1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly 99 * 100 * returns: @func return value, or 101 * -ESRCH - when the process isn't running 102 * -EAGAIN - when the process moved away 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 do { 116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 117 if (!ret) 118 ret = data.ret; 119 } while (ret == -EAGAIN); 120 121 return ret; 122 } 123 124 /** 125 * cpu_function_call - call a function on the cpu 126 * @func: the function to be called 127 * @info: the function call argument 128 * 129 * Calls the function @func on the remote cpu. 130 * 131 * returns: @func return value or -ENXIO when the cpu is offline 132 */ 133 static int cpu_function_call(int cpu, remote_function_f func, void *info) 134 { 135 struct remote_function_call data = { 136 .p = NULL, 137 .func = func, 138 .info = info, 139 .ret = -ENXIO, /* No such CPU */ 140 }; 141 142 smp_call_function_single(cpu, remote_function, &data, 1); 143 144 return data.ret; 145 } 146 147 static inline struct perf_cpu_context * 148 __get_cpu_context(struct perf_event_context *ctx) 149 { 150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 151 } 152 153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 154 struct perf_event_context *ctx) 155 { 156 raw_spin_lock(&cpuctx->ctx.lock); 157 if (ctx) 158 raw_spin_lock(&ctx->lock); 159 } 160 161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 162 struct perf_event_context *ctx) 163 { 164 if (ctx) 165 raw_spin_unlock(&ctx->lock); 166 raw_spin_unlock(&cpuctx->ctx.lock); 167 } 168 169 #define TASK_TOMBSTONE ((void *)-1L) 170 171 static bool is_kernel_event(struct perf_event *event) 172 { 173 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 174 } 175 176 /* 177 * On task ctx scheduling... 178 * 179 * When !ctx->nr_events a task context will not be scheduled. This means 180 * we can disable the scheduler hooks (for performance) without leaving 181 * pending task ctx state. 182 * 183 * This however results in two special cases: 184 * 185 * - removing the last event from a task ctx; this is relatively straight 186 * forward and is done in __perf_remove_from_context. 187 * 188 * - adding the first event to a task ctx; this is tricky because we cannot 189 * rely on ctx->is_active and therefore cannot use event_function_call(). 190 * See perf_install_in_context(). 191 * 192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 193 */ 194 195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 196 struct perf_event_context *, void *); 197 198 struct event_function_struct { 199 struct perf_event *event; 200 event_f func; 201 void *data; 202 }; 203 204 static int event_function(void *info) 205 { 206 struct event_function_struct *efs = info; 207 struct perf_event *event = efs->event; 208 struct perf_event_context *ctx = event->ctx; 209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 210 struct perf_event_context *task_ctx = cpuctx->task_ctx; 211 int ret = 0; 212 213 lockdep_assert_irqs_disabled(); 214 215 perf_ctx_lock(cpuctx, task_ctx); 216 /* 217 * Since we do the IPI call without holding ctx->lock things can have 218 * changed, double check we hit the task we set out to hit. 219 */ 220 if (ctx->task) { 221 if (ctx->task != current) { 222 ret = -ESRCH; 223 goto unlock; 224 } 225 226 /* 227 * We only use event_function_call() on established contexts, 228 * and event_function() is only ever called when active (or 229 * rather, we'll have bailed in task_function_call() or the 230 * above ctx->task != current test), therefore we must have 231 * ctx->is_active here. 232 */ 233 WARN_ON_ONCE(!ctx->is_active); 234 /* 235 * And since we have ctx->is_active, cpuctx->task_ctx must 236 * match. 237 */ 238 WARN_ON_ONCE(task_ctx != ctx); 239 } else { 240 WARN_ON_ONCE(&cpuctx->ctx != ctx); 241 } 242 243 efs->func(event, cpuctx, ctx, efs->data); 244 unlock: 245 perf_ctx_unlock(cpuctx, task_ctx); 246 247 return ret; 248 } 249 250 static void event_function_call(struct perf_event *event, event_f func, void *data) 251 { 252 struct perf_event_context *ctx = event->ctx; 253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 254 struct event_function_struct efs = { 255 .event = event, 256 .func = func, 257 .data = data, 258 }; 259 260 if (!event->parent) { 261 /* 262 * If this is a !child event, we must hold ctx::mutex to 263 * stabilize the the event->ctx relation. See 264 * perf_event_ctx_lock(). 265 */ 266 lockdep_assert_held(&ctx->mutex); 267 } 268 269 if (!task) { 270 cpu_function_call(event->cpu, event_function, &efs); 271 return; 272 } 273 274 if (task == TASK_TOMBSTONE) 275 return; 276 277 again: 278 if (!task_function_call(task, event_function, &efs)) 279 return; 280 281 raw_spin_lock_irq(&ctx->lock); 282 /* 283 * Reload the task pointer, it might have been changed by 284 * a concurrent perf_event_context_sched_out(). 285 */ 286 task = ctx->task; 287 if (task == TASK_TOMBSTONE) { 288 raw_spin_unlock_irq(&ctx->lock); 289 return; 290 } 291 if (ctx->is_active) { 292 raw_spin_unlock_irq(&ctx->lock); 293 goto again; 294 } 295 func(event, NULL, ctx, data); 296 raw_spin_unlock_irq(&ctx->lock); 297 } 298 299 /* 300 * Similar to event_function_call() + event_function(), but hard assumes IRQs 301 * are already disabled and we're on the right CPU. 302 */ 303 static void event_function_local(struct perf_event *event, event_f func, void *data) 304 { 305 struct perf_event_context *ctx = event->ctx; 306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 307 struct task_struct *task = READ_ONCE(ctx->task); 308 struct perf_event_context *task_ctx = NULL; 309 310 lockdep_assert_irqs_disabled(); 311 312 if (task) { 313 if (task == TASK_TOMBSTONE) 314 return; 315 316 task_ctx = ctx; 317 } 318 319 perf_ctx_lock(cpuctx, task_ctx); 320 321 task = ctx->task; 322 if (task == TASK_TOMBSTONE) 323 goto unlock; 324 325 if (task) { 326 /* 327 * We must be either inactive or active and the right task, 328 * otherwise we're screwed, since we cannot IPI to somewhere 329 * else. 330 */ 331 if (ctx->is_active) { 332 if (WARN_ON_ONCE(task != current)) 333 goto unlock; 334 335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 336 goto unlock; 337 } 338 } else { 339 WARN_ON_ONCE(&cpuctx->ctx != ctx); 340 } 341 342 func(event, cpuctx, ctx, data); 343 unlock: 344 perf_ctx_unlock(cpuctx, task_ctx); 345 } 346 347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 348 PERF_FLAG_FD_OUTPUT |\ 349 PERF_FLAG_PID_CGROUP |\ 350 PERF_FLAG_FD_CLOEXEC) 351 352 /* 353 * branch priv levels that need permission checks 354 */ 355 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 356 (PERF_SAMPLE_BRANCH_KERNEL |\ 357 PERF_SAMPLE_BRANCH_HV) 358 359 enum event_type_t { 360 EVENT_FLEXIBLE = 0x1, 361 EVENT_PINNED = 0x2, 362 EVENT_TIME = 0x4, 363 /* see ctx_resched() for details */ 364 EVENT_CPU = 0x8, 365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 366 }; 367 368 /* 369 * perf_sched_events : >0 events exist 370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 371 */ 372 373 static void perf_sched_delayed(struct work_struct *work); 374 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 376 static DEFINE_MUTEX(perf_sched_mutex); 377 static atomic_t perf_sched_count; 378 379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 380 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 382 383 static atomic_t nr_mmap_events __read_mostly; 384 static atomic_t nr_comm_events __read_mostly; 385 static atomic_t nr_namespaces_events __read_mostly; 386 static atomic_t nr_task_events __read_mostly; 387 static atomic_t nr_freq_events __read_mostly; 388 static atomic_t nr_switch_events __read_mostly; 389 static atomic_t nr_ksymbol_events __read_mostly; 390 static atomic_t nr_bpf_events __read_mostly; 391 static atomic_t nr_cgroup_events __read_mostly; 392 393 static LIST_HEAD(pmus); 394 static DEFINE_MUTEX(pmus_lock); 395 static struct srcu_struct pmus_srcu; 396 static cpumask_var_t perf_online_mask; 397 398 /* 399 * perf event paranoia level: 400 * -1 - not paranoid at all 401 * 0 - disallow raw tracepoint access for unpriv 402 * 1 - disallow cpu events for unpriv 403 * 2 - disallow kernel profiling for unpriv 404 */ 405 int sysctl_perf_event_paranoid __read_mostly = 2; 406 407 /* Minimum for 512 kiB + 1 user control page */ 408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 409 410 /* 411 * max perf event sample rate 412 */ 413 #define DEFAULT_MAX_SAMPLE_RATE 100000 414 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 415 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 416 417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 418 419 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 420 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 421 422 static int perf_sample_allowed_ns __read_mostly = 423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 424 425 static void update_perf_cpu_limits(void) 426 { 427 u64 tmp = perf_sample_period_ns; 428 429 tmp *= sysctl_perf_cpu_time_max_percent; 430 tmp = div_u64(tmp, 100); 431 if (!tmp) 432 tmp = 1; 433 434 WRITE_ONCE(perf_sample_allowed_ns, tmp); 435 } 436 437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 438 439 int perf_proc_update_handler(struct ctl_table *table, int write, 440 void __user *buffer, size_t *lenp, 441 loff_t *ppos) 442 { 443 int ret; 444 int perf_cpu = sysctl_perf_cpu_time_max_percent; 445 /* 446 * If throttling is disabled don't allow the write: 447 */ 448 if (write && (perf_cpu == 100 || perf_cpu == 0)) 449 return -EINVAL; 450 451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 452 if (ret || !write) 453 return ret; 454 455 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 456 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 457 update_perf_cpu_limits(); 458 459 return 0; 460 } 461 462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 463 464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 465 void __user *buffer, size_t *lenp, 466 loff_t *ppos) 467 { 468 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 469 470 if (ret || !write) 471 return ret; 472 473 if (sysctl_perf_cpu_time_max_percent == 100 || 474 sysctl_perf_cpu_time_max_percent == 0) { 475 printk(KERN_WARNING 476 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 477 WRITE_ONCE(perf_sample_allowed_ns, 0); 478 } else { 479 update_perf_cpu_limits(); 480 } 481 482 return 0; 483 } 484 485 /* 486 * perf samples are done in some very critical code paths (NMIs). 