xref: /linux/kernel/events/core.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 enum event_type_t {
122 	EVENT_FLEXIBLE = 0x1,
123 	EVENT_PINNED = 0x2,
124 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126 
127 /*
128  * perf_sched_events : >0 events exist
129  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130  */
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133 
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137 
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141 
142 /*
143  * perf event paranoia level:
144  *  -1 - not paranoid at all
145  *   0 - disallow raw tracepoint access for unpriv
146  *   1 - disallow cpu events for unpriv
147  *   2 - disallow kernel profiling for unpriv
148  */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150 
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 
154 /*
155  * max perf event sample rate
156  */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161 
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 		void __user *buffer, size_t *lenp,
164 		loff_t *ppos)
165 {
166 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167 
168 	if (ret || !write)
169 		return ret;
170 
171 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172 
173 	return 0;
174 }
175 
176 static atomic64_t perf_event_id;
177 
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 			      enum event_type_t event_type);
180 
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 			     enum event_type_t event_type,
183 			     struct task_struct *task);
184 
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187 
188 static void ring_buffer_attach(struct perf_event *event,
189 			       struct ring_buffer *rb);
190 
191 void __weak perf_event_print_debug(void)	{ }
192 
193 extern __weak const char *perf_pmu_name(void)
194 {
195 	return "pmu";
196 }
197 
198 static inline u64 perf_clock(void)
199 {
200 	return local_clock();
201 }
202 
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208 
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 			  struct perf_event_context *ctx)
211 {
212 	raw_spin_lock(&cpuctx->ctx.lock);
213 	if (ctx)
214 		raw_spin_lock(&ctx->lock);
215 }
216 
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 			    struct perf_event_context *ctx)
219 {
220 	if (ctx)
221 		raw_spin_unlock(&ctx->lock);
222 	raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224 
225 #ifdef CONFIG_CGROUP_PERF
226 
227 /*
228  * Must ensure cgroup is pinned (css_get) before calling
229  * this function. In other words, we cannot call this function
230  * if there is no cgroup event for the current CPU context.
231  */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 	return container_of(task_subsys_state(task, perf_subsys_id),
236 			struct perf_cgroup, css);
237 }
238 
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 	struct perf_event_context *ctx = event->ctx;
243 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244 
245 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247 
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 	css_get(&event->cgrp->css);
251 }
252 
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 	css_put(&event->cgrp->css);
256 }
257 
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 	perf_put_cgroup(event);
261 	event->cgrp = NULL;
262 }
263 
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 	return event->cgrp != NULL;
267 }
268 
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 	struct perf_cgroup_info *t;
272 
273 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 	return t->time;
275 }
276 
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 	struct perf_cgroup_info *info;
280 	u64 now;
281 
282 	now = perf_clock();
283 
284 	info = this_cpu_ptr(cgrp->info);
285 
286 	info->time += now - info->timestamp;
287 	info->timestamp = now;
288 }
289 
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 	if (cgrp_out)
294 		__update_cgrp_time(cgrp_out);
295 }
296 
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 	struct perf_cgroup *cgrp;
300 
301 	/*
302 	 * ensure we access cgroup data only when needed and
303 	 * when we know the cgroup is pinned (css_get)
304 	 */
305 	if (!is_cgroup_event(event))
306 		return;
307 
308 	cgrp = perf_cgroup_from_task(current);
309 	/*
310 	 * Do not update time when cgroup is not active
311 	 */
312 	if (cgrp == event->cgrp)
313 		__update_cgrp_time(event->cgrp);
314 }
315 
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 			  struct perf_event_context *ctx)
319 {
320 	struct perf_cgroup *cgrp;
321 	struct perf_cgroup_info *info;
322 
323 	/*
324 	 * ctx->lock held by caller
325 	 * ensure we do not access cgroup data
326 	 * unless we have the cgroup pinned (css_get)
327 	 */
328 	if (!task || !ctx->nr_cgroups)
329 		return;
330 
331 	cgrp = perf_cgroup_from_task(task);
332 	info = this_cpu_ptr(cgrp->info);
333 	info->timestamp = ctx->timestamp;
334 }
335 
336 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
338 
339 /*
340  * reschedule events based on the cgroup constraint of task.
341  *
342  * mode SWOUT : schedule out everything
343  * mode SWIN : schedule in based on cgroup for next
344  */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 	struct perf_cpu_context *cpuctx;
348 	struct pmu *pmu;
349 	unsigned long flags;
350 
351 	/*
352 	 * disable interrupts to avoid geting nr_cgroup
353 	 * changes via __perf_event_disable(). Also
354 	 * avoids preemption.
355 	 */
356 	local_irq_save(flags);
357 
358 	/*
359 	 * we reschedule only in the presence of cgroup
360 	 * constrained events.
361 	 */
362 	rcu_read_lock();
363 
364 	list_for_each_entry_rcu(pmu, &pmus, entry) {
365 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366 
367 		/*
368 		 * perf_cgroup_events says at least one
369 		 * context on this CPU has cgroup events.
370 		 *
371 		 * ctx->nr_cgroups reports the number of cgroup
372 		 * events for a context.
373 		 */
374 		if (cpuctx->ctx.nr_cgroups > 0) {
375 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 			perf_pmu_disable(cpuctx->ctx.pmu);
377 
378 			if (mode & PERF_CGROUP_SWOUT) {
379 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 				/*
381 				 * must not be done before ctxswout due
382 				 * to event_filter_match() in event_sched_out()
383 				 */
384 				cpuctx->cgrp = NULL;
385 			}
386 
387 			if (mode & PERF_CGROUP_SWIN) {
388 				WARN_ON_ONCE(cpuctx->cgrp);
389 				/* set cgrp before ctxsw in to
390 				 * allow event_filter_match() to not
391 				 * have to pass task around
392 				 */
393 				cpuctx->cgrp = perf_cgroup_from_task(task);
394 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 			}
396 			perf_pmu_enable(cpuctx->ctx.pmu);
397 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 		}
399 	}
400 
401 	rcu_read_unlock();
402 
403 	local_irq_restore(flags);
404 }
405 
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 					 struct task_struct *next)
408 {
409 	struct perf_cgroup *cgrp1;
410 	struct perf_cgroup *cgrp2 = NULL;
411 
412 	/*
413 	 * we come here when we know perf_cgroup_events > 0
414 	 */
415 	cgrp1 = perf_cgroup_from_task(task);
416 
417 	/*
418 	 * next is NULL when called from perf_event_enable_on_exec()
419 	 * that will systematically cause a cgroup_switch()
420 	 */
421 	if (next)
422 		cgrp2 = perf_cgroup_from_task(next);
423 
424 	/*
425 	 * only schedule out current cgroup events if we know
426 	 * that we are switching to a different cgroup. Otherwise,
427 	 * do no touch the cgroup events.
428 	 */
429 	if (cgrp1 != cgrp2)
430 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432 
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 					struct task_struct *task)
435 {
436 	struct perf_cgroup *cgrp1;
437 	struct perf_cgroup *cgrp2 = NULL;
438 
439 	/*
440 	 * we come here when we know perf_cgroup_events > 0
441 	 */
442 	cgrp1 = perf_cgroup_from_task(task);
443 
444 	/* prev can never be NULL */
445 	cgrp2 = perf_cgroup_from_task(prev);
446 
447 	/*
448 	 * only need to schedule in cgroup events if we are changing
449 	 * cgroup during ctxsw. Cgroup events were not scheduled
450 	 * out of ctxsw out if that was not the case.
451 	 */
452 	if (cgrp1 != cgrp2)
453 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455 
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 				      struct perf_event_attr *attr,
458 				      struct perf_event *group_leader)
459 {
460 	struct perf_cgroup *cgrp;
461 	struct cgroup_subsys_state *css;
462 	struct file *file;
463 	int ret = 0, fput_needed;
464 
465 	file = fget_light(fd, &fput_needed);
466 	if (!file)
467 		return -EBADF;
468 
469 	css = cgroup_css_from_dir(file, perf_subsys_id);
470 	if (IS_ERR(css)) {
471 		ret = PTR_ERR(css);
472 		goto out;
473 	}
474 
475 	cgrp = container_of(css, struct perf_cgroup, css);
476 	event->cgrp = cgrp;
477 
478 	/* must be done before we fput() the file */
479 	perf_get_cgroup(event);
480 
481 	/*
482 	 * all events in a group must monitor
483 	 * the same cgroup because a task belongs
484 	 * to only one perf cgroup at a time
485 	 */
486 	if (group_leader && group_leader->cgrp != cgrp) {
487 		perf_detach_cgroup(event);
488 		ret = -EINVAL;
489 	}
490 out:
491 	fput_light(file, fput_needed);
492 	return ret;
493 }
494 
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 	struct perf_cgroup_info *t;
499 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 	event->shadow_ctx_time = now - t->timestamp;
501 }
502 
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 	/*
507 	 * when the current task's perf cgroup does not match
508 	 * the event's, we need to remember to call the
509 	 * perf_mark_enable() function the first time a task with
510 	 * a matching perf cgroup is scheduled in.
511 	 */
512 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 		event->cgrp_defer_enabled = 1;
514 }
515 
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 			 struct perf_event_context *ctx)
519 {
520 	struct perf_event *sub;
521 	u64 tstamp = perf_event_time(event);
522 
523 	if (!event->cgrp_defer_enabled)
524 		return;
525 
526 	event->cgrp_defer_enabled = 0;
527 
528 	event->tstamp_enabled = tstamp - event->total_time_enabled;
529 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 			sub->cgrp_defer_enabled = 0;
533 		}
534 	}
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537 
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 	return true;
542 }
543 
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546 
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 	return 0;
550 }
551 
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 	return 0;
555 }
556 
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560 
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564 
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 					 struct task_struct *next)
567 {
568 }
569 
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 					struct task_struct *task)
572 {
573 }
574 
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 				      struct perf_event_attr *attr,
577 				      struct perf_event *group_leader)
578 {
579 	return -EINVAL;
580 }
581 
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 			  struct perf_event_context *ctx)
585 {
586 }
587 
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592 
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597 
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 	return 0;
601 }
602 
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607 
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 			 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614 
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 	if (!(*count)++)
619 		pmu->pmu_disable(pmu);
620 }
621 
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 	if (!--(*count))
626 		pmu->pmu_enable(pmu);
627 }
628 
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630 
631 /*
632  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633  * because they're strictly cpu affine and rotate_start is called with IRQs
634  * disabled, while rotate_context is called from IRQ context.
635  */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 	struct list_head *head = &__get_cpu_var(rotation_list);
640 
641 	WARN_ON(!irqs_disabled());
642 
643 	if (list_empty(&cpuctx->rotation_list))
644 		list_add(&cpuctx->rotation_list, head);
645 }
646 
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651 
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 	if (atomic_dec_and_test(&ctx->refcount)) {
655 		if (ctx->parent_ctx)
656 			put_ctx(ctx->parent_ctx);
657 		if (ctx->task)
658 			put_task_struct(ctx->task);
659 		kfree_rcu(ctx, rcu_head);
660 	}
661 }
662 
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 	if (ctx->parent_ctx) {
666 		put_ctx(ctx->parent_ctx);
667 		ctx->parent_ctx = NULL;
668 	}
669 }
670 
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 	/*
674 	 * only top level events have the pid namespace they were created in
675 	 */
676 	if (event->parent)
677 		event = event->parent;
678 
679 	return task_tgid_nr_ns(p, event->ns);
680 }
681 
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 	/*
685 	 * only top level events have the pid namespace they were created in
686 	 */
687 	if (event->parent)
688 		event = event->parent;
689 
690 	return task_pid_nr_ns(p, event->ns);
691 }
692 
693 /*
694  * If we inherit events we want to return the parent event id
695  * to userspace.
696  */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 	u64 id = event->id;
700 
701 	if (event->parent)
702 		id = event->parent->id;
703 
704 	return id;
705 }
706 
707 /*
708  * Get the perf_event_context for a task and lock it.
709  * This has to cope with with the fact that until it is locked,
710  * the context could get moved to another task.
711  */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 	struct perf_event_context *ctx;
716 
717 	rcu_read_lock();
718 retry:
719 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 	if (ctx) {
721 		/*
722 		 * If this context is a clone of another, it might
723 		 * get swapped for another underneath us by
724 		 * perf_event_task_sched_out, though the
725 		 * rcu_read_lock() protects us from any context
726 		 * getting freed.  Lock the context and check if it
727 		 * got swapped before we could get the lock, and retry
728 		 * if so.  If we locked the right context, then it
729 		 * can't get swapped on us any more.
730 		 */
731 		raw_spin_lock_irqsave(&ctx->lock, *flags);
732 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 			goto retry;
735 		}
736 
737 		if (!atomic_inc_not_zero(&ctx->refcount)) {
738 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 			ctx = NULL;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return ctx;
744 }
745 
746 /*
747  * Get the context for a task and increment its pin_count so it
748  * can't get swapped to another task.  This also increments its
749  * reference count so that the context can't get freed.
750  */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 	struct perf_event_context *ctx;
755 	unsigned long flags;
756 
757 	ctx = perf_lock_task_context(task, ctxn, &flags);
758 	if (ctx) {
759 		++ctx->pin_count;
760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 	}
762 	return ctx;
763 }
764 
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 	unsigned long flags;
768 
769 	raw_spin_lock_irqsave(&ctx->lock, flags);
770 	--ctx->pin_count;
771 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773 
774 /*
775  * Update the record of the current time in a context.
776  */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 	u64 now = perf_clock();
780 
781 	ctx->time += now - ctx->timestamp;
782 	ctx->timestamp = now;
783 }
784 
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 	struct perf_event_context *ctx = event->ctx;
788 
789 	if (is_cgroup_event(event))
790 		return perf_cgroup_event_time(event);
791 
792 	return ctx ? ctx->time : 0;
793 }
794 
795 /*
796  * Update the total_time_enabled and total_time_running fields for a event.
797  * The caller of this function needs to hold the ctx->lock.
798  */
799 static void update_event_times(struct perf_event *event)
800 {
801 	struct perf_event_context *ctx = event->ctx;
802 	u64 run_end;
803 
804 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 		return;
807 	/*
808 	 * in cgroup mode, time_enabled represents
809 	 * the time the event was enabled AND active
810 	 * tasks were in the monitored cgroup. This is
811 	 * independent of the activity of the context as
812 	 * there may be a mix of cgroup and non-cgroup events.
813 	 *
814 	 * That is why we treat cgroup events differently
815 	 * here.
816 	 */
817 	if (is_cgroup_event(event))
818 		run_end = perf_cgroup_event_time(event);
819 	else if (ctx->is_active)
820 		run_end = ctx->time;
821 	else
822 		run_end = event->tstamp_stopped;
823 
824 	event->total_time_enabled = run_end - event->tstamp_enabled;
825 
826 	if (event->state == PERF_EVENT_STATE_INACTIVE)
827 		run_end = event->tstamp_stopped;
828 	else
829 		run_end = perf_event_time(event);
830 
831 	event->total_time_running = run_end - event->tstamp_running;
832 
833 }
834 
835 /*
836  * Update total_time_enabled and total_time_running for all events in a group.
837  */
838 static void update_group_times(struct perf_event *leader)
839 {
840 	struct perf_event *event;
841 
842 	update_event_times(leader);
843 	list_for_each_entry(event, &leader->sibling_list, group_entry)
844 		update_event_times(event);
845 }
846 
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 	if (event->attr.pinned)
851 		return &ctx->pinned_groups;
852 	else
853 		return &ctx->flexible_groups;
854 }
855 
856 /*
857  * Add a event from the lists for its context.
858  * Must be called with ctx->mutex and ctx->lock held.
859  */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 	event->attach_state |= PERF_ATTACH_CONTEXT;
865 
866 	/*
867 	 * If we're a stand alone event or group leader, we go to the context
868 	 * list, group events are kept attached to the group so that
869 	 * perf_group_detach can, at all times, locate all siblings.
870 	 */
871 	if (event->group_leader == event) {
872 		struct list_head *list;
873 
874 		if (is_software_event(event))
875 			event->group_flags |= PERF_GROUP_SOFTWARE;
876 
877 		list = ctx_group_list(event, ctx);
878 		list_add_tail(&event->group_entry, list);
879 	}
880 
881 	if (is_cgroup_event(event))
882 		ctx->nr_cgroups++;
883 
884 	list_add_rcu(&event->event_entry, &ctx->event_list);
885 	if (!ctx->nr_events)
886 		perf_pmu_rotate_start(ctx->pmu);
887 	ctx->nr_events++;
888 	if (event->attr.inherit_stat)
889 		ctx->nr_stat++;
890 }
891 
892 /*
893  * Called at perf_event creation and when events are attached/detached from a
894  * group.
895  */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 	int entry = sizeof(u64); /* value */
899 	int size = 0;
900 	int nr = 1;
901 
902 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 		size += sizeof(u64);
904 
905 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 		size += sizeof(u64);
907 
908 	if (event->attr.read_format & PERF_FORMAT_ID)
909 		entry += sizeof(u64);
910 
911 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 		nr += event->group_leader->nr_siblings;
913 		size += sizeof(u64);
914 	}
915 
916 	size += entry * nr;
917 	event->read_size = size;
918 }
919 
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 	struct perf_sample_data *data;
923 	u64 sample_type = event->attr.sample_type;
924 	u16 size = 0;
925 
926 	perf_event__read_size(event);
927 
928 	if (sample_type & PERF_SAMPLE_IP)
929 		size += sizeof(data->ip);
930 
931 	if (sample_type & PERF_SAMPLE_ADDR)
932 		size += sizeof(data->addr);
933 
934 	if (sample_type & PERF_SAMPLE_PERIOD)
935 		size += sizeof(data->period);
936 
937 	if (sample_type & PERF_SAMPLE_READ)
938 		size += event->read_size;
939 
940 	event->header_size = size;
941 }
942 
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 	struct perf_sample_data *data;
946 	u64 sample_type = event->attr.sample_type;
947 	u16 size = 0;
948 
949 	if (sample_type & PERF_SAMPLE_TID)
950 		size += sizeof(data->tid_entry);
951 
952 	if (sample_type & PERF_SAMPLE_TIME)
953 		size += sizeof(data->time);
954 
955 	if (sample_type & PERF_SAMPLE_ID)
956 		size += sizeof(data->id);
957 
958 	if (sample_type & PERF_SAMPLE_STREAM_ID)
959 		size += sizeof(data->stream_id);
960 
961 	if (sample_type & PERF_SAMPLE_CPU)
962 		size += sizeof(data->cpu_entry);
963 
964 	event->id_header_size = size;
965 }
966 
967 static void perf_group_attach(struct perf_event *event)
968 {
969 	struct perf_event *group_leader = event->group_leader, *pos;
970 
971 	/*
972 	 * We can have double attach due to group movement in perf_event_open.
973 	 */
974 	if (event->attach_state & PERF_ATTACH_GROUP)
975 		return;
976 
977 	event->attach_state |= PERF_ATTACH_GROUP;
978 
979 	if (group_leader == event)
980 		return;
981 
982 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 			!is_software_event(event))
984 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985 
986 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 	group_leader->nr_siblings++;
988 
989 	perf_event__header_size(group_leader);
990 
991 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 		perf_event__header_size(pos);
993 }
994 
995 /*
996  * Remove a event from the lists for its context.
997  * Must be called with ctx->mutex and ctx->lock held.
998  */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 	/*
1004 	 * We can have double detach due to exit/hot-unplug + close.
1005 	 */
1006 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 		return;
1008 
1009 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010 
1011 	if (is_cgroup_event(event)) {
1012 		ctx->nr_cgroups--;
1013 		cpuctx = __get_cpu_context(ctx);
1014 		/*
1015 		 * if there are no more cgroup events
1016 		 * then cler cgrp to avoid stale pointer
1017 		 * in update_cgrp_time_from_cpuctx()
1018 		 */
1019 		if (!ctx->nr_cgroups)
1020 			cpuctx->cgrp = NULL;
1021 	}
1022 
1023 	ctx->nr_events--;
1024 	if (event->attr.inherit_stat)
1025 		ctx->nr_stat--;
1026 
1027 	list_del_rcu(&event->event_entry);
1028 
1029 	if (event->group_leader == event)
1030 		list_del_init(&event->group_entry);
1031 
1032 	update_group_times(event);
1033 
1034 	/*
1035 	 * If event was in error state, then keep it
1036 	 * that way, otherwise bogus counts will be
1037 	 * returned on read(). The only way to get out
1038 	 * of error state is by explicit re-enabling
1039 	 * of the event
1040 	 */
1041 	if (event->state > PERF_EVENT_STATE_OFF)
1042 		event->state = PERF_EVENT_STATE_OFF;
1043 }
1044 
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 	struct perf_event *sibling, *tmp;
1048 	struct list_head *list = NULL;
1049 
1050 	/*
1051 	 * We can have double detach due to exit/hot-unplug + close.
1052 	 */
1053 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 		return;
1055 
1056 	event->attach_state &= ~PERF_ATTACH_GROUP;
1057 
1058 	/*
1059 	 * If this is a sibling, remove it from its group.
1060 	 */
1061 	if (event->group_leader != event) {
1062 		list_del_init(&event->group_entry);
1063 		event->group_leader->nr_siblings--;
1064 		goto out;
1065 	}
1066 
1067 	if (!list_empty(&event->group_entry))
1068 		list = &event->group_entry;
1069 
1070 	/*
1071 	 * If this was a group event with sibling events then
1072 	 * upgrade the siblings to singleton events by adding them
1073 	 * to whatever list we are on.
1074 	 */
1075 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 		if (list)
1077 			list_move_tail(&sibling->group_entry, list);
1078 		sibling->group_leader = sibling;
1079 
1080 		/* Inherit group flags from the previous leader */
1081 		sibling->group_flags = event->group_flags;
1082 	}
1083 
1084 out:
1085 	perf_event__header_size(event->group_leader);
1086 
1087 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 		perf_event__header_size(tmp);
1089 }
1090 
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 	    && perf_cgroup_match(event);
1096 }
1097 
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 		  struct perf_cpu_context *cpuctx,
1101 		  struct perf_event_context *ctx)
1102 {
1103 	u64 tstamp = perf_event_time(event);
1104 	u64 delta;
1105 	/*
1106 	 * An event which could not be activated because of
1107 	 * filter mismatch still needs to have its timings
1108 	 * maintained, otherwise bogus information is return
1109 	 * via read() for time_enabled, time_running:
1110 	 */
1111 	if (event->state == PERF_EVENT_STATE_INACTIVE
1112 	    && !event_filter_match(event)) {
1113 		delta = tstamp - event->tstamp_stopped;
1114 		event->tstamp_running += delta;
1115 		event->tstamp_stopped = tstamp;
1116 	}
1117 
1118 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 		return;
1120 
1121 	event->state = PERF_EVENT_STATE_INACTIVE;
1122 	if (event->pending_disable) {
1123 		event->pending_disable = 0;
1124 		event->state = PERF_EVENT_STATE_OFF;
1125 	}
1126 	event->tstamp_stopped = tstamp;
1127 	event->pmu->del(event, 0);
1128 	event->oncpu = -1;
1129 
1130 	if (!is_software_event(event))
1131 		cpuctx->active_oncpu--;
1132 	ctx->nr_active--;
1133 	if (event->attr.freq && event->attr.sample_freq)
1134 		ctx->nr_freq--;
1135 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 		cpuctx->exclusive = 0;
1137 }
1138 
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 		struct perf_cpu_context *cpuctx,
1142 		struct perf_event_context *ctx)
1143 {
1144 	struct perf_event *event;
1145 	int state = group_event->state;
1146 
1147 	event_sched_out(group_event, cpuctx, ctx);
1148 
1149 	/*
1150 	 * Schedule out siblings (if any):
1151 	 */
1152 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 		event_sched_out(event, cpuctx, ctx);
1154 
1155 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 		cpuctx->exclusive = 0;
1157 }
1158 
1159 /*
1160  * Cross CPU call to remove a performance event
1161  *
1162  * We disable the event on the hardware level first. After that we
1163  * remove it from the context list.
1164  */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 	struct perf_event *event = info;
1168 	struct perf_event_context *ctx = event->ctx;
1169 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170 
1171 	raw_spin_lock(&ctx->lock);
1172 	event_sched_out(event, cpuctx, ctx);
1173 	list_del_event(event, ctx);
1174 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 		ctx->is_active = 0;
1176 		cpuctx->task_ctx = NULL;
1177 	}
1178 	raw_spin_unlock(&ctx->lock);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 /*
1185  * Remove the event from a task's (or a CPU's) list of events.
1186  *
1187  * CPU events are removed with a smp call. For task events we only
1188  * call when the task is on a CPU.
1189  *
1190  * If event->ctx is a cloned context, callers must make sure that
1191  * every task struct that event->ctx->task could possibly point to
1192  * remains valid.  This is OK when called from perf_release since
1193  * that only calls us on the top-level context, which can't be a clone.
1194  * When called from perf_event_exit_task, it's OK because the
1195  * context has been detached from its task.
