx->task_ctx = ctx; 2178 2179 perf_pmu_enable(ctx->pmu); 2180 perf_ctx_unlock(cpuctx, ctx); 2181 2182 /* 2183 * Since these rotations are per-cpu, we need to ensure the 2184 * cpu-context we got scheduled on is actually rotating. 2185 */ 2186 perf_pmu_rotate_start(ctx->pmu); 2187 } 2188 2189 /* 2190 * Called from scheduler to add the events of the current task 2191 * with interrupts disabled. 2192 * 2193 * We restore the event value and then enable it. 2194 * 2195 * This does not protect us against NMI, but enable() 2196 * sets the enabled bit in the control field of event _before_ 2197 * accessing the event control register. If a NMI hits, then it will 2198 * keep the event running. 2199 */ 2200 void __perf_event_task_sched_in(struct task_struct *prev, 2201 struct task_struct *task) 2202 { 2203 struct perf_event_context *ctx; 2204 int ctxn; 2205 2206 for_each_task_context_nr(ctxn) { 2207 ctx = task->perf_event_ctxp[ctxn]; 2208 if (likely(!ctx)) 2209 continue; 2210 2211 perf_event_context_sched_in(ctx, task); 2212 } 2213 /* 2214 * if cgroup events exist on this CPU, then we need 2215 * to check if we have to switch in PMU state. 2216 * cgroup event are system-wide mode only 2217 */ 2218 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2219 perf_cgroup_sched_in(prev, task); 2220 } 2221 2222 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2223 { 2224 u64 frequency = event->attr.sample_freq; 2225 u64 sec = NSEC_PER_SEC; 2226 u64 divisor, dividend; 2227 2228 int count_fls, nsec_fls, frequency_fls, sec_fls; 2229 2230 count_fls = fls64(count); 2231 nsec_fls = fls64(nsec); 2232 frequency_fls = fls64(frequency); 2233 sec_fls = 30; 2234 2235 /* 2236 * We got @count in @nsec, with a target of sample_freq HZ 2237 * the target period becomes: 2238 * 2239 * @count * 10^9 2240 * period = ------------------- 2241 * @nsec * sample_freq 2242 * 2243 */ 2244 2245 /* 2246 * Reduce accuracy by one bit such that @a and @b converge 2247 * to a similar magnitude. 2248 */ 2249 #define REDUCE_FLS(a, b) \ 2250 do { \ 2251 if (a##_fls > b##_fls) { \ 2252 a >>= 1; \ 2253 a##_fls--; \ 2254 } else { \ 2255 b >>= 1; \ 2256 b##_fls--; \ 2257 } \ 2258 } while (0) 2259 2260 /* 2261 * Reduce accuracy until either term fits in a u64, then proceed with 2262 * the other, so that finally we can do a u64/u64 division. 2263 */ 2264 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2265 REDUCE_FLS(nsec, frequency); 2266 REDUCE_FLS(sec, count); 2267 } 2268 2269 if (count_fls + sec_fls > 64) { 2270 divisor = nsec * frequency; 2271 2272 while (count_fls + sec_fls > 64) { 2273 REDUCE_FLS(count, sec); 2274 divisor >>= 1; 2275 } 2276 2277 dividend = count * sec; 2278 } else { 2279 dividend = count * sec; 2280 2281 while (nsec_fls + frequency_fls > 64) { 2282 REDUCE_FLS(nsec, frequency); 2283 dividend >>= 1; 2284 } 2285 2286 divisor = nsec * frequency; 2287 } 2288 2289 if (!divisor) 2290 return dividend; 2291 2292 return div64_u64(dividend, divisor); 2293 } 2294 2295 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2296 { 2297 struct hw_perf_event *hwc = &event->hw; 2298 s64 period, sample_period; 2299 s64 delta; 2300 2301 period = perf_calculate_period(event, nsec, count); 2302 2303 delta = (s64)(period - hwc->sample_period); 2304 delta = (delta + 7) / 8; /* low pass filter */ 2305 2306 sample_period = hwc->sample_period + delta; 2307 2308 if (!sample_period) 2309 sample_period = 1; 2310 2311 hwc->sample_period = sample_period; 2312 2313 if (local64_read(&hwc->period_left) > 8*sample_period) { 2314 event->pmu->stop(event, PERF_EF_UPDATE); 2315 local64_set(&hwc->period_left, 0); 2316 event->pmu->start(event, PERF_EF_RELOAD); 2317 } 2318 } 2319 2320 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2321 { 2322 struct perf_event *event; 2323 struct hw_perf_event *hwc; 2324 u64 interrupts, now; 2325 s64 delta; 2326 2327 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2328 if (event->state != PERF_EVENT_STATE_ACTIVE) 2329 continue; 2330 2331 if (!event_filter_match(event)) 2332 continue; 2333 2334 hwc = &event->hw; 2335 2336 interrupts = hwc->interrupts; 2337 hwc->interrupts = 0; 2338 2339 /* 2340 * unthrottle events on the tick 2341 */ 2342 if (interrupts == MAX_INTERRUPTS) { 2343 perf_log_throttle(event, 1); 2344 event->pmu->start(event, 0); 2345 } 2346 2347 if (!event->attr.freq || !event->attr.sample_freq) 2348 continue; 2349 2350 event->pmu->read(event); 2351 now = local64_read(&event->count); 2352 delta = now - hwc->freq_count_stamp; 2353 hwc->freq_count_stamp = now; 2354 2355 if (delta > 0) 2356 perf_adjust_period(event, period, delta); 2357 } 2358 } 2359 2360 /* 2361 * Round-robin a context's events: 2362 */ 2363 static void rotate_ctx(struct perf_event_context *ctx) 2364 { 2365 /* 2366 * Rotate the first entry last of non-pinned groups. Rotation might be 2367 * disabled by the inheritance code. 2368 */ 2369 if (!ctx->rotate_disable) 2370 list_rotate_left(&ctx->flexible_groups); 2371 } 2372 2373 /* 2374 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2375 * because they're strictly cpu affine and rotate_start is called with IRQs 2376 * disabled, while rotate_context is called from IRQ context. 2377 */ 2378 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2379 { 2380 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2381 struct perf_event_context *ctx = NULL; 2382 int rotate = 0, remove = 1; 2383 2384 if (cpuctx->ctx.nr_events) { 2385 remove = 0; 2386 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2387 rotate = 1; 2388 } 2389 2390 ctx = cpuctx->task_ctx; 2391 if (ctx && ctx->nr_events) { 2392 remove = 0; 2393 if (ctx->nr_events != ctx->nr_active) 2394 rotate = 1; 2395 } 2396 2397 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2398 perf_pmu_disable(cpuctx->ctx.pmu); 2399 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2400 if (ctx) 2401 perf_ctx_adjust_freq(ctx, interval); 2402 2403 if (!rotate) 2404 goto done; 2405 2406 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2407 if (ctx) 2408 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2409 2410 rotate_ctx(&cpuctx->ctx); 2411 if (ctx) 2412 rotate_ctx(ctx); 2413 2414 perf_event_sched_in(cpuctx, ctx, current); 2415 2416 done: 2417 if (remove) 2418 list_del_init(&cpuctx->rotation_list); 2419 2420 perf_pmu_enable(cpuctx->ctx.pmu); 2421 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2422 } 2423 2424 void perf_event_task_tick(void) 2425 { 2426 struct list_head *head = &__get_cpu_var(rotation_list); 2427 struct perf_cpu_context *cpuctx, *tmp; 2428 2429 WARN_ON(!irqs_disabled()); 2430 2431 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2432 if (cpuctx->jiffies_interval == 1 || 2433 !(jiffies % cpuctx->jiffies_interval)) 2434 perf_rotate_context(cpuctx); 2435 } 2436 } 2437 2438 static int event_enable_on_exec(struct perf_event *event, 2439 struct perf_event_context *ctx) 2440 { 2441 if (!event->attr.enable_on_exec) 2442 return 0; 2443 2444 event->attr.enable_on_exec = 0; 2445 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2446 return 0; 2447 2448 __perf_event_mark_enabled(event, ctx); 2449 2450 return 1; 2451 } 2452 2453 /* 2454 * Enable all of a task's events that have been marked enable-on-exec. 2455 * This expects task == current. 2456 */ 2457 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2458 { 2459 struct perf_event *event; 2460 unsigned long flags; 2461 int enabled = 0; 2462 int ret; 2463 2464 local_irq_save(flags); 2465 if (!ctx || !ctx->nr_events) 2466 goto out; 2467 2468 /* 2469 * We must ctxsw out cgroup events to avoid conflict 2470 * when invoking perf_task_event_sched_in() later on 2471 * in this function. Otherwise we end up trying to 2472 * ctxswin cgroup events which are already scheduled 2473 * in. 2474 */ 2475 perf_cgroup_sched_out(current, NULL); 2476 2477 raw_spin_lock(&ctx->lock); 2478 task_ctx_sched_out(ctx); 2479 2480 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2481 ret = event_enable_on_exec(event, ctx); 2482 if (ret) 2483 enabled = 1; 2484 } 2485 2486 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2487 ret = event_enable_on_exec(event, ctx); 2488 if (ret) 2489 enabled = 1; 2490 } 2491 2492 /* 2493 * Unclone this context if we enabled any event. 2494 */ 2495 if (enabled) 2496 unclone_ctx(ctx); 2497 2498 raw_spin_unlock(&ctx->lock); 2499 2500 /* 2501 * Also calls ctxswin for cgroup events, if any: 2502 */ 2503 perf_event_context_sched_in(ctx, ctx->task); 2504 out: 2505 local_irq_restore(flags); 2506 } 2507 2508 /* 2509 * Cross CPU call to read the hardware event 2510 */ 2511 static void __perf_event_read(void *info) 2512 { 2513 struct perf_event *event = info; 2514 struct perf_event_context *ctx = event->ctx; 2515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2516 2517 /* 2518 * If this is a task context, we need to check whether it is 2519 * the current task context of this cpu. If not it has been 2520 * scheduled out before the smp call arrived. In that case 2521 * event->count would have been updated to a recent sample 2522 * when the event was scheduled out. 2523 */ 2524 if (ctx->task && cpuctx->task_ctx != ctx) 2525 return; 2526 2527 raw_spin_lock(&ctx->lock); 2528 if (ctx->is_active) { 2529 update_context_time(ctx); 2530 update_cgrp_time_from_event(event); 2531 } 2532 update_event_times(event); 2533 if (event->state == PERF_EVENT_STATE_ACTIVE) 2534 event->pmu->read(event); 2535 raw_spin_unlock(&ctx->lock); 2536 } 2537 2538 static inline u64 perf_event_count(struct perf_event *event) 2539 { 2540 return local64_read(&event->count) + atomic64_read(&event->child_count); 2541 } 2542 2543 static u64 perf_event_read(struct perf_event *event) 2544 { 2545 /* 2546 * If event is enabled and currently active on a CPU, update the 2547 * value in the event structure: 2548 */ 2549 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2550 smp_call_function_single(event->oncpu, 2551 __perf_event_read, event, 1); 2552 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2553 struct perf_event_context *ctx = event->ctx; 2554 unsigned long flags; 2555 2556 raw_spin_lock_irqsave(&ctx->lock, flags); 2557 /* 2558 * may read while context is not active 2559 * (e.g., thread is blocked), in that case 2560 * we cannot update context time 2561 */ 2562 if (ctx->is_active) { 2563 update_context_time(ctx); 2564 update_cgrp_time_from_event(event); 2565 } 2566 update_event_times(event); 2567 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2568 } 2569 2570 return perf_event_count(event); 2571 } 2572 2573 /* 2574 * Callchain support 2575 */ 2576 2577 struct callchain_cpus_entries { 2578 struct rcu_head rcu_head; 2579 struct perf_callchain_entry *cpu_entries[0]; 2580 }; 2581 2582 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 2583 static atomic_t nr_callchain_events; 2584 static DEFINE_MUTEX(callchain_mutex); 2585 struct callchain_cpus_entries *callchain_cpus_entries; 2586 2587 2588 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, 2589 struct pt_regs *regs) 2590 { 2591 } 2592 2593 __weak void perf_callchain_user(struct perf_callchain_entry *entry, 2594 struct pt_regs *regs) 2595 { 2596 } 2597 2598 static void release_callchain_buffers_rcu(struct rcu_head *head) 2599 { 2600 struct callchain_cpus_entries *entries; 2601 int cpu; 2602 2603 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 2604 2605 for_each_possible_cpu(cpu) 2606 kfree(entries->cpu_entries[cpu]); 2607 2608 kfree(entries); 2609 } 2610 2611 static void release_callchain_buffers(void) 2612 { 2613 struct callchain_cpus_entries *entries; 2614 2615 entries = callchain_cpus_entries; 2616 rcu_assign_pointer(callchain_cpus_entries, NULL); 2617 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 2618 } 2619 2620 static int alloc_callchain_buffers(void) 2621 { 2622 int cpu; 2623 int size; 2624 struct callchain_cpus_entries *entries; 2625 2626 /* 2627 * We can't use the percpu allocation API for data that can be 2628 * accessed from NMI. Use a temporary manual per cpu allocation 2629 * until that gets sorted out. 2630 */ 2631 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 2632 2633 entries = kzalloc(size, GFP_KERNEL); 2634 if (!entries) 2635 return -ENOMEM; 2636 2637 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; 2638 2639 for_each_possible_cpu(cpu) { 2640 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 2641 cpu_to_node(cpu)); 2642 if (!entries->cpu_entries[cpu]) 2643 goto fail; 2644 } 2645 2646 rcu_assign_pointer(callchain_cpus_entries, entries); 2647 2648 return 0; 2649 2650 fail: 2651 for_each_possible_cpu(cpu) 2652 kfree(entries->cpu_entries[cpu]); 2653 kfree(entries); 2654 2655 return -ENOMEM; 2656 } 2657 2658 static int get_callchain_buffers(void) 2659 { 2660 int err = 0; 2661 int count; 2662 2663 mutex_lock(&callchain_mutex); 2664 2665 count = atomic_inc_return(&nr_callchain_events); 2666 if (WARN_ON_ONCE(count < 1)) { 2667 err = -EINVAL; 2668 goto exit; 2669 } 2670 2671 if (count > 1) { 2672 /* If the allocation failed, give up */ 2673 if (!callchain_cpus_entries) 2674 err = -ENOMEM; 2675 goto exit; 2676 } 2677 2678 err = alloc_callchain_buffers(); 2679 if (err) 2680 release_callchain_buffers(); 2681 exit: 2682 mutex_unlock(&callchain_mutex); 2683 2684 return err; 2685 } 2686 2687 static void put_callchain_buffers(void) 2688 { 2689 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 2690 release_callchain_buffers(); 2691 mutex_unlock(&callchain_mutex); 2692 } 2693 } 2694 2695 static int get_recursion_context(int *recursion) 2696 { 2697 int rctx; 2698 2699 if (in_nmi()) 2700 rctx = 3; 2701 else if (in_irq()) 2702 rctx = 2; 2703 else if (in_softirq()) 2704 rctx = 1; 2705 else 2706 rctx = 0; 2707 2708 if (recursion[rctx]) 2709 return -1; 2710 2711 recursion[rctx]++; 2712 barrier(); 2713 2714 return rctx; 2715 } 2716 2717 static inline void put_recursion_context(int *recursion, int rctx) 2718 { 2719 barrier(); 2720 recursion[rctx]--; 2721 } 2722 2723 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 2724 { 2725 int cpu; 2726 struct callchain_cpus_entries *entries; 2727 2728 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); 2729 if (*rctx == -1) 2730 return NULL; 2731 2732 entries = rcu_dereference(callchain_cpus_entries); 2733 if (!entries) 2734 return NULL; 2735 2736 cpu = smp_processor_id(); 2737 2738 return &entries->cpu_entries[cpu][*rctx]; 2739 } 2740 2741 static void 2742 put_callchain_entry(int rctx) 2743 { 2744 put_recursion_context(__get_cpu_var(callchain_recursion), rctx); 2745 } 2746 2747 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) 2748 { 2749 int rctx; 2750 struct perf_callchain_entry *entry; 2751 2752 2753 entry = get_callchain_entry(&rctx); 2754 if (rctx == -1) 2755 return NULL; 2756 2757 if (!entry) 2758 goto exit_put; 2759 2760 entry->nr = 0; 2761 2762 if (!user_mode(regs)) { 2763 perf_callchain_store(entry, PERF_CONTEXT_KERNEL); 2764 perf_callchain_kernel(entry, regs); 2765 if (current->mm) 2766 regs = task_pt_regs(current); 2767 else 2768 regs = NULL; 2769 } 2770 2771 if (regs) { 2772 perf_callchain_store(entry, PERF_CONTEXT_USER); 2773 perf_callchain_user(entry, regs); 2774 } 2775 2776 exit_put: 2777 put_callchain_entry(rctx); 2778 2779 return entry; 2780 } 2781 2782 /* 2783 * Initialize the perf_event context in a task_struct: 2784 */ 2785 static void __perf_event_init_context(struct perf_event_context *ctx) 2786 { 2787 raw_spin_lock_init(&ctx->lock); 2788 mutex_init(&ctx->mutex); 2789 INIT_LIST_HEAD(&ctx->pinned_groups); 2790 INIT_LIST_HEAD(&ctx->flexible_groups); 2791 INIT_LIST_HEAD(&ctx->event_list); 2792 atomic_set(&ctx->refcount, 1); 2793 } 2794 2795 static struct perf_event_context * 2796 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2797 { 2798 struct perf_event_context *ctx; 2799 2800 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2801 if (!ctx) 2802 return NULL; 2803 2804 __perf_event_init_context(ctx); 2805 if (task) { 2806 ctx->task = task; 2807 get_task_struct(task); 2808 } 2809 ctx->pmu = pmu; 2810 2811 return ctx; 2812 } 2813 2814 static struct task_struct * 2815 find_lively_task_by_vpid(pid_t vpid) 2816 { 2817 struct task_struct *task; 2818 int err; 2819 2820 rcu_read_lock(); 2821 if (!vpid) 2822 task = current; 2823 else 2824 task = find_task_by_vpid(vpid); 2825 if (task) 2826 get_task_struct(task); 2827 rcu_read_unlock(); 2828 2829 if (!task) 2830 return ERR_PTR(-ESRCH); 2831 2832 /* Reuse ptrace permission checks for now. */ 2833 err = -EACCES; 2834 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2835 goto errout; 2836 2837 return task; 2838 errout: 2839 put_task_struct(task); 2840 return ERR_PTR(err); 2841 2842 } 2843 2844 /* 2845 * Returns a matching context with refcount and pincount. 