1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 60 #include "internal.h" 61 62 #include <asm/irq_regs.h> 63 64 typedef int (*remote_function_f)(void *); 65 66 struct remote_function_call { 67 struct task_struct *p; 68 remote_function_f func; 69 void *info; 70 int ret; 71 }; 72 73 static void remote_function(void *data) 74 { 75 struct remote_function_call *tfc = data; 76 struct task_struct *p = tfc->p; 77 78 if (p) { 79 /* -EAGAIN */ 80 if (task_cpu(p) != smp_processor_id()) 81 return; 82 83 /* 84 * Now that we're on right CPU with IRQs disabled, we can test 85 * if we hit the right task without races. 86 */ 87 88 tfc->ret = -ESRCH; /* No such (running) process */ 89 if (p != current) 90 return; 91 } 92 93 tfc->ret = tfc->func(tfc->info); 94 } 95 96 /** 97 * task_function_call - call a function on the cpu on which a task runs 98 * @p: the task to evaluate 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func when the task is currently running. This might 103 * be on the current CPU, which just calls the function directly. This will 104 * retry due to any failures in smp_call_function_single(), such as if the 105 * task_cpu() goes offline concurrently. 106 * 107 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 108 */ 109 static int 110 task_function_call(struct task_struct *p, remote_function_f func, void *info) 111 { 112 struct remote_function_call data = { 113 .p = p, 114 .func = func, 115 .info = info, 116 .ret = -EAGAIN, 117 }; 118 int ret; 119 120 for (;;) { 121 ret = smp_call_function_single(task_cpu(p), remote_function, 122 &data, 1); 123 if (!ret) 124 ret = data.ret; 125 126 if (ret != -EAGAIN) 127 break; 128 129 cond_resched(); 130 } 131 132 return ret; 133 } 134 135 /** 136 * cpu_function_call - call a function on the cpu 137 * @cpu: target cpu to queue this function 138 * @func: the function to be called 139 * @info: the function call argument 140 * 141 * Calls the function @func on the remote cpu. 142 * 143 * returns: @func return value or -ENXIO when the cpu is offline 144 */ 145 static int cpu_function_call(int cpu, remote_function_f func, void *info) 146 { 147 struct remote_function_call data = { 148 .p = NULL, 149 .func = func, 150 .info = info, 151 .ret = -ENXIO, /* No such CPU */ 152 }; 153 154 smp_call_function_single(cpu, remote_function, &data, 1); 155 156 return data.ret; 157 } 158 159 enum event_type_t { 160 EVENT_FLEXIBLE = 0x01, 161 EVENT_PINNED = 0x02, 162 EVENT_TIME = 0x04, 163 EVENT_FROZEN = 0x08, 164 /* see ctx_resched() for details */ 165 EVENT_CPU = 0x10, 166 EVENT_CGROUP = 0x20, 167 168 /* compound helpers */ 169 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 170 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 171 }; 172 173 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 174 { 175 raw_spin_lock(&ctx->lock); 176 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 177 } 178 179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 180 struct perf_event_context *ctx) 181 { 182 __perf_ctx_lock(&cpuctx->ctx); 183 if (ctx) 184 __perf_ctx_lock(ctx); 185 } 186 187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 188 { 189 /* 190 * If ctx_sched_in() didn't again set any ALL flags, clean up 191 * after ctx_sched_out() by clearing is_active. 192 */ 193 if (ctx->is_active & EVENT_FROZEN) { 194 if (!(ctx->is_active & EVENT_ALL)) 195 ctx->is_active = 0; 196 else 197 ctx->is_active &= ~EVENT_FROZEN; 198 } 199 raw_spin_unlock(&ctx->lock); 200 } 201 202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 203 struct perf_event_context *ctx) 204 { 205 if (ctx) 206 __perf_ctx_unlock(ctx); 207 __perf_ctx_unlock(&cpuctx->ctx); 208 } 209 210 typedef struct { 211 struct perf_cpu_context *cpuctx; 212 struct perf_event_context *ctx; 213 } class_perf_ctx_lock_t; 214 215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) 216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); } 217 218 static inline class_perf_ctx_lock_t 219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, 220 struct perf_event_context *ctx) 221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } 222 223 #define TASK_TOMBSTONE ((void *)-1L) 224 225 static bool is_kernel_event(struct perf_event *event) 226 { 227 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 228 } 229 230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 231 232 struct perf_event_context *perf_cpu_task_ctx(void) 233 { 234 lockdep_assert_irqs_disabled(); 235 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 236 } 237 238 /* 239 * On task ctx scheduling... 240 * 241 * When !ctx->nr_events a task context will not be scheduled. This means 242 * we can disable the scheduler hooks (for performance) without leaving 243 * pending task ctx state. 244 * 245 * This however results in two special cases: 246 * 247 * - removing the last event from a task ctx; this is relatively straight 248 * forward and is done in __perf_remove_from_context. 249 * 250 * - adding the first event to a task ctx; this is tricky because we cannot 251 * rely on ctx->is_active and therefore cannot use event_function_call(). 252 * See perf_install_in_context(). 253 * 254 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 255 */ 256 257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 258 struct perf_event_context *, void *); 259 260 struct event_function_struct { 261 struct perf_event *event; 262 event_f func; 263 void *data; 264 }; 265 266 static int event_function(void *info) 267 { 268 struct event_function_struct *efs = info; 269 struct perf_event *event = efs->event; 270 struct perf_event_context *ctx = event->ctx; 271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 272 struct perf_event_context *task_ctx = cpuctx->task_ctx; 273 int ret = 0; 274 275 lockdep_assert_irqs_disabled(); 276 277 perf_ctx_lock(cpuctx, task_ctx); 278 /* 279 * Since we do the IPI call without holding ctx->lock things can have 280 * changed, double check we hit the task we set out to hit. 281 */ 282 if (ctx->task) { 283 if (ctx->task != current) { 284 ret = -ESRCH; 285 goto unlock; 286 } 287 288 /* 289 * We only use event_function_call() on established contexts, 290 * and event_function() is only ever called when active (or 291 * rather, we'll have bailed in task_function_call() or the 292 * above ctx->task != current test), therefore we must have 293 * ctx->is_active here. 294 */ 295 WARN_ON_ONCE(!ctx->is_active); 296 /* 297 * And since we have ctx->is_active, cpuctx->task_ctx must 298 * match. 299 */ 300 WARN_ON_ONCE(task_ctx != ctx); 301 } else { 302 WARN_ON_ONCE(&cpuctx->ctx != ctx); 303 } 304 305 efs->func(event, cpuctx, ctx, efs->data); 306 unlock: 307 perf_ctx_unlock(cpuctx, task_ctx); 308 309 return ret; 310 } 311 312 static void event_function_call(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 316 struct perf_cpu_context *cpuctx; 317 struct event_function_struct efs = { 318 .event = event, 319 .func = func, 320 .data = data, 321 }; 322 323 if (!event->parent) { 324 /* 325 * If this is a !child event, we must hold ctx::mutex to 326 * stabilize the event->ctx relation. See 327 * perf_event_ctx_lock(). 328 */ 329 lockdep_assert_held(&ctx->mutex); 330 } 331 332 if (!task) { 333 cpu_function_call(event->cpu, event_function, &efs); 334 return; 335 } 336 337 if (task == TASK_TOMBSTONE) 338 return; 339 340 again: 341 if (!task_function_call(task, event_function, &efs)) 342 return; 343 344 local_irq_disable(); 345 cpuctx = this_cpu_ptr(&perf_cpu_context); 346 perf_ctx_lock(cpuctx, ctx); 347 /* 348 * Reload the task pointer, it might have been changed by 349 * a concurrent perf_event_context_sched_out(). 350 */ 351 task = ctx->task; 352 if (task == TASK_TOMBSTONE) 353 goto unlock; 354 if (ctx->is_active) { 355 perf_ctx_unlock(cpuctx, ctx); 356 local_irq_enable(); 357 goto again; 358 } 359 func(event, NULL, ctx, data); 360 unlock: 361 perf_ctx_unlock(cpuctx, ctx); 362 local_irq_enable(); 363 } 364 365 /* 366 * Similar to event_function_call() + event_function(), but hard assumes IRQs 367 * are already disabled and we're on the right CPU. 368 */ 369 static void event_function_local(struct perf_event *event, event_f func, void *data) 370 { 371 struct perf_event_context *ctx = event->ctx; 372 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 373 struct task_struct *task = READ_ONCE(ctx->task); 374 struct perf_event_context *task_ctx = NULL; 375 376 lockdep_assert_irqs_disabled(); 377 378 if (task) { 379 if (task == TASK_TOMBSTONE) 380 return; 381 382 task_ctx = ctx; 383 } 384 385 perf_ctx_lock(cpuctx, task_ctx); 386 387 task = ctx->task; 388 if (task == TASK_TOMBSTONE) 389 goto unlock; 390 391 if (task) { 392 /* 393 * We must be either inactive or active and the right task, 394 * otherwise we're screwed, since we cannot IPI to somewhere 395 * else. 396 */ 397 if (ctx->is_active) { 398 if (WARN_ON_ONCE(task != current)) 399 goto unlock; 400 401 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 402 goto unlock; 403 } 404 } else { 405 WARN_ON_ONCE(&cpuctx->ctx != ctx); 406 } 407 408 func(event, cpuctx, ctx, data); 409 unlock: 410 perf_ctx_unlock(cpuctx, task_ctx); 411 } 412 413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 414 PERF_FLAG_FD_OUTPUT |\ 415 PERF_FLAG_PID_CGROUP |\ 416 PERF_FLAG_FD_CLOEXEC) 417 418 /* 419 * branch priv levels that need permission checks 420 */ 421 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 422 (PERF_SAMPLE_BRANCH_KERNEL |\ 423 PERF_SAMPLE_BRANCH_HV) 424 425 /* 426 * perf_sched_events : >0 events exist 427 */ 428 429 static void perf_sched_delayed(struct work_struct *work); 430 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 432 static DEFINE_MUTEX(perf_sched_mutex); 433 static atomic_t perf_sched_count; 434 435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 436 437 static atomic_t nr_mmap_events __read_mostly; 438 static atomic_t nr_comm_events __read_mostly; 439 static atomic_t nr_namespaces_events __read_mostly; 440 static atomic_t nr_task_events __read_mostly; 441 static atomic_t nr_freq_events __read_mostly; 442 static atomic_t nr_switch_events __read_mostly; 443 static atomic_t nr_ksymbol_events __read_mostly; 444 static atomic_t nr_bpf_events __read_mostly; 445 static atomic_t nr_cgroup_events __read_mostly; 446 static atomic_t nr_text_poke_events __read_mostly; 447 static atomic_t nr_build_id_events __read_mostly; 448 449 static LIST_HEAD(pmus); 450 static DEFINE_MUTEX(pmus_lock); 451 static struct srcu_struct pmus_srcu; 452 static cpumask_var_t perf_online_mask; 453 static cpumask_var_t perf_online_core_mask; 454 static cpumask_var_t perf_online_die_mask; 455 static cpumask_var_t perf_online_cluster_mask; 456 static cpumask_var_t perf_online_pkg_mask; 457 static cpumask_var_t perf_online_sys_mask; 458 static struct kmem_cache *perf_event_cache; 459 460 /* 461 * perf event paranoia level: 462 * -1 - not paranoid at all 463 * 0 - disallow raw tracepoint access for unpriv 464 * 1 - disallow cpu events for unpriv 465 * 2 - disallow kernel profiling for unpriv 466 */ 467 int sysctl_perf_event_paranoid __read_mostly = 2; 468 469 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 470 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 471 472 /* 473 * max perf event sample rate 474 */ 475 #define DEFAULT_MAX_SAMPLE_RATE 100000 476 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 477 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 478 479 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 480 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 481 482 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 483 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 484 485 static int perf_sample_allowed_ns __read_mostly = 486 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 487 488 static void update_perf_cpu_limits(void) 489 { 490 u64 tmp = perf_sample_period_ns; 491 492 tmp *= sysctl_perf_cpu_time_max_percent; 493 tmp = div_u64(tmp, 100); 494 if (!tmp) 495 tmp = 1; 496 497 WRITE_ONCE(perf_sample_allowed_ns, tmp); 498 } 499 500 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 501 502 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 503 void *buffer, size_t *lenp, loff_t *ppos) 504 { 505 int ret; 506 int perf_cpu = sysctl_perf_cpu_time_max_percent; 507 /* 508 * If throttling is disabled don't allow the write: 509 */ 510 if (write && (perf_cpu == 100 || perf_cpu == 0)) 511 return -EINVAL; 512 513 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 514 if (ret || !write) 515 return ret; 516 517 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 518 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 519 update_perf_cpu_limits(); 520 521 return 0; 522 } 523 524 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 525 void *buffer, size_t *lenp, loff_t *ppos) 526 { 527 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 528 529 if (ret || !write) 530 return ret; 531 532 if (sysctl_perf_cpu_time_max_percent == 100 || 533 sysctl_perf_cpu_time_max_percent == 0) { 534 printk(KERN_WARNING 535 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 536 WRITE_ONCE(perf_sample_allowed_ns, 0); 537 } else { 538 update_perf_cpu_limits(); 539 } 540 541 return 0; 542 } 543 544 static const struct ctl_table events_core_sysctl_table[] = { 545 /* 546 * User-space relies on this file as a feature check for 547 * perf_events being enabled. It's an ABI, do not remove! 548 */ 549 { 550 .procname = "perf_event_paranoid", 551 .data = &sysctl_perf_event_paranoid, 552 .maxlen = sizeof(sysctl_perf_event_paranoid), 553 .mode = 0644, 554 .proc_handler = proc_dointvec, 555 }, 556 { 557 .procname = "perf_event_mlock_kb", 558 .data = &sysctl_perf_event_mlock, 559 .maxlen = sizeof(sysctl_perf_event_mlock), 560 .mode = 0644, 561 .proc_handler = proc_dointvec, 562 }, 563 { 564 .procname = "perf_event_max_sample_rate", 565 .data = &sysctl_perf_event_sample_rate, 566 .maxlen = sizeof(sysctl_perf_event_sample_rate), 567 .mode = 0644, 568 .proc_handler = perf_event_max_sample_rate_handler, 569 .extra1 = SYSCTL_ONE, 570 }, 571 { 572 .procname = "perf_cpu_time_max_percent", 573 .data = &sysctl_perf_cpu_time_max_percent, 574 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 575 .mode = 0644, 576 .proc_handler = perf_cpu_time_max_percent_handler, 577 .extra1 = SYSCTL_ZERO, 578 .extra2 = SYSCTL_ONE_HUNDRED, 579 }, 580 }; 581 582 static int __init init_events_core_sysctls(void) 583 { 584 register_sysctl_init("kernel", events_core_sysctl_table); 585 return 0; 586 } 587 core_initcall(init_events_core_sysctls); 588 589 590 /* 591 * perf samples are done in some very critical code paths (NMIs). 592 * If they take too much CPU time, the system can lock up and not 593 * get any real work done. This will drop the sample rate when 594 * we detect that events are taking too long. 595 */ 596 #define NR_ACCUMULATED_SAMPLES 128 597 static DEFINE_PER_CPU(u64, running_sample_length); 598 599 static u64 __report_avg; 600 static u64 __report_allowed; 601 602 static void perf_duration_warn(struct irq_work *w) 603 { 604 printk_ratelimited(KERN_INFO 605 "perf: interrupt took too long (%lld > %lld), lowering " 606 "kernel.perf_event_max_sample_rate to %d\n", 607 __report_avg, __report_allowed, 608 sysctl_perf_event_sample_rate); 609 } 610 611 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 612 613 void perf_sample_event_took(u64 sample_len_ns) 614 { 615 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 616 u64 running_len; 617 u64 avg_len; 618 u32 max; 619 620 if (max_len == 0) 621 return; 622 623 /* Decay the counter by 1 average sample. */ 624 running_len = __this_cpu_read(running_sample_length); 625 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 626 running_len += sample_len_ns; 627 __this_cpu_write(running_sample_length, running_len); 628 629 /* 630 * Note: this will be biased artificially low until we have 631 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 632 * from having to maintain a count. 633 */ 634 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 635 if (avg_len <= max_len) 636 return; 637 638 __report_avg = avg_len; 639 __report_allowed = max_len; 640 641 /* 642 * Compute a throttle threshold 25% below the current duration. 643 */ 644 avg_len += avg_len / 4; 645 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 646 if (avg_len < max) 647 max /= (u32)avg_len; 648 else 649 max = 1; 650 651 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 652 WRITE_ONCE(max_samples_per_tick, max); 653 654 sysctl_perf_event_sample_rate = max * HZ; 655 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 656 657 if (!irq_work_queue(&perf_duration_work)) { 658 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 659 "kernel.perf_event_max_sample_rate to %d\n", 660 __report_avg, __report_allowed, 661 sysctl_perf_event_sample_rate); 662 } 663 } 664 665 static atomic64_t perf_event_id; 666 667 static void update_context_time(struct perf_event_context *ctx); 668 static u64 perf_event_time(struct perf_event *event); 669 670 void __weak perf_event_print_debug(void) { } 671 672 static inline u64 perf_clock(void) 673 { 674 return local_clock(); 675 } 676 677 static inline u64 perf_event_clock(struct perf_event *event) 678 { 679 return event->clock(); 680 } 681 682 /* 683 * State based event timekeeping... 684 * 685 * The basic idea is to use event->state to determine which (if any) time 686 * fields to increment with the current delta. This means we only need to 687 * update timestamps when we change state or when they are explicitly requested 688 * (read). 689 * 690 * Event groups make things a little more complicated, but not terribly so. The 691 * rules for a group are that if the group leader is OFF the entire group is 692 * OFF, irrespective of what the group member states are. This results in 693 * __perf_effective_state(). 694 * 695 * A further ramification is that when a group leader flips between OFF and 696 * !OFF, we need to update all group member times. 697 * 698 * 699 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 700 * need to make sure the relevant context time is updated before we try and 701 * update our timestamps. 702 */ 703 704 static __always_inline enum perf_event_state 705 __perf_effective_state(struct perf_event *event) 706 { 707 struct perf_event *leader = event->group_leader; 708 709 if (leader->state <= PERF_EVENT_STATE_OFF) 710 return leader->state; 711 712 return event->state; 713 } 714 715 static __always_inline void 716 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 717 { 718 enum perf_event_state state = __perf_effective_state(event); 719 u64 delta = now - event->tstamp; 720 721 *enabled = event->total_time_enabled; 722 if (state >= PERF_EVENT_STATE_INACTIVE) 723 *enabled += delta; 724 725 *running = event->total_time_running; 726 if (state >= PERF_EVENT_STATE_ACTIVE) 727 *running += delta; 728 } 729 730 static void perf_event_update_time(struct perf_event *event) 731 { 732 u64 now = perf_event_time(event); 733 734 __perf_update_times(event, now, &event->total_time_enabled, 735 &event->total_time_running); 736 event->tstamp = now; 737 } 738 739 static void perf_event_update_sibling_time(struct perf_event *leader) 740 { 741 struct perf_event *sibling; 742 743 for_each_sibling_event(sibling, leader) 744 perf_event_update_time(sibling); 745 } 746 747 static void 748 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 749 { 750 if (event->state == state) 751 return; 752 753 perf_event_update_time(event); 754 /* 755 * If a group leader gets enabled/disabled all its siblings 756 * are affected too. 757 */ 758 if ((event->state < 0) ^ (state < 0)) 759 perf_event_update_sibling_time(event); 760 761 WRITE_ONCE(event->state, state); 762 } 763 764 /* 765 * UP store-release, load-acquire 766 */ 767 768 #define __store_release(ptr, val) \ 769 do { \ 770 barrier(); \ 771 WRITE_ONCE(*(ptr), (val)); \ 772 } while (0) 773 774 #define __load_acquire(ptr) \ 775 ({ \ 776 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 777 barrier(); \ 778 ___p; \ 779 }) 780 781 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 782 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 783 if (_cgroup && !_epc->nr_cgroups) \ 784 continue; \ 785 else if (_pmu && _epc->pmu != _pmu) \ 786 continue; \ 787 else 788 789 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 790 { 791 struct perf_event_pmu_context *pmu_ctx; 792 793 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 794 perf_pmu_disable(pmu_ctx->pmu); 795 } 796 797 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 798 { 799 struct perf_event_pmu_context *pmu_ctx; 800 801 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 802 perf_pmu_enable(pmu_ctx->pmu); 803 } 804 805 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 806 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 807 808 #ifdef CONFIG_CGROUP_PERF 809 810 static inline bool 811 perf_cgroup_match(struct perf_event *event) 812 { 813 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 814 815 /* @event doesn't care about cgroup */ 816 if (!event->cgrp) 817 return true; 818 819 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 820 if (!cpuctx->cgrp) 821 return false; 822 823 /* 824 * Cgroup scoping is recursive. An event enabled for a cgroup is 825 * also enabled for all its descendant cgroups. If @cpuctx's 826 * cgroup is a descendant of @event's (the test covers identity 827 * case), it's a match. 828 */ 829 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 830 event->cgrp->css.cgroup); 831 } 832 833 static inline void perf_detach_cgroup(struct perf_event *event) 834 { 835 css_put(&event->cgrp->css); 836 event->cgrp = NULL; 837 } 838 839 static inline int is_cgroup_event(struct perf_event *event) 840 { 841 return event->cgrp != NULL; 842 } 843 844 static inline u64 perf_cgroup_event_time(struct perf_event *event) 845 { 846 struct perf_cgroup_info *t; 847 848 t = per_cpu_ptr(event->cgrp->info, event->cpu); 849 return t->time; 850 } 851 852 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 853 { 854 struct perf_cgroup_info *t; 855 856 t = per_cpu_ptr(event->cgrp->info, event->cpu); 857 if (!__load_acquire(&t->active)) 858 return t->time; 859 now += READ_ONCE(t->timeoffset); 860 return now; 861 } 862 863 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 864 { 865 if (adv) 866 info->time += now - info->timestamp; 867 info->timestamp = now; 868 /* 869 * see update_context_time() 870 */ 871 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 872 } 873 874 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 875 { 876 struct perf_cgroup *cgrp = cpuctx->cgrp; 877 struct cgroup_subsys_state *css; 878 struct perf_cgroup_info *info; 879 880 if (cgrp) { 881 u64 now = perf_clock(); 882 883 for (css = &cgrp->css; css; css = css->parent) { 884 cgrp = container_of(css, struct perf_cgroup, css); 885 info = this_cpu_ptr(cgrp->info); 886 887 __update_cgrp_time(info, now, true); 888 if (final) 889 __store_release(&info->active, 0); 890 } 891 } 892 } 893 894 static inline void update_cgrp_time_from_event(struct perf_event *event) 895 { 896 struct perf_cgroup_info *info; 897 898 /* 899 * ensure we access cgroup data only when needed and 900 * when we know the cgroup is pinned (css_get) 901 */ 902 if (!is_cgroup_event(event)) 903 return; 904 905 info = this_cpu_ptr(event->cgrp->info); 906 /* 907 * Do not update time when cgroup is not active 908 */ 909 if (info->active) 910 __update_cgrp_time(info, perf_clock(), true); 911 } 912 913 static inline void 914 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 915 { 916 struct perf_event_context *ctx = &cpuctx->ctx; 917 struct perf_cgroup *cgrp = cpuctx->cgrp; 918 struct perf_cgroup_info *info; 919 struct cgroup_subsys_state *css; 920 921 /* 922 * ctx->lock held by caller 923 * ensure we do not access cgroup data 924 * unless we have the cgroup pinned (css_get) 925 */ 926 if (!cgrp) 927 return; 928 929 WARN_ON_ONCE(!ctx->nr_cgroups); 930 931 for (css = &cgrp->css; css; css = css->parent) { 932 cgrp = container_of(css, struct perf_cgroup, css); 933 info = this_cpu_ptr(cgrp->info); 934 __update_cgrp_time(info, ctx->timestamp, false); 935 __store_release(&info->active, 1); 936 } 937 } 938 939 /* 940 * reschedule events based on the cgroup constraint of task. 941 */ 942 static void perf_cgroup_switch(struct task_struct *task) 943 { 944 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 945 struct perf_cgroup *cgrp; 946 947 /* 948 * cpuctx->cgrp is set when the first cgroup event enabled, 949 * and is cleared when the last cgroup event disabled. 950 */ 951 if (READ_ONCE(cpuctx->cgrp) == NULL) 952 return; 953 954 cgrp = perf_cgroup_from_task(task, NULL); 955 if (READ_ONCE(cpuctx->cgrp) == cgrp) 956 return; 957 958 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 959 /* 960 * Re-check, could've raced vs perf_remove_from_context(). 961 */ 962 if (READ_ONCE(cpuctx->cgrp) == NULL) 963 return; 964 965 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 966 967 perf_ctx_disable(&cpuctx->ctx, true); 968 969 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 970 /* 971 * must not be done before ctxswout due 972 * to update_cgrp_time_from_cpuctx() in 973 * ctx_sched_out() 974 */ 975 cpuctx->cgrp = cgrp; 976 /* 977 * set cgrp before ctxsw in to allow 978 * perf_cgroup_set_timestamp() in ctx_sched_in() 979 * to not have to pass task around 980 */ 981 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 982 983 perf_ctx_enable(&cpuctx->ctx, true); 984 } 985 986 static int perf_cgroup_ensure_storage(struct perf_event *event, 987 struct cgroup_subsys_state *css) 988 { 989 struct perf_cpu_context *cpuctx; 990 struct perf_event **storage; 991 int cpu, heap_size, ret = 0; 992 993 /* 994 * Allow storage to have sufficient space for an iterator for each 995 * possibly nested cgroup plus an iterator for events with no cgroup. 996 */ 997 for (heap_size = 1; css; css = css->parent) 998 heap_size++; 999 1000 for_each_possible_cpu(cpu) { 1001 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 1002 if (heap_size <= cpuctx->heap_size) 1003 continue; 1004 1005 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 1006 GFP_KERNEL, cpu_to_node(cpu)); 1007 if (!storage) { 1008 ret = -ENOMEM; 1009 break; 1010 } 1011 1012 raw_spin_lock_irq(&cpuctx->ctx.lock); 1013 if (cpuctx->heap_size < heap_size) { 1014 swap(cpuctx->heap, storage); 1015 if (storage == cpuctx->heap_default) 1016 storage = NULL; 1017 cpuctx->heap_size = heap_size; 1018 } 1019 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1020 1021 kfree(storage); 1022 } 1023 1024 return ret; 1025 } 1026 1027 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1028 struct perf_event_attr *attr, 1029 struct perf_event *group_leader) 1030 { 1031 struct perf_cgroup *cgrp; 1032 struct cgroup_subsys_state *css; 1033 CLASS(fd, f)(fd); 1034 int ret = 0; 1035 1036 if (fd_empty(f)) 1037 return -EBADF; 1038 1039 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1040 &perf_event_cgrp_subsys); 1041 if (IS_ERR(css)) 1042 return PTR_ERR(css); 1043 1044 ret = perf_cgroup_ensure_storage(event, css); 1045 if (ret) 1046 return ret; 1047 1048 cgrp = container_of(css, struct perf_cgroup, css); 1049 event->cgrp = cgrp; 1050 1051 /* 1052 * all events in a group must monitor 1053 * the same cgroup because a task belongs 1054 * to only one perf cgroup at a time 1055 */ 1056 if (group_leader && group_leader->cgrp != cgrp) { 1057 perf_detach_cgroup(event); 1058 ret = -EINVAL; 1059 } 1060 return ret; 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 1068 if (!is_cgroup_event(event)) 1069 return; 1070 1071 event->pmu_ctx->nr_cgroups++; 1072 1073 /* 1074 * Because cgroup events are always per-cpu events, 1075 * @ctx == &cpuctx->ctx. 1076 */ 1077 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1078 1079 if (ctx->nr_cgroups++) 1080 return; 1081 1082 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1083 } 1084 1085 static inline void 1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1087 { 1088 struct perf_cpu_context *cpuctx; 1089 1090 if (!is_cgroup_event(event)) 1091 return; 1092 1093 event->pmu_ctx->nr_cgroups--; 1094 1095 /* 1096 * Because cgroup events are always per-cpu events, 1097 * @ctx == &cpuctx->ctx. 1098 */ 1099 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1100 1101 if (--ctx->nr_cgroups) 1102 return; 1103 1104 cpuctx->cgrp = NULL; 1105 } 1106 1107 #else /* !CONFIG_CGROUP_PERF */ 1108 1109 static inline bool 1110 perf_cgroup_match(struct perf_event *event) 1111 { 1112 return true; 1113 } 1114 1115 static inline void perf_detach_cgroup(struct perf_event *event) 1116 {} 1117 1118 static inline int is_cgroup_event(struct perf_event *event) 1119 { 1120 return 0; 1121 } 1122 1123 static inline void update_cgrp_time_from_event(struct perf_event *event) 1124 { 1125 } 1126 1127 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1128 bool final) 1129 { 1130 } 1131 1132 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1133 struct perf_event_attr *attr, 1134 struct perf_event *group_leader) 1135 { 1136 return -EINVAL; 1137 } 1138 1139 static inline void 1140 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1141 { 1142 } 1143 1144 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1145 { 1146 return 0; 1147 } 1148 1149 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1150 { 1151 return 0; 1152 } 1153 1154 static inline void 1155 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1156 { 1157 } 1158 1159 static inline void 1160 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1161 { 1162 } 1163 1164 static void perf_cgroup_switch(struct task_struct *task) 1165 { 1166 } 1167 #endif 1168 1169 /* 1170 * set default to be dependent on timer tick just 1171 * like original code 1172 */ 1173 #define PERF_CPU_HRTIMER (1000 / HZ) 1174 /* 1175 * function must be called with interrupts disabled 1176 */ 1177 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1178 { 1179 struct perf_cpu_pmu_context *cpc; 1180 bool rotations; 1181 1182 lockdep_assert_irqs_disabled(); 1183 1184 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1185 rotations = perf_rotate_context(cpc); 1186 1187 raw_spin_lock(&cpc->hrtimer_lock); 1188 if (rotations) 1189 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1190 else 1191 cpc->hrtimer_active = 0; 1192 raw_spin_unlock(&cpc->hrtimer_lock); 1193 1194 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1195 } 1196 1197 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1198 { 1199 struct hrtimer *timer = &cpc->hrtimer; 1200 struct pmu *pmu = cpc->epc.pmu; 1201 u64 interval; 1202 1203 /* 1204 * check default is sane, if not set then force to 1205 * default interval (1/tick) 1206 */ 1207 interval = pmu->hrtimer_interval_ms; 1208 if (interval < 1) 1209 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1210 1211 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1212 1213 raw_spin_lock_init(&cpc->hrtimer_lock); 1214 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1215 HRTIMER_MODE_ABS_PINNED_HARD); 1216 } 1217 1218 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1219 { 1220 struct hrtimer *timer = &cpc->hrtimer; 1221 unsigned long flags; 1222 1223 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1224 if (!cpc->hrtimer_active) { 1225 cpc->hrtimer_active = 1; 1226 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1227 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1228 } 1229 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1230 1231 return 0; 1232 } 1233 1234 static int perf_mux_hrtimer_restart_ipi(void *arg) 1235 { 1236 return perf_mux_hrtimer_restart(arg); 1237 } 1238 1239 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1240 { 1241 return *this_cpu_ptr(pmu->cpu_pmu_context); 1242 } 1243 1244 void perf_pmu_disable(struct pmu *pmu) 1245 { 1246 int *count = &this_cpc(pmu)->pmu_disable_count; 1247 if (!(*count)++) 1248 pmu->pmu_disable(pmu); 1249 } 1250 1251 void perf_pmu_enable(struct pmu *pmu) 1252 { 1253 int *count = &this_cpc(pmu)->pmu_disable_count; 1254 if (!--(*count)) 1255 pmu->pmu_enable(pmu); 1256 } 1257 1258 static void perf_assert_pmu_disabled(struct pmu *pmu) 1259 { 1260 int *count = &this_cpc(pmu)->pmu_disable_count; 1261 WARN_ON_ONCE(*count == 0); 1262 } 1263 1264 static inline void perf_pmu_read(struct perf_event *event) 1265 { 1266 if (event->state == PERF_EVENT_STATE_ACTIVE) 1267 event->pmu->read(event); 1268 } 1269 1270 static void get_ctx(struct perf_event_context *ctx) 1271 { 1272 refcount_inc(&ctx->refcount); 1273 } 1274 1275 static void free_ctx(struct rcu_head *head) 1276 { 1277 struct perf_event_context *ctx; 1278 1279 ctx = container_of(head, struct perf_event_context, rcu_head); 1280 kfree(ctx); 1281 } 1282 1283 static void put_ctx(struct perf_event_context *ctx) 1284 { 1285 if (refcount_dec_and_test(&ctx->refcount)) { 1286 if (ctx->parent_ctx) 1287 put_ctx(ctx->parent_ctx); 1288 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1289 put_task_struct(ctx->task); 1290 call_rcu(&ctx->rcu_head, free_ctx); 1291 } else { 1292 smp_mb__after_atomic(); /* pairs with wait_var_event() */ 1293 if (ctx->task == TASK_TOMBSTONE) 1294 wake_up_var(&ctx->refcount); 1295 } 1296 } 1297 1298 /* 1299 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1300 * perf_pmu_migrate_context() we need some magic. 1301 * 1302 * Those places that change perf_event::ctx will hold both 1303 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1304 * 1305 * Lock ordering is by mutex address. There are two other sites where 1306 * perf_event_context::mutex nests and those are: 1307 * 1308 * - perf_event_exit_task_context() [ child , 0 ] 1309 * perf_event_exit_event() 1310 * put_event() [ parent, 1 ] 1311 * 1312 * - perf_event_init_context() [ parent, 0 ] 1313 * inherit_task_group() 1314 * inherit_group() 1315 * inherit_event() 1316 * perf_event_alloc() 1317 * perf_init_event() 1318 * perf_try_init_event() [ child , 1 ] 1319 * 1320 * While it appears there is an obvious deadlock here -- the parent and child 1321 * nesting levels are inverted between the two. This is in fact safe because 1322 * life-time rules separate them. That is an exiting task cannot fork, and a 1323 * spawning task cannot (yet) exit. 1324 * 1325 * But remember that these are parent<->child context relations, and 1326 * migration does not affect children, therefore these two orderings should not 1327 * interact. 1328 * 1329 * The change in perf_event::ctx does not affect children (as claimed above) 1330 * because the sys_perf_event_open() case will install a new event and break 1331 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1332 * concerned with cpuctx and that doesn't have children. 1333 * 1334 * The places that change perf_event::ctx will issue: 1335 * 1336 * perf_remove_from_context(); 1337 * synchronize_rcu(); 1338 * perf_install_in_context(); 1339 * 1340 * to affect the change. The remove_from_context() + synchronize_rcu() should 1341 * quiesce the event, after which we can install it in the new location. This 1342 * means that only external vectors (perf_fops, prctl) can perturb the event 1343 * while in transit. Therefore all such accessors should also acquire 1344 * perf_event_context::mutex to serialize against this. 1345 * 1346 * However; because event->ctx can change while we're waiting to acquire 1347 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1348 * function. 1349 * 1350 * Lock order: 1351 * exec_update_lock 1352 * task_struct::perf_event_mutex 1353 * perf_event_context::mutex 1354 * perf_event::child_mutex; 1355 * perf_event_context::lock 1356 * mmap_lock 1357 * perf_event::mmap_mutex 1358 * perf_buffer::aux_mutex 1359 * perf_addr_filters_head::lock 1360 * 1361 * cpu_hotplug_lock 1362 * pmus_lock 1363 * cpuctx->mutex / perf_event_context::mutex 1364 */ 1365 static struct perf_event_context * 1366 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 again: 1371 rcu_read_lock(); 1372 ctx = READ_ONCE(event->ctx); 1373 if (!refcount_inc_not_zero(&ctx->refcount)) { 1374 rcu_read_unlock(); 1375 goto again; 1376 } 1377 rcu_read_unlock(); 1378 1379 mutex_lock_nested(&ctx->mutex, nesting); 1380 if (event->ctx != ctx) { 1381 mutex_unlock(&ctx->mutex); 1382 put_ctx(ctx); 1383 goto again; 1384 } 1385 1386 return ctx; 1387 } 1388 1389 static inline struct perf_event_context * 1390 perf_event_ctx_lock(struct perf_event *event) 1391 { 1392 return perf_event_ctx_lock_nested(event, 0); 1393 } 1394 1395 static void perf_event_ctx_unlock(struct perf_event *event, 1396 struct perf_event_context *ctx) 1397 { 1398 mutex_unlock(&ctx->mutex); 1399 put_ctx(ctx); 1400 } 1401 1402 /* 1403 * This must be done under the ctx->lock, such as to serialize against 1404 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1405 * calling scheduler related locks and ctx->lock nests inside those. 1406 */ 1407 static __must_check struct perf_event_context * 1408 unclone_ctx(struct perf_event_context *ctx) 1409 { 1410 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1411 1412 lockdep_assert_held(&ctx->lock); 1413 1414 if (parent_ctx) 1415 ctx->parent_ctx = NULL; 1416 ctx->generation++; 1417 1418 return parent_ctx; 1419 } 1420 1421 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1422 enum pid_type type) 1423 { 1424 u32 nr; 1425 /* 1426 * only top level events have the pid namespace they were created in 1427 */ 1428 if (event->parent) 1429 event = event->parent; 1430 1431 nr = __task_pid_nr_ns(p, type, event->ns); 1432 /* avoid -1 if it is idle thread or runs in another ns */ 1433 if (!nr && !pid_alive(p)) 1434 nr = -1; 1435 return nr; 1436 } 1437 1438 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1439 { 1440 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1441 } 1442 1443 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1444 { 1445 return perf_event_pid_type(event, p, PIDTYPE_PID); 1446 } 1447 1448 /* 1449 * If we inherit events we want to return the parent event id 1450 * to userspace. 1451 */ 1452 static u64 primary_event_id(struct perf_event *event) 1453 { 1454 u64 id = event->id; 1455 1456 if (event->parent) 1457 id = event->parent->id; 1458 1459 return id; 1460 } 1461 1462 /* 1463 * Get the perf_event_context for a task and lock it. 1464 * 1465 * This has to cope with the fact that until it is locked, 1466 * the context could get moved to another task. 1467 */ 1468 static struct perf_event_context * 1469 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1470 { 1471 struct perf_event_context *ctx; 1472 1473 retry: 1474 /* 1475 * One of the few rules of preemptible RCU is that one cannot do 1476 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1477 * part of the read side critical section was irqs-enabled -- see 1478 * rcu_read_unlock_special(). 1479 * 1480 * Since ctx->lock nests under rq->lock we must ensure the entire read 1481 * side critical section has interrupts disabled. 1482 */ 1483 local_irq_save(*flags); 1484 rcu_read_lock(); 1485 ctx = rcu_dereference(task->perf_event_ctxp); 1486 if (ctx) { 1487 /* 1488 * If this context is a clone of another, it might 1489 * get swapped for another underneath us by 1490 * perf_event_task_sched_out, though the 1491 * rcu_read_lock() protects us from any context 1492 * getting freed. Lock the context and check if it 1493 * got swapped before we could get the lock, and retry 1494 * if so. If we locked the right context, then it 1495 * can't get swapped on us any more. 1496 */ 1497 raw_spin_lock(&ctx->lock); 1498 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1499 raw_spin_unlock(&ctx->lock); 1500 rcu_read_unlock(); 1501 local_irq_restore(*flags); 1502 goto retry; 1503 } 1504 1505 if (ctx->task == TASK_TOMBSTONE || 1506 !refcount_inc_not_zero(&ctx->refcount)) { 1507 raw_spin_unlock(&ctx->lock); 1508 ctx = NULL; 1509 } else { 1510 WARN_ON_ONCE(ctx->task != task); 1511 } 1512 } 1513 rcu_read_unlock(); 1514 if (!ctx) 1515 local_irq_restore(*flags); 1516 return ctx; 1517 } 1518 1519 /* 1520 * Get the context for a task and increment its pin_count so it 1521 * can't get swapped to another task. This also increments its 1522 * reference count so that the context can't get freed. 1523 */ 1524 static struct perf_event_context * 1525 perf_pin_task_context(struct task_struct *task) 1526 { 1527 struct perf_event_context *ctx; 1528 unsigned long flags; 1529 1530 ctx = perf_lock_task_context(task, &flags); 1531 if (ctx) { 1532 ++ctx->pin_count; 1533 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1534 } 1535 return ctx; 1536 } 1537 1538 static void perf_unpin_context(struct perf_event_context *ctx) 1539 { 1540 unsigned long flags; 1541 1542 raw_spin_lock_irqsave(&ctx->lock, flags); 1543 --ctx->pin_count; 1544 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1545 } 1546 1547 /* 1548 * Update the record of the current time in a context. 1549 */ 1550 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1551 { 1552 u64 now = perf_clock(); 1553 1554 lockdep_assert_held(&ctx->lock); 1555 1556 if (adv) 1557 ctx->time += now - ctx->timestamp; 1558 ctx->timestamp = now; 1559 1560 /* 1561 * The above: time' = time + (now - timestamp), can be re-arranged 1562 * into: time` = now + (time - timestamp), which gives a single value 1563 * offset to compute future time without locks on. 1564 * 1565 * See perf_event_time_now(), which can be used from NMI context where 1566 * it's (obviously) not possible to acquire ctx->lock in order to read 1567 * both the above values in a consistent manner. 1568 */ 1569 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1570 } 1571 1572 static void update_context_time(struct perf_event_context *ctx) 1573 { 1574 __update_context_time(ctx, true); 1575 } 1576 1577 static u64 perf_event_time(struct perf_event *event) 1578 { 1579 struct perf_event_context *ctx = event->ctx; 1580 1581 if (unlikely(!ctx)) 1582 return 0; 1583 1584 if (is_cgroup_event(event)) 1585 return perf_cgroup_event_time(event); 1586 1587 return ctx->time; 1588 } 1589 1590 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1591 { 1592 struct perf_event_context *ctx = event->ctx; 1593 1594 if (unlikely(!ctx)) 1595 return 0; 1596 1597 if (is_cgroup_event(event)) 1598 return perf_cgroup_event_time_now(event, now); 1599 1600 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1601 return ctx->time; 1602 1603 now += READ_ONCE(ctx->timeoffset); 1604 return now; 1605 } 1606 1607 static enum event_type_t get_event_type(struct perf_event *event) 1608 { 1609 struct perf_event_context *ctx = event->ctx; 1610 enum event_type_t event_type; 1611 1612 lockdep_assert_held(&ctx->lock); 1613 1614 /* 1615 * It's 'group type', really, because if our group leader is 1616 * pinned, so are we. 1617 */ 1618 if (event->group_leader != event) 1619 event = event->group_leader; 1620 1621 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1622 if (!ctx->task) 1623 event_type |= EVENT_CPU; 1624 1625 return event_type; 1626 } 1627 1628 /* 1629 * Helper function to initialize event group nodes. 1630 */ 1631 static void init_event_group(struct perf_event *event) 1632 { 1633 RB_CLEAR_NODE(&event->group_node); 1634 event->group_index = 0; 1635 } 1636 1637 /* 1638 * Extract pinned or flexible groups from the context 1639 * based on event attrs bits. 1640 */ 1641 static struct perf_event_groups * 1642 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1643 { 1644 if (event->attr.pinned) 1645 return &ctx->pinned_groups; 1646 else 1647 return &ctx->flexible_groups; 1648 } 1649 1650 /* 1651 * Helper function to initializes perf_event_group trees. 1652 */ 1653 static void perf_event_groups_init(struct perf_event_groups *groups) 1654 { 1655 groups->tree = RB_ROOT; 1656 groups->index = 0; 1657 } 1658 1659 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1660 { 1661 struct cgroup *cgroup = NULL; 1662 1663 #ifdef CONFIG_CGROUP_PERF 1664 if (event->cgrp) 1665 cgroup = event->cgrp->css.cgroup; 1666 #endif 1667 1668 return cgroup; 1669 } 1670 1671 /* 1672 * Compare function for event groups; 1673 * 1674 * Implements complex key that first sorts by CPU and then by virtual index 1675 * which provides ordering when rotating groups for the same CPU. 1676 */ 1677 static __always_inline int 1678 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1679 const struct cgroup *left_cgroup, const u64 left_group_index, 1680 const struct perf_event *right) 1681 { 1682 if (left_cpu < right->cpu) 1683 return -1; 1684 if (left_cpu > right->cpu) 1685 return 1; 1686 1687 if (left_pmu) { 1688 if (left_pmu < right->pmu_ctx->pmu) 1689 return -1; 1690 if (left_pmu > right->pmu_ctx->pmu) 1691 return 1; 1692 } 1693 1694 #ifdef CONFIG_CGROUP_PERF 1695 { 1696 const struct cgroup *right_cgroup = event_cgroup(right); 1697 1698 if (left_cgroup != right_cgroup) { 1699 if (!left_cgroup) { 1700 /* 1701 * Left has no cgroup but right does, no 1702 * cgroups come first. 1703 */ 1704 return -1; 1705 } 1706 if (!right_cgroup) { 1707 /* 1708 * Right has no cgroup but left does, no 1709 * cgroups come first. 1710 */ 1711 return 1; 1712 } 1713 /* Two dissimilar cgroups, order by id. */ 1714 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1715 return -1; 1716 1717 return 1; 1718 } 1719 } 1720 #endif 1721 1722 if (left_group_index < right->group_index) 1723 return -1; 1724 if (left_group_index > right->group_index) 1725 return 1; 1726 1727 return 0; 1728 } 1729 1730 #define __node_2_pe(node) \ 1731 rb_entry((node), struct perf_event, group_node) 1732 1733 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1734 { 1735 struct perf_event *e = __node_2_pe(a); 1736 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1737 e->group_index, __node_2_pe(b)) < 0; 1738 } 1739 1740 struct __group_key { 1741 int cpu; 1742 struct pmu *pmu; 1743 struct cgroup *cgroup; 1744 }; 1745 1746 static inline int __group_cmp(const void *key, const struct rb_node *node) 1747 { 1748 const struct __group_key *a = key; 1749 const struct perf_event *b = __node_2_pe(node); 1750 1751 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1752 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1753 } 1754 1755 static inline int 1756 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1757 { 1758 const struct __group_key *a = key; 1759 const struct perf_event *b = __node_2_pe(node); 1760 1761 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1762 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1763 b->group_index, b); 1764 } 1765 1766 /* 1767 * Insert @event into @groups' tree; using 1768 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1769 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1770 */ 1771 static void 1772 perf_event_groups_insert(struct perf_event_groups *groups, 1773 struct perf_event *event) 1774 { 1775 event->group_index = ++groups->index; 1776 1777 rb_add(&event->group_node, &groups->tree, __group_less); 1778 } 1779 1780 /* 1781 * Helper function to insert event into the pinned or flexible groups. 1782 */ 1783 static void 1784 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1785 { 1786 struct perf_event_groups *groups; 1787 1788 groups = get_event_groups(event, ctx); 1789 perf_event_groups_insert(groups, event); 1790 } 1791 1792 /* 1793 * Delete a group from a tree. 1794 */ 1795 static void 1796 perf_event_groups_delete(struct perf_event_groups *groups, 1797 struct perf_event *event) 1798 { 1799 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1800 RB_EMPTY_ROOT(&groups->tree)); 1801 1802 rb_erase(&event->group_node, &groups->tree); 1803 init_event_group(event); 1804 } 1805 1806 /* 1807 * Helper function to delete event from its groups. 1808 */ 1809 static void 1810 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1811 { 1812 struct perf_event_groups *groups; 1813 1814 groups = get_event_groups(event, ctx); 1815 perf_event_groups_delete(groups, event); 1816 } 1817 1818 /* 1819 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1820 */ 1821 static struct perf_event * 1822 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1823 struct pmu *pmu, struct cgroup *cgrp) 1824 { 1825 struct __group_key key = { 1826 .cpu = cpu, 1827 .pmu = pmu, 1828 .cgroup = cgrp, 1829 }; 1830 struct rb_node *node; 1831 1832 node = rb_find_first(&key, &groups->tree, __group_cmp); 1833 if (node) 1834 return __node_2_pe(node); 1835 1836 return NULL; 1837 } 1838 1839 static struct perf_event * 1840 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1841 { 1842 struct __group_key key = { 1843 .cpu = event->cpu, 1844 .pmu = pmu, 1845 .cgroup = event_cgroup(event), 1846 }; 1847 struct rb_node *next; 1848 1849 next = rb_next_match(&key, &event->group_node, __group_cmp); 1850 if (next) 1851 return __node_2_pe(next); 1852 1853 return NULL; 1854 } 1855 1856 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1857 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1858 event; event = perf_event_groups_next(event, pmu)) 1859 1860 /* 1861 * Iterate through the whole groups tree. 1862 */ 1863 #define perf_event_groups_for_each(event, groups) \ 1864 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1865 typeof(*event), group_node); event; \ 1866 event = rb_entry_safe(rb_next(&event->group_node), \ 1867 typeof(*event), group_node)) 1868 1869 /* 1870 * Does the event attribute request inherit with PERF_SAMPLE_READ 1871 */ 1872 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1873 { 1874 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1875 } 1876 1877 /* 1878 * Add an event from the lists for its context. 1879 * Must be called with ctx->mutex and ctx->lock held. 1880 */ 1881 static void 1882 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1883 { 1884 lockdep_assert_held(&ctx->lock); 1885 1886 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1887 event->attach_state |= PERF_ATTACH_CONTEXT; 1888 1889 event->tstamp = perf_event_time(event); 1890 1891 /* 1892 * If we're a stand alone event or group leader, we go to the context 1893 * list, group events are kept attached to the group so that 1894 * perf_group_detach can, at all times, locate all siblings. 1895 */ 1896 if (event->group_leader == event) { 1897 event->group_caps = event->event_caps; 1898 add_event_to_groups(event, ctx); 1899 } 1900 1901 list_add_rcu(&event->event_entry, &ctx->event_list); 1902 ctx->nr_events++; 1903 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1904 ctx->nr_user++; 1905 if (event->attr.inherit_stat) 1906 ctx->nr_stat++; 1907 if (has_inherit_and_sample_read(&event->attr)) 1908 local_inc(&ctx->nr_no_switch_fast); 1909 1910 if (event->state > PERF_EVENT_STATE_OFF) 1911 perf_cgroup_event_enable(event, ctx); 1912 1913 ctx->generation++; 1914 event->pmu_ctx->nr_events++; 1915 } 1916 1917 /* 1918 * Initialize event state based on the perf_event_attr::disabled. 1919 */ 1920 static inline void perf_event__state_init(struct perf_event *event) 1921 { 1922 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1923 PERF_EVENT_STATE_INACTIVE; 1924 } 1925 1926 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1927 { 1928 int entry = sizeof(u64); /* value */ 1929 int size = 0; 1930 int nr = 1; 1931 1932 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1933 size += sizeof(u64); 1934 1935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1936 size += sizeof(u64); 1937 1938 if (read_format & PERF_FORMAT_ID) 1939 entry += sizeof(u64); 1940 1941 if (read_format & PERF_FORMAT_LOST) 1942 entry += sizeof(u64); 1943 1944 if (read_format & PERF_FORMAT_GROUP) { 1945 nr += nr_siblings; 1946 size += sizeof(u64); 1947 } 1948 1949 /* 1950 * Since perf_event_validate_size() limits this to 16k and inhibits 1951 * adding more siblings, this will never overflow. 