487 * If they take too much CPU time, the system can lock up and not 488 * get any real work done. This will drop the sample rate when 489 * we detect that events are taking too long. 490 */ 491 #define NR_ACCUMULATED_SAMPLES 128 492 static DEFINE_PER_CPU(u64, running_sample_length); 493 494 static u64 __report_avg; 495 static u64 __report_allowed; 496 497 static void perf_duration_warn(struct irq_work *w) 498 { 499 printk_ratelimited(KERN_INFO 500 "perf: interrupt took too long (%lld > %lld), lowering " 501 "kernel.perf_event_max_sample_rate to %d\n", 502 __report_avg, __report_allowed, 503 sysctl_perf_event_sample_rate); 504 } 505 506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 507 508 void perf_sample_event_took(u64 sample_len_ns) 509 { 510 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 511 u64 running_len; 512 u64 avg_len; 513 u32 max; 514 515 if (max_len == 0) 516 return; 517 518 /* Decay the counter by 1 average sample. */ 519 running_len = __this_cpu_read(running_sample_length); 520 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 521 running_len += sample_len_ns; 522 __this_cpu_write(running_sample_length, running_len); 523 524 /* 525 * Note: this will be biased artifically low until we have 526 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 527 * from having to maintain a count. 528 */ 529 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 530 if (avg_len <= max_len) 531 return; 532 533 __report_avg = avg_len; 534 __report_allowed = max_len; 535 536 /* 537 * Compute a throttle threshold 25% below the current duration. 538 */ 539 avg_len += avg_len / 4; 540 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 541 if (avg_len < max) 542 max /= (u32)avg_len; 543 else 544 max = 1; 545 546 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 547 WRITE_ONCE(max_samples_per_tick, max); 548 549 sysctl_perf_event_sample_rate = max * HZ; 550 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 551 552 if (!irq_work_queue(&perf_duration_work)) { 553 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 554 "kernel.perf_event_max_sample_rate to %d\n", 555 __report_avg, __report_allowed, 556 sysctl_perf_event_sample_rate); 557 } 558 } 559 560 static atomic64_t perf_event_id; 561 562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type); 564 565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 566 enum event_type_t event_type, 567 struct task_struct *task); 568 569 static void update_context_time(struct perf_event_context *ctx); 570 static u64 perf_event_time(struct perf_event *event); 571 572 void __weak perf_event_print_debug(void) { } 573 574 extern __weak const char *perf_pmu_name(void) 575 { 576 return "pmu"; 577 } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 #ifdef CONFIG_CGROUP_PERF 672 673 static inline bool 674 perf_cgroup_match(struct perf_event *event) 675 { 676 struct perf_event_context *ctx = event->ctx; 677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 678 679 /* @event doesn't care about cgroup */ 680 if (!event->cgrp) 681 return true; 682 683 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 684 if (!cpuctx->cgrp) 685 return false; 686 687 /* 688 * Cgroup scoping is recursive. An event enabled for a cgroup is 689 * also enabled for all its descendant cgroups. If @cpuctx's 690 * cgroup is a descendant of @event's (the test covers identity 691 * case), it's a match. 692 */ 693 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 694 event->cgrp->css.cgroup); 695 } 696 697 static inline void perf_detach_cgroup(struct perf_event *event) 698 { 699 css_put(&event->cgrp->css); 700 event->cgrp = NULL; 701 } 702 703 static inline int is_cgroup_event(struct perf_event *event) 704 { 705 return event->cgrp != NULL; 706 } 707 708 static inline u64 perf_cgroup_event_time(struct perf_event *event) 709 { 710 struct perf_cgroup_info *t; 711 712 t = per_cpu_ptr(event->cgrp->info, event->cpu); 713 return t->time; 714 } 715 716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 717 { 718 struct perf_cgroup_info *info; 719 u64 now; 720 721 now = perf_clock(); 722 723 info = this_cpu_ptr(cgrp->info); 724 725 info->time += now - info->timestamp; 726 info->timestamp = now; 727 } 728 729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 730 { 731 struct perf_cgroup *cgrp = cpuctx->cgrp; 732 struct cgroup_subsys_state *css; 733 734 if (cgrp) { 735 for (css = &cgrp->css; css; css = css->parent) { 736 cgrp = container_of(css, struct perf_cgroup, css); 737 __update_cgrp_time(cgrp); 738 } 739 } 740 } 741 742 static inline void update_cgrp_time_from_event(struct perf_event *event) 743 { 744 struct perf_cgroup *cgrp; 745 746 /* 747 * ensure we access cgroup data only when needed and 748 * when we know the cgroup is pinned (css_get) 749 */ 750 if (!is_cgroup_event(event)) 751 return; 752 753 cgrp = perf_cgroup_from_task(current, event->ctx); 754 /* 755 * Do not update time when cgroup is not active 756 */ 757 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 758 __update_cgrp_time(event->cgrp); 759 } 760 761 static inline void 762 perf_cgroup_set_timestamp(struct task_struct *task, 763 struct perf_event_context *ctx) 764 { 765 struct perf_cgroup *cgrp; 766 struct perf_cgroup_info *info; 767 struct cgroup_subsys_state *css; 768 769 /* 770 * ctx->lock held by caller 771 * ensure we do not access cgroup data 772 * unless we have the cgroup pinned (css_get) 773 */ 774 if (!task || !ctx->nr_cgroups) 775 return; 776 777 cgrp = perf_cgroup_from_task(task, ctx); 778 779 for (css = &cgrp->css; css; css = css->parent) { 780 cgrp = container_of(css, struct perf_cgroup, css); 781 info = this_cpu_ptr(cgrp->info); 782 info->timestamp = ctx->timestamp; 783 } 784 } 785 786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 787 788 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 789 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 790 791 /* 792 * reschedule events based on the cgroup constraint of task. 793 * 794 * mode SWOUT : schedule out everything 795 * mode SWIN : schedule in based on cgroup for next 796 */ 797 static void perf_cgroup_switch(struct task_struct *task, int mode) 798 { 799 struct perf_cpu_context *cpuctx; 800 struct list_head *list; 801 unsigned long flags; 802 803 /* 804 * Disable interrupts and preemption to avoid this CPU's 805 * cgrp_cpuctx_entry to change under us. 806 */ 807 local_irq_save(flags); 808 809 list = this_cpu_ptr(&cgrp_cpuctx_list); 810 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 811 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 812 813 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 814 perf_pmu_disable(cpuctx->ctx.pmu); 815 816 if (mode & PERF_CGROUP_SWOUT) { 817 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 818 /* 819 * must not be done before ctxswout due 820 * to event_filter_match() in event_sched_out() 821 */ 822 cpuctx->cgrp = NULL; 823 } 824 825 if (mode & PERF_CGROUP_SWIN) { 826 WARN_ON_ONCE(cpuctx->cgrp); 827 /* 828 * set cgrp before ctxsw in to allow 829 * event_filter_match() to not have to pass 830 * task around 831 * we pass the cpuctx->ctx to perf_cgroup_from_task() 832 * because cgorup events are only per-cpu 833 */ 834 cpuctx->cgrp = perf_cgroup_from_task(task, 835 &cpuctx->ctx); 836 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 837 } 838 perf_pmu_enable(cpuctx->ctx.pmu); 839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 840 } 841 842 local_irq_restore(flags); 843 } 844 845 static inline void perf_cgroup_sched_out(struct task_struct *task, 846 struct task_struct *next) 847 { 848 struct perf_cgroup *cgrp1; 849 struct perf_cgroup *cgrp2 = NULL; 850 851 rcu_read_lock(); 852 /* 853 * we come here when we know perf_cgroup_events > 0 854 * we do not need to pass the ctx here because we know 855 * we are holding the rcu lock 856 */ 857 cgrp1 = perf_cgroup_from_task(task, NULL); 858 cgrp2 = perf_cgroup_from_task(next, NULL); 859 860 /* 861 * only schedule out current cgroup events if we know 862 * that we are switching to a different cgroup. Otherwise, 863 * do no touch the cgroup events. 864 */ 865 if (cgrp1 != cgrp2) 866 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 867 868 rcu_read_unlock(); 869 } 870 871 static inline void perf_cgroup_sched_in(struct task_struct *prev, 872 struct task_struct *task) 873 { 874 struct perf_cgroup *cgrp1; 875 struct perf_cgroup *cgrp2 = NULL; 876 877 rcu_read_lock(); 878 /* 879 * we come here when we know perf_cgroup_events > 0 880 * we do not need to pass the ctx here because we know 881 * we are holding the rcu lock 882 */ 883 cgrp1 = perf_cgroup_from_task(task, NULL); 884 cgrp2 = perf_cgroup_from_task(prev, NULL); 885 886 /* 887 * only need to schedule in cgroup events if we are changing 888 * cgroup during ctxsw. Cgroup events were not scheduled 889 * out of ctxsw out if that was not the case. 890 */ 891 if (cgrp1 != cgrp2) 892 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 893 894 rcu_read_unlock(); 895 } 896 897 static int perf_cgroup_ensure_storage(struct perf_event *event, 898 struct cgroup_subsys_state *css) 899 { 900 struct perf_cpu_context *cpuctx; 901 struct perf_event **storage; 902 int cpu, heap_size, ret = 0; 903 904 /* 905 * Allow storage to have sufficent space for an iterator for each 906 * possibly nested cgroup plus an iterator for events with no cgroup. 907 */ 908 for (heap_size = 1; css; css = css->parent) 909 heap_size++; 910 911 for_each_possible_cpu(cpu) { 912 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 913 if (heap_size <= cpuctx->heap_size) 914 continue; 915 916 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 917 GFP_KERNEL, cpu_to_node(cpu)); 918 if (!storage) { 919 ret = -ENOMEM; 920 break; 921 } 922 923 raw_spin_lock_irq(&cpuctx->ctx.lock); 924 if (cpuctx->heap_size < heap_size) { 925 swap(cpuctx->heap, storage); 926 if (storage == cpuctx->heap_default) 927 storage = NULL; 928 cpuctx->heap_size = heap_size; 929 } 930 raw_spin_unlock_irq(&cpuctx->ctx.lock); 931 932 kfree(storage); 933 } 934 935 return ret; 936 } 937 938 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 939 struct perf_event_attr *attr, 940 struct perf_event *group_leader) 941 { 942 struct perf_cgroup *cgrp; 943 struct cgroup_subsys_state *css; 944 struct fd f = fdget(fd); 945 int ret = 0; 946 947 if (!f.file) 948 return -EBADF; 949 950 css = css_tryget_online_from_dir(f.file->f_path.dentry, 951 &perf_event_cgrp_subsys); 952 if (IS_ERR(css)) { 953 ret = PTR_ERR(css); 954 goto out; 955 } 956 957 ret = perf_cgroup_ensure_storage(event, css); 958 if (ret) 959 goto out; 960 961 cgrp = container_of(css, struct perf_cgroup, css); 962 event->cgrp = cgrp; 963 964 /* 965 * all events in a group must monitor 966 * the same cgroup because a task belongs 967 * to only one perf cgroup at a time 968 */ 969 if (group_leader && group_leader->cgrp != cgrp) { 970 perf_detach_cgroup(event); 971 ret = -EINVAL; 972 } 973 out: 974 fdput(f); 975 return ret; 976 } 977 978 static inline void 979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 980 { 981 struct perf_cgroup_info *t; 982 t = per_cpu_ptr(event->cgrp->info, event->cpu); 983 event->shadow_ctx_time = now - t->timestamp; 984 } 985 986 /* 987 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 988 * cleared when last cgroup event is removed. 