1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 enum event_type_t { 122 EVENT_FLEXIBLE = 0x1, 123 EVENT_PINNED = 0x2, 124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 125 }; 126 127 /* 128 * perf_sched_events : >0 events exist 129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 130 */ 131 struct jump_label_key_deferred perf_sched_events __read_mostly; 132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 133 134 static atomic_t nr_mmap_events __read_mostly; 135 static atomic_t nr_comm_events __read_mostly; 136 static atomic_t nr_task_events __read_mostly; 137 138 static LIST_HEAD(pmus); 139 static DEFINE_MUTEX(pmus_lock); 140 static struct srcu_struct pmus_srcu; 141 142 /* 143 * perf event paranoia level: 144 * -1 - not paranoid at all 145 * 0 - disallow raw tracepoint access for unpriv 146 * 1 - disallow cpu events for unpriv 147 * 2 - disallow kernel profiling for unpriv 148 */ 149 int sysctl_perf_event_paranoid __read_mostly = 1; 150 151 /* Minimum for 512 kiB + 1 user control page */ 152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 153 154 /* 155 * max perf event sample rate 156 */ 157 #define DEFAULT_MAX_SAMPLE_RATE 100000 158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 159 static int max_samples_per_tick __read_mostly = 160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 161 162 int perf_proc_update_handler(struct ctl_table *table, int write, 163 void __user *buffer, size_t *lenp, 164 loff_t *ppos) 165 { 166 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 167 168 if (ret || !write) 169 return ret; 170 171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 172 173 return 0; 174 } 175 176 static atomic64_t perf_event_id; 177 178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 179 enum event_type_t event_type); 180 181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 182 enum event_type_t event_type, 183 struct task_struct *task); 184 185 static void update_context_time(struct perf_event_context *ctx); 186 static u64 perf_event_time(struct perf_event *event); 187 188 static void ring_buffer_attach(struct perf_event *event, 189 struct ring_buffer *rb); 190 191 void __weak perf_event_print_debug(void) { } 192 193 extern __weak const char *perf_pmu_name(void) 194 { 195 return "pmu"; 196 } 197 198 static inline u64 perf_clock(void) 199 { 200 return local_clock(); 201 } 202 203 static inline struct perf_cpu_context * 204 __get_cpu_context(struct perf_event_context *ctx) 205 { 206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 207 } 208 209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 210 struct perf_event_context *ctx) 211 { 212 raw_spin_lock(&cpuctx->ctx.lock); 213 if (ctx) 214 raw_spin_lock(&ctx->lock); 215 } 216 217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 if (ctx) 221 raw_spin_unlock(&ctx->lock); 222 raw_spin_unlock(&cpuctx->ctx.lock); 223 } 224 225 #ifdef CONFIG_CGROUP_PERF 226 227 /* 228 * Must ensure cgroup is pinned (css_get) before calling 229 * this function. In other words, we cannot call this function 230 * if there is no cgroup event for the current CPU context. 231 */ 232 static inline struct perf_cgroup * 233 perf_cgroup_from_task(struct task_struct *task) 234 { 235 return container_of(task_subsys_state(task, perf_subsys_id), 236 struct perf_cgroup, css); 237 } 238 239 static inline bool 240 perf_cgroup_match(struct perf_event *event) 241 { 242 struct perf_event_context *ctx = event->ctx; 243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 244 245 return !event->cgrp || event->cgrp == cpuctx->cgrp; 246 } 247 248 static inline void perf_get_cgroup(struct perf_event *event) 249 { 250 css_get(&event->cgrp->css); 251 } 252 253 static inline void perf_put_cgroup(struct perf_event *event) 254 { 255 css_put(&event->cgrp->css); 256 } 257 258 static inline void perf_detach_cgroup(struct perf_event *event) 259 { 260 perf_put_cgroup(event); 261 event->cgrp = NULL; 262 } 263 264 static inline int is_cgroup_event(struct perf_event *event) 265 { 266 return event->cgrp != NULL; 267 } 268 269 static inline u64 perf_cgroup_event_time(struct perf_event *event) 270 { 271 struct perf_cgroup_info *t; 272 273 t = per_cpu_ptr(event->cgrp->info, event->cpu); 274 return t->time; 275 } 276 277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 278 { 279 struct perf_cgroup_info *info; 280 u64 now; 281 282 now = perf_clock(); 283 284 info = this_cpu_ptr(cgrp->info); 285 286 info->time += now - info->timestamp; 287 info->timestamp = now; 288 } 289 290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 291 { 292 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 293 if (cgrp_out) 294 __update_cgrp_time(cgrp_out); 295 } 296 297 static inline void update_cgrp_time_from_event(struct perf_event *event) 298 { 299 struct perf_cgroup *cgrp; 300 301 /* 302 * ensure we access cgroup data only when needed and 303 * when we know the cgroup is pinned (css_get) 304 */ 305 if (!is_cgroup_event(event)) 306 return; 307 308 cgrp = perf_cgroup_from_task(current); 309 /* 310 * Do not update time when cgroup is not active 311 */ 312 if (cgrp == event->cgrp) 313 __update_cgrp_time(event->cgrp); 314 } 315 316 static inline void 317 perf_cgroup_set_timestamp(struct task_struct *task, 318 struct perf_event_context *ctx) 319 { 320 struct perf_cgroup *cgrp; 321 struct perf_cgroup_info *info; 322 323 /* 324 * ctx->lock held by caller 325 * ensure we do not access cgroup data 326 * unless we have the cgroup pinned (css_get) 327 */ 328 if (!task || !ctx->nr_cgroups) 329 return; 330 331 cgrp = perf_cgroup_from_task(task); 332 info = this_cpu_ptr(cgrp->info); 333 info->timestamp = ctx->timestamp; 334 } 335 336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 338 339 /* 340 * reschedule events based on the cgroup constraint of task. 341 * 342 * mode SWOUT : schedule out everything 343 * mode SWIN : schedule in based on cgroup for next 344 */ 345 void perf_cgroup_switch(struct task_struct *task, int mode) 346 { 347 struct perf_cpu_context *cpuctx; 348 struct pmu *pmu; 349 unsigned long flags; 350 351 /* 352 * disable interrupts to avoid geting nr_cgroup 353 * changes via __perf_event_disable(). Also 354 * avoids preemption. 355 */ 356 local_irq_save(flags); 357 358 /* 359 * we reschedule only in the presence of cgroup 360 * constrained events. 361 */ 362 rcu_read_lock(); 363 364 list_for_each_entry_rcu(pmu, &pmus, entry) { 365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 366 367 /* 368 * perf_cgroup_events says at least one 369 * context on this CPU has cgroup events. 370 * 371 * ctx->nr_cgroups reports the number of cgroup 372 * events for a context. 373 */ 374 if (cpuctx->ctx.nr_cgroups > 0) { 375 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 376 perf_pmu_disable(cpuctx->ctx.pmu); 377 378 if (mode & PERF_CGROUP_SWOUT) { 379 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 380 /* 381 * must not be done before ctxswout due 382 * to event_filter_match() in event_sched_out() 383 */ 384 cpuctx->cgrp = NULL; 385 } 386 387 if (mode & PERF_CGROUP_SWIN) { 388 WARN_ON_ONCE(cpuctx->cgrp); 389 /* set cgrp before ctxsw in to 390 * allow event_filter_match() to not 391 * have to pass task around 392 */ 393 cpuctx->cgrp = perf_cgroup_from_task(task); 394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 395 } 396 perf_pmu_enable(cpuctx->ctx.pmu); 397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 398 } 399 } 400 401 rcu_read_unlock(); 402 403 local_irq_restore(flags); 404 } 405 406 static inline void perf_cgroup_sched_out(struct task_struct *task, 407 struct task_struct *next) 408 { 409 struct perf_cgroup *cgrp1; 410 struct perf_cgroup *cgrp2 = NULL; 411 412 /* 413 * we come here when we know perf_cgroup_events > 0 414 */ 415 cgrp1 = perf_cgroup_from_task(task); 416 417 /* 418 * next is NULL when called from perf_event_enable_on_exec() 419 * that will systematically cause a cgroup_switch() 420 */ 421 if (next) 422 cgrp2 = perf_cgroup_from_task(next); 423 424 /* 425 * only schedule out current cgroup events if we know 426 * that we are switching to a different cgroup. Otherwise, 427 * do no touch the cgroup events. 428 */ 429 if (cgrp1 != cgrp2) 430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 431 } 432 433 static inline void perf_cgroup_sched_in(struct task_struct *prev, 434 struct task_struct *task) 435 { 436 struct perf_cgroup *cgrp1; 437 struct perf_cgroup *cgrp2 = NULL; 438 439 /* 440 * we come here when we know perf_cgroup_events > 0 441 */ 442 cgrp1 = perf_cgroup_from_task(task); 443 444 /* prev can never be NULL */ 445 cgrp2 = perf_cgroup_from_task(prev); 446 447 /* 448 * only need to schedule in cgroup events if we are changing 449 * cgroup during ctxsw. Cgroup events were not scheduled 450 * out of ctxsw out if that was not the case. 451 */ 452 if (cgrp1 != cgrp2) 453 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 454 } 455 456 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 457 struct perf_event_attr *attr, 458 struct perf_event *group_leader) 459 { 460 struct perf_cgroup *cgrp; 461 struct cgroup_subsys_state *css; 462 struct file *file; 463 int ret = 0, fput_needed; 464 465 file = fget_light(fd, &fput_needed); 466 if (!file) 467 return -EBADF; 468 469 css = cgroup_css_from_dir(file, perf_subsys_id); 470 if (IS_ERR(css)) { 471 ret = PTR_ERR(css); 472 goto out; 473 } 474 475 cgrp = container_of(css, struct perf_cgroup, css); 476 event->cgrp = cgrp; 477 478 /* must be done before we fput() the file */ 479 perf_get_cgroup(event); 480 481 /* 482 * all events in a group must monitor 483 * the same cgroup because a task belongs 484 * to only one perf cgroup at a time 485 */ 486 if (group_leader && group_leader->cgrp != cgrp) { 487 perf_detach_cgroup(event); 488 ret = -EINVAL; 489 } 490 out: 491 fput_light(file, fput_needed); 492 return ret; 493 } 494 495 static inline void 496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 497 { 498 struct perf_cgroup_info *t; 499 t = per_cpu_ptr(event->cgrp->info, event->cpu); 500 event->shadow_ctx_time = now - t->timestamp; 501 } 502 503 static inline void 504 perf_cgroup_defer_enabled(struct perf_event *event) 505 { 506 /* 507 * when the current task's perf cgroup does not match 508 * the event's, we need to remember to call the 509 * perf_mark_enable() function the first time a task with 510 * a matching perf cgroup is scheduled in. 511 */ 512 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 513 event->cgrp_defer_enabled = 1; 514 } 515 516 static inline void 517 perf_cgroup_mark_enabled(struct perf_event *event, 518 struct perf_event_context *ctx) 519 { 520 struct perf_event *sub; 521 u64 tstamp = perf_event_time(event); 522 523 if (!event->cgrp_defer_enabled) 524 return; 525 526 event->cgrp_defer_enabled = 0; 527 528 event->tstamp_enabled = tstamp - event->total_time_enabled; 529 list_for_each_entry(sub, &event->sibling_list, group_entry) { 530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 531 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 532 sub->cgrp_defer_enabled = 0; 533 } 534 } 535 } 536 #else /* !CONFIG_CGROUP_PERF */ 537 538 static inline bool 539 perf_cgroup_match(struct perf_event *event) 540 { 541 return true; 542 } 543 544 static inline void perf_detach_cgroup(struct perf_event *event) 545 {} 546 547 static inline int is_cgroup_event(struct perf_event *event) 548 { 549 return 0; 550 } 551 552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 553 { 554 return 0; 555 } 556 557 static inline void update_cgrp_time_from_event(struct perf_event *event) 558 { 559 } 560 561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 562 { 563 } 564 565 static inline void perf_cgroup_sched_out(struct task_struct *task, 566 struct task_struct *next) 567 { 568 } 569 570 static inline void perf_cgroup_sched_in(struct task_struct *prev, 571 struct task_struct *task) 572 { 573 } 574 575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 576 struct perf_event_attr *attr, 577 struct perf_event *group_leader) 578 { 579 return -EINVAL; 580 } 581 582 static inline void 583 perf_cgroup_set_timestamp(struct task_struct *task, 584 struct perf_event_context *ctx) 585 { 586 } 587 588 void 589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 590 { 591 } 592 593 static inline void 594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 595 { 596 } 597 598 static inline u64 perf_cgroup_event_time(struct perf_event *event) 599 { 600 return 0; 601 } 602 603 static inline void 604 perf_cgroup_defer_enabled(struct perf_event *event) 605 { 606 } 607 608 static inline void 609 perf_cgroup_mark_enabled(struct perf_event *event, 610 struct perf_event_context *ctx) 611 { 612 } 613 #endif 614 615 void perf_pmu_disable(struct pmu *pmu) 616 { 617 int *count = this_cpu_ptr(pmu->pmu_disable_count); 618 if (!(*count)++) 619 pmu->pmu_disable(pmu); 620 } 621 622 void perf_pmu_enable(struct pmu *pmu) 623 { 624 int *count = this_cpu_ptr(pmu->pmu_disable_count); 625 if (!--(*count)) 626 pmu->pmu_enable(pmu); 627 } 628 629 static DEFINE_PER_CPU(struct list_head, rotation_list); 630 631 /* 632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 633 * because they're strictly cpu affine and rotate_start is called with IRQs 634 * disabled, while rotate_context is called from IRQ context. 635 */ 636 static void perf_pmu_rotate_start(struct pmu *pmu) 637 { 638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 639 struct list_head *head = &__get_cpu_var(rotation_list); 640 641 WARN_ON(!irqs_disabled()); 642 643 if (list_empty(&cpuctx->rotation_list)) 644 list_add(&cpuctx->rotation_list, head); 645 } 646 647 static void get_ctx(struct perf_event_context *ctx) 648 { 649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 650 } 651 652 static void put_ctx(struct perf_event_context *ctx) 653 { 654 if (atomic_dec_and_test(&ctx->refcount)) { 655 if (ctx->parent_ctx) 656 put_ctx(ctx->parent_ctx); 657 if (ctx->task) 658 put_task_struct(ctx->task); 659 kfree_rcu(ctx, rcu_head); 660 } 661 } 662 663 static void unclone_ctx(struct perf_event_context *ctx) 664 { 665 if (ctx->parent_ctx) { 666 put_ctx(ctx->parent_ctx); 667 ctx->parent_ctx = NULL; 668 } 669 } 670 671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 672 { 673 /* 674 * only top level events have the pid namespace they were created in 675 */ 676 if (event->parent) 677 event = event->parent; 678 679 return task_tgid_nr_ns(p, event->ns); 680 } 681 682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 683 { 684 /* 685 * only top level events have the pid namespace they were created in 686 */ 687 if (event->parent) 688 event = event->parent; 689 690 return task_pid_nr_ns(p, event->ns); 691 } 692 693 /* 694 * If we inherit events we want to return the parent event id 695 * to userspace. 696 */ 697 static u64 primary_event_id(struct perf_event *event) 698 { 699 u64 id = event->id; 700 701 if (event->parent) 702 id = event->parent->id; 703 704 return id; 705 } 706 707 /* 708 * Get the perf_event_context for a task and lock it. 709 * This has to cope with with the fact that until it is locked, 710 * the context could get moved to another task. 711 */ 712 static struct perf_event_context * 713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 714 { 715 struct perf_event_context *ctx; 716 717 rcu_read_lock(); 718 retry: 719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 720 if (ctx) { 721 /* 722 * If this context is a clone of another, it might 723 * get swapped for another underneath us by 724 * perf_event_task_sched_out, though the 725 * rcu_read_lock() protects us from any context 726 * getting freed. Lock the context and check if it 727 * got swapped before we could get the lock, and retry 728 * if so. If we locked the right context, then it 729 * can't get swapped on us any more. 730 */ 731 raw_spin_lock_irqsave(&ctx->lock, *flags); 732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 733 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 734 goto retry; 735 } 736 737 if (!atomic_inc_not_zero(&ctx->refcount)) { 738 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 739 ctx = NULL; 740 } 741 } 742 rcu_read_unlock(); 743 return ctx; 744 } 745 746 /* 747 * Get the context for a task and increment its pin_count so it 748 * can't get swapped to another task. This also increments its 749 * reference count so that the context can't get freed. 750 */ 751 static struct perf_event_context * 752 perf_pin_task_context(struct task_struct *task, int ctxn) 753 { 754 struct perf_event_context *ctx; 755 unsigned long flags; 756 757 ctx = perf_lock_task_context(task, ctxn, &flags); 758 if (ctx) { 759 ++ctx->pin_count; 760 raw_spin_unlock_irqrestore(&ctx->lock, flags); 761 } 762 return ctx; 763 } 764 765 static void perf_unpin_context(struct perf_event_context *ctx) 766 { 767 unsigned long flags; 768 769 raw_spin_lock_irqsave(&ctx->lock, flags); 770 --ctx->pin_count; 771 raw_spin_unlock_irqrestore(&ctx->lock, flags); 772 } 773 774 /* 775 * Update the record of the current time in a context. 776 */ 777 static void update_context_time(struct perf_event_context *ctx) 778 { 779 u64 now = perf_clock(); 780 781 ctx->time += now - ctx->timestamp; 782 ctx->timestamp = now; 783 } 784 785 static u64 perf_event_time(struct perf_event *event) 786 { 787 struct perf_event_context *ctx = event->ctx; 788 789 if (is_cgroup_event(event)) 790 return perf_cgroup_event_time(event); 791 792 return ctx ? ctx->time : 0; 793 } 794 795 /* 796 * Update the total_time_enabled and total_time_running fields for a event. 797 * The caller of this function needs to hold the ctx->lock. 798 */ 799 static void update_event_times(struct perf_event *event) 800 { 801 struct perf_event_context *ctx = event->ctx; 802 u64 run_end; 803 804 if (event->state < PERF_EVENT_STATE_INACTIVE || 805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 806 return; 807 /* 808 * in cgroup mode, time_enabled represents 809 * the time the event was enabled AND active 810 * tasks were in the monitored cgroup. This is 811 * independent of the activity of the context as 812 * there may be a mix of cgroup and non-cgroup events. 813 * 814 * That is why we treat cgroup events differently 815 * here. 816 */ 817 if (is_cgroup_event(event)) 818 run_end = perf_cgroup_event_time(event); 819 else if (ctx->is_active) 820 run_end = ctx->time; 821 else 822 run_end = event->tstamp_stopped; 823 824 event->total_time_enabled = run_end - event->tstamp_enabled; 825 826 if (event->state == PERF_EVENT_STATE_INACTIVE) 827 run_end = event->tstamp_stopped; 828 else 829 run_end = perf_event_time(event); 830 831 event->total_time_running = run_end - event->tstamp_running; 832 833 } 834 835 /* 836 * Update total_time_enabled and total_time_running for all events in a group. 837 */ 838 static void update_group_times(struct perf_event *leader) 839 { 840 struct perf_event *event; 841 842 update_event_times(leader); 843 list_for_each_entry(event, &leader->sibling_list, group_entry) 844 update_event_times(event); 845 } 846 847 static struct list_head * 848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 849 { 850 if (event->attr.pinned) 851 return &ctx->pinned_groups; 852 else 853 return &ctx->flexible_groups; 854 } 855 856 /* 857 * Add a event from the lists for its context. 858 * Must be called with ctx->mutex and ctx->lock held. 859 */ 860 static void 861 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 862 { 863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 864 event->attach_state |= PERF_ATTACH_CONTEXT; 865 866 /* 867 * If we're a stand alone event or group leader, we go to the context 868 * list, group events are kept attached to the group so that 869 * perf_group_detach can, at all times, locate all siblings. 870 */ 871 if (event->group_leader == event) { 872 struct list_head *list; 873 874 if (is_software_event(event)) 875 event->group_flags |= PERF_GROUP_SOFTWARE; 876 877 list = ctx_group_list(event, ctx); 878 list_add_tail(&event->group_entry, list); 879 } 880 881 if (is_cgroup_event(event)) 882 ctx->nr_cgroups++; 883 884 list_add_rcu(&event->event_entry, &ctx->event_list); 885 if (!ctx->nr_events) 886 perf_pmu_rotate_start(ctx->pmu); 887 ctx->nr_events++; 888 if (event->attr.inherit_stat) 889 ctx->nr_stat++; 890 } 891 892 /* 893 * Called at perf_event creation and when events are attached/detached from a 894 * group. 895 */ 896 static void perf_event__read_size(struct perf_event *event) 897 { 898 int entry = sizeof(u64); /* value */ 899 int size = 0; 900 int nr = 1; 901 902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 903 size += sizeof(u64); 904 905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 906 size += sizeof(u64); 907 908 if (event->attr.read_format & PERF_FORMAT_ID) 909 entry += sizeof(u64); 910 911 if (event->attr.read_format & PERF_FORMAT_GROUP) { 912 nr += event->group_leader->nr_siblings; 913 size += sizeof(u64); 914 } 915 916 size += entry * nr; 917 event->read_size = size; 918 } 919 920 static void perf_event__header_size(struct perf_event *event) 921 { 922 struct perf_sample_data *data; 923 u64 sample_type = event->attr.sample_type; 924 u16 size = 0; 925 926 perf_event__read_size(event); 927 928 if (sample_type & PERF_SAMPLE_IP) 929 size += sizeof(data->ip); 930 931 if (sample_type & PERF_SAMPLE_ADDR) 932 size += sizeof(data->addr); 933 934 if (sample_type & PERF_SAMPLE_PERIOD) 935 size += sizeof(data->period); 936 937 if (sample_type & PERF_SAMPLE_READ) 938 size += event->read_size; 939 940 event->header_size = size; 941 } 942 943 static void perf_event__id_header_size(struct perf_event *event) 944 { 945 struct perf_sample_data *data; 946 u64 sample_type = event->attr.sample_type; 947 u16 size = 0; 948 949 if (sample_type & PERF_SAMPLE_TID) 950 size += sizeof(data->tid_entry); 951 952 if (sample_type & PERF_SAMPLE_TIME) 953 size += sizeof(data->time); 954 955 if (sample_type & PERF_SAMPLE_ID) 956 size += sizeof(data->id); 957 958 if (sample_type & PERF_SAMPLE_STREAM_ID) 959 size += sizeof(data->stream_id); 960 961 if (sample_type & PERF_SAMPLE_CPU) 962 size += sizeof(data->cpu_entry); 963 964 event->id_header_size = size; 965 } 966 967 static void perf_group_attach(struct perf_event *event) 968 { 969 struct perf_event *group_leader = event->group_leader, *pos; 970 971 /* 972 * We can have double attach due to group movement in perf_event_open. 973 */ 974 if (event->attach_state & PERF_ATTACH_GROUP) 975 return; 976 977 event->attach_state |= PERF_ATTACH_GROUP; 978 979 if (group_leader == event) 980 return; 981 982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 983 !is_software_event(event)) 984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 985 986 list_add_tail(&event->group_entry, &group_leader->sibling_list); 987 group_leader->nr_siblings++; 988 989 perf_event__header_size(group_leader); 990 991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 992 perf_event__header_size(pos); 993 } 994 995 /* 996 * Remove a event from the lists for its context. 