xref: /linux/kernel/events/core.c (revision 0a422f2b1d213f6abeecde88fb45c4b7fa1fd358)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/suspend.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 
41 #include "internal.h"
42 
43 #include <asm/irq_regs.h>
44 
45 struct remote_function_call {
46 	struct task_struct	*p;
47 	int			(*func)(void *info);
48 	void			*info;
49 	int			ret;
50 };
51 
52 static void remote_function(void *data)
53 {
54 	struct remote_function_call *tfc = data;
55 	struct task_struct *p = tfc->p;
56 
57 	if (p) {
58 		tfc->ret = -EAGAIN;
59 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 			return;
61 	}
62 
63 	tfc->ret = tfc->func(tfc->info);
64 }
65 
66 /**
67  * task_function_call - call a function on the cpu on which a task runs
68  * @p:		the task to evaluate
69  * @func:	the function to be called
70  * @info:	the function call argument
71  *
72  * Calls the function @func when the task is currently running. This might
73  * be on the current CPU, which just calls the function directly
74  *
75  * returns: @func return value, or
76  *	    -ESRCH  - when the process isn't running
77  *	    -EAGAIN - when the process moved away
78  */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 	struct remote_function_call data = {
83 		.p	= p,
84 		.func	= func,
85 		.info	= info,
86 		.ret	= -ESRCH, /* No such (running) process */
87 	};
88 
89 	if (task_curr(p))
90 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 
92 	return data.ret;
93 }
94 
95 /**
96  * cpu_function_call - call a function on the cpu
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func on the remote cpu.
101  *
102  * returns: @func return value or -ENXIO when the cpu is offline
103  */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= NULL,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -ENXIO, /* No such CPU */
111 	};
112 
113 	smp_call_function_single(cpu, remote_function, &data, 1);
114 
115 	return data.ret;
116 }
117 
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 		       PERF_FLAG_FD_OUTPUT  |\
120 		       PERF_FLAG_PID_CGROUP)
121 
122 enum event_type_t {
123 	EVENT_FLEXIBLE = 0x1,
124 	EVENT_PINNED = 0x2,
125 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
126 };
127 
128 /*
129  * perf_sched_events : >0 events exist
130  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131  */
132 struct jump_label_key perf_sched_events __read_mostly;
133 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 
135 static atomic_t nr_mmap_events __read_mostly;
136 static atomic_t nr_comm_events __read_mostly;
137 static atomic_t nr_task_events __read_mostly;
138 
139 static LIST_HEAD(pmus);
140 static DEFINE_MUTEX(pmus_lock);
141 static struct srcu_struct pmus_srcu;
142 
143 /*
144  * perf event paranoia level:
145  *  -1 - not paranoid at all
146  *   0 - disallow raw tracepoint access for unpriv
147  *   1 - disallow cpu events for unpriv
148  *   2 - disallow kernel profiling for unpriv
149  */
150 int sysctl_perf_event_paranoid __read_mostly = 1;
151 
152 /* Minimum for 512 kiB + 1 user control page */
153 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
154 
155 /*
156  * max perf event sample rate
157  */
158 #define DEFAULT_MAX_SAMPLE_RATE 100000
159 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
160 static int max_samples_per_tick __read_mostly =
161 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 
163 int perf_proc_update_handler(struct ctl_table *table, int write,
164 		void __user *buffer, size_t *lenp,
165 		loff_t *ppos)
166 {
167 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
168 
169 	if (ret || !write)
170 		return ret;
171 
172 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
173 
174 	return 0;
175 }
176 
177 static atomic64_t perf_event_id;
178 
179 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
180 			      enum event_type_t event_type);
181 
182 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
183 			     enum event_type_t event_type,
184 			     struct task_struct *task);
185 
186 static void update_context_time(struct perf_event_context *ctx);
187 static u64 perf_event_time(struct perf_event *event);
188 
189 void __weak perf_event_print_debug(void)	{ }
190 
191 extern __weak const char *perf_pmu_name(void)
192 {
193 	return "pmu";
194 }
195 
196 static inline u64 perf_clock(void)
197 {
198 	return local_clock();
199 }
200 
201 static inline struct perf_cpu_context *
202 __get_cpu_context(struct perf_event_context *ctx)
203 {
204 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
205 }
206 
207 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
208 			  struct perf_event_context *ctx)
209 {
210 	raw_spin_lock(&cpuctx->ctx.lock);
211 	if (ctx)
212 		raw_spin_lock(&ctx->lock);
213 }
214 
215 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
216 			    struct perf_event_context *ctx)
217 {
218 	if (ctx)
219 		raw_spin_unlock(&ctx->lock);
220 	raw_spin_unlock(&cpuctx->ctx.lock);
221 }
222 
223 #ifdef CONFIG_CGROUP_PERF
224 
225 /*
226  * Must ensure cgroup is pinned (css_get) before calling
227  * this function. In other words, we cannot call this function
228  * if there is no cgroup event for the current CPU context.
229  */
230 static inline struct perf_cgroup *
231 perf_cgroup_from_task(struct task_struct *task)
232 {
233 	return container_of(task_subsys_state(task, perf_subsys_id),
234 			struct perf_cgroup, css);
235 }
236 
237 static inline bool
238 perf_cgroup_match(struct perf_event *event)
239 {
240 	struct perf_event_context *ctx = event->ctx;
241 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
242 
243 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
244 }
245 
246 static inline void perf_get_cgroup(struct perf_event *event)
247 {
248 	css_get(&event->cgrp->css);
249 }
250 
251 static inline void perf_put_cgroup(struct perf_event *event)
252 {
253 	css_put(&event->cgrp->css);
254 }
255 
256 static inline void perf_detach_cgroup(struct perf_event *event)
257 {
258 	perf_put_cgroup(event);
259 	event->cgrp = NULL;
260 }
261 
262 static inline int is_cgroup_event(struct perf_event *event)
263 {
264 	return event->cgrp != NULL;
265 }
266 
267 static inline u64 perf_cgroup_event_time(struct perf_event *event)
268 {
269 	struct perf_cgroup_info *t;
270 
271 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
272 	return t->time;
273 }
274 
275 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
276 {
277 	struct perf_cgroup_info *info;
278 	u64 now;
279 
280 	now = perf_clock();
281 
282 	info = this_cpu_ptr(cgrp->info);
283 
284 	info->time += now - info->timestamp;
285 	info->timestamp = now;
286 }
287 
288 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
289 {
290 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
291 	if (cgrp_out)
292 		__update_cgrp_time(cgrp_out);
293 }
294 
295 static inline void update_cgrp_time_from_event(struct perf_event *event)
296 {
297 	struct perf_cgroup *cgrp;
298 
299 	/*
300 	 * ensure we access cgroup data only when needed and
301 	 * when we know the cgroup is pinned (css_get)
302 	 */
303 	if (!is_cgroup_event(event))
304 		return;
305 
306 	cgrp = perf_cgroup_from_task(current);
307 	/*
308 	 * Do not update time when cgroup is not active
309 	 */
310 	if (cgrp == event->cgrp)
311 		__update_cgrp_time(event->cgrp);
312 }
313 
314 static inline void
315 perf_cgroup_set_timestamp(struct task_struct *task,
316 			  struct perf_event_context *ctx)
317 {
318 	struct perf_cgroup *cgrp;
319 	struct perf_cgroup_info *info;
320 
321 	/*
322 	 * ctx->lock held by caller
323 	 * ensure we do not access cgroup data
324 	 * unless we have the cgroup pinned (css_get)
325 	 */
326 	if (!task || !ctx->nr_cgroups)
327 		return;
328 
329 	cgrp = perf_cgroup_from_task(task);
330 	info = this_cpu_ptr(cgrp->info);
331 	info->timestamp = ctx->timestamp;
332 }
333 
334 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
335 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
336 
337 /*
338  * reschedule events based on the cgroup constraint of task.
339  *
340  * mode SWOUT : schedule out everything
341  * mode SWIN : schedule in based on cgroup for next
342  */
343 void perf_cgroup_switch(struct task_struct *task, int mode)
344 {
345 	struct perf_cpu_context *cpuctx;
346 	struct pmu *pmu;
347 	unsigned long flags;
348 
349 	/*
350 	 * disable interrupts to avoid geting nr_cgroup
351 	 * changes via __perf_event_disable(). Also
352 	 * avoids preemption.
353 	 */
354 	local_irq_save(flags);
355 
356 	/*
357 	 * we reschedule only in the presence of cgroup
358 	 * constrained events.
359 	 */
360 	rcu_read_lock();
361 
362 	list_for_each_entry_rcu(pmu, &pmus, entry) {
363 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
364 
365 		/*
366 		 * perf_cgroup_events says at least one
367 		 * context on this CPU has cgroup events.
368 		 *
369 		 * ctx->nr_cgroups reports the number of cgroup
370 		 * events for a context.
371 		 */
372 		if (cpuctx->ctx.nr_cgroups > 0) {
373 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
374 			perf_pmu_disable(cpuctx->ctx.pmu);
375 
376 			if (mode & PERF_CGROUP_SWOUT) {
377 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
378 				/*
379 				 * must not be done before ctxswout due
380 				 * to event_filter_match() in event_sched_out()
381 				 */
382 				cpuctx->cgrp = NULL;
383 			}
384 
385 			if (mode & PERF_CGROUP_SWIN) {
386 				WARN_ON_ONCE(cpuctx->cgrp);
387 				/* set cgrp before ctxsw in to
388 				 * allow event_filter_match() to not
389 				 * have to pass task around
390 				 */
391 				cpuctx->cgrp = perf_cgroup_from_task(task);
392 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
393 			}
394 			perf_pmu_enable(cpuctx->ctx.pmu);
395 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
396 		}
397 	}
398 
399 	rcu_read_unlock();
400 
401 	local_irq_restore(flags);
402 }
403 
404 static inline void perf_cgroup_sched_out(struct task_struct *task,
405 					 struct task_struct *next)
406 {
407 	struct perf_cgroup *cgrp1;
408 	struct perf_cgroup *cgrp2 = NULL;
409 
410 	/*
411 	 * we come here when we know perf_cgroup_events > 0
412 	 */
413 	cgrp1 = perf_cgroup_from_task(task);
414 
415 	/*
416 	 * next is NULL when called from perf_event_enable_on_exec()
417 	 * that will systematically cause a cgroup_switch()
418 	 */
419 	if (next)
420 		cgrp2 = perf_cgroup_from_task(next);
421 
422 	/*
423 	 * only schedule out current cgroup events if we know
424 	 * that we are switching to a different cgroup. Otherwise,
425 	 * do no touch the cgroup events.
426 	 */
427 	if (cgrp1 != cgrp2)
428 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
429 }
430 
431 static inline void perf_cgroup_sched_in(struct task_struct *prev,
432 					struct task_struct *task)
433 {
434 	struct perf_cgroup *cgrp1;
435 	struct perf_cgroup *cgrp2 = NULL;
436 
437 	/*
438 	 * we come here when we know perf_cgroup_events > 0
439 	 */
440 	cgrp1 = perf_cgroup_from_task(task);
441 
442 	/* prev can never be NULL */
443 	cgrp2 = perf_cgroup_from_task(prev);
444 
445 	/*
446 	 * only need to schedule in cgroup events if we are changing
447 	 * cgroup during ctxsw. Cgroup events were not scheduled
448 	 * out of ctxsw out if that was not the case.
449 	 */
450 	if (cgrp1 != cgrp2)
451 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
452 }
453 
454 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
455 				      struct perf_event_attr *attr,
456 				      struct perf_event *group_leader)
457 {
458 	struct perf_cgroup *cgrp;
459 	struct cgroup_subsys_state *css;
460 	struct file *file;
461 	int ret = 0, fput_needed;
462 
463 	file = fget_light(fd, &fput_needed);
464 	if (!file)
465 		return -EBADF;
466 
467 	css = cgroup_css_from_dir(file, perf_subsys_id);
468 	if (IS_ERR(css)) {
469 		ret = PTR_ERR(css);
470 		goto out;
471 	}
472 
473 	cgrp = container_of(css, struct perf_cgroup, css);
474 	event->cgrp = cgrp;
475 
476 	/* must be done before we fput() the file */
477 	perf_get_cgroup(event);
478 
479 	/*
480 	 * all events in a group must monitor
481 	 * the same cgroup because a task belongs
482 	 * to only one perf cgroup at a time
483 	 */
484 	if (group_leader && group_leader->cgrp != cgrp) {
485 		perf_detach_cgroup(event);
486 		ret = -EINVAL;
487 	}
488 out:
489 	fput_light(file, fput_needed);
490 	return ret;
491 }
492 
493 static inline void
494 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
495 {
496 	struct perf_cgroup_info *t;
497 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
498 	event->shadow_ctx_time = now - t->timestamp;
499 }
500 
501 static inline void
502 perf_cgroup_defer_enabled(struct perf_event *event)
503 {
504 	/*
505 	 * when the current task's perf cgroup does not match
506 	 * the event's, we need to remember to call the
507 	 * perf_mark_enable() function the first time a task with
508 	 * a matching perf cgroup is scheduled in.
509 	 */
510 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
511 		event->cgrp_defer_enabled = 1;
512 }
513 
514 static inline void
515 perf_cgroup_mark_enabled(struct perf_event *event,
516 			 struct perf_event_context *ctx)
517 {
518 	struct perf_event *sub;
519 	u64 tstamp = perf_event_time(event);
520 
521 	if (!event->cgrp_defer_enabled)
522 		return;
523 
524 	event->cgrp_defer_enabled = 0;
525 
526 	event->tstamp_enabled = tstamp - event->total_time_enabled;
527 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
528 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
529 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
530 			sub->cgrp_defer_enabled = 0;
531 		}
532 	}
533 }
534 #else /* !CONFIG_CGROUP_PERF */
535 
536 static inline bool
537 perf_cgroup_match(struct perf_event *event)
538 {
539 	return true;
540 }
541 
542 static inline void perf_detach_cgroup(struct perf_event *event)
543 {}
544 
545 static inline int is_cgroup_event(struct perf_event *event)
546 {
547 	return 0;
548 }
549 
550 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
551 {
552 	return 0;
553 }
554 
555 static inline void update_cgrp_time_from_event(struct perf_event *event)
556 {
557 }
558 
559 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
560 {
561 }
562 
563 static inline void perf_cgroup_sched_out(struct task_struct *task,
564 					 struct task_struct *next)
565 {
566 }
567 
568 static inline void perf_cgroup_sched_in(struct task_struct *prev,
569 					struct task_struct *task)
570 {
571 }
572 
573 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
574 				      struct perf_event_attr *attr,
575 				      struct perf_event *group_leader)
576 {
577 	return -EINVAL;
578 }
579 
580 static inline void
581 perf_cgroup_set_timestamp(struct task_struct *task,
582 			  struct perf_event_context *ctx)
583 {
584 }
585 
586 void
587 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
588 {
589 }
590 
591 static inline void
592 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
593 {
594 }
595 
596 static inline u64 perf_cgroup_event_time(struct perf_event *event)
597 {
598 	return 0;
599 }
600 
601 static inline void
602 perf_cgroup_defer_enabled(struct perf_event *event)
603 {
604 }
605 
606 static inline void
607 perf_cgroup_mark_enabled(struct perf_event *event,
608 			 struct perf_event_context *ctx)
609 {
610 }
611 #endif
612 
613 void perf_pmu_disable(struct pmu *pmu)
614 {
615 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
616 	if (!(*count)++)
617 		pmu->pmu_disable(pmu);
618 }
619 
620 void perf_pmu_enable(struct pmu *pmu)
621 {
622 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
623 	if (!--(*count))
624 		pmu->pmu_enable(pmu);
625 }
626 
627 static DEFINE_PER_CPU(struct list_head, rotation_list);
628 
629 /*
630  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
631  * because they're strictly cpu affine and rotate_start is called with IRQs
632  * disabled, while rotate_context is called from IRQ context.
633  */
634 static void perf_pmu_rotate_start(struct pmu *pmu)
635 {
636 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
637 	struct list_head *head = &__get_cpu_var(rotation_list);
638 
639 	WARN_ON(!irqs_disabled());
640 
641 	if (list_empty(&cpuctx->rotation_list))
642 		list_add(&cpuctx->rotation_list, head);
643 }
644 
645 static void get_ctx(struct perf_event_context *ctx)
646 {
647 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
648 }
649 
650 static void put_ctx(struct perf_event_context *ctx)
651 {
652 	if (atomic_dec_and_test(&ctx->refcount)) {
653 		if (ctx->parent_ctx)
654 			put_ctx(ctx->parent_ctx);
655 		if (ctx->task)
656 			put_task_struct(ctx->task);
657 		kfree_rcu(ctx, rcu_head);
658 	}
659 }
660 
661 static void unclone_ctx(struct perf_event_context *ctx)
662 {
663 	if (ctx->parent_ctx) {
664 		put_ctx(ctx->parent_ctx);
665 		ctx->parent_ctx = NULL;
666 	}
667 }
668 
669 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
670 {
671 	/*
672 	 * only top level events have the pid namespace they were created in
673 	 */
674 	if (event->parent)
675 		event = event->parent;
676 
677 	return task_tgid_nr_ns(p, event->ns);
678 }
679 
680 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
681 {
682 	/*
683 	 * only top level events have the pid namespace they were created in
684 	 */
685 	if (event->parent)
686 		event = event->parent;
687 
688 	return task_pid_nr_ns(p, event->ns);
689 }
690 
691 /*
692  * If we inherit events we want to return the parent event id
693  * to userspace.
694  */
695 static u64 primary_event_id(struct perf_event *event)
696 {
697 	u64 id = event->id;
698 
699 	if (event->parent)
700 		id = event->parent->id;
701 
702 	return id;
703 }
704 
705 /*
706  * Get the perf_event_context for a task and lock it.
707  * This has to cope with with the fact that until it is locked,
708  * the context could get moved to another task.
709  */
710 static struct perf_event_context *
711 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
712 {
713 	struct perf_event_context *ctx;
714 
715 	rcu_read_lock();
716 retry:
717 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
718 	if (ctx) {
719 		/*
720 		 * If this context is a clone of another, it might
721 		 * get swapped for another underneath us by
722 		 * perf_event_task_sched_out, though the
723 		 * rcu_read_lock() protects us from any context
724 		 * getting freed.  Lock the context and check if it
725 		 * got swapped before we could get the lock, and retry
726 		 * if so.  If we locked the right context, then it
727 		 * can't get swapped on us any more.
728 		 */
729 		raw_spin_lock_irqsave(&ctx->lock, *flags);
730 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
731 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
732 			goto retry;
733 		}
734 
735 		if (!atomic_inc_not_zero(&ctx->refcount)) {
736 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
737 			ctx = NULL;
738 		}
739 	}
740 	rcu_read_unlock();
741 	return ctx;
742 }
743 
744 /*
745  * Get the context for a task and increment its pin_count so it
746  * can't get swapped to another task.  This also increments its
747  * reference count so that the context can't get freed.
748  */
749 static struct perf_event_context *
750 perf_pin_task_context(struct task_struct *task, int ctxn)
751 {
752 	struct perf_event_context *ctx;
753 	unsigned long flags;
754 
755 	ctx = perf_lock_task_context(task, ctxn, &flags);
756 	if (ctx) {
757 		++ctx->pin_count;
758 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
759 	}
760 	return ctx;
761 }
762 
763 static void perf_unpin_context(struct perf_event_context *ctx)
764 {
765 	unsigned long flags;
766 
767 	raw_spin_lock_irqsave(&ctx->lock, flags);
768 	--ctx->pin_count;
769 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
770 }
771 
772 /*
773  * Update the record of the current time in a context.
774  */
775 static void update_context_time(struct perf_event_context *ctx)
776 {
777 	u64 now = perf_clock();
778 
779 	ctx->time += now - ctx->timestamp;
780 	ctx->timestamp = now;
781 }
782 
783 static u64 perf_event_time(struct perf_event *event)
784 {
785 	struct perf_event_context *ctx = event->ctx;
786 
787 	if (is_cgroup_event(event))
788 		return perf_cgroup_event_time(event);
789 
790 	return ctx ? ctx->time : 0;
791 }
792 
793 /*
794  * Update the total_time_enabled and total_time_running fields for a event.
795  * The caller of this function needs to hold the ctx->lock.
796  */
797 static void update_event_times(struct perf_event *event)
798 {
799 	struct perf_event_context *ctx = event->ctx;
800 	u64 run_end;
801 
802 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
803 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
804 		return;
805 	/*
806 	 * in cgroup mode, time_enabled represents
807 	 * the time the event was enabled AND active
808 	 * tasks were in the monitored cgroup. This is
809 	 * independent of the activity of the context as
810 	 * there may be a mix of cgroup and non-cgroup events.
811 	 *
812 	 * That is why we treat cgroup events differently
813 	 * here.
814 	 */
815 	if (is_cgroup_event(event))
816 		run_end = perf_event_time(event);
817 	else if (ctx->is_active)
818 		run_end = ctx->time;
819 	else
820 		run_end = event->tstamp_stopped;
821 
822 	event->total_time_enabled = run_end - event->tstamp_enabled;
823 
824 	if (event->state == PERF_EVENT_STATE_INACTIVE)
825 		run_end = event->tstamp_stopped;
826 	else
827 		run_end = perf_event_time(event);
828 
829 	event->total_time_running = run_end - event->tstamp_running;
830 
831 }
832 
833 /*
834  * Update total_time_enabled and total_time_running for all events in a group.
835  */
836 static void update_group_times(struct perf_event *leader)
837 {
838 	struct perf_event *event;
839 
840 	update_event_times(leader);
841 	list_for_each_entry(event, &leader->sibling_list, group_entry)
842 		update_event_times(event);
843 }
844 
845 static struct list_head *
846 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
847 {
848 	if (event->attr.pinned)
849 		return &ctx->pinned_groups;
850 	else
851 		return &ctx->flexible_groups;
852 }
853 
854 /*
855  * Add a event from the lists for its context.
856  * Must be called with ctx->mutex and ctx->lock held.
857  */
858 static void
859 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
860 {
861 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
862 	event->attach_state |= PERF_ATTACH_CONTEXT;
863 
864 	/*
865 	 * If we're a stand alone event or group leader, we go to the context
866 	 * list, group events are kept attached to the group so that
867 	 * perf_group_detach can, at all times, locate all siblings.
868 	 */
869 	if (event->group_leader == event) {
870 		struct list_head *list;
871 
872 		if (is_software_event(event))
873 			event->group_flags |= PERF_GROUP_SOFTWARE;
874 
875 		list = ctx_group_list(event, ctx);
876 		list_add_tail(&event->group_entry, list);
877 	}
878 
879 	if (is_cgroup_event(event))
880 		ctx->nr_cgroups++;
881 
882 	list_add_rcu(&event->event_entry, &ctx->event_list);
883 	if (!ctx->nr_events)
884 		perf_pmu_rotate_start(ctx->pmu);
885 	ctx->nr_events++;
886 	if (event->attr.inherit_stat)
887 		ctx->nr_stat++;
888 }
889 
890 /*
891  * Called at perf_event creation and when events are attached/detached from a
892  * group.
893  */
894 static void perf_event__read_size(struct perf_event *event)
895 {
896 	int entry = sizeof(u64); /* value */
897 	int size = 0;
898 	int nr = 1;
899 
900 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
901 		size += sizeof(u64);
902 
903 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
904 		size += sizeof(u64);
905 
906 	if (event->attr.read_format & PERF_FORMAT_ID)
907 		entry += sizeof(u64);
908 
909 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
910 		nr += event->group_leader->nr_siblings;
911 		size += sizeof(u64);
912 	}
913 
914 	size += entry * nr;
915 	event->read_size = size;
916 }
917 
918 static void perf_event__header_size(struct perf_event *event)
919 {
920 	struct perf_sample_data *data;
921 	u64 sample_type = event->attr.sample_type;
922 	u16 size = 0;
923 
924 	perf_event__read_size(event);
925 
926 	if (sample_type & PERF_SAMPLE_IP)
927 		size += sizeof(data->ip);
928 
929 	if (sample_type & PERF_SAMPLE_ADDR)
930 		size += sizeof(data->addr);
931 
932 	if (sample_type & PERF_SAMPLE_PERIOD)
933 		size += sizeof(data->period);
934 
935 	if (sample_type & PERF_SAMPLE_READ)
936 		size += event->read_size;
937 
938 	event->header_size = size;
939 }
940 
941 static void perf_event__id_header_size(struct perf_event *event)
942 {
943 	struct perf_sample_data *data;
944 	u64 sample_type = event->attr.sample_type;
945 	u16 size = 0;
946 
947 	if (sample_type & PERF_SAMPLE_TID)
948 		size += sizeof(data->tid_entry);
949 
950 	if (sample_type & PERF_SAMPLE_TIME)
951 		size += sizeof(data->time);
952 
953 	if (sample_type & PERF_SAMPLE_ID)
954 		size += sizeof(data->id);
955 
956 	if (sample_type & PERF_SAMPLE_STREAM_ID)
957 		size += sizeof(data->stream_id);
958 
959 	if (sample_type & PERF_SAMPLE_CPU)
960 		size += sizeof(data->cpu_entry);
961 
962 	event->id_header_size = size;
963 }
964 
965 static void perf_group_attach(struct perf_event *event)
966 {
967 	struct perf_event *group_leader = event->group_leader, *pos;
968 
969 	/*
970 	 * We can have double attach due to group movement in perf_event_open.
971 	 */
972 	if (event->attach_state & PERF_ATTACH_GROUP)
973 		return;
974 
975 	event->attach_state |= PERF_ATTACH_GROUP;
976 
977 	if (group_leader == event)
978 		return;
979 
980 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
981 			!is_software_event(event))
982 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
983 
984 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
985 	group_leader->nr_siblings++;
986 
987 	perf_event__header_size(group_leader);
988 
989 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
990 		perf_event__header_size(pos);
991 }
992 
993 /*
994  * Remove a event from the lists for its context.
995  * Must be called with ctx->mutex and ctx->lock held.
996  */
997 static void
998 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
999 {
1000 	struct perf_cpu_context *cpuctx;
1001 	/*
1002 	 * We can have double detach due to exit/hot-unplug + close.