2846 */ 2847 static struct perf_event_context * 2848 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2849 { 2850 struct perf_event_context *ctx; 2851 struct perf_cpu_context *cpuctx; 2852 unsigned long flags; 2853 int ctxn, err; 2854 2855 if (!task) { 2856 /* Must be root to operate on a CPU event: */ 2857 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2858 return ERR_PTR(-EACCES); 2859 2860 /* 2861 * We could be clever and allow to attach a event to an 2862 * offline CPU and activate it when the CPU comes up, but 2863 * that's for later. 2864 */ 2865 if (!cpu_online(cpu)) 2866 return ERR_PTR(-ENODEV); 2867 2868 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2869 ctx = &cpuctx->ctx; 2870 get_ctx(ctx); 2871 ++ctx->pin_count; 2872 2873 return ctx; 2874 } 2875 2876 err = -EINVAL; 2877 ctxn = pmu->task_ctx_nr; 2878 if (ctxn < 0) 2879 goto errout; 2880 2881 retry: 2882 ctx = perf_lock_task_context(task, ctxn, &flags); 2883 if (ctx) { 2884 unclone_ctx(ctx); 2885 ++ctx->pin_count; 2886 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2887 } else { 2888 ctx = alloc_perf_context(pmu, task); 2889 err = -ENOMEM; 2890 if (!ctx) 2891 goto errout; 2892 2893 err = 0; 2894 mutex_lock(&task->perf_event_mutex); 2895 /* 2896 * If it has already passed perf_event_exit_task(). 2897 * we must see PF_EXITING, it takes this mutex too. 2898 */ 2899 if (task->flags & PF_EXITING) 2900 err = -ESRCH; 2901 else if (task->perf_event_ctxp[ctxn]) 2902 err = -EAGAIN; 2903 else { 2904 get_ctx(ctx); 2905 ++ctx->pin_count; 2906 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2907 } 2908 mutex_unlock(&task->perf_event_mutex); 2909 2910 if (unlikely(err)) { 2911 put_ctx(ctx); 2912 2913 if (err == -EAGAIN) 2914 goto retry; 2915 goto errout; 2916 } 2917 } 2918 2919 return ctx; 2920 2921 errout: 2922 return ERR_PTR(err); 2923 } 2924 2925 static void perf_event_free_filter(struct perf_event *event); 2926 2927 static void free_event_rcu(struct rcu_head *head) 2928 { 2929 struct perf_event *event; 2930 2931 event = container_of(head, struct perf_event, rcu_head); 2932 if (event->ns) 2933 put_pid_ns(event->ns); 2934 perf_event_free_filter(event); 2935 kfree(event); 2936 } 2937 2938 static void ring_buffer_put(struct ring_buffer *rb); 2939 2940 static void free_event(struct perf_event *event) 2941 { 2942 irq_work_sync(&event->pending); 2943 2944 if (!event->parent) { 2945 if (event->attach_state & PERF_ATTACH_TASK) 2946 jump_label_dec(&perf_sched_events); 2947 if (event->attr.mmap || event->attr.mmap_data) 2948 atomic_dec(&nr_mmap_events); 2949 if (event->attr.comm) 2950 atomic_dec(&nr_comm_events); 2951 if (event->attr.task) 2952 atomic_dec(&nr_task_events); 2953 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2954 put_callchain_buffers(); 2955 if (is_cgroup_event(event)) { 2956 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2957 jump_label_dec(&perf_sched_events); 2958 } 2959 } 2960 2961 if (event->rb) { 2962 ring_buffer_put(event->rb); 2963 event->rb = NULL; 2964 } 2965 2966 if (is_cgroup_event(event)) 2967 perf_detach_cgroup(event); 2968 2969 if (event->destroy) 2970 event->destroy(event); 2971 2972 if (event->ctx) 2973 put_ctx(event->ctx); 2974 2975 call_rcu(&event->rcu_head, free_event_rcu); 2976 } 2977 2978 int perf_event_release_kernel(struct perf_event *event) 2979 { 2980 struct perf_event_context *ctx = event->ctx; 2981 2982 WARN_ON_ONCE(ctx->parent_ctx); 2983 /* 2984 * There are two ways this annotation is useful: 2985 * 2986 * 1) there is a lock recursion from perf_event_exit_task 2987 * see the comment there. 2988 * 2989 * 2) there is a lock-inversion with mmap_sem through 2990 * perf_event_read_group(), which takes faults while 2991 * holding ctx->mutex, however this is called after 2992 * the last filedesc died, so there is no possibility 2993 * to trigger the AB-BA case. 2994 */ 2995 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2996 raw_spin_lock_irq(&ctx->lock); 2997 perf_group_detach(event); 2998 raw_spin_unlock_irq(&ctx->lock); 2999 perf_remove_from_context(event); 3000 mutex_unlock(&ctx->mutex); 3001 3002 free_event(event); 3003 3004 return 0; 3005 } 3006 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3007 3008 /* 3009 * Called when the last reference to the file is gone. 3010 */ 3011 static int perf_release(struct inode *inode, struct file *file) 3012 { 3013 struct perf_event *event = file->private_data; 3014 struct task_struct *owner; 3015 3016 file->private_data = NULL; 3017 3018 rcu_read_lock(); 3019 owner = ACCESS_ONCE(event->owner); 3020 /* 3021 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3022 * !owner it means the list deletion is complete and we can indeed 3023 * free this event, otherwise we need to serialize on 3024 * owner->perf_event_mutex. 3025 */ 3026 smp_read_barrier_depends(); 3027 if (owner) { 3028 /* 3029 * Since delayed_put_task_struct() also drops the last 3030 * task reference we can safely take a new reference 3031 * while holding the rcu_read_lock(). 3032 */ 3033 get_task_struct(owner); 3034 } 3035 rcu_read_unlock(); 3036 3037 if (owner) { 3038 mutex_lock(&owner->perf_event_mutex); 3039 /* 3040 * We have to re-check the event->owner field, if it is cleared 3041 * we raced with perf_event_exit_task(), acquiring the mutex 3042 * ensured they're done, and we can proceed with freeing the 3043 * event. 3044 */ 3045 if (event->owner) 3046 list_del_init(&event->owner_entry); 3047 mutex_unlock(&owner->perf_event_mutex); 3048 put_task_struct(owner); 3049 } 3050 3051 return perf_event_release_kernel(event); 3052 } 3053 3054 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3055 { 3056 struct perf_event *child; 3057 u64 total = 0; 3058 3059 *enabled = 0; 3060 *running = 0; 3061 3062 mutex_lock(&event->child_mutex); 3063 total += perf_event_read(event); 3064 *enabled += event->total_time_enabled + 3065 atomic64_read(&event->child_total_time_enabled); 3066 *running += event->total_time_running + 3067 atomic64_read(&event->child_total_time_running); 3068 3069 list_for_each_entry(child, &event->child_list, child_list) { 3070 total += perf_event_read(child); 3071 *enabled += child->total_time_enabled; 3072 *running += child->total_time_running; 3073 } 3074 mutex_unlock(&event->child_mutex); 3075 3076 return total; 3077 } 3078 EXPORT_SYMBOL_GPL(perf_event_read_value); 3079 3080 static int perf_event_read_group(struct perf_event *event, 3081 u64 read_format, char __user *buf) 3082 { 3083 struct perf_event *leader = event->group_leader, *sub; 3084 int n = 0, size = 0, ret = -EFAULT; 3085 struct perf_event_context *ctx = leader->ctx; 3086 u64 values[5]; 3087 u64 count, enabled, running; 3088 3089 mutex_lock(&ctx->mutex); 3090 count = perf_event_read_value(leader, &enabled, &running); 3091 3092 values[n++] = 1 + leader->nr_siblings; 3093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3094 values[n++] = enabled; 3095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3096 values[n++] = running; 3097 values[n++] = count; 3098 if (read_format & PERF_FORMAT_ID) 3099 values[n++] = primary_event_id(leader); 3100 3101 size = n * sizeof(u64); 3102 3103 if (copy_to_user(buf, values, size)) 3104 goto unlock; 3105 3106 ret = size; 3107 3108 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3109 n = 0; 3110 3111 values[n++] = perf_event_read_value(sub, &enabled, &running); 3112 if (read_format & PERF_FORMAT_ID) 3113 values[n++] = primary_event_id(sub); 3114 3115 size = n * sizeof(u64); 3116 3117 if (copy_to_user(buf + ret, values, size)) { 3118 ret = -EFAULT; 3119 goto unlock; 3120 } 3121 3122 ret += size; 3123 } 3124 unlock: 3125 mutex_unlock(&ctx->mutex); 3126 3127 return ret; 3128 } 3129 3130 static int perf_event_read_one(struct perf_event *event, 3131 u64 read_format, char __user *buf) 3132 { 3133 u64 enabled, running; 3134 u64 values[4]; 3135 int n = 0; 3136 3137 values[n++] = perf_event_read_value(event, &enabled, &running); 3138 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3139 values[n++] = enabled; 3140 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3141 values[n++] = running; 3142 if (read_format & PERF_FORMAT_ID) 3143 values[n++] = primary_event_id(event); 3144 3145 if (copy_to_user(buf, values, n * sizeof(u64))) 3146 return -EFAULT; 3147 3148 return n * sizeof(u64); 3149 } 3150 3151 /* 3152 * Read the performance event - simple non blocking version for now 3153 */ 3154 static ssize_t 3155 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3156 { 3157 u64 read_format = event->attr.read_format; 3158 int ret; 3159 3160 /* 3161 * Return end-of-file for a read on a event that is in 3162 * error state (i.e. because it was pinned but it couldn't be 3163 * scheduled on to the CPU at some point). 3164 */ 3165 if (event->state == PERF_EVENT_STATE_ERROR) 3166 return 0; 3167 3168 if (count < event->read_size) 3169 return -ENOSPC; 3170 3171 WARN_ON_ONCE(event->ctx->parent_ctx); 3172 if (read_format & PERF_FORMAT_GROUP) 3173 ret = perf_event_read_group(event, read_format, buf); 3174 else 3175 ret = perf_event_read_one(event, read_format, buf); 3176 3177 return ret; 3178 } 3179 3180 static ssize_t 3181 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3182 { 3183 struct perf_event *event = file->private_data; 3184 3185 return perf_read_hw(event, buf, count); 3186 } 3187 3188 static unsigned int perf_poll(struct file *file, poll_table *wait) 3189 { 3190 struct perf_event *event = file->private_data; 3191 struct ring_buffer *rb; 3192 unsigned int events = POLL_HUP; 3193 3194 rcu_read_lock(); 3195 rb = rcu_dereference(event->rb); 3196 if (rb) 3197 events = atomic_xchg(&rb->poll, 0); 3198 rcu_read_unlock(); 3199 3200 poll_wait(file, &event->waitq, wait); 3201 3202 return events; 3203 } 3204 3205 static void perf_event_reset(struct perf_event *event) 3206 { 3207 (void)perf_event_read(event); 3208 local64_set(&event->count, 0); 3209 perf_event_update_userpage(event); 3210 } 3211 3212 /* 3213 * Holding the top-level event's child_mutex means that any 3214 * descendant process that has inherited this event will block 3215 * in sync_child_event if it goes to exit, thus satisfying the 3216 * task existence requirements of perf_event_enable/disable. 3217 */ 3218 static void perf_event_for_each_child(struct perf_event *event, 3219 void (*func)(struct perf_event *)) 3220 { 3221 struct perf_event *child; 3222 3223 WARN_ON_ONCE(event->ctx->parent_ctx); 3224 mutex_lock(&event->child_mutex); 3225 func(event); 3226 list_for_each_entry(child, &event->child_list, child_list) 3227 func(child); 3228 mutex_unlock(&event->child_mutex); 3229 } 3230 3231 static void perf_event_for_each(struct perf_event *event, 3232 void (*func)(struct perf_event *)) 3233 { 3234 struct perf_event_context *ctx = event->ctx; 3235 struct perf_event *sibling; 3236 3237 WARN_ON_ONCE(ctx->parent_ctx); 3238 mutex_lock(&ctx->mutex); 3239 event = event->group_leader; 3240 3241 perf_event_for_each_child(event, func); 3242 func(event); 3243 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3244 perf_event_for_each_child(event, func); 3245 mutex_unlock(&ctx->mutex); 3246 } 3247 3248 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3249 { 3250 struct perf_event_context *ctx = event->ctx; 3251 int ret = 0; 3252 u64 value; 3253 3254 if (!is_sampling_event(event)) 3255 return -EINVAL; 3256 3257 if (copy_from_user(&value, arg, sizeof(value))) 3258 return -EFAULT; 3259 3260 if (!value) 3261 return -EINVAL; 3262 3263 raw_spin_lock_irq(&ctx->lock); 3264 if (event->attr.freq) { 3265 if (value > sysctl_perf_event_sample_rate) { 3266 ret = -EINVAL; 3267 goto unlock; 3268 } 3269 3270 event->attr.sample_freq = value; 3271 } else { 3272 event->attr.sample_period = value; 3273 event->hw.sample_period = value; 3274 } 3275 unlock: 3276 raw_spin_unlock_irq(&ctx->lock); 3277 3278 return ret; 3279 } 3280 3281 static const struct file_operations perf_fops; 3282 3283 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3284 { 3285 struct file *file; 3286 3287 file = fget_light(fd, fput_needed); 3288 if (!file) 3289 return ERR_PTR(-EBADF); 3290 3291 if (file->f_op != &perf_fops) { 3292 fput_light(file, *fput_needed); 3293 *fput_needed = 0; 3294 return ERR_PTR(-EBADF); 3295 } 3296 3297 return file->private_data; 3298 } 3299 3300 static int perf_event_set_output(struct perf_event *event, 3301 struct perf_event *output_event); 3302 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3303 3304 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3305 { 3306 struct perf_event *event = file->private_data; 3307 void (*func)(struct perf_event *); 3308 u32 flags = arg; 3309 3310 switch (cmd) { 3311 case PERF_EVENT_IOC_ENABLE: 3312 func = perf_event_enable; 3313 break; 3314 case PERF_EVENT_IOC_DISABLE: 3315 func = perf_event_disable; 3316 break; 3317 case PERF_EVENT_IOC_RESET: 3318 func = perf_event_reset; 3319 break; 3320 3321 case PERF_EVENT_IOC_REFRESH: 3322 return perf_event_refresh(event, arg); 3323 3324 case PERF_EVENT_IOC_PERIOD: 3325 return perf_event_period(event, (u64 __user *)arg); 3326 3327 case PERF_EVENT_IOC_SET_OUTPUT: 3328 { 3329 struct perf_event *output_event = NULL; 3330 int fput_needed = 0; 3331 int ret; 3332 3333 if (arg != -1) { 3334 output_event = perf_fget_light(arg, &fput_needed); 3335 if (IS_ERR(output_event)) 3336 return PTR_ERR(output_event); 3337 } 3338 3339 ret = perf_event_set_output(event, output_event); 3340 if (output_event) 3341 fput_light(output_event->filp, fput_needed); 3342 3343 return ret; 3344 } 3345 3346 case PERF_EVENT_IOC_SET_FILTER: 3347 return perf_event_set_filter(event, (void __user *)arg); 3348 3349 default: 3350 return -ENOTTY; 3351 } 3352 3353 if (flags & PERF_IOC_FLAG_GROUP) 3354 perf_event_for_each(event, func); 3355 else 3356 perf_event_for_each_child(event, func); 3357 3358 return 0; 3359 } 3360 3361 int perf_event_task_enable(void) 3362 { 3363 struct perf_event *event; 3364 3365 mutex_lock(¤t->perf_event_mutex); 3366 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3367 perf_event_for_each_child(event, perf_event_enable); 3368 mutex_unlock(¤t->perf_event_mutex); 3369 3370 return 0; 3371 } 3372 3373 int perf_event_task_disable(void) 3374 { 3375 struct perf_event *event; 3376 3377 mutex_lock(¤t->perf_event_mutex); 3378 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3379 perf_event_for_each_child(event, perf_event_disable); 3380 mutex_unlock(¤t->perf_event_mutex); 3381 3382 return 0; 3383 } 3384 3385 #ifndef PERF_EVENT_INDEX_OFFSET 3386 # define PERF_EVENT_INDEX_OFFSET 0 3387 #endif 3388 3389 static int perf_event_index(struct perf_event *event) 3390 { 3391 if (event->hw.state & PERF_HES_STOPPED) 3392 return 0; 3393 3394 if (event->state != PERF_EVENT_STATE_ACTIVE) 3395 return 0; 3396 3397 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3398 } 3399 3400 static void calc_timer_values(struct perf_event *event, 3401 u64 *enabled, 3402 u64 *running) 3403 { 3404 u64 now, ctx_time; 3405 3406 now = perf_clock(); 3407 ctx_time = event->shadow_ctx_time + now; 3408 *enabled = ctx_time - event->tstamp_enabled; 3409 *running = ctx_time - event->tstamp_running; 3410 } 3411 3412 /* 3413 * Callers need to ensure there can be no nesting of this function, otherwise 3414 * the seqlock logic goes bad. We can not serialize this because the arch 3415 * code calls this from NMI context. 