1196  */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 	struct perf_event_context *ctx = event->ctx;
1200 	struct task_struct *task = ctx->task;
1201 
1202 	lockdep_assert_held(&ctx->mutex);
1203 
1204 	if (!task) {
1205 		/*
1206 		 * Per cpu events are removed via an smp call and
1207 		 * the removal is always successful.
1208 		 */
1209 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 		return;
1211 	}
1212 
1213 retry:
1214 	if (!task_function_call(task, __perf_remove_from_context, event))
1215 		return;
1216 
1217 	raw_spin_lock_irq(&ctx->lock);
1218 	/*
1219 	 * If we failed to find a running task, but find the context active now
1220 	 * that we've acquired the ctx->lock, retry.
1221 	 */
1222 	if (ctx->is_active) {
1223 		raw_spin_unlock_irq(&ctx->lock);
1224 		goto retry;
1225 	}
1226 
1227 	/*
1228 	 * Since the task isn't running, its safe to remove the event, us
1229 	 * holding the ctx->lock ensures the task won't get scheduled in.
1230 	 */
1231 	list_del_event(event, ctx);
1232 	raw_spin_unlock_irq(&ctx->lock);
1233 }
1234 
1235 /*
1236  * Cross CPU call to disable a performance event
1237  */
1238 static int __perf_event_disable(void *info)
1239 {
1240 	struct perf_event *event = info;
1241 	struct perf_event_context *ctx = event->ctx;
1242 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 
1244 	/*
1245 	 * If this is a per-task event, need to check whether this
1246 	 * event's task is the current task on this cpu.
1247 	 *
1248 	 * Can trigger due to concurrent perf_event_context_sched_out()
1249 	 * flipping contexts around.
1250 	 */
1251 	if (ctx->task && cpuctx->task_ctx != ctx)
1252 		return -EINVAL;
1253 
1254 	raw_spin_lock(&ctx->lock);
1255 
1256 	/*
1257 	 * If the event is on, turn it off.
1258 	 * If it is in error state, leave it in error state.
1259 	 */
1260 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 		update_context_time(ctx);
1262 		update_cgrp_time_from_event(event);
1263 		update_group_times(event);
1264 		if (event == event->group_leader)
1265 			group_sched_out(event, cpuctx, ctx);
1266 		else
1267 			event_sched_out(event, cpuctx, ctx);
1268 		event->state = PERF_EVENT_STATE_OFF;
1269 	}
1270 
1271 	raw_spin_unlock(&ctx->lock);
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Disable a event.
1278  *
1279  * If event->ctx is a cloned context, callers must make sure that
1280  * every task struct that event->ctx->task could possibly point to
1281  * remains valid.  This condition is satisifed when called through
1282  * perf_event_for_each_child or perf_event_for_each because they
1283  * hold the top-level event's child_mutex, so any descendant that
1284  * goes to exit will block in sync_child_event.
1285  * When called from perf_pending_event it's OK because event->ctx
1286  * is the current context on this CPU and preemption is disabled,
1287  * hence we can't get into perf_event_task_sched_out for this context.
1288  */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 	struct perf_event_context *ctx = event->ctx;
1292 	struct task_struct *task = ctx->task;
1293 
1294 	if (!task) {
1295 		/*
1296 		 * Disable the event on the cpu that it's on
1297 		 */
1298 		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 		return;
1300 	}
1301 
1302 retry:
1303 	if (!task_function_call(task, __perf_event_disable, event))
1304 		return;
1305 
1306 	raw_spin_lock_irq(&ctx->lock);
1307 	/*
1308 	 * If the event is still active, we need to retry the cross-call.
1309 	 */
1310 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 		raw_spin_unlock_irq(&ctx->lock);
1312 		/*
1313 		 * Reload the task pointer, it might have been changed by
1314 		 * a concurrent perf_event_context_sched_out().
1315 		 */
1316 		task = ctx->task;
1317 		goto retry;
1318 	}
1319 
1320 	/*
1321 	 * Since we have the lock this context can't be scheduled
1322 	 * in, so we can change the state safely.
1323 	 */
1324 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 		update_group_times(event);
1326 		event->state = PERF_EVENT_STATE_OFF;
1327 	}
1328 	raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331 
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 				 struct perf_event_context *ctx,
1334 				 u64 tstamp)
1335 {
1336 	/*
1337 	 * use the correct time source for the time snapshot
1338 	 *
1339 	 * We could get by without this by leveraging the
1340 	 * fact that to get to this function, the caller
1341 	 * has most likely already called update_context_time()
1342 	 * and update_cgrp_time_xx() and thus both timestamp
1343 	 * are identical (or very close). Given that tstamp is,
1344 	 * already adjusted for cgroup, we could say that:
1345 	 *    tstamp - ctx->timestamp
1346 	 * is equivalent to
1347 	 *    tstamp - cgrp->timestamp.
1348 	 *
1349 	 * Then, in perf_output_read(), the calculation would
1350 	 * work with no changes because:
1351 	 * - event is guaranteed scheduled in
1352 	 * - no scheduled out in between
1353 	 * - thus the timestamp would be the same
1354 	 *
1355 	 * But this is a bit hairy.
1356 	 *
1357 	 * So instead, we have an explicit cgroup call to remain
1358 	 * within the time time source all along. We believe it
1359 	 * is cleaner and simpler to understand.
1360 	 */
1361 	if (is_cgroup_event(event))
1362 		perf_cgroup_set_shadow_time(event, tstamp);
1363 	else
1364 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366 
1367 #define MAX_INTERRUPTS (~0ULL)
1368 
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370 
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 		 struct perf_cpu_context *cpuctx,
1374 		 struct perf_event_context *ctx)
1375 {
1376 	u64 tstamp = perf_event_time(event);
1377 
1378 	if (event->state <= PERF_EVENT_STATE_OFF)
1379 		return 0;
1380 
1381 	event->state = PERF_EVENT_STATE_ACTIVE;
1382 	event->oncpu = smp_processor_id();
1383 
1384 	/*
1385 	 * Unthrottle events, since we scheduled we might have missed several
1386 	 * ticks already, also for a heavily scheduling task there is little
1387 	 * guarantee it'll get a tick in a timely manner.
1388 	 */
1389 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 		perf_log_throttle(event, 1);
1391 		event->hw.interrupts = 0;
1392 	}
1393 
1394 	/*
1395 	 * The new state must be visible before we turn it on in the hardware:
1396 	 */
1397 	smp_wmb();
1398 
1399 	if (event->pmu->add(event, PERF_EF_START)) {
1400 		event->state = PERF_EVENT_STATE_INACTIVE;
1401 		event->oncpu = -1;
1402 		return -EAGAIN;
1403 	}
1404 
1405 	event->tstamp_running += tstamp - event->tstamp_stopped;
1406 
1407 	perf_set_shadow_time(event, ctx, tstamp);
1408 
1409 	if (!is_software_event(event))
1410 		cpuctx->active_oncpu++;
1411 	ctx->nr_active++;
1412 	if (event->attr.freq && event->attr.sample_freq)
1413 		ctx->nr_freq++;
1414 
1415 	if (event->attr.exclusive)
1416 		cpuctx->exclusive = 1;
1417 
1418 	return 0;
1419 }
1420 
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 	       struct perf_cpu_context *cpuctx,
1424 	       struct perf_event_context *ctx)
1425 {
1426 	struct perf_event *event, *partial_group = NULL;
1427 	struct pmu *pmu = group_event->pmu;
1428 	u64 now = ctx->time;
1429 	bool simulate = false;
1430 
1431 	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 		return 0;
1433 
1434 	pmu->start_txn(pmu);
1435 
1436 	if (event_sched_in(group_event, cpuctx, ctx)) {
1437 		pmu->cancel_txn(pmu);
1438 		return -EAGAIN;
1439 	}
1440 
1441 	/*
1442 	 * Schedule in siblings as one group (if any):
1443 	 */
1444 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 		if (event_sched_in(event, cpuctx, ctx)) {
1446 			partial_group = event;
1447 			goto group_error;
1448 		}
1449 	}
1450 
1451 	if (!pmu->commit_txn(pmu))
1452 		return 0;
1453 
1454 group_error:
1455 	/*
1456 	 * Groups can be scheduled in as one unit only, so undo any
1457 	 * partial group before returning:
1458 	 * The events up to the failed event are scheduled out normally,
1459 	 * tstamp_stopped will be updated.
1460 	 *
1461 	 * The failed events and the remaining siblings need to have
1462 	 * their timings updated as if they had gone thru event_sched_in()
1463 	 * and event_sched_out(). This is required to get consistent timings
1464 	 * across the group. This also takes care of the case where the group
1465 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 	 * the time the event was actually stopped, such that time delta
1467 	 * calculation in update_event_times() is correct.
1468 	 */
1469 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 		if (event == partial_group)
1471 			simulate = true;
1472 
1473 		if (simulate) {
1474 			event->tstamp_running += now - event->tstamp_stopped;
1475 			event->tstamp_stopped = now;
1476 		} else {
1477 			event_sched_out(event, cpuctx, ctx);
1478 		}
1479 	}
1480 	event_sched_out(group_event, cpuctx, ctx);
1481 
1482 	pmu->cancel_txn(pmu);
1483 
1484 	return -EAGAIN;
1485 }
1486 
1487 /*
1488  * Work out whether we can put this event group on the CPU now.
1489  */
1490 static int group_can_go_on(struct perf_event *event,
1491 			   struct perf_cpu_context *cpuctx,
1492 			   int can_add_hw)
1493 {
1494 	/*
1495 	 * Groups consisting entirely of software events can always go on.
1496 	 */
1497 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 		return 1;
1499 	/*
1500 	 * If an exclusive group is already on, no other hardware
1501 	 * events can go on.
1502 	 */
1503 	if (cpuctx->exclusive)
1504 		return 0;
1505 	/*
1506 	 * If this group is exclusive and there are already
1507 	 * events on the CPU, it can't go on.
1508 	 */
1509 	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 		return 0;
1511 	/*
1512 	 * Otherwise, try to add it if all previous groups were able
1513 	 * to go on.
1514 	 */
1515 	return can_add_hw;
1516 }
1517 
1518 static void add_event_to_ctx(struct perf_event *event,
1519 			       struct perf_event_context *ctx)
1520 {
1521 	u64 tstamp = perf_event_time(event);
1522 
1523 	list_add_event(event, ctx);
1524 	perf_group_attach(event);
1525 	event->tstamp_enabled = tstamp;
1526 	event->tstamp_running = tstamp;
1527 	event->tstamp_stopped = tstamp;
1528 }
1529 
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 	     struct perf_cpu_context *cpuctx,
1534 	     enum event_type_t event_type,
1535 	     struct task_struct *task);
1536 
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 				struct perf_event_context *ctx,
1539 				struct task_struct *task)
1540 {
1541 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 	if (ctx)
1543 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 	if (ctx)
1546 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548 
1549 /*
1550  * Cross CPU call to install and enable a performance event
1551  *
1552  * Must be called with ctx->mutex held
1553  */
1554 static int  __perf_install_in_context(void *info)
1555 {
1556 	struct perf_event *event = info;
1557 	struct perf_event_context *ctx = event->ctx;
1558 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 	struct task_struct *task = current;
1561 
1562 	perf_ctx_lock(cpuctx, task_ctx);
1563 	perf_pmu_disable(cpuctx->ctx.pmu);
1564 
1565 	/*
1566 	 * If there was an active task_ctx schedule it out.
1567 	 */
1568 	if (task_ctx)
1569 		task_ctx_sched_out(task_ctx);
1570 
1571 	/*
1572 	 * If the context we're installing events in is not the
1573 	 * active task_ctx, flip them.
1574 	 */
1575 	if (ctx->task && task_ctx != ctx) {
1576 		if (task_ctx)
1577 			raw_spin_unlock(&task_ctx->lock);
1578 		raw_spin_lock(&ctx->lock);
1579 		task_ctx = ctx;
1580 	}
1581 
1582 	if (task_ctx) {
1583 		cpuctx->task_ctx = task_ctx;
1584 		task = task_ctx->task;
1585 	}
1586 
1587 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588 
1589 	update_context_time(ctx);
1590 	/*
1591 	 * update cgrp time only if current cgrp
1592 	 * matches event->cgrp. Must be done before
1593 	 * calling add_event_to_ctx()
1594 	 */
1595 	update_cgrp_time_from_event(event);
1596 
1597 	add_event_to_ctx(event, ctx);
1598 
1599 	/*
1600 	 * Schedule everything back in
1601 	 */
1602 	perf_event_sched_in(cpuctx, task_ctx, task);
1603 
1604 	perf_pmu_enable(cpuctx->ctx.pmu);
1605 	perf_ctx_unlock(cpuctx, task_ctx);
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Attach a performance event to a context
1612  *
1613  * First we add the event to the list with the hardware enable bit
1614  * in event->hw_config cleared.
1615  *
1616  * If the event is attached to a task which is on a CPU we use a smp
1617  * call to enable it in the task context. The task might have been
1618  * scheduled away, but we check this in the smp call again.
1619  */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 			struct perf_event *event,
1623 			int cpu)
1624 {
1625 	struct task_struct *task = ctx->task;
1626 
1627 	lockdep_assert_held(&ctx->mutex);
1628 
1629 	event->ctx = ctx;
1630 
1631 	if (!task) {
1632 		/*
1633 		 * Per cpu events are installed via an smp call and
1634 		 * the install is always successful.
1635 		 */
1636 		cpu_function_call(cpu, __perf_install_in_context, event);
1637 		return;
1638 	}
1639 
1640 retry:
1641 	if (!task_function_call(task, __perf_install_in_context, event))
1642 		return;
1643 
1644 	raw_spin_lock_irq(&ctx->lock);
1645 	/*
1646 	 * If we failed to find a running task, but find the context active now
1647 	 * that we've acquired the ctx->lock, retry.
1648 	 */
1649 	if (ctx->is_active) {
1650 		raw_spin_unlock_irq(&ctx->lock);
1651 		goto retry;
1652 	}
1653 
1654 	/*
1655 	 * Since the task isn't running, its safe to add the event, us holding
1656 	 * the ctx->lock ensures the task won't get scheduled in.
1657 	 */
1658 	add_event_to_ctx(event, ctx);
1659 	raw_spin_unlock_irq(&ctx->lock);
1660 }
1661 
1662 /*
1663  * Put a event into inactive state and update time fields.
1664  * Enabling the leader of a group effectively enables all
1665  * the group members that aren't explicitly disabled, so we
1666  * have to update their ->tstamp_enabled also.
1667  * Note: this works for group members as well as group leaders
1668  * since the non-leader members' sibling_lists will be empty.
1669  */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 	struct perf_event *sub;
1673 	u64 tstamp = perf_event_time(event);
1674 
1675 	event->state = PERF_EVENT_STATE_INACTIVE;
1676 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 	}
1681 }
1682 
1683 /*
1684  * Cross CPU call to enable a performance event
1685  */
1686 static int __perf_event_enable(void *info)
1687 {
1688 	struct perf_event *event = info;
1689 	struct perf_event_context *ctx = event->ctx;
1690 	struct perf_event *leader = event->group_leader;
1691 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 	int err;
1693 
1694 	if (WARN_ON_ONCE(!ctx->is_active))
1695 		return -EINVAL;
1696 
1697 	raw_spin_lock(&ctx->lock);
1698 	update_context_time(ctx);
1699 
1700 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 		goto unlock;
1702 
1703 	/*
1704 	 * set current task's cgroup time reference point
1705 	 */
1706 	perf_cgroup_set_timestamp(current, ctx);
1707 
1708 	__perf_event_mark_enabled(event);
1709 
1710 	if (!event_filter_match(event)) {
1711 		if (is_cgroup_event(event))
1712 			perf_cgroup_defer_enabled(event);
1713 		goto unlock;
1714 	}
1715 
1716 	/*
1717 	 * If the event is in a group and isn't the group leader,
1718 	 * then don't put it on unless the group is on.
1719 	 */
1720 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 		goto unlock;
1722 
1723 	if (!group_can_go_on(event, cpuctx, 1)) {
1724 		err = -EEXIST;
1725 	} else {
1726 		if (event == leader)
1727 			err = group_sched_in(event, cpuctx, ctx);
1728 		else
1729 			err = event_sched_in(event, cpuctx, ctx);
1730 	}
1731 
1732 	if (err) {
1733 		/*
1734 		 * If this event can't go on and it's part of a
1735 		 * group, then the whole group has to come off.
1736 		 */
1737 		if (leader != event)
1738 			group_sched_out(leader, cpuctx, ctx);
1739 		if (leader->attr.pinned) {
1740 			update_group_times(leader);
1741 			leader->state = PERF_EVENT_STATE_ERROR;
1742 		}
1743 	}
1744 
1745 unlock:
1746 	raw_spin_unlock(&ctx->lock);
1747 
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Enable a event.
1753  *
1754  * If event->ctx is a cloned context, callers must make sure that
1755  * every task struct that event->ctx->task could possibly point to
1756  * remains valid.  This condition is satisfied when called through
1757  * perf_event_for_each_child or perf_event_for_each as described
1758  * for perf_event_disable.
1759  */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct task_struct *task = ctx->task;
1764 
1765 	if (!task) {
1766 		/*
1767 		 * Enable the event on the cpu that it's on
1768 		 */
1769 		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 		return;
1771 	}
1772 
1773 	raw_spin_lock_irq(&ctx->lock);
1774 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 		goto out;
1776 
1777 	/*
1778 	 * If the event is in error state, clear that first.
1779 	 * That way, if we see the event in error state below, we
1780 	 * know that it has gone back into error state, as distinct
1781 	 * from the task having been scheduled away before the
1782 	 * cross-call arrived.
1783 	 */
1784 	if (event->state == PERF_EVENT_STATE_ERROR)
1785 		event->state = PERF_EVENT_STATE_OFF;
1786 
1787 retry:
1788 	if (!ctx->is_active) {
1789 		__perf_event_mark_enabled(event);
1790 		goto out;
1791 	}
1792 
1793 	raw_spin_unlock_irq(&ctx->lock);
1794 
1795 	if (!task_function_call(task, __perf_event_enable, event))
1796 		return;
1797 
1798 	raw_spin_lock_irq(&ctx->lock);
1799 
1800 	/*
1801 	 * If the context is active and the event is still off,
1802 	 * we need to retry the cross-call.
1803 	 */
1804 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 		/*
1806 		 * task could have been flipped by a concurrent
1807 		 * perf_event_context_sched_out()
1808 		 */
1809 		task = ctx->task;
1810 		goto retry;
1811 	}
1812 
1813 out:
1814 	raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817 
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 	/*
1821 	 * not supported on inherited events
1822 	 */
1823 	if (event->attr.inherit || !is_sampling_event(event))
1824 		return -EINVAL;
1825 
1826 	atomic_add(refresh, &event->event_limit);
1827 	perf_event_enable(event);
1828 
1829 	return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832 
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 			  struct perf_cpu_context *cpuctx,
1835 			  enum event_type_t event_type)
1836 {
1837 	struct perf_event *event;
1838 	int is_active = ctx->is_active;
1839 
1840 	ctx->is_active &= ~event_type;
1841 	if (likely(!ctx->nr_events))
1842 		return;
1843 
1844 	update_context_time(ctx);
1845 	update_cgrp_time_from_cpuctx(cpuctx);
1846 	if (!ctx->nr_active)
1847 		return;
1848 
1849 	perf_pmu_disable(ctx->pmu);
1850 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 			group_sched_out(event, cpuctx, ctx);
1853 	}
1854 
1855 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 			group_sched_out(event, cpuctx, ctx);
1858 	}
1859 	perf_pmu_enable(ctx->pmu);
1860 }
1861 
1862 /*
1863  * Test whether two contexts are equivalent, i.e. whether they
1864  * have both been cloned from the same version of the same context
1865  * and they both have the same number of enabled events.
1866  * If the number of enabled events is the same, then the set
1867  * of enabled events should be the same, because these are both
1868  * inherited contexts, therefore we can't access individual events
1869  * in them directly with an fd; we can only enable/disable all
1870  * events via prctl, or enable/disable all events in a family
1871  * via ioctl, which will have the same effect on both contexts.
1872  */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 			 struct perf_event_context *ctx2)
1875 {
1876 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 		&& ctx1->parent_gen == ctx2->parent_gen
1878 		&& !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880 
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 				     struct perf_event *next_event)
1883 {
1884 	u64 value;
1885 
1886 	if (!event->attr.inherit_stat)
1887 		return;
1888 
1889 	/*
1890 	 * Update the event value, we cannot use perf_event_read()
1891 	 * because we're in the middle of a context switch and have IRQs
1892 	 * disabled, which upsets smp_call_function_single(), however
1893 	 * we know the event must be on the current CPU, therefore we
1894 	 * don't need to use it.
1895 	 */
1896 	switch (event->state) {
1897 	case PERF_EVENT_STATE_ACTIVE:
1898 		event->pmu->read(event);
1899 		/* fall-through */
1900 
1901 	case PERF_EVENT_STATE_INACTIVE:
1902 		update_event_times(event);
1903 		break;
1904 
1905 	default:
1906 		break;
1907 	}
1908 
1909 	/*
1910 	 * In order to keep per-task stats reliable we need to flip the event
1911 	 * values when we flip the contexts.
1912 	 */
1913 	value = local64_read(&next_event->count);
1914 	value = local64_xchg(&event->count, value);
1915 	local64_set(&next_event->count, value);
1916 
1917 	swap(event->total_time_enabled, next_event->total_time_enabled);
1918 	swap(event->total_time_running, next_event->total_time_running);
1919 
1920 	/*
1921 	 * Since we swizzled the values, update the user visible data too.
1922 	 */
1923 	perf_event_update_userpage(event);
1924 	perf_event_update_userpage(next_event);
1925 }
1926 
1927 #define list_next_entry(pos, member) \
1928 	list_entry(pos->member.next, typeof(*pos), member)
1929 
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 				   struct perf_event_context *next_ctx)
1932 {
1933 	struct perf_event *event, *next_event;
1934 
1935 	if (!ctx->nr_stat)
1936 		return;
1937 
1938 	update_context_time(ctx);
1939 
1940 	event = list_first_entry(&ctx->event_list,
1941 				   struct perf_event, event_entry);
1942 
1943 	next_event = list_first_entry(&next_ctx->event_list,
1944 					struct perf_event, event_entry);
1945 
1946 	while (&event->event_entry != &ctx->event_list &&
1947 	       &next_event->event_entry != &next_ctx->event_list) {
1948 
1949 		__perf_event_sync_stat(event, next_event);
1950 
1951 		event = list_next_entry(event, event_entry);
1952 		next_event = list_next_entry(next_event, event_entry);
1953 	}
1954 }
1955 
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 					 struct task_struct *next)
1958 {
1959 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 	struct perf_event_context *next_ctx;
1961 	struct perf_event_context *parent;
1962 	struct perf_cpu_context *cpuctx;
1963 	int do_switch = 1;
1964 
1965 	if (likely(!ctx))
1966 		return;
1967 
1968 	cpuctx = __get_cpu_context(ctx);
1969 	if (!cpuctx->task_ctx)
1970 		return;
1971 
1972 	rcu_read_lock();
1973 	parent = rcu_dereference(ctx->parent_ctx);
1974 	next_ctx = next->perf_event_ctxp[ctxn];
1975 	if (parent && next_ctx &&
1976 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 		/*
1978 		 * Looks like the two contexts are clones, so we might be
1979 		 * able to optimize the context switch.  We lock both
1980 		 * contexts and check that they are clones under the
1981 		 * lock (including re-checking that neither has been
1982 		 * uncloned in the meantime).  It doesn't matter which
1983 		 * order we take the locks because no other cpu could
1984 		 * be trying to lock both of these tasks.
1985 		 */
1986 		raw_spin_lock(&ctx->lock);
1987 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 		if (context_equiv(ctx, next_ctx)) {
1989 			/*
1990 			 * XXX do we need a memory barrier of sorts
1991 			 * wrt to rcu_dereference() of perf_event_ctxp
1992 			 */
1993 			task->perf_event_ctxp[ctxn] = next_ctx;
1994 			next->perf_event_ctxp[ctxn] = ctx;
1995 			ctx->task = next;
1996 			next_ctx->task = task;
1997 			do_switch = 0;
1998 
1999 			perf_event_sync_stat(ctx, next_ctx);
2000 		}
2001 		raw_spin_unlock(&next_ctx->lock);
2002 		raw_spin_unlock(&ctx->lock);
2003 	}
2004 	rcu_read_unlock();
2005 
2006 	if (do_switch) {
2007 		raw_spin_lock(&ctx->lock);
2008 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 		cpuctx->task_ctx = NULL;
2010 		raw_spin_unlock(&ctx->lock);
2011 	}
2012 }
2013 
2014 #define for_each_task_context_nr(ctxn)					\
2015 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016 
2017 /*
2018  * Called from scheduler to remove the events of the current task,
2019  * with interrupts disabled.
2020  *
2021  * We stop each event and update the event value in event->count.
2022  *
2023  * This does not protect us against NMI, but disable()
2024  * sets the disabled bit in the control field of event _before_
2025  * accessing the event control register. If a NMI hits, then it will
2026  * not restart the event.