1003 	 */
1004 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1005 		return;
1006 
1007 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1008 
1009 	if (is_cgroup_event(event)) {
1010 		ctx->nr_cgroups--;
1011 		cpuctx = __get_cpu_context(ctx);
1012 		/*
1013 		 * if there are no more cgroup events
1014 		 * then cler cgrp to avoid stale pointer
1015 		 * in update_cgrp_time_from_cpuctx()
1016 		 */
1017 		if (!ctx->nr_cgroups)
1018 			cpuctx->cgrp = NULL;
1019 	}
1020 
1021 	ctx->nr_events--;
1022 	if (event->attr.inherit_stat)
1023 		ctx->nr_stat--;
1024 
1025 	list_del_rcu(&event->event_entry);
1026 
1027 	if (event->group_leader == event)
1028 		list_del_init(&event->group_entry);
1029 
1030 	update_group_times(event);
1031 
1032 	/*
1033 	 * If event was in error state, then keep it
1034 	 * that way, otherwise bogus counts will be
1035 	 * returned on read(). The only way to get out
1036 	 * of error state is by explicit re-enabling
1037 	 * of the event
1038 	 */
1039 	if (event->state > PERF_EVENT_STATE_OFF)
1040 		event->state = PERF_EVENT_STATE_OFF;
1041 }
1042 
1043 static void perf_group_detach(struct perf_event *event)
1044 {
1045 	struct perf_event *sibling, *tmp;
1046 	struct list_head *list = NULL;
1047 
1048 	/*
1049 	 * We can have double detach due to exit/hot-unplug + close.
1050 	 */
1051 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1052 		return;
1053 
1054 	event->attach_state &= ~PERF_ATTACH_GROUP;
1055 
1056 	/*
1057 	 * If this is a sibling, remove it from its group.
1058 	 */
1059 	if (event->group_leader != event) {
1060 		list_del_init(&event->group_entry);
1061 		event->group_leader->nr_siblings--;
1062 		goto out;
1063 	}
1064 
1065 	if (!list_empty(&event->group_entry))
1066 		list = &event->group_entry;
1067 
1068 	/*
1069 	 * If this was a group event with sibling events then
1070 	 * upgrade the siblings to singleton events by adding them
1071 	 * to whatever list we are on.
1072 	 */
1073 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1074 		if (list)
1075 			list_move_tail(&sibling->group_entry, list);
1076 		sibling->group_leader = sibling;
1077 
1078 		/* Inherit group flags from the previous leader */
1079 		sibling->group_flags = event->group_flags;
1080 	}
1081 
1082 out:
1083 	perf_event__header_size(event->group_leader);
1084 
1085 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1086 		perf_event__header_size(tmp);
1087 }
1088 
1089 static inline int
1090 event_filter_match(struct perf_event *event)
1091 {
1092 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1093 	    && perf_cgroup_match(event);
1094 }
1095 
1096 static void
1097 event_sched_out(struct perf_event *event,
1098 		  struct perf_cpu_context *cpuctx,
1099 		  struct perf_event_context *ctx)
1100 {
1101 	u64 tstamp = perf_event_time(event);
1102 	u64 delta;
1103 	/*
1104 	 * An event which could not be activated because of
1105 	 * filter mismatch still needs to have its timings
1106 	 * maintained, otherwise bogus information is return
1107 	 * via read() for time_enabled, time_running:
1108 	 */
1109 	if (event->state == PERF_EVENT_STATE_INACTIVE
1110 	    && !event_filter_match(event)) {
1111 		delta = tstamp - event->tstamp_stopped;
1112 		event->tstamp_running += delta;
1113 		event->tstamp_stopped = tstamp;
1114 	}
1115 
1116 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1117 		return;
1118 
1119 	event->state = PERF_EVENT_STATE_INACTIVE;
1120 	if (event->pending_disable) {
1121 		event->pending_disable = 0;
1122 		event->state = PERF_EVENT_STATE_OFF;
1123 	}
1124 	event->tstamp_stopped = tstamp;
1125 	event->pmu->del(event, 0);
1126 	event->oncpu = -1;
1127 
1128 	if (!is_software_event(event))
1129 		cpuctx->active_oncpu--;
1130 	ctx->nr_active--;
1131 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1132 		cpuctx->exclusive = 0;
1133 }
1134 
1135 static void
1136 group_sched_out(struct perf_event *group_event,
1137 		struct perf_cpu_context *cpuctx,
1138 		struct perf_event_context *ctx)
1139 {
1140 	struct perf_event *event;
1141 	int state = group_event->state;
1142 
1143 	event_sched_out(group_event, cpuctx, ctx);
1144 
1145 	/*
1146 	 * Schedule out siblings (if any):
1147 	 */
1148 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1149 		event_sched_out(event, cpuctx, ctx);
1150 
1151 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1152 		cpuctx->exclusive = 0;
1153 }
1154 
1155 /*
1156  * Cross CPU call to remove a performance event
1157  *
1158  * We disable the event on the hardware level first. After that we
1159  * remove it from the context list.
1160  */
1161 static int __perf_remove_from_context(void *info)
1162 {
1163 	struct perf_event *event = info;
1164 	struct perf_event_context *ctx = event->ctx;
1165 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1166 
1167 	raw_spin_lock(&ctx->lock);
1168 	event_sched_out(event, cpuctx, ctx);
1169 	list_del_event(event, ctx);
1170 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1171 		ctx->is_active = 0;
1172 		cpuctx->task_ctx = NULL;
1173 	}
1174 	raw_spin_unlock(&ctx->lock);
1175 
1176 	return 0;
1177 }
1178 
1179 
1180 /*
1181  * Remove the event from a task's (or a CPU's) list of events.
1182  *
1183  * CPU events are removed with a smp call. For task events we only
1184  * call when the task is on a CPU.
1185  *
1186  * If event->ctx is a cloned context, callers must make sure that
1187  * every task struct that event->ctx->task could possibly point to
1188  * remains valid.  This is OK when called from perf_release since
1189  * that only calls us on the top-level context, which can't be a clone.
1190  * When called from perf_event_exit_task, it's OK because the
1191  * context has been detached from its task.
1192  */
1193 static void perf_remove_from_context(struct perf_event *event)
1194 {
1195 	struct perf_event_context *ctx = event->ctx;
1196 	struct task_struct *task = ctx->task;
1197 
1198 	lockdep_assert_held(&ctx->mutex);
1199 
1200 	if (!task) {
1201 		/*
1202 		 * Per cpu events are removed via an smp call and
1203 		 * the removal is always successful.
1204 		 */
1205 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1206 		return;
1207 	}
1208 
1209 retry:
1210 	if (!task_function_call(task, __perf_remove_from_context, event))
1211 		return;
1212 
1213 	raw_spin_lock_irq(&ctx->lock);
1214 	/*
1215 	 * If we failed to find a running task, but find the context active now
1216 	 * that we've acquired the ctx->lock, retry.
1217 	 */
1218 	if (ctx->is_active) {
1219 		raw_spin_unlock_irq(&ctx->lock);
1220 		goto retry;
1221 	}
1222 
1223 	/*
1224 	 * Since the task isn't running, its safe to remove the event, us
1225 	 * holding the ctx->lock ensures the task won't get scheduled in.
1226 	 */
1227 	list_del_event(event, ctx);
1228 	raw_spin_unlock_irq(&ctx->lock);
1229 }
1230 
1231 /*
1232  * Cross CPU call to disable a performance event
1233  */
1234 static int __perf_event_disable(void *info)
1235 {
1236 	struct perf_event *event = info;
1237 	struct perf_event_context *ctx = event->ctx;
1238 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1239 
1240 	/*
1241 	 * If this is a per-task event, need to check whether this
1242 	 * event's task is the current task on this cpu.
1243 	 *
1244 	 * Can trigger due to concurrent perf_event_context_sched_out()
1245 	 * flipping contexts around.
1246 	 */
1247 	if (ctx->task && cpuctx->task_ctx != ctx)
1248 		return -EINVAL;
1249 
1250 	raw_spin_lock(&ctx->lock);
1251 
1252 	/*
1253 	 * If the event is on, turn it off.
1254 	 * If it is in error state, leave it in error state.
1255 	 */
1256 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1257 		update_context_time(ctx);
1258 		update_cgrp_time_from_event(event);
1259 		update_group_times(event);
1260 		if (event == event->group_leader)
1261 			group_sched_out(event, cpuctx, ctx);
1262 		else
1263 			event_sched_out(event, cpuctx, ctx);
1264 		event->state = PERF_EVENT_STATE_OFF;
1265 	}
1266 
1267 	raw_spin_unlock(&ctx->lock);
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Disable a event.
1274  *
1275  * If event->ctx is a cloned context, callers must make sure that
1276  * every task struct that event->ctx->task could possibly point to
1277  * remains valid.  This condition is satisifed when called through
1278  * perf_event_for_each_child or perf_event_for_each because they
1279  * hold the top-level event's child_mutex, so any descendant that
1280  * goes to exit will block in sync_child_event.
1281  * When called from perf_pending_event it's OK because event->ctx
1282  * is the current context on this CPU and preemption is disabled,
1283  * hence we can't get into perf_event_task_sched_out for this context.
1284  */
1285 void perf_event_disable(struct perf_event *event)
1286 {
1287 	struct perf_event_context *ctx = event->ctx;
1288 	struct task_struct *task = ctx->task;
1289 
1290 	if (!task) {
1291 		/*
1292 		 * Disable the event on the cpu that it's on
1293 		 */
1294 		cpu_function_call(event->cpu, __perf_event_disable, event);
1295 		return;
1296 	}
1297 
1298 retry:
1299 	if (!task_function_call(task, __perf_event_disable, event))
1300 		return;
1301 
1302 	raw_spin_lock_irq(&ctx->lock);
1303 	/*
1304 	 * If the event is still active, we need to retry the cross-call.
1305 	 */
1306 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1307 		raw_spin_unlock_irq(&ctx->lock);
1308 		/*
1309 		 * Reload the task pointer, it might have been changed by
1310 		 * a concurrent perf_event_context_sched_out().
1311 		 */
1312 		task = ctx->task;
1313 		goto retry;
1314 	}
1315 
1316 	/*
1317 	 * Since we have the lock this context can't be scheduled
1318 	 * in, so we can change the state safely.
1319 	 */
1320 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1321 		update_group_times(event);
1322 		event->state = PERF_EVENT_STATE_OFF;
1323 	}
1324 	raw_spin_unlock_irq(&ctx->lock);
1325 }
1326 
1327 static void perf_set_shadow_time(struct perf_event *event,
1328 				 struct perf_event_context *ctx,
1329 				 u64 tstamp)
1330 {
1331 	/*
1332 	 * use the correct time source for the time snapshot
1333 	 *
1334 	 * We could get by without this by leveraging the
1335 	 * fact that to get to this function, the caller
1336 	 * has most likely already called update_context_time()
1337 	 * and update_cgrp_time_xx() and thus both timestamp
1338 	 * are identical (or very close). Given that tstamp is,
1339 	 * already adjusted for cgroup, we could say that:
1340 	 *    tstamp - ctx->timestamp
1341 	 * is equivalent to
1342 	 *    tstamp - cgrp->timestamp.
1343 	 *
1344 	 * Then, in perf_output_read(), the calculation would
1345 	 * work with no changes because:
1346 	 * - event is guaranteed scheduled in
1347 	 * - no scheduled out in between
1348 	 * - thus the timestamp would be the same
1349 	 *
1350 	 * But this is a bit hairy.
1351 	 *
1352 	 * So instead, we have an explicit cgroup call to remain
1353 	 * within the time time source all along. We believe it
1354 	 * is cleaner and simpler to understand.
1355 	 */
1356 	if (is_cgroup_event(event))
1357 		perf_cgroup_set_shadow_time(event, tstamp);
1358 	else
1359 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1360 }
1361 
1362 #define MAX_INTERRUPTS (~0ULL)
1363 
1364 static void perf_log_throttle(struct perf_event *event, int enable);
1365 
1366 static int
1367 event_sched_in(struct perf_event *event,
1368 		 struct perf_cpu_context *cpuctx,
1369 		 struct perf_event_context *ctx)
1370 {
1371 	u64 tstamp = perf_event_time(event);
1372 
1373 	if (event->state <= PERF_EVENT_STATE_OFF)
1374 		return 0;
1375 
1376 	event->state = PERF_EVENT_STATE_ACTIVE;
1377 	event->oncpu = smp_processor_id();
1378 
1379 	/*
1380 	 * Unthrottle events, since we scheduled we might have missed several
1381 	 * ticks already, also for a heavily scheduling task there is little
1382 	 * guarantee it'll get a tick in a timely manner.
1383 	 */
1384 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1385 		perf_log_throttle(event, 1);
1386 		event->hw.interrupts = 0;
1387 	}
1388 
1389 	/*
1390 	 * The new state must be visible before we turn it on in the hardware:
1391 	 */
1392 	smp_wmb();
1393 
1394 	if (event->pmu->add(event, PERF_EF_START)) {
1395 		event->state = PERF_EVENT_STATE_INACTIVE;
1396 		event->oncpu = -1;
1397 		return -EAGAIN;
1398 	}
1399 
1400 	event->tstamp_running += tstamp - event->tstamp_stopped;
1401 
1402 	perf_set_shadow_time(event, ctx, tstamp);
1403 
1404 	if (!is_software_event(event))
1405 		cpuctx->active_oncpu++;
1406 	ctx->nr_active++;
1407 
1408 	if (event->attr.exclusive)
1409 		cpuctx->exclusive = 1;
1410 
1411 	return 0;
1412 }
1413 
1414 static int
1415 group_sched_in(struct perf_event *group_event,
1416 	       struct perf_cpu_context *cpuctx,
1417 	       struct perf_event_context *ctx)
1418 {
1419 	struct perf_event *event, *partial_group = NULL;
1420 	struct pmu *pmu = group_event->pmu;
1421 	u64 now = ctx->time;
1422 	bool simulate = false;
1423 
1424 	if (group_event->state == PERF_EVENT_STATE_OFF)
1425 		return 0;
1426 
1427 	pmu->start_txn(pmu);
1428 
1429 	if (event_sched_in(group_event, cpuctx, ctx)) {
1430 		pmu->cancel_txn(pmu);
1431 		return -EAGAIN;
1432 	}
1433 
1434 	/*
1435 	 * Schedule in siblings as one group (if any):
1436 	 */
1437 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1438 		if (event_sched_in(event, cpuctx, ctx)) {
1439 			partial_group = event;
1440 			goto group_error;
1441 		}
1442 	}
1443 
1444 	if (!pmu->commit_txn(pmu))
1445 		return 0;
1446 
1447 group_error:
1448 	/*
1449 	 * Groups can be scheduled in as one unit only, so undo any
1450 	 * partial group before returning:
1451 	 * The events up to the failed event are scheduled out normally,
1452 	 * tstamp_stopped will be updated.
1453 	 *
1454 	 * The failed events and the remaining siblings need to have
1455 	 * their timings updated as if they had gone thru event_sched_in()
1456 	 * and event_sched_out(). This is required to get consistent timings
1457 	 * across the group. This also takes care of the case where the group
1458 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1459 	 * the time the event was actually stopped, such that time delta
1460 	 * calculation in update_event_times() is correct.
1461 	 */
1462 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 		if (event == partial_group)
1464 			simulate = true;
1465 
1466 		if (simulate) {
1467 			event->tstamp_running += now - event->tstamp_stopped;
1468 			event->tstamp_stopped = now;
1469 		} else {
1470 			event_sched_out(event, cpuctx, ctx);
1471 		}
1472 	}
1473 	event_sched_out(group_event, cpuctx, ctx);
1474 
1475 	pmu->cancel_txn(pmu);
1476 
1477 	return -EAGAIN;
1478 }
1479 
1480 /*
1481  * Work out whether we can put this event group on the CPU now.
1482  */
1483 static int group_can_go_on(struct perf_event *event,
1484 			   struct perf_cpu_context *cpuctx,
1485 			   int can_add_hw)
1486 {
1487 	/*
1488 	 * Groups consisting entirely of software events can always go on.
1489 	 */
1490 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1491 		return 1;
1492 	/*
1493 	 * If an exclusive group is already on, no other hardware
1494 	 * events can go on.
1495 	 */
1496 	if (cpuctx->exclusive)
1497 		return 0;
1498 	/*
1499 	 * If this group is exclusive and there are already
1500 	 * events on the CPU, it can't go on.
1501 	 */
1502 	if (event->attr.exclusive && cpuctx->active_oncpu)
1503 		return 0;
1504 	/*
1505 	 * Otherwise, try to add it if all previous groups were able
1506 	 * to go on.
1507 	 */
1508 	return can_add_hw;
1509 }
1510 
1511 static void add_event_to_ctx(struct perf_event *event,
1512 			       struct perf_event_context *ctx)
1513 {
1514 	u64 tstamp = perf_event_time(event);
1515 
1516 	list_add_event(event, ctx);
1517 	perf_group_attach(event);
1518 	event->tstamp_enabled = tstamp;
1519 	event->tstamp_running = tstamp;
1520 	event->tstamp_stopped = tstamp;
1521 }
1522 
1523 static void task_ctx_sched_out(struct perf_event_context *ctx);
1524 static void
1525 ctx_sched_in(struct perf_event_context *ctx,
1526 	     struct perf_cpu_context *cpuctx,
1527 	     enum event_type_t event_type,
1528 	     struct task_struct *task);
1529 
1530 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1531 				struct perf_event_context *ctx,
1532 				struct task_struct *task)
1533 {
1534 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1535 	if (ctx)
1536 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1537 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1538 	if (ctx)
1539 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1540 }
1541 
1542 /*
1543  * Cross CPU call to install and enable a performance event
1544  *
1545  * Must be called with ctx->mutex held
1546  */
1547 static int  __perf_install_in_context(void *info)
1548 {
1549 	struct perf_event *event = info;
1550 	struct perf_event_context *ctx = event->ctx;
1551 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1552 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1553 	struct task_struct *task = current;
1554 
1555 	perf_ctx_lock(cpuctx, task_ctx);
1556 	perf_pmu_disable(cpuctx->ctx.pmu);
1557 
1558 	/*
1559 	 * If there was an active task_ctx schedule it out.
1560 	 */
1561 	if (task_ctx)
1562 		task_ctx_sched_out(task_ctx);
1563 
1564 	/*
1565 	 * If the context we're installing events in is not the
1566 	 * active task_ctx, flip them.
1567 	 */
1568 	if (ctx->task && task_ctx != ctx) {
1569 		if (task_ctx)
1570 			raw_spin_unlock(&task_ctx->lock);
1571 		raw_spin_lock(&ctx->lock);
1572 		task_ctx = ctx;
1573 	}
1574 
1575 	if (task_ctx) {
1576 		cpuctx->task_ctx = task_ctx;
1577 		task = task_ctx->task;
1578 	}
1579 
1580 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1581 
1582 	update_context_time(ctx);
1583 	/*
1584 	 * update cgrp time only if current cgrp
1585 	 * matches event->cgrp. Must be done before
1586 	 * calling add_event_to_ctx()
1587 	 */
1588 	update_cgrp_time_from_event(event);
1589 
1590 	add_event_to_ctx(event, ctx);
1591 
1592 	/*
1593 	 * Schedule everything back in
1594 	 */
1595 	perf_event_sched_in(cpuctx, task_ctx, task);
1596 
1597 	perf_pmu_enable(cpuctx->ctx.pmu);
1598 	perf_ctx_unlock(cpuctx, task_ctx);
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Attach a performance event to a context
1605  *
1606  * First we add the event to the list with the hardware enable bit
1607  * in event->hw_config cleared.
1608  *
1609  * If the event is attached to a task which is on a CPU we use a smp
1610  * call to enable it in the task context. The task might have been
1611  * scheduled away, but we check this in the smp call again.
1612  */
1613 static void
1614 perf_install_in_context(struct perf_event_context *ctx,
1615 			struct perf_event *event,
1616 			int cpu)
1617 {
1618 	struct task_struct *task = ctx->task;
1619 
1620 	lockdep_assert_held(&ctx->mutex);
1621 
1622 	event->ctx = ctx;
1623 
1624 	if (!task) {
1625 		/*
1626 		 * Per cpu events are installed via an smp call and
1627 		 * the install is always successful.
1628 		 */
1629 		cpu_function_call(cpu, __perf_install_in_context, event);
1630 		return;
1631 	}
1632 
1633 retry:
1634 	if (!task_function_call(task, __perf_install_in_context, event))
1635 		return;
1636 
1637 	raw_spin_lock_irq(&ctx->lock);
1638 	/*
1639 	 * If we failed to find a running task, but find the context active now
1640 	 * that we've acquired the ctx->lock, retry.
1641 	 */
1642 	if (ctx->is_active) {
1643 		raw_spin_unlock_irq(&ctx->lock);
1644 		goto retry;
1645 	}
1646 
1647 	/*
1648 	 * Since the task isn't running, its safe to add the event, us holding
1649 	 * the ctx->lock ensures the task won't get scheduled in.
1650 	 */
1651 	add_event_to_ctx(event, ctx);
1652 	raw_spin_unlock_irq(&ctx->lock);
1653 }
1654 
1655 /*
1656  * Put a event into inactive state and update time fields.
1657  * Enabling the leader of a group effectively enables all
1658  * the group members that aren't explicitly disabled, so we
1659  * have to update their ->tstamp_enabled also.
1660  * Note: this works for group members as well as group leaders
1661  * since the non-leader members' sibling_lists will be empty.
1662  */
1663 static void __perf_event_mark_enabled(struct perf_event *event,
1664 					struct perf_event_context *ctx)
1665 {
1666 	struct perf_event *sub;
1667 	u64 tstamp = perf_event_time(event);
1668 
1669 	event->state = PERF_EVENT_STATE_INACTIVE;
1670 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1671 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1672 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1673 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1674 	}
1675 }
1676 
1677 /*
1678  * Cross CPU call to enable a performance event
1679  */
1680 static int __perf_event_enable(void *info)
1681 {
1682 	struct perf_event *event = info;
1683 	struct perf_event_context *ctx = event->ctx;
1684 	struct perf_event *leader = event->group_leader;
1685 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1686 	int err;
1687 
1688 	if (WARN_ON_ONCE(!ctx->is_active))
1689 		return -EINVAL;
1690 
1691 	raw_spin_lock(&ctx->lock);
1692 	update_context_time(ctx);
1693 
1694 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1695 		goto unlock;
1696 
1697 	/*
1698 	 * set current task's cgroup time reference point
1699 	 */
1700 	perf_cgroup_set_timestamp(current, ctx);
1701 
1702 	__perf_event_mark_enabled(event, ctx);
1703 
1704 	if (!event_filter_match(event)) {
1705 		if (is_cgroup_event(event))
1706 			perf_cgroup_defer_enabled(event);
1707 		goto unlock;
1708 	}
1709 
1710 	/*
1711 	 * If the event is in a group and isn't the group leader,
1712 	 * then don't put it on unless the group is on.
1713 	 */
1714 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1715 		goto unlock;
1716 
1717 	if (!group_can_go_on(event, cpuctx, 1)) {
1718 		err = -EEXIST;
1719 	} else {
1720 		if (event == leader)
1721 			err = group_sched_in(event, cpuctx, ctx);
1722 		else
1723 			err = event_sched_in(event, cpuctx, ctx);
1724 	}
1725 
1726 	if (err) {
1727 		/*
1728 		 * If this event can't go on and it's part of a
1729 		 * group, then the whole group has to come off.
1730 		 */
1731 		if (leader != event)
1732 			group_sched_out(leader, cpuctx, ctx);
1733 		if (leader->attr.pinned) {
1734 			update_group_times(leader);
1735 			leader->state = PERF_EVENT_STATE_ERROR;
1736 		}
1737 	}
1738 
1739 unlock:
1740 	raw_spin_unlock(&ctx->lock);
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Enable a event.
1747  *
1748  * If event->ctx is a cloned context, callers must make sure that
1749  * every task struct that event->ctx->task could possibly point to
1750  * remains valid.  This condition is satisfied when called through
1751  * perf_event_for_each_child or perf_event_for_each as described
1752  * for perf_event_disable.
1753  */
1754 void perf_event_enable(struct perf_event *event)
1755 {
1756 	struct perf_event_context *ctx = event->ctx;
1757 	struct task_struct *task = ctx->task;
1758 
1759 	if (!task) {
1760 		/*
1761 		 * Enable the event on the cpu that it's on
1762 		 */
1763 		cpu_function_call(event->cpu, __perf_event_enable, event);
1764 		return;
1765 	}
1766 
1767 	raw_spin_lock_irq(&ctx->lock);
1768 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1769 		goto out;
1770 
1771 	/*
1772 	 * If the event is in error state, clear that first.
1773 	 * That way, if we see the event in error state below, we
1774 	 * know that it has gone back into error state, as distinct
1775 	 * from the task having been scheduled away before the
1776 	 * cross-call arrived.
1777 	 */
1778 	if (event->state == PERF_EVENT_STATE_ERROR)
1779 		event->state = PERF_EVENT_STATE_OFF;
1780 
1781 retry:
1782 	if (!ctx->is_active) {
1783 		__perf_event_mark_enabled(event, ctx);
1784 		goto out;
1785 	}
1786 
1787 	raw_spin_unlock_irq(&ctx->lock);
1788 
1789 	if (!task_function_call(task, __perf_event_enable, event))
1790 		return;
1791 
1792 	raw_spin_lock_irq(&ctx->lock);
1793 
1794 	/*
1795 	 * If the context is active and the event is still off,
1796 	 * we need to retry the cross-call.
1797 	 */
1798 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1799 		/*
1800 		 * task could have been flipped by a concurrent
1801 		 * perf_event_context_sched_out()
1802 		 */
1803 		task = ctx->task;
1804 		goto retry;
1805 	}
1806 
1807 out:
1808 	raw_spin_unlock_irq(&ctx->lock);
1809 }
1810 
1811 int perf_event_refresh(struct perf_event *event, int refresh)
1812 {
1813 	/*
1814 	 * not supported on inherited events
1815 	 */
1816 	if (event->attr.inherit || !is_sampling_event(event))
1817 		return -EINVAL;
1818 
1819 	atomic_add(refresh, &event->event_limit);
1820 	perf_event_enable(event);
1821 
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(perf_event_refresh);
1825 
1826 static void ctx_sched_out(struct perf_event_context *ctx,
1827 			  struct perf_cpu_context *cpuctx,
1828 			  enum event_type_t event_type)
1829 {
1830 	struct perf_event *event;
1831 	int is_active = ctx->is_active;
1832 
1833 	ctx->is_active &= ~event_type;
1834 	if (likely(!ctx->nr_events))
1835 		return;
1836 
1837 	update_context_time(ctx);
1838 	update_cgrp_time_from_cpuctx(cpuctx);
1839 	if (!ctx->nr_active)
1840 		return;
1841 
1842 	perf_pmu_disable(ctx->pmu);
1843 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1844 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1845 			group_sched_out(event, cpuctx, ctx);
1846 	}
1847 
1848 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1849 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1850 			group_sched_out(event, cpuctx, ctx);
1851 	}
1852 	perf_pmu_enable(ctx->pmu);
1853 }
1854 
1855 /*
1856  * Test whether two contexts are equivalent, i.e. whether they
1857  * have both been cloned from the same version of the same context
1858  * and they both have the same number of enabled events.