997 * Must be called with ctx->mutex and ctx->lock held. 998 */ 999 static void 1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 /* 1004 * We can have double detach due to exit/hot-unplug + close. 1005 */ 1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1007 return; 1008 1009 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1010 1011 if (is_cgroup_event(event)) { 1012 ctx->nr_cgroups--; 1013 cpuctx = __get_cpu_context(ctx); 1014 /* 1015 * if there are no more cgroup events 1016 * then cler cgrp to avoid stale pointer 1017 * in update_cgrp_time_from_cpuctx() 1018 */ 1019 if (!ctx->nr_cgroups) 1020 cpuctx->cgrp = NULL; 1021 } 1022 1023 ctx->nr_events--; 1024 if (event->attr.inherit_stat) 1025 ctx->nr_stat--; 1026 1027 list_del_rcu(&event->event_entry); 1028 1029 if (event->group_leader == event) 1030 list_del_init(&event->group_entry); 1031 1032 update_group_times(event); 1033 1034 /* 1035 * If event was in error state, then keep it 1036 * that way, otherwise bogus counts will be 1037 * returned on read(). The only way to get out 1038 * of error state is by explicit re-enabling 1039 * of the event 1040 */ 1041 if (event->state > PERF_EVENT_STATE_OFF) 1042 event->state = PERF_EVENT_STATE_OFF; 1043 } 1044 1045 static void perf_group_detach(struct perf_event *event) 1046 { 1047 struct perf_event *sibling, *tmp; 1048 struct list_head *list = NULL; 1049 1050 /* 1051 * We can have double detach due to exit/hot-unplug + close. 1052 */ 1053 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1054 return; 1055 1056 event->attach_state &= ~PERF_ATTACH_GROUP; 1057 1058 /* 1059 * If this is a sibling, remove it from its group. 1060 */ 1061 if (event->group_leader != event) { 1062 list_del_init(&event->group_entry); 1063 event->group_leader->nr_siblings--; 1064 goto out; 1065 } 1066 1067 if (!list_empty(&event->group_entry)) 1068 list = &event->group_entry; 1069 1070 /* 1071 * If this was a group event with sibling events then 1072 * upgrade the siblings to singleton events by adding them 1073 * to whatever list we are on. 1074 */ 1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1076 if (list) 1077 list_move_tail(&sibling->group_entry, list); 1078 sibling->group_leader = sibling; 1079 1080 /* Inherit group flags from the previous leader */ 1081 sibling->group_flags = event->group_flags; 1082 } 1083 1084 out: 1085 perf_event__header_size(event->group_leader); 1086 1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1088 perf_event__header_size(tmp); 1089 } 1090 1091 static inline int 1092 event_filter_match(struct perf_event *event) 1093 { 1094 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1095 && perf_cgroup_match(event); 1096 } 1097 1098 static void 1099 event_sched_out(struct perf_event *event, 1100 struct perf_cpu_context *cpuctx, 1101 struct perf_event_context *ctx) 1102 { 1103 u64 tstamp = perf_event_time(event); 1104 u64 delta; 1105 /* 1106 * An event which could not be activated because of 1107 * filter mismatch still needs to have its timings 1108 * maintained, otherwise bogus information is return 1109 * via read() for time_enabled, time_running: 1110 */ 1111 if (event->state == PERF_EVENT_STATE_INACTIVE 1112 && !event_filter_match(event)) { 1113 delta = tstamp - event->tstamp_stopped; 1114 event->tstamp_running += delta; 1115 event->tstamp_stopped = tstamp; 1116 } 1117 1118 if (event->state != PERF_EVENT_STATE_ACTIVE) 1119 return; 1120 1121 event->state = PERF_EVENT_STATE_INACTIVE; 1122 if (event->pending_disable) { 1123 event->pending_disable = 0; 1124 event->state = PERF_EVENT_STATE_OFF; 1125 } 1126 event->tstamp_stopped = tstamp; 1127 event->pmu->del(event, 0); 1128 event->oncpu = -1; 1129 1130 if (!is_software_event(event)) 1131 cpuctx->active_oncpu--; 1132 ctx->nr_active--; 1133 if (event->attr.freq && event->attr.sample_freq) 1134 ctx->nr_freq--; 1135 if (event->attr.exclusive || !cpuctx->active_oncpu) 1136 cpuctx->exclusive = 0; 1137 } 1138 1139 static void 1140 group_sched_out(struct perf_event *group_event, 1141 struct perf_cpu_context *cpuctx, 1142 struct perf_event_context *ctx) 1143 { 1144 struct perf_event *event; 1145 int state = group_event->state; 1146 1147 event_sched_out(group_event, cpuctx, ctx); 1148 1149 /* 1150 * Schedule out siblings (if any): 1151 */ 1152 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1153 event_sched_out(event, cpuctx, ctx); 1154 1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1156 cpuctx->exclusive = 0; 1157 } 1158 1159 /* 1160 * Cross CPU call to remove a performance event 1161 * 1162 * We disable the event on the hardware level first. After that we 1163 * remove it from the context list. 1164 */ 1165 static int __perf_remove_from_context(void *info) 1166 { 1167 struct perf_event *event = info; 1168 struct perf_event_context *ctx = event->ctx; 1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1170 1171 raw_spin_lock(&ctx->lock); 1172 event_sched_out(event, cpuctx, ctx); 1173 list_del_event(event, ctx); 1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1175 ctx->is_active = 0; 1176 cpuctx->task_ctx = NULL; 1177 } 1178 raw_spin_unlock(&ctx->lock); 1179 1180 return 0; 1181 } 1182 1183 1184 /* 1185 * Remove the event from a task's (or a CPU's) list of events. 1186 * 1187 * CPU events are removed with a smp call. For task events we only 1188 * call when the task is on a CPU. 1189 * 1190 * If event->ctx is a cloned context, callers must make sure that 1191 * every task struct that event->ctx->task could possibly point to 1192 * remains valid. This is OK when called from perf_release since 1193 * that only calls us on the top-level context, which can't be a clone. 1194 * When called from perf_event_exit_task, it's OK because the 1195 * context has been detached from its task. 1196 */ 1197 static void perf_remove_from_context(struct perf_event *event) 1198 { 1199 struct perf_event_context *ctx = event->ctx; 1200 struct task_struct *task = ctx->task; 1201 1202 lockdep_assert_held(&ctx->mutex); 1203 1204 if (!task) { 1205 /* 1206 * Per cpu events are removed via an smp call and 1207 * the removal is always successful. 1208 */ 1209 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1210 return; 1211 } 1212 1213 retry: 1214 if (!task_function_call(task, __perf_remove_from_context, event)) 1215 return; 1216 1217 raw_spin_lock_irq(&ctx->lock); 1218 /* 1219 * If we failed to find a running task, but find the context active now 1220 * that we've acquired the ctx->lock, retry. 1221 */ 1222 if (ctx->is_active) { 1223 raw_spin_unlock_irq(&ctx->lock); 1224 goto retry; 1225 } 1226 1227 /* 1228 * Since the task isn't running, its safe to remove the event, us 1229 * holding the ctx->lock ensures the task won't get scheduled in. 1230 */ 1231 list_del_event(event, ctx); 1232 raw_spin_unlock_irq(&ctx->lock); 1233 } 1234 1235 /* 1236 * Cross CPU call to disable a performance event 1237 */ 1238 static int __perf_event_disable(void *info) 1239 { 1240 struct perf_event *event = info; 1241 struct perf_event_context *ctx = event->ctx; 1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1243 1244 /* 1245 * If this is a per-task event, need to check whether this 1246 * event's task is the current task on this cpu. 1247 * 1248 * Can trigger due to concurrent perf_event_context_sched_out() 1249 * flipping contexts around. 1250 */ 1251 if (ctx->task && cpuctx->task_ctx != ctx) 1252 return -EINVAL; 1253 1254 raw_spin_lock(&ctx->lock); 1255 1256 /* 1257 * If the event is on, turn it off. 1258 * If it is in error state, leave it in error state. 1259 */ 1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1261 update_context_time(ctx); 1262 update_cgrp_time_from_event(event); 1263 update_group_times(event); 1264 if (event == event->group_leader) 1265 group_sched_out(event, cpuctx, ctx); 1266 else 1267 event_sched_out(event, cpuctx, ctx); 1268 event->state = PERF_EVENT_STATE_OFF; 1269 } 1270 1271 raw_spin_unlock(&ctx->lock); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Disable a event. 1278 * 1279 * If event->ctx is a cloned context, callers must make sure that 1280 * every task struct that event->ctx->task could possibly point to 1281 * remains valid. This condition is satisifed when called through 1282 * perf_event_for_each_child or perf_event_for_each because they 1283 * hold the top-level event's child_mutex, so any descendant that 1284 * goes to exit will block in sync_child_event. 1285 * When called from perf_pending_event it's OK because event->ctx 1286 * is the current context on this CPU and preemption is disabled, 1287 * hence we can't get into perf_event_task_sched_out for this context. 1288 */ 1289 void perf_event_disable(struct perf_event *event) 1290 { 1291 struct perf_event_context *ctx = event->ctx; 1292 struct task_struct *task = ctx->task; 1293 1294 if (!task) { 1295 /* 1296 * Disable the event on the cpu that it's on 1297 */ 1298 cpu_function_call(event->cpu, __perf_event_disable, event); 1299 return; 1300 } 1301 1302 retry: 1303 if (!task_function_call(task, __perf_event_disable, event)) 1304 return; 1305 1306 raw_spin_lock_irq(&ctx->lock); 1307 /* 1308 * If the event is still active, we need to retry the cross-call. 1309 */ 1310 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1311 raw_spin_unlock_irq(&ctx->lock); 1312 /* 1313 * Reload the task pointer, it might have been changed by 1314 * a concurrent perf_event_context_sched_out(). 1315 */ 1316 task = ctx->task; 1317 goto retry; 1318 } 1319 1320 /* 1321 * Since we have the lock this context can't be scheduled 1322 * in, so we can change the state safely. 1323 */ 1324 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1325 update_group_times(event); 1326 event->state = PERF_EVENT_STATE_OFF; 1327 } 1328 raw_spin_unlock_irq(&ctx->lock); 1329 } 1330 EXPORT_SYMBOL_GPL(perf_event_disable); 1331 1332 static void perf_set_shadow_time(struct perf_event *event, 1333 struct perf_event_context *ctx, 1334 u64 tstamp) 1335 { 1336 /* 1337 * use the correct time source for the time snapshot 1338 * 1339 * We could get by without this by leveraging the 1340 * fact that to get to this function, the caller 1341 * has most likely already called update_context_time() 1342 * and update_cgrp_time_xx() and thus both timestamp 1343 * are identical (or very close). Given that tstamp is, 1344 * already adjusted for cgroup, we could say that: 1345 * tstamp - ctx->timestamp 1346 * is equivalent to 1347 * tstamp - cgrp->timestamp. 1348 * 1349 * Then, in perf_output_read(), the calculation would 1350 * work with no changes because: 1351 * - event is guaranteed scheduled in 1352 * - no scheduled out in between 1353 * - thus the timestamp would be the same 1354 * 1355 * But this is a bit hairy. 1356 * 1357 * So instead, we have an explicit cgroup call to remain 1358 * within the time time source all along. We believe it 1359 * is cleaner and simpler to understand. 1360 */ 1361 if (is_cgroup_event(event)) 1362 perf_cgroup_set_shadow_time(event, tstamp); 1363 else 1364 event->shadow_ctx_time = tstamp - ctx->timestamp; 1365 } 1366 1367 #define MAX_INTERRUPTS (~0ULL) 1368 1369 static void perf_log_throttle(struct perf_event *event, int enable); 1370 1371 static int 1372 event_sched_in(struct perf_event *event, 1373 struct perf_cpu_context *cpuctx, 1374 struct perf_event_context *ctx) 1375 { 1376 u64 tstamp = perf_event_time(event); 1377 1378 if (event->state <= PERF_EVENT_STATE_OFF) 1379 return 0; 1380 1381 event->state = PERF_EVENT_STATE_ACTIVE; 1382 event->oncpu = smp_processor_id(); 1383 1384 /* 1385 * Unthrottle events, since we scheduled we might have missed several 1386 * ticks already, also for a heavily scheduling task there is little 1387 * guarantee it'll get a tick in a timely manner. 1388 */ 1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1390 perf_log_throttle(event, 1); 1391 event->hw.interrupts = 0; 1392 } 1393 1394 /* 1395 * The new state must be visible before we turn it on in the hardware: 1396 */ 1397 smp_wmb(); 1398 1399 if (event->pmu->add(event, PERF_EF_START)) { 1400 event->state = PERF_EVENT_STATE_INACTIVE; 1401 event->oncpu = -1; 1402 return -EAGAIN; 1403 } 1404 1405 event->tstamp_running += tstamp - event->tstamp_stopped; 1406 1407 perf_set_shadow_time(event, ctx, tstamp); 1408 1409 if (!is_software_event(event)) 1410 cpuctx->active_oncpu++; 1411 ctx->nr_active++; 1412 if (event->attr.freq && event->attr.sample_freq) 1413 ctx->nr_freq++; 1414 1415 if (event->attr.exclusive) 1416 cpuctx->exclusive = 1; 1417 1418 return 0; 1419 } 1420 1421 static int 1422 group_sched_in(struct perf_event *group_event, 1423 struct perf_cpu_context *cpuctx, 1424 struct perf_event_context *ctx) 1425 { 1426 struct perf_event *event, *partial_group = NULL; 1427 struct pmu *pmu = group_event->pmu; 1428 u64 now = ctx->time; 1429 bool simulate = false; 1430 1431 if (group_event->state == PERF_EVENT_STATE_OFF) 1432 return 0; 1433 1434 pmu->start_txn(pmu); 1435 1436 if (event_sched_in(group_event, cpuctx, ctx)) { 1437 pmu->cancel_txn(pmu); 1438 return -EAGAIN; 1439 } 1440 1441 /* 1442 * Schedule in siblings as one group (if any): 1443 */ 1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1445 if (event_sched_in(event, cpuctx, ctx)) { 1446 partial_group = event; 1447 goto group_error; 1448 } 1449 } 1450 1451 if (!pmu->commit_txn(pmu)) 1452 return 0; 1453 1454 group_error: 1455 /* 1456 * Groups can be scheduled in as one unit only, so undo any 1457 * partial group before returning: 1458 * The events up to the failed event are scheduled out normally, 1459 * tstamp_stopped will be updated. 1460 * 1461 * The failed events and the remaining siblings need to have 1462 * their timings updated as if they had gone thru event_sched_in() 1463 * and event_sched_out(). This is required to get consistent timings 1464 * across the group. This also takes care of the case where the group 1465 * could never be scheduled by ensuring tstamp_stopped is set to mark 1466 * the time the event was actually stopped, such that time delta 1467 * calculation in update_event_times() is correct. 1468 */ 1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1470 if (event == partial_group) 1471 simulate = true; 1472 1473 if (simulate) { 1474 event->tstamp_running += now - event->tstamp_stopped; 1475 event->tstamp_stopped = now; 1476 } else { 1477 event_sched_out(event, cpuctx, ctx); 1478 } 1479 } 1480 event_sched_out(group_event, cpuctx, ctx); 1481 1482 pmu->cancel_txn(pmu); 1483 1484 return -EAGAIN; 1485 } 1486 1487 /* 1488 * Work out whether we can put this event group on the CPU now. 1489 */ 1490 static int group_can_go_on(struct perf_event *event, 1491 struct perf_cpu_context *cpuctx, 1492 int can_add_hw) 1493 { 1494 /* 1495 * Groups consisting entirely of software events can always go on. 1496 */ 1497 if (event->group_flags & PERF_GROUP_SOFTWARE) 1498 return 1; 1499 /* 1500 * If an exclusive group is already on, no other hardware 1501 * events can go on. 1502 */ 1503 if (cpuctx->exclusive) 1504 return 0; 1505 /* 1506 * If this group is exclusive and there are already 1507 * events on the CPU, it can't go on. 1508 */ 1509 if (event->attr.exclusive && cpuctx->active_oncpu) 1510 return 0; 1511 /* 1512 * Otherwise, try to add it if all previous groups were able 1513 * to go on. 1514 */ 1515 return can_add_hw; 1516 } 1517 1518 static void add_event_to_ctx(struct perf_event *event, 1519 struct perf_event_context *ctx) 1520 { 1521 u64 tstamp = perf_event_time(event); 1522 1523 list_add_event(event, ctx); 1524 perf_group_attach(event); 1525 event->tstamp_enabled = tstamp; 1526 event->tstamp_running = tstamp; 1527 event->tstamp_stopped = tstamp; 1528 } 1529 1530 static void task_ctx_sched_out(struct perf_event_context *ctx); 1531 static void 1532 ctx_sched_in(struct perf_event_context *ctx, 1533 struct perf_cpu_context *cpuctx, 1534 enum event_type_t event_type, 1535 struct task_struct *task); 1536 1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1538 struct perf_event_context *ctx, 1539 struct task_struct *task) 1540 { 1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1542 if (ctx) 1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1545 if (ctx) 1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1547 } 1548 1549 /* 1550 * Cross CPU call to install and enable a performance event 1551 * 1552 * Must be called with ctx->mutex held 1553 */ 1554 static int __perf_install_in_context(void *info) 1555 { 1556 struct perf_event *event = info; 1557 struct perf_event_context *ctx = event->ctx; 1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1559 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1560 struct task_struct *task = current; 1561 1562 perf_ctx_lock(cpuctx, task_ctx); 1563 perf_pmu_disable(cpuctx->ctx.pmu); 1564 1565 /* 1566 * If there was an active task_ctx schedule it out. 1567 */ 1568 if (task_ctx) 1569 task_ctx_sched_out(task_ctx); 1570 1571 /* 1572 * If the context we're installing events in is not the 1573 * active task_ctx, flip them. 1574 */ 1575 if (ctx->task && task_ctx != ctx) { 1576 if (task_ctx) 1577 raw_spin_unlock(&task_ctx->lock); 1578 raw_spin_lock(&ctx->lock); 1579 task_ctx = ctx; 1580 } 1581 1582 if (task_ctx) { 1583 cpuctx->task_ctx = task_ctx; 1584 task = task_ctx->task; 1585 } 1586 1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1588 1589 update_context_time(ctx); 1590 /* 1591 * update cgrp time only if current cgrp 1592 * matches event->cgrp. Must be done before 1593 * calling add_event_to_ctx() 1594 */ 1595 update_cgrp_time_from_event(event); 1596 1597 add_event_to_ctx(event, ctx); 1598 1599 /* 1600 * Schedule everything back in 1601 */ 1602 perf_event_sched_in(cpuctx, task_ctx, task); 1603 1604 perf_pmu_enable(cpuctx->ctx.pmu); 1605 perf_ctx_unlock(cpuctx, task_ctx); 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * Attach a performance event to a context 1612 * 1613 * First we add the event to the list with the hardware enable bit 1614 * in event->hw_config cleared. 1615 * 1616 * If the event is attached to a task which is on a CPU we use a smp 1617 * call to enable it in the task context. The task might have been 1618 * scheduled away, but we check this in the smp call again. 1619 */ 1620 static void 1621 perf_install_in_context(struct perf_event_context *ctx, 1622 struct perf_event *event, 1623 int cpu) 1624 { 1625 struct task_struct *task = ctx->task; 1626 1627 lockdep_assert_held(&ctx->mutex); 1628 1629 event->ctx = ctx; 1630 1631 if (!task) { 1632 /* 1633 * Per cpu events are installed via an smp call and 1634 * the install is always successful. 1635 */ 1636 cpu_function_call(cpu, __perf_install_in_context, event); 1637 return; 1638 } 1639 1640 retry: 1641 if (!task_function_call(task, __perf_install_in_context, event)) 1642 return; 1643 1644 raw_spin_lock_irq(&ctx->lock); 1645 /* 1646 * If we failed to find a running task, but find the context active now 1647 * that we've acquired the ctx->lock, retry. 1648 */ 1649 if (ctx->is_active) { 1650 raw_spin_unlock_irq(&ctx->lock); 1651 goto retry; 1652 } 1653 1654 /* 1655 * Since the task isn't running, its safe to add the event, us holding 1656 * the ctx->lock ensures the task won't get scheduled in. 1657 */ 1658 add_event_to_ctx(event, ctx); 1659 raw_spin_unlock_irq(&ctx->lock); 1660 } 1661 1662 /* 1663 * Put a event into inactive state and update time fields. 1664 * Enabling the leader of a group effectively enables all 1665 * the group members that aren't explicitly disabled, so we 1666 * have to update their ->tstamp_enabled also. 1667 * Note: this works for group members as well as group leaders 1668 * since the non-leader members' sibling_lists will be empty. 1669 */ 1670 static void __perf_event_mark_enabled(struct perf_event *event) 1671 { 1672 struct perf_event *sub; 1673 u64 tstamp = perf_event_time(event); 1674 1675 event->state = PERF_EVENT_STATE_INACTIVE; 1676 event->tstamp_enabled = tstamp - event->total_time_enabled; 1677 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1680 } 1681 } 1682 1683 /* 1684 * Cross CPU call to enable a performance event 1685 */ 1686 static int __perf_event_enable(void *info) 1687 { 1688 struct perf_event *event = info; 1689 struct perf_event_context *ctx = event->ctx; 1690 struct perf_event *leader = event->group_leader; 1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1692 int err; 1693 1694 if (WARN_ON_ONCE(!ctx->is_active)) 1695 return -EINVAL; 1696 1697 raw_spin_lock(&ctx->lock); 1698 update_context_time(ctx); 1699 1700 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1701 goto unlock; 1702 1703 /* 1704 * set current task's cgroup time reference point 1705 */ 1706 perf_cgroup_set_timestamp(current, ctx); 1707 1708 __perf_event_mark_enabled(event); 1709 1710 if (!event_filter_match(event)) { 1711 if (is_cgroup_event(event)) 1712 perf_cgroup_defer_enabled(event); 1713 goto unlock; 1714 } 1715 1716 /* 1717 * If the event is in a group and isn't the group leader, 1718 * then don't put it on unless the group is on. 1719 */ 1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1721 goto unlock; 1722 1723 if (!group_can_go_on(event, cpuctx, 1)) { 1724 err = -EEXIST; 1725 } else { 1726 if (event == leader) 1727 err = group_sched_in(event, cpuctx, ctx); 1728 else 1729 err = event_sched_in(event, cpuctx, ctx); 1730 } 1731 1732 if (err) { 1733 /* 1734 * If this event can't go on and it's part of a 1735 * group, then the whole group has to come off. 1736 */ 1737 if (leader != event) 1738 group_sched_out(leader, cpuctx, ctx); 1739 if (leader->attr.pinned) { 1740 update_group_times(leader); 1741 leader->state = PERF_EVENT_STATE_ERROR; 1742 } 1743 } 1744 1745 unlock: 1746 raw_spin_unlock(&ctx->lock); 1747 1748 return 0; 1749 } 1750 1751 /* 1752 * Enable a event. 1753 * 1754 * If event->ctx is a cloned context, callers must make sure that 1755 * every task struct that event->ctx->task could possibly point to 1756 * remains valid. This condition is satisfied when called through 1757 * perf_event_for_each_child or perf_event_for_each as described 1758 * for perf_event_disable. 1759 */ 1760 void perf_event_enable(struct perf_event *event) 1761 { 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Enable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_enable, event); 1770 return; 1771 } 1772 1773 raw_spin_lock_irq(&ctx->lock); 1774 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1775 goto out; 1776 1777 /* 1778 * If the event is in error state, clear that first. 1779 * That way, if we see the event in error state below, we 1780 * know that it has gone back into error state, as distinct 1781 * from the task having been scheduled away before the 1782 * cross-call arrived. 