1952 */ 1953 return size + nr * entry; 1954 } 1955 1956 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1957 { 1958 struct perf_sample_data *data; 1959 u16 size = 0; 1960 1961 if (sample_type & PERF_SAMPLE_IP) 1962 size += sizeof(data->ip); 1963 1964 if (sample_type & PERF_SAMPLE_ADDR) 1965 size += sizeof(data->addr); 1966 1967 if (sample_type & PERF_SAMPLE_PERIOD) 1968 size += sizeof(data->period); 1969 1970 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1971 size += sizeof(data->weight.full); 1972 1973 if (sample_type & PERF_SAMPLE_READ) 1974 size += event->read_size; 1975 1976 if (sample_type & PERF_SAMPLE_DATA_SRC) 1977 size += sizeof(data->data_src.val); 1978 1979 if (sample_type & PERF_SAMPLE_TRANSACTION) 1980 size += sizeof(data->txn); 1981 1982 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1983 size += sizeof(data->phys_addr); 1984 1985 if (sample_type & PERF_SAMPLE_CGROUP) 1986 size += sizeof(data->cgroup); 1987 1988 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1989 size += sizeof(data->data_page_size); 1990 1991 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1992 size += sizeof(data->code_page_size); 1993 1994 event->header_size = size; 1995 } 1996 1997 /* 1998 * Called at perf_event creation and when events are attached/detached from a 1999 * group. 2000 */ 2001 static void perf_event__header_size(struct perf_event *event) 2002 { 2003 event->read_size = 2004 __perf_event_read_size(event->attr.read_format, 2005 event->group_leader->nr_siblings); 2006 __perf_event_header_size(event, event->attr.sample_type); 2007 } 2008 2009 static void perf_event__id_header_size(struct perf_event *event) 2010 { 2011 struct perf_sample_data *data; 2012 u64 sample_type = event->attr.sample_type; 2013 u16 size = 0; 2014 2015 if (sample_type & PERF_SAMPLE_TID) 2016 size += sizeof(data->tid_entry); 2017 2018 if (sample_type & PERF_SAMPLE_TIME) 2019 size += sizeof(data->time); 2020 2021 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2022 size += sizeof(data->id); 2023 2024 if (sample_type & PERF_SAMPLE_ID) 2025 size += sizeof(data->id); 2026 2027 if (sample_type & PERF_SAMPLE_STREAM_ID) 2028 size += sizeof(data->stream_id); 2029 2030 if (sample_type & PERF_SAMPLE_CPU) 2031 size += sizeof(data->cpu_entry); 2032 2033 event->id_header_size = size; 2034 } 2035 2036 /* 2037 * Check that adding an event to the group does not result in anybody 2038 * overflowing the 64k event limit imposed by the output buffer. 2039 * 2040 * Specifically, check that the read_size for the event does not exceed 16k, 2041 * read_size being the one term that grows with groups size. Since read_size 2042 * depends on per-event read_format, also (re)check the existing events. 2043 * 2044 * This leaves 48k for the constant size fields and things like callchains, 2045 * branch stacks and register sets. 2046 */ 2047 static bool perf_event_validate_size(struct perf_event *event) 2048 { 2049 struct perf_event *sibling, *group_leader = event->group_leader; 2050 2051 if (__perf_event_read_size(event->attr.read_format, 2052 group_leader->nr_siblings + 1) > 16*1024) 2053 return false; 2054 2055 if (__perf_event_read_size(group_leader->attr.read_format, 2056 group_leader->nr_siblings + 1) > 16*1024) 2057 return false; 2058 2059 /* 2060 * When creating a new group leader, group_leader->ctx is initialized 2061 * after the size has been validated, but we cannot safely use 2062 * for_each_sibling_event() until group_leader->ctx is set. A new group 2063 * leader cannot have any siblings yet, so we can safely skip checking 2064 * the non-existent siblings. 2065 */ 2066 if (event == group_leader) 2067 return true; 2068 2069 for_each_sibling_event(sibling, group_leader) { 2070 if (__perf_event_read_size(sibling->attr.read_format, 2071 group_leader->nr_siblings + 1) > 16*1024) 2072 return false; 2073 } 2074 2075 return true; 2076 } 2077 2078 static void perf_group_attach(struct perf_event *event) 2079 { 2080 struct perf_event *group_leader = event->group_leader, *pos; 2081 2082 lockdep_assert_held(&event->ctx->lock); 2083 2084 /* 2085 * We can have double attach due to group movement (move_group) in 2086 * perf_event_open(). 2087 */ 2088 if (event->attach_state & PERF_ATTACH_GROUP) 2089 return; 2090 2091 event->attach_state |= PERF_ATTACH_GROUP; 2092 2093 if (group_leader == event) 2094 return; 2095 2096 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2097 2098 group_leader->group_caps &= event->event_caps; 2099 2100 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2101 group_leader->nr_siblings++; 2102 group_leader->group_generation++; 2103 2104 perf_event__header_size(group_leader); 2105 2106 for_each_sibling_event(pos, group_leader) 2107 perf_event__header_size(pos); 2108 } 2109 2110 /* 2111 * Remove an event from the lists for its context. 2112 * Must be called with ctx->mutex and ctx->lock held. 2113 */ 2114 static void 2115 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2116 { 2117 WARN_ON_ONCE(event->ctx != ctx); 2118 lockdep_assert_held(&ctx->lock); 2119 2120 /* 2121 * We can have double detach due to exit/hot-unplug + close. 2122 */ 2123 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2124 return; 2125 2126 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2127 2128 ctx->nr_events--; 2129 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2130 ctx->nr_user--; 2131 if (event->attr.inherit_stat) 2132 ctx->nr_stat--; 2133 if (has_inherit_and_sample_read(&event->attr)) 2134 local_dec(&ctx->nr_no_switch_fast); 2135 2136 list_del_rcu(&event->event_entry); 2137 2138 if (event->group_leader == event) 2139 del_event_from_groups(event, ctx); 2140 2141 ctx->generation++; 2142 event->pmu_ctx->nr_events--; 2143 } 2144 2145 static int 2146 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2147 { 2148 if (!has_aux(aux_event)) 2149 return 0; 2150 2151 if (!event->pmu->aux_output_match) 2152 return 0; 2153 2154 return event->pmu->aux_output_match(aux_event); 2155 } 2156 2157 static void put_event(struct perf_event *event); 2158 static void __event_disable(struct perf_event *event, 2159 struct perf_event_context *ctx, 2160 enum perf_event_state state); 2161 2162 static void perf_put_aux_event(struct perf_event *event) 2163 { 2164 struct perf_event_context *ctx = event->ctx; 2165 struct perf_event *iter; 2166 2167 /* 2168 * If event uses aux_event tear down the link 2169 */ 2170 if (event->aux_event) { 2171 iter = event->aux_event; 2172 event->aux_event = NULL; 2173 put_event(iter); 2174 return; 2175 } 2176 2177 /* 2178 * If the event is an aux_event, tear down all links to 2179 * it from other events. 2180 */ 2181 for_each_sibling_event(iter, event) { 2182 if (iter->aux_event != event) 2183 continue; 2184 2185 iter->aux_event = NULL; 2186 put_event(event); 2187 2188 /* 2189 * If it's ACTIVE, schedule it out and put it into ERROR 2190 * state so that we don't try to schedule it again. Note 2191 * that perf_event_enable() will clear the ERROR status. 2192 */ 2193 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); 2194 } 2195 } 2196 2197 static bool perf_need_aux_event(struct perf_event *event) 2198 { 2199 return event->attr.aux_output || has_aux_action(event); 2200 } 2201 2202 static int perf_get_aux_event(struct perf_event *event, 2203 struct perf_event *group_leader) 2204 { 2205 /* 2206 * Our group leader must be an aux event if we want to be 2207 * an aux_output. This way, the aux event will precede its 2208 * aux_output events in the group, and therefore will always 2209 * schedule first. 2210 */ 2211 if (!group_leader) 2212 return 0; 2213 2214 /* 2215 * aux_output and aux_sample_size are mutually exclusive. 2216 */ 2217 if (event->attr.aux_output && event->attr.aux_sample_size) 2218 return 0; 2219 2220 if (event->attr.aux_output && 2221 !perf_aux_output_match(event, group_leader)) 2222 return 0; 2223 2224 if ((event->attr.aux_pause || event->attr.aux_resume) && 2225 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2226 return 0; 2227 2228 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2229 return 0; 2230 2231 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2232 return 0; 2233 2234 /* 2235 * Link aux_outputs to their aux event; this is undone in 2236 * perf_group_detach() by perf_put_aux_event(). When the 2237 * group in torn down, the aux_output events loose their 2238 * link to the aux_event and can't schedule any more. 2239 */ 2240 event->aux_event = group_leader; 2241 2242 return 1; 2243 } 2244 2245 static inline struct list_head *get_event_list(struct perf_event *event) 2246 { 2247 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2248 &event->pmu_ctx->flexible_active; 2249 } 2250 2251 static void perf_group_detach(struct perf_event *event) 2252 { 2253 struct perf_event *leader = event->group_leader; 2254 struct perf_event *sibling, *tmp; 2255 struct perf_event_context *ctx = event->ctx; 2256 2257 lockdep_assert_held(&ctx->lock); 2258 2259 /* 2260 * We can have double detach due to exit/hot-unplug + close. 2261 */ 2262 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2263 return; 2264 2265 event->attach_state &= ~PERF_ATTACH_GROUP; 2266 2267 perf_put_aux_event(event); 2268 2269 /* 2270 * If this is a sibling, remove it from its group. 2271 */ 2272 if (leader != event) { 2273 list_del_init(&event->sibling_list); 2274 event->group_leader->nr_siblings--; 2275 event->group_leader->group_generation++; 2276 goto out; 2277 } 2278 2279 /* 2280 * If this was a group event with sibling events then 2281 * upgrade the siblings to singleton events by adding them 2282 * to whatever list we are on. 2283 */ 2284 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2285 2286 /* 2287 * Events that have PERF_EV_CAP_SIBLING require being part of 2288 * a group and cannot exist on their own, schedule them out 2289 * and move them into the ERROR state. Also see 2290 * _perf_event_enable(), it will not be able to recover this 2291 * ERROR state. 2292 */ 2293 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2294 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); 2295 2296 sibling->group_leader = sibling; 2297 list_del_init(&sibling->sibling_list); 2298 2299 /* Inherit group flags from the previous leader */ 2300 sibling->group_caps = event->group_caps; 2301 2302 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2303 add_event_to_groups(sibling, event->ctx); 2304 2305 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2306 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2307 } 2308 2309 WARN_ON_ONCE(sibling->ctx != event->ctx); 2310 } 2311 2312 out: 2313 for_each_sibling_event(tmp, leader) 2314 perf_event__header_size(tmp); 2315 2316 perf_event__header_size(leader); 2317 } 2318 2319 static void sync_child_event(struct perf_event *child_event); 2320 2321 static void perf_child_detach(struct perf_event *event) 2322 { 2323 struct perf_event *parent_event = event->parent; 2324 2325 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2326 return; 2327 2328 event->attach_state &= ~PERF_ATTACH_CHILD; 2329 2330 if (WARN_ON_ONCE(!parent_event)) 2331 return; 2332 2333 /* 2334 * Can't check this from an IPI, the holder is likey another CPU. 2335 * 2336 lockdep_assert_held(&parent_event->child_mutex); 2337 */ 2338 2339 sync_child_event(event); 2340 list_del_init(&event->child_list); 2341 } 2342 2343 static bool is_orphaned_event(struct perf_event *event) 2344 { 2345 return event->state == PERF_EVENT_STATE_DEAD; 2346 } 2347 2348 static inline int 2349 event_filter_match(struct perf_event *event) 2350 { 2351 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2352 perf_cgroup_match(event); 2353 } 2354 2355 static inline bool is_event_in_freq_mode(struct perf_event *event) 2356 { 2357 return event->attr.freq && event->attr.sample_freq; 2358 } 2359 2360 static void 2361 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2362 { 2363 struct perf_event_pmu_context *epc = event->pmu_ctx; 2364 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2365 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2366 2367 // XXX cpc serialization, probably per-cpu IRQ disabled 2368 2369 WARN_ON_ONCE(event->ctx != ctx); 2370 lockdep_assert_held(&ctx->lock); 2371 2372 if (event->state != PERF_EVENT_STATE_ACTIVE) 2373 return; 2374 2375 /* 2376 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2377 * we can schedule events _OUT_ individually through things like 2378 * __perf_remove_from_context(). 2379 */ 2380 list_del_init(&event->active_list); 2381 2382 perf_pmu_disable(event->pmu); 2383 2384 event->pmu->del(event, 0); 2385 event->oncpu = -1; 2386 2387 if (event->pending_disable) { 2388 event->pending_disable = 0; 2389 perf_cgroup_event_disable(event, ctx); 2390 state = PERF_EVENT_STATE_OFF; 2391 } 2392 2393 perf_event_set_state(event, state); 2394 2395 if (!is_software_event(event)) 2396 cpc->active_oncpu--; 2397 if (is_event_in_freq_mode(event)) { 2398 ctx->nr_freq--; 2399 epc->nr_freq--; 2400 } 2401 if (event->attr.exclusive || !cpc->active_oncpu) 2402 cpc->exclusive = 0; 2403 2404 perf_pmu_enable(event->pmu); 2405 } 2406 2407 static void 2408 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2409 { 2410 struct perf_event *event; 2411 2412 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2413 return; 2414 2415 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2416 2417 event_sched_out(group_event, ctx); 2418 2419 /* 2420 * Schedule out siblings (if any): 2421 */ 2422 for_each_sibling_event(event, group_event) 2423 event_sched_out(event, ctx); 2424 } 2425 2426 static inline void 2427 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2428 { 2429 if (ctx->is_active & EVENT_TIME) { 2430 if (ctx->is_active & EVENT_FROZEN) 2431 return; 2432 update_context_time(ctx); 2433 update_cgrp_time_from_cpuctx(cpuctx, final); 2434 } 2435 } 2436 2437 static inline void 2438 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2439 { 2440 __ctx_time_update(cpuctx, ctx, false); 2441 } 2442 2443 /* 2444 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2445 */ 2446 static inline void 2447 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2448 { 2449 ctx_time_update(cpuctx, ctx); 2450 if (ctx->is_active & EVENT_TIME) 2451 ctx->is_active |= EVENT_FROZEN; 2452 } 2453 2454 static inline void 2455 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2456 { 2457 if (ctx->is_active & EVENT_TIME) { 2458 if (ctx->is_active & EVENT_FROZEN) 2459 return; 2460 update_context_time(ctx); 2461 update_cgrp_time_from_event(event); 2462 } 2463 } 2464 2465 #define DETACH_GROUP 0x01UL 2466 #define DETACH_CHILD 0x02UL 2467 #define DETACH_EXIT 0x04UL 2468 #define DETACH_REVOKE 0x08UL 2469 #define DETACH_DEAD 0x10UL 2470 2471 /* 2472 * Cross CPU call to remove a performance event 2473 * 2474 * We disable the event on the hardware level first. After that we 2475 * remove it from the context list. 2476 */ 2477 static void 2478 __perf_remove_from_context(struct perf_event *event, 2479 struct perf_cpu_context *cpuctx, 2480 struct perf_event_context *ctx, 2481 void *info) 2482 { 2483 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2484 enum perf_event_state state = PERF_EVENT_STATE_OFF; 2485 unsigned long flags = (unsigned long)info; 2486 2487 ctx_time_update(cpuctx, ctx); 2488 2489 /* 2490 * Ensure event_sched_out() switches to OFF, at the very least 2491 * this avoids raising perf_pending_task() at this time. 2492 */ 2493 if (flags & DETACH_EXIT) 2494 state = PERF_EVENT_STATE_EXIT; 2495 if (flags & DETACH_REVOKE) 2496 state = PERF_EVENT_STATE_REVOKED; 2497 if (flags & DETACH_DEAD) 2498 state = PERF_EVENT_STATE_DEAD; 2499 2500 event_sched_out(event, ctx); 2501 2502 if (event->state > PERF_EVENT_STATE_OFF) 2503 perf_cgroup_event_disable(event, ctx); 2504 2505 perf_event_set_state(event, min(event->state, state)); 2506 2507 if (flags & DETACH_GROUP) 2508 perf_group_detach(event); 2509 if (flags & DETACH_CHILD) 2510 perf_child_detach(event); 2511 list_del_event(event, ctx); 2512 2513 if (!pmu_ctx->nr_events) { 2514 pmu_ctx->rotate_necessary = 0; 2515 2516 if (ctx->task && ctx->is_active) { 2517 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2518 2519 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2520 cpc->task_epc = NULL; 2521 } 2522 } 2523 2524 if (!ctx->nr_events && ctx->is_active) { 2525 if (ctx == &cpuctx->ctx) 2526 update_cgrp_time_from_cpuctx(cpuctx, true); 2527 2528 ctx->is_active = 0; 2529 if (ctx->task) { 2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2531 cpuctx->task_ctx = NULL; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * Remove the event from a task's (or a CPU's) list of events. 2538 * 2539 * If event->ctx is a cloned context, callers must make sure that 2540 * every task struct that event->ctx->task could possibly point to 2541 * remains valid. This is OK when called from perf_release since 2542 * that only calls us on the top-level context, which can't be a clone. 2543 * When called from perf_event_exit_task, it's OK because the 2544 * context has been detached from its task. 2545 */ 2546 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2547 { 2548 struct perf_event_context *ctx = event->ctx; 2549 2550 lockdep_assert_held(&ctx->mutex); 2551 2552 /* 2553 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2554 * to work in the face of TASK_TOMBSTONE, unlike every other 2555 * event_function_call() user. 2556 */ 2557 raw_spin_lock_irq(&ctx->lock); 2558 if (!ctx->is_active) { 2559 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2560 ctx, (void *)flags); 2561 raw_spin_unlock_irq(&ctx->lock); 2562 return; 2563 } 2564 raw_spin_unlock_irq(&ctx->lock); 2565 2566 event_function_call(event, __perf_remove_from_context, (void *)flags); 2567 } 2568 2569 static void __event_disable(struct perf_event *event, 2570 struct perf_event_context *ctx, 2571 enum perf_event_state state) 2572 { 2573 event_sched_out(event, ctx); 2574 perf_cgroup_event_disable(event, ctx); 2575 perf_event_set_state(event, state); 2576 } 2577 2578 /* 2579 * Cross CPU call to disable a performance event 2580 */ 2581 static void __perf_event_disable(struct perf_event *event, 2582 struct perf_cpu_context *cpuctx, 2583 struct perf_event_context *ctx, 2584 void *info) 2585 { 2586 if (event->state < PERF_EVENT_STATE_INACTIVE) 2587 return; 2588 2589 perf_pmu_disable(event->pmu_ctx->pmu); 2590 ctx_time_update_event(ctx, event); 2591 2592 /* 2593 * When disabling a group leader, the whole group becomes ineligible 2594 * to run, so schedule out the full group. 2595 */ 2596 if (event == event->group_leader) 2597 group_sched_out(event, ctx); 2598 2599 /* 2600 * But only mark the leader OFF; the siblings will remain 2601 * INACTIVE. 2602 */ 2603 __event_disable(event, ctx, PERF_EVENT_STATE_OFF); 2604 2605 perf_pmu_enable(event->pmu_ctx->pmu); 2606 } 2607 2608 /* 2609 * Disable an event. 2610 * 2611 * If event->ctx is a cloned context, callers must make sure that 2612 * every task struct that event->ctx->task could possibly point to 2613 * remains valid. This condition is satisfied when called through 2614 * perf_event_for_each_child or perf_event_for_each because they 2615 * hold the top-level event's child_mutex, so any descendant that 2616 * goes to exit will block in perf_event_exit_event(). 2617 * 2618 * When called from perf_pending_disable it's OK because event->ctx 2619 * is the current context on this CPU and preemption is disabled, 2620 * hence we can't get into perf_event_task_sched_out for this context. 2621 */ 2622 static void _perf_event_disable(struct perf_event *event) 2623 { 2624 struct perf_event_context *ctx = event->ctx; 2625 2626 raw_spin_lock_irq(&ctx->lock); 2627 if (event->state <= PERF_EVENT_STATE_OFF) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 return; 2630 } 2631 raw_spin_unlock_irq(&ctx->lock); 2632 2633 event_function_call(event, __perf_event_disable, NULL); 2634 } 2635 2636 void perf_event_disable_local(struct perf_event *event) 2637 { 2638 event_function_local(event, __perf_event_disable, NULL); 2639 } 2640 2641 /* 2642 * Strictly speaking kernel users cannot create groups and therefore this 2643 * interface does not need the perf_event_ctx_lock() magic. 2644 */ 2645 void perf_event_disable(struct perf_event *event) 2646 { 2647 struct perf_event_context *ctx; 2648 2649 ctx = perf_event_ctx_lock(event); 2650 _perf_event_disable(event); 2651 perf_event_ctx_unlock(event, ctx); 2652 } 2653 EXPORT_SYMBOL_GPL(perf_event_disable); 2654 2655 void perf_event_disable_inatomic(struct perf_event *event) 2656 { 2657 event->pending_disable = 1; 2658 irq_work_queue(&event->pending_disable_irq); 2659 } 2660 2661 #define MAX_INTERRUPTS (~0ULL) 2662 2663 static void perf_log_throttle(struct perf_event *event, int enable); 2664 static void perf_log_itrace_start(struct perf_event *event); 2665 2666 static void perf_event_unthrottle(struct perf_event *event, bool start) 2667 { 2668 if (event->state != PERF_EVENT_STATE_ACTIVE) 2669 return; 2670 2671 event->hw.interrupts = 0; 2672 if (start) 2673 event->pmu->start(event, 0); 2674 if (event == event->group_leader) 2675 perf_log_throttle(event, 1); 2676 } 2677 2678 static void perf_event_throttle(struct perf_event *event) 2679 { 2680 if (event->state != PERF_EVENT_STATE_ACTIVE) 2681 return; 2682 2683 event->hw.interrupts = MAX_INTERRUPTS; 2684 event->pmu->stop(event, 0); 2685 if (event == event->group_leader) 2686 perf_log_throttle(event, 0); 2687 } 2688 2689 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) 2690 { 2691 struct perf_event *sibling, *leader = event->group_leader; 2692 2693 perf_event_unthrottle(leader, skip_start_event ? leader != event : true); 2694 for_each_sibling_event(sibling, leader) 2695 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); 2696 } 2697 2698 static void perf_event_throttle_group(struct perf_event *event) 2699 { 2700 struct perf_event *sibling, *leader = event->group_leader; 2701 2702 perf_event_throttle(leader); 2703 for_each_sibling_event(sibling, leader) 2704 perf_event_throttle(sibling); 2705 } 2706 2707 static int 2708 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2709 { 2710 struct perf_event_pmu_context *epc = event->pmu_ctx; 2711 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2712 int ret = 0; 2713 2714 WARN_ON_ONCE(event->ctx != ctx); 2715 2716 lockdep_assert_held(&ctx->lock); 2717 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 return 0; 2720 2721 WRITE_ONCE(event->oncpu, smp_processor_id()); 2722 /* 2723 * Order event::oncpu write to happen before the ACTIVE state is 2724 * visible. This allows perf_event_{stop,read}() to observe the correct 2725 * ->oncpu if it sees ACTIVE. 2726 */ 2727 smp_wmb(); 2728 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2729 2730 /* 2731 * Unthrottle events, since we scheduled we might have missed several 2732 * ticks already, also for a heavily scheduling task there is little 2733 * guarantee it'll get a tick in a timely manner. 2734 */ 2735 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) 2736 perf_event_unthrottle(event, false); 2737 2738 perf_pmu_disable(event->pmu); 2739 2740 perf_log_itrace_start(event); 2741 2742 if (event->pmu->add(event, PERF_EF_START)) { 2743 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2744 event->oncpu = -1; 2745 ret = -EAGAIN; 2746 goto out; 2747 } 2748 2749 if (!is_software_event(event)) 2750 cpc->active_oncpu++; 2751 if (is_event_in_freq_mode(event)) { 2752 ctx->nr_freq++; 2753 epc->nr_freq++; 2754 } 2755 if (event->attr.exclusive) 2756 cpc->exclusive = 1; 2757 2758 out: 2759 perf_pmu_enable(event->pmu); 2760 2761 return ret; 2762 } 2763 2764 static int 2765 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2766 { 2767 struct perf_event *event, *partial_group = NULL; 2768 struct pmu *pmu = group_event->pmu_ctx->pmu; 2769 2770 if (group_event->state == PERF_EVENT_STATE_OFF) 2771 return 0; 2772 2773 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2774 2775 if (event_sched_in(group_event, ctx)) 2776 goto error; 2777 2778 /* 2779 * Schedule in siblings as one group (if any): 2780 */ 2781 for_each_sibling_event(event, group_event) { 2782 if (event_sched_in(event, ctx)) { 2783 partial_group = event; 2784 goto group_error; 2785 } 2786 } 2787 2788 if (!pmu->commit_txn(pmu)) 2789 return 0; 2790 2791 group_error: 2792 /* 2793 * Groups can be scheduled in as one unit only, so undo any 2794 * partial group before returning: 2795 * The events up to the failed event are scheduled out normally. 2796 */ 2797 for_each_sibling_event(event, group_event) { 2798 if (event == partial_group) 2799 break; 2800 2801 event_sched_out(event, ctx); 2802 } 2803 event_sched_out(group_event, ctx); 2804 2805 error: 2806 pmu->cancel_txn(pmu); 2807 return -EAGAIN; 2808 } 2809 2810 /* 2811 * Work out whether we can put this event group on the CPU now. 2812 */ 2813 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2814 { 2815 struct perf_event_pmu_context *epc = event->pmu_ctx; 2816 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2817 2818 /* 2819 * Groups consisting entirely of software events can always go on. 2820 */ 2821 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2822 return 1; 2823 /* 2824 * If an exclusive group is already on, no other hardware 2825 * events can go on. 2826 */ 2827 if (cpc->exclusive) 2828 return 0; 2829 /* 2830 * If this group is exclusive and there are already 2831 * events on the CPU, it can't go on. 2832 */ 2833 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2834 return 0; 2835 /* 2836 * Otherwise, try to add it if all previous groups were able 2837 * to go on. 2838 */ 2839 return can_add_hw; 2840 } 2841 2842 static void add_event_to_ctx(struct perf_event *event, 2843 struct perf_event_context *ctx) 2844 { 2845 list_add_event(event, ctx); 2846 perf_group_attach(event); 2847 } 2848 2849 static void task_ctx_sched_out(struct perf_event_context *ctx, 2850 struct pmu *pmu, 2851 enum event_type_t event_type) 2852 { 2853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2854 2855 if (!cpuctx->task_ctx) 2856 return; 2857 2858 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2859 return; 2860 2861 ctx_sched_out(ctx, pmu, event_type); 2862 } 2863 2864 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2865 struct perf_event_context *ctx, 2866 struct pmu *pmu) 2867 { 2868 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2869 if (ctx) 2870 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2871 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2872 if (ctx) 2873 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2874 } 2875 2876 /* 2877 * We want to maintain the following priority of scheduling: 2878 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2879 * - task pinned (EVENT_PINNED) 2880 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2881 * - task flexible (EVENT_FLEXIBLE). 2882 * 2883 * In order to avoid unscheduling and scheduling back in everything every 2884 * time an event is added, only do it for the groups of equal priority and 2885 * below. 2886 * 2887 * This can be called after a batch operation on task events, in which case 2888 * event_type is a bit mask of the types of events involved. For CPU events, 2889 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2890 */ 2891 static void ctx_resched(struct perf_cpu_context *cpuctx, 2892 struct perf_event_context *task_ctx, 2893 struct pmu *pmu, enum event_type_t event_type) 2894 { 2895 bool cpu_event = !!(event_type & EVENT_CPU); 2896 struct perf_event_pmu_context *epc; 2897 2898 /* 2899 * If pinned groups are involved, flexible groups also need to be 2900 * scheduled out. 2901 */ 2902 if (event_type & EVENT_PINNED) 2903 event_type |= EVENT_FLEXIBLE; 2904 2905 event_type &= EVENT_ALL; 2906 2907 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2908 perf_pmu_disable(epc->pmu); 2909 2910 if (task_ctx) { 2911 for_each_epc(epc, task_ctx, pmu, false) 2912 perf_pmu_disable(epc->pmu); 2913 2914 task_ctx_sched_out(task_ctx, pmu, event_type); 2915 } 2916 2917 /* 2918 * Decide which cpu ctx groups to schedule out based on the types 2919 * of events that caused rescheduling: 2920 * - EVENT_CPU: schedule out corresponding groups; 2921 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2922 * - otherwise, do nothing more. 2923 */ 2924 if (cpu_event) 2925 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2926 else if (event_type & EVENT_PINNED) 2927 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2928 2929 perf_event_sched_in(cpuctx, task_ctx, pmu); 2930 2931 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2932 perf_pmu_enable(epc->pmu); 2933 2934 if (task_ctx) { 2935 for_each_epc(epc, task_ctx, pmu, false) 2936 perf_pmu_enable(epc->pmu); 2937 } 2938 } 2939 2940 void perf_pmu_resched(struct pmu *pmu) 2941 { 2942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2943 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2944 2945 perf_ctx_lock(cpuctx, task_ctx); 2946 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2947 perf_ctx_unlock(cpuctx, task_ctx); 2948 } 2949 2950 /* 2951 * Cross CPU call to install and enable a performance event 2952 * 2953 * Very similar to remote_function() + event_function() but cannot assume that 2954 * things like ctx->is_active and cpuctx->task_ctx are set. 2955 */ 2956 static int __perf_install_in_context(void *info) 2957 { 2958 struct perf_event *event = info; 2959 struct perf_event_context *ctx = event->ctx; 2960 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2961 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2962 bool reprogram = true; 2963 int ret = 0; 2964 2965 raw_spin_lock(&cpuctx->ctx.lock); 2966 if (ctx->task) { 2967 raw_spin_lock(&ctx->lock); 2968 task_ctx = ctx; 2969 2970 reprogram = (ctx->task == current); 2971 2972 /* 2973 * If the task is running, it must be running on this CPU, 2974 * otherwise we cannot reprogram things. 2975 * 2976 * If its not running, we don't care, ctx->lock will 2977 * serialize against it becoming runnable. 2978 */ 2979 if (task_curr(ctx->task) && !reprogram) { 2980 ret = -ESRCH; 2981 goto unlock; 2982 } 2983 2984 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2985 } else if (task_ctx) { 2986 raw_spin_lock(&task_ctx->lock); 2987 } 2988 2989 #ifdef CONFIG_CGROUP_PERF 2990 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2991 /* 2992 * If the current cgroup doesn't match the event's 2993 * cgroup, we should not try to schedule it. 2994 */ 2995 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2996 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2997 event->cgrp->css.cgroup); 2998 } 2999 #endif 3000 3001 if (reprogram) { 3002 ctx_time_freeze(cpuctx, ctx); 3003 add_event_to_ctx(event, ctx); 3004 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 3005 get_event_type(event)); 3006 } else { 3007 add_event_to_ctx(event, ctx); 3008 } 3009 3010 unlock: 3011 perf_ctx_unlock(cpuctx, task_ctx); 3012 3013 return ret; 3014 } 3015 3016 static bool exclusive_event_installable(struct perf_event *event, 3017 struct perf_event_context *ctx); 3018 3019 /* 3020 * Attach a performance event to a context. 3021 * 3022 * Very similar to event_function_call, see comment there. 3023 */ 3024 static void 3025 perf_install_in_context(struct perf_event_context *ctx, 3026 struct perf_event *event, 3027 int cpu) 3028 { 3029 struct task_struct *task = READ_ONCE(ctx->task); 3030 3031 lockdep_assert_held(&ctx->mutex); 3032 3033 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 3034 3035 if (event->cpu != -1) 3036 WARN_ON_ONCE(event->cpu != cpu); 3037 3038 /* 3039 * Ensures that if we can observe event->ctx, both the event and ctx 3040 * will be 'complete'. See perf_iterate_sb_cpu(). 3041 */ 3042 smp_store_release(&event->ctx, ctx); 3043 3044 /* 3045 * perf_event_attr::disabled events will not run and can be initialized 3046 * without IPI. Except when this is the first event for the context, in 3047 * that case we need the magic of the IPI to set ctx->is_active. 3048 * 3049 * The IOC_ENABLE that is sure to follow the creation of a disabled 3050 * event will issue the IPI and reprogram the hardware. 3051 */ 3052 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 3053 ctx->nr_events && !is_cgroup_event(event)) { 3054 raw_spin_lock_irq(&ctx->lock); 3055 if (ctx->task == TASK_TOMBSTONE) { 3056 raw_spin_unlock_irq(&ctx->lock); 3057 return; 3058 } 3059 add_event_to_ctx(event, ctx); 3060 raw_spin_unlock_irq(&ctx->lock); 3061 return; 3062 } 3063 3064 if (!task) { 3065 cpu_function_call(cpu, __perf_install_in_context, event); 3066 return; 3067 } 3068 3069 /* 3070 * Should not happen, we validate the ctx is still alive before calling. 3071 */ 3072 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 3073 return; 3074 3075 /* 3076 * Installing events is tricky because we cannot rely on ctx->is_active 3077 * to be set in case this is the nr_events 0 -> 1 transition. 3078 * 3079 * Instead we use task_curr(), which tells us if the task is running. 3080 * However, since we use task_curr() outside of rq::lock, we can race 3081 * against the actual state. This means the result can be wrong. 3082 * 3083 * If we get a false positive, we retry, this is harmless. 3084 * 3085 * If we get a false negative, things are complicated. If we are after 3086 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3087 * value must be correct. If we're before, it doesn't matter since 3088 * perf_event_context_sched_in() will program the counter. 3089 * 3090 * However, this hinges on the remote context switch having observed 3091 * our task->perf_event_ctxp[] store, such that it will in fact take 3092 * ctx::lock in perf_event_context_sched_in(). 3093 * 3094 * We do this by task_function_call(), if the IPI fails to hit the task 3095 * we know any future context switch of task must see the 3096 * perf_event_ctpx[] store. 3097 */ 3098 3099 /* 3100 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3101 * task_cpu() load, such that if the IPI then does not find the task 3102 * running, a future context switch of that task must observe the 3103 * store. 3104 */ 3105 smp_mb(); 3106 again: 3107 if (!task_function_call(task, __perf_install_in_context, event)) 3108 return; 3109 3110 raw_spin_lock_irq(&ctx->lock); 3111 task = ctx->task; 3112 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3113 /* 3114 * Cannot happen because we already checked above (which also 3115 * cannot happen), and we hold ctx->mutex, which serializes us 3116 * against perf_event_exit_task_context(). 3117 */ 3118 raw_spin_unlock_irq(&ctx->lock); 3119 return; 3120 } 3121 /* 3122 * If the task is not running, ctx->lock will avoid it becoming so, 3123 * thus we can safely install the event. 3124 */ 3125 if (task_curr(task)) { 3126 raw_spin_unlock_irq(&ctx->lock); 3127 goto again; 3128 } 3129 add_event_to_ctx(event, ctx); 3130 raw_spin_unlock_irq(&ctx->lock); 3131 } 3132 3133 /* 3134 * Cross CPU call to enable a performance event 3135 */ 3136 static void __perf_event_enable(struct perf_event *event, 3137 struct perf_cpu_context *cpuctx, 3138 struct perf_event_context *ctx, 3139 void *info) 3140 { 3141 struct perf_event *leader = event->group_leader; 3142 struct perf_event_context *task_ctx; 3143 3144 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3145 event->state <= PERF_EVENT_STATE_ERROR) 3146 return; 3147 3148 ctx_time_freeze(cpuctx, ctx); 3149 3150 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3151 perf_cgroup_event_enable(event, ctx); 3152 3153 if (!ctx->is_active) 3154 return; 3155 3156 if (!event_filter_match(event)) 3157 return; 3158 3159 /* 3160 * If the event is in a group and isn't the group leader, 3161 * then don't put it on unless the group is on. 3162 */ 3163 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3164 return; 3165 3166 task_ctx = cpuctx->task_ctx; 3167 if (ctx->task) 3168 WARN_ON_ONCE(task_ctx != ctx); 3169 3170 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3171 } 3172 3173 /* 3174 * Enable an event. 3175 * 3176 * If event->ctx is a cloned context, callers must make sure that 3177 * every task struct that event->ctx->task could possibly point to 3178 * remains valid. This condition is satisfied when called through 3179 * perf_event_for_each_child or perf_event_for_each as described 3180 * for perf_event_disable. 3181 */ 3182 static void _perf_event_enable(struct perf_event *event) 3183 { 3184 struct perf_event_context *ctx = event->ctx; 3185 3186 raw_spin_lock_irq(&ctx->lock); 3187 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3188 event->state < PERF_EVENT_STATE_ERROR) { 3189 out: 3190 raw_spin_unlock_irq(&ctx->lock); 3191 return; 3192 } 3193 3194 /* 3195 * If the event is in error state, clear that first. 3196 * 3197 * That way, if we see the event in error state below, we know that it 3198 * has gone back into error state, as distinct from the task having 3199 * been scheduled away before the cross-call arrived. 3200 */ 3201 if (event->state == PERF_EVENT_STATE_ERROR) { 3202 /* 3203 * Detached SIBLING events cannot leave ERROR state. 3204 */ 3205 if (event->event_caps & PERF_EV_CAP_SIBLING && 3206 event->group_leader == event) 3207 goto out; 3208 3209 event->state = PERF_EVENT_STATE_OFF; 3210 } 3211 raw_spin_unlock_irq(&ctx->lock); 3212 3213 event_function_call(event, __perf_event_enable, NULL); 3214 } 3215 3216 /* 3217 * See perf_event_disable(); 3218 */ 3219 void perf_event_enable(struct perf_event *event) 3220 { 3221 struct perf_event_context *ctx; 3222 3223 ctx = perf_event_ctx_lock(event); 3224 _perf_event_enable(event); 3225 perf_event_ctx_unlock(event, ctx); 3226 } 3227 EXPORT_SYMBOL_GPL(perf_event_enable); 3228 3229 struct stop_event_data { 3230 struct perf_event *event; 3231 unsigned int restart; 3232 }; 3233 3234 static int __perf_event_stop(void *info) 3235 { 3236 struct stop_event_data *sd = info; 3237 struct perf_event *event = sd->event; 3238 3239 /* if it's already INACTIVE, do nothing */ 3240 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3241 return 0; 3242 3243 /* matches smp_wmb() in event_sched_in() */ 3244 smp_rmb(); 3245 3246 /* 3247 * There is a window with interrupts enabled before we get here, 3248 * so we need to check again lest we try to stop another CPU's event. 3249 */ 3250 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3251 return -EAGAIN; 3252 3253 event->pmu->stop(event, PERF_EF_UPDATE); 3254 3255 /* 3256 * May race with the actual stop (through perf_pmu_output_stop()), 3257 * but it is only used for events with AUX ring buffer, and such 3258 * events will refuse to restart because of rb::aux_mmap_count==0, 3259 * see comments in perf_aux_output_begin(). 3260 * 3261 * Since this is happening on an event-local CPU, no trace is lost 3262 * while restarting. 3263 */ 3264 if (sd->restart) 3265 event->pmu->start(event, 0); 3266 3267 return 0; 3268 } 3269 3270 static int perf_event_stop(struct perf_event *event, int restart) 3271 { 3272 struct stop_event_data sd = { 3273 .event = event, 3274 .restart = restart, 3275 }; 3276 int ret = 0; 3277 3278 do { 3279 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3280 return 0; 3281 3282 /* matches smp_wmb() in event_sched_in() */ 3283 smp_rmb(); 3284 3285 /* 3286 * We only want to restart ACTIVE events, so if the event goes 3287 * inactive here (event->oncpu==-1), there's nothing more to do; 3288 * fall through with ret==-ENXIO. 3289 */ 3290 ret = cpu_function_call(READ_ONCE(event->oncpu), 3291 __perf_event_stop, &sd); 3292 } while (ret == -EAGAIN); 3293 3294 return ret; 3295 } 3296 3297 /* 3298 * In order to contain the amount of racy and tricky in the address filter 3299 * configuration management, it is a two part process: 3300 * 3301 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3302 * we update the addresses of corresponding vmas in 3303 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3304 * (p2) when an event is scheduled in (pmu::add), it calls 3305 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3306 * if the generation has changed since the previous call. 3307 * 3308 * If (p1) happens while the event is active, we restart it to force (p2). 3309 * 3310 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3311 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3312 * ioctl; 3313 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3314 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3315 * for reading; 3316 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3317 * of exec. 3318 */ 3319 void perf_event_addr_filters_sync(struct perf_event *event) 3320 { 3321 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3322 3323 if (!has_addr_filter(event)) 3324 return; 3325 3326 raw_spin_lock(&ifh->lock); 3327 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3328 event->pmu->addr_filters_sync(event); 3329 event->hw.addr_filters_gen = event->addr_filters_gen; 3330 } 3331 raw_spin_unlock(&ifh->lock); 3332 } 3333 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3334 3335 static int _perf_event_refresh(struct perf_event *event, int refresh) 3336 { 3337 /* 3338 * not supported on inherited events 3339 */ 3340 if (event->attr.inherit || !is_sampling_event(event)) 3341 return -EINVAL; 3342 3343 atomic_add(refresh, &event->event_limit); 3344 _perf_event_enable(event); 3345 3346 return 0; 3347 } 3348 3349 /* 3350 * See perf_event_disable() 3351 */ 3352 int perf_event_refresh(struct perf_event *event, int refresh) 3353 { 3354 struct perf_event_context *ctx; 3355 int ret; 3356 3357 ctx = perf_event_ctx_lock(event); 3358 ret = _perf_event_refresh(event, refresh); 3359 perf_event_ctx_unlock(event, ctx); 3360 3361 return ret; 3362 } 3363 EXPORT_SYMBOL_GPL(perf_event_refresh); 3364 3365 static int perf_event_modify_breakpoint(struct perf_event *bp, 3366 struct perf_event_attr *attr) 3367 { 3368 int err; 3369 3370 _perf_event_disable(bp); 3371 3372 err = modify_user_hw_breakpoint_check(bp, attr, true); 3373 3374 if (!bp->attr.disabled) 3375 _perf_event_enable(bp); 3376 3377 return err; 3378 } 3379 3380 /* 3381 * Copy event-type-independent attributes that may be modified. 3382 */ 3383 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3384 const struct perf_event_attr *from) 3385 { 3386 to->sig_data = from->sig_data; 3387 } 3388 3389 static int perf_event_modify_attr(struct perf_event *event, 3390 struct perf_event_attr *attr) 3391 { 3392 int (*func)(struct perf_event *, struct perf_event_attr *); 3393 struct perf_event *child; 3394 int err; 3395 3396 if (event->attr.type != attr->type) 3397 return -EINVAL; 3398 3399 switch (event->attr.type) { 3400 case PERF_TYPE_BREAKPOINT: 3401 func = perf_event_modify_breakpoint; 3402 break; 3403 default: 3404 /* Place holder for future additions. */ 3405 return -EOPNOTSUPP; 3406 } 3407 3408 WARN_ON_ONCE(event->ctx->parent_ctx); 3409 3410 mutex_lock(&event->child_mutex); 3411 /* 3412 * Event-type-independent attributes must be copied before event-type 3413 * modification, which will validate that final attributes match the 3414 * source attributes after all relevant attributes have been copied. 3415 */ 3416 perf_event_modify_copy_attr(&event->attr, attr); 3417 err = func(event, attr); 3418 if (err) 3419 goto out; 3420 list_for_each_entry(child, &event->child_list, child_list) { 3421 perf_event_modify_copy_attr(&child->attr, attr); 3422 err = func(child, attr); 3423 if (err) 3424 goto out; 3425 } 3426 out: 3427 mutex_unlock(&event->child_mutex); 3428 return err; 3429 } 3430 3431 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3432 enum event_type_t event_type) 3433 { 3434 struct perf_event_context *ctx = pmu_ctx->ctx; 3435 struct perf_event *event, *tmp; 3436 struct pmu *pmu = pmu_ctx->pmu; 3437 3438 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3439 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3440 3441 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3442 cpc->task_epc = NULL; 3443 } 3444 3445 if (!(event_type & EVENT_ALL)) 3446 return; 3447 3448 perf_pmu_disable(pmu); 3449 if (event_type & EVENT_PINNED) { 3450 list_for_each_entry_safe(event, tmp, 3451 &pmu_ctx->pinned_active, 3452 active_list) 3453 group_sched_out(event, ctx); 3454 } 3455 3456 if (event_type & EVENT_FLEXIBLE) { 3457 list_for_each_entry_safe(event, tmp, 3458 &pmu_ctx->flexible_active, 3459 active_list) 3460 group_sched_out(event, ctx); 3461 /* 3462 * Since we cleared EVENT_FLEXIBLE, also clear 3463 * rotate_necessary, is will be reset by 3464 * ctx_flexible_sched_in() when needed. 3465 */ 3466 pmu_ctx->rotate_necessary = 0; 3467 } 3468 perf_pmu_enable(pmu); 3469 } 3470 3471 /* 3472 * Be very careful with the @pmu argument since this will change ctx state. 3473 * The @pmu argument works for ctx_resched(), because that is symmetric in 3474 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3475 * 3476 * However, if you were to be asymmetrical, you could end up with messed up 3477 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3478 * be active. 3479 */ 3480 static void 3481 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3482 { 3483 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3484 struct perf_event_pmu_context *pmu_ctx; 3485 int is_active = ctx->is_active; 3486 bool cgroup = event_type & EVENT_CGROUP; 3487 3488 event_type &= ~EVENT_CGROUP; 3489 3490 lockdep_assert_held(&ctx->lock); 3491 3492 if (likely(!ctx->nr_events)) { 3493 /* 3494 * See __perf_remove_from_context(). 3495 */ 3496 WARN_ON_ONCE(ctx->is_active); 3497 if (ctx->task) 3498 WARN_ON_ONCE(cpuctx->task_ctx); 3499 return; 3500 } 3501 3502 /* 3503 * Always update time if it was set; not only when it changes. 3504 * Otherwise we can 'forget' to update time for any but the last 3505 * context we sched out. For example: 3506 * 3507 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3508 * ctx_sched_out(.event_type = EVENT_PINNED) 3509 * 3510 * would only update time for the pinned events. 3511 */ 3512 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3513 3514 /* 3515 * CPU-release for the below ->is_active store, 3516 * see __load_acquire() in perf_event_time_now() 3517 */ 3518 barrier(); 3519 ctx->is_active &= ~event_type; 3520 3521 if (!(ctx->is_active & EVENT_ALL)) { 3522 /* 3523 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3524 * does not observe a hole. perf_ctx_unlock() will clean up. 3525 */ 3526 if (ctx->is_active & EVENT_FROZEN) 3527 ctx->is_active &= EVENT_TIME_FROZEN; 3528 else 3529 ctx->is_active = 0; 3530 } 3531 3532 if (ctx->task) { 3533 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3534 if (!(ctx->is_active & EVENT_ALL)) 3535 cpuctx->task_ctx = NULL; 3536 } 3537 3538 is_active ^= ctx->is_active; /* changed bits */ 3539 3540 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3541 __pmu_ctx_sched_out(pmu_ctx, is_active); 3542 } 3543 3544 /* 3545 * Test whether two contexts are equivalent, i.e. whether they have both been 3546 * cloned from the same version of the same context. 3547 * 3548 * Equivalence is measured using a generation number in the context that is 3549 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3550 * and list_del_event(). 3551 */ 3552 static int context_equiv(struct perf_event_context *ctx1, 3553 struct perf_event_context *ctx2) 3554 { 3555 lockdep_assert_held(&ctx1->lock); 3556 lockdep_assert_held(&ctx2->lock); 3557 3558 /* Pinning disables the swap optimization */ 3559 if (ctx1->pin_count || ctx2->pin_count) 3560 return 0; 3561 3562 /* If ctx1 is the parent of ctx2 */ 3563 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3564 return 1; 3565 3566 /* If ctx2 is the parent of ctx1 */ 3567 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3568 return 1; 3569 3570 /* 3571 * If ctx1 and ctx2 have the same parent; we flatten the parent 3572 * hierarchy, see perf_event_init_context(). 3573 */ 3574 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3575 ctx1->parent_gen == ctx2->parent_gen) 3576 return 1; 3577 3578 /* Unmatched */ 3579 return 0; 3580 } 3581 3582 static void __perf_event_sync_stat(struct perf_event *event, 3583 struct perf_event *next_event) 3584 { 3585 u64 value; 3586 3587 if (!event->attr.inherit_stat) 3588 return; 3589 3590 /* 3591 * Update the event value, we cannot use perf_event_read() 3592 * because we're in the middle of a context switch and have IRQs 3593 * disabled, which upsets smp_call_function_single(), however 3594 * we know the event must be on the current CPU, therefore we 3595 * don't need to use it. 3596 */ 3597 perf_pmu_read(event); 3598 3599 perf_event_update_time(event); 3600 3601 /* 3602 * In order to keep per-task stats reliable we need to flip the event 3603 * values when we flip the contexts. 3604 */ 3605 value = local64_read(&next_event->count); 3606 value = local64_xchg(&event->count, value); 3607 local64_set(&next_event->count, value); 3608 3609 swap(event->total_time_enabled, next_event->total_time_enabled); 3610 swap(event->total_time_running, next_event->total_time_running); 3611 3612 /* 3613 * Since we swizzled the values, update the user visible data too. 3614 */ 3615 perf_event_update_userpage(event); 3616 perf_event_update_userpage(next_event); 3617 } 3618 3619 static void perf_event_sync_stat(struct perf_event_context *ctx, 3620 struct perf_event_context *next_ctx) 3621 { 3622 struct perf_event *event, *next_event; 3623 3624 if (!ctx->nr_stat) 3625 return; 3626 3627 update_context_time(ctx); 3628 3629 event = list_first_entry(&ctx->event_list, 3630 struct perf_event, event_entry); 3631 3632 next_event = list_first_entry(&next_ctx->event_list, 3633 struct perf_event, event_entry); 3634 3635 while (&event->event_entry != &ctx->event_list && 3636 &next_event->event_entry != &next_ctx->event_list) { 3637 3638 __perf_event_sync_stat(event, next_event); 3639 3640 event = list_next_entry(event, event_entry); 3641 next_event = list_next_entry(next_event, event_entry); 3642 } 3643 } 3644 3645 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3646 struct task_struct *task, bool sched_in) 3647 { 3648 struct perf_event_pmu_context *pmu_ctx; 3649 struct perf_cpu_pmu_context *cpc; 3650 3651 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3652 cpc = this_cpc(pmu_ctx->pmu); 3653 3654 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3655 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3656 } 3657 } 3658 3659 static void 3660 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3661 { 3662 struct perf_event_context *ctx = task->perf_event_ctxp; 3663 struct perf_event_context *next_ctx; 3664 struct perf_event_context *parent, *next_parent; 3665 int do_switch = 1; 3666 3667 if (likely(!ctx)) 3668 return; 3669 3670 rcu_read_lock(); 3671 next_ctx = rcu_dereference(next->perf_event_ctxp); 3672 if (!next_ctx) 3673 goto unlock; 3674 3675 parent = rcu_dereference(ctx->parent_ctx); 3676 next_parent = rcu_dereference(next_ctx->parent_ctx); 3677 3678 /* If neither context have a parent context; they cannot be clones. */ 3679 if (!parent && !next_parent) 3680 goto unlock; 3681 3682 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3683 /* 3684 * Looks like the two contexts are clones, so we might be 3685 * able to optimize the context switch. We lock both 3686 * contexts and check that they are clones under the 3687 * lock (including re-checking that neither has been 3688 * uncloned in the meantime). It doesn't matter which 3689 * order we take the locks because no other cpu could 3690 * be trying to lock both of these tasks. 3691 */ 3692 raw_spin_lock(&ctx->lock); 3693 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3694 if (context_equiv(ctx, next_ctx)) { 3695 3696 perf_ctx_disable(ctx, false); 3697 3698 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3699 if (local_read(&ctx->nr_no_switch_fast) || 3700 local_read(&next_ctx->nr_no_switch_fast)) { 3701 /* 3702 * Must not swap out ctx when there's pending 3703 * events that rely on the ctx->task relation. 3704 * 3705 * Likewise, when a context contains inherit + 3706 * SAMPLE_READ events they should be switched 3707 * out using the slow path so that they are 3708 * treated as if they were distinct contexts. 