1859  * If the number of enabled events is the same, then the set
1860  * of enabled events should be the same, because these are both
1861  * inherited contexts, therefore we can't access individual events
1862  * in them directly with an fd; we can only enable/disable all
1863  * events via prctl, or enable/disable all events in a family
1864  * via ioctl, which will have the same effect on both contexts.
1865  */
1866 static int context_equiv(struct perf_event_context *ctx1,
1867 			 struct perf_event_context *ctx2)
1868 {
1869 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1870 		&& ctx1->parent_gen == ctx2->parent_gen
1871 		&& !ctx1->pin_count && !ctx2->pin_count;
1872 }
1873 
1874 static void __perf_event_sync_stat(struct perf_event *event,
1875 				     struct perf_event *next_event)
1876 {
1877 	u64 value;
1878 
1879 	if (!event->attr.inherit_stat)
1880 		return;
1881 
1882 	/*
1883 	 * Update the event value, we cannot use perf_event_read()
1884 	 * because we're in the middle of a context switch and have IRQs
1885 	 * disabled, which upsets smp_call_function_single(), however
1886 	 * we know the event must be on the current CPU, therefore we
1887 	 * don't need to use it.
1888 	 */
1889 	switch (event->state) {
1890 	case PERF_EVENT_STATE_ACTIVE:
1891 		event->pmu->read(event);
1892 		/* fall-through */
1893 
1894 	case PERF_EVENT_STATE_INACTIVE:
1895 		update_event_times(event);
1896 		break;
1897 
1898 	default:
1899 		break;
1900 	}
1901 
1902 	/*
1903 	 * In order to keep per-task stats reliable we need to flip the event
1904 	 * values when we flip the contexts.
1905 	 */
1906 	value = local64_read(&next_event->count);
1907 	value = local64_xchg(&event->count, value);
1908 	local64_set(&next_event->count, value);
1909 
1910 	swap(event->total_time_enabled, next_event->total_time_enabled);
1911 	swap(event->total_time_running, next_event->total_time_running);
1912 
1913 	/*
1914 	 * Since we swizzled the values, update the user visible data too.
1915 	 */
1916 	perf_event_update_userpage(event);
1917 	perf_event_update_userpage(next_event);
1918 }
1919 
1920 #define list_next_entry(pos, member) \
1921 	list_entry(pos->member.next, typeof(*pos), member)
1922 
1923 static void perf_event_sync_stat(struct perf_event_context *ctx,
1924 				   struct perf_event_context *next_ctx)
1925 {
1926 	struct perf_event *event, *next_event;
1927 
1928 	if (!ctx->nr_stat)
1929 		return;
1930 
1931 	update_context_time(ctx);
1932 
1933 	event = list_first_entry(&ctx->event_list,
1934 				   struct perf_event, event_entry);
1935 
1936 	next_event = list_first_entry(&next_ctx->event_list,
1937 					struct perf_event, event_entry);
1938 
1939 	while (&event->event_entry != &ctx->event_list &&
1940 	       &next_event->event_entry != &next_ctx->event_list) {
1941 
1942 		__perf_event_sync_stat(event, next_event);
1943 
1944 		event = list_next_entry(event, event_entry);
1945 		next_event = list_next_entry(next_event, event_entry);
1946 	}
1947 }
1948 
1949 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1950 					 struct task_struct *next)
1951 {
1952 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1953 	struct perf_event_context *next_ctx;
1954 	struct perf_event_context *parent;
1955 	struct perf_cpu_context *cpuctx;
1956 	int do_switch = 1;
1957 
1958 	if (likely(!ctx))
1959 		return;
1960 
1961 	cpuctx = __get_cpu_context(ctx);
1962 	if (!cpuctx->task_ctx)
1963 		return;
1964 
1965 	rcu_read_lock();
1966 	parent = rcu_dereference(ctx->parent_ctx);
1967 	next_ctx = next->perf_event_ctxp[ctxn];
1968 	if (parent && next_ctx &&
1969 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1970 		/*
1971 		 * Looks like the two contexts are clones, so we might be
1972 		 * able to optimize the context switch.  We lock both
1973 		 * contexts and check that they are clones under the
1974 		 * lock (including re-checking that neither has been
1975 		 * uncloned in the meantime).  It doesn't matter which
1976 		 * order we take the locks because no other cpu could
1977 		 * be trying to lock both of these tasks.
1978 		 */
1979 		raw_spin_lock(&ctx->lock);
1980 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1981 		if (context_equiv(ctx, next_ctx)) {
1982 			/*
1983 			 * XXX do we need a memory barrier of sorts
1984 			 * wrt to rcu_dereference() of perf_event_ctxp
1985 			 */
1986 			task->perf_event_ctxp[ctxn] = next_ctx;
1987 			next->perf_event_ctxp[ctxn] = ctx;
1988 			ctx->task = next;
1989 			next_ctx->task = task;
1990 			do_switch = 0;
1991 
1992 			perf_event_sync_stat(ctx, next_ctx);
1993 		}
1994 		raw_spin_unlock(&next_ctx->lock);
1995 		raw_spin_unlock(&ctx->lock);
1996 	}
1997 	rcu_read_unlock();
1998 
1999 	if (do_switch) {
2000 		raw_spin_lock(&ctx->lock);
2001 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2002 		cpuctx->task_ctx = NULL;
2003 		raw_spin_unlock(&ctx->lock);
2004 	}
2005 }
2006 
2007 #define for_each_task_context_nr(ctxn)					\
2008 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2009 
2010 /*
2011  * Called from scheduler to remove the events of the current task,
2012  * with interrupts disabled.
2013  *
2014  * We stop each event and update the event value in event->count.
2015  *
2016  * This does not protect us against NMI, but disable()
2017  * sets the disabled bit in the control field of event _before_
2018  * accessing the event control register. If a NMI hits, then it will
2019  * not restart the event.
2020  */
2021 void __perf_event_task_sched_out(struct task_struct *task,
2022 				 struct task_struct *next)
2023 {
2024 	int ctxn;
2025 
2026 	for_each_task_context_nr(ctxn)
2027 		perf_event_context_sched_out(task, ctxn, next);
2028 
2029 	/*
2030 	 * if cgroup events exist on this CPU, then we need
2031 	 * to check if we have to switch out PMU state.
2032 	 * cgroup event are system-wide mode only
2033 	 */
2034 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2035 		perf_cgroup_sched_out(task, next);
2036 }
2037 
2038 static void task_ctx_sched_out(struct perf_event_context *ctx)
2039 {
2040 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2041 
2042 	if (!cpuctx->task_ctx)
2043 		return;
2044 
2045 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2046 		return;
2047 
2048 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2049 	cpuctx->task_ctx = NULL;
2050 }
2051 
2052 /*
2053  * Called with IRQs disabled
2054  */
2055 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2056 			      enum event_type_t event_type)
2057 {
2058 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2059 }
2060 
2061 static void
2062 ctx_pinned_sched_in(struct perf_event_context *ctx,
2063 		    struct perf_cpu_context *cpuctx)
2064 {
2065 	struct perf_event *event;
2066 
2067 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2068 		if (event->state <= PERF_EVENT_STATE_OFF)
2069 			continue;
2070 		if (!event_filter_match(event))
2071 			continue;
2072 
2073 		/* may need to reset tstamp_enabled */
2074 		if (is_cgroup_event(event))
2075 			perf_cgroup_mark_enabled(event, ctx);
2076 
2077 		if (group_can_go_on(event, cpuctx, 1))
2078 			group_sched_in(event, cpuctx, ctx);
2079 
2080 		/*
2081 		 * If this pinned group hasn't been scheduled,
2082 		 * put it in error state.
2083 		 */
2084 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2085 			update_group_times(event);
2086 			event->state = PERF_EVENT_STATE_ERROR;
2087 		}
2088 	}
2089 }
2090 
2091 static void
2092 ctx_flexible_sched_in(struct perf_event_context *ctx,
2093 		      struct perf_cpu_context *cpuctx)
2094 {
2095 	struct perf_event *event;
2096 	int can_add_hw = 1;
2097 
2098 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2099 		/* Ignore events in OFF or ERROR state */
2100 		if (event->state <= PERF_EVENT_STATE_OFF)
2101 			continue;
2102 		/*
2103 		 * Listen to the 'cpu' scheduling filter constraint
2104 		 * of events:
2105 		 */
2106 		if (!event_filter_match(event))
2107 			continue;
2108 
2109 		/* may need to reset tstamp_enabled */
2110 		if (is_cgroup_event(event))
2111 			perf_cgroup_mark_enabled(event, ctx);
2112 
2113 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2114 			if (group_sched_in(event, cpuctx, ctx))
2115 				can_add_hw = 0;
2116 		}
2117 	}
2118 }
2119 
2120 static void
2121 ctx_sched_in(struct perf_event_context *ctx,
2122 	     struct perf_cpu_context *cpuctx,
2123 	     enum event_type_t event_type,
2124 	     struct task_struct *task)
2125 {
2126 	u64 now;
2127 	int is_active = ctx->is_active;
2128 
2129 	ctx->is_active |= event_type;
2130 	if (likely(!ctx->nr_events))
2131 		return;
2132 
2133 	now = perf_clock();
2134 	ctx->timestamp = now;
2135 	perf_cgroup_set_timestamp(task, ctx);
2136 	/*
2137 	 * First go through the list and put on any pinned groups
2138 	 * in order to give them the best chance of going on.
2139 	 */
2140 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2141 		ctx_pinned_sched_in(ctx, cpuctx);
2142 
2143 	/* Then walk through the lower prio flexible groups */
2144 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2145 		ctx_flexible_sched_in(ctx, cpuctx);
2146 }
2147 
2148 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2149 			     enum event_type_t event_type,
2150 			     struct task_struct *task)
2151 {
2152 	struct perf_event_context *ctx = &cpuctx->ctx;
2153 
2154 	ctx_sched_in(ctx, cpuctx, event_type, task);
2155 }
2156 
2157 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2158 					struct task_struct *task)
2159 {
2160 	struct perf_cpu_context *cpuctx;
2161 
2162 	cpuctx = __get_cpu_context(ctx);
2163 	if (cpuctx->task_ctx == ctx)
2164 		return;
2165 
2166 	perf_ctx_lock(cpuctx, ctx);
2167 	perf_pmu_disable(ctx->pmu);
2168 	/*
2169 	 * We want to keep the following priority order:
2170 	 * cpu pinned (that don't need to move), task pinned,
2171 	 * cpu flexible, task flexible.
2172 	 */
2173 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2174 
2175 	perf_event_sched_in(cpuctx, ctx, task);
2176 
2177 	cpuctx->task_ctx = ctx;
2178 
2179 	perf_pmu_enable(ctx->pmu);
2180 	perf_ctx_unlock(cpuctx, ctx);
2181 
2182 	/*
2183 	 * Since these rotations are per-cpu, we need to ensure the
2184 	 * cpu-context we got scheduled on is actually rotating.
2185 	 */
2186 	perf_pmu_rotate_start(ctx->pmu);
2187 }
2188 
2189 /*
2190  * Called from scheduler to add the events of the current task
2191  * with interrupts disabled.
2192  *
2193  * We restore the event value and then enable it.
2194  *
2195  * This does not protect us against NMI, but enable()
2196  * sets the enabled bit in the control field of event _before_
2197  * accessing the event control register. If a NMI hits, then it will
2198  * keep the event running.
2199  */
2200 void __perf_event_task_sched_in(struct task_struct *prev,
2201 				struct task_struct *task)
2202 {
2203 	struct perf_event_context *ctx;
2204 	int ctxn;
2205 
2206 	for_each_task_context_nr(ctxn) {
2207 		ctx = task->perf_event_ctxp[ctxn];
2208 		if (likely(!ctx))
2209 			continue;
2210 
2211 		perf_event_context_sched_in(ctx, task);
2212 	}
2213 	/*
2214 	 * if cgroup events exist on this CPU, then we need
2215 	 * to check if we have to switch in PMU state.
2216 	 * cgroup event are system-wide mode only
2217 	 */
2218 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2219 		perf_cgroup_sched_in(prev, task);
2220 }
2221 
2222 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2223 {
2224 	u64 frequency = event->attr.sample_freq;
2225 	u64 sec = NSEC_PER_SEC;
2226 	u64 divisor, dividend;
2227 
2228 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2229 
2230 	count_fls = fls64(count);
2231 	nsec_fls = fls64(nsec);
2232 	frequency_fls = fls64(frequency);
2233 	sec_fls = 30;
2234 
2235 	/*
2236 	 * We got @count in @nsec, with a target of sample_freq HZ
2237 	 * the target period becomes:
2238 	 *
2239 	 *             @count * 10^9
2240 	 * period = -------------------
2241 	 *          @nsec * sample_freq
2242 	 *
2243 	 */
2244 
2245 	/*
2246 	 * Reduce accuracy by one bit such that @a and @b converge
2247 	 * to a similar magnitude.
2248 	 */
2249 #define REDUCE_FLS(a, b)		\
2250 do {					\
2251 	if (a##_fls > b##_fls) {	\
2252 		a >>= 1;		\
2253 		a##_fls--;		\
2254 	} else {			\
2255 		b >>= 1;		\
2256 		b##_fls--;		\
2257 	}				\
2258 } while (0)
2259 
2260 	/*
2261 	 * Reduce accuracy until either term fits in a u64, then proceed with
2262 	 * the other, so that finally we can do a u64/u64 division.
2263 	 */
2264 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2265 		REDUCE_FLS(nsec, frequency);
2266 		REDUCE_FLS(sec, count);
2267 	}
2268 
2269 	if (count_fls + sec_fls > 64) {
2270 		divisor = nsec * frequency;
2271 
2272 		while (count_fls + sec_fls > 64) {
2273 			REDUCE_FLS(count, sec);
2274 			divisor >>= 1;
2275 		}
2276 
2277 		dividend = count * sec;
2278 	} else {
2279 		dividend = count * sec;
2280 
2281 		while (nsec_fls + frequency_fls > 64) {
2282 			REDUCE_FLS(nsec, frequency);
2283 			dividend >>= 1;
2284 		}
2285 
2286 		divisor = nsec * frequency;
2287 	}
2288 
2289 	if (!divisor)
2290 		return dividend;
2291 
2292 	return div64_u64(dividend, divisor);
2293 }
2294 
2295 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2296 {
2297 	struct hw_perf_event *hwc = &event->hw;
2298 	s64 period, sample_period;
2299 	s64 delta;
2300 
2301 	period = perf_calculate_period(event, nsec, count);
2302 
2303 	delta = (s64)(period - hwc->sample_period);
2304 	delta = (delta + 7) / 8; /* low pass filter */
2305 
2306 	sample_period = hwc->sample_period + delta;
2307 
2308 	if (!sample_period)
2309 		sample_period = 1;
2310 
2311 	hwc->sample_period = sample_period;
2312 
2313 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2314 		event->pmu->stop(event, PERF_EF_UPDATE);
2315 		local64_set(&hwc->period_left, 0);
2316 		event->pmu->start(event, PERF_EF_RELOAD);
2317 	}
2318 }
2319 
2320 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2321 {
2322 	struct perf_event *event;
2323 	struct hw_perf_event *hwc;
2324 	u64 interrupts, now;
2325 	s64 delta;
2326 
2327 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2328 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 			continue;
2330 
2331 		if (!event_filter_match(event))
2332 			continue;
2333 
2334 		hwc = &event->hw;
2335 
2336 		interrupts = hwc->interrupts;
2337 		hwc->interrupts = 0;
2338 
2339 		/*
2340 		 * unthrottle events on the tick
2341 		 */
2342 		if (interrupts == MAX_INTERRUPTS) {
2343 			perf_log_throttle(event, 1);
2344 			event->pmu->start(event, 0);
2345 		}
2346 
2347 		if (!event->attr.freq || !event->attr.sample_freq)
2348 			continue;
2349 
2350 		event->pmu->read(event);
2351 		now = local64_read(&event->count);
2352 		delta = now - hwc->freq_count_stamp;
2353 		hwc->freq_count_stamp = now;
2354 
2355 		if (delta > 0)
2356 			perf_adjust_period(event, period, delta);
2357 	}
2358 }
2359 
2360 /*
2361  * Round-robin a context's events:
2362  */
2363 static void rotate_ctx(struct perf_event_context *ctx)
2364 {
2365 	/*
2366 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2367 	 * disabled by the inheritance code.
2368 	 */
2369 	if (!ctx->rotate_disable)
2370 		list_rotate_left(&ctx->flexible_groups);
2371 }
2372 
2373 /*
2374  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2375  * because they're strictly cpu affine and rotate_start is called with IRQs
2376  * disabled, while rotate_context is called from IRQ context.
2377  */
2378 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2379 {
2380 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2381 	struct perf_event_context *ctx = NULL;
2382 	int rotate = 0, remove = 1;
2383 
2384 	if (cpuctx->ctx.nr_events) {
2385 		remove = 0;
2386 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2387 			rotate = 1;
2388 	}
2389 
2390 	ctx = cpuctx->task_ctx;
2391 	if (ctx && ctx->nr_events) {
2392 		remove = 0;
2393 		if (ctx->nr_events != ctx->nr_active)
2394 			rotate = 1;
2395 	}
2396 
2397 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2398 	perf_pmu_disable(cpuctx->ctx.pmu);
2399 	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2400 	if (ctx)
2401 		perf_ctx_adjust_freq(ctx, interval);
2402 
2403 	if (!rotate)
2404 		goto done;
2405 
2406 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2407 	if (ctx)
2408 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2409 
2410 	rotate_ctx(&cpuctx->ctx);
2411 	if (ctx)
2412 		rotate_ctx(ctx);
2413 
2414 	perf_event_sched_in(cpuctx, ctx, current);
2415 
2416 done:
2417 	if (remove)
2418 		list_del_init(&cpuctx->rotation_list);
2419 
2420 	perf_pmu_enable(cpuctx->ctx.pmu);
2421 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2422 }
2423 
2424 void perf_event_task_tick(void)
2425 {
2426 	struct list_head *head = &__get_cpu_var(rotation_list);
2427 	struct perf_cpu_context *cpuctx, *tmp;
2428 
2429 	WARN_ON(!irqs_disabled());
2430 
2431 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2432 		if (cpuctx->jiffies_interval == 1 ||
2433 				!(jiffies % cpuctx->jiffies_interval))
2434 			perf_rotate_context(cpuctx);
2435 	}
2436 }
2437 
2438 static int event_enable_on_exec(struct perf_event *event,
2439 				struct perf_event_context *ctx)
2440 {
2441 	if (!event->attr.enable_on_exec)
2442 		return 0;
2443 
2444 	event->attr.enable_on_exec = 0;
2445 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2446 		return 0;
2447 
2448 	__perf_event_mark_enabled(event, ctx);
2449 
2450 	return 1;
2451 }
2452 
2453 /*
2454  * Enable all of a task's events that have been marked enable-on-exec.
2455  * This expects task == current.
2456  */
2457 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2458 {
2459 	struct perf_event *event;
2460 	unsigned long flags;
2461 	int enabled = 0;
2462 	int ret;
2463 
2464 	local_irq_save(flags);
2465 	if (!ctx || !ctx->nr_events)
2466 		goto out;
2467 
2468 	/*
2469 	 * We must ctxsw out cgroup events to avoid conflict
2470 	 * when invoking perf_task_event_sched_in() later on
2471 	 * in this function. Otherwise we end up trying to
2472 	 * ctxswin cgroup events which are already scheduled
2473 	 * in.
2474 	 */
2475 	perf_cgroup_sched_out(current, NULL);
2476 
2477 	raw_spin_lock(&ctx->lock);
2478 	task_ctx_sched_out(ctx);
2479 
2480 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2481 		ret = event_enable_on_exec(event, ctx);
2482 		if (ret)
2483 			enabled = 1;
2484 	}
2485 
2486 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2487 		ret = event_enable_on_exec(event, ctx);
2488 		if (ret)
2489 			enabled = 1;
2490 	}
2491 
2492 	/*
2493 	 * Unclone this context if we enabled any event.
2494 	 */
2495 	if (enabled)
2496 		unclone_ctx(ctx);
2497 
2498 	raw_spin_unlock(&ctx->lock);
2499 
2500 	/*
2501 	 * Also calls ctxswin for cgroup events, if any:
2502 	 */
2503 	perf_event_context_sched_in(ctx, ctx->task);
2504 out:
2505 	local_irq_restore(flags);
2506 }
2507 
2508 /*
2509  * Cross CPU call to read the hardware event
2510  */
2511 static void __perf_event_read(void *info)
2512 {
2513 	struct perf_event *event = info;
2514 	struct perf_event_context *ctx = event->ctx;
2515 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2516 
2517 	/*
2518 	 * If this is a task context, we need to check whether it is
2519 	 * the current task context of this cpu.  If not it has been
2520 	 * scheduled out before the smp call arrived.  In that case
2521 	 * event->count would have been updated to a recent sample
2522 	 * when the event was scheduled out.
2523 	 */
2524 	if (ctx->task && cpuctx->task_ctx != ctx)
2525 		return;
2526 
2527 	raw_spin_lock(&ctx->lock);
2528 	if (ctx->is_active) {
2529 		update_context_time(ctx);
2530 		update_cgrp_time_from_event(event);
2531 	}
2532 	update_event_times(event);
2533 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2534 		event->pmu->read(event);
2535 	raw_spin_unlock(&ctx->lock);
2536 }
2537 
2538 static inline u64 perf_event_count(struct perf_event *event)
2539 {
2540 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2541 }
2542 
2543 static u64 perf_event_read(struct perf_event *event)
2544 {
2545 	/*
2546 	 * If event is enabled and currently active on a CPU, update the
2547 	 * value in the event structure:
2548 	 */
2549 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2550 		smp_call_function_single(event->oncpu,
2551 					 __perf_event_read, event, 1);
2552 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2553 		struct perf_event_context *ctx = event->ctx;
2554 		unsigned long flags;
2555 
2556 		raw_spin_lock_irqsave(&ctx->lock, flags);
2557 		/*
2558 		 * may read while context is not active
2559 		 * (e.g., thread is blocked), in that case
2560 		 * we cannot update context time
2561 		 */
2562 		if (ctx->is_active) {
2563 			update_context_time(ctx);
2564 			update_cgrp_time_from_event(event);
2565 		}
2566 		update_event_times(event);
2567 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2568 	}
2569 
2570 	return perf_event_count(event);
2571 }
2572 
2573 /*
2574  * Callchain support
2575  */
2576 
2577 struct callchain_cpus_entries {
2578 	struct rcu_head			rcu_head;
2579 	struct perf_callchain_entry	*cpu_entries[0];
2580 };
2581 
2582 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2583 static atomic_t nr_callchain_events;
2584 static DEFINE_MUTEX(callchain_mutex);
2585 struct callchain_cpus_entries *callchain_cpus_entries;
2586 
2587 
2588 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2589 				  struct pt_regs *regs)
2590 {
2591 }
2592 
2593 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2594 				struct pt_regs *regs)
2595 {
2596 }
2597 
2598 static void release_callchain_buffers_rcu(struct rcu_head *head)
2599 {
2600 	struct callchain_cpus_entries *entries;
2601 	int cpu;
2602 
2603 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2604 
2605 	for_each_possible_cpu(cpu)
2606 		kfree(entries->cpu_entries[cpu]);
2607 
2608 	kfree(entries);
2609 }
2610 
2611 static void release_callchain_buffers(void)
2612 {
2613 	struct callchain_cpus_entries *entries;
2614 
2615 	entries = callchain_cpus_entries;
2616 	rcu_assign_pointer(callchain_cpus_entries, NULL);
2617 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2618 }
2619 
2620 static int alloc_callchain_buffers(void)
2621 {
2622 	int cpu;
2623 	int size;
2624 	struct callchain_cpus_entries *entries;
2625 
2626 	/*
2627 	 * We can't use the percpu allocation API for data that can be
2628 	 * accessed from NMI. Use a temporary manual per cpu allocation
2629 	 * until that gets sorted out.
2630 	 */
2631 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2632 
2633 	entries = kzalloc(size, GFP_KERNEL);
2634 	if (!entries)
2635 		return -ENOMEM;
2636 
2637 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2638 
2639 	for_each_possible_cpu(cpu) {
2640 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2641 							 cpu_to_node(cpu));
2642 		if (!entries->cpu_entries[cpu])
2643 			goto fail;
2644 	}
2645 
2646 	rcu_assign_pointer(callchain_cpus_entries, entries);
2647 
2648 	return 0;
2649 
2650 fail:
2651 	for_each_possible_cpu(cpu)
2652 		kfree(entries->cpu_entries[cpu]);
2653 	kfree(entries);
2654 
2655 	return -ENOMEM;
2656 }
2657 
2658 static int get_callchain_buffers(void)
2659 {
2660 	int err = 0;
2661 	int count;
2662 
2663 	mutex_lock(&callchain_mutex);
2664 
2665 	count = atomic_inc_return(&nr_callchain_events);
2666 	if (WARN_ON_ONCE(count < 1)) {
2667 		err = -EINVAL;
2668 		goto exit;
2669 	}
2670 
2671 	if (count > 1) {
2672 		/* If the allocation failed, give up */
2673 		if (!callchain_cpus_entries)
2674 			err = -ENOMEM;
2675 		goto exit;
2676 	}
2677 
2678 	err = alloc_callchain_buffers();
2679 	if (err)
2680 		release_callchain_buffers();
2681 exit:
2682 	mutex_unlock(&callchain_mutex);
2683 
2684 	return err;
2685 }
2686 
2687 static void put_callchain_buffers(void)
2688 {
2689 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2690 		release_callchain_buffers();
2691 		mutex_unlock(&callchain_mutex);
2692 	}
2693 }
2694 
2695 static int get_recursion_context(int *recursion)
2696 {
2697 	int rctx;
2698 
2699 	if (in_nmi())
2700 		rctx = 3;
2701 	else if (in_irq())
2702 		rctx = 2;
2703 	else if (in_softirq())
2704 		rctx = 1;
2705 	else
2706 		rctx = 0;
2707 
2708 	if (recursion[rctx])
2709 		return -1;
2710 
2711 	recursion[rctx]++;
2712 	barrier();
2713 
2714 	return rctx;
2715 }
2716 
2717 static inline void put_recursion_context(int *recursion, int rctx)
2718 {
2719 	barrier();
2720 	recursion[rctx]--;
2721 }
2722 
2723 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2724 {
2725 	int cpu;
2726 	struct callchain_cpus_entries *entries;
2727 
2728 	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2729 	if (*rctx == -1)
2730 		return NULL;
2731 
2732 	entries = rcu_dereference(callchain_cpus_entries);
2733 	if (!entries)
2734 		return NULL;
2735 
2736 	cpu = smp_processor_id();
2737 
2738 	return &entries->cpu_entries[cpu][*rctx];
2739 }
2740 
2741 static void
2742 put_callchain_entry(int rctx)
2743 {
2744 	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2745 }
2746 
2747 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2748 {
2749 	int rctx;
2750 	struct perf_callchain_entry *entry;
2751 
2752 
2753 	entry = get_callchain_entry(&rctx);
2754 	if (rctx == -1)
2755 		return NULL;
2756 
2757 	if (!entry)
2758 		goto exit_put;
2759 
2760 	entry->nr = 0;
2761 
2762 	if (!user_mode(regs)) {
2763 		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2764 		perf_callchain_kernel(entry, regs);
2765 		if (current->mm)
2766 			regs = task_pt_regs(current);
2767 		else
2768 			regs = NULL;
2769 	}
2770 
2771 	if (regs) {
2772 		perf_callchain_store(entry, PERF_CONTEXT_USER);
2773 		perf_callchain_user(entry, regs);
2774 	}
2775 
2776 exit_put:
2777 	put_callchain_entry(rctx);
2778 
2779 	return entry;
2780 }
2781 
2782 /*
2783  * Initialize the perf_event context in a task_struct:
2784  */
2785 static void __perf_event_init_context(struct perf_event_context *ctx)
2786 {
2787 	raw_spin_lock_init(&ctx->lock);
2788 	mutex_init(&ctx->mutex);
2789 	INIT_LIST_HEAD(&ctx->pinned_groups);
2790 	INIT_LIST_HEAD(&ctx->flexible_groups);
2791 	INIT_LIST_HEAD(&ctx->event_list);
2792 	atomic_set(&ctx->refcount, 1);
2793 }
2794 
2795 static struct perf_event_context *
2796 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2797 {
2798 	struct perf_event_context *ctx;
2799 
2800 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2801 	if (!ctx)
2802 		return NULL;
2803 
2804 	__perf_event_init_context(ctx);
2805 	if (task) {
2806 		ctx->task = task;
2807 		get_task_struct(task);
2808 	}
2809 	ctx->pmu = pmu;
2810 
2811 	return ctx;
2812 }
2813 
2814 static struct task_struct *
2815 find_lively_task_by_vpid(pid_t vpid)
2816 {
2817 	struct task_struct *task;
2818 	int err;
2819 
2820 	rcu_read_lock();
2821 	if (!vpid)
2822 		task = current;
2823 	else
2824 		task = find_task_by_vpid(vpid);
2825 	if (task)
2826 		get_task_struct(task);
2827 	rcu_read_unlock();
2828 
2829 	if (!task)
2830 		return ERR_PTR(-ESRCH);
2831 
2832 	/* Reuse ptrace permission checks for now. */
2833 	err = -EACCES;
2834 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2835 		goto errout;
2836 
2837 	return task;
2838 errout:
2839 	put_task_struct(task);
2840 	return ERR_PTR(err);
2841 
2842 }
2843 
2844 /*
2845  * Returns a matching context with refcount and pincount.