1783 */ 1784 if (event->state == PERF_EVENT_STATE_ERROR) 1785 event->state = PERF_EVENT_STATE_OFF; 1786 1787 retry: 1788 if (!ctx->is_active) { 1789 __perf_event_mark_enabled(event); 1790 goto out; 1791 } 1792 1793 raw_spin_unlock_irq(&ctx->lock); 1794 1795 if (!task_function_call(task, __perf_event_enable, event)) 1796 return; 1797 1798 raw_spin_lock_irq(&ctx->lock); 1799 1800 /* 1801 * If the context is active and the event is still off, 1802 * we need to retry the cross-call. 1803 */ 1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1805 /* 1806 * task could have been flipped by a concurrent 1807 * perf_event_context_sched_out() 1808 */ 1809 task = ctx->task; 1810 goto retry; 1811 } 1812 1813 out: 1814 raw_spin_unlock_irq(&ctx->lock); 1815 } 1816 EXPORT_SYMBOL_GPL(perf_event_enable); 1817 1818 int perf_event_refresh(struct perf_event *event, int refresh) 1819 { 1820 /* 1821 * not supported on inherited events 1822 */ 1823 if (event->attr.inherit || !is_sampling_event(event)) 1824 return -EINVAL; 1825 1826 atomic_add(refresh, &event->event_limit); 1827 perf_event_enable(event); 1828 1829 return 0; 1830 } 1831 EXPORT_SYMBOL_GPL(perf_event_refresh); 1832 1833 static void ctx_sched_out(struct perf_event_context *ctx, 1834 struct perf_cpu_context *cpuctx, 1835 enum event_type_t event_type) 1836 { 1837 struct perf_event *event; 1838 int is_active = ctx->is_active; 1839 1840 ctx->is_active &= ~event_type; 1841 if (likely(!ctx->nr_events)) 1842 return; 1843 1844 update_context_time(ctx); 1845 update_cgrp_time_from_cpuctx(cpuctx); 1846 if (!ctx->nr_active) 1847 return; 1848 1849 perf_pmu_disable(ctx->pmu); 1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1852 group_sched_out(event, cpuctx, ctx); 1853 } 1854 1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1857 group_sched_out(event, cpuctx, ctx); 1858 } 1859 perf_pmu_enable(ctx->pmu); 1860 } 1861 1862 /* 1863 * Test whether two contexts are equivalent, i.e. whether they 1864 * have both been cloned from the same version of the same context 1865 * and they both have the same number of enabled events. 1866 * If the number of enabled events is the same, then the set 1867 * of enabled events should be the same, because these are both 1868 * inherited contexts, therefore we can't access individual events 1869 * in them directly with an fd; we can only enable/disable all 1870 * events via prctl, or enable/disable all events in a family 1871 * via ioctl, which will have the same effect on both contexts. 1872 */ 1873 static int context_equiv(struct perf_event_context *ctx1, 1874 struct perf_event_context *ctx2) 1875 { 1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1877 && ctx1->parent_gen == ctx2->parent_gen 1878 && !ctx1->pin_count && !ctx2->pin_count; 1879 } 1880 1881 static void __perf_event_sync_stat(struct perf_event *event, 1882 struct perf_event *next_event) 1883 { 1884 u64 value; 1885 1886 if (!event->attr.inherit_stat) 1887 return; 1888 1889 /* 1890 * Update the event value, we cannot use perf_event_read() 1891 * because we're in the middle of a context switch and have IRQs 1892 * disabled, which upsets smp_call_function_single(), however 1893 * we know the event must be on the current CPU, therefore we 1894 * don't need to use it. 1895 */ 1896 switch (event->state) { 1897 case PERF_EVENT_STATE_ACTIVE: 1898 event->pmu->read(event); 1899 /* fall-through */ 1900 1901 case PERF_EVENT_STATE_INACTIVE: 1902 update_event_times(event); 1903 break; 1904 1905 default: 1906 break; 1907 } 1908 1909 /* 1910 * In order to keep per-task stats reliable we need to flip the event 1911 * values when we flip the contexts. 1912 */ 1913 value = local64_read(&next_event->count); 1914 value = local64_xchg(&event->count, value); 1915 local64_set(&next_event->count, value); 1916 1917 swap(event->total_time_enabled, next_event->total_time_enabled); 1918 swap(event->total_time_running, next_event->total_time_running); 1919 1920 /* 1921 * Since we swizzled the values, update the user visible data too. 1922 */ 1923 perf_event_update_userpage(event); 1924 perf_event_update_userpage(next_event); 1925 } 1926 1927 #define list_next_entry(pos, member) \ 1928 list_entry(pos->member.next, typeof(*pos), member) 1929 1930 static void perf_event_sync_stat(struct perf_event_context *ctx, 1931 struct perf_event_context *next_ctx) 1932 { 1933 struct perf_event *event, *next_event; 1934 1935 if (!ctx->nr_stat) 1936 return; 1937 1938 update_context_time(ctx); 1939 1940 event = list_first_entry(&ctx->event_list, 1941 struct perf_event, event_entry); 1942 1943 next_event = list_first_entry(&next_ctx->event_list, 1944 struct perf_event, event_entry); 1945 1946 while (&event->event_entry != &ctx->event_list && 1947 &next_event->event_entry != &next_ctx->event_list) { 1948 1949 __perf_event_sync_stat(event, next_event); 1950 1951 event = list_next_entry(event, event_entry); 1952 next_event = list_next_entry(next_event, event_entry); 1953 } 1954 } 1955 1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1957 struct task_struct *next) 1958 { 1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1960 struct perf_event_context *next_ctx; 1961 struct perf_event_context *parent; 1962 struct perf_cpu_context *cpuctx; 1963 int do_switch = 1; 1964 1965 if (likely(!ctx)) 1966 return; 1967 1968 cpuctx = __get_cpu_context(ctx); 1969 if (!cpuctx->task_ctx) 1970 return; 1971 1972 rcu_read_lock(); 1973 parent = rcu_dereference(ctx->parent_ctx); 1974 next_ctx = next->perf_event_ctxp[ctxn]; 1975 if (parent && next_ctx && 1976 rcu_dereference(next_ctx->parent_ctx) == parent) { 1977 /* 1978 * Looks like the two contexts are clones, so we might be 1979 * able to optimize the context switch. We lock both 1980 * contexts and check that they are clones under the 1981 * lock (including re-checking that neither has been 1982 * uncloned in the meantime). It doesn't matter which 1983 * order we take the locks because no other cpu could 1984 * be trying to lock both of these tasks. 1985 */ 1986 raw_spin_lock(&ctx->lock); 1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1988 if (context_equiv(ctx, next_ctx)) { 1989 /* 1990 * XXX do we need a memory barrier of sorts 1991 * wrt to rcu_dereference() of perf_event_ctxp 1992 */ 1993 task->perf_event_ctxp[ctxn] = next_ctx; 1994 next->perf_event_ctxp[ctxn] = ctx; 1995 ctx->task = next; 1996 next_ctx->task = task; 1997 do_switch = 0; 1998 1999 perf_event_sync_stat(ctx, next_ctx); 2000 } 2001 raw_spin_unlock(&next_ctx->lock); 2002 raw_spin_unlock(&ctx->lock); 2003 } 2004 rcu_read_unlock(); 2005 2006 if (do_switch) { 2007 raw_spin_lock(&ctx->lock); 2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2009 cpuctx->task_ctx = NULL; 2010 raw_spin_unlock(&ctx->lock); 2011 } 2012 } 2013 2014 #define for_each_task_context_nr(ctxn) \ 2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2016 2017 /* 2018 * Called from scheduler to remove the events of the current task, 2019 * with interrupts disabled. 2020 * 2021 * We stop each event and update the event value in event->count. 2022 * 2023 * This does not protect us against NMI, but disable() 2024 * sets the disabled bit in the control field of event _before_ 2025 * accessing the event control register. If a NMI hits, then it will 2026 * not restart the event. 2027 */ 2028 void __perf_event_task_sched_out(struct task_struct *task, 2029 struct task_struct *next) 2030 { 2031 int ctxn; 2032 2033 for_each_task_context_nr(ctxn) 2034 perf_event_context_sched_out(task, ctxn, next); 2035 2036 /* 2037 * if cgroup events exist on this CPU, then we need 2038 * to check if we have to switch out PMU state. 2039 * cgroup event are system-wide mode only 2040 */ 2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2042 perf_cgroup_sched_out(task, next); 2043 } 2044 2045 static void task_ctx_sched_out(struct perf_event_context *ctx) 2046 { 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2048 2049 if (!cpuctx->task_ctx) 2050 return; 2051 2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2053 return; 2054 2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2056 cpuctx->task_ctx = NULL; 2057 } 2058 2059 /* 2060 * Called with IRQs disabled 2061 */ 2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2063 enum event_type_t event_type) 2064 { 2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2066 } 2067 2068 static void 2069 ctx_pinned_sched_in(struct perf_event_context *ctx, 2070 struct perf_cpu_context *cpuctx) 2071 { 2072 struct perf_event *event; 2073 2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2075 if (event->state <= PERF_EVENT_STATE_OFF) 2076 continue; 2077 if (!event_filter_match(event)) 2078 continue; 2079 2080 /* may need to reset tstamp_enabled */ 2081 if (is_cgroup_event(event)) 2082 perf_cgroup_mark_enabled(event, ctx); 2083 2084 if (group_can_go_on(event, cpuctx, 1)) 2085 group_sched_in(event, cpuctx, ctx); 2086 2087 /* 2088 * If this pinned group hasn't been scheduled, 2089 * put it in error state. 2090 */ 2091 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2092 update_group_times(event); 2093 event->state = PERF_EVENT_STATE_ERROR; 2094 } 2095 } 2096 } 2097 2098 static void 2099 ctx_flexible_sched_in(struct perf_event_context *ctx, 2100 struct perf_cpu_context *cpuctx) 2101 { 2102 struct perf_event *event; 2103 int can_add_hw = 1; 2104 2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2106 /* Ignore events in OFF or ERROR state */ 2107 if (event->state <= PERF_EVENT_STATE_OFF) 2108 continue; 2109 /* 2110 * Listen to the 'cpu' scheduling filter constraint 2111 * of events: 2112 */ 2113 if (!event_filter_match(event)) 2114 continue; 2115 2116 /* may need to reset tstamp_enabled */ 2117 if (is_cgroup_event(event)) 2118 perf_cgroup_mark_enabled(event, ctx); 2119 2120 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2121 if (group_sched_in(event, cpuctx, ctx)) 2122 can_add_hw = 0; 2123 } 2124 } 2125 } 2126 2127 static void 2128 ctx_sched_in(struct perf_event_context *ctx, 2129 struct perf_cpu_context *cpuctx, 2130 enum event_type_t event_type, 2131 struct task_struct *task) 2132 { 2133 u64 now; 2134 int is_active = ctx->is_active; 2135 2136 ctx->is_active |= event_type; 2137 if (likely(!ctx->nr_events)) 2138 return; 2139 2140 now = perf_clock(); 2141 ctx->timestamp = now; 2142 perf_cgroup_set_timestamp(task, ctx); 2143 /* 2144 * First go through the list and put on any pinned groups 2145 * in order to give them the best chance of going on. 2146 */ 2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2148 ctx_pinned_sched_in(ctx, cpuctx); 2149 2150 /* Then walk through the lower prio flexible groups */ 2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2152 ctx_flexible_sched_in(ctx, cpuctx); 2153 } 2154 2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2156 enum event_type_t event_type, 2157 struct task_struct *task) 2158 { 2159 struct perf_event_context *ctx = &cpuctx->ctx; 2160 2161 ctx_sched_in(ctx, cpuctx, event_type, task); 2162 } 2163 2164 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2165 struct task_struct *task) 2166 { 2167 struct perf_cpu_context *cpuctx; 2168 2169 cpuctx = __get_cpu_context(ctx); 2170 if (cpuctx->task_ctx == ctx) 2171 return; 2172 2173 perf_ctx_lock(cpuctx, ctx); 2174 perf_pmu_disable(ctx->pmu); 2175 /* 2176 * We want to keep the following priority order: 2177 * cpu pinned (that don't need to move), task pinned, 2178 * cpu flexible, task flexible. 2179 */ 2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2181 2182 if (ctx->nr_events) 2183 cpuctx->task_ctx = ctx; 2184 2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2186 2187 perf_pmu_enable(ctx->pmu); 2188 perf_ctx_unlock(cpuctx, ctx); 2189 2190 /* 2191 * Since these rotations are per-cpu, we need to ensure the 2192 * cpu-context we got scheduled on is actually rotating. 2193 */ 2194 perf_pmu_rotate_start(ctx->pmu); 2195 } 2196 2197 /* 2198 * Called from scheduler to add the events of the current task 2199 * with interrupts disabled. 2200 * 2201 * We restore the event value and then enable it. 2202 * 2203 * This does not protect us against NMI, but enable() 2204 * sets the enabled bit in the control field of event _before_ 2205 * accessing the event control register. If a NMI hits, then it will 2206 * keep the event running. 2207 */ 2208 void __perf_event_task_sched_in(struct task_struct *prev, 2209 struct task_struct *task) 2210 { 2211 struct perf_event_context *ctx; 2212 int ctxn; 2213 2214 for_each_task_context_nr(ctxn) { 2215 ctx = task->perf_event_ctxp[ctxn]; 2216 if (likely(!ctx)) 2217 continue; 2218 2219 perf_event_context_sched_in(ctx, task); 2220 } 2221 /* 2222 * if cgroup events exist on this CPU, then we need 2223 * to check if we have to switch in PMU state. 2224 * cgroup event are system-wide mode only 2225 */ 2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2227 perf_cgroup_sched_in(prev, task); 2228 } 2229 2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2231 { 2232 u64 frequency = event->attr.sample_freq; 2233 u64 sec = NSEC_PER_SEC; 2234 u64 divisor, dividend; 2235 2236 int count_fls, nsec_fls, frequency_fls, sec_fls; 2237 2238 count_fls = fls64(count); 2239 nsec_fls = fls64(nsec); 2240 frequency_fls = fls64(frequency); 2241 sec_fls = 30; 2242 2243 /* 2244 * We got @count in @nsec, with a target of sample_freq HZ 2245 * the target period becomes: 2246 * 2247 * @count * 10^9 2248 * period = ------------------- 2249 * @nsec * sample_freq 2250 * 2251 */ 2252 2253 /* 2254 * Reduce accuracy by one bit such that @a and @b converge 2255 * to a similar magnitude. 2256 */ 2257 #define REDUCE_FLS(a, b) \ 2258 do { \ 2259 if (a##_fls > b##_fls) { \ 2260 a >>= 1; \ 2261 a##_fls--; \ 2262 } else { \ 2263 b >>= 1; \ 2264 b##_fls--; \ 2265 } \ 2266 } while (0) 2267 2268 /* 2269 * Reduce accuracy until either term fits in a u64, then proceed with 2270 * the other, so that finally we can do a u64/u64 division. 2271 */ 2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2273 REDUCE_FLS(nsec, frequency); 2274 REDUCE_FLS(sec, count); 2275 } 2276 2277 if (count_fls + sec_fls > 64) { 2278 divisor = nsec * frequency; 2279 2280 while (count_fls + sec_fls > 64) { 2281 REDUCE_FLS(count, sec); 2282 divisor >>= 1; 2283 } 2284 2285 dividend = count * sec; 2286 } else { 2287 dividend = count * sec; 2288 2289 while (nsec_fls + frequency_fls > 64) { 2290 REDUCE_FLS(nsec, frequency); 2291 dividend >>= 1; 2292 } 2293 2294 divisor = nsec * frequency; 2295 } 2296 2297 if (!divisor) 2298 return dividend; 2299 2300 return div64_u64(dividend, divisor); 2301 } 2302 2303 static DEFINE_PER_CPU(int, perf_throttled_count); 2304 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2305 2306 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2307 { 2308 struct hw_perf_event *hwc = &event->hw; 2309 s64 period, sample_period; 2310 s64 delta; 2311 2312 period = perf_calculate_period(event, nsec, count); 2313 2314 delta = (s64)(period - hwc->sample_period); 2315 delta = (delta + 7) / 8; /* low pass filter */ 2316 2317 sample_period = hwc->sample_period + delta; 2318 2319 if (!sample_period) 2320 sample_period = 1; 2321 2322 hwc->sample_period = sample_period; 2323 2324 if (local64_read(&hwc->period_left) > 8*sample_period) { 2325 event->pmu->stop(event, PERF_EF_UPDATE); 2326 local64_set(&hwc->period_left, 0); 2327 event->pmu->start(event, PERF_EF_RELOAD); 2328 } 2329 } 2330 2331 /* 2332 * combine freq adjustment with unthrottling to avoid two passes over the 2333 * events. At the same time, make sure, having freq events does not change 2334 * the rate of unthrottling as that would introduce bias. 2335 */ 2336 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2337 int needs_unthr) 2338 { 2339 struct perf_event *event; 2340 struct hw_perf_event *hwc; 2341 u64 now, period = TICK_NSEC; 2342 s64 delta; 2343 2344 /* 2345 * only need to iterate over all events iff: 2346 * - context have events in frequency mode (needs freq adjust) 2347 * - there are events to unthrottle on this cpu 2348 */ 2349 if (!(ctx->nr_freq || needs_unthr)) 2350 return; 2351 2352 raw_spin_lock(&ctx->lock); 2353 2354 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2355 if (event->state != PERF_EVENT_STATE_ACTIVE) 2356 continue; 2357 2358 if (!event_filter_match(event)) 2359 continue; 2360 2361 hwc = &event->hw; 2362 2363 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2364 hwc->interrupts = 0; 2365 perf_log_throttle(event, 1); 2366 event->pmu->start(event, 0); 2367 } 2368 2369 if (!event->attr.freq || !event->attr.sample_freq) 2370 continue; 2371 2372 /* 2373 * stop the event and update event->count 2374 */ 2375 event->pmu->stop(event, PERF_EF_UPDATE); 2376 2377 now = local64_read(&event->count); 2378 delta = now - hwc->freq_count_stamp; 2379 hwc->freq_count_stamp = now; 2380 2381 /* 2382 * restart the event 2383 * reload only if value has changed 2384 */ 2385 if (delta > 0) 2386 perf_adjust_period(event, period, delta); 2387 2388 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2389 } 2390 2391 raw_spin_unlock(&ctx->lock); 2392 } 2393 2394 /* 2395 * Round-robin a context's events: 2396 */ 2397 static void rotate_ctx(struct perf_event_context *ctx) 2398 { 2399 /* 2400 * Rotate the first entry last of non-pinned groups. Rotation might be 2401 * disabled by the inheritance code. 2402 */ 2403 if (!ctx->rotate_disable) 2404 list_rotate_left(&ctx->flexible_groups); 2405 } 2406 2407 /* 2408 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2409 * because they're strictly cpu affine and rotate_start is called with IRQs 2410 * disabled, while rotate_context is called from IRQ context. 2411 */ 2412 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2413 { 2414 struct perf_event_context *ctx = NULL; 2415 int rotate = 0, remove = 1; 2416 2417 if (cpuctx->ctx.nr_events) { 2418 remove = 0; 2419 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2420 rotate = 1; 2421 } 2422 2423 ctx = cpuctx->task_ctx; 2424 if (ctx && ctx->nr_events) { 2425 remove = 0; 2426 if (ctx->nr_events != ctx->nr_active) 2427 rotate = 1; 2428 } 2429 2430 if (!rotate) 2431 goto done; 2432 2433 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2434 perf_pmu_disable(cpuctx->ctx.pmu); 2435 2436 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2437 if (ctx) 2438 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2439 2440 rotate_ctx(&cpuctx->ctx); 2441 if (ctx) 2442 rotate_ctx(ctx); 2443 2444 perf_event_sched_in(cpuctx, ctx, current); 2445 2446 perf_pmu_enable(cpuctx->ctx.pmu); 2447 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2448 done: 2449 if (remove) 2450 list_del_init(&cpuctx->rotation_list); 2451 } 2452 2453 void perf_event_task_tick(void) 2454 { 2455 struct list_head *head = &__get_cpu_var(rotation_list); 2456 struct perf_cpu_context *cpuctx, *tmp; 2457 struct perf_event_context *ctx; 2458 int throttled; 2459 2460 WARN_ON(!irqs_disabled()); 2461 2462 __this_cpu_inc(perf_throttled_seq); 2463 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2464 2465 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2466 ctx = &cpuctx->ctx; 2467 perf_adjust_freq_unthr_context(ctx, throttled); 2468 2469 ctx = cpuctx->task_ctx; 2470 if (ctx) 2471 perf_adjust_freq_unthr_context(ctx, throttled); 2472 2473 if (cpuctx->jiffies_interval == 1 || 2474 !(jiffies % cpuctx->jiffies_interval)) 2475 perf_rotate_context(cpuctx); 2476 } 2477 } 2478 2479 static int event_enable_on_exec(struct perf_event *event, 2480 struct perf_event_context *ctx) 2481 { 2482 if (!event->attr.enable_on_exec) 2483 return 0; 2484 2485 event->attr.enable_on_exec = 0; 2486 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2487 return 0; 2488 2489 __perf_event_mark_enabled(event); 2490 2491 return 1; 2492 } 2493 2494 /* 2495 * Enable all of a task's events that have been marked enable-on-exec. 2496 * This expects task == current. 2497 */ 2498 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2499 { 2500 struct perf_event *event; 2501 unsigned long flags; 2502 int enabled = 0; 2503 int ret; 2504 2505 local_irq_save(flags); 2506 if (!ctx || !ctx->nr_events) 2507 goto out; 2508 2509 /* 2510 * We must ctxsw out cgroup events to avoid conflict 2511 * when invoking perf_task_event_sched_in() later on 2512 * in this function. Otherwise we end up trying to 2513 * ctxswin cgroup events which are already scheduled 2514 * in. 2515 */ 2516 perf_cgroup_sched_out(current, NULL); 2517 2518 raw_spin_lock(&ctx->lock); 2519 task_ctx_sched_out(ctx); 2520 2521 list_for_each_entry(event, &ctx->event_list, event_entry) { 2522 ret = event_enable_on_exec(event, ctx); 2523 if (ret) 2524 enabled = 1; 2525 } 2526 2527 /* 2528 * Unclone this context if we enabled any event. 2529 */ 2530 if (enabled) 2531 unclone_ctx(ctx); 2532 2533 raw_spin_unlock(&ctx->lock); 2534 2535 /* 2536 * Also calls ctxswin for cgroup events, if any: 2537 */ 2538 perf_event_context_sched_in(ctx, ctx->task); 2539 out: 2540 local_irq_restore(flags); 2541 } 2542 2543 /* 2544 * Cross CPU call to read the hardware event 2545 */ 2546 static void __perf_event_read(void *info) 2547 { 2548 struct perf_event *event = info; 2549 struct perf_event_context *ctx = event->ctx; 2550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2551 2552 /* 2553 * If this is a task context, we need to check whether it is 2554 * the current task context of this cpu. If not it has been 2555 * scheduled out before the smp call arrived. In that case 2556 * event->count would have been updated to a recent sample 2557 * when the event was scheduled out. 2558 */ 2559 if (ctx->task && cpuctx->task_ctx != ctx) 2560 return; 2561 2562 raw_spin_lock(&ctx->lock); 2563 if (ctx->is_active) { 2564 update_context_time(ctx); 2565 update_cgrp_time_from_event(event); 2566 } 2567 update_event_times(event); 2568 if (event->state == PERF_EVENT_STATE_ACTIVE) 2569 event->pmu->read(event); 2570 raw_spin_unlock(&ctx->lock); 2571 } 2572 2573 static inline u64 perf_event_count(struct perf_event *event) 2574 { 2575 return local64_read(&event->count) + atomic64_read(&event->child_count); 2576 } 2577 2578 static u64 perf_event_read(struct perf_event *event) 2579 { 2580 /* 2581 * If event is enabled and currently active on a CPU, update the 2582 * value in the event structure: 2583 */ 2584 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2585 smp_call_function_single(event->oncpu, 2586 __perf_event_read, event, 1); 2587 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2588 struct perf_event_context *ctx = event->ctx; 2589 unsigned long flags; 2590 2591 raw_spin_lock_irqsave(&ctx->lock, flags); 2592 /* 2593 * may read while context is not active 2594 * (e.g., thread is blocked), in that case 2595 * we cannot update context time 2596 */ 2597 if (ctx->is_active) { 2598 update_context_time(ctx); 2599 update_cgrp_time_from_event(event); 2600 } 2601 update_event_times(event); 2602 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2603 } 2604 2605 return perf_event_count(event); 2606 } 2607 2608 /* 2609 * Initialize the perf_event context in a task_struct: 2610 */ 2611 static void __perf_event_init_context(struct perf_event_context *ctx) 2612 { 2613 raw_spin_lock_init(&ctx->lock); 2614 mutex_init(&ctx->mutex); 2615 INIT_LIST_HEAD(&ctx->pinned_groups); 2616 INIT_LIST_HEAD(&ctx->flexible_groups); 2617 INIT_LIST_HEAD(&ctx->event_list); 2618 atomic_set(&ctx->refcount, 1); 2619 } 2620 2621 static struct perf_event_context * 2622 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2623 { 2624 struct perf_event_context *ctx; 2625 2626 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2627 if (!ctx) 2628 return NULL; 2629 2630 __perf_event_init_context(ctx); 2631 if (task) { 2632 ctx->task = task; 2633 get_task_struct(task); 2634 } 2635 ctx->pmu = pmu; 2636 2637 return ctx; 2638 } 2639 2640 static struct task_struct * 2641 find_lively_task_by_vpid(pid_t vpid) 2642 { 2643 struct task_struct *task; 2644 int err; 2645 2646 rcu_read_lock(); 2647 if (!vpid) 2648 task = current; 2649 else 2650 task = find_task_by_vpid(vpid); 2651 if (task) 2652 get_task_struct(task); 2653 rcu_read_unlock(); 2654 2655 if (!task) 2656 return ERR_PTR(-ESRCH); 2657 2658 /* Reuse ptrace permission checks for now. */ 2659 err = -EACCES; 2660 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2661 goto errout; 2662 2663 return task; 2664 errout: 2665 put_task_struct(task); 2666 return ERR_PTR(err); 2667 2668 } 2669 2670 /* 2671 * Returns a matching context with refcount and pincount. 