3416 */ 3417 void perf_event_update_userpage(struct perf_event *event) 3418 { 3419 struct perf_event_mmap_page *userpg; 3420 struct ring_buffer *rb; 3421 u64 enabled, running; 3422 3423 rcu_read_lock(); 3424 /* 3425 * compute total_time_enabled, total_time_running 3426 * based on snapshot values taken when the event 3427 * was last scheduled in. 3428 * 3429 * we cannot simply called update_context_time() 3430 * because of locking issue as we can be called in 3431 * NMI context 3432 */ 3433 calc_timer_values(event, &enabled, &running); 3434 rb = rcu_dereference(event->rb); 3435 if (!rb) 3436 goto unlock; 3437 3438 userpg = rb->user_page; 3439 3440 /* 3441 * Disable preemption so as to not let the corresponding user-space 3442 * spin too long if we get preempted. 3443 */ 3444 preempt_disable(); 3445 ++userpg->lock; 3446 barrier(); 3447 userpg->index = perf_event_index(event); 3448 userpg->offset = perf_event_count(event); 3449 if (event->state == PERF_EVENT_STATE_ACTIVE) 3450 userpg->offset -= local64_read(&event->hw.prev_count); 3451 3452 userpg->time_enabled = enabled + 3453 atomic64_read(&event->child_total_time_enabled); 3454 3455 userpg->time_running = running + 3456 atomic64_read(&event->child_total_time_running); 3457 3458 barrier(); 3459 ++userpg->lock; 3460 preempt_enable(); 3461 unlock: 3462 rcu_read_unlock(); 3463 } 3464 3465 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3466 { 3467 struct perf_event *event = vma->vm_file->private_data; 3468 struct ring_buffer *rb; 3469 int ret = VM_FAULT_SIGBUS; 3470 3471 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3472 if (vmf->pgoff == 0) 3473 ret = 0; 3474 return ret; 3475 } 3476 3477 rcu_read_lock(); 3478 rb = rcu_dereference(event->rb); 3479 if (!rb) 3480 goto unlock; 3481 3482 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3483 goto unlock; 3484 3485 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3486 if (!vmf->page) 3487 goto unlock; 3488 3489 get_page(vmf->page); 3490 vmf->page->mapping = vma->vm_file->f_mapping; 3491 vmf->page->index = vmf->pgoff; 3492 3493 ret = 0; 3494 unlock: 3495 rcu_read_unlock(); 3496 3497 return ret; 3498 } 3499 3500 static void rb_free_rcu(struct rcu_head *rcu_head) 3501 { 3502 struct ring_buffer *rb; 3503 3504 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3505 rb_free(rb); 3506 } 3507 3508 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3509 { 3510 struct ring_buffer *rb; 3511 3512 rcu_read_lock(); 3513 rb = rcu_dereference(event->rb); 3514 if (rb) { 3515 if (!atomic_inc_not_zero(&rb->refcount)) 3516 rb = NULL; 3517 } 3518 rcu_read_unlock(); 3519 3520 return rb; 3521 } 3522 3523 static void ring_buffer_put(struct ring_buffer *rb) 3524 { 3525 if (!atomic_dec_and_test(&rb->refcount)) 3526 return; 3527 3528 call_rcu(&rb->rcu_head, rb_free_rcu); 3529 } 3530 3531 static void perf_mmap_open(struct vm_area_struct *vma) 3532 { 3533 struct perf_event *event = vma->vm_file->private_data; 3534 3535 atomic_inc(&event->mmap_count); 3536 } 3537 3538 static void perf_mmap_close(struct vm_area_struct *vma) 3539 { 3540 struct perf_event *event = vma->vm_file->private_data; 3541 3542 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3543 unsigned long size = perf_data_size(event->rb); 3544 struct user_struct *user = event->mmap_user; 3545 struct ring_buffer *rb = event->rb; 3546 3547 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3548 vma->vm_mm->locked_vm -= event->mmap_locked; 3549 rcu_assign_pointer(event->rb, NULL); 3550 mutex_unlock(&event->mmap_mutex); 3551 3552 ring_buffer_put(rb); 3553 free_uid(user); 3554 } 3555 } 3556 3557 static const struct vm_operations_struct perf_mmap_vmops = { 3558 .open = perf_mmap_open, 3559 .close = perf_mmap_close, 3560 .fault = perf_mmap_fault, 3561 .page_mkwrite = perf_mmap_fault, 3562 }; 3563 3564 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3565 { 3566 struct perf_event *event = file->private_data; 3567 unsigned long user_locked, user_lock_limit; 3568 struct user_struct *user = current_user(); 3569 unsigned long locked, lock_limit; 3570 struct ring_buffer *rb; 3571 unsigned long vma_size; 3572 unsigned long nr_pages; 3573 long user_extra, extra; 3574 int ret = 0, flags = 0; 3575 3576 /* 3577 * Don't allow mmap() of inherited per-task counters. This would 3578 * create a performance issue due to all children writing to the 3579 * same rb. 3580 */ 3581 if (event->cpu == -1 && event->attr.inherit) 3582 return -EINVAL; 3583 3584 if (!(vma->vm_flags & VM_SHARED)) 3585 return -EINVAL; 3586 3587 vma_size = vma->vm_end - vma->vm_start; 3588 nr_pages = (vma_size / PAGE_SIZE) - 1; 3589 3590 /* 3591 * If we have rb pages ensure they're a power-of-two number, so we 3592 * can do bitmasks instead of modulo. 3593 */ 3594 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3595 return -EINVAL; 3596 3597 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3598 return -EINVAL; 3599 3600 if (vma->vm_pgoff != 0) 3601 return -EINVAL; 3602 3603 WARN_ON_ONCE(event->ctx->parent_ctx); 3604 mutex_lock(&event->mmap_mutex); 3605 if (event->rb) { 3606 if (event->rb->nr_pages == nr_pages) 3607 atomic_inc(&event->rb->refcount); 3608 else 3609 ret = -EINVAL; 3610 goto unlock; 3611 } 3612 3613 user_extra = nr_pages + 1; 3614 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3615 3616 /* 3617 * Increase the limit linearly with more CPUs: 3618 */ 3619 user_lock_limit *= num_online_cpus(); 3620 3621 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3622 3623 extra = 0; 3624 if (user_locked > user_lock_limit) 3625 extra = user_locked - user_lock_limit; 3626 3627 lock_limit = rlimit(RLIMIT_MEMLOCK); 3628 lock_limit >>= PAGE_SHIFT; 3629 locked = vma->vm_mm->locked_vm + extra; 3630 3631 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3632 !capable(CAP_IPC_LOCK)) { 3633 ret = -EPERM; 3634 goto unlock; 3635 } 3636 3637 WARN_ON(event->rb); 3638 3639 if (vma->vm_flags & VM_WRITE) 3640 flags |= RING_BUFFER_WRITABLE; 3641 3642 rb = rb_alloc(nr_pages, 3643 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3644 event->cpu, flags); 3645 3646 if (!rb) { 3647 ret = -ENOMEM; 3648 goto unlock; 3649 } 3650 rcu_assign_pointer(event->rb, rb); 3651 3652 atomic_long_add(user_extra, &user->locked_vm); 3653 event->mmap_locked = extra; 3654 event->mmap_user = get_current_user(); 3655 vma->vm_mm->locked_vm += event->mmap_locked; 3656 3657 unlock: 3658 if (!ret) 3659 atomic_inc(&event->mmap_count); 3660 mutex_unlock(&event->mmap_mutex); 3661 3662 vma->vm_flags |= VM_RESERVED; 3663 vma->vm_ops = &perf_mmap_vmops; 3664 3665 return ret; 3666 } 3667 3668 static int perf_fasync(int fd, struct file *filp, int on) 3669 { 3670 struct inode *inode = filp->f_path.dentry->d_inode; 3671 struct perf_event *event = filp->private_data; 3672 int retval; 3673 3674 mutex_lock(&inode->i_mutex); 3675 retval = fasync_helper(fd, filp, on, &event->fasync); 3676 mutex_unlock(&inode->i_mutex); 3677 3678 if (retval < 0) 3679 return retval; 3680 3681 return 0; 3682 } 3683 3684 static const struct file_operations perf_fops = { 3685 .llseek = no_llseek, 3686 .release = perf_release, 3687 .read = perf_read, 3688 .poll = perf_poll, 3689 .unlocked_ioctl = perf_ioctl, 3690 .compat_ioctl = perf_ioctl, 3691 .mmap = perf_mmap, 3692 .fasync = perf_fasync, 3693 }; 3694 3695 /* 3696 * Perf event wakeup 3697 * 3698 * If there's data, ensure we set the poll() state and publish everything 3699 * to user-space before waking everybody up. 3700 */ 3701 3702 void perf_event_wakeup(struct perf_event *event) 3703 { 3704 wake_up_all(&event->waitq); 3705 3706 if (event->pending_kill) { 3707 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3708 event->pending_kill = 0; 3709 } 3710 } 3711 3712 static void perf_pending_event(struct irq_work *entry) 3713 { 3714 struct perf_event *event = container_of(entry, 3715 struct perf_event, pending); 3716 3717 if (event->pending_disable) { 3718 event->pending_disable = 0; 3719 __perf_event_disable(event); 3720 } 3721 3722 if (event->pending_wakeup) { 3723 event->pending_wakeup = 0; 3724 perf_event_wakeup(event); 3725 } 3726 } 3727 3728 /* 3729 * We assume there is only KVM supporting the callbacks. 3730 * Later on, we might change it to a list if there is 3731 * another virtualization implementation supporting the callbacks. 3732 */ 3733 struct perf_guest_info_callbacks *perf_guest_cbs; 3734 3735 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3736 { 3737 perf_guest_cbs = cbs; 3738 return 0; 3739 } 3740 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3741 3742 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3743 { 3744 perf_guest_cbs = NULL; 3745 return 0; 3746 } 3747 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3748 3749 static void __perf_event_header__init_id(struct perf_event_header *header, 3750 struct perf_sample_data *data, 3751 struct perf_event *event) 3752 { 3753 u64 sample_type = event->attr.sample_type; 3754 3755 data->type = sample_type; 3756 header->size += event->id_header_size; 3757 3758 if (sample_type & PERF_SAMPLE_TID) { 3759 /* namespace issues */ 3760 data->tid_entry.pid = perf_event_pid(event, current); 3761 data->tid_entry.tid = perf_event_tid(event, current); 3762 } 3763 3764 if (sample_type & PERF_SAMPLE_TIME) 3765 data->time = perf_clock(); 3766 3767 if (sample_type & PERF_SAMPLE_ID) 3768 data->id = primary_event_id(event); 3769 3770 if (sample_type & PERF_SAMPLE_STREAM_ID) 3771 data->stream_id = event->id; 3772 3773 if (sample_type & PERF_SAMPLE_CPU) { 3774 data->cpu_entry.cpu = raw_smp_processor_id(); 3775 data->cpu_entry.reserved = 0; 3776 } 3777 } 3778 3779 void perf_event_header__init_id(struct perf_event_header *header, 3780 struct perf_sample_data *data, 3781 struct perf_event *event) 3782 { 3783 if (event->attr.sample_id_all) 3784 __perf_event_header__init_id(header, data, event); 3785 } 3786 3787 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3788 struct perf_sample_data *data) 3789 { 3790 u64 sample_type = data->type; 3791 3792 if (sample_type & PERF_SAMPLE_TID) 3793 perf_output_put(handle, data->tid_entry); 3794 3795 if (sample_type & PERF_SAMPLE_TIME) 3796 perf_output_put(handle, data->time); 3797 3798 if (sample_type & PERF_SAMPLE_ID) 3799 perf_output_put(handle, data->id); 3800 3801 if (sample_type & PERF_SAMPLE_STREAM_ID) 3802 perf_output_put(handle, data->stream_id); 3803 3804 if (sample_type & PERF_SAMPLE_CPU) 3805 perf_output_put(handle, data->cpu_entry); 3806 } 3807 3808 void perf_event__output_id_sample(struct perf_event *event, 3809 struct perf_output_handle *handle, 3810 struct perf_sample_data *sample) 3811 { 3812 if (event->attr.sample_id_all) 3813 __perf_event__output_id_sample(handle, sample); 3814 } 3815 3816 static void perf_output_read_one(struct perf_output_handle *handle, 3817 struct perf_event *event, 3818 u64 enabled, u64 running) 3819 { 3820 u64 read_format = event->attr.read_format; 3821 u64 values[4]; 3822 int n = 0; 3823 3824 values[n++] = perf_event_count(event); 3825 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3826 values[n++] = enabled + 3827 atomic64_read(&event->child_total_time_enabled); 3828 } 3829 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3830 values[n++] = running + 3831 atomic64_read(&event->child_total_time_running); 3832 } 3833 if (read_format & PERF_FORMAT_ID) 3834 values[n++] = primary_event_id(event); 3835 3836 __output_copy(handle, values, n * sizeof(u64)); 3837 } 3838 3839 /* 3840 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3841 */ 3842 static void perf_output_read_group(struct perf_output_handle *handle, 3843 struct perf_event *event, 3844 u64 enabled, u64 running) 3845 { 3846 struct perf_event *leader = event->group_leader, *sub; 3847 u64 read_format = event->attr.read_format; 3848 u64 values[5]; 3849 int n = 0; 3850 3851 values[n++] = 1 + leader->nr_siblings; 3852 3853 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3854 values[n++] = enabled; 3855 3856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3857 values[n++] = running; 3858 3859 if (leader != event) 3860 leader->pmu->read(leader); 3861 3862 values[n++] = perf_event_count(leader); 3863 if (read_format & PERF_FORMAT_ID) 3864 values[n++] = primary_event_id(leader); 3865 3866 __output_copy(handle, values, n * sizeof(u64)); 3867 3868 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3869 n = 0; 3870 3871 if (sub != event) 3872 sub->pmu->read(sub); 3873 3874 values[n++] = perf_event_count(sub); 3875 if (read_format & PERF_FORMAT_ID) 3876 values[n++] = primary_event_id(sub); 3877 3878 __output_copy(handle, values, n * sizeof(u64)); 3879 } 3880 } 3881 3882 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3883 PERF_FORMAT_TOTAL_TIME_RUNNING) 3884 3885 static void perf_output_read(struct perf_output_handle *handle, 3886 struct perf_event *event) 3887 { 3888 u64 enabled = 0, running = 0; 3889 u64 read_format = event->attr.read_format; 3890 3891 /* 3892 * compute total_time_enabled, total_time_running 3893 * based on snapshot values taken when the event 3894 * was last scheduled in. 3895 * 3896 * we cannot simply called update_context_time() 3897 * because of locking issue as we are called in 3898 * NMI context 3899 */ 3900 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3901 calc_timer_values(event, &enabled, &running); 3902 3903 if (event->attr.read_format & PERF_FORMAT_GROUP) 3904 perf_output_read_group(handle, event, enabled, running); 3905 else 3906 perf_output_read_one(handle, event, enabled, running); 3907 } 3908 3909 void perf_output_sample(struct perf_output_handle *handle, 3910 struct perf_event_header *header, 3911 struct perf_sample_data *data, 3912 struct perf_event *event) 3913 { 3914 u64 sample_type = data->type; 3915 3916 perf_output_put(handle, *header); 3917 3918 if (sample_type & PERF_SAMPLE_IP) 3919 perf_output_put(handle, data->ip); 3920 3921 if (sample_type & PERF_SAMPLE_TID) 3922 perf_output_put(handle, data->tid_entry); 3923 3924 if (sample_type & PERF_SAMPLE_TIME) 3925 perf_output_put(handle, data->time); 3926 3927 if (sample_type & PERF_SAMPLE_ADDR) 3928 perf_output_put(handle, data->addr); 3929 3930 if (sample_type & PERF_SAMPLE_ID) 3931 perf_output_put(handle, data->id); 3932 3933 if (sample_type & PERF_SAMPLE_STREAM_ID) 3934 perf_output_put(handle, data->stream_id); 3935 3936 if (sample_type & PERF_SAMPLE_CPU) 3937 perf_output_put(handle, data->cpu_entry); 3938 3939 if (sample_type & PERF_SAMPLE_PERIOD) 3940 perf_output_put(handle, data->period); 3941 3942 if (sample_type & PERF_SAMPLE_READ) 3943 perf_output_read(handle, event); 3944 3945 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3946 if (data->callchain) { 3947 int size = 1; 3948 3949 if (data->callchain) 3950 size += data->callchain->nr; 3951 3952 size *= sizeof(u64); 3953 3954 __output_copy(handle, data->callchain, size); 3955 } else { 3956 u64 nr = 0; 3957 perf_output_put(handle, nr); 3958 } 3959 } 3960 3961 if (sample_type & PERF_SAMPLE_RAW) { 3962 if (data->raw) { 3963 perf_output_put(handle, data->raw->size); 3964 __output_copy(handle, data->raw->data, 3965 data->raw->size); 3966 } else { 3967 struct { 3968 u32 size; 3969 u32 data; 3970 } raw = { 3971 .size = sizeof(u32), 3972 .data = 0, 3973 }; 3974 perf_output_put(handle, raw); 3975 } 3976 } 3977 3978 if (!event->attr.watermark) { 3979 int wakeup_events = event->attr.wakeup_events; 3980 3981 if (wakeup_events) { 3982 struct ring_buffer *rb = handle->rb; 3983 int events = local_inc_return(&rb->events); 3984 3985 if (events >= wakeup_events) { 3986 local_sub(wakeup_events, &rb->events); 3987 local_inc(&rb->wakeup); 3988 } 3989 } 3990 } 3991 } 3992 3993 void perf_prepare_sample(struct perf_event_header *header, 3994 struct perf_sample_data *data, 3995 struct perf_event *event, 3996 struct pt_regs *regs) 3997 { 3998 u64 sample_type = event->attr.sample_type; 3999 4000 header->type = PERF_RECORD_SAMPLE; 4001 header->size = sizeof(*header) + event->header_size; 4002 4003 header->misc = 0; 4004 header->misc |= perf_misc_flags(regs); 4005 4006 __perf_event_header__init_id(header, data, event); 4007 4008 if (sample_type & PERF_SAMPLE_IP) 4009 data->ip = perf_instruction_pointer(regs); 4010 4011 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4012 int size = 1; 4013 4014 data->callchain = perf_callchain(regs); 4015 4016 if (data->callchain) 4017 size += data->callchain->nr; 4018 4019 header->size += size * sizeof(u64); 4020 } 4021 4022 if (sample_type & PERF_SAMPLE_RAW) { 4023 int size = sizeof(u32); 