2846  */
2847 static struct perf_event_context *
2848 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2849 {
2850 	struct perf_event_context *ctx;
2851 	struct perf_cpu_context *cpuctx;
2852 	unsigned long flags;
2853 	int ctxn, err;
2854 
2855 	if (!task) {
2856 		/* Must be root to operate on a CPU event: */
2857 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2858 			return ERR_PTR(-EACCES);
2859 
2860 		/*
2861 		 * We could be clever and allow to attach a event to an
2862 		 * offline CPU and activate it when the CPU comes up, but
2863 		 * that's for later.
2864 		 */
2865 		if (!cpu_online(cpu))
2866 			return ERR_PTR(-ENODEV);
2867 
2868 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2869 		ctx = &cpuctx->ctx;
2870 		get_ctx(ctx);
2871 		++ctx->pin_count;
2872 
2873 		return ctx;
2874 	}
2875 
2876 	err = -EINVAL;
2877 	ctxn = pmu->task_ctx_nr;
2878 	if (ctxn < 0)
2879 		goto errout;
2880 
2881 retry:
2882 	ctx = perf_lock_task_context(task, ctxn, &flags);
2883 	if (ctx) {
2884 		unclone_ctx(ctx);
2885 		++ctx->pin_count;
2886 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2887 	} else {
2888 		ctx = alloc_perf_context(pmu, task);
2889 		err = -ENOMEM;
2890 		if (!ctx)
2891 			goto errout;
2892 
2893 		err = 0;
2894 		mutex_lock(&task->perf_event_mutex);
2895 		/*
2896 		 * If it has already passed perf_event_exit_task().
2897 		 * we must see PF_EXITING, it takes this mutex too.
2898 		 */
2899 		if (task->flags & PF_EXITING)
2900 			err = -ESRCH;
2901 		else if (task->perf_event_ctxp[ctxn])
2902 			err = -EAGAIN;
2903 		else {
2904 			get_ctx(ctx);
2905 			++ctx->pin_count;
2906 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2907 		}
2908 		mutex_unlock(&task->perf_event_mutex);
2909 
2910 		if (unlikely(err)) {
2911 			put_ctx(ctx);
2912 
2913 			if (err == -EAGAIN)
2914 				goto retry;
2915 			goto errout;
2916 		}
2917 	}
2918 
2919 	return ctx;
2920 
2921 errout:
2922 	return ERR_PTR(err);
2923 }
2924 
2925 static void perf_event_free_filter(struct perf_event *event);
2926 
2927 static void free_event_rcu(struct rcu_head *head)
2928 {
2929 	struct perf_event *event;
2930 
2931 	event = container_of(head, struct perf_event, rcu_head);
2932 	if (event->ns)
2933 		put_pid_ns(event->ns);
2934 	perf_event_free_filter(event);
2935 	kfree(event);
2936 }
2937 
2938 static void ring_buffer_put(struct ring_buffer *rb);
2939 
2940 static void free_event(struct perf_event *event)
2941 {
2942 	irq_work_sync(&event->pending);
2943 
2944 	if (!event->parent) {
2945 		if (event->attach_state & PERF_ATTACH_TASK)
2946 			jump_label_dec(&perf_sched_events);
2947 		if (event->attr.mmap || event->attr.mmap_data)
2948 			atomic_dec(&nr_mmap_events);
2949 		if (event->attr.comm)
2950 			atomic_dec(&nr_comm_events);
2951 		if (event->attr.task)
2952 			atomic_dec(&nr_task_events);
2953 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2954 			put_callchain_buffers();
2955 		if (is_cgroup_event(event)) {
2956 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2957 			jump_label_dec(&perf_sched_events);
2958 		}
2959 	}
2960 
2961 	if (event->rb) {
2962 		ring_buffer_put(event->rb);
2963 		event->rb = NULL;
2964 	}
2965 
2966 	if (is_cgroup_event(event))
2967 		perf_detach_cgroup(event);
2968 
2969 	if (event->destroy)
2970 		event->destroy(event);
2971 
2972 	if (event->ctx)
2973 		put_ctx(event->ctx);
2974 
2975 	call_rcu(&event->rcu_head, free_event_rcu);
2976 }
2977 
2978 int perf_event_release_kernel(struct perf_event *event)
2979 {
2980 	struct perf_event_context *ctx = event->ctx;
2981 
2982 	WARN_ON_ONCE(ctx->parent_ctx);
2983 	/*
2984 	 * There are two ways this annotation is useful:
2985 	 *
2986 	 *  1) there is a lock recursion from perf_event_exit_task
2987 	 *     see the comment there.
2988 	 *
2989 	 *  2) there is a lock-inversion with mmap_sem through
2990 	 *     perf_event_read_group(), which takes faults while
2991 	 *     holding ctx->mutex, however this is called after
2992 	 *     the last filedesc died, so there is no possibility
2993 	 *     to trigger the AB-BA case.
2994 	 */
2995 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2996 	raw_spin_lock_irq(&ctx->lock);
2997 	perf_group_detach(event);
2998 	raw_spin_unlock_irq(&ctx->lock);
2999 	perf_remove_from_context(event);
3000 	mutex_unlock(&ctx->mutex);
3001 
3002 	free_event(event);
3003 
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3007 
3008 /*
3009  * Called when the last reference to the file is gone.
3010  */
3011 static int perf_release(struct inode *inode, struct file *file)
3012 {
3013 	struct perf_event *event = file->private_data;
3014 	struct task_struct *owner;
3015 
3016 	file->private_data = NULL;
3017 
3018 	rcu_read_lock();
3019 	owner = ACCESS_ONCE(event->owner);
3020 	/*
3021 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3022 	 * !owner it means the list deletion is complete and we can indeed
3023 	 * free this event, otherwise we need to serialize on
3024 	 * owner->perf_event_mutex.
3025 	 */
3026 	smp_read_barrier_depends();
3027 	if (owner) {
3028 		/*
3029 		 * Since delayed_put_task_struct() also drops the last
3030 		 * task reference we can safely take a new reference
3031 		 * while holding the rcu_read_lock().
3032 		 */
3033 		get_task_struct(owner);
3034 	}
3035 	rcu_read_unlock();
3036 
3037 	if (owner) {
3038 		mutex_lock(&owner->perf_event_mutex);
3039 		/*
3040 		 * We have to re-check the event->owner field, if it is cleared
3041 		 * we raced with perf_event_exit_task(), acquiring the mutex
3042 		 * ensured they're done, and we can proceed with freeing the
3043 		 * event.
3044 		 */
3045 		if (event->owner)
3046 			list_del_init(&event->owner_entry);
3047 		mutex_unlock(&owner->perf_event_mutex);
3048 		put_task_struct(owner);
3049 	}
3050 
3051 	return perf_event_release_kernel(event);
3052 }
3053 
3054 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3055 {
3056 	struct perf_event *child;
3057 	u64 total = 0;
3058 
3059 	*enabled = 0;
3060 	*running = 0;
3061 
3062 	mutex_lock(&event->child_mutex);
3063 	total += perf_event_read(event);
3064 	*enabled += event->total_time_enabled +
3065 			atomic64_read(&event->child_total_time_enabled);
3066 	*running += event->total_time_running +
3067 			atomic64_read(&event->child_total_time_running);
3068 
3069 	list_for_each_entry(child, &event->child_list, child_list) {
3070 		total += perf_event_read(child);
3071 		*enabled += child->total_time_enabled;
3072 		*running += child->total_time_running;
3073 	}
3074 	mutex_unlock(&event->child_mutex);
3075 
3076 	return total;
3077 }
3078 EXPORT_SYMBOL_GPL(perf_event_read_value);
3079 
3080 static int perf_event_read_group(struct perf_event *event,
3081 				   u64 read_format, char __user *buf)
3082 {
3083 	struct perf_event *leader = event->group_leader, *sub;
3084 	int n = 0, size = 0, ret = -EFAULT;
3085 	struct perf_event_context *ctx = leader->ctx;
3086 	u64 values[5];
3087 	u64 count, enabled, running;
3088 
3089 	mutex_lock(&ctx->mutex);
3090 	count = perf_event_read_value(leader, &enabled, &running);
3091 
3092 	values[n++] = 1 + leader->nr_siblings;
3093 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3094 		values[n++] = enabled;
3095 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3096 		values[n++] = running;
3097 	values[n++] = count;
3098 	if (read_format & PERF_FORMAT_ID)
3099 		values[n++] = primary_event_id(leader);
3100 
3101 	size = n * sizeof(u64);
3102 
3103 	if (copy_to_user(buf, values, size))
3104 		goto unlock;
3105 
3106 	ret = size;
3107 
3108 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3109 		n = 0;
3110 
3111 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3112 		if (read_format & PERF_FORMAT_ID)
3113 			values[n++] = primary_event_id(sub);
3114 
3115 		size = n * sizeof(u64);
3116 
3117 		if (copy_to_user(buf + ret, values, size)) {
3118 			ret = -EFAULT;
3119 			goto unlock;
3120 		}
3121 
3122 		ret += size;
3123 	}
3124 unlock:
3125 	mutex_unlock(&ctx->mutex);
3126 
3127 	return ret;
3128 }
3129 
3130 static int perf_event_read_one(struct perf_event *event,
3131 				 u64 read_format, char __user *buf)
3132 {
3133 	u64 enabled, running;
3134 	u64 values[4];
3135 	int n = 0;
3136 
3137 	values[n++] = perf_event_read_value(event, &enabled, &running);
3138 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3139 		values[n++] = enabled;
3140 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3141 		values[n++] = running;
3142 	if (read_format & PERF_FORMAT_ID)
3143 		values[n++] = primary_event_id(event);
3144 
3145 	if (copy_to_user(buf, values, n * sizeof(u64)))
3146 		return -EFAULT;
3147 
3148 	return n * sizeof(u64);
3149 }
3150 
3151 /*
3152  * Read the performance event - simple non blocking version for now
3153  */
3154 static ssize_t
3155 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3156 {
3157 	u64 read_format = event->attr.read_format;
3158 	int ret;
3159 
3160 	/*
3161 	 * Return end-of-file for a read on a event that is in
3162 	 * error state (i.e. because it was pinned but it couldn't be
3163 	 * scheduled on to the CPU at some point).
3164 	 */
3165 	if (event->state == PERF_EVENT_STATE_ERROR)
3166 		return 0;
3167 
3168 	if (count < event->read_size)
3169 		return -ENOSPC;
3170 
3171 	WARN_ON_ONCE(event->ctx->parent_ctx);
3172 	if (read_format & PERF_FORMAT_GROUP)
3173 		ret = perf_event_read_group(event, read_format, buf);
3174 	else
3175 		ret = perf_event_read_one(event, read_format, buf);
3176 
3177 	return ret;
3178 }
3179 
3180 static ssize_t
3181 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3182 {
3183 	struct perf_event *event = file->private_data;
3184 
3185 	return perf_read_hw(event, buf, count);
3186 }
3187 
3188 static unsigned int perf_poll(struct file *file, poll_table *wait)
3189 {
3190 	struct perf_event *event = file->private_data;
3191 	struct ring_buffer *rb;
3192 	unsigned int events = POLL_HUP;
3193 
3194 	rcu_read_lock();
3195 	rb = rcu_dereference(event->rb);
3196 	if (rb)
3197 		events = atomic_xchg(&rb->poll, 0);
3198 	rcu_read_unlock();
3199 
3200 	poll_wait(file, &event->waitq, wait);
3201 
3202 	return events;
3203 }
3204 
3205 static void perf_event_reset(struct perf_event *event)
3206 {
3207 	(void)perf_event_read(event);
3208 	local64_set(&event->count, 0);
3209 	perf_event_update_userpage(event);
3210 }
3211 
3212 /*
3213  * Holding the top-level event's child_mutex means that any
3214  * descendant process that has inherited this event will block
3215  * in sync_child_event if it goes to exit, thus satisfying the
3216  * task existence requirements of perf_event_enable/disable.
3217  */
3218 static void perf_event_for_each_child(struct perf_event *event,
3219 					void (*func)(struct perf_event *))
3220 {
3221 	struct perf_event *child;
3222 
3223 	WARN_ON_ONCE(event->ctx->parent_ctx);
3224 	mutex_lock(&event->child_mutex);
3225 	func(event);
3226 	list_for_each_entry(child, &event->child_list, child_list)
3227 		func(child);
3228 	mutex_unlock(&event->child_mutex);
3229 }
3230 
3231 static void perf_event_for_each(struct perf_event *event,
3232 				  void (*func)(struct perf_event *))
3233 {
3234 	struct perf_event_context *ctx = event->ctx;
3235 	struct perf_event *sibling;
3236 
3237 	WARN_ON_ONCE(ctx->parent_ctx);
3238 	mutex_lock(&ctx->mutex);
3239 	event = event->group_leader;
3240 
3241 	perf_event_for_each_child(event, func);
3242 	func(event);
3243 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3244 		perf_event_for_each_child(event, func);
3245 	mutex_unlock(&ctx->mutex);
3246 }
3247 
3248 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3249 {
3250 	struct perf_event_context *ctx = event->ctx;
3251 	int ret = 0;
3252 	u64 value;
3253 
3254 	if (!is_sampling_event(event))
3255 		return -EINVAL;
3256 
3257 	if (copy_from_user(&value, arg, sizeof(value)))
3258 		return -EFAULT;
3259 
3260 	if (!value)
3261 		return -EINVAL;
3262 
3263 	raw_spin_lock_irq(&ctx->lock);
3264 	if (event->attr.freq) {
3265 		if (value > sysctl_perf_event_sample_rate) {
3266 			ret = -EINVAL;
3267 			goto unlock;
3268 		}
3269 
3270 		event->attr.sample_freq = value;
3271 	} else {
3272 		event->attr.sample_period = value;
3273 		event->hw.sample_period = value;
3274 	}
3275 unlock:
3276 	raw_spin_unlock_irq(&ctx->lock);
3277 
3278 	return ret;
3279 }
3280 
3281 static const struct file_operations perf_fops;
3282 
3283 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3284 {
3285 	struct file *file;
3286 
3287 	file = fget_light(fd, fput_needed);
3288 	if (!file)
3289 		return ERR_PTR(-EBADF);
3290 
3291 	if (file->f_op != &perf_fops) {
3292 		fput_light(file, *fput_needed);
3293 		*fput_needed = 0;
3294 		return ERR_PTR(-EBADF);
3295 	}
3296 
3297 	return file->private_data;
3298 }
3299 
3300 static int perf_event_set_output(struct perf_event *event,
3301 				 struct perf_event *output_event);
3302 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3303 
3304 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3305 {
3306 	struct perf_event *event = file->private_data;
3307 	void (*func)(struct perf_event *);
3308 	u32 flags = arg;
3309 
3310 	switch (cmd) {
3311 	case PERF_EVENT_IOC_ENABLE:
3312 		func = perf_event_enable;
3313 		break;
3314 	case PERF_EVENT_IOC_DISABLE:
3315 		func = perf_event_disable;
3316 		break;
3317 	case PERF_EVENT_IOC_RESET:
3318 		func = perf_event_reset;
3319 		break;
3320 
3321 	case PERF_EVENT_IOC_REFRESH:
3322 		return perf_event_refresh(event, arg);
3323 
3324 	case PERF_EVENT_IOC_PERIOD:
3325 		return perf_event_period(event, (u64 __user *)arg);
3326 
3327 	case PERF_EVENT_IOC_SET_OUTPUT:
3328 	{
3329 		struct perf_event *output_event = NULL;
3330 		int fput_needed = 0;
3331 		int ret;
3332 
3333 		if (arg != -1) {
3334 			output_event = perf_fget_light(arg, &fput_needed);
3335 			if (IS_ERR(output_event))
3336 				return PTR_ERR(output_event);
3337 		}
3338 
3339 		ret = perf_event_set_output(event, output_event);
3340 		if (output_event)
3341 			fput_light(output_event->filp, fput_needed);
3342 
3343 		return ret;
3344 	}
3345 
3346 	case PERF_EVENT_IOC_SET_FILTER:
3347 		return perf_event_set_filter(event, (void __user *)arg);
3348 
3349 	default:
3350 		return -ENOTTY;
3351 	}
3352 
3353 	if (flags & PERF_IOC_FLAG_GROUP)
3354 		perf_event_for_each(event, func);
3355 	else
3356 		perf_event_for_each_child(event, func);
3357 
3358 	return 0;
3359 }
3360 
3361 int perf_event_task_enable(void)
3362 {
3363 	struct perf_event *event;
3364 
3365 	mutex_lock(&current->perf_event_mutex);
3366 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3367 		perf_event_for_each_child(event, perf_event_enable);
3368 	mutex_unlock(&current->perf_event_mutex);
3369 
3370 	return 0;
3371 }
3372 
3373 int perf_event_task_disable(void)
3374 {
3375 	struct perf_event *event;
3376 
3377 	mutex_lock(&current->perf_event_mutex);
3378 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 		perf_event_for_each_child(event, perf_event_disable);
3380 	mutex_unlock(&current->perf_event_mutex);
3381 
3382 	return 0;
3383 }
3384 
3385 #ifndef PERF_EVENT_INDEX_OFFSET
3386 # define PERF_EVENT_INDEX_OFFSET 0
3387 #endif
3388 
3389 static int perf_event_index(struct perf_event *event)
3390 {
3391 	if (event->hw.state & PERF_HES_STOPPED)
3392 		return 0;
3393 
3394 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3395 		return 0;
3396 
3397 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3398 }
3399 
3400 static void calc_timer_values(struct perf_event *event,
3401 				u64 *enabled,
3402 				u64 *running)
3403 {
3404 	u64 now, ctx_time;
3405 
3406 	now = perf_clock();
3407 	ctx_time = event->shadow_ctx_time + now;
3408 	*enabled = ctx_time - event->tstamp_enabled;
3409 	*running = ctx_time - event->tstamp_running;
3410 }
3411 
3412 /*
3413  * Callers need to ensure there can be no nesting of this function, otherwise
3414  * the seqlock logic goes bad. We can not serialize this because the arch
3415  * code calls this from NMI context.
3416  */
3417 void perf_event_update_userpage(struct perf_event *event)
3418 {
3419 	struct perf_event_mmap_page *userpg;
3420 	struct ring_buffer *rb;
3421 	u64 enabled, running;
3422 
3423 	rcu_read_lock();
3424 	/*
3425 	 * compute total_time_enabled, total_time_running
3426 	 * based on snapshot values taken when the event
3427 	 * was last scheduled in.
3428 	 *
3429 	 * we cannot simply called update_context_time()
3430 	 * because of locking issue as we can be called in
3431 	 * NMI context
3432 	 */
3433 	calc_timer_values(event, &enabled, &running);
3434 	rb = rcu_dereference(event->rb);
3435 	if (!rb)
3436 		goto unlock;
3437 
3438 	userpg = rb->user_page;
3439 
3440 	/*
3441 	 * Disable preemption so as to not let the corresponding user-space
3442 	 * spin too long if we get preempted.
3443 	 */
3444 	preempt_disable();
3445 	++userpg->lock;
3446 	barrier();
3447 	userpg->index = perf_event_index(event);
3448 	userpg->offset = perf_event_count(event);
3449 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3450 		userpg->offset -= local64_read(&event->hw.prev_count);
3451 
3452 	userpg->time_enabled = enabled +
3453 			atomic64_read(&event->child_total_time_enabled);
3454 
3455 	userpg->time_running = running +
3456 			atomic64_read(&event->child_total_time_running);
3457 
3458 	barrier();
3459 	++userpg->lock;
3460 	preempt_enable();
3461 unlock:
3462 	rcu_read_unlock();
3463 }
3464 
3465 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3466 {
3467 	struct perf_event *event = vma->vm_file->private_data;
3468 	struct ring_buffer *rb;
3469 	int ret = VM_FAULT_SIGBUS;
3470 
3471 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3472 		if (vmf->pgoff == 0)
3473 			ret = 0;
3474 		return ret;
3475 	}
3476 
3477 	rcu_read_lock();
3478 	rb = rcu_dereference(event->rb);
3479 	if (!rb)
3480 		goto unlock;
3481 
3482 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3483 		goto unlock;
3484 
3485 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3486 	if (!vmf->page)
3487 		goto unlock;
3488 
3489 	get_page(vmf->page);
3490 	vmf->page->mapping = vma->vm_file->f_mapping;
3491 	vmf->page->index   = vmf->pgoff;
3492 
3493 	ret = 0;
3494 unlock:
3495 	rcu_read_unlock();
3496 
3497 	return ret;
3498 }
3499 
3500 static void rb_free_rcu(struct rcu_head *rcu_head)
3501 {
3502 	struct ring_buffer *rb;
3503 
3504 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3505 	rb_free(rb);
3506 }
3507 
3508 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3509 {
3510 	struct ring_buffer *rb;
3511 
3512 	rcu_read_lock();
3513 	rb = rcu_dereference(event->rb);
3514 	if (rb) {
3515 		if (!atomic_inc_not_zero(&rb->refcount))
3516 			rb = NULL;
3517 	}
3518 	rcu_read_unlock();
3519 
3520 	return rb;
3521 }
3522 
3523 static void ring_buffer_put(struct ring_buffer *rb)
3524 {
3525 	if (!atomic_dec_and_test(&rb->refcount))
3526 		return;
3527 
3528 	call_rcu(&rb->rcu_head, rb_free_rcu);
3529 }
3530 
3531 static void perf_mmap_open(struct vm_area_struct *vma)
3532 {
3533 	struct perf_event *event = vma->vm_file->private_data;
3534 
3535 	atomic_inc(&event->mmap_count);
3536 }
3537 
3538 static void perf_mmap_close(struct vm_area_struct *vma)
3539 {
3540 	struct perf_event *event = vma->vm_file->private_data;
3541 
3542 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3543 		unsigned long size = perf_data_size(event->rb);
3544 		struct user_struct *user = event->mmap_user;
3545 		struct ring_buffer *rb = event->rb;
3546 
3547 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3548 		vma->vm_mm->locked_vm -= event->mmap_locked;
3549 		rcu_assign_pointer(event->rb, NULL);
3550 		mutex_unlock(&event->mmap_mutex);
3551 
3552 		ring_buffer_put(rb);
3553 		free_uid(user);
3554 	}
3555 }
3556 
3557 static const struct vm_operations_struct perf_mmap_vmops = {
3558 	.open		= perf_mmap_open,
3559 	.close		= perf_mmap_close,
3560 	.fault		= perf_mmap_fault,
3561 	.page_mkwrite	= perf_mmap_fault,
3562 };
3563 
3564 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3565 {
3566 	struct perf_event *event = file->private_data;
3567 	unsigned long user_locked, user_lock_limit;
3568 	struct user_struct *user = current_user();
3569 	unsigned long locked, lock_limit;
3570 	struct ring_buffer *rb;
3571 	unsigned long vma_size;
3572 	unsigned long nr_pages;
3573 	long user_extra, extra;
3574 	int ret = 0, flags = 0;
3575 
3576 	/*
3577 	 * Don't allow mmap() of inherited per-task counters. This would
3578 	 * create a performance issue due to all children writing to the
3579 	 * same rb.
3580 	 */
3581 	if (event->cpu == -1 && event->attr.inherit)
3582 		return -EINVAL;
3583 
3584 	if (!(vma->vm_flags & VM_SHARED))
3585 		return -EINVAL;
3586 
3587 	vma_size = vma->vm_end - vma->vm_start;
3588 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3589 
3590 	/*
3591 	 * If we have rb pages ensure they're a power-of-two number, so we
3592 	 * can do bitmasks instead of modulo.