3709 */ 3710 raw_spin_unlock(&next_ctx->lock); 3711 rcu_read_unlock(); 3712 goto inside_switch; 3713 } 3714 3715 WRITE_ONCE(ctx->task, next); 3716 WRITE_ONCE(next_ctx->task, task); 3717 3718 perf_ctx_sched_task_cb(ctx, task, false); 3719 3720 perf_ctx_enable(ctx, false); 3721 3722 /* 3723 * RCU_INIT_POINTER here is safe because we've not 3724 * modified the ctx and the above modification of 3725 * ctx->task is immaterial since this value is 3726 * always verified under ctx->lock which we're now 3727 * holding. 3728 */ 3729 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3730 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3731 3732 do_switch = 0; 3733 3734 perf_event_sync_stat(ctx, next_ctx); 3735 } 3736 raw_spin_unlock(&next_ctx->lock); 3737 raw_spin_unlock(&ctx->lock); 3738 } 3739 unlock: 3740 rcu_read_unlock(); 3741 3742 if (do_switch) { 3743 raw_spin_lock(&ctx->lock); 3744 perf_ctx_disable(ctx, false); 3745 3746 inside_switch: 3747 perf_ctx_sched_task_cb(ctx, task, false); 3748 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3749 3750 perf_ctx_enable(ctx, false); 3751 raw_spin_unlock(&ctx->lock); 3752 } 3753 } 3754 3755 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3756 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3757 3758 void perf_sched_cb_dec(struct pmu *pmu) 3759 { 3760 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3761 3762 this_cpu_dec(perf_sched_cb_usages); 3763 barrier(); 3764 3765 if (!--cpc->sched_cb_usage) 3766 list_del(&cpc->sched_cb_entry); 3767 } 3768 3769 3770 void perf_sched_cb_inc(struct pmu *pmu) 3771 { 3772 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3773 3774 if (!cpc->sched_cb_usage++) 3775 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3776 3777 barrier(); 3778 this_cpu_inc(perf_sched_cb_usages); 3779 } 3780 3781 /* 3782 * This function provides the context switch callback to the lower code 3783 * layer. It is invoked ONLY when the context switch callback is enabled. 3784 * 3785 * This callback is relevant even to per-cpu events; for example multi event 3786 * PEBS requires this to provide PID/TID information. This requires we flush 3787 * all queued PEBS records before we context switch to a new task. 3788 */ 3789 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3790 struct task_struct *task, bool sched_in) 3791 { 3792 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3793 struct pmu *pmu; 3794 3795 pmu = cpc->epc.pmu; 3796 3797 /* software PMUs will not have sched_task */ 3798 if (WARN_ON_ONCE(!pmu->sched_task)) 3799 return; 3800 3801 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3802 perf_pmu_disable(pmu); 3803 3804 pmu->sched_task(cpc->task_epc, task, sched_in); 3805 3806 perf_pmu_enable(pmu); 3807 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3808 } 3809 3810 static void perf_pmu_sched_task(struct task_struct *prev, 3811 struct task_struct *next, 3812 bool sched_in) 3813 { 3814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3815 struct perf_cpu_pmu_context *cpc; 3816 3817 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3818 if (prev == next || cpuctx->task_ctx) 3819 return; 3820 3821 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3822 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3823 } 3824 3825 static void perf_event_switch(struct task_struct *task, 3826 struct task_struct *next_prev, bool sched_in); 3827 3828 /* 3829 * Called from scheduler to remove the events of the current task, 3830 * with interrupts disabled. 3831 * 3832 * We stop each event and update the event value in event->count. 3833 * 3834 * This does not protect us against NMI, but disable() 3835 * sets the disabled bit in the control field of event _before_ 3836 * accessing the event control register. If a NMI hits, then it will 3837 * not restart the event. 3838 */ 3839 void __perf_event_task_sched_out(struct task_struct *task, 3840 struct task_struct *next) 3841 { 3842 if (__this_cpu_read(perf_sched_cb_usages)) 3843 perf_pmu_sched_task(task, next, false); 3844 3845 if (atomic_read(&nr_switch_events)) 3846 perf_event_switch(task, next, false); 3847 3848 perf_event_context_sched_out(task, next); 3849 3850 /* 3851 * if cgroup events exist on this CPU, then we need 3852 * to check if we have to switch out PMU state. 3853 * cgroup event are system-wide mode only 3854 */ 3855 perf_cgroup_switch(next); 3856 } 3857 3858 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3859 { 3860 const struct perf_event *le = *(const struct perf_event **)l; 3861 const struct perf_event *re = *(const struct perf_event **)r; 3862 3863 return le->group_index < re->group_index; 3864 } 3865 3866 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3867 3868 static const struct min_heap_callbacks perf_min_heap = { 3869 .less = perf_less_group_idx, 3870 .swp = NULL, 3871 }; 3872 3873 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3874 { 3875 struct perf_event **itrs = heap->data; 3876 3877 if (event) { 3878 itrs[heap->nr] = event; 3879 heap->nr++; 3880 } 3881 } 3882 3883 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3884 { 3885 struct perf_cpu_pmu_context *cpc; 3886 3887 if (!pmu_ctx->ctx->task) 3888 return; 3889 3890 cpc = this_cpc(pmu_ctx->pmu); 3891 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3892 cpc->task_epc = pmu_ctx; 3893 } 3894 3895 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3896 struct perf_event_groups *groups, int cpu, 3897 struct pmu *pmu, 3898 int (*func)(struct perf_event *, void *), 3899 void *data) 3900 { 3901 #ifdef CONFIG_CGROUP_PERF 3902 struct cgroup_subsys_state *css = NULL; 3903 #endif 3904 struct perf_cpu_context *cpuctx = NULL; 3905 /* Space for per CPU and/or any CPU event iterators. */ 3906 struct perf_event *itrs[2]; 3907 struct perf_event_min_heap event_heap; 3908 struct perf_event **evt; 3909 int ret; 3910 3911 if (pmu->filter && pmu->filter(pmu, cpu)) 3912 return 0; 3913 3914 if (!ctx->task) { 3915 cpuctx = this_cpu_ptr(&perf_cpu_context); 3916 event_heap = (struct perf_event_min_heap){ 3917 .data = cpuctx->heap, 3918 .nr = 0, 3919 .size = cpuctx->heap_size, 3920 }; 3921 3922 lockdep_assert_held(&cpuctx->ctx.lock); 3923 3924 #ifdef CONFIG_CGROUP_PERF 3925 if (cpuctx->cgrp) 3926 css = &cpuctx->cgrp->css; 3927 #endif 3928 } else { 3929 event_heap = (struct perf_event_min_heap){ 3930 .data = itrs, 3931 .nr = 0, 3932 .size = ARRAY_SIZE(itrs), 3933 }; 3934 /* Events not within a CPU context may be on any CPU. */ 3935 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3936 } 3937 evt = event_heap.data; 3938 3939 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3940 3941 #ifdef CONFIG_CGROUP_PERF 3942 for (; css; css = css->parent) 3943 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3944 #endif 3945 3946 if (event_heap.nr) { 3947 __link_epc((*evt)->pmu_ctx); 3948 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3949 } 3950 3951 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3952 3953 while (event_heap.nr) { 3954 ret = func(*evt, data); 3955 if (ret) 3956 return ret; 3957 3958 *evt = perf_event_groups_next(*evt, pmu); 3959 if (*evt) 3960 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3961 else 3962 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3963 } 3964 3965 return 0; 3966 } 3967 3968 /* 3969 * Because the userpage is strictly per-event (there is no concept of context, 3970 * so there cannot be a context indirection), every userpage must be updated 3971 * when context time starts :-( 3972 * 3973 * IOW, we must not miss EVENT_TIME edges. 3974 */ 3975 static inline bool event_update_userpage(struct perf_event *event) 3976 { 3977 if (likely(!refcount_read(&event->mmap_count))) 3978 return false; 3979 3980 perf_event_update_time(event); 3981 perf_event_update_userpage(event); 3982 3983 return true; 3984 } 3985 3986 static inline void group_update_userpage(struct perf_event *group_event) 3987 { 3988 struct perf_event *event; 3989 3990 if (!event_update_userpage(group_event)) 3991 return; 3992 3993 for_each_sibling_event(event, group_event) 3994 event_update_userpage(event); 3995 } 3996 3997 static int merge_sched_in(struct perf_event *event, void *data) 3998 { 3999 struct perf_event_context *ctx = event->ctx; 4000 int *can_add_hw = data; 4001 4002 if (event->state <= PERF_EVENT_STATE_OFF) 4003 return 0; 4004 4005 if (!event_filter_match(event)) 4006 return 0; 4007 4008 if (group_can_go_on(event, *can_add_hw)) { 4009 if (!group_sched_in(event, ctx)) 4010 list_add_tail(&event->active_list, get_event_list(event)); 4011 } 4012 4013 if (event->state == PERF_EVENT_STATE_INACTIVE) { 4014 *can_add_hw = 0; 4015 if (event->attr.pinned) { 4016 perf_cgroup_event_disable(event, ctx); 4017 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 4018 4019 if (*perf_event_fasync(event)) 4020 event->pending_kill = POLL_ERR; 4021 4022 perf_event_wakeup(event); 4023 } else { 4024 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 4025 4026 event->pmu_ctx->rotate_necessary = 1; 4027 perf_mux_hrtimer_restart(cpc); 4028 group_update_userpage(event); 4029 } 4030 } 4031 4032 return 0; 4033 } 4034 4035 static void pmu_groups_sched_in(struct perf_event_context *ctx, 4036 struct perf_event_groups *groups, 4037 struct pmu *pmu) 4038 { 4039 int can_add_hw = 1; 4040 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 4041 merge_sched_in, &can_add_hw); 4042 } 4043 4044 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 4045 enum event_type_t event_type) 4046 { 4047 struct perf_event_context *ctx = pmu_ctx->ctx; 4048 4049 if (event_type & EVENT_PINNED) 4050 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 4051 if (event_type & EVENT_FLEXIBLE) 4052 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 4053 } 4054 4055 static void 4056 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 4057 { 4058 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4059 struct perf_event_pmu_context *pmu_ctx; 4060 int is_active = ctx->is_active; 4061 bool cgroup = event_type & EVENT_CGROUP; 4062 4063 event_type &= ~EVENT_CGROUP; 4064 4065 lockdep_assert_held(&ctx->lock); 4066 4067 if (likely(!ctx->nr_events)) 4068 return; 4069 4070 if (!(is_active & EVENT_TIME)) { 4071 /* start ctx time */ 4072 __update_context_time(ctx, false); 4073 perf_cgroup_set_timestamp(cpuctx); 4074 /* 4075 * CPU-release for the below ->is_active store, 4076 * see __load_acquire() in perf_event_time_now() 4077 */ 4078 barrier(); 4079 } 4080 4081 ctx->is_active |= (event_type | EVENT_TIME); 4082 if (ctx->task) { 4083 if (!(is_active & EVENT_ALL)) 4084 cpuctx->task_ctx = ctx; 4085 else 4086 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4087 } 4088 4089 is_active ^= ctx->is_active; /* changed bits */ 4090 4091 /* 4092 * First go through the list and put on any pinned groups 4093 * in order to give them the best chance of going on. 4094 */ 4095 if (is_active & EVENT_PINNED) { 4096 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4097 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4098 } 4099 4100 /* Then walk through the lower prio flexible groups */ 4101 if (is_active & EVENT_FLEXIBLE) { 4102 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4103 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4104 } 4105 } 4106 4107 static void perf_event_context_sched_in(struct task_struct *task) 4108 { 4109 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4110 struct perf_event_context *ctx; 4111 4112 rcu_read_lock(); 4113 ctx = rcu_dereference(task->perf_event_ctxp); 4114 if (!ctx) 4115 goto rcu_unlock; 4116 4117 if (cpuctx->task_ctx == ctx) { 4118 perf_ctx_lock(cpuctx, ctx); 4119 perf_ctx_disable(ctx, false); 4120 4121 perf_ctx_sched_task_cb(ctx, task, true); 4122 4123 perf_ctx_enable(ctx, false); 4124 perf_ctx_unlock(cpuctx, ctx); 4125 goto rcu_unlock; 4126 } 4127 4128 perf_ctx_lock(cpuctx, ctx); 4129 /* 4130 * We must check ctx->nr_events while holding ctx->lock, such 4131 * that we serialize against perf_install_in_context(). 4132 */ 4133 if (!ctx->nr_events) 4134 goto unlock; 4135 4136 perf_ctx_disable(ctx, false); 4137 /* 4138 * We want to keep the following priority order: 4139 * cpu pinned (that don't need to move), task pinned, 4140 * cpu flexible, task flexible. 4141 * 4142 * However, if task's ctx is not carrying any pinned 4143 * events, no need to flip the cpuctx's events around. 4144 */ 4145 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4146 perf_ctx_disable(&cpuctx->ctx, false); 4147 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4148 } 4149 4150 perf_event_sched_in(cpuctx, ctx, NULL); 4151 4152 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4153 4154 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4155 perf_ctx_enable(&cpuctx->ctx, false); 4156 4157 perf_ctx_enable(ctx, false); 4158 4159 unlock: 4160 perf_ctx_unlock(cpuctx, ctx); 4161 rcu_unlock: 4162 rcu_read_unlock(); 4163 } 4164 4165 /* 4166 * Called from scheduler to add the events of the current task 4167 * with interrupts disabled. 4168 * 4169 * We restore the event value and then enable it. 4170 * 4171 * This does not protect us against NMI, but enable() 4172 * sets the enabled bit in the control field of event _before_ 4173 * accessing the event control register. If a NMI hits, then it will 4174 * keep the event running. 4175 */ 4176 void __perf_event_task_sched_in(struct task_struct *prev, 4177 struct task_struct *task) 4178 { 4179 perf_event_context_sched_in(task); 4180 4181 if (atomic_read(&nr_switch_events)) 4182 perf_event_switch(task, prev, true); 4183 4184 if (__this_cpu_read(perf_sched_cb_usages)) 4185 perf_pmu_sched_task(prev, task, true); 4186 } 4187 4188 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4189 { 4190 u64 frequency = event->attr.sample_freq; 4191 u64 sec = NSEC_PER_SEC; 4192 u64 divisor, dividend; 4193 4194 int count_fls, nsec_fls, frequency_fls, sec_fls; 4195 4196 count_fls = fls64(count); 4197 nsec_fls = fls64(nsec); 4198 frequency_fls = fls64(frequency); 4199 sec_fls = 30; 4200 4201 /* 4202 * We got @count in @nsec, with a target of sample_freq HZ 4203 * the target period becomes: 4204 * 4205 * @count * 10^9 4206 * period = ------------------- 4207 * @nsec * sample_freq 4208 * 4209 */ 4210 4211 /* 4212 * Reduce accuracy by one bit such that @a and @b converge 4213 * to a similar magnitude. 4214 */ 4215 #define REDUCE_FLS(a, b) \ 4216 do { \ 4217 if (a##_fls > b##_fls) { \ 4218 a >>= 1; \ 4219 a##_fls--; \ 4220 } else { \ 4221 b >>= 1; \ 4222 b##_fls--; \ 4223 } \ 4224 } while (0) 4225 4226 /* 4227 * Reduce accuracy until either term fits in a u64, then proceed with 4228 * the other, so that finally we can do a u64/u64 division. 4229 */ 4230 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4231 REDUCE_FLS(nsec, frequency); 4232 REDUCE_FLS(sec, count); 4233 } 4234 4235 if (count_fls + sec_fls > 64) { 4236 divisor = nsec * frequency; 4237 4238 while (count_fls + sec_fls > 64) { 4239 REDUCE_FLS(count, sec); 4240 divisor >>= 1; 4241 } 4242 4243 dividend = count * sec; 4244 } else { 4245 dividend = count * sec; 4246 4247 while (nsec_fls + frequency_fls > 64) { 4248 REDUCE_FLS(nsec, frequency); 4249 dividend >>= 1; 4250 } 4251 4252 divisor = nsec * frequency; 4253 } 4254 4255 if (!divisor) 4256 return dividend; 4257 4258 return div64_u64(dividend, divisor); 4259 } 4260 4261 static DEFINE_PER_CPU(int, perf_throttled_count); 4262 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4263 4264 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4265 { 4266 struct hw_perf_event *hwc = &event->hw; 4267 s64 period, sample_period; 4268 s64 delta; 4269 4270 period = perf_calculate_period(event, nsec, count); 4271 4272 delta = (s64)(period - hwc->sample_period); 4273 if (delta >= 0) 4274 delta += 7; 4275 else 4276 delta -= 7; 4277 delta /= 8; /* low pass filter */ 4278 4279 sample_period = hwc->sample_period + delta; 4280 4281 if (!sample_period) 4282 sample_period = 1; 4283 4284 hwc->sample_period = sample_period; 4285 4286 if (local64_read(&hwc->period_left) > 8*sample_period) { 4287 if (disable) 4288 event->pmu->stop(event, PERF_EF_UPDATE); 4289 4290 local64_set(&hwc->period_left, 0); 4291 4292 if (disable) 4293 event->pmu->start(event, PERF_EF_RELOAD); 4294 } 4295 } 4296 4297 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4298 { 4299 struct perf_event *event; 4300 struct hw_perf_event *hwc; 4301 u64 now, period = TICK_NSEC; 4302 s64 delta; 4303 4304 list_for_each_entry(event, event_list, active_list) { 4305 if (event->state != PERF_EVENT_STATE_ACTIVE) 4306 continue; 4307 4308 // XXX use visit thingy to avoid the -1,cpu match 4309 if (!event_filter_match(event)) 4310 continue; 4311 4312 hwc = &event->hw; 4313 4314 if (hwc->interrupts == MAX_INTERRUPTS) 4315 perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); 4316 4317 if (!is_event_in_freq_mode(event)) 4318 continue; 4319 4320 /* 4321 * stop the event and update event->count 4322 */ 4323 event->pmu->stop(event, PERF_EF_UPDATE); 4324 4325 now = local64_read(&event->count); 4326 delta = now - hwc->freq_count_stamp; 4327 hwc->freq_count_stamp = now; 4328 4329 /* 4330 * restart the event 4331 * reload only if value has changed 4332 * we have stopped the event so tell that 4333 * to perf_adjust_period() to avoid stopping it 4334 * twice. 4335 */ 4336 if (delta > 0) 4337 perf_adjust_period(event, period, delta, false); 4338 4339 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4340 } 4341 } 4342 4343 /* 4344 * combine freq adjustment with unthrottling to avoid two passes over the 4345 * events. At the same time, make sure, having freq events does not change 4346 * the rate of unthrottling as that would introduce bias. 4347 */ 4348 static void 4349 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4350 { 4351 struct perf_event_pmu_context *pmu_ctx; 4352 4353 /* 4354 * only need to iterate over all events iff: 4355 * - context have events in frequency mode (needs freq adjust) 4356 * - there are events to unthrottle on this cpu 4357 */ 4358 if (!(ctx->nr_freq || unthrottle)) 4359 return; 4360 4361 raw_spin_lock(&ctx->lock); 4362 4363 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4364 if (!(pmu_ctx->nr_freq || unthrottle)) 4365 continue; 4366 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4367 continue; 4368 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4369 continue; 4370 4371 perf_pmu_disable(pmu_ctx->pmu); 4372 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4373 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4374 perf_pmu_enable(pmu_ctx->pmu); 4375 } 4376 4377 raw_spin_unlock(&ctx->lock); 4378 } 4379 4380 /* 4381 * Move @event to the tail of the @ctx's elegible events. 4382 */ 4383 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4384 { 4385 /* 4386 * Rotate the first entry last of non-pinned groups. Rotation might be 4387 * disabled by the inheritance code. 4388 */ 4389 if (ctx->rotate_disable) 4390 return; 4391 4392 perf_event_groups_delete(&ctx->flexible_groups, event); 4393 perf_event_groups_insert(&ctx->flexible_groups, event); 4394 } 4395 4396 /* pick an event from the flexible_groups to rotate */ 4397 static inline struct perf_event * 4398 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4399 { 4400 struct perf_event *event; 4401 struct rb_node *node; 4402 struct rb_root *tree; 4403 struct __group_key key = { 4404 .pmu = pmu_ctx->pmu, 4405 }; 4406 4407 /* pick the first active flexible event */ 4408 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4409 struct perf_event, active_list); 4410 if (event) 4411 goto out; 4412 4413 /* if no active flexible event, pick the first event */ 4414 tree = &pmu_ctx->ctx->flexible_groups.tree; 4415 4416 if (!pmu_ctx->ctx->task) { 4417 key.cpu = smp_processor_id(); 4418 4419 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4420 if (node) 4421 event = __node_2_pe(node); 4422 goto out; 4423 } 4424 4425 key.cpu = -1; 4426 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4427 if (node) { 4428 event = __node_2_pe(node); 4429 goto out; 4430 } 4431 4432 key.cpu = smp_processor_id(); 4433 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4434 if (node) 4435 event = __node_2_pe(node); 4436 4437 out: 4438 /* 4439 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4440 * finds there are unschedulable events, it will set it again. 4441 */ 4442 pmu_ctx->rotate_necessary = 0; 4443 4444 return event; 4445 } 4446 4447 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4448 { 4449 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4450 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4451 struct perf_event *cpu_event = NULL, *task_event = NULL; 4452 int cpu_rotate, task_rotate; 4453 struct pmu *pmu; 4454 4455 /* 4456 * Since we run this from IRQ context, nobody can install new 4457 * events, thus the event count values are stable. 4458 */ 4459 4460 cpu_epc = &cpc->epc; 4461 pmu = cpu_epc->pmu; 4462 task_epc = cpc->task_epc; 4463 4464 cpu_rotate = cpu_epc->rotate_necessary; 4465 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4466 4467 if (!(cpu_rotate || task_rotate)) 4468 return false; 4469 4470 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4471 perf_pmu_disable(pmu); 4472 4473 if (task_rotate) 4474 task_event = ctx_event_to_rotate(task_epc); 4475 if (cpu_rotate) 4476 cpu_event = ctx_event_to_rotate(cpu_epc); 4477 4478 /* 4479 * As per the order given at ctx_resched() first 'pop' task flexible 4480 * and then, if needed CPU flexible. 4481 */ 4482 if (task_event || (task_epc && cpu_event)) { 4483 update_context_time(task_epc->ctx); 4484 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4485 } 4486 4487 if (cpu_event) { 4488 update_context_time(&cpuctx->ctx); 4489 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4490 rotate_ctx(&cpuctx->ctx, cpu_event); 4491 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4492 } 4493 4494 if (task_event) 4495 rotate_ctx(task_epc->ctx, task_event); 4496 4497 if (task_event || (task_epc && cpu_event)) 4498 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4499 4500 perf_pmu_enable(pmu); 4501 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4502 4503 return true; 4504 } 4505 4506 void perf_event_task_tick(void) 4507 { 4508 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4509 struct perf_event_context *ctx; 4510 int throttled; 4511 4512 lockdep_assert_irqs_disabled(); 4513 4514 __this_cpu_inc(perf_throttled_seq); 4515 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4516 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4517 4518 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4519 4520 rcu_read_lock(); 4521 ctx = rcu_dereference(current->perf_event_ctxp); 4522 if (ctx) 4523 perf_adjust_freq_unthr_context(ctx, !!throttled); 4524 rcu_read_unlock(); 4525 } 4526 4527 static int event_enable_on_exec(struct perf_event *event, 4528 struct perf_event_context *ctx) 4529 { 4530 if (!event->attr.enable_on_exec) 4531 return 0; 4532 4533 event->attr.enable_on_exec = 0; 4534 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4535 return 0; 4536 4537 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4538 4539 return 1; 4540 } 4541 4542 /* 4543 * Enable all of a task's events that have been marked enable-on-exec. 4544 * This expects task == current. 4545 */ 4546 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4547 { 4548 struct perf_event_context *clone_ctx = NULL; 4549 enum event_type_t event_type = 0; 4550 struct perf_cpu_context *cpuctx; 4551 struct perf_event *event; 4552 unsigned long flags; 4553 int enabled = 0; 4554 4555 local_irq_save(flags); 4556 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4557 goto out; 4558 4559 if (!ctx->nr_events) 4560 goto out; 4561 4562 cpuctx = this_cpu_ptr(&perf_cpu_context); 4563 perf_ctx_lock(cpuctx, ctx); 4564 ctx_time_freeze(cpuctx, ctx); 4565 4566 list_for_each_entry(event, &ctx->event_list, event_entry) { 4567 enabled |= event_enable_on_exec(event, ctx); 4568 event_type |= get_event_type(event); 4569 } 4570 4571 /* 4572 * Unclone and reschedule this context if we enabled any event. 4573 */ 4574 if (enabled) { 4575 clone_ctx = unclone_ctx(ctx); 4576 ctx_resched(cpuctx, ctx, NULL, event_type); 4577 } 4578 perf_ctx_unlock(cpuctx, ctx); 4579 4580 out: 4581 local_irq_restore(flags); 4582 4583 if (clone_ctx) 4584 put_ctx(clone_ctx); 4585 } 4586 4587 static void perf_remove_from_owner(struct perf_event *event); 4588 static void perf_event_exit_event(struct perf_event *event, 4589 struct perf_event_context *ctx, 4590 bool revoke); 4591 4592 /* 4593 * Removes all events from the current task that have been marked 4594 * remove-on-exec, and feeds their values back to parent events. 4595 */ 4596 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4597 { 4598 struct perf_event_context *clone_ctx = NULL; 4599 struct perf_event *event, *next; 4600 unsigned long flags; 4601 bool modified = false; 4602 4603 mutex_lock(&ctx->mutex); 4604 4605 if (WARN_ON_ONCE(ctx->task != current)) 4606 goto unlock; 4607 4608 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4609 if (!event->attr.remove_on_exec) 4610 continue; 4611 4612 if (!is_kernel_event(event)) 4613 perf_remove_from_owner(event); 4614 4615 modified = true; 4616 4617 perf_event_exit_event(event, ctx, false); 4618 } 4619 4620 raw_spin_lock_irqsave(&ctx->lock, flags); 4621 if (modified) 4622 clone_ctx = unclone_ctx(ctx); 4623 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4624 4625 unlock: 4626 mutex_unlock(&ctx->mutex); 4627 4628 if (clone_ctx) 4629 put_ctx(clone_ctx); 4630 } 4631 4632 struct perf_read_data { 4633 struct perf_event *event; 4634 bool group; 4635 int ret; 4636 }; 4637 4638 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4639 4640 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4641 { 4642 int local_cpu = smp_processor_id(); 4643 u16 local_pkg, event_pkg; 4644 4645 if ((unsigned)event_cpu >= nr_cpu_ids) 4646 return event_cpu; 4647 4648 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4649 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4650 4651 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4652 return local_cpu; 4653 } 4654 4655 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4656 event_pkg = topology_physical_package_id(event_cpu); 4657 local_pkg = topology_physical_package_id(local_cpu); 4658 4659 if (event_pkg == local_pkg) 4660 return local_cpu; 4661 } 4662 4663 return event_cpu; 4664 } 4665 4666 /* 4667 * Cross CPU call to read the hardware event 4668 */ 4669 static void __perf_event_read(void *info) 4670 { 4671 struct perf_read_data *data = info; 4672 struct perf_event *sub, *event = data->event; 4673 struct perf_event_context *ctx = event->ctx; 4674 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4675 struct pmu *pmu = event->pmu; 4676 4677 /* 4678 * If this is a task context, we need to check whether it is 4679 * the current task context of this cpu. If not it has been 4680 * scheduled out before the smp call arrived. In that case 4681 * event->count would have been updated to a recent sample 4682 * when the event was scheduled out. 4683 */ 4684 if (ctx->task && cpuctx->task_ctx != ctx) 4685 return; 4686 4687 raw_spin_lock(&ctx->lock); 4688 ctx_time_update_event(ctx, event); 4689 4690 perf_event_update_time(event); 4691 if (data->group) 4692 perf_event_update_sibling_time(event); 4693 4694 if (event->state != PERF_EVENT_STATE_ACTIVE) 4695 goto unlock; 4696 4697 if (!data->group) { 4698 pmu->read(event); 4699 data->ret = 0; 4700 goto unlock; 4701 } 4702 4703 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4704 4705 pmu->read(event); 4706 4707 for_each_sibling_event(sub, event) 4708 perf_pmu_read(sub); 4709 4710 data->ret = pmu->commit_txn(pmu); 4711 4712 unlock: 4713 raw_spin_unlock(&ctx->lock); 4714 } 4715 4716 static inline u64 perf_event_count(struct perf_event *event, bool self) 4717 { 4718 if (self) 4719 return local64_read(&event->count); 4720 4721 return local64_read(&event->count) + atomic64_read(&event->child_count); 4722 } 4723 4724 static void calc_timer_values(struct perf_event *event, 4725 u64 *now, 4726 u64 *enabled, 4727 u64 *running) 4728 { 4729 u64 ctx_time; 4730 4731 *now = perf_clock(); 4732 ctx_time = perf_event_time_now(event, *now); 4733 __perf_update_times(event, ctx_time, enabled, running); 4734 } 4735 4736 /* 4737 * NMI-safe method to read a local event, that is an event that 4738 * is: 4739 * - either for the current task, or for this CPU 4740 * - does not have inherit set, for inherited task events 4741 * will not be local and we cannot read them atomically 4742 * - must not have a pmu::count method 4743 */ 4744 int perf_event_read_local(struct perf_event *event, u64 *value, 4745 u64 *enabled, u64 *running) 4746 { 4747 unsigned long flags; 4748 int event_oncpu; 4749 int event_cpu; 4750 int ret = 0; 4751 4752 /* 4753 * Disabling interrupts avoids all counter scheduling (context 4754 * switches, timer based rotation and IPIs). 4755 */ 4756 local_irq_save(flags); 4757 4758 /* 4759 * It must not be an event with inherit set, we cannot read 4760 * all child counters from atomic context. 4761 */ 4762 if (event->attr.inherit) { 4763 ret = -EOPNOTSUPP; 4764 goto out; 4765 } 4766 4767 /* If this is a per-task event, it must be for current */ 4768 if ((event->attach_state & PERF_ATTACH_TASK) && 4769 event->hw.target != current) { 4770 ret = -EINVAL; 4771 goto out; 4772 } 4773 4774 /* 4775 * Get the event CPU numbers, and adjust them to local if the event is 4776 * a per-package event that can be read locally 4777 */ 4778 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4779 event_cpu = __perf_event_read_cpu(event, event->cpu); 4780 4781 /* If this is a per-CPU event, it must be for this CPU */ 4782 if (!(event->attach_state & PERF_ATTACH_TASK) && 4783 event_cpu != smp_processor_id()) { 4784 ret = -EINVAL; 4785 goto out; 4786 } 4787 4788 /* If this is a pinned event it must be running on this CPU */ 4789 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4790 ret = -EBUSY; 4791 goto out; 4792 } 4793 4794 /* 4795 * If the event is currently on this CPU, its either a per-task event, 4796 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4797 * oncpu == -1). 4798 */ 4799 if (event_oncpu == smp_processor_id()) 4800 event->pmu->read(event); 4801 4802 *value = local64_read(&event->count); 4803 if (enabled || running) { 4804 u64 __enabled, __running, __now; 4805 4806 calc_timer_values(event, &__now, &__enabled, &__running); 4807 if (enabled) 4808 *enabled = __enabled; 4809 if (running) 4810 *running = __running; 4811 } 4812 out: 4813 local_irq_restore(flags); 4814 4815 return ret; 4816 } 4817 4818 static int perf_event_read(struct perf_event *event, bool group) 4819 { 4820 enum perf_event_state state = READ_ONCE(event->state); 4821 int event_cpu, ret = 0; 4822 4823 /* 4824 * If event is enabled and currently active on a CPU, update the 4825 * value in the event structure: 4826 */ 4827 again: 4828 if (state == PERF_EVENT_STATE_ACTIVE) { 4829 struct perf_read_data data; 4830 4831 /* 4832 * Orders the ->state and ->oncpu loads such that if we see 4833 * ACTIVE we must also see the right ->oncpu. 4834 * 4835 * Matches the smp_wmb() from event_sched_in(). 4836 */ 4837 smp_rmb(); 4838 4839 event_cpu = READ_ONCE(event->oncpu); 4840 if ((unsigned)event_cpu >= nr_cpu_ids) 4841 return 0; 4842 4843 data = (struct perf_read_data){ 4844 .event = event, 4845 .group = group, 4846 .ret = 0, 4847 }; 4848 4849 preempt_disable(); 4850 event_cpu = __perf_event_read_cpu(event, event_cpu); 4851 4852 /* 4853 * Purposely ignore the smp_call_function_single() return 4854 * value. 4855 * 4856 * If event_cpu isn't a valid CPU it means the event got 4857 * scheduled out and that will have updated the event count. 4858 * 4859 * Therefore, either way, we'll have an up-to-date event count 4860 * after this. 4861 */ 4862 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4863 preempt_enable(); 4864 ret = data.ret; 4865 4866 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4867 struct perf_event_context *ctx = event->ctx; 4868 unsigned long flags; 4869 4870 raw_spin_lock_irqsave(&ctx->lock, flags); 4871 state = event->state; 4872 if (state != PERF_EVENT_STATE_INACTIVE) { 4873 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4874 goto again; 4875 } 4876 4877 /* 4878 * May read while context is not active (e.g., thread is 4879 * blocked), in that case we cannot update context time 4880 */ 4881 ctx_time_update_event(ctx, event); 4882 4883 perf_event_update_time(event); 4884 if (group) 4885 perf_event_update_sibling_time(event); 4886 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4887 } 4888 4889 return ret; 4890 } 4891 4892 /* 4893 * Initialize the perf_event context in a task_struct: 4894 */ 4895 static void __perf_event_init_context(struct perf_event_context *ctx) 4896 { 4897 raw_spin_lock_init(&ctx->lock); 4898 mutex_init(&ctx->mutex); 4899 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4900 perf_event_groups_init(&ctx->pinned_groups); 4901 perf_event_groups_init(&ctx->flexible_groups); 4902 INIT_LIST_HEAD(&ctx->event_list); 4903 refcount_set(&ctx->refcount, 1); 4904 } 4905 4906 static void 4907 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4908 { 4909 epc->pmu = pmu; 4910 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4911 INIT_LIST_HEAD(&epc->pinned_active); 4912 INIT_LIST_HEAD(&epc->flexible_active); 4913 atomic_set(&epc->refcount, 1); 4914 } 4915 4916 static struct perf_event_context * 4917 alloc_perf_context(struct task_struct *task) 4918 { 4919 struct perf_event_context *ctx; 4920 4921 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4922 if (!ctx) 4923 return NULL; 4924 4925 __perf_event_init_context(ctx); 4926 if (task) 4927 ctx->task = get_task_struct(task); 4928 4929 return ctx; 4930 } 4931 4932 static struct task_struct * 4933 find_lively_task_by_vpid(pid_t vpid) 4934 { 4935 struct task_struct *task; 4936 4937 rcu_read_lock(); 4938 if (!vpid) 4939 task = current; 4940 else 4941 task = find_task_by_vpid(vpid); 4942 if (task) 4943 get_task_struct(task); 4944 rcu_read_unlock(); 4945 4946 if (!task) 4947 return ERR_PTR(-ESRCH); 4948 4949 return task; 4950 } 4951 4952 /* 4953 * Returns a matching context with refcount and pincount. 4954 */ 4955 static struct perf_event_context * 4956 find_get_context(struct task_struct *task, struct perf_event *event) 4957 { 4958 struct perf_event_context *ctx, *clone_ctx = NULL; 4959 struct perf_cpu_context *cpuctx; 4960 unsigned long flags; 4961 int err; 4962 4963 if (!task) { 4964 /* Must be root to operate on a CPU event: */ 4965 err = perf_allow_cpu(); 4966 if (err) 4967 return ERR_PTR(err); 4968 4969 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4970 ctx = &cpuctx->ctx; 4971 get_ctx(ctx); 4972 raw_spin_lock_irqsave(&ctx->lock, flags); 4973 ++ctx->pin_count; 4974 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4975 4976 return ctx; 4977 } 4978 4979 err = -EINVAL; 4980 retry: 4981 ctx = perf_lock_task_context(task, &flags); 4982 if (ctx) { 4983 clone_ctx = unclone_ctx(ctx); 4984 ++ctx->pin_count; 4985 4986 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4987 4988 if (clone_ctx) 4989 put_ctx(clone_ctx); 4990 } else { 4991 ctx = alloc_perf_context(task); 4992 err = -ENOMEM; 4993 if (!ctx) 4994 goto errout; 4995 4996 err = 0; 4997 mutex_lock(&task->perf_event_mutex); 4998 /* 4999 * If it has already passed perf_event_exit_task(). 5000 * we must see PF_EXITING, it takes this mutex too. 5001 */ 5002 if (task->flags & PF_EXITING) 5003 err = -ESRCH; 5004 else if (task->perf_event_ctxp) 5005 err = -EAGAIN; 5006 else { 5007 get_ctx(ctx); 5008 ++ctx->pin_count; 5009 rcu_assign_pointer(task->perf_event_ctxp, ctx); 5010 } 5011 mutex_unlock(&task->perf_event_mutex); 5012 5013 if (unlikely(err)) { 5014 put_ctx(ctx); 5015 5016 if (err == -EAGAIN) 5017 goto retry; 5018 goto errout; 5019 } 5020 } 5021 5022 return ctx; 5023 5024 errout: 5025 return ERR_PTR(err); 5026 } 5027 5028 static struct perf_event_pmu_context * 5029 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 5030 struct perf_event *event) 5031 { 5032 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 5033 5034 if (!ctx->task) { 5035 /* 5036 * perf_pmu_migrate_context() / __perf_pmu_install_event() 5037 * relies on the fact that find_get_pmu_context() cannot fail 5038 * for CPU contexts. 5039 */ 5040 struct perf_cpu_pmu_context *cpc; 5041 5042 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 5043 epc = &cpc->epc; 5044 raw_spin_lock_irq(&ctx->lock); 5045 if (!epc->ctx) { 5046 /* 5047 * One extra reference for the pmu; see perf_pmu_free(). 5048 */ 5049 atomic_set(&epc->refcount, 2); 5050 epc->embedded = 1; 5051 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5052 epc->ctx = ctx; 5053 } else { 5054 WARN_ON_ONCE(epc->ctx != ctx); 5055 atomic_inc(&epc->refcount); 5056 } 5057 raw_spin_unlock_irq(&ctx->lock); 5058 return epc; 5059 } 5060 5061 new = kzalloc(sizeof(*epc), GFP_KERNEL); 5062 if (!new) 5063 return ERR_PTR(-ENOMEM); 5064 5065 __perf_init_event_pmu_context(new, pmu); 5066 5067 /* 5068 * XXX 5069 * 5070 * lockdep_assert_held(&ctx->mutex); 5071 * 5072 * can't because perf_event_init_task() doesn't actually hold the 5073 * child_ctx->mutex. 5074 */ 5075 5076 raw_spin_lock_irq(&ctx->lock); 5077 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5078 if (epc->pmu == pmu) { 5079 WARN_ON_ONCE(epc->ctx != ctx); 5080 atomic_inc(&epc->refcount); 5081 goto found_epc; 5082 } 5083 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5084 if (!pos && epc->pmu->type > pmu->type) 5085 pos = epc; 5086 } 5087 5088 epc = new; 5089 new = NULL; 5090 5091 if (!pos) 5092 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5093 else 5094 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5095 5096 epc->ctx = ctx; 5097 5098 found_epc: 5099 raw_spin_unlock_irq(&ctx->lock); 5100 kfree(new); 5101 5102 return epc; 5103 } 5104 5105 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5106 { 5107 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5108 } 5109 5110 static void free_cpc_rcu(struct rcu_head *head) 5111 { 5112 struct perf_cpu_pmu_context *cpc = 5113 container_of(head, typeof(*cpc), epc.rcu_head); 5114 5115 kfree(cpc); 5116 } 5117 5118 static void free_epc_rcu(struct rcu_head *head) 5119 { 5120 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5121 5122 kfree(epc); 5123 } 5124 5125 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5126 { 5127 struct perf_event_context *ctx = epc->ctx; 5128 unsigned long flags; 5129 5130 /* 5131 * XXX 5132 * 5133 * lockdep_assert_held(&ctx->mutex); 5134 * 5135 * can't because of the call-site in _free_event()/put_event() 5136 * which isn't always called under ctx->mutex. 5137 */ 5138 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5139 return; 5140 5141 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5142 5143 list_del_init(&epc->pmu_ctx_entry); 5144 epc->ctx = NULL; 5145 5146 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5147 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5148 5149 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5150 5151 if (epc->embedded) { 5152 call_rcu(&epc->rcu_head, free_cpc_rcu); 5153 return; 5154 } 5155 5156 call_rcu(&epc->rcu_head, free_epc_rcu); 5157 } 5158 5159 static void perf_event_free_filter(struct perf_event *event); 5160 5161 static void free_event_rcu(struct rcu_head *head) 5162 { 5163 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5164 5165 if (event->ns) 5166 put_pid_ns(event->ns); 5167 perf_event_free_filter(event); 5168 kmem_cache_free(perf_event_cache, event); 5169 } 5170 5171 static void ring_buffer_attach(struct perf_event *event, 5172 struct perf_buffer *rb); 5173 5174 static void detach_sb_event(struct perf_event *event) 5175 { 5176 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5177 5178 raw_spin_lock(&pel->lock); 5179 list_del_rcu(&event->sb_list); 5180 raw_spin_unlock(&pel->lock); 5181 } 5182 5183 static bool is_sb_event(struct perf_event *event) 5184 { 5185 struct perf_event_attr *attr = &event->attr; 5186 5187 if (event->parent) 5188 return false; 5189 5190 if (event->attach_state & PERF_ATTACH_TASK) 5191 return false; 5192 5193 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5194 attr->comm || attr->comm_exec || 5195 attr->task || attr->ksymbol || 5196 attr->context_switch || attr->text_poke || 5197 attr->bpf_event) 5198 return true; 5199 5200 return false; 5201 } 5202 5203 static void unaccount_pmu_sb_event(struct perf_event *event) 5204 { 5205 if (is_sb_event(event)) 5206 detach_sb_event(event); 5207 } 5208 5209 #ifdef CONFIG_NO_HZ_FULL 5210 static DEFINE_SPINLOCK(nr_freq_lock); 5211 #endif 5212 5213 static void unaccount_freq_event_nohz(void) 5214 { 5215 #ifdef CONFIG_NO_HZ_FULL 5216 spin_lock(&nr_freq_lock); 5217 if (atomic_dec_and_test(&nr_freq_events)) 5218 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5219 spin_unlock(&nr_freq_lock); 5220 #endif 5221 } 5222 5223 static void unaccount_freq_event(void) 5224 { 5225 if (tick_nohz_full_enabled()) 5226 unaccount_freq_event_nohz(); 5227 else 5228 atomic_dec(&nr_freq_events); 5229 } 5230 5231 5232 static struct perf_ctx_data * 5233 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5234 { 5235 struct perf_ctx_data *cd; 5236 5237 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5238 if (!cd) 5239 return NULL; 5240 5241 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5242 if (!cd->data) { 5243 kfree(cd); 5244 return NULL; 5245 } 5246 5247 cd->global = global; 5248 cd->ctx_cache = ctx_cache; 5249 refcount_set(&cd->refcount, 1); 5250 5251 return cd; 5252 } 5253 5254 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5255 { 5256 kmem_cache_free(cd->ctx_cache, cd->data); 5257 kfree(cd); 5258 } 5259 5260 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5261 { 5262 struct perf_ctx_data *cd; 5263 5264 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5265 free_perf_ctx_data(cd); 5266 } 5267 5268 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5269 { 5270 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5271 } 5272 5273 static int 5274 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5275 bool global) 5276 { 5277 struct perf_ctx_data *cd, *old = NULL; 5278 5279 cd = alloc_perf_ctx_data(ctx_cache, global); 5280 if (!cd) 5281 return -ENOMEM; 5282 5283 for (;;) { 5284 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { 5285 if (old) 5286 perf_free_ctx_data_rcu(old); 5287 return 0; 5288 } 5289 5290 if (!old) { 5291 /* 5292 * After seeing a dead @old, we raced with 5293 * removal and lost, try again to install @cd. 5294 */ 5295 continue; 5296 } 5297 5298 if (refcount_inc_not_zero(&old->refcount)) { 5299 free_perf_ctx_data(cd); /* unused */ 5300 return 0; 5301 } 5302 5303 /* 5304 * @old is a dead object, refcount==0 is stable, try and 5305 * replace it with @cd. 5306 */ 5307 } 5308 return 0; 5309 } 5310 5311 static void __detach_global_ctx_data(void); 5312 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5313 static refcount_t global_ctx_data_ref; 5314 5315 static int 5316 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5317 { 5318 struct task_struct *g, *p; 5319 struct perf_ctx_data *cd; 5320 int ret; 5321 5322 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5323 return 0; 5324 5325 guard(percpu_write)(&global_ctx_data_rwsem); 5326 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5327 return 0; 5328 again: 5329 /* Allocate everything */ 5330 scoped_guard (rcu) { 5331 for_each_process_thread(g, p) { 5332 cd = rcu_dereference(p->perf_ctx_data); 5333 if (cd && !cd->global) { 5334 cd->global = 1; 5335 if (!refcount_inc_not_zero(&cd->refcount)) 5336 cd = NULL; 5337 } 5338 if (!cd) { 5339 get_task_struct(p); 5340 goto alloc; 5341 } 5342 } 5343 } 5344 5345 refcount_set(&global_ctx_data_ref, 1); 5346 5347 return 0; 5348 alloc: 5349 ret = attach_task_ctx_data(p, ctx_cache, true); 5350 put_task_struct(p); 5351 if (ret) { 5352 __detach_global_ctx_data(); 5353 return ret; 5354 } 5355 goto again; 5356 } 5357 5358 static int 5359 attach_perf_ctx_data(struct perf_event *event) 5360 { 5361 struct task_struct *task = event->hw.target; 5362 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5363 int ret; 5364 5365 if (!ctx_cache) 5366 return -ENOMEM; 5367 5368 if (task) 5369 return attach_task_ctx_data(task, ctx_cache, false); 5370 5371 ret = attach_global_ctx_data(ctx_cache); 5372 if (ret) 5373 return ret; 5374 5375 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5376 return 0; 5377 } 5378 5379 static void 5380 detach_task_ctx_data(struct task_struct *p) 5381 { 5382 struct perf_ctx_data *cd; 5383 5384 scoped_guard (rcu) { 5385 cd = rcu_dereference(p->perf_ctx_data); 5386 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5387 return; 5388 } 5389 5390 /* 5391 * The old ctx_data may be lost because of the race. 5392 * Nothing is required to do for the case. 5393 * See attach_task_ctx_data(). 5394 */ 5395 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5396 perf_free_ctx_data_rcu(cd); 5397 } 5398 5399 static void __detach_global_ctx_data(void) 5400 { 5401 struct task_struct *g, *p; 5402 struct perf_ctx_data *cd; 5403 5404 again: 5405 scoped_guard (rcu) { 5406 for_each_process_thread(g, p) { 5407 cd = rcu_dereference(p->perf_ctx_data); 5408 if (!cd || !cd->global) 5409 continue; 5410 cd->global = 0; 5411 get_task_struct(p); 5412 goto detach; 5413 } 5414 } 5415 return; 5416 detach: 5417 detach_task_ctx_data(p); 5418 put_task_struct(p); 5419 goto again; 5420 } 5421 5422 static void detach_global_ctx_data(void) 5423 { 5424 if (refcount_dec_not_one(&global_ctx_data_ref)) 5425 return; 5426 5427 guard(percpu_write)(&global_ctx_data_rwsem); 5428 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5429 return; 5430 5431 /* remove everything */ 5432 __detach_global_ctx_data(); 5433 } 5434 5435 static void detach_perf_ctx_data(struct perf_event *event) 5436 { 5437 struct task_struct *task = event->hw.target; 5438 5439 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5440 5441 if (task) 5442 return detach_task_ctx_data(task); 5443 5444 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5445 detach_global_ctx_data(); 5446 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5447 } 5448 } 5449 5450 static void unaccount_event(struct perf_event *event) 5451 { 5452 bool dec = false; 5453 5454 if (event->parent) 5455 return; 5456 5457 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5458 dec = true; 5459 if (event->attr.mmap || event->attr.mmap_data) 5460 atomic_dec(&nr_mmap_events); 5461 if (event->attr.build_id) 5462 atomic_dec(&nr_build_id_events); 5463 if (event->attr.comm) 5464 atomic_dec(&nr_comm_events); 5465 if (event->attr.namespaces) 5466 atomic_dec(&nr_namespaces_events); 5467 if (event->attr.cgroup) 5468 atomic_dec(&nr_cgroup_events); 5469 if (event->attr.task) 5470 atomic_dec(&nr_task_events); 5471 if (event->attr.freq) 5472 unaccount_freq_event(); 5473 if (event->attr.context_switch) { 5474 dec = true; 5475 atomic_dec(&nr_switch_events); 5476 } 5477 if (is_cgroup_event(event)) 5478 dec = true; 5479 if (has_branch_stack(event)) 5480 dec = true; 5481 if (event->attr.ksymbol) 5482 atomic_dec(&nr_ksymbol_events); 5483 if (event->attr.bpf_event) 5484 atomic_dec(&nr_bpf_events); 5485 if (event->attr.text_poke) 5486 atomic_dec(&nr_text_poke_events); 5487 5488 if (dec) { 5489 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5490 schedule_delayed_work(&perf_sched_work, HZ); 5491 } 5492 5493 unaccount_pmu_sb_event(event); 5494 } 5495 5496 static void perf_sched_delayed(struct work_struct *work) 5497 { 5498 mutex_lock(&perf_sched_mutex); 5499 if (atomic_dec_and_test(&perf_sched_count)) 5500 static_branch_disable(&perf_sched_events); 5501 mutex_unlock(&perf_sched_mutex); 5502 } 5503 5504 /* 5505 * The following implement mutual exclusion of events on "exclusive" pmus 5506 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5507 * at a time, so we disallow creating events that might conflict, namely: 5508 * 5509 * 1) cpu-wide events in the presence of per-task events, 5510 * 2) per-task events in the presence of cpu-wide events, 5511 * 3) two matching events on the same perf_event_context. 5512 * 5513 * The former two cases are handled in the allocation path (perf_event_alloc(), 5514 * _free_event()), the latter -- before the first perf_install_in_context(). 5515 */ 5516 static int exclusive_event_init(struct perf_event *event) 5517 { 5518 struct pmu *pmu = event->pmu; 5519 5520 if (!is_exclusive_pmu(pmu)) 5521 return 0; 5522 5523 /* 5524 * Prevent co-existence of per-task and cpu-wide events on the 5525 * same exclusive pmu. 5526 * 5527 * Negative pmu::exclusive_cnt means there are cpu-wide 5528 * events on this "exclusive" pmu, positive means there are 5529 * per-task events. 5530 * 5531 * Since this is called in perf_event_alloc() path, event::ctx 5532 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5533 * to mean "per-task event", because unlike other attach states it 5534 * never gets cleared. 5535 */ 5536 if (event->attach_state & PERF_ATTACH_TASK) { 5537 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5538 return -EBUSY; 5539 } else { 5540 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5541 return -EBUSY; 5542 } 5543 5544 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5545 5546 return 0; 5547 } 5548 5549 static void exclusive_event_destroy(struct perf_event *event) 5550 { 5551 struct pmu *pmu = event->pmu; 5552 5553 /* see comment in exclusive_event_init() */ 5554 if (event->attach_state & PERF_ATTACH_TASK) 5555 atomic_dec(&pmu->exclusive_cnt); 5556 else 5557 atomic_inc(&pmu->exclusive_cnt); 5558 5559 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5560 } 5561 5562 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5563 { 5564 if ((e1->pmu == e2->pmu) && 5565 (e1->cpu == e2->cpu || 5566 e1->cpu == -1 || 5567 e2->cpu == -1)) 5568 return true; 5569 return false; 5570 } 5571 5572 static bool exclusive_event_installable(struct perf_event *event, 5573 struct perf_event_context *ctx) 5574 { 5575 struct perf_event *iter_event; 5576 struct pmu *pmu = event->pmu; 5577 5578 lockdep_assert_held(&ctx->mutex); 5579 5580 if (!is_exclusive_pmu(pmu)) 5581 return true; 5582 5583 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5584 if (exclusive_event_match(iter_event, event)) 5585 return false; 5586 } 5587 5588 return true; 5589 } 5590 5591 static void perf_free_addr_filters(struct perf_event *event); 5592 5593 /* vs perf_event_alloc() error */ 5594 static void __free_event(struct perf_event *event) 5595 { 5596 struct pmu *pmu = event->pmu; 5597 5598 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5599 put_callchain_buffers(); 5600 5601 kfree(event->addr_filter_ranges); 5602 5603 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5604 exclusive_event_destroy(event); 5605 5606 if (is_cgroup_event(event)) 5607 perf_detach_cgroup(event); 5608 5609 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5610 detach_perf_ctx_data(event); 5611 5612 if (event->destroy) 5613 event->destroy(event); 5614 5615 /* 5616 * Must be after ->destroy(), due to uprobe_perf_close() using 5617 * hw.target. 5618 */ 5619 if (event->hw.target) 5620 put_task_struct(event->hw.target); 5621 5622 if (event->pmu_ctx) { 5623 /* 5624 * put_pmu_ctx() needs an event->ctx reference, because of 5625 * epc->ctx. 5626 */ 5627 WARN_ON_ONCE(!pmu); 5628 WARN_ON_ONCE(!event->ctx); 5629 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5630 put_pmu_ctx(event->pmu_ctx); 5631 } 5632 5633 /* 5634 * perf_event_free_task() relies on put_ctx() being 'last', in 5635 * particular all task references must be cleaned up. 5636 */ 5637 if (event->ctx) 5638 put_ctx(event->ctx); 5639 5640 if (pmu) { 5641 module_put(pmu->module); 5642 scoped_guard (spinlock, &pmu->events_lock) { 5643 list_del(&event->pmu_list); 5644 wake_up_var(pmu); 5645 } 5646 } 5647 5648 call_rcu(&event->rcu_head, free_event_rcu); 5649 } 5650 5651 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5652 5653 /* vs perf_event_alloc() success */ 5654 static void _free_event(struct perf_event *event) 5655 { 5656 irq_work_sync(&event->pending_irq); 5657 irq_work_sync(&event->pending_disable_irq); 5658 5659 unaccount_event(event); 5660 5661 security_perf_event_free(event); 5662 5663 if (event->rb) { 5664 /* 5665 * Can happen when we close an event with re-directed output. 