2027  */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 				 struct task_struct *next)
2030 {
2031 	int ctxn;
2032 
2033 	for_each_task_context_nr(ctxn)
2034 		perf_event_context_sched_out(task, ctxn, next);
2035 
2036 	/*
2037 	 * if cgroup events exist on this CPU, then we need
2038 	 * to check if we have to switch out PMU state.
2039 	 * cgroup event are system-wide mode only
2040 	 */
2041 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 		perf_cgroup_sched_out(task, next);
2043 }
2044 
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048 
2049 	if (!cpuctx->task_ctx)
2050 		return;
2051 
2052 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 		return;
2054 
2055 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 	cpuctx->task_ctx = NULL;
2057 }
2058 
2059 /*
2060  * Called with IRQs disabled
2061  */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 			      enum event_type_t event_type)
2064 {
2065 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067 
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 		    struct perf_cpu_context *cpuctx)
2071 {
2072 	struct perf_event *event;
2073 
2074 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 		if (event->state <= PERF_EVENT_STATE_OFF)
2076 			continue;
2077 		if (!event_filter_match(event))
2078 			continue;
2079 
2080 		/* may need to reset tstamp_enabled */
2081 		if (is_cgroup_event(event))
2082 			perf_cgroup_mark_enabled(event, ctx);
2083 
2084 		if (group_can_go_on(event, cpuctx, 1))
2085 			group_sched_in(event, cpuctx, ctx);
2086 
2087 		/*
2088 		 * If this pinned group hasn't been scheduled,
2089 		 * put it in error state.
2090 		 */
2091 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 			update_group_times(event);
2093 			event->state = PERF_EVENT_STATE_ERROR;
2094 		}
2095 	}
2096 }
2097 
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 		      struct perf_cpu_context *cpuctx)
2101 {
2102 	struct perf_event *event;
2103 	int can_add_hw = 1;
2104 
2105 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 		/* Ignore events in OFF or ERROR state */
2107 		if (event->state <= PERF_EVENT_STATE_OFF)
2108 			continue;
2109 		/*
2110 		 * Listen to the 'cpu' scheduling filter constraint
2111 		 * of events:
2112 		 */
2113 		if (!event_filter_match(event))
2114 			continue;
2115 
2116 		/* may need to reset tstamp_enabled */
2117 		if (is_cgroup_event(event))
2118 			perf_cgroup_mark_enabled(event, ctx);
2119 
2120 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 			if (group_sched_in(event, cpuctx, ctx))
2122 				can_add_hw = 0;
2123 		}
2124 	}
2125 }
2126 
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 	     struct perf_cpu_context *cpuctx,
2130 	     enum event_type_t event_type,
2131 	     struct task_struct *task)
2132 {
2133 	u64 now;
2134 	int is_active = ctx->is_active;
2135 
2136 	ctx->is_active |= event_type;
2137 	if (likely(!ctx->nr_events))
2138 		return;
2139 
2140 	now = perf_clock();
2141 	ctx->timestamp = now;
2142 	perf_cgroup_set_timestamp(task, ctx);
2143 	/*
2144 	 * First go through the list and put on any pinned groups
2145 	 * in order to give them the best chance of going on.
2146 	 */
2147 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 		ctx_pinned_sched_in(ctx, cpuctx);
2149 
2150 	/* Then walk through the lower prio flexible groups */
2151 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 		ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154 
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 			     enum event_type_t event_type,
2157 			     struct task_struct *task)
2158 {
2159 	struct perf_event_context *ctx = &cpuctx->ctx;
2160 
2161 	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163 
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 					struct task_struct *task)
2166 {
2167 	struct perf_cpu_context *cpuctx;
2168 
2169 	cpuctx = __get_cpu_context(ctx);
2170 	if (cpuctx->task_ctx == ctx)
2171 		return;
2172 
2173 	perf_ctx_lock(cpuctx, ctx);
2174 	perf_pmu_disable(ctx->pmu);
2175 	/*
2176 	 * We want to keep the following priority order:
2177 	 * cpu pinned (that don't need to move), task pinned,
2178 	 * cpu flexible, task flexible.
2179 	 */
2180 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181 
2182 	if (ctx->nr_events)
2183 		cpuctx->task_ctx = ctx;
2184 
2185 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186 
2187 	perf_pmu_enable(ctx->pmu);
2188 	perf_ctx_unlock(cpuctx, ctx);
2189 
2190 	/*
2191 	 * Since these rotations are per-cpu, we need to ensure the
2192 	 * cpu-context we got scheduled on is actually rotating.
2193 	 */
2194 	perf_pmu_rotate_start(ctx->pmu);
2195 }
2196 
2197 /*
2198  * Called from scheduler to add the events of the current task
2199  * with interrupts disabled.
2200  *
2201  * We restore the event value and then enable it.
2202  *
2203  * This does not protect us against NMI, but enable()
2204  * sets the enabled bit in the control field of event _before_
2205  * accessing the event control register. If a NMI hits, then it will
2206  * keep the event running.
2207  */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 				struct task_struct *task)
2210 {
2211 	struct perf_event_context *ctx;
2212 	int ctxn;
2213 
2214 	for_each_task_context_nr(ctxn) {
2215 		ctx = task->perf_event_ctxp[ctxn];
2216 		if (likely(!ctx))
2217 			continue;
2218 
2219 		perf_event_context_sched_in(ctx, task);
2220 	}
2221 	/*
2222 	 * if cgroup events exist on this CPU, then we need
2223 	 * to check if we have to switch in PMU state.
2224 	 * cgroup event are system-wide mode only
2225 	 */
2226 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 		perf_cgroup_sched_in(prev, task);
2228 }
2229 
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 	u64 frequency = event->attr.sample_freq;
2233 	u64 sec = NSEC_PER_SEC;
2234 	u64 divisor, dividend;
2235 
2236 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2237 
2238 	count_fls = fls64(count);
2239 	nsec_fls = fls64(nsec);
2240 	frequency_fls = fls64(frequency);
2241 	sec_fls = 30;
2242 
2243 	/*
2244 	 * We got @count in @nsec, with a target of sample_freq HZ
2245 	 * the target period becomes:
2246 	 *
2247 	 *             @count * 10^9
2248 	 * period = -------------------
2249 	 *          @nsec * sample_freq
2250 	 *
2251 	 */
2252 
2253 	/*
2254 	 * Reduce accuracy by one bit such that @a and @b converge
2255 	 * to a similar magnitude.
2256 	 */
2257 #define REDUCE_FLS(a, b)		\
2258 do {					\
2259 	if (a##_fls > b##_fls) {	\
2260 		a >>= 1;		\
2261 		a##_fls--;		\
2262 	} else {			\
2263 		b >>= 1;		\
2264 		b##_fls--;		\
2265 	}				\
2266 } while (0)
2267 
2268 	/*
2269 	 * Reduce accuracy until either term fits in a u64, then proceed with
2270 	 * the other, so that finally we can do a u64/u64 division.
2271 	 */
2272 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 		REDUCE_FLS(nsec, frequency);
2274 		REDUCE_FLS(sec, count);
2275 	}
2276 
2277 	if (count_fls + sec_fls > 64) {
2278 		divisor = nsec * frequency;
2279 
2280 		while (count_fls + sec_fls > 64) {
2281 			REDUCE_FLS(count, sec);
2282 			divisor >>= 1;
2283 		}
2284 
2285 		dividend = count * sec;
2286 	} else {
2287 		dividend = count * sec;
2288 
2289 		while (nsec_fls + frequency_fls > 64) {
2290 			REDUCE_FLS(nsec, frequency);
2291 			dividend >>= 1;
2292 		}
2293 
2294 		divisor = nsec * frequency;
2295 	}
2296 
2297 	if (!divisor)
2298 		return dividend;
2299 
2300 	return div64_u64(dividend, divisor);
2301 }
2302 
2303 static DEFINE_PER_CPU(int, perf_throttled_count);
2304 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2305 
2306 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2307 {
2308 	struct hw_perf_event *hwc = &event->hw;
2309 	s64 period, sample_period;
2310 	s64 delta;
2311 
2312 	period = perf_calculate_period(event, nsec, count);
2313 
2314 	delta = (s64)(period - hwc->sample_period);
2315 	delta = (delta + 7) / 8; /* low pass filter */
2316 
2317 	sample_period = hwc->sample_period + delta;
2318 
2319 	if (!sample_period)
2320 		sample_period = 1;
2321 
2322 	hwc->sample_period = sample_period;
2323 
2324 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2325 		event->pmu->stop(event, PERF_EF_UPDATE);
2326 		local64_set(&hwc->period_left, 0);
2327 		event->pmu->start(event, PERF_EF_RELOAD);
2328 	}
2329 }
2330 
2331 /*
2332  * combine freq adjustment with unthrottling to avoid two passes over the
2333  * events. At the same time, make sure, having freq events does not change
2334  * the rate of unthrottling as that would introduce bias.
2335  */
2336 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2337 					   int needs_unthr)
2338 {
2339 	struct perf_event *event;
2340 	struct hw_perf_event *hwc;
2341 	u64 now, period = TICK_NSEC;
2342 	s64 delta;
2343 
2344 	/*
2345 	 * only need to iterate over all events iff:
2346 	 * - context have events in frequency mode (needs freq adjust)
2347 	 * - there are events to unthrottle on this cpu
2348 	 */
2349 	if (!(ctx->nr_freq || needs_unthr))
2350 		return;
2351 
2352 	raw_spin_lock(&ctx->lock);
2353 
2354 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2355 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2356 			continue;
2357 
2358 		if (!event_filter_match(event))
2359 			continue;
2360 
2361 		hwc = &event->hw;
2362 
2363 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2364 			hwc->interrupts = 0;
2365 			perf_log_throttle(event, 1);
2366 			event->pmu->start(event, 0);
2367 		}
2368 
2369 		if (!event->attr.freq || !event->attr.sample_freq)
2370 			continue;
2371 
2372 		/*
2373 		 * stop the event and update event->count
2374 		 */
2375 		event->pmu->stop(event, PERF_EF_UPDATE);
2376 
2377 		now = local64_read(&event->count);
2378 		delta = now - hwc->freq_count_stamp;
2379 		hwc->freq_count_stamp = now;
2380 
2381 		/*
2382 		 * restart the event
2383 		 * reload only if value has changed
2384 		 */
2385 		if (delta > 0)
2386 			perf_adjust_period(event, period, delta);
2387 
2388 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2389 	}
2390 
2391 	raw_spin_unlock(&ctx->lock);
2392 }
2393 
2394 /*
2395  * Round-robin a context's events:
2396  */
2397 static void rotate_ctx(struct perf_event_context *ctx)
2398 {
2399 	/*
2400 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2401 	 * disabled by the inheritance code.
2402 	 */
2403 	if (!ctx->rotate_disable)
2404 		list_rotate_left(&ctx->flexible_groups);
2405 }
2406 
2407 /*
2408  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2409  * because they're strictly cpu affine and rotate_start is called with IRQs
2410  * disabled, while rotate_context is called from IRQ context.
2411  */
2412 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2413 {
2414 	struct perf_event_context *ctx = NULL;
2415 	int rotate = 0, remove = 1;
2416 
2417 	if (cpuctx->ctx.nr_events) {
2418 		remove = 0;
2419 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2420 			rotate = 1;
2421 	}
2422 
2423 	ctx = cpuctx->task_ctx;
2424 	if (ctx && ctx->nr_events) {
2425 		remove = 0;
2426 		if (ctx->nr_events != ctx->nr_active)
2427 			rotate = 1;
2428 	}
2429 
2430 	if (!rotate)
2431 		goto done;
2432 
2433 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2434 	perf_pmu_disable(cpuctx->ctx.pmu);
2435 
2436 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2437 	if (ctx)
2438 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2439 
2440 	rotate_ctx(&cpuctx->ctx);
2441 	if (ctx)
2442 		rotate_ctx(ctx);
2443 
2444 	perf_event_sched_in(cpuctx, ctx, current);
2445 
2446 	perf_pmu_enable(cpuctx->ctx.pmu);
2447 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2448 done:
2449 	if (remove)
2450 		list_del_init(&cpuctx->rotation_list);
2451 }
2452 
2453 void perf_event_task_tick(void)
2454 {
2455 	struct list_head *head = &__get_cpu_var(rotation_list);
2456 	struct perf_cpu_context *cpuctx, *tmp;
2457 	struct perf_event_context *ctx;
2458 	int throttled;
2459 
2460 	WARN_ON(!irqs_disabled());
2461 
2462 	__this_cpu_inc(perf_throttled_seq);
2463 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2464 
2465 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2466 		ctx = &cpuctx->ctx;
2467 		perf_adjust_freq_unthr_context(ctx, throttled);
2468 
2469 		ctx = cpuctx->task_ctx;
2470 		if (ctx)
2471 			perf_adjust_freq_unthr_context(ctx, throttled);
2472 
2473 		if (cpuctx->jiffies_interval == 1 ||
2474 				!(jiffies % cpuctx->jiffies_interval))
2475 			perf_rotate_context(cpuctx);
2476 	}
2477 }
2478 
2479 static int event_enable_on_exec(struct perf_event *event,
2480 				struct perf_event_context *ctx)
2481 {
2482 	if (!event->attr.enable_on_exec)
2483 		return 0;
2484 
2485 	event->attr.enable_on_exec = 0;
2486 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2487 		return 0;
2488 
2489 	__perf_event_mark_enabled(event);
2490 
2491 	return 1;
2492 }
2493 
2494 /*
2495  * Enable all of a task's events that have been marked enable-on-exec.
2496  * This expects task == current.
2497  */
2498 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2499 {
2500 	struct perf_event *event;
2501 	unsigned long flags;
2502 	int enabled = 0;
2503 	int ret;
2504 
2505 	local_irq_save(flags);
2506 	if (!ctx || !ctx->nr_events)
2507 		goto out;
2508 
2509 	/*
2510 	 * We must ctxsw out cgroup events to avoid conflict
2511 	 * when invoking perf_task_event_sched_in() later on
2512 	 * in this function. Otherwise we end up trying to
2513 	 * ctxswin cgroup events which are already scheduled
2514 	 * in.
2515 	 */
2516 	perf_cgroup_sched_out(current, NULL);
2517 
2518 	raw_spin_lock(&ctx->lock);
2519 	task_ctx_sched_out(ctx);
2520 
2521 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2522 		ret = event_enable_on_exec(event, ctx);
2523 		if (ret)
2524 			enabled = 1;
2525 	}
2526 
2527 	/*
2528 	 * Unclone this context if we enabled any event.
2529 	 */
2530 	if (enabled)
2531 		unclone_ctx(ctx);
2532 
2533 	raw_spin_unlock(&ctx->lock);
2534 
2535 	/*
2536 	 * Also calls ctxswin for cgroup events, if any:
2537 	 */
2538 	perf_event_context_sched_in(ctx, ctx->task);
2539 out:
2540 	local_irq_restore(flags);
2541 }
2542 
2543 /*
2544  * Cross CPU call to read the hardware event
2545  */
2546 static void __perf_event_read(void *info)
2547 {
2548 	struct perf_event *event = info;
2549 	struct perf_event_context *ctx = event->ctx;
2550 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2551 
2552 	/*
2553 	 * If this is a task context, we need to check whether it is
2554 	 * the current task context of this cpu.  If not it has been
2555 	 * scheduled out before the smp call arrived.  In that case
2556 	 * event->count would have been updated to a recent sample
2557 	 * when the event was scheduled out.
2558 	 */
2559 	if (ctx->task && cpuctx->task_ctx != ctx)
2560 		return;
2561 
2562 	raw_spin_lock(&ctx->lock);
2563 	if (ctx->is_active) {
2564 		update_context_time(ctx);
2565 		update_cgrp_time_from_event(event);
2566 	}
2567 	update_event_times(event);
2568 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2569 		event->pmu->read(event);
2570 	raw_spin_unlock(&ctx->lock);
2571 }
2572 
2573 static inline u64 perf_event_count(struct perf_event *event)
2574 {
2575 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2576 }
2577 
2578 static u64 perf_event_read(struct perf_event *event)
2579 {
2580 	/*
2581 	 * If event is enabled and currently active on a CPU, update the
2582 	 * value in the event structure:
2583 	 */
2584 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2585 		smp_call_function_single(event->oncpu,
2586 					 __perf_event_read, event, 1);
2587 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2588 		struct perf_event_context *ctx = event->ctx;
2589 		unsigned long flags;
2590 
2591 		raw_spin_lock_irqsave(&ctx->lock, flags);
2592 		/*
2593 		 * may read while context is not active
2594 		 * (e.g., thread is blocked), in that case
2595 		 * we cannot update context time
2596 		 */
2597 		if (ctx->is_active) {
2598 			update_context_time(ctx);
2599 			update_cgrp_time_from_event(event);
2600 		}
2601 		update_event_times(event);
2602 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2603 	}
2604 
2605 	return perf_event_count(event);
2606 }
2607 
2608 /*
2609  * Initialize the perf_event context in a task_struct:
2610  */
2611 static void __perf_event_init_context(struct perf_event_context *ctx)
2612 {
2613 	raw_spin_lock_init(&ctx->lock);
2614 	mutex_init(&ctx->mutex);
2615 	INIT_LIST_HEAD(&ctx->pinned_groups);
2616 	INIT_LIST_HEAD(&ctx->flexible_groups);
2617 	INIT_LIST_HEAD(&ctx->event_list);
2618 	atomic_set(&ctx->refcount, 1);
2619 }
2620 
2621 static struct perf_event_context *
2622 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2623 {
2624 	struct perf_event_context *ctx;
2625 
2626 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2627 	if (!ctx)
2628 		return NULL;
2629 
2630 	__perf_event_init_context(ctx);
2631 	if (task) {
2632 		ctx->task = task;
2633 		get_task_struct(task);
2634 	}
2635 	ctx->pmu = pmu;
2636 
2637 	return ctx;
2638 }
2639 
2640 static struct task_struct *
2641 find_lively_task_by_vpid(pid_t vpid)
2642 {
2643 	struct task_struct *task;
2644 	int err;
2645 
2646 	rcu_read_lock();
2647 	if (!vpid)
2648 		task = current;
2649 	else
2650 		task = find_task_by_vpid(vpid);
2651 	if (task)
2652 		get_task_struct(task);
2653 	rcu_read_unlock();
2654 
2655 	if (!task)
2656 		return ERR_PTR(-ESRCH);
2657 
2658 	/* Reuse ptrace permission checks for now. */
2659 	err = -EACCES;
2660 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2661 		goto errout;
2662 
2663 	return task;
2664 errout:
2665 	put_task_struct(task);
2666 	return ERR_PTR(err);
2667 
2668 }
2669 
2670 /*
2671  * Returns a matching context with refcount and pincount.
2672  */
2673 static struct perf_event_context *
2674 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2675 {
2676 	struct perf_event_context *ctx;
2677 	struct perf_cpu_context *cpuctx;
2678 	unsigned long flags;
2679 	int ctxn, err;
2680 
2681 	if (!task) {
2682 		/* Must be root to operate on a CPU event: */
2683 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2684 			return ERR_PTR(-EACCES);
2685 
2686 		/*
2687 		 * We could be clever and allow to attach a event to an
2688 		 * offline CPU and activate it when the CPU comes up, but
2689 		 * that's for later.
2690 		 */
2691 		if (!cpu_online(cpu))
2692 			return ERR_PTR(-ENODEV);
2693 
2694 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2695 		ctx = &cpuctx->ctx;
2696 		get_ctx(ctx);
2697 		++ctx->pin_count;
2698 
2699 		return ctx;
2700 	}
2701 
2702 	err = -EINVAL;
2703 	ctxn = pmu->task_ctx_nr;
2704 	if (ctxn < 0)
2705 		goto errout;
2706 
2707 retry:
2708 	ctx = perf_lock_task_context(task, ctxn, &flags);
2709 	if (ctx) {
2710 		unclone_ctx(ctx);
2711 		++ctx->pin_count;
2712 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2713 	} else {
2714 		ctx = alloc_perf_context(pmu, task);
2715 		err = -ENOMEM;
2716 		if (!ctx)
2717 			goto errout;
2718 
2719 		err = 0;
2720 		mutex_lock(&task->perf_event_mutex);
2721 		/*
2722 		 * If it has already passed perf_event_exit_task().
2723 		 * we must see PF_EXITING, it takes this mutex too.
2724 		 */
2725 		if (task->flags & PF_EXITING)
2726 			err = -ESRCH;
2727 		else if (task->perf_event_ctxp[ctxn])
2728 			err = -EAGAIN;
2729 		else {
2730 			get_ctx(ctx);
2731 			++ctx->pin_count;
2732 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2733 		}
2734 		mutex_unlock(&task->perf_event_mutex);
2735 
2736 		if (unlikely(err)) {
2737 			put_ctx(ctx);
2738 
2739 			if (err == -EAGAIN)
2740 				goto retry;
2741 			goto errout;
2742 		}
2743 	}
2744 
2745 	return ctx;
2746 
2747 errout:
2748 	return ERR_PTR(err);
2749 }
2750 
2751 static void perf_event_free_filter(struct perf_event *event);
2752 
2753 static void free_event_rcu(struct rcu_head *head)
2754 {
2755 	struct perf_event *event;
2756 
2757 	event = container_of(head, struct perf_event, rcu_head);
2758 	if (event->ns)
2759 		put_pid_ns(event->ns);
2760 	perf_event_free_filter(event);
2761 	kfree(event);
2762 }
2763 
2764 static void ring_buffer_put(struct ring_buffer *rb);
2765 
2766 static void free_event(struct perf_event *event)
2767 {
2768 	irq_work_sync(&event->pending);
2769 
2770 	if (!event->parent) {
2771 		if (event->attach_state & PERF_ATTACH_TASK)
2772 			jump_label_dec_deferred(&perf_sched_events);
2773 		if (event->attr.mmap || event->attr.mmap_data)
2774 			atomic_dec(&nr_mmap_events);
2775 		if (event->attr.comm)
2776 			atomic_dec(&nr_comm_events);
2777 		if (event->attr.task)
2778 			atomic_dec(&nr_task_events);
2779 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2780 			put_callchain_buffers();
2781 		if (is_cgroup_event(event)) {
2782 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2783 			jump_label_dec_deferred(&perf_sched_events);
2784 		}
2785 	}
2786 
2787 	if (event->rb) {
2788 		ring_buffer_put(event->rb);
2789 		event->rb = NULL;
2790 	}
2791 
2792 	if (is_cgroup_event(event))
2793 		perf_detach_cgroup(event);
2794 
2795 	if (event->destroy)
2796 		event->destroy(event);
2797 
2798 	if (event->ctx)
2799 		put_ctx(event->ctx);
2800 
2801 	call_rcu(&event->rcu_head, free_event_rcu);
2802 }
2803 
2804 int perf_event_release_kernel(struct perf_event *event)
2805 {
2806 	struct perf_event_context *ctx = event->ctx;
2807 
2808 	WARN_ON_ONCE(ctx->parent_ctx);
2809 	/*
2810 	 * There are two ways this annotation is useful:
2811 	 *
2812 	 *  1) there is a lock recursion from perf_event_exit_task
2813 	 *     see the comment there.
2814 	 *
2815 	 *  2) there is a lock-inversion with mmap_sem through
2816 	 *     perf_event_read_group(), which takes faults while
2817 	 *     holding ctx->mutex, however this is called after
2818 	 *     the last filedesc died, so there is no possibility
2819 	 *     to trigger the AB-BA case.
2820 	 */
2821 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2822 	raw_spin_lock_irq(&ctx->lock);
2823 	perf_group_detach(event);
2824 	raw_spin_unlock_irq(&ctx->lock);
2825 	perf_remove_from_context(event);
2826 	mutex_unlock(&ctx->mutex);
2827 
2828 	free_event(event);
2829 
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2833 
2834 /*
2835  * Called when the last reference to the file is gone.
2836  */
2837 static int perf_release(struct inode *inode, struct file *file)
2838 {
2839 	struct perf_event *event = file->private_data;
2840 	struct task_struct *owner;
2841 
2842 	file->private_data = NULL;
2843 
2844 	rcu_read_lock();
2845 	owner = ACCESS_ONCE(event->owner);
2846 	/*
2847 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2848 	 * !owner it means the list deletion is complete and we can indeed
2849 	 * free this event, otherwise we need to serialize on
2850 	 * owner->perf_event_mutex.
2851 	 */
2852 	smp_read_barrier_depends();
2853 	if (owner) {
2854 		/*
2855 		 * Since delayed_put_task_struct() also drops the last
2856 		 * task reference we can safely take a new reference
2857 		 * while holding the rcu_read_lock().
2858 		 */
2859 		get_task_struct(owner);
2860 	}
2861 	rcu_read_unlock();
2862 
2863 	if (owner) {
2864 		mutex_lock(&owner->perf_event_mutex);
2865 		/*
2866 		 * We have to re-check the event->owner field, if it is cleared
2867 		 * we raced with perf_event_exit_task(), acquiring the mutex
2868 		 * ensured they're done, and we can proceed with freeing the
2869 		 * event.