3593 	 */
3594 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3595 		return -EINVAL;
3596 
3597 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3598 		return -EINVAL;
3599 
3600 	if (vma->vm_pgoff != 0)
3601 		return -EINVAL;
3602 
3603 	WARN_ON_ONCE(event->ctx->parent_ctx);
3604 	mutex_lock(&event->mmap_mutex);
3605 	if (event->rb) {
3606 		if (event->rb->nr_pages == nr_pages)
3607 			atomic_inc(&event->rb->refcount);
3608 		else
3609 			ret = -EINVAL;
3610 		goto unlock;
3611 	}
3612 
3613 	user_extra = nr_pages + 1;
3614 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3615 
3616 	/*
3617 	 * Increase the limit linearly with more CPUs:
3618 	 */
3619 	user_lock_limit *= num_online_cpus();
3620 
3621 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3622 
3623 	extra = 0;
3624 	if (user_locked > user_lock_limit)
3625 		extra = user_locked - user_lock_limit;
3626 
3627 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3628 	lock_limit >>= PAGE_SHIFT;
3629 	locked = vma->vm_mm->locked_vm + extra;
3630 
3631 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3632 		!capable(CAP_IPC_LOCK)) {
3633 		ret = -EPERM;
3634 		goto unlock;
3635 	}
3636 
3637 	WARN_ON(event->rb);
3638 
3639 	if (vma->vm_flags & VM_WRITE)
3640 		flags |= RING_BUFFER_WRITABLE;
3641 
3642 	rb = rb_alloc(nr_pages,
3643 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3644 		event->cpu, flags);
3645 
3646 	if (!rb) {
3647 		ret = -ENOMEM;
3648 		goto unlock;
3649 	}
3650 	rcu_assign_pointer(event->rb, rb);
3651 
3652 	atomic_long_add(user_extra, &user->locked_vm);
3653 	event->mmap_locked = extra;
3654 	event->mmap_user = get_current_user();
3655 	vma->vm_mm->locked_vm += event->mmap_locked;
3656 
3657 unlock:
3658 	if (!ret)
3659 		atomic_inc(&event->mmap_count);
3660 	mutex_unlock(&event->mmap_mutex);
3661 
3662 	vma->vm_flags |= VM_RESERVED;
3663 	vma->vm_ops = &perf_mmap_vmops;
3664 
3665 	return ret;
3666 }
3667 
3668 static int perf_fasync(int fd, struct file *filp, int on)
3669 {
3670 	struct inode *inode = filp->f_path.dentry->d_inode;
3671 	struct perf_event *event = filp->private_data;
3672 	int retval;
3673 
3674 	mutex_lock(&inode->i_mutex);
3675 	retval = fasync_helper(fd, filp, on, &event->fasync);
3676 	mutex_unlock(&inode->i_mutex);
3677 
3678 	if (retval < 0)
3679 		return retval;
3680 
3681 	return 0;
3682 }
3683 
3684 static const struct file_operations perf_fops = {
3685 	.llseek			= no_llseek,
3686 	.release		= perf_release,
3687 	.read			= perf_read,
3688 	.poll			= perf_poll,
3689 	.unlocked_ioctl		= perf_ioctl,
3690 	.compat_ioctl		= perf_ioctl,
3691 	.mmap			= perf_mmap,
3692 	.fasync			= perf_fasync,
3693 };
3694 
3695 /*
3696  * Perf event wakeup
3697  *
3698  * If there's data, ensure we set the poll() state and publish everything
3699  * to user-space before waking everybody up.
3700  */
3701 
3702 void perf_event_wakeup(struct perf_event *event)
3703 {
3704 	wake_up_all(&event->waitq);
3705 
3706 	if (event->pending_kill) {
3707 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3708 		event->pending_kill = 0;
3709 	}
3710 }
3711 
3712 static void perf_pending_event(struct irq_work *entry)
3713 {
3714 	struct perf_event *event = container_of(entry,
3715 			struct perf_event, pending);
3716 
3717 	if (event->pending_disable) {
3718 		event->pending_disable = 0;
3719 		__perf_event_disable(event);
3720 	}
3721 
3722 	if (event->pending_wakeup) {
3723 		event->pending_wakeup = 0;
3724 		perf_event_wakeup(event);
3725 	}
3726 }
3727 
3728 /*
3729  * We assume there is only KVM supporting the callbacks.
3730  * Later on, we might change it to a list if there is
3731  * another virtualization implementation supporting the callbacks.
3732  */
3733 struct perf_guest_info_callbacks *perf_guest_cbs;
3734 
3735 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3736 {
3737 	perf_guest_cbs = cbs;
3738 	return 0;
3739 }
3740 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3741 
3742 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3743 {
3744 	perf_guest_cbs = NULL;
3745 	return 0;
3746 }
3747 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3748 
3749 static void __perf_event_header__init_id(struct perf_event_header *header,
3750 					 struct perf_sample_data *data,
3751 					 struct perf_event *event)
3752 {
3753 	u64 sample_type = event->attr.sample_type;
3754 
3755 	data->type = sample_type;
3756 	header->size += event->id_header_size;
3757 
3758 	if (sample_type & PERF_SAMPLE_TID) {
3759 		/* namespace issues */
3760 		data->tid_entry.pid = perf_event_pid(event, current);
3761 		data->tid_entry.tid = perf_event_tid(event, current);
3762 	}
3763 
3764 	if (sample_type & PERF_SAMPLE_TIME)
3765 		data->time = perf_clock();
3766 
3767 	if (sample_type & PERF_SAMPLE_ID)
3768 		data->id = primary_event_id(event);
3769 
3770 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3771 		data->stream_id = event->id;
3772 
3773 	if (sample_type & PERF_SAMPLE_CPU) {
3774 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3775 		data->cpu_entry.reserved = 0;
3776 	}
3777 }
3778 
3779 void perf_event_header__init_id(struct perf_event_header *header,
3780 				struct perf_sample_data *data,
3781 				struct perf_event *event)
3782 {
3783 	if (event->attr.sample_id_all)
3784 		__perf_event_header__init_id(header, data, event);
3785 }
3786 
3787 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3788 					   struct perf_sample_data *data)
3789 {
3790 	u64 sample_type = data->type;
3791 
3792 	if (sample_type & PERF_SAMPLE_TID)
3793 		perf_output_put(handle, data->tid_entry);
3794 
3795 	if (sample_type & PERF_SAMPLE_TIME)
3796 		perf_output_put(handle, data->time);
3797 
3798 	if (sample_type & PERF_SAMPLE_ID)
3799 		perf_output_put(handle, data->id);
3800 
3801 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3802 		perf_output_put(handle, data->stream_id);
3803 
3804 	if (sample_type & PERF_SAMPLE_CPU)
3805 		perf_output_put(handle, data->cpu_entry);
3806 }
3807 
3808 void perf_event__output_id_sample(struct perf_event *event,
3809 				  struct perf_output_handle *handle,
3810 				  struct perf_sample_data *sample)
3811 {
3812 	if (event->attr.sample_id_all)
3813 		__perf_event__output_id_sample(handle, sample);
3814 }
3815 
3816 static void perf_output_read_one(struct perf_output_handle *handle,
3817 				 struct perf_event *event,
3818 				 u64 enabled, u64 running)
3819 {
3820 	u64 read_format = event->attr.read_format;
3821 	u64 values[4];
3822 	int n = 0;
3823 
3824 	values[n++] = perf_event_count(event);
3825 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3826 		values[n++] = enabled +
3827 			atomic64_read(&event->child_total_time_enabled);
3828 	}
3829 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3830 		values[n++] = running +
3831 			atomic64_read(&event->child_total_time_running);
3832 	}
3833 	if (read_format & PERF_FORMAT_ID)
3834 		values[n++] = primary_event_id(event);
3835 
3836 	__output_copy(handle, values, n * sizeof(u64));
3837 }
3838 
3839 /*
3840  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3841  */
3842 static void perf_output_read_group(struct perf_output_handle *handle,
3843 			    struct perf_event *event,
3844 			    u64 enabled, u64 running)
3845 {
3846 	struct perf_event *leader = event->group_leader, *sub;
3847 	u64 read_format = event->attr.read_format;
3848 	u64 values[5];
3849 	int n = 0;
3850 
3851 	values[n++] = 1 + leader->nr_siblings;
3852 
3853 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3854 		values[n++] = enabled;
3855 
3856 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3857 		values[n++] = running;
3858 
3859 	if (leader != event)
3860 		leader->pmu->read(leader);
3861 
3862 	values[n++] = perf_event_count(leader);
3863 	if (read_format & PERF_FORMAT_ID)
3864 		values[n++] = primary_event_id(leader);
3865 
3866 	__output_copy(handle, values, n * sizeof(u64));
3867 
3868 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3869 		n = 0;
3870 
3871 		if (sub != event)
3872 			sub->pmu->read(sub);
3873 
3874 		values[n++] = perf_event_count(sub);
3875 		if (read_format & PERF_FORMAT_ID)
3876 			values[n++] = primary_event_id(sub);
3877 
3878 		__output_copy(handle, values, n * sizeof(u64));
3879 	}
3880 }
3881 
3882 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3883 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3884 
3885 static void perf_output_read(struct perf_output_handle *handle,
3886 			     struct perf_event *event)
3887 {
3888 	u64 enabled = 0, running = 0;
3889 	u64 read_format = event->attr.read_format;
3890 
3891 	/*
3892 	 * compute total_time_enabled, total_time_running
3893 	 * based on snapshot values taken when the event
3894 	 * was last scheduled in.
3895 	 *
3896 	 * we cannot simply called update_context_time()
3897 	 * because of locking issue as we are called in
3898 	 * NMI context
3899 	 */
3900 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3901 		calc_timer_values(event, &enabled, &running);
3902 
3903 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3904 		perf_output_read_group(handle, event, enabled, running);
3905 	else
3906 		perf_output_read_one(handle, event, enabled, running);
3907 }
3908 
3909 void perf_output_sample(struct perf_output_handle *handle,
3910 			struct perf_event_header *header,
3911 			struct perf_sample_data *data,
3912 			struct perf_event *event)
3913 {
3914 	u64 sample_type = data->type;
3915 
3916 	perf_output_put(handle, *header);
3917 
3918 	if (sample_type & PERF_SAMPLE_IP)
3919 		perf_output_put(handle, data->ip);
3920 
3921 	if (sample_type & PERF_SAMPLE_TID)
3922 		perf_output_put(handle, data->tid_entry);
3923 
3924 	if (sample_type & PERF_SAMPLE_TIME)
3925 		perf_output_put(handle, data->time);
3926 
3927 	if (sample_type & PERF_SAMPLE_ADDR)
3928 		perf_output_put(handle, data->addr);
3929 
3930 	if (sample_type & PERF_SAMPLE_ID)
3931 		perf_output_put(handle, data->id);
3932 
3933 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3934 		perf_output_put(handle, data->stream_id);
3935 
3936 	if (sample_type & PERF_SAMPLE_CPU)
3937 		perf_output_put(handle, data->cpu_entry);
3938 
3939 	if (sample_type & PERF_SAMPLE_PERIOD)
3940 		perf_output_put(handle, data->period);
3941 
3942 	if (sample_type & PERF_SAMPLE_READ)
3943 		perf_output_read(handle, event);
3944 
3945 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3946 		if (data->callchain) {
3947 			int size = 1;
3948 
3949 			if (data->callchain)
3950 				size += data->callchain->nr;
3951 
3952 			size *= sizeof(u64);
3953 
3954 			__output_copy(handle, data->callchain, size);
3955 		} else {
3956 			u64 nr = 0;
3957 			perf_output_put(handle, nr);
3958 		}
3959 	}
3960 
3961 	if (sample_type & PERF_SAMPLE_RAW) {
3962 		if (data->raw) {
3963 			perf_output_put(handle, data->raw->size);
3964 			__output_copy(handle, data->raw->data,
3965 					   data->raw->size);
3966 		} else {
3967 			struct {
3968 				u32	size;
3969 				u32	data;
3970 			} raw = {
3971 				.size = sizeof(u32),
3972 				.data = 0,
3973 			};
3974 			perf_output_put(handle, raw);
3975 		}
3976 	}
3977 
3978 	if (!event->attr.watermark) {
3979 		int wakeup_events = event->attr.wakeup_events;
3980 
3981 		if (wakeup_events) {
3982 			struct ring_buffer *rb = handle->rb;
3983 			int events = local_inc_return(&rb->events);
3984 
3985 			if (events >= wakeup_events) {
3986 				local_sub(wakeup_events, &rb->events);
3987 				local_inc(&rb->wakeup);
3988 			}
3989 		}
3990 	}
3991 }
3992 
3993 void perf_prepare_sample(struct perf_event_header *header,
3994 			 struct perf_sample_data *data,
3995 			 struct perf_event *event,
3996 			 struct pt_regs *regs)
3997 {
3998 	u64 sample_type = event->attr.sample_type;
3999 
4000 	header->type = PERF_RECORD_SAMPLE;
4001 	header->size = sizeof(*header) + event->header_size;
4002 
4003 	header->misc = 0;
4004 	header->misc |= perf_misc_flags(regs);
4005 
4006 	__perf_event_header__init_id(header, data, event);
4007 
4008 	if (sample_type & PERF_SAMPLE_IP)
4009 		data->ip = perf_instruction_pointer(regs);
4010 
4011 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4012 		int size = 1;
4013 
4014 		data->callchain = perf_callchain(regs);
4015 
4016 		if (data->callchain)
4017 			size += data->callchain->nr;
4018 
4019 		header->size += size * sizeof(u64);
4020 	}
4021 
4022 	if (sample_type & PERF_SAMPLE_RAW) {
4023 		int size = sizeof(u32);
4024 
4025 		if (data->raw)
4026 			size += data->raw->size;
4027 		else
4028 			size += sizeof(u32);
4029 
4030 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4031 		header->size += size;
4032 	}
4033 }
4034 
4035 static void perf_event_output(struct perf_event *event,
4036 				struct perf_sample_data *data,
4037 				struct pt_regs *regs)
4038 {
4039 	struct perf_output_handle handle;
4040 	struct perf_event_header header;
4041 
4042 	/* protect the callchain buffers */
4043 	rcu_read_lock();
4044 
4045 	perf_prepare_sample(&header, data, event, regs);
4046 
4047 	if (perf_output_begin(&handle, event, header.size))
4048 		goto exit;
4049 
4050 	perf_output_sample(&handle, &header, data, event);
4051 
4052 	perf_output_end(&handle);
4053 
4054 exit:
4055 	rcu_read_unlock();
4056 }
4057 
4058 /*
4059  * read event_id
4060  */
4061 
4062 struct perf_read_event {
4063 	struct perf_event_header	header;
4064 
4065 	u32				pid;
4066 	u32				tid;
4067 };
4068 
4069 static void
4070 perf_event_read_event(struct perf_event *event,
4071 			struct task_struct *task)
4072 {
4073 	struct perf_output_handle handle;
4074 	struct perf_sample_data sample;
4075 	struct perf_read_event read_event = {
4076 		.header = {
4077 			.type = PERF_RECORD_READ,
4078 			.misc = 0,
4079 			.size = sizeof(read_event) + event->read_size,
4080 		},
4081 		.pid = perf_event_pid(event, task),
4082 		.tid = perf_event_tid(event, task),
4083 	};
4084 	int ret;
4085 
4086 	perf_event_header__init_id(&read_event.header, &sample, event);
4087 	ret = perf_output_begin(&handle, event, read_event.header.size);
4088 	if (ret)
4089 		return;
4090 
4091 	perf_output_put(&handle, read_event);
4092 	perf_output_read(&handle, event);
4093 	perf_event__output_id_sample(event, &handle, &sample);
4094 
4095 	perf_output_end(&handle);
4096 }
4097 
4098 /*
4099  * task tracking -- fork/exit
4100  *
4101  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4102  */
4103 
4104 struct perf_task_event {
4105 	struct task_struct		*task;
4106 	struct perf_event_context	*task_ctx;
4107 
4108 	struct {
4109 		struct perf_event_header	header;
4110 
4111 		u32				pid;
4112 		u32				ppid;
4113 		u32				tid;
4114 		u32				ptid;
4115 		u64				time;
4116 	} event_id;
4117 };
4118 
4119 static void perf_event_task_output(struct perf_event *event,
4120 				     struct perf_task_event *task_event)
4121 {
4122 	struct perf_output_handle handle;
4123 	struct perf_sample_data	sample;
4124 	struct task_struct *task = task_event->task;
4125 	int ret, size = task_event->event_id.header.size;
4126 
4127 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4128 
4129 	ret = perf_output_begin(&handle, event,
4130 				task_event->event_id.header.size);
4131 	if (ret)
4132 		goto out;
4133 
4134 	task_event->event_id.pid = perf_event_pid(event, task);
4135 	task_event->event_id.ppid = perf_event_pid(event, current);
4136 
4137 	task_event->event_id.tid = perf_event_tid(event, task);
4138 	task_event->event_id.ptid = perf_event_tid(event, current);
4139 
4140 	perf_output_put(&handle, task_event->event_id);
4141 
4142 	perf_event__output_id_sample(event, &handle, &sample);
4143 
4144 	perf_output_end(&handle);
4145 out:
4146 	task_event->event_id.header.size = size;
4147 }
4148 
4149 static int perf_event_task_match(struct perf_event *event)
4150 {
4151 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4152 		return 0;
4153 
4154 	if (!event_filter_match(event))
4155 		return 0;
4156 
4157 	if (event->attr.comm || event->attr.mmap ||
4158 	    event->attr.mmap_data || event->attr.task)
4159 		return 1;
4160 
4161 	return 0;
4162 }
4163 
4164 static void perf_event_task_ctx(struct perf_event_context *ctx,
4165 				  struct perf_task_event *task_event)
4166 {
4167 	struct perf_event *event;
4168 
4169 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4170 		if (perf_event_task_match(event))
4171 			perf_event_task_output(event, task_event);
4172 	}
4173 }
4174 
4175 static void perf_event_task_event(struct perf_task_event *task_event)
4176 {
4177 	struct perf_cpu_context *cpuctx;
4178 	struct perf_event_context *ctx;
4179 	struct pmu *pmu;
4180 	int ctxn;
4181 
4182 	rcu_read_lock();
4183 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4184 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4185 		if (cpuctx->active_pmu != pmu)
4186 			goto next;
4187 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4188 
4189 		ctx = task_event->task_ctx;
4190 		if (!ctx) {
4191 			ctxn = pmu->task_ctx_nr;
4192 			if (ctxn < 0)
4193 				goto next;
4194 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4195 		}
4196 		if (ctx)
4197 			perf_event_task_ctx(ctx, task_event);
4198 next:
4199 		put_cpu_ptr(pmu->pmu_cpu_context);
4200 	}
4201 	rcu_read_unlock();
4202 }
4203 
4204 static void perf_event_task(struct task_struct *task,
4205 			      struct perf_event_context *task_ctx,
4206 			      int new)
4207 {
4208 	struct perf_task_event task_event;
4209 
4210 	if (!atomic_read(&nr_comm_events) &&
4211 	    !atomic_read(&nr_mmap_events) &&
4212 	    !atomic_read(&nr_task_events))
4213 		return;
4214 
4215 	task_event = (struct perf_task_event){
4216 		.task	  = task,
4217 		.task_ctx = task_ctx,
4218 		.event_id    = {
4219 			.header = {
4220 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4221 				.misc = 0,
4222 				.size = sizeof(task_event.event_id),
4223 			},
4224 			/* .pid  */
4225 			/* .ppid */
4226 			/* .tid  */
4227 			/* .ptid */
4228 			.time = perf_clock(),
4229 		},
4230 	};
4231 
4232 	perf_event_task_event(&task_event);
4233 }
4234 
4235 void perf_event_fork(struct task_struct *task)
4236 {
4237 	perf_event_task(task, NULL, 1);
4238 }
4239 
4240 /*
4241  * comm tracking
4242  */
4243 
4244 struct perf_comm_event {
4245 	struct task_struct	*task;
4246 	char			*comm;
4247 	int			comm_size;
4248 
4249 	struct {
4250 		struct perf_event_header	header;
4251 
4252 		u32				pid;
4253 		u32				tid;
4254 	} event_id;
4255 };
4256 
4257 static void perf_event_comm_output(struct perf_event *event,
4258 				     struct perf_comm_event *comm_event)
4259 {
4260 	struct perf_output_handle handle;
4261 	struct perf_sample_data sample;
4262 	int size = comm_event->event_id.header.size;
4263 	int ret;
4264 
4265 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4266 	ret = perf_output_begin(&handle, event,
4267 				comm_event->event_id.header.size);
4268 
4269 	if (ret)
4270 		goto out;
4271 
4272 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4273 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4274 
4275 	perf_output_put(&handle, comm_event->event_id);
4276 	__output_copy(&handle, comm_event->comm,
4277 				   comm_event->comm_size);
4278 
4279 	perf_event__output_id_sample(event, &handle, &sample);
4280 
4281 	perf_output_end(&handle);
4282 out:
4283 	comm_event->event_id.header.size = size;
4284 }
4285 
4286 static int perf_event_comm_match(struct perf_event *event)
4287 {
4288 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4289 		return 0;
4290 
4291 	if (!event_filter_match(event))
4292 		return 0;
4293 
4294 	if (event->attr.comm)
4295 		return 1;
4296 
4297 	return 0;
4298 }
4299 
4300 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4301 				  struct perf_comm_event *comm_event)
4302 {
4303 	struct perf_event *event;
4304 
4305 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4306 		if (perf_event_comm_match(event))
4307 			perf_event_comm_output(event, comm_event);
4308 	}
4309 }
4310 
4311 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4312 {
4313 	struct perf_cpu_context *cpuctx;
4314 	struct perf_event_context *ctx;
4315 	char comm[TASK_COMM_LEN];
4316 	unsigned int size;
4317 	struct pmu *pmu;
4318 	int ctxn;
4319 
4320 	memset(comm, 0, sizeof(comm));
4321 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4322 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4323 
4324 	comm_event->comm = comm;
4325 	comm_event->comm_size = size;
4326 
4327 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4328 	rcu_read_lock();
4329 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4330 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4331 		if (cpuctx->active_pmu != pmu)
4332 			goto next;
4333 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4334 
4335 		ctxn = pmu->task_ctx_nr;
4336 		if (ctxn < 0)
4337 			goto next;
4338 
4339 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4340 		if (ctx)
4341 			perf_event_comm_ctx(ctx, comm_event);
4342 next:
4343 		put_cpu_ptr(pmu->pmu_cpu_context);
4344 	}
4345 	rcu_read_unlock();
4346 }
4347 
4348 void perf_event_comm(struct task_struct *task)
4349 {
4350 	struct perf_comm_event comm_event;
4351 	struct perf_event_context *ctx;
4352 	int ctxn;
4353 
4354 	for_each_task_context_nr(ctxn) {
4355 		ctx = task->perf_event_ctxp[ctxn];
4356 		if (!ctx)
4357 			continue;
4358 
4359 		perf_event_enable_on_exec(ctx);
4360 	}
4361 
4362 	if (!atomic_read(&nr_comm_events))
4363 		return;
4364 
4365 	comm_event = (struct perf_comm_event){
4366 		.task	= task,
4367 		/* .comm      */
4368 		/* .comm_size */
4369 		.event_id  = {
4370 			.header = {
4371 				.type = PERF_RECORD_COMM,
4372 				.misc = 0,
4373 				/* .size */
4374 			},
4375 			/* .pid */
4376 			/* .tid */
4377 		},
4378 	};
4379 
4380 	perf_event_comm_event(&comm_event);
4381 }
4382 
4383 /*
4384  * mmap tracking
4385  */
4386 
4387 struct perf_mmap_event {
4388 	struct vm_area_struct	*vma;
4389 
4390 	const char		*file_name;
4391 	int			file_size;
4392 
4393 	struct {
4394 		struct perf_event_header	header;
4395 
4396 		u32				pid;
4397 		u32				tid;
4398 		u64				start;
4399 		u64				len;
4400 		u64				pgoff;
4401 	} event_id;
4402 };
4403 
4404 static void perf_event_mmap_output(struct perf_event *event,
4405 				     struct perf_mmap_event *mmap_event)
4406 {
4407 	struct perf_output_handle handle;
4408 	struct perf_sample_data sample;
4409 	int size = mmap_event->event_id.header.size;
4410 	int ret;
4411 
4412 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4413 	ret = perf_output_begin(&handle, event,
4414 				mmap_event->event_id.header.size);
4415 	if (ret)
4416 		goto out;
4417 
4418 	mmap_event->event_id.pid = perf_event_pid(event, current);
4419 	mmap_event->event_id.tid = perf_event_tid(event, current);
4420 
4421 	perf_output_put(&handle, mmap_event->event_id);
4422 	__output_copy(&handle, mmap_event->file_name,
4423 				   mmap_event->file_size);
4424 
4425 	perf_event__output_id_sample(event, &handle, &sample);
4426 
4427 	perf_output_end(&handle);
4428 out:
4429 	mmap_event->event_id.header.size = size;
4430 }
4431 
4432 static int perf_event_mmap_match(struct perf_event *event,
4433 				   struct perf_mmap_event *mmap_event,
4434 				   int executable)
4435 {
4436 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4437 		return 0;
4438 
4439 	if (!event_filter_match(event))
4440 		return 0;
4441 
4442 	if ((!executable && event->attr.mmap_data) ||
4443 	    (executable && event->attr.mmap))
4444 		return 1;
4445 
4446 	return 0;
4447 }
4448 
4449 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4450 				  struct perf_mmap_event *mmap_event,
4451 				  int executable)
4452 {
4453 	struct perf_event *event;
4454 
4455 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4456 		if (perf_event_mmap_match(event, mmap_event, executable))
4457 			perf_event_mmap_output(event, mmap_event);
4458 	}
4459 }
4460 
4461 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4462 {
4463 	struct perf_cpu_context *cpuctx;
4464 	struct perf_event_context *ctx;
4465 	struct vm_area_struct *vma = mmap_event->vma;
4466 	struct file *file = vma->vm_file;
4467 	unsigned int size;
4468 	char tmp[16];
4469 	char *buf = NULL;
4470 	const char *name;
4471 	struct pmu *pmu;
4472 	int ctxn;
4473 
4474 	memset(tmp, 0, sizeof(tmp));
4475 
4476 	if (file) {
4477 		/*
4478 		 * d_path works from the end of the rb backwards, so we
4479 		 * need to add enough zero bytes after the string to handle
4480 		 * the 64bit alignment we do later.