2672 */ 2673 static struct perf_event_context * 2674 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2675 { 2676 struct perf_event_context *ctx; 2677 struct perf_cpu_context *cpuctx; 2678 unsigned long flags; 2679 int ctxn, err; 2680 2681 if (!task) { 2682 /* Must be root to operate on a CPU event: */ 2683 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2684 return ERR_PTR(-EACCES); 2685 2686 /* 2687 * We could be clever and allow to attach a event to an 2688 * offline CPU and activate it when the CPU comes up, but 2689 * that's for later. 2690 */ 2691 if (!cpu_online(cpu)) 2692 return ERR_PTR(-ENODEV); 2693 2694 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2695 ctx = &cpuctx->ctx; 2696 get_ctx(ctx); 2697 ++ctx->pin_count; 2698 2699 return ctx; 2700 } 2701 2702 err = -EINVAL; 2703 ctxn = pmu->task_ctx_nr; 2704 if (ctxn < 0) 2705 goto errout; 2706 2707 retry: 2708 ctx = perf_lock_task_context(task, ctxn, &flags); 2709 if (ctx) { 2710 unclone_ctx(ctx); 2711 ++ctx->pin_count; 2712 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2713 } else { 2714 ctx = alloc_perf_context(pmu, task); 2715 err = -ENOMEM; 2716 if (!ctx) 2717 goto errout; 2718 2719 err = 0; 2720 mutex_lock(&task->perf_event_mutex); 2721 /* 2722 * If it has already passed perf_event_exit_task(). 2723 * we must see PF_EXITING, it takes this mutex too. 2724 */ 2725 if (task->flags & PF_EXITING) 2726 err = -ESRCH; 2727 else if (task->perf_event_ctxp[ctxn]) 2728 err = -EAGAIN; 2729 else { 2730 get_ctx(ctx); 2731 ++ctx->pin_count; 2732 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2733 } 2734 mutex_unlock(&task->perf_event_mutex); 2735 2736 if (unlikely(err)) { 2737 put_ctx(ctx); 2738 2739 if (err == -EAGAIN) 2740 goto retry; 2741 goto errout; 2742 } 2743 } 2744 2745 return ctx; 2746 2747 errout: 2748 return ERR_PTR(err); 2749 } 2750 2751 static void perf_event_free_filter(struct perf_event *event); 2752 2753 static void free_event_rcu(struct rcu_head *head) 2754 { 2755 struct perf_event *event; 2756 2757 event = container_of(head, struct perf_event, rcu_head); 2758 if (event->ns) 2759 put_pid_ns(event->ns); 2760 perf_event_free_filter(event); 2761 kfree(event); 2762 } 2763 2764 static void ring_buffer_put(struct ring_buffer *rb); 2765 2766 static void free_event(struct perf_event *event) 2767 { 2768 irq_work_sync(&event->pending); 2769 2770 if (!event->parent) { 2771 if (event->attach_state & PERF_ATTACH_TASK) 2772 jump_label_dec_deferred(&perf_sched_events); 2773 if (event->attr.mmap || event->attr.mmap_data) 2774 atomic_dec(&nr_mmap_events); 2775 if (event->attr.comm) 2776 atomic_dec(&nr_comm_events); 2777 if (event->attr.task) 2778 atomic_dec(&nr_task_events); 2779 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2780 put_callchain_buffers(); 2781 if (is_cgroup_event(event)) { 2782 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2783 jump_label_dec_deferred(&perf_sched_events); 2784 } 2785 } 2786 2787 if (event->rb) { 2788 ring_buffer_put(event->rb); 2789 event->rb = NULL; 2790 } 2791 2792 if (is_cgroup_event(event)) 2793 perf_detach_cgroup(event); 2794 2795 if (event->destroy) 2796 event->destroy(event); 2797 2798 if (event->ctx) 2799 put_ctx(event->ctx); 2800 2801 call_rcu(&event->rcu_head, free_event_rcu); 2802 } 2803 2804 int perf_event_release_kernel(struct perf_event *event) 2805 { 2806 struct perf_event_context *ctx = event->ctx; 2807 2808 WARN_ON_ONCE(ctx->parent_ctx); 2809 /* 2810 * There are two ways this annotation is useful: 2811 * 2812 * 1) there is a lock recursion from perf_event_exit_task 2813 * see the comment there. 2814 * 2815 * 2) there is a lock-inversion with mmap_sem through 2816 * perf_event_read_group(), which takes faults while 2817 * holding ctx->mutex, however this is called after 2818 * the last filedesc died, so there is no possibility 2819 * to trigger the AB-BA case. 2820 */ 2821 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2822 raw_spin_lock_irq(&ctx->lock); 2823 perf_group_detach(event); 2824 raw_spin_unlock_irq(&ctx->lock); 2825 perf_remove_from_context(event); 2826 mutex_unlock(&ctx->mutex); 2827 2828 free_event(event); 2829 2830 return 0; 2831 } 2832 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2833 2834 /* 2835 * Called when the last reference to the file is gone. 2836 */ 2837 static int perf_release(struct inode *inode, struct file *file) 2838 { 2839 struct perf_event *event = file->private_data; 2840 struct task_struct *owner; 2841 2842 file->private_data = NULL; 2843 2844 rcu_read_lock(); 2845 owner = ACCESS_ONCE(event->owner); 2846 /* 2847 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2848 * !owner it means the list deletion is complete and we can indeed 2849 * free this event, otherwise we need to serialize on 2850 * owner->perf_event_mutex. 2851 */ 2852 smp_read_barrier_depends(); 2853 if (owner) { 2854 /* 2855 * Since delayed_put_task_struct() also drops the last 2856 * task reference we can safely take a new reference 2857 * while holding the rcu_read_lock(). 2858 */ 2859 get_task_struct(owner); 2860 } 2861 rcu_read_unlock(); 2862 2863 if (owner) { 2864 mutex_lock(&owner->perf_event_mutex); 2865 /* 2866 * We have to re-check the event->owner field, if it is cleared 2867 * we raced with perf_event_exit_task(), acquiring the mutex 2868 * ensured they're done, and we can proceed with freeing the 2869 * event. 2870 */ 2871 if (event->owner) 2872 list_del_init(&event->owner_entry); 2873 mutex_unlock(&owner->perf_event_mutex); 2874 put_task_struct(owner); 2875 } 2876 2877 return perf_event_release_kernel(event); 2878 } 2879 2880 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2881 { 2882 struct perf_event *child; 2883 u64 total = 0; 2884 2885 *enabled = 0; 2886 *running = 0; 2887 2888 mutex_lock(&event->child_mutex); 2889 total += perf_event_read(event); 2890 *enabled += event->total_time_enabled + 2891 atomic64_read(&event->child_total_time_enabled); 2892 *running += event->total_time_running + 2893 atomic64_read(&event->child_total_time_running); 2894 2895 list_for_each_entry(child, &event->child_list, child_list) { 2896 total += perf_event_read(child); 2897 *enabled += child->total_time_enabled; 2898 *running += child->total_time_running; 2899 } 2900 mutex_unlock(&event->child_mutex); 2901 2902 return total; 2903 } 2904 EXPORT_SYMBOL_GPL(perf_event_read_value); 2905 2906 static int perf_event_read_group(struct perf_event *event, 2907 u64 read_format, char __user *buf) 2908 { 2909 struct perf_event *leader = event->group_leader, *sub; 2910 int n = 0, size = 0, ret = -EFAULT; 2911 struct perf_event_context *ctx = leader->ctx; 2912 u64 values[5]; 2913 u64 count, enabled, running; 2914 2915 mutex_lock(&ctx->mutex); 2916 count = perf_event_read_value(leader, &enabled, &running); 2917 2918 values[n++] = 1 + leader->nr_siblings; 2919 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2920 values[n++] = enabled; 2921 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2922 values[n++] = running; 2923 values[n++] = count; 2924 if (read_format & PERF_FORMAT_ID) 2925 values[n++] = primary_event_id(leader); 2926 2927 size = n * sizeof(u64); 2928 2929 if (copy_to_user(buf, values, size)) 2930 goto unlock; 2931 2932 ret = size; 2933 2934 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 2935 n = 0; 2936 2937 values[n++] = perf_event_read_value(sub, &enabled, &running); 2938 if (read_format & PERF_FORMAT_ID) 2939 values[n++] = primary_event_id(sub); 2940 2941 size = n * sizeof(u64); 2942 2943 if (copy_to_user(buf + ret, values, size)) { 2944 ret = -EFAULT; 2945 goto unlock; 2946 } 2947 2948 ret += size; 2949 } 2950 unlock: 2951 mutex_unlock(&ctx->mutex); 2952 2953 return ret; 2954 } 2955 2956 static int perf_event_read_one(struct perf_event *event, 2957 u64 read_format, char __user *buf) 2958 { 2959 u64 enabled, running; 2960 u64 values[4]; 2961 int n = 0; 2962 2963 values[n++] = perf_event_read_value(event, &enabled, &running); 2964 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2965 values[n++] = enabled; 2966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2967 values[n++] = running; 2968 if (read_format & PERF_FORMAT_ID) 2969 values[n++] = primary_event_id(event); 2970 2971 if (copy_to_user(buf, values, n * sizeof(u64))) 2972 return -EFAULT; 2973 2974 return n * sizeof(u64); 2975 } 2976 2977 /* 2978 * Read the performance event - simple non blocking version for now 2979 */ 2980 static ssize_t 2981 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 2982 { 2983 u64 read_format = event->attr.read_format; 2984 int ret; 2985 2986 /* 2987 * Return end-of-file for a read on a event that is in 2988 * error state (i.e. because it was pinned but it couldn't be 2989 * scheduled on to the CPU at some point). 2990 */ 2991 if (event->state == PERF_EVENT_STATE_ERROR) 2992 return 0; 2993 2994 if (count < event->read_size) 2995 return -ENOSPC; 2996 2997 WARN_ON_ONCE(event->ctx->parent_ctx); 2998 if (read_format & PERF_FORMAT_GROUP) 2999 ret = perf_event_read_group(event, read_format, buf); 3000 else 3001 ret = perf_event_read_one(event, read_format, buf); 3002 3003 return ret; 3004 } 3005 3006 static ssize_t 3007 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3008 { 3009 struct perf_event *event = file->private_data; 3010 3011 return perf_read_hw(event, buf, count); 3012 } 3013 3014 static unsigned int perf_poll(struct file *file, poll_table *wait) 3015 { 3016 struct perf_event *event = file->private_data; 3017 struct ring_buffer *rb; 3018 unsigned int events = POLL_HUP; 3019 3020 /* 3021 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3022 * grabs the rb reference but perf_event_set_output() overrides it. 3023 * Here is the timeline for two threads T1, T2: 3024 * t0: T1, rb = rcu_dereference(event->rb) 3025 * t1: T2, old_rb = event->rb 3026 * t2: T2, event->rb = new rb 3027 * t3: T2, ring_buffer_detach(old_rb) 3028 * t4: T1, ring_buffer_attach(rb1) 3029 * t5: T1, poll_wait(event->waitq) 3030 * 3031 * To avoid this problem, we grab mmap_mutex in perf_poll() 3032 * thereby ensuring that the assignment of the new ring buffer 3033 * and the detachment of the old buffer appear atomic to perf_poll() 3034 */ 3035 mutex_lock(&event->mmap_mutex); 3036 3037 rcu_read_lock(); 3038 rb = rcu_dereference(event->rb); 3039 if (rb) { 3040 ring_buffer_attach(event, rb); 3041 events = atomic_xchg(&rb->poll, 0); 3042 } 3043 rcu_read_unlock(); 3044 3045 mutex_unlock(&event->mmap_mutex); 3046 3047 poll_wait(file, &event->waitq, wait); 3048 3049 return events; 3050 } 3051 3052 static void perf_event_reset(struct perf_event *event) 3053 { 3054 (void)perf_event_read(event); 3055 local64_set(&event->count, 0); 3056 perf_event_update_userpage(event); 3057 } 3058 3059 /* 3060 * Holding the top-level event's child_mutex means that any 3061 * descendant process that has inherited this event will block 3062 * in sync_child_event if it goes to exit, thus satisfying the 3063 * task existence requirements of perf_event_enable/disable. 3064 */ 3065 static void perf_event_for_each_child(struct perf_event *event, 3066 void (*func)(struct perf_event *)) 3067 { 3068 struct perf_event *child; 3069 3070 WARN_ON_ONCE(event->ctx->parent_ctx); 3071 mutex_lock(&event->child_mutex); 3072 func(event); 3073 list_for_each_entry(child, &event->child_list, child_list) 3074 func(child); 3075 mutex_unlock(&event->child_mutex); 3076 } 3077 3078 static void perf_event_for_each(struct perf_event *event, 3079 void (*func)(struct perf_event *)) 3080 { 3081 struct perf_event_context *ctx = event->ctx; 3082 struct perf_event *sibling; 3083 3084 WARN_ON_ONCE(ctx->parent_ctx); 3085 mutex_lock(&ctx->mutex); 3086 event = event->group_leader; 3087 3088 perf_event_for_each_child(event, func); 3089 func(event); 3090 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3091 perf_event_for_each_child(event, func); 3092 mutex_unlock(&ctx->mutex); 3093 } 3094 3095 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3096 { 3097 struct perf_event_context *ctx = event->ctx; 3098 int ret = 0; 3099 u64 value; 3100 3101 if (!is_sampling_event(event)) 3102 return -EINVAL; 3103 3104 if (copy_from_user(&value, arg, sizeof(value))) 3105 return -EFAULT; 3106 3107 if (!value) 3108 return -EINVAL; 3109 3110 raw_spin_lock_irq(&ctx->lock); 3111 if (event->attr.freq) { 3112 if (value > sysctl_perf_event_sample_rate) { 3113 ret = -EINVAL; 3114 goto unlock; 3115 } 3116 3117 event->attr.sample_freq = value; 3118 } else { 3119 event->attr.sample_period = value; 3120 event->hw.sample_period = value; 3121 } 3122 unlock: 3123 raw_spin_unlock_irq(&ctx->lock); 3124 3125 return ret; 3126 } 3127 3128 static const struct file_operations perf_fops; 3129 3130 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3131 { 3132 struct file *file; 3133 3134 file = fget_light(fd, fput_needed); 3135 if (!file) 3136 return ERR_PTR(-EBADF); 3137 3138 if (file->f_op != &perf_fops) { 3139 fput_light(file, *fput_needed); 3140 *fput_needed = 0; 3141 return ERR_PTR(-EBADF); 3142 } 3143 3144 return file->private_data; 3145 } 3146 3147 static int perf_event_set_output(struct perf_event *event, 3148 struct perf_event *output_event); 3149 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3150 3151 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3152 { 3153 struct perf_event *event = file->private_data; 3154 void (*func)(struct perf_event *); 3155 u32 flags = arg; 3156 3157 switch (cmd) { 3158 case PERF_EVENT_IOC_ENABLE: 3159 func = perf_event_enable; 3160 break; 3161 case PERF_EVENT_IOC_DISABLE: 3162 func = perf_event_disable; 3163 break; 3164 case PERF_EVENT_IOC_RESET: 3165 func = perf_event_reset; 3166 break; 3167 3168 case PERF_EVENT_IOC_REFRESH: 3169 return perf_event_refresh(event, arg); 3170 3171 case PERF_EVENT_IOC_PERIOD: 3172 return perf_event_period(event, (u64 __user *)arg); 3173 3174 case PERF_EVENT_IOC_SET_OUTPUT: 3175 { 3176 struct perf_event *output_event = NULL; 3177 int fput_needed = 0; 3178 int ret; 3179 3180 if (arg != -1) { 3181 output_event = perf_fget_light(arg, &fput_needed); 3182 if (IS_ERR(output_event)) 3183 return PTR_ERR(output_event); 3184 } 3185 3186 ret = perf_event_set_output(event, output_event); 3187 if (output_event) 3188 fput_light(output_event->filp, fput_needed); 3189 3190 return ret; 3191 } 3192 3193 case PERF_EVENT_IOC_SET_FILTER: 3194 return perf_event_set_filter(event, (void __user *)arg); 3195 3196 default: 3197 return -ENOTTY; 3198 } 3199 3200 if (flags & PERF_IOC_FLAG_GROUP) 3201 perf_event_for_each(event, func); 3202 else 3203 perf_event_for_each_child(event, func); 3204 3205 return 0; 3206 } 3207 3208 int perf_event_task_enable(void) 3209 { 3210 struct perf_event *event; 3211 3212 mutex_lock(¤t->perf_event_mutex); 3213 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3214 perf_event_for_each_child(event, perf_event_enable); 3215 mutex_unlock(¤t->perf_event_mutex); 3216 3217 return 0; 3218 } 3219 3220 int perf_event_task_disable(void) 3221 { 3222 struct perf_event *event; 3223 3224 mutex_lock(¤t->perf_event_mutex); 3225 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3226 perf_event_for_each_child(event, perf_event_disable); 3227 mutex_unlock(¤t->perf_event_mutex); 3228 3229 return 0; 3230 } 3231 3232 #ifndef PERF_EVENT_INDEX_OFFSET 3233 # define PERF_EVENT_INDEX_OFFSET 0 3234 #endif 3235 3236 static int perf_event_index(struct perf_event *event) 3237 { 3238 if (event->hw.state & PERF_HES_STOPPED) 3239 return 0; 3240 3241 if (event->state != PERF_EVENT_STATE_ACTIVE) 3242 return 0; 3243 3244 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3245 } 3246 3247 static void calc_timer_values(struct perf_event *event, 3248 u64 *enabled, 3249 u64 *running) 3250 { 3251 u64 now, ctx_time; 3252 3253 now = perf_clock(); 3254 ctx_time = event->shadow_ctx_time + now; 3255 *enabled = ctx_time - event->tstamp_enabled; 3256 *running = ctx_time - event->tstamp_running; 3257 } 3258 3259 /* 3260 * Callers need to ensure there can be no nesting of this function, otherwise 3261 * the seqlock logic goes bad. We can not serialize this because the arch 3262 * code calls this from NMI context. 3263 */ 3264 void perf_event_update_userpage(struct perf_event *event) 3265 { 3266 struct perf_event_mmap_page *userpg; 3267 struct ring_buffer *rb; 3268 u64 enabled, running; 3269 3270 rcu_read_lock(); 3271 /* 3272 * compute total_time_enabled, total_time_running 3273 * based on snapshot values taken when the event 3274 * was last scheduled in. 3275 * 3276 * we cannot simply called update_context_time() 3277 * because of locking issue as we can be called in 3278 * NMI context 3279 */ 3280 calc_timer_values(event, &enabled, &running); 3281 rb = rcu_dereference(event->rb); 3282 if (!rb) 3283 goto unlock; 3284 3285 userpg = rb->user_page; 3286 3287 /* 3288 * Disable preemption so as to not let the corresponding user-space 3289 * spin too long if we get preempted. 3290 */ 3291 preempt_disable(); 3292 ++userpg->lock; 3293 barrier(); 3294 userpg->index = perf_event_index(event); 3295 userpg->offset = perf_event_count(event); 3296 if (event->state == PERF_EVENT_STATE_ACTIVE) 3297 userpg->offset -= local64_read(&event->hw.prev_count); 3298 3299 userpg->time_enabled = enabled + 3300 atomic64_read(&event->child_total_time_enabled); 3301 3302 userpg->time_running = running + 3303 atomic64_read(&event->child_total_time_running); 3304 3305 barrier(); 3306 ++userpg->lock; 3307 preempt_enable(); 3308 unlock: 3309 rcu_read_unlock(); 3310 } 3311 3312 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3313 { 3314 struct perf_event *event = vma->vm_file->private_data; 3315 struct ring_buffer *rb; 3316 int ret = VM_FAULT_SIGBUS; 3317 3318 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3319 if (vmf->pgoff == 0) 3320 ret = 0; 3321 return ret; 3322 } 3323 3324 rcu_read_lock(); 3325 rb = rcu_dereference(event->rb); 3326 if (!rb) 3327 goto unlock; 3328 3329 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3330 goto unlock; 3331 3332 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3333 if (!vmf->page) 3334 goto unlock; 3335 3336 get_page(vmf->page); 3337 vmf->page->mapping = vma->vm_file->f_mapping; 3338 vmf->page->index = vmf->pgoff; 3339 3340 ret = 0; 3341 unlock: 3342 rcu_read_unlock(); 3343 3344 return ret; 3345 } 3346 3347 static void ring_buffer_attach(struct perf_event *event, 3348 struct ring_buffer *rb) 3349 { 3350 unsigned long flags; 3351 3352 if (!list_empty(&event->rb_entry)) 3353 return; 3354 3355 spin_lock_irqsave(&rb->event_lock, flags); 3356 if (!list_empty(&event->rb_entry)) 3357 goto unlock; 3358 3359 list_add(&event->rb_entry, &rb->event_list); 3360 unlock: 3361 spin_unlock_irqrestore(&rb->event_lock, flags); 3362 } 3363 3364 static void ring_buffer_detach(struct perf_event *event, 3365 struct ring_buffer *rb) 3366 { 3367 unsigned long flags; 3368 3369 if (list_empty(&event->rb_entry)) 3370 return; 3371 3372 spin_lock_irqsave(&rb->event_lock, flags); 3373 list_del_init(&event->rb_entry); 3374 wake_up_all(&event->waitq); 3375 spin_unlock_irqrestore(&rb->event_lock, flags); 3376 } 3377 3378 static void ring_buffer_wakeup(struct perf_event *event) 3379 { 3380 struct ring_buffer *rb; 3381 3382 rcu_read_lock(); 3383 rb = rcu_dereference(event->rb); 3384 if (!rb) 3385 goto unlock; 3386 3387 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3388 wake_up_all(&event->waitq); 3389 3390 unlock: 3391 rcu_read_unlock(); 3392 } 3393 3394 static void rb_free_rcu(struct rcu_head *rcu_head) 3395 { 3396 struct ring_buffer *rb; 3397 3398 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3399 rb_free(rb); 3400 } 3401 3402 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3403 { 3404 struct ring_buffer *rb; 3405 3406 rcu_read_lock(); 3407 rb = rcu_dereference(event->rb); 3408 if (rb) { 3409 if (!atomic_inc_not_zero(&rb->refcount)) 3410 rb = NULL; 3411 } 3412 rcu_read_unlock(); 3413 3414 return rb; 3415 } 3416 3417 static void ring_buffer_put(struct ring_buffer *rb) 3418 { 3419 struct perf_event *event, *n; 3420 unsigned long flags; 3421 3422 if (!atomic_dec_and_test(&rb->refcount)) 3423 return; 3424 3425 spin_lock_irqsave(&rb->event_lock, flags); 3426 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3427 list_del_init(&event->rb_entry); 3428 wake_up_all(&event->waitq); 3429 } 3430 spin_unlock_irqrestore(&rb->event_lock, flags); 3431 3432 call_rcu(&rb->rcu_head, rb_free_rcu); 3433 } 3434 3435 static void perf_mmap_open(struct vm_area_struct *vma) 3436 { 3437 struct perf_event *event = vma->vm_file->private_data; 3438 3439 atomic_inc(&event->mmap_count); 3440 } 3441 3442 static void perf_mmap_close(struct vm_area_struct *vma) 3443 { 3444 struct perf_event *event = vma->vm_file->private_data; 3445 3446 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3447 unsigned long size = perf_data_size(event->rb); 3448 struct user_struct *user = event->mmap_user; 3449 struct ring_buffer *rb = event->rb; 3450 3451 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3452 vma->vm_mm->pinned_vm -= event->mmap_locked; 3453 rcu_assign_pointer(event->rb, NULL); 3454 ring_buffer_detach(event, rb); 3455 mutex_unlock(&event->mmap_mutex); 3456 3457 ring_buffer_put(rb); 3458 free_uid(user); 3459 } 3460 } 3461 3462 static const struct vm_operations_struct perf_mmap_vmops = { 3463 .open = perf_mmap_open, 3464 .close = perf_mmap_close, 3465 .fault = perf_mmap_fault, 3466 .page_mkwrite = perf_mmap_fault, 3467 }; 3468 3469 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3470 { 3471 struct perf_event *event = file->private_data; 3472 unsigned long user_locked, user_lock_limit; 3473 struct user_struct *user = current_user(); 3474 unsigned long locked, lock_limit; 3475 struct ring_buffer *rb; 3476 unsigned long vma_size; 3477 unsigned long nr_pages; 3478 long user_extra, extra; 3479 int ret = 0, flags = 0; 3480 3481 /* 3482 * Don't allow mmap() of inherited per-task counters. This would 3483 * create a performance issue due to all children writing to the 3484 * same rb. 3485 */ 3486 if (event->cpu == -1 && event->attr.inherit) 3487 return -EINVAL; 3488 3489 if (!