2870 		 */
2871 		if (event->owner)
2872 			list_del_init(&event->owner_entry);
2873 		mutex_unlock(&owner->perf_event_mutex);
2874 		put_task_struct(owner);
2875 	}
2876 
2877 	return perf_event_release_kernel(event);
2878 }
2879 
2880 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2881 {
2882 	struct perf_event *child;
2883 	u64 total = 0;
2884 
2885 	*enabled = 0;
2886 	*running = 0;
2887 
2888 	mutex_lock(&event->child_mutex);
2889 	total += perf_event_read(event);
2890 	*enabled += event->total_time_enabled +
2891 			atomic64_read(&event->child_total_time_enabled);
2892 	*running += event->total_time_running +
2893 			atomic64_read(&event->child_total_time_running);
2894 
2895 	list_for_each_entry(child, &event->child_list, child_list) {
2896 		total += perf_event_read(child);
2897 		*enabled += child->total_time_enabled;
2898 		*running += child->total_time_running;
2899 	}
2900 	mutex_unlock(&event->child_mutex);
2901 
2902 	return total;
2903 }
2904 EXPORT_SYMBOL_GPL(perf_event_read_value);
2905 
2906 static int perf_event_read_group(struct perf_event *event,
2907 				   u64 read_format, char __user *buf)
2908 {
2909 	struct perf_event *leader = event->group_leader, *sub;
2910 	int n = 0, size = 0, ret = -EFAULT;
2911 	struct perf_event_context *ctx = leader->ctx;
2912 	u64 values[5];
2913 	u64 count, enabled, running;
2914 
2915 	mutex_lock(&ctx->mutex);
2916 	count = perf_event_read_value(leader, &enabled, &running);
2917 
2918 	values[n++] = 1 + leader->nr_siblings;
2919 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2920 		values[n++] = enabled;
2921 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2922 		values[n++] = running;
2923 	values[n++] = count;
2924 	if (read_format & PERF_FORMAT_ID)
2925 		values[n++] = primary_event_id(leader);
2926 
2927 	size = n * sizeof(u64);
2928 
2929 	if (copy_to_user(buf, values, size))
2930 		goto unlock;
2931 
2932 	ret = size;
2933 
2934 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2935 		n = 0;
2936 
2937 		values[n++] = perf_event_read_value(sub, &enabled, &running);
2938 		if (read_format & PERF_FORMAT_ID)
2939 			values[n++] = primary_event_id(sub);
2940 
2941 		size = n * sizeof(u64);
2942 
2943 		if (copy_to_user(buf + ret, values, size)) {
2944 			ret = -EFAULT;
2945 			goto unlock;
2946 		}
2947 
2948 		ret += size;
2949 	}
2950 unlock:
2951 	mutex_unlock(&ctx->mutex);
2952 
2953 	return ret;
2954 }
2955 
2956 static int perf_event_read_one(struct perf_event *event,
2957 				 u64 read_format, char __user *buf)
2958 {
2959 	u64 enabled, running;
2960 	u64 values[4];
2961 	int n = 0;
2962 
2963 	values[n++] = perf_event_read_value(event, &enabled, &running);
2964 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2965 		values[n++] = enabled;
2966 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2967 		values[n++] = running;
2968 	if (read_format & PERF_FORMAT_ID)
2969 		values[n++] = primary_event_id(event);
2970 
2971 	if (copy_to_user(buf, values, n * sizeof(u64)))
2972 		return -EFAULT;
2973 
2974 	return n * sizeof(u64);
2975 }
2976 
2977 /*
2978  * Read the performance event - simple non blocking version for now
2979  */
2980 static ssize_t
2981 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2982 {
2983 	u64 read_format = event->attr.read_format;
2984 	int ret;
2985 
2986 	/*
2987 	 * Return end-of-file for a read on a event that is in
2988 	 * error state (i.e. because it was pinned but it couldn't be
2989 	 * scheduled on to the CPU at some point).
2990 	 */
2991 	if (event->state == PERF_EVENT_STATE_ERROR)
2992 		return 0;
2993 
2994 	if (count < event->read_size)
2995 		return -ENOSPC;
2996 
2997 	WARN_ON_ONCE(event->ctx->parent_ctx);
2998 	if (read_format & PERF_FORMAT_GROUP)
2999 		ret = perf_event_read_group(event, read_format, buf);
3000 	else
3001 		ret = perf_event_read_one(event, read_format, buf);
3002 
3003 	return ret;
3004 }
3005 
3006 static ssize_t
3007 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3008 {
3009 	struct perf_event *event = file->private_data;
3010 
3011 	return perf_read_hw(event, buf, count);
3012 }
3013 
3014 static unsigned int perf_poll(struct file *file, poll_table *wait)
3015 {
3016 	struct perf_event *event = file->private_data;
3017 	struct ring_buffer *rb;
3018 	unsigned int events = POLL_HUP;
3019 
3020 	/*
3021 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3022 	 * grabs the rb reference but perf_event_set_output() overrides it.
3023 	 * Here is the timeline for two threads T1, T2:
3024 	 * t0: T1, rb = rcu_dereference(event->rb)
3025 	 * t1: T2, old_rb = event->rb
3026 	 * t2: T2, event->rb = new rb
3027 	 * t3: T2, ring_buffer_detach(old_rb)
3028 	 * t4: T1, ring_buffer_attach(rb1)
3029 	 * t5: T1, poll_wait(event->waitq)
3030 	 *
3031 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3032 	 * thereby ensuring that the assignment of the new ring buffer
3033 	 * and the detachment of the old buffer appear atomic to perf_poll()
3034 	 */
3035 	mutex_lock(&event->mmap_mutex);
3036 
3037 	rcu_read_lock();
3038 	rb = rcu_dereference(event->rb);
3039 	if (rb) {
3040 		ring_buffer_attach(event, rb);
3041 		events = atomic_xchg(&rb->poll, 0);
3042 	}
3043 	rcu_read_unlock();
3044 
3045 	mutex_unlock(&event->mmap_mutex);
3046 
3047 	poll_wait(file, &event->waitq, wait);
3048 
3049 	return events;
3050 }
3051 
3052 static void perf_event_reset(struct perf_event *event)
3053 {
3054 	(void)perf_event_read(event);
3055 	local64_set(&event->count, 0);
3056 	perf_event_update_userpage(event);
3057 }
3058 
3059 /*
3060  * Holding the top-level event's child_mutex means that any
3061  * descendant process that has inherited this event will block
3062  * in sync_child_event if it goes to exit, thus satisfying the
3063  * task existence requirements of perf_event_enable/disable.
3064  */
3065 static void perf_event_for_each_child(struct perf_event *event,
3066 					void (*func)(struct perf_event *))
3067 {
3068 	struct perf_event *child;
3069 
3070 	WARN_ON_ONCE(event->ctx->parent_ctx);
3071 	mutex_lock(&event->child_mutex);
3072 	func(event);
3073 	list_for_each_entry(child, &event->child_list, child_list)
3074 		func(child);
3075 	mutex_unlock(&event->child_mutex);
3076 }
3077 
3078 static void perf_event_for_each(struct perf_event *event,
3079 				  void (*func)(struct perf_event *))
3080 {
3081 	struct perf_event_context *ctx = event->ctx;
3082 	struct perf_event *sibling;
3083 
3084 	WARN_ON_ONCE(ctx->parent_ctx);
3085 	mutex_lock(&ctx->mutex);
3086 	event = event->group_leader;
3087 
3088 	perf_event_for_each_child(event, func);
3089 	func(event);
3090 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3091 		perf_event_for_each_child(event, func);
3092 	mutex_unlock(&ctx->mutex);
3093 }
3094 
3095 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3096 {
3097 	struct perf_event_context *ctx = event->ctx;
3098 	int ret = 0;
3099 	u64 value;
3100 
3101 	if (!is_sampling_event(event))
3102 		return -EINVAL;
3103 
3104 	if (copy_from_user(&value, arg, sizeof(value)))
3105 		return -EFAULT;
3106 
3107 	if (!value)
3108 		return -EINVAL;
3109 
3110 	raw_spin_lock_irq(&ctx->lock);
3111 	if (event->attr.freq) {
3112 		if (value > sysctl_perf_event_sample_rate) {
3113 			ret = -EINVAL;
3114 			goto unlock;
3115 		}
3116 
3117 		event->attr.sample_freq = value;
3118 	} else {
3119 		event->attr.sample_period = value;
3120 		event->hw.sample_period = value;
3121 	}
3122 unlock:
3123 	raw_spin_unlock_irq(&ctx->lock);
3124 
3125 	return ret;
3126 }
3127 
3128 static const struct file_operations perf_fops;
3129 
3130 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3131 {
3132 	struct file *file;
3133 
3134 	file = fget_light(fd, fput_needed);
3135 	if (!file)
3136 		return ERR_PTR(-EBADF);
3137 
3138 	if (file->f_op != &perf_fops) {
3139 		fput_light(file, *fput_needed);
3140 		*fput_needed = 0;
3141 		return ERR_PTR(-EBADF);
3142 	}
3143 
3144 	return file->private_data;
3145 }
3146 
3147 static int perf_event_set_output(struct perf_event *event,
3148 				 struct perf_event *output_event);
3149 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3150 
3151 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3152 {
3153 	struct perf_event *event = file->private_data;
3154 	void (*func)(struct perf_event *);
3155 	u32 flags = arg;
3156 
3157 	switch (cmd) {
3158 	case PERF_EVENT_IOC_ENABLE:
3159 		func = perf_event_enable;
3160 		break;
3161 	case PERF_EVENT_IOC_DISABLE:
3162 		func = perf_event_disable;
3163 		break;
3164 	case PERF_EVENT_IOC_RESET:
3165 		func = perf_event_reset;
3166 		break;
3167 
3168 	case PERF_EVENT_IOC_REFRESH:
3169 		return perf_event_refresh(event, arg);
3170 
3171 	case PERF_EVENT_IOC_PERIOD:
3172 		return perf_event_period(event, (u64 __user *)arg);
3173 
3174 	case PERF_EVENT_IOC_SET_OUTPUT:
3175 	{
3176 		struct perf_event *output_event = NULL;
3177 		int fput_needed = 0;
3178 		int ret;
3179 
3180 		if (arg != -1) {
3181 			output_event = perf_fget_light(arg, &fput_needed);
3182 			if (IS_ERR(output_event))
3183 				return PTR_ERR(output_event);
3184 		}
3185 
3186 		ret = perf_event_set_output(event, output_event);
3187 		if (output_event)
3188 			fput_light(output_event->filp, fput_needed);
3189 
3190 		return ret;
3191 	}
3192 
3193 	case PERF_EVENT_IOC_SET_FILTER:
3194 		return perf_event_set_filter(event, (void __user *)arg);
3195 
3196 	default:
3197 		return -ENOTTY;
3198 	}
3199 
3200 	if (flags & PERF_IOC_FLAG_GROUP)
3201 		perf_event_for_each(event, func);
3202 	else
3203 		perf_event_for_each_child(event, func);
3204 
3205 	return 0;
3206 }
3207 
3208 int perf_event_task_enable(void)
3209 {
3210 	struct perf_event *event;
3211 
3212 	mutex_lock(&current->perf_event_mutex);
3213 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3214 		perf_event_for_each_child(event, perf_event_enable);
3215 	mutex_unlock(&current->perf_event_mutex);
3216 
3217 	return 0;
3218 }
3219 
3220 int perf_event_task_disable(void)
3221 {
3222 	struct perf_event *event;
3223 
3224 	mutex_lock(&current->perf_event_mutex);
3225 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3226 		perf_event_for_each_child(event, perf_event_disable);
3227 	mutex_unlock(&current->perf_event_mutex);
3228 
3229 	return 0;
3230 }
3231 
3232 #ifndef PERF_EVENT_INDEX_OFFSET
3233 # define PERF_EVENT_INDEX_OFFSET 0
3234 #endif
3235 
3236 static int perf_event_index(struct perf_event *event)
3237 {
3238 	if (event->hw.state & PERF_HES_STOPPED)
3239 		return 0;
3240 
3241 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3242 		return 0;
3243 
3244 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3245 }
3246 
3247 static void calc_timer_values(struct perf_event *event,
3248 				u64 *enabled,
3249 				u64 *running)
3250 {
3251 	u64 now, ctx_time;
3252 
3253 	now = perf_clock();
3254 	ctx_time = event->shadow_ctx_time + now;
3255 	*enabled = ctx_time - event->tstamp_enabled;
3256 	*running = ctx_time - event->tstamp_running;
3257 }
3258 
3259 /*
3260  * Callers need to ensure there can be no nesting of this function, otherwise
3261  * the seqlock logic goes bad. We can not serialize this because the arch
3262  * code calls this from NMI context.
3263  */
3264 void perf_event_update_userpage(struct perf_event *event)
3265 {
3266 	struct perf_event_mmap_page *userpg;
3267 	struct ring_buffer *rb;
3268 	u64 enabled, running;
3269 
3270 	rcu_read_lock();
3271 	/*
3272 	 * compute total_time_enabled, total_time_running
3273 	 * based on snapshot values taken when the event
3274 	 * was last scheduled in.
3275 	 *
3276 	 * we cannot simply called update_context_time()
3277 	 * because of locking issue as we can be called in
3278 	 * NMI context
3279 	 */
3280 	calc_timer_values(event, &enabled, &running);
3281 	rb = rcu_dereference(event->rb);
3282 	if (!rb)
3283 		goto unlock;
3284 
3285 	userpg = rb->user_page;
3286 
3287 	/*
3288 	 * Disable preemption so as to not let the corresponding user-space
3289 	 * spin too long if we get preempted.
3290 	 */
3291 	preempt_disable();
3292 	++userpg->lock;
3293 	barrier();
3294 	userpg->index = perf_event_index(event);
3295 	userpg->offset = perf_event_count(event);
3296 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3297 		userpg->offset -= local64_read(&event->hw.prev_count);
3298 
3299 	userpg->time_enabled = enabled +
3300 			atomic64_read(&event->child_total_time_enabled);
3301 
3302 	userpg->time_running = running +
3303 			atomic64_read(&event->child_total_time_running);
3304 
3305 	barrier();
3306 	++userpg->lock;
3307 	preempt_enable();
3308 unlock:
3309 	rcu_read_unlock();
3310 }
3311 
3312 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3313 {
3314 	struct perf_event *event = vma->vm_file->private_data;
3315 	struct ring_buffer *rb;
3316 	int ret = VM_FAULT_SIGBUS;
3317 
3318 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3319 		if (vmf->pgoff == 0)
3320 			ret = 0;
3321 		return ret;
3322 	}
3323 
3324 	rcu_read_lock();
3325 	rb = rcu_dereference(event->rb);
3326 	if (!rb)
3327 		goto unlock;
3328 
3329 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3330 		goto unlock;
3331 
3332 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3333 	if (!vmf->page)
3334 		goto unlock;
3335 
3336 	get_page(vmf->page);
3337 	vmf->page->mapping = vma->vm_file->f_mapping;
3338 	vmf->page->index   = vmf->pgoff;
3339 
3340 	ret = 0;
3341 unlock:
3342 	rcu_read_unlock();
3343 
3344 	return ret;
3345 }
3346 
3347 static void ring_buffer_attach(struct perf_event *event,
3348 			       struct ring_buffer *rb)
3349 {
3350 	unsigned long flags;
3351 
3352 	if (!list_empty(&event->rb_entry))
3353 		return;
3354 
3355 	spin_lock_irqsave(&rb->event_lock, flags);
3356 	if (!list_empty(&event->rb_entry))
3357 		goto unlock;
3358 
3359 	list_add(&event->rb_entry, &rb->event_list);
3360 unlock:
3361 	spin_unlock_irqrestore(&rb->event_lock, flags);
3362 }
3363 
3364 static void ring_buffer_detach(struct perf_event *event,
3365 			       struct ring_buffer *rb)
3366 {
3367 	unsigned long flags;
3368 
3369 	if (list_empty(&event->rb_entry))
3370 		return;
3371 
3372 	spin_lock_irqsave(&rb->event_lock, flags);
3373 	list_del_init(&event->rb_entry);
3374 	wake_up_all(&event->waitq);
3375 	spin_unlock_irqrestore(&rb->event_lock, flags);
3376 }
3377 
3378 static void ring_buffer_wakeup(struct perf_event *event)
3379 {
3380 	struct ring_buffer *rb;
3381 
3382 	rcu_read_lock();
3383 	rb = rcu_dereference(event->rb);
3384 	if (!rb)
3385 		goto unlock;
3386 
3387 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3388 		wake_up_all(&event->waitq);
3389 
3390 unlock:
3391 	rcu_read_unlock();
3392 }
3393 
3394 static void rb_free_rcu(struct rcu_head *rcu_head)
3395 {
3396 	struct ring_buffer *rb;
3397 
3398 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3399 	rb_free(rb);
3400 }
3401 
3402 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3403 {
3404 	struct ring_buffer *rb;
3405 
3406 	rcu_read_lock();
3407 	rb = rcu_dereference(event->rb);
3408 	if (rb) {
3409 		if (!atomic_inc_not_zero(&rb->refcount))
3410 			rb = NULL;
3411 	}
3412 	rcu_read_unlock();
3413 
3414 	return rb;
3415 }
3416 
3417 static void ring_buffer_put(struct ring_buffer *rb)
3418 {
3419 	struct perf_event *event, *n;
3420 	unsigned long flags;
3421 
3422 	if (!atomic_dec_and_test(&rb->refcount))
3423 		return;
3424 
3425 	spin_lock_irqsave(&rb->event_lock, flags);
3426 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3427 		list_del_init(&event->rb_entry);
3428 		wake_up_all(&event->waitq);
3429 	}
3430 	spin_unlock_irqrestore(&rb->event_lock, flags);
3431 
3432 	call_rcu(&rb->rcu_head, rb_free_rcu);
3433 }
3434 
3435 static void perf_mmap_open(struct vm_area_struct *vma)
3436 {
3437 	struct perf_event *event = vma->vm_file->private_data;
3438 
3439 	atomic_inc(&event->mmap_count);
3440 }
3441 
3442 static void perf_mmap_close(struct vm_area_struct *vma)
3443 {
3444 	struct perf_event *event = vma->vm_file->private_data;
3445 
3446 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3447 		unsigned long size = perf_data_size(event->rb);
3448 		struct user_struct *user = event->mmap_user;
3449 		struct ring_buffer *rb = event->rb;
3450 
3451 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3452 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3453 		rcu_assign_pointer(event->rb, NULL);
3454 		ring_buffer_detach(event, rb);
3455 		mutex_unlock(&event->mmap_mutex);
3456 
3457 		ring_buffer_put(rb);
3458 		free_uid(user);
3459 	}
3460 }
3461 
3462 static const struct vm_operations_struct perf_mmap_vmops = {
3463 	.open		= perf_mmap_open,
3464 	.close		= perf_mmap_close,
3465 	.fault		= perf_mmap_fault,
3466 	.page_mkwrite	= perf_mmap_fault,
3467 };
3468 
3469 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3470 {
3471 	struct perf_event *event = file->private_data;
3472 	unsigned long user_locked, user_lock_limit;
3473 	struct user_struct *user = current_user();
3474 	unsigned long locked, lock_limit;
3475 	struct ring_buffer *rb;
3476 	unsigned long vma_size;
3477 	unsigned long nr_pages;
3478 	long user_extra, extra;
3479 	int ret = 0, flags = 0;
3480 
3481 	/*
3482 	 * Don't allow mmap() of inherited per-task counters. This would
3483 	 * create a performance issue due to all children writing to the
3484 	 * same rb.
3485 	 */
3486 	if (event->cpu == -1 && event->attr.inherit)
3487 		return -EINVAL;
3488 
3489 	if (!(vma->vm_flags & VM_SHARED))
3490 		return -EINVAL;
3491 
3492 	vma_size = vma->vm_end - vma->vm_start;
3493 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3494 
3495 	/*
3496 	 * If we have rb pages ensure they're a power-of-two number, so we
3497 	 * can do bitmasks instead of modulo.
3498 	 */
3499 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3500 		return -EINVAL;
3501 
3502 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3503 		return -EINVAL;
3504 
3505 	if (vma->vm_pgoff != 0)
3506 		return -EINVAL;
3507 
3508 	WARN_ON_ONCE(event->ctx->parent_ctx);
3509 	mutex_lock(&event->mmap_mutex);
3510 	if (event->rb) {
3511 		if (event->rb->nr_pages == nr_pages)
3512 			atomic_inc(&event->rb->refcount);
3513 		else
3514 			ret = -EINVAL;
3515 		goto unlock;
3516 	}
3517 
3518 	user_extra = nr_pages + 1;
3519 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3520 
3521 	/*
3522 	 * Increase the limit linearly with more CPUs:
3523 	 */
3524 	user_lock_limit *= num_online_cpus();
3525 
3526 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3527 
3528 	extra = 0;
3529 	if (user_locked > user_lock_limit)
3530 		extra = user_locked - user_lock_limit;
3531 
3532 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3533 	lock_limit >>= PAGE_SHIFT;
3534 	locked = vma->vm_mm->pinned_vm + extra;
3535 
3536 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3537 		!capable(CAP_IPC_LOCK)) {
3538 		ret = -EPERM;
3539 		goto unlock;
3540 	}
3541 
3542 	WARN_ON(event->rb);
3543 
3544 	if (vma->vm_flags & VM_WRITE)
3545 		flags |= RING_BUFFER_WRITABLE;
3546 
3547 	rb = rb_alloc(nr_pages,
3548 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3549 		event->cpu, flags);
3550 
3551 	if (!rb) {
3552 		ret = -ENOMEM;
3553 		goto unlock;
3554 	}
3555 	rcu_assign_pointer(event->rb, rb);
3556 
3557 	atomic_long_add(user_extra, &user->locked_vm);
3558 	event->mmap_locked = extra;
3559 	event->mmap_user = get_current_user();
3560 	vma->vm_mm->pinned_vm += event->mmap_locked;
3561 
3562 unlock:
3563 	if (!ret)
3564 		atomic_inc(&event->mmap_count);
3565 	mutex_unlock(&event->mmap_mutex);
3566 
3567 	vma->vm_flags |= VM_RESERVED;
3568 	vma->vm_ops = &perf_mmap_vmops;
3569 
3570 	return ret;
3571 }
3572 
3573 static int perf_fasync(int fd, struct file *filp, int on)
3574 {
3575 	struct inode *inode = filp->f_path.dentry->d_inode;
3576 	struct perf_event *event = filp->private_data;
3577 	int retval;
3578 
3579 	mutex_lock(&inode->i_mutex);
3580 	retval = fasync_helper(fd, filp, on, &event->fasync);
3581 	mutex_unlock(&inode->i_mutex);
3582 
3583 	if (retval < 0)
3584 		return retval;
3585 
3586 	return 0;
3587 }
3588 
3589 static const struct file_operations perf_fops = {
3590 	.llseek			= no_llseek,
3591 	.release		= perf_release,
3592 	.read			= perf_read,
3593 	.poll			= perf_poll,
3594 	.unlocked_ioctl		= perf_ioctl,
3595 	.compat_ioctl		= perf_ioctl,
3596 	.mmap			= perf_mmap,
3597 	.fasync			= perf_fasync,
3598 };
3599 
3600 /*
3601  * Perf event wakeup
3602  *
3603  * If there's data, ensure we set the poll() state and publish everything
3604  * to user-space before waking everybody up.
3605  */
3606 
3607 void perf_event_wakeup(struct perf_event *event)
3608 {
3609 	ring_buffer_wakeup(event);
3610 
3611 	if (event->pending_kill) {
3612 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3613 		event->pending_kill = 0;
3614 	}
3615 }
3616 
3617 static void perf_pending_event(struct irq_work *entry)
3618 {
3619 	struct perf_event *event = container_of(entry,
3620 			struct perf_event, pending);
3621 
3622 	if (event->pending_disable) {
3623 		event->pending_disable = 0;
3624 		__perf_event_disable(event);
3625 	}
3626 
3627 	if (event->pending_wakeup) {
3628 		event->pending_wakeup = 0;
3629 		perf_event_wakeup(event);
3630 	}
3631 }
3632 
3633 /*
3634  * We assume there is only KVM supporting the callbacks.
3635  * Later on, we might change it to a list if there is
3636  * another virtualization implementation supporting the callbacks.