989 */ 990 static inline void 991 list_update_cgroup_event(struct perf_event *event, 992 struct perf_event_context *ctx, bool add) 993 { 994 struct perf_cpu_context *cpuctx; 995 struct list_head *cpuctx_entry; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (add && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (add && ctx->nr_cgroups++) 1020 return; 1021 else if (!add && --ctx->nr_cgroups) 1022 return; 1023 1024 /* no cgroup running */ 1025 if (!add) 1026 cpuctx->cgrp = NULL; 1027 1028 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 1029 if (add) 1030 list_add(cpuctx_entry, 1031 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1032 else 1033 list_del(cpuctx_entry); 1034 } 1035 1036 #else /* !CONFIG_CGROUP_PERF */ 1037 1038 static inline bool 1039 perf_cgroup_match(struct perf_event *event) 1040 { 1041 return true; 1042 } 1043 1044 static inline void perf_detach_cgroup(struct perf_event *event) 1045 {} 1046 1047 static inline int is_cgroup_event(struct perf_event *event) 1048 { 1049 return 0; 1050 } 1051 1052 static inline void update_cgrp_time_from_event(struct perf_event *event) 1053 { 1054 } 1055 1056 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1057 { 1058 } 1059 1060 static inline void perf_cgroup_sched_out(struct task_struct *task, 1061 struct task_struct *next) 1062 { 1063 } 1064 1065 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1066 struct task_struct *task) 1067 { 1068 } 1069 1070 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1071 struct perf_event_attr *attr, 1072 struct perf_event *group_leader) 1073 { 1074 return -EINVAL; 1075 } 1076 1077 static inline void 1078 perf_cgroup_set_timestamp(struct task_struct *task, 1079 struct perf_event_context *ctx) 1080 { 1081 } 1082 1083 static inline void 1084 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1085 { 1086 } 1087 1088 static inline void 1089 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1090 { 1091 } 1092 1093 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1094 { 1095 return 0; 1096 } 1097 1098 static inline void 1099 list_update_cgroup_event(struct perf_event *event, 1100 struct perf_event_context *ctx, bool add) 1101 { 1102 } 1103 1104 #endif 1105 1106 /* 1107 * set default to be dependent on timer tick just 1108 * like original code 1109 */ 1110 #define PERF_CPU_HRTIMER (1000 / HZ) 1111 /* 1112 * function must be called with interrupts disabled 1113 */ 1114 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1115 { 1116 struct perf_cpu_context *cpuctx; 1117 bool rotations; 1118 1119 lockdep_assert_irqs_disabled(); 1120 1121 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1122 rotations = perf_rotate_context(cpuctx); 1123 1124 raw_spin_lock(&cpuctx->hrtimer_lock); 1125 if (rotations) 1126 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1127 else 1128 cpuctx->hrtimer_active = 0; 1129 raw_spin_unlock(&cpuctx->hrtimer_lock); 1130 1131 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1132 } 1133 1134 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1135 { 1136 struct hrtimer *timer = &cpuctx->hrtimer; 1137 struct pmu *pmu = cpuctx->ctx.pmu; 1138 u64 interval; 1139 1140 /* no multiplexing needed for SW PMU */ 1141 if (pmu->task_ctx_nr == perf_sw_context) 1142 return; 1143 1144 /* 1145 * check default is sane, if not set then force to 1146 * default interval (1/tick) 1147 */ 1148 interval = pmu->hrtimer_interval_ms; 1149 if (interval < 1) 1150 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1151 1152 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1153 1154 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1155 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1156 timer->function = perf_mux_hrtimer_handler; 1157 } 1158 1159 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1160 { 1161 struct hrtimer *timer = &cpuctx->hrtimer; 1162 struct pmu *pmu = cpuctx->ctx.pmu; 1163 unsigned long flags; 1164 1165 /* not for SW PMU */ 1166 if (pmu->task_ctx_nr == perf_sw_context) 1167 return 0; 1168 1169 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1170 if (!cpuctx->hrtimer_active) { 1171 cpuctx->hrtimer_active = 1; 1172 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1173 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1174 } 1175 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1176 1177 return 0; 1178 } 1179 1180 void perf_pmu_disable(struct pmu *pmu) 1181 { 1182 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1183 if (!(*count)++) 1184 pmu->pmu_disable(pmu); 1185 } 1186 1187 void perf_pmu_enable(struct pmu *pmu) 1188 { 1189 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1190 if (!--(*count)) 1191 pmu->pmu_enable(pmu); 1192 } 1193 1194 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1195 1196 /* 1197 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1198 * perf_event_task_tick() are fully serialized because they're strictly cpu 1199 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1200 * disabled, while perf_event_task_tick is called from IRQ context. 1201 */ 1202 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1203 { 1204 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1205 1206 lockdep_assert_irqs_disabled(); 1207 1208 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1209 1210 list_add(&ctx->active_ctx_list, head); 1211 } 1212 1213 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1214 { 1215 lockdep_assert_irqs_disabled(); 1216 1217 WARN_ON(list_empty(&ctx->active_ctx_list)); 1218 1219 list_del_init(&ctx->active_ctx_list); 1220 } 1221 1222 static void get_ctx(struct perf_event_context *ctx) 1223 { 1224 refcount_inc(&ctx->refcount); 1225 } 1226 1227 static void free_ctx(struct rcu_head *head) 1228 { 1229 struct perf_event_context *ctx; 1230 1231 ctx = container_of(head, struct perf_event_context, rcu_head); 1232 kfree(ctx->task_ctx_data); 1233 kfree(ctx); 1234 } 1235 1236 static void put_ctx(struct perf_event_context *ctx) 1237 { 1238 if (refcount_dec_and_test(&ctx->refcount)) { 1239 if (ctx->parent_ctx) 1240 put_ctx(ctx->parent_ctx); 1241 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1242 put_task_struct(ctx->task); 1243 call_rcu(&ctx->rcu_head, free_ctx); 1244 } 1245 } 1246 1247 /* 1248 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1249 * perf_pmu_migrate_context() we need some magic. 1250 * 1251 * Those places that change perf_event::ctx will hold both 1252 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1253 * 1254 * Lock ordering is by mutex address. There are two other sites where 1255 * perf_event_context::mutex nests and those are: 1256 * 1257 * - perf_event_exit_task_context() [ child , 0 ] 1258 * perf_event_exit_event() 1259 * put_event() [ parent, 1 ] 1260 * 1261 * - perf_event_init_context() [ parent, 0 ] 1262 * inherit_task_group() 1263 * inherit_group() 1264 * inherit_event() 1265 * perf_event_alloc() 1266 * perf_init_event() 1267 * perf_try_init_event() [ child , 1 ] 1268 * 1269 * While it appears there is an obvious deadlock here -- the parent and child 1270 * nesting levels are inverted between the two. This is in fact safe because 1271 * life-time rules separate them. That is an exiting task cannot fork, and a 1272 * spawning task cannot (yet) exit. 1273 * 1274 * But remember that that these are parent<->child context relations, and 1275 * migration does not affect children, therefore these two orderings should not 1276 * interact. 1277 * 1278 * The change in perf_event::ctx does not affect children (as claimed above) 1279 * because the sys_perf_event_open() case will install a new event and break 1280 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1281 * concerned with cpuctx and that doesn't have children. 1282 * 1283 * The places that change perf_event::ctx will issue: 1284 * 1285 * perf_remove_from_context(); 1286 * synchronize_rcu(); 1287 * perf_install_in_context(); 1288 * 1289 * to affect the change. The remove_from_context() + synchronize_rcu() should 1290 * quiesce the event, after which we can install it in the new location. This 1291 * means that only external vectors (perf_fops, prctl) can perturb the event 1292 * while in transit. Therefore all such accessors should also acquire 1293 * perf_event_context::mutex to serialize against this. 1294 * 1295 * However; because event->ctx can change while we're waiting to acquire 1296 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1297 * function. 1298 * 1299 * Lock order: 1300 * exec_update_mutex 1301 * task_struct::perf_event_mutex 1302 * perf_event_context::mutex 1303 * perf_event::child_mutex; 1304 * perf_event_context::lock 1305 * perf_event::mmap_mutex 1306 * mmap_sem 1307 * perf_addr_filters_head::lock 1308 * 1309 * cpu_hotplug_lock 1310 * pmus_lock 1311 * cpuctx->mutex / perf_event_context::mutex 1312 */ 1313 static struct perf_event_context * 1314 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1315 { 1316 struct perf_event_context *ctx; 1317 1318 again: 1319 rcu_read_lock(); 1320 ctx = READ_ONCE(event->ctx); 1321 if (!refcount_inc_not_zero(&ctx->refcount)) { 1322 rcu_read_unlock(); 1323 goto again; 1324 } 1325 rcu_read_unlock(); 1326 1327 mutex_lock_nested(&ctx->mutex, nesting); 1328 if (event->ctx != ctx) { 1329 mutex_unlock(&ctx->mutex); 1330 put_ctx(ctx); 1331 goto again; 1332 } 1333 1334 return ctx; 1335 } 1336 1337 static inline struct perf_event_context * 1338 perf_event_ctx_lock(struct perf_event *event) 1339 { 1340 return perf_event_ctx_lock_nested(event, 0); 1341 } 1342 1343 static void perf_event_ctx_unlock(struct perf_event *event, 1344 struct perf_event_context *ctx) 1345 { 1346 mutex_unlock(&ctx->mutex); 1347 put_ctx(ctx); 1348 } 1349 1350 /* 1351 * This must be done under the ctx->lock, such as to serialize against 1352 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1353 * calling scheduler related locks and ctx->lock nests inside those. 