5666 * 5667 * Since we have a 0 refcount, perf_mmap_close() will skip 5668 * over us; possibly making our ring_buffer_put() the last. 5669 */ 5670 mutex_lock(&event->mmap_mutex); 5671 ring_buffer_attach(event, NULL); 5672 mutex_unlock(&event->mmap_mutex); 5673 } 5674 5675 perf_event_free_bpf_prog(event); 5676 perf_free_addr_filters(event); 5677 5678 __free_event(event); 5679 } 5680 5681 /* 5682 * Used to free events which have a known refcount of 1, such as in error paths 5683 * of inherited events. 5684 */ 5685 static void free_event(struct perf_event *event) 5686 { 5687 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5688 "unexpected event refcount: %ld; ptr=%p\n", 5689 atomic_long_read(&event->refcount), event)) { 5690 /* leak to avoid use-after-free */ 5691 return; 5692 } 5693 5694 _free_event(event); 5695 } 5696 5697 /* 5698 * Remove user event from the owner task. 5699 */ 5700 static void perf_remove_from_owner(struct perf_event *event) 5701 { 5702 struct task_struct *owner; 5703 5704 rcu_read_lock(); 5705 /* 5706 * Matches the smp_store_release() in perf_event_exit_task(). If we 5707 * observe !owner it means the list deletion is complete and we can 5708 * indeed free this event, otherwise we need to serialize on 5709 * owner->perf_event_mutex. 5710 */ 5711 owner = READ_ONCE(event->owner); 5712 if (owner) { 5713 /* 5714 * Since delayed_put_task_struct() also drops the last 5715 * task reference we can safely take a new reference 5716 * while holding the rcu_read_lock(). 5717 */ 5718 get_task_struct(owner); 5719 } 5720 rcu_read_unlock(); 5721 5722 if (owner) { 5723 /* 5724 * If we're here through perf_event_exit_task() we're already 5725 * holding ctx->mutex which would be an inversion wrt. the 5726 * normal lock order. 5727 * 5728 * However we can safely take this lock because its the child 5729 * ctx->mutex. 5730 */ 5731 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5732 5733 /* 5734 * We have to re-check the event->owner field, if it is cleared 5735 * we raced with perf_event_exit_task(), acquiring the mutex 5736 * ensured they're done, and we can proceed with freeing the 5737 * event. 5738 */ 5739 if (event->owner) { 5740 list_del_init(&event->owner_entry); 5741 smp_store_release(&event->owner, NULL); 5742 } 5743 mutex_unlock(&owner->perf_event_mutex); 5744 put_task_struct(owner); 5745 } 5746 } 5747 5748 static void put_event(struct perf_event *event) 5749 { 5750 struct perf_event *parent; 5751 5752 if (!atomic_long_dec_and_test(&event->refcount)) 5753 return; 5754 5755 parent = event->parent; 5756 _free_event(event); 5757 5758 /* Matches the refcount bump in inherit_event() */ 5759 if (parent) 5760 put_event(parent); 5761 } 5762 5763 /* 5764 * Kill an event dead; while event:refcount will preserve the event 5765 * object, it will not preserve its functionality. Once the last 'user' 5766 * gives up the object, we'll destroy the thing. 5767 */ 5768 int perf_event_release_kernel(struct perf_event *event) 5769 { 5770 struct perf_event_context *ctx = event->ctx; 5771 struct perf_event *child, *tmp; 5772 5773 /* 5774 * If we got here through err_alloc: free_event(event); we will not 5775 * have attached to a context yet. 5776 */ 5777 if (!ctx) { 5778 WARN_ON_ONCE(event->attach_state & 5779 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5780 goto no_ctx; 5781 } 5782 5783 if (!is_kernel_event(event)) 5784 perf_remove_from_owner(event); 5785 5786 ctx = perf_event_ctx_lock(event); 5787 WARN_ON_ONCE(ctx->parent_ctx); 5788 5789 /* 5790 * Mark this event as STATE_DEAD, there is no external reference to it 5791 * anymore. 5792 * 5793 * Anybody acquiring event->child_mutex after the below loop _must_ 5794 * also see this, most importantly inherit_event() which will avoid 5795 * placing more children on the list. 5796 * 5797 * Thus this guarantees that we will in fact observe and kill _ALL_ 5798 * child events. 5799 */ 5800 if (event->state > PERF_EVENT_STATE_REVOKED) { 5801 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5802 } else { 5803 event->state = PERF_EVENT_STATE_DEAD; 5804 } 5805 5806 perf_event_ctx_unlock(event, ctx); 5807 5808 again: 5809 mutex_lock(&event->child_mutex); 5810 list_for_each_entry(child, &event->child_list, child_list) { 5811 /* 5812 * Cannot change, child events are not migrated, see the 5813 * comment with perf_event_ctx_lock_nested(). 5814 */ 5815 ctx = READ_ONCE(child->ctx); 5816 /* 5817 * Since child_mutex nests inside ctx::mutex, we must jump 5818 * through hoops. We start by grabbing a reference on the ctx. 5819 * 5820 * Since the event cannot get freed while we hold the 5821 * child_mutex, the context must also exist and have a !0 5822 * reference count. 5823 */ 5824 get_ctx(ctx); 5825 5826 /* 5827 * Now that we have a ctx ref, we can drop child_mutex, and 5828 * acquire ctx::mutex without fear of it going away. Then we 5829 * can re-acquire child_mutex. 5830 */ 5831 mutex_unlock(&event->child_mutex); 5832 mutex_lock(&ctx->mutex); 5833 mutex_lock(&event->child_mutex); 5834 5835 /* 5836 * Now that we hold ctx::mutex and child_mutex, revalidate our 5837 * state, if child is still the first entry, it didn't get freed 5838 * and we can continue doing so. 5839 */ 5840 tmp = list_first_entry_or_null(&event->child_list, 5841 struct perf_event, child_list); 5842 if (tmp == child) { 5843 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); 5844 } else { 5845 child = NULL; 5846 } 5847 5848 mutex_unlock(&event->child_mutex); 5849 mutex_unlock(&ctx->mutex); 5850 5851 if (child) { 5852 /* Last reference unless ->pending_task work is pending */ 5853 put_event(child); 5854 } 5855 put_ctx(ctx); 5856 5857 goto again; 5858 } 5859 mutex_unlock(&event->child_mutex); 5860 5861 no_ctx: 5862 /* 5863 * Last reference unless ->pending_task work is pending on this event 5864 * or any of its children. 5865 */ 5866 put_event(event); 5867 return 0; 5868 } 5869 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5870 5871 /* 5872 * Called when the last reference to the file is gone. 5873 */ 5874 static int perf_release(struct inode *inode, struct file *file) 5875 { 5876 perf_event_release_kernel(file->private_data); 5877 return 0; 5878 } 5879 5880 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5881 { 5882 struct perf_event *child; 5883 u64 total = 0; 5884 5885 *enabled = 0; 5886 *running = 0; 5887 5888 mutex_lock(&event->child_mutex); 5889 5890 (void)perf_event_read(event, false); 5891 total += perf_event_count(event, false); 5892 5893 *enabled += event->total_time_enabled + 5894 atomic64_read(&event->child_total_time_enabled); 5895 *running += event->total_time_running + 5896 atomic64_read(&event->child_total_time_running); 5897 5898 list_for_each_entry(child, &event->child_list, child_list) { 5899 (void)perf_event_read(child, false); 5900 total += perf_event_count(child, false); 5901 *enabled += child->total_time_enabled; 5902 *running += child->total_time_running; 5903 } 5904 mutex_unlock(&event->child_mutex); 5905 5906 return total; 5907 } 5908 5909 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5910 { 5911 struct perf_event_context *ctx; 5912 u64 count; 5913 5914 ctx = perf_event_ctx_lock(event); 5915 count = __perf_event_read_value(event, enabled, running); 5916 perf_event_ctx_unlock(event, ctx); 5917 5918 return count; 5919 } 5920 EXPORT_SYMBOL_GPL(perf_event_read_value); 5921 5922 static int __perf_read_group_add(struct perf_event *leader, 5923 u64 read_format, u64 *values) 5924 { 5925 struct perf_event_context *ctx = leader->ctx; 5926 struct perf_event *sub, *parent; 5927 unsigned long flags; 5928 int n = 1; /* skip @nr */ 5929 int ret; 5930 5931 ret = perf_event_read(leader, true); 5932 if (ret) 5933 return ret; 5934 5935 raw_spin_lock_irqsave(&ctx->lock, flags); 5936 /* 5937 * Verify the grouping between the parent and child (inherited) 5938 * events is still in tact. 5939 * 5940 * Specifically: 5941 * - leader->ctx->lock pins leader->sibling_list 5942 * - parent->child_mutex pins parent->child_list 5943 * - parent->ctx->mutex pins parent->sibling_list 5944 * 5945 * Because parent->ctx != leader->ctx (and child_list nests inside 5946 * ctx->mutex), group destruction is not atomic between children, also 5947 * see perf_event_release_kernel(). Additionally, parent can grow the 5948 * group. 5949 * 5950 * Therefore it is possible to have parent and child groups in a 5951 * different configuration and summing over such a beast makes no sense 5952 * what so ever. 5953 * 5954 * Reject this. 5955 */ 5956 parent = leader->parent; 5957 if (parent && 5958 (parent->group_generation != leader->group_generation || 5959 parent->nr_siblings != leader->nr_siblings)) { 5960 ret = -ECHILD; 5961 goto unlock; 5962 } 5963 5964 /* 5965 * Since we co-schedule groups, {enabled,running} times of siblings 5966 * will be identical to those of the leader, so we only publish one 5967 * set. 5968 */ 5969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5970 values[n++] += leader->total_time_enabled + 5971 atomic64_read(&leader->child_total_time_enabled); 5972 } 5973 5974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5975 values[n++] += leader->total_time_running + 5976 atomic64_read(&leader->child_total_time_running); 5977 } 5978 5979 /* 5980 * Write {count,id} tuples for every sibling. 5981 */ 5982 values[n++] += perf_event_count(leader, false); 5983 if (read_format & PERF_FORMAT_ID) 5984 values[n++] = primary_event_id(leader); 5985 if (read_format & PERF_FORMAT_LOST) 5986 values[n++] = atomic64_read(&leader->lost_samples); 5987 5988 for_each_sibling_event(sub, leader) { 5989 values[n++] += perf_event_count(sub, false); 5990 if (read_format & PERF_FORMAT_ID) 5991 values[n++] = primary_event_id(sub); 5992 if (read_format & PERF_FORMAT_LOST) 5993 values[n++] = atomic64_read(&sub->lost_samples); 5994 } 5995 5996 unlock: 5997 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5998 return ret; 5999 } 6000 6001 static int perf_read_group(struct perf_event *event, 6002 u64 read_format, char __user *buf) 6003 { 6004 struct perf_event *leader = event->group_leader, *child; 6005 struct perf_event_context *ctx = leader->ctx; 6006 int ret; 6007 u64 *values; 6008 6009 lockdep_assert_held(&ctx->mutex); 6010 6011 values = kzalloc(event->read_size, GFP_KERNEL); 6012 if (!values) 6013 return -ENOMEM; 6014 6015 values[0] = 1 + leader->nr_siblings; 6016 6017 mutex_lock(&leader->child_mutex); 6018 6019 ret = __perf_read_group_add(leader, read_format, values); 6020 if (ret) 6021 goto unlock; 6022 6023 list_for_each_entry(child, &leader->child_list, child_list) { 6024 ret = __perf_read_group_add(child, read_format, values); 6025 if (ret) 6026 goto unlock; 6027 } 6028 6029 mutex_unlock(&leader->child_mutex); 6030 6031 ret = event->read_size; 6032 if (copy_to_user(buf, values, event->read_size)) 6033 ret = -EFAULT; 6034 goto out; 6035 6036 unlock: 6037 mutex_unlock(&leader->child_mutex); 6038 out: 6039 kfree(values); 6040 return ret; 6041 } 6042 6043 static int perf_read_one(struct perf_event *event, 6044 u64 read_format, char __user *buf) 6045 { 6046 u64 enabled, running; 6047 u64 values[5]; 6048 int n = 0; 6049 6050 values[n++] = __perf_event_read_value(event, &enabled, &running); 6051 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6052 values[n++] = enabled; 6053 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6054 values[n++] = running; 6055 if (read_format & PERF_FORMAT_ID) 6056 values[n++] = primary_event_id(event); 6057 if (read_format & PERF_FORMAT_LOST) 6058 values[n++] = atomic64_read(&event->lost_samples); 6059 6060 if (copy_to_user(buf, values, n * sizeof(u64))) 6061 return -EFAULT; 6062 6063 return n * sizeof(u64); 6064 } 6065 6066 static bool is_event_hup(struct perf_event *event) 6067 { 6068 bool no_children; 6069 6070 if (event->state > PERF_EVENT_STATE_EXIT) 6071 return false; 6072 6073 mutex_lock(&event->child_mutex); 6074 no_children = list_empty(&event->child_list); 6075 mutex_unlock(&event->child_mutex); 6076 return no_children; 6077 } 6078 6079 /* 6080 * Read the performance event - simple non blocking version for now 6081 */ 6082 static ssize_t 6083 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6084 { 6085 u64 read_format = event->attr.read_format; 6086 int ret; 6087 6088 /* 6089 * Return end-of-file for a read on an event that is in 6090 * error state (i.e. because it was pinned but it couldn't be 6091 * scheduled on to the CPU at some point). 6092 */ 6093 if (event->state == PERF_EVENT_STATE_ERROR) 6094 return 0; 6095 6096 if (count < event->read_size) 6097 return -ENOSPC; 6098 6099 WARN_ON_ONCE(event->ctx->parent_ctx); 6100 if (read_format & PERF_FORMAT_GROUP) 6101 ret = perf_read_group(event, read_format, buf); 6102 else 6103 ret = perf_read_one(event, read_format, buf); 6104 6105 return ret; 6106 } 6107 6108 static ssize_t 6109 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6110 { 6111 struct perf_event *event = file->private_data; 6112 struct perf_event_context *ctx; 6113 int ret; 6114 6115 ret = security_perf_event_read(event); 6116 if (ret) 6117 return ret; 6118 6119 ctx = perf_event_ctx_lock(event); 6120 ret = __perf_read(event, buf, count); 6121 perf_event_ctx_unlock(event, ctx); 6122 6123 return ret; 6124 } 6125 6126 static __poll_t perf_poll(struct file *file, poll_table *wait) 6127 { 6128 struct perf_event *event = file->private_data; 6129 struct perf_buffer *rb; 6130 __poll_t events = EPOLLHUP; 6131 6132 if (event->state <= PERF_EVENT_STATE_REVOKED) 6133 return EPOLLERR; 6134 6135 poll_wait(file, &event->waitq, wait); 6136 6137 if (event->state <= PERF_EVENT_STATE_REVOKED) 6138 return EPOLLERR; 6139 6140 if (is_event_hup(event)) 6141 return events; 6142 6143 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6144 event->attr.pinned)) 6145 return EPOLLERR; 6146 6147 /* 6148 * Pin the event->rb by taking event->mmap_mutex; otherwise 6149 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6150 */ 6151 mutex_lock(&event->mmap_mutex); 6152 rb = event->rb; 6153 if (rb) 6154 events = atomic_xchg(&rb->poll, 0); 6155 mutex_unlock(&event->mmap_mutex); 6156 return events; 6157 } 6158 6159 static void _perf_event_reset(struct perf_event *event) 6160 { 6161 (void)perf_event_read(event, false); 6162 local64_set(&event->count, 0); 6163 perf_event_update_userpage(event); 6164 } 6165 6166 /* Assume it's not an event with inherit set. */ 6167 u64 perf_event_pause(struct perf_event *event, bool reset) 6168 { 6169 struct perf_event_context *ctx; 6170 u64 count; 6171 6172 ctx = perf_event_ctx_lock(event); 6173 WARN_ON_ONCE(event->attr.inherit); 6174 _perf_event_disable(event); 6175 count = local64_read(&event->count); 6176 if (reset) 6177 local64_set(&event->count, 0); 6178 perf_event_ctx_unlock(event, ctx); 6179 6180 return count; 6181 } 6182 EXPORT_SYMBOL_GPL(perf_event_pause); 6183 6184 /* 6185 * Holding the top-level event's child_mutex means that any 6186 * descendant process that has inherited this event will block 6187 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6188 * task existence requirements of perf_event_enable/disable. 6189 */ 6190 static void perf_event_for_each_child(struct perf_event *event, 6191 void (*func)(struct perf_event *)) 6192 { 6193 struct perf_event *child; 6194 6195 WARN_ON_ONCE(event->ctx->parent_ctx); 6196 6197 mutex_lock(&event->child_mutex); 6198 func(event); 6199 list_for_each_entry(child, &event->child_list, child_list) 6200 func(child); 6201 mutex_unlock(&event->child_mutex); 6202 } 6203 6204 static void perf_event_for_each(struct perf_event *event, 6205 void (*func)(struct perf_event *)) 6206 { 6207 struct perf_event_context *ctx = event->ctx; 6208 struct perf_event *sibling; 6209 6210 lockdep_assert_held(&ctx->mutex); 6211 6212 event = event->group_leader; 6213 6214 perf_event_for_each_child(event, func); 6215 for_each_sibling_event(sibling, event) 6216 perf_event_for_each_child(sibling, func); 6217 } 6218 6219 static void __perf_event_period(struct perf_event *event, 6220 struct perf_cpu_context *cpuctx, 6221 struct perf_event_context *ctx, 6222 void *info) 6223 { 6224 u64 value = *((u64 *)info); 6225 bool active; 6226 6227 if (event->attr.freq) { 6228 event->attr.sample_freq = value; 6229 } else { 6230 event->attr.sample_period = value; 6231 event->hw.sample_period = value; 6232 } 6233 6234 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6235 if (active) { 6236 perf_pmu_disable(event->pmu); 6237 event->pmu->stop(event, PERF_EF_UPDATE); 6238 } 6239 6240 local64_set(&event->hw.period_left, 0); 6241 6242 if (active) { 6243 event->pmu->start(event, PERF_EF_RELOAD); 6244 /* 6245 * Once the period is force-reset, the event starts immediately. 6246 * But the event/group could be throttled. Unthrottle the 6247 * event/group now to avoid the next tick trying to unthrottle 6248 * while we already re-started the event/group. 6249 */ 6250 if (event->hw.interrupts == MAX_INTERRUPTS) 6251 perf_event_unthrottle_group(event, true); 6252 perf_pmu_enable(event->pmu); 6253 } 6254 } 6255 6256 static int perf_event_check_period(struct perf_event *event, u64 value) 6257 { 6258 return event->pmu->check_period(event, value); 6259 } 6260 6261 static int _perf_event_period(struct perf_event *event, u64 value) 6262 { 6263 if (!is_sampling_event(event)) 6264 return -EINVAL; 6265 6266 if (!value) 6267 return -EINVAL; 6268 6269 if (event->attr.freq) { 6270 if (value > sysctl_perf_event_sample_rate) 6271 return -EINVAL; 6272 } else { 6273 if (perf_event_check_period(event, value)) 6274 return -EINVAL; 6275 if (value & (1ULL << 63)) 6276 return -EINVAL; 6277 } 6278 6279 event_function_call(event, __perf_event_period, &value); 6280 6281 return 0; 6282 } 6283 6284 int perf_event_period(struct perf_event *event, u64 value) 6285 { 6286 struct perf_event_context *ctx; 6287 int ret; 6288 6289 ctx = perf_event_ctx_lock(event); 6290 ret = _perf_event_period(event, value); 6291 perf_event_ctx_unlock(event, ctx); 6292 6293 return ret; 6294 } 6295 EXPORT_SYMBOL_GPL(perf_event_period); 6296 6297 static const struct file_operations perf_fops; 6298 6299 static inline bool is_perf_file(struct fd f) 6300 { 6301 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6302 } 6303 6304 static int perf_event_set_output(struct perf_event *event, 6305 struct perf_event *output_event); 6306 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6307 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6308 struct perf_event_attr *attr); 6309 static int __perf_event_set_bpf_prog(struct perf_event *event, 6310 struct bpf_prog *prog, 6311 u64 bpf_cookie); 6312 6313 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6314 { 6315 void (*func)(struct perf_event *); 6316 u32 flags = arg; 6317 6318 if (event->state <= PERF_EVENT_STATE_REVOKED) 6319 return -ENODEV; 6320 6321 switch (cmd) { 6322 case PERF_EVENT_IOC_ENABLE: 6323 func = _perf_event_enable; 6324 break; 6325 case PERF_EVENT_IOC_DISABLE: 6326 func = _perf_event_disable; 6327 break; 6328 case PERF_EVENT_IOC_RESET: 6329 func = _perf_event_reset; 6330 break; 6331 6332 case PERF_EVENT_IOC_REFRESH: 6333 return _perf_event_refresh(event, arg); 6334 6335 case PERF_EVENT_IOC_PERIOD: 6336 { 6337 u64 value; 6338 6339 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6340 return -EFAULT; 6341 6342 return _perf_event_period(event, value); 6343 } 6344 case PERF_EVENT_IOC_ID: 6345 { 6346 u64 id = primary_event_id(event); 6347 6348 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6349 return -EFAULT; 6350 return 0; 6351 } 6352 6353 case PERF_EVENT_IOC_SET_OUTPUT: 6354 { 6355 CLASS(fd, output)(arg); // arg == -1 => empty 6356 struct perf_event *output_event = NULL; 6357 if (arg != -1) { 6358 if (!is_perf_file(output)) 6359 return -EBADF; 6360 output_event = fd_file(output)->private_data; 6361 } 6362 return perf_event_set_output(event, output_event); 6363 } 6364 6365 case PERF_EVENT_IOC_SET_FILTER: 6366 return perf_event_set_filter(event, (void __user *)arg); 6367 6368 case PERF_EVENT_IOC_SET_BPF: 6369 { 6370 struct bpf_prog *prog; 6371 int err; 6372 6373 prog = bpf_prog_get(arg); 6374 if (IS_ERR(prog)) 6375 return PTR_ERR(prog); 6376 6377 err = __perf_event_set_bpf_prog(event, prog, 0); 6378 if (err) { 6379 bpf_prog_put(prog); 6380 return err; 6381 } 6382 6383 return 0; 6384 } 6385 6386 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6387 struct perf_buffer *rb; 6388 6389 rcu_read_lock(); 6390 rb = rcu_dereference(event->rb); 6391 if (!rb || !rb->nr_pages) { 6392 rcu_read_unlock(); 6393 return -EINVAL; 6394 } 6395 rb_toggle_paused(rb, !!arg); 6396 rcu_read_unlock(); 6397 return 0; 6398 } 6399 6400 case PERF_EVENT_IOC_QUERY_BPF: 6401 return perf_event_query_prog_array(event, (void __user *)arg); 6402 6403 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6404 struct perf_event_attr new_attr; 6405 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6406 &new_attr); 6407 6408 if (err) 6409 return err; 6410 6411 return perf_event_modify_attr(event, &new_attr); 6412 } 6413 default: 6414 return -ENOTTY; 6415 } 6416 6417 if (flags & PERF_IOC_FLAG_GROUP) 6418 perf_event_for_each(event, func); 6419 else 6420 perf_event_for_each_child(event, func); 6421 6422 return 0; 6423 } 6424 6425 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6426 { 6427 struct perf_event *event = file->private_data; 6428 struct perf_event_context *ctx; 6429 long ret; 6430 6431 /* Treat ioctl like writes as it is likely a mutating operation. */ 6432 ret = security_perf_event_write(event); 6433 if (ret) 6434 return ret; 6435 6436 ctx = perf_event_ctx_lock(event); 6437 ret = _perf_ioctl(event, cmd, arg); 6438 perf_event_ctx_unlock(event, ctx); 6439 6440 return ret; 6441 } 6442 6443 #ifdef CONFIG_COMPAT 6444 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6445 unsigned long arg) 6446 { 6447 switch (_IOC_NR(cmd)) { 6448 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6449 case _IOC_NR(PERF_EVENT_IOC_ID): 6450 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6451 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6452 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6453 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6454 cmd &= ~IOCSIZE_MASK; 6455 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6456 } 6457 break; 6458 } 6459 return perf_ioctl(file, cmd, arg); 6460 } 6461 #else 6462 # define perf_compat_ioctl NULL 6463 #endif 6464 6465 int perf_event_task_enable(void) 6466 { 6467 struct perf_event_context *ctx; 6468 struct perf_event *event; 6469 6470 mutex_lock(¤t->perf_event_mutex); 6471 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6472 ctx = perf_event_ctx_lock(event); 6473 perf_event_for_each_child(event, _perf_event_enable); 6474 perf_event_ctx_unlock(event, ctx); 6475 } 6476 mutex_unlock(¤t->perf_event_mutex); 6477 6478 return 0; 6479 } 6480 6481 int perf_event_task_disable(void) 6482 { 6483 struct perf_event_context *ctx; 6484 struct perf_event *event; 6485 6486 mutex_lock(¤t->perf_event_mutex); 6487 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6488 ctx = perf_event_ctx_lock(event); 6489 perf_event_for_each_child(event, _perf_event_disable); 6490 perf_event_ctx_unlock(event, ctx); 6491 } 6492 mutex_unlock(¤t->perf_event_mutex); 6493 6494 return 0; 6495 } 6496 6497 static int perf_event_index(struct perf_event *event) 6498 { 6499 if (event->hw.state & PERF_HES_STOPPED) 6500 return 0; 6501 6502 if (event->state != PERF_EVENT_STATE_ACTIVE) 6503 return 0; 6504 6505 return event->pmu->event_idx(event); 6506 } 6507 6508 static void perf_event_init_userpage(struct perf_event *event) 6509 { 6510 struct perf_event_mmap_page *userpg; 6511 struct perf_buffer *rb; 6512 6513 rcu_read_lock(); 6514 rb = rcu_dereference(event->rb); 6515 if (!rb) 6516 goto unlock; 6517 6518 userpg = rb->user_page; 6519 6520 /* Allow new userspace to detect that bit 0 is deprecated */ 6521 userpg->cap_bit0_is_deprecated = 1; 6522 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6523 userpg->data_offset = PAGE_SIZE; 6524 userpg->data_size = perf_data_size(rb); 6525 6526 unlock: 6527 rcu_read_unlock(); 6528 } 6529 6530 void __weak arch_perf_update_userpage( 6531 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6532 { 6533 } 6534 6535 /* 6536 * Callers need to ensure there can be no nesting of this function, otherwise 6537 * the seqlock logic goes bad. We can not serialize this because the arch 6538 * code calls this from NMI context. 6539 */ 6540 void perf_event_update_userpage(struct perf_event *event) 6541 { 6542 struct perf_event_mmap_page *userpg; 6543 struct perf_buffer *rb; 6544 u64 enabled, running, now; 6545 6546 rcu_read_lock(); 6547 rb = rcu_dereference(event->rb); 6548 if (!rb) 6549 goto unlock; 6550 6551 /* 6552 * compute total_time_enabled, total_time_running 6553 * based on snapshot values taken when the event 6554 * was last scheduled in. 6555 * 6556 * we cannot simply called update_context_time() 6557 * because of locking issue as we can be called in 6558 * NMI context 6559 */ 6560 calc_timer_values(event, &now, &enabled, &running); 6561 6562 userpg = rb->user_page; 6563 /* 6564 * Disable preemption to guarantee consistent time stamps are stored to 6565 * the user page. 6566 */ 6567 preempt_disable(); 6568 ++userpg->lock; 6569 barrier(); 6570 userpg->index = perf_event_index(event); 6571 userpg->offset = perf_event_count(event, false); 6572 if (userpg->index) 6573 userpg->offset -= local64_read(&event->hw.prev_count); 6574 6575 userpg->time_enabled = enabled + 6576 atomic64_read(&event->child_total_time_enabled); 6577 6578 userpg->time_running = running + 6579 atomic64_read(&event->child_total_time_running); 6580 6581 arch_perf_update_userpage(event, userpg, now); 6582 6583 barrier(); 6584 ++userpg->lock; 6585 preempt_enable(); 6586 unlock: 6587 rcu_read_unlock(); 6588 } 6589 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6590 6591 static void ring_buffer_attach(struct perf_event *event, 6592 struct perf_buffer *rb) 6593 { 6594 struct perf_buffer *old_rb = NULL; 6595 unsigned long flags; 6596 6597 WARN_ON_ONCE(event->parent); 6598 6599 if (event->rb) { 6600 /* 6601 * Should be impossible, we set this when removing 6602 * event->rb_entry and wait/clear when adding event->rb_entry. 6603 */ 6604 WARN_ON_ONCE(event->rcu_pending); 6605 6606 old_rb = event->rb; 6607 spin_lock_irqsave(&old_rb->event_lock, flags); 6608 list_del_rcu(&event->rb_entry); 6609 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6610 6611 event->rcu_batches = get_state_synchronize_rcu(); 6612 event->rcu_pending = 1; 6613 } 6614 6615 if (rb) { 6616 if (event->rcu_pending) { 6617 cond_synchronize_rcu(event->rcu_batches); 6618 event->rcu_pending = 0; 6619 } 6620 6621 spin_lock_irqsave(&rb->event_lock, flags); 6622 list_add_rcu(&event->rb_entry, &rb->event_list); 6623 spin_unlock_irqrestore(&rb->event_lock, flags); 6624 } 6625 6626 /* 6627 * Avoid racing with perf_mmap_close(AUX): stop the event 6628 * before swizzling the event::rb pointer; if it's getting 6629 * unmapped, its aux_mmap_count will be 0 and it won't 6630 * restart. See the comment in __perf_pmu_output_stop(). 6631 * 6632 * Data will inevitably be lost when set_output is done in 6633 * mid-air, but then again, whoever does it like this is 6634 * not in for the data anyway. 6635 */ 6636 if (has_aux(event)) 6637 perf_event_stop(event, 0); 6638 6639 rcu_assign_pointer(event->rb, rb); 6640 6641 if (old_rb) { 6642 ring_buffer_put(old_rb); 6643 /* 6644 * Since we detached before setting the new rb, so that we 6645 * could attach the new rb, we could have missed a wakeup. 6646 * Provide it now. 6647 */ 6648 wake_up_all(&event->waitq); 6649 } 6650 } 6651 6652 static void ring_buffer_wakeup(struct perf_event *event) 6653 { 6654 struct perf_buffer *rb; 6655 6656 if (event->parent) 6657 event = event->parent; 6658 6659 rcu_read_lock(); 6660 rb = rcu_dereference(event->rb); 6661 if (rb) { 6662 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6663 wake_up_all(&event->waitq); 6664 } 6665 rcu_read_unlock(); 6666 } 6667 6668 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6669 { 6670 struct perf_buffer *rb; 6671 6672 if (event->parent) 6673 event = event->parent; 6674 6675 rcu_read_lock(); 6676 rb = rcu_dereference(event->rb); 6677 if (rb) { 6678 if (!refcount_inc_not_zero(&rb->refcount)) 6679 rb = NULL; 6680 } 6681 rcu_read_unlock(); 6682 6683 return rb; 6684 } 6685 6686 void ring_buffer_put(struct perf_buffer *rb) 6687 { 6688 if (!refcount_dec_and_test(&rb->refcount)) 6689 return; 6690 6691 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6692 6693 call_rcu(&rb->rcu_head, rb_free_rcu); 6694 } 6695 6696 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); 6697 6698 #define get_mapped(event, func) \ 6699 ({ struct pmu *pmu; \ 6700 mapped_f f = NULL; \ 6701 guard(rcu)(); \ 6702 pmu = READ_ONCE(event->pmu); \ 6703 if (pmu) \ 6704 f = pmu->func; \ 6705 f; \ 6706 }) 6707 6708 static void perf_mmap_open(struct vm_area_struct *vma) 6709 { 6710 struct perf_event *event = vma->vm_file->private_data; 6711 mapped_f mapped = get_mapped(event, event_mapped); 6712 6713 refcount_inc(&event->mmap_count); 6714 refcount_inc(&event->rb->mmap_count); 6715 6716 if (vma->vm_pgoff) 6717 refcount_inc(&event->rb->aux_mmap_count); 6718 6719 if (mapped) 6720 mapped(event, vma->vm_mm); 6721 } 6722 6723 static void perf_pmu_output_stop(struct perf_event *event); 6724 6725 /* 6726 * A buffer can be mmap()ed multiple times; either directly through the same 6727 * event, or through other events by use of perf_event_set_output(). 6728 * 6729 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6730 * the buffer here, where we still have a VM context. This means we need 6731 * to detach all events redirecting to us. 6732 */ 6733 static void perf_mmap_close(struct vm_area_struct *vma) 6734 { 6735 struct perf_event *event = vma->vm_file->private_data; 6736 mapped_f unmapped = get_mapped(event, event_unmapped); 6737 struct perf_buffer *rb = ring_buffer_get(event); 6738 struct user_struct *mmap_user = rb->mmap_user; 6739 int mmap_locked = rb->mmap_locked; 6740 unsigned long size = perf_data_size(rb); 6741 bool detach_rest = false; 6742 6743 /* FIXIES vs perf_pmu_unregister() */ 6744 if (unmapped) 6745 unmapped(event, vma->vm_mm); 6746 6747 /* 6748 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6749 * to avoid complications. 6750 */ 6751 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6752 refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6753 /* 6754 * Stop all AUX events that are writing to this buffer, 6755 * so that we can free its AUX pages and corresponding PMU 6756 * data. Note that after rb::aux_mmap_count dropped to zero, 6757 * they won't start any more (see perf_aux_output_begin()). 6758 */ 6759 perf_pmu_output_stop(event); 6760 6761 /* now it's safe to free the pages */ 6762 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6763 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6764 6765 /* this has to be the last one */ 6766 rb_free_aux(rb); 6767 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6768 6769 mutex_unlock(&rb->aux_mutex); 6770 } 6771 6772 if (refcount_dec_and_test(&rb->mmap_count)) 6773 detach_rest = true; 6774 6775 if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6776 goto out_put; 6777 6778 ring_buffer_attach(event, NULL); 6779 mutex_unlock(&event->mmap_mutex); 6780 6781 /* If there's still other mmap()s of this buffer, we're done. */ 6782 if (!detach_rest) 6783 goto out_put; 6784 6785 /* 6786 * No other mmap()s, detach from all other events that might redirect 6787 * into the now unreachable buffer. Somewhat complicated by the 6788 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6789 */ 6790 again: 6791 rcu_read_lock(); 6792 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6793 if (!atomic_long_inc_not_zero(&event->refcount)) { 6794 /* 6795 * This event is en-route to free_event() which will 6796 * detach it and remove it from the list. 6797 */ 6798 continue; 6799 } 6800 rcu_read_unlock(); 6801 6802 mutex_lock(&event->mmap_mutex); 6803 /* 6804 * Check we didn't race with perf_event_set_output() which can 6805 * swizzle the rb from under us while we were waiting to 6806 * acquire mmap_mutex. 6807 * 6808 * If we find a different rb; ignore this event, a next 6809 * iteration will no longer find it on the list. We have to 6810 * still restart the iteration to make sure we're not now 6811 * iterating the wrong list. 6812 */ 6813 if (event->rb == rb) 6814 ring_buffer_attach(event, NULL); 6815 6816 mutex_unlock(&event->mmap_mutex); 6817 put_event(event); 6818 6819 /* 6820 * Restart the iteration; either we're on the wrong list or 6821 * destroyed its integrity by doing a deletion. 6822 */ 6823 goto again; 6824 } 6825 rcu_read_unlock(); 6826 6827 /* 6828 * It could be there's still a few 0-ref events on the list; they'll 6829 * get cleaned up by free_event() -- they'll also still have their 6830 * ref on the rb and will free it whenever they are done with it. 6831 * 6832 * Aside from that, this buffer is 'fully' detached and unmapped, 6833 * undo the VM accounting. 6834 */ 6835 6836 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6837 &mmap_user->locked_vm); 6838 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6839 free_uid(mmap_user); 6840 6841 out_put: 6842 ring_buffer_put(rb); /* could be last */ 6843 } 6844 6845 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6846 { 6847 /* The first page is the user control page, others are read-only. */ 6848 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6849 } 6850 6851 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr) 6852 { 6853 /* 6854 * Forbid splitting perf mappings to prevent refcount leaks due to 6855 * the resulting non-matching offsets and sizes. See open()/close(). 6856 */ 6857 return -EINVAL; 6858 } 6859 6860 static const struct vm_operations_struct perf_mmap_vmops = { 6861 .open = perf_mmap_open, 6862 .close = perf_mmap_close, /* non mergeable */ 6863 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6864 .may_split = perf_mmap_may_split, 6865 }; 6866 6867 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6868 { 6869 unsigned long nr_pages = vma_pages(vma); 6870 int err = 0; 6871 unsigned long pagenum; 6872 6873 /* 6874 * We map this as a VM_PFNMAP VMA. 6875 * 6876 * This is not ideal as this is designed broadly for mappings of PFNs 6877 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6878 * !pfn_valid(pfn). 6879 * 6880 * We are mapping kernel-allocated memory (memory we manage ourselves) 6881 * which would more ideally be mapped using vm_insert_page() or a 6882 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6883 * 6884 * However this won't work here, because: 6885 * 6886 * 1. It uses vma->vm_page_prot, but this field has not been completely 6887 * setup at the point of the f_op->mmp() hook, so we are unable to 6888 * indicate that this should be mapped CoW in order that the 6889 * mkwrite() hook can be invoked to make the first page R/W and the 6890 * rest R/O as desired. 6891 * 6892 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6893 * vm_normal_page() returning a struct page * pointer, which means 6894 * vm_ops->page_mkwrite() will be invoked rather than 6895 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6896 * to work around retry logic in the fault handler, however this 6897 * field is no longer allowed to be used within struct page. 6898 * 6899 * 3. Having a struct page * made available in the fault logic also 6900 * means that the page gets put on the rmap and becomes 6901 * inappropriately accessible and subject to map and ref counting. 6902 * 6903 * Ideally we would have a mechanism that could explicitly express our 6904 * desires, but this is not currently the case, so we instead use 6905 * VM_PFNMAP. 6906 * 6907 * We manage the lifetime of these mappings with internal refcounts (see 6908 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6909 * this mapping is maintained correctly. 6910 */ 6911 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6912 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6913 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6914 6915 if (page == NULL) { 6916 err = -EINVAL; 6917 break; 6918 } 6919 6920 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6921 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6922 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6923 if (err) 6924 break; 6925 } 6926 6927 #ifdef CONFIG_MMU 6928 /* Clear any partial mappings on error. */ 6929 if (err) 6930 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6931 #endif 6932 6933 return err; 6934 } 6935 6936 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra) 6937 { 6938 unsigned long user_locked, user_lock_limit, locked, lock_limit; 6939 struct user_struct *user = current_user(); 6940 6941 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6942 /* Increase the limit linearly with more CPUs */ 6943 user_lock_limit *= num_online_cpus(); 6944 6945 user_locked = atomic_long_read(&user->locked_vm); 6946 6947 /* 6948 * sysctl_perf_event_mlock may have changed, so that 6949 * user->locked_vm > user_lock_limit 6950 */ 6951 if (user_locked > user_lock_limit) 6952 user_locked = user_lock_limit; 6953 user_locked += *user_extra; 6954 6955 if (user_locked > user_lock_limit) { 6956 /* 6957 * charge locked_vm until it hits user_lock_limit; 6958 * charge the rest from pinned_vm 6959 */ 6960 *extra = user_locked - user_lock_limit; 6961 *user_extra -= *extra; 6962 } 6963 6964 lock_limit = rlimit(RLIMIT_MEMLOCK); 6965 lock_limit >>= PAGE_SHIFT; 6966 locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra; 6967 6968 return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK); 6969 } 6970 6971 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra) 6972 { 6973 struct user_struct *user = current_user(); 6974 6975 atomic_long_add(user_extra, &user->locked_vm); 6976 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6977 } 6978 6979 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event, 6980 unsigned long nr_pages) 6981 { 6982 long extra = 0, user_extra = nr_pages; 6983 struct perf_buffer *rb; 6984 int rb_flags = 0; 6985 6986 nr_pages -= 1; 6987 6988 /* 6989 * If we have rb pages ensure they're a power-of-two number, so we 6990 * can do bitmasks instead of modulo. 6991 */ 6992 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6993 return -EINVAL; 6994 6995 WARN_ON_ONCE(event->ctx->parent_ctx); 6996 6997 if (event->rb) { 6998 if (data_page_nr(event->rb) != nr_pages) 6999 return -EINVAL; 7000 7001 if (refcount_inc_not_zero(&event->rb->mmap_count)) { 7002 /* 7003 * Success -- managed to mmap() the same buffer 7004 * multiple times. 7005 */ 7006 perf_mmap_account(vma, user_extra, extra); 7007 refcount_inc(&event->mmap_count); 7008 return 0; 7009 } 7010 7011 /* 7012 * Raced against perf_mmap_close()'s 7013 * refcount_dec_and_mutex_lock() remove the 7014 * event and continue as if !event->rb 7015 */ 7016 ring_buffer_attach(event, NULL); 7017 } 7018 7019 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) 7020 return -EPERM; 7021 7022 if (vma->vm_flags & VM_WRITE) 7023 rb_flags |= RING_BUFFER_WRITABLE; 7024 7025 rb = rb_alloc(nr_pages, 7026 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7027 event->cpu, rb_flags); 7028 7029 if (!rb) 7030 return -ENOMEM; 7031 7032 refcount_set(&rb->mmap_count, 1); 7033 rb->mmap_user = get_current_user(); 7034 rb->mmap_locked = extra; 7035 7036 ring_buffer_attach(event, rb); 7037 7038 perf_event_update_time(event); 7039 perf_event_init_userpage(event); 7040 perf_event_update_userpage(event); 7041 7042 perf_mmap_account(vma, user_extra, extra); 7043 refcount_set(&event->mmap_count, 1); 7044 7045 return 0; 7046 } 7047 7048 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event, 7049 unsigned long nr_pages) 7050 { 7051 long extra = 0, user_extra = nr_pages; 7052 u64 aux_offset, aux_size; 7053 struct perf_buffer *rb; 7054 int ret, rb_flags = 0; 7055 7056 rb = event->rb; 7057 if (!rb) 7058 return -EINVAL; 7059 7060 guard(mutex)(&rb->aux_mutex); 7061 7062 /* 7063 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 7064 * mapped, all subsequent mappings should have the same size 7065 * and offset. Must be above the normal perf buffer. 7066 */ 7067 aux_offset = READ_ONCE(rb->user_page->aux_offset); 7068 aux_size = READ_ONCE(rb->user_page->aux_size); 7069 7070 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 7071 return -EINVAL; 7072 7073 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 7074 return -EINVAL; 7075 7076 /* already mapped with a different offset */ 7077 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 7078 return -EINVAL; 7079 7080 if (aux_size != nr_pages * PAGE_SIZE) 7081 return -EINVAL; 7082 7083 /* already mapped with a different size */ 7084 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 7085 return -EINVAL; 7086 7087 if (!is_power_of_2(nr_pages)) 7088 return -EINVAL; 7089 7090 if (!refcount_inc_not_zero(&rb->mmap_count)) 7091 return -EINVAL; 7092 7093 if (rb_has_aux(rb)) { 7094 refcount_inc(&rb->aux_mmap_count); 7095 7096 } else { 7097 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) { 7098 refcount_dec(&rb->mmap_count); 7099 return -EPERM; 7100 } 7101 7102 WARN_ON(!rb && event->rb); 7103 7104 if (vma->vm_flags & VM_WRITE) 7105 rb_flags |= RING_BUFFER_WRITABLE; 7106 7107 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7108 event->attr.aux_watermark, rb_flags); 7109 if (ret) { 7110 refcount_dec(&rb->mmap_count); 7111 return ret; 7112 } 7113 7114 refcount_set(&rb->aux_mmap_count, 1); 7115 rb->aux_mmap_locked = extra; 7116 } 7117 7118 perf_mmap_account(vma, user_extra, extra); 7119 refcount_inc(&event->mmap_count); 7120 7121 return 0; 7122 } 7123 7124 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 7125 { 7126 struct perf_event *event = file->private_data; 7127 unsigned long vma_size, nr_pages; 7128 mapped_f mapped; 7129 int ret; 7130 7131 /* 7132 * Don't allow mmap() of inherited per-task counters. This would 7133 * create a performance issue due to all children writing to the 7134 * same rb. 7135 */ 7136 if (event->cpu == -1 && event->attr.inherit) 7137 return -EINVAL; 7138 7139 if (!(vma->vm_flags & VM_SHARED)) 7140 return -EINVAL; 7141 7142 ret = security_perf_event_read(event); 7143 if (ret) 7144 return ret; 7145 7146 vma_size = vma->vm_end - vma->vm_start; 7147 nr_pages = vma_size / PAGE_SIZE; 7148 7149 if (nr_pages > INT_MAX) 7150 return -ENOMEM; 7151 7152 if (vma_size != PAGE_SIZE * nr_pages) 7153 return -EINVAL; 7154 7155 scoped_guard (mutex, &event->mmap_mutex) { 7156 /* 7157 * This relies on __pmu_detach_event() taking mmap_mutex after marking 7158 * the event REVOKED. Either we observe the state, or __pmu_detach_event() 7159 * will detach the rb created here. 7160 */ 7161 if (event->state <= PERF_EVENT_STATE_REVOKED) 7162 return -ENODEV; 7163 7164 if (vma->vm_pgoff == 0) 7165 ret = perf_mmap_rb(vma, event, nr_pages); 7166 else 7167 ret = perf_mmap_aux(vma, event, nr_pages); 7168 if (ret) 7169 return ret; 7170 } 7171 7172 /* 7173 * Since pinned accounting is per vm we cannot allow fork() to copy our 7174 * vma. 7175 */ 7176 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7177 vma->vm_ops = &perf_mmap_vmops; 7178 7179 mapped = get_mapped(event, event_mapped); 7180 if (mapped) 7181 mapped(event, vma->vm_mm); 7182 7183 /* 7184 * Try to map it into the page table. On fail, invoke 7185 * perf_mmap_close() to undo the above, as the callsite expects 7186 * full cleanup in this case and therefore does not invoke 7187 * vmops::close(). 7188 */ 7189 ret = map_range(event->rb, vma); 7190 if (ret) 7191 perf_mmap_close(vma); 7192 7193 return ret; 7194 } 7195 7196 static int perf_fasync(int fd, struct file *filp, int on) 7197 { 7198 struct inode *inode = file_inode(filp); 7199 struct perf_event *event = filp->private_data; 7200 int retval; 7201 7202 if (event->state <= PERF_EVENT_STATE_REVOKED) 7203 return -ENODEV; 7204 7205 inode_lock(inode); 7206 retval = fasync_helper(fd, filp, on, &event->fasync); 7207 inode_unlock(inode); 7208 7209 if (retval < 0) 7210 return retval; 7211 7212 return 0; 7213 } 7214 7215 static const struct file_operations perf_fops = { 7216 .release = perf_release, 7217 .read = perf_read, 7218 .poll = perf_poll, 7219 .unlocked_ioctl = perf_ioctl, 7220 .compat_ioctl = perf_compat_ioctl, 7221 .mmap = perf_mmap, 7222 .fasync = perf_fasync, 7223 }; 7224 7225 /* 7226 * Perf event wakeup 7227 * 7228 * If there's data, ensure we set the poll() state and publish everything 7229 * to user-space before waking everybody up. 7230 */ 7231 7232 void perf_event_wakeup(struct perf_event *event) 7233 { 7234 ring_buffer_wakeup(event); 7235 7236 if (event->pending_kill) { 7237 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7238 event->pending_kill = 0; 7239 } 7240 } 7241 7242 static void perf_sigtrap(struct perf_event *event) 7243 { 7244 /* 7245 * Both perf_pending_task() and perf_pending_irq() can race with the 7246 * task exiting. 7247 */ 7248 if (current->flags & PF_EXITING) 7249 return; 7250 7251 /* 7252 * We'd expect this to only occur if the irq_work is delayed and either 7253 * ctx->task or current has changed in the meantime. This can be the 7254 * case on architectures that do not implement arch_irq_work_raise(). 7255 */ 7256 if (WARN_ON_ONCE(event->ctx->task != current)) 7257 return; 7258 7259 send_sig_perf((void __user *)event->pending_addr, 7260 event->orig_type, event->attr.sig_data); 7261 } 7262 7263 /* 7264 * Deliver the pending work in-event-context or follow the context. 7265 */ 7266 static void __perf_pending_disable(struct perf_event *event) 7267 { 7268 int cpu = READ_ONCE(event->oncpu); 7269 7270 /* 7271 * If the event isn't running; we done. event_sched_out() will have 7272 * taken care of things. 7273 */ 7274 if (cpu < 0) 7275 return; 7276 7277 /* 7278 * Yay, we hit home and are in the context of the event. 7279 */ 7280 if (cpu == smp_processor_id()) { 7281 if (event->pending_disable) { 7282 event->pending_disable = 0; 7283 perf_event_disable_local(event); 7284 } 7285 return; 7286 } 7287 7288 /* 7289 * CPU-A CPU-B 7290 * 7291 * perf_event_disable_inatomic() 7292 * @pending_disable = 1; 7293 * irq_work_queue(); 7294 * 7295 * sched-out 7296 * @pending_disable = 0; 7297 * 7298 * sched-in 7299 * perf_event_disable_inatomic() 7300 * @pending_disable = 1; 7301 * irq_work_queue(); // FAILS 7302 * 7303 * irq_work_run() 7304 * perf_pending_disable() 7305 * 7306 * But the event runs on CPU-B and wants disabling there. 7307 */ 7308 irq_work_queue_on(&event->pending_disable_irq, cpu); 7309 } 7310 7311 static void perf_pending_disable(struct irq_work *entry) 7312 { 7313 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7314 int rctx; 7315 7316 /* 7317 * If we 'fail' here, that's OK, it means recursion is already disabled 7318 * and we won't recurse 'further'. 7319 */ 7320 rctx = perf_swevent_get_recursion_context(); 7321 __perf_pending_disable(event); 7322 if (rctx >= 0) 7323 perf_swevent_put_recursion_context(rctx); 7324 } 7325 7326 static void perf_pending_irq(struct irq_work *entry) 7327 { 7328 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7329 int rctx; 7330 7331 /* 7332 * If we 'fail' here, that's OK, it means recursion is already disabled 7333 * and we won't recurse 'further'. 7334 */ 7335 rctx = perf_swevent_get_recursion_context(); 7336 7337 /* 7338 * The wakeup isn't bound to the context of the event -- it can happen 7339 * irrespective of where the event is. 7340 */ 7341 if (event->pending_wakeup) { 7342 event->pending_wakeup = 0; 7343 perf_event_wakeup(event); 7344 } 7345 7346 if (rctx >= 0) 7347 perf_swevent_put_recursion_context(rctx); 7348 } 7349 7350 static void perf_pending_task(struct callback_head *head) 7351 { 7352 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7353 int rctx; 7354 7355 /* 7356 * If we 'fail' here, that's OK, it means recursion is already disabled 7357 * and we won't recurse 'further'. 7358 */ 7359 rctx = perf_swevent_get_recursion_context(); 7360 7361 if (event->pending_work) { 7362 event->pending_work = 0; 7363 perf_sigtrap(event); 7364 local_dec(&event->ctx->nr_no_switch_fast); 7365 } 7366 put_event(event); 7367 7368 if (rctx >= 0) 7369 perf_swevent_put_recursion_context(rctx); 7370 } 7371 7372 #ifdef CONFIG_GUEST_PERF_EVENTS 7373 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7374 7375 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7376 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7377 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7378 7379 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7380 { 7381 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7382 return; 7383 7384 rcu_assign_pointer(perf_guest_cbs, cbs); 7385 static_call_update(__perf_guest_state, cbs->state); 7386 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7387 7388 /* Implementing ->handle_intel_pt_intr is optional. */ 7389 if (cbs->handle_intel_pt_intr) 7390 static_call_update(__perf_guest_handle_intel_pt_intr, 7391 cbs->handle_intel_pt_intr); 7392 } 7393 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7394 7395 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7396 { 7397 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7398 return; 7399 7400 rcu_assign_pointer(perf_guest_cbs, NULL); 7401 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7402 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7403 static_call_update(__perf_guest_handle_intel_pt_intr, 7404 (void *)&__static_call_return0); 7405 synchronize_rcu(); 7406 } 7407 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7408 #endif 7409 7410 static bool should_sample_guest(struct perf_event *event) 7411 { 7412 return !event->attr.exclude_guest && perf_guest_state(); 7413 } 7414 7415 unsigned long perf_misc_flags(struct perf_event *event, 7416 struct pt_regs *regs) 7417 { 7418 if (should_sample_guest(event)) 7419 return perf_arch_guest_misc_flags(regs); 7420 7421 return perf_arch_misc_flags(regs); 7422 } 7423 7424 unsigned long perf_instruction_pointer(struct perf_event *event, 7425 struct pt_regs *regs) 7426 { 7427 if (should_sample_guest(event)) 7428 return perf_guest_get_ip(); 7429 7430 return perf_arch_instruction_pointer(regs); 7431 } 7432 7433 static void 7434 perf_output_sample_regs(struct perf_output_handle *handle, 7435 struct pt_regs *regs, u64 mask) 7436 { 7437 int bit; 7438 DECLARE_BITMAP(_mask, 64); 7439 7440 bitmap_from_u64(_mask, mask); 7441 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7442 u64 val; 7443 7444 val = perf_reg_value(regs, bit); 7445 perf_output_put(handle, val); 7446 } 7447 } 7448 7449 static void perf_sample_regs_user(struct perf_regs *regs_user, 7450 struct pt_regs *regs) 7451 { 7452 if (user_mode(regs)) { 7453 regs_user->abi = perf_reg_abi(current); 7454 regs_user->regs = regs; 7455 } else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) { 7456 perf_get_regs_user(regs_user, regs); 7457 } else { 7458 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7459 regs_user->regs = NULL; 7460 } 7461 } 7462 7463 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7464 struct pt_regs *regs) 7465 { 7466 regs_intr->regs = regs; 7467 regs_intr->abi = perf_reg_abi(current); 7468 } 7469 7470 7471 /* 7472 * Get remaining task size from user stack pointer. 7473 * 7474 * It'd be better to take stack vma map and limit this more 7475 * precisely, but there's no way to get it safely under interrupt, 7476 * so using TASK_SIZE as limit. 