4024 4025 if (data->raw) 4026 size += data->raw->size; 4027 else 4028 size += sizeof(u32); 4029 4030 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4031 header->size += size; 4032 } 4033 } 4034 4035 static void perf_event_output(struct perf_event *event, 4036 struct perf_sample_data *data, 4037 struct pt_regs *regs) 4038 { 4039 struct perf_output_handle handle; 4040 struct perf_event_header header; 4041 4042 /* protect the callchain buffers */ 4043 rcu_read_lock(); 4044 4045 perf_prepare_sample(&header, data, event, regs); 4046 4047 if (perf_output_begin(&handle, event, header.size)) 4048 goto exit; 4049 4050 perf_output_sample(&handle, &header, data, event); 4051 4052 perf_output_end(&handle); 4053 4054 exit: 4055 rcu_read_unlock(); 4056 } 4057 4058 /* 4059 * read event_id 4060 */ 4061 4062 struct perf_read_event { 4063 struct perf_event_header header; 4064 4065 u32 pid; 4066 u32 tid; 4067 }; 4068 4069 static void 4070 perf_event_read_event(struct perf_event *event, 4071 struct task_struct *task) 4072 { 4073 struct perf_output_handle handle; 4074 struct perf_sample_data sample; 4075 struct perf_read_event read_event = { 4076 .header = { 4077 .type = PERF_RECORD_READ, 4078 .misc = 0, 4079 .size = sizeof(read_event) + event->read_size, 4080 }, 4081 .pid = perf_event_pid(event, task), 4082 .tid = perf_event_tid(event, task), 4083 }; 4084 int ret; 4085 4086 perf_event_header__init_id(&read_event.header, &sample, event); 4087 ret = perf_output_begin(&handle, event, read_event.header.size); 4088 if (ret) 4089 return; 4090 4091 perf_output_put(&handle, read_event); 4092 perf_output_read(&handle, event); 4093 perf_event__output_id_sample(event, &handle, &sample); 4094 4095 perf_output_end(&handle); 4096 } 4097 4098 /* 4099 * task tracking -- fork/exit 4100 * 4101 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4102 */ 4103 4104 struct perf_task_event { 4105 struct task_struct *task; 4106 struct perf_event_context *task_ctx; 4107 4108 struct { 4109 struct perf_event_header header; 4110 4111 u32 pid; 4112 u32 ppid; 4113 u32 tid; 4114 u32 ptid; 4115 u64 time; 4116 } event_id; 4117 }; 4118 4119 static void perf_event_task_output(struct perf_event *event, 4120 struct perf_task_event *task_event) 4121 { 4122 struct perf_output_handle handle; 4123 struct perf_sample_data sample; 4124 struct task_struct *task = task_event->task; 4125 int ret, size = task_event->event_id.header.size; 4126 4127 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4128 4129 ret = perf_output_begin(&handle, event, 4130 task_event->event_id.header.size); 4131 if (ret) 4132 goto out; 4133 4134 task_event->event_id.pid = perf_event_pid(event, task); 4135 task_event->event_id.ppid = perf_event_pid(event, current); 4136 4137 task_event->event_id.tid = perf_event_tid(event, task); 4138 task_event->event_id.ptid = perf_event_tid(event, current); 4139 4140 perf_output_put(&handle, task_event->event_id); 4141 4142 perf_event__output_id_sample(event, &handle, &sample); 4143 4144 perf_output_end(&handle); 4145 out: 4146 task_event->event_id.header.size = size; 4147 } 4148 4149 static int perf_event_task_match(struct perf_event *event) 4150 { 4151 if (event->state < PERF_EVENT_STATE_INACTIVE) 4152 return 0; 4153 4154 if (!event_filter_match(event)) 4155 return 0; 4156 4157 if (event->attr.comm || event->attr.mmap || 4158 event->attr.mmap_data || event->attr.task) 4159 return 1; 4160 4161 return 0; 4162 } 4163 4164 static void perf_event_task_ctx(struct perf_event_context *ctx, 4165 struct perf_task_event *task_event) 4166 { 4167 struct perf_event *event; 4168 4169 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4170 if (perf_event_task_match(event)) 4171 perf_event_task_output(event, task_event); 4172 } 4173 } 4174 4175 static void perf_event_task_event(struct perf_task_event *task_event) 4176 { 4177 struct perf_cpu_context *cpuctx; 4178 struct perf_event_context *ctx; 4179 struct pmu *pmu; 4180 int ctxn; 4181 4182 rcu_read_lock(); 4183 list_for_each_entry_rcu(pmu, &pmus, entry) { 4184 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4185 if (cpuctx->active_pmu != pmu) 4186 goto next; 4187 perf_event_task_ctx(&cpuctx->ctx, task_event); 4188 4189 ctx = task_event->task_ctx; 4190 if (!ctx) { 4191 ctxn = pmu->task_ctx_nr; 4192 if (ctxn < 0) 4193 goto next; 4194 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4195 } 4196 if (ctx) 4197 perf_event_task_ctx(ctx, task_event); 4198 next: 4199 put_cpu_ptr(pmu->pmu_cpu_context); 4200 } 4201 rcu_read_unlock(); 4202 } 4203 4204 static void perf_event_task(struct task_struct *task, 4205 struct perf_event_context *task_ctx, 4206 int new) 4207 { 4208 struct perf_task_event task_event; 4209 4210 if (!atomic_read(&nr_comm_events) && 4211 !atomic_read(&nr_mmap_events) && 4212 !atomic_read(&nr_task_events)) 4213 return; 4214 4215 task_event = (struct perf_task_event){ 4216 .task = task, 4217 .task_ctx = task_ctx, 4218 .event_id = { 4219 .header = { 4220 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4221 .misc = 0, 4222 .size = sizeof(task_event.event_id), 4223 }, 4224 /* .pid */ 4225 /* .ppid */ 4226 /* .tid */ 4227 /* .ptid */ 4228 .time = perf_clock(), 4229 }, 4230 }; 4231 4232 perf_event_task_event(&task_event); 4233 } 4234 4235 void perf_event_fork(struct task_struct *task) 4236 { 4237 perf_event_task(task, NULL, 1); 4238 } 4239 4240 /* 4241 * comm tracking 4242 */ 4243 4244 struct perf_comm_event { 4245 struct task_struct *task; 4246 char *comm; 4247 int comm_size; 4248 4249 struct { 4250 struct perf_event_header header; 4251 4252 u32 pid; 4253 u32 tid; 4254 } event_id; 4255 }; 4256 4257 static void perf_event_comm_output(struct perf_event *event, 4258 struct perf_comm_event *comm_event) 4259 { 4260 struct perf_output_handle handle; 4261 struct perf_sample_data sample; 4262 int size = comm_event->event_id.header.size; 4263 int ret; 4264 4265 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4266 ret = perf_output_begin(&handle, event, 4267 comm_event->event_id.header.size); 4268 4269 if (ret) 4270 goto out; 4271 4272 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4273 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4274 4275 perf_output_put(&handle, comm_event->event_id); 4276 __output_copy(&handle, comm_event->comm, 4277 comm_event->comm_size); 4278 4279 perf_event__output_id_sample(event, &handle, &sample); 4280 4281 perf_output_end(&handle); 4282 out: 4283 comm_event->event_id.header.size = size; 4284 } 4285 4286 static int perf_event_comm_match(struct perf_event *event) 4287 { 4288 if (event->state < PERF_EVENT_STATE_INACTIVE) 4289 return 0; 4290 4291 if (!event_filter_match(event)) 4292 return 0; 4293 4294 if (event->attr.comm) 4295 return 1; 4296 4297 return 0; 4298 } 4299 4300 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4301 struct perf_comm_event *comm_event) 4302 { 4303 struct perf_event *event; 4304 4305 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4306 if (perf_event_comm_match(event)) 4307 perf_event_comm_output(event, comm_event); 4308 } 4309 } 4310 4311 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4312 { 4313 struct perf_cpu_context *cpuctx; 4314 struct perf_event_context *ctx; 4315 char comm[TASK_COMM_LEN]; 4316 unsigned int size; 4317 struct pmu *pmu; 4318 int ctxn; 4319 4320 memset(comm, 0, sizeof(comm)); 4321 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4322 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4323 4324 comm_event->comm = comm; 4325 comm_event->comm_size = size; 4326 4327 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4328 rcu_read_lock(); 4329 list_for_each_entry_rcu(pmu, &pmus, entry) { 4330 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4331 if (cpuctx->active_pmu != pmu) 4332 goto next; 4333 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4334 4335 ctxn = pmu->task_ctx_nr; 4336 if (ctxn < 0) 4337 goto next; 4338 4339 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4340 if (ctx) 4341 perf_event_comm_ctx(ctx, comm_event); 4342 next: 4343 put_cpu_ptr(pmu->pmu_cpu_context); 4344 } 4345 rcu_read_unlock(); 4346 } 4347 4348 void perf_event_comm(struct task_struct *task) 4349 { 4350 struct perf_comm_event comm_event; 4351 struct perf_event_context *ctx; 4352 int ctxn; 4353 4354 for_each_task_context_nr(ctxn) { 4355 ctx = task->perf_event_ctxp[ctxn]; 4356 if (!ctx) 4357 continue; 4358 4359 perf_event_enable_on_exec(ctx); 4360 } 4361 4362 if (!atomic_read(&nr_comm_events)) 4363 return; 4364 4365 comm_event = (struct perf_comm_event){ 4366 .task = task, 4367 /* .comm */ 4368 /* .comm_size */ 4369 .event_id = { 4370 .header = { 4371 .type = PERF_RECORD_COMM, 4372 .misc = 0, 4373 /* .size */ 4374 }, 4375 /* .pid */ 4376 /* .tid */ 4377 }, 4378 }; 4379 4380 perf_event_comm_event(&comm_event); 4381 } 4382 4383 /* 4384 * mmap tracking 4385 */ 4386 4387 struct perf_mmap_event { 4388 struct vm_area_struct *vma; 4389 4390 const char *file_name; 4391 int file_size; 4392 4393 struct { 4394 struct perf_event_header header; 4395 4396 u32 pid; 4397 u32 tid; 4398 u64 start; 4399 u64 len; 4400 u64 pgoff; 4401 } event_id; 4402 }; 4403 4404 static void perf_event_mmap_output(struct perf_event *event, 4405 struct perf_mmap_event *mmap_event) 4406 { 4407 struct perf_output_handle handle; 4408 struct perf_sample_data sample; 4409 int size = mmap_event->event_id.header.size; 4410 int ret; 4411 4412 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4413 ret = perf_output_begin(&handle, event, 4414 mmap_event->event_id.header.size); 4415 if (ret) 4416 goto out; 4417 4418 mmap_event->event_id.pid = perf_event_pid(event, current); 4419 mmap_event->event_id.tid = perf_event_tid(event, current); 4420 4421 perf_output_put(&handle, mmap_event->event_id); 4422 __output_copy(&handle, mmap_event->file_name, 4423 mmap_event->file_size); 4424 4425 perf_event__output_id_sample(event, &handle, &sample); 4426 4427 perf_output_end(&handle); 4428 out: 4429 mmap_event->event_id.header.size = size; 4430 } 4431 4432 static int perf_event_mmap_match(struct perf_event *event, 4433 struct perf_mmap_event *mmap_event, 4434 int executable) 4435 { 4436 if (event->state < PERF_EVENT_STATE_INACTIVE) 4437 return 0; 4438 4439 if (!event_filter_match(event)) 4440 return 0; 4441 4442 if ((!executable && event->attr.mmap_data) || 4443 (executable && event->attr.mmap)) 4444 return 1; 4445 4446 return 0; 4447 } 4448 4449 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4450 struct perf_mmap_event *mmap_event, 4451 int executable) 4452 { 4453 struct perf_event *event; 4454 4455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4456 if (perf_event_mmap_match(event, mmap_event, executable)) 4457 perf_event_mmap_output(event, mmap_event); 4458 } 4459 } 4460 4461 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4462 { 4463 struct perf_cpu_context *cpuctx; 4464 struct perf_event_context *ctx; 4465 struct vm_area_struct *vma = mmap_event->vma; 4466 struct file *file = vma->vm_file; 4467 unsigned int size; 4468 char tmp[16]; 4469 char *buf = NULL; 4470 const char *name; 4471 struct pmu *pmu; 4472 int ctxn; 4473 4474 memset(tmp, 0, sizeof(tmp)); 4475 4476 if (file) { 4477 /* 4478 * d_path works from the end of the rb backwards, so we 4479 * need to add enough zero bytes after the string to handle 4480 * the 64bit alignment we do later. 4481 */ 4482 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4483 if (!buf) { 4484 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4485 goto got_name; 4486 } 4487 name = d_path(&file->f_path, buf, PATH_MAX); 4488 if (IS_ERR(name)) { 4489 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4490 goto got_name; 4491 } 4492 } else { 4493 if (arch_vma_name(mmap_event->vma)) { 4494 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4495 sizeof(tmp)); 4496 goto got_name; 4497 } 4498 4499 if (!vma->vm_mm) { 4500 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4501 goto got_name; 4502 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4503 vma->vm_end >= vma->vm_mm->brk) { 4504 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4505 goto got_name; 4506 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4507 vma->vm_end >= vma->vm_mm->start_stack) { 4508 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4509 goto got_name; 4510 } 4511 4512 name = strncpy(tmp, "//anon", sizeof(tmp)); 4513 goto got_name; 4514 } 4515 4516 got_name: 4517 size = ALIGN(strlen(name)+1, sizeof(u64)); 4518 4519 mmap_event->file_name = name; 4520 mmap_event->file_size = size; 4521 4522 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4523 4524 rcu_read_lock(); 4525 list_for_each_entry_rcu(pmu, &pmus, entry) { 4526 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4527 if (cpuctx->active_pmu != pmu) 4528 goto next; 4529 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4530 vma->vm_flags & VM_EXEC); 4531 4532 ctxn = pmu->task_ctx_nr; 4533 if (ctxn < 0) 4534 goto next; 4535 4536 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4537 if (ctx) { 4538 perf_event_mmap_ctx(ctx, mmap_event, 4539 vma->vm_flags & VM_EXEC); 4540 } 4541 next: 4542 put_cpu_ptr(pmu->pmu_cpu_context); 4543 } 4544 rcu_read_unlock(); 4545 4546 kfree(buf); 4547 } 4548 4549 void perf_event_mmap(struct vm_area_struct *vma) 4550 { 4551 struct perf_mmap_event mmap_event; 4552 4553 if (!atomic_read(&nr_mmap_events)) 4554 return; 4555 4556 mmap_event = (struct perf_mmap_event){ 4557 .vma = vma, 4558 /* .file_name */ 4559 /* .file_size */ 4560 .event_id = { 4561 .header = { 4562 .type = PERF_RECORD_MMAP, 4563 .misc = PERF_RECORD_MISC_USER, 4564 /* .size */ 4565 }, 4566 /* .pid */ 4567 /* .tid */ 4568 .start = vma->vm_start, 4569 .len = vma->vm_end - vma->vm_start, 4570 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4571 }, 4572 }; 4573 4574 perf_event_mmap_event(&mmap_event); 4575 } 4576 4577 /* 4578 * IRQ throttle logging 4579 */ 4580 4581 static void perf_log_throttle(struct perf_event *event, int enable) 4582 { 4583 struct perf_output_handle handle; 4584 struct perf_sample_data sample; 4585 int ret; 4586 4587 struct { 4588 struct perf_event_header header; 4589 u64 time; 4590 u64 id; 4591 u64 stream_id; 4592 } throttle_event = { 4593 .header = { 4594 .type = PERF_RECORD_THROTTLE, 4595 .misc = 0, 4596 .size = sizeof(throttle_event), 4597 }, 4598 .time = perf_clock(), 4599 .id = primary_event_id(event), 4600 .stream_id = event->id, 4601 }; 4602 4603 if (enable) 4604 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4605 4606 perf_event_header__init_id(&throttle_event.header, &sample, event); 4607 4608 ret = perf_output_begin(&handle, event, 4609 throttle_event.header.size); 4610 if (ret) 4611 return; 4612 4613 perf_output_put(&handle, throttle_event); 4614 perf_event__output_id_sample(event, &handle, &sample); 4615 perf_output_end(&handle); 4616 } 4617 4618 /* 4619 * Generic event overflow handling, sampling. 4620 */ 4621 4622 static int __perf_event_overflow(struct perf_event *event, 4623 int throttle, struct perf_sample_data *data, 4624 struct pt_regs *regs) 4625 { 4626 int events = atomic_read(&event->event_limit); 4627 struct hw_perf_event *hwc = &event->hw; 4628 int ret = 0; 4629 4630 /* 4631 * Non-sampling counters might still use the PMI to fold short 4632 * hardware counters, ignore those. 