(vma->vm_flags & VM_SHARED)) 3490 return -EINVAL; 3491 3492 vma_size = vma->vm_end - vma->vm_start; 3493 nr_pages = (vma_size / PAGE_SIZE) - 1; 3494 3495 /* 3496 * If we have rb pages ensure they're a power-of-two number, so we 3497 * can do bitmasks instead of modulo. 3498 */ 3499 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3500 return -EINVAL; 3501 3502 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3503 return -EINVAL; 3504 3505 if (vma->vm_pgoff != 0) 3506 return -EINVAL; 3507 3508 WARN_ON_ONCE(event->ctx->parent_ctx); 3509 mutex_lock(&event->mmap_mutex); 3510 if (event->rb) { 3511 if (event->rb->nr_pages == nr_pages) 3512 atomic_inc(&event->rb->refcount); 3513 else 3514 ret = -EINVAL; 3515 goto unlock; 3516 } 3517 3518 user_extra = nr_pages + 1; 3519 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3520 3521 /* 3522 * Increase the limit linearly with more CPUs: 3523 */ 3524 user_lock_limit *= num_online_cpus(); 3525 3526 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3527 3528 extra = 0; 3529 if (user_locked > user_lock_limit) 3530 extra = user_locked - user_lock_limit; 3531 3532 lock_limit = rlimit(RLIMIT_MEMLOCK); 3533 lock_limit >>= PAGE_SHIFT; 3534 locked = vma->vm_mm->pinned_vm + extra; 3535 3536 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3537 !capable(CAP_IPC_LOCK)) { 3538 ret = -EPERM; 3539 goto unlock; 3540 } 3541 3542 WARN_ON(event->rb); 3543 3544 if (vma->vm_flags & VM_WRITE) 3545 flags |= RING_BUFFER_WRITABLE; 3546 3547 rb = rb_alloc(nr_pages, 3548 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3549 event->cpu, flags); 3550 3551 if (!rb) { 3552 ret = -ENOMEM; 3553 goto unlock; 3554 } 3555 rcu_assign_pointer(event->rb, rb); 3556 3557 atomic_long_add(user_extra, &user->locked_vm); 3558 event->mmap_locked = extra; 3559 event->mmap_user = get_current_user(); 3560 vma->vm_mm->pinned_vm += event->mmap_locked; 3561 3562 unlock: 3563 if (!ret) 3564 atomic_inc(&event->mmap_count); 3565 mutex_unlock(&event->mmap_mutex); 3566 3567 vma->vm_flags |= VM_RESERVED; 3568 vma->vm_ops = &perf_mmap_vmops; 3569 3570 return ret; 3571 } 3572 3573 static int perf_fasync(int fd, struct file *filp, int on) 3574 { 3575 struct inode *inode = filp->f_path.dentry->d_inode; 3576 struct perf_event *event = filp->private_data; 3577 int retval; 3578 3579 mutex_lock(&inode->i_mutex); 3580 retval = fasync_helper(fd, filp, on, &event->fasync); 3581 mutex_unlock(&inode->i_mutex); 3582 3583 if (retval < 0) 3584 return retval; 3585 3586 return 0; 3587 } 3588 3589 static const struct file_operations perf_fops = { 3590 .llseek = no_llseek, 3591 .release = perf_release, 3592 .read = perf_read, 3593 .poll = perf_poll, 3594 .unlocked_ioctl = perf_ioctl, 3595 .compat_ioctl = perf_ioctl, 3596 .mmap = perf_mmap, 3597 .fasync = perf_fasync, 3598 }; 3599 3600 /* 3601 * Perf event wakeup 3602 * 3603 * If there's data, ensure we set the poll() state and publish everything 3604 * to user-space before waking everybody up. 3605 */ 3606 3607 void perf_event_wakeup(struct perf_event *event) 3608 { 3609 ring_buffer_wakeup(event); 3610 3611 if (event->pending_kill) { 3612 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3613 event->pending_kill = 0; 3614 } 3615 } 3616 3617 static void perf_pending_event(struct irq_work *entry) 3618 { 3619 struct perf_event *event = container_of(entry, 3620 struct perf_event, pending); 3621 3622 if (event->pending_disable) { 3623 event->pending_disable = 0; 3624 __perf_event_disable(event); 3625 } 3626 3627 if (event->pending_wakeup) { 3628 event->pending_wakeup = 0; 3629 perf_event_wakeup(event); 3630 } 3631 } 3632 3633 /* 3634 * We assume there is only KVM supporting the callbacks. 3635 * Later on, we might change it to a list if there is 3636 * another virtualization implementation supporting the callbacks. 3637 */ 3638 struct perf_guest_info_callbacks *perf_guest_cbs; 3639 3640 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3641 { 3642 perf_guest_cbs = cbs; 3643 return 0; 3644 } 3645 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3646 3647 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3648 { 3649 perf_guest_cbs = NULL; 3650 return 0; 3651 } 3652 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3653 3654 static void __perf_event_header__init_id(struct perf_event_header *header, 3655 struct perf_sample_data *data, 3656 struct perf_event *event) 3657 { 3658 u64 sample_type = event->attr.sample_type; 3659 3660 data->type = sample_type; 3661 header->size += event->id_header_size; 3662 3663 if (sample_type & PERF_SAMPLE_TID) { 3664 /* namespace issues */ 3665 data->tid_entry.pid = perf_event_pid(event, current); 3666 data->tid_entry.tid = perf_event_tid(event, current); 3667 } 3668 3669 if (sample_type & PERF_SAMPLE_TIME) 3670 data->time = perf_clock(); 3671 3672 if (sample_type & PERF_SAMPLE_ID) 3673 data->id = primary_event_id(event); 3674 3675 if (sample_type & PERF_SAMPLE_STREAM_ID) 3676 data->stream_id = event->id; 3677 3678 if (sample_type & PERF_SAMPLE_CPU) { 3679 data->cpu_entry.cpu = raw_smp_processor_id(); 3680 data->cpu_entry.reserved = 0; 3681 } 3682 } 3683 3684 void perf_event_header__init_id(struct perf_event_header *header, 3685 struct perf_sample_data *data, 3686 struct perf_event *event) 3687 { 3688 if (event->attr.sample_id_all) 3689 __perf_event_header__init_id(header, data, event); 3690 } 3691 3692 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3693 struct perf_sample_data *data) 3694 { 3695 u64 sample_type = data->type; 3696 3697 if (sample_type & PERF_SAMPLE_TID) 3698 perf_output_put(handle, data->tid_entry); 3699 3700 if (sample_type & PERF_SAMPLE_TIME) 3701 perf_output_put(handle, data->time); 3702 3703 if (sample_type & PERF_SAMPLE_ID) 3704 perf_output_put(handle, data->id); 3705 3706 if (sample_type & PERF_SAMPLE_STREAM_ID) 3707 perf_output_put(handle, data->stream_id); 3708 3709 if (sample_type & PERF_SAMPLE_CPU) 3710 perf_output_put(handle, data->cpu_entry); 3711 } 3712 3713 void perf_event__output_id_sample(struct perf_event *event, 3714 struct perf_output_handle *handle, 3715 struct perf_sample_data *sample) 3716 { 3717 if (event->attr.sample_id_all) 3718 __perf_event__output_id_sample(handle, sample); 3719 } 3720 3721 static void perf_output_read_one(struct perf_output_handle *handle, 3722 struct perf_event *event, 3723 u64 enabled, u64 running) 3724 { 3725 u64 read_format = event->attr.read_format; 3726 u64 values[4]; 3727 int n = 0; 3728 3729 values[n++] = perf_event_count(event); 3730 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3731 values[n++] = enabled + 3732 atomic64_read(&event->child_total_time_enabled); 3733 } 3734 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3735 values[n++] = running + 3736 atomic64_read(&event->child_total_time_running); 3737 } 3738 if (read_format & PERF_FORMAT_ID) 3739 values[n++] = primary_event_id(event); 3740 3741 __output_copy(handle, values, n * sizeof(u64)); 3742 } 3743 3744 /* 3745 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3746 */ 3747 static void perf_output_read_group(struct perf_output_handle *handle, 3748 struct perf_event *event, 3749 u64 enabled, u64 running) 3750 { 3751 struct perf_event *leader = event->group_leader, *sub; 3752 u64 read_format = event->attr.read_format; 3753 u64 values[5]; 3754 int n = 0; 3755 3756 values[n++] = 1 + leader->nr_siblings; 3757 3758 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3759 values[n++] = enabled; 3760 3761 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3762 values[n++] = running; 3763 3764 if (leader != event) 3765 leader->pmu->read(leader); 3766 3767 values[n++] = perf_event_count(leader); 3768 if (read_format & PERF_FORMAT_ID) 3769 values[n++] = primary_event_id(leader); 3770 3771 __output_copy(handle, values, n * sizeof(u64)); 3772 3773 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3774 n = 0; 3775 3776 if (sub != event) 3777 sub->pmu->read(sub); 3778 3779 values[n++] = perf_event_count(sub); 3780 if (read_format & PERF_FORMAT_ID) 3781 values[n++] = primary_event_id(sub); 3782 3783 __output_copy(handle, values, n * sizeof(u64)); 3784 } 3785 } 3786 3787 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3788 PERF_FORMAT_TOTAL_TIME_RUNNING) 3789 3790 static void perf_output_read(struct perf_output_handle *handle, 3791 struct perf_event *event) 3792 { 3793 u64 enabled = 0, running = 0; 3794 u64 read_format = event->attr.read_format; 3795 3796 /* 3797 * compute total_time_enabled, total_time_running 3798 * based on snapshot values taken when the event 3799 * was last scheduled in. 3800 * 3801 * we cannot simply called update_context_time() 3802 * because of locking issue as we are called in 3803 * NMI context 3804 */ 3805 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3806 calc_timer_values(event, &enabled, &running); 3807 3808 if (event->attr.read_format & PERF_FORMAT_GROUP) 3809 perf_output_read_group(handle, event, enabled, running); 3810 else 3811 perf_output_read_one(handle, event, enabled, running); 3812 } 3813 3814 void perf_output_sample(struct perf_output_handle *handle, 3815 struct perf_event_header *header, 3816 struct perf_sample_data *data, 3817 struct perf_event *event) 3818 { 3819 u64 sample_type = data->type; 3820 3821 perf_output_put(handle, *header); 3822 3823 if (sample_type & PERF_SAMPLE_IP) 3824 perf_output_put(handle, data->ip); 3825 3826 if (sample_type & PERF_SAMPLE_TID) 3827 perf_output_put(handle, data->tid_entry); 3828 3829 if (sample_type & PERF_SAMPLE_TIME) 3830 perf_output_put(handle, data->time); 3831 3832 if (sample_type & PERF_SAMPLE_ADDR) 3833 perf_output_put(handle, data->addr); 3834 3835 if (sample_type & PERF_SAMPLE_ID) 3836 perf_output_put(handle, data->id); 3837 3838 if (sample_type & PERF_SAMPLE_STREAM_ID) 3839 perf_output_put(handle, data->stream_id); 3840 3841 if (sample_type & PERF_SAMPLE_CPU) 3842 perf_output_put(handle, data->cpu_entry); 3843 3844 if (sample_type & PERF_SAMPLE_PERIOD) 3845 perf_output_put(handle, data->period); 3846 3847 if (sample_type & PERF_SAMPLE_READ) 3848 perf_output_read(handle, event); 3849 3850 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3851 if (data->callchain) { 3852 int size = 1; 3853 3854 if (data->callchain) 3855 size += data->callchain->nr; 3856 3857 size *= sizeof(u64); 3858 3859 __output_copy(handle, data->callchain, size); 3860 } else { 3861 u64 nr = 0; 3862 perf_output_put(handle, nr); 3863 } 3864 } 3865 3866 if (sample_type & PERF_SAMPLE_RAW) { 3867 if (data->raw) { 3868 perf_output_put(handle, data->raw->size); 3869 __output_copy(handle, data->raw->data, 3870 data->raw->size); 3871 } else { 3872 struct { 3873 u32 size; 3874 u32 data; 3875 } raw = { 3876 .size = sizeof(u32), 3877 .data = 0, 3878 }; 3879 perf_output_put(handle, raw); 3880 } 3881 } 3882 3883 if (!event->attr.watermark) { 3884 int wakeup_events = event->attr.wakeup_events; 3885 3886 if (wakeup_events) { 3887 struct ring_buffer *rb = handle->rb; 3888 int events = local_inc_return(&rb->events); 3889 3890 if (events >= wakeup_events) { 3891 local_sub(wakeup_events, &rb->events); 3892 local_inc(&rb->wakeup); 3893 } 3894 } 3895 } 3896 } 3897 3898 void perf_prepare_sample(struct perf_event_header *header, 3899 struct perf_sample_data *data, 3900 struct perf_event *event, 3901 struct pt_regs *regs) 3902 { 3903 u64 sample_type = event->attr.sample_type; 3904 3905 header->type = PERF_RECORD_SAMPLE; 3906 header->size = sizeof(*header) + event->header_size; 3907 3908 header->misc = 0; 3909 header->misc |= perf_misc_flags(regs); 3910 3911 __perf_event_header__init_id(header, data, event); 3912 3913 if (sample_type & PERF_SAMPLE_IP) 3914 data->ip = perf_instruction_pointer(regs); 3915 3916 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3917 int size = 1; 3918 3919 data->callchain = perf_callchain(regs); 3920 3921 if (data->callchain) 3922 size += data->callchain->nr; 3923 3924 header->size += size * sizeof(u64); 3925 } 3926 3927 if (sample_type & PERF_SAMPLE_RAW) { 3928 int size = sizeof(u32); 3929 3930 if (data->raw) 3931 size += data->raw->size; 3932 else 3933 size += sizeof(u32); 3934 3935 WARN_ON_ONCE(size & (sizeof(u64)-1)); 3936 header->size += size; 3937 } 3938 } 3939 3940 static void perf_event_output(struct perf_event *event, 3941 struct perf_sample_data *data, 3942 struct pt_regs *regs) 3943 { 3944 struct perf_output_handle handle; 3945 struct perf_event_header header; 3946 3947 /* protect the callchain buffers */ 3948 rcu_read_lock(); 3949 3950 perf_prepare_sample(&header, data, event, regs); 3951 3952 if (perf_output_begin(&handle, event, header.size)) 3953 goto exit; 3954 3955 perf_output_sample(&handle, &header, data, event); 3956 3957 perf_output_end(&handle); 3958 3959 exit: 3960 rcu_read_unlock(); 3961 } 3962 3963 /* 3964 * read event_id 3965 */ 3966 3967 struct perf_read_event { 3968 struct perf_event_header header; 3969 3970 u32 pid; 3971 u32 tid; 3972 }; 3973 3974 static void 3975 perf_event_read_event(struct perf_event *event, 3976 struct task_struct *task) 3977 { 3978 struct perf_output_handle handle; 3979 struct perf_sample_data sample; 3980 struct perf_read_event read_event = { 3981 .header = { 3982 .type = PERF_RECORD_READ, 3983 .misc = 0, 3984 .size = sizeof(read_event) + event->read_size, 3985 }, 3986 .pid = perf_event_pid(event, task), 3987 .tid = perf_event_tid(event, task), 3988 }; 3989 int ret; 3990 3991 perf_event_header__init_id(&read_event.header, &sample, event); 3992 ret = perf_output_begin(&handle, event, read_event.header.size); 3993 if (ret) 3994 return; 3995 3996 perf_output_put(&handle, read_event); 3997 perf_output_read(&handle, event); 3998 perf_event__output_id_sample(event, &handle, &sample); 3999 4000 perf_output_end(&handle); 4001 } 4002 4003 /* 4004 * task tracking -- fork/exit 4005 * 4006 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4007 */ 4008 4009 struct perf_task_event { 4010 struct task_struct *task; 4011 struct perf_event_context *task_ctx; 4012 4013 struct { 4014 struct perf_event_header header; 4015 4016 u32 pid; 4017 u32 ppid; 4018 u32 tid; 4019 u32 ptid; 4020 u64 time; 4021 } event_id; 4022 }; 4023 4024 static void perf_event_task_output(struct perf_event *event, 4025 struct perf_task_event *task_event) 4026 { 4027 struct perf_output_handle handle; 4028 struct perf_sample_data sample; 4029 struct task_struct *task = task_event->task; 4030 int ret, size = task_event->event_id.header.size; 4031 4032 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4033 4034 ret = perf_output_begin(&handle, event, 4035 task_event->event_id.header.size); 4036 if (ret) 4037 goto out; 4038 4039 task_event->event_id.pid = perf_event_pid(event, task); 4040 task_event->event_id.ppid = perf_event_pid(event, current); 4041 4042 task_event->event_id.tid = perf_event_tid(event, task); 4043 task_event->event_id.ptid = perf_event_tid(event, current); 4044 4045 perf_output_put(&handle, task_event->event_id); 4046 4047 perf_event__output_id_sample(event, &handle, &sample); 4048 4049 perf_output_end(&handle); 4050 out: 4051 task_event->event_id.header.size = size; 4052 } 4053 4054 static int perf_event_task_match(struct perf_event *event) 4055 { 4056 if (event->state < PERF_EVENT_STATE_INACTIVE) 4057 return 0; 4058 4059 if (!event_filter_match(event)) 4060 return 0; 4061 4062 if (event->attr.comm || event->attr.mmap || 4063 event->attr.mmap_data || event->attr.task) 4064 return 1; 4065 4066 return 0; 4067 } 4068 4069 static void perf_event_task_ctx(struct perf_event_context *ctx, 4070 struct perf_task_event *task_event) 4071 { 4072 struct perf_event *event; 4073 4074 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4075 if (perf_event_task_match(event)) 4076 perf_event_task_output(event, task_event); 4077 } 4078 } 4079 4080 static void perf_event_task_event(struct perf_task_event *task_event) 4081 { 4082 struct perf_cpu_context *cpuctx; 4083 struct perf_event_context *ctx; 4084 struct pmu *pmu; 4085 int ctxn; 4086 4087 rcu_read_lock(); 4088 list_for_each_entry_rcu(pmu, &pmus, entry) { 4089 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4090 if (cpuctx->active_pmu != pmu) 4091 goto next; 4092 perf_event_task_ctx(&cpuctx->ctx, task_event); 4093 4094 ctx = task_event->task_ctx; 4095 if (!ctx) { 4096 ctxn = pmu->task_ctx_nr; 4097 if (ctxn < 0) 4098 goto next; 4099 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4100 } 4101 if (ctx) 4102 perf_event_task_ctx(ctx, task_event); 4103 next: 4104 put_cpu_ptr(pmu->pmu_cpu_context); 4105 } 4106 rcu_read_unlock(); 4107 } 4108 4109 static void perf_event_task(struct task_struct *task, 4110 struct perf_event_context *task_ctx, 4111 int new) 4112 { 4113 struct perf_task_event task_event; 4114 4115 if (!atomic_read(&nr_comm_events) && 4116 !atomic_read(&nr_mmap_events) && 4117 !atomic_read(&nr_task_events)) 4118 return; 4119 4120 task_event = (struct perf_task_event){ 4121 .task = task, 4122 .task_ctx = task_ctx, 4123 .event_id = { 4124 .header = { 4125 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4126 .misc = 0, 4127 .size = sizeof(task_event.event_id), 4128 }, 4129 /* .pid */ 4130 /* .ppid */ 4131 /* .tid */ 4132 /* .ptid */ 4133 .time = perf_clock(), 4134 }, 4135 }; 4136 4137 perf_event_task_event(&task_event); 4138 } 4139 4140 void perf_event_fork(struct task_struct *task) 4141 { 4142 perf_event_task(task, NULL, 1); 4143 } 4144 4145 /* 4146 * comm tracking 4147 */ 4148 4149 struct perf_comm_event { 4150 struct task_struct *task; 4151 char *comm; 4152 int comm_size; 4153 4154 struct { 4155 struct perf_event_header header; 4156 4157 u32 pid; 4158 u32 tid; 4159 } event_id; 4160 }; 4161 4162 static void perf_event_comm_output(struct perf_event *event, 4163 struct perf_comm_event *comm_event) 4164 { 4165 struct perf_output_handle handle; 4166 struct perf_sample_data sample; 4167 int size = comm_event->event_id.header.size; 4168 int ret; 4169 4170 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4171 ret = perf_output_begin(&handle, event, 4172 comm_event->event_id.header.size); 4173 4174 if (ret) 4175 goto out; 4176 4177 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4178 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4179 4180 perf_output_put(&handle, comm_event->event_id); 4181 __output_copy(&handle, comm_event->comm, 4182 comm_event->comm_size); 4183 4184 perf_event__output_id_sample(event, &handle, &sample); 4185 4186 perf_output_end(&handle); 4187 out: 4188 comm_event->event_id.header.size = size; 4189 } 4190 4191 static int perf_event_comm_match(struct perf_event *event) 4192 { 4193 if (event->state < PERF_EVENT_STATE_INACTIVE) 4194 return 0; 4195 4196 if (!event_filter_match(event)) 4197 return 0; 4198 4199 if (event->attr.comm) 4200 return 1; 4201 4202 return 0; 4203 } 4204 4205 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4206 struct perf_comm_event *comm_event) 4207 { 4208 struct perf_event *event; 4209 4210 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4211 if (perf_event_comm_match(event)) 4212 perf_event_comm_output(event, comm_event); 4213 } 4214 } 4215 4216 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4217 { 4218 struct perf_cpu_context *cpuctx; 4219 struct perf_event_context *ctx; 4220 char comm[TASK_COMM_LEN]; 4221 unsigned int size; 4222 struct pmu *pmu; 4223 int ctxn; 4224 4225 memset(comm, 0, sizeof(comm)); 4226 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4227 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4228 4229 comm_event->comm = comm; 4230 comm_event->comm_size = size; 4231 4232 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4233 rcu_read_lock(); 4234 list_for_each_entry_rcu(pmu, &pmus, entry) { 4235 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4236 if (cpuctx->active_pmu != pmu) 4237 goto next; 4238 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4239 4240 ctxn = pmu->task_ctx_nr; 4241 if (ctxn < 0) 4242 goto next; 4243 4244 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4245 if (ctx) 4246 perf_event_comm_ctx(ctx, comm_event); 4247 next: 4248 put_cpu_ptr(pmu->pmu_cpu_context); 4249 } 4250 rcu_read_unlock(); 4251 } 4252 4253 void perf_event_comm(struct task_struct *task) 4254 { 4255 struct perf_comm_event comm_event; 4256 struct perf_event_context *ctx; 4257 int ctxn; 4258 4259 for_each_task_context_nr(ctxn) { 4260 ctx = task->perf_event_ctxp[ctxn]; 4261 if (!ctx) 4262 continue; 4263 4264 perf_event_enable_on_exec(ctx); 4265 } 4266 4267 if (!atomic_read(&nr_comm_events)) 4268 return; 4269 4270 comm_event = (struct perf_comm_event){ 4271 .task = task, 4272 /* .comm */ 4273 /* .comm_size */ 4274 .event_id = { 4275 .header = { 4276 .type = PERF_RECORD_COMM, 4277 .misc = 0, 4278 /* .size */ 4279 }, 4280 /* .pid */ 4281 /* .tid */ 4282 }, 4283 }; 4284 4285 perf_event_comm_event(&comm_event); 4286 } 4287 4288 /* 4289 * mmap tracking 4290 */ 4291 4292 struct perf_mmap_event { 4293 struct vm_area_struct *vma; 4294 4295 const char *file_name; 4296 int file_size; 4297 4298 struct { 4299 struct perf_event_header header; 4300 4301 u32 pid; 4302 u32 tid; 4303 u64 start; 4304 u64 len; 4305 u64 pgoff; 4306 } event_id; 4307 }; 4308 4309 static void perf_event_mmap_output(struct perf_event *event, 4310 struct perf_mmap_event *mmap_event) 4311 { 4312 struct perf_output_handle handle; 4313 struct perf_sample_data sample; 4314 int size = mmap_event->event_id.header.size; 4315 int ret; 4316 4317 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4318 ret = perf_output_begin(&handle, event, 4319 mmap_event->event_id.header.size); 4320 if (ret) 4321 goto out; 4322 4323 mmap_event->event_id.pid = perf_event_pid(event, current); 4324 mmap_event->event_id.tid = perf_event_tid(event, current); 4325 4326 perf_output_put(&handle, mmap_event->event_id); 4327 __output_copy(&handle, mmap_event->file_name, 4328 mmap_event->file_size); 4329 4330 perf_event__output_id_sample(event, &handle, &sample); 4331 4332 perf_output_end(&handle); 4333 out: 4334 mmap_event->event_id.header.size = size; 4335 } 4336 4337 static int perf_event_mmap_match(struct perf_event *event, 4338 struct perf_mmap_event *mmap_event, 4339 int executable) 4340 { 4341 if (event->state < PERF_EVENT_STATE_INACTIVE) 4342 return 0; 4343 4344 if (!event_filter_match(event)) 4345 return 0; 4346 4347 if ((!executable && event->attr.mmap_data) || 4348 (executable && event->attr.mmap)) 4349 return 1; 4350 4351 return 0; 4352 } 4353 4354 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4355 struct perf_mmap_event *mmap_event, 4356 int executable) 4357 { 4358 struct perf_event *event; 4359 4360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4361 if (perf_event_mmap_match(event, mmap_event, executable)) 4362 perf_event_mmap_output(event, mmap_event); 4363 } 4364 } 4365 4366 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4367 { 4368 struct perf_cpu_context *cpuctx; 4369 struct perf_event_context *ctx; 4370 struct vm_area_struct *vma = mmap_event->vma; 4371 struct file *file = vma->vm_file; 4372 unsigned int size; 4373 char tmp[16]; 4374 char *buf = NULL; 4375 const char *name; 4376 struct pmu *pmu; 4377 int ctxn; 4378 4379 memset(tmp, 0, sizeof(tmp)); 4380 4381 if (file) { 4382 /* 4383 * d_path works from the end of the rb backwards, so we 4384 * need to add enough zero bytes after the string to handle 4385 * the 64bit alignment we do later. 