7477 */ 7478 static u64 perf_ustack_task_size(struct pt_regs *regs) 7479 { 7480 unsigned long addr = perf_user_stack_pointer(regs); 7481 7482 if (!addr || addr >= TASK_SIZE) 7483 return 0; 7484 7485 return TASK_SIZE - addr; 7486 } 7487 7488 static u16 7489 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7490 struct pt_regs *regs) 7491 { 7492 u64 task_size; 7493 7494 /* No regs, no stack pointer, no dump. */ 7495 if (!regs) 7496 return 0; 7497 7498 /* No mm, no stack, no dump. */ 7499 if (!current->mm) 7500 return 0; 7501 7502 /* 7503 * Check if we fit in with the requested stack size into the: 7504 * - TASK_SIZE 7505 * If we don't, we limit the size to the TASK_SIZE. 7506 * 7507 * - remaining sample size 7508 * If we don't, we customize the stack size to 7509 * fit in to the remaining sample size. 7510 */ 7511 7512 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7513 stack_size = min(stack_size, (u16) task_size); 7514 7515 /* Current header size plus static size and dynamic size. */ 7516 header_size += 2 * sizeof(u64); 7517 7518 /* Do we fit in with the current stack dump size? */ 7519 if ((u16) (header_size + stack_size) < header_size) { 7520 /* 7521 * If we overflow the maximum size for the sample, 7522 * we customize the stack dump size to fit in. 7523 */ 7524 stack_size = USHRT_MAX - header_size - sizeof(u64); 7525 stack_size = round_up(stack_size, sizeof(u64)); 7526 } 7527 7528 return stack_size; 7529 } 7530 7531 static void 7532 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7533 struct pt_regs *regs) 7534 { 7535 /* Case of a kernel thread, nothing to dump */ 7536 if (!regs) { 7537 u64 size = 0; 7538 perf_output_put(handle, size); 7539 } else { 7540 unsigned long sp; 7541 unsigned int rem; 7542 u64 dyn_size; 7543 7544 /* 7545 * We dump: 7546 * static size 7547 * - the size requested by user or the best one we can fit 7548 * in to the sample max size 7549 * data 7550 * - user stack dump data 7551 * dynamic size 7552 * - the actual dumped size 7553 */ 7554 7555 /* Static size. */ 7556 perf_output_put(handle, dump_size); 7557 7558 /* Data. */ 7559 sp = perf_user_stack_pointer(regs); 7560 rem = __output_copy_user(handle, (void *) sp, dump_size); 7561 dyn_size = dump_size - rem; 7562 7563 perf_output_skip(handle, rem); 7564 7565 /* Dynamic size. */ 7566 perf_output_put(handle, dyn_size); 7567 } 7568 } 7569 7570 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7571 struct perf_sample_data *data, 7572 size_t size) 7573 { 7574 struct perf_event *sampler = event->aux_event; 7575 struct perf_buffer *rb; 7576 7577 data->aux_size = 0; 7578 7579 if (!sampler) 7580 goto out; 7581 7582 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7583 goto out; 7584 7585 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7586 goto out; 7587 7588 rb = ring_buffer_get(sampler); 7589 if (!rb) 7590 goto out; 7591 7592 /* 7593 * If this is an NMI hit inside sampling code, don't take 7594 * the sample. See also perf_aux_sample_output(). 7595 */ 7596 if (READ_ONCE(rb->aux_in_sampling)) { 7597 data->aux_size = 0; 7598 } else { 7599 size = min_t(size_t, size, perf_aux_size(rb)); 7600 data->aux_size = ALIGN(size, sizeof(u64)); 7601 } 7602 ring_buffer_put(rb); 7603 7604 out: 7605 return data->aux_size; 7606 } 7607 7608 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7609 struct perf_event *event, 7610 struct perf_output_handle *handle, 7611 unsigned long size) 7612 { 7613 unsigned long flags; 7614 long ret; 7615 7616 /* 7617 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7618 * paths. If we start calling them in NMI context, they may race with 7619 * the IRQ ones, that is, for example, re-starting an event that's just 7620 * been stopped, which is why we're using a separate callback that 7621 * doesn't change the event state. 7622 * 7623 * IRQs need to be disabled to prevent IPIs from racing with us. 7624 */ 7625 local_irq_save(flags); 7626 /* 7627 * Guard against NMI hits inside the critical section; 7628 * see also perf_prepare_sample_aux(). 7629 */ 7630 WRITE_ONCE(rb->aux_in_sampling, 1); 7631 barrier(); 7632 7633 ret = event->pmu->snapshot_aux(event, handle, size); 7634 7635 barrier(); 7636 WRITE_ONCE(rb->aux_in_sampling, 0); 7637 local_irq_restore(flags); 7638 7639 return ret; 7640 } 7641 7642 static void perf_aux_sample_output(struct perf_event *event, 7643 struct perf_output_handle *handle, 7644 struct perf_sample_data *data) 7645 { 7646 struct perf_event *sampler = event->aux_event; 7647 struct perf_buffer *rb; 7648 unsigned long pad; 7649 long size; 7650 7651 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7652 return; 7653 7654 rb = ring_buffer_get(sampler); 7655 if (!rb) 7656 return; 7657 7658 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7659 7660 /* 7661 * An error here means that perf_output_copy() failed (returned a 7662 * non-zero surplus that it didn't copy), which in its current 7663 * enlightened implementation is not possible. If that changes, we'd 7664 * like to know. 7665 */ 7666 if (WARN_ON_ONCE(size < 0)) 7667 goto out_put; 7668 7669 /* 7670 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7671 * perf_prepare_sample_aux(), so should not be more than that. 7672 */ 7673 pad = data->aux_size - size; 7674 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7675 pad = 8; 7676 7677 if (pad) { 7678 u64 zero = 0; 7679 perf_output_copy(handle, &zero, pad); 7680 } 7681 7682 out_put: 7683 ring_buffer_put(rb); 7684 } 7685 7686 /* 7687 * A set of common sample data types saved even for non-sample records 7688 * when event->attr.sample_id_all is set. 7689 */ 7690 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7691 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7692 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7693 7694 static void __perf_event_header__init_id(struct perf_sample_data *data, 7695 struct perf_event *event, 7696 u64 sample_type) 7697 { 7698 data->type = event->attr.sample_type; 7699 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7700 7701 if (sample_type & PERF_SAMPLE_TID) { 7702 /* namespace issues */ 7703 data->tid_entry.pid = perf_event_pid(event, current); 7704 data->tid_entry.tid = perf_event_tid(event, current); 7705 } 7706 7707 if (sample_type & PERF_SAMPLE_TIME) 7708 data->time = perf_event_clock(event); 7709 7710 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7711 data->id = primary_event_id(event); 7712 7713 if (sample_type & PERF_SAMPLE_STREAM_ID) 7714 data->stream_id = event->id; 7715 7716 if (sample_type & PERF_SAMPLE_CPU) { 7717 data->cpu_entry.cpu = raw_smp_processor_id(); 7718 data->cpu_entry.reserved = 0; 7719 } 7720 } 7721 7722 void perf_event_header__init_id(struct perf_event_header *header, 7723 struct perf_sample_data *data, 7724 struct perf_event *event) 7725 { 7726 if (event->attr.sample_id_all) { 7727 header->size += event->id_header_size; 7728 __perf_event_header__init_id(data, event, event->attr.sample_type); 7729 } 7730 } 7731 7732 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7733 struct perf_sample_data *data) 7734 { 7735 u64 sample_type = data->type; 7736 7737 if (sample_type & PERF_SAMPLE_TID) 7738 perf_output_put(handle, data->tid_entry); 7739 7740 if (sample_type & PERF_SAMPLE_TIME) 7741 perf_output_put(handle, data->time); 7742 7743 if (sample_type & PERF_SAMPLE_ID) 7744 perf_output_put(handle, data->id); 7745 7746 if (sample_type & PERF_SAMPLE_STREAM_ID) 7747 perf_output_put(handle, data->stream_id); 7748 7749 if (sample_type & PERF_SAMPLE_CPU) 7750 perf_output_put(handle, data->cpu_entry); 7751 7752 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7753 perf_output_put(handle, data->id); 7754 } 7755 7756 void perf_event__output_id_sample(struct perf_event *event, 7757 struct perf_output_handle *handle, 7758 struct perf_sample_data *sample) 7759 { 7760 if (event->attr.sample_id_all) 7761 __perf_event__output_id_sample(handle, sample); 7762 } 7763 7764 static void perf_output_read_one(struct perf_output_handle *handle, 7765 struct perf_event *event, 7766 u64 enabled, u64 running) 7767 { 7768 u64 read_format = event->attr.read_format; 7769 u64 values[5]; 7770 int n = 0; 7771 7772 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7773 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7774 values[n++] = enabled + 7775 atomic64_read(&event->child_total_time_enabled); 7776 } 7777 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7778 values[n++] = running + 7779 atomic64_read(&event->child_total_time_running); 7780 } 7781 if (read_format & PERF_FORMAT_ID) 7782 values[n++] = primary_event_id(event); 7783 if (read_format & PERF_FORMAT_LOST) 7784 values[n++] = atomic64_read(&event->lost_samples); 7785 7786 __output_copy(handle, values, n * sizeof(u64)); 7787 } 7788 7789 static void perf_output_read_group(struct perf_output_handle *handle, 7790 struct perf_event *event, 7791 u64 enabled, u64 running) 7792 { 7793 struct perf_event *leader = event->group_leader, *sub; 7794 u64 read_format = event->attr.read_format; 7795 unsigned long flags; 7796 u64 values[6]; 7797 int n = 0; 7798 bool self = has_inherit_and_sample_read(&event->attr); 7799 7800 /* 7801 * Disabling interrupts avoids all counter scheduling 7802 * (context switches, timer based rotation and IPIs). 7803 */ 7804 local_irq_save(flags); 7805 7806 values[n++] = 1 + leader->nr_siblings; 7807 7808 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7809 values[n++] = enabled; 7810 7811 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7812 values[n++] = running; 7813 7814 if ((leader != event) && !handle->skip_read) 7815 perf_pmu_read(leader); 7816 7817 values[n++] = perf_event_count(leader, self); 7818 if (read_format & PERF_FORMAT_ID) 7819 values[n++] = primary_event_id(leader); 7820 if (read_format & PERF_FORMAT_LOST) 7821 values[n++] = atomic64_read(&leader->lost_samples); 7822 7823 __output_copy(handle, values, n * sizeof(u64)); 7824 7825 for_each_sibling_event(sub, leader) { 7826 n = 0; 7827 7828 if ((sub != event) && !handle->skip_read) 7829 perf_pmu_read(sub); 7830 7831 values[n++] = perf_event_count(sub, self); 7832 if (read_format & PERF_FORMAT_ID) 7833 values[n++] = primary_event_id(sub); 7834 if (read_format & PERF_FORMAT_LOST) 7835 values[n++] = atomic64_read(&sub->lost_samples); 7836 7837 __output_copy(handle, values, n * sizeof(u64)); 7838 } 7839 7840 local_irq_restore(flags); 7841 } 7842 7843 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7844 PERF_FORMAT_TOTAL_TIME_RUNNING) 7845 7846 /* 7847 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7848 * 7849 * The problem is that its both hard and excessively expensive to iterate the 7850 * child list, not to mention that its impossible to IPI the children running 7851 * on another CPU, from interrupt/NMI context. 7852 * 7853 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7854 * counts rather than attempting to accumulate some value across all children on 7855 * all cores. 7856 */ 7857 static void perf_output_read(struct perf_output_handle *handle, 7858 struct perf_event *event) 7859 { 7860 u64 enabled = 0, running = 0, now; 7861 u64 read_format = event->attr.read_format; 7862 7863 /* 7864 * compute total_time_enabled, total_time_running 7865 * based on snapshot values taken when the event 7866 * was last scheduled in. 7867 * 7868 * we cannot simply called update_context_time() 7869 * because of locking issue as we are called in 7870 * NMI context 7871 */ 7872 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7873 calc_timer_values(event, &now, &enabled, &running); 7874 7875 if (event->attr.read_format & PERF_FORMAT_GROUP) 7876 perf_output_read_group(handle, event, enabled, running); 7877 else 7878 perf_output_read_one(handle, event, enabled, running); 7879 } 7880 7881 void perf_output_sample(struct perf_output_handle *handle, 7882 struct perf_event_header *header, 7883 struct perf_sample_data *data, 7884 struct perf_event *event) 7885 { 7886 u64 sample_type = data->type; 7887 7888 if (data->sample_flags & PERF_SAMPLE_READ) 7889 handle->skip_read = 1; 7890 7891 perf_output_put(handle, *header); 7892 7893 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7894 perf_output_put(handle, data->id); 7895 7896 if (sample_type & PERF_SAMPLE_IP) 7897 perf_output_put(handle, data->ip); 7898 7899 if (sample_type & PERF_SAMPLE_TID) 7900 perf_output_put(handle, data->tid_entry); 7901 7902 if (sample_type & PERF_SAMPLE_TIME) 7903 perf_output_put(handle, data->time); 7904 7905 if (sample_type & PERF_SAMPLE_ADDR) 7906 perf_output_put(handle, data->addr); 7907 7908 if (sample_type & PERF_SAMPLE_ID) 7909 perf_output_put(handle, data->id); 7910 7911 if (sample_type & PERF_SAMPLE_STREAM_ID) 7912 perf_output_put(handle, data->stream_id); 7913 7914 if (sample_type & PERF_SAMPLE_CPU) 7915 perf_output_put(handle, data->cpu_entry); 7916 7917 if (sample_type & PERF_SAMPLE_PERIOD) 7918 perf_output_put(handle, data->period); 7919 7920 if (sample_type & PERF_SAMPLE_READ) 7921 perf_output_read(handle, event); 7922 7923 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7924 int size = 1; 7925 7926 size += data->callchain->nr; 7927 size *= sizeof(u64); 7928 __output_copy(handle, data->callchain, size); 7929 } 7930 7931 if (sample_type & PERF_SAMPLE_RAW) { 7932 struct perf_raw_record *raw = data->raw; 7933 7934 if (raw) { 7935 struct perf_raw_frag *frag = &raw->frag; 7936 7937 perf_output_put(handle, raw->size); 7938 do { 7939 if (frag->copy) { 7940 __output_custom(handle, frag->copy, 7941 frag->data, frag->size); 7942 } else { 7943 __output_copy(handle, frag->data, 7944 frag->size); 7945 } 7946 if (perf_raw_frag_last(frag)) 7947 break; 7948 frag = frag->next; 7949 } while (1); 7950 if (frag->pad) 7951 __output_skip(handle, NULL, frag->pad); 7952 } else { 7953 struct { 7954 u32 size; 7955 u32 data; 7956 } raw = { 7957 .size = sizeof(u32), 7958 .data = 0, 7959 }; 7960 perf_output_put(handle, raw); 7961 } 7962 } 7963 7964 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7965 if (data->br_stack) { 7966 size_t size; 7967 7968 size = data->br_stack->nr 7969 * sizeof(struct perf_branch_entry); 7970 7971 perf_output_put(handle, data->br_stack->nr); 7972 if (branch_sample_hw_index(event)) 7973 perf_output_put(handle, data->br_stack->hw_idx); 7974 perf_output_copy(handle, data->br_stack->entries, size); 7975 /* 7976 * Add the extension space which is appended 7977 * right after the struct perf_branch_stack. 7978 */ 7979 if (data->br_stack_cntr) { 7980 size = data->br_stack->nr * sizeof(u64); 7981 perf_output_copy(handle, data->br_stack_cntr, size); 7982 } 7983 } else { 7984 /* 7985 * we always store at least the value of nr 7986 */ 7987 u64 nr = 0; 7988 perf_output_put(handle, nr); 7989 } 7990 } 7991 7992 if (sample_type & PERF_SAMPLE_REGS_USER) { 7993 u64 abi = data->regs_user.abi; 7994 7995 /* 7996 * If there are no regs to dump, notice it through 7997 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7998 */ 7999 perf_output_put(handle, abi); 8000 8001 if (abi) { 8002 u64 mask = event->attr.sample_regs_user; 8003 perf_output_sample_regs(handle, 8004 data->regs_user.regs, 8005 mask); 8006 } 8007 } 8008 8009 if (sample_type & PERF_SAMPLE_STACK_USER) { 8010 perf_output_sample_ustack(handle, 8011 data->stack_user_size, 8012 data->regs_user.regs); 8013 } 8014 8015 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 8016 perf_output_put(handle, data->weight.full); 8017 8018 if (sample_type & PERF_SAMPLE_DATA_SRC) 8019 perf_output_put(handle, data->data_src.val); 8020 8021 if (sample_type & PERF_SAMPLE_TRANSACTION) 8022 perf_output_put(handle, data->txn); 8023 8024 if (sample_type & PERF_SAMPLE_REGS_INTR) { 8025 u64 abi = data->regs_intr.abi; 8026 /* 8027 * If there are no regs to dump, notice it through 8028 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8029 */ 8030 perf_output_put(handle, abi); 8031 8032 if (abi) { 8033 u64 mask = event->attr.sample_regs_intr; 8034 8035 perf_output_sample_regs(handle, 8036 data->regs_intr.regs, 8037 mask); 8038 } 8039 } 8040 8041 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 8042 perf_output_put(handle, data->phys_addr); 8043 8044 if (sample_type & PERF_SAMPLE_CGROUP) 8045 perf_output_put(handle, data->cgroup); 8046 8047 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 8048 perf_output_put(handle, data->data_page_size); 8049 8050 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 8051 perf_output_put(handle, data->code_page_size); 8052 8053 if (sample_type & PERF_SAMPLE_AUX) { 8054 perf_output_put(handle, data->aux_size); 8055 8056 if (data->aux_size) 8057 perf_aux_sample_output(event, handle, data); 8058 } 8059 8060 if (!event->attr.watermark) { 8061 int wakeup_events = event->attr.wakeup_events; 8062 8063 if (wakeup_events) { 8064 struct perf_buffer *rb = handle->rb; 8065 int events = local_inc_return(&rb->events); 8066 8067 if (events >= wakeup_events) { 8068 local_sub(wakeup_events, &rb->events); 8069 local_inc(&rb->wakeup); 8070 } 8071 } 8072 } 8073 } 8074 8075 static u64 perf_virt_to_phys(u64 virt) 8076 { 8077 u64 phys_addr = 0; 8078 8079 if (!virt) 8080 return 0; 8081 8082 if (virt >= TASK_SIZE) { 8083 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 8084 if (virt_addr_valid((void *)(uintptr_t)virt) && 8085 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 8086 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 8087 } else { 8088 /* 8089 * Walking the pages tables for user address. 8090 * Interrupts are disabled, so it prevents any tear down 8091 * of the page tables. 8092 * Try IRQ-safe get_user_page_fast_only first. 8093 * If failed, leave phys_addr as 0. 8094 */ 8095 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) { 8096 struct page *p; 8097 8098 pagefault_disable(); 8099 if (get_user_page_fast_only(virt, 0, &p)) { 8100 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 8101 put_page(p); 8102 } 8103 pagefault_enable(); 8104 } 8105 } 8106 8107 return phys_addr; 8108 } 8109 8110 /* 8111 * Return the pagetable size of a given virtual address. 8112 */ 8113 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 8114 { 8115 u64 size = 0; 8116 8117 #ifdef CONFIG_HAVE_GUP_FAST 8118 pgd_t *pgdp, pgd; 8119 p4d_t *p4dp, p4d; 8120 pud_t *pudp, pud; 8121 pmd_t *pmdp, pmd; 8122 pte_t *ptep, pte; 8123 8124 pgdp = pgd_offset(mm, addr); 8125 pgd = READ_ONCE(*pgdp); 8126 if (pgd_none(pgd)) 8127 return 0; 8128 8129 if (pgd_leaf(pgd)) 8130 return pgd_leaf_size(pgd); 8131 8132 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8133 p4d = READ_ONCE(*p4dp); 8134 if (!p4d_present(p4d)) 8135 return 0; 8136 8137 if (p4d_leaf(p4d)) 8138 return p4d_leaf_size(p4d); 8139 8140 pudp = pud_offset_lockless(p4dp, p4d, addr); 8141 pud = READ_ONCE(*pudp); 8142 if (!pud_present(pud)) 8143 return 0; 8144 8145 if (pud_leaf(pud)) 8146 return pud_leaf_size(pud); 8147 8148 pmdp = pmd_offset_lockless(pudp, pud, addr); 8149 again: 8150 pmd = pmdp_get_lockless(pmdp); 8151 if (!pmd_present(pmd)) 8152 return 0; 8153 8154 if (pmd_leaf(pmd)) 8155 return pmd_leaf_size(pmd); 8156 8157 ptep = pte_offset_map(&pmd, addr); 8158 if (!ptep) 8159 goto again; 8160 8161 pte = ptep_get_lockless(ptep); 8162 if (pte_present(pte)) 8163 size = __pte_leaf_size(pmd, pte); 8164 pte_unmap(ptep); 8165 #endif /* CONFIG_HAVE_GUP_FAST */ 8166 8167 return size; 8168 } 8169 8170 static u64 perf_get_page_size(unsigned long addr) 8171 { 8172 struct mm_struct *mm; 8173 unsigned long flags; 8174 u64 size; 8175 8176 if (!addr) 8177 return 0; 8178 8179 /* 8180 * Software page-table walkers must disable IRQs, 8181 * which prevents any tear down of the page tables. 8182 */ 8183 local_irq_save(flags); 8184 8185 mm = current->mm; 8186 if (!mm) { 8187 /* 8188 * For kernel threads and the like, use init_mm so that 8189 * we can find kernel memory. 8190 */ 8191 mm = &init_mm; 8192 } 8193 8194 size = perf_get_pgtable_size(mm, addr); 8195 8196 local_irq_restore(flags); 8197 8198 return size; 8199 } 8200 8201 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8202 8203 struct perf_callchain_entry * 8204 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8205 { 8206 bool kernel = !event->attr.exclude_callchain_kernel; 8207 bool user = !event->attr.exclude_callchain_user && 8208 !(current->flags & (PF_KTHREAD | PF_USER_WORKER)); 8209 /* Disallow cross-task user callchains. */ 8210 bool crosstask = event->ctx->task && event->ctx->task != current; 8211 const u32 max_stack = event->attr.sample_max_stack; 8212 struct perf_callchain_entry *callchain; 8213 8214 if (!current->mm) 8215 user = false; 8216 8217 if (!kernel && !user) 8218 return &__empty_callchain; 8219 8220 callchain = get_perf_callchain(regs, kernel, user, 8221 max_stack, crosstask, true); 8222 return callchain ?: &__empty_callchain; 8223 } 8224 8225 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8226 { 8227 return d * !!(flags & s); 8228 } 8229 8230 void perf_prepare_sample(struct perf_sample_data *data, 8231 struct perf_event *event, 8232 struct pt_regs *regs) 8233 { 8234 u64 sample_type = event->attr.sample_type; 8235 u64 filtered_sample_type; 8236 8237 /* 8238 * Add the sample flags that are dependent to others. And clear the 8239 * sample flags that have already been done by the PMU driver. 8240 */ 8241 filtered_sample_type = sample_type; 8242 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8243 PERF_SAMPLE_IP); 8244 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8245 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8246 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8247 PERF_SAMPLE_REGS_USER); 8248 filtered_sample_type &= ~data->sample_flags; 8249 8250 if (filtered_sample_type == 0) { 8251 /* Make sure it has the correct data->type for output */ 8252 data->type = event->attr.sample_type; 8253 return; 8254 } 8255 8256 __perf_event_header__init_id(data, event, filtered_sample_type); 8257 8258 if (filtered_sample_type & PERF_SAMPLE_IP) { 8259 data->ip = perf_instruction_pointer(event, regs); 8260 data->sample_flags |= PERF_SAMPLE_IP; 8261 } 8262 8263 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8264 perf_sample_save_callchain(data, event, regs); 8265 8266 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8267 data->raw = NULL; 8268 data->dyn_size += sizeof(u64); 8269 data->sample_flags |= PERF_SAMPLE_RAW; 8270 } 8271 8272 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8273 data->br_stack = NULL; 8274 data->dyn_size += sizeof(u64); 8275 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8276 } 8277 8278 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8279 perf_sample_regs_user(&data->regs_user, regs); 8280 8281 /* 8282 * It cannot use the filtered_sample_type here as REGS_USER can be set 8283 * by STACK_USER (using __cond_set() above) and we don't want to update 8284 * the dyn_size if it's not requested by users. 8285 */ 8286 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8287 /* regs dump ABI info */ 8288 int size = sizeof(u64); 8289 8290 if (data->regs_user.regs) { 8291 u64 mask = event->attr.sample_regs_user; 8292 size += hweight64(mask) * sizeof(u64); 8293 } 8294 8295 data->dyn_size += size; 8296 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8297 } 8298 8299 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8300 /* 8301 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8302 * processed as the last one or have additional check added 8303 * in case new sample type is added, because we could eat 8304 * up the rest of the sample size. 8305 */ 8306 u16 stack_size = event->attr.sample_stack_user; 8307 u16 header_size = perf_sample_data_size(data, event); 8308 u16 size = sizeof(u64); 8309 8310 stack_size = perf_sample_ustack_size(stack_size, header_size, 8311 data->regs_user.regs); 8312 8313 /* 8314 * If there is something to dump, add space for the dump 8315 * itself and for the field that tells the dynamic size, 8316 * which is how many have been actually dumped. 8317 */ 8318 if (stack_size) 8319 size += sizeof(u64) + stack_size; 8320 8321 data->stack_user_size = stack_size; 8322 data->dyn_size += size; 8323 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8324 } 8325 8326 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8327 data->weight.full = 0; 8328 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8329 } 8330 8331 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8332 data->data_src.val = PERF_MEM_NA; 8333 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8334 } 8335 8336 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8337 data->txn = 0; 8338 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8339 } 8340 8341 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8342 data->addr = 0; 8343 data->sample_flags |= PERF_SAMPLE_ADDR; 8344 } 8345 8346 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8347 /* regs dump ABI info */ 8348 int size = sizeof(u64); 8349 8350 perf_sample_regs_intr(&data->regs_intr, regs); 8351 8352 if (data->regs_intr.regs) { 8353 u64 mask = event->attr.sample_regs_intr; 8354 8355 size += hweight64(mask) * sizeof(u64); 8356 } 8357 8358 data->dyn_size += size; 8359 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8360 } 8361 8362 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8363 data->phys_addr = perf_virt_to_phys(data->addr); 8364 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8365 } 8366 8367 #ifdef CONFIG_CGROUP_PERF 8368 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8369 struct cgroup *cgrp; 8370 8371 /* protected by RCU */ 8372 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8373 data->cgroup = cgroup_id(cgrp); 8374 data->sample_flags |= PERF_SAMPLE_CGROUP; 8375 } 8376 #endif 8377 8378 /* 8379 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8380 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8381 * but the value will not dump to the userspace. 8382 */ 8383 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8384 data->data_page_size = perf_get_page_size(data->addr); 8385 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8386 } 8387 8388 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8389 data->code_page_size = perf_get_page_size(data->ip); 8390 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8391 } 8392 8393 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8394 u64 size; 8395 u16 header_size = perf_sample_data_size(data, event); 8396 8397 header_size += sizeof(u64); /* size */ 8398 8399 /* 8400 * Given the 16bit nature of header::size, an AUX sample can 8401 * easily overflow it, what with all the preceding sample bits. 8402 * Make sure this doesn't happen by using up to U16_MAX bytes 8403 * per sample in total (rounded down to 8 byte boundary). 8404 */ 8405 size = min_t(size_t, U16_MAX - header_size, 8406 event->attr.aux_sample_size); 8407 size = rounddown(size, 8); 8408 size = perf_prepare_sample_aux(event, data, size); 8409 8410 WARN_ON_ONCE(size + header_size > U16_MAX); 8411 data->dyn_size += size + sizeof(u64); /* size above */ 8412 data->sample_flags |= PERF_SAMPLE_AUX; 8413 } 8414 } 8415 8416 void perf_prepare_header(struct perf_event_header *header, 8417 struct perf_sample_data *data, 8418 struct perf_event *event, 8419 struct pt_regs *regs) 8420 { 8421 header->type = PERF_RECORD_SAMPLE; 8422 header->size = perf_sample_data_size(data, event); 8423 header->misc = perf_misc_flags(event, regs); 8424 8425 /* 8426 * If you're adding more sample types here, you likely need to do 8427 * something about the overflowing header::size, like repurpose the 8428 * lowest 3 bits of size, which should be always zero at the moment. 8429 * This raises a more important question, do we really need 512k sized 8430 * samples and why, so good argumentation is in order for whatever you 8431 * do here next. 8432 */ 8433 WARN_ON_ONCE(header->size & 7); 8434 } 8435 8436 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8437 { 8438 if (pause) { 8439 if (!event->hw.aux_paused) { 8440 event->hw.aux_paused = 1; 8441 event->pmu->stop(event, PERF_EF_PAUSE); 8442 } 8443 } else { 8444 if (event->hw.aux_paused) { 8445 event->hw.aux_paused = 0; 8446 event->pmu->start(event, PERF_EF_RESUME); 8447 } 8448 } 8449 } 8450 8451 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8452 { 8453 struct perf_buffer *rb; 8454 8455 if (WARN_ON_ONCE(!event)) 8456 return; 8457 8458 rb = ring_buffer_get(event); 8459 if (!rb) 8460 return; 8461 8462 scoped_guard (irqsave) { 8463 /* 8464 * Guard against self-recursion here. Another event could trip 8465 * this same from NMI context. 8466 */ 8467 if (READ_ONCE(rb->aux_in_pause_resume)) 8468 break; 8469 8470 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8471 barrier(); 8472 __perf_event_aux_pause(event, pause); 8473 barrier(); 8474 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8475 } 8476 ring_buffer_put(rb); 8477 } 8478 8479 static __always_inline int 8480 __perf_event_output(struct perf_event *event, 8481 struct perf_sample_data *data, 8482 struct pt_regs *regs, 8483 int (*output_begin)(struct perf_output_handle *, 8484 struct perf_sample_data *, 8485 struct perf_event *, 8486 unsigned int)) 8487 { 8488 struct perf_output_handle handle; 8489 struct perf_event_header header; 8490 int err; 8491 8492 /* protect the callchain buffers */ 8493 rcu_read_lock(); 8494 8495 perf_prepare_sample(data, event, regs); 8496 perf_prepare_header(&header, data, event, regs); 8497 8498 err = output_begin(&handle, data, event, header.size); 8499 if (err) 8500 goto exit; 8501 8502 perf_output_sample(&handle, &header, data, event); 8503 8504 perf_output_end(&handle); 8505 8506 exit: 8507 rcu_read_unlock(); 8508 return err; 8509 } 8510 8511 void 8512 perf_event_output_forward(struct perf_event *event, 8513 struct perf_sample_data *data, 8514 struct pt_regs *regs) 8515 { 8516 __perf_event_output(event, data, regs, perf_output_begin_forward); 8517 } 8518 8519 void 8520 perf_event_output_backward(struct perf_event *event, 8521 struct perf_sample_data *data, 8522 struct pt_regs *regs) 8523 { 8524 __perf_event_output(event, data, regs, perf_output_begin_backward); 8525 } 8526 8527 int 8528 perf_event_output(struct perf_event *event, 8529 struct perf_sample_data *data, 8530 struct pt_regs *regs) 8531 { 8532 return __perf_event_output(event, data, regs, perf_output_begin); 8533 } 8534 8535 /* 8536 * read event_id 8537 */ 8538 8539 struct perf_read_event { 8540 struct perf_event_header header; 8541 8542 u32 pid; 8543 u32 tid; 8544 }; 8545 8546 static void 8547 perf_event_read_event(struct perf_event *event, 8548 struct task_struct *task) 8549 { 8550 struct perf_output_handle handle; 8551 struct perf_sample_data sample; 8552 struct perf_read_event read_event = { 8553 .header = { 8554 .type = PERF_RECORD_READ, 8555 .misc = 0, 8556 .size = sizeof(read_event) + event->read_size, 8557 }, 8558 .pid = perf_event_pid(event, task), 8559 .tid = perf_event_tid(event, task), 8560 }; 8561 int ret; 8562 8563 perf_event_header__init_id(&read_event.header, &sample, event); 8564 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8565 if (ret) 8566 return; 8567 8568 perf_output_put(&handle, read_event); 8569 perf_output_read(&handle, event); 8570 perf_event__output_id_sample(event, &handle, &sample); 8571 8572 perf_output_end(&handle); 8573 } 8574 8575 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8576 8577 static void 8578 perf_iterate_ctx(struct perf_event_context *ctx, 8579 perf_iterate_f output, 8580 void *data, bool all) 8581 { 8582 struct perf_event *event; 8583 8584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8585 if (!all) { 8586 if (event->state < PERF_EVENT_STATE_INACTIVE) 8587 continue; 8588 if (!event_filter_match(event)) 8589 continue; 8590 } 8591 8592 output(event, data); 8593 } 8594 } 8595 8596 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8597 { 8598 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8599 struct perf_event *event; 8600 8601 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8602 /* 8603 * Skip events that are not fully formed yet; ensure that 8604 * if we observe event->ctx, both event and ctx will be 8605 * complete enough. See perf_install_in_context(). 8606 */ 8607 if (!smp_load_acquire(&event->ctx)) 8608 continue; 8609 8610 if (event->state < PERF_EVENT_STATE_INACTIVE) 8611 continue; 8612 if (!event_filter_match(event)) 8613 continue; 8614 output(event, data); 8615 } 8616 } 8617 8618 /* 8619 * Iterate all events that need to receive side-band events. 8620 * 8621 * For new callers; ensure that account_pmu_sb_event() includes 8622 * your event, otherwise it might not get delivered. 8623 */ 8624 static void 8625 perf_iterate_sb(perf_iterate_f output, void *data, 8626 struct perf_event_context *task_ctx) 8627 { 8628 struct perf_event_context *ctx; 8629 8630 rcu_read_lock(); 8631 preempt_disable(); 8632 8633 /* 8634 * If we have task_ctx != NULL we only notify the task context itself. 8635 * The task_ctx is set only for EXIT events before releasing task 8636 * context. 8637 */ 8638 if (task_ctx) { 8639 perf_iterate_ctx(task_ctx, output, data, false); 8640 goto done; 8641 } 8642 8643 perf_iterate_sb_cpu(output, data); 8644 8645 ctx = rcu_dereference(current->perf_event_ctxp); 8646 if (ctx) 8647 perf_iterate_ctx(ctx, output, data, false); 8648 done: 8649 preempt_enable(); 8650 rcu_read_unlock(); 8651 } 8652 8653 /* 8654 * Clear all file-based filters at exec, they'll have to be 8655 * re-instated when/if these objects are mmapped again. 8656 */ 8657 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8658 { 8659 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8660 struct perf_addr_filter *filter; 8661 unsigned int restart = 0, count = 0; 8662 unsigned long flags; 8663 8664 if (!has_addr_filter(event)) 8665 return; 8666 8667 raw_spin_lock_irqsave(&ifh->lock, flags); 8668 list_for_each_entry(filter, &ifh->list, entry) { 8669 if (filter->path.dentry) { 8670 event->addr_filter_ranges[count].start = 0; 8671 event->addr_filter_ranges[count].size = 0; 8672 restart++; 8673 } 8674 8675 count++; 8676 } 8677 8678 if (restart) 8679 event->addr_filters_gen++; 8680 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8681 8682 if (restart) 8683 perf_event_stop(event, 1); 8684 } 8685 8686 void perf_event_exec(void) 8687 { 8688 struct perf_event_context *ctx; 8689 8690 ctx = perf_pin_task_context(current); 8691 if (!ctx) 8692 return; 8693 8694 perf_event_enable_on_exec(ctx); 8695 perf_event_remove_on_exec(ctx); 8696 scoped_guard(rcu) 8697 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8698 8699 perf_unpin_context(ctx); 8700 put_ctx(ctx); 8701 } 8702 8703 struct remote_output { 8704 struct perf_buffer *rb; 8705 int err; 8706 }; 8707 8708 static void __perf_event_output_stop(struct perf_event *event, void *data) 8709 { 8710 struct perf_event *parent = event->parent; 8711 struct remote_output *ro = data; 8712 struct perf_buffer *rb = ro->rb; 8713 struct stop_event_data sd = { 8714 .event = event, 8715 }; 8716 8717 if (!has_aux(event)) 8718 return; 8719 8720 if (!parent) 8721 parent = event; 8722 8723 /* 8724 * In case of inheritance, it will be the parent that links to the 8725 * ring-buffer, but it will be the child that's actually using it. 8726 * 8727 * We are using event::rb to determine if the event should be stopped, 8728 * however this may race with ring_buffer_attach() (through set_output), 8729 * which will make us skip the event that actually needs to be stopped. 8730 * So ring_buffer_attach() has to stop an aux event before re-assigning 8731 * its rb pointer. 8732 */ 8733 if (rcu_dereference(parent->rb) == rb) 8734 ro->err = __perf_event_stop(&sd); 8735 } 8736 8737 static int __perf_pmu_output_stop(void *info) 8738 { 8739 struct perf_event *event = info; 8740 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8741 struct remote_output ro = { 8742 .rb = event->rb, 8743 }; 8744 8745 rcu_read_lock(); 8746 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8747 if (cpuctx->task_ctx) 8748 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8749 &ro, false); 8750 rcu_read_unlock(); 8751 8752 return ro.err; 8753 } 8754 8755 static void perf_pmu_output_stop(struct perf_event *event) 8756 { 8757 struct perf_event *iter; 8758 int err, cpu; 8759 8760 restart: 8761 rcu_read_lock(); 8762 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8763 /* 8764 * For per-CPU events, we need to make sure that neither they 8765 * nor their children are running; for cpu==-1 events it's 8766 * sufficient to stop the event itself if it's active, since 8767 * it can't have children. 8768 */ 8769 cpu = iter->cpu; 8770 if (cpu == -1) 8771 cpu = READ_ONCE(iter->oncpu); 8772 8773 if (cpu == -1) 8774 continue; 8775 8776 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8777 if (err == -EAGAIN) { 8778 rcu_read_unlock(); 8779 goto restart; 8780 } 8781 } 8782 rcu_read_unlock(); 8783 } 8784 8785 /* 8786 * task tracking -- fork/exit 8787 * 8788 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8789 */ 8790 8791 struct perf_task_event { 8792 struct task_struct *task; 8793 struct perf_event_context *task_ctx; 8794 8795 struct { 8796 struct perf_event_header header; 8797 8798 u32 pid; 8799 u32 ppid; 8800 u32 tid; 8801 u32 ptid; 8802 u64 time; 8803 } event_id; 8804 }; 8805 8806 static int perf_event_task_match(struct perf_event *event) 8807 { 8808 return event->attr.comm || event->attr.mmap || 8809 event->attr.mmap2 || event->attr.mmap_data || 8810 event->attr.task; 8811 } 8812 8813 static void perf_event_task_output(struct perf_event *event, 8814 void *data) 8815 { 8816 struct perf_task_event *task_event = data; 8817 struct perf_output_handle handle; 8818 struct perf_sample_data sample; 8819 struct task_struct *task = task_event->task; 8820 int ret, size = task_event->event_id.header.size; 8821 8822 if (!perf_event_task_match(event)) 8823 return; 8824 8825 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8826 8827 ret = perf_output_begin(&handle, &sample, event, 8828 task_event->event_id.header.size); 8829 if (ret) 8830 goto out; 8831 8832 task_event->event_id.pid = perf_event_pid(event, task); 8833 task_event->event_id.tid = perf_event_tid(event, task); 8834 8835 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8836 task_event->event_id.ppid = perf_event_pid(event, 8837 task->real_parent); 8838 task_event->event_id.ptid = perf_event_pid(event, 8839 task->real_parent); 8840 } else { /* PERF_RECORD_FORK */ 8841 task_event->event_id.ppid = perf_event_pid(event, current); 8842 task_event->event_id.ptid = perf_event_tid(event, current); 8843 } 8844 8845 task_event->event_id.time = perf_event_clock(event); 8846 8847 perf_output_put(&handle, task_event->event_id); 8848 8849 perf_event__output_id_sample(event, &handle, &sample); 8850 8851 perf_output_end(&handle); 8852 out: 8853 task_event->event_id.header.size = size; 8854 } 8855 8856 static void perf_event_task(struct task_struct *task, 8857 struct perf_event_context *task_ctx, 8858 int new) 8859 { 8860 struct perf_task_event task_event; 8861 8862 if (!atomic_read(&nr_comm_events) && 8863 !atomic_read(&nr_mmap_events) && 8864 !atomic_read(&nr_task_events)) 8865 return; 8866 8867 task_event = (struct perf_task_event){ 8868 .task = task, 8869 .task_ctx = task_ctx, 8870 .event_id = { 8871 .header = { 8872 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8873 .misc = 0, 8874 .size = sizeof(task_event.event_id), 8875 }, 8876 /* .pid */ 8877 /* .ppid */ 8878 /* .tid */ 8879 /* .ptid */ 8880 /* .time */ 8881 }, 8882 }; 8883 8884 perf_iterate_sb(perf_event_task_output, 8885 &task_event, 8886 task_ctx); 8887 } 8888 8889 /* 8890 * Allocate data for a new task when profiling system-wide 8891 * events which require PMU specific data 8892 */ 8893 static void 8894 perf_event_alloc_task_data(struct task_struct *child, 8895 struct task_struct *parent) 8896 { 8897 struct kmem_cache *ctx_cache = NULL; 8898 struct perf_ctx_data *cd; 8899 8900 if (!refcount_read(&global_ctx_data_ref)) 8901 return; 8902 8903 scoped_guard (rcu) { 8904 cd = rcu_dereference(parent->perf_ctx_data); 8905 if (cd) 8906 ctx_cache = cd->ctx_cache; 8907 } 8908 8909 if (!ctx_cache) 8910 return; 8911 8912 guard(percpu_read)(&global_ctx_data_rwsem); 8913 scoped_guard (rcu) { 8914 cd = rcu_dereference(child->perf_ctx_data); 8915 if (!cd) { 8916 /* 8917 * A system-wide event may be unaccount, 8918 * when attaching the perf_ctx_data. 8919 */ 8920 if (!refcount_read(&global_ctx_data_ref)) 8921 return; 8922 goto attach; 8923 } 8924 8925 if (!cd->global) { 8926 cd->global = 1; 8927 refcount_inc(&cd->refcount); 8928 } 8929 } 8930 8931 return; 8932 attach: 8933 attach_task_ctx_data(child, ctx_cache, true); 8934 } 8935 8936 void perf_event_fork(struct task_struct *task) 8937 { 8938 perf_event_task(task, NULL, 1); 8939 perf_event_namespaces(task); 8940 perf_event_alloc_task_data(task, current); 8941 } 8942 8943 /* 8944 * comm tracking 8945 */ 8946 8947 struct perf_comm_event { 8948 struct task_struct *task; 8949 char *comm; 8950 int comm_size; 8951 8952 struct { 8953 struct perf_event_header header; 8954 8955 u32 pid; 8956 u32 tid; 8957 } event_id; 8958 }; 8959 8960 static int perf_event_comm_match(struct perf_event *event) 8961 { 8962 return event->attr.comm; 8963 } 8964 8965 static void perf_event_comm_output(struct perf_event *event, 8966 void *data) 8967 { 8968 struct perf_comm_event *comm_event = data; 8969 struct perf_output_handle handle; 8970 struct perf_sample_data sample; 8971 int size = comm_event->event_id.header.size; 8972 int ret; 8973 8974 if (!perf_event_comm_match(event)) 8975 return; 8976 8977 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8978 ret = perf_output_begin(&handle, &sample, event, 8979 comm_event->event_id.header.size); 8980 8981 if (ret) 8982 goto out; 8983 8984 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8985 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8986 8987 perf_output_put(&handle, comm_event->event_id); 8988 __output_copy(&handle, comm_event->comm, 8989 comm_event->comm_size); 8990 8991 perf_event__output_id_sample(event, &handle, &sample); 8992 8993 perf_output_end(&handle); 8994 out: 8995 comm_event->event_id.header.size = size; 8996 } 8997 8998 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8999 { 9000 char comm[TASK_COMM_LEN]; 9001 unsigned int size; 9002 9003 memset(comm, 0, sizeof(comm)); 9004 strscpy(comm, comm_event->task->comm); 9005 size = ALIGN(strlen(comm)+1, sizeof(u64)); 9006 9007 comm_event->comm = comm; 9008 comm_event->comm_size = size; 9009 9010 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 9011 9012 perf_iterate_sb(perf_event_comm_output, 9013 comm_event, 9014 NULL); 9015 } 9016 9017 void perf_event_comm(struct task_struct *task, bool exec) 9018 { 9019 struct perf_comm_event comm_event; 9020 9021 if (!atomic_read(&nr_comm_events)) 9022 return; 9023 9024 comm_event = (struct perf_comm_event){ 9025 .task = task, 9026 /* .comm */ 9027 /* .comm_size */ 9028 .event_id = { 9029 .header = { 9030 .type = PERF_RECORD_COMM, 9031 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 9032 /* .size */ 9033 }, 9034 /* .pid */ 9035 /* .tid */ 9036 }, 9037 }; 9038 9039 perf_event_comm_event(&comm_event); 9040 } 9041 9042 /* 9043 * namespaces tracking 9044 */ 9045 9046 struct perf_namespaces_event { 9047 struct task_struct *task; 9048 9049 struct { 9050 struct perf_event_header header; 9051 9052 u32 pid; 9053 u32 tid; 9054 u64 nr_namespaces; 9055 struct perf_ns_link_info link_info[NR_NAMESPACES]; 9056 } event_id; 9057 }; 9058 9059 static int perf_event_namespaces_match(struct perf_event *event) 9060 { 9061 return event->attr.namespaces; 9062 } 9063 9064 static void perf_event_namespaces_output(struct perf_event *event, 9065 void *data) 9066 { 9067 struct perf_namespaces_event *namespaces_event = data; 9068 struct perf_output_handle handle; 9069 struct perf_sample_data sample; 9070 u16 header_size = namespaces_event->event_id.header.size; 9071 int ret; 9072 9073 if (!perf_event_namespaces_match(event)) 9074 return; 9075 9076 perf_event_header__init_id(&namespaces_event->event_id.header, 9077 &sample, event); 9078 ret = perf_output_begin(&handle, &sample, event, 9079 namespaces_event->event_id.header.size); 9080 if (ret) 9081 goto out; 9082 9083 namespaces_event->event_id.pid = perf_event_pid(event, 9084 namespaces_event->task); 9085 namespaces_event->event_id.tid = perf_event_tid(event, 9086 namespaces_event->task); 9087 9088 perf_output_put(&handle, namespaces_event->event_id); 9089 9090 perf_event__output_id_sample(event, &handle, &sample); 9091 9092 perf_output_end(&handle); 9093 out: 9094 namespaces_event->event_id.header.size = header_size; 9095 } 9096 9097 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 9098 struct task_struct *task, 9099 const struct proc_ns_operations *ns_ops) 9100 { 9101 struct path ns_path; 9102 struct inode *ns_inode; 9103 int error; 9104 9105 error = ns_get_path(&ns_path, task, ns_ops); 9106 if (!error) { 9107 ns_inode = ns_path.dentry->d_inode; 9108 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 9109 ns_link_info->ino = ns_inode->i_ino; 9110 path_put(&ns_path); 9111 } 9112 } 9113 9114 void perf_event_namespaces(struct task_struct *task) 9115 { 9116 struct perf_namespaces_event namespaces_event; 9117 struct perf_ns_link_info *ns_link_info; 9118 9119 if (!atomic_read(&nr_namespaces_events)) 9120 return; 9121 9122 namespaces_event = (struct perf_namespaces_event){ 9123 .task = task, 9124 .event_id = { 9125 .header = { 9126 .type = PERF_RECORD_NAMESPACES, 9127 .misc = 0, 9128 .size = sizeof(namespaces_event.event_id), 9129 }, 9130 /* .pid */ 9131 /* .tid */ 9132 .nr_namespaces = NR_NAMESPACES, 9133 /* .link_info[NR_NAMESPACES] */ 9134 }, 9135 }; 9136 9137 ns_link_info = namespaces_event.event_id.link_info; 9138 9139 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9140 task, &mntns_operations); 9141 9142 #ifdef CONFIG_USER_NS 9143 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9144 task, &userns_operations); 9145 #endif 9146 #ifdef CONFIG_NET_NS 9147 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9148 task, &netns_operations); 9149 #endif 9150 #ifdef CONFIG_UTS_NS 9151 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9152 task, &utsns_operations); 9153 #endif 9154 #ifdef CONFIG_IPC_NS 9155 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9156 task, &ipcns_operations); 9157 #endif 9158 #ifdef CONFIG_PID_NS 9159 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9160 task, &pidns_operations); 9161 #endif 9162 #ifdef CONFIG_CGROUPS 9163 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9164 task, &cgroupns_operations); 9165 #endif 9166 9167 perf_iterate_sb(perf_event_namespaces_output, 9168 &namespaces_event, 9169 NULL); 9170 } 9171 9172 /* 9173 * cgroup tracking 9174 */ 9175 #ifdef CONFIG_CGROUP_PERF 9176 9177 struct perf_cgroup_event { 9178 char *path; 9179 int path_size; 9180 struct { 9181 struct perf_event_header header; 9182 u64 id; 9183 char path[]; 9184 } event_id; 9185 }; 9186 9187 static int perf_event_cgroup_match(struct perf_event *event) 9188 { 9189 return event->attr.cgroup; 9190 } 9191 9192 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9193 { 9194 struct perf_cgroup_event *cgroup_event = data; 9195 struct perf_output_handle handle; 9196 struct perf_sample_data sample; 9197 u16 header_size = cgroup_event->event_id.header.size; 9198 int ret; 9199 9200 if (!perf_event_cgroup_match(event)) 9201 return; 9202 9203 perf_event_header__init_id(&cgroup_event->event_id.header, 9204 &sample, event); 9205 ret = perf_output_begin(&handle, &sample, event, 9206 cgroup_event->event_id.header.size); 9207 if (ret) 9208 goto out; 9209 9210 perf_output_put(&handle, cgroup_event->event_id); 9211 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9212 9213 perf_event__output_id_sample(event, &handle, &sample); 9214 9215 perf_output_end(&handle); 9216 out: 9217 cgroup_event->event_id.header.size = header_size; 9218 } 9219 9220 static void perf_event_cgroup(struct cgroup *cgrp) 9221 { 9222 struct perf_cgroup_event cgroup_event; 9223 char path_enomem[16] = "//enomem"; 9224 char *pathname; 9225 size_t size; 9226 9227 if (!atomic_read(&nr_cgroup_events)) 9228 return; 9229 9230 cgroup_event = (struct perf_cgroup_event){ 9231 .event_id = { 9232 .header = { 9233 .type = PERF_RECORD_CGROUP, 9234 .misc = 0, 9235 .size = sizeof(cgroup_event.event_id), 9236 }, 9237 .id = cgroup_id(cgrp), 9238 }, 9239 }; 9240 9241 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9242 if (pathname == NULL) { 9243 cgroup_event.path = path_enomem; 9244 } else { 9245 /* just to be sure to have enough space for alignment */ 9246 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9247 cgroup_event.path = pathname; 9248 } 9249 9250 /* 9251 * Since our buffer works in 8 byte units we need to align our string 9252 * size to a multiple of 8. However, we must guarantee the tail end is 9253 * zero'd out to avoid leaking random bits to userspace. 9254 */ 9255 size = strlen(cgroup_event.path) + 1; 9256 while (!IS_ALIGNED(size, sizeof(u64))) 9257 cgroup_event.path[size++] = '\0'; 9258 9259 cgroup_event.event_id.header.size += size; 9260 cgroup_event.path_size = size; 9261 9262 perf_iterate_sb(perf_event_cgroup_output, 9263 &cgroup_event, 9264 NULL); 9265 9266 kfree(pathname); 9267 } 9268 9269 #endif 9270 9271 /* 9272 * mmap tracking 9273 */ 9274 9275 struct perf_mmap_event { 9276 struct vm_area_struct *vma; 9277 9278 const char *file_name; 9279 int file_size; 9280 int maj, min; 9281 u64 ino; 9282 u64 ino_generation; 9283 u32 prot, flags; 9284 u8 build_id[BUILD_ID_SIZE_MAX]; 9285 u32 build_id_size; 9286 9287 struct { 9288 struct perf_event_header header; 9289 9290 u32 pid; 9291 u32 tid; 9292 u64 start; 9293 u64 len; 9294 u64 pgoff; 9295 } event_id; 9296 }; 9297 9298 static int perf_event_mmap_match(struct perf_event *event, 9299 void *data) 9300 { 9301 struct perf_mmap_event *mmap_event = data; 9302 struct vm_area_struct *vma = mmap_event->vma; 9303 int executable = vma->vm_flags & VM_EXEC; 9304 9305 return (!executable && event->attr.mmap_data) || 9306 (executable && (event->attr.mmap || event->attr.mmap2)); 9307 } 9308 9309 static void perf_event_mmap_output(struct perf_event *event, 9310 void *data) 9311 { 9312 struct perf_mmap_event *mmap_event = data; 9313 struct perf_output_handle handle; 9314 struct perf_sample_data sample; 9315 int size = mmap_event->event_id.header.size; 9316 u32 type = mmap_event->event_id.header.type; 9317 bool use_build_id; 9318 int ret; 9319 9320 if (!perf_event_mmap_match(event, data)) 9321 return; 9322 9323 if (event->attr.mmap2) { 9324 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9325 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9326 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9327 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9328 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9329 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9330 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9331 } 9332 9333 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9334 ret = perf_output_begin(&handle, &sample, event, 9335 mmap_event->event_id.header.size); 9336 if (ret) 9337 goto out; 9338 9339 mmap_event->event_id.pid = perf_event_pid(event, current); 9340 mmap_event->event_id.tid = perf_event_tid(event, current); 9341 9342 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9343 9344 if (event->attr.mmap2 && use_build_id) 9345 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9346 9347 perf_output_put(&handle, mmap_event->event_id); 9348 9349 if (event->attr.mmap2) { 9350 if (use_build_id) { 9351 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9352 9353 __output_copy(&handle, size, 4); 9354 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9355 } else { 9356 perf_output_put(&handle, mmap_event->maj); 9357 perf_output_put(&handle, mmap_event->min); 9358 perf_output_put(&handle, mmap_event->ino); 9359 perf_output_put(&handle, mmap_event->ino_generation); 9360 } 9361 perf_output_put(&handle, mmap_event->prot); 9362 perf_output_put(&handle, mmap_event->flags); 9363 } 9364 9365 __output_copy(&handle, mmap_event->file_name, 9366 mmap_event->file_size); 9367 9368 perf_event__output_id_sample(event, &handle, &sample); 9369 9370 perf_output_end(&handle); 9371 out: 9372 mmap_event->event_id.header.size = size; 9373 mmap_event->event_id.header.type = type; 9374 } 9375 9376 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9377 { 9378 struct vm_area_struct *vma = mmap_event->vma; 9379 struct file *file = vma->vm_file; 9380 int maj = 0, min = 0; 9381 u64 ino = 0, gen = 0; 9382 u32 prot = 0, flags = 0; 9383 unsigned int size; 9384 char tmp[16]; 9385 char *buf = NULL; 9386 char *name = NULL; 9387 9388 if (vma->vm_flags & VM_READ) 9389 prot |= PROT_READ; 9390 if (vma->vm_flags & VM_WRITE) 9391 prot |= PROT_WRITE; 9392 if (vma->vm_flags & VM_EXEC) 9393 prot |= PROT_EXEC; 9394 9395 if (vma->vm_flags & VM_MAYSHARE) 9396 flags = MAP_SHARED; 9397 else 9398 flags = MAP_PRIVATE; 9399 9400 if (vma->vm_flags & VM_LOCKED) 9401 flags |= MAP_LOCKED; 9402 if (is_vm_hugetlb_page(vma)) 9403 flags |= MAP_HUGETLB; 9404 9405 if (file) { 9406 struct inode *inode; 9407 dev_t dev; 9408 9409 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9410 if (!buf) { 9411 name = "//enomem"; 9412 goto cpy_name; 9413 } 9414 /* 9415 * d_path() works from the end of the rb backwards, so we 9416 * need to add enough zero bytes after the string to handle 9417 * the 64bit alignment we do later. 