1354 */ 1355 static __must_check struct perf_event_context * 1356 unclone_ctx(struct perf_event_context *ctx) 1357 { 1358 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1359 1360 lockdep_assert_held(&ctx->lock); 1361 1362 if (parent_ctx) 1363 ctx->parent_ctx = NULL; 1364 ctx->generation++; 1365 1366 return parent_ctx; 1367 } 1368 1369 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1370 enum pid_type type) 1371 { 1372 u32 nr; 1373 /* 1374 * only top level events have the pid namespace they were created in 1375 */ 1376 if (event->parent) 1377 event = event->parent; 1378 1379 nr = __task_pid_nr_ns(p, type, event->ns); 1380 /* avoid -1 if it is idle thread or runs in another ns */ 1381 if (!nr && !pid_alive(p)) 1382 nr = -1; 1383 return nr; 1384 } 1385 1386 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1387 { 1388 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1389 } 1390 1391 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1392 { 1393 return perf_event_pid_type(event, p, PIDTYPE_PID); 1394 } 1395 1396 /* 1397 * If we inherit events we want to return the parent event id 1398 * to userspace. 1399 */ 1400 static u64 primary_event_id(struct perf_event *event) 1401 { 1402 u64 id = event->id; 1403 1404 if (event->parent) 1405 id = event->parent->id; 1406 1407 return id; 1408 } 1409 1410 /* 1411 * Get the perf_event_context for a task and lock it. 1412 * 1413 * This has to cope with with the fact that until it is locked, 1414 * the context could get moved to another task. 1415 */ 1416 static struct perf_event_context * 1417 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1418 { 1419 struct perf_event_context *ctx; 1420 1421 retry: 1422 /* 1423 * One of the few rules of preemptible RCU is that one cannot do 1424 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1425 * part of the read side critical section was irqs-enabled -- see 1426 * rcu_read_unlock_special(). 1427 * 1428 * Since ctx->lock nests under rq->lock we must ensure the entire read 1429 * side critical section has interrupts disabled. 1430 */ 1431 local_irq_save(*flags); 1432 rcu_read_lock(); 1433 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1434 if (ctx) { 1435 /* 1436 * If this context is a clone of another, it might 1437 * get swapped for another underneath us by 1438 * perf_event_task_sched_out, though the 1439 * rcu_read_lock() protects us from any context 1440 * getting freed. Lock the context and check if it 1441 * got swapped before we could get the lock, and retry 1442 * if so. If we locked the right context, then it 1443 * can't get swapped on us any more. 1444 */ 1445 raw_spin_lock(&ctx->lock); 1446 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1447 raw_spin_unlock(&ctx->lock); 1448 rcu_read_unlock(); 1449 local_irq_restore(*flags); 1450 goto retry; 1451 } 1452 1453 if (ctx->task == TASK_TOMBSTONE || 1454 !refcount_inc_not_zero(&ctx->refcount)) { 1455 raw_spin_unlock(&ctx->lock); 1456 ctx = NULL; 1457 } else { 1458 WARN_ON_ONCE(ctx->task != task); 1459 } 1460 } 1461 rcu_read_unlock(); 1462 if (!ctx) 1463 local_irq_restore(*flags); 1464 return ctx; 1465 } 1466 1467 /* 1468 * Get the context for a task and increment its pin_count so it 1469 * can't get swapped to another task. This also increments its 1470 * reference count so that the context can't get freed. 1471 */ 1472 static struct perf_event_context * 1473 perf_pin_task_context(struct task_struct *task, int ctxn) 1474 { 1475 struct perf_event_context *ctx; 1476 unsigned long flags; 1477 1478 ctx = perf_lock_task_context(task, ctxn, &flags); 1479 if (ctx) { 1480 ++ctx->pin_count; 1481 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1482 } 1483 return ctx; 1484 } 1485 1486 static void perf_unpin_context(struct perf_event_context *ctx) 1487 { 1488 unsigned long flags; 1489 1490 raw_spin_lock_irqsave(&ctx->lock, flags); 1491 --ctx->pin_count; 1492 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1493 } 1494 1495 /* 1496 * Update the record of the current time in a context. 1497 */ 1498 static void update_context_time(struct perf_event_context *ctx) 1499 { 1500 u64 now = perf_clock(); 1501 1502 ctx->time += now - ctx->timestamp; 1503 ctx->timestamp = now; 1504 } 1505 1506 static u64 perf_event_time(struct perf_event *event) 1507 { 1508 struct perf_event_context *ctx = event->ctx; 1509 1510 if (is_cgroup_event(event)) 1511 return perf_cgroup_event_time(event); 1512 1513 return ctx ? ctx->time : 0; 1514 } 1515 1516 static enum event_type_t get_event_type(struct perf_event *event) 1517 { 1518 struct perf_event_context *ctx = event->ctx; 1519 enum event_type_t event_type; 1520 1521 lockdep_assert_held(&ctx->lock); 1522 1523 /* 1524 * It's 'group type', really, because if our group leader is 1525 * pinned, so are we. 1526 */ 1527 if (event->group_leader != event) 1528 event = event->group_leader; 1529 1530 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1531 if (!ctx->task) 1532 event_type |= EVENT_CPU; 1533 1534 return event_type; 1535 } 1536 1537 /* 1538 * Helper function to initialize event group nodes. 1539 */ 1540 static void init_event_group(struct perf_event *event) 1541 { 1542 RB_CLEAR_NODE(&event->group_node); 1543 event->group_index = 0; 1544 } 1545 1546 /* 1547 * Extract pinned or flexible groups from the context 1548 * based on event attrs bits. 1549 */ 1550 static struct perf_event_groups * 1551 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1552 { 1553 if (event->attr.pinned) 1554 return &ctx->pinned_groups; 1555 else 1556 return &ctx->flexible_groups; 1557 } 1558 1559 /* 1560 * Helper function to initializes perf_event_group trees. 1561 */ 1562 static void perf_event_groups_init(struct perf_event_groups *groups) 1563 { 1564 groups->tree = RB_ROOT; 1565 groups->index = 0; 1566 } 1567 1568 /* 1569 * Compare function for event groups; 1570 * 1571 * Implements complex key that first sorts by CPU and then by virtual index 1572 * which provides ordering when rotating groups for the same CPU. 1573 */ 1574 static bool 1575 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1576 { 1577 if (left->cpu < right->cpu) 1578 return true; 1579 if (left->cpu > right->cpu) 1580 return false; 1581 1582 #ifdef CONFIG_CGROUP_PERF 1583 if (left->cgrp != right->cgrp) { 1584 if (!left->cgrp || !left->cgrp->css.cgroup) { 1585 /* 1586 * Left has no cgroup but right does, no cgroups come 1587 * first. 1588 */ 1589 return true; 1590 } 1591 if (!right->cgrp || !right->cgrp->css.cgroup) { 1592 /* 1593 * Right has no cgroup but left does, no cgroups come 1594 * first. 1595 */ 1596 return false; 1597 } 1598 /* Two dissimilar cgroups, order by id. */ 1599 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1600 return true; 1601 1602 return false; 1603 } 1604 #endif 1605 1606 if (left->group_index < right->group_index) 1607 return true; 1608 if (left->group_index > right->group_index) 1609 return false; 1610 1611 return false; 1612 } 1613 1614 /* 1615 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1616 * key (see perf_event_groups_less). This places it last inside the CPU 1617 * subtree. 1618 */ 1619 static void 1620 perf_event_groups_insert(struct perf_event_groups *groups, 1621 struct perf_event *event) 1622 { 1623 struct perf_event *node_event; 1624 struct rb_node *parent; 1625 struct rb_node **node; 1626 1627 event->group_index = ++groups->index; 1628 1629 node = &groups->tree.rb_node; 1630 parent = *node; 1631 1632 while (*node) { 1633 parent = *node; 1634 node_event = container_of(*node, struct perf_event, group_node); 1635 1636 if (perf_event_groups_less(event, node_event)) 1637 node = &parent->rb_left; 1638 else 1639 node = &parent->rb_right; 1640 } 1641 1642 rb_link_node(&event->group_node, parent, node); 1643 rb_insert_color(&event->group_node, &groups->tree); 1644 } 1645 1646 /* 1647 * Helper function to insert event into the pinned or flexible groups. 1648 */ 1649 static void 1650 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1651 { 1652 struct perf_event_groups *groups; 1653 1654 groups = get_event_groups(event, ctx); 1655 perf_event_groups_insert(groups, event); 1656 } 1657 1658 /* 1659 * Delete a group from a tree. 1660 */ 1661 static void 1662 perf_event_groups_delete(struct perf_event_groups *groups, 1663 struct perf_event *event) 1664 { 1665 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1666 RB_EMPTY_ROOT(&groups->tree)); 1667 1668 rb_erase(&event->group_node, &groups->tree); 1669 init_event_group(event); 1670 } 1671 1672 /* 1673 * Helper function to delete event from its groups. 1674 */ 1675 static void 1676 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1677 { 1678 struct perf_event_groups *groups; 1679 1680 groups = get_event_groups(event, ctx); 1681 perf_event_groups_delete(groups, event); 1682 } 1683 1684 /* 1685 * Get the leftmost event in the cpu/cgroup subtree. 1686 */ 1687 static struct perf_event * 1688 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1689 struct cgroup *cgrp) 1690 { 1691 struct perf_event *node_event = NULL, *match = NULL; 1692 struct rb_node *node = groups->tree.rb_node; 1693 #ifdef CONFIG_CGROUP_PERF 1694 u64 node_cgrp_id, cgrp_id = 0; 1695 1696 if (cgrp) 1697 cgrp_id = cgrp->kn->id; 1698 #endif 1699 1700 while (node) { 1701 node_event = container_of(node, struct perf_event, group_node); 1702 1703 if (cpu < node_event->cpu) { 1704 node = node->rb_left; 1705 continue; 1706 } 1707 if (cpu > node_event->cpu) { 1708 node = node->rb_right; 1709 continue; 1710 } 1711 #ifdef CONFIG_CGROUP_PERF 1712 node_cgrp_id = 0; 1713 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1714 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1715 1716 if (cgrp_id < node_cgrp_id) { 1717 node = node->rb_left; 1718 continue; 1719 } 1720 if (cgrp_id > node_cgrp_id) { 1721 node = node->rb_right; 1722 continue; 1723 } 1724 #endif 1725 match = node_event; 1726 node = node->rb_left; 1727 } 1728 1729 return match; 1730 } 1731 1732 /* 1733 * Like rb_entry_next_safe() for the @cpu subtree. 1734 */ 1735 static struct perf_event * 1736 perf_event_groups_next(struct perf_event *event) 1737 { 1738 struct perf_event *next; 1739 #ifdef CONFIG_CGROUP_PERF 1740 u64 curr_cgrp_id = 0; 1741 u64 next_cgrp_id = 0; 1742 #endif 1743 1744 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1745 if (next == NULL || next->cpu != event->cpu) 1746 return NULL; 1747 1748 #ifdef CONFIG_CGROUP_PERF 1749 if (event->cgrp && event->cgrp->css.cgroup) 1750 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1751 1752 if (next->cgrp && next->cgrp->css.cgroup) 1753 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1754 1755 if (curr_cgrp_id != next_cgrp_id) 1756 return NULL; 1757 #endif 1758 return next; 1759 } 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_update_cgroup_event(event, ctx, true); 1795 1796 list_add_rcu(&event->event_entry, &ctx->event_list); 1797 ctx->nr_events++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 ctx->generation++; 1802 } 1803 1804 /* 1805 * Initialize event state based on the perf_event_attr::disabled. 