4481 		 */
4482 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4483 		if (!buf) {
4484 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4485 			goto got_name;
4486 		}
4487 		name = d_path(&file->f_path, buf, PATH_MAX);
4488 		if (IS_ERR(name)) {
4489 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4490 			goto got_name;
4491 		}
4492 	} else {
4493 		if (arch_vma_name(mmap_event->vma)) {
4494 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4495 				       sizeof(tmp));
4496 			goto got_name;
4497 		}
4498 
4499 		if (!vma->vm_mm) {
4500 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4501 			goto got_name;
4502 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4503 				vma->vm_end >= vma->vm_mm->brk) {
4504 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4505 			goto got_name;
4506 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4507 				vma->vm_end >= vma->vm_mm->start_stack) {
4508 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4509 			goto got_name;
4510 		}
4511 
4512 		name = strncpy(tmp, "//anon", sizeof(tmp));
4513 		goto got_name;
4514 	}
4515 
4516 got_name:
4517 	size = ALIGN(strlen(name)+1, sizeof(u64));
4518 
4519 	mmap_event->file_name = name;
4520 	mmap_event->file_size = size;
4521 
4522 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4523 
4524 	rcu_read_lock();
4525 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4526 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4527 		if (cpuctx->active_pmu != pmu)
4528 			goto next;
4529 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4530 					vma->vm_flags & VM_EXEC);
4531 
4532 		ctxn = pmu->task_ctx_nr;
4533 		if (ctxn < 0)
4534 			goto next;
4535 
4536 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4537 		if (ctx) {
4538 			perf_event_mmap_ctx(ctx, mmap_event,
4539 					vma->vm_flags & VM_EXEC);
4540 		}
4541 next:
4542 		put_cpu_ptr(pmu->pmu_cpu_context);
4543 	}
4544 	rcu_read_unlock();
4545 
4546 	kfree(buf);
4547 }
4548 
4549 void perf_event_mmap(struct vm_area_struct *vma)
4550 {
4551 	struct perf_mmap_event mmap_event;
4552 
4553 	if (!atomic_read(&nr_mmap_events))
4554 		return;
4555 
4556 	mmap_event = (struct perf_mmap_event){
4557 		.vma	= vma,
4558 		/* .file_name */
4559 		/* .file_size */
4560 		.event_id  = {
4561 			.header = {
4562 				.type = PERF_RECORD_MMAP,
4563 				.misc = PERF_RECORD_MISC_USER,
4564 				/* .size */
4565 			},
4566 			/* .pid */
4567 			/* .tid */
4568 			.start  = vma->vm_start,
4569 			.len    = vma->vm_end - vma->vm_start,
4570 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4571 		},
4572 	};
4573 
4574 	perf_event_mmap_event(&mmap_event);
4575 }
4576 
4577 /*
4578  * IRQ throttle logging
4579  */
4580 
4581 static void perf_log_throttle(struct perf_event *event, int enable)
4582 {
4583 	struct perf_output_handle handle;
4584 	struct perf_sample_data sample;
4585 	int ret;
4586 
4587 	struct {
4588 		struct perf_event_header	header;
4589 		u64				time;
4590 		u64				id;
4591 		u64				stream_id;
4592 	} throttle_event = {
4593 		.header = {
4594 			.type = PERF_RECORD_THROTTLE,
4595 			.misc = 0,
4596 			.size = sizeof(throttle_event),
4597 		},
4598 		.time		= perf_clock(),
4599 		.id		= primary_event_id(event),
4600 		.stream_id	= event->id,
4601 	};
4602 
4603 	if (enable)
4604 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4605 
4606 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4607 
4608 	ret = perf_output_begin(&handle, event,
4609 				throttle_event.header.size);
4610 	if (ret)
4611 		return;
4612 
4613 	perf_output_put(&handle, throttle_event);
4614 	perf_event__output_id_sample(event, &handle, &sample);
4615 	perf_output_end(&handle);
4616 }
4617 
4618 /*
4619  * Generic event overflow handling, sampling.
4620  */
4621 
4622 static int __perf_event_overflow(struct perf_event *event,
4623 				   int throttle, struct perf_sample_data *data,
4624 				   struct pt_regs *regs)
4625 {
4626 	int events = atomic_read(&event->event_limit);
4627 	struct hw_perf_event *hwc = &event->hw;
4628 	int ret = 0;
4629 
4630 	/*
4631 	 * Non-sampling counters might still use the PMI to fold short
4632 	 * hardware counters, ignore those.
4633 	 */
4634 	if (unlikely(!is_sampling_event(event)))
4635 		return 0;
4636 
4637 	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4638 		if (throttle) {
4639 			hwc->interrupts = MAX_INTERRUPTS;
4640 			perf_log_throttle(event, 0);
4641 			ret = 1;
4642 		}
4643 	} else
4644 		hwc->interrupts++;
4645 
4646 	if (event->attr.freq) {
4647 		u64 now = perf_clock();
4648 		s64 delta = now - hwc->freq_time_stamp;
4649 
4650 		hwc->freq_time_stamp = now;
4651 
4652 		if (delta > 0 && delta < 2*TICK_NSEC)
4653 			perf_adjust_period(event, delta, hwc->last_period);
4654 	}
4655 
4656 	/*
4657 	 * XXX event_limit might not quite work as expected on inherited
4658 	 * events
4659 	 */
4660 
4661 	event->pending_kill = POLL_IN;
4662 	if (events && atomic_dec_and_test(&event->event_limit)) {
4663 		ret = 1;
4664 		event->pending_kill = POLL_HUP;
4665 		event->pending_disable = 1;
4666 		irq_work_queue(&event->pending);
4667 	}
4668 
4669 	if (event->overflow_handler)
4670 		event->overflow_handler(event, data, regs);
4671 	else
4672 		perf_event_output(event, data, regs);
4673 
4674 	if (event->fasync && event->pending_kill) {
4675 		event->pending_wakeup = 1;
4676 		irq_work_queue(&event->pending);
4677 	}
4678 
4679 	return ret;
4680 }
4681 
4682 int perf_event_overflow(struct perf_event *event,
4683 			  struct perf_sample_data *data,
4684 			  struct pt_regs *regs)
4685 {
4686 	return __perf_event_overflow(event, 1, data, regs);
4687 }
4688 
4689 /*
4690  * Generic software event infrastructure
4691  */
4692 
4693 struct swevent_htable {
4694 	struct swevent_hlist		*swevent_hlist;
4695 	struct mutex			hlist_mutex;
4696 	int				hlist_refcount;
4697 
4698 	/* Recursion avoidance in each contexts */
4699 	int				recursion[PERF_NR_CONTEXTS];
4700 };
4701 
4702 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4703 
4704 /*
4705  * We directly increment event->count and keep a second value in
4706  * event->hw.period_left to count intervals. This period event
4707  * is kept in the range [-sample_period, 0] so that we can use the
4708  * sign as trigger.
4709  */
4710 
4711 static u64 perf_swevent_set_period(struct perf_event *event)
4712 {
4713 	struct hw_perf_event *hwc = &event->hw;
4714 	u64 period = hwc->last_period;
4715 	u64 nr, offset;
4716 	s64 old, val;
4717 
4718 	hwc->last_period = hwc->sample_period;
4719 
4720 again:
4721 	old = val = local64_read(&hwc->period_left);
4722 	if (val < 0)
4723 		return 0;
4724 
4725 	nr = div64_u64(period + val, period);
4726 	offset = nr * period;
4727 	val -= offset;
4728 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4729 		goto again;
4730 
4731 	return nr;
4732 }
4733 
4734 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4735 				    struct perf_sample_data *data,
4736 				    struct pt_regs *regs)
4737 {
4738 	struct hw_perf_event *hwc = &event->hw;
4739 	int throttle = 0;
4740 
4741 	data->period = event->hw.last_period;
4742 	if (!overflow)
4743 		overflow = perf_swevent_set_period(event);
4744 
4745 	if (hwc->interrupts == MAX_INTERRUPTS)
4746 		return;
4747 
4748 	for (; overflow; overflow--) {
4749 		if (__perf_event_overflow(event, throttle,
4750 					    data, regs)) {
4751 			/*
4752 			 * We inhibit the overflow from happening when
4753 			 * hwc->interrupts == MAX_INTERRUPTS.
4754 			 */
4755 			break;
4756 		}
4757 		throttle = 1;
4758 	}
4759 }
4760 
4761 static void perf_swevent_event(struct perf_event *event, u64 nr,
4762 			       struct perf_sample_data *data,
4763 			       struct pt_regs *regs)
4764 {
4765 	struct hw_perf_event *hwc = &event->hw;
4766 
4767 	local64_add(nr, &event->count);
4768 
4769 	if (!regs)
4770 		return;
4771 
4772 	if (!is_sampling_event(event))
4773 		return;
4774 
4775 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4776 		return perf_swevent_overflow(event, 1, data, regs);
4777 
4778 	if (local64_add_negative(nr, &hwc->period_left))
4779 		return;
4780 
4781 	perf_swevent_overflow(event, 0, data, regs);
4782 }
4783 
4784 static int perf_exclude_event(struct perf_event *event,
4785 			      struct pt_regs *regs)
4786 {
4787 	if (event->hw.state & PERF_HES_STOPPED)
4788 		return 1;
4789 
4790 	if (regs) {
4791 		if (event->attr.exclude_user && user_mode(regs))
4792 			return 1;
4793 
4794 		if (event->attr.exclude_kernel && !user_mode(regs))
4795 			return 1;
4796 	}
4797 
4798 	return 0;
4799 }
4800 
4801 static int perf_swevent_match(struct perf_event *event,
4802 				enum perf_type_id type,
4803 				u32 event_id,
4804 				struct perf_sample_data *data,
4805 				struct pt_regs *regs)
4806 {
4807 	if (event->attr.type != type)
4808 		return 0;
4809 
4810 	if (event->attr.config != event_id)
4811 		return 0;
4812 
4813 	if (perf_exclude_event(event, regs))
4814 		return 0;
4815 
4816 	return 1;
4817 }
4818 
4819 static inline u64 swevent_hash(u64 type, u32 event_id)
4820 {
4821 	u64 val = event_id | (type << 32);
4822 
4823 	return hash_64(val, SWEVENT_HLIST_BITS);
4824 }
4825 
4826 static inline struct hlist_head *
4827 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4828 {
4829 	u64 hash = swevent_hash(type, event_id);
4830 
4831 	return &hlist->heads[hash];
4832 }
4833 
4834 /* For the read side: events when they trigger */
4835 static inline struct hlist_head *
4836 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4837 {
4838 	struct swevent_hlist *hlist;
4839 
4840 	hlist = rcu_dereference(swhash->swevent_hlist);
4841 	if (!hlist)
4842 		return NULL;
4843 
4844 	return __find_swevent_head(hlist, type, event_id);
4845 }
4846 
4847 /* For the event head insertion and removal in the hlist */
4848 static inline struct hlist_head *
4849 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4850 {
4851 	struct swevent_hlist *hlist;
4852 	u32 event_id = event->attr.config;
4853 	u64 type = event->attr.type;
4854 
4855 	/*
4856 	 * Event scheduling is always serialized against hlist allocation
4857 	 * and release. Which makes the protected version suitable here.
4858 	 * The context lock guarantees that.
4859 	 */
4860 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4861 					  lockdep_is_held(&event->ctx->lock));
4862 	if (!hlist)
4863 		return NULL;
4864 
4865 	return __find_swevent_head(hlist, type, event_id);
4866 }
4867 
4868 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4869 				    u64 nr,
4870 				    struct perf_sample_data *data,
4871 				    struct pt_regs *regs)
4872 {
4873 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4874 	struct perf_event *event;
4875 	struct hlist_node *node;
4876 	struct hlist_head *head;
4877 
4878 	rcu_read_lock();
4879 	head = find_swevent_head_rcu(swhash, type, event_id);
4880 	if (!head)
4881 		goto end;
4882 
4883 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4884 		if (perf_swevent_match(event, type, event_id, data, regs))
4885 			perf_swevent_event(event, nr, data, regs);
4886 	}
4887 end:
4888 	rcu_read_unlock();
4889 }
4890 
4891 int perf_swevent_get_recursion_context(void)
4892 {
4893 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4894 
4895 	return get_recursion_context(swhash->recursion);
4896 }
4897 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4898 
4899 inline void perf_swevent_put_recursion_context(int rctx)
4900 {
4901 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4902 
4903 	put_recursion_context(swhash->recursion, rctx);
4904 }
4905 
4906 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4907 {
4908 	struct perf_sample_data data;
4909 	int rctx;
4910 
4911 	preempt_disable_notrace();
4912 	rctx = perf_swevent_get_recursion_context();
4913 	if (rctx < 0)
4914 		return;
4915 
4916 	perf_sample_data_init(&data, addr);
4917 
4918 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4919 
4920 	perf_swevent_put_recursion_context(rctx);
4921 	preempt_enable_notrace();
4922 }
4923 
4924 static void perf_swevent_read(struct perf_event *event)
4925 {
4926 }
4927 
4928 static int perf_swevent_add(struct perf_event *event, int flags)
4929 {
4930 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4931 	struct hw_perf_event *hwc = &event->hw;
4932 	struct hlist_head *head;
4933 
4934 	if (is_sampling_event(event)) {
4935 		hwc->last_period = hwc->sample_period;
4936 		perf_swevent_set_period(event);
4937 	}
4938 
4939 	hwc->state = !(flags & PERF_EF_START);
4940 
4941 	head = find_swevent_head(swhash, event);
4942 	if (WARN_ON_ONCE(!head))
4943 		return -EINVAL;
4944 
4945 	hlist_add_head_rcu(&event->hlist_entry, head);
4946 
4947 	return 0;
4948 }
4949 
4950 static void perf_swevent_del(struct perf_event *event, int flags)
4951 {
4952 	hlist_del_rcu(&event->hlist_entry);
4953 }
4954 
4955 static void perf_swevent_start(struct perf_event *event, int flags)
4956 {
4957 	event->hw.state = 0;
4958 }
4959 
4960 static void perf_swevent_stop(struct perf_event *event, int flags)
4961 {
4962 	event->hw.state = PERF_HES_STOPPED;
4963 }
4964 
4965 /* Deref the hlist from the update side */
4966 static inline struct swevent_hlist *
4967 swevent_hlist_deref(struct swevent_htable *swhash)
4968 {
4969 	return rcu_dereference_protected(swhash->swevent_hlist,
4970 					 lockdep_is_held(&swhash->hlist_mutex));
4971 }
4972 
4973 static void swevent_hlist_release(struct swevent_htable *swhash)
4974 {
4975 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4976 
4977 	if (!hlist)
4978 		return;
4979 
4980 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4981 	kfree_rcu(hlist, rcu_head);
4982 }
4983 
4984 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4985 {
4986 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4987 
4988 	mutex_lock(&swhash->hlist_mutex);
4989 
4990 	if (!--swhash->hlist_refcount)
4991 		swevent_hlist_release(swhash);
4992 
4993 	mutex_unlock(&swhash->hlist_mutex);
4994 }
4995 
4996 static void swevent_hlist_put(struct perf_event *event)
4997 {
4998 	int cpu;
4999 
5000 	if (event->cpu != -1) {
5001 		swevent_hlist_put_cpu(event, event->cpu);
5002 		return;
5003 	}
5004 
5005 	for_each_possible_cpu(cpu)
5006 		swevent_hlist_put_cpu(event, cpu);
5007 }
5008 
5009 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5010 {
5011 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5012 	int err = 0;
5013 
5014 	mutex_lock(&swhash->hlist_mutex);
5015 
5016 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5017 		struct swevent_hlist *hlist;
5018 
5019 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5020 		if (!hlist) {
5021 			err = -ENOMEM;
5022 			goto exit;
5023 		}
5024 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5025 	}
5026 	swhash->hlist_refcount++;
5027 exit:
5028 	mutex_unlock(&swhash->hlist_mutex);
5029 
5030 	return err;
5031 }
5032 
5033 static int swevent_hlist_get(struct perf_event *event)
5034 {
5035 	int err;
5036 	int cpu, failed_cpu;
5037 
5038 	if (event->cpu != -1)
5039 		return swevent_hlist_get_cpu(event, event->cpu);
5040 
5041 	get_online_cpus();
5042 	for_each_possible_cpu(cpu) {
5043 		err = swevent_hlist_get_cpu(event, cpu);
5044 		if (err) {
5045 			failed_cpu = cpu;
5046 			goto fail;
5047 		}
5048 	}
5049 	put_online_cpus();
5050 
5051 	return 0;
5052 fail:
5053 	for_each_possible_cpu(cpu) {
5054 		if (cpu == failed_cpu)
5055 			break;
5056 		swevent_hlist_put_cpu(event, cpu);
5057 	}
5058 
5059 	put_online_cpus();
5060 	return err;
5061 }
5062 
5063 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5064 
5065 static void sw_perf_event_destroy(struct perf_event *event)
5066 {
5067 	u64 event_id = event->attr.config;
5068 
5069 	WARN_ON(event->parent);
5070 
5071 	jump_label_dec(&perf_swevent_enabled[event_id]);
5072 	swevent_hlist_put(event);
5073 }
5074 
5075 static int perf_swevent_init(struct perf_event *event)
5076 {
5077 	int event_id = event->attr.config;
5078 
5079 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5080 		return -ENOENT;
5081 
5082 	switch (event_id) {
5083 	case PERF_COUNT_SW_CPU_CLOCK:
5084 	case PERF_COUNT_SW_TASK_CLOCK:
5085 		return -ENOENT;
5086 
5087 	default:
5088 		break;
5089 	}
5090 
5091 	if (event_id >= PERF_COUNT_SW_MAX)
5092 		return -ENOENT;
5093 
5094 	if (!event->parent) {
5095 		int err;
5096 
5097 		err = swevent_hlist_get(event);
5098 		if (err)
5099 			return err;
5100 
5101 		jump_label_inc(&perf_swevent_enabled[event_id]);
5102 		event->destroy = sw_perf_event_destroy;
5103 	}
5104 
5105 	return 0;
5106 }
5107 
5108 static struct pmu perf_swevent = {
5109 	.task_ctx_nr	= perf_sw_context,
5110 
5111 	.event_init	= perf_swevent_init,
5112 	.add		= perf_swevent_add,
5113 	.del		= perf_swevent_del,
5114 	.start		= perf_swevent_start,
5115 	.stop		= perf_swevent_stop,
5116 	.read		= perf_swevent_read,
5117 };
5118 
5119 #ifdef CONFIG_EVENT_TRACING
5120 
5121 static int perf_tp_filter_match(struct perf_event *event,
5122 				struct perf_sample_data *data)
5123 {
5124 	void *record = data->raw->data;
5125 
5126 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5127 		return 1;
5128 	return 0;
5129 }
5130 
5131 static int perf_tp_event_match(struct perf_event *event,
5132 				struct perf_sample_data *data,
5133 				struct pt_regs *regs)
5134 {
5135 	if (event->hw.state & PERF_HES_STOPPED)
5136 		return 0;
5137 	/*
5138 	 * All tracepoints are from kernel-space.
5139 	 */
5140 	if (event->attr.exclude_kernel)
5141 		return 0;
5142 
5143 	if (!perf_tp_filter_match(event, data))
5144 		return 0;
5145 
5146 	return 1;
5147 }
5148 
5149 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5150 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5151 {
5152 	struct perf_sample_data data;
5153 	struct perf_event *event;
5154 	struct hlist_node *node;
5155 
5156 	struct perf_raw_record raw = {
5157 		.size = entry_size,
5158 		.data = record,
5159 	};
5160 
5161 	perf_sample_data_init(&data, addr);
5162 	data.raw = &raw;
5163 
5164 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5165 		if (perf_tp_event_match(event, &data, regs))
5166 			perf_swevent_event(event, count, &data, regs);
5167 	}
5168 
5169 	perf_swevent_put_recursion_context(rctx);
5170 }
5171 EXPORT_SYMBOL_GPL(perf_tp_event);
5172 
5173 static void tp_perf_event_destroy(struct perf_event *event)
5174 {
5175 	perf_trace_destroy(event);
5176 }
5177 
5178 static int perf_tp_event_init(struct perf_event *event)
5179 {
5180 	int err;
5181 
5182 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5183 		return -ENOENT;
5184 
5185 	err = perf_trace_init(event);
5186 	if (err)
5187 		return err;
5188 
5189 	event->destroy = tp_perf_event_destroy;
5190 
5191 	return 0;
5192 }
5193 
5194 static struct pmu perf_tracepoint = {
5195 	.task_ctx_nr	= perf_sw_context,
5196 
5197 	.event_init	= perf_tp_event_init,
5198 	.add		= perf_trace_add,
5199 	.del		= perf_trace_del,
5200 	.start		= perf_swevent_start,
5201 	.stop		= perf_swevent_stop,
5202 	.read		= perf_swevent_read,
5203 };
5204 
5205 static inline void perf_tp_register(void)
5206 {
5207 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5208 }
5209 
5210 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5211 {
5212 	char *filter_str;
5213 	int ret;
5214 
5215 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5216 		return -EINVAL;
5217 
5218 	filter_str = strndup_user(arg, PAGE_SIZE);
5219 	if (IS_ERR(filter_str))
5220 		return PTR_ERR(filter_str);
5221 
5222 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5223 
5224 	kfree(filter_str);
5225 	return ret;
5226 }
5227 
5228 static void perf_event_free_filter(struct perf_event *event)
5229 {
5230 	ftrace_profile_free_filter(event);
5231 }
5232 
5233 #else
5234 
5235 static inline void perf_tp_register(void)
5236 {
5237 }
5238 
5239 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5240 {
5241 	return -ENOENT;
5242 }
5243 
5244 static void perf_event_free_filter(struct perf_event *event)
5245 {
5246 }
5247 
5248 #endif /* CONFIG_EVENT_TRACING */
5249 
5250 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5251 void perf_bp_event(struct perf_event *bp, void *data)
5252 {
5253 	struct perf_sample_data sample;
5254 	struct pt_regs *regs = data;
5255 
5256 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5257 
5258 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5259 		perf_swevent_event(bp, 1, &sample, regs);
5260 }
5261 #endif
5262 
5263 /*
5264  * hrtimer based swevent callback
5265  */
5266 
5267 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5268 {
5269 	enum hrtimer_restart ret = HRTIMER_RESTART;
5270 	struct perf_sample_data data;
5271 	struct pt_regs *regs;
5272 	struct perf_event *event;
5273 	u64 period;
5274 
5275 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5276 
5277 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5278 		return HRTIMER_NORESTART;
5279 
5280 	event->pmu->read(event);
5281 
5282 	perf_sample_data_init(&data, 0);
5283 	data.period = event->hw.last_period;
5284 	regs = get_irq_regs();
5285 
5286 	if (regs && !perf_exclude_event(event, regs)) {
5287 		if (!(event->attr.exclude_idle && current->pid == 0))
5288 			if (perf_event_overflow(event, &data, regs))
5289 				ret = HRTIMER_NORESTART;
5290 	}
5291 
5292 	period = max_t(u64, 10000, event->hw.sample_period);
5293 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5294 
5295 	return ret;
5296 }
5297 
5298 static void perf_swevent_start_hrtimer(struct perf_event *event)
5299 {
5300 	struct hw_perf_event *hwc = &event->hw;
5301 	s64 period;
5302 
5303 	if (!is_sampling_event(event))
5304 		return;
5305 
5306 	period = local64_read(&hwc->period_left);
5307 	if (period) {
5308 		if (period < 0)
5309 			period = 10000;
5310 
5311 		local64_set(&hwc->period_left, 0);
5312 	} else {
5313 		period = max_t(u64, 10000, hwc->sample_period);
5314 	}
5315 	__hrtimer_start_range_ns(&hwc->hrtimer,
5316 				ns_to_ktime(period), 0,
5317 				HRTIMER_MODE_REL_PINNED, 0);
5318 }
5319 
5320 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5321 {
5322 	struct hw_perf_event *hwc = &event->hw;
5323 
5324 	if (is_sampling_event(event)) {
5325 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5326 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5327 
5328 		hrtimer_cancel(&hwc->hrtimer);
5329 	}
5330 }
5331 
5332 static void perf_swevent_init_hrtimer(struct perf_event *event)
5333 {
5334 	struct hw_perf_event *hwc = &event->hw;
5335 
5336 	if (!is_sampling_event(event))
5337 		return;
5338 
5339 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5340 	hwc->hrtimer.function = perf_swevent_hrtimer;
5341 
5342 	/*
5343 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5344 	 * mapping and avoid the whole period adjust feedback stuff.
5345 	 */
5346 	if (event->attr.freq) {
5347 		long freq = event->attr.sample_freq;
5348 
5349 		event->attr.sample_period = NSEC_PER_SEC / freq;
5350 		hwc->sample_period = event->attr.sample_period;
5351 		local64_set(&hwc->period_left, hwc->sample_period);
5352 		event->attr.freq = 0;
5353 	}
5354 }
5355 
5356 /*
5357  * Software event: cpu wall time clock
5358  */
5359 
5360 static void cpu_clock_event_update(struct perf_event *event)
5361 {
5362 	s64 prev;
5363 	u64 now;
5364 
5365 	now = local_clock();
5366 	prev = local64_xchg(&event->hw.prev_count, now);
5367 	local64_add(now - prev, &event->count);
5368 }
5369 
5370 static void cpu_clock_event_start(struct perf_event *event, int flags)
5371 {
5372 	local64_set(&event->hw.prev_count, local_clock());
5373 	perf_swevent_start_hrtimer(event);
5374 }
5375 
5376 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5377 {
5378 	perf_swevent_cancel_hrtimer(event);
5379 	cpu_clock_event_update(event);
5380 }
5381 
5382 static int cpu_clock_event_add(struct perf_event *event, int flags)
5383 {
5384 	if (flags & PERF_EF_START)
5385 		cpu_clock_event_start(event, flags);
5386 
5387 	return 0;
5388 }
5389 
5390 static void cpu_clock_event_del(struct perf_event *event, int flags)
5391 {
5392 	cpu_clock_event_stop(event, flags);
5393 }
5394 
5395 static void cpu_clock_event_read(struct perf_event *event)
5396 {
5397 	cpu_clock_event_update(event);
5398 }
5399 
5400 static int cpu_clock_event_init(struct perf_event *event)
5401 {
5402 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5403 		return -ENOENT;
5404 
5405 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5406 		return -ENOENT;
5407 
5408 	perf_swevent_init_hrtimer(event);
5409 
5410 	return 0;
5411 }
5412 
5413 static struct pmu perf_cpu_clock = {
5414 	.task_ctx_nr	= perf_sw_context,
5415 
5416 	.event_init	= cpu_clock_event_init,
5417 	.add		= cpu_clock_event_add,
5418 	.del		= cpu_clock_event_del,
5419 	.start		= cpu_clock_event_start,
5420 	.stop		= cpu_clock_event_stop,
5421 	.read		= cpu_clock_event_read,
5422 };
5423 
5424 /*
5425  * Software event: task time clock
5426  */
5427 
5428 static void task_clock_event_update(struct perf_event *event, u64 now)
5429 {
5430 	u64 prev;
5431 	s64 delta;
5432 
5433 	prev = local64_xchg(&event->hw.prev_count, now);
5434 	delta = now - prev;
5435 	local64_add(delta, &event->count);
5436 }
5437 
5438 static void task_clock_event_start(struct perf_event *event, int flags)
5439 {
5440 	local64_set(&event->hw.prev_count, event->ctx->time);
5441 	perf_swevent_start_hrtimer(event);
5442 }
5443 
5444 static void task_clock_event_stop(struct perf_event *event, int flags)
5445 {
5446 	perf_swevent_cancel_hrtimer(event);
5447 	task_clock_event_update(event, event->ctx->time);
5448 }
5449 
5450 static int task_clock_event_add(struct perf_event *event, int flags)
5451 {
5452 	if (flags & PERF_EF_START)
5453 		task_clock_event_start(event, flags);
5454 
5455 	return 0;
5456 }
5457 
5458 static void task_clock_event_del(struct perf_event *event, int flags)
5459 {
5460 	task_clock_event_stop(event, PERF_EF_UPDATE);
5461 }
5462 
5463 static void task_clock_event_read(struct perf_event *event)
5464 {
5465 	u64 now = perf_clock();
5466 	u64 delta = now - event->ctx->timestamp;
5467 	u64 time = event->ctx->time + delta;
5468 
5469 	task_clock_event_update(event, time);
5470 }
5471 
5472 static int task_clock_event_init(struct perf_event *event)
5473 {
5474 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5475 		return -ENOENT;
5476 
5477 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5478 		return -ENOENT;
5479 
5480 	perf_swevent_init_hrtimer(event);
5481 
5482 	return 0;
5483 }
5484 
5485 static struct pmu perf_task_clock = {
5486 	.task_ctx_nr	= perf_sw_context,
5487 
5488 	.event_init	= task_clock_event_init,
5489 	.add		= task_clock_event_add,
5490 	.del		= task_clock_event_del,
5491 	.start		= task_clock_event_start,
5492 	.stop		= task_clock_event_stop,
5493 	.read		= task_clock_event_read,
5494 };
5495 
5496 static void perf_pmu_nop_void(struct pmu *pmu)
5497 {
5498 }
5499 
5500 static int perf_pmu_nop_int(struct pmu *pmu)
5501 {
5502 	return 0;
5503 }
5504 
5505 static void perf_pmu_start_txn(struct pmu *pmu)
5506 {
5507 	perf_pmu_disable(pmu);
5508 }
5509 
5510 static int perf_pmu_commit_txn(struct pmu *pmu)
5511 {
5512 	perf_pmu_enable(pmu);
5513 	return 0;
5514 }
5515 
5516 static void perf_pmu_cancel_txn(struct pmu *pmu)
5517 {
5518 	perf_pmu_enable(pmu);
5519 }
5520 
5521 /*
5522  * Ensures all contexts with the same task_ctx_nr have the same
5523  * pmu_cpu_context too.