3637  */
3638 struct perf_guest_info_callbacks *perf_guest_cbs;
3639 
3640 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3641 {
3642 	perf_guest_cbs = cbs;
3643 	return 0;
3644 }
3645 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3646 
3647 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3648 {
3649 	perf_guest_cbs = NULL;
3650 	return 0;
3651 }
3652 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3653 
3654 static void __perf_event_header__init_id(struct perf_event_header *header,
3655 					 struct perf_sample_data *data,
3656 					 struct perf_event *event)
3657 {
3658 	u64 sample_type = event->attr.sample_type;
3659 
3660 	data->type = sample_type;
3661 	header->size += event->id_header_size;
3662 
3663 	if (sample_type & PERF_SAMPLE_TID) {
3664 		/* namespace issues */
3665 		data->tid_entry.pid = perf_event_pid(event, current);
3666 		data->tid_entry.tid = perf_event_tid(event, current);
3667 	}
3668 
3669 	if (sample_type & PERF_SAMPLE_TIME)
3670 		data->time = perf_clock();
3671 
3672 	if (sample_type & PERF_SAMPLE_ID)
3673 		data->id = primary_event_id(event);
3674 
3675 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3676 		data->stream_id = event->id;
3677 
3678 	if (sample_type & PERF_SAMPLE_CPU) {
3679 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3680 		data->cpu_entry.reserved = 0;
3681 	}
3682 }
3683 
3684 void perf_event_header__init_id(struct perf_event_header *header,
3685 				struct perf_sample_data *data,
3686 				struct perf_event *event)
3687 {
3688 	if (event->attr.sample_id_all)
3689 		__perf_event_header__init_id(header, data, event);
3690 }
3691 
3692 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3693 					   struct perf_sample_data *data)
3694 {
3695 	u64 sample_type = data->type;
3696 
3697 	if (sample_type & PERF_SAMPLE_TID)
3698 		perf_output_put(handle, data->tid_entry);
3699 
3700 	if (sample_type & PERF_SAMPLE_TIME)
3701 		perf_output_put(handle, data->time);
3702 
3703 	if (sample_type & PERF_SAMPLE_ID)
3704 		perf_output_put(handle, data->id);
3705 
3706 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3707 		perf_output_put(handle, data->stream_id);
3708 
3709 	if (sample_type & PERF_SAMPLE_CPU)
3710 		perf_output_put(handle, data->cpu_entry);
3711 }
3712 
3713 void perf_event__output_id_sample(struct perf_event *event,
3714 				  struct perf_output_handle *handle,
3715 				  struct perf_sample_data *sample)
3716 {
3717 	if (event->attr.sample_id_all)
3718 		__perf_event__output_id_sample(handle, sample);
3719 }
3720 
3721 static void perf_output_read_one(struct perf_output_handle *handle,
3722 				 struct perf_event *event,
3723 				 u64 enabled, u64 running)
3724 {
3725 	u64 read_format = event->attr.read_format;
3726 	u64 values[4];
3727 	int n = 0;
3728 
3729 	values[n++] = perf_event_count(event);
3730 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3731 		values[n++] = enabled +
3732 			atomic64_read(&event->child_total_time_enabled);
3733 	}
3734 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3735 		values[n++] = running +
3736 			atomic64_read(&event->child_total_time_running);
3737 	}
3738 	if (read_format & PERF_FORMAT_ID)
3739 		values[n++] = primary_event_id(event);
3740 
3741 	__output_copy(handle, values, n * sizeof(u64));
3742 }
3743 
3744 /*
3745  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3746  */
3747 static void perf_output_read_group(struct perf_output_handle *handle,
3748 			    struct perf_event *event,
3749 			    u64 enabled, u64 running)
3750 {
3751 	struct perf_event *leader = event->group_leader, *sub;
3752 	u64 read_format = event->attr.read_format;
3753 	u64 values[5];
3754 	int n = 0;
3755 
3756 	values[n++] = 1 + leader->nr_siblings;
3757 
3758 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3759 		values[n++] = enabled;
3760 
3761 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3762 		values[n++] = running;
3763 
3764 	if (leader != event)
3765 		leader->pmu->read(leader);
3766 
3767 	values[n++] = perf_event_count(leader);
3768 	if (read_format & PERF_FORMAT_ID)
3769 		values[n++] = primary_event_id(leader);
3770 
3771 	__output_copy(handle, values, n * sizeof(u64));
3772 
3773 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3774 		n = 0;
3775 
3776 		if (sub != event)
3777 			sub->pmu->read(sub);
3778 
3779 		values[n++] = perf_event_count(sub);
3780 		if (read_format & PERF_FORMAT_ID)
3781 			values[n++] = primary_event_id(sub);
3782 
3783 		__output_copy(handle, values, n * sizeof(u64));
3784 	}
3785 }
3786 
3787 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3788 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3789 
3790 static void perf_output_read(struct perf_output_handle *handle,
3791 			     struct perf_event *event)
3792 {
3793 	u64 enabled = 0, running = 0;
3794 	u64 read_format = event->attr.read_format;
3795 
3796 	/*
3797 	 * compute total_time_enabled, total_time_running
3798 	 * based on snapshot values taken when the event
3799 	 * was last scheduled in.
3800 	 *
3801 	 * we cannot simply called update_context_time()
3802 	 * because of locking issue as we are called in
3803 	 * NMI context
3804 	 */
3805 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3806 		calc_timer_values(event, &enabled, &running);
3807 
3808 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3809 		perf_output_read_group(handle, event, enabled, running);
3810 	else
3811 		perf_output_read_one(handle, event, enabled, running);
3812 }
3813 
3814 void perf_output_sample(struct perf_output_handle *handle,
3815 			struct perf_event_header *header,
3816 			struct perf_sample_data *data,
3817 			struct perf_event *event)
3818 {
3819 	u64 sample_type = data->type;
3820 
3821 	perf_output_put(handle, *header);
3822 
3823 	if (sample_type & PERF_SAMPLE_IP)
3824 		perf_output_put(handle, data->ip);
3825 
3826 	if (sample_type & PERF_SAMPLE_TID)
3827 		perf_output_put(handle, data->tid_entry);
3828 
3829 	if (sample_type & PERF_SAMPLE_TIME)
3830 		perf_output_put(handle, data->time);
3831 
3832 	if (sample_type & PERF_SAMPLE_ADDR)
3833 		perf_output_put(handle, data->addr);
3834 
3835 	if (sample_type & PERF_SAMPLE_ID)
3836 		perf_output_put(handle, data->id);
3837 
3838 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3839 		perf_output_put(handle, data->stream_id);
3840 
3841 	if (sample_type & PERF_SAMPLE_CPU)
3842 		perf_output_put(handle, data->cpu_entry);
3843 
3844 	if (sample_type & PERF_SAMPLE_PERIOD)
3845 		perf_output_put(handle, data->period);
3846 
3847 	if (sample_type & PERF_SAMPLE_READ)
3848 		perf_output_read(handle, event);
3849 
3850 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3851 		if (data->callchain) {
3852 			int size = 1;
3853 
3854 			if (data->callchain)
3855 				size += data->callchain->nr;
3856 
3857 			size *= sizeof(u64);
3858 
3859 			__output_copy(handle, data->callchain, size);
3860 		} else {
3861 			u64 nr = 0;
3862 			perf_output_put(handle, nr);
3863 		}
3864 	}
3865 
3866 	if (sample_type & PERF_SAMPLE_RAW) {
3867 		if (data->raw) {
3868 			perf_output_put(handle, data->raw->size);
3869 			__output_copy(handle, data->raw->data,
3870 					   data->raw->size);
3871 		} else {
3872 			struct {
3873 				u32	size;
3874 				u32	data;
3875 			} raw = {
3876 				.size = sizeof(u32),
3877 				.data = 0,
3878 			};
3879 			perf_output_put(handle, raw);
3880 		}
3881 	}
3882 
3883 	if (!event->attr.watermark) {
3884 		int wakeup_events = event->attr.wakeup_events;
3885 
3886 		if (wakeup_events) {
3887 			struct ring_buffer *rb = handle->rb;
3888 			int events = local_inc_return(&rb->events);
3889 
3890 			if (events >= wakeup_events) {
3891 				local_sub(wakeup_events, &rb->events);
3892 				local_inc(&rb->wakeup);
3893 			}
3894 		}
3895 	}
3896 }
3897 
3898 void perf_prepare_sample(struct perf_event_header *header,
3899 			 struct perf_sample_data *data,
3900 			 struct perf_event *event,
3901 			 struct pt_regs *regs)
3902 {
3903 	u64 sample_type = event->attr.sample_type;
3904 
3905 	header->type = PERF_RECORD_SAMPLE;
3906 	header->size = sizeof(*header) + event->header_size;
3907 
3908 	header->misc = 0;
3909 	header->misc |= perf_misc_flags(regs);
3910 
3911 	__perf_event_header__init_id(header, data, event);
3912 
3913 	if (sample_type & PERF_SAMPLE_IP)
3914 		data->ip = perf_instruction_pointer(regs);
3915 
3916 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3917 		int size = 1;
3918 
3919 		data->callchain = perf_callchain(regs);
3920 
3921 		if (data->callchain)
3922 			size += data->callchain->nr;
3923 
3924 		header->size += size * sizeof(u64);
3925 	}
3926 
3927 	if (sample_type & PERF_SAMPLE_RAW) {
3928 		int size = sizeof(u32);
3929 
3930 		if (data->raw)
3931 			size += data->raw->size;
3932 		else
3933 			size += sizeof(u32);
3934 
3935 		WARN_ON_ONCE(size & (sizeof(u64)-1));
3936 		header->size += size;
3937 	}
3938 }
3939 
3940 static void perf_event_output(struct perf_event *event,
3941 				struct perf_sample_data *data,
3942 				struct pt_regs *regs)
3943 {
3944 	struct perf_output_handle handle;
3945 	struct perf_event_header header;
3946 
3947 	/* protect the callchain buffers */
3948 	rcu_read_lock();
3949 
3950 	perf_prepare_sample(&header, data, event, regs);
3951 
3952 	if (perf_output_begin(&handle, event, header.size))
3953 		goto exit;
3954 
3955 	perf_output_sample(&handle, &header, data, event);
3956 
3957 	perf_output_end(&handle);
3958 
3959 exit:
3960 	rcu_read_unlock();
3961 }
3962 
3963 /*
3964  * read event_id
3965  */
3966 
3967 struct perf_read_event {
3968 	struct perf_event_header	header;
3969 
3970 	u32				pid;
3971 	u32				tid;
3972 };
3973 
3974 static void
3975 perf_event_read_event(struct perf_event *event,
3976 			struct task_struct *task)
3977 {
3978 	struct perf_output_handle handle;
3979 	struct perf_sample_data sample;
3980 	struct perf_read_event read_event = {
3981 		.header = {
3982 			.type = PERF_RECORD_READ,
3983 			.misc = 0,
3984 			.size = sizeof(read_event) + event->read_size,
3985 		},
3986 		.pid = perf_event_pid(event, task),
3987 		.tid = perf_event_tid(event, task),
3988 	};
3989 	int ret;
3990 
3991 	perf_event_header__init_id(&read_event.header, &sample, event);
3992 	ret = perf_output_begin(&handle, event, read_event.header.size);
3993 	if (ret)
3994 		return;
3995 
3996 	perf_output_put(&handle, read_event);
3997 	perf_output_read(&handle, event);
3998 	perf_event__output_id_sample(event, &handle, &sample);
3999 
4000 	perf_output_end(&handle);
4001 }
4002 
4003 /*
4004  * task tracking -- fork/exit
4005  *
4006  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4007  */
4008 
4009 struct perf_task_event {
4010 	struct task_struct		*task;
4011 	struct perf_event_context	*task_ctx;
4012 
4013 	struct {
4014 		struct perf_event_header	header;
4015 
4016 		u32				pid;
4017 		u32				ppid;
4018 		u32				tid;
4019 		u32				ptid;
4020 		u64				time;
4021 	} event_id;
4022 };
4023 
4024 static void perf_event_task_output(struct perf_event *event,
4025 				     struct perf_task_event *task_event)
4026 {
4027 	struct perf_output_handle handle;
4028 	struct perf_sample_data	sample;
4029 	struct task_struct *task = task_event->task;
4030 	int ret, size = task_event->event_id.header.size;
4031 
4032 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4033 
4034 	ret = perf_output_begin(&handle, event,
4035 				task_event->event_id.header.size);
4036 	if (ret)
4037 		goto out;
4038 
4039 	task_event->event_id.pid = perf_event_pid(event, task);
4040 	task_event->event_id.ppid = perf_event_pid(event, current);
4041 
4042 	task_event->event_id.tid = perf_event_tid(event, task);
4043 	task_event->event_id.ptid = perf_event_tid(event, current);
4044 
4045 	perf_output_put(&handle, task_event->event_id);
4046 
4047 	perf_event__output_id_sample(event, &handle, &sample);
4048 
4049 	perf_output_end(&handle);
4050 out:
4051 	task_event->event_id.header.size = size;
4052 }
4053 
4054 static int perf_event_task_match(struct perf_event *event)
4055 {
4056 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4057 		return 0;
4058 
4059 	if (!event_filter_match(event))
4060 		return 0;
4061 
4062 	if (event->attr.comm || event->attr.mmap ||
4063 	    event->attr.mmap_data || event->attr.task)
4064 		return 1;
4065 
4066 	return 0;
4067 }
4068 
4069 static void perf_event_task_ctx(struct perf_event_context *ctx,
4070 				  struct perf_task_event *task_event)
4071 {
4072 	struct perf_event *event;
4073 
4074 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4075 		if (perf_event_task_match(event))
4076 			perf_event_task_output(event, task_event);
4077 	}
4078 }
4079 
4080 static void perf_event_task_event(struct perf_task_event *task_event)
4081 {
4082 	struct perf_cpu_context *cpuctx;
4083 	struct perf_event_context *ctx;
4084 	struct pmu *pmu;
4085 	int ctxn;
4086 
4087 	rcu_read_lock();
4088 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4089 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4090 		if (cpuctx->active_pmu != pmu)
4091 			goto next;
4092 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4093 
4094 		ctx = task_event->task_ctx;
4095 		if (!ctx) {
4096 			ctxn = pmu->task_ctx_nr;
4097 			if (ctxn < 0)
4098 				goto next;
4099 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4100 		}
4101 		if (ctx)
4102 			perf_event_task_ctx(ctx, task_event);
4103 next:
4104 		put_cpu_ptr(pmu->pmu_cpu_context);
4105 	}
4106 	rcu_read_unlock();
4107 }
4108 
4109 static void perf_event_task(struct task_struct *task,
4110 			      struct perf_event_context *task_ctx,
4111 			      int new)
4112 {
4113 	struct perf_task_event task_event;
4114 
4115 	if (!atomic_read(&nr_comm_events) &&
4116 	    !atomic_read(&nr_mmap_events) &&
4117 	    !atomic_read(&nr_task_events))
4118 		return;
4119 
4120 	task_event = (struct perf_task_event){
4121 		.task	  = task,
4122 		.task_ctx = task_ctx,
4123 		.event_id    = {
4124 			.header = {
4125 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4126 				.misc = 0,
4127 				.size = sizeof(task_event.event_id),
4128 			},
4129 			/* .pid  */
4130 			/* .ppid */
4131 			/* .tid  */
4132 			/* .ptid */
4133 			.time = perf_clock(),
4134 		},
4135 	};
4136 
4137 	perf_event_task_event(&task_event);
4138 }
4139 
4140 void perf_event_fork(struct task_struct *task)
4141 {
4142 	perf_event_task(task, NULL, 1);
4143 }
4144 
4145 /*
4146  * comm tracking
4147  */
4148 
4149 struct perf_comm_event {
4150 	struct task_struct	*task;
4151 	char			*comm;
4152 	int			comm_size;
4153 
4154 	struct {
4155 		struct perf_event_header	header;
4156 
4157 		u32				pid;
4158 		u32				tid;
4159 	} event_id;
4160 };
4161 
4162 static void perf_event_comm_output(struct perf_event *event,
4163 				     struct perf_comm_event *comm_event)
4164 {
4165 	struct perf_output_handle handle;
4166 	struct perf_sample_data sample;
4167 	int size = comm_event->event_id.header.size;
4168 	int ret;
4169 
4170 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4171 	ret = perf_output_begin(&handle, event,
4172 				comm_event->event_id.header.size);
4173 
4174 	if (ret)
4175 		goto out;
4176 
4177 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4178 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4179 
4180 	perf_output_put(&handle, comm_event->event_id);
4181 	__output_copy(&handle, comm_event->comm,
4182 				   comm_event->comm_size);
4183 
4184 	perf_event__output_id_sample(event, &handle, &sample);
4185 
4186 	perf_output_end(&handle);
4187 out:
4188 	comm_event->event_id.header.size = size;
4189 }
4190 
4191 static int perf_event_comm_match(struct perf_event *event)
4192 {
4193 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4194 		return 0;
4195 
4196 	if (!event_filter_match(event))
4197 		return 0;
4198 
4199 	if (event->attr.comm)
4200 		return 1;
4201 
4202 	return 0;
4203 }
4204 
4205 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4206 				  struct perf_comm_event *comm_event)
4207 {
4208 	struct perf_event *event;
4209 
4210 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4211 		if (perf_event_comm_match(event))
4212 			perf_event_comm_output(event, comm_event);
4213 	}
4214 }
4215 
4216 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4217 {
4218 	struct perf_cpu_context *cpuctx;
4219 	struct perf_event_context *ctx;
4220 	char comm[TASK_COMM_LEN];
4221 	unsigned int size;
4222 	struct pmu *pmu;
4223 	int ctxn;
4224 
4225 	memset(comm, 0, sizeof(comm));
4226 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4227 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4228 
4229 	comm_event->comm = comm;
4230 	comm_event->comm_size = size;
4231 
4232 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4233 	rcu_read_lock();
4234 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4235 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4236 		if (cpuctx->active_pmu != pmu)
4237 			goto next;
4238 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4239 
4240 		ctxn = pmu->task_ctx_nr;
4241 		if (ctxn < 0)
4242 			goto next;
4243 
4244 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4245 		if (ctx)
4246 			perf_event_comm_ctx(ctx, comm_event);
4247 next:
4248 		put_cpu_ptr(pmu->pmu_cpu_context);
4249 	}
4250 	rcu_read_unlock();
4251 }
4252 
4253 void perf_event_comm(struct task_struct *task)
4254 {
4255 	struct perf_comm_event comm_event;
4256 	struct perf_event_context *ctx;
4257 	int ctxn;
4258 
4259 	for_each_task_context_nr(ctxn) {
4260 		ctx = task->perf_event_ctxp[ctxn];
4261 		if (!ctx)
4262 			continue;
4263 
4264 		perf_event_enable_on_exec(ctx);
4265 	}
4266 
4267 	if (!atomic_read(&nr_comm_events))
4268 		return;
4269 
4270 	comm_event = (struct perf_comm_event){
4271 		.task	= task,
4272 		/* .comm      */
4273 		/* .comm_size */
4274 		.event_id  = {
4275 			.header = {
4276 				.type = PERF_RECORD_COMM,
4277 				.misc = 0,
4278 				/* .size */
4279 			},
4280 			/* .pid */
4281 			/* .tid */
4282 		},
4283 	};
4284 
4285 	perf_event_comm_event(&comm_event);
4286 }
4287 
4288 /*
4289  * mmap tracking
4290  */
4291 
4292 struct perf_mmap_event {
4293 	struct vm_area_struct	*vma;
4294 
4295 	const char		*file_name;
4296 	int			file_size;
4297 
4298 	struct {
4299 		struct perf_event_header	header;
4300 
4301 		u32				pid;
4302 		u32				tid;
4303 		u64				start;
4304 		u64				len;
4305 		u64				pgoff;
4306 	} event_id;
4307 };
4308 
4309 static void perf_event_mmap_output(struct perf_event *event,
4310 				     struct perf_mmap_event *mmap_event)
4311 {
4312 	struct perf_output_handle handle;
4313 	struct perf_sample_data sample;
4314 	int size = mmap_event->event_id.header.size;
4315 	int ret;
4316 
4317 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4318 	ret = perf_output_begin(&handle, event,
4319 				mmap_event->event_id.header.size);
4320 	if (ret)
4321 		goto out;
4322 
4323 	mmap_event->event_id.pid = perf_event_pid(event, current);
4324 	mmap_event->event_id.tid = perf_event_tid(event, current);
4325 
4326 	perf_output_put(&handle, mmap_event->event_id);
4327 	__output_copy(&handle, mmap_event->file_name,
4328 				   mmap_event->file_size);
4329 
4330 	perf_event__output_id_sample(event, &handle, &sample);
4331 
4332 	perf_output_end(&handle);
4333 out:
4334 	mmap_event->event_id.header.size = size;
4335 }
4336 
4337 static int perf_event_mmap_match(struct perf_event *event,
4338 				   struct perf_mmap_event *mmap_event,
4339 				   int executable)
4340 {
4341 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4342 		return 0;
4343 
4344 	if (!event_filter_match(event))
4345 		return 0;
4346 
4347 	if ((!executable && event->attr.mmap_data) ||
4348 	    (executable && event->attr.mmap))
4349 		return 1;
4350 
4351 	return 0;
4352 }
4353 
4354 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4355 				  struct perf_mmap_event *mmap_event,
4356 				  int executable)
4357 {
4358 	struct perf_event *event;
4359 
4360 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4361 		if (perf_event_mmap_match(event, mmap_event, executable))
4362 			perf_event_mmap_output(event, mmap_event);
4363 	}
4364 }
4365 
4366 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4367 {
4368 	struct perf_cpu_context *cpuctx;
4369 	struct perf_event_context *ctx;
4370 	struct vm_area_struct *vma = mmap_event->vma;
4371 	struct file *file = vma->vm_file;
4372 	unsigned int size;
4373 	char tmp[16];
4374 	char *buf = NULL;
4375 	const char *name;
4376 	struct pmu *pmu;
4377 	int ctxn;
4378 
4379 	memset(tmp, 0, sizeof(tmp));
4380 
4381 	if (file) {
4382 		/*
4383 		 * d_path works from the end of the rb backwards, so we
4384 		 * need to add enough zero bytes after the string to handle
4385 		 * the 64bit alignment we do later.
4386 		 */
4387 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4388 		if (!buf) {
4389 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4390 			goto got_name;
4391 		}
4392 		name = d_path(&file->f_path, buf, PATH_MAX);
4393 		if (IS_ERR(name)) {
4394 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4395 			goto got_name;
4396 		}
4397 	} else {
4398 		if (arch_vma_name(mmap_event->vma)) {
4399 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4400 				       sizeof(tmp));
4401 			goto got_name;
4402 		}
4403 
4404 		if (!vma->vm_mm) {
4405 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4406 			goto got_name;
4407 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4408 				vma->vm_end >= vma->vm_mm->brk) {
4409 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4410 			goto got_name;
4411 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4412 				vma->vm_end >= vma->vm_mm->start_stack) {
4413 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4414 			goto got_name;
4415 		}
4416 
4417 		name = strncpy(tmp, "//anon", sizeof(tmp));
4418 		goto got_name;
4419 	}
4420 
4421 got_name:
4422 	size = ALIGN(strlen(name)+1, sizeof(u64));
4423 
4424 	mmap_event->file_name = name;
4425 	mmap_event->file_size = size;
4426 
4427 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4428 
4429 	rcu_read_lock();
4430 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4431 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4432 		if (cpuctx->active_pmu != pmu)
4433 			goto next;
4434 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4435 					vma->vm_flags & VM_EXEC);
4436 
4437 		ctxn = pmu->task_ctx_nr;
4438 		if (ctxn < 0)
4439 			goto next;
4440 
4441 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4442 		if (ctx) {
4443 			perf_event_mmap_ctx(ctx, mmap_event,
4444 					vma->vm_flags & VM_EXEC);
4445 		}
4446 next:
4447 		put_cpu_ptr(pmu->pmu_cpu_context);
4448 	}
4449 	rcu_read_unlock();
4450 
4451 	kfree(buf);
4452 }
4453 
4454 void perf_event_mmap(struct vm_area_struct *vma)
4455 {
4456 	struct perf_mmap_event mmap_event;
4457 
4458 	if (!atomic_read(&nr_mmap_events))
4459 		return;
4460 
4461 	mmap_event = (struct perf_mmap_event){
4462 		.vma	= vma,
4463 		/* .file_name */
4464 		/* .file_size */
4465 		.event_id  = {
4466 			.header = {
4467 				.type = PERF_RECORD_MMAP,
4468 				.misc = PERF_RECORD_MISC_USER,
4469 				/* .size */
4470 			},
4471 			/* .pid */
4472 			/* .tid */
4473 			.start  = vma->vm_start,
4474 			.len    = vma->vm_end - vma->vm_start,
4475 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4476 		},
4477 	};
4478 
4479 	perf_event_mmap_event(&mmap_event);
4480 }
4481 
4482 /*
4483  * IRQ throttle logging
4484  */
4485 
4486 static void perf_log_throttle(struct perf_event *event, int enable)
4487 {
4488 	struct perf_output_handle handle;
4489 	struct perf_sample_data sample;
4490 	int ret;
4491 
4492 	struct {
4493 		struct perf_event_header	header;
4494 		u64				time;
4495 		u64				id;
4496 		u64				stream_id;
4497 	} throttle_event = {
4498 		.header = {
4499 			.type = PERF_RECORD_THROTTLE,
4500 			.misc = 0,
4501 			.size = sizeof(throttle_event),
4502 		},
4503 		.time		= perf_clock(),
4504 		.id		= primary_event_id(event),
4505 		.stream_id	= event->id,
4506 	};
4507 
4508 	if (enable)
4509 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4510 
4511 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4512 
4513 	ret = perf_output_begin(&handle, event,
4514 				throttle_event.header.size);
4515 	if (ret)
4516 		return;
4517 
4518 	perf_output_put(&handle, throttle_event);
4519 	perf_event__output_id_sample(event, &handle, &sample);
4520 	perf_output_end(&handle);
4521 }
4522 
4523 /*
4524  * Generic event overflow handling, sampling.