1806 */ 1807 static inline void perf_event__state_init(struct perf_event *event) 1808 { 1809 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1810 PERF_EVENT_STATE_INACTIVE; 1811 } 1812 1813 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1814 { 1815 int entry = sizeof(u64); /* value */ 1816 int size = 0; 1817 int nr = 1; 1818 1819 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1820 size += sizeof(u64); 1821 1822 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1823 size += sizeof(u64); 1824 1825 if (event->attr.read_format & PERF_FORMAT_ID) 1826 entry += sizeof(u64); 1827 1828 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1829 nr += nr_siblings; 1830 size += sizeof(u64); 1831 } 1832 1833 size += entry * nr; 1834 event->read_size = size; 1835 } 1836 1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1838 { 1839 struct perf_sample_data *data; 1840 u16 size = 0; 1841 1842 if (sample_type & PERF_SAMPLE_IP) 1843 size += sizeof(data->ip); 1844 1845 if (sample_type & PERF_SAMPLE_ADDR) 1846 size += sizeof(data->addr); 1847 1848 if (sample_type & PERF_SAMPLE_PERIOD) 1849 size += sizeof(data->period); 1850 1851 if (sample_type & PERF_SAMPLE_WEIGHT) 1852 size += sizeof(data->weight); 1853 1854 if (sample_type & PERF_SAMPLE_READ) 1855 size += event->read_size; 1856 1857 if (sample_type & PERF_SAMPLE_DATA_SRC) 1858 size += sizeof(data->data_src.val); 1859 1860 if (sample_type & PERF_SAMPLE_TRANSACTION) 1861 size += sizeof(data->txn); 1862 1863 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1864 size += sizeof(data->phys_addr); 1865 1866 if (sample_type & PERF_SAMPLE_CGROUP) 1867 size += sizeof(data->cgroup); 1868 1869 event->header_size = size; 1870 } 1871 1872 /* 1873 * Called at perf_event creation and when events are attached/detached from a 1874 * group. 1875 */ 1876 static void perf_event__header_size(struct perf_event *event) 1877 { 1878 __perf_event_read_size(event, 1879 event->group_leader->nr_siblings); 1880 __perf_event_header_size(event, event->attr.sample_type); 1881 } 1882 1883 static void perf_event__id_header_size(struct perf_event *event) 1884 { 1885 struct perf_sample_data *data; 1886 u64 sample_type = event->attr.sample_type; 1887 u16 size = 0; 1888 1889 if (sample_type & PERF_SAMPLE_TID) 1890 size += sizeof(data->tid_entry); 1891 1892 if (sample_type & PERF_SAMPLE_TIME) 1893 size += sizeof(data->time); 1894 1895 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1896 size += sizeof(data->id); 1897 1898 if (sample_type & PERF_SAMPLE_ID) 1899 size += sizeof(data->id); 1900 1901 if (sample_type & PERF_SAMPLE_STREAM_ID) 1902 size += sizeof(data->stream_id); 1903 1904 if (sample_type & PERF_SAMPLE_CPU) 1905 size += sizeof(data->cpu_entry); 1906 1907 event->id_header_size = size; 1908 } 1909 1910 static bool perf_event_validate_size(struct perf_event *event) 1911 { 1912 /* 1913 * The values computed here will be over-written when we actually 1914 * attach the event. 1915 */ 1916 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1917 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1918 perf_event__id_header_size(event); 1919 1920 /* 1921 * Sum the lot; should not exceed the 64k limit we have on records. 1922 * Conservative limit to allow for callchains and other variable fields. 1923 */ 1924 if (event->read_size + event->header_size + 1925 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 static void perf_group_attach(struct perf_event *event) 1932 { 1933 struct perf_event *group_leader = event->group_leader, *pos; 1934 1935 lockdep_assert_held(&event->ctx->lock); 1936 1937 /* 1938 * We can have double attach due to group movement in perf_event_open. 1939 */ 1940 if (event->attach_state & PERF_ATTACH_GROUP) 1941 return; 1942 1943 event->attach_state |= PERF_ATTACH_GROUP; 1944 1945 if (group_leader == event) 1946 return; 1947 1948 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1949 1950 group_leader->group_caps &= event->event_caps; 1951 1952 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1953 group_leader->nr_siblings++; 1954 1955 perf_event__header_size(group_leader); 1956 1957 for_each_sibling_event(pos, group_leader) 1958 perf_event__header_size(pos); 1959 } 1960 1961 /* 1962 * Remove an event from the lists for its context. 1963 * Must be called with ctx->mutex and ctx->lock held. 1964 */ 1965 static void 1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1967 { 1968 WARN_ON_ONCE(event->ctx != ctx); 1969 lockdep_assert_held(&ctx->lock); 1970 1971 /* 1972 * We can have double detach due to exit/hot-unplug + close. 1973 */ 1974 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1975 return; 1976 1977 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1978 1979 list_update_cgroup_event(event, ctx, false); 1980 1981 ctx->nr_events--; 1982 if (event->attr.inherit_stat) 1983 ctx->nr_stat--; 1984 1985 list_del_rcu(&event->event_entry); 1986 1987 if (event->group_leader == event) 1988 del_event_from_groups(event, ctx); 1989 1990 /* 1991 * If event was in error state, then keep it 1992 * that way, otherwise bogus counts will be 1993 * returned on read(). The only way to get out 1994 * of error state is by explicit re-enabling 1995 * of the event 1996 */ 1997 if (event->state > PERF_EVENT_STATE_OFF) 1998 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1999 2000 ctx->generation++; 2001 } 2002 2003 static int 2004 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2005 { 2006 if (!has_aux(aux_event)) 2007 return 0; 2008 2009 if (!event->pmu->aux_output_match) 2010 return 0; 2011 2012 return event->pmu->aux_output_match(aux_event); 2013 } 2014 2015 static void put_event(struct perf_event *event); 2016 static void event_sched_out(struct perf_event *event, 2017 struct perf_cpu_context *cpuctx, 2018 struct perf_event_context *ctx); 2019 2020 static void perf_put_aux_event(struct perf_event *event) 2021 { 2022 struct perf_event_context *ctx = event->ctx; 2023 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2024 struct perf_event *iter; 2025 2026 /* 2027 * If event uses aux_event tear down the link 2028 */ 2029 if (event->aux_event) { 2030 iter = event->aux_event; 2031 event->aux_event = NULL; 2032 put_event(iter); 2033 return; 2034 } 2035 2036 /* 2037 * If the event is an aux_event, tear down all links to 2038 * it from other events. 2039 */ 2040 for_each_sibling_event(iter, event->group_leader) { 2041 if (iter->aux_event != event) 2042 continue; 2043 2044 iter->aux_event = NULL; 2045 put_event(event); 2046 2047 /* 2048 * If it's ACTIVE, schedule it out and put it into ERROR 2049 * state so that we don't try to schedule it again. Note 2050 * that perf_event_enable() will clear the ERROR status. 2051 */ 2052 event_sched_out(iter, cpuctx, ctx); 2053 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2054 } 2055 } 2056 2057 static bool perf_need_aux_event(struct perf_event *event) 2058 { 2059 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2060 } 2061 2062 static int perf_get_aux_event(struct perf_event *event, 2063 struct perf_event *group_leader) 2064 { 2065 /* 2066 * Our group leader must be an aux event if we want to be 2067 * an aux_output. This way, the aux event will precede its 2068 * aux_output events in the group, and therefore will always 2069 * schedule first. 2070 */ 2071 if (!group_leader) 2072 return 0; 2073 2074 /* 2075 * aux_output and aux_sample_size are mutually exclusive. 2076 */ 2077 if (event->attr.aux_output && event->attr.aux_sample_size) 2078 return 0; 2079 2080 if (event->attr.aux_output && 2081 !perf_aux_output_match(event, group_leader)) 2082 return 0; 2083 2084 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2085 return 0; 2086 2087 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2088 return 0; 2089 2090 /* 2091 * Link aux_outputs to their aux event; this is undone in 2092 * perf_group_detach() by perf_put_aux_event(). When the 2093 * group in torn down, the aux_output events loose their 2094 * link to the aux_event and can't schedule any more. 2095 */ 2096 event->aux_event = group_leader; 2097 2098 return 1; 2099 } 2100 2101 static inline struct list_head *get_event_list(struct perf_event *event) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2105 } 2106 2107 static void perf_group_detach(struct perf_event *event) 2108 { 2109 struct perf_event *sibling, *tmp; 2110 struct perf_event_context *ctx = event->ctx; 2111 2112 lockdep_assert_held(&ctx->lock); 2113 2114 /* 2115 * We can have double detach due to exit/hot-unplug + close. 2116 */ 2117 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2118 return; 2119 2120 event->attach_state &= ~PERF_ATTACH_GROUP; 2121 2122 perf_put_aux_event(event); 2123 2124 /* 2125 * If this is a sibling, remove it from its group. 2126 */ 2127 if (event->group_leader != event) { 2128 list_del_init(&event->sibling_list); 2129 event->group_leader->nr_siblings--; 2130 goto out; 2131 } 2132 2133 /* 2134 * If this was a group event with sibling events then 2135 * upgrade the siblings to singleton events by adding them 2136 * to whatever list we are on. 2137 */ 2138 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2139 2140 sibling->group_leader = sibling; 2141 list_del_init(&sibling->sibling_list); 2142 2143 /* Inherit group flags from the previous leader */ 2144 sibling->group_caps = event->group_caps; 2145 2146 if (!RB_EMPTY_NODE(&event->group_node)) { 2147 add_event_to_groups(sibling, event->ctx); 2148 2149 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2150 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2151 } 2152 2153 WARN_ON_ONCE(sibling->ctx != event->ctx); 2154 } 2155 2156 out: 2157 perf_event__header_size(event->group_leader); 2158 2159 for_each_sibling_event(tmp, event->group_leader) 2160 perf_event__header_size(tmp); 2161 } 2162 2163 static bool is_orphaned_event(struct perf_event *event) 2164 { 2165 return event->state == PERF_EVENT_STATE_DEAD; 2166 } 2167 2168 static inline int __pmu_filter_match(struct perf_event *event) 2169 { 2170 struct pmu *pmu = event->pmu; 2171 return pmu->filter_match ? pmu->filter_match(event) : 1; 2172 } 2173 2174 /* 2175 * Check whether we should attempt to schedule an event group based on 2176 * PMU-specific filtering. An event group can consist of HW and SW events, 2177 * potentially with a SW leader, so we must check all the filters, to 2178 * determine whether a group is schedulable: 2179 */ 2180 static inline int pmu_filter_match(struct perf_event *event) 2181 { 2182 struct perf_event *sibling; 2183 2184 if (!