5524  */
5525 static void *find_pmu_context(int ctxn)
5526 {
5527 	struct pmu *pmu;
5528 
5529 	if (ctxn < 0)
5530 		return NULL;
5531 
5532 	list_for_each_entry(pmu, &pmus, entry) {
5533 		if (pmu->task_ctx_nr == ctxn)
5534 			return pmu->pmu_cpu_context;
5535 	}
5536 
5537 	return NULL;
5538 }
5539 
5540 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5541 {
5542 	int cpu;
5543 
5544 	for_each_possible_cpu(cpu) {
5545 		struct perf_cpu_context *cpuctx;
5546 
5547 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5548 
5549 		if (cpuctx->active_pmu == old_pmu)
5550 			cpuctx->active_pmu = pmu;
5551 	}
5552 }
5553 
5554 static void free_pmu_context(struct pmu *pmu)
5555 {
5556 	struct pmu *i;
5557 
5558 	mutex_lock(&pmus_lock);
5559 	/*
5560 	 * Like a real lame refcount.
5561 	 */
5562 	list_for_each_entry(i, &pmus, entry) {
5563 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5564 			update_pmu_context(i, pmu);
5565 			goto out;
5566 		}
5567 	}
5568 
5569 	free_percpu(pmu->pmu_cpu_context);
5570 out:
5571 	mutex_unlock(&pmus_lock);
5572 }
5573 static struct idr pmu_idr;
5574 
5575 static ssize_t
5576 type_show(struct device *dev, struct device_attribute *attr, char *page)
5577 {
5578 	struct pmu *pmu = dev_get_drvdata(dev);
5579 
5580 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5581 }
5582 
5583 static struct device_attribute pmu_dev_attrs[] = {
5584        __ATTR_RO(type),
5585        __ATTR_NULL,
5586 };
5587 
5588 static int pmu_bus_running;
5589 static struct bus_type pmu_bus = {
5590 	.name		= "event_source",
5591 	.dev_attrs	= pmu_dev_attrs,
5592 };
5593 
5594 static void pmu_dev_release(struct device *dev)
5595 {
5596 	kfree(dev);
5597 }
5598 
5599 static int pmu_dev_alloc(struct pmu *pmu)
5600 {
5601 	int ret = -ENOMEM;
5602 
5603 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5604 	if (!pmu->dev)
5605 		goto out;
5606 
5607 	device_initialize(pmu->dev);
5608 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5609 	if (ret)
5610 		goto free_dev;
5611 
5612 	dev_set_drvdata(pmu->dev, pmu);
5613 	pmu->dev->bus = &pmu_bus;
5614 	pmu->dev->release = pmu_dev_release;
5615 	ret = device_add(pmu->dev);
5616 	if (ret)
5617 		goto free_dev;
5618 
5619 out:
5620 	return ret;
5621 
5622 free_dev:
5623 	put_device(pmu->dev);
5624 	goto out;
5625 }
5626 
5627 static struct lock_class_key cpuctx_mutex;
5628 static struct lock_class_key cpuctx_lock;
5629 
5630 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5631 {
5632 	int cpu, ret;
5633 
5634 	mutex_lock(&pmus_lock);
5635 	ret = -ENOMEM;
5636 	pmu->pmu_disable_count = alloc_percpu(int);
5637 	if (!pmu->pmu_disable_count)
5638 		goto unlock;
5639 
5640 	pmu->type = -1;
5641 	if (!name)
5642 		goto skip_type;
5643 	pmu->name = name;
5644 
5645 	if (type < 0) {
5646 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5647 		if (!err)
5648 			goto free_pdc;
5649 
5650 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5651 		if (err) {
5652 			ret = err;
5653 			goto free_pdc;
5654 		}
5655 	}
5656 	pmu->type = type;
5657 
5658 	if (pmu_bus_running) {
5659 		ret = pmu_dev_alloc(pmu);
5660 		if (ret)
5661 			goto free_idr;
5662 	}
5663 
5664 skip_type:
5665 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5666 	if (pmu->pmu_cpu_context)
5667 		goto got_cpu_context;
5668 
5669 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5670 	if (!pmu->pmu_cpu_context)
5671 		goto free_dev;
5672 
5673 	for_each_possible_cpu(cpu) {
5674 		struct perf_cpu_context *cpuctx;
5675 
5676 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5677 		__perf_event_init_context(&cpuctx->ctx);
5678 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5679 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5680 		cpuctx->ctx.type = cpu_context;
5681 		cpuctx->ctx.pmu = pmu;
5682 		cpuctx->jiffies_interval = 1;
5683 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5684 		cpuctx->active_pmu = pmu;
5685 	}
5686 
5687 got_cpu_context:
5688 	if (!pmu->start_txn) {
5689 		if (pmu->pmu_enable) {
5690 			/*
5691 			 * If we have pmu_enable/pmu_disable calls, install
5692 			 * transaction stubs that use that to try and batch
5693 			 * hardware accesses.
5694 			 */
5695 			pmu->start_txn  = perf_pmu_start_txn;
5696 			pmu->commit_txn = perf_pmu_commit_txn;
5697 			pmu->cancel_txn = perf_pmu_cancel_txn;
5698 		} else {
5699 			pmu->start_txn  = perf_pmu_nop_void;
5700 			pmu->commit_txn = perf_pmu_nop_int;
5701 			pmu->cancel_txn = perf_pmu_nop_void;
5702 		}
5703 	}
5704 
5705 	if (!pmu->pmu_enable) {
5706 		pmu->pmu_enable  = perf_pmu_nop_void;
5707 		pmu->pmu_disable = perf_pmu_nop_void;
5708 	}
5709 
5710 	list_add_rcu(&pmu->entry, &pmus);
5711 	ret = 0;
5712 unlock:
5713 	mutex_unlock(&pmus_lock);
5714 
5715 	return ret;
5716 
5717 free_dev:
5718 	device_del(pmu->dev);
5719 	put_device(pmu->dev);
5720 
5721 free_idr:
5722 	if (pmu->type >= PERF_TYPE_MAX)
5723 		idr_remove(&pmu_idr, pmu->type);
5724 
5725 free_pdc:
5726 	free_percpu(pmu->pmu_disable_count);
5727 	goto unlock;
5728 }
5729 
5730 void perf_pmu_unregister(struct pmu *pmu)
5731 {
5732 	mutex_lock(&pmus_lock);
5733 	list_del_rcu(&pmu->entry);
5734 	mutex_unlock(&pmus_lock);
5735 
5736 	/*
5737 	 * We dereference the pmu list under both SRCU and regular RCU, so
5738 	 * synchronize against both of those.
5739 	 */
5740 	synchronize_srcu(&pmus_srcu);
5741 	synchronize_rcu();
5742 
5743 	free_percpu(pmu->pmu_disable_count);
5744 	if (pmu->type >= PERF_TYPE_MAX)
5745 		idr_remove(&pmu_idr, pmu->type);
5746 	device_del(pmu->dev);
5747 	put_device(pmu->dev);
5748 	free_pmu_context(pmu);
5749 }
5750 
5751 struct pmu *perf_init_event(struct perf_event *event)
5752 {
5753 	struct pmu *pmu = NULL;
5754 	int idx;
5755 	int ret;
5756 
5757 	idx = srcu_read_lock(&pmus_srcu);
5758 
5759 	rcu_read_lock();
5760 	pmu = idr_find(&pmu_idr, event->attr.type);
5761 	rcu_read_unlock();
5762 	if (pmu) {
5763 		event->pmu = pmu;
5764 		ret = pmu->event_init(event);
5765 		if (ret)
5766 			pmu = ERR_PTR(ret);
5767 		goto unlock;
5768 	}
5769 
5770 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5771 		event->pmu = pmu;
5772 		ret = pmu->event_init(event);
5773 		if (!ret)
5774 			goto unlock;
5775 
5776 		if (ret != -ENOENT) {
5777 			pmu = ERR_PTR(ret);
5778 			goto unlock;
5779 		}
5780 	}
5781 	pmu = ERR_PTR(-ENOENT);
5782 unlock:
5783 	srcu_read_unlock(&pmus_srcu, idx);
5784 
5785 	return pmu;
5786 }
5787 
5788 /*
5789  * Allocate and initialize a event structure
5790  */
5791 static struct perf_event *
5792 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5793 		 struct task_struct *task,
5794 		 struct perf_event *group_leader,
5795 		 struct perf_event *parent_event,
5796 		 perf_overflow_handler_t overflow_handler,
5797 		 void *context)
5798 {
5799 	struct pmu *pmu;
5800 	struct perf_event *event;
5801 	struct hw_perf_event *hwc;
5802 	long err;
5803 
5804 	if ((unsigned)cpu >= nr_cpu_ids) {
5805 		if (!task || cpu != -1)
5806 			return ERR_PTR(-EINVAL);
5807 	}
5808 
5809 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5810 	if (!event)
5811 		return ERR_PTR(-ENOMEM);
5812 
5813 	/*
5814 	 * Single events are their own group leaders, with an
5815 	 * empty sibling list:
5816 	 */
5817 	if (!group_leader)
5818 		group_leader = event;
5819 
5820 	mutex_init(&event->child_mutex);
5821 	INIT_LIST_HEAD(&event->child_list);
5822 
5823 	INIT_LIST_HEAD(&event->group_entry);
5824 	INIT_LIST_HEAD(&event->event_entry);
5825 	INIT_LIST_HEAD(&event->sibling_list);
5826 	init_waitqueue_head(&event->waitq);
5827 	init_irq_work(&event->pending, perf_pending_event);
5828 
5829 	mutex_init(&event->mmap_mutex);
5830 
5831 	event->cpu		= cpu;
5832 	event->attr		= *attr;
5833 	event->group_leader	= group_leader;
5834 	event->pmu		= NULL;
5835 	event->oncpu		= -1;
5836 
5837 	event->parent		= parent_event;
5838 
5839 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5840 	event->id		= atomic64_inc_return(&perf_event_id);
5841 
5842 	event->state		= PERF_EVENT_STATE_INACTIVE;
5843 
5844 	if (task) {
5845 		event->attach_state = PERF_ATTACH_TASK;
5846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5847 		/*
5848 		 * hw_breakpoint is a bit difficult here..
5849 		 */
5850 		if (attr->type == PERF_TYPE_BREAKPOINT)
5851 			event->hw.bp_target = task;
5852 #endif
5853 	}
5854 
5855 	if (!overflow_handler && parent_event) {
5856 		overflow_handler = parent_event->overflow_handler;
5857 		context = parent_event->overflow_handler_context;
5858 	}
5859 
5860 	event->overflow_handler	= overflow_handler;
5861 	event->overflow_handler_context = context;
5862 
5863 	if (attr->disabled)
5864 		event->state = PERF_EVENT_STATE_OFF;
5865 
5866 	pmu = NULL;
5867 
5868 	hwc = &event->hw;
5869 	hwc->sample_period = attr->sample_period;
5870 	if (attr->freq && attr->sample_freq)
5871 		hwc->sample_period = 1;
5872 	hwc->last_period = hwc->sample_period;
5873 
5874 	local64_set(&hwc->period_left, hwc->sample_period);
5875 
5876 	/*
5877 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5878 	 */
5879 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5880 		goto done;
5881 
5882 	pmu = perf_init_event(event);
5883 
5884 done:
5885 	err = 0;
5886 	if (!pmu)
5887 		err = -EINVAL;
5888 	else if (IS_ERR(pmu))
5889 		err = PTR_ERR(pmu);
5890 
5891 	if (err) {
5892 		if (event->ns)
5893 			put_pid_ns(event->ns);
5894 		kfree(event);
5895 		return ERR_PTR(err);
5896 	}
5897 
5898 	if (!event->parent) {
5899 		if (event->attach_state & PERF_ATTACH_TASK)
5900 			jump_label_inc(&perf_sched_events);
5901 		if (event->attr.mmap || event->attr.mmap_data)
5902 			atomic_inc(&nr_mmap_events);
5903 		if (event->attr.comm)
5904 			atomic_inc(&nr_comm_events);
5905 		if (event->attr.task)
5906 			atomic_inc(&nr_task_events);
5907 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5908 			err = get_callchain_buffers();
5909 			if (err) {
5910 				free_event(event);
5911 				return ERR_PTR(err);
5912 			}
5913 		}
5914 	}
5915 
5916 	return event;
5917 }
5918 
5919 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5920 			  struct perf_event_attr *attr)
5921 {
5922 	u32 size;
5923 	int ret;
5924 
5925 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5926 		return -EFAULT;
5927 
5928 	/*
5929 	 * zero the full structure, so that a short copy will be nice.
5930 	 */
5931 	memset(attr, 0, sizeof(*attr));
5932 
5933 	ret = get_user(size, &uattr->size);
5934 	if (ret)
5935 		return ret;
5936 
5937 	if (size > PAGE_SIZE)	/* silly large */
5938 		goto err_size;
5939 
5940 	if (!size)		/* abi compat */
5941 		size = PERF_ATTR_SIZE_VER0;
5942 
5943 	if (size < PERF_ATTR_SIZE_VER0)
5944 		goto err_size;
5945 
5946 	/*
5947 	 * If we're handed a bigger struct than we know of,
5948 	 * ensure all the unknown bits are 0 - i.e. new
5949 	 * user-space does not rely on any kernel feature
5950 	 * extensions we dont know about yet.
5951 	 */
5952 	if (size > sizeof(*attr)) {
5953 		unsigned char __user *addr;
5954 		unsigned char __user *end;
5955 		unsigned char val;
5956 
5957 		addr = (void __user *)uattr + sizeof(*attr);
5958 		end  = (void __user *)uattr + size;
5959 
5960 		for (; addr < end; addr++) {
5961 			ret = get_user(val, addr);
5962 			if (ret)
5963 				return ret;
5964 			if (val)
5965 				goto err_size;
5966 		}
5967 		size = sizeof(*attr);
5968 	}
5969 
5970 	ret = copy_from_user(attr, uattr, size);
5971 	if (ret)
5972 		return -EFAULT;
5973 
5974 	if (attr->__reserved_1)
5975 		return -EINVAL;
5976 
5977 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5978 		return -EINVAL;
5979 
5980 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5981 		return -EINVAL;
5982 
5983 out:
5984 	return ret;
5985 
5986 err_size:
5987 	put_user(sizeof(*attr), &uattr->size);
5988 	ret = -E2BIG;
5989 	goto out;
5990 }
5991 
5992 static int
5993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5994 {
5995 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5996 	int ret = -EINVAL;
5997 
5998 	if (!output_event)
5999 		goto set;
6000 
6001 	/* don't allow circular references */
6002 	if (event == output_event)
6003 		goto out;
6004 
6005 	/*
6006 	 * Don't allow cross-cpu buffers
6007 	 */
6008 	if (output_event->cpu != event->cpu)
6009 		goto out;
6010 
6011 	/*
6012 	 * If its not a per-cpu rb, it must be the same task.
6013 	 */
6014 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6015 		goto out;
6016 
6017 set:
6018 	mutex_lock(&event->mmap_mutex);
6019 	/* Can't redirect output if we've got an active mmap() */
6020 	if (atomic_read(&event->mmap_count))
6021 		goto unlock;
6022 
6023 	if (output_event) {
6024 		/* get the rb we want to redirect to */
6025 		rb = ring_buffer_get(output_event);
6026 		if (!rb)
6027 			goto unlock;
6028 	}
6029 
6030 	old_rb = event->rb;
6031 	rcu_assign_pointer(event->rb, rb);
6032 	ret = 0;
6033 unlock:
6034 	mutex_unlock(&event->mmap_mutex);
6035 
6036 	if (old_rb)
6037 		ring_buffer_put(old_rb);
6038 out:
6039 	return ret;
6040 }
6041 
6042 /**
6043  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6044  *
6045  * @attr_uptr:	event_id type attributes for monitoring/sampling
6046  * @pid:		target pid
6047  * @cpu:		target cpu
6048  * @group_fd:		group leader event fd
6049  */
6050 SYSCALL_DEFINE5(perf_event_open,
6051 		struct perf_event_attr __user *, attr_uptr,
6052 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6053 {
6054 	struct perf_event *group_leader = NULL, *output_event = NULL;
6055 	struct perf_event *event, *sibling;
6056 	struct perf_event_attr attr;
6057 	struct perf_event_context *ctx;
6058 	struct file *event_file = NULL;
6059 	struct file *group_file = NULL;
6060 	struct task_struct *task = NULL;
6061 	struct pmu *pmu;
6062 	int event_fd;
6063 	int move_group = 0;
6064 	int fput_needed = 0;
6065 	int err;
6066 
6067 	/* for future expandability... */
6068 	if (flags & ~PERF_FLAG_ALL)
6069 		return -EINVAL;
6070 
6071 	err = perf_copy_attr(attr_uptr, &attr);
6072 	if (err)
6073 		return err;
6074 
6075 	if (!attr.exclude_kernel) {
6076 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6077 			return -EACCES;
6078 	}
6079 
6080 	if (attr.freq) {
6081 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6082 			return -EINVAL;
6083 	}
6084 
6085 	/*
6086 	 * In cgroup mode, the pid argument is used to pass the fd
6087 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6088 	 * designates the cpu on which to monitor threads from that
6089 	 * cgroup.
6090 	 */
6091 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6092 		return -EINVAL;
6093 
6094 	event_fd = get_unused_fd_flags(O_RDWR);
6095 	if (event_fd < 0)
6096 		return event_fd;
6097 
6098 	if (group_fd != -1) {
6099 		group_leader = perf_fget_light(group_fd, &fput_needed);
6100 		if (IS_ERR(group_leader)) {
6101 			err = PTR_ERR(group_leader);
6102 			goto err_fd;
6103 		}
6104 		group_file = group_leader->filp;
6105 		if (flags & PERF_FLAG_FD_OUTPUT)
6106 			output_event = group_leader;
6107 		if (flags & PERF_FLAG_FD_NO_GROUP)
6108 			group_leader = NULL;
6109 	}
6110 
6111 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6112 		task = find_lively_task_by_vpid(pid);
6113 		if (IS_ERR(task)) {
6114 			err = PTR_ERR(task);
6115 			goto err_group_fd;
6116 		}
6117 	}
6118 
6119 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6120 				 NULL, NULL);
6121 	if (IS_ERR(event)) {
6122 		err = PTR_ERR(event);
6123 		goto err_task;
6124 	}
6125 
6126 	if (flags & PERF_FLAG_PID_CGROUP) {
6127 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6128 		if (err)
6129 			goto err_alloc;
6130 		/*
6131 		 * one more event:
6132 		 * - that has cgroup constraint on event->cpu
6133 		 * - that may need work on context switch
6134 		 */
6135 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6136 		jump_label_inc(&perf_sched_events);
6137 	}
6138 
6139 	/*
6140 	 * Special case software events and allow them to be part of
6141 	 * any hardware group.
6142 	 */
6143 	pmu = event->pmu;
6144 
6145 	if (group_leader &&
6146 	    (is_software_event(event) != is_software_event(group_leader))) {
6147 		if (is_software_event(event)) {
6148 			/*
6149 			 * If event and group_leader are not both a software
6150 			 * event, and event is, then group leader is not.
6151 			 *
6152 			 * Allow the addition of software events to !software
6153 			 * groups, this is safe because software events never
6154 			 * fail to schedule.
6155 			 */
6156 			pmu = group_leader->pmu;
6157 		} else if (is_software_event(group_leader) &&
6158 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6159 			/*
6160 			 * In case the group is a pure software group, and we
6161 			 * try to add a hardware event, move the whole group to
6162 			 * the hardware context.
6163 			 */
6164 			move_group = 1;
6165 		}
6166 	}
6167 
6168 	/*
6169 	 * Get the target context (task or percpu):
6170 	 */
6171 	ctx = find_get_context(pmu, task, cpu);
6172 	if (IS_ERR(ctx)) {
6173 		err = PTR_ERR(ctx);
6174 		goto err_alloc;
6175 	}
6176 
6177 	if (task) {
6178 		put_task_struct(task);
6179 		task = NULL;
6180 	}
6181 
6182 	/*
6183 	 * Look up the group leader (we will attach this event to it):
6184 	 */
6185 	if (group_leader) {
6186 		err = -EINVAL;
6187 
6188 		/*
6189 		 * Do not allow a recursive hierarchy (this new sibling
6190 		 * becoming part of another group-sibling):
6191 		 */
6192 		if (group_leader->group_leader != group_leader)
6193 			goto err_context;
6194 		/*
6195 		 * Do not allow to attach to a group in a different
6196 		 * task or CPU context:
6197 		 */
6198 		if (move_group) {
6199 			if (group_leader->ctx->type != ctx->type)
6200 				goto err_context;
6201 		} else {
6202 			if (group_leader->ctx != ctx)
6203 				goto err_context;
6204 		}
6205 
6206 		/*
6207 		 * Only a group leader can be exclusive or pinned
6208 		 */
6209 		if (attr.exclusive || attr.pinned)
6210 			goto err_context;
6211 	}
6212 
6213 	if (output_event) {
6214 		err = perf_event_set_output(event, output_event);
6215 		if (err)
6216 			goto err_context;
6217 	}
6218 
6219 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6220 	if (IS_ERR(event_file)) {
6221 		err = PTR_ERR(event_file);
6222 		goto err_context;
6223 	}
6224 
6225 	if (move_group) {
6226 		struct perf_event_context *gctx = group_leader->ctx;
6227 
6228 		mutex_lock(&gctx->mutex);
6229 		perf_remove_from_context(group_leader);
6230 		list_for_each_entry(sibling, &group_leader->sibling_list,
6231 				    group_entry) {
6232 			perf_remove_from_context(sibling);
6233 			put_ctx(gctx);
6234 		}
6235 		mutex_unlock(&gctx->mutex);
6236 		put_ctx(gctx);
6237 	}
6238 
6239 	event->filp = event_file;
6240 	WARN_ON_ONCE(ctx->parent_ctx);
6241 	mutex_lock(&ctx->mutex);
6242 
6243 	if (move_group) {
6244 		perf_install_in_context(ctx, group_leader, cpu);
6245 		get_ctx(ctx);
6246 		list_for_each_entry(sibling, &group_leader->sibling_list,
6247 				    group_entry) {
6248 			perf_install_in_context(ctx, sibling, cpu);
6249 			get_ctx(ctx);
6250 		}
6251 	}
6252 
6253 	perf_install_in_context(ctx, event, cpu);
6254 	++ctx->generation;
6255 	perf_unpin_context(ctx);
6256 	mutex_unlock(&ctx->mutex);
6257 
6258 	event->owner = current;
6259 
6260 	mutex_lock(&current->perf_event_mutex);
6261 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6262 	mutex_unlock(&current->perf_event_mutex);
6263 
6264 	/*
6265 	 * Precalculate sample_data sizes
6266 	 */
6267 	perf_event__header_size(event);
6268 	perf_event__id_header_size(event);
6269 
6270 	/*
6271 	 * Drop the reference on the group_event after placing the
6272 	 * new event on the sibling_list. This ensures destruction
6273 	 * of the group leader will find the pointer to itself in
6274 	 * perf_group_detach().
6275 	 */
6276 	fput_light(group_file, fput_needed);
6277 	fd_install(event_fd, event_file);
6278 	return event_fd;
6279 
6280 err_context:
6281 	perf_unpin_context(ctx);
6282 	put_ctx(ctx);
6283 err_alloc:
6284 	free_event(event);
6285 err_task:
6286 	if (task)
6287 		put_task_struct(task);
6288 err_group_fd:
6289 	fput_light(group_file, fput_needed);
6290 err_fd:
6291 	put_unused_fd(event_fd);
6292 	return err;
6293 }
6294 
6295 /**
6296  * perf_event_create_kernel_counter
6297  *
6298  * @attr: attributes of the counter to create
6299  * @cpu: cpu in which the counter is bound
6300  * @task: task to profile (NULL for percpu)
6301  */
6302 struct perf_event *
6303 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6304 				 struct task_struct *task,
6305 				 perf_overflow_handler_t overflow_handler,
6306 				 void *context)
6307 {
6308 	struct perf_event_context *ctx;
6309 	struct perf_event *event;
6310 	int err;
6311 
6312 	/*
6313 	 * Get the target context (task or percpu):
6314 	 */
6315 
6316 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6317 				 overflow_handler, context);
6318 	if (IS_ERR(event)) {
6319 		err = PTR_ERR(event);
6320 		goto err;
6321 	}
6322 
6323 	ctx = find_get_context(event->pmu, task, cpu);
6324 	if (IS_ERR(ctx)) {
6325 		err = PTR_ERR(ctx);
6326 		goto err_free;
6327 	}
6328 
6329 	event->filp = NULL;
6330 	WARN_ON_ONCE(ctx->parent_ctx);
6331 	mutex_lock(&ctx->mutex);
6332 	perf_install_in_context(ctx, event, cpu);
6333 	++ctx->generation;
6334 	perf_unpin_context(ctx);
6335 	mutex_unlock(&ctx->mutex);
6336 
6337 	return event;
6338 
6339 err_free:
6340 	free_event(event);
6341 err:
6342 	return ERR_PTR(err);
6343 }
6344 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6345 
6346 static void sync_child_event(struct perf_event *child_event,
6347 			       struct task_struct *child)
6348 {
6349 	struct perf_event *parent_event = child_event->parent;
6350 	u64 child_val;
6351 
6352 	if (child_event->attr.inherit_stat)
6353 		perf_event_read_event(child_event, child);
6354 
6355 	child_val = perf_event_count(child_event);
6356 
6357 	/*
6358 	 * Add back the child's count to the parent's count:
6359 	 */
6360 	atomic64_add(child_val, &parent_event->child_count);
6361 	atomic64_add(child_event->total_time_enabled,
6362 		     &parent_event->child_total_time_enabled);
6363 	atomic64_add(child_event->total_time_running,
6364 		     &parent_event->child_total_time_running);
6365 
6366 	/*
6367 	 * Remove this event from the parent's list
6368 	 */
6369 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6370 	mutex_lock(&parent_event->child_mutex);
6371 	list_del_init(&child_event->child_list);
6372 	mutex_unlock(&parent_event->child_mutex);
6373 
6374 	/*
6375 	 * Release the parent event, if this was the last
6376 	 * reference to it.