4386 */ 4387 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4388 if (!buf) { 4389 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4390 goto got_name; 4391 } 4392 name = d_path(&file->f_path, buf, PATH_MAX); 4393 if (IS_ERR(name)) { 4394 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4395 goto got_name; 4396 } 4397 } else { 4398 if (arch_vma_name(mmap_event->vma)) { 4399 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4400 sizeof(tmp)); 4401 goto got_name; 4402 } 4403 4404 if (!vma->vm_mm) { 4405 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4406 goto got_name; 4407 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4408 vma->vm_end >= vma->vm_mm->brk) { 4409 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4410 goto got_name; 4411 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4412 vma->vm_end >= vma->vm_mm->start_stack) { 4413 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4414 goto got_name; 4415 } 4416 4417 name = strncpy(tmp, "//anon", sizeof(tmp)); 4418 goto got_name; 4419 } 4420 4421 got_name: 4422 size = ALIGN(strlen(name)+1, sizeof(u64)); 4423 4424 mmap_event->file_name = name; 4425 mmap_event->file_size = size; 4426 4427 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4428 4429 rcu_read_lock(); 4430 list_for_each_entry_rcu(pmu, &pmus, entry) { 4431 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4432 if (cpuctx->active_pmu != pmu) 4433 goto next; 4434 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4435 vma->vm_flags & VM_EXEC); 4436 4437 ctxn = pmu->task_ctx_nr; 4438 if (ctxn < 0) 4439 goto next; 4440 4441 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4442 if (ctx) { 4443 perf_event_mmap_ctx(ctx, mmap_event, 4444 vma->vm_flags & VM_EXEC); 4445 } 4446 next: 4447 put_cpu_ptr(pmu->pmu_cpu_context); 4448 } 4449 rcu_read_unlock(); 4450 4451 kfree(buf); 4452 } 4453 4454 void perf_event_mmap(struct vm_area_struct *vma) 4455 { 4456 struct perf_mmap_event mmap_event; 4457 4458 if (!atomic_read(&nr_mmap_events)) 4459 return; 4460 4461 mmap_event = (struct perf_mmap_event){ 4462 .vma = vma, 4463 /* .file_name */ 4464 /* .file_size */ 4465 .event_id = { 4466 .header = { 4467 .type = PERF_RECORD_MMAP, 4468 .misc = PERF_RECORD_MISC_USER, 4469 /* .size */ 4470 }, 4471 /* .pid */ 4472 /* .tid */ 4473 .start = vma->vm_start, 4474 .len = vma->vm_end - vma->vm_start, 4475 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4476 }, 4477 }; 4478 4479 perf_event_mmap_event(&mmap_event); 4480 } 4481 4482 /* 4483 * IRQ throttle logging 4484 */ 4485 4486 static void perf_log_throttle(struct perf_event *event, int enable) 4487 { 4488 struct perf_output_handle handle; 4489 struct perf_sample_data sample; 4490 int ret; 4491 4492 struct { 4493 struct perf_event_header header; 4494 u64 time; 4495 u64 id; 4496 u64 stream_id; 4497 } throttle_event = { 4498 .header = { 4499 .type = PERF_RECORD_THROTTLE, 4500 .misc = 0, 4501 .size = sizeof(throttle_event), 4502 }, 4503 .time = perf_clock(), 4504 .id = primary_event_id(event), 4505 .stream_id = event->id, 4506 }; 4507 4508 if (enable) 4509 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4510 4511 perf_event_header__init_id(&throttle_event.header, &sample, event); 4512 4513 ret = perf_output_begin(&handle, event, 4514 throttle_event.header.size); 4515 if (ret) 4516 return; 4517 4518 perf_output_put(&handle, throttle_event); 4519 perf_event__output_id_sample(event, &handle, &sample); 4520 perf_output_end(&handle); 4521 } 4522 4523 /* 4524 * Generic event overflow handling, sampling. 4525 */ 4526 4527 static int __perf_event_overflow(struct perf_event *event, 4528 int throttle, struct perf_sample_data *data, 4529 struct pt_regs *regs) 4530 { 4531 int events = atomic_read(&event->event_limit); 4532 struct hw_perf_event *hwc = &event->hw; 4533 u64 seq; 4534 int ret = 0; 4535 4536 /* 4537 * Non-sampling counters might still use the PMI to fold short 4538 * hardware counters, ignore those. 4539 */ 4540 if (unlikely(!is_sampling_event(event))) 4541 return 0; 4542 4543 seq = __this_cpu_read(perf_throttled_seq); 4544 if (seq != hwc->interrupts_seq) { 4545 hwc->interrupts_seq = seq; 4546 hwc->interrupts = 1; 4547 } else { 4548 hwc->interrupts++; 4549 if (unlikely(throttle 4550 && hwc->interrupts >= max_samples_per_tick)) { 4551 __this_cpu_inc(perf_throttled_count); 4552 hwc->interrupts = MAX_INTERRUPTS; 4553 perf_log_throttle(event, 0); 4554 ret = 1; 4555 } 4556 } 4557 4558 if (event->attr.freq) { 4559 u64 now = perf_clock(); 4560 s64 delta = now - hwc->freq_time_stamp; 4561 4562 hwc->freq_time_stamp = now; 4563 4564 if (delta > 0 && delta < 2*TICK_NSEC) 4565 perf_adjust_period(event, delta, hwc->last_period); 4566 } 4567 4568 /* 4569 * XXX event_limit might not quite work as expected on inherited 4570 * events 4571 */ 4572 4573 event->pending_kill = POLL_IN; 4574 if (events && atomic_dec_and_test(&event->event_limit)) { 4575 ret = 1; 4576 event->pending_kill = POLL_HUP; 4577 event->pending_disable = 1; 4578 irq_work_queue(&event->pending); 4579 } 4580 4581 if (event->overflow_handler) 4582 event->overflow_handler(event, data, regs); 4583 else 4584 perf_event_output(event, data, regs); 4585 4586 if (event->fasync && event->pending_kill) { 4587 event->pending_wakeup = 1; 4588 irq_work_queue(&event->pending); 4589 } 4590 4591 return ret; 4592 } 4593 4594 int perf_event_overflow(struct perf_event *event, 4595 struct perf_sample_data *data, 4596 struct pt_regs *regs) 4597 { 4598 return __perf_event_overflow(event, 1, data, regs); 4599 } 4600 4601 /* 4602 * Generic software event infrastructure 4603 */ 4604 4605 struct swevent_htable { 4606 struct swevent_hlist *swevent_hlist; 4607 struct mutex hlist_mutex; 4608 int hlist_refcount; 4609 4610 /* Recursion avoidance in each contexts */ 4611 int recursion[PERF_NR_CONTEXTS]; 4612 }; 4613 4614 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4615 4616 /* 4617 * We directly increment event->count and keep a second value in 4618 * event->hw.period_left to count intervals. This period event 4619 * is kept in the range [-sample_period, 0] so that we can use the 4620 * sign as trigger. 4621 */ 4622 4623 static u64 perf_swevent_set_period(struct perf_event *event) 4624 { 4625 struct hw_perf_event *hwc = &event->hw; 4626 u64 period = hwc->last_period; 4627 u64 nr, offset; 4628 s64 old, val; 4629 4630 hwc->last_period = hwc->sample_period; 4631 4632 again: 4633 old = val = local64_read(&hwc->period_left); 4634 if (val < 0) 4635 return 0; 4636 4637 nr = div64_u64(period + val, period); 4638 offset = nr * period; 4639 val -= offset; 4640 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4641 goto again; 4642 4643 return nr; 4644 } 4645 4646 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4647 struct perf_sample_data *data, 4648 struct pt_regs *regs) 4649 { 4650 struct hw_perf_event *hwc = &event->hw; 4651 int throttle = 0; 4652 4653 if (!overflow) 4654 overflow = perf_swevent_set_period(event); 4655 4656 if (hwc->interrupts == MAX_INTERRUPTS) 4657 return; 4658 4659 for (; overflow; overflow--) { 4660 if (__perf_event_overflow(event, throttle, 4661 data, regs)) { 4662 /* 4663 * We inhibit the overflow from happening when 4664 * hwc->interrupts == MAX_INTERRUPTS. 4665 */ 4666 break; 4667 } 4668 throttle = 1; 4669 } 4670 } 4671 4672 static void perf_swevent_event(struct perf_event *event, u64 nr, 4673 struct perf_sample_data *data, 4674 struct pt_regs *regs) 4675 { 4676 struct hw_perf_event *hwc = &event->hw; 4677 4678 local64_add(nr, &event->count); 4679 4680 if (!regs) 4681 return; 4682 4683 if (!is_sampling_event(event)) 4684 return; 4685 4686 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4687 data->period = nr; 4688 return perf_swevent_overflow(event, 1, data, regs); 4689 } else 4690 data->period = event->hw.last_period; 4691 4692 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4693 return perf_swevent_overflow(event, 1, data, regs); 4694 4695 if (local64_add_negative(nr, &hwc->period_left)) 4696 return; 4697 4698 perf_swevent_overflow(event, 0, data, regs); 4699 } 4700 4701 static int perf_exclude_event(struct perf_event *event, 4702 struct pt_regs *regs) 4703 { 4704 if (event->hw.state & PERF_HES_STOPPED) 4705 return 1; 4706 4707 if (regs) { 4708 if (event->attr.exclude_user && user_mode(regs)) 4709 return 1; 4710 4711 if (event->attr.exclude_kernel && !user_mode(regs)) 4712 return 1; 4713 } 4714 4715 return 0; 4716 } 4717 4718 static int perf_swevent_match(struct perf_event *event, 4719 enum perf_type_id type, 4720 u32 event_id, 4721 struct perf_sample_data *data, 4722 struct pt_regs *regs) 4723 { 4724 if (event->attr.type != type) 4725 return 0; 4726 4727 if (event->attr.config != event_id) 4728 return 0; 4729 4730 if (perf_exclude_event(event, regs)) 4731 return 0; 4732 4733 return 1; 4734 } 4735 4736 static inline u64 swevent_hash(u64 type, u32 event_id) 4737 { 4738 u64 val = event_id | (type << 32); 4739 4740 return hash_64(val, SWEVENT_HLIST_BITS); 4741 } 4742 4743 static inline struct hlist_head * 4744 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4745 { 4746 u64 hash = swevent_hash(type, event_id); 4747 4748 return &hlist->heads[hash]; 4749 } 4750 4751 /* For the read side: events when they trigger */ 4752 static inline struct hlist_head * 4753 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4754 { 4755 struct swevent_hlist *hlist; 4756 4757 hlist = rcu_dereference(swhash->swevent_hlist); 4758 if (!hlist) 4759 return NULL; 4760 4761 return __find_swevent_head(hlist, type, event_id); 4762 } 4763 4764 /* For the event head insertion and removal in the hlist */ 4765 static inline struct hlist_head * 4766 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4767 { 4768 struct swevent_hlist *hlist; 4769 u32 event_id = event->attr.config; 4770 u64 type = event->attr.type; 4771 4772 /* 4773 * Event scheduling is always serialized against hlist allocation 4774 * and release. Which makes the protected version suitable here. 4775 * The context lock guarantees that. 4776 */ 4777 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4778 lockdep_is_held(&event->ctx->lock)); 4779 if (!hlist) 4780 return NULL; 4781 4782 return __find_swevent_head(hlist, type, event_id); 4783 } 4784 4785 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4786 u64 nr, 4787 struct perf_sample_data *data, 4788 struct pt_regs *regs) 4789 { 4790 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4791 struct perf_event *event; 4792 struct hlist_node *node; 4793 struct hlist_head *head; 4794 4795 rcu_read_lock(); 4796 head = find_swevent_head_rcu(swhash, type, event_id); 4797 if (!head) 4798 goto end; 4799 4800 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4801 if (perf_swevent_match(event, type, event_id, data, regs)) 4802 perf_swevent_event(event, nr, data, regs); 4803 } 4804 end: 4805 rcu_read_unlock(); 4806 } 4807 4808 int perf_swevent_get_recursion_context(void) 4809 { 4810 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4811 4812 return get_recursion_context(swhash->recursion); 4813 } 4814 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4815 4816 inline void perf_swevent_put_recursion_context(int rctx) 4817 { 4818 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4819 4820 put_recursion_context(swhash->recursion, rctx); 4821 } 4822 4823 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4824 { 4825 struct perf_sample_data data; 4826 int rctx; 4827 4828 preempt_disable_notrace(); 4829 rctx = perf_swevent_get_recursion_context(); 4830 if (rctx < 0) 4831 return; 4832 4833 perf_sample_data_init(&data, addr); 4834 4835 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4836 4837 perf_swevent_put_recursion_context(rctx); 4838 preempt_enable_notrace(); 4839 } 4840 4841 static void perf_swevent_read(struct perf_event *event) 4842 { 4843 } 4844 4845 static int perf_swevent_add(struct perf_event *event, int flags) 4846 { 4847 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4848 struct hw_perf_event *hwc = &event->hw; 4849 struct hlist_head *head; 4850 4851 if (is_sampling_event(event)) { 4852 hwc->last_period = hwc->sample_period; 4853 perf_swevent_set_period(event); 4854 } 4855 4856 hwc->state = !(flags & PERF_EF_START); 4857 4858 head = find_swevent_head(swhash, event); 4859 if (WARN_ON_ONCE(!head)) 4860 return -EINVAL; 4861 4862 hlist_add_head_rcu(&event->hlist_entry, head); 4863 4864 return 0; 4865 } 4866 4867 static void perf_swevent_del(struct perf_event *event, int flags) 4868 { 4869 hlist_del_rcu(&event->hlist_entry); 4870 } 4871 4872 static void perf_swevent_start(struct perf_event *event, int flags) 4873 { 4874 event->hw.state = 0; 4875 } 4876 4877 static void perf_swevent_stop(struct perf_event *event, int flags) 4878 { 4879 event->hw.state = PERF_HES_STOPPED; 4880 } 4881 4882 /* Deref the hlist from the update side */ 4883 static inline struct swevent_hlist * 4884 swevent_hlist_deref(struct swevent_htable *swhash) 4885 { 4886 return rcu_dereference_protected(swhash->swevent_hlist, 4887 lockdep_is_held(&swhash->hlist_mutex)); 4888 } 4889 4890 static void swevent_hlist_release(struct swevent_htable *swhash) 4891 { 4892 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4893 4894 if (!hlist) 4895 return; 4896 4897 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4898 kfree_rcu(hlist, rcu_head); 4899 } 4900 4901 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4902 { 4903 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4904 4905 mutex_lock(&swhash->hlist_mutex); 4906 4907 if (!--swhash->hlist_refcount) 4908 swevent_hlist_release(swhash); 4909 4910 mutex_unlock(&swhash->hlist_mutex); 4911 } 4912 4913 static void swevent_hlist_put(struct perf_event *event) 4914 { 4915 int cpu; 4916 4917 if (event->cpu != -1) { 4918 swevent_hlist_put_cpu(event, event->cpu); 4919 return; 4920 } 4921 4922 for_each_possible_cpu(cpu) 4923 swevent_hlist_put_cpu(event, cpu); 4924 } 4925 4926 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 4927 { 4928 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4929 int err = 0; 4930 4931 mutex_lock(&swhash->hlist_mutex); 4932 4933 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 4934 struct swevent_hlist *hlist; 4935 4936 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 4937 if (!hlist) { 4938 err = -ENOMEM; 4939 goto exit; 4940 } 4941 rcu_assign_pointer(swhash->swevent_hlist, hlist); 4942 } 4943 swhash->hlist_refcount++; 4944 exit: 4945 mutex_unlock(&swhash->hlist_mutex); 4946 4947 return err; 4948 } 4949 4950 static int swevent_hlist_get(struct perf_event *event) 4951 { 4952 int err; 4953 int cpu, failed_cpu; 4954 4955 if (event->cpu != -1) 4956 return swevent_hlist_get_cpu(event, event->cpu); 4957 4958 get_online_cpus(); 4959 for_each_possible_cpu(cpu) { 4960 err = swevent_hlist_get_cpu(event, cpu); 4961 if (err) { 4962 failed_cpu = cpu; 4963 goto fail; 4964 } 4965 } 4966 put_online_cpus(); 4967 4968 return 0; 4969 fail: 4970 for_each_possible_cpu(cpu) { 4971 if (cpu == failed_cpu) 4972 break; 4973 swevent_hlist_put_cpu(event, cpu); 4974 } 4975 4976 put_online_cpus(); 4977 return err; 4978 } 4979 4980 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 4981 4982 static void sw_perf_event_destroy(struct perf_event *event) 4983 { 4984 u64 event_id = event->attr.config; 4985 4986 WARN_ON(event->parent); 4987 4988 jump_label_dec(&perf_swevent_enabled[event_id]); 4989 swevent_hlist_put(event); 4990 } 4991 4992 static int perf_swevent_init(struct perf_event *event) 4993 { 4994 int event_id = event->attr.config; 4995 4996 if (event->attr.type != PERF_TYPE_SOFTWARE) 4997 return -ENOENT; 4998 4999 switch (event_id) { 5000 case PERF_COUNT_SW_CPU_CLOCK: 5001 case PERF_COUNT_SW_TASK_CLOCK: 5002 return -ENOENT; 5003 5004 default: 5005 break; 5006 } 5007 5008 if (event_id >= PERF_COUNT_SW_MAX) 5009 return -ENOENT; 5010 5011 if (!event->parent) { 5012 int err; 5013 5014 err = swevent_hlist_get(event); 5015 if (err) 5016 return err; 5017 5018 jump_label_inc(&perf_swevent_enabled[event_id]); 5019 event->destroy = sw_perf_event_destroy; 5020 } 5021 5022 return 0; 5023 } 5024 5025 static struct pmu perf_swevent = { 5026 .task_ctx_nr = perf_sw_context, 5027 5028 .event_init = perf_swevent_init, 5029 .add = perf_swevent_add, 5030 .del = perf_swevent_del, 5031 .start = perf_swevent_start, 5032 .stop = perf_swevent_stop, 5033 .read = perf_swevent_read, 5034 }; 5035 5036 #ifdef CONFIG_EVENT_TRACING 5037 5038 static int perf_tp_filter_match(struct perf_event *event, 5039 struct perf_sample_data *data) 5040 { 5041 void *record = data->raw->data; 5042 5043 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5044 return 1; 5045 return 0; 5046 } 5047 5048 static int perf_tp_event_match(struct perf_event *event, 5049 struct perf_sample_data *data, 5050 struct pt_regs *regs) 5051 { 5052 if (event->hw.state & PERF_HES_STOPPED) 5053 return 0; 5054 /* 5055 * All tracepoints are from kernel-space. 5056 */ 5057 if (event->attr.exclude_kernel) 5058 return 0; 5059 5060 if (!perf_tp_filter_match(event, data)) 5061 return 0; 5062 5063 return 1; 5064 } 5065 5066 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5067 struct pt_regs *regs, struct hlist_head *head, int rctx) 5068 { 5069 struct perf_sample_data data; 5070 struct perf_event *event; 5071 struct hlist_node *node; 5072 5073 struct perf_raw_record raw = { 5074 .size = entry_size, 5075 .data = record, 5076 }; 5077 5078 perf_sample_data_init(&data, addr); 5079 data.raw = &raw; 5080 5081 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5082 if (perf_tp_event_match(event, &data, regs)) 5083 perf_swevent_event(event, count, &data, regs); 5084 } 5085 5086 perf_swevent_put_recursion_context(rctx); 5087 } 5088 EXPORT_SYMBOL_GPL(perf_tp_event); 5089 5090 static void tp_perf_event_destroy(struct perf_event *event) 5091 { 5092 perf_trace_destroy(event); 5093 } 5094 5095 static int perf_tp_event_init(struct perf_event *event) 5096 { 5097 int err; 5098 5099 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5100 return -ENOENT; 5101 5102 err = perf_trace_init(event); 5103 if (err) 5104 return err; 5105 5106 event->destroy = tp_perf_event_destroy; 5107 5108 return 0; 5109 } 5110 5111 static struct pmu perf_tracepoint = { 5112 .task_ctx_nr = perf_sw_context, 5113 5114 .event_init = perf_tp_event_init, 5115 .add = perf_trace_add, 5116 .del = perf_trace_del, 5117 .start = perf_swevent_start, 5118 .stop = perf_swevent_stop, 5119 .read = perf_swevent_read, 5120 }; 5121 5122 static inline void perf_tp_register(void) 5123 { 5124 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5125 } 5126 5127 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5128 { 5129 char *filter_str; 5130 int ret; 5131 5132 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5133 return -EINVAL; 5134 5135 filter_str = strndup_user(arg, PAGE_SIZE); 5136 if (IS_ERR(filter_str)) 5137 return PTR_ERR(filter_str); 5138 5139 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5140 5141 kfree(filter_str); 5142 return ret; 5143 } 5144 5145 static void perf_event_free_filter(struct perf_event *event) 5146 { 5147 ftrace_profile_free_filter(event); 5148 } 5149 5150 #else 5151 5152 static inline void perf_tp_register(void) 5153 { 5154 } 5155 5156 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5157 { 5158 return -ENOENT; 5159 } 5160 5161 static void perf_event_free_filter(struct perf_event *event) 5162 { 5163 } 5164 5165 #endif /* CONFIG_EVENT_TRACING */ 5166 5167 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5168 void perf_bp_event(struct perf_event *bp, void *data) 5169 { 5170 struct perf_sample_data sample; 5171 struct pt_regs *regs = data; 5172 5173 perf_sample_data_init(&sample, bp->attr.bp_addr); 5174 5175 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5176 perf_swevent_event(bp, 1, &sample, regs); 5177 } 5178 #endif 5179 5180 /* 5181 * hrtimer based swevent callback 5182 */ 5183 5184 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5185 { 5186 enum hrtimer_restart ret = HRTIMER_RESTART; 5187 struct perf_sample_data data; 5188 struct pt_regs *regs; 5189 struct perf_event *event; 5190 u64 period; 5191 5192 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5193 5194 if (event->state != PERF_EVENT_STATE_ACTIVE) 5195 return HRTIMER_NORESTART; 5196 5197 event->pmu->read(event); 5198 5199 perf_sample_data_init(&data, 0); 5200 data.period = event->hw.last_period; 5201 regs = get_irq_regs(); 5202 5203 if (regs && !perf_exclude_event(event, regs)) { 5204 if (!(event->attr.exclude_idle && is_idle_task(current))) 5205 if (perf_event_overflow(event, &data, regs)) 5206 ret = HRTIMER_NORESTART; 5207 } 5208 5209 period = max_t(u64, 10000, event->hw.sample_period); 5210 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5211 5212 return ret; 5213 } 5214 5215 static void perf_swevent_start_hrtimer(struct perf_event *event) 5216 { 5217 struct hw_perf_event *hwc = &event->hw; 5218 s64 period; 5219 5220 if (!is_sampling_event(event)) 5221 return; 5222 5223 period = local64_read(&hwc->period_left); 5224 if (period) { 5225 if (period < 0) 5226 period = 10000; 5227 5228 local64_set(&hwc->period_left, 0); 5229 } else { 5230 period = max_t(u64, 10000, hwc->sample_period); 5231 } 5232 __hrtimer_start_range_ns(&hwc->hrtimer, 5233 ns_to_ktime(period), 0, 5234 HRTIMER_MODE_REL_PINNED, 0); 5235 } 5236 5237 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5238 { 5239 struct hw_perf_event *hwc = &event->hw; 5240 5241 if (is_sampling_event(event)) { 5242 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5243 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5244 5245 hrtimer_cancel(&hwc->hrtimer); 5246 } 5247 } 5248 5249 static void perf_swevent_init_hrtimer(struct perf_event *event) 5250 { 5251 struct hw_perf_event *hwc = &event->hw; 5252 5253 if (!is_sampling_event(event)) 5254 return; 5255 5256 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5257 hwc->hrtimer.function = perf_swevent_hrtimer; 5258 5259 /* 5260 * Since hrtimers have a fixed rate, we can do a static freq->period 5261 * mapping and avoid the whole period adjust feedback stuff. 