__pmu_filter_match(event)) 2185 return 0; 2186 2187 for_each_sibling_event(sibling, event) { 2188 if (!__pmu_filter_match(sibling)) 2189 return 0; 2190 } 2191 2192 return 1; 2193 } 2194 2195 static inline int 2196 event_filter_match(struct perf_event *event) 2197 { 2198 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2199 perf_cgroup_match(event) && pmu_filter_match(event); 2200 } 2201 2202 static void 2203 event_sched_out(struct perf_event *event, 2204 struct perf_cpu_context *cpuctx, 2205 struct perf_event_context *ctx) 2206 { 2207 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2208 2209 WARN_ON_ONCE(event->ctx != ctx); 2210 lockdep_assert_held(&ctx->lock); 2211 2212 if (event->state != PERF_EVENT_STATE_ACTIVE) 2213 return; 2214 2215 /* 2216 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2217 * we can schedule events _OUT_ individually through things like 2218 * __perf_remove_from_context(). 2219 */ 2220 list_del_init(&event->active_list); 2221 2222 perf_pmu_disable(event->pmu); 2223 2224 event->pmu->del(event, 0); 2225 event->oncpu = -1; 2226 2227 if (READ_ONCE(event->pending_disable) >= 0) { 2228 WRITE_ONCE(event->pending_disable, -1); 2229 state = PERF_EVENT_STATE_OFF; 2230 } 2231 perf_event_set_state(event, state); 2232 2233 if (!is_software_event(event)) 2234 cpuctx->active_oncpu--; 2235 if (!--ctx->nr_active) 2236 perf_event_ctx_deactivate(ctx); 2237 if (event->attr.freq && event->attr.sample_freq) 2238 ctx->nr_freq--; 2239 if (event->attr.exclusive || !cpuctx->active_oncpu) 2240 cpuctx->exclusive = 0; 2241 2242 perf_pmu_enable(event->pmu); 2243 } 2244 2245 static void 2246 group_sched_out(struct perf_event *group_event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 struct perf_event *event; 2251 2252 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2253 return; 2254 2255 perf_pmu_disable(ctx->pmu); 2256 2257 event_sched_out(group_event, cpuctx, ctx); 2258 2259 /* 2260 * Schedule out siblings (if any): 2261 */ 2262 for_each_sibling_event(event, group_event) 2263 event_sched_out(event, cpuctx, ctx); 2264 2265 perf_pmu_enable(ctx->pmu); 2266 2267 if (group_event->attr.exclusive) 2268 cpuctx->exclusive = 0; 2269 } 2270 2271 #define DETACH_GROUP 0x01UL 2272 2273 /* 2274 * Cross CPU call to remove a performance event 2275 * 2276 * We disable the event on the hardware level first. After that we 2277 * remove it from the context list. 2278 */ 2279 static void 2280 __perf_remove_from_context(struct perf_event *event, 2281 struct perf_cpu_context *cpuctx, 2282 struct perf_event_context *ctx, 2283 void *info) 2284 { 2285 unsigned long flags = (unsigned long)info; 2286 2287 if (ctx->is_active & EVENT_TIME) { 2288 update_context_time(ctx); 2289 update_cgrp_time_from_cpuctx(cpuctx); 2290 } 2291 2292 event_sched_out(event, cpuctx, ctx); 2293 if (flags & DETACH_GROUP) 2294 perf_group_detach(event); 2295 list_del_event(event, ctx); 2296 2297 if (!ctx->nr_events && ctx->is_active) { 2298 ctx->is_active = 0; 2299 ctx->rotate_necessary = 0; 2300 if (ctx->task) { 2301 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2302 cpuctx->task_ctx = NULL; 2303 } 2304 } 2305 } 2306 2307 /* 2308 * Remove the event from a task's (or a CPU's) list of events. 2309 * 2310 * If event->ctx is a cloned context, callers must make sure that 2311 * every task struct that event->ctx->task could possibly point to 2312 * remains valid. This is OK when called from perf_release since 2313 * that only calls us on the top-level context, which can't be a clone. 2314 * When called from perf_event_exit_task, it's OK because the 2315 * context has been detached from its task. 2316 */ 2317 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2318 { 2319 struct perf_event_context *ctx = event->ctx; 2320 2321 lockdep_assert_held(&ctx->mutex); 2322 2323 event_function_call(event, __perf_remove_from_context, (void *)flags); 2324 2325 /* 2326 * The above event_function_call() can NO-OP when it hits 2327 * TASK_TOMBSTONE. In that case we must already have been detached 2328 * from the context (by perf_event_exit_event()) but the grouping 2329 * might still be in-tact. 2330 */ 2331 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2332 if ((flags & DETACH_GROUP) && 2333 (event->attach_state & PERF_ATTACH_GROUP)) { 2334 /* 2335 * Since in that case we cannot possibly be scheduled, simply 2336 * detach now. 2337 */ 2338 raw_spin_lock_irq(&ctx->lock); 2339 perf_group_detach(event); 2340 raw_spin_unlock_irq(&ctx->lock); 2341 } 2342 } 2343 2344 /* 2345 * Cross CPU call to disable a performance event 2346 */ 2347 static void __perf_event_disable(struct perf_event *event, 2348 struct perf_cpu_context *cpuctx, 2349 struct perf_event_context *ctx, 2350 void *info) 2351 { 2352 if (event->state < PERF_EVENT_STATE_INACTIVE) 2353 return; 2354 2355 if (ctx->is_active & EVENT_TIME) { 2356 update_context_time(ctx); 2357 update_cgrp_time_from_event(event); 2358 } 2359 2360 if (event == event->group_leader) 2361 group_sched_out(event, cpuctx, ctx); 2362 else 2363 event_sched_out(event, cpuctx, ctx); 2364 2365 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2366 } 2367 2368 /* 2369 * Disable an event. 2370 * 2371 * If event->ctx is a cloned context, callers must make sure that 2372 * every task struct that event->ctx->task could possibly point to 2373 * remains valid. This condition is satisfied when called through 2374 * perf_event_for_each_child or perf_event_for_each because they 2375 * hold the top-level event's child_mutex, so any descendant that 2376 * goes to exit will block in perf_event_exit_event(). 2377 * 2378 * When called from perf_pending_event it's OK because event->ctx 2379 * is the current context on this CPU and preemption is disabled, 2380 * hence we can't get into perf_event_task_sched_out for this context. 2381 */ 2382 static void _perf_event_disable(struct perf_event *event) 2383 { 2384 struct perf_event_context *ctx = event->ctx; 2385 2386 raw_spin_lock_irq(&ctx->lock); 2387 if (event->state <= PERF_EVENT_STATE_OFF) { 2388 raw_spin_unlock_irq(&ctx->lock); 2389 return; 2390 } 2391 raw_spin_unlock_irq(&ctx->lock); 2392 2393 event_function_call(event, __perf_event_disable, NULL); 2394 } 2395 2396 void perf_event_disable_local(struct perf_event *event) 2397 { 2398 event_function_local(event, __perf_event_disable, NULL); 2399 } 2400 2401 /* 2402 * Strictly speaking kernel users cannot create groups and therefore this 2403 * interface does not need the perf_event_ctx_lock() magic. 2404 */ 2405 void perf_event_disable(struct perf_event *event) 2406 { 2407 struct perf_event_context *ctx; 2408 2409 ctx = perf_event_ctx_lock(event); 2410 _perf_event_disable(event); 2411 perf_event_ctx_unlock(event, ctx); 2412 } 2413 EXPORT_SYMBOL_GPL(perf_event_disable); 2414 2415 void perf_event_disable_inatomic(struct perf_event *event) 2416 { 2417 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2418 /* can fail, see perf_pending_event_disable() */ 2419 irq_work_queue(&event->pending); 2420 } 2421 2422 static void perf_set_shadow_time(struct perf_event *event, 2423 struct perf_event_context *ctx) 2424 { 2425 /* 2426 * use the correct time source for the time snapshot 2427 * 2428 * We could get by without this by leveraging the 2429 * fact that to get to this function, the caller 2430 * has most likely already called update_context_time() 2431 * and update_cgrp_time_xx() and thus both timestamp 2432 * are identical (or very close). Given that tstamp is, 2433 * already adjusted for cgroup, we could say that: 2434 * tstamp - ctx->timestamp 2435 * is equivalent to 2436 * tstamp - cgrp->timestamp. 2437 * 2438 * Then, in perf_output_read(), the calculation would 2439 * work with no changes because: 2440 * - event is guaranteed scheduled in 2441 * - no scheduled out in between 2442 * - thus the timestamp would be the same 2443 * 2444 * But this is a bit hairy. 2445 * 2446 * So instead, we have an explicit cgroup call to remain 2447 * within the time time source all along. We believe it 2448 * is cleaner and simpler to understand. 2449 */ 2450 if (is_cgroup_event(event)) 2451 perf_cgroup_set_shadow_time(event, event->tstamp); 2452 else 2453 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2454 } 2455 2456 #define MAX_INTERRUPTS (~0ULL) 2457 2458 static void perf_log_throttle(struct perf_event *event, int enable); 2459 static void perf_log_itrace_start(struct perf_event *event); 2460 2461 static int 2462 event_sched_in(struct perf_event *event, 2463 struct perf_cpu_context *cpuctx, 2464 struct perf_event_context *ctx) 2465 { 2466 int ret = 0; 2467 2468 WARN_ON_ONCE(event->ctx != ctx); 2469 2470 lockdep_assert_held(&ctx->lock); 2471 2472 if (event->state <= PERF_EVENT_STATE_OFF) 2473 return 0; 2474 2475 WRITE_ONCE(event->oncpu, smp_processor_id()); 2476 /* 2477 * Order event::oncpu write to happen before the ACTIVE state is 2478 * visible. This allows perf_event_{stop,read}() to observe the correct 2479 * ->oncpu if it sees ACTIVE. 2480 */ 2481 smp_wmb(); 2482 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2483 2484 /* 2485 * Unthrottle events, since we scheduled we might have missed several 2486 * ticks already, also for a heavily scheduling task there is little 2487 * guarantee it'll get a tick in a timely manner. 2488 */ 2489 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2490 perf_log_throttle(event, 1); 2491 event->hw.interrupts = 0; 2492 } 2493 2494 perf_pmu_disable(event->pmu); 2495 2496 perf_set_shadow_time(event, ctx); 2497 2498 perf_log_itrace_start(event); 2499 2500 if (event->pmu->add(event, PERF_EF_START)) { 2501 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2502 event->oncpu = -1; 2503 ret = -EAGAIN; 2504 goto out; 2505 } 2506 2507 if (!is_software_event(event)) 2508 cpuctx->active_oncpu++; 2509 if (!ctx->nr_active++) 2510 perf_event_ctx_activate(ctx); 2511 if (event->attr.freq && event->attr.sample_freq) 2512 ctx->nr_freq++; 2513 2514 if (event->attr.exclusive) 2515 cpuctx->exclusive = 1; 2516 2517 out: 2518 perf_pmu_enable(event->pmu); 2519 2520 return ret; 2521 } 2522 2523 static int 2524 group_sched_in(struct perf_event *group_event, 2525 struct perf_cpu_context *cpuctx, 2526 struct perf_event_context *ctx) 2527 { 2528 struct perf_event *event, *partial_group = NULL; 2529 struct pmu *pmu = ctx->pmu; 2530 2531 if (group_event->state == PERF_EVENT_STATE_OFF) 2532 return 0; 2533 2534 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2535 2536 if (event_sched_in(group_event, cpuctx, ctx)) { 2537 pmu->cancel_txn(pmu); 2538 perf_mux_hrtimer_restart(cpuctx); 2539 return -EAGAIN; 2540 } 2541 2542 /* 2543 * Schedule in siblings as one group (if any): 2544 */ 2545 for_each_sibling_event(event, group_event) { 2546 if (event_sched_in(event, cpuctx, ctx)) { 2547 partial_group = event; 2548 goto group_error; 2549 } 2550 } 2551 2552 if (!pmu->commit_txn(pmu)) 2553 return 0; 2554 2555 group_error: 2556 /* 2557 * Groups can be scheduled in as one unit only, so undo any 2558 * partial group before returning: 2559 * The events up to the failed event are scheduled out normally. 