9418 */ 9419 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 9420 if (IS_ERR(name)) { 9421 name = "//toolong"; 9422 goto cpy_name; 9423 } 9424 inode = file_inode(vma->vm_file); 9425 dev = inode->i_sb->s_dev; 9426 ino = inode->i_ino; 9427 gen = inode->i_generation; 9428 maj = MAJOR(dev); 9429 min = MINOR(dev); 9430 9431 goto got_name; 9432 } else { 9433 if (vma->vm_ops && vma->vm_ops->name) 9434 name = (char *) vma->vm_ops->name(vma); 9435 if (!name) 9436 name = (char *)arch_vma_name(vma); 9437 if (!name) { 9438 if (vma_is_initial_heap(vma)) 9439 name = "[heap]"; 9440 else if (vma_is_initial_stack(vma)) 9441 name = "[stack]"; 9442 else 9443 name = "//anon"; 9444 } 9445 } 9446 9447 cpy_name: 9448 strscpy(tmp, name); 9449 name = tmp; 9450 got_name: 9451 /* 9452 * Since our buffer works in 8 byte units we need to align our string 9453 * size to a multiple of 8. However, we must guarantee the tail end is 9454 * zero'd out to avoid leaking random bits to userspace. 9455 */ 9456 size = strlen(name)+1; 9457 while (!IS_ALIGNED(size, sizeof(u64))) 9458 name[size++] = '\0'; 9459 9460 mmap_event->file_name = name; 9461 mmap_event->file_size = size; 9462 mmap_event->maj = maj; 9463 mmap_event->min = min; 9464 mmap_event->ino = ino; 9465 mmap_event->ino_generation = gen; 9466 mmap_event->prot = prot; 9467 mmap_event->flags = flags; 9468 9469 if (!(vma->vm_flags & VM_EXEC)) 9470 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9471 9472 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9473 9474 if (atomic_read(&nr_build_id_events)) 9475 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9476 9477 perf_iterate_sb(perf_event_mmap_output, 9478 mmap_event, 9479 NULL); 9480 9481 kfree(buf); 9482 } 9483 9484 /* 9485 * Check whether inode and address range match filter criteria. 9486 */ 9487 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9488 struct file *file, unsigned long offset, 9489 unsigned long size) 9490 { 9491 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9492 if (!filter->path.dentry) 9493 return false; 9494 9495 if (d_inode(filter->path.dentry) != file_inode(file)) 9496 return false; 9497 9498 if (filter->offset > offset + size) 9499 return false; 9500 9501 if (filter->offset + filter->size < offset) 9502 return false; 9503 9504 return true; 9505 } 9506 9507 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9508 struct vm_area_struct *vma, 9509 struct perf_addr_filter_range *fr) 9510 { 9511 unsigned long vma_size = vma->vm_end - vma->vm_start; 9512 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9513 struct file *file = vma->vm_file; 9514 9515 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9516 return false; 9517 9518 if (filter->offset < off) { 9519 fr->start = vma->vm_start; 9520 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9521 } else { 9522 fr->start = vma->vm_start + filter->offset - off; 9523 fr->size = min(vma->vm_end - fr->start, filter->size); 9524 } 9525 9526 return true; 9527 } 9528 9529 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9530 { 9531 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9532 struct vm_area_struct *vma = data; 9533 struct perf_addr_filter *filter; 9534 unsigned int restart = 0, count = 0; 9535 unsigned long flags; 9536 9537 if (!has_addr_filter(event)) 9538 return; 9539 9540 if (!vma->vm_file) 9541 return; 9542 9543 raw_spin_lock_irqsave(&ifh->lock, flags); 9544 list_for_each_entry(filter, &ifh->list, entry) { 9545 if (perf_addr_filter_vma_adjust(filter, vma, 9546 &event->addr_filter_ranges[count])) 9547 restart++; 9548 9549 count++; 9550 } 9551 9552 if (restart) 9553 event->addr_filters_gen++; 9554 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9555 9556 if (restart) 9557 perf_event_stop(event, 1); 9558 } 9559 9560 /* 9561 * Adjust all task's events' filters to the new vma 9562 */ 9563 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9564 { 9565 struct perf_event_context *ctx; 9566 9567 /* 9568 * Data tracing isn't supported yet and as such there is no need 9569 * to keep track of anything that isn't related to executable code: 9570 */ 9571 if (!(vma->vm_flags & VM_EXEC)) 9572 return; 9573 9574 rcu_read_lock(); 9575 ctx = rcu_dereference(current->perf_event_ctxp); 9576 if (ctx) 9577 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9578 rcu_read_unlock(); 9579 } 9580 9581 void perf_event_mmap(struct vm_area_struct *vma) 9582 { 9583 struct perf_mmap_event mmap_event; 9584 9585 if (!atomic_read(&nr_mmap_events)) 9586 return; 9587 9588 mmap_event = (struct perf_mmap_event){ 9589 .vma = vma, 9590 /* .file_name */ 9591 /* .file_size */ 9592 .event_id = { 9593 .header = { 9594 .type = PERF_RECORD_MMAP, 9595 .misc = PERF_RECORD_MISC_USER, 9596 /* .size */ 9597 }, 9598 /* .pid */ 9599 /* .tid */ 9600 .start = vma->vm_start, 9601 .len = vma->vm_end - vma->vm_start, 9602 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9603 }, 9604 /* .maj (attr_mmap2 only) */ 9605 /* .min (attr_mmap2 only) */ 9606 /* .ino (attr_mmap2 only) */ 9607 /* .ino_generation (attr_mmap2 only) */ 9608 /* .prot (attr_mmap2 only) */ 9609 /* .flags (attr_mmap2 only) */ 9610 }; 9611 9612 perf_addr_filters_adjust(vma); 9613 perf_event_mmap_event(&mmap_event); 9614 } 9615 9616 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9617 unsigned long size, u64 flags) 9618 { 9619 struct perf_output_handle handle; 9620 struct perf_sample_data sample; 9621 struct perf_aux_event { 9622 struct perf_event_header header; 9623 u64 offset; 9624 u64 size; 9625 u64 flags; 9626 } rec = { 9627 .header = { 9628 .type = PERF_RECORD_AUX, 9629 .misc = 0, 9630 .size = sizeof(rec), 9631 }, 9632 .offset = head, 9633 .size = size, 9634 .flags = flags, 9635 }; 9636 int ret; 9637 9638 perf_event_header__init_id(&rec.header, &sample, event); 9639 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9640 9641 if (ret) 9642 return; 9643 9644 perf_output_put(&handle, rec); 9645 perf_event__output_id_sample(event, &handle, &sample); 9646 9647 perf_output_end(&handle); 9648 } 9649 9650 /* 9651 * Lost/dropped samples logging 9652 */ 9653 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9654 { 9655 struct perf_output_handle handle; 9656 struct perf_sample_data sample; 9657 int ret; 9658 9659 struct { 9660 struct perf_event_header header; 9661 u64 lost; 9662 } lost_samples_event = { 9663 .header = { 9664 .type = PERF_RECORD_LOST_SAMPLES, 9665 .misc = 0, 9666 .size = sizeof(lost_samples_event), 9667 }, 9668 .lost = lost, 9669 }; 9670 9671 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9672 9673 ret = perf_output_begin(&handle, &sample, event, 9674 lost_samples_event.header.size); 9675 if (ret) 9676 return; 9677 9678 perf_output_put(&handle, lost_samples_event); 9679 perf_event__output_id_sample(event, &handle, &sample); 9680 perf_output_end(&handle); 9681 } 9682 9683 /* 9684 * context_switch tracking 9685 */ 9686 9687 struct perf_switch_event { 9688 struct task_struct *task; 9689 struct task_struct *next_prev; 9690 9691 struct { 9692 struct perf_event_header header; 9693 u32 next_prev_pid; 9694 u32 next_prev_tid; 9695 } event_id; 9696 }; 9697 9698 static int perf_event_switch_match(struct perf_event *event) 9699 { 9700 return event->attr.context_switch; 9701 } 9702 9703 static void perf_event_switch_output(struct perf_event *event, void *data) 9704 { 9705 struct perf_switch_event *se = data; 9706 struct perf_output_handle handle; 9707 struct perf_sample_data sample; 9708 int ret; 9709 9710 if (!perf_event_switch_match(event)) 9711 return; 9712 9713 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9714 if (event->ctx->task) { 9715 se->event_id.header.type = PERF_RECORD_SWITCH; 9716 se->event_id.header.size = sizeof(se->event_id.header); 9717 } else { 9718 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9719 se->event_id.header.size = sizeof(se->event_id); 9720 se->event_id.next_prev_pid = 9721 perf_event_pid(event, se->next_prev); 9722 se->event_id.next_prev_tid = 9723 perf_event_tid(event, se->next_prev); 9724 } 9725 9726 perf_event_header__init_id(&se->event_id.header, &sample, event); 9727 9728 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9729 if (ret) 9730 return; 9731 9732 if (event->ctx->task) 9733 perf_output_put(&handle, se->event_id.header); 9734 else 9735 perf_output_put(&handle, se->event_id); 9736 9737 perf_event__output_id_sample(event, &handle, &sample); 9738 9739 perf_output_end(&handle); 9740 } 9741 9742 static void perf_event_switch(struct task_struct *task, 9743 struct task_struct *next_prev, bool sched_in) 9744 { 9745 struct perf_switch_event switch_event; 9746 9747 /* N.B. caller checks nr_switch_events != 0 */ 9748 9749 switch_event = (struct perf_switch_event){ 9750 .task = task, 9751 .next_prev = next_prev, 9752 .event_id = { 9753 .header = { 9754 /* .type */ 9755 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9756 /* .size */ 9757 }, 9758 /* .next_prev_pid */ 9759 /* .next_prev_tid */ 9760 }, 9761 }; 9762 9763 if (!sched_in && task_is_runnable(task)) { 9764 switch_event.event_id.header.misc |= 9765 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9766 } 9767 9768 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9769 } 9770 9771 /* 9772 * IRQ throttle logging 9773 */ 9774 9775 static void perf_log_throttle(struct perf_event *event, int enable) 9776 { 9777 struct perf_output_handle handle; 9778 struct perf_sample_data sample; 9779 int ret; 9780 9781 struct { 9782 struct perf_event_header header; 9783 u64 time; 9784 u64 id; 9785 u64 stream_id; 9786 } throttle_event = { 9787 .header = { 9788 .type = PERF_RECORD_THROTTLE, 9789 .misc = 0, 9790 .size = sizeof(throttle_event), 9791 }, 9792 .time = perf_event_clock(event), 9793 .id = primary_event_id(event), 9794 .stream_id = event->id, 9795 }; 9796 9797 if (enable) 9798 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9799 9800 perf_event_header__init_id(&throttle_event.header, &sample, event); 9801 9802 ret = perf_output_begin(&handle, &sample, event, 9803 throttle_event.header.size); 9804 if (ret) 9805 return; 9806 9807 perf_output_put(&handle, throttle_event); 9808 perf_event__output_id_sample(event, &handle, &sample); 9809 perf_output_end(&handle); 9810 } 9811 9812 /* 9813 * ksymbol register/unregister tracking 9814 */ 9815 9816 struct perf_ksymbol_event { 9817 const char *name; 9818 int name_len; 9819 struct { 9820 struct perf_event_header header; 9821 u64 addr; 9822 u32 len; 9823 u16 ksym_type; 9824 u16 flags; 9825 } event_id; 9826 }; 9827 9828 static int perf_event_ksymbol_match(struct perf_event *event) 9829 { 9830 return event->attr.ksymbol; 9831 } 9832 9833 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9834 { 9835 struct perf_ksymbol_event *ksymbol_event = data; 9836 struct perf_output_handle handle; 9837 struct perf_sample_data sample; 9838 int ret; 9839 9840 if (!perf_event_ksymbol_match(event)) 9841 return; 9842 9843 perf_event_header__init_id(&ksymbol_event->event_id.header, 9844 &sample, event); 9845 ret = perf_output_begin(&handle, &sample, event, 9846 ksymbol_event->event_id.header.size); 9847 if (ret) 9848 return; 9849 9850 perf_output_put(&handle, ksymbol_event->event_id); 9851 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9852 perf_event__output_id_sample(event, &handle, &sample); 9853 9854 perf_output_end(&handle); 9855 } 9856 9857 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9858 const char *sym) 9859 { 9860 struct perf_ksymbol_event ksymbol_event; 9861 char name[KSYM_NAME_LEN]; 9862 u16 flags = 0; 9863 int name_len; 9864 9865 if (!atomic_read(&nr_ksymbol_events)) 9866 return; 9867 9868 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9869 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9870 goto err; 9871 9872 strscpy(name, sym); 9873 name_len = strlen(name) + 1; 9874 while (!IS_ALIGNED(name_len, sizeof(u64))) 9875 name[name_len++] = '\0'; 9876 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9877 9878 if (unregister) 9879 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9880 9881 ksymbol_event = (struct perf_ksymbol_event){ 9882 .name = name, 9883 .name_len = name_len, 9884 .event_id = { 9885 .header = { 9886 .type = PERF_RECORD_KSYMBOL, 9887 .size = sizeof(ksymbol_event.event_id) + 9888 name_len, 9889 }, 9890 .addr = addr, 9891 .len = len, 9892 .ksym_type = ksym_type, 9893 .flags = flags, 9894 }, 9895 }; 9896 9897 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9898 return; 9899 err: 9900 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9901 } 9902 9903 /* 9904 * bpf program load/unload tracking 9905 */ 9906 9907 struct perf_bpf_event { 9908 struct bpf_prog *prog; 9909 struct { 9910 struct perf_event_header header; 9911 u16 type; 9912 u16 flags; 9913 u32 id; 9914 u8 tag[BPF_TAG_SIZE]; 9915 } event_id; 9916 }; 9917 9918 static int perf_event_bpf_match(struct perf_event *event) 9919 { 9920 return event->attr.bpf_event; 9921 } 9922 9923 static void perf_event_bpf_output(struct perf_event *event, void *data) 9924 { 9925 struct perf_bpf_event *bpf_event = data; 9926 struct perf_output_handle handle; 9927 struct perf_sample_data sample; 9928 int ret; 9929 9930 if (!perf_event_bpf_match(event)) 9931 return; 9932 9933 perf_event_header__init_id(&bpf_event->event_id.header, 9934 &sample, event); 9935 ret = perf_output_begin(&handle, &sample, event, 9936 bpf_event->event_id.header.size); 9937 if (ret) 9938 return; 9939 9940 perf_output_put(&handle, bpf_event->event_id); 9941 perf_event__output_id_sample(event, &handle, &sample); 9942 9943 perf_output_end(&handle); 9944 } 9945 9946 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9947 enum perf_bpf_event_type type) 9948 { 9949 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9950 int i; 9951 9952 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9953 (u64)(unsigned long)prog->bpf_func, 9954 prog->jited_len, unregister, 9955 prog->aux->ksym.name); 9956 9957 for (i = 1; i < prog->aux->func_cnt; i++) { 9958 struct bpf_prog *subprog = prog->aux->func[i]; 9959 9960 perf_event_ksymbol( 9961 PERF_RECORD_KSYMBOL_TYPE_BPF, 9962 (u64)(unsigned long)subprog->bpf_func, 9963 subprog->jited_len, unregister, 9964 subprog->aux->ksym.name); 9965 } 9966 } 9967 9968 void perf_event_bpf_event(struct bpf_prog *prog, 9969 enum perf_bpf_event_type type, 9970 u16 flags) 9971 { 9972 struct perf_bpf_event bpf_event; 9973 9974 switch (type) { 9975 case PERF_BPF_EVENT_PROG_LOAD: 9976 case PERF_BPF_EVENT_PROG_UNLOAD: 9977 if (atomic_read(&nr_ksymbol_events)) 9978 perf_event_bpf_emit_ksymbols(prog, type); 9979 break; 9980 default: 9981 return; 9982 } 9983 9984 if (!atomic_read(&nr_bpf_events)) 9985 return; 9986 9987 bpf_event = (struct perf_bpf_event){ 9988 .prog = prog, 9989 .event_id = { 9990 .header = { 9991 .type = PERF_RECORD_BPF_EVENT, 9992 .size = sizeof(bpf_event.event_id), 9993 }, 9994 .type = type, 9995 .flags = flags, 9996 .id = prog->aux->id, 9997 }, 9998 }; 9999 10000 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 10001 10002 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 10003 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 10004 } 10005 10006 struct perf_text_poke_event { 10007 const void *old_bytes; 10008 const void *new_bytes; 10009 size_t pad; 10010 u16 old_len; 10011 u16 new_len; 10012 10013 struct { 10014 struct perf_event_header header; 10015 10016 u64 addr; 10017 } event_id; 10018 }; 10019 10020 static int perf_event_text_poke_match(struct perf_event *event) 10021 { 10022 return event->attr.text_poke; 10023 } 10024 10025 static void perf_event_text_poke_output(struct perf_event *event, void *data) 10026 { 10027 struct perf_text_poke_event *text_poke_event = data; 10028 struct perf_output_handle handle; 10029 struct perf_sample_data sample; 10030 u64 padding = 0; 10031 int ret; 10032 10033 if (!perf_event_text_poke_match(event)) 10034 return; 10035 10036 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 10037 10038 ret = perf_output_begin(&handle, &sample, event, 10039 text_poke_event->event_id.header.size); 10040 if (ret) 10041 return; 10042 10043 perf_output_put(&handle, text_poke_event->event_id); 10044 perf_output_put(&handle, text_poke_event->old_len); 10045 perf_output_put(&handle, text_poke_event->new_len); 10046 10047 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 10048 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 10049 10050 if (text_poke_event->pad) 10051 __output_copy(&handle, &padding, text_poke_event->pad); 10052 10053 perf_event__output_id_sample(event, &handle, &sample); 10054 10055 perf_output_end(&handle); 10056 } 10057 10058 void perf_event_text_poke(const void *addr, const void *old_bytes, 10059 size_t old_len, const void *new_bytes, size_t new_len) 10060 { 10061 struct perf_text_poke_event text_poke_event; 10062 size_t tot, pad; 10063 10064 if (!atomic_read(&nr_text_poke_events)) 10065 return; 10066 10067 tot = sizeof(text_poke_event.old_len) + old_len; 10068 tot += sizeof(text_poke_event.new_len) + new_len; 10069 pad = ALIGN(tot, sizeof(u64)) - tot; 10070 10071 text_poke_event = (struct perf_text_poke_event){ 10072 .old_bytes = old_bytes, 10073 .new_bytes = new_bytes, 10074 .pad = pad, 10075 .old_len = old_len, 10076 .new_len = new_len, 10077 .event_id = { 10078 .header = { 10079 .type = PERF_RECORD_TEXT_POKE, 10080 .misc = PERF_RECORD_MISC_KERNEL, 10081 .size = sizeof(text_poke_event.event_id) + tot + pad, 10082 }, 10083 .addr = (unsigned long)addr, 10084 }, 10085 }; 10086 10087 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 10088 } 10089 10090 void perf_event_itrace_started(struct perf_event *event) 10091 { 10092 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); 10093 } 10094 10095 static void perf_log_itrace_start(struct perf_event *event) 10096 { 10097 struct perf_output_handle handle; 10098 struct perf_sample_data sample; 10099 struct perf_aux_event { 10100 struct perf_event_header header; 10101 u32 pid; 10102 u32 tid; 10103 } rec; 10104 int ret; 10105 10106 if (event->parent) 10107 event = event->parent; 10108 10109 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 10110 event->attach_state & PERF_ATTACH_ITRACE) 10111 return; 10112 10113 rec.header.type = PERF_RECORD_ITRACE_START; 10114 rec.header.misc = 0; 10115 rec.header.size = sizeof(rec); 10116 rec.pid = perf_event_pid(event, current); 10117 rec.tid = perf_event_tid(event, current); 10118 10119 perf_event_header__init_id(&rec.header, &sample, event); 10120 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10121 10122 if (ret) 10123 return; 10124 10125 perf_output_put(&handle, rec); 10126 perf_event__output_id_sample(event, &handle, &sample); 10127 10128 perf_output_end(&handle); 10129 } 10130 10131 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10132 { 10133 struct perf_output_handle handle; 10134 struct perf_sample_data sample; 10135 struct perf_aux_event { 10136 struct perf_event_header header; 10137 u64 hw_id; 10138 } rec; 10139 int ret; 10140 10141 if (event->parent) 10142 event = event->parent; 10143 10144 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10145 rec.header.misc = 0; 10146 rec.header.size = sizeof(rec); 10147 rec.hw_id = hw_id; 10148 10149 perf_event_header__init_id(&rec.header, &sample, event); 10150 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10151 10152 if (ret) 10153 return; 10154 10155 perf_output_put(&handle, rec); 10156 perf_event__output_id_sample(event, &handle, &sample); 10157 10158 perf_output_end(&handle); 10159 } 10160 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10161 10162 static int 10163 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10164 { 10165 struct hw_perf_event *hwc = &event->hw; 10166 int ret = 0; 10167 u64 seq; 10168 10169 seq = __this_cpu_read(perf_throttled_seq); 10170 if (seq != hwc->interrupts_seq) { 10171 hwc->interrupts_seq = seq; 10172 hwc->interrupts = 1; 10173 } else { 10174 hwc->interrupts++; 10175 } 10176 10177 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { 10178 __this_cpu_inc(perf_throttled_count); 10179 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10180 perf_event_throttle_group(event); 10181 ret = 1; 10182 } 10183 10184 if (event->attr.freq) { 10185 u64 now = perf_clock(); 10186 s64 delta = now - hwc->freq_time_stamp; 10187 10188 hwc->freq_time_stamp = now; 10189 10190 if (delta > 0 && delta < 2*TICK_NSEC) 10191 perf_adjust_period(event, delta, hwc->last_period, true); 10192 } 10193 10194 return ret; 10195 } 10196 10197 int perf_event_account_interrupt(struct perf_event *event) 10198 { 10199 return __perf_event_account_interrupt(event, 1); 10200 } 10201 10202 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10203 { 10204 /* 10205 * Due to interrupt latency (AKA "skid"), we may enter the 10206 * kernel before taking an overflow, even if the PMU is only 10207 * counting user events. 10208 */ 10209 if (event->attr.exclude_kernel && !user_mode(regs)) 10210 return false; 10211 10212 return true; 10213 } 10214 10215 #ifdef CONFIG_BPF_SYSCALL 10216 static int bpf_overflow_handler(struct perf_event *event, 10217 struct perf_sample_data *data, 10218 struct pt_regs *regs) 10219 { 10220 struct bpf_perf_event_data_kern ctx = { 10221 .data = data, 10222 .event = event, 10223 }; 10224 struct bpf_prog *prog; 10225 int ret = 0; 10226 10227 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10228 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10229 goto out; 10230 rcu_read_lock(); 10231 prog = READ_ONCE(event->prog); 10232 if (prog) { 10233 perf_prepare_sample(data, event, regs); 10234 ret = bpf_prog_run(prog, &ctx); 10235 } 10236 rcu_read_unlock(); 10237 out: 10238 __this_cpu_dec(bpf_prog_active); 10239 10240 return ret; 10241 } 10242 10243 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10244 struct bpf_prog *prog, 10245 u64 bpf_cookie) 10246 { 10247 if (event->overflow_handler_context) 10248 /* hw breakpoint or kernel counter */ 10249 return -EINVAL; 10250 10251 if (event->prog) 10252 return -EEXIST; 10253 10254 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10255 return -EINVAL; 10256 10257 if (event->attr.precise_ip && 10258 prog->call_get_stack && 10259 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10260 event->attr.exclude_callchain_kernel || 10261 event->attr.exclude_callchain_user)) { 10262 /* 10263 * On perf_event with precise_ip, calling bpf_get_stack() 10264 * may trigger unwinder warnings and occasional crashes. 10265 * bpf_get_[stack|stackid] works around this issue by using 10266 * callchain attached to perf_sample_data. If the 10267 * perf_event does not full (kernel and user) callchain 10268 * attached to perf_sample_data, do not allow attaching BPF 10269 * program that calls bpf_get_[stack|stackid]. 10270 */ 10271 return -EPROTO; 10272 } 10273 10274 event->prog = prog; 10275 event->bpf_cookie = bpf_cookie; 10276 return 0; 10277 } 10278 10279 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10280 { 10281 struct bpf_prog *prog = event->prog; 10282 10283 if (!prog) 10284 return; 10285 10286 event->prog = NULL; 10287 bpf_prog_put(prog); 10288 } 10289 #else 10290 static inline int bpf_overflow_handler(struct perf_event *event, 10291 struct perf_sample_data *data, 10292 struct pt_regs *regs) 10293 { 10294 return 1; 10295 } 10296 10297 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10298 struct bpf_prog *prog, 10299 u64 bpf_cookie) 10300 { 10301 return -EOPNOTSUPP; 10302 } 10303 10304 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10305 { 10306 } 10307 #endif 10308 10309 /* 10310 * Generic event overflow handling, sampling. 10311 */ 10312 10313 static int __perf_event_overflow(struct perf_event *event, 10314 int throttle, struct perf_sample_data *data, 10315 struct pt_regs *regs) 10316 { 10317 int events = atomic_read(&event->event_limit); 10318 int ret = 0; 10319 10320 /* 10321 * Non-sampling counters might still use the PMI to fold short 10322 * hardware counters, ignore those. 10323 */ 10324 if (unlikely(!is_sampling_event(event))) 10325 return 0; 10326 10327 ret = __perf_event_account_interrupt(event, throttle); 10328 10329 if (event->attr.aux_pause) 10330 perf_event_aux_pause(event->aux_event, true); 10331 10332 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10333 !bpf_overflow_handler(event, data, regs)) 10334 goto out; 10335 10336 /* 10337 * XXX event_limit might not quite work as expected on inherited 10338 * events 10339 */ 10340 10341 event->pending_kill = POLL_IN; 10342 if (events && atomic_dec_and_test(&event->event_limit)) { 10343 ret = 1; 10344 event->pending_kill = POLL_HUP; 10345 perf_event_disable_inatomic(event); 10346 event->pmu->stop(event, 0); 10347 } 10348 10349 if (event->attr.sigtrap) { 10350 /* 10351 * The desired behaviour of sigtrap vs invalid samples is a bit 10352 * tricky; on the one hand, one should not loose the SIGTRAP if 10353 * it is the first event, on the other hand, we should also not 10354 * trigger the WARN or override the data address. 10355 */ 10356 bool valid_sample = sample_is_allowed(event, regs); 10357 unsigned int pending_id = 1; 10358 enum task_work_notify_mode notify_mode; 10359 10360 if (regs) 10361 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10362 10363 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10364 10365 if (!event->pending_work && 10366 !task_work_add(current, &event->pending_task, notify_mode)) { 10367 event->pending_work = pending_id; 10368 local_inc(&event->ctx->nr_no_switch_fast); 10369 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 10370 10371 event->pending_addr = 0; 10372 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10373 event->pending_addr = data->addr; 10374 10375 } else if (event->attr.exclude_kernel && valid_sample) { 10376 /* 10377 * Should not be able to return to user space without 10378 * consuming pending_work; with exceptions: 10379 * 10380 * 1. Where !exclude_kernel, events can overflow again 10381 * in the kernel without returning to user space. 10382 * 10383 * 2. Events that can overflow again before the IRQ- 10384 * work without user space progress (e.g. hrtimer). 10385 * To approximate progress (with false negatives), 10386 * check 32-bit hash of the current IP. 10387 */ 10388 WARN_ON_ONCE(event->pending_work != pending_id); 10389 } 10390 } 10391 10392 READ_ONCE(event->overflow_handler)(event, data, regs); 10393 10394 if (*perf_event_fasync(event) && event->pending_kill) { 10395 event->pending_wakeup = 1; 10396 irq_work_queue(&event->pending_irq); 10397 } 10398 out: 10399 if (event->attr.aux_resume) 10400 perf_event_aux_pause(event->aux_event, false); 10401 10402 return ret; 10403 } 10404 10405 int perf_event_overflow(struct perf_event *event, 10406 struct perf_sample_data *data, 10407 struct pt_regs *regs) 10408 { 10409 return __perf_event_overflow(event, 1, data, regs); 10410 } 10411 10412 /* 10413 * Generic software event infrastructure 10414 */ 10415 10416 struct swevent_htable { 10417 struct swevent_hlist *swevent_hlist; 10418 struct mutex hlist_mutex; 10419 int hlist_refcount; 10420 }; 10421 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10422 10423 /* 10424 * We directly increment event->count and keep a second value in 10425 * event->hw.period_left to count intervals. This period event 10426 * is kept in the range [-sample_period, 0] so that we can use the 10427 * sign as trigger. 10428 */ 10429 10430 u64 perf_swevent_set_period(struct perf_event *event) 10431 { 10432 struct hw_perf_event *hwc = &event->hw; 10433 u64 period = hwc->last_period; 10434 u64 nr, offset; 10435 s64 old, val; 10436 10437 hwc->last_period = hwc->sample_period; 10438 10439 old = local64_read(&hwc->period_left); 10440 do { 10441 val = old; 10442 if (val < 0) 10443 return 0; 10444 10445 nr = div64_u64(period + val, period); 10446 offset = nr * period; 10447 val -= offset; 10448 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10449 10450 return nr; 10451 } 10452 10453 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10454 struct perf_sample_data *data, 10455 struct pt_regs *regs) 10456 { 10457 struct hw_perf_event *hwc = &event->hw; 10458 int throttle = 0; 10459 10460 if (!overflow) 10461 overflow = perf_swevent_set_period(event); 10462 10463 if (hwc->interrupts == MAX_INTERRUPTS) 10464 return; 10465 10466 for (; overflow; overflow--) { 10467 if (__perf_event_overflow(event, throttle, 10468 data, regs)) { 10469 /* 10470 * We inhibit the overflow from happening when 10471 * hwc->interrupts == MAX_INTERRUPTS. 10472 */ 10473 break; 10474 } 10475 throttle = 1; 10476 } 10477 } 10478 10479 static void perf_swevent_event(struct perf_event *event, u64 nr, 10480 struct perf_sample_data *data, 10481 struct pt_regs *regs) 10482 { 10483 struct hw_perf_event *hwc = &event->hw; 10484 10485 local64_add(nr, &event->count); 10486 10487 if (!regs) 10488 return; 10489 10490 if (!is_sampling_event(event)) 10491 return; 10492 10493 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10494 data->period = nr; 10495 return perf_swevent_overflow(event, 1, data, regs); 10496 } else 10497 data->period = event->hw.last_period; 10498 10499 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10500 return perf_swevent_overflow(event, 1, data, regs); 10501 10502 if (local64_add_negative(nr, &hwc->period_left)) 10503 return; 10504 10505 perf_swevent_overflow(event, 0, data, regs); 10506 } 10507 10508 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10509 { 10510 if (event->hw.state & PERF_HES_STOPPED) 10511 return 1; 10512 10513 if (regs) { 10514 if (event->attr.exclude_user && user_mode(regs)) 10515 return 1; 10516 10517 if (event->attr.exclude_kernel && !user_mode(regs)) 10518 return 1; 10519 } 10520 10521 return 0; 10522 } 10523 10524 static int perf_swevent_match(struct perf_event *event, 10525 enum perf_type_id type, 10526 u32 event_id, 10527 struct perf_sample_data *data, 10528 struct pt_regs *regs) 10529 { 10530 if (event->attr.type != type) 10531 return 0; 10532 10533 if (event->attr.config != event_id) 10534 return 0; 10535 10536 if (perf_exclude_event(event, regs)) 10537 return 0; 10538 10539 return 1; 10540 } 10541 10542 static inline u64 swevent_hash(u64 type, u32 event_id) 10543 { 10544 u64 val = event_id | (type << 32); 10545 10546 return hash_64(val, SWEVENT_HLIST_BITS); 10547 } 10548 10549 static inline struct hlist_head * 10550 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10551 { 10552 u64 hash = swevent_hash(type, event_id); 10553 10554 return &hlist->heads[hash]; 10555 } 10556 10557 /* For the read side: events when they trigger */ 10558 static inline struct hlist_head * 10559 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10560 { 10561 struct swevent_hlist *hlist; 10562 10563 hlist = rcu_dereference(swhash->swevent_hlist); 10564 if (!hlist) 10565 return NULL; 10566 10567 return __find_swevent_head(hlist, type, event_id); 10568 } 10569 10570 /* For the event head insertion and removal in the hlist */ 10571 static inline struct hlist_head * 10572 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10573 { 10574 struct swevent_hlist *hlist; 10575 u32 event_id = event->attr.config; 10576 u64 type = event->attr.type; 10577 10578 /* 10579 * Event scheduling is always serialized against hlist allocation 10580 * and release. Which makes the protected version suitable here. 10581 * The context lock guarantees that. 10582 */ 10583 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10584 lockdep_is_held(&event->ctx->lock)); 10585 if (!hlist) 10586 return NULL; 10587 10588 return __find_swevent_head(hlist, type, event_id); 10589 } 10590 10591 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10592 u64 nr, 10593 struct perf_sample_data *data, 10594 struct pt_regs *regs) 10595 { 10596 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10597 struct perf_event *event; 10598 struct hlist_head *head; 10599 10600 rcu_read_lock(); 10601 head = find_swevent_head_rcu(swhash, type, event_id); 10602 if (!head) 10603 goto end; 10604 10605 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10606 if (perf_swevent_match(event, type, event_id, data, regs)) 10607 perf_swevent_event(event, nr, data, regs); 10608 } 10609 end: 10610 rcu_read_unlock(); 10611 } 10612 10613 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10614 10615 int perf_swevent_get_recursion_context(void) 10616 { 10617 return get_recursion_context(current->perf_recursion); 10618 } 10619 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10620 10621 void perf_swevent_put_recursion_context(int rctx) 10622 { 10623 put_recursion_context(current->perf_recursion, rctx); 10624 } 10625 10626 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10627 { 10628 struct perf_sample_data data; 10629 10630 if (WARN_ON_ONCE(!regs)) 10631 return; 10632 10633 perf_sample_data_init(&data, addr, 0); 10634 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10635 } 10636 10637 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10638 { 10639 int rctx; 10640 10641 preempt_disable_notrace(); 10642 rctx = perf_swevent_get_recursion_context(); 10643 if (unlikely(rctx < 0)) 10644 goto fail; 10645 10646 ___perf_sw_event(event_id, nr, regs, addr); 10647 10648 perf_swevent_put_recursion_context(rctx); 10649 fail: 10650 preempt_enable_notrace(); 10651 } 10652 10653 static void perf_swevent_read(struct perf_event *event) 10654 { 10655 } 10656 10657 static int perf_swevent_add(struct perf_event *event, int flags) 10658 { 10659 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10660 struct hw_perf_event *hwc = &event->hw; 10661 struct hlist_head *head; 10662 10663 if (is_sampling_event(event)) { 10664 hwc->last_period = hwc->sample_period; 10665 perf_swevent_set_period(event); 10666 } 10667 10668 hwc->state = !(flags & PERF_EF_START); 10669 10670 head = find_swevent_head(swhash, event); 10671 if (WARN_ON_ONCE(!head)) 10672 return -EINVAL; 10673 10674 hlist_add_head_rcu(&event->hlist_entry, head); 10675 perf_event_update_userpage(event); 10676 10677 return 0; 10678 } 10679 10680 static void perf_swevent_del(struct perf_event *event, int flags) 10681 { 10682 hlist_del_rcu(&event->hlist_entry); 10683 } 10684 10685 static void perf_swevent_start(struct perf_event *event, int flags) 10686 { 10687 event->hw.state = 0; 10688 } 10689 10690 static void perf_swevent_stop(struct perf_event *event, int flags) 10691 { 10692 event->hw.state = PERF_HES_STOPPED; 10693 } 10694 10695 /* Deref the hlist from the update side */ 10696 static inline struct swevent_hlist * 10697 swevent_hlist_deref(struct swevent_htable *swhash) 10698 { 10699 return rcu_dereference_protected(swhash->swevent_hlist, 10700 lockdep_is_held(&swhash->hlist_mutex)); 10701 } 10702 10703 static void swevent_hlist_release(struct swevent_htable *swhash) 10704 { 10705 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10706 10707 if (!hlist) 10708 return; 10709 10710 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10711 kfree_rcu(hlist, rcu_head); 10712 } 10713 10714 static void swevent_hlist_put_cpu(int cpu) 10715 { 10716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10717 10718 mutex_lock(&swhash->hlist_mutex); 10719 10720 if (!--swhash->hlist_refcount) 10721 swevent_hlist_release(swhash); 10722 10723 mutex_unlock(&swhash->hlist_mutex); 10724 } 10725 10726 static void swevent_hlist_put(void) 10727 { 10728 int cpu; 10729 10730 for_each_possible_cpu(cpu) 10731 swevent_hlist_put_cpu(cpu); 10732 } 10733 10734 static int swevent_hlist_get_cpu(int cpu) 10735 { 10736 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10737 int err = 0; 10738 10739 mutex_lock(&swhash->hlist_mutex); 10740 if (!swevent_hlist_deref(swhash) && 10741 cpumask_test_cpu(cpu, perf_online_mask)) { 10742 struct swevent_hlist *hlist; 10743 10744 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10745 if (!hlist) { 10746 err = -ENOMEM; 10747 goto exit; 10748 } 10749 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10750 } 10751 swhash->hlist_refcount++; 10752 exit: 10753 mutex_unlock(&swhash->hlist_mutex); 10754 10755 return err; 10756 } 10757 10758 static int swevent_hlist_get(void) 10759 { 10760 int err, cpu, failed_cpu; 10761 10762 mutex_lock(&pmus_lock); 10763 for_each_possible_cpu(cpu) { 10764 err = swevent_hlist_get_cpu(cpu); 10765 if (err) { 10766 failed_cpu = cpu; 10767 goto fail; 10768 } 10769 } 10770 mutex_unlock(&pmus_lock); 10771 return 0; 10772 fail: 10773 for_each_possible_cpu(cpu) { 10774 if (cpu == failed_cpu) 10775 break; 10776 swevent_hlist_put_cpu(cpu); 10777 } 10778 mutex_unlock(&pmus_lock); 10779 return err; 10780 } 10781 10782 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10783 10784 static void sw_perf_event_destroy(struct perf_event *event) 10785 { 10786 u64 event_id = event->attr.config; 10787 10788 WARN_ON(event->parent); 10789 10790 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10791 swevent_hlist_put(); 10792 } 10793 10794 static struct pmu perf_cpu_clock; /* fwd declaration */ 10795 static struct pmu perf_task_clock; 10796 10797 static int perf_swevent_init(struct perf_event *event) 10798 { 10799 u64 event_id = event->attr.config; 10800 10801 if (event->attr.type != PERF_TYPE_SOFTWARE) 10802 return -ENOENT; 10803 10804 /* 10805 * no branch sampling for software events 10806 */ 10807 if (has_branch_stack(event)) 10808 return -EOPNOTSUPP; 10809 10810 switch (event_id) { 10811 case PERF_COUNT_SW_CPU_CLOCK: 10812 event->attr.type = perf_cpu_clock.type; 10813 return -ENOENT; 10814 case PERF_COUNT_SW_TASK_CLOCK: 10815 event->attr.type = perf_task_clock.type; 10816 return -ENOENT; 10817 10818 default: 10819 break; 10820 } 10821 10822 if (event_id >= PERF_COUNT_SW_MAX) 10823 return -ENOENT; 10824 10825 if (!event->parent) { 10826 int err; 10827 10828 err = swevent_hlist_get(); 10829 if (err) 10830 return err; 10831 10832 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10833 event->destroy = sw_perf_event_destroy; 10834 } 10835 10836 return 0; 10837 } 10838 10839 static struct pmu perf_swevent = { 10840 .task_ctx_nr = perf_sw_context, 10841 10842 .capabilities = PERF_PMU_CAP_NO_NMI, 10843 10844 .event_init = perf_swevent_init, 10845 .add = perf_swevent_add, 10846 .del = perf_swevent_del, 10847 .start = perf_swevent_start, 10848 .stop = perf_swevent_stop, 10849 .read = perf_swevent_read, 10850 }; 10851 10852 #ifdef CONFIG_EVENT_TRACING 10853 10854 static void tp_perf_event_destroy(struct perf_event *event) 10855 { 10856 perf_trace_destroy(event); 10857 } 10858 10859 static int perf_tp_event_init(struct perf_event *event) 10860 { 10861 int err; 10862 10863 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10864 return -ENOENT; 10865 10866 /* 10867 * no branch sampling for tracepoint events 10868 */ 10869 if (has_branch_stack(event)) 10870 return -EOPNOTSUPP; 10871 10872 err = perf_trace_init(event); 10873 if (err) 10874 return err; 10875 10876 event->destroy = tp_perf_event_destroy; 10877 10878 return 0; 10879 } 10880 10881 static struct pmu perf_tracepoint = { 10882 .task_ctx_nr = perf_sw_context, 10883 10884 .event_init = perf_tp_event_init, 10885 .add = perf_trace_add, 10886 .del = perf_trace_del, 10887 .start = perf_swevent_start, 10888 .stop = perf_swevent_stop, 10889 .read = perf_swevent_read, 10890 }; 10891 10892 static int perf_tp_filter_match(struct perf_event *event, 10893 struct perf_raw_record *raw) 10894 { 10895 void *record = raw->frag.data; 10896 10897 /* only top level events have filters set */ 10898 if (event->parent) 10899 event = event->parent; 10900 10901 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10902 return 1; 10903 return 0; 10904 } 10905 10906 static int perf_tp_event_match(struct perf_event *event, 10907 struct perf_raw_record *raw, 10908 struct pt_regs *regs) 10909 { 10910 if (event->hw.state & PERF_HES_STOPPED) 10911 return 0; 10912 /* 10913 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10914 */ 10915 if (event->attr.exclude_kernel && !user_mode(regs)) 10916 return 0; 10917 10918 if (!perf_tp_filter_match(event, raw)) 10919 return 0; 10920 10921 return 1; 10922 } 10923 10924 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10925 struct trace_event_call *call, u64 count, 10926 struct pt_regs *regs, struct hlist_head *head, 10927 struct task_struct *task) 10928 { 10929 if (bpf_prog_array_valid(call)) { 10930 *(struct pt_regs **)raw_data = regs; 10931 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10932 perf_swevent_put_recursion_context(rctx); 10933 return; 10934 } 10935 } 10936 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10937 rctx, task); 10938 } 10939 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10940 10941 static void __perf_tp_event_target_task(u64 count, void *record, 10942 struct pt_regs *regs, 10943 struct perf_sample_data *data, 10944 struct perf_raw_record *raw, 10945 struct perf_event *event) 10946 { 10947 struct trace_entry *entry = record; 10948 10949 if (event->attr.config != entry->type) 10950 return; 10951 /* Cannot deliver synchronous signal to other task. */ 10952 if (event->attr.sigtrap) 10953 return; 10954 if (perf_tp_event_match(event, raw, regs)) { 10955 perf_sample_data_init(data, 0, 0); 10956 perf_sample_save_raw_data(data, event, raw); 10957 perf_swevent_event(event, count, data, regs); 10958 } 10959 } 10960 10961 static void perf_tp_event_target_task(u64 count, void *record, 10962 struct pt_regs *regs, 10963 struct perf_sample_data *data, 10964 struct perf_raw_record *raw, 10965 struct perf_event_context *ctx) 10966 { 10967 unsigned int cpu = smp_processor_id(); 10968 struct pmu *pmu = &perf_tracepoint; 10969 struct perf_event *event, *sibling; 10970 10971 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10972 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10973 for_each_sibling_event(sibling, event) 10974 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10975 } 10976 10977 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10978 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10979 for_each_sibling_event(sibling, event) 10980 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10981 } 10982 } 10983 10984 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10985 struct pt_regs *regs, struct hlist_head *head, int rctx, 10986 struct task_struct *task) 10987 { 10988 struct perf_sample_data data; 10989 struct perf_event *event; 10990 10991 struct perf_raw_record raw = { 10992 .frag = { 10993 .size = entry_size, 10994 .data = record, 10995 }, 10996 }; 10997 10998 perf_trace_buf_update(record, event_type); 10999 11000 hlist_for_each_entry_rcu(event, head, hlist_entry) { 11001 if (perf_tp_event_match(event, &raw, regs)) { 11002 /* 11003 * Here use the same on-stack perf_sample_data, 11004 * some members in data are event-specific and 11005 * need to be re-computed for different sweveents. 11006 * Re-initialize data->sample_flags safely to avoid 11007 * the problem that next event skips preparing data 11008 * because data->sample_flags is set. 11009 */ 11010 perf_sample_data_init(&data, 0, 0); 11011 perf_sample_save_raw_data(&data, event, &raw); 11012 perf_swevent_event(event, count, &data, regs); 11013 } 11014 } 11015 11016 /* 11017 * If we got specified a target task, also iterate its context and 11018 * deliver this event there too. 11019 */ 11020 if (task && task != current) { 11021 struct perf_event_context *ctx; 11022 11023 rcu_read_lock(); 11024 ctx = rcu_dereference(task->perf_event_ctxp); 11025 if (!ctx) 11026 goto unlock; 11027 11028 raw_spin_lock(&ctx->lock); 11029 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 11030 raw_spin_unlock(&ctx->lock); 11031 unlock: 11032 rcu_read_unlock(); 11033 } 11034 11035 perf_swevent_put_recursion_context(rctx); 11036 } 11037 EXPORT_SYMBOL_GPL(perf_tp_event); 11038 11039 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 11040 /* 11041 * Flags in config, used by dynamic PMU kprobe and uprobe 11042 * The flags should match following PMU_FORMAT_ATTR(). 11043 * 11044 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 11045 * if not set, create kprobe/uprobe 11046 * 11047 * The following values specify a reference counter (or semaphore in the 11048 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 11049 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 11050 * 11051 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 11052 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 11053 */ 11054 enum perf_probe_config { 11055 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 11056 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 11057 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 11058 }; 11059 11060 PMU_FORMAT_ATTR(retprobe, "config:0"); 11061 #endif 11062 11063 #ifdef CONFIG_KPROBE_EVENTS 11064 static struct attribute *kprobe_attrs[] = { 11065 &format_attr_retprobe.attr, 11066 NULL, 11067 }; 11068 11069 static struct attribute_group kprobe_format_group = { 11070 .name = "format", 11071 .attrs = kprobe_attrs, 11072 }; 11073 11074 static const struct attribute_group *kprobe_attr_groups[] = { 11075 &kprobe_format_group, 11076 NULL, 11077 }; 11078 11079 static int perf_kprobe_event_init(struct perf_event *event); 11080 static struct pmu perf_kprobe = { 11081 .task_ctx_nr = perf_sw_context, 11082 .event_init = perf_kprobe_event_init, 11083 .add = perf_trace_add, 11084 .del = perf_trace_del, 11085 .start = perf_swevent_start, 11086 .stop = perf_swevent_stop, 11087 .read = perf_swevent_read, 11088 .attr_groups = kprobe_attr_groups, 11089 }; 11090 11091 static int perf_kprobe_event_init(struct perf_event *event) 11092 { 11093 int err; 11094 bool is_retprobe; 11095 11096 if (event->attr.type != perf_kprobe.type) 11097 return -ENOENT; 11098 11099 if (!perfmon_capable()) 11100 return -EACCES; 11101 11102 /* 11103 * no branch sampling for probe events 11104 */ 11105 if (has_branch_stack(event)) 11106 return -EOPNOTSUPP; 11107 11108 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11109 err = perf_kprobe_init(event, is_retprobe); 11110 if (err) 11111 return err; 11112 11113 event->destroy = perf_kprobe_destroy; 11114 11115 return 0; 11116 } 11117 #endif /* CONFIG_KPROBE_EVENTS */ 11118 11119 #ifdef CONFIG_UPROBE_EVENTS 11120 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 11121 11122 static struct attribute *uprobe_attrs[] = { 11123 &format_attr_retprobe.attr, 11124 &format_attr_ref_ctr_offset.attr, 11125 NULL, 11126 }; 11127 11128 static struct attribute_group uprobe_format_group = { 11129 .name = "format", 11130 .attrs = uprobe_attrs, 11131 }; 11132 11133 static const struct attribute_group *uprobe_attr_groups[] = { 11134 &uprobe_format_group, 11135 NULL, 11136 }; 11137 11138 static int perf_uprobe_event_init(struct perf_event *event); 11139 static struct pmu perf_uprobe = { 11140 .task_ctx_nr = perf_sw_context, 11141 .event_init = perf_uprobe_event_init, 11142 .add = perf_trace_add, 11143 .del = perf_trace_del, 11144 .start = perf_swevent_start, 11145 .stop = perf_swevent_stop, 11146 .read = perf_swevent_read, 11147 .attr_groups = uprobe_attr_groups, 11148 }; 11149 11150 static int perf_uprobe_event_init(struct perf_event *event) 11151 { 11152 int err; 11153 unsigned long ref_ctr_offset; 11154 bool is_retprobe; 11155 11156 if (event->attr.type != perf_uprobe.type) 11157 return -ENOENT; 11158 11159 if (!capable(CAP_SYS_ADMIN)) 11160 return -EACCES; 11161 11162 /* 11163 * no branch sampling for probe events 11164 */ 11165 if (has_branch_stack(event)) 11166 return -EOPNOTSUPP; 11167 11168 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11169 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11170 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11171 if (err) 11172 return err; 11173 11174 event->destroy = perf_uprobe_destroy; 11175 11176 return 0; 11177 } 11178 #endif /* CONFIG_UPROBE_EVENTS */ 11179 11180 static inline void perf_tp_register(void) 11181 { 11182 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11183 #ifdef CONFIG_KPROBE_EVENTS 11184 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11185 #endif 11186 #ifdef CONFIG_UPROBE_EVENTS 11187 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11188 #endif 11189 } 11190 11191 static void perf_event_free_filter(struct perf_event *event) 11192 { 11193 ftrace_profile_free_filter(event); 11194 } 11195 11196 /* 11197 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11198 * with perf_event_open() 11199 */ 11200 static inline bool perf_event_is_tracing(struct perf_event *event) 11201 { 11202 if (event->pmu == &perf_tracepoint) 11203 return true; 11204 #ifdef CONFIG_KPROBE_EVENTS 11205 if (event->pmu == &perf_kprobe) 11206 return true; 11207 #endif 11208 #ifdef CONFIG_UPROBE_EVENTS 11209 if (event->pmu == &perf_uprobe) 11210 return true; 11211 #endif 11212 return false; 11213 } 11214 11215 static int __perf_event_set_bpf_prog(struct perf_event *event, 11216 struct bpf_prog *prog, 11217 u64 bpf_cookie) 11218 { 11219 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11220 11221 if (event->state <= PERF_EVENT_STATE_REVOKED) 11222 return -ENODEV; 11223 11224 if (!perf_event_is_tracing(event)) 11225 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11226 11227 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11228 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11229 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11230 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11231 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11232 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11233 return -EINVAL; 11234 11235 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11236 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11237 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11238 return -EINVAL; 11239 11240 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11241 /* only uprobe programs are allowed to be sleepable */ 11242 return -EINVAL; 11243 11244 /* Kprobe override only works for kprobes, not uprobes. */ 11245 if (prog->kprobe_override && !is_kprobe) 11246 return -EINVAL; 11247 11248 /* Writing to context allowed only for uprobes. */ 11249 if (prog->aux->kprobe_write_ctx && !is_uprobe) 11250 return -EINVAL; 11251 11252 if (is_tracepoint || is_syscall_tp) { 11253 int off = trace_event_get_offsets(event->tp_event); 11254 11255 if (prog->aux->max_ctx_offset > off) 11256 return -EACCES; 11257 } 11258 11259 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11260 } 11261 11262 int perf_event_set_bpf_prog(struct perf_event *event, 11263 struct bpf_prog *prog, 11264 u64 bpf_cookie) 11265 { 11266 struct perf_event_context *ctx; 11267 int ret; 11268 11269 ctx = perf_event_ctx_lock(event); 11270 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); 11271 perf_event_ctx_unlock(event, ctx); 11272 11273 return ret; 11274 } 11275 11276 void perf_event_free_bpf_prog(struct perf_event *event) 11277 { 11278 if (!event->prog) 11279 return; 11280 11281 if (!perf_event_is_tracing(event)) { 11282 perf_event_free_bpf_handler(event); 11283 return; 11284 } 11285 perf_event_detach_bpf_prog(event); 11286 } 11287 11288 #else 11289 11290 static inline void perf_tp_register(void) 11291 { 11292 } 11293 11294 static void perf_event_free_filter(struct perf_event *event) 11295 { 11296 } 11297 11298 static int __perf_event_set_bpf_prog(struct perf_event *event, 11299 struct bpf_prog *prog, 11300 u64 bpf_cookie) 11301 { 11302 return -ENOENT; 11303 } 11304 11305 int perf_event_set_bpf_prog(struct perf_event *event, 11306 struct bpf_prog *prog, 11307 u64 bpf_cookie) 11308 { 11309 return -ENOENT; 11310 } 11311 11312 void perf_event_free_bpf_prog(struct perf_event *event) 11313 { 11314 } 11315 #endif /* CONFIG_EVENT_TRACING */ 11316 11317 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11318 void perf_bp_event(struct perf_event *bp, void *data) 11319 { 11320 struct perf_sample_data sample; 11321 struct pt_regs *regs = data; 11322 11323 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11324 11325 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11326 perf_swevent_event(bp, 1, &sample, regs); 11327 } 11328 #endif 11329 11330 /* 11331 * Allocate a new address filter 11332 */ 11333 static struct perf_addr_filter * 11334 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11335 { 11336 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11337 struct perf_addr_filter *filter; 11338 11339 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11340 if (!filter) 11341 return NULL; 11342 11343 INIT_LIST_HEAD(&filter->entry); 11344 list_add_tail(&filter->entry, filters); 11345 11346 return filter; 11347 } 11348 11349 static void free_filters_list(struct list_head *filters) 11350 { 11351 struct perf_addr_filter *filter, *iter; 11352 11353 list_for_each_entry_safe(filter, iter, filters, entry) { 11354 path_put(&filter->path); 11355 list_del(&filter->entry); 11356 kfree(filter); 11357 } 11358 } 11359 11360 /* 11361 * Free existing address filters and optionally install new ones 11362 */ 11363 static void perf_addr_filters_splice(struct perf_event *event, 11364 struct list_head *head) 11365 { 11366 unsigned long flags; 11367 LIST_HEAD(list); 11368 11369 if (!has_addr_filter(event)) 11370 return; 11371 11372 /* don't bother with children, they don't have their own filters */ 11373 if (event->parent) 11374 return; 11375 11376 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11377 11378 list_splice_init(&event->addr_filters.list, &list); 11379 if (head) 11380 list_splice(head, &event->addr_filters.list); 11381 11382 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11383 11384 free_filters_list(&list); 11385 } 11386 11387 static void perf_free_addr_filters(struct perf_event *event) 11388 { 11389 /* 11390 * Used during free paths, there is no concurrency. 