5262 */ 5263 if (event->attr.freq) { 5264 long freq = event->attr.sample_freq; 5265 5266 event->attr.sample_period = NSEC_PER_SEC / freq; 5267 hwc->sample_period = event->attr.sample_period; 5268 local64_set(&hwc->period_left, hwc->sample_period); 5269 event->attr.freq = 0; 5270 } 5271 } 5272 5273 /* 5274 * Software event: cpu wall time clock 5275 */ 5276 5277 static void cpu_clock_event_update(struct perf_event *event) 5278 { 5279 s64 prev; 5280 u64 now; 5281 5282 now = local_clock(); 5283 prev = local64_xchg(&event->hw.prev_count, now); 5284 local64_add(now - prev, &event->count); 5285 } 5286 5287 static void cpu_clock_event_start(struct perf_event *event, int flags) 5288 { 5289 local64_set(&event->hw.prev_count, local_clock()); 5290 perf_swevent_start_hrtimer(event); 5291 } 5292 5293 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5294 { 5295 perf_swevent_cancel_hrtimer(event); 5296 cpu_clock_event_update(event); 5297 } 5298 5299 static int cpu_clock_event_add(struct perf_event *event, int flags) 5300 { 5301 if (flags & PERF_EF_START) 5302 cpu_clock_event_start(event, flags); 5303 5304 return 0; 5305 } 5306 5307 static void cpu_clock_event_del(struct perf_event *event, int flags) 5308 { 5309 cpu_clock_event_stop(event, flags); 5310 } 5311 5312 static void cpu_clock_event_read(struct perf_event *event) 5313 { 5314 cpu_clock_event_update(event); 5315 } 5316 5317 static int cpu_clock_event_init(struct perf_event *event) 5318 { 5319 if (event->attr.type != PERF_TYPE_SOFTWARE) 5320 return -ENOENT; 5321 5322 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5323 return -ENOENT; 5324 5325 perf_swevent_init_hrtimer(event); 5326 5327 return 0; 5328 } 5329 5330 static struct pmu perf_cpu_clock = { 5331 .task_ctx_nr = perf_sw_context, 5332 5333 .event_init = cpu_clock_event_init, 5334 .add = cpu_clock_event_add, 5335 .del = cpu_clock_event_del, 5336 .start = cpu_clock_event_start, 5337 .stop = cpu_clock_event_stop, 5338 .read = cpu_clock_event_read, 5339 }; 5340 5341 /* 5342 * Software event: task time clock 5343 */ 5344 5345 static void task_clock_event_update(struct perf_event *event, u64 now) 5346 { 5347 u64 prev; 5348 s64 delta; 5349 5350 prev = local64_xchg(&event->hw.prev_count, now); 5351 delta = now - prev; 5352 local64_add(delta, &event->count); 5353 } 5354 5355 static void task_clock_event_start(struct perf_event *event, int flags) 5356 { 5357 local64_set(&event->hw.prev_count, event->ctx->time); 5358 perf_swevent_start_hrtimer(event); 5359 } 5360 5361 static void task_clock_event_stop(struct perf_event *event, int flags) 5362 { 5363 perf_swevent_cancel_hrtimer(event); 5364 task_clock_event_update(event, event->ctx->time); 5365 } 5366 5367 static int task_clock_event_add(struct perf_event *event, int flags) 5368 { 5369 if (flags & PERF_EF_START) 5370 task_clock_event_start(event, flags); 5371 5372 return 0; 5373 } 5374 5375 static void task_clock_event_del(struct perf_event *event, int flags) 5376 { 5377 task_clock_event_stop(event, PERF_EF_UPDATE); 5378 } 5379 5380 static void task_clock_event_read(struct perf_event *event) 5381 { 5382 u64 now = perf_clock(); 5383 u64 delta = now - event->ctx->timestamp; 5384 u64 time = event->ctx->time + delta; 5385 5386 task_clock_event_update(event, time); 5387 } 5388 5389 static int task_clock_event_init(struct perf_event *event) 5390 { 5391 if (event->attr.type != PERF_TYPE_SOFTWARE) 5392 return -ENOENT; 5393 5394 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5395 return -ENOENT; 5396 5397 perf_swevent_init_hrtimer(event); 5398 5399 return 0; 5400 } 5401 5402 static struct pmu perf_task_clock = { 5403 .task_ctx_nr = perf_sw_context, 5404 5405 .event_init = task_clock_event_init, 5406 .add = task_clock_event_add, 5407 .del = task_clock_event_del, 5408 .start = task_clock_event_start, 5409 .stop = task_clock_event_stop, 5410 .read = task_clock_event_read, 5411 }; 5412 5413 static void perf_pmu_nop_void(struct pmu *pmu) 5414 { 5415 } 5416 5417 static int perf_pmu_nop_int(struct pmu *pmu) 5418 { 5419 return 0; 5420 } 5421 5422 static void perf_pmu_start_txn(struct pmu *pmu) 5423 { 5424 perf_pmu_disable(pmu); 5425 } 5426 5427 static int perf_pmu_commit_txn(struct pmu *pmu) 5428 { 5429 perf_pmu_enable(pmu); 5430 return 0; 5431 } 5432 5433 static void perf_pmu_cancel_txn(struct pmu *pmu) 5434 { 5435 perf_pmu_enable(pmu); 5436 } 5437 5438 /* 5439 * Ensures all contexts with the same task_ctx_nr have the same 5440 * pmu_cpu_context too. 5441 */ 5442 static void *find_pmu_context(int ctxn) 5443 { 5444 struct pmu *pmu; 5445 5446 if (ctxn < 0) 5447 return NULL; 5448 5449 list_for_each_entry(pmu, &pmus, entry) { 5450 if (pmu->task_ctx_nr == ctxn) 5451 return pmu->pmu_cpu_context; 5452 } 5453 5454 return NULL; 5455 } 5456 5457 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5458 { 5459 int cpu; 5460 5461 for_each_possible_cpu(cpu) { 5462 struct perf_cpu_context *cpuctx; 5463 5464 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5465 5466 if (cpuctx->active_pmu == old_pmu) 5467 cpuctx->active_pmu = pmu; 5468 } 5469 } 5470 5471 static void free_pmu_context(struct pmu *pmu) 5472 { 5473 struct pmu *i; 5474 5475 mutex_lock(&pmus_lock); 5476 /* 5477 * Like a real lame refcount. 5478 */ 5479 list_for_each_entry(i, &pmus, entry) { 5480 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5481 update_pmu_context(i, pmu); 5482 goto out; 5483 } 5484 } 5485 5486 free_percpu(pmu->pmu_cpu_context); 5487 out: 5488 mutex_unlock(&pmus_lock); 5489 } 5490 static struct idr pmu_idr; 5491 5492 static ssize_t 5493 type_show(struct device *dev, struct device_attribute *attr, char *page) 5494 { 5495 struct pmu *pmu = dev_get_drvdata(dev); 5496 5497 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5498 } 5499 5500 static struct device_attribute pmu_dev_attrs[] = { 5501 __ATTR_RO(type), 5502 __ATTR_NULL, 5503 }; 5504 5505 static int pmu_bus_running; 5506 static struct bus_type pmu_bus = { 5507 .name = "event_source", 5508 .dev_attrs = pmu_dev_attrs, 5509 }; 5510 5511 static void pmu_dev_release(struct device *dev) 5512 { 5513 kfree(dev); 5514 } 5515 5516 static int pmu_dev_alloc(struct pmu *pmu) 5517 { 5518 int ret = -ENOMEM; 5519 5520 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5521 if (!pmu->dev) 5522 goto out; 5523 5524 device_initialize(pmu->dev); 5525 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5526 if (ret) 5527 goto free_dev; 5528 5529 dev_set_drvdata(pmu->dev, pmu); 5530 pmu->dev->bus = &pmu_bus; 5531 pmu->dev->release = pmu_dev_release; 5532 ret = device_add(pmu->dev); 5533 if (ret) 5534 goto free_dev; 5535 5536 out: 5537 return ret; 5538 5539 free_dev: 5540 put_device(pmu->dev); 5541 goto out; 5542 } 5543 5544 static struct lock_class_key cpuctx_mutex; 5545 static struct lock_class_key cpuctx_lock; 5546 5547 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5548 { 5549 int cpu, ret; 5550 5551 mutex_lock(&pmus_lock); 5552 ret = -ENOMEM; 5553 pmu->pmu_disable_count = alloc_percpu(int); 5554 if (!pmu->pmu_disable_count) 5555 goto unlock; 5556 5557 pmu->type = -1; 5558 if (!name) 5559 goto skip_type; 5560 pmu->name = name; 5561 5562 if (type < 0) { 5563 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5564 if (!err) 5565 goto free_pdc; 5566 5567 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5568 if (err) { 5569 ret = err; 5570 goto free_pdc; 5571 } 5572 } 5573 pmu->type = type; 5574 5575 if (pmu_bus_running) { 5576 ret = pmu_dev_alloc(pmu); 5577 if (ret) 5578 goto free_idr; 5579 } 5580 5581 skip_type: 5582 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5583 if (pmu->pmu_cpu_context) 5584 goto got_cpu_context; 5585 5586 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5587 if (!pmu->pmu_cpu_context) 5588 goto free_dev; 5589 5590 for_each_possible_cpu(cpu) { 5591 struct perf_cpu_context *cpuctx; 5592 5593 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5594 __perf_event_init_context(&cpuctx->ctx); 5595 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5596 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5597 cpuctx->ctx.type = cpu_context; 5598 cpuctx->ctx.pmu = pmu; 5599 cpuctx->jiffies_interval = 1; 5600 INIT_LIST_HEAD(&cpuctx->rotation_list); 5601 cpuctx->active_pmu = pmu; 5602 } 5603 5604 got_cpu_context: 5605 if (!pmu->start_txn) { 5606 if (pmu->pmu_enable) { 5607 /* 5608 * If we have pmu_enable/pmu_disable calls, install 5609 * transaction stubs that use that to try and batch 5610 * hardware accesses. 5611 */ 5612 pmu->start_txn = perf_pmu_start_txn; 5613 pmu->commit_txn = perf_pmu_commit_txn; 5614 pmu->cancel_txn = perf_pmu_cancel_txn; 5615 } else { 5616 pmu->start_txn = perf_pmu_nop_void; 5617 pmu->commit_txn = perf_pmu_nop_int; 5618 pmu->cancel_txn = perf_pmu_nop_void; 5619 } 5620 } 5621 5622 if (!pmu->pmu_enable) { 5623 pmu->pmu_enable = perf_pmu_nop_void; 5624 pmu->pmu_disable = perf_pmu_nop_void; 5625 } 5626 5627 list_add_rcu(&pmu->entry, &pmus); 5628 ret = 0; 5629 unlock: 5630 mutex_unlock(&pmus_lock); 5631 5632 return ret; 5633 5634 free_dev: 5635 device_del(pmu->dev); 5636 put_device(pmu->dev); 5637 5638 free_idr: 5639 if (pmu->type >= PERF_TYPE_MAX) 5640 idr_remove(&pmu_idr, pmu->type); 5641 5642 free_pdc: 5643 free_percpu(pmu->pmu_disable_count); 5644 goto unlock; 5645 } 5646 5647 void perf_pmu_unregister(struct pmu *pmu) 5648 { 5649 mutex_lock(&pmus_lock); 5650 list_del_rcu(&pmu->entry); 5651 mutex_unlock(&pmus_lock); 5652 5653 /* 5654 * We dereference the pmu list under both SRCU and regular RCU, so 5655 * synchronize against both of those. 5656 */ 5657 synchronize_srcu(&pmus_srcu); 5658 synchronize_rcu(); 5659 5660 free_percpu(pmu->pmu_disable_count); 5661 if (pmu->type >= PERF_TYPE_MAX) 5662 idr_remove(&pmu_idr, pmu->type); 5663 device_del(pmu->dev); 5664 put_device(pmu->dev); 5665 free_pmu_context(pmu); 5666 } 5667 5668 struct pmu *perf_init_event(struct perf_event *event) 5669 { 5670 struct pmu *pmu = NULL; 5671 int idx; 5672 int ret; 5673 5674 idx = srcu_read_lock(&pmus_srcu); 5675 5676 rcu_read_lock(); 5677 pmu = idr_find(&pmu_idr, event->attr.type); 5678 rcu_read_unlock(); 5679 if (pmu) { 5680 event->pmu = pmu; 5681 ret = pmu->event_init(event); 5682 if (ret) 5683 pmu = ERR_PTR(ret); 5684 goto unlock; 5685 } 5686 5687 list_for_each_entry_rcu(pmu, &pmus, entry) { 5688 event->pmu = pmu; 5689 ret = pmu->event_init(event); 5690 if (!ret) 5691 goto unlock; 5692 5693 if (ret != -ENOENT) { 5694 pmu = ERR_PTR(ret); 5695 goto unlock; 5696 } 5697 } 5698 pmu = ERR_PTR(-ENOENT); 5699 unlock: 5700 srcu_read_unlock(&pmus_srcu, idx); 5701 5702 return pmu; 5703 } 5704 5705 /* 5706 * Allocate and initialize a event structure 5707 */ 5708 static struct perf_event * 5709 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5710 struct task_struct *task, 5711 struct perf_event *group_leader, 5712 struct perf_event *parent_event, 5713 perf_overflow_handler_t overflow_handler, 5714 void *context) 5715 { 5716 struct pmu *pmu; 5717 struct perf_event *event; 5718 struct hw_perf_event *hwc; 5719 long err; 5720 5721 if ((unsigned)cpu >= nr_cpu_ids) { 5722 if (!task || cpu != -1) 5723 return ERR_PTR(-EINVAL); 5724 } 5725 5726 event = kzalloc(sizeof(*event), GFP_KERNEL); 5727 if (!event) 5728 return ERR_PTR(-ENOMEM); 5729 5730 /* 5731 * Single events are their own group leaders, with an 5732 * empty sibling list: 5733 */ 5734 if (!group_leader) 5735 group_leader = event; 5736 5737 mutex_init(&event->child_mutex); 5738 INIT_LIST_HEAD(&event->child_list); 5739 5740 INIT_LIST_HEAD(&event->group_entry); 5741 INIT_LIST_HEAD(&event->event_entry); 5742 INIT_LIST_HEAD(&event->sibling_list); 5743 INIT_LIST_HEAD(&event->rb_entry); 5744 5745 init_waitqueue_head(&event->waitq); 5746 init_irq_work(&event->pending, perf_pending_event); 5747 5748 mutex_init(&event->mmap_mutex); 5749 5750 event->cpu = cpu; 5751 event->attr = *attr; 5752 event->group_leader = group_leader; 5753 event->pmu = NULL; 5754 event->oncpu = -1; 5755 5756 event->parent = parent_event; 5757 5758 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5759 event->id = atomic64_inc_return(&perf_event_id); 5760 5761 event->state = PERF_EVENT_STATE_INACTIVE; 5762 5763 if (task) { 5764 event->attach_state = PERF_ATTACH_TASK; 5765 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5766 /* 5767 * hw_breakpoint is a bit difficult here.. 5768 */ 5769 if (attr->type == PERF_TYPE_BREAKPOINT) 5770 event->hw.bp_target = task; 5771 #endif 5772 } 5773 5774 if (!overflow_handler && parent_event) { 5775 overflow_handler = parent_event->overflow_handler; 5776 context = parent_event->overflow_handler_context; 5777 } 5778 5779 event->overflow_handler = overflow_handler; 5780 event->overflow_handler_context = context; 5781 5782 if (attr->disabled) 5783 event->state = PERF_EVENT_STATE_OFF; 5784 5785 pmu = NULL; 5786 5787 hwc = &event->hw; 5788 hwc->sample_period = attr->sample_period; 5789 if (attr->freq && attr->sample_freq) 5790 hwc->sample_period = 1; 5791 hwc->last_period = hwc->sample_period; 5792 5793 local64_set(&hwc->period_left, hwc->sample_period); 5794 5795 /* 5796 * we currently do not support PERF_FORMAT_GROUP on inherited events 5797 */ 5798 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5799 goto done; 5800 5801 pmu = perf_init_event(event); 5802 5803 done: 5804 err = 0; 5805 if (!pmu) 5806 err = -EINVAL; 5807 else if (IS_ERR(pmu)) 5808 err = PTR_ERR(pmu); 5809 5810 if (err) { 5811 if (event->ns) 5812 put_pid_ns(event->ns); 5813 kfree(event); 5814 return ERR_PTR(err); 5815 } 5816 5817 if (!event->parent) { 5818 if (event->attach_state & PERF_ATTACH_TASK) 5819 jump_label_inc(&perf_sched_events.key); 5820 if (event->attr.mmap || event->attr.mmap_data) 5821 atomic_inc(&nr_mmap_events); 5822 if (event->attr.comm) 5823 atomic_inc(&nr_comm_events); 5824 if (event->attr.task) 5825 atomic_inc(&nr_task_events); 5826 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5827 err = get_callchain_buffers(); 5828 if (err) { 5829 free_event(event); 5830 return ERR_PTR(err); 5831 } 5832 } 5833 } 5834 5835 return event; 5836 } 5837 5838 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5839 struct perf_event_attr *attr) 5840 { 5841 u32 size; 5842 int ret; 5843 5844 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5845 return -EFAULT; 5846 5847 /* 5848 * zero the full structure, so that a short copy will be nice. 5849 */ 5850 memset(attr, 0, sizeof(*attr)); 5851 5852 ret = get_user(size, &uattr->size); 5853 if (ret) 5854 return ret; 5855 5856 if (size > PAGE_SIZE) /* silly large */ 5857 goto err_size; 5858 5859 if (!size) /* abi compat */ 5860 size = PERF_ATTR_SIZE_VER0; 5861 5862 if (size < PERF_ATTR_SIZE_VER0) 5863 goto err_size; 5864 5865 /* 5866 * If we're handed a bigger struct than we know of, 5867 * ensure all the unknown bits are 0 - i.e. new 5868 * user-space does not rely on any kernel feature 5869 * extensions we dont know about yet. 5870 */ 5871 if (size > sizeof(*attr)) { 5872 unsigned char __user *addr; 5873 unsigned char __user *end; 5874 unsigned char val; 5875 5876 addr = (void __user *)uattr + sizeof(*attr); 5877 end = (void __user *)uattr + size; 5878 5879 for (; addr < end; addr++) { 5880 ret = get_user(val, addr); 5881 if (ret) 5882 return ret; 5883 if (val) 5884 goto err_size; 5885 } 5886 size = sizeof(*attr); 5887 } 5888 5889 ret = copy_from_user(attr, uattr, size); 5890 if (ret) 5891 return -EFAULT; 5892 5893 if (attr->__reserved_1) 5894 return -EINVAL; 5895 5896 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5897 return -EINVAL; 5898 5899 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5900 return -EINVAL; 5901 5902 out: 5903 return ret; 5904 5905 err_size: 5906 put_user(sizeof(*attr), &uattr->size); 5907 ret = -E2BIG; 5908 goto out; 5909 } 5910 5911 static int 5912 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5913 { 5914 struct ring_buffer *rb = NULL, *old_rb = NULL; 5915 int ret = -EINVAL; 5916 5917 if (!output_event) 5918 goto set; 5919 5920 /* don't allow circular references */ 5921 if (event == output_event) 5922 goto out; 5923 5924 /* 5925 * Don't allow cross-cpu buffers 5926 */ 5927 if (output_event->cpu != event->cpu) 5928 goto out; 5929 5930 /* 5931 * If its not a per-cpu rb, it must be the same task. 5932 */ 5933 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 5934 goto out; 5935 5936 set: 5937 mutex_lock(&event->mmap_mutex); 5938 /* Can't redirect output if we've got an active mmap() */ 5939 if (atomic_read(&event->mmap_count)) 5940 goto unlock; 5941 5942 if (output_event) { 5943 /* get the rb we want to redirect to */ 5944 rb = ring_buffer_get(output_event); 5945 if (!rb) 5946 goto unlock; 5947 } 5948 5949 old_rb = event->rb; 5950 rcu_assign_pointer(event->rb, rb); 5951 if (old_rb) 5952 ring_buffer_detach(event, old_rb); 5953 ret = 0; 5954 unlock: 5955 mutex_unlock(&event->mmap_mutex); 5956 5957 if (old_rb) 5958 ring_buffer_put(old_rb); 5959 out: 5960 return ret; 5961 } 5962 5963 /** 5964 * sys_perf_event_open - open a performance event, associate it to a task/cpu 5965 * 5966 * @attr_uptr: event_id type attributes for monitoring/sampling 5967 * @pid: target pid 5968 * @cpu: target cpu 5969 * @group_fd: group leader event fd 5970 */ 5971 SYSCALL_DEFINE5(perf_event_open, 5972 struct perf_event_attr __user *, attr_uptr, 5973 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 5974 { 5975 struct perf_event *group_leader = NULL, *output_event = NULL; 5976 struct perf_event *event, *sibling; 5977 struct perf_event_attr attr; 5978 struct perf_event_context *ctx; 5979 struct file *event_file = NULL; 5980 struct file *group_file = NULL; 5981 struct task_struct *task = NULL; 5982 struct pmu *pmu; 5983 int event_fd; 5984 int move_group = 0; 5985 int fput_needed = 0; 5986 int err; 5987 5988 /* for future expandability... */ 5989 if (flags & ~PERF_FLAG_ALL) 5990 return -EINVAL; 5991 5992 err = perf_copy_attr(attr_uptr, &attr); 5993 if (err) 5994 return err; 5995 5996 if (!attr.exclude_kernel) { 5997 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 5998 return -EACCES; 5999 } 6000 6001 if (attr.freq) { 6002 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6003 return -EINVAL; 6004 } 6005 6006 /* 6007 * In cgroup mode, the pid argument is used to pass the fd 6008 * opened to the cgroup directory in cgroupfs. The cpu argument 6009 * designates the cpu on which to monitor threads from that 6010 * cgroup. 6011 */ 6012 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6013 return -EINVAL; 6014 6015 event_fd = get_unused_fd_flags(O_RDWR); 6016 if (event_fd < 0) 6017 return event_fd; 6018 6019 if (group_fd != -1) { 6020 group_leader = perf_fget_light(group_fd, &fput_needed); 6021 if (IS_ERR(group_leader)) { 6022 err = PTR_ERR(group_leader); 6023 goto err_fd; 6024 } 6025 group_file = group_leader->filp; 6026 if (flags & PERF_FLAG_FD_OUTPUT) 6027 output_event = group_leader; 6028 if (flags & PERF_FLAG_FD_NO_GROUP) 6029 group_leader = NULL; 6030 } 6031 6032 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6033 task = find_lively_task_by_vpid(pid); 6034 if (IS_ERR(task)) { 6035 err = PTR_ERR(task); 6036 goto err_group_fd; 6037 } 6038 } 6039 6040 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6041 NULL, NULL); 6042 if (IS_ERR(event)) { 6043 err = PTR_ERR(event); 6044 goto err_task; 6045 } 6046 6047 if (flags & PERF_FLAG_PID_CGROUP) { 6048 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6049 if (err) 6050 goto err_alloc; 6051 /* 6052 * one more event: 6053 * - that has cgroup constraint on event->cpu 6054 * - that may need work on context switch 6055 */ 6056 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6057 jump_label_inc(&perf_sched_events.key); 6058 } 6059 6060 /* 6061 * Special case software events and allow them to be part of 6062 * any hardware group. 6063 */ 6064 pmu = event->pmu; 6065 6066 if (group_leader && 6067 (is_software_event(event) != is_software_event(group_leader))) { 6068 if (is_software_event(event)) { 6069 /* 6070 * If event and group_leader are not both a software 6071 * event, and event is, then group leader is not. 6072 * 6073 * Allow the addition of software events to !software 6074 * groups, this is safe because software events never 6075 * fail to schedule. 6076 */ 6077 pmu = group_leader->pmu; 6078 } else if (is_software_event(group_leader) && 6079 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6080 /* 6081 * In case the group is a pure software group, and we 6082 * try to add a hardware event, move the whole group to 6083 * the hardware context. 6084 */ 6085 move_group = 1; 6086 } 6087 } 6088 6089 /* 6090 * Get the target context (task or percpu): 6091 */ 6092 ctx = find_get_context(pmu, task, cpu); 6093 if (IS_ERR(ctx)) { 6094 err = PTR_ERR(ctx); 6095 goto err_alloc; 6096 } 6097 6098 if (task) { 6099 put_task_struct(task); 6100 task = NULL; 6101 } 6102 6103 /* 6104 * Look up the group leader (we will attach this event to it): 6105 */ 6106 if (group_leader) { 6107 err = -EINVAL; 6108 6109 /* 6110 * Do not allow a recursive hierarchy (this new sibling 6111 * becoming part of another group-sibling): 6112 */ 6113 if (group_leader->group_leader != group_leader) 6114 goto err_context; 6115 /* 6116 * Do not allow to attach to a group in a different 6117 * task or CPU context: 6118 */ 6119 if (move_group) { 6120 if (group_leader->ctx->type != ctx->type) 6121 goto err_context; 6122 } else { 6123 if (group_leader->ctx != ctx) 6124 goto err_context; 6125 } 6126 6127 /* 6128 * Only a group leader can be exclusive or pinned 6129 */ 6130 if (attr.exclusive || attr.pinned) 6131 goto err_context; 6132 } 6133 6134 if (output_event) { 6135 err = perf_event_set_output(event, output_event); 6136 if (err) 6137 goto err_context; 6138 } 6139 6140 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6141 if (IS_ERR(event_file)) { 6142 err = PTR_ERR(event_file); 6143 goto err_context; 6144 } 6145 6146 if (move_group) { 6147 struct perf_event_context *gctx = group_leader->ctx; 6148 6149 mutex_lock(&gctx->mutex); 6150 perf_remove_from_context(group_leader); 6151 list_for_each_entry(sibling, &group_leader->sibling_list, 6152 group_entry) { 6153 perf_remove_from_context(sibling); 6154 put_ctx(gctx); 6155 } 6156 mutex_unlock(&gctx->mutex); 6157 put_ctx(gctx); 6158 } 6159 6160 event->filp = event_file; 6161 WARN_ON_ONCE(ctx->parent_ctx); 6162 mutex_lock(&ctx->mutex); 6163 6164 if (move_group) { 6165 perf_install_in_context(ctx, group_leader, cpu); 6166 get_ctx(ctx); 6167 list_for_each_entry(sibling, &group_leader->sibling_list, 6168 group_entry) { 6169 perf_install_in_context(ctx, sibling, cpu); 6170 get_ctx(ctx); 6171 } 6172 } 6173 6174 perf_install_in_context(ctx, event, cpu); 6175 ++ctx->generation; 6176 perf_unpin_context(ctx); 6177 mutex_unlock(&ctx->mutex); 6178 6179 event->owner = current; 6180 6181 mutex_lock(¤t->perf_event_mutex); 6182 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6183 mutex_unlock(¤t->perf_event_mutex); 6184 6185 /* 6186 * Precalculate sample_data sizes 6187 */ 6188 perf_event__header_size(event); 6189 perf_event__id_header_size(event); 6190 6191 /* 6192 * Drop the reference on the group_event after placing the 6193 * new event on the sibling_list. This ensures destruction 6194 * of the group leader will find the pointer to itself in 6195 * perf_group_detach(). 