4525  */
4526 
4527 static int __perf_event_overflow(struct perf_event *event,
4528 				   int throttle, struct perf_sample_data *data,
4529 				   struct pt_regs *regs)
4530 {
4531 	int events = atomic_read(&event->event_limit);
4532 	struct hw_perf_event *hwc = &event->hw;
4533 	u64 seq;
4534 	int ret = 0;
4535 
4536 	/*
4537 	 * Non-sampling counters might still use the PMI to fold short
4538 	 * hardware counters, ignore those.
4539 	 */
4540 	if (unlikely(!is_sampling_event(event)))
4541 		return 0;
4542 
4543 	seq = __this_cpu_read(perf_throttled_seq);
4544 	if (seq != hwc->interrupts_seq) {
4545 		hwc->interrupts_seq = seq;
4546 		hwc->interrupts = 1;
4547 	} else {
4548 		hwc->interrupts++;
4549 		if (unlikely(throttle
4550 			     && hwc->interrupts >= max_samples_per_tick)) {
4551 			__this_cpu_inc(perf_throttled_count);
4552 			hwc->interrupts = MAX_INTERRUPTS;
4553 			perf_log_throttle(event, 0);
4554 			ret = 1;
4555 		}
4556 	}
4557 
4558 	if (event->attr.freq) {
4559 		u64 now = perf_clock();
4560 		s64 delta = now - hwc->freq_time_stamp;
4561 
4562 		hwc->freq_time_stamp = now;
4563 
4564 		if (delta > 0 && delta < 2*TICK_NSEC)
4565 			perf_adjust_period(event, delta, hwc->last_period);
4566 	}
4567 
4568 	/*
4569 	 * XXX event_limit might not quite work as expected on inherited
4570 	 * events
4571 	 */
4572 
4573 	event->pending_kill = POLL_IN;
4574 	if (events && atomic_dec_and_test(&event->event_limit)) {
4575 		ret = 1;
4576 		event->pending_kill = POLL_HUP;
4577 		event->pending_disable = 1;
4578 		irq_work_queue(&event->pending);
4579 	}
4580 
4581 	if (event->overflow_handler)
4582 		event->overflow_handler(event, data, regs);
4583 	else
4584 		perf_event_output(event, data, regs);
4585 
4586 	if (event->fasync && event->pending_kill) {
4587 		event->pending_wakeup = 1;
4588 		irq_work_queue(&event->pending);
4589 	}
4590 
4591 	return ret;
4592 }
4593 
4594 int perf_event_overflow(struct perf_event *event,
4595 			  struct perf_sample_data *data,
4596 			  struct pt_regs *regs)
4597 {
4598 	return __perf_event_overflow(event, 1, data, regs);
4599 }
4600 
4601 /*
4602  * Generic software event infrastructure
4603  */
4604 
4605 struct swevent_htable {
4606 	struct swevent_hlist		*swevent_hlist;
4607 	struct mutex			hlist_mutex;
4608 	int				hlist_refcount;
4609 
4610 	/* Recursion avoidance in each contexts */
4611 	int				recursion[PERF_NR_CONTEXTS];
4612 };
4613 
4614 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4615 
4616 /*
4617  * We directly increment event->count and keep a second value in
4618  * event->hw.period_left to count intervals. This period event
4619  * is kept in the range [-sample_period, 0] so that we can use the
4620  * sign as trigger.
4621  */
4622 
4623 static u64 perf_swevent_set_period(struct perf_event *event)
4624 {
4625 	struct hw_perf_event *hwc = &event->hw;
4626 	u64 period = hwc->last_period;
4627 	u64 nr, offset;
4628 	s64 old, val;
4629 
4630 	hwc->last_period = hwc->sample_period;
4631 
4632 again:
4633 	old = val = local64_read(&hwc->period_left);
4634 	if (val < 0)
4635 		return 0;
4636 
4637 	nr = div64_u64(period + val, period);
4638 	offset = nr * period;
4639 	val -= offset;
4640 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4641 		goto again;
4642 
4643 	return nr;
4644 }
4645 
4646 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4647 				    struct perf_sample_data *data,
4648 				    struct pt_regs *regs)
4649 {
4650 	struct hw_perf_event *hwc = &event->hw;
4651 	int throttle = 0;
4652 
4653 	if (!overflow)
4654 		overflow = perf_swevent_set_period(event);
4655 
4656 	if (hwc->interrupts == MAX_INTERRUPTS)
4657 		return;
4658 
4659 	for (; overflow; overflow--) {
4660 		if (__perf_event_overflow(event, throttle,
4661 					    data, regs)) {
4662 			/*
4663 			 * We inhibit the overflow from happening when
4664 			 * hwc->interrupts == MAX_INTERRUPTS.
4665 			 */
4666 			break;
4667 		}
4668 		throttle = 1;
4669 	}
4670 }
4671 
4672 static void perf_swevent_event(struct perf_event *event, u64 nr,
4673 			       struct perf_sample_data *data,
4674 			       struct pt_regs *regs)
4675 {
4676 	struct hw_perf_event *hwc = &event->hw;
4677 
4678 	local64_add(nr, &event->count);
4679 
4680 	if (!regs)
4681 		return;
4682 
4683 	if (!is_sampling_event(event))
4684 		return;
4685 
4686 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4687 		data->period = nr;
4688 		return perf_swevent_overflow(event, 1, data, regs);
4689 	} else
4690 		data->period = event->hw.last_period;
4691 
4692 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4693 		return perf_swevent_overflow(event, 1, data, regs);
4694 
4695 	if (local64_add_negative(nr, &hwc->period_left))
4696 		return;
4697 
4698 	perf_swevent_overflow(event, 0, data, regs);
4699 }
4700 
4701 static int perf_exclude_event(struct perf_event *event,
4702 			      struct pt_regs *regs)
4703 {
4704 	if (event->hw.state & PERF_HES_STOPPED)
4705 		return 1;
4706 
4707 	if (regs) {
4708 		if (event->attr.exclude_user && user_mode(regs))
4709 			return 1;
4710 
4711 		if (event->attr.exclude_kernel && !user_mode(regs))
4712 			return 1;
4713 	}
4714 
4715 	return 0;
4716 }
4717 
4718 static int perf_swevent_match(struct perf_event *event,
4719 				enum perf_type_id type,
4720 				u32 event_id,
4721 				struct perf_sample_data *data,
4722 				struct pt_regs *regs)
4723 {
4724 	if (event->attr.type != type)
4725 		return 0;
4726 
4727 	if (event->attr.config != event_id)
4728 		return 0;
4729 
4730 	if (perf_exclude_event(event, regs))
4731 		return 0;
4732 
4733 	return 1;
4734 }
4735 
4736 static inline u64 swevent_hash(u64 type, u32 event_id)
4737 {
4738 	u64 val = event_id | (type << 32);
4739 
4740 	return hash_64(val, SWEVENT_HLIST_BITS);
4741 }
4742 
4743 static inline struct hlist_head *
4744 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4745 {
4746 	u64 hash = swevent_hash(type, event_id);
4747 
4748 	return &hlist->heads[hash];
4749 }
4750 
4751 /* For the read side: events when they trigger */
4752 static inline struct hlist_head *
4753 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4754 {
4755 	struct swevent_hlist *hlist;
4756 
4757 	hlist = rcu_dereference(swhash->swevent_hlist);
4758 	if (!hlist)
4759 		return NULL;
4760 
4761 	return __find_swevent_head(hlist, type, event_id);
4762 }
4763 
4764 /* For the event head insertion and removal in the hlist */
4765 static inline struct hlist_head *
4766 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4767 {
4768 	struct swevent_hlist *hlist;
4769 	u32 event_id = event->attr.config;
4770 	u64 type = event->attr.type;
4771 
4772 	/*
4773 	 * Event scheduling is always serialized against hlist allocation
4774 	 * and release. Which makes the protected version suitable here.
4775 	 * The context lock guarantees that.
4776 	 */
4777 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4778 					  lockdep_is_held(&event->ctx->lock));
4779 	if (!hlist)
4780 		return NULL;
4781 
4782 	return __find_swevent_head(hlist, type, event_id);
4783 }
4784 
4785 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4786 				    u64 nr,
4787 				    struct perf_sample_data *data,
4788 				    struct pt_regs *regs)
4789 {
4790 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4791 	struct perf_event *event;
4792 	struct hlist_node *node;
4793 	struct hlist_head *head;
4794 
4795 	rcu_read_lock();
4796 	head = find_swevent_head_rcu(swhash, type, event_id);
4797 	if (!head)
4798 		goto end;
4799 
4800 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4801 		if (perf_swevent_match(event, type, event_id, data, regs))
4802 			perf_swevent_event(event, nr, data, regs);
4803 	}
4804 end:
4805 	rcu_read_unlock();
4806 }
4807 
4808 int perf_swevent_get_recursion_context(void)
4809 {
4810 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4811 
4812 	return get_recursion_context(swhash->recursion);
4813 }
4814 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4815 
4816 inline void perf_swevent_put_recursion_context(int rctx)
4817 {
4818 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4819 
4820 	put_recursion_context(swhash->recursion, rctx);
4821 }
4822 
4823 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4824 {
4825 	struct perf_sample_data data;
4826 	int rctx;
4827 
4828 	preempt_disable_notrace();
4829 	rctx = perf_swevent_get_recursion_context();
4830 	if (rctx < 0)
4831 		return;
4832 
4833 	perf_sample_data_init(&data, addr);
4834 
4835 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4836 
4837 	perf_swevent_put_recursion_context(rctx);
4838 	preempt_enable_notrace();
4839 }
4840 
4841 static void perf_swevent_read(struct perf_event *event)
4842 {
4843 }
4844 
4845 static int perf_swevent_add(struct perf_event *event, int flags)
4846 {
4847 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4848 	struct hw_perf_event *hwc = &event->hw;
4849 	struct hlist_head *head;
4850 
4851 	if (is_sampling_event(event)) {
4852 		hwc->last_period = hwc->sample_period;
4853 		perf_swevent_set_period(event);
4854 	}
4855 
4856 	hwc->state = !(flags & PERF_EF_START);
4857 
4858 	head = find_swevent_head(swhash, event);
4859 	if (WARN_ON_ONCE(!head))
4860 		return -EINVAL;
4861 
4862 	hlist_add_head_rcu(&event->hlist_entry, head);
4863 
4864 	return 0;
4865 }
4866 
4867 static void perf_swevent_del(struct perf_event *event, int flags)
4868 {
4869 	hlist_del_rcu(&event->hlist_entry);
4870 }
4871 
4872 static void perf_swevent_start(struct perf_event *event, int flags)
4873 {
4874 	event->hw.state = 0;
4875 }
4876 
4877 static void perf_swevent_stop(struct perf_event *event, int flags)
4878 {
4879 	event->hw.state = PERF_HES_STOPPED;
4880 }
4881 
4882 /* Deref the hlist from the update side */
4883 static inline struct swevent_hlist *
4884 swevent_hlist_deref(struct swevent_htable *swhash)
4885 {
4886 	return rcu_dereference_protected(swhash->swevent_hlist,
4887 					 lockdep_is_held(&swhash->hlist_mutex));
4888 }
4889 
4890 static void swevent_hlist_release(struct swevent_htable *swhash)
4891 {
4892 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4893 
4894 	if (!hlist)
4895 		return;
4896 
4897 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4898 	kfree_rcu(hlist, rcu_head);
4899 }
4900 
4901 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4902 {
4903 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4904 
4905 	mutex_lock(&swhash->hlist_mutex);
4906 
4907 	if (!--swhash->hlist_refcount)
4908 		swevent_hlist_release(swhash);
4909 
4910 	mutex_unlock(&swhash->hlist_mutex);
4911 }
4912 
4913 static void swevent_hlist_put(struct perf_event *event)
4914 {
4915 	int cpu;
4916 
4917 	if (event->cpu != -1) {
4918 		swevent_hlist_put_cpu(event, event->cpu);
4919 		return;
4920 	}
4921 
4922 	for_each_possible_cpu(cpu)
4923 		swevent_hlist_put_cpu(event, cpu);
4924 }
4925 
4926 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4927 {
4928 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4929 	int err = 0;
4930 
4931 	mutex_lock(&swhash->hlist_mutex);
4932 
4933 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4934 		struct swevent_hlist *hlist;
4935 
4936 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4937 		if (!hlist) {
4938 			err = -ENOMEM;
4939 			goto exit;
4940 		}
4941 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4942 	}
4943 	swhash->hlist_refcount++;
4944 exit:
4945 	mutex_unlock(&swhash->hlist_mutex);
4946 
4947 	return err;
4948 }
4949 
4950 static int swevent_hlist_get(struct perf_event *event)
4951 {
4952 	int err;
4953 	int cpu, failed_cpu;
4954 
4955 	if (event->cpu != -1)
4956 		return swevent_hlist_get_cpu(event, event->cpu);
4957 
4958 	get_online_cpus();
4959 	for_each_possible_cpu(cpu) {
4960 		err = swevent_hlist_get_cpu(event, cpu);
4961 		if (err) {
4962 			failed_cpu = cpu;
4963 			goto fail;
4964 		}
4965 	}
4966 	put_online_cpus();
4967 
4968 	return 0;
4969 fail:
4970 	for_each_possible_cpu(cpu) {
4971 		if (cpu == failed_cpu)
4972 			break;
4973 		swevent_hlist_put_cpu(event, cpu);
4974 	}
4975 
4976 	put_online_cpus();
4977 	return err;
4978 }
4979 
4980 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4981 
4982 static void sw_perf_event_destroy(struct perf_event *event)
4983 {
4984 	u64 event_id = event->attr.config;
4985 
4986 	WARN_ON(event->parent);
4987 
4988 	jump_label_dec(&perf_swevent_enabled[event_id]);
4989 	swevent_hlist_put(event);
4990 }
4991 
4992 static int perf_swevent_init(struct perf_event *event)
4993 {
4994 	int event_id = event->attr.config;
4995 
4996 	if (event->attr.type != PERF_TYPE_SOFTWARE)
4997 		return -ENOENT;
4998 
4999 	switch (event_id) {
5000 	case PERF_COUNT_SW_CPU_CLOCK:
5001 	case PERF_COUNT_SW_TASK_CLOCK:
5002 		return -ENOENT;
5003 
5004 	default:
5005 		break;
5006 	}
5007 
5008 	if (event_id >= PERF_COUNT_SW_MAX)
5009 		return -ENOENT;
5010 
5011 	if (!event->parent) {
5012 		int err;
5013 
5014 		err = swevent_hlist_get(event);
5015 		if (err)
5016 			return err;
5017 
5018 		jump_label_inc(&perf_swevent_enabled[event_id]);
5019 		event->destroy = sw_perf_event_destroy;
5020 	}
5021 
5022 	return 0;
5023 }
5024 
5025 static struct pmu perf_swevent = {
5026 	.task_ctx_nr	= perf_sw_context,
5027 
5028 	.event_init	= perf_swevent_init,
5029 	.add		= perf_swevent_add,
5030 	.del		= perf_swevent_del,
5031 	.start		= perf_swevent_start,
5032 	.stop		= perf_swevent_stop,
5033 	.read		= perf_swevent_read,
5034 };
5035 
5036 #ifdef CONFIG_EVENT_TRACING
5037 
5038 static int perf_tp_filter_match(struct perf_event *event,
5039 				struct perf_sample_data *data)
5040 {
5041 	void *record = data->raw->data;
5042 
5043 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5044 		return 1;
5045 	return 0;
5046 }
5047 
5048 static int perf_tp_event_match(struct perf_event *event,
5049 				struct perf_sample_data *data,
5050 				struct pt_regs *regs)
5051 {
5052 	if (event->hw.state & PERF_HES_STOPPED)
5053 		return 0;
5054 	/*
5055 	 * All tracepoints are from kernel-space.
5056 	 */
5057 	if (event->attr.exclude_kernel)
5058 		return 0;
5059 
5060 	if (!perf_tp_filter_match(event, data))
5061 		return 0;
5062 
5063 	return 1;
5064 }
5065 
5066 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5067 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5068 {
5069 	struct perf_sample_data data;
5070 	struct perf_event *event;
5071 	struct hlist_node *node;
5072 
5073 	struct perf_raw_record raw = {
5074 		.size = entry_size,
5075 		.data = record,
5076 	};
5077 
5078 	perf_sample_data_init(&data, addr);
5079 	data.raw = &raw;
5080 
5081 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5082 		if (perf_tp_event_match(event, &data, regs))
5083 			perf_swevent_event(event, count, &data, regs);
5084 	}
5085 
5086 	perf_swevent_put_recursion_context(rctx);
5087 }
5088 EXPORT_SYMBOL_GPL(perf_tp_event);
5089 
5090 static void tp_perf_event_destroy(struct perf_event *event)
5091 {
5092 	perf_trace_destroy(event);
5093 }
5094 
5095 static int perf_tp_event_init(struct perf_event *event)
5096 {
5097 	int err;
5098 
5099 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5100 		return -ENOENT;
5101 
5102 	err = perf_trace_init(event);
5103 	if (err)
5104 		return err;
5105 
5106 	event->destroy = tp_perf_event_destroy;
5107 
5108 	return 0;
5109 }
5110 
5111 static struct pmu perf_tracepoint = {
5112 	.task_ctx_nr	= perf_sw_context,
5113 
5114 	.event_init	= perf_tp_event_init,
5115 	.add		= perf_trace_add,
5116 	.del		= perf_trace_del,
5117 	.start		= perf_swevent_start,
5118 	.stop		= perf_swevent_stop,
5119 	.read		= perf_swevent_read,
5120 };
5121 
5122 static inline void perf_tp_register(void)
5123 {
5124 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5125 }
5126 
5127 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5128 {
5129 	char *filter_str;
5130 	int ret;
5131 
5132 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5133 		return -EINVAL;
5134 
5135 	filter_str = strndup_user(arg, PAGE_SIZE);
5136 	if (IS_ERR(filter_str))
5137 		return PTR_ERR(filter_str);
5138 
5139 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5140 
5141 	kfree(filter_str);
5142 	return ret;
5143 }
5144 
5145 static void perf_event_free_filter(struct perf_event *event)
5146 {
5147 	ftrace_profile_free_filter(event);
5148 }
5149 
5150 #else
5151 
5152 static inline void perf_tp_register(void)
5153 {
5154 }
5155 
5156 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5157 {
5158 	return -ENOENT;
5159 }
5160 
5161 static void perf_event_free_filter(struct perf_event *event)
5162 {
5163 }
5164 
5165 #endif /* CONFIG_EVENT_TRACING */
5166 
5167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5168 void perf_bp_event(struct perf_event *bp, void *data)
5169 {
5170 	struct perf_sample_data sample;
5171 	struct pt_regs *regs = data;
5172 
5173 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5174 
5175 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5176 		perf_swevent_event(bp, 1, &sample, regs);
5177 }
5178 #endif
5179 
5180 /*
5181  * hrtimer based swevent callback
5182  */
5183 
5184 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5185 {
5186 	enum hrtimer_restart ret = HRTIMER_RESTART;
5187 	struct perf_sample_data data;
5188 	struct pt_regs *regs;
5189 	struct perf_event *event;
5190 	u64 period;
5191 
5192 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5193 
5194 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5195 		return HRTIMER_NORESTART;
5196 
5197 	event->pmu->read(event);
5198 
5199 	perf_sample_data_init(&data, 0);
5200 	data.period = event->hw.last_period;
5201 	regs = get_irq_regs();
5202 
5203 	if (regs && !perf_exclude_event(event, regs)) {
5204 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5205 			if (perf_event_overflow(event, &data, regs))
5206 				ret = HRTIMER_NORESTART;
5207 	}
5208 
5209 	period = max_t(u64, 10000, event->hw.sample_period);
5210 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5211 
5212 	return ret;
5213 }
5214 
5215 static void perf_swevent_start_hrtimer(struct perf_event *event)
5216 {
5217 	struct hw_perf_event *hwc = &event->hw;
5218 	s64 period;
5219 
5220 	if (!is_sampling_event(event))
5221 		return;
5222 
5223 	period = local64_read(&hwc->period_left);
5224 	if (period) {
5225 		if (period < 0)
5226 			period = 10000;
5227 
5228 		local64_set(&hwc->period_left, 0);
5229 	} else {
5230 		period = max_t(u64, 10000, hwc->sample_period);
5231 	}
5232 	__hrtimer_start_range_ns(&hwc->hrtimer,
5233 				ns_to_ktime(period), 0,
5234 				HRTIMER_MODE_REL_PINNED, 0);
5235 }
5236 
5237 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5238 {
5239 	struct hw_perf_event *hwc = &event->hw;
5240 
5241 	if (is_sampling_event(event)) {
5242 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5243 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5244 
5245 		hrtimer_cancel(&hwc->hrtimer);
5246 	}
5247 }
5248 
5249 static void perf_swevent_init_hrtimer(struct perf_event *event)
5250 {
5251 	struct hw_perf_event *hwc = &event->hw;
5252 
5253 	if (!is_sampling_event(event))
5254 		return;
5255 
5256 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5257 	hwc->hrtimer.function = perf_swevent_hrtimer;
5258 
5259 	/*
5260 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5261 	 * mapping and avoid the whole period adjust feedback stuff.
5262 	 */
5263 	if (event->attr.freq) {
5264 		long freq = event->attr.sample_freq;
5265 
5266 		event->attr.sample_period = NSEC_PER_SEC / freq;
5267 		hwc->sample_period = event->attr.sample_period;
5268 		local64_set(&hwc->period_left, hwc->sample_period);
5269 		event->attr.freq = 0;
5270 	}
5271 }
5272 
5273 /*
5274  * Software event: cpu wall time clock
5275  */
5276 
5277 static void cpu_clock_event_update(struct perf_event *event)
5278 {
5279 	s64 prev;
5280 	u64 now;
5281 
5282 	now = local_clock();
5283 	prev = local64_xchg(&event->hw.prev_count, now);
5284 	local64_add(now - prev, &event->count);
5285 }
5286 
5287 static void cpu_clock_event_start(struct perf_event *event, int flags)
5288 {
5289 	local64_set(&event->hw.prev_count, local_clock());
5290 	perf_swevent_start_hrtimer(event);
5291 }
5292 
5293 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5294 {
5295 	perf_swevent_cancel_hrtimer(event);
5296 	cpu_clock_event_update(event);
5297 }
5298 
5299 static int cpu_clock_event_add(struct perf_event *event, int flags)
5300 {
5301 	if (flags & PERF_EF_START)
5302 		cpu_clock_event_start(event, flags);
5303 
5304 	return 0;
5305 }
5306 
5307 static void cpu_clock_event_del(struct perf_event *event, int flags)
5308 {
5309 	cpu_clock_event_stop(event, flags);
5310 }
5311 
5312 static void cpu_clock_event_read(struct perf_event *event)
5313 {
5314 	cpu_clock_event_update(event);
5315 }
5316 
5317 static int cpu_clock_event_init(struct perf_event *event)
5318 {
5319 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5320 		return -ENOENT;
5321 
5322 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5323 		return -ENOENT;
5324 
5325 	perf_swevent_init_hrtimer(event);
5326 
5327 	return 0;
5328 }
5329 
5330 static struct pmu perf_cpu_clock = {
5331 	.task_ctx_nr	= perf_sw_context,
5332 
5333 	.event_init	= cpu_clock_event_init,
5334 	.add		= cpu_clock_event_add,
5335 	.del		= cpu_clock_event_del,
5336 	.start		= cpu_clock_event_start,
5337 	.stop		= cpu_clock_event_stop,
5338 	.read		= cpu_clock_event_read,
5339 };
5340 
5341 /*
5342  * Software event: task time clock
5343  */
5344 
5345 static void task_clock_event_update(struct perf_event *event, u64 now)
5346 {
5347 	u64 prev;
5348 	s64 delta;
5349 
5350 	prev = local64_xchg(&event->hw.prev_count, now);
5351 	delta = now - prev;
5352 	local64_add(delta, &event->count);
5353 }
5354 
5355 static void task_clock_event_start(struct perf_event *event, int flags)
5356 {
5357 	local64_set(&event->hw.prev_count, event->ctx->time);
5358 	perf_swevent_start_hrtimer(event);
5359 }
5360 
5361 static void task_clock_event_stop(struct perf_event *event, int flags)
5362 {
5363 	perf_swevent_cancel_hrtimer(event);
5364 	task_clock_event_update(event, event->ctx->time);
5365 }
5366 
5367 static int task_clock_event_add(struct perf_event *event, int flags)
5368 {
5369 	if (flags & PERF_EF_START)
5370 		task_clock_event_start(event, flags);
5371 
5372 	return 0;
5373 }
5374 
5375 static void task_clock_event_del(struct perf_event *event, int flags)
5376 {
5377 	task_clock_event_stop(event, PERF_EF_UPDATE);
5378 }
5379 
5380 static void task_clock_event_read(struct perf_event *event)
5381 {
5382 	u64 now = perf_clock();
5383 	u64 delta = now - event->ctx->timestamp;
5384 	u64 time = event->ctx->time + delta;
5385 
5386 	task_clock_event_update(event, time);
5387 }
5388 
5389 static int task_clock_event_init(struct perf_event *event)
5390 {
5391 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5392 		return -ENOENT;
5393 
5394 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5395 		return -ENOENT;
5396 
5397 	perf_swevent_init_hrtimer(event);
5398 
5399 	return 0;
5400 }
5401 
5402 static struct pmu perf_task_clock = {
5403 	.task_ctx_nr	= perf_sw_context,
5404 
5405 	.event_init	= task_clock_event_init,
5406 	.add		= task_clock_event_add,
5407 	.del		= task_clock_event_del,
5408 	.start		= task_clock_event_start,
5409 	.stop		= task_clock_event_stop,
5410 	.read		= task_clock_event_read,
5411 };
5412 
5413 static void perf_pmu_nop_void(struct pmu *pmu)
5414 {
5415 }
5416 
5417 static int perf_pmu_nop_int(struct pmu *pmu)
5418 {
5419 	return 0;
5420 }
5421 
5422 static void perf_pmu_start_txn(struct pmu *pmu)
5423 {
5424 	perf_pmu_disable(pmu);
5425 }
5426 
5427 static int perf_pmu_commit_txn(struct pmu *pmu)
5428 {
5429 	perf_pmu_enable(pmu);
5430 	return 0;
5431 }
5432 
5433 static void perf_pmu_cancel_txn(struct pmu *pmu)
5434 {
5435 	perf_pmu_enable(pmu);
5436 }
5437 
5438 /*
5439  * Ensures all contexts with the same task_ctx_nr have the same
5440  * pmu_cpu_context too.