2560 */ 2561 for_each_sibling_event(event, group_event) { 2562 if (event == partial_group) 2563 break; 2564 2565 event_sched_out(event, cpuctx, ctx); 2566 } 2567 event_sched_out(group_event, cpuctx, ctx); 2568 2569 pmu->cancel_txn(pmu); 2570 2571 perf_mux_hrtimer_restart(cpuctx); 2572 2573 return -EAGAIN; 2574 } 2575 2576 /* 2577 * Work out whether we can put this event group on the CPU now. 2578 */ 2579 static int group_can_go_on(struct perf_event *event, 2580 struct perf_cpu_context *cpuctx, 2581 int can_add_hw) 2582 { 2583 /* 2584 * Groups consisting entirely of software events can always go on. 2585 */ 2586 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2587 return 1; 2588 /* 2589 * If an exclusive group is already on, no other hardware 2590 * events can go on. 2591 */ 2592 if (cpuctx->exclusive) 2593 return 0; 2594 /* 2595 * If this group is exclusive and there are already 2596 * events on the CPU, it can't go on. 2597 */ 2598 if (event->attr.exclusive && cpuctx->active_oncpu) 2599 return 0; 2600 /* 2601 * Otherwise, try to add it if all previous groups were able 2602 * to go on. 2603 */ 2604 return can_add_hw; 2605 } 2606 2607 static void add_event_to_ctx(struct perf_event *event, 2608 struct perf_event_context *ctx) 2609 { 2610 list_add_event(event, ctx); 2611 perf_group_attach(event); 2612 } 2613 2614 static void ctx_sched_out(struct perf_event_context *ctx, 2615 struct perf_cpu_context *cpuctx, 2616 enum event_type_t event_type); 2617 static void 2618 ctx_sched_in(struct perf_event_context *ctx, 2619 struct perf_cpu_context *cpuctx, 2620 enum event_type_t event_type, 2621 struct task_struct *task); 2622 2623 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2624 struct perf_event_context *ctx, 2625 enum event_type_t event_type) 2626 { 2627 if (!cpuctx->task_ctx) 2628 return; 2629 2630 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2631 return; 2632 2633 ctx_sched_out(ctx, cpuctx, event_type); 2634 } 2635 2636 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2637 struct perf_event_context *ctx, 2638 struct task_struct *task) 2639 { 2640 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2641 if (ctx) 2642 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2643 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2644 if (ctx) 2645 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2646 } 2647 2648 /* 2649 * We want to maintain the following priority of scheduling: 2650 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2651 * - task pinned (EVENT_PINNED) 2652 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2653 * - task flexible (EVENT_FLEXIBLE). 2654 * 2655 * In order to avoid unscheduling and scheduling back in everything every 2656 * time an event is added, only do it for the groups of equal priority and 2657 * below. 2658 * 2659 * This can be called after a batch operation on task events, in which case 2660 * event_type is a bit mask of the types of events involved. For CPU events, 2661 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2662 */ 2663 static void ctx_resched(struct perf_cpu_context *cpuctx, 2664 struct perf_event_context *task_ctx, 2665 enum event_type_t event_type) 2666 { 2667 enum event_type_t ctx_event_type; 2668 bool cpu_event = !!(event_type & EVENT_CPU); 2669 2670 /* 2671 * If pinned groups are involved, flexible groups also need to be 2672 * scheduled out. 2673 */ 2674 if (event_type & EVENT_PINNED) 2675 event_type |= EVENT_FLEXIBLE; 2676 2677 ctx_event_type = event_type & EVENT_ALL; 2678 2679 perf_pmu_disable(cpuctx->ctx.pmu); 2680 if (task_ctx) 2681 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2682 2683 /* 2684 * Decide which cpu ctx groups to schedule out based on the types 2685 * of events that caused rescheduling: 2686 * - EVENT_CPU: schedule out corresponding groups; 2687 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2688 * - otherwise, do nothing more. 2689 */ 2690 if (cpu_event) 2691 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2692 else if (ctx_event_type & EVENT_PINNED) 2693 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2694 2695 perf_event_sched_in(cpuctx, task_ctx, current); 2696 perf_pmu_enable(cpuctx->ctx.pmu); 2697 } 2698 2699 void perf_pmu_resched(struct pmu *pmu) 2700 { 2701 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2702 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2703 2704 perf_ctx_lock(cpuctx, task_ctx); 2705 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2706 perf_ctx_unlock(cpuctx, task_ctx); 2707 } 2708 2709 /* 2710 * Cross CPU call to install and enable a performance event 2711 * 2712 * Very similar to remote_function() + event_function() but cannot assume that 2713 * things like ctx->is_active and cpuctx->task_ctx are set. 2714 */ 2715 static int __perf_install_in_context(void *info) 2716 { 2717 struct perf_event *event = info; 2718 struct perf_event_context *ctx = event->ctx; 2719 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2720 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2721 bool reprogram = true; 2722 int ret = 0; 2723 2724 raw_spin_lock(&cpuctx->ctx.lock); 2725 if (ctx->task) { 2726 raw_spin_lock(&ctx->lock); 2727 task_ctx = ctx; 2728 2729 reprogram = (ctx->task == current); 2730 2731 /* 2732 * If the task is running, it must be running on this CPU, 2733 * otherwise we cannot reprogram things. 2734 * 2735 * If its not running, we don't care, ctx->lock will 2736 * serialize against it becoming runnable. 2737 */ 2738 if (task_curr(ctx->task) && !reprogram) { 2739 ret = -ESRCH; 2740 goto unlock; 2741 } 2742 2743 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2744 } else if (task_ctx) { 2745 raw_spin_lock(&task_ctx->lock); 2746 } 2747 2748 #ifdef CONFIG_CGROUP_PERF 2749 if (is_cgroup_event(event)) { 2750 /* 2751 * If the current cgroup doesn't match the event's 2752 * cgroup, we should not try to schedule it. 2753 */ 2754 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2755 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2756 event->cgrp->css.cgroup); 2757 } 2758 #endif 2759 2760 if (reprogram) { 2761 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2762 add_event_to_ctx(event, ctx); 2763 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2764 } else { 2765 add_event_to_ctx(event, ctx); 2766 } 2767 2768 unlock: 2769 perf_ctx_unlock(cpuctx, task_ctx); 2770 2771 return ret; 2772 } 2773 2774 static bool exclusive_event_installable(struct perf_event *event, 2775 struct perf_event_context *ctx); 2776 2777 /* 2778 * Attach a performance event to a context. 2779 * 2780 * Very similar to event_function_call, see comment there. 2781 */ 2782 static void 2783 perf_install_in_context(struct perf_event_context *ctx, 2784 struct perf_event *event, 2785 int cpu) 2786 { 2787 struct task_struct *task = READ_ONCE(ctx->task); 2788 2789 lockdep_assert_held(&ctx->mutex); 2790 2791 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2792 2793 if (event->cpu != -1) 2794 event->cpu = cpu; 2795 2796 /* 2797 * Ensures that if we can observe event->ctx, both the event and ctx 2798 * will be 'complete'. See perf_iterate_sb_cpu(). 2799 */ 2800 smp_store_release(&event->ctx, ctx); 2801 2802 /* 2803 * perf_event_attr::disabled events will not run and can be initialized 2804 * without IPI. Except when this is the first event for the context, in 2805 * that case we need the magic of the IPI to set ctx->is_active. 2806 * 2807 * The IOC_ENABLE that is sure to follow the creation of a disabled 2808 * event will issue the IPI and reprogram the hardware. 2809 */ 2810 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2811 raw_spin_lock_irq(&ctx->lock); 2812 if (ctx->task == TASK_TOMBSTONE) { 2813 raw_spin_unlock_irq(&ctx->lock); 2814 return; 2815 } 2816 add_event_to_ctx(event, ctx); 2817 raw_spin_unlock_irq(&ctx->lock); 2818 return; 2819 } 2820 2821 if (!task) { 2822 cpu_function_call(cpu, __perf_install_in_context, event); 2823 return; 2824 } 2825 2826 /* 2827 * Should not happen, we validate the ctx is still alive before calling. 2828 */ 2829 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2830 return; 2831 2832 /* 2833 * Installing events is tricky because we cannot rely on ctx->is_active 2834 * to be set in case this is the nr_events 0 -> 1 transition. 2835 * 2836 * Instead we use task_curr(), which tells us if the task is running. 2837 * However, since we use task_curr() outside of rq::lock, we can race 2838 * against the actual state. This means the result can be wrong. 2839 * 2840 * If we get a false positive, we retry, this is harmless. 2841 * 2842 * If we get a false negative, things are complicated. If we are after 2843 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2844 * value must be correct. If we're before, it doesn't matter since 2845 * perf_event_context_sched_in() will program the counter. 2846 * 2847 * However, this hinges on the remote context switch having observed 2848 * our task->perf_event_ctxp[] store, such that it will in fact take 2849 * ctx::lock in perf_event_context_sched_in(). 2850 * 2851 * We do this by task_function_call(), if the IPI fails to hit the task 2852 * we know any future context switch of task must see the 2853 * perf_event_ctpx[] store. 2854 */ 2855 2856 /* 2857 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2858 * task_cpu() load, such that if the IPI then does not find the task 2859 * running, a future context switch of that task must observe the 2860 * store. 2861 */ 2862 smp_mb(); 2863 again: 2864 if (!task_function_call(task, __perf_install_in_context, event)) 2865 return; 2866 2867 raw_spin_lock_irq(&ctx->lock); 2868 task = ctx->task; 2869 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2870 /* 2871 * Cannot happen because we already checked above (which also 2872 * cannot happen), and we hold ctx->mutex, which serializes us 2873 * against perf_event_exit_task_context(). 2874 */ 2875 raw_spin_unlock_irq(&ctx->lock); 2876 return; 2877 } 2878 /* 2879 * If the task is not running, ctx->lock will avoid it becoming so, 2880 * thus we can safely install the event. 