4633 */ 4634 if (unlikely(!is_sampling_event(event))) 4635 return 0; 4636 4637 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4638 if (throttle) { 4639 hwc->interrupts = MAX_INTERRUPTS; 4640 perf_log_throttle(event, 0); 4641 ret = 1; 4642 } 4643 } else 4644 hwc->interrupts++; 4645 4646 if (event->attr.freq) { 4647 u64 now = perf_clock(); 4648 s64 delta = now - hwc->freq_time_stamp; 4649 4650 hwc->freq_time_stamp = now; 4651 4652 if (delta > 0 && delta < 2*TICK_NSEC) 4653 perf_adjust_period(event, delta, hwc->last_period); 4654 } 4655 4656 /* 4657 * XXX event_limit might not quite work as expected on inherited 4658 * events 4659 */ 4660 4661 event->pending_kill = POLL_IN; 4662 if (events && atomic_dec_and_test(&event->event_limit)) { 4663 ret = 1; 4664 event->pending_kill = POLL_HUP; 4665 event->pending_disable = 1; 4666 irq_work_queue(&event->pending); 4667 } 4668 4669 if (event->overflow_handler) 4670 event->overflow_handler(event, data, regs); 4671 else 4672 perf_event_output(event, data, regs); 4673 4674 if (event->fasync && event->pending_kill) { 4675 event->pending_wakeup = 1; 4676 irq_work_queue(&event->pending); 4677 } 4678 4679 return ret; 4680 } 4681 4682 int perf_event_overflow(struct perf_event *event, 4683 struct perf_sample_data *data, 4684 struct pt_regs *regs) 4685 { 4686 return __perf_event_overflow(event, 1, data, regs); 4687 } 4688 4689 /* 4690 * Generic software event infrastructure 4691 */ 4692 4693 struct swevent_htable { 4694 struct swevent_hlist *swevent_hlist; 4695 struct mutex hlist_mutex; 4696 int hlist_refcount; 4697 4698 /* Recursion avoidance in each contexts */ 4699 int recursion[PERF_NR_CONTEXTS]; 4700 }; 4701 4702 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4703 4704 /* 4705 * We directly increment event->count and keep a second value in 4706 * event->hw.period_left to count intervals. This period event 4707 * is kept in the range [-sample_period, 0] so that we can use the 4708 * sign as trigger. 4709 */ 4710 4711 static u64 perf_swevent_set_period(struct perf_event *event) 4712 { 4713 struct hw_perf_event *hwc = &event->hw; 4714 u64 period = hwc->last_period; 4715 u64 nr, offset; 4716 s64 old, val; 4717 4718 hwc->last_period = hwc->sample_period; 4719 4720 again: 4721 old = val = local64_read(&hwc->period_left); 4722 if (val < 0) 4723 return 0; 4724 4725 nr = div64_u64(period + val, period); 4726 offset = nr * period; 4727 val -= offset; 4728 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4729 goto again; 4730 4731 return nr; 4732 } 4733 4734 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4735 struct perf_sample_data *data, 4736 struct pt_regs *regs) 4737 { 4738 struct hw_perf_event *hwc = &event->hw; 4739 int throttle = 0; 4740 4741 data->period = event->hw.last_period; 4742 if (!overflow) 4743 overflow = perf_swevent_set_period(event); 4744 4745 if (hwc->interrupts == MAX_INTERRUPTS) 4746 return; 4747 4748 for (; overflow; overflow--) { 4749 if (__perf_event_overflow(event, throttle, 4750 data, regs)) { 4751 /* 4752 * We inhibit the overflow from happening when 4753 * hwc->interrupts == MAX_INTERRUPTS. 4754 */ 4755 break; 4756 } 4757 throttle = 1; 4758 } 4759 } 4760 4761 static void perf_swevent_event(struct perf_event *event, u64 nr, 4762 struct perf_sample_data *data, 4763 struct pt_regs *regs) 4764 { 4765 struct hw_perf_event *hwc = &event->hw; 4766 4767 local64_add(nr, &event->count); 4768 4769 if (!regs) 4770 return; 4771 4772 if (!is_sampling_event(event)) 4773 return; 4774 4775 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4776 return perf_swevent_overflow(event, 1, data, regs); 4777 4778 if (local64_add_negative(nr, &hwc->period_left)) 4779 return; 4780 4781 perf_swevent_overflow(event, 0, data, regs); 4782 } 4783 4784 static int perf_exclude_event(struct perf_event *event, 4785 struct pt_regs *regs) 4786 { 4787 if (event->hw.state & PERF_HES_STOPPED) 4788 return 1; 4789 4790 if (regs) { 4791 if (event->attr.exclude_user && user_mode(regs)) 4792 return 1; 4793 4794 if (event->attr.exclude_kernel && !user_mode(regs)) 4795 return 1; 4796 } 4797 4798 return 0; 4799 } 4800 4801 static int perf_swevent_match(struct perf_event *event, 4802 enum perf_type_id type, 4803 u32 event_id, 4804 struct perf_sample_data *data, 4805 struct pt_regs *regs) 4806 { 4807 if (event->attr.type != type) 4808 return 0; 4809 4810 if (event->attr.config != event_id) 4811 return 0; 4812 4813 if (perf_exclude_event(event, regs)) 4814 return 0; 4815 4816 return 1; 4817 } 4818 4819 static inline u64 swevent_hash(u64 type, u32 event_id) 4820 { 4821 u64 val = event_id | (type << 32); 4822 4823 return hash_64(val, SWEVENT_HLIST_BITS); 4824 } 4825 4826 static inline struct hlist_head * 4827 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4828 { 4829 u64 hash = swevent_hash(type, event_id); 4830 4831 return &hlist->heads[hash]; 4832 } 4833 4834 /* For the read side: events when they trigger */ 4835 static inline struct hlist_head * 4836 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4837 { 4838 struct swevent_hlist *hlist; 4839 4840 hlist = rcu_dereference(swhash->swevent_hlist); 4841 if (!hlist) 4842 return NULL; 4843 4844 return __find_swevent_head(hlist, type, event_id); 4845 } 4846 4847 /* For the event head insertion and removal in the hlist */ 4848 static inline struct hlist_head * 4849 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4850 { 4851 struct swevent_hlist *hlist; 4852 u32 event_id = event->attr.config; 4853 u64 type = event->attr.type; 4854 4855 /* 4856 * Event scheduling is always serialized against hlist allocation 4857 * and release. Which makes the protected version suitable here. 4858 * The context lock guarantees that. 4859 */ 4860 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4861 lockdep_is_held(&event->ctx->lock)); 4862 if (!hlist) 4863 return NULL; 4864 4865 return __find_swevent_head(hlist, type, event_id); 4866 } 4867 4868 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4869 u64 nr, 4870 struct perf_sample_data *data, 4871 struct pt_regs *regs) 4872 { 4873 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4874 struct perf_event *event; 4875 struct hlist_node *node; 4876 struct hlist_head *head; 4877 4878 rcu_read_lock(); 4879 head = find_swevent_head_rcu(swhash, type, event_id); 4880 if (!head) 4881 goto end; 4882 4883 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4884 if (perf_swevent_match(event, type, event_id, data, regs)) 4885 perf_swevent_event(event, nr, data, regs); 4886 } 4887 end: 4888 rcu_read_unlock(); 4889 } 4890 4891 int perf_swevent_get_recursion_context(void) 4892 { 4893 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4894 4895 return get_recursion_context(swhash->recursion); 4896 } 4897 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4898 4899 inline void perf_swevent_put_recursion_context(int rctx) 4900 { 4901 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4902 4903 put_recursion_context(swhash->recursion, rctx); 4904 } 4905 4906 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4907 { 4908 struct perf_sample_data data; 4909 int rctx; 4910 4911 preempt_disable_notrace(); 4912 rctx = perf_swevent_get_recursion_context(); 4913 if (rctx < 0) 4914 return; 4915 4916 perf_sample_data_init(&data, addr); 4917 4918 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4919 4920 perf_swevent_put_recursion_context(rctx); 4921 preempt_enable_notrace(); 4922 } 4923 4924 static void perf_swevent_read(struct perf_event *event) 4925 { 4926 } 4927 4928 static int perf_swevent_add(struct perf_event *event, int flags) 4929 { 4930 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4931 struct hw_perf_event *hwc = &event->hw; 4932 struct hlist_head *head; 4933 4934 if (is_sampling_event(event)) { 4935 hwc->last_period = hwc->sample_period; 4936 perf_swevent_set_period(event); 4937 } 4938 4939 hwc->state = !(flags & PERF_EF_START); 4940 4941 head = find_swevent_head(swhash, event); 4942 if (WARN_ON_ONCE(!head)) 4943 return -EINVAL; 4944 4945 hlist_add_head_rcu(&event->hlist_entry, head); 4946 4947 return 0; 4948 } 4949 4950 static void perf_swevent_del(struct perf_event *event, int flags) 4951 { 4952 hlist_del_rcu(&event->hlist_entry); 4953 } 4954 4955 static void perf_swevent_start(struct perf_event *event, int flags) 4956 { 4957 event->hw.state = 0; 4958 } 4959 4960 static void perf_swevent_stop(struct perf_event *event, int flags) 4961 { 4962 event->hw.state = PERF_HES_STOPPED; 4963 } 4964 4965 /* Deref the hlist from the update side */ 4966 static inline struct swevent_hlist * 4967 swevent_hlist_deref(struct swevent_htable *swhash) 4968 { 4969 return rcu_dereference_protected(swhash->swevent_hlist, 4970 lockdep_is_held(&swhash->hlist_mutex)); 4971 } 4972 4973 static void swevent_hlist_release(struct swevent_htable *swhash) 4974 { 4975 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4976 4977 if (!hlist) 4978 return; 4979 4980 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4981 kfree_rcu(hlist, rcu_head); 4982 } 4983 4984 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4985 { 4986 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4987 4988 mutex_lock(&swhash->hlist_mutex); 4989 4990 if (!--swhash->hlist_refcount) 4991 swevent_hlist_release(swhash); 4992 4993 mutex_unlock(&swhash->hlist_mutex); 4994 } 4995 4996 static void swevent_hlist_put(struct perf_event *event) 4997 { 4998 int cpu; 4999 5000 if (event->cpu != -1) { 5001 swevent_hlist_put_cpu(event, event->cpu); 5002 return; 5003 } 5004 5005 for_each_possible_cpu(cpu) 5006 swevent_hlist_put_cpu(event, cpu); 5007 } 5008 5009 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5010 { 5011 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5012 int err = 0; 5013 5014 mutex_lock(&swhash->hlist_mutex); 5015 5016 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5017 struct swevent_hlist *hlist; 5018 5019 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5020 if (!hlist) { 5021 err = -ENOMEM; 5022 goto exit; 5023 } 5024 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5025 } 5026 swhash->hlist_refcount++; 5027 exit: 5028 mutex_unlock(&swhash->hlist_mutex); 5029 5030 return err; 5031 } 5032 5033 static int swevent_hlist_get(struct perf_event *event) 5034 { 5035 int err; 5036 int cpu, failed_cpu; 5037 5038 if (event->cpu != -1) 5039 return swevent_hlist_get_cpu(event, event->cpu); 5040 5041 get_online_cpus(); 5042 for_each_possible_cpu(cpu) { 5043 err = swevent_hlist_get_cpu(event, cpu); 5044 if (err) { 5045 failed_cpu = cpu; 5046 goto fail; 5047 } 5048 } 5049 put_online_cpus(); 5050 5051 return 0; 5052 fail: 5053 for_each_possible_cpu(cpu) { 5054 if (cpu == failed_cpu) 5055 break; 5056 swevent_hlist_put_cpu(event, cpu); 5057 } 5058 5059 put_online_cpus(); 5060 return err; 5061 } 5062 5063 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5064 5065 static void sw_perf_event_destroy(struct perf_event *event) 5066 { 5067 u64 event_id = event->attr.config; 5068 5069 WARN_ON(event->parent); 5070 5071 jump_label_dec(&perf_swevent_enabled[event_id]); 5072 swevent_hlist_put(event); 5073 } 5074 5075 static int perf_swevent_init(struct perf_event *event) 5076 { 5077 int event_id = event->attr.config; 5078 5079 if (event->attr.type != PERF_TYPE_SOFTWARE) 5080 return -ENOENT; 5081 5082 switch (event_id) { 5083 case PERF_COUNT_SW_CPU_CLOCK: 5084 case PERF_COUNT_SW_TASK_CLOCK: 5085 return -ENOENT; 5086 5087 default: 5088 break; 5089 } 5090 5091 if (event_id >= PERF_COUNT_SW_MAX) 5092 return -ENOENT; 5093 5094 if (!event->parent) { 5095 int err; 5096 5097 err = swevent_hlist_get(event); 5098 if (err) 5099 return err; 5100 5101 jump_label_inc(&perf_swevent_enabled[event_id]); 5102 event->destroy = sw_perf_event_destroy; 5103 } 5104 5105 return 0; 5106 } 5107 5108 static struct pmu perf_swevent = { 5109 .task_ctx_nr = perf_sw_context, 5110 5111 .event_init = perf_swevent_init, 5112 .add = perf_swevent_add, 5113 .del = perf_swevent_del, 5114 .start = perf_swevent_start, 5115 .stop = perf_swevent_stop, 5116 .read = perf_swevent_read, 5117 }; 5118 5119 #ifdef CONFIG_EVENT_TRACING 5120 5121 static int perf_tp_filter_match(struct perf_event *event, 5122 struct perf_sample_data *data) 5123 { 5124 void *record = data->raw->data; 5125 5126 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5127 return 1; 5128 return 0; 5129 } 5130 5131 static int perf_tp_event_match(struct perf_event *event, 5132 struct perf_sample_data *data, 5133 struct pt_regs *regs) 5134 { 5135 if (event->hw.state & PERF_HES_STOPPED) 5136 return 0; 5137 /* 5138 * All tracepoints are from kernel-space. 5139 */ 5140 if (event->attr.exclude_kernel) 5141 return 0; 5142 5143 if (!perf_tp_filter_match(event, data)) 5144 return 0; 5145 5146 return 1; 5147 } 5148 5149 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5150 struct pt_regs *regs, struct hlist_head *head, int rctx) 5151 { 5152 struct perf_sample_data data; 5153 struct perf_event *event; 5154 struct hlist_node *node; 5155 5156 struct perf_raw_record raw = { 5157 .size = entry_size, 5158 .data = record, 5159 }; 5160 5161 perf_sample_data_init(&data, addr); 5162 data.raw = &raw; 5163 5164 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5165 if (perf_tp_event_match(event, &data, regs)) 5166 perf_swevent_event(event, count, &data, regs); 5167 } 5168 5169 perf_swevent_put_recursion_context(rctx); 5170 } 5171 EXPORT_SYMBOL_GPL(perf_tp_event); 5172 5173 static void tp_perf_event_destroy(struct perf_event *event) 5174 { 5175 perf_trace_destroy(event); 5176 } 5177 5178 static int perf_tp_event_init(struct perf_event *event) 5179 { 5180 int err; 5181 5182 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5183 return -ENOENT; 5184 5185 err = perf_trace_init(event); 5186 if (err) 5187 return err; 5188 5189 event->destroy = tp_perf_event_destroy; 5190 5191 return 0; 5192 } 5193 5194 static struct pmu perf_tracepoint = { 5195 .task_ctx_nr = perf_sw_context, 5196 5197 .event_init = perf_tp_event_init, 5198 .add = perf_trace_add, 5199 .del = perf_trace_del, 5200 .start = perf_swevent_start, 5201 .stop = perf_swevent_stop, 5202 .read = perf_swevent_read, 5203 }; 5204 5205 static inline void perf_tp_register(void) 5206 { 5207 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5208 } 5209 5210 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5211 { 5212 char *filter_str; 5213 int ret; 5214 5215 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5216 return -EINVAL; 5217 5218 filter_str = strndup_user(arg, PAGE_SIZE); 5219 if (IS_ERR(filter_str)) 5220 return PTR_ERR(filter_str); 5221 5222 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5223 5224 kfree(filter_str); 5225 return ret; 5226 } 5227 5228 static void perf_event_free_filter(struct perf_event *event) 5229 { 5230 ftrace_profile_free_filter(event); 5231 } 5232 5233 #else 5234 5235 static inline void perf_tp_register(void) 5236 { 5237 } 5238 5239 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5240 { 5241 return -ENOENT; 5242 } 5243 5244 static void perf_event_free_filter(struct perf_event *event) 5245 { 5246 } 5247 5248 #endif /* CONFIG_EVENT_TRACING */ 5249 5250 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5251 void perf_bp_event(struct perf_event *bp, void *data) 5252 { 5253 struct perf_sample_data sample; 5254 struct pt_regs *regs = data; 5255 5256 perf_sample_data_init(&sample, bp->attr.bp_addr); 5257 5258 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5259 perf_swevent_event(bp, 1, &sample, regs); 5260 } 5261 #endif 5262 5263 /* 5264 * hrtimer based swevent callback 5265 */ 5266 5267 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5268 { 5269 enum hrtimer_restart ret = HRTIMER_RESTART; 5270 struct perf_sample_data data; 5271 struct pt_regs *regs; 5272 struct perf_event *event; 5273 u64 period; 5274 5275 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5276 5277 if (event->state != PERF_EVENT_STATE_ACTIVE) 5278 return HRTIMER_NORESTART; 5279 5280 event->pmu->read(event); 5281 5282 perf_sample_data_init(&data, 0); 5283 data.period = event->hw.last_period; 5284 regs = get_irq_regs(); 5285 5286 if (regs && !perf_exclude_event(event, regs)) { 5287 if (!(event->attr.exclude_idle && current->pid == 0)) 5288 if (perf_event_overflow(event, &data, regs)) 5289 ret = HRTIMER_NORESTART; 5290 } 5291 5292 period = max_t(u64, 10000, event->hw.sample_period); 5293 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5294 5295 return ret; 5296 } 5297 5298 static void perf_swevent_start_hrtimer(struct perf_event *event) 5299 { 5300 struct hw_perf_event *hwc = &event->hw; 5301 s64 period; 5302 5303 if (!is_sampling_event(event)) 5304 return; 5305 5306 period = local64_read(&hwc->period_left); 5307 if (period) { 5308 if (period < 0) 5309 period = 10000; 5310 5311 local64_set(&hwc->period_left, 0); 5312 } else { 5313 period = max_t(u64, 10000, hwc->sample_period); 5314 } 5315 __hrtimer_start_range_ns(&hwc->hrtimer, 5316 ns_to_ktime(period), 0, 5317 HRTIMER_MODE_REL_PINNED, 0); 5318 } 5319 5320 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5321 { 5322 struct hw_perf_event *hwc = &event->hw; 5323 5324 if (is_sampling_event(event)) { 5325 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5326 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5327 5328 hrtimer_cancel(&hwc->hrtimer); 5329 } 5330 } 5331 5332 static void perf_swevent_init_hrtimer(struct perf_event *event) 5333 { 5334 struct hw_perf_event *hwc = &event->hw; 5335 5336 if (!is_sampling_event(event)) 5337 return; 5338 5339 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5340 hwc->hrtimer.function = perf_swevent_hrtimer; 5341 5342 /* 5343 * Since hrtimers have a fixed rate, we can do a static freq->period 5344 * mapping and avoid the whole period adjust feedback stuff. 