6377 	 */
6378 	fput(parent_event->filp);
6379 }
6380 
6381 static void
6382 __perf_event_exit_task(struct perf_event *child_event,
6383 			 struct perf_event_context *child_ctx,
6384 			 struct task_struct *child)
6385 {
6386 	if (child_event->parent) {
6387 		raw_spin_lock_irq(&child_ctx->lock);
6388 		perf_group_detach(child_event);
6389 		raw_spin_unlock_irq(&child_ctx->lock);
6390 	}
6391 
6392 	perf_remove_from_context(child_event);
6393 
6394 	/*
6395 	 * It can happen that the parent exits first, and has events
6396 	 * that are still around due to the child reference. These
6397 	 * events need to be zapped.
6398 	 */
6399 	if (child_event->parent) {
6400 		sync_child_event(child_event, child);
6401 		free_event(child_event);
6402 	}
6403 }
6404 
6405 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6406 {
6407 	struct perf_event *child_event, *tmp;
6408 	struct perf_event_context *child_ctx;
6409 	unsigned long flags;
6410 
6411 	if (likely(!child->perf_event_ctxp[ctxn])) {
6412 		perf_event_task(child, NULL, 0);
6413 		return;
6414 	}
6415 
6416 	local_irq_save(flags);
6417 	/*
6418 	 * We can't reschedule here because interrupts are disabled,
6419 	 * and either child is current or it is a task that can't be
6420 	 * scheduled, so we are now safe from rescheduling changing
6421 	 * our context.
6422 	 */
6423 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6424 
6425 	/*
6426 	 * Take the context lock here so that if find_get_context is
6427 	 * reading child->perf_event_ctxp, we wait until it has
6428 	 * incremented the context's refcount before we do put_ctx below.
6429 	 */
6430 	raw_spin_lock(&child_ctx->lock);
6431 	task_ctx_sched_out(child_ctx);
6432 	child->perf_event_ctxp[ctxn] = NULL;
6433 	/*
6434 	 * If this context is a clone; unclone it so it can't get
6435 	 * swapped to another process while we're removing all
6436 	 * the events from it.
6437 	 */
6438 	unclone_ctx(child_ctx);
6439 	update_context_time(child_ctx);
6440 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6441 
6442 	/*
6443 	 * Report the task dead after unscheduling the events so that we
6444 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6445 	 * get a few PERF_RECORD_READ events.
6446 	 */
6447 	perf_event_task(child, child_ctx, 0);
6448 
6449 	/*
6450 	 * We can recurse on the same lock type through:
6451 	 *
6452 	 *   __perf_event_exit_task()
6453 	 *     sync_child_event()
6454 	 *       fput(parent_event->filp)
6455 	 *         perf_release()
6456 	 *           mutex_lock(&ctx->mutex)
6457 	 *
6458 	 * But since its the parent context it won't be the same instance.
6459 	 */
6460 	mutex_lock(&child_ctx->mutex);
6461 
6462 again:
6463 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6464 				 group_entry)
6465 		__perf_event_exit_task(child_event, child_ctx, child);
6466 
6467 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6468 				 group_entry)
6469 		__perf_event_exit_task(child_event, child_ctx, child);
6470 
6471 	/*
6472 	 * If the last event was a group event, it will have appended all
6473 	 * its siblings to the list, but we obtained 'tmp' before that which
6474 	 * will still point to the list head terminating the iteration.
6475 	 */
6476 	if (!list_empty(&child_ctx->pinned_groups) ||
6477 	    !list_empty(&child_ctx->flexible_groups))
6478 		goto again;
6479 
6480 	mutex_unlock(&child_ctx->mutex);
6481 
6482 	put_ctx(child_ctx);
6483 }
6484 
6485 /*
6486  * When a child task exits, feed back event values to parent events.
6487  */
6488 void perf_event_exit_task(struct task_struct *child)
6489 {
6490 	struct perf_event *event, *tmp;
6491 	int ctxn;
6492 
6493 	mutex_lock(&child->perf_event_mutex);
6494 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6495 				 owner_entry) {
6496 		list_del_init(&event->owner_entry);
6497 
6498 		/*
6499 		 * Ensure the list deletion is visible before we clear
6500 		 * the owner, closes a race against perf_release() where
6501 		 * we need to serialize on the owner->perf_event_mutex.
6502 		 */
6503 		smp_wmb();
6504 		event->owner = NULL;
6505 	}
6506 	mutex_unlock(&child->perf_event_mutex);
6507 
6508 	for_each_task_context_nr(ctxn)
6509 		perf_event_exit_task_context(child, ctxn);
6510 }
6511 
6512 static void perf_free_event(struct perf_event *event,
6513 			    struct perf_event_context *ctx)
6514 {
6515 	struct perf_event *parent = event->parent;
6516 
6517 	if (WARN_ON_ONCE(!parent))
6518 		return;
6519 
6520 	mutex_lock(&parent->child_mutex);
6521 	list_del_init(&event->child_list);
6522 	mutex_unlock(&parent->child_mutex);
6523 
6524 	fput(parent->filp);
6525 
6526 	perf_group_detach(event);
6527 	list_del_event(event, ctx);
6528 	free_event(event);
6529 }
6530 
6531 /*
6532  * free an unexposed, unused context as created by inheritance by
6533  * perf_event_init_task below, used by fork() in case of fail.
6534  */
6535 void perf_event_free_task(struct task_struct *task)
6536 {
6537 	struct perf_event_context *ctx;
6538 	struct perf_event *event, *tmp;
6539 	int ctxn;
6540 
6541 	for_each_task_context_nr(ctxn) {
6542 		ctx = task->perf_event_ctxp[ctxn];
6543 		if (!ctx)
6544 			continue;
6545 
6546 		mutex_lock(&ctx->mutex);
6547 again:
6548 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6549 				group_entry)
6550 			perf_free_event(event, ctx);
6551 
6552 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6553 				group_entry)
6554 			perf_free_event(event, ctx);
6555 
6556 		if (!list_empty(&ctx->pinned_groups) ||
6557 				!list_empty(&ctx->flexible_groups))
6558 			goto again;
6559 
6560 		mutex_unlock(&ctx->mutex);
6561 
6562 		put_ctx(ctx);
6563 	}
6564 }
6565 
6566 void perf_event_delayed_put(struct task_struct *task)
6567 {
6568 	int ctxn;
6569 
6570 	for_each_task_context_nr(ctxn)
6571 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6572 }
6573 
6574 /*
6575  * inherit a event from parent task to child task:
6576  */
6577 static struct perf_event *
6578 inherit_event(struct perf_event *parent_event,
6579 	      struct task_struct *parent,
6580 	      struct perf_event_context *parent_ctx,
6581 	      struct task_struct *child,
6582 	      struct perf_event *group_leader,
6583 	      struct perf_event_context *child_ctx)
6584 {
6585 	struct perf_event *child_event;
6586 	unsigned long flags;
6587 
6588 	/*
6589 	 * Instead of creating recursive hierarchies of events,
6590 	 * we link inherited events back to the original parent,
6591 	 * which has a filp for sure, which we use as the reference
6592 	 * count:
6593 	 */
6594 	if (parent_event->parent)
6595 		parent_event = parent_event->parent;
6596 
6597 	child_event = perf_event_alloc(&parent_event->attr,
6598 					   parent_event->cpu,
6599 					   child,
6600 					   group_leader, parent_event,
6601 				           NULL, NULL);
6602 	if (IS_ERR(child_event))
6603 		return child_event;
6604 	get_ctx(child_ctx);
6605 
6606 	/*
6607 	 * Make the child state follow the state of the parent event,
6608 	 * not its attr.disabled bit.  We hold the parent's mutex,
6609 	 * so we won't race with perf_event_{en, dis}able_family.
6610 	 */
6611 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6612 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6613 	else
6614 		child_event->state = PERF_EVENT_STATE_OFF;
6615 
6616 	if (parent_event->attr.freq) {
6617 		u64 sample_period = parent_event->hw.sample_period;
6618 		struct hw_perf_event *hwc = &child_event->hw;
6619 
6620 		hwc->sample_period = sample_period;
6621 		hwc->last_period   = sample_period;
6622 
6623 		local64_set(&hwc->period_left, sample_period);
6624 	}
6625 
6626 	child_event->ctx = child_ctx;
6627 	child_event->overflow_handler = parent_event->overflow_handler;
6628 	child_event->overflow_handler_context
6629 		= parent_event->overflow_handler_context;
6630 
6631 	/*
6632 	 * Precalculate sample_data sizes
6633 	 */
6634 	perf_event__header_size(child_event);
6635 	perf_event__id_header_size(child_event);
6636 
6637 	/*
6638 	 * Link it up in the child's context:
6639 	 */
6640 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6641 	add_event_to_ctx(child_event, child_ctx);
6642 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6643 
6644 	/*
6645 	 * Get a reference to the parent filp - we will fput it
6646 	 * when the child event exits. This is safe to do because
6647 	 * we are in the parent and we know that the filp still
6648 	 * exists and has a nonzero count:
6649 	 */
6650 	atomic_long_inc(&parent_event->filp->f_count);
6651 
6652 	/*
6653 	 * Link this into the parent event's child list
6654 	 */
6655 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6656 	mutex_lock(&parent_event->child_mutex);
6657 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6658 	mutex_unlock(&parent_event->child_mutex);
6659 
6660 	return child_event;
6661 }
6662 
6663 static int inherit_group(struct perf_event *parent_event,
6664 	      struct task_struct *parent,
6665 	      struct perf_event_context *parent_ctx,
6666 	      struct task_struct *child,
6667 	      struct perf_event_context *child_ctx)
6668 {
6669 	struct perf_event *leader;
6670 	struct perf_event *sub;
6671 	struct perf_event *child_ctr;
6672 
6673 	leader = inherit_event(parent_event, parent, parent_ctx,
6674 				 child, NULL, child_ctx);
6675 	if (IS_ERR(leader))
6676 		return PTR_ERR(leader);
6677 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6678 		child_ctr = inherit_event(sub, parent, parent_ctx,
6679 					    child, leader, child_ctx);
6680 		if (IS_ERR(child_ctr))
6681 			return PTR_ERR(child_ctr);
6682 	}
6683 	return 0;
6684 }
6685 
6686 static int
6687 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6688 		   struct perf_event_context *parent_ctx,
6689 		   struct task_struct *child, int ctxn,
6690 		   int *inherited_all)
6691 {
6692 	int ret;
6693 	struct perf_event_context *child_ctx;
6694 
6695 	if (!event->attr.inherit) {
6696 		*inherited_all = 0;
6697 		return 0;
6698 	}
6699 
6700 	child_ctx = child->perf_event_ctxp[ctxn];
6701 	if (!child_ctx) {
6702 		/*
6703 		 * This is executed from the parent task context, so
6704 		 * inherit events that have been marked for cloning.
6705 		 * First allocate and initialize a context for the
6706 		 * child.
6707 		 */
6708 
6709 		child_ctx = alloc_perf_context(event->pmu, child);
6710 		if (!child_ctx)
6711 			return -ENOMEM;
6712 
6713 		child->perf_event_ctxp[ctxn] = child_ctx;
6714 	}
6715 
6716 	ret = inherit_group(event, parent, parent_ctx,
6717 			    child, child_ctx);
6718 
6719 	if (ret)
6720 		*inherited_all = 0;
6721 
6722 	return ret;
6723 }
6724 
6725 /*
6726  * Initialize the perf_event context in task_struct
6727  */
6728 int perf_event_init_context(struct task_struct *child, int ctxn)
6729 {
6730 	struct perf_event_context *child_ctx, *parent_ctx;
6731 	struct perf_event_context *cloned_ctx;
6732 	struct perf_event *event;
6733 	struct task_struct *parent = current;
6734 	int inherited_all = 1;
6735 	unsigned long flags;
6736 	int ret = 0;
6737 
6738 	if (likely(!parent->perf_event_ctxp[ctxn]))
6739 		return 0;
6740 
6741 	/*
6742 	 * If the parent's context is a clone, pin it so it won't get
6743 	 * swapped under us.
6744 	 */
6745 	parent_ctx = perf_pin_task_context(parent, ctxn);
6746 
6747 	/*
6748 	 * No need to check if parent_ctx != NULL here; since we saw
6749 	 * it non-NULL earlier, the only reason for it to become NULL
6750 	 * is if we exit, and since we're currently in the middle of
6751 	 * a fork we can't be exiting at the same time.
6752 	 */
6753 
6754 	/*
6755 	 * Lock the parent list. No need to lock the child - not PID
6756 	 * hashed yet and not running, so nobody can access it.
6757 	 */
6758 	mutex_lock(&parent_ctx->mutex);
6759 
6760 	/*
6761 	 * We dont have to disable NMIs - we are only looking at
6762 	 * the list, not manipulating it:
6763 	 */
6764 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6765 		ret = inherit_task_group(event, parent, parent_ctx,
6766 					 child, ctxn, &inherited_all);
6767 		if (ret)
6768 			break;
6769 	}
6770 
6771 	/*
6772 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6773 	 * to allocations, but we need to prevent rotation because
6774 	 * rotate_ctx() will change the list from interrupt context.
6775 	 */
6776 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6777 	parent_ctx->rotate_disable = 1;
6778 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6779 
6780 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6781 		ret = inherit_task_group(event, parent, parent_ctx,
6782 					 child, ctxn, &inherited_all);
6783 		if (ret)
6784 			break;
6785 	}
6786 
6787 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6788 	parent_ctx->rotate_disable = 0;
6789 
6790 	child_ctx = child->perf_event_ctxp[ctxn];
6791 
6792 	if (child_ctx && inherited_all) {
6793 		/*
6794 		 * Mark the child context as a clone of the parent
6795 		 * context, or of whatever the parent is a clone of.
6796 		 *
6797 		 * Note that if the parent is a clone, the holding of
6798 		 * parent_ctx->lock avoids it from being uncloned.
6799 		 */
6800 		cloned_ctx = parent_ctx->parent_ctx;
6801 		if (cloned_ctx) {
6802 			child_ctx->parent_ctx = cloned_ctx;
6803 			child_ctx->parent_gen = parent_ctx->parent_gen;
6804 		} else {
6805 			child_ctx->parent_ctx = parent_ctx;
6806 			child_ctx->parent_gen = parent_ctx->generation;
6807 		}
6808 		get_ctx(child_ctx->parent_ctx);
6809 	}
6810 
6811 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6812 	mutex_unlock(&parent_ctx->mutex);
6813 
6814 	perf_unpin_context(parent_ctx);
6815 	put_ctx(parent_ctx);
6816 
6817 	return ret;
6818 }
6819 
6820 /*
6821  * Initialize the perf_event context in task_struct
6822  */
6823 int perf_event_init_task(struct task_struct *child)
6824 {
6825 	int ctxn, ret;
6826 
6827 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6828 	mutex_init(&child->perf_event_mutex);
6829 	INIT_LIST_HEAD(&child->perf_event_list);
6830 
6831 	for_each_task_context_nr(ctxn) {
6832 		ret = perf_event_init_context(child, ctxn);
6833 		if (ret)
6834 			return ret;
6835 	}
6836 
6837 	return 0;
6838 }
6839 
6840 static void __init perf_event_init_all_cpus(void)
6841 {
6842 	struct swevent_htable *swhash;
6843 	int cpu;
6844 
6845 	for_each_possible_cpu(cpu) {
6846 		swhash = &per_cpu(swevent_htable, cpu);
6847 		mutex_init(&swhash->hlist_mutex);
6848 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6849 	}
6850 }
6851 
6852 static void __cpuinit perf_event_init_cpu(int cpu)
6853 {
6854 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6855 
6856 	mutex_lock(&swhash->hlist_mutex);
6857 	if (swhash->hlist_refcount > 0 && !swhash->swevent_hlist) {
6858 		struct swevent_hlist *hlist;
6859 
6860 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6861 		WARN_ON(!hlist);
6862 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6863 	}
6864 	mutex_unlock(&swhash->hlist_mutex);
6865 }
6866 
6867 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6868 static void perf_pmu_rotate_stop(struct pmu *pmu)
6869 {
6870 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6871 
6872 	WARN_ON(!irqs_disabled());
6873 
6874 	list_del_init(&cpuctx->rotation_list);
6875 }
6876 
6877 static void __perf_event_exit_context(void *__info)
6878 {
6879 	struct perf_event_context *ctx = __info;
6880 	struct perf_event *event, *tmp;
6881 
6882 	perf_pmu_rotate_stop(ctx->pmu);
6883 
6884 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6885 		__perf_remove_from_context(event);
6886 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6887 		__perf_remove_from_context(event);
6888 }
6889 
6890 static void perf_event_exit_cpu_context(int cpu)
6891 {
6892 	struct perf_event_context *ctx;
6893 	struct pmu *pmu;
6894 	int idx;
6895 
6896 	idx = srcu_read_lock(&pmus_srcu);
6897 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6898 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6899 
6900 		mutex_lock(&ctx->mutex);
6901 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6902 		mutex_unlock(&ctx->mutex);
6903 	}
6904 	srcu_read_unlock(&pmus_srcu, idx);
6905 }
6906 
6907 static void perf_event_exit_cpu(int cpu)
6908 {
6909 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6910 
6911 	mutex_lock(&swhash->hlist_mutex);
6912 	swevent_hlist_release(swhash);
6913 	mutex_unlock(&swhash->hlist_mutex);
6914 
6915 	perf_event_exit_cpu_context(cpu);
6916 }
6917 #else
6918 static inline void perf_event_exit_cpu(int cpu) { }
6919 #endif
6920 
6921 static int
6922 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6923 {
6924 	int cpu;
6925 
6926 	for_each_online_cpu(cpu)
6927 		perf_event_exit_cpu(cpu);
6928 
6929 	return NOTIFY_OK;
6930 }
6931 
6932 /*
6933  * Run the perf reboot notifier at the very last possible moment so that
6934  * the generic watchdog code runs as long as possible.
6935  */
6936 static struct notifier_block perf_reboot_notifier = {
6937 	.notifier_call = perf_reboot,
6938 	.priority = INT_MIN,
6939 };
6940 
6941 static int __cpuinit
6942 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6943 {
6944 	unsigned int cpu = (long)hcpu;
6945 
6946 	/*
6947 	 * Ignore suspend/resume action, the perf_pm_notifier will
6948 	 * take care of that.
6949 	 */
6950 	if (action & CPU_TASKS_FROZEN)
6951 		return NOTIFY_OK;
6952 
6953 	switch (action) {
6954 
6955 	case CPU_UP_PREPARE:
6956 	case CPU_DOWN_FAILED:
6957 		perf_event_init_cpu(cpu);
6958 		break;
6959 
6960 	case CPU_UP_CANCELED:
6961 	case CPU_DOWN_PREPARE:
6962 		perf_event_exit_cpu(cpu);
6963 		break;
6964 
6965 	default:
6966 		break;
6967 	}
6968 
6969 	return NOTIFY_OK;
6970 }
6971 
6972 static void perf_pm_resume_cpu(void *unused)
6973 {
6974 	struct perf_cpu_context *cpuctx;
6975 	struct perf_event_context *ctx;
6976 	struct pmu *pmu;
6977 	int idx;
6978 
6979 	idx = srcu_read_lock(&pmus_srcu);
6980 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6981 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6982 		ctx = cpuctx->task_ctx;
6983 
6984 		perf_ctx_lock(cpuctx, ctx);
6985 		perf_pmu_disable(cpuctx->ctx.pmu);
6986 
6987 		cpu_ctx_sched_out(cpuctx, EVENT_ALL);
6988 		if (ctx)
6989 			ctx_sched_out(ctx, cpuctx, EVENT_ALL);
6990 
6991 		perf_pmu_enable(cpuctx->ctx.pmu);
6992 		perf_ctx_unlock(cpuctx, ctx);
6993 	}
6994 	srcu_read_unlock(&pmus_srcu, idx);
6995 }
6996 
6997 static void perf_pm_suspend_cpu(void *unused)
6998 {
6999 	struct perf_cpu_context *cpuctx;
7000 	struct perf_event_context *ctx;
7001 	struct pmu *pmu;
7002 	int idx;
7003 
7004 	idx = srcu_read_lock(&pmus_srcu);
7005 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7006 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7007 		ctx = cpuctx->task_ctx;
7008 
7009 		perf_ctx_lock(cpuctx, ctx);
7010 		perf_pmu_disable(cpuctx->ctx.pmu);
7011 
7012 		perf_event_sched_in(cpuctx, ctx, current);
7013 
7014 		perf_pmu_enable(cpuctx->ctx.pmu);
7015 		perf_ctx_unlock(cpuctx, ctx);
7016 	}
7017 	srcu_read_unlock(&pmus_srcu, idx);
7018 }
7019 
7020 static int perf_resume(void)
7021 {
7022 	get_online_cpus();
7023 	smp_call_function(perf_pm_resume_cpu, NULL, 1);
7024 	put_online_cpus();
7025 
7026 	return NOTIFY_OK;
7027 }
7028 
7029 static int perf_suspend(void)
7030 {
7031 	get_online_cpus();
7032 	smp_call_function(perf_pm_suspend_cpu, NULL, 1);
7033 	put_online_cpus();
7034 
7035 	return NOTIFY_OK;
7036 }
7037 
7038 static int perf_pm(struct notifier_block *self, unsigned long action, void *ptr)
7039 {
7040 	switch (action) {
7041 	case PM_POST_HIBERNATION:
7042 	case PM_POST_SUSPEND:
7043 		return perf_resume();
7044 	case PM_HIBERNATION_PREPARE:
7045 	case PM_SUSPEND_PREPARE:
7046 		return perf_suspend();
7047 	default:
7048 		return NOTIFY_DONE;
7049 	}
7050 }
7051 
7052 static struct notifier_block perf_pm_notifier = {
7053 	.notifier_call = perf_pm,
7054 };
7055 
7056 void __init perf_event_init(void)
7057 {
7058 	int ret;
7059 
7060 	idr_init(&pmu_idr);
7061 
7062 	perf_event_init_all_cpus();
7063 	init_srcu_struct(&pmus_srcu);
7064 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7065 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7066 	perf_pmu_register(&perf_task_clock, NULL, -1);
7067 	perf_tp_register();
7068 	perf_cpu_notifier(perf_cpu_notify);
7069 	register_reboot_notifier(&perf_reboot_notifier);
7070 	register_pm_notifier(&perf_pm_notifier);
7071 
7072 	ret = init_hw_breakpoint();
7073 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7074 }
7075 
7076 static int __init perf_event_sysfs_init(void)
7077 {
7078 	struct pmu *pmu;
7079 	int ret;
7080 
7081 	mutex_lock(&pmus_lock);
7082 
7083 	ret = bus_register(&pmu_bus);
7084 	if (ret)
7085 		goto unlock;
7086 
7087 	list_for_each_entry(pmu, &pmus, entry) {
7088 		if (!pmu->name || pmu->type < 0)
7089 			continue;
7090 
7091 		ret = pmu_dev_alloc(pmu);
7092 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7093 	}
7094 	pmu_bus_running = 1;
7095 	ret = 0;
7096 
7097 unlock:
7098 	mutex_unlock(&pmus_lock);
7099 
7100 	return ret;
7101 }
7102 device_initcall(perf_event_sysfs_init);
7103 
7104 #ifdef CONFIG_CGROUP_PERF
7105 static struct cgroup_subsys_state *perf_cgroup_create(
7106 	struct cgroup_subsys *ss, struct cgroup *cont)
7107 {
7108 	struct perf_cgroup *jc;
7109 
7110 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7111 	if (!jc)
7112 		return ERR_PTR(-ENOMEM);
7113 
7114 	jc->info = alloc_percpu(struct perf_cgroup_info);
7115 	if (!jc->info) {
7116 		kfree(jc);
7117 		return ERR_PTR(-ENOMEM);
7118 	}
7119 
7120 	return &jc->css;
7121 }
7122 
7123 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7124 				struct cgroup *cont)
7125 {
7126 	struct perf_cgroup *jc;
7127 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7128 			  struct perf_cgroup, css);
7129 	free_percpu(jc->info);
7130 	kfree(jc);
7131 }
7132 
7133 static int __perf_cgroup_move(void *info)
7134 {
7135 	struct task_struct *task = info;
7136 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7137 	return 0;
7138 }
7139 
7140 static void
7141 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7142 {
7143 	task_function_call(task, __perf_cgroup_move, task);
7144 }
7145 
7146 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7147 		struct cgroup *old_cgrp, struct task_struct *task)
7148 {
7149 	/*
7150 	 * cgroup_exit() is called in the copy_process() failure path.
7151 	 * Ignore this case since the task hasn't ran yet, this avoids
7152 	 * trying to poke a half freed task state from generic code.
7153 	 */
7154 	if (!(task->flags & PF_EXITING))
7155 		return;
7156 
7157 	perf_cgroup_attach_task(cgrp, task);
7158 }
7159 
7160 struct cgroup_subsys perf_subsys = {
7161 	.name		= "perf_event",
7162 	.subsys_id	= perf_subsys_id,
7163 	.create		= perf_cgroup_create,
7164 	.destroy	= perf_cgroup_destroy,
7165 	.exit		= perf_cgroup_exit,
7166 	.attach_task	= perf_cgroup_attach_task,
7167 };
7168 #endif /* CONFIG_CGROUP_PERF */
7169