5441  */
5442 static void *find_pmu_context(int ctxn)
5443 {
5444 	struct pmu *pmu;
5445 
5446 	if (ctxn < 0)
5447 		return NULL;
5448 
5449 	list_for_each_entry(pmu, &pmus, entry) {
5450 		if (pmu->task_ctx_nr == ctxn)
5451 			return pmu->pmu_cpu_context;
5452 	}
5453 
5454 	return NULL;
5455 }
5456 
5457 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5458 {
5459 	int cpu;
5460 
5461 	for_each_possible_cpu(cpu) {
5462 		struct perf_cpu_context *cpuctx;
5463 
5464 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5465 
5466 		if (cpuctx->active_pmu == old_pmu)
5467 			cpuctx->active_pmu = pmu;
5468 	}
5469 }
5470 
5471 static void free_pmu_context(struct pmu *pmu)
5472 {
5473 	struct pmu *i;
5474 
5475 	mutex_lock(&pmus_lock);
5476 	/*
5477 	 * Like a real lame refcount.
5478 	 */
5479 	list_for_each_entry(i, &pmus, entry) {
5480 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5481 			update_pmu_context(i, pmu);
5482 			goto out;
5483 		}
5484 	}
5485 
5486 	free_percpu(pmu->pmu_cpu_context);
5487 out:
5488 	mutex_unlock(&pmus_lock);
5489 }
5490 static struct idr pmu_idr;
5491 
5492 static ssize_t
5493 type_show(struct device *dev, struct device_attribute *attr, char *page)
5494 {
5495 	struct pmu *pmu = dev_get_drvdata(dev);
5496 
5497 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5498 }
5499 
5500 static struct device_attribute pmu_dev_attrs[] = {
5501        __ATTR_RO(type),
5502        __ATTR_NULL,
5503 };
5504 
5505 static int pmu_bus_running;
5506 static struct bus_type pmu_bus = {
5507 	.name		= "event_source",
5508 	.dev_attrs	= pmu_dev_attrs,
5509 };
5510 
5511 static void pmu_dev_release(struct device *dev)
5512 {
5513 	kfree(dev);
5514 }
5515 
5516 static int pmu_dev_alloc(struct pmu *pmu)
5517 {
5518 	int ret = -ENOMEM;
5519 
5520 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5521 	if (!pmu->dev)
5522 		goto out;
5523 
5524 	device_initialize(pmu->dev);
5525 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5526 	if (ret)
5527 		goto free_dev;
5528 
5529 	dev_set_drvdata(pmu->dev, pmu);
5530 	pmu->dev->bus = &pmu_bus;
5531 	pmu->dev->release = pmu_dev_release;
5532 	ret = device_add(pmu->dev);
5533 	if (ret)
5534 		goto free_dev;
5535 
5536 out:
5537 	return ret;
5538 
5539 free_dev:
5540 	put_device(pmu->dev);
5541 	goto out;
5542 }
5543 
5544 static struct lock_class_key cpuctx_mutex;
5545 static struct lock_class_key cpuctx_lock;
5546 
5547 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5548 {
5549 	int cpu, ret;
5550 
5551 	mutex_lock(&pmus_lock);
5552 	ret = -ENOMEM;
5553 	pmu->pmu_disable_count = alloc_percpu(int);
5554 	if (!pmu->pmu_disable_count)
5555 		goto unlock;
5556 
5557 	pmu->type = -1;
5558 	if (!name)
5559 		goto skip_type;
5560 	pmu->name = name;
5561 
5562 	if (type < 0) {
5563 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5564 		if (!err)
5565 			goto free_pdc;
5566 
5567 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5568 		if (err) {
5569 			ret = err;
5570 			goto free_pdc;
5571 		}
5572 	}
5573 	pmu->type = type;
5574 
5575 	if (pmu_bus_running) {
5576 		ret = pmu_dev_alloc(pmu);
5577 		if (ret)
5578 			goto free_idr;
5579 	}
5580 
5581 skip_type:
5582 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5583 	if (pmu->pmu_cpu_context)
5584 		goto got_cpu_context;
5585 
5586 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5587 	if (!pmu->pmu_cpu_context)
5588 		goto free_dev;
5589 
5590 	for_each_possible_cpu(cpu) {
5591 		struct perf_cpu_context *cpuctx;
5592 
5593 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5594 		__perf_event_init_context(&cpuctx->ctx);
5595 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5596 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5597 		cpuctx->ctx.type = cpu_context;
5598 		cpuctx->ctx.pmu = pmu;
5599 		cpuctx->jiffies_interval = 1;
5600 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5601 		cpuctx->active_pmu = pmu;
5602 	}
5603 
5604 got_cpu_context:
5605 	if (!pmu->start_txn) {
5606 		if (pmu->pmu_enable) {
5607 			/*
5608 			 * If we have pmu_enable/pmu_disable calls, install
5609 			 * transaction stubs that use that to try and batch
5610 			 * hardware accesses.
5611 			 */
5612 			pmu->start_txn  = perf_pmu_start_txn;
5613 			pmu->commit_txn = perf_pmu_commit_txn;
5614 			pmu->cancel_txn = perf_pmu_cancel_txn;
5615 		} else {
5616 			pmu->start_txn  = perf_pmu_nop_void;
5617 			pmu->commit_txn = perf_pmu_nop_int;
5618 			pmu->cancel_txn = perf_pmu_nop_void;
5619 		}
5620 	}
5621 
5622 	if (!pmu->pmu_enable) {
5623 		pmu->pmu_enable  = perf_pmu_nop_void;
5624 		pmu->pmu_disable = perf_pmu_nop_void;
5625 	}
5626 
5627 	list_add_rcu(&pmu->entry, &pmus);
5628 	ret = 0;
5629 unlock:
5630 	mutex_unlock(&pmus_lock);
5631 
5632 	return ret;
5633 
5634 free_dev:
5635 	device_del(pmu->dev);
5636 	put_device(pmu->dev);
5637 
5638 free_idr:
5639 	if (pmu->type >= PERF_TYPE_MAX)
5640 		idr_remove(&pmu_idr, pmu->type);
5641 
5642 free_pdc:
5643 	free_percpu(pmu->pmu_disable_count);
5644 	goto unlock;
5645 }
5646 
5647 void perf_pmu_unregister(struct pmu *pmu)
5648 {
5649 	mutex_lock(&pmus_lock);
5650 	list_del_rcu(&pmu->entry);
5651 	mutex_unlock(&pmus_lock);
5652 
5653 	/*
5654 	 * We dereference the pmu list under both SRCU and regular RCU, so
5655 	 * synchronize against both of those.
5656 	 */
5657 	synchronize_srcu(&pmus_srcu);
5658 	synchronize_rcu();
5659 
5660 	free_percpu(pmu->pmu_disable_count);
5661 	if (pmu->type >= PERF_TYPE_MAX)
5662 		idr_remove(&pmu_idr, pmu->type);
5663 	device_del(pmu->dev);
5664 	put_device(pmu->dev);
5665 	free_pmu_context(pmu);
5666 }
5667 
5668 struct pmu *perf_init_event(struct perf_event *event)
5669 {
5670 	struct pmu *pmu = NULL;
5671 	int idx;
5672 	int ret;
5673 
5674 	idx = srcu_read_lock(&pmus_srcu);
5675 
5676 	rcu_read_lock();
5677 	pmu = idr_find(&pmu_idr, event->attr.type);
5678 	rcu_read_unlock();
5679 	if (pmu) {
5680 		event->pmu = pmu;
5681 		ret = pmu->event_init(event);
5682 		if (ret)
5683 			pmu = ERR_PTR(ret);
5684 		goto unlock;
5685 	}
5686 
5687 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5688 		event->pmu = pmu;
5689 		ret = pmu->event_init(event);
5690 		if (!ret)
5691 			goto unlock;
5692 
5693 		if (ret != -ENOENT) {
5694 			pmu = ERR_PTR(ret);
5695 			goto unlock;
5696 		}
5697 	}
5698 	pmu = ERR_PTR(-ENOENT);
5699 unlock:
5700 	srcu_read_unlock(&pmus_srcu, idx);
5701 
5702 	return pmu;
5703 }
5704 
5705 /*
5706  * Allocate and initialize a event structure
5707  */
5708 static struct perf_event *
5709 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5710 		 struct task_struct *task,
5711 		 struct perf_event *group_leader,
5712 		 struct perf_event *parent_event,
5713 		 perf_overflow_handler_t overflow_handler,
5714 		 void *context)
5715 {
5716 	struct pmu *pmu;
5717 	struct perf_event *event;
5718 	struct hw_perf_event *hwc;
5719 	long err;
5720 
5721 	if ((unsigned)cpu >= nr_cpu_ids) {
5722 		if (!task || cpu != -1)
5723 			return ERR_PTR(-EINVAL);
5724 	}
5725 
5726 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5727 	if (!event)
5728 		return ERR_PTR(-ENOMEM);
5729 
5730 	/*
5731 	 * Single events are their own group leaders, with an
5732 	 * empty sibling list:
5733 	 */
5734 	if (!group_leader)
5735 		group_leader = event;
5736 
5737 	mutex_init(&event->child_mutex);
5738 	INIT_LIST_HEAD(&event->child_list);
5739 
5740 	INIT_LIST_HEAD(&event->group_entry);
5741 	INIT_LIST_HEAD(&event->event_entry);
5742 	INIT_LIST_HEAD(&event->sibling_list);
5743 	INIT_LIST_HEAD(&event->rb_entry);
5744 
5745 	init_waitqueue_head(&event->waitq);
5746 	init_irq_work(&event->pending, perf_pending_event);
5747 
5748 	mutex_init(&event->mmap_mutex);
5749 
5750 	event->cpu		= cpu;
5751 	event->attr		= *attr;
5752 	event->group_leader	= group_leader;
5753 	event->pmu		= NULL;
5754 	event->oncpu		= -1;
5755 
5756 	event->parent		= parent_event;
5757 
5758 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5759 	event->id		= atomic64_inc_return(&perf_event_id);
5760 
5761 	event->state		= PERF_EVENT_STATE_INACTIVE;
5762 
5763 	if (task) {
5764 		event->attach_state = PERF_ATTACH_TASK;
5765 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5766 		/*
5767 		 * hw_breakpoint is a bit difficult here..
5768 		 */
5769 		if (attr->type == PERF_TYPE_BREAKPOINT)
5770 			event->hw.bp_target = task;
5771 #endif
5772 	}
5773 
5774 	if (!overflow_handler && parent_event) {
5775 		overflow_handler = parent_event->overflow_handler;
5776 		context = parent_event->overflow_handler_context;
5777 	}
5778 
5779 	event->overflow_handler	= overflow_handler;
5780 	event->overflow_handler_context = context;
5781 
5782 	if (attr->disabled)
5783 		event->state = PERF_EVENT_STATE_OFF;
5784 
5785 	pmu = NULL;
5786 
5787 	hwc = &event->hw;
5788 	hwc->sample_period = attr->sample_period;
5789 	if (attr->freq && attr->sample_freq)
5790 		hwc->sample_period = 1;
5791 	hwc->last_period = hwc->sample_period;
5792 
5793 	local64_set(&hwc->period_left, hwc->sample_period);
5794 
5795 	/*
5796 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5797 	 */
5798 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5799 		goto done;
5800 
5801 	pmu = perf_init_event(event);
5802 
5803 done:
5804 	err = 0;
5805 	if (!pmu)
5806 		err = -EINVAL;
5807 	else if (IS_ERR(pmu))
5808 		err = PTR_ERR(pmu);
5809 
5810 	if (err) {
5811 		if (event->ns)
5812 			put_pid_ns(event->ns);
5813 		kfree(event);
5814 		return ERR_PTR(err);
5815 	}
5816 
5817 	if (!event->parent) {
5818 		if (event->attach_state & PERF_ATTACH_TASK)
5819 			jump_label_inc(&perf_sched_events.key);
5820 		if (event->attr.mmap || event->attr.mmap_data)
5821 			atomic_inc(&nr_mmap_events);
5822 		if (event->attr.comm)
5823 			atomic_inc(&nr_comm_events);
5824 		if (event->attr.task)
5825 			atomic_inc(&nr_task_events);
5826 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5827 			err = get_callchain_buffers();
5828 			if (err) {
5829 				free_event(event);
5830 				return ERR_PTR(err);
5831 			}
5832 		}
5833 	}
5834 
5835 	return event;
5836 }
5837 
5838 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5839 			  struct perf_event_attr *attr)
5840 {
5841 	u32 size;
5842 	int ret;
5843 
5844 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5845 		return -EFAULT;
5846 
5847 	/*
5848 	 * zero the full structure, so that a short copy will be nice.
5849 	 */
5850 	memset(attr, 0, sizeof(*attr));
5851 
5852 	ret = get_user(size, &uattr->size);
5853 	if (ret)
5854 		return ret;
5855 
5856 	if (size > PAGE_SIZE)	/* silly large */
5857 		goto err_size;
5858 
5859 	if (!size)		/* abi compat */
5860 		size = PERF_ATTR_SIZE_VER0;
5861 
5862 	if (size < PERF_ATTR_SIZE_VER0)
5863 		goto err_size;
5864 
5865 	/*
5866 	 * If we're handed a bigger struct than we know of,
5867 	 * ensure all the unknown bits are 0 - i.e. new
5868 	 * user-space does not rely on any kernel feature
5869 	 * extensions we dont know about yet.
5870 	 */
5871 	if (size > sizeof(*attr)) {
5872 		unsigned char __user *addr;
5873 		unsigned char __user *end;
5874 		unsigned char val;
5875 
5876 		addr = (void __user *)uattr + sizeof(*attr);
5877 		end  = (void __user *)uattr + size;
5878 
5879 		for (; addr < end; addr++) {
5880 			ret = get_user(val, addr);
5881 			if (ret)
5882 				return ret;
5883 			if (val)
5884 				goto err_size;
5885 		}
5886 		size = sizeof(*attr);
5887 	}
5888 
5889 	ret = copy_from_user(attr, uattr, size);
5890 	if (ret)
5891 		return -EFAULT;
5892 
5893 	if (attr->__reserved_1)
5894 		return -EINVAL;
5895 
5896 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5897 		return -EINVAL;
5898 
5899 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5900 		return -EINVAL;
5901 
5902 out:
5903 	return ret;
5904 
5905 err_size:
5906 	put_user(sizeof(*attr), &uattr->size);
5907 	ret = -E2BIG;
5908 	goto out;
5909 }
5910 
5911 static int
5912 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5913 {
5914 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5915 	int ret = -EINVAL;
5916 
5917 	if (!output_event)
5918 		goto set;
5919 
5920 	/* don't allow circular references */
5921 	if (event == output_event)
5922 		goto out;
5923 
5924 	/*
5925 	 * Don't allow cross-cpu buffers
5926 	 */
5927 	if (output_event->cpu != event->cpu)
5928 		goto out;
5929 
5930 	/*
5931 	 * If its not a per-cpu rb, it must be the same task.
5932 	 */
5933 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5934 		goto out;
5935 
5936 set:
5937 	mutex_lock(&event->mmap_mutex);
5938 	/* Can't redirect output if we've got an active mmap() */
5939 	if (atomic_read(&event->mmap_count))
5940 		goto unlock;
5941 
5942 	if (output_event) {
5943 		/* get the rb we want to redirect to */
5944 		rb = ring_buffer_get(output_event);
5945 		if (!rb)
5946 			goto unlock;
5947 	}
5948 
5949 	old_rb = event->rb;
5950 	rcu_assign_pointer(event->rb, rb);
5951 	if (old_rb)
5952 		ring_buffer_detach(event, old_rb);
5953 	ret = 0;
5954 unlock:
5955 	mutex_unlock(&event->mmap_mutex);
5956 
5957 	if (old_rb)
5958 		ring_buffer_put(old_rb);
5959 out:
5960 	return ret;
5961 }
5962 
5963 /**
5964  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5965  *
5966  * @attr_uptr:	event_id type attributes for monitoring/sampling
5967  * @pid:		target pid
5968  * @cpu:		target cpu
5969  * @group_fd:		group leader event fd
5970  */
5971 SYSCALL_DEFINE5(perf_event_open,
5972 		struct perf_event_attr __user *, attr_uptr,
5973 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5974 {
5975 	struct perf_event *group_leader = NULL, *output_event = NULL;
5976 	struct perf_event *event, *sibling;
5977 	struct perf_event_attr attr;
5978 	struct perf_event_context *ctx;
5979 	struct file *event_file = NULL;
5980 	struct file *group_file = NULL;
5981 	struct task_struct *task = NULL;
5982 	struct pmu *pmu;
5983 	int event_fd;
5984 	int move_group = 0;
5985 	int fput_needed = 0;
5986 	int err;
5987 
5988 	/* for future expandability... */
5989 	if (flags & ~PERF_FLAG_ALL)
5990 		return -EINVAL;
5991 
5992 	err = perf_copy_attr(attr_uptr, &attr);
5993 	if (err)
5994 		return err;
5995 
5996 	if (!attr.exclude_kernel) {
5997 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5998 			return -EACCES;
5999 	}
6000 
6001 	if (attr.freq) {
6002 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6003 			return -EINVAL;
6004 	}
6005 
6006 	/*
6007 	 * In cgroup mode, the pid argument is used to pass the fd
6008 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6009 	 * designates the cpu on which to monitor threads from that
6010 	 * cgroup.
6011 	 */
6012 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6013 		return -EINVAL;
6014 
6015 	event_fd = get_unused_fd_flags(O_RDWR);
6016 	if (event_fd < 0)
6017 		return event_fd;
6018 
6019 	if (group_fd != -1) {
6020 		group_leader = perf_fget_light(group_fd, &fput_needed);
6021 		if (IS_ERR(group_leader)) {
6022 			err = PTR_ERR(group_leader);
6023 			goto err_fd;
6024 		}
6025 		group_file = group_leader->filp;
6026 		if (flags & PERF_FLAG_FD_OUTPUT)
6027 			output_event = group_leader;
6028 		if (flags & PERF_FLAG_FD_NO_GROUP)
6029 			group_leader = NULL;
6030 	}
6031 
6032 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6033 		task = find_lively_task_by_vpid(pid);
6034 		if (IS_ERR(task)) {
6035 			err = PTR_ERR(task);
6036 			goto err_group_fd;
6037 		}
6038 	}
6039 
6040 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6041 				 NULL, NULL);
6042 	if (IS_ERR(event)) {
6043 		err = PTR_ERR(event);
6044 		goto err_task;
6045 	}
6046 
6047 	if (flags & PERF_FLAG_PID_CGROUP) {
6048 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6049 		if (err)
6050 			goto err_alloc;
6051 		/*
6052 		 * one more event:
6053 		 * - that has cgroup constraint on event->cpu
6054 		 * - that may need work on context switch
6055 		 */
6056 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6057 		jump_label_inc(&perf_sched_events.key);
6058 	}
6059 
6060 	/*
6061 	 * Special case software events and allow them to be part of
6062 	 * any hardware group.
6063 	 */
6064 	pmu = event->pmu;
6065 
6066 	if (group_leader &&
6067 	    (is_software_event(event) != is_software_event(group_leader))) {
6068 		if (is_software_event(event)) {
6069 			/*
6070 			 * If event and group_leader are not both a software
6071 			 * event, and event is, then group leader is not.
6072 			 *
6073 			 * Allow the addition of software events to !software
6074 			 * groups, this is safe because software events never
6075 			 * fail to schedule.
6076 			 */
6077 			pmu = group_leader->pmu;
6078 		} else if (is_software_event(group_leader) &&
6079 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6080 			/*
6081 			 * In case the group is a pure software group, and we
6082 			 * try to add a hardware event, move the whole group to
6083 			 * the hardware context.
6084 			 */
6085 			move_group = 1;
6086 		}
6087 	}
6088 
6089 	/*
6090 	 * Get the target context (task or percpu):
6091 	 */
6092 	ctx = find_get_context(pmu, task, cpu);
6093 	if (IS_ERR(ctx)) {
6094 		err = PTR_ERR(ctx);
6095 		goto err_alloc;
6096 	}
6097 
6098 	if (task) {
6099 		put_task_struct(task);
6100 		task = NULL;
6101 	}
6102 
6103 	/*
6104 	 * Look up the group leader (we will attach this event to it):
6105 	 */
6106 	if (group_leader) {
6107 		err = -EINVAL;
6108 
6109 		/*
6110 		 * Do not allow a recursive hierarchy (this new sibling
6111 		 * becoming part of another group-sibling):
6112 		 */
6113 		if (group_leader->group_leader != group_leader)
6114 			goto err_context;
6115 		/*
6116 		 * Do not allow to attach to a group in a different
6117 		 * task or CPU context:
6118 		 */
6119 		if (move_group) {
6120 			if (group_leader->ctx->type != ctx->type)
6121 				goto err_context;
6122 		} else {
6123 			if (group_leader->ctx != ctx)
6124 				goto err_context;
6125 		}
6126 
6127 		/*
6128 		 * Only a group leader can be exclusive or pinned
6129 		 */
6130 		if (attr.exclusive || attr.pinned)
6131 			goto err_context;
6132 	}
6133 
6134 	if (output_event) {
6135 		err = perf_event_set_output(event, output_event);
6136 		if (err)
6137 			goto err_context;
6138 	}
6139 
6140 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6141 	if (IS_ERR(event_file)) {
6142 		err = PTR_ERR(event_file);
6143 		goto err_context;
6144 	}
6145 
6146 	if (move_group) {
6147 		struct perf_event_context *gctx = group_leader->ctx;
6148 
6149 		mutex_lock(&gctx->mutex);
6150 		perf_remove_from_context(group_leader);
6151 		list_for_each_entry(sibling, &group_leader->sibling_list,
6152 				    group_entry) {
6153 			perf_remove_from_context(sibling);
6154 			put_ctx(gctx);
6155 		}
6156 		mutex_unlock(&gctx->mutex);
6157 		put_ctx(gctx);
6158 	}
6159 
6160 	event->filp = event_file;
6161 	WARN_ON_ONCE(ctx->parent_ctx);
6162 	mutex_lock(&ctx->mutex);
6163 
6164 	if (move_group) {
6165 		perf_install_in_context(ctx, group_leader, cpu);
6166 		get_ctx(ctx);
6167 		list_for_each_entry(sibling, &group_leader->sibling_list,
6168 				    group_entry) {
6169 			perf_install_in_context(ctx, sibling, cpu);
6170 			get_ctx(ctx);
6171 		}
6172 	}
6173 
6174 	perf_install_in_context(ctx, event, cpu);
6175 	++ctx->generation;
6176 	perf_unpin_context(ctx);
6177 	mutex_unlock(&ctx->mutex);
6178 
6179 	event->owner = current;
6180 
6181 	mutex_lock(&current->perf_event_mutex);
6182 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6183 	mutex_unlock(&current->perf_event_mutex);
6184 
6185 	/*
6186 	 * Precalculate sample_data sizes
6187 	 */
6188 	perf_event__header_size(event);
6189 	perf_event__id_header_size(event);
6190 
6191 	/*
6192 	 * Drop the reference on the group_event after placing the
6193 	 * new event on the sibling_list. This ensures destruction
6194 	 * of the group leader will find the pointer to itself in
6195 	 * perf_group_detach().