5345 */ 5346 if (event->attr.freq) { 5347 long freq = event->attr.sample_freq; 5348 5349 event->attr.sample_period = NSEC_PER_SEC / freq; 5350 hwc->sample_period = event->attr.sample_period; 5351 local64_set(&hwc->period_left, hwc->sample_period); 5352 event->attr.freq = 0; 5353 } 5354 } 5355 5356 /* 5357 * Software event: cpu wall time clock 5358 */ 5359 5360 static void cpu_clock_event_update(struct perf_event *event) 5361 { 5362 s64 prev; 5363 u64 now; 5364 5365 now = local_clock(); 5366 prev = local64_xchg(&event->hw.prev_count, now); 5367 local64_add(now - prev, &event->count); 5368 } 5369 5370 static void cpu_clock_event_start(struct perf_event *event, int flags) 5371 { 5372 local64_set(&event->hw.prev_count, local_clock()); 5373 perf_swevent_start_hrtimer(event); 5374 } 5375 5376 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5377 { 5378 perf_swevent_cancel_hrtimer(event); 5379 cpu_clock_event_update(event); 5380 } 5381 5382 static int cpu_clock_event_add(struct perf_event *event, int flags) 5383 { 5384 if (flags & PERF_EF_START) 5385 cpu_clock_event_start(event, flags); 5386 5387 return 0; 5388 } 5389 5390 static void cpu_clock_event_del(struct perf_event *event, int flags) 5391 { 5392 cpu_clock_event_stop(event, flags); 5393 } 5394 5395 static void cpu_clock_event_read(struct perf_event *event) 5396 { 5397 cpu_clock_event_update(event); 5398 } 5399 5400 static int cpu_clock_event_init(struct perf_event *event) 5401 { 5402 if (event->attr.type != PERF_TYPE_SOFTWARE) 5403 return -ENOENT; 5404 5405 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5406 return -ENOENT; 5407 5408 perf_swevent_init_hrtimer(event); 5409 5410 return 0; 5411 } 5412 5413 static struct pmu perf_cpu_clock = { 5414 .task_ctx_nr = perf_sw_context, 5415 5416 .event_init = cpu_clock_event_init, 5417 .add = cpu_clock_event_add, 5418 .del = cpu_clock_event_del, 5419 .start = cpu_clock_event_start, 5420 .stop = cpu_clock_event_stop, 5421 .read = cpu_clock_event_read, 5422 }; 5423 5424 /* 5425 * Software event: task time clock 5426 */ 5427 5428 static void task_clock_event_update(struct perf_event *event, u64 now) 5429 { 5430 u64 prev; 5431 s64 delta; 5432 5433 prev = local64_xchg(&event->hw.prev_count, now); 5434 delta = now - prev; 5435 local64_add(delta, &event->count); 5436 } 5437 5438 static void task_clock_event_start(struct perf_event *event, int flags) 5439 { 5440 local64_set(&event->hw.prev_count, event->ctx->time); 5441 perf_swevent_start_hrtimer(event); 5442 } 5443 5444 static void task_clock_event_stop(struct perf_event *event, int flags) 5445 { 5446 perf_swevent_cancel_hrtimer(event); 5447 task_clock_event_update(event, event->ctx->time); 5448 } 5449 5450 static int task_clock_event_add(struct perf_event *event, int flags) 5451 { 5452 if (flags & PERF_EF_START) 5453 task_clock_event_start(event, flags); 5454 5455 return 0; 5456 } 5457 5458 static void task_clock_event_del(struct perf_event *event, int flags) 5459 { 5460 task_clock_event_stop(event, PERF_EF_UPDATE); 5461 } 5462 5463 static void task_clock_event_read(struct perf_event *event) 5464 { 5465 u64 now = perf_clock(); 5466 u64 delta = now - event->ctx->timestamp; 5467 u64 time = event->ctx->time + delta; 5468 5469 task_clock_event_update(event, time); 5470 } 5471 5472 static int task_clock_event_init(struct perf_event *event) 5473 { 5474 if (event->attr.type != PERF_TYPE_SOFTWARE) 5475 return -ENOENT; 5476 5477 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5478 return -ENOENT; 5479 5480 perf_swevent_init_hrtimer(event); 5481 5482 return 0; 5483 } 5484 5485 static struct pmu perf_task_clock = { 5486 .task_ctx_nr = perf_sw_context, 5487 5488 .event_init = task_clock_event_init, 5489 .add = task_clock_event_add, 5490 .del = task_clock_event_del, 5491 .start = task_clock_event_start, 5492 .stop = task_clock_event_stop, 5493 .read = task_clock_event_read, 5494 }; 5495 5496 static void perf_pmu_nop_void(struct pmu *pmu) 5497 { 5498 } 5499 5500 static int perf_pmu_nop_int(struct pmu *pmu) 5501 { 5502 return 0; 5503 } 5504 5505 static void perf_pmu_start_txn(struct pmu *pmu) 5506 { 5507 perf_pmu_disable(pmu); 5508 } 5509 5510 static int perf_pmu_commit_txn(struct pmu *pmu) 5511 { 5512 perf_pmu_enable(pmu); 5513 return 0; 5514 } 5515 5516 static void perf_pmu_cancel_txn(struct pmu *pmu) 5517 { 5518 perf_pmu_enable(pmu); 5519 } 5520 5521 /* 5522 * Ensures all contexts with the same task_ctx_nr have the same 5523 * pmu_cpu_context too. 5524 */ 5525 static void *find_pmu_context(int ctxn) 5526 { 5527 struct pmu *pmu; 5528 5529 if (ctxn < 0) 5530 return NULL; 5531 5532 list_for_each_entry(pmu, &pmus, entry) { 5533 if (pmu->task_ctx_nr == ctxn) 5534 return pmu->pmu_cpu_context; 5535 } 5536 5537 return NULL; 5538 } 5539 5540 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5541 { 5542 int cpu; 5543 5544 for_each_possible_cpu(cpu) { 5545 struct perf_cpu_context *cpuctx; 5546 5547 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5548 5549 if (cpuctx->active_pmu == old_pmu) 5550 cpuctx->active_pmu = pmu; 5551 } 5552 } 5553 5554 static void free_pmu_context(struct pmu *pmu) 5555 { 5556 struct pmu *i; 5557 5558 mutex_lock(&pmus_lock); 5559 /* 5560 * Like a real lame refcount. 5561 */ 5562 list_for_each_entry(i, &pmus, entry) { 5563 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5564 update_pmu_context(i, pmu); 5565 goto out; 5566 } 5567 } 5568 5569 free_percpu(pmu->pmu_cpu_context); 5570 out: 5571 mutex_unlock(&pmus_lock); 5572 } 5573 static struct idr pmu_idr; 5574 5575 static ssize_t 5576 type_show(struct device *dev, struct device_attribute *attr, char *page) 5577 { 5578 struct pmu *pmu = dev_get_drvdata(dev); 5579 5580 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5581 } 5582 5583 static struct device_attribute pmu_dev_attrs[] = { 5584 __ATTR_RO(type), 5585 __ATTR_NULL, 5586 }; 5587 5588 static int pmu_bus_running; 5589 static struct bus_type pmu_bus = { 5590 .name = "event_source", 5591 .dev_attrs = pmu_dev_attrs, 5592 }; 5593 5594 static void pmu_dev_release(struct device *dev) 5595 { 5596 kfree(dev); 5597 } 5598 5599 static int pmu_dev_alloc(struct pmu *pmu) 5600 { 5601 int ret = -ENOMEM; 5602 5603 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5604 if (!pmu->dev) 5605 goto out; 5606 5607 device_initialize(pmu->dev); 5608 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5609 if (ret) 5610 goto free_dev; 5611 5612 dev_set_drvdata(pmu->dev, pmu); 5613 pmu->dev->bus = &pmu_bus; 5614 pmu->dev->release = pmu_dev_release; 5615 ret = device_add(pmu->dev); 5616 if (ret) 5617 goto free_dev; 5618 5619 out: 5620 return ret; 5621 5622 free_dev: 5623 put_device(pmu->dev); 5624 goto out; 5625 } 5626 5627 static struct lock_class_key cpuctx_mutex; 5628 static struct lock_class_key cpuctx_lock; 5629 5630 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5631 { 5632 int cpu, ret; 5633 5634 mutex_lock(&pmus_lock); 5635 ret = -ENOMEM; 5636 pmu->pmu_disable_count = alloc_percpu(int); 5637 if (!pmu->pmu_disable_count) 5638 goto unlock; 5639 5640 pmu->type = -1; 5641 if (!name) 5642 goto skip_type; 5643 pmu->name = name; 5644 5645 if (type < 0) { 5646 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5647 if (!err) 5648 goto free_pdc; 5649 5650 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5651 if (err) { 5652 ret = err; 5653 goto free_pdc; 5654 } 5655 } 5656 pmu->type = type; 5657 5658 if (pmu_bus_running) { 5659 ret = pmu_dev_alloc(pmu); 5660 if (ret) 5661 goto free_idr; 5662 } 5663 5664 skip_type: 5665 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5666 if (pmu->pmu_cpu_context) 5667 goto got_cpu_context; 5668 5669 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5670 if (!pmu->pmu_cpu_context) 5671 goto free_dev; 5672 5673 for_each_possible_cpu(cpu) { 5674 struct perf_cpu_context *cpuctx; 5675 5676 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5677 __perf_event_init_context(&cpuctx->ctx); 5678 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5679 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5680 cpuctx->ctx.type = cpu_context; 5681 cpuctx->ctx.pmu = pmu; 5682 cpuctx->jiffies_interval = 1; 5683 INIT_LIST_HEAD(&cpuctx->rotation_list); 5684 cpuctx->active_pmu = pmu; 5685 } 5686 5687 got_cpu_context: 5688 if (!pmu->start_txn) { 5689 if (pmu->pmu_enable) { 5690 /* 5691 * If we have pmu_enable/pmu_disable calls, install 5692 * transaction stubs that use that to try and batch 5693 * hardware accesses. 5694 */ 5695 pmu->start_txn = perf_pmu_start_txn; 5696 pmu->commit_txn = perf_pmu_commit_txn; 5697 pmu->cancel_txn = perf_pmu_cancel_txn; 5698 } else { 5699 pmu->start_txn = perf_pmu_nop_void; 5700 pmu->commit_txn = perf_pmu_nop_int; 5701 pmu->cancel_txn = perf_pmu_nop_void; 5702 } 5703 } 5704 5705 if (!pmu->pmu_enable) { 5706 pmu->pmu_enable = perf_pmu_nop_void; 5707 pmu->pmu_disable = perf_pmu_nop_void; 5708 } 5709 5710 list_add_rcu(&pmu->entry, &pmus); 5711 ret = 0; 5712 unlock: 5713 mutex_unlock(&pmus_lock); 5714 5715 return ret; 5716 5717 free_dev: 5718 device_del(pmu->dev); 5719 put_device(pmu->dev); 5720 5721 free_idr: 5722 if (pmu->type >= PERF_TYPE_MAX) 5723 idr_remove(&pmu_idr, pmu->type); 5724 5725 free_pdc: 5726 free_percpu(pmu->pmu_disable_count); 5727 goto unlock; 5728 } 5729 5730 void perf_pmu_unregister(struct pmu *pmu) 5731 { 5732 mutex_lock(&pmus_lock); 5733 list_del_rcu(&pmu->entry); 5734 mutex_unlock(&pmus_lock); 5735 5736 /* 5737 * We dereference the pmu list under both SRCU and regular RCU, so 5738 * synchronize against both of those. 5739 */ 5740 synchronize_srcu(&pmus_srcu); 5741 synchronize_rcu(); 5742 5743 free_percpu(pmu->pmu_disable_count); 5744 if (pmu->type >= PERF_TYPE_MAX) 5745 idr_remove(&pmu_idr, pmu->type); 5746 device_del(pmu->dev); 5747 put_device(pmu->dev); 5748 free_pmu_context(pmu); 5749 } 5750 5751 struct pmu *perf_init_event(struct perf_event *event) 5752 { 5753 struct pmu *pmu = NULL; 5754 int idx; 5755 int ret; 5756 5757 idx = srcu_read_lock(&pmus_srcu); 5758 5759 rcu_read_lock(); 5760 pmu = idr_find(&pmu_idr, event->attr.type); 5761 rcu_read_unlock(); 5762 if (pmu) { 5763 event->pmu = pmu; 5764 ret = pmu->event_init(event); 5765 if (ret) 5766 pmu = ERR_PTR(ret); 5767 goto unlock; 5768 } 5769 5770 list_for_each_entry_rcu(pmu, &pmus, entry) { 5771 event->pmu = pmu; 5772 ret = pmu->event_init(event); 5773 if (!ret) 5774 goto unlock; 5775 5776 if (ret != -ENOENT) { 5777 pmu = ERR_PTR(ret); 5778 goto unlock; 5779 } 5780 } 5781 pmu = ERR_PTR(-ENOENT); 5782 unlock: 5783 srcu_read_unlock(&pmus_srcu, idx); 5784 5785 return pmu; 5786 } 5787 5788 /* 5789 * Allocate and initialize a event structure 5790 */ 5791 static struct perf_event * 5792 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5793 struct task_struct *task, 5794 struct perf_event *group_leader, 5795 struct perf_event *parent_event, 5796 perf_overflow_handler_t overflow_handler, 5797 void *context) 5798 { 5799 struct pmu *pmu; 5800 struct perf_event *event; 5801 struct hw_perf_event *hwc; 5802 long err; 5803 5804 if ((unsigned)cpu >= nr_cpu_ids) { 5805 if (!task || cpu != -1) 5806 return ERR_PTR(-EINVAL); 5807 } 5808 5809 event = kzalloc(sizeof(*event), GFP_KERNEL); 5810 if (!event) 5811 return ERR_PTR(-ENOMEM); 5812 5813 /* 5814 * Single events are their own group leaders, with an 5815 * empty sibling list: 5816 */ 5817 if (!group_leader) 5818 group_leader = event; 5819 5820 mutex_init(&event->child_mutex); 5821 INIT_LIST_HEAD(&event->child_list); 5822 5823 INIT_LIST_HEAD(&event->group_entry); 5824 INIT_LIST_HEAD(&event->event_entry); 5825 INIT_LIST_HEAD(&event->sibling_list); 5826 init_waitqueue_head(&event->waitq); 5827 init_irq_work(&event->pending, perf_pending_event); 5828 5829 mutex_init(&event->mmap_mutex); 5830 5831 event->cpu = cpu; 5832 event->attr = *attr; 5833 event->group_leader = group_leader; 5834 event->pmu = NULL; 5835 event->oncpu = -1; 5836 5837 event->parent = parent_event; 5838 5839 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5840 event->id = atomic64_inc_return(&perf_event_id); 5841 5842 event->state = PERF_EVENT_STATE_INACTIVE; 5843 5844 if (task) { 5845 event->attach_state = PERF_ATTACH_TASK; 5846 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5847 /* 5848 * hw_breakpoint is a bit difficult here.. 5849 */ 5850 if (attr->type == PERF_TYPE_BREAKPOINT) 5851 event->hw.bp_target = task; 5852 #endif 5853 } 5854 5855 if (!overflow_handler && parent_event) { 5856 overflow_handler = parent_event->overflow_handler; 5857 context = parent_event->overflow_handler_context; 5858 } 5859 5860 event->overflow_handler = overflow_handler; 5861 event->overflow_handler_context = context; 5862 5863 if (attr->disabled) 5864 event->state = PERF_EVENT_STATE_OFF; 5865 5866 pmu = NULL; 5867 5868 hwc = &event->hw; 5869 hwc->sample_period = attr->sample_period; 5870 if (attr->freq && attr->sample_freq) 5871 hwc->sample_period = 1; 5872 hwc->last_period = hwc->sample_period; 5873 5874 local64_set(&hwc->period_left, hwc->sample_period); 5875 5876 /* 5877 * we currently do not support PERF_FORMAT_GROUP on inherited events 5878 */ 5879 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5880 goto done; 5881 5882 pmu = perf_init_event(event); 5883 5884 done: 5885 err = 0; 5886 if (!pmu) 5887 err = -EINVAL; 5888 else if (IS_ERR(pmu)) 5889 err = PTR_ERR(pmu); 5890 5891 if (err) { 5892 if (event->ns) 5893 put_pid_ns(event->ns); 5894 kfree(event); 5895 return ERR_PTR(err); 5896 } 5897 5898 if (!event->parent) { 5899 if (event->attach_state & PERF_ATTACH_TASK) 5900 jump_label_inc(&perf_sched_events); 5901 if (event->attr.mmap || event->attr.mmap_data) 5902 atomic_inc(&nr_mmap_events); 5903 if (event->attr.comm) 5904 atomic_inc(&nr_comm_events); 5905 if (event->attr.task) 5906 atomic_inc(&nr_task_events); 5907 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5908 err = get_callchain_buffers(); 5909 if (err) { 5910 free_event(event); 5911 return ERR_PTR(err); 5912 } 5913 } 5914 } 5915 5916 return event; 5917 } 5918 5919 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5920 struct perf_event_attr *attr) 5921 { 5922 u32 size; 5923 int ret; 5924 5925 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5926 return -EFAULT; 5927 5928 /* 5929 * zero the full structure, so that a short copy will be nice. 5930 */ 5931 memset(attr, 0, sizeof(*attr)); 5932 5933 ret = get_user(size, &uattr->size); 5934 if (ret) 5935 return ret; 5936 5937 if (size > PAGE_SIZE) /* silly large */ 5938 goto err_size; 5939 5940 if (!size) /* abi compat */ 5941 size = PERF_ATTR_SIZE_VER0; 5942 5943 if (size < PERF_ATTR_SIZE_VER0) 5944 goto err_size; 5945 5946 /* 5947 * If we're handed a bigger struct than we know of, 5948 * ensure all the unknown bits are 0 - i.e. new 5949 * user-space does not rely on any kernel feature 5950 * extensions we dont know about yet. 5951 */ 5952 if (size > sizeof(*attr)) { 5953 unsigned char __user *addr; 5954 unsigned char __user *end; 5955 unsigned char val; 5956 5957 addr = (void __user *)uattr + sizeof(*attr); 5958 end = (void __user *)uattr + size; 5959 5960 for (; addr < end; addr++) { 5961 ret = get_user(val, addr); 5962 if (ret) 5963 return ret; 5964 if (val) 5965 goto err_size; 5966 } 5967 size = sizeof(*attr); 5968 } 5969 5970 ret = copy_from_user(attr, uattr, size); 5971 if (ret) 5972 return -EFAULT; 5973 5974 if (attr->__reserved_1) 5975 return -EINVAL; 5976 5977 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5978 return -EINVAL; 5979 5980 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5981 return -EINVAL; 5982 5983 out: 5984 return ret; 5985 5986 err_size: 5987 put_user(sizeof(*attr), &uattr->size); 5988 ret = -E2BIG; 5989 goto out; 5990 } 5991 5992 static int 5993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5994 { 5995 struct ring_buffer *rb = NULL, *old_rb = NULL; 5996 int ret = -EINVAL; 5997 5998 if (!output_event) 5999 goto set; 6000 6001 /* don't allow circular references */ 6002 if (event == output_event) 6003 goto out; 6004 6005 /* 6006 * Don't allow cross-cpu buffers 6007 */ 6008 if (output_event->cpu != event->cpu) 6009 goto out; 6010 6011 /* 6012 * If its not a per-cpu rb, it must be the same task. 6013 */ 6014 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6015 goto out; 6016 6017 set: 6018 mutex_lock(&event->mmap_mutex); 6019 /* Can't redirect output if we've got an active mmap() */ 6020 if (atomic_read(&event->mmap_count)) 6021 goto unlock; 6022 6023 if (output_event) { 6024 /* get the rb we want to redirect to */ 6025 rb = ring_buffer_get(output_event); 6026 if (!rb) 6027 goto unlock; 6028 } 6029 6030 old_rb = event->rb; 6031 rcu_assign_pointer(event->rb, rb); 6032 ret = 0; 6033 unlock: 6034 mutex_unlock(&event->mmap_mutex); 6035 6036 if (old_rb) 6037 ring_buffer_put(old_rb); 6038 out: 6039 return ret; 6040 } 6041 6042 /** 6043 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6044 * 6045 * @attr_uptr: event_id type attributes for monitoring/sampling 6046 * @pid: target pid 6047 * @cpu: target cpu 6048 * @group_fd: group leader event fd 6049 */ 6050 SYSCALL_DEFINE5(perf_event_open, 6051 struct perf_event_attr __user *, attr_uptr, 6052 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6053 { 6054 struct perf_event *group_leader = NULL, *output_event = NULL; 6055 struct perf_event *event, *sibling; 6056 struct perf_event_attr attr; 6057 struct perf_event_context *ctx; 6058 struct file *event_file = NULL; 6059 struct file *group_file = NULL; 6060 struct task_struct *task = NULL; 6061 struct pmu *pmu; 6062 int event_fd; 6063 int move_group = 0; 6064 int fput_needed = 0; 6065 int err; 6066 6067 /* for future expandability... */ 6068 if (flags & ~PERF_FLAG_ALL) 6069 return -EINVAL; 6070 6071 err = perf_copy_attr(attr_uptr, &attr); 6072 if (err) 6073 return err; 6074 6075 if (!attr.exclude_kernel) { 6076 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6077 return -EACCES; 6078 } 6079 6080 if (attr.freq) { 6081 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6082 return -EINVAL; 6083 } 6084 6085 /* 6086 * In cgroup mode, the pid argument is used to pass the fd 6087 * opened to the cgroup directory in cgroupfs. The cpu argument 6088 * designates the cpu on which to monitor threads from that 6089 * cgroup. 6090 */ 6091 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6092 return -EINVAL; 6093 6094 event_fd = get_unused_fd_flags(O_RDWR); 6095 if (event_fd < 0) 6096 return event_fd; 6097 6098 if (group_fd != -1) { 6099 group_leader = perf_fget_light(group_fd, &fput_needed); 6100 if (IS_ERR(group_leader)) { 6101 err = PTR_ERR(group_leader); 6102 goto err_fd; 6103 } 6104 group_file = group_leader->filp; 6105 if (flags & PERF_FLAG_FD_OUTPUT) 6106 output_event = group_leader; 6107 if (flags & PERF_FLAG_FD_NO_GROUP) 6108 group_leader = NULL; 6109 } 6110 6111 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6112 task = find_lively_task_by_vpid(pid); 6113 if (IS_ERR(task)) { 6114 err = PTR_ERR(task); 6115 goto err_group_fd; 6116 } 6117 } 6118 6119 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6120 NULL, NULL); 6121 if (IS_ERR(event)) { 6122 err = PTR_ERR(event); 6123 goto err_task; 6124 } 6125 6126 if (flags & PERF_FLAG_PID_CGROUP) { 6127 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6128 if (err) 6129 goto err_alloc; 6130 /* 6131 * one more event: 6132 * - that has cgroup constraint on event->cpu 6133 * - that may need work on context switch 6134 */ 6135 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6136 jump_label_inc(&perf_sched_events); 6137 } 6138 6139 /* 6140 * Special case software events and allow them to be part of 6141 * any hardware group. 6142 */ 6143 pmu = event->pmu; 6144 6145 if (group_leader && 6146 (is_software_event(event) != is_software_event(group_leader))) { 6147 if (is_software_event(event)) { 6148 /* 6149 * If event and group_leader are not both a software 6150 * event, and event is, then group leader is not. 6151 * 6152 * Allow the addition of software events to !software 6153 * groups, this is safe because software events never 6154 * fail to schedule. 6155 */ 6156 pmu = group_leader->pmu; 6157 } else if (is_software_event(group_leader) && 6158 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6159 /* 6160 * In case the group is a pure software group, and we 6161 * try to add a hardware event, move the whole group to 6162 * the hardware context. 6163 */ 6164 move_group = 1; 6165 } 6166 } 6167 6168 /* 6169 * Get the target context (task or percpu): 6170 */ 6171 ctx = find_get_context(pmu, task, cpu); 6172 if (IS_ERR(ctx)) { 6173 err = PTR_ERR(ctx); 6174 goto err_alloc; 6175 } 6176 6177 if (task) { 6178 put_task_struct(task); 6179 task = NULL; 6180 } 6181 6182 /* 6183 * Look up the group leader (we will attach this event to it): 6184 */ 6185 if (group_leader) { 6186 err = -EINVAL; 6187 6188 /* 6189 * Do not allow a recursive hierarchy (this new sibling 6190 * becoming part of another group-sibling): 6191 */ 6192 if (group_leader->group_leader != group_leader) 6193 goto err_context; 6194 /* 6195 * Do not allow to attach to a group in a different 6196 * task or CPU context: 6197 */ 6198 if (move_group) { 6199 if (group_leader->ctx->type != ctx->type) 6200 goto err_context; 6201 } else { 6202 if (group_leader->ctx != ctx) 6203 goto err_context; 6204 } 6205 6206 /* 6207 * Only a group leader can be exclusive or pinned 6208 */ 6209 if (attr.exclusive || attr.pinned) 6210 goto err_context; 6211 } 6212 6213 if (output_event) { 6214 err = perf_event_set_output(event, output_event); 6215 if (err) 6216 goto err_context; 6217 } 6218 6219 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6220 if (IS_ERR(event_file)) { 6221 err = PTR_ERR(event_file); 6222 goto err_context; 6223 } 6224 6225 if (move_group) { 6226 struct perf_event_context *gctx = group_leader->ctx; 6227 6228 mutex_lock(&gctx->mutex); 6229 perf_remove_from_context(group_leader); 6230 list_for_each_entry(sibling, &group_leader->sibling_list, 6231 group_entry) { 6232 perf_remove_from_context(sibling); 6233 put_ctx(gctx); 6234 } 6235 mutex_unlock(&gctx->mutex); 6236 put_ctx(gctx); 6237 } 6238 6239 event->filp = event_file; 6240 WARN_ON_ONCE(ctx->parent_ctx); 6241 mutex_lock(&ctx->mutex); 6242 6243 if (move_group) { 6244 perf_install_in_context(ctx, group_leader, cpu); 6245 get_ctx(ctx); 6246 list_for_each_entry(sibling, &group_leader->sibling_list, 6247 group_entry) { 6248 perf_install_in_context(ctx, sibling, cpu); 6249 get_ctx(ctx); 6250 } 6251 } 6252 6253 perf_install_in_context(ctx, event, cpu); 6254 ++ctx->generation; 6255 perf_unpin_context(ctx); 6256 mutex_unlock(&ctx->mutex); 6257 6258 event->owner = current; 6259 6260 mutex_lock(¤t->perf_event_mutex); 6261 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6262 mutex_unlock(¤t->perf_event_mutex); 6263 6264 /* 6265 * Precalculate sample_data sizes 6266 */ 6267 perf_event__header_size(event); 6268 perf_event__id_header_size(event); 6269 6270 /* 6271 * Drop the reference on the group_event after placing the 6272 * new event on the sibling_list. This ensures destruction 6273 * of the group leader will find the pointer to itself in 6274 * perf_group_detach(). 6275 */ 6276 fput_light(group_file, fput_needed); 6277 fd_install(event_fd, event_file); 6278 return event_fd; 6279 6280 err_context: 6281 perf_unpin_context(ctx); 6282 put_ctx(ctx); 6283 err_alloc: 6284 free_event(event); 6285 err_task: 6286 if (task) 6287 put_task_struct(task); 6288 err_group_fd: 6289 fput_light(group_file, fput_needed); 6290 err_fd: 6291 put_unused_fd(event_fd); 6292 return err; 6293 } 6294 6295 /** 6296 * perf_event_create_kernel_counter 6297 * 6298 * @attr: attributes of the counter to create 6299 * @cpu: cpu in which the counter is bound 6300 * @task: task to profile (NULL for percpu) 6301 */ 6302 struct perf_event * 6303 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6304 struct task_struct *task, 6305 perf_overflow_handler_t overflow_handler, 6306 void *context) 6307 { 6308 struct perf_event_context *ctx; 6309 struct perf_event *event; 6310 int err; 6311 6312 /* 6313 * Get the target context (task or percpu): 6314 */ 6315 6316 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6317 overflow_handler, context); 6318 if (IS_ERR(event)) { 6319 err = PTR_ERR(event); 6320 goto err; 6321 } 6322 6323 ctx = find_get_context(event->pmu, task, cpu); 6324 if (IS_ERR(ctx)) { 6325 err = PTR_ERR(ctx); 6326 goto err_free; 6327 } 6328 6329 event->filp = NULL; 6330 WARN_ON_ONCE(ctx->parent_ctx); 6331 mutex_lock(&ctx->mutex); 6332 perf_install_in_context(ctx, event, cpu); 6333 ++ctx->generation; 6334 perf_unpin_context(ctx); 6335 mutex_unlock(&ctx->mutex); 6336 6337 return event; 6338 6339 err_free: 6340 free_event(event); 6341 err: 6342 return ERR_PTR(err); 6343 } 6344 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6345 6346 static void sync_child_event(struct perf_event *child_event, 6347 struct task_struct *child) 6348 { 6349 struct perf_event *parent_event = child_event->parent; 6350 u64 child_val; 6351 6352 if (child_event->attr.inherit_stat) 6353 perf_event_read_event(child_event, child); 6354 6355 child_val = perf_event_count(child_event); 6356 6357 /* 6358 * Add back the child's count to the parent's count: 6359 */ 6360 atomic64_add(child_val, &parent_event->child_count); 6361 atomic64_add(child_event->total_time_enabled, 6362 &parent_event->child_total_time_enabled); 6363 atomic64_add(child_event->total_time_running, 6364 &parent_event->child_total_time_running); 6365 6366 /* 6367 * Remove this event from the parent's list 6368 */ 6369 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6370 mutex_lock(&parent_event->child_mutex); 6371 list_del_init(&child_event->child_list); 6372 mutex_unlock(&parent_event->child_mutex); 6373 6374 /* 6375 * Release the parent event, if this was the last 6376 * reference to it. 6377 */ 6378 fput(parent_event->filp); 6379 } 6380 6381 static void 6382 __perf_event_exit_task(struct perf_event *child_event, 6383 struct perf_event_context *child_ctx, 6384 struct task_struct *child) 6385 { 6386 if (child_event->parent) { 6387 raw_spin_lock_irq(&child_ctx->lock); 6388 perf_group_detach(child_event); 6389 raw_spin_unlock_irq(&child_ctx->lock); 6390 } 6391 6392 perf_remove_from_context(child_event); 6393 6394 /* 6395 * It can happen that the parent exits first, and has events 6396 * that are still around due to the child reference. These 6397 * events need to be zapped. 6398 */ 6399 if (child_event->parent) { 6400 sync_child_event(child_event, child); 6401 free_event(child_event); 6402 } 6403 } 6404 6405 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6406 { 6407 struct perf_event *child_event, *tmp; 6408 struct perf_event_context *child_ctx; 6409 unsigned long flags; 6410 6411 if (likely(!child->perf_event_ctxp[ctxn])) { 6412 perf_event_task(child, NULL, 0); 6413 return; 6414 } 6415 6416 local_irq_save(flags); 6417 /* 6418 * We can't reschedule here because interrupts are disabled, 6419 * and either child is current or it is a task that can't be 6420 * scheduled, so we are now safe from rescheduling changing 6421 * our context. 6422 */ 6423 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6424 6425 /* 6426 * Take the context lock here so that if find_get_context is 6427 * reading child->perf_event_ctxp, we wait until it has 6428 * incremented the context's refcount before we do put_ctx below. 6429 */ 6430 raw_spin_lock(&child_ctx->lock); 6431 task_ctx_sched_out(child_ctx); 6432 child->perf_event_ctxp[ctxn] = NULL; 6433 /* 6434 * If this context is a clone; unclone it so it can't get 6435 * swapped to another process while we're removing all 6436 * the events from it. 6437 */ 6438 unclone_ctx(child_ctx); 6439 update_context_time(child_ctx); 6440 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6441 6442 /* 6443 * Report the task dead after unscheduling the events so that we 6444 * won't get any samples after PERF_RECORD_EXIT. We can however still 6445 * get a few PERF_RECORD_READ events. 6446 */ 6447 perf_event_task(child, child_ctx, 0); 6448 6449 /* 6450 * We can recurse on the same lock type through: 6451 * 6452 * __perf_event_exit_task() 6453 * sync_child_event() 6454 * fput(parent_event->filp) 6455 * perf_release() 6456 * mutex_lock(&ctx->mutex) 6457 * 6458 * But since its the parent context it won't be the same instance. 6459 */ 6460 mutex_lock(&child_ctx->mutex); 6461 6462 again: 6463 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6464 group_entry) 6465 __perf_event_exit_task(child_event, child_ctx, child); 6466 6467 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6468 group_entry) 6469 __perf_event_exit_task(child_event, child_ctx, child); 6470 6471 /* 6472 * If the last event was a group event, it will have appended all 6473 * its siblings to the list, but we obtained 'tmp' before that which 6474 * will still point to the list head terminating the iteration. 6475 */ 6476 if (!list_empty(&child_ctx->pinned_groups) || 6477 !list_empty(&child_ctx->flexible_groups)) 6478 goto again; 6479 6480 mutex_unlock(&child_ctx->mutex); 6481 6482 put_ctx(child_ctx); 6483 } 6484 6485 /* 6486 * When a child task exits, feed back event values to parent events. 6487 */ 6488 void perf_event_exit_task(struct task_struct *child) 6489 { 6490 struct perf_event *event, *tmp; 6491 int ctxn; 6492 6493 mutex_lock(&child->perf_event_mutex); 6494 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6495 owner_entry) { 6496 list_del_init(&event->owner_entry); 6497 6498 /* 6499 * Ensure the list deletion is visible before we clear 6500 * the owner, closes a race against perf_release() where 6501 * we need to serialize on the owner->perf_event_mutex. 6502 */ 6503 smp_wmb(); 6504 event->owner = NULL; 6505 } 6506 mutex_unlock(&child->perf_event_mutex); 6507 6508 for_each_task_context_nr(ctxn) 6509 perf_event_exit_task_context(child, ctxn); 6510 } 6511 6512 static void perf_free_event(struct perf_event *event, 6513 struct perf_event_context *ctx) 6514 { 6515 struct perf_event *parent = event->parent; 6516 6517 if (WARN_ON_ONCE(!parent)) 6518 return; 6519 6520 mutex_lock(&parent->child_mutex); 6521 list_del_init(&event->child_list); 6522 mutex_unlock(&parent->child_mutex); 6523 6524 fput(parent->filp); 6525 6526 perf_group_detach(event); 6527 list_del_event(event, ctx); 6528 free_event(event); 6529 } 6530 6531 /* 6532 * free an unexposed, unused context as created by inheritance by 6533 * perf_event_init_task below, used by fork() in case of fail. 6534 */ 6535 void perf_event_free_task(struct task_struct *task) 6536 { 6537 struct perf_event_context *ctx; 6538 struct perf_event *event, *tmp; 6539 int ctxn; 6540 6541 for_each_task_context_nr(ctxn) { 6542 ctx = task->perf_event_ctxp[ctxn]; 6543 if (!ctx) 6544 continue; 6545 6546 mutex_lock(&ctx->mutex); 6547 again: 6548 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6549 group_entry) 6550 perf_free_event(event, ctx); 6551 6552 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6553 group_entry) 6554 perf_free_event(event, ctx); 6555 6556 if (!list_empty(&ctx->pinned_groups) || 6557 !list_empty(&ctx->flexible_groups)) 6558 goto again; 6559 6560 mutex_unlock(&ctx->mutex); 6561 6562 put_ctx(ctx); 6563 } 6564 } 6565 6566 void perf_event_delayed_put(struct task_struct *task) 6567 { 6568 int ctxn; 6569 6570 for_each_task_context_nr(ctxn) 6571 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6572 } 6573 6574 /* 6575 * inherit a event from parent task to child task: 6576 */ 6577 static struct perf_event * 6578 inherit_event(struct perf_event *parent_event, 6579 struct task_struct *parent, 6580 struct perf_event_context *parent_ctx, 6581 struct task_struct *child, 6582 struct perf_event *group_leader, 6583 struct perf_event_context *child_ctx) 6584 { 6585 struct perf_event *child_event; 6586 unsigned long flags; 6587 6588 /* 6589 * Instead of creating recursive hierarchies of events, 6590 * we link inherited events back to the original parent, 6591 * which has a filp for sure, which we use as the reference 6592 * count: 6593 */ 6594 if (parent_event->parent) 6595 parent_event = parent_event->parent; 6596 6597 child_event = perf_event_alloc(&parent_event->attr, 6598 parent_event->cpu, 6599 child, 6600 group_leader, parent_event, 6601 NULL, NULL); 6602 if (IS_ERR(child_event)) 6603 return child_event; 6604 get_ctx(child_ctx); 6605 6606 /* 6607 * Make the child state follow the state of the parent event, 6608 * not its attr.disabled bit. We hold the parent's mutex, 6609 * so we won't race with perf_event_{en, dis}able_family. 