11391 */ 11392 if (list_empty(&event->addr_filters.list)) 11393 return; 11394 11395 perf_addr_filters_splice(event, NULL); 11396 } 11397 11398 /* 11399 * Scan through mm's vmas and see if one of them matches the 11400 * @filter; if so, adjust filter's address range. 11401 * Called with mm::mmap_lock down for reading. 11402 */ 11403 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11404 struct mm_struct *mm, 11405 struct perf_addr_filter_range *fr) 11406 { 11407 struct vm_area_struct *vma; 11408 VMA_ITERATOR(vmi, mm, 0); 11409 11410 for_each_vma(vmi, vma) { 11411 if (!vma->vm_file) 11412 continue; 11413 11414 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11415 return; 11416 } 11417 } 11418 11419 /* 11420 * Update event's address range filters based on the 11421 * task's existing mappings, if any. 11422 */ 11423 static void perf_event_addr_filters_apply(struct perf_event *event) 11424 { 11425 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11426 struct task_struct *task = READ_ONCE(event->ctx->task); 11427 struct perf_addr_filter *filter; 11428 struct mm_struct *mm = NULL; 11429 unsigned int count = 0; 11430 unsigned long flags; 11431 11432 /* 11433 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11434 * will stop on the parent's child_mutex that our caller is also holding 11435 */ 11436 if (task == TASK_TOMBSTONE) 11437 return; 11438 11439 if (ifh->nr_file_filters) { 11440 mm = get_task_mm(task); 11441 if (!mm) 11442 goto restart; 11443 11444 mmap_read_lock(mm); 11445 } 11446 11447 raw_spin_lock_irqsave(&ifh->lock, flags); 11448 list_for_each_entry(filter, &ifh->list, entry) { 11449 if (filter->path.dentry) { 11450 /* 11451 * Adjust base offset if the filter is associated to a 11452 * binary that needs to be mapped: 11453 */ 11454 event->addr_filter_ranges[count].start = 0; 11455 event->addr_filter_ranges[count].size = 0; 11456 11457 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11458 } else { 11459 event->addr_filter_ranges[count].start = filter->offset; 11460 event->addr_filter_ranges[count].size = filter->size; 11461 } 11462 11463 count++; 11464 } 11465 11466 event->addr_filters_gen++; 11467 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11468 11469 if (ifh->nr_file_filters) { 11470 mmap_read_unlock(mm); 11471 11472 mmput(mm); 11473 } 11474 11475 restart: 11476 perf_event_stop(event, 1); 11477 } 11478 11479 /* 11480 * Address range filtering: limiting the data to certain 11481 * instruction address ranges. Filters are ioctl()ed to us from 11482 * userspace as ascii strings. 11483 * 11484 * Filter string format: 11485 * 11486 * ACTION RANGE_SPEC 11487 * where ACTION is one of the 11488 * * "filter": limit the trace to this region 11489 * * "start": start tracing from this address 11490 * * "stop": stop tracing at this address/region; 11491 * RANGE_SPEC is 11492 * * for kernel addresses: <start address>[/<size>] 11493 * * for object files: <start address>[/<size>]@</path/to/object/file> 11494 * 11495 * if <size> is not specified or is zero, the range is treated as a single 11496 * address; not valid for ACTION=="filter". 11497 */ 11498 enum { 11499 IF_ACT_NONE = -1, 11500 IF_ACT_FILTER, 11501 IF_ACT_START, 11502 IF_ACT_STOP, 11503 IF_SRC_FILE, 11504 IF_SRC_KERNEL, 11505 IF_SRC_FILEADDR, 11506 IF_SRC_KERNELADDR, 11507 }; 11508 11509 enum { 11510 IF_STATE_ACTION = 0, 11511 IF_STATE_SOURCE, 11512 IF_STATE_END, 11513 }; 11514 11515 static const match_table_t if_tokens = { 11516 { IF_ACT_FILTER, "filter" }, 11517 { IF_ACT_START, "start" }, 11518 { IF_ACT_STOP, "stop" }, 11519 { IF_SRC_FILE, "%u/%u@%s" }, 11520 { IF_SRC_KERNEL, "%u/%u" }, 11521 { IF_SRC_FILEADDR, "%u@%s" }, 11522 { IF_SRC_KERNELADDR, "%u" }, 11523 { IF_ACT_NONE, NULL }, 11524 }; 11525 11526 /* 11527 * Address filter string parser 11528 */ 11529 static int 11530 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11531 struct list_head *filters) 11532 { 11533 struct perf_addr_filter *filter = NULL; 11534 char *start, *orig, *filename = NULL; 11535 substring_t args[MAX_OPT_ARGS]; 11536 int state = IF_STATE_ACTION, token; 11537 unsigned int kernel = 0; 11538 int ret = -EINVAL; 11539 11540 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11541 if (!fstr) 11542 return -ENOMEM; 11543 11544 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11545 static const enum perf_addr_filter_action_t actions[] = { 11546 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11547 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11548 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11549 }; 11550 ret = -EINVAL; 11551 11552 if (!*start) 11553 continue; 11554 11555 /* filter definition begins */ 11556 if (state == IF_STATE_ACTION) { 11557 filter = perf_addr_filter_new(event, filters); 11558 if (!filter) 11559 goto fail; 11560 } 11561 11562 token = match_token(start, if_tokens, args); 11563 switch (token) { 11564 case IF_ACT_FILTER: 11565 case IF_ACT_START: 11566 case IF_ACT_STOP: 11567 if (state != IF_STATE_ACTION) 11568 goto fail; 11569 11570 filter->action = actions[token]; 11571 state = IF_STATE_SOURCE; 11572 break; 11573 11574 case IF_SRC_KERNELADDR: 11575 case IF_SRC_KERNEL: 11576 kernel = 1; 11577 fallthrough; 11578 11579 case IF_SRC_FILEADDR: 11580 case IF_SRC_FILE: 11581 if (state != IF_STATE_SOURCE) 11582 goto fail; 11583 11584 *args[0].to = 0; 11585 ret = kstrtoul(args[0].from, 0, &filter->offset); 11586 if (ret) 11587 goto fail; 11588 11589 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11590 *args[1].to = 0; 11591 ret = kstrtoul(args[1].from, 0, &filter->size); 11592 if (ret) 11593 goto fail; 11594 } 11595 11596 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11597 int fpos = token == IF_SRC_FILE ? 2 : 1; 11598 11599 kfree(filename); 11600 filename = match_strdup(&args[fpos]); 11601 if (!filename) { 11602 ret = -ENOMEM; 11603 goto fail; 11604 } 11605 } 11606 11607 state = IF_STATE_END; 11608 break; 11609 11610 default: 11611 goto fail; 11612 } 11613 11614 /* 11615 * Filter definition is fully parsed, validate and install it. 11616 * Make sure that it doesn't contradict itself or the event's 11617 * attribute. 11618 */ 11619 if (state == IF_STATE_END) { 11620 ret = -EINVAL; 11621 11622 /* 11623 * ACTION "filter" must have a non-zero length region 11624 * specified. 11625 */ 11626 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11627 !filter->size) 11628 goto fail; 11629 11630 if (!kernel) { 11631 if (!filename) 11632 goto fail; 11633 11634 /* 11635 * For now, we only support file-based filters 11636 * in per-task events; doing so for CPU-wide 11637 * events requires additional context switching 11638 * trickery, since same object code will be 11639 * mapped at different virtual addresses in 11640 * different processes. 11641 */ 11642 ret = -EOPNOTSUPP; 11643 if (!event->ctx->task) 11644 goto fail; 11645 11646 /* look up the path and grab its inode */ 11647 ret = kern_path(filename, LOOKUP_FOLLOW, 11648 &filter->path); 11649 if (ret) 11650 goto fail; 11651 11652 ret = -EINVAL; 11653 if (!filter->path.dentry || 11654 !S_ISREG(d_inode(filter->path.dentry) 11655 ->i_mode)) 11656 goto fail; 11657 11658 event->addr_filters.nr_file_filters++; 11659 } 11660 11661 /* ready to consume more filters */ 11662 kfree(filename); 11663 filename = NULL; 11664 state = IF_STATE_ACTION; 11665 filter = NULL; 11666 kernel = 0; 11667 } 11668 } 11669 11670 if (state != IF_STATE_ACTION) 11671 goto fail; 11672 11673 kfree(filename); 11674 kfree(orig); 11675 11676 return 0; 11677 11678 fail: 11679 kfree(filename); 11680 free_filters_list(filters); 11681 kfree(orig); 11682 11683 return ret; 11684 } 11685 11686 static int 11687 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11688 { 11689 LIST_HEAD(filters); 11690 int ret; 11691 11692 /* 11693 * Since this is called in perf_ioctl() path, we're already holding 11694 * ctx::mutex. 11695 */ 11696 lockdep_assert_held(&event->ctx->mutex); 11697 11698 if (WARN_ON_ONCE(event->parent)) 11699 return -EINVAL; 11700 11701 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11702 if (ret) 11703 goto fail_clear_files; 11704 11705 ret = event->pmu->addr_filters_validate(&filters); 11706 if (ret) 11707 goto fail_free_filters; 11708 11709 /* remove existing filters, if any */ 11710 perf_addr_filters_splice(event, &filters); 11711 11712 /* install new filters */ 11713 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11714 11715 return ret; 11716 11717 fail_free_filters: 11718 free_filters_list(&filters); 11719 11720 fail_clear_files: 11721 event->addr_filters.nr_file_filters = 0; 11722 11723 return ret; 11724 } 11725 11726 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11727 { 11728 int ret = -EINVAL; 11729 char *filter_str; 11730 11731 filter_str = strndup_user(arg, PAGE_SIZE); 11732 if (IS_ERR(filter_str)) 11733 return PTR_ERR(filter_str); 11734 11735 #ifdef CONFIG_EVENT_TRACING 11736 if (perf_event_is_tracing(event)) { 11737 struct perf_event_context *ctx = event->ctx; 11738 11739 /* 11740 * Beware, here be dragons!! 11741 * 11742 * the tracepoint muck will deadlock against ctx->mutex, but 11743 * the tracepoint stuff does not actually need it. So 11744 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11745 * already have a reference on ctx. 11746 * 11747 * This can result in event getting moved to a different ctx, 11748 * but that does not affect the tracepoint state. 11749 */ 11750 mutex_unlock(&ctx->mutex); 11751 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11752 mutex_lock(&ctx->mutex); 11753 } else 11754 #endif 11755 if (has_addr_filter(event)) 11756 ret = perf_event_set_addr_filter(event, filter_str); 11757 11758 kfree(filter_str); 11759 return ret; 11760 } 11761 11762 /* 11763 * hrtimer based swevent callback 11764 */ 11765 11766 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11767 { 11768 enum hrtimer_restart ret = HRTIMER_RESTART; 11769 struct perf_sample_data data; 11770 struct pt_regs *regs; 11771 struct perf_event *event; 11772 u64 period; 11773 11774 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11775 11776 if (event->state != PERF_EVENT_STATE_ACTIVE) 11777 return HRTIMER_NORESTART; 11778 11779 event->pmu->read(event); 11780 11781 perf_sample_data_init(&data, 0, event->hw.last_period); 11782 regs = get_irq_regs(); 11783 11784 if (regs && !perf_exclude_event(event, regs)) { 11785 if (!(event->attr.exclude_idle && is_idle_task(current))) 11786 if (__perf_event_overflow(event, 1, &data, regs)) 11787 ret = HRTIMER_NORESTART; 11788 } 11789 11790 period = max_t(u64, 10000, event->hw.sample_period); 11791 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11792 11793 return ret; 11794 } 11795 11796 static void perf_swevent_start_hrtimer(struct perf_event *event) 11797 { 11798 struct hw_perf_event *hwc = &event->hw; 11799 s64 period; 11800 11801 if (!is_sampling_event(event)) 11802 return; 11803 11804 period = local64_read(&hwc->period_left); 11805 if (period) { 11806 if (period < 0) 11807 period = 10000; 11808 11809 local64_set(&hwc->period_left, 0); 11810 } else { 11811 period = max_t(u64, 10000, hwc->sample_period); 11812 } 11813 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11814 HRTIMER_MODE_REL_PINNED_HARD); 11815 } 11816 11817 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11818 { 11819 struct hw_perf_event *hwc = &event->hw; 11820 11821 /* 11822 * The throttle can be triggered in the hrtimer handler. 11823 * The HRTIMER_NORESTART should be used to stop the timer, 11824 * rather than hrtimer_cancel(). See perf_swevent_hrtimer() 11825 */ 11826 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { 11827 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11828 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11829 11830 hrtimer_cancel(&hwc->hrtimer); 11831 } 11832 } 11833 11834 static void perf_swevent_init_hrtimer(struct perf_event *event) 11835 { 11836 struct hw_perf_event *hwc = &event->hw; 11837 11838 if (!is_sampling_event(event)) 11839 return; 11840 11841 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11842 11843 /* 11844 * Since hrtimers have a fixed rate, we can do a static freq->period 11845 * mapping and avoid the whole period adjust feedback stuff. 11846 */ 11847 if (event->attr.freq) { 11848 long freq = event->attr.sample_freq; 11849 11850 event->attr.sample_period = NSEC_PER_SEC / freq; 11851 hwc->sample_period = event->attr.sample_period; 11852 local64_set(&hwc->period_left, hwc->sample_period); 11853 hwc->last_period = hwc->sample_period; 11854 event->attr.freq = 0; 11855 } 11856 } 11857 11858 /* 11859 * Software event: cpu wall time clock 11860 */ 11861 11862 static void cpu_clock_event_update(struct perf_event *event) 11863 { 11864 s64 prev; 11865 u64 now; 11866 11867 now = local_clock(); 11868 prev = local64_xchg(&event->hw.prev_count, now); 11869 local64_add(now - prev, &event->count); 11870 } 11871 11872 static void cpu_clock_event_start(struct perf_event *event, int flags) 11873 { 11874 local64_set(&event->hw.prev_count, local_clock()); 11875 perf_swevent_start_hrtimer(event); 11876 } 11877 11878 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11879 { 11880 perf_swevent_cancel_hrtimer(event); 11881 if (flags & PERF_EF_UPDATE) 11882 cpu_clock_event_update(event); 11883 } 11884 11885 static int cpu_clock_event_add(struct perf_event *event, int flags) 11886 { 11887 if (flags & PERF_EF_START) 11888 cpu_clock_event_start(event, flags); 11889 perf_event_update_userpage(event); 11890 11891 return 0; 11892 } 11893 11894 static void cpu_clock_event_del(struct perf_event *event, int flags) 11895 { 11896 cpu_clock_event_stop(event, flags); 11897 } 11898 11899 static void cpu_clock_event_read(struct perf_event *event) 11900 { 11901 cpu_clock_event_update(event); 11902 } 11903 11904 static int cpu_clock_event_init(struct perf_event *event) 11905 { 11906 if (event->attr.type != perf_cpu_clock.type) 11907 return -ENOENT; 11908 11909 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11910 return -ENOENT; 11911 11912 /* 11913 * no branch sampling for software events 11914 */ 11915 if (has_branch_stack(event)) 11916 return -EOPNOTSUPP; 11917 11918 perf_swevent_init_hrtimer(event); 11919 11920 return 0; 11921 } 11922 11923 static struct pmu perf_cpu_clock = { 11924 .task_ctx_nr = perf_sw_context, 11925 11926 .capabilities = PERF_PMU_CAP_NO_NMI, 11927 .dev = PMU_NULL_DEV, 11928 11929 .event_init = cpu_clock_event_init, 11930 .add = cpu_clock_event_add, 11931 .del = cpu_clock_event_del, 11932 .start = cpu_clock_event_start, 11933 .stop = cpu_clock_event_stop, 11934 .read = cpu_clock_event_read, 11935 }; 11936 11937 /* 11938 * Software event: task time clock 11939 */ 11940 11941 static void task_clock_event_update(struct perf_event *event, u64 now) 11942 { 11943 u64 prev; 11944 s64 delta; 11945 11946 prev = local64_xchg(&event->hw.prev_count, now); 11947 delta = now - prev; 11948 local64_add(delta, &event->count); 11949 } 11950 11951 static void task_clock_event_start(struct perf_event *event, int flags) 11952 { 11953 local64_set(&event->hw.prev_count, event->ctx->time); 11954 perf_swevent_start_hrtimer(event); 11955 } 11956 11957 static void task_clock_event_stop(struct perf_event *event, int flags) 11958 { 11959 perf_swevent_cancel_hrtimer(event); 11960 if (flags & PERF_EF_UPDATE) 11961 task_clock_event_update(event, event->ctx->time); 11962 } 11963 11964 static int task_clock_event_add(struct perf_event *event, int flags) 11965 { 11966 if (flags & PERF_EF_START) 11967 task_clock_event_start(event, flags); 11968 perf_event_update_userpage(event); 11969 11970 return 0; 11971 } 11972 11973 static void task_clock_event_del(struct perf_event *event, int flags) 11974 { 11975 task_clock_event_stop(event, PERF_EF_UPDATE); 11976 } 11977 11978 static void task_clock_event_read(struct perf_event *event) 11979 { 11980 u64 now = perf_clock(); 11981 u64 delta = now - event->ctx->timestamp; 11982 u64 time = event->ctx->time + delta; 11983 11984 task_clock_event_update(event, time); 11985 } 11986 11987 static int task_clock_event_init(struct perf_event *event) 11988 { 11989 if (event->attr.type != perf_task_clock.type) 11990 return -ENOENT; 11991 11992 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11993 return -ENOENT; 11994 11995 /* 11996 * no branch sampling for software events 11997 */ 11998 if (has_branch_stack(event)) 11999 return -EOPNOTSUPP; 12000 12001 perf_swevent_init_hrtimer(event); 12002 12003 return 0; 12004 } 12005 12006 static struct pmu perf_task_clock = { 12007 .task_ctx_nr = perf_sw_context, 12008 12009 .capabilities = PERF_PMU_CAP_NO_NMI, 12010 .dev = PMU_NULL_DEV, 12011 12012 .event_init = task_clock_event_init, 12013 .add = task_clock_event_add, 12014 .del = task_clock_event_del, 12015 .start = task_clock_event_start, 12016 .stop = task_clock_event_stop, 12017 .read = task_clock_event_read, 12018 }; 12019 12020 static void perf_pmu_nop_void(struct pmu *pmu) 12021 { 12022 } 12023 12024 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 12025 { 12026 } 12027 12028 static int perf_pmu_nop_int(struct pmu *pmu) 12029 { 12030 return 0; 12031 } 12032 12033 static int perf_event_nop_int(struct perf_event *event, u64 value) 12034 { 12035 return 0; 12036 } 12037 12038 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 12039 12040 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 12041 { 12042 __this_cpu_write(nop_txn_flags, flags); 12043 12044 if (flags & ~PERF_PMU_TXN_ADD) 12045 return; 12046 12047 perf_pmu_disable(pmu); 12048 } 12049 12050 static int perf_pmu_commit_txn(struct pmu *pmu) 12051 { 12052 unsigned int flags = __this_cpu_read(nop_txn_flags); 12053 12054 __this_cpu_write(nop_txn_flags, 0); 12055 12056 if (flags & ~PERF_PMU_TXN_ADD) 12057 return 0; 12058 12059 perf_pmu_enable(pmu); 12060 return 0; 12061 } 12062 12063 static void perf_pmu_cancel_txn(struct pmu *pmu) 12064 { 12065 unsigned int flags = __this_cpu_read(nop_txn_flags); 12066 12067 __this_cpu_write(nop_txn_flags, 0); 12068 12069 if (flags & ~PERF_PMU_TXN_ADD) 12070 return; 12071 12072 perf_pmu_enable(pmu); 12073 } 12074 12075 static int perf_event_idx_default(struct perf_event *event) 12076 { 12077 return 0; 12078 } 12079 12080 /* 12081 * Let userspace know that this PMU supports address range filtering: 12082 */ 12083 static ssize_t nr_addr_filters_show(struct device *dev, 12084 struct device_attribute *attr, 12085 char *page) 12086 { 12087 struct pmu *pmu = dev_get_drvdata(dev); 12088 12089 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 12090 } 12091 DEVICE_ATTR_RO(nr_addr_filters); 12092 12093 static struct idr pmu_idr; 12094 12095 static ssize_t 12096 type_show(struct device *dev, struct device_attribute *attr, char *page) 12097 { 12098 struct pmu *pmu = dev_get_drvdata(dev); 12099 12100 return sysfs_emit(page, "%d\n", pmu->type); 12101 } 12102 static DEVICE_ATTR_RO(type); 12103 12104 static ssize_t 12105 perf_event_mux_interval_ms_show(struct device *dev, 12106 struct device_attribute *attr, 12107 char *page) 12108 { 12109 struct pmu *pmu = dev_get_drvdata(dev); 12110 12111 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 12112 } 12113 12114 static DEFINE_MUTEX(mux_interval_mutex); 12115 12116 static ssize_t 12117 perf_event_mux_interval_ms_store(struct device *dev, 12118 struct device_attribute *attr, 12119 const char *buf, size_t count) 12120 { 12121 struct pmu *pmu = dev_get_drvdata(dev); 12122 int timer, cpu, ret; 12123 12124 ret = kstrtoint(buf, 0, &timer); 12125 if (ret) 12126 return ret; 12127 12128 if (timer < 1) 12129 return -EINVAL; 12130 12131 /* same value, noting to do */ 12132 if (timer == pmu->hrtimer_interval_ms) 12133 return count; 12134 12135 mutex_lock(&mux_interval_mutex); 12136 pmu->hrtimer_interval_ms = timer; 12137 12138 /* update all cpuctx for this PMU */ 12139 cpus_read_lock(); 12140 for_each_online_cpu(cpu) { 12141 struct perf_cpu_pmu_context *cpc; 12142 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12143 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 12144 12145 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 12146 } 12147 cpus_read_unlock(); 12148 mutex_unlock(&mux_interval_mutex); 12149 12150 return count; 12151 } 12152 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 12153 12154 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 12155 { 12156 switch (scope) { 12157 case PERF_PMU_SCOPE_CORE: 12158 return topology_sibling_cpumask(cpu); 12159 case PERF_PMU_SCOPE_DIE: 12160 return topology_die_cpumask(cpu); 12161 case PERF_PMU_SCOPE_CLUSTER: 12162 return topology_cluster_cpumask(cpu); 12163 case PERF_PMU_SCOPE_PKG: 12164 return topology_core_cpumask(cpu); 12165 case PERF_PMU_SCOPE_SYS_WIDE: 12166 return cpu_online_mask; 12167 } 12168 12169 return NULL; 12170 } 12171 12172 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12173 { 12174 switch (scope) { 12175 case PERF_PMU_SCOPE_CORE: 12176 return perf_online_core_mask; 12177 case PERF_PMU_SCOPE_DIE: 12178 return perf_online_die_mask; 12179 case PERF_PMU_SCOPE_CLUSTER: 12180 return perf_online_cluster_mask; 12181 case PERF_PMU_SCOPE_PKG: 12182 return perf_online_pkg_mask; 12183 case PERF_PMU_SCOPE_SYS_WIDE: 12184 return perf_online_sys_mask; 12185 } 12186 12187 return NULL; 12188 } 12189 12190 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12191 char *buf) 12192 { 12193 struct pmu *pmu = dev_get_drvdata(dev); 12194 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12195 12196 if (mask) 12197 return cpumap_print_to_pagebuf(true, buf, mask); 12198 return 0; 12199 } 12200 12201 static DEVICE_ATTR_RO(cpumask); 12202 12203 static struct attribute *pmu_dev_attrs[] = { 12204 &dev_attr_type.attr, 12205 &dev_attr_perf_event_mux_interval_ms.attr, 12206 &dev_attr_nr_addr_filters.attr, 12207 &dev_attr_cpumask.attr, 12208 NULL, 12209 }; 12210 12211 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12212 { 12213 struct device *dev = kobj_to_dev(kobj); 12214 struct pmu *pmu = dev_get_drvdata(dev); 12215 12216 if (n == 2 && !pmu->nr_addr_filters) 12217 return 0; 12218 12219 /* cpumask */ 12220 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12221 return 0; 12222 12223 return a->mode; 12224 } 12225 12226 static struct attribute_group pmu_dev_attr_group = { 12227 .is_visible = pmu_dev_is_visible, 12228 .attrs = pmu_dev_attrs, 12229 }; 12230 12231 static const struct attribute_group *pmu_dev_groups[] = { 12232 &pmu_dev_attr_group, 12233 NULL, 12234 }; 12235 12236 static int pmu_bus_running; 12237 static const struct bus_type pmu_bus = { 12238 .name = "event_source", 12239 .dev_groups = pmu_dev_groups, 12240 }; 12241 12242 static void pmu_dev_release(struct device *dev) 12243 { 12244 kfree(dev); 12245 } 12246 12247 static int pmu_dev_alloc(struct pmu *pmu) 12248 { 12249 int ret = -ENOMEM; 12250 12251 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12252 if (!pmu->dev) 12253 goto out; 12254 12255 pmu->dev->groups = pmu->attr_groups; 12256 device_initialize(pmu->dev); 12257 12258 dev_set_drvdata(pmu->dev, pmu); 12259 pmu->dev->bus = &pmu_bus; 12260 pmu->dev->parent = pmu->parent; 12261 pmu->dev->release = pmu_dev_release; 12262 12263 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12264 if (ret) 12265 goto free_dev; 12266 12267 ret = device_add(pmu->dev); 12268 if (ret) 12269 goto free_dev; 12270 12271 if (pmu->attr_update) { 12272 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12273 if (ret) 12274 goto del_dev; 12275 } 12276 12277 out: 12278 return ret; 12279 12280 del_dev: 12281 device_del(pmu->dev); 12282 12283 free_dev: 12284 put_device(pmu->dev); 12285 pmu->dev = NULL; 12286 goto out; 12287 } 12288 12289 static struct lock_class_key cpuctx_mutex; 12290 static struct lock_class_key cpuctx_lock; 12291 12292 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12293 { 12294 void *tmp, *val = idr_find(idr, id); 12295 12296 if (val != old) 12297 return false; 12298 12299 tmp = idr_replace(idr, new, id); 12300 if (IS_ERR(tmp)) 12301 return false; 12302 12303 WARN_ON_ONCE(tmp != val); 12304 return true; 12305 } 12306 12307 static void perf_pmu_free(struct pmu *pmu) 12308 { 12309 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12310 if (pmu->nr_addr_filters) 12311 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12312 device_del(pmu->dev); 12313 put_device(pmu->dev); 12314 } 12315 12316 if (pmu->cpu_pmu_context) { 12317 int cpu; 12318 12319 for_each_possible_cpu(cpu) { 12320 struct perf_cpu_pmu_context *cpc; 12321 12322 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12323 if (!cpc) 12324 continue; 12325 if (cpc->epc.embedded) { 12326 /* refcount managed */ 12327 put_pmu_ctx(&cpc->epc); 12328 continue; 12329 } 12330 kfree(cpc); 12331 } 12332 free_percpu(pmu->cpu_pmu_context); 12333 } 12334 } 12335 12336 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12337 12338 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12339 { 12340 int cpu, max = PERF_TYPE_MAX; 12341 12342 struct pmu *pmu __free(pmu_unregister) = _pmu; 12343 guard(mutex)(&pmus_lock); 12344 12345 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12346 return -EINVAL; 12347 12348 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12349 "Can not register a pmu with an invalid scope.\n")) 12350 return -EINVAL; 12351 12352 pmu->name = name; 12353 12354 if (type >= 0) 12355 max = type; 12356 12357 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12358 if (pmu_type.id < 0) 12359 return pmu_type.id; 12360 12361 WARN_ON(type >= 0 && pmu_type.id != type); 12362 12363 pmu->type = pmu_type.id; 12364 atomic_set(&pmu->exclusive_cnt, 0); 12365 12366 if (pmu_bus_running && !pmu->dev) { 12367 int ret = pmu_dev_alloc(pmu); 12368 if (ret) 12369 return ret; 12370 } 12371 12372 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12373 if (!pmu->cpu_pmu_context) 12374 return -ENOMEM; 12375 12376 for_each_possible_cpu(cpu) { 12377 struct perf_cpu_pmu_context *cpc = 12378 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12379 GFP_KERNEL | __GFP_ZERO, 12380 cpu_to_node(cpu)); 12381 12382 if (!cpc) 12383 return -ENOMEM; 12384 12385 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12386 __perf_init_event_pmu_context(&cpc->epc, pmu); 12387 __perf_mux_hrtimer_init(cpc, cpu); 12388 } 12389 12390 if (!pmu->start_txn) { 12391 if (pmu->pmu_enable) { 12392 /* 12393 * If we have pmu_enable/pmu_disable calls, install 12394 * transaction stubs that use that to try and batch 12395 * hardware accesses. 12396 */ 12397 pmu->start_txn = perf_pmu_start_txn; 12398 pmu->commit_txn = perf_pmu_commit_txn; 12399 pmu->cancel_txn = perf_pmu_cancel_txn; 12400 } else { 12401 pmu->start_txn = perf_pmu_nop_txn; 12402 pmu->commit_txn = perf_pmu_nop_int; 12403 pmu->cancel_txn = perf_pmu_nop_void; 12404 } 12405 } 12406 12407 if (!pmu->pmu_enable) { 12408 pmu->pmu_enable = perf_pmu_nop_void; 12409 pmu->pmu_disable = perf_pmu_nop_void; 12410 } 12411 12412 if (!pmu->check_period) 12413 pmu->check_period = perf_event_nop_int; 12414 12415 if (!pmu->event_idx) 12416 pmu->event_idx = perf_event_idx_default; 12417 12418 INIT_LIST_HEAD(&pmu->events); 12419 spin_lock_init(&pmu->events_lock); 12420 12421 /* 12422 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12423 */ 12424 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12425 return -EINVAL; 12426 list_add_rcu(&pmu->entry, &pmus); 12427 12428 take_idr_id(pmu_type); 12429 _pmu = no_free_ptr(pmu); // let it rip 12430 return 0; 12431 } 12432 EXPORT_SYMBOL_GPL(perf_pmu_register); 12433 12434 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, 12435 struct perf_event_context *ctx) 12436 { 12437 /* 12438 * De-schedule the event and mark it REVOKED. 12439 */ 12440 perf_event_exit_event(event, ctx, true); 12441 12442 /* 12443 * All _free_event() bits that rely on event->pmu: 12444 * 12445 * Notably, perf_mmap() relies on the ordering here. 12446 */ 12447 scoped_guard (mutex, &event->mmap_mutex) { 12448 WARN_ON_ONCE(pmu->event_unmapped); 12449 /* 12450 * Mostly an empty lock sequence, such that perf_mmap(), which 12451 * relies on mmap_mutex, is sure to observe the state change. 12452 */ 12453 } 12454 12455 perf_event_free_bpf_prog(event); 12456 perf_free_addr_filters(event); 12457 12458 if (event->destroy) { 12459 event->destroy(event); 12460 event->destroy = NULL; 12461 } 12462 12463 if (event->pmu_ctx) { 12464 put_pmu_ctx(event->pmu_ctx); 12465 event->pmu_ctx = NULL; 12466 } 12467 12468 exclusive_event_destroy(event); 12469 module_put(pmu->module); 12470 12471 event->pmu = NULL; /* force fault instead of UAF */ 12472 } 12473 12474 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) 12475 { 12476 struct perf_event_context *ctx; 12477 12478 ctx = perf_event_ctx_lock(event); 12479 __pmu_detach_event(pmu, event, ctx); 12480 perf_event_ctx_unlock(event, ctx); 12481 12482 scoped_guard (spinlock, &pmu->events_lock) 12483 list_del(&event->pmu_list); 12484 } 12485 12486 static struct perf_event *pmu_get_event(struct pmu *pmu) 12487 { 12488 struct perf_event *event; 12489 12490 guard(spinlock)(&pmu->events_lock); 12491 list_for_each_entry(event, &pmu->events, pmu_list) { 12492 if (atomic_long_inc_not_zero(&event->refcount)) 12493 return event; 12494 } 12495 12496 return NULL; 12497 } 12498 12499 static bool pmu_empty(struct pmu *pmu) 12500 { 12501 guard(spinlock)(&pmu->events_lock); 12502 return list_empty(&pmu->events); 12503 } 12504 12505 static void pmu_detach_events(struct pmu *pmu) 12506 { 12507 struct perf_event *event; 12508 12509 for (;;) { 12510 event = pmu_get_event(pmu); 12511 if (!event) 12512 break; 12513 12514 pmu_detach_event(pmu, event); 12515 put_event(event); 12516 } 12517 12518 /* 12519 * wait for pending _free_event()s 12520 */ 12521 wait_var_event(pmu, pmu_empty(pmu)); 12522 } 12523 12524 int perf_pmu_unregister(struct pmu *pmu) 12525 { 12526 scoped_guard (mutex, &pmus_lock) { 12527 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) 12528 return -EINVAL; 12529 12530 list_del_rcu(&pmu->entry); 12531 } 12532 12533 /* 12534 * We dereference the pmu list under both SRCU and regular RCU, so 12535 * synchronize against both of those. 12536 * 12537 * Notably, the entirety of event creation, from perf_init_event() 12538 * (which will now fail, because of the above) until 12539 * perf_install_in_context() should be under SRCU such that 12540 * this synchronizes against event creation. This avoids trying to 12541 * detach events that are not fully formed. 12542 */ 12543 synchronize_srcu(&pmus_srcu); 12544 synchronize_rcu(); 12545 12546 if (pmu->event_unmapped && !pmu_empty(pmu)) { 12547 /* 12548 * Can't force remove events when pmu::event_unmapped() 12549 * is used in perf_mmap_close(). 12550 */ 12551 guard(mutex)(&pmus_lock); 12552 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); 12553 list_add_rcu(&pmu->entry, &pmus); 12554 return -EBUSY; 12555 } 12556 12557 scoped_guard (mutex, &pmus_lock) 12558 idr_remove(&pmu_idr, pmu->type); 12559 12560 /* 12561 * PMU is removed from the pmus list, so no new events will 12562 * be created, now take care of the existing ones. 12563 */ 12564 pmu_detach_events(pmu); 12565 12566 /* 12567 * PMU is unused, make it go away. 12568 */ 12569 perf_pmu_free(pmu); 12570 return 0; 12571 } 12572 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12573 12574 static inline bool has_extended_regs(struct perf_event *event) 12575 { 12576 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12577 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12578 } 12579 12580 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12581 { 12582 struct perf_event_context *ctx = NULL; 12583 int ret; 12584 12585 if (!try_module_get(pmu->module)) 12586 return -ENODEV; 12587 12588 /* 12589 * A number of pmu->event_init() methods iterate the sibling_list to, 12590 * for example, validate if the group fits on the PMU. Therefore, 12591 * if this is a sibling event, acquire the ctx->mutex to protect 12592 * the sibling_list. 12593 */ 12594 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12595 /* 12596 * This ctx->mutex can nest when we're called through 12597 * inheritance. See the perf_event_ctx_lock_nested() comment. 12598 */ 12599 ctx = perf_event_ctx_lock_nested(event->group_leader, 12600 SINGLE_DEPTH_NESTING); 12601 BUG_ON(!ctx); 12602 } 12603 12604 event->pmu = pmu; 12605 ret = pmu->event_init(event); 12606 12607 if (ctx) 12608 perf_event_ctx_unlock(event->group_leader, ctx); 12609 12610 if (ret) 12611 goto err_pmu; 12612 12613 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12614 has_extended_regs(event)) { 12615 ret = -EOPNOTSUPP; 12616 goto err_destroy; 12617 } 12618 12619 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12620 event_has_any_exclude_flag(event)) { 12621 ret = -EINVAL; 12622 goto err_destroy; 12623 } 12624 12625 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12626 const struct cpumask *cpumask; 12627 struct cpumask *pmu_cpumask; 12628 int cpu; 12629 12630 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12631 pmu_cpumask = perf_scope_cpumask(pmu->scope); 12632 12633 ret = -ENODEV; 12634 if (!pmu_cpumask || !cpumask) 12635 goto err_destroy; 12636 12637 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12638 if (cpu >= nr_cpu_ids) 12639 goto err_destroy; 12640 12641 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12642 } 12643 12644 return 0; 12645 12646 err_destroy: 12647 if (event->destroy) { 12648 event->destroy(event); 12649 event->destroy = NULL; 12650 } 12651 12652 err_pmu: 12653 event->pmu = NULL; 12654 module_put(pmu->module); 12655 return ret; 12656 } 12657 12658 static struct pmu *perf_init_event(struct perf_event *event) 12659 { 12660 bool extended_type = false; 12661 struct pmu *pmu; 12662 int type, ret; 12663 12664 guard(srcu)(&pmus_srcu); /* pmu idr/list access */ 12665 12666 /* 12667 * Save original type before calling pmu->event_init() since certain 12668 * pmus overwrites event->attr.type to forward event to another pmu. 12669 */ 12670 event->orig_type = event->attr.type; 12671 12672 /* Try parent's PMU first: */ 12673 if (event->parent && event->parent->pmu) { 12674 pmu = event->parent->pmu; 12675 ret = perf_try_init_event(pmu, event); 12676 if (!ret) 12677 return pmu; 12678 } 12679 12680 /* 12681 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12682 * are often aliases for PERF_TYPE_RAW. 12683 */ 12684 type = event->attr.type; 12685 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12686 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12687 if (!type) { 12688 type = PERF_TYPE_RAW; 12689 } else { 12690 extended_type = true; 12691 event->attr.config &= PERF_HW_EVENT_MASK; 12692 } 12693 } 12694 12695 again: 12696 scoped_guard (rcu) 12697 pmu = idr_find(&pmu_idr, type); 12698 if (pmu) { 12699 if (event->attr.type != type && type != PERF_TYPE_RAW && 12700 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12701 return ERR_PTR(-ENOENT); 12702 12703 ret = perf_try_init_event(pmu, event); 12704 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12705 type = event->attr.type; 12706 goto again; 12707 } 12708 12709 if (ret) 12710 return ERR_PTR(ret); 12711 12712 return pmu; 12713 } 12714 12715 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12716 ret = perf_try_init_event(pmu, event); 12717 if (!ret) 12718 return pmu; 12719 12720 if (ret != -ENOENT) 12721 return ERR_PTR(ret); 12722 } 12723 12724 return ERR_PTR(-ENOENT); 12725 } 12726 12727 static void attach_sb_event(struct perf_event *event) 12728 { 12729 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12730 12731 raw_spin_lock(&pel->lock); 12732 list_add_rcu(&event->sb_list, &pel->list); 12733 raw_spin_unlock(&pel->lock); 12734 } 12735 12736 /* 12737 * We keep a list of all !task (and therefore per-cpu) events 12738 * that need to receive side-band records. 12739 * 12740 * This avoids having to scan all the various PMU per-cpu contexts 12741 * looking for them. 12742 */ 12743 static void account_pmu_sb_event(struct perf_event *event) 12744 { 12745 if (is_sb_event(event)) 12746 attach_sb_event(event); 12747 } 12748 12749 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12750 static void account_freq_event_nohz(void) 12751 { 12752 #ifdef CONFIG_NO_HZ_FULL 12753 /* Lock so we don't race with concurrent unaccount */ 12754 spin_lock(&nr_freq_lock); 12755 if (atomic_inc_return(&nr_freq_events) == 1) 12756 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12757 spin_unlock(&nr_freq_lock); 12758 #endif 12759 } 12760 12761 static void account_freq_event(void) 12762 { 12763 if (tick_nohz_full_enabled()) 12764 account_freq_event_nohz(); 12765 else 12766 atomic_inc(&nr_freq_events); 12767 } 12768 12769 12770 static void account_event(struct perf_event *event) 12771 { 12772 bool inc = false; 12773 12774 if (event->parent) 12775 return; 12776 12777 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12778 inc = true; 12779 if (event->attr.mmap || event->attr.mmap_data) 12780 atomic_inc(&nr_mmap_events); 12781 if (event->attr.build_id) 12782 atomic_inc(&nr_build_id_events); 12783 if (event->attr.comm) 12784 atomic_inc(&nr_comm_events); 12785 if (event->attr.namespaces) 12786 atomic_inc(&nr_namespaces_events); 12787 if (event->attr.cgroup) 12788 atomic_inc(&nr_cgroup_events); 12789 if (event->attr.task) 12790 atomic_inc(&nr_task_events); 12791 if (event->attr.freq) 12792 account_freq_event(); 12793 if (event->attr.context_switch) { 12794 atomic_inc(&nr_switch_events); 12795 inc = true; 12796 } 12797 if (has_branch_stack(event)) 12798 inc = true; 12799 if (is_cgroup_event(event)) 12800 inc = true; 12801 if (event->attr.ksymbol) 12802 atomic_inc(&nr_ksymbol_events); 12803 if (event->attr.bpf_event) 12804 atomic_inc(&nr_bpf_events); 12805 if (event->attr.text_poke) 12806 atomic_inc(&nr_text_poke_events); 12807 12808 if (inc) { 12809 /* 12810 * We need the mutex here because static_branch_enable() 12811 * must complete *before* the perf_sched_count increment 12812 * becomes visible. 12813 */ 12814 if (atomic_inc_not_zero(&perf_sched_count)) 12815 goto enabled; 12816 12817 mutex_lock(&perf_sched_mutex); 12818 if (!atomic_read(&perf_sched_count)) { 12819 static_branch_enable(&perf_sched_events); 12820 /* 12821 * Guarantee that all CPUs observe they key change and 12822 * call the perf scheduling hooks before proceeding to 12823 * install events that need them. 12824 */ 12825 synchronize_rcu(); 12826 } 12827 /* 12828 * Now that we have waited for the sync_sched(), allow further 12829 * increments to by-pass the mutex. 12830 */ 12831 atomic_inc(&perf_sched_count); 12832 mutex_unlock(&perf_sched_mutex); 12833 } 12834 enabled: 12835 12836 account_pmu_sb_event(event); 12837 } 12838 12839 /* 12840 * Allocate and initialize an event structure 12841 */ 12842 static struct perf_event * 12843 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12844 struct task_struct *task, 12845 struct perf_event *group_leader, 12846 struct perf_event *parent_event, 12847 perf_overflow_handler_t overflow_handler, 12848 void *context, int cgroup_fd) 12849 { 12850 struct pmu *pmu; 12851 struct hw_perf_event *hwc; 12852 long err = -EINVAL; 12853 int node; 12854 12855 if ((unsigned)cpu >= nr_cpu_ids) { 12856 if (!task || cpu != -1) 12857 return ERR_PTR(-EINVAL); 12858 } 12859 if (attr->sigtrap && !task) { 12860 /* Requires a task: avoid signalling random tasks. */ 12861 return ERR_PTR(-EINVAL); 12862 } 12863 12864 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12865 struct perf_event *event __free(__free_event) = 12866 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 12867 if (!event) 12868 return ERR_PTR(-ENOMEM); 12869 12870 /* 12871 * Single events are their own group leaders, with an 12872 * empty sibling list: 12873 */ 12874 if (!group_leader) 12875 group_leader = event; 12876 12877 mutex_init(&event->child_mutex); 12878 INIT_LIST_HEAD(&event->child_list); 12879 12880 INIT_LIST_HEAD(&event->event_entry); 12881 INIT_LIST_HEAD(&event->sibling_list); 12882 INIT_LIST_HEAD(&event->active_list); 12883 init_event_group(event); 12884 INIT_LIST_HEAD(&event->rb_entry); 12885 INIT_LIST_HEAD(&event->active_entry); 12886 INIT_LIST_HEAD(&event->addr_filters.list); 12887 INIT_HLIST_NODE(&event->hlist_entry); 12888 INIT_LIST_HEAD(&event->pmu_list); 12889 12890 12891 init_waitqueue_head(&event->waitq); 12892 init_irq_work(&event->pending_irq, perf_pending_irq); 12893 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12894 init_task_work(&event->pending_task, perf_pending_task); 12895 12896 mutex_init(&event->mmap_mutex); 12897 raw_spin_lock_init(&event->addr_filters.lock); 12898 12899 atomic_long_set(&event->refcount, 1); 12900 event->cpu = cpu; 12901 event->attr = *attr; 12902 event->group_leader = group_leader; 12903 event->pmu = NULL; 12904 event->oncpu = -1; 12905 12906 event->parent = parent_event; 12907 12908 event->ns = get_pid_ns(task_active_pid_ns(current)); 12909 event->id = atomic64_inc_return(&perf_event_id); 12910 12911 event->state = PERF_EVENT_STATE_INACTIVE; 12912 12913 if (parent_event) 12914 event->event_caps = parent_event->event_caps; 12915 12916 if (task) { 12917 event->attach_state = PERF_ATTACH_TASK; 12918 /* 12919 * XXX pmu::event_init needs to know what task to account to 12920 * and we cannot use the ctx information because we need the 12921 * pmu before we get a ctx. 12922 */ 12923 event->hw.target = get_task_struct(task); 12924 } 12925 12926 event->clock = &local_clock; 12927 if (parent_event) 12928 event->clock = parent_event->clock; 12929 12930 if (!overflow_handler && parent_event) { 12931 overflow_handler = parent_event->overflow_handler; 12932 context = parent_event->overflow_handler_context; 12933 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12934 if (parent_event->prog) { 12935 struct bpf_prog *prog = parent_event->prog; 12936 12937 bpf_prog_inc(prog); 12938 event->prog = prog; 12939 } 12940 #endif 12941 } 12942 12943 if (overflow_handler) { 12944 event->overflow_handler = overflow_handler; 12945 event->overflow_handler_context = context; 12946 } else if (is_write_backward(event)){ 12947 event->overflow_handler = perf_event_output_backward; 12948 event->overflow_handler_context = NULL; 12949 } else { 12950 event->overflow_handler = perf_event_output_forward; 12951 event->overflow_handler_context = NULL; 12952 } 12953 12954 perf_event__state_init(event); 12955 12956 pmu = NULL; 12957 12958 hwc = &event->hw; 12959 hwc->sample_period = attr->sample_period; 12960 if (is_event_in_freq_mode(event)) 12961 hwc->sample_period = 1; 12962 hwc->last_period = hwc->sample_period; 12963 12964 local64_set(&hwc->period_left, hwc->sample_period); 12965 12966 /* 12967 * We do not support PERF_SAMPLE_READ on inherited events unless 12968 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12969 * collect per-thread samples. 12970 * See perf_output_read(). 12971 */ 12972 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12973 return ERR_PTR(-EINVAL); 12974 12975 if (!has_branch_stack(event)) 12976 event->attr.branch_sample_type = 0; 12977 12978 pmu = perf_init_event(event); 12979 if (IS_ERR(pmu)) 12980 return (void*)pmu; 12981 12982 /* 12983 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 12984 * The attach should be right after the perf_init_event(). 12985 * Otherwise, the __free_event() would mistakenly detach the non-exist 12986 * perf_ctx_data because of the other errors between them. 12987 */ 12988 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 12989 err = attach_perf_ctx_data(event); 12990 if (err) 12991 return ERR_PTR(err); 12992 } 12993 12994 /* 12995 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12996 * events (they don't make sense as the cgroup will be different 12997 * on other CPUs in the uncore mask). 12998 */ 12999 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 13000 return ERR_PTR(-EINVAL); 13001 13002 if (event->attr.aux_output && 13003 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 13004 event->attr.aux_pause || event->attr.aux_resume)) 13005 return ERR_PTR(-EOPNOTSUPP); 13006 13007 if (event->attr.aux_pause && event->attr.aux_resume) 13008 return ERR_PTR(-EINVAL); 13009 13010 if (event->attr.aux_start_paused) { 13011 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 13012 return ERR_PTR(-EOPNOTSUPP); 13013 event->hw.aux_paused = 1; 13014 } 13015 13016 if (cgroup_fd != -1) { 13017 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 13018 if (err) 13019 return ERR_PTR(err); 13020 } 13021 13022 err = exclusive_event_init(event); 13023 if (err) 13024 return ERR_PTR(err); 13025 13026 if (has_addr_filter(event)) { 13027 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 13028 sizeof(struct perf_addr_filter_range), 13029 GFP_KERNEL); 13030 if (!event->addr_filter_ranges) 13031 return ERR_PTR(-ENOMEM); 13032 13033 /* 13034 * Clone the parent's vma offsets: they are valid until exec() 13035 * even if the mm is not shared with the parent. 13036 */ 13037 if (event->parent) { 13038 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 13039 13040 raw_spin_lock_irq(&ifh->lock); 13041 memcpy(event->addr_filter_ranges, 13042 event->parent->addr_filter_ranges, 13043 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 13044 raw_spin_unlock_irq(&ifh->lock); 13045 } 13046 13047 /* force hw sync on the address filters */ 13048 event->addr_filters_gen = 1; 13049 } 13050 13051 if (!event->parent) { 13052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 13053 err = get_callchain_buffers(attr->sample_max_stack); 13054 if (err) 13055 return ERR_PTR(err); 13056 event->attach_state |= PERF_ATTACH_CALLCHAIN; 13057 } 13058 } 13059 13060 err = security_perf_event_alloc(event); 13061 if (err) 13062 return ERR_PTR(err); 13063 13064 /* symmetric to unaccount_event() in _free_event() */ 13065 account_event(event); 13066 13067 /* 13068 * Event creation should be under SRCU, see perf_pmu_unregister(). 13069 */ 13070 lockdep_assert_held(&pmus_srcu); 13071 scoped_guard (spinlock, &pmu->events_lock) 13072 list_add(&event->pmu_list, &pmu->events); 13073 13074 return_ptr(event); 13075 } 13076 13077 static int perf_copy_attr(struct perf_event_attr __user *uattr, 13078 struct perf_event_attr *attr) 13079 { 13080 u32 size; 13081 int ret; 13082 13083 /* Zero the full structure, so that a short copy will be nice. */ 13084 memset(attr, 0, sizeof(*attr)); 13085 13086 ret = get_user(size, &uattr->size); 13087 if (ret) 13088 return ret; 13089 13090 /* ABI compatibility quirk: */ 13091 if (!size) 13092 size = PERF_ATTR_SIZE_VER0; 13093 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 13094 goto err_size; 13095 13096 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 13097 if (ret) { 13098 if (ret == -E2BIG) 13099 goto err_size; 13100 return ret; 13101 } 13102 13103 attr->size = size; 13104 13105 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 13106 return -EINVAL; 13107 13108 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 13109 return -EINVAL; 13110 13111 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 13112 return -EINVAL; 13113 13114 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 13115 u64 mask = attr->branch_sample_type; 13116 13117 /* only using defined bits */ 13118 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 13119 return -EINVAL; 13120 13121 /* at least one branch bit must be set */ 13122 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 13123 return -EINVAL; 13124 13125 /* propagate priv level, when not set for branch */ 13126 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 13127 13128 /* exclude_kernel checked on syscall entry */ 13129 if (!attr->exclude_kernel) 13130 mask |= PERF_SAMPLE_BRANCH_KERNEL; 13131 13132 if (!attr->exclude_user) 13133 mask |= PERF_SAMPLE_BRANCH_USER; 13134 13135 if (!attr->exclude_hv) 13136 mask |= PERF_SAMPLE_BRANCH_HV; 13137 /* 13138 * adjust user setting (for HW filter setup) 13139 */ 13140 attr->branch_sample_type = mask; 13141 } 13142 /* privileged levels capture (kernel, hv): check permissions */ 13143 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 13144 ret = perf_allow_kernel(); 13145 if (ret) 13146 return ret; 13147 } 13148 } 13149 13150 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 13151 ret = perf_reg_validate(attr->sample_regs_user); 13152 if (ret) 13153 return ret; 13154 } 13155 13156 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 13157 if (!arch_perf_have_user_stack_dump()) 13158 return -ENOSYS; 13159 13160 /* 13161 * We have __u32 type for the size, but so far 13162 * we can only use __u16 as maximum due to the 13163 * __u16 sample size limit. 