6196 */ 6197 fput_light(group_file, fput_needed); 6198 fd_install(event_fd, event_file); 6199 return event_fd; 6200 6201 err_context: 6202 perf_unpin_context(ctx); 6203 put_ctx(ctx); 6204 err_alloc: 6205 free_event(event); 6206 err_task: 6207 if (task) 6208 put_task_struct(task); 6209 err_group_fd: 6210 fput_light(group_file, fput_needed); 6211 err_fd: 6212 put_unused_fd(event_fd); 6213 return err; 6214 } 6215 6216 /** 6217 * perf_event_create_kernel_counter 6218 * 6219 * @attr: attributes of the counter to create 6220 * @cpu: cpu in which the counter is bound 6221 * @task: task to profile (NULL for percpu) 6222 */ 6223 struct perf_event * 6224 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6225 struct task_struct *task, 6226 perf_overflow_handler_t overflow_handler, 6227 void *context) 6228 { 6229 struct perf_event_context *ctx; 6230 struct perf_event *event; 6231 int err; 6232 6233 /* 6234 * Get the target context (task or percpu): 6235 */ 6236 6237 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6238 overflow_handler, context); 6239 if (IS_ERR(event)) { 6240 err = PTR_ERR(event); 6241 goto err; 6242 } 6243 6244 ctx = find_get_context(event->pmu, task, cpu); 6245 if (IS_ERR(ctx)) { 6246 err = PTR_ERR(ctx); 6247 goto err_free; 6248 } 6249 6250 event->filp = NULL; 6251 WARN_ON_ONCE(ctx->parent_ctx); 6252 mutex_lock(&ctx->mutex); 6253 perf_install_in_context(ctx, event, cpu); 6254 ++ctx->generation; 6255 perf_unpin_context(ctx); 6256 mutex_unlock(&ctx->mutex); 6257 6258 return event; 6259 6260 err_free: 6261 free_event(event); 6262 err: 6263 return ERR_PTR(err); 6264 } 6265 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6266 6267 static void sync_child_event(struct perf_event *child_event, 6268 struct task_struct *child) 6269 { 6270 struct perf_event *parent_event = child_event->parent; 6271 u64 child_val; 6272 6273 if (child_event->attr.inherit_stat) 6274 perf_event_read_event(child_event, child); 6275 6276 child_val = perf_event_count(child_event); 6277 6278 /* 6279 * Add back the child's count to the parent's count: 6280 */ 6281 atomic64_add(child_val, &parent_event->child_count); 6282 atomic64_add(child_event->total_time_enabled, 6283 &parent_event->child_total_time_enabled); 6284 atomic64_add(child_event->total_time_running, 6285 &parent_event->child_total_time_running); 6286 6287 /* 6288 * Remove this event from the parent's list 6289 */ 6290 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6291 mutex_lock(&parent_event->child_mutex); 6292 list_del_init(&child_event->child_list); 6293 mutex_unlock(&parent_event->child_mutex); 6294 6295 /* 6296 * Release the parent event, if this was the last 6297 * reference to it. 6298 */ 6299 fput(parent_event->filp); 6300 } 6301 6302 static void 6303 __perf_event_exit_task(struct perf_event *child_event, 6304 struct perf_event_context *child_ctx, 6305 struct task_struct *child) 6306 { 6307 if (child_event->parent) { 6308 raw_spin_lock_irq(&child_ctx->lock); 6309 perf_group_detach(child_event); 6310 raw_spin_unlock_irq(&child_ctx->lock); 6311 } 6312 6313 perf_remove_from_context(child_event); 6314 6315 /* 6316 * It can happen that the parent exits first, and has events 6317 * that are still around due to the child reference. These 6318 * events need to be zapped. 6319 */ 6320 if (child_event->parent) { 6321 sync_child_event(child_event, child); 6322 free_event(child_event); 6323 } 6324 } 6325 6326 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6327 { 6328 struct perf_event *child_event, *tmp; 6329 struct perf_event_context *child_ctx; 6330 unsigned long flags; 6331 6332 if (likely(!child->perf_event_ctxp[ctxn])) { 6333 perf_event_task(child, NULL, 0); 6334 return; 6335 } 6336 6337 local_irq_save(flags); 6338 /* 6339 * We can't reschedule here because interrupts are disabled, 6340 * and either child is current or it is a task that can't be 6341 * scheduled, so we are now safe from rescheduling changing 6342 * our context. 6343 */ 6344 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6345 6346 /* 6347 * Take the context lock here so that if find_get_context is 6348 * reading child->perf_event_ctxp, we wait until it has 6349 * incremented the context's refcount before we do put_ctx below. 6350 */ 6351 raw_spin_lock(&child_ctx->lock); 6352 task_ctx_sched_out(child_ctx); 6353 child->perf_event_ctxp[ctxn] = NULL; 6354 /* 6355 * If this context is a clone; unclone it so it can't get 6356 * swapped to another process while we're removing all 6357 * the events from it. 6358 */ 6359 unclone_ctx(child_ctx); 6360 update_context_time(child_ctx); 6361 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6362 6363 /* 6364 * Report the task dead after unscheduling the events so that we 6365 * won't get any samples after PERF_RECORD_EXIT. We can however still 6366 * get a few PERF_RECORD_READ events. 6367 */ 6368 perf_event_task(child, child_ctx, 0); 6369 6370 /* 6371 * We can recurse on the same lock type through: 6372 * 6373 * __perf_event_exit_task() 6374 * sync_child_event() 6375 * fput(parent_event->filp) 6376 * perf_release() 6377 * mutex_lock(&ctx->mutex) 6378 * 6379 * But since its the parent context it won't be the same instance. 6380 */ 6381 mutex_lock(&child_ctx->mutex); 6382 6383 again: 6384 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6385 group_entry) 6386 __perf_event_exit_task(child_event, child_ctx, child); 6387 6388 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6389 group_entry) 6390 __perf_event_exit_task(child_event, child_ctx, child); 6391 6392 /* 6393 * If the last event was a group event, it will have appended all 6394 * its siblings to the list, but we obtained 'tmp' before that which 6395 * will still point to the list head terminating the iteration. 6396 */ 6397 if (!list_empty(&child_ctx->pinned_groups) || 6398 !list_empty(&child_ctx->flexible_groups)) 6399 goto again; 6400 6401 mutex_unlock(&child_ctx->mutex); 6402 6403 put_ctx(child_ctx); 6404 } 6405 6406 /* 6407 * When a child task exits, feed back event values to parent events. 6408 */ 6409 void perf_event_exit_task(struct task_struct *child) 6410 { 6411 struct perf_event *event, *tmp; 6412 int ctxn; 6413 6414 mutex_lock(&child->perf_event_mutex); 6415 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6416 owner_entry) { 6417 list_del_init(&event->owner_entry); 6418 6419 /* 6420 * Ensure the list deletion is visible before we clear 6421 * the owner, closes a race against perf_release() where 6422 * we need to serialize on the owner->perf_event_mutex. 6423 */ 6424 smp_wmb(); 6425 event->owner = NULL; 6426 } 6427 mutex_unlock(&child->perf_event_mutex); 6428 6429 for_each_task_context_nr(ctxn) 6430 perf_event_exit_task_context(child, ctxn); 6431 } 6432 6433 static void perf_free_event(struct perf_event *event, 6434 struct perf_event_context *ctx) 6435 { 6436 struct perf_event *parent = event->parent; 6437 6438 if (WARN_ON_ONCE(!parent)) 6439 return; 6440 6441 mutex_lock(&parent->child_mutex); 6442 list_del_init(&event->child_list); 6443 mutex_unlock(&parent->child_mutex); 6444 6445 fput(parent->filp); 6446 6447 perf_group_detach(event); 6448 list_del_event(event, ctx); 6449 free_event(event); 6450 } 6451 6452 /* 6453 * free an unexposed, unused context as created by inheritance by 6454 * perf_event_init_task below, used by fork() in case of fail. 6455 */ 6456 void perf_event_free_task(struct task_struct *task) 6457 { 6458 struct perf_event_context *ctx; 6459 struct perf_event *event, *tmp; 6460 int ctxn; 6461 6462 for_each_task_context_nr(ctxn) { 6463 ctx = task->perf_event_ctxp[ctxn]; 6464 if (!ctx) 6465 continue; 6466 6467 mutex_lock(&ctx->mutex); 6468 again: 6469 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6470 group_entry) 6471 perf_free_event(event, ctx); 6472 6473 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6474 group_entry) 6475 perf_free_event(event, ctx); 6476 6477 if (!list_empty(&ctx->pinned_groups) || 6478 !list_empty(&ctx->flexible_groups)) 6479 goto again; 6480 6481 mutex_unlock(&ctx->mutex); 6482 6483 put_ctx(ctx); 6484 } 6485 } 6486 6487 void perf_event_delayed_put(struct task_struct *task) 6488 { 6489 int ctxn; 6490 6491 for_each_task_context_nr(ctxn) 6492 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6493 } 6494 6495 /* 6496 * inherit a event from parent task to child task: 6497 */ 6498 static struct perf_event * 6499 inherit_event(struct perf_event *parent_event, 6500 struct task_struct *parent, 6501 struct perf_event_context *parent_ctx, 6502 struct task_struct *child, 6503 struct perf_event *group_leader, 6504 struct perf_event_context *child_ctx) 6505 { 6506 struct perf_event *child_event; 6507 unsigned long flags; 6508 6509 /* 6510 * Instead of creating recursive hierarchies of events, 6511 * we link inherited events back to the original parent, 6512 * which has a filp for sure, which we use as the reference 6513 * count: 6514 */ 6515 if (parent_event->parent) 6516 parent_event = parent_event->parent; 6517 6518 child_event = perf_event_alloc(&parent_event->attr, 6519 parent_event->cpu, 6520 child, 6521 group_leader, parent_event, 6522 NULL, NULL); 6523 if (IS_ERR(child_event)) 6524 return child_event; 6525 get_ctx(child_ctx); 6526 6527 /* 6528 * Make the child state follow the state of the parent event, 6529 * not its attr.disabled bit. We hold the parent's mutex, 6530 * so we won't race with perf_event_{en, dis}able_family. 6531 */ 6532 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6533 child_event->state = PERF_EVENT_STATE_INACTIVE; 6534 else 6535 child_event->state = PERF_EVENT_STATE_OFF; 6536 6537 if (parent_event->attr.freq) { 6538 u64 sample_period = parent_event->hw.sample_period; 6539 struct hw_perf_event *hwc = &child_event->hw; 6540 6541 hwc->sample_period = sample_period; 6542 hwc->last_period = sample_period; 6543 6544 local64_set(&hwc->period_left, sample_period); 6545 } 6546 6547 child_event->ctx = child_ctx; 6548 child_event->overflow_handler = parent_event->overflow_handler; 6549 child_event->overflow_handler_context 6550 = parent_event->overflow_handler_context; 6551 6552 /* 6553 * Precalculate sample_data sizes 6554 */ 6555 perf_event__header_size(child_event); 6556 perf_event__id_header_size(child_event); 6557 6558 /* 6559 * Link it up in the child's context: 6560 */ 6561 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6562 add_event_to_ctx(child_event, child_ctx); 6563 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6564 6565 /* 6566 * Get a reference to the parent filp - we will fput it 6567 * when the child event exits. This is safe to do because 6568 * we are in the parent and we know that the filp still 6569 * exists and has a nonzero count: 6570 */ 6571 atomic_long_inc(&parent_event->filp->f_count); 6572 6573 /* 6574 * Link this into the parent event's child list 6575 */ 6576 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6577 mutex_lock(&parent_event->child_mutex); 6578 list_add_tail(&child_event->child_list, &parent_event->child_list); 6579 mutex_unlock(&parent_event->child_mutex); 6580 6581 return child_event; 6582 } 6583 6584 static int inherit_group(struct perf_event *parent_event, 6585 struct task_struct *parent, 6586 struct perf_event_context *parent_ctx, 6587 struct task_struct *child, 6588 struct perf_event_context *child_ctx) 6589 { 6590 struct perf_event *leader; 6591 struct perf_event *sub; 6592 struct perf_event *child_ctr; 6593 6594 leader = inherit_event(parent_event, parent, parent_ctx, 6595 child, NULL, child_ctx); 6596 if (IS_ERR(leader)) 6597 return PTR_ERR(leader); 6598 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6599 child_ctr = inherit_event(sub, parent, parent_ctx, 6600 child, leader, child_ctx); 6601 if (IS_ERR(child_ctr)) 6602 return PTR_ERR(child_ctr); 6603 } 6604 return 0; 6605 } 6606 6607 static int 6608 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6609 struct perf_event_context *parent_ctx, 6610 struct task_struct *child, int ctxn, 6611 int *inherited_all) 6612 { 6613 int ret; 6614 struct perf_event_context *child_ctx; 6615 6616 if (!event->attr.inherit) { 6617 *inherited_all = 0; 6618 return 0; 6619 } 6620 6621 child_ctx = child->perf_event_ctxp[ctxn]; 6622 if (!child_ctx) { 6623 /* 6624 * This is executed from the parent task context, so 6625 * inherit events that have been marked for cloning. 6626 * First allocate and initialize a context for the 6627 * child. 6628 */ 6629 6630 child_ctx = alloc_perf_context(event->pmu, child); 6631 if (!child_ctx) 6632 return -ENOMEM; 6633 6634 child->perf_event_ctxp[ctxn] = child_ctx; 6635 } 6636 6637 ret = inherit_group(event, parent, parent_ctx, 6638 child, child_ctx); 6639 6640 if (ret) 6641 *inherited_all = 0; 6642 6643 return ret; 6644 } 6645 6646 /* 6647 * Initialize the perf_event context in task_struct 6648 */ 6649 int perf_event_init_context(struct task_struct *child, int ctxn) 6650 { 6651 struct perf_event_context *child_ctx, *parent_ctx; 6652 struct perf_event_context *cloned_ctx; 6653 struct perf_event *event; 6654 struct task_struct *parent = current; 6655 int inherited_all = 1; 6656 unsigned long flags; 6657 int ret = 0; 6658 6659 if (likely(!parent->perf_event_ctxp[ctxn])) 6660 return 0; 6661 6662 /* 6663 * If the parent's context is a clone, pin it so it won't get 6664 * swapped under us. 6665 */ 6666 parent_ctx = perf_pin_task_context(parent, ctxn); 6667 6668 /* 6669 * No need to check if parent_ctx != NULL here; since we saw 6670 * it non-NULL earlier, the only reason for it to become NULL 6671 * is if we exit, and since we're currently in the middle of 6672 * a fork we can't be exiting at the same time. 6673 */ 6674 6675 /* 6676 * Lock the parent list. No need to lock the child - not PID 6677 * hashed yet and not running, so nobody can access it. 6678 */ 6679 mutex_lock(&parent_ctx->mutex); 6680 6681 /* 6682 * We dont have to disable NMIs - we are only looking at 6683 * the list, not manipulating it: 6684 */ 6685 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6686 ret = inherit_task_group(event, parent, parent_ctx, 6687 child, ctxn, &inherited_all); 6688 if (ret) 6689 break; 6690 } 6691 6692 /* 6693 * We can't hold ctx->lock when iterating the ->flexible_group list due 6694 * to allocations, but we need to prevent rotation because 6695 * rotate_ctx() will change the list from interrupt context. 6696 */ 6697 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6698 parent_ctx->rotate_disable = 1; 6699 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6700 6701 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6702 ret = inherit_task_group(event, parent, parent_ctx, 6703 child, ctxn, &inherited_all); 6704 if (ret) 6705 break; 6706 } 6707 6708 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6709 parent_ctx->rotate_disable = 0; 6710 6711 child_ctx = child->perf_event_ctxp[ctxn]; 6712 6713 if (child_ctx && inherited_all) { 6714 /* 6715 * Mark the child context as a clone of the parent 6716 * context, or of whatever the parent is a clone of. 6717 * 6718 * Note that if the parent is a clone, the holding of 6719 * parent_ctx->lock avoids it from being uncloned. 6720 */ 6721 cloned_ctx = parent_ctx->parent_ctx; 6722 if (cloned_ctx) { 6723 child_ctx->parent_ctx = cloned_ctx; 6724 child_ctx->parent_gen = parent_ctx->parent_gen; 6725 } else { 6726 child_ctx->parent_ctx = parent_ctx; 6727 child_ctx->parent_gen = parent_ctx->generation; 6728 } 6729 get_ctx(child_ctx->parent_ctx); 6730 } 6731 6732 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6733 mutex_unlock(&parent_ctx->mutex); 6734 6735 perf_unpin_context(parent_ctx); 6736 put_ctx(parent_ctx); 6737 6738 return ret; 6739 } 6740 6741 /* 6742 * Initialize the perf_event context in task_struct 6743 */ 6744 int perf_event_init_task(struct task_struct *child) 6745 { 6746 int ctxn, ret; 6747 6748 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6749 mutex_init(&child->perf_event_mutex); 6750 INIT_LIST_HEAD(&child->perf_event_list); 6751 6752 for_each_task_context_nr(ctxn) { 6753 ret = perf_event_init_context(child, ctxn); 6754 if (ret) 6755 return ret; 6756 } 6757 6758 return 0; 6759 } 6760 6761 static void __init perf_event_init_all_cpus(void) 6762 { 6763 struct swevent_htable *swhash; 6764 int cpu; 6765 6766 for_each_possible_cpu(cpu) { 6767 swhash = &per_cpu(swevent_htable, cpu); 6768 mutex_init(&swhash->hlist_mutex); 6769 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6770 } 6771 } 6772 6773 static void __cpuinit perf_event_init_cpu(int cpu) 6774 { 6775 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6776 6777 mutex_lock(&swhash->hlist_mutex); 6778 if (swhash->hlist_refcount > 0) { 6779 struct swevent_hlist *hlist; 6780 6781 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6782 WARN_ON(!hlist); 6783 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6784 } 6785 mutex_unlock(&swhash->hlist_mutex); 6786 } 6787 6788 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6789 static void perf_pmu_rotate_stop(struct pmu *pmu) 6790 { 6791 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6792 6793 WARN_ON(!irqs_disabled()); 6794 6795 list_del_init(&cpuctx->rotation_list); 6796 } 6797 6798 static void __perf_event_exit_context(void *__info) 6799 { 6800 struct perf_event_context *ctx = __info; 6801 struct perf_event *event, *tmp; 6802 6803 perf_pmu_rotate_stop(ctx->pmu); 6804 6805 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6806 __perf_remove_from_context(event); 6807 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6808 __perf_remove_from_context(event); 6809 } 6810 6811 static void perf_event_exit_cpu_context(int cpu) 6812 { 6813 struct perf_event_context *ctx; 6814 struct pmu *pmu; 6815 int idx; 6816 6817 idx = srcu_read_lock(&pmus_srcu); 6818 list_for_each_entry_rcu(pmu, &pmus, entry) { 6819 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6820 6821 mutex_lock(&ctx->mutex); 6822 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6823 mutex_unlock(&ctx->mutex); 6824 } 6825 srcu_read_unlock(&pmus_srcu, idx); 6826 } 6827 6828 static void perf_event_exit_cpu(int cpu) 6829 { 6830 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6831 6832 mutex_lock(&swhash->hlist_mutex); 6833 swevent_hlist_release(swhash); 6834 mutex_unlock(&swhash->hlist_mutex); 6835 6836 perf_event_exit_cpu_context(cpu); 6837 } 6838 #else 6839 static inline void perf_event_exit_cpu(int cpu) { } 6840 #endif 6841 6842 static int 6843 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6844 { 6845 int cpu; 6846 6847 for_each_online_cpu(cpu) 6848 perf_event_exit_cpu(cpu); 6849 6850 return NOTIFY_OK; 6851 } 6852 6853 /* 6854 * Run the perf reboot notifier at the very last possible moment so that 6855 * the generic watchdog code runs as long as possible. 6856 */ 6857 static struct notifier_block perf_reboot_notifier = { 6858 .notifier_call = perf_reboot, 6859 .priority = INT_MIN, 6860 }; 6861 6862 static int __cpuinit 6863 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6864 { 6865 unsigned int cpu = (long)hcpu; 6866 6867 switch (action & ~CPU_TASKS_FROZEN) { 6868 6869 case CPU_UP_PREPARE: 6870 case CPU_DOWN_FAILED: 6871 perf_event_init_cpu(cpu); 6872 break; 6873 6874 case CPU_UP_CANCELED: 6875 case CPU_DOWN_PREPARE: 6876 perf_event_exit_cpu(cpu); 6877 break; 6878 6879 default: 6880 break; 6881 } 6882 6883 return NOTIFY_OK; 6884 } 6885 6886 void __init perf_event_init(void) 6887 { 6888 int ret; 6889 6890 idr_init(&pmu_idr); 6891 6892 perf_event_init_all_cpus(); 6893 init_srcu_struct(&pmus_srcu); 6894 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6895 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6896 perf_pmu_register(&perf_task_clock, NULL, -1); 6897 perf_tp_register(); 6898 perf_cpu_notifier(perf_cpu_notify); 6899 register_reboot_notifier(&perf_reboot_notifier); 6900 6901 ret = init_hw_breakpoint(); 6902 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6903 6904 /* do not patch jump label more than once per second */ 6905 jump_label_rate_limit(&perf_sched_events, HZ); 6906 } 6907 6908 static int __init perf_event_sysfs_init(void) 6909 { 6910 struct pmu *pmu; 6911 int ret; 6912 6913 mutex_lock(&pmus_lock); 6914 6915 ret = bus_register(&pmu_bus); 6916 if (ret) 6917 goto unlock; 6918 6919 list_for_each_entry(pmu, &pmus, entry) { 6920 if (!pmu->name || pmu->type < 0) 6921 continue; 6922 6923 ret = pmu_dev_alloc(pmu); 6924 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 6925 } 6926 pmu_bus_running = 1; 6927 ret = 0; 6928 6929 unlock: 6930 mutex_unlock(&pmus_lock); 6931 6932 return ret; 6933 } 6934 device_initcall(perf_event_sysfs_init); 6935 6936 #ifdef CONFIG_CGROUP_PERF 6937 static struct cgroup_subsys_state *perf_cgroup_create( 6938 struct cgroup_subsys *ss, struct cgroup *cont) 6939 { 6940 struct perf_cgroup *jc; 6941 6942 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 6943 if (!jc) 6944 return ERR_PTR(-ENOMEM); 6945 6946 jc->info = alloc_percpu(struct perf_cgroup_info); 6947 if (!jc->info) { 6948 kfree(jc); 6949 return ERR_PTR(-ENOMEM); 6950 } 6951 6952 return &jc->css; 6953 } 6954 6955 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 6956 struct cgroup *cont) 6957 { 6958 struct perf_cgroup *jc; 6959 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 6960 struct perf_cgroup, css); 6961 free_percpu(jc->info); 6962 kfree(jc); 6963 } 6964 6965 static int __perf_cgroup_move(void *info) 6966 { 6967 struct task_struct *task = info; 6968 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 6969 return 0; 6970 } 6971 6972 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 6973 struct cgroup_taskset *tset) 6974 { 6975 struct task_struct *task; 6976 6977 cgroup_taskset_for_each(task, cgrp, tset) 6978 task_function_call(task, __perf_cgroup_move, task); 6979 } 6980 6981 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 6982 struct cgroup *old_cgrp, struct task_struct *task) 6983 { 6984 /* 6985 * cgroup_exit() is called in the copy_process() failure path. 6986 * Ignore this case since the task hasn't ran yet, this avoids 6987 * trying to poke a half freed task state from generic code. 6988 */ 6989 if (!(task->flags & PF_EXITING)) 6990 return; 6991 6992 task_function_call(task, __perf_cgroup_move, task); 6993 } 6994 6995 struct cgroup_subsys perf_subsys = { 6996 .name = "perf_event", 6997 .subsys_id = perf_subsys_id, 6998 .create = perf_cgroup_create, 6999 .destroy = perf_cgroup_destroy, 7000 .exit = perf_cgroup_exit, 7001 .attach = perf_cgroup_attach, 7002 }; 7003 #endif /* CONFIG_CGROUP_PERF */ 7004