6196 	 */
6197 	fput_light(group_file, fput_needed);
6198 	fd_install(event_fd, event_file);
6199 	return event_fd;
6200 
6201 err_context:
6202 	perf_unpin_context(ctx);
6203 	put_ctx(ctx);
6204 err_alloc:
6205 	free_event(event);
6206 err_task:
6207 	if (task)
6208 		put_task_struct(task);
6209 err_group_fd:
6210 	fput_light(group_file, fput_needed);
6211 err_fd:
6212 	put_unused_fd(event_fd);
6213 	return err;
6214 }
6215 
6216 /**
6217  * perf_event_create_kernel_counter
6218  *
6219  * @attr: attributes of the counter to create
6220  * @cpu: cpu in which the counter is bound
6221  * @task: task to profile (NULL for percpu)
6222  */
6223 struct perf_event *
6224 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6225 				 struct task_struct *task,
6226 				 perf_overflow_handler_t overflow_handler,
6227 				 void *context)
6228 {
6229 	struct perf_event_context *ctx;
6230 	struct perf_event *event;
6231 	int err;
6232 
6233 	/*
6234 	 * Get the target context (task or percpu):
6235 	 */
6236 
6237 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6238 				 overflow_handler, context);
6239 	if (IS_ERR(event)) {
6240 		err = PTR_ERR(event);
6241 		goto err;
6242 	}
6243 
6244 	ctx = find_get_context(event->pmu, task, cpu);
6245 	if (IS_ERR(ctx)) {
6246 		err = PTR_ERR(ctx);
6247 		goto err_free;
6248 	}
6249 
6250 	event->filp = NULL;
6251 	WARN_ON_ONCE(ctx->parent_ctx);
6252 	mutex_lock(&ctx->mutex);
6253 	perf_install_in_context(ctx, event, cpu);
6254 	++ctx->generation;
6255 	perf_unpin_context(ctx);
6256 	mutex_unlock(&ctx->mutex);
6257 
6258 	return event;
6259 
6260 err_free:
6261 	free_event(event);
6262 err:
6263 	return ERR_PTR(err);
6264 }
6265 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6266 
6267 static void sync_child_event(struct perf_event *child_event,
6268 			       struct task_struct *child)
6269 {
6270 	struct perf_event *parent_event = child_event->parent;
6271 	u64 child_val;
6272 
6273 	if (child_event->attr.inherit_stat)
6274 		perf_event_read_event(child_event, child);
6275 
6276 	child_val = perf_event_count(child_event);
6277 
6278 	/*
6279 	 * Add back the child's count to the parent's count:
6280 	 */
6281 	atomic64_add(child_val, &parent_event->child_count);
6282 	atomic64_add(child_event->total_time_enabled,
6283 		     &parent_event->child_total_time_enabled);
6284 	atomic64_add(child_event->total_time_running,
6285 		     &parent_event->child_total_time_running);
6286 
6287 	/*
6288 	 * Remove this event from the parent's list
6289 	 */
6290 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6291 	mutex_lock(&parent_event->child_mutex);
6292 	list_del_init(&child_event->child_list);
6293 	mutex_unlock(&parent_event->child_mutex);
6294 
6295 	/*
6296 	 * Release the parent event, if this was the last
6297 	 * reference to it.
6298 	 */
6299 	fput(parent_event->filp);
6300 }
6301 
6302 static void
6303 __perf_event_exit_task(struct perf_event *child_event,
6304 			 struct perf_event_context *child_ctx,
6305 			 struct task_struct *child)
6306 {
6307 	if (child_event->parent) {
6308 		raw_spin_lock_irq(&child_ctx->lock);
6309 		perf_group_detach(child_event);
6310 		raw_spin_unlock_irq(&child_ctx->lock);
6311 	}
6312 
6313 	perf_remove_from_context(child_event);
6314 
6315 	/*
6316 	 * It can happen that the parent exits first, and has events
6317 	 * that are still around due to the child reference. These
6318 	 * events need to be zapped.
6319 	 */
6320 	if (child_event->parent) {
6321 		sync_child_event(child_event, child);
6322 		free_event(child_event);
6323 	}
6324 }
6325 
6326 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6327 {
6328 	struct perf_event *child_event, *tmp;
6329 	struct perf_event_context *child_ctx;
6330 	unsigned long flags;
6331 
6332 	if (likely(!child->perf_event_ctxp[ctxn])) {
6333 		perf_event_task(child, NULL, 0);
6334 		return;
6335 	}
6336 
6337 	local_irq_save(flags);
6338 	/*
6339 	 * We can't reschedule here because interrupts are disabled,
6340 	 * and either child is current or it is a task that can't be
6341 	 * scheduled, so we are now safe from rescheduling changing
6342 	 * our context.
6343 	 */
6344 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6345 
6346 	/*
6347 	 * Take the context lock here so that if find_get_context is
6348 	 * reading child->perf_event_ctxp, we wait until it has
6349 	 * incremented the context's refcount before we do put_ctx below.
6350 	 */
6351 	raw_spin_lock(&child_ctx->lock);
6352 	task_ctx_sched_out(child_ctx);
6353 	child->perf_event_ctxp[ctxn] = NULL;
6354 	/*
6355 	 * If this context is a clone; unclone it so it can't get
6356 	 * swapped to another process while we're removing all
6357 	 * the events from it.
6358 	 */
6359 	unclone_ctx(child_ctx);
6360 	update_context_time(child_ctx);
6361 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6362 
6363 	/*
6364 	 * Report the task dead after unscheduling the events so that we
6365 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6366 	 * get a few PERF_RECORD_READ events.
6367 	 */
6368 	perf_event_task(child, child_ctx, 0);
6369 
6370 	/*
6371 	 * We can recurse on the same lock type through:
6372 	 *
6373 	 *   __perf_event_exit_task()
6374 	 *     sync_child_event()
6375 	 *       fput(parent_event->filp)
6376 	 *         perf_release()
6377 	 *           mutex_lock(&ctx->mutex)
6378 	 *
6379 	 * But since its the parent context it won't be the same instance.
6380 	 */
6381 	mutex_lock(&child_ctx->mutex);
6382 
6383 again:
6384 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6385 				 group_entry)
6386 		__perf_event_exit_task(child_event, child_ctx, child);
6387 
6388 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6389 				 group_entry)
6390 		__perf_event_exit_task(child_event, child_ctx, child);
6391 
6392 	/*
6393 	 * If the last event was a group event, it will have appended all
6394 	 * its siblings to the list, but we obtained 'tmp' before that which
6395 	 * will still point to the list head terminating the iteration.
6396 	 */
6397 	if (!list_empty(&child_ctx->pinned_groups) ||
6398 	    !list_empty(&child_ctx->flexible_groups))
6399 		goto again;
6400 
6401 	mutex_unlock(&child_ctx->mutex);
6402 
6403 	put_ctx(child_ctx);
6404 }
6405 
6406 /*
6407  * When a child task exits, feed back event values to parent events.
6408  */
6409 void perf_event_exit_task(struct task_struct *child)
6410 {
6411 	struct perf_event *event, *tmp;
6412 	int ctxn;
6413 
6414 	mutex_lock(&child->perf_event_mutex);
6415 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6416 				 owner_entry) {
6417 		list_del_init(&event->owner_entry);
6418 
6419 		/*
6420 		 * Ensure the list deletion is visible before we clear
6421 		 * the owner, closes a race against perf_release() where
6422 		 * we need to serialize on the owner->perf_event_mutex.
6423 		 */
6424 		smp_wmb();
6425 		event->owner = NULL;
6426 	}
6427 	mutex_unlock(&child->perf_event_mutex);
6428 
6429 	for_each_task_context_nr(ctxn)
6430 		perf_event_exit_task_context(child, ctxn);
6431 }
6432 
6433 static void perf_free_event(struct perf_event *event,
6434 			    struct perf_event_context *ctx)
6435 {
6436 	struct perf_event *parent = event->parent;
6437 
6438 	if (WARN_ON_ONCE(!parent))
6439 		return;
6440 
6441 	mutex_lock(&parent->child_mutex);
6442 	list_del_init(&event->child_list);
6443 	mutex_unlock(&parent->child_mutex);
6444 
6445 	fput(parent->filp);
6446 
6447 	perf_group_detach(event);
6448 	list_del_event(event, ctx);
6449 	free_event(event);
6450 }
6451 
6452 /*
6453  * free an unexposed, unused context as created by inheritance by
6454  * perf_event_init_task below, used by fork() in case of fail.
6455  */
6456 void perf_event_free_task(struct task_struct *task)
6457 {
6458 	struct perf_event_context *ctx;
6459 	struct perf_event *event, *tmp;
6460 	int ctxn;
6461 
6462 	for_each_task_context_nr(ctxn) {
6463 		ctx = task->perf_event_ctxp[ctxn];
6464 		if (!ctx)
6465 			continue;
6466 
6467 		mutex_lock(&ctx->mutex);
6468 again:
6469 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6470 				group_entry)
6471 			perf_free_event(event, ctx);
6472 
6473 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6474 				group_entry)
6475 			perf_free_event(event, ctx);
6476 
6477 		if (!list_empty(&ctx->pinned_groups) ||
6478 				!list_empty(&ctx->flexible_groups))
6479 			goto again;
6480 
6481 		mutex_unlock(&ctx->mutex);
6482 
6483 		put_ctx(ctx);
6484 	}
6485 }
6486 
6487 void perf_event_delayed_put(struct task_struct *task)
6488 {
6489 	int ctxn;
6490 
6491 	for_each_task_context_nr(ctxn)
6492 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6493 }
6494 
6495 /*
6496  * inherit a event from parent task to child task:
6497  */
6498 static struct perf_event *
6499 inherit_event(struct perf_event *parent_event,
6500 	      struct task_struct *parent,
6501 	      struct perf_event_context *parent_ctx,
6502 	      struct task_struct *child,
6503 	      struct perf_event *group_leader,
6504 	      struct perf_event_context *child_ctx)
6505 {
6506 	struct perf_event *child_event;
6507 	unsigned long flags;
6508 
6509 	/*
6510 	 * Instead of creating recursive hierarchies of events,
6511 	 * we link inherited events back to the original parent,
6512 	 * which has a filp for sure, which we use as the reference
6513 	 * count:
6514 	 */
6515 	if (parent_event->parent)
6516 		parent_event = parent_event->parent;
6517 
6518 	child_event = perf_event_alloc(&parent_event->attr,
6519 					   parent_event->cpu,
6520 					   child,
6521 					   group_leader, parent_event,
6522 				           NULL, NULL);
6523 	if (IS_ERR(child_event))
6524 		return child_event;
6525 	get_ctx(child_ctx);
6526 
6527 	/*
6528 	 * Make the child state follow the state of the parent event,
6529 	 * not its attr.disabled bit.  We hold the parent's mutex,
6530 	 * so we won't race with perf_event_{en, dis}able_family.
6531 	 */
6532 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6533 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6534 	else
6535 		child_event->state = PERF_EVENT_STATE_OFF;
6536 
6537 	if (parent_event->attr.freq) {
6538 		u64 sample_period = parent_event->hw.sample_period;
6539 		struct hw_perf_event *hwc = &child_event->hw;
6540 
6541 		hwc->sample_period = sample_period;
6542 		hwc->last_period   = sample_period;
6543 
6544 		local64_set(&hwc->period_left, sample_period);
6545 	}
6546 
6547 	child_event->ctx = child_ctx;
6548 	child_event->overflow_handler = parent_event->overflow_handler;
6549 	child_event->overflow_handler_context
6550 		= parent_event->overflow_handler_context;
6551 
6552 	/*
6553 	 * Precalculate sample_data sizes
6554 	 */
6555 	perf_event__header_size(child_event);
6556 	perf_event__id_header_size(child_event);
6557 
6558 	/*
6559 	 * Link it up in the child's context:
6560 	 */
6561 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6562 	add_event_to_ctx(child_event, child_ctx);
6563 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6564 
6565 	/*
6566 	 * Get a reference to the parent filp - we will fput it
6567 	 * when the child event exits. This is safe to do because
6568 	 * we are in the parent and we know that the filp still
6569 	 * exists and has a nonzero count:
6570 	 */
6571 	atomic_long_inc(&parent_event->filp->f_count);
6572 
6573 	/*
6574 	 * Link this into the parent event's child list
6575 	 */
6576 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6577 	mutex_lock(&parent_event->child_mutex);
6578 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6579 	mutex_unlock(&parent_event->child_mutex);
6580 
6581 	return child_event;
6582 }
6583 
6584 static int inherit_group(struct perf_event *parent_event,
6585 	      struct task_struct *parent,
6586 	      struct perf_event_context *parent_ctx,
6587 	      struct task_struct *child,
6588 	      struct perf_event_context *child_ctx)
6589 {
6590 	struct perf_event *leader;
6591 	struct perf_event *sub;
6592 	struct perf_event *child_ctr;
6593 
6594 	leader = inherit_event(parent_event, parent, parent_ctx,
6595 				 child, NULL, child_ctx);
6596 	if (IS_ERR(leader))
6597 		return PTR_ERR(leader);
6598 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6599 		child_ctr = inherit_event(sub, parent, parent_ctx,
6600 					    child, leader, child_ctx);
6601 		if (IS_ERR(child_ctr))
6602 			return PTR_ERR(child_ctr);
6603 	}
6604 	return 0;
6605 }
6606 
6607 static int
6608 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6609 		   struct perf_event_context *parent_ctx,
6610 		   struct task_struct *child, int ctxn,
6611 		   int *inherited_all)
6612 {
6613 	int ret;
6614 	struct perf_event_context *child_ctx;
6615 
6616 	if (!event->attr.inherit) {
6617 		*inherited_all = 0;
6618 		return 0;
6619 	}
6620 
6621 	child_ctx = child->perf_event_ctxp[ctxn];
6622 	if (!child_ctx) {
6623 		/*
6624 		 * This is executed from the parent task context, so
6625 		 * inherit events that have been marked for cloning.
6626 		 * First allocate and initialize a context for the
6627 		 * child.
6628 		 */
6629 
6630 		child_ctx = alloc_perf_context(event->pmu, child);
6631 		if (!child_ctx)
6632 			return -ENOMEM;
6633 
6634 		child->perf_event_ctxp[ctxn] = child_ctx;
6635 	}
6636 
6637 	ret = inherit_group(event, parent, parent_ctx,
6638 			    child, child_ctx);
6639 
6640 	if (ret)
6641 		*inherited_all = 0;
6642 
6643 	return ret;
6644 }
6645 
6646 /*
6647  * Initialize the perf_event context in task_struct
6648  */
6649 int perf_event_init_context(struct task_struct *child, int ctxn)
6650 {
6651 	struct perf_event_context *child_ctx, *parent_ctx;
6652 	struct perf_event_context *cloned_ctx;
6653 	struct perf_event *event;
6654 	struct task_struct *parent = current;
6655 	int inherited_all = 1;
6656 	unsigned long flags;
6657 	int ret = 0;
6658 
6659 	if (likely(!parent->perf_event_ctxp[ctxn]))
6660 		return 0;
6661 
6662 	/*
6663 	 * If the parent's context is a clone, pin it so it won't get
6664 	 * swapped under us.
6665 	 */
6666 	parent_ctx = perf_pin_task_context(parent, ctxn);
6667 
6668 	/*
6669 	 * No need to check if parent_ctx != NULL here; since we saw
6670 	 * it non-NULL earlier, the only reason for it to become NULL
6671 	 * is if we exit, and since we're currently in the middle of
6672 	 * a fork we can't be exiting at the same time.
6673 	 */
6674 
6675 	/*
6676 	 * Lock the parent list. No need to lock the child - not PID
6677 	 * hashed yet and not running, so nobody can access it.
6678 	 */
6679 	mutex_lock(&parent_ctx->mutex);
6680 
6681 	/*
6682 	 * We dont have to disable NMIs - we are only looking at
6683 	 * the list, not manipulating it:
6684 	 */
6685 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6686 		ret = inherit_task_group(event, parent, parent_ctx,
6687 					 child, ctxn, &inherited_all);
6688 		if (ret)
6689 			break;
6690 	}
6691 
6692 	/*
6693 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6694 	 * to allocations, but we need to prevent rotation because
6695 	 * rotate_ctx() will change the list from interrupt context.
6696 	 */
6697 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6698 	parent_ctx->rotate_disable = 1;
6699 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6700 
6701 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6702 		ret = inherit_task_group(event, parent, parent_ctx,
6703 					 child, ctxn, &inherited_all);
6704 		if (ret)
6705 			break;
6706 	}
6707 
6708 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6709 	parent_ctx->rotate_disable = 0;
6710 
6711 	child_ctx = child->perf_event_ctxp[ctxn];
6712 
6713 	if (child_ctx && inherited_all) {
6714 		/*
6715 		 * Mark the child context as a clone of the parent
6716 		 * context, or of whatever the parent is a clone of.
6717 		 *
6718 		 * Note that if the parent is a clone, the holding of
6719 		 * parent_ctx->lock avoids it from being uncloned.
6720 		 */
6721 		cloned_ctx = parent_ctx->parent_ctx;
6722 		if (cloned_ctx) {
6723 			child_ctx->parent_ctx = cloned_ctx;
6724 			child_ctx->parent_gen = parent_ctx->parent_gen;
6725 		} else {
6726 			child_ctx->parent_ctx = parent_ctx;
6727 			child_ctx->parent_gen = parent_ctx->generation;
6728 		}
6729 		get_ctx(child_ctx->parent_ctx);
6730 	}
6731 
6732 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6733 	mutex_unlock(&parent_ctx->mutex);
6734 
6735 	perf_unpin_context(parent_ctx);
6736 	put_ctx(parent_ctx);
6737 
6738 	return ret;
6739 }
6740 
6741 /*
6742  * Initialize the perf_event context in task_struct
6743  */
6744 int perf_event_init_task(struct task_struct *child)
6745 {
6746 	int ctxn, ret;
6747 
6748 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6749 	mutex_init(&child->perf_event_mutex);
6750 	INIT_LIST_HEAD(&child->perf_event_list);
6751 
6752 	for_each_task_context_nr(ctxn) {
6753 		ret = perf_event_init_context(child, ctxn);
6754 		if (ret)
6755 			return ret;
6756 	}
6757 
6758 	return 0;
6759 }
6760 
6761 static void __init perf_event_init_all_cpus(void)
6762 {
6763 	struct swevent_htable *swhash;
6764 	int cpu;
6765 
6766 	for_each_possible_cpu(cpu) {
6767 		swhash = &per_cpu(swevent_htable, cpu);
6768 		mutex_init(&swhash->hlist_mutex);
6769 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6770 	}
6771 }
6772 
6773 static void __cpuinit perf_event_init_cpu(int cpu)
6774 {
6775 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6776 
6777 	mutex_lock(&swhash->hlist_mutex);
6778 	if (swhash->hlist_refcount > 0) {
6779 		struct swevent_hlist *hlist;
6780 
6781 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6782 		WARN_ON(!hlist);
6783 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6784 	}
6785 	mutex_unlock(&swhash->hlist_mutex);
6786 }
6787 
6788 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6789 static void perf_pmu_rotate_stop(struct pmu *pmu)
6790 {
6791 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6792 
6793 	WARN_ON(!irqs_disabled());
6794 
6795 	list_del_init(&cpuctx->rotation_list);
6796 }
6797 
6798 static void __perf_event_exit_context(void *__info)
6799 {
6800 	struct perf_event_context *ctx = __info;
6801 	struct perf_event *event, *tmp;
6802 
6803 	perf_pmu_rotate_stop(ctx->pmu);
6804 
6805 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6806 		__perf_remove_from_context(event);
6807 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6808 		__perf_remove_from_context(event);
6809 }
6810 
6811 static void perf_event_exit_cpu_context(int cpu)
6812 {
6813 	struct perf_event_context *ctx;
6814 	struct pmu *pmu;
6815 	int idx;
6816 
6817 	idx = srcu_read_lock(&pmus_srcu);
6818 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6819 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6820 
6821 		mutex_lock(&ctx->mutex);
6822 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6823 		mutex_unlock(&ctx->mutex);
6824 	}
6825 	srcu_read_unlock(&pmus_srcu, idx);
6826 }
6827 
6828 static void perf_event_exit_cpu(int cpu)
6829 {
6830 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6831 
6832 	mutex_lock(&swhash->hlist_mutex);
6833 	swevent_hlist_release(swhash);
6834 	mutex_unlock(&swhash->hlist_mutex);
6835 
6836 	perf_event_exit_cpu_context(cpu);
6837 }
6838 #else
6839 static inline void perf_event_exit_cpu(int cpu) { }
6840 #endif
6841 
6842 static int
6843 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6844 {
6845 	int cpu;
6846 
6847 	for_each_online_cpu(cpu)
6848 		perf_event_exit_cpu(cpu);
6849 
6850 	return NOTIFY_OK;
6851 }
6852 
6853 /*
6854  * Run the perf reboot notifier at the very last possible moment so that
6855  * the generic watchdog code runs as long as possible.
6856  */
6857 static struct notifier_block perf_reboot_notifier = {
6858 	.notifier_call = perf_reboot,
6859 	.priority = INT_MIN,
6860 };
6861 
6862 static int __cpuinit
6863 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6864 {
6865 	unsigned int cpu = (long)hcpu;
6866 
6867 	switch (action & ~CPU_TASKS_FROZEN) {
6868 
6869 	case CPU_UP_PREPARE:
6870 	case CPU_DOWN_FAILED:
6871 		perf_event_init_cpu(cpu);
6872 		break;
6873 
6874 	case CPU_UP_CANCELED:
6875 	case CPU_DOWN_PREPARE:
6876 		perf_event_exit_cpu(cpu);
6877 		break;
6878 
6879 	default:
6880 		break;
6881 	}
6882 
6883 	return NOTIFY_OK;
6884 }
6885 
6886 void __init perf_event_init(void)
6887 {
6888 	int ret;
6889 
6890 	idr_init(&pmu_idr);
6891 
6892 	perf_event_init_all_cpus();
6893 	init_srcu_struct(&pmus_srcu);
6894 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6895 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6896 	perf_pmu_register(&perf_task_clock, NULL, -1);
6897 	perf_tp_register();
6898 	perf_cpu_notifier(perf_cpu_notify);
6899 	register_reboot_notifier(&perf_reboot_notifier);
6900 
6901 	ret = init_hw_breakpoint();
6902 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6903 
6904 	/* do not patch jump label more than once per second */
6905 	jump_label_rate_limit(&perf_sched_events, HZ);
6906 }
6907 
6908 static int __init perf_event_sysfs_init(void)
6909 {
6910 	struct pmu *pmu;
6911 	int ret;
6912 
6913 	mutex_lock(&pmus_lock);
6914 
6915 	ret = bus_register(&pmu_bus);
6916 	if (ret)
6917 		goto unlock;
6918 
6919 	list_for_each_entry(pmu, &pmus, entry) {
6920 		if (!pmu->name || pmu->type < 0)
6921 			continue;
6922 
6923 		ret = pmu_dev_alloc(pmu);
6924 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6925 	}
6926 	pmu_bus_running = 1;
6927 	ret = 0;
6928 
6929 unlock:
6930 	mutex_unlock(&pmus_lock);
6931 
6932 	return ret;
6933 }
6934 device_initcall(perf_event_sysfs_init);
6935 
6936 #ifdef CONFIG_CGROUP_PERF
6937 static struct cgroup_subsys_state *perf_cgroup_create(
6938 	struct cgroup_subsys *ss, struct cgroup *cont)
6939 {
6940 	struct perf_cgroup *jc;
6941 
6942 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6943 	if (!jc)
6944 		return ERR_PTR(-ENOMEM);
6945 
6946 	jc->info = alloc_percpu(struct perf_cgroup_info);
6947 	if (!jc->info) {
6948 		kfree(jc);
6949 		return ERR_PTR(-ENOMEM);
6950 	}
6951 
6952 	return &jc->css;
6953 }
6954 
6955 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6956 				struct cgroup *cont)
6957 {
6958 	struct perf_cgroup *jc;
6959 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6960 			  struct perf_cgroup, css);
6961 	free_percpu(jc->info);
6962 	kfree(jc);
6963 }
6964 
6965 static int __perf_cgroup_move(void *info)
6966 {
6967 	struct task_struct *task = info;
6968 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6969 	return 0;
6970 }
6971 
6972 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6973 			       struct cgroup_taskset *tset)
6974 {
6975 	struct task_struct *task;
6976 
6977 	cgroup_taskset_for_each(task, cgrp, tset)
6978 		task_function_call(task, __perf_cgroup_move, task);
6979 }
6980 
6981 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6982 		struct cgroup *old_cgrp, struct task_struct *task)
6983 {
6984 	/*
6985 	 * cgroup_exit() is called in the copy_process() failure path.
6986 	 * Ignore this case since the task hasn't ran yet, this avoids
6987 	 * trying to poke a half freed task state from generic code.
6988 	 */
6989 	if (!(task->flags & PF_EXITING))
6990 		return;
6991 
6992 	task_function_call(task, __perf_cgroup_move, task);
6993 }
6994 
6995 struct cgroup_subsys perf_subsys = {
6996 	.name		= "perf_event",
6997 	.subsys_id	= perf_subsys_id,
6998 	.create		= perf_cgroup_create,
6999 	.destroy	= perf_cgroup_destroy,
7000 	.exit		= perf_cgroup_exit,
7001 	.attach		= perf_cgroup_attach,
7002 };
7003 #endif /* CONFIG_CGROUP_PERF */
7004