13164 */ 13165 if (attr->sample_stack_user >= USHRT_MAX) 13166 return -EINVAL; 13167 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 13168 return -EINVAL; 13169 } 13170 13171 if (!attr->sample_max_stack) 13172 attr->sample_max_stack = sysctl_perf_event_max_stack; 13173 13174 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 13175 ret = perf_reg_validate(attr->sample_regs_intr); 13176 13177 #ifndef CONFIG_CGROUP_PERF 13178 if (attr->sample_type & PERF_SAMPLE_CGROUP) 13179 return -EINVAL; 13180 #endif 13181 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 13182 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 13183 return -EINVAL; 13184 13185 if (!attr->inherit && attr->inherit_thread) 13186 return -EINVAL; 13187 13188 if (attr->remove_on_exec && attr->enable_on_exec) 13189 return -EINVAL; 13190 13191 if (attr->sigtrap && !attr->remove_on_exec) 13192 return -EINVAL; 13193 13194 out: 13195 return ret; 13196 13197 err_size: 13198 put_user(sizeof(*attr), &uattr->size); 13199 ret = -E2BIG; 13200 goto out; 13201 } 13202 13203 static void mutex_lock_double(struct mutex *a, struct mutex *b) 13204 { 13205 if (b < a) 13206 swap(a, b); 13207 13208 mutex_lock(a); 13209 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 13210 } 13211 13212 static int 13213 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 13214 { 13215 struct perf_buffer *rb = NULL; 13216 int ret = -EINVAL; 13217 13218 if (!output_event) { 13219 mutex_lock(&event->mmap_mutex); 13220 goto set; 13221 } 13222 13223 /* don't allow circular references */ 13224 if (event == output_event) 13225 goto out; 13226 13227 /* 13228 * Don't allow cross-cpu buffers 13229 */ 13230 if (output_event->cpu != event->cpu) 13231 goto out; 13232 13233 /* 13234 * If its not a per-cpu rb, it must be the same task. 13235 */ 13236 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 13237 goto out; 13238 13239 /* 13240 * Mixing clocks in the same buffer is trouble you don't need. 13241 */ 13242 if (output_event->clock != event->clock) 13243 goto out; 13244 13245 /* 13246 * Either writing ring buffer from beginning or from end. 13247 * Mixing is not allowed. 13248 */ 13249 if (is_write_backward(output_event) != is_write_backward(event)) 13250 goto out; 13251 13252 /* 13253 * If both events generate aux data, they must be on the same PMU 13254 */ 13255 if (has_aux(event) && has_aux(output_event) && 13256 event->pmu != output_event->pmu) 13257 goto out; 13258 13259 /* 13260 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 13261 * output_event is already on rb->event_list, and the list iteration 13262 * restarts after every removal, it is guaranteed this new event is 13263 * observed *OR* if output_event is already removed, it's guaranteed we 13264 * observe !rb->mmap_count. 13265 */ 13266 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 13267 set: 13268 /* Can't redirect output if we've got an active mmap() */ 13269 if (refcount_read(&event->mmap_count)) 13270 goto unlock; 13271 13272 if (output_event) { 13273 if (output_event->state <= PERF_EVENT_STATE_REVOKED) 13274 goto unlock; 13275 13276 /* get the rb we want to redirect to */ 13277 rb = ring_buffer_get(output_event); 13278 if (!rb) 13279 goto unlock; 13280 13281 /* did we race against perf_mmap_close() */ 13282 if (!refcount_read(&rb->mmap_count)) { 13283 ring_buffer_put(rb); 13284 goto unlock; 13285 } 13286 } 13287 13288 ring_buffer_attach(event, rb); 13289 13290 ret = 0; 13291 unlock: 13292 mutex_unlock(&event->mmap_mutex); 13293 if (output_event) 13294 mutex_unlock(&output_event->mmap_mutex); 13295 13296 out: 13297 return ret; 13298 } 13299 13300 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13301 { 13302 bool nmi_safe = false; 13303 13304 switch (clk_id) { 13305 case CLOCK_MONOTONIC: 13306 event->clock = &ktime_get_mono_fast_ns; 13307 nmi_safe = true; 13308 break; 13309 13310 case CLOCK_MONOTONIC_RAW: 13311 event->clock = &ktime_get_raw_fast_ns; 13312 nmi_safe = true; 13313 break; 13314 13315 case CLOCK_REALTIME: 13316 event->clock = &ktime_get_real_ns; 13317 break; 13318 13319 case CLOCK_BOOTTIME: 13320 event->clock = &ktime_get_boottime_ns; 13321 break; 13322 13323 case CLOCK_TAI: 13324 event->clock = &ktime_get_clocktai_ns; 13325 break; 13326 13327 default: 13328 return -EINVAL; 13329 } 13330 13331 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13332 return -EINVAL; 13333 13334 return 0; 13335 } 13336 13337 static bool 13338 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13339 { 13340 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13341 bool is_capable = perfmon_capable(); 13342 13343 if (attr->sigtrap) { 13344 /* 13345 * perf_event_attr::sigtrap sends signals to the other task. 13346 * Require the current task to also have CAP_KILL. 13347 */ 13348 rcu_read_lock(); 13349 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13350 rcu_read_unlock(); 13351 13352 /* 13353 * If the required capabilities aren't available, checks for 13354 * ptrace permissions: upgrade to ATTACH, since sending signals 13355 * can effectively change the target task. 13356 */ 13357 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13358 } 13359 13360 /* 13361 * Preserve ptrace permission check for backwards compatibility. The 13362 * ptrace check also includes checks that the current task and other 13363 * task have matching uids, and is therefore not done here explicitly. 13364 */ 13365 return is_capable || ptrace_may_access(task, ptrace_mode); 13366 } 13367 13368 /** 13369 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13370 * 13371 * @attr_uptr: event_id type attributes for monitoring/sampling 13372 * @pid: target pid 13373 * @cpu: target cpu 13374 * @group_fd: group leader event fd 13375 * @flags: perf event open flags 13376 */ 13377 SYSCALL_DEFINE5(perf_event_open, 13378 struct perf_event_attr __user *, attr_uptr, 13379 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13380 { 13381 struct perf_event *group_leader = NULL, *output_event = NULL; 13382 struct perf_event_pmu_context *pmu_ctx; 13383 struct perf_event *event, *sibling; 13384 struct perf_event_attr attr; 13385 struct perf_event_context *ctx; 13386 struct file *event_file = NULL; 13387 struct task_struct *task = NULL; 13388 struct pmu *pmu; 13389 int event_fd; 13390 int move_group = 0; 13391 int err; 13392 int f_flags = O_RDWR; 13393 int cgroup_fd = -1; 13394 13395 /* for future expandability... */ 13396 if (flags & ~PERF_FLAG_ALL) 13397 return -EINVAL; 13398 13399 err = perf_copy_attr(attr_uptr, &attr); 13400 if (err) 13401 return err; 13402 13403 /* Do we allow access to perf_event_open(2) ? */ 13404 err = security_perf_event_open(PERF_SECURITY_OPEN); 13405 if (err) 13406 return err; 13407 13408 if (!attr.exclude_kernel) { 13409 err = perf_allow_kernel(); 13410 if (err) 13411 return err; 13412 } 13413 13414 if (attr.namespaces) { 13415 if (!perfmon_capable()) 13416 return -EACCES; 13417 } 13418 13419 if (attr.freq) { 13420 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13421 return -EINVAL; 13422 } else { 13423 if (attr.sample_period & (1ULL << 63)) 13424 return -EINVAL; 13425 } 13426 13427 /* Only privileged users can get physical addresses */ 13428 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13429 err = perf_allow_kernel(); 13430 if (err) 13431 return err; 13432 } 13433 13434 /* REGS_INTR can leak data, lockdown must prevent this */ 13435 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13436 err = security_locked_down(LOCKDOWN_PERF); 13437 if (err) 13438 return err; 13439 } 13440 13441 /* 13442 * In cgroup mode, the pid argument is used to pass the fd 13443 * opened to the cgroup directory in cgroupfs. The cpu argument 13444 * designates the cpu on which to monitor threads from that 13445 * cgroup. 13446 */ 13447 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13448 return -EINVAL; 13449 13450 if (flags & PERF_FLAG_FD_CLOEXEC) 13451 f_flags |= O_CLOEXEC; 13452 13453 event_fd = get_unused_fd_flags(f_flags); 13454 if (event_fd < 0) 13455 return event_fd; 13456 13457 /* 13458 * Event creation should be under SRCU, see perf_pmu_unregister(). 13459 */ 13460 guard(srcu)(&pmus_srcu); 13461 13462 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13463 if (group_fd != -1) { 13464 if (!is_perf_file(group)) { 13465 err = -EBADF; 13466 goto err_fd; 13467 } 13468 group_leader = fd_file(group)->private_data; 13469 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { 13470 err = -ENODEV; 13471 goto err_fd; 13472 } 13473 if (flags & PERF_FLAG_FD_OUTPUT) 13474 output_event = group_leader; 13475 if (flags & PERF_FLAG_FD_NO_GROUP) 13476 group_leader = NULL; 13477 } 13478 13479 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13480 task = find_lively_task_by_vpid(pid); 13481 if (IS_ERR(task)) { 13482 err = PTR_ERR(task); 13483 goto err_fd; 13484 } 13485 } 13486 13487 if (task && group_leader && 13488 group_leader->attr.inherit != attr.inherit) { 13489 err = -EINVAL; 13490 goto err_task; 13491 } 13492 13493 if (flags & PERF_FLAG_PID_CGROUP) 13494 cgroup_fd = pid; 13495 13496 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13497 NULL, NULL, cgroup_fd); 13498 if (IS_ERR(event)) { 13499 err = PTR_ERR(event); 13500 goto err_task; 13501 } 13502 13503 if (is_sampling_event(event)) { 13504 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13505 err = -EOPNOTSUPP; 13506 goto err_alloc; 13507 } 13508 } 13509 13510 /* 13511 * Special case software events and allow them to be part of 13512 * any hardware group. 13513 */ 13514 pmu = event->pmu; 13515 13516 if (attr.use_clockid) { 13517 err = perf_event_set_clock(event, attr.clockid); 13518 if (err) 13519 goto err_alloc; 13520 } 13521 13522 if (pmu->task_ctx_nr == perf_sw_context) 13523 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13524 13525 if (task) { 13526 err = down_read_interruptible(&task->signal->exec_update_lock); 13527 if (err) 13528 goto err_alloc; 13529 13530 /* 13531 * We must hold exec_update_lock across this and any potential 13532 * perf_install_in_context() call for this new event to 13533 * serialize against exec() altering our credentials (and the 13534 * perf_event_exit_task() that could imply). 13535 */ 13536 err = -EACCES; 13537 if (!perf_check_permission(&attr, task)) 13538 goto err_cred; 13539 } 13540 13541 /* 13542 * Get the target context (task or percpu): 13543 */ 13544 ctx = find_get_context(task, event); 13545 if (IS_ERR(ctx)) { 13546 err = PTR_ERR(ctx); 13547 goto err_cred; 13548 } 13549 13550 mutex_lock(&ctx->mutex); 13551 13552 if (ctx->task == TASK_TOMBSTONE) { 13553 err = -ESRCH; 13554 goto err_locked; 13555 } 13556 13557 if (!task) { 13558 /* 13559 * Check if the @cpu we're creating an event for is online. 13560 * 13561 * We use the perf_cpu_context::ctx::mutex to serialize against 13562 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13563 */ 13564 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13565 13566 if (!cpuctx->online) { 13567 err = -ENODEV; 13568 goto err_locked; 13569 } 13570 } 13571 13572 if (group_leader) { 13573 err = -EINVAL; 13574 13575 /* 13576 * Do not allow a recursive hierarchy (this new sibling 13577 * becoming part of another group-sibling): 13578 */ 13579 if (group_leader->group_leader != group_leader) 13580 goto err_locked; 13581 13582 /* All events in a group should have the same clock */ 13583 if (group_leader->clock != event->clock) 13584 goto err_locked; 13585 13586 /* 13587 * Make sure we're both events for the same CPU; 13588 * grouping events for different CPUs is broken; since 13589 * you can never concurrently schedule them anyhow. 13590 */ 13591 if (group_leader->cpu != event->cpu) 13592 goto err_locked; 13593 13594 /* 13595 * Make sure we're both on the same context; either task or cpu. 13596 */ 13597 if (group_leader->ctx != ctx) 13598 goto err_locked; 13599 13600 /* 13601 * Only a group leader can be exclusive or pinned 13602 */ 13603 if (attr.exclusive || attr.pinned) 13604 goto err_locked; 13605 13606 if (is_software_event(event) && 13607 !in_software_context(group_leader)) { 13608 /* 13609 * If the event is a sw event, but the group_leader 13610 * is on hw context. 13611 * 13612 * Allow the addition of software events to hw 13613 * groups, this is safe because software events 13614 * never fail to schedule. 13615 * 13616 * Note the comment that goes with struct 13617 * perf_event_pmu_context. 13618 */ 13619 pmu = group_leader->pmu_ctx->pmu; 13620 } else if (!is_software_event(event)) { 13621 if (is_software_event(group_leader) && 13622 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13623 /* 13624 * In case the group is a pure software group, and we 13625 * try to add a hardware event, move the whole group to 13626 * the hardware context. 13627 */ 13628 move_group = 1; 13629 } 13630 13631 /* Don't allow group of multiple hw events from different pmus */ 13632 if (!in_software_context(group_leader) && 13633 group_leader->pmu_ctx->pmu != pmu) 13634 goto err_locked; 13635 } 13636 } 13637 13638 /* 13639 * Now that we're certain of the pmu; find the pmu_ctx. 13640 */ 13641 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13642 if (IS_ERR(pmu_ctx)) { 13643 err = PTR_ERR(pmu_ctx); 13644 goto err_locked; 13645 } 13646 event->pmu_ctx = pmu_ctx; 13647 13648 if (output_event) { 13649 err = perf_event_set_output(event, output_event); 13650 if (err) 13651 goto err_context; 13652 } 13653 13654 if (!perf_event_validate_size(event)) { 13655 err = -E2BIG; 13656 goto err_context; 13657 } 13658 13659 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13660 err = -EINVAL; 13661 goto err_context; 13662 } 13663 13664 /* 13665 * Must be under the same ctx::mutex as perf_install_in_context(), 13666 * because we need to serialize with concurrent event creation. 13667 */ 13668 if (!exclusive_event_installable(event, ctx)) { 13669 err = -EBUSY; 13670 goto err_context; 13671 } 13672 13673 WARN_ON_ONCE(ctx->parent_ctx); 13674 13675 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13676 if (IS_ERR(event_file)) { 13677 err = PTR_ERR(event_file); 13678 event_file = NULL; 13679 goto err_context; 13680 } 13681 13682 /* 13683 * This is the point on no return; we cannot fail hereafter. This is 13684 * where we start modifying current state. 13685 */ 13686 13687 if (move_group) { 13688 perf_remove_from_context(group_leader, 0); 13689 put_pmu_ctx(group_leader->pmu_ctx); 13690 13691 for_each_sibling_event(sibling, group_leader) { 13692 perf_remove_from_context(sibling, 0); 13693 put_pmu_ctx(sibling->pmu_ctx); 13694 } 13695 13696 /* 13697 * Install the group siblings before the group leader. 13698 * 13699 * Because a group leader will try and install the entire group 13700 * (through the sibling list, which is still in-tact), we can 13701 * end up with siblings installed in the wrong context. 13702 * 13703 * By installing siblings first we NO-OP because they're not 13704 * reachable through the group lists. 13705 */ 13706 for_each_sibling_event(sibling, group_leader) { 13707 sibling->pmu_ctx = pmu_ctx; 13708 get_pmu_ctx(pmu_ctx); 13709 perf_event__state_init(sibling); 13710 perf_install_in_context(ctx, sibling, sibling->cpu); 13711 } 13712 13713 /* 13714 * Removing from the context ends up with disabled 13715 * event. What we want here is event in the initial 13716 * startup state, ready to be add into new context. 13717 */ 13718 group_leader->pmu_ctx = pmu_ctx; 13719 get_pmu_ctx(pmu_ctx); 13720 perf_event__state_init(group_leader); 13721 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13722 } 13723 13724 /* 13725 * Precalculate sample_data sizes; do while holding ctx::mutex such 13726 * that we're serialized against further additions and before 13727 * perf_install_in_context() which is the point the event is active and 13728 * can use these values. 13729 */ 13730 perf_event__header_size(event); 13731 perf_event__id_header_size(event); 13732 13733 event->owner = current; 13734 13735 perf_install_in_context(ctx, event, event->cpu); 13736 perf_unpin_context(ctx); 13737 13738 mutex_unlock(&ctx->mutex); 13739 13740 if (task) { 13741 up_read(&task->signal->exec_update_lock); 13742 put_task_struct(task); 13743 } 13744 13745 mutex_lock(¤t->perf_event_mutex); 13746 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13747 mutex_unlock(¤t->perf_event_mutex); 13748 13749 /* 13750 * File reference in group guarantees that group_leader has been 13751 * kept alive until we place the new event on the sibling_list. 13752 * This ensures destruction of the group leader will find 13753 * the pointer to itself in perf_group_detach(). 13754 */ 13755 fd_install(event_fd, event_file); 13756 return event_fd; 13757 13758 err_context: 13759 put_pmu_ctx(event->pmu_ctx); 13760 event->pmu_ctx = NULL; /* _free_event() */ 13761 err_locked: 13762 mutex_unlock(&ctx->mutex); 13763 perf_unpin_context(ctx); 13764 put_ctx(ctx); 13765 err_cred: 13766 if (task) 13767 up_read(&task->signal->exec_update_lock); 13768 err_alloc: 13769 put_event(event); 13770 err_task: 13771 if (task) 13772 put_task_struct(task); 13773 err_fd: 13774 put_unused_fd(event_fd); 13775 return err; 13776 } 13777 13778 /** 13779 * perf_event_create_kernel_counter 13780 * 13781 * @attr: attributes of the counter to create 13782 * @cpu: cpu in which the counter is bound 13783 * @task: task to profile (NULL for percpu) 13784 * @overflow_handler: callback to trigger when we hit the event 13785 * @context: context data could be used in overflow_handler callback 13786 */ 13787 struct perf_event * 13788 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13789 struct task_struct *task, 13790 perf_overflow_handler_t overflow_handler, 13791 void *context) 13792 { 13793 struct perf_event_pmu_context *pmu_ctx; 13794 struct perf_event_context *ctx; 13795 struct perf_event *event; 13796 struct pmu *pmu; 13797 int err; 13798 13799 /* 13800 * Grouping is not supported for kernel events, neither is 'AUX', 13801 * make sure the caller's intentions are adjusted. 13802 */ 13803 if (attr->aux_output || attr->aux_action) 13804 return ERR_PTR(-EINVAL); 13805 13806 /* 13807 * Event creation should be under SRCU, see perf_pmu_unregister(). 13808 */ 13809 guard(srcu)(&pmus_srcu); 13810 13811 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13812 overflow_handler, context, -1); 13813 if (IS_ERR(event)) { 13814 err = PTR_ERR(event); 13815 goto err; 13816 } 13817 13818 /* Mark owner so we could distinguish it from user events. */ 13819 event->owner = TASK_TOMBSTONE; 13820 pmu = event->pmu; 13821 13822 if (pmu->task_ctx_nr == perf_sw_context) 13823 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13824 13825 /* 13826 * Get the target context (task or percpu): 13827 */ 13828 ctx = find_get_context(task, event); 13829 if (IS_ERR(ctx)) { 13830 err = PTR_ERR(ctx); 13831 goto err_alloc; 13832 } 13833 13834 WARN_ON_ONCE(ctx->parent_ctx); 13835 mutex_lock(&ctx->mutex); 13836 if (ctx->task == TASK_TOMBSTONE) { 13837 err = -ESRCH; 13838 goto err_unlock; 13839 } 13840 13841 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13842 if (IS_ERR(pmu_ctx)) { 13843 err = PTR_ERR(pmu_ctx); 13844 goto err_unlock; 13845 } 13846 event->pmu_ctx = pmu_ctx; 13847 13848 if (!task) { 13849 /* 13850 * Check if the @cpu we're creating an event for is online. 13851 * 13852 * We use the perf_cpu_context::ctx::mutex to serialize against 13853 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13854 */ 13855 struct perf_cpu_context *cpuctx = 13856 container_of(ctx, struct perf_cpu_context, ctx); 13857 if (!cpuctx->online) { 13858 err = -ENODEV; 13859 goto err_pmu_ctx; 13860 } 13861 } 13862 13863 if (!exclusive_event_installable(event, ctx)) { 13864 err = -EBUSY; 13865 goto err_pmu_ctx; 13866 } 13867 13868 perf_install_in_context(ctx, event, event->cpu); 13869 perf_unpin_context(ctx); 13870 mutex_unlock(&ctx->mutex); 13871 13872 return event; 13873 13874 err_pmu_ctx: 13875 put_pmu_ctx(pmu_ctx); 13876 event->pmu_ctx = NULL; /* _free_event() */ 13877 err_unlock: 13878 mutex_unlock(&ctx->mutex); 13879 perf_unpin_context(ctx); 13880 put_ctx(ctx); 13881 err_alloc: 13882 put_event(event); 13883 err: 13884 return ERR_PTR(err); 13885 } 13886 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13887 13888 static void __perf_pmu_remove(struct perf_event_context *ctx, 13889 int cpu, struct pmu *pmu, 13890 struct perf_event_groups *groups, 13891 struct list_head *events) 13892 { 13893 struct perf_event *event, *sibling; 13894 13895 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13896 perf_remove_from_context(event, 0); 13897 put_pmu_ctx(event->pmu_ctx); 13898 list_add(&event->migrate_entry, events); 13899 13900 for_each_sibling_event(sibling, event) { 13901 perf_remove_from_context(sibling, 0); 13902 put_pmu_ctx(sibling->pmu_ctx); 13903 list_add(&sibling->migrate_entry, events); 13904 } 13905 } 13906 } 13907 13908 static void __perf_pmu_install_event(struct pmu *pmu, 13909 struct perf_event_context *ctx, 13910 int cpu, struct perf_event *event) 13911 { 13912 struct perf_event_pmu_context *epc; 13913 struct perf_event_context *old_ctx = event->ctx; 13914 13915 get_ctx(ctx); /* normally find_get_context() */ 13916 13917 event->cpu = cpu; 13918 epc = find_get_pmu_context(pmu, ctx, event); 13919 event->pmu_ctx = epc; 13920 13921 if (event->state >= PERF_EVENT_STATE_OFF) 13922 event->state = PERF_EVENT_STATE_INACTIVE; 13923 perf_install_in_context(ctx, event, cpu); 13924 13925 /* 13926 * Now that event->ctx is updated and visible, put the old ctx. 13927 */ 13928 put_ctx(old_ctx); 13929 } 13930 13931 static void __perf_pmu_install(struct perf_event_context *ctx, 13932 int cpu, struct pmu *pmu, struct list_head *events) 13933 { 13934 struct perf_event *event, *tmp; 13935 13936 /* 13937 * Re-instate events in 2 passes. 13938 * 13939 * Skip over group leaders and only install siblings on this first 13940 * pass, siblings will not get enabled without a leader, however a 13941 * leader will enable its siblings, even if those are still on the old 13942 * context. 13943 */ 13944 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13945 if (event->group_leader == event) 13946 continue; 13947 13948 list_del(&event->migrate_entry); 13949 __perf_pmu_install_event(pmu, ctx, cpu, event); 13950 } 13951 13952 /* 13953 * Once all the siblings are setup properly, install the group leaders 13954 * to make it go. 13955 */ 13956 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13957 list_del(&event->migrate_entry); 13958 __perf_pmu_install_event(pmu, ctx, cpu, event); 13959 } 13960 } 13961 13962 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13963 { 13964 struct perf_event_context *src_ctx, *dst_ctx; 13965 LIST_HEAD(events); 13966 13967 /* 13968 * Since per-cpu context is persistent, no need to grab an extra 13969 * reference. 13970 */ 13971 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13972 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13973 13974 /* 13975 * See perf_event_ctx_lock() for comments on the details 13976 * of swizzling perf_event::ctx. 13977 */ 13978 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13979 13980 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13981 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13982 13983 if (!list_empty(&events)) { 13984 /* 13985 * Wait for the events to quiesce before re-instating them. 13986 */ 13987 synchronize_rcu(); 13988 13989 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13990 } 13991 13992 mutex_unlock(&dst_ctx->mutex); 13993 mutex_unlock(&src_ctx->mutex); 13994 } 13995 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13996 13997 static void sync_child_event(struct perf_event *child_event) 13998 { 13999 struct perf_event *parent_event = child_event->parent; 14000 u64 child_val; 14001 14002 if (child_event->attr.inherit_stat) { 14003 struct task_struct *task = child_event->ctx->task; 14004 14005 if (task && task != TASK_TOMBSTONE) 14006 perf_event_read_event(child_event, task); 14007 } 14008 14009 child_val = perf_event_count(child_event, false); 14010 14011 /* 14012 * Add back the child's count to the parent's count: 14013 */ 14014 atomic64_add(child_val, &parent_event->child_count); 14015 atomic64_add(child_event->total_time_enabled, 14016 &parent_event->child_total_time_enabled); 14017 atomic64_add(child_event->total_time_running, 14018 &parent_event->child_total_time_running); 14019 } 14020 14021 static void 14022 perf_event_exit_event(struct perf_event *event, 14023 struct perf_event_context *ctx, bool revoke) 14024 { 14025 struct perf_event *parent_event = event->parent; 14026 unsigned long detach_flags = DETACH_EXIT; 14027 unsigned int attach_state; 14028 14029 if (parent_event) { 14030 /* 14031 * Do not destroy the 'original' grouping; because of the 14032 * context switch optimization the original events could've 14033 * ended up in a random child task. 14034 * 14035 * If we were to destroy the original group, all group related 14036 * operations would cease to function properly after this 14037 * random child dies. 14038 * 14039 * Do destroy all inherited groups, we don't care about those 14040 * and being thorough is better. 14041 */ 14042 detach_flags |= DETACH_GROUP | DETACH_CHILD; 14043 mutex_lock(&parent_event->child_mutex); 14044 /* PERF_ATTACH_ITRACE might be set concurrently */ 14045 attach_state = READ_ONCE(event->attach_state); 14046 } 14047 14048 if (revoke) 14049 detach_flags |= DETACH_GROUP | DETACH_REVOKE; 14050 14051 perf_remove_from_context(event, detach_flags); 14052 /* 14053 * Child events can be freed. 14054 */ 14055 if (parent_event) { 14056 mutex_unlock(&parent_event->child_mutex); 14057 14058 /* 14059 * Match the refcount initialization. Make sure it doesn't happen 14060 * twice if pmu_detach_event() calls it on an already exited task. 14061 */ 14062 if (attach_state & PERF_ATTACH_CHILD) { 14063 /* 14064 * Kick perf_poll() for is_event_hup(); 14065 */ 14066 perf_event_wakeup(parent_event); 14067 /* 14068 * pmu_detach_event() will have an extra refcount. 14069 * perf_pending_task() might have one too. 14070 */ 14071 put_event(event); 14072 } 14073 14074 return; 14075 } 14076 14077 /* 14078 * Parent events are governed by their filedesc, retain them. 14079 */ 14080 perf_event_wakeup(event); 14081 } 14082 14083 static void perf_event_exit_task_context(struct task_struct *task, bool exit) 14084 { 14085 struct perf_event_context *ctx, *clone_ctx = NULL; 14086 struct perf_event *child_event, *next; 14087 14088 ctx = perf_pin_task_context(task); 14089 if (!ctx) 14090 return; 14091 14092 /* 14093 * In order to reduce the amount of tricky in ctx tear-down, we hold 14094 * ctx::mutex over the entire thing. This serializes against almost 14095 * everything that wants to access the ctx. 14096 * 14097 * The exception is sys_perf_event_open() / 14098 * perf_event_create_kernel_count() which does find_get_context() 14099 * without ctx::mutex (it cannot because of the move_group double mutex 14100 * lock thing). See the comments in perf_install_in_context(). 14101 */ 14102 mutex_lock(&ctx->mutex); 14103 14104 /* 14105 * In a single ctx::lock section, de-schedule the events and detach the 14106 * context from the task such that we cannot ever get it scheduled back 14107 * in. 14108 */ 14109 raw_spin_lock_irq(&ctx->lock); 14110 if (exit) 14111 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 14112 14113 /* 14114 * Now that the context is inactive, destroy the task <-> ctx relation 14115 * and mark the context dead. 14116 */ 14117 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 14118 put_ctx(ctx); /* cannot be last */ 14119 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 14120 put_task_struct(task); /* cannot be last */ 14121 14122 clone_ctx = unclone_ctx(ctx); 14123 raw_spin_unlock_irq(&ctx->lock); 14124 14125 if (clone_ctx) 14126 put_ctx(clone_ctx); 14127 14128 /* 14129 * Report the task dead after unscheduling the events so that we 14130 * won't get any samples after PERF_RECORD_EXIT. We can however still 14131 * get a few PERF_RECORD_READ events. 14132 */ 14133 if (exit) 14134 perf_event_task(task, ctx, 0); 14135 14136 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) 14137 perf_event_exit_event(child_event, ctx, false); 14138 14139 mutex_unlock(&ctx->mutex); 14140 14141 if (!exit) { 14142 /* 14143 * perf_event_release_kernel() could still have a reference on 14144 * this context. In that case we must wait for these events to 14145 * have been freed (in particular all their references to this 14146 * task must've been dropped). 14147 * 14148 * Without this copy_process() will unconditionally free this 14149 * task (irrespective of its reference count) and 14150 * _free_event()'s put_task_struct(event->hw.target) will be a 14151 * use-after-free. 14152 * 14153 * Wait for all events to drop their context reference. 14154 */ 14155 wait_var_event(&ctx->refcount, 14156 refcount_read(&ctx->refcount) == 1); 14157 } 14158 put_ctx(ctx); 14159 } 14160 14161 /* 14162 * When a task exits, feed back event values to parent events. 14163 * 14164 * Can be called with exec_update_lock held when called from 14165 * setup_new_exec(). 14166 */ 14167 void perf_event_exit_task(struct task_struct *task) 14168 { 14169 struct perf_event *event, *tmp; 14170 14171 WARN_ON_ONCE(task != current); 14172 14173 mutex_lock(&task->perf_event_mutex); 14174 list_for_each_entry_safe(event, tmp, &task->perf_event_list, 14175 owner_entry) { 14176 list_del_init(&event->owner_entry); 14177 14178 /* 14179 * Ensure the list deletion is visible before we clear 14180 * the owner, closes a race against perf_release() where 14181 * we need to serialize on the owner->perf_event_mutex. 14182 */ 14183 smp_store_release(&event->owner, NULL); 14184 } 14185 mutex_unlock(&task->perf_event_mutex); 14186 14187 perf_event_exit_task_context(task, true); 14188 14189 /* 14190 * The perf_event_exit_task_context calls perf_event_task 14191 * with task's task_ctx, which generates EXIT events for 14192 * task contexts and sets task->perf_event_ctxp[] to NULL. 14193 * At this point we need to send EXIT events to cpu contexts. 14194 */ 14195 perf_event_task(task, NULL, 0); 14196 14197 /* 14198 * Detach the perf_ctx_data for the system-wide event. 14199 */ 14200 guard(percpu_read)(&global_ctx_data_rwsem); 14201 detach_task_ctx_data(task); 14202 } 14203 14204 /* 14205 * Free a context as created by inheritance by perf_event_init_task() below, 14206 * used by fork() in case of fail. 14207 * 14208 * Even though the task has never lived, the context and events have been 14209 * exposed through the child_list, so we must take care tearing it all down. 14210 */ 14211 void perf_event_free_task(struct task_struct *task) 14212 { 14213 perf_event_exit_task_context(task, false); 14214 } 14215 14216 void perf_event_delayed_put(struct task_struct *task) 14217 { 14218 WARN_ON_ONCE(task->perf_event_ctxp); 14219 } 14220 14221 struct file *perf_event_get(unsigned int fd) 14222 { 14223 struct file *file = fget(fd); 14224 if (!file) 14225 return ERR_PTR(-EBADF); 14226 14227 if (file->f_op != &perf_fops) { 14228 fput(file); 14229 return ERR_PTR(-EBADF); 14230 } 14231 14232 return file; 14233 } 14234 14235 const struct perf_event *perf_get_event(struct file *file) 14236 { 14237 if (file->f_op != &perf_fops) 14238 return ERR_PTR(-EINVAL); 14239 14240 return file->private_data; 14241 } 14242 14243 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 14244 { 14245 if (!event) 14246 return ERR_PTR(-EINVAL); 14247 14248 return &event->attr; 14249 } 14250 14251 int perf_allow_kernel(void) 14252 { 14253 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 14254 return -EACCES; 14255 14256 return security_perf_event_open(PERF_SECURITY_KERNEL); 14257 } 14258 EXPORT_SYMBOL_GPL(perf_allow_kernel); 14259 14260 /* 14261 * Inherit an event from parent task to child task. 14262 * 14263 * Returns: 14264 * - valid pointer on success 14265 * - NULL for orphaned events 14266 * - IS_ERR() on error 14267 */ 14268 static struct perf_event * 14269 inherit_event(struct perf_event *parent_event, 14270 struct task_struct *parent, 14271 struct perf_event_context *parent_ctx, 14272 struct task_struct *child, 14273 struct perf_event *group_leader, 14274 struct perf_event_context *child_ctx) 14275 { 14276 enum perf_event_state parent_state = parent_event->state; 14277 struct perf_event_pmu_context *pmu_ctx; 14278 struct perf_event *child_event; 14279 unsigned long flags; 14280 14281 /* 14282 * Instead of creating recursive hierarchies of events, 14283 * we link inherited events back to the original parent, 14284 * which has a filp for sure, which we use as the reference 14285 * count: 14286 */ 14287 if (parent_event->parent) 14288 parent_event = parent_event->parent; 14289 14290 if (parent_event->state <= PERF_EVENT_STATE_REVOKED) 14291 return NULL; 14292 14293 /* 14294 * Event creation should be under SRCU, see perf_pmu_unregister(). 14295 */ 14296 guard(srcu)(&pmus_srcu); 14297 14298 child_event = perf_event_alloc(&parent_event->attr, 14299 parent_event->cpu, 14300 child, 14301 group_leader, parent_event, 14302 NULL, NULL, -1); 14303 if (IS_ERR(child_event)) 14304 return child_event; 14305 14306 get_ctx(child_ctx); 14307 child_event->ctx = child_ctx; 14308 14309 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14310 if (IS_ERR(pmu_ctx)) { 14311 free_event(child_event); 14312 return ERR_CAST(pmu_ctx); 14313 } 14314 child_event->pmu_ctx = pmu_ctx; 14315 14316 /* 14317 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14318 * must be under the same lock in order to serialize against 14319 * perf_event_release_kernel(), such that either we must observe 14320 * is_orphaned_event() or they will observe us on the child_list. 14321 */ 14322 mutex_lock(&parent_event->child_mutex); 14323 if (is_orphaned_event(parent_event) || 14324 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14325 mutex_unlock(&parent_event->child_mutex); 14326 free_event(child_event); 14327 return NULL; 14328 } 14329 14330 /* 14331 * Make the child state follow the state of the parent event, 14332 * not its attr.disabled bit. We hold the parent's mutex, 14333 * so we won't race with perf_event_{en, dis}able_family. 14334 */ 14335 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14336 child_event->state = PERF_EVENT_STATE_INACTIVE; 14337 else 14338 child_event->state = PERF_EVENT_STATE_OFF; 14339 14340 if (parent_event->attr.freq) { 14341 u64 sample_period = parent_event->hw.sample_period; 14342 struct hw_perf_event *hwc = &child_event->hw; 14343 14344 hwc->sample_period = sample_period; 14345 hwc->last_period = sample_period; 14346 14347 local64_set(&hwc->period_left, sample_period); 14348 } 14349 14350 child_event->overflow_handler = parent_event->overflow_handler; 14351 child_event->overflow_handler_context 14352 = parent_event->overflow_handler_context; 14353 14354 /* 14355 * Precalculate sample_data sizes 14356 */ 14357 perf_event__header_size(child_event); 14358 perf_event__id_header_size(child_event); 14359 14360 /* 14361 * Link it up in the child's context: 14362 */ 14363 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14364 add_event_to_ctx(child_event, child_ctx); 14365 child_event->attach_state |= PERF_ATTACH_CHILD; 14366 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14367 14368 /* 14369 * Link this into the parent event's child list 14370 */ 14371 list_add_tail(&child_event->child_list, &parent_event->child_list); 14372 mutex_unlock(&parent_event->child_mutex); 14373 14374 return child_event; 14375 } 14376 14377 /* 14378 * Inherits an event group. 14379 * 14380 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14381 * This matches with perf_event_release_kernel() removing all child events. 14382 * 14383 * Returns: 14384 * - 0 on success 14385 * - <0 on error 14386 */ 14387 static int inherit_group(struct perf_event *parent_event, 14388 struct task_struct *parent, 14389 struct perf_event_context *parent_ctx, 14390 struct task_struct *child, 14391 struct perf_event_context *child_ctx) 14392 { 14393 struct perf_event *leader; 14394 struct perf_event *sub; 14395 struct perf_event *child_ctr; 14396 14397 leader = inherit_event(parent_event, parent, parent_ctx, 14398 child, NULL, child_ctx); 14399 if (IS_ERR(leader)) 14400 return PTR_ERR(leader); 14401 /* 14402 * @leader can be NULL here because of is_orphaned_event(). In this 14403 * case inherit_event() will create individual events, similar to what 14404 * perf_group_detach() would do anyway. 14405 */ 14406 for_each_sibling_event(sub, parent_event) { 14407 child_ctr = inherit_event(sub, parent, parent_ctx, 14408 child, leader, child_ctx); 14409 if (IS_ERR(child_ctr)) 14410 return PTR_ERR(child_ctr); 14411 14412 if (sub->aux_event == parent_event && child_ctr && 14413 !perf_get_aux_event(child_ctr, leader)) 14414 return -EINVAL; 14415 } 14416 if (leader) 14417 leader->group_generation = parent_event->group_generation; 14418 return 0; 14419 } 14420 14421 /* 14422 * Creates the child task context and tries to inherit the event-group. 14423 * 14424 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14425 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14426 * consistent with perf_event_release_kernel() removing all child events. 14427 * 14428 * Returns: 14429 * - 0 on success 14430 * - <0 on error 14431 */ 14432 static int 14433 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14434 struct perf_event_context *parent_ctx, 14435 struct task_struct *child, 14436 u64 clone_flags, int *inherited_all) 14437 { 14438 struct perf_event_context *child_ctx; 14439 int ret; 14440 14441 if (!event->attr.inherit || 14442 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14443 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14444 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14445 *inherited_all = 0; 14446 return 0; 14447 } 14448 14449 child_ctx = child->perf_event_ctxp; 14450 if (!child_ctx) { 14451 /* 14452 * This is executed from the parent task context, so 14453 * inherit events that have been marked for cloning. 14454 * First allocate and initialize a context for the 14455 * child. 14456 */ 14457 child_ctx = alloc_perf_context(child); 14458 if (!child_ctx) 14459 return -ENOMEM; 14460 14461 child->perf_event_ctxp = child_ctx; 14462 } 14463 14464 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14465 if (ret) 14466 *inherited_all = 0; 14467 14468 return ret; 14469 } 14470 14471 /* 14472 * Initialize the perf_event context in task_struct 14473 */ 14474 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14475 { 14476 struct perf_event_context *child_ctx, *parent_ctx; 14477 struct perf_event_context *cloned_ctx; 14478 struct perf_event *event; 14479 struct task_struct *parent = current; 14480 int inherited_all = 1; 14481 unsigned long flags; 14482 int ret = 0; 14483 14484 if (likely(!parent->perf_event_ctxp)) 14485 return 0; 14486 14487 /* 14488 * If the parent's context is a clone, pin it so it won't get 14489 * swapped under us. 14490 */ 14491 parent_ctx = perf_pin_task_context(parent); 14492 if (!parent_ctx) 14493 return 0; 14494 14495 /* 14496 * No need to check if parent_ctx != NULL here; since we saw 14497 * it non-NULL earlier, the only reason for it to become NULL 14498 * is if we exit, and since we're currently in the middle of 14499 * a fork we can't be exiting at the same time. 14500 */ 14501 14502 /* 14503 * Lock the parent list. No need to lock the child - not PID 14504 * hashed yet and not running, so nobody can access it. 14505 */ 14506 mutex_lock(&parent_ctx->mutex); 14507 14508 /* 14509 * We dont have to disable NMIs - we are only looking at 14510 * the list, not manipulating it: 14511 */ 14512 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14513 ret = inherit_task_group(event, parent, parent_ctx, 14514 child, clone_flags, &inherited_all); 14515 if (ret) 14516 goto out_unlock; 14517 } 14518 14519 /* 14520 * We can't hold ctx->lock when iterating the ->flexible_group list due 14521 * to allocations, but we need to prevent rotation because 14522 * rotate_ctx() will change the list from interrupt context. 14523 */ 14524 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14525 parent_ctx->rotate_disable = 1; 14526 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14527 14528 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14529 ret = inherit_task_group(event, parent, parent_ctx, 14530 child, clone_flags, &inherited_all); 14531 if (ret) 14532 goto out_unlock; 14533 } 14534 14535 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14536 parent_ctx->rotate_disable = 0; 14537 14538 child_ctx = child->perf_event_ctxp; 14539 14540 if (child_ctx && inherited_all) { 14541 /* 14542 * Mark the child context as a clone of the parent 14543 * context, or of whatever the parent is a clone of. 14544 * 14545 * Note that if the parent is a clone, the holding of 14546 * parent_ctx->lock avoids it from being uncloned. 14547 */ 14548 cloned_ctx = parent_ctx->parent_ctx; 14549 if (cloned_ctx) { 14550 child_ctx->parent_ctx = cloned_ctx; 14551 child_ctx->parent_gen = parent_ctx->parent_gen; 14552 } else { 14553 child_ctx->parent_ctx = parent_ctx; 14554 child_ctx->parent_gen = parent_ctx->generation; 14555 } 14556 get_ctx(child_ctx->parent_ctx); 14557 } 14558 14559 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14560 out_unlock: 14561 mutex_unlock(&parent_ctx->mutex); 14562 14563 perf_unpin_context(parent_ctx); 14564 put_ctx(parent_ctx); 14565 14566 return ret; 14567 } 14568 14569 /* 14570 * Initialize the perf_event context in task_struct 14571 */ 14572 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14573 { 14574 int ret; 14575 14576 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14577 child->perf_event_ctxp = NULL; 14578 mutex_init(&child->perf_event_mutex); 14579 INIT_LIST_HEAD(&child->perf_event_list); 14580 child->perf_ctx_data = NULL; 14581 14582 ret = perf_event_init_context(child, clone_flags); 14583 if (ret) { 14584 perf_event_free_task(child); 14585 return ret; 14586 } 14587 14588 return 0; 14589 } 14590 14591 static void __init perf_event_init_all_cpus(void) 14592 { 14593 struct swevent_htable *swhash; 14594 struct perf_cpu_context *cpuctx; 14595 int cpu; 14596 14597 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14598 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14599 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14600 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14601 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14602 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14603 14604 14605 for_each_possible_cpu(cpu) { 14606 swhash = &per_cpu(swevent_htable, cpu); 14607 mutex_init(&swhash->hlist_mutex); 14608 14609 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14610 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14611 14612 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14613 14614 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14615 __perf_event_init_context(&cpuctx->ctx); 14616 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14617 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14618 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14619 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14620 cpuctx->heap = cpuctx->heap_default; 14621 } 14622 } 14623 14624 static void perf_swevent_init_cpu(unsigned int cpu) 14625 { 14626 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14627 14628 mutex_lock(&swhash->hlist_mutex); 14629 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14630 struct swevent_hlist *hlist; 14631 14632 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14633 WARN_ON(!hlist); 14634 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14635 } 14636 mutex_unlock(&swhash->hlist_mutex); 14637 } 14638 14639 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14640 static void __perf_event_exit_context(void *__info) 14641 { 14642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14643 struct perf_event_context *ctx = __info; 14644 struct perf_event *event; 14645 14646 raw_spin_lock(&ctx->lock); 14647 ctx_sched_out(ctx, NULL, EVENT_TIME); 14648 list_for_each_entry(event, &ctx->event_list, event_entry) 14649 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14650 raw_spin_unlock(&ctx->lock); 14651 } 14652 14653 static void perf_event_clear_cpumask(unsigned int cpu) 14654 { 14655 int target[PERF_PMU_MAX_SCOPE]; 14656 unsigned int scope; 14657 struct pmu *pmu; 14658 14659 cpumask_clear_cpu(cpu, perf_online_mask); 14660 14661 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14662 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14663 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14664 14665 target[scope] = -1; 14666 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14667 continue; 14668 14669 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14670 continue; 14671 target[scope] = cpumask_any_but(cpumask, cpu); 14672 if (target[scope] < nr_cpu_ids) 14673 cpumask_set_cpu(target[scope], pmu_cpumask); 14674 } 14675 14676 /* migrate */ 14677 list_for_each_entry(pmu, &pmus, entry) { 14678 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14679 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14680 continue; 14681 14682 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14683 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14684 } 14685 } 14686 14687 static void perf_event_exit_cpu_context(int cpu) 14688 { 14689 struct perf_cpu_context *cpuctx; 14690 struct perf_event_context *ctx; 14691 14692 // XXX simplify cpuctx->online 14693 mutex_lock(&pmus_lock); 14694 /* 14695 * Clear the cpumasks, and migrate to other CPUs if possible. 14696 * Must be invoked before the __perf_event_exit_context. 14697 */ 14698 perf_event_clear_cpumask(cpu); 14699 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14700 ctx = &cpuctx->ctx; 14701 14702 mutex_lock(&ctx->mutex); 14703 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14704 cpuctx->online = 0; 14705 mutex_unlock(&ctx->mutex); 14706 mutex_unlock(&pmus_lock); 14707 } 14708 #else 14709 14710 static void perf_event_exit_cpu_context(int cpu) { } 14711 14712 #endif 14713 14714 static void perf_event_setup_cpumask(unsigned int cpu) 14715 { 14716 struct cpumask *pmu_cpumask; 14717 unsigned int scope; 14718 14719 /* 14720 * Early boot stage, the cpumask hasn't been set yet. 14721 * The perf_online_<domain>_masks includes the first CPU of each domain. 14722 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14723 */ 14724 if (cpumask_empty(perf_online_mask)) { 14725 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14726 pmu_cpumask = perf_scope_cpumask(scope); 14727 if (WARN_ON_ONCE(!pmu_cpumask)) 14728 continue; 14729 cpumask_set_cpu(cpu, pmu_cpumask); 14730 } 14731 goto end; 14732 } 14733 14734 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14735 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14736 14737 pmu_cpumask = perf_scope_cpumask(scope); 14738 14739 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14740 continue; 14741 14742 if (!cpumask_empty(cpumask) && 14743 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14744 cpumask_set_cpu(cpu, pmu_cpumask); 14745 } 14746 end: 14747 cpumask_set_cpu(cpu, perf_online_mask); 14748 } 14749 14750 int perf_event_init_cpu(unsigned int cpu) 14751 { 14752 struct perf_cpu_context *cpuctx; 14753 struct perf_event_context *ctx; 14754 14755 perf_swevent_init_cpu(cpu); 14756 14757 mutex_lock(&pmus_lock); 14758 perf_event_setup_cpumask(cpu); 14759 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14760 ctx = &cpuctx->ctx; 14761 14762 mutex_lock(&ctx->mutex); 14763 cpuctx->online = 1; 14764 mutex_unlock(&ctx->mutex); 14765 mutex_unlock(&pmus_lock); 14766 14767 return 0; 14768 } 14769 14770 int perf_event_exit_cpu(unsigned int cpu) 14771 { 14772 perf_event_exit_cpu_context(cpu); 14773 return 0; 14774 } 14775 14776 static int 14777 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14778 { 14779 int cpu; 14780 14781 for_each_online_cpu(cpu) 14782 perf_event_exit_cpu(cpu); 14783 14784 return NOTIFY_OK; 14785 } 14786 14787 /* 14788 * Run the perf reboot notifier at the very last possible moment so that 14789 * the generic watchdog code runs as long as possible. 14790 */ 14791 static struct notifier_block perf_reboot_notifier = { 14792 .notifier_call = perf_reboot, 14793 .priority = INT_MIN, 14794 }; 14795 14796 void __init perf_event_init(void) 14797 { 14798 int ret; 14799 14800 idr_init(&pmu_idr); 14801 14802 perf_event_init_all_cpus(); 14803 init_srcu_struct(&pmus_srcu); 14804 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14805 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14806 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14807 perf_tp_register(); 14808 perf_event_init_cpu(smp_processor_id()); 14809 register_reboot_notifier(&perf_reboot_notifier); 14810 14811 ret = init_hw_breakpoint(); 14812 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14813 14814 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14815 14816 /* 14817 * Build time assertion that we keep the data_head at the intended 14818 * location. IOW, validation we got the __reserved[] size right. 14819 */ 14820 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14821 != 1024); 14822 } 14823 14824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14825 char *page) 14826 { 14827 struct perf_pmu_events_attr *pmu_attr = 14828 container_of(attr, struct perf_pmu_events_attr, attr); 14829 14830 if (pmu_attr->event_str) 14831 return sprintf(page, "%s\n", pmu_attr->event_str); 14832 14833 return 0; 14834 } 14835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14836 14837 static int __init perf_event_sysfs_init(void) 14838 { 14839 struct pmu *pmu; 14840 int ret; 14841 14842 mutex_lock(&pmus_lock); 14843 14844 ret = bus_register(&pmu_bus); 14845 if (ret) 14846 goto unlock; 14847 14848 list_for_each_entry(pmu, &pmus, entry) { 14849 if (pmu->dev) 14850 continue; 14851 14852 ret = pmu_dev_alloc(pmu); 14853 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14854 } 14855 pmu_bus_running = 1; 14856 ret = 0; 14857 14858 unlock: 14859 mutex_unlock(&pmus_lock); 14860 14861 return ret; 14862 } 14863 device_initcall(perf_event_sysfs_init); 14864 14865 #ifdef CONFIG_CGROUP_PERF 14866 static struct cgroup_subsys_state * 14867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14868 { 14869 struct perf_cgroup *jc; 14870 14871 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14872 if (!jc) 14873 return ERR_PTR(-ENOMEM); 14874 14875 jc->info = alloc_percpu(struct perf_cgroup_info); 14876 if (!jc->info) { 14877 kfree(jc); 14878 return ERR_PTR(-ENOMEM); 14879 } 14880 14881 return &jc->css; 14882 } 14883 14884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14885 { 14886 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14887 14888 free_percpu(jc->info); 14889 kfree(jc); 14890 } 14891 14892 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14893 { 14894 perf_event_cgroup(css->cgroup); 14895 return 0; 14896 } 14897 14898 static int __perf_cgroup_move(void *info) 14899 { 14900 struct task_struct *task = info; 14901 14902 preempt_disable(); 14903 perf_cgroup_switch(task); 14904 preempt_enable(); 14905 14906 return 0; 14907 } 14908 14909 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14910 { 14911 struct task_struct *task; 14912 struct cgroup_subsys_state *css; 14913 14914 cgroup_taskset_for_each(task, css, tset) 14915 task_function_call(task, __perf_cgroup_move, task); 14916 } 14917 14918 struct cgroup_subsys perf_event_cgrp_subsys = { 14919 .css_alloc = perf_cgroup_css_alloc, 14920 .css_free = perf_cgroup_css_free, 14921 .css_online = perf_cgroup_css_online, 14922 .attach = perf_cgroup_attach, 14923 /* 14924 * Implicitly enable on dfl hierarchy so that perf events can 14925 * always be filtered by cgroup2 path as long as perf_event 14926 * controller is not mounted on a legacy hierarchy. 14927 */ 14928 .implicit_on_dfl = true, 14929 .threaded = true, 14930 }; 14931 #endif /* CONFIG_CGROUP_PERF */ 14932 14933 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14934