6610 */ 6611 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6612 child_event->state = PERF_EVENT_STATE_INACTIVE; 6613 else 6614 child_event->state = PERF_EVENT_STATE_OFF; 6615 6616 if (parent_event->attr.freq) { 6617 u64 sample_period = parent_event->hw.sample_period; 6618 struct hw_perf_event *hwc = &child_event->hw; 6619 6620 hwc->sample_period = sample_period; 6621 hwc->last_period = sample_period; 6622 6623 local64_set(&hwc->period_left, sample_period); 6624 } 6625 6626 child_event->ctx = child_ctx; 6627 child_event->overflow_handler = parent_event->overflow_handler; 6628 child_event->overflow_handler_context 6629 = parent_event->overflow_handler_context; 6630 6631 /* 6632 * Precalculate sample_data sizes 6633 */ 6634 perf_event__header_size(child_event); 6635 perf_event__id_header_size(child_event); 6636 6637 /* 6638 * Link it up in the child's context: 6639 */ 6640 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6641 add_event_to_ctx(child_event, child_ctx); 6642 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6643 6644 /* 6645 * Get a reference to the parent filp - we will fput it 6646 * when the child event exits. This is safe to do because 6647 * we are in the parent and we know that the filp still 6648 * exists and has a nonzero count: 6649 */ 6650 atomic_long_inc(&parent_event->filp->f_count); 6651 6652 /* 6653 * Link this into the parent event's child list 6654 */ 6655 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6656 mutex_lock(&parent_event->child_mutex); 6657 list_add_tail(&child_event->child_list, &parent_event->child_list); 6658 mutex_unlock(&parent_event->child_mutex); 6659 6660 return child_event; 6661 } 6662 6663 static int inherit_group(struct perf_event *parent_event, 6664 struct task_struct *parent, 6665 struct perf_event_context *parent_ctx, 6666 struct task_struct *child, 6667 struct perf_event_context *child_ctx) 6668 { 6669 struct perf_event *leader; 6670 struct perf_event *sub; 6671 struct perf_event *child_ctr; 6672 6673 leader = inherit_event(parent_event, parent, parent_ctx, 6674 child, NULL, child_ctx); 6675 if (IS_ERR(leader)) 6676 return PTR_ERR(leader); 6677 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6678 child_ctr = inherit_event(sub, parent, parent_ctx, 6679 child, leader, child_ctx); 6680 if (IS_ERR(child_ctr)) 6681 return PTR_ERR(child_ctr); 6682 } 6683 return 0; 6684 } 6685 6686 static int 6687 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6688 struct perf_event_context *parent_ctx, 6689 struct task_struct *child, int ctxn, 6690 int *inherited_all) 6691 { 6692 int ret; 6693 struct perf_event_context *child_ctx; 6694 6695 if (!event->attr.inherit) { 6696 *inherited_all = 0; 6697 return 0; 6698 } 6699 6700 child_ctx = child->perf_event_ctxp[ctxn]; 6701 if (!child_ctx) { 6702 /* 6703 * This is executed from the parent task context, so 6704 * inherit events that have been marked for cloning. 6705 * First allocate and initialize a context for the 6706 * child. 6707 */ 6708 6709 child_ctx = alloc_perf_context(event->pmu, child); 6710 if (!child_ctx) 6711 return -ENOMEM; 6712 6713 child->perf_event_ctxp[ctxn] = child_ctx; 6714 } 6715 6716 ret = inherit_group(event, parent, parent_ctx, 6717 child, child_ctx); 6718 6719 if (ret) 6720 *inherited_all = 0; 6721 6722 return ret; 6723 } 6724 6725 /* 6726 * Initialize the perf_event context in task_struct 6727 */ 6728 int perf_event_init_context(struct task_struct *child, int ctxn) 6729 { 6730 struct perf_event_context *child_ctx, *parent_ctx; 6731 struct perf_event_context *cloned_ctx; 6732 struct perf_event *event; 6733 struct task_struct *parent = current; 6734 int inherited_all = 1; 6735 unsigned long flags; 6736 int ret = 0; 6737 6738 if (likely(!parent->perf_event_ctxp[ctxn])) 6739 return 0; 6740 6741 /* 6742 * If the parent's context is a clone, pin it so it won't get 6743 * swapped under us. 6744 */ 6745 parent_ctx = perf_pin_task_context(parent, ctxn); 6746 6747 /* 6748 * No need to check if parent_ctx != NULL here; since we saw 6749 * it non-NULL earlier, the only reason for it to become NULL 6750 * is if we exit, and since we're currently in the middle of 6751 * a fork we can't be exiting at the same time. 6752 */ 6753 6754 /* 6755 * Lock the parent list. No need to lock the child - not PID 6756 * hashed yet and not running, so nobody can access it. 6757 */ 6758 mutex_lock(&parent_ctx->mutex); 6759 6760 /* 6761 * We dont have to disable NMIs - we are only looking at 6762 * the list, not manipulating it: 6763 */ 6764 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6765 ret = inherit_task_group(event, parent, parent_ctx, 6766 child, ctxn, &inherited_all); 6767 if (ret) 6768 break; 6769 } 6770 6771 /* 6772 * We can't hold ctx->lock when iterating the ->flexible_group list due 6773 * to allocations, but we need to prevent rotation because 6774 * rotate_ctx() will change the list from interrupt context. 6775 */ 6776 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6777 parent_ctx->rotate_disable = 1; 6778 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6779 6780 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6781 ret = inherit_task_group(event, parent, parent_ctx, 6782 child, ctxn, &inherited_all); 6783 if (ret) 6784 break; 6785 } 6786 6787 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6788 parent_ctx->rotate_disable = 0; 6789 6790 child_ctx = child->perf_event_ctxp[ctxn]; 6791 6792 if (child_ctx && inherited_all) { 6793 /* 6794 * Mark the child context as a clone of the parent 6795 * context, or of whatever the parent is a clone of. 6796 * 6797 * Note that if the parent is a clone, the holding of 6798 * parent_ctx->lock avoids it from being uncloned. 6799 */ 6800 cloned_ctx = parent_ctx->parent_ctx; 6801 if (cloned_ctx) { 6802 child_ctx->parent_ctx = cloned_ctx; 6803 child_ctx->parent_gen = parent_ctx->parent_gen; 6804 } else { 6805 child_ctx->parent_ctx = parent_ctx; 6806 child_ctx->parent_gen = parent_ctx->generation; 6807 } 6808 get_ctx(child_ctx->parent_ctx); 6809 } 6810 6811 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6812 mutex_unlock(&parent_ctx->mutex); 6813 6814 perf_unpin_context(parent_ctx); 6815 put_ctx(parent_ctx); 6816 6817 return ret; 6818 } 6819 6820 /* 6821 * Initialize the perf_event context in task_struct 6822 */ 6823 int perf_event_init_task(struct task_struct *child) 6824 { 6825 int ctxn, ret; 6826 6827 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6828 mutex_init(&child->perf_event_mutex); 6829 INIT_LIST_HEAD(&child->perf_event_list); 6830 6831 for_each_task_context_nr(ctxn) { 6832 ret = perf_event_init_context(child, ctxn); 6833 if (ret) 6834 return ret; 6835 } 6836 6837 return 0; 6838 } 6839 6840 static void __init perf_event_init_all_cpus(void) 6841 { 6842 struct swevent_htable *swhash; 6843 int cpu; 6844 6845 for_each_possible_cpu(cpu) { 6846 swhash = &per_cpu(swevent_htable, cpu); 6847 mutex_init(&swhash->hlist_mutex); 6848 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6849 } 6850 } 6851 6852 static void __cpuinit perf_event_init_cpu(int cpu) 6853 { 6854 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6855 6856 mutex_lock(&swhash->hlist_mutex); 6857 if (swhash->hlist_refcount > 0 && !swhash->swevent_hlist) { 6858 struct swevent_hlist *hlist; 6859 6860 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6861 WARN_ON(!hlist); 6862 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6863 } 6864 mutex_unlock(&swhash->hlist_mutex); 6865 } 6866 6867 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6868 static void perf_pmu_rotate_stop(struct pmu *pmu) 6869 { 6870 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6871 6872 WARN_ON(!irqs_disabled()); 6873 6874 list_del_init(&cpuctx->rotation_list); 6875 } 6876 6877 static void __perf_event_exit_context(void *__info) 6878 { 6879 struct perf_event_context *ctx = __info; 6880 struct perf_event *event, *tmp; 6881 6882 perf_pmu_rotate_stop(ctx->pmu); 6883 6884 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6885 __perf_remove_from_context(event); 6886 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6887 __perf_remove_from_context(event); 6888 } 6889 6890 static void perf_event_exit_cpu_context(int cpu) 6891 { 6892 struct perf_event_context *ctx; 6893 struct pmu *pmu; 6894 int idx; 6895 6896 idx = srcu_read_lock(&pmus_srcu); 6897 list_for_each_entry_rcu(pmu, &pmus, entry) { 6898 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6899 6900 mutex_lock(&ctx->mutex); 6901 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6902 mutex_unlock(&ctx->mutex); 6903 } 6904 srcu_read_unlock(&pmus_srcu, idx); 6905 } 6906 6907 static void perf_event_exit_cpu(int cpu) 6908 { 6909 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6910 6911 mutex_lock(&swhash->hlist_mutex); 6912 swevent_hlist_release(swhash); 6913 mutex_unlock(&swhash->hlist_mutex); 6914 6915 perf_event_exit_cpu_context(cpu); 6916 } 6917 #else 6918 static inline void perf_event_exit_cpu(int cpu) { } 6919 #endif 6920 6921 static int 6922 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6923 { 6924 int cpu; 6925 6926 for_each_online_cpu(cpu) 6927 perf_event_exit_cpu(cpu); 6928 6929 return NOTIFY_OK; 6930 } 6931 6932 /* 6933 * Run the perf reboot notifier at the very last possible moment so that 6934 * the generic watchdog code runs as long as possible. 6935 */ 6936 static struct notifier_block perf_reboot_notifier = { 6937 .notifier_call = perf_reboot, 6938 .priority = INT_MIN, 6939 }; 6940 6941 static int __cpuinit 6942 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6943 { 6944 unsigned int cpu = (long)hcpu; 6945 6946 /* 6947 * Ignore suspend/resume action, the perf_pm_notifier will 6948 * take care of that. 6949 */ 6950 if (action & CPU_TASKS_FROZEN) 6951 return NOTIFY_OK; 6952 6953 switch (action) { 6954 6955 case CPU_UP_PREPARE: 6956 case CPU_DOWN_FAILED: 6957 perf_event_init_cpu(cpu); 6958 break; 6959 6960 case CPU_UP_CANCELED: 6961 case CPU_DOWN_PREPARE: 6962 perf_event_exit_cpu(cpu); 6963 break; 6964 6965 default: 6966 break; 6967 } 6968 6969 return NOTIFY_OK; 6970 } 6971 6972 static void perf_pm_resume_cpu(void *unused) 6973 { 6974 struct perf_cpu_context *cpuctx; 6975 struct perf_event_context *ctx; 6976 struct pmu *pmu; 6977 int idx; 6978 6979 idx = srcu_read_lock(&pmus_srcu); 6980 list_for_each_entry_rcu(pmu, &pmus, entry) { 6981 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6982 ctx = cpuctx->task_ctx; 6983 6984 perf_ctx_lock(cpuctx, ctx); 6985 perf_pmu_disable(cpuctx->ctx.pmu); 6986 6987 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 6988 if (ctx) 6989 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 6990 6991 perf_pmu_enable(cpuctx->ctx.pmu); 6992 perf_ctx_unlock(cpuctx, ctx); 6993 } 6994 srcu_read_unlock(&pmus_srcu, idx); 6995 } 6996 6997 static void perf_pm_suspend_cpu(void *unused) 6998 { 6999 struct perf_cpu_context *cpuctx; 7000 struct perf_event_context *ctx; 7001 struct pmu *pmu; 7002 int idx; 7003 7004 idx = srcu_read_lock(&pmus_srcu); 7005 list_for_each_entry_rcu(pmu, &pmus, entry) { 7006 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7007 ctx = cpuctx->task_ctx; 7008 7009 perf_ctx_lock(cpuctx, ctx); 7010 perf_pmu_disable(cpuctx->ctx.pmu); 7011 7012 perf_event_sched_in(cpuctx, ctx, current); 7013 7014 perf_pmu_enable(cpuctx->ctx.pmu); 7015 perf_ctx_unlock(cpuctx, ctx); 7016 } 7017 srcu_read_unlock(&pmus_srcu, idx); 7018 } 7019 7020 static int perf_resume(void) 7021 { 7022 get_online_cpus(); 7023 smp_call_function(perf_pm_resume_cpu, NULL, 1); 7024 put_online_cpus(); 7025 7026 return NOTIFY_OK; 7027 } 7028 7029 static int perf_suspend(void) 7030 { 7031 get_online_cpus(); 7032 smp_call_function(perf_pm_suspend_cpu, NULL, 1); 7033 put_online_cpus(); 7034 7035 return NOTIFY_OK; 7036 } 7037 7038 static int perf_pm(struct notifier_block *self, unsigned long action, void *ptr) 7039 { 7040 switch (action) { 7041 case PM_POST_HIBERNATION: 7042 case PM_POST_SUSPEND: 7043 return perf_resume(); 7044 case PM_HIBERNATION_PREPARE: 7045 case PM_SUSPEND_PREPARE: 7046 return perf_suspend(); 7047 default: 7048 return NOTIFY_DONE; 7049 } 7050 } 7051 7052 static struct notifier_block perf_pm_notifier = { 7053 .notifier_call = perf_pm, 7054 }; 7055 7056 void __init perf_event_init(void) 7057 { 7058 int ret; 7059 7060 idr_init(&pmu_idr); 7061 7062 perf_event_init_all_cpus(); 7063 init_srcu_struct(&pmus_srcu); 7064 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7065 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7066 perf_pmu_register(&perf_task_clock, NULL, -1); 7067 perf_tp_register(); 7068 perf_cpu_notifier(perf_cpu_notify); 7069 register_reboot_notifier(&perf_reboot_notifier); 7070 register_pm_notifier(&perf_pm_notifier); 7071 7072 ret = init_hw_breakpoint(); 7073 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7074 } 7075 7076 static int __init perf_event_sysfs_init(void) 7077 { 7078 struct pmu *pmu; 7079 int ret; 7080 7081 mutex_lock(&pmus_lock); 7082 7083 ret = bus_register(&pmu_bus); 7084 if (ret) 7085 goto unlock; 7086 7087 list_for_each_entry(pmu, &pmus, entry) { 7088 if (!pmu->name || pmu->type < 0) 7089 continue; 7090 7091 ret = pmu_dev_alloc(pmu); 7092 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7093 } 7094 pmu_bus_running = 1; 7095 ret = 0; 7096 7097 unlock: 7098 mutex_unlock(&pmus_lock); 7099 7100 return ret; 7101 } 7102 device_initcall(perf_event_sysfs_init); 7103 7104 #ifdef CONFIG_CGROUP_PERF 7105 static struct cgroup_subsys_state *perf_cgroup_create( 7106 struct cgroup_subsys *ss, struct cgroup *cont) 7107 { 7108 struct perf_cgroup *jc; 7109 7110 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7111 if (!jc) 7112 return ERR_PTR(-ENOMEM); 7113 7114 jc->info = alloc_percpu(struct perf_cgroup_info); 7115 if (!jc->info) { 7116 kfree(jc); 7117 return ERR_PTR(-ENOMEM); 7118 } 7119 7120 return &jc->css; 7121 } 7122 7123 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 7124 struct cgroup *cont) 7125 { 7126 struct perf_cgroup *jc; 7127 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7128 struct perf_cgroup, css); 7129 free_percpu(jc->info); 7130 kfree(jc); 7131 } 7132 7133 static int __perf_cgroup_move(void *info) 7134 { 7135 struct task_struct *task = info; 7136 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7137 return 0; 7138 } 7139 7140 static void 7141 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task) 7142 { 7143 task_function_call(task, __perf_cgroup_move, task); 7144 } 7145 7146 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7147 struct cgroup *old_cgrp, struct task_struct *task) 7148 { 7149 /* 7150 * cgroup_exit() is called in the copy_process() failure path. 7151 * Ignore this case since the task hasn't ran yet, this avoids 7152 * trying to poke a half freed task state from generic code. 7153 */ 7154 if (!(task->flags & PF_EXITING)) 7155 return; 7156 7157 perf_cgroup_attach_task(cgrp, task); 7158 } 7159 7160 struct cgroup_subsys perf_subsys = { 7161 .name = "perf_event", 7162 .subsys_id = perf_subsys_id, 7163 .create = perf_cgroup_create, 7164 .destroy = perf_cgroup_destroy, 7165 .exit = perf_cgroup_exit, 7166 .attach_task = perf_cgroup_attach_task, 7167 }; 7168 #endif /* CONFIG_CGROUP_PERF */ 7169