2881 */ 2882 if (task_curr(task)) { 2883 raw_spin_unlock_irq(&ctx->lock); 2884 goto again; 2885 } 2886 add_event_to_ctx(event, ctx); 2887 raw_spin_unlock_irq(&ctx->lock); 2888 } 2889 2890 /* 2891 * Cross CPU call to enable a performance event 2892 */ 2893 static void __perf_event_enable(struct perf_event *event, 2894 struct perf_cpu_context *cpuctx, 2895 struct perf_event_context *ctx, 2896 void *info) 2897 { 2898 struct perf_event *leader = event->group_leader; 2899 struct perf_event_context *task_ctx; 2900 2901 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2902 event->state <= PERF_EVENT_STATE_ERROR) 2903 return; 2904 2905 if (ctx->is_active) 2906 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2907 2908 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2909 2910 if (!ctx->is_active) 2911 return; 2912 2913 if (!event_filter_match(event)) { 2914 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2915 return; 2916 } 2917 2918 /* 2919 * If the event is in a group and isn't the group leader, 2920 * then don't put it on unless the group is on. 2921 */ 2922 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2923 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2924 return; 2925 } 2926 2927 task_ctx = cpuctx->task_ctx; 2928 if (ctx->task) 2929 WARN_ON_ONCE(task_ctx != ctx); 2930 2931 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2932 } 2933 2934 /* 2935 * Enable an event. 2936 * 2937 * If event->ctx is a cloned context, callers must make sure that 2938 * every task struct that event->ctx->task could possibly point to 2939 * remains valid. This condition is satisfied when called through 2940 * perf_event_for_each_child or perf_event_for_each as described 2941 * for perf_event_disable. 2942 */ 2943 static void _perf_event_enable(struct perf_event *event) 2944 { 2945 struct perf_event_context *ctx = event->ctx; 2946 2947 raw_spin_lock_irq(&ctx->lock); 2948 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2949 event->state < PERF_EVENT_STATE_ERROR) { 2950 raw_spin_unlock_irq(&ctx->lock); 2951 return; 2952 } 2953 2954 /* 2955 * If the event is in error state, clear that first. 2956 * 2957 * That way, if we see the event in error state below, we know that it 2958 * has gone back into error state, as distinct from the task having 2959 * been scheduled away before the cross-call arrived. 2960 */ 2961 if (event->state == PERF_EVENT_STATE_ERROR) 2962 event->state = PERF_EVENT_STATE_OFF; 2963 raw_spin_unlock_irq(&ctx->lock); 2964 2965 event_function_call(event, __perf_event_enable, NULL); 2966 } 2967 2968 /* 2969 * See perf_event_disable(); 2970 */ 2971 void perf_event_enable(struct perf_event *event) 2972 { 2973 struct perf_event_context *ctx; 2974 2975 ctx = perf_event_ctx_lock(event); 2976 _perf_event_enable(event); 2977 perf_event_ctx_unlock(event, ctx); 2978 } 2979 EXPORT_SYMBOL_GPL(perf_event_enable); 2980 2981 struct stop_event_data { 2982 struct perf_event *event; 2983 unsigned int restart; 2984 }; 2985 2986 static int __perf_event_stop(void *info) 2987 { 2988 struct stop_event_data *sd = info; 2989 struct perf_event *event = sd->event; 2990 2991 /* if it's already INACTIVE, do nothing */ 2992 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2993 return 0; 2994 2995 /* matches smp_wmb() in event_sched_in() */ 2996 smp_rmb(); 2997 2998 /* 2999 * There is a window with interrupts enabled before we get here, 3000 * so we need to check again lest we try to stop another CPU's event. 3001 */ 3002 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3003 return -EAGAIN; 3004 3005 event->pmu->stop(event, PERF_EF_UPDATE); 3006 3007 /* 3008 * May race with the actual stop (through perf_pmu_output_stop()), 3009 * but it is only used for events with AUX ring buffer, and such 3010 * events will refuse to restart because of rb::aux_mmap_count==0, 3011 * see comments in perf_aux_output_begin(). 3012 * 3013 * Since this is happening on an event-local CPU, no trace is lost 3014 * while restarting. 3015 */ 3016 if (sd->restart) 3017 event->pmu->start(event, 0); 3018 3019 return 0; 3020 } 3021 3022 static int perf_event_stop(struct perf_event *event, int restart) 3023 { 3024 struct stop_event_data sd = { 3025 .event = event, 3026 .restart = restart, 3027 }; 3028 int ret = 0; 3029 3030 do { 3031 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3032 return 0; 3033 3034 /* matches smp_wmb() in event_sched_in() */ 3035 smp_rmb(); 3036 3037 /* 3038 * We only want to restart ACTIVE events, so if the event goes 3039 * inactive here (event->oncpu==-1), there's nothing more to do; 3040 * fall through with ret==-ENXIO. 3041 */ 3042 ret = cpu_function_call(READ_ONCE(event->oncpu), 3043 __perf_event_stop, &sd); 3044 } while (ret == -EAGAIN); 3045 3046 return ret; 3047 } 3048 3049 /* 3050 * In order to contain the amount of racy and tricky in the address filter 3051 * configuration management, it is a two part process: 3052 * 3053 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3054 * we update the addresses of corresponding vmas in 3055 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3056 * (p2) when an event is scheduled in (pmu::add), it calls 3057 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3058 * if the generation has changed since the previous call. 3059 * 3060 * If (p1) happens while the event is active, we restart it to force (p2). 3061 * 3062 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3063 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3064 * ioctl; 3065 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3066 * registered mapping, called for every new mmap(), with mm::mmap_sem down 3067 * for reading; 3068 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3069 * of exec. 3070 */ 3071 void perf_event_addr_filters_sync(struct perf_event *event) 3072 { 3073 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3074 3075 if (!has_addr_filter(event)) 3076 return; 3077 3078 raw_spin_lock(&ifh->lock); 3079 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3080 event->pmu->addr_filters_sync(event); 3081 event->hw.addr_filters_gen = event->addr_filters_gen; 3082 } 3083 raw_spin_unlock(&ifh->lock); 3084 } 3085 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3086 3087 static int _perf_event_refresh(struct perf_event *event, int refresh) 3088 { 3089 /* 3090 * not supported on inherited events 3091 */ 3092 if (event->attr.inherit || !is_sampling_event(event)) 3093 return -EINVAL; 3094 3095 atomic_add(refresh, &event->event_limit); 3096 _perf_event_enable(event); 3097 3098 return 0; 3099 } 3100 3101 /* 3102 * See perf_event_disable() 3103 */ 3104 int perf_event_refresh(struct perf_event *event, int refresh) 3105 { 3106 struct perf_event_context *ctx; 3107 int ret; 3108 3109 ctx = perf_event_ctx_lock(event); 3110 ret = _perf_event_refresh(event, refresh); 3111 perf_event_ctx_unlock(event, ctx); 3112 3113 return ret; 3114 } 3115 EXPORT_SYMBOL_GPL(perf_event_refresh); 3116 3117 static int perf_event_modify_breakpoint(struct perf_event *bp, 3118 struct perf_event_attr *attr) 3119 { 3120 int err; 3121 3122 _perf_event_disable(bp); 3123 3124 err = modify_user_hw_breakpoint_check(bp, attr, true); 3125 3126 if (!bp->attr.disabled) 3127 _perf_event_enable(bp); 3128 3129 return err; 3130 } 3131 3132 static int perf_event_modify_attr(struct perf_event *event, 3133 struct perf_event_attr *attr) 3134 { 3135 if (event->attr.type != attr->type) 3136 return -EINVAL; 3137 3138 switch (event->attr.type) { 3139 case PERF_TYPE_BREAKPOINT: 3140 return perf_event_modify_breakpoint(event, attr); 3141 default: 3142 /* Place holder for future additions. */ 3143 return -EOPNOTSUPP; 3144 } 3145 } 3146 3147 static void ctx_sched_out(struct perf_event_context *ctx, 3148 struct perf_cpu_context *cpuctx, 3149 enum event_type_t event_type) 3150 { 3151 struct perf_event *event, *tmp; 3152 int is_active = ctx->is_active; 3153 3154 lockdep_assert_held(&ctx->lock); 3155 3156 if (likely(!ctx->nr_events)) { 3157 /* 3158 * See __perf_remove_from_context(). 3159 */ 3160 WARN_ON_ONCE(ctx->is_active); 3161 if (ctx->task) 3162 WARN_ON_ONCE(cpuctx->task_ctx); 3163 return; 3164 } 3165 3166 ctx->is_active &= ~event_type; 3167 if (!(ctx->is_active & EVENT_ALL)) 3168 ctx->is_active = 0; 3169 3170 if (ctx->task) { 3171 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3172 if (!ctx->is_active) 3173 cpuctx->task_ctx = NULL; 3174 } 3175 3176 /* 3177 * Always update time if it was set; not only when it changes. 3178 * Otherwise we can 'forget' to update time for any but the last 3179 * context we sched out. For example: 3180 * 3181 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3182 * ctx_sched_out(.event_type = EVENT_PINNED) 3183 * 3184 * would only update time for the pinned events. 3185 */ 3186 if (is_active & EVENT_TIME) { 3187 /* update (and stop) ctx time */ 3188 update_context_time(ctx); 3189 update_cgrp_time_from_cpuctx(cpuctx); 3190 } 3191 3192 is_active ^= ctx->is_active; /* changed bits */ 3193 3194 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3195 return; 3196 3197 perf_pmu_disable(ctx->pmu); 3198 if (is_active & EVENT_PINNED) { 3199 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3200 group_sched_out(event, cpuctx, ctx); 3201 } 3202 3203 if (is_active & EVENT_FLEXIBLE) { 3204 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3205 group_sched_out(event, cpuctx, ctx); 3206 3207 /* 3208 * Since we cleared EVENT_FLEXIBLE, also clear 3209 * rotate_necessary, is will be reset by 3210 * ctx_flexible_sched_in() when needed. 3211 */ 3212 ctx->rotate_necessary = 0; 3213 } 3214 perf_pmu_enable(ctx->pmu); 3215 } 3216 3217 /* 3218 * Test whether two contexts are equivalent, i.e. whether they have both been 3219 * cloned from the same version of the same context. 3220 * 3221 * Equivalence is measured using a generation number in the context that is 3222 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3223 * and list_del_event(). 3224 */ 3225 static int context_equiv(struct perf_event_context *ctx1, 3226 struct perf_event_context *ctx2) 3227 { 3228 lockdep_assert_held(&ctx1->lock); 3229 lockdep_assert_held(&ctx2->lock); 3230 3231 /* Pinning disables the swap optimization */ 3232 if (ctx1->pin_count || ctx2->pin_count) 3233 return 0; 3234 3235 /* If ctx1 is the parent of ctx2 */ 3236 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3237 return 1; 3238 3239 /* If ctx2 is the parent of ctx1 */ 3240 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3241 return 1; 3242 3243 /* 3244 * If ctx1 and ctx2 have the same parent; we flatten the parent 3245 * hierarchy, see perf_event_init_context(). 3246 */ 3247 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3248 ctx1->parent_gen == ctx2->parent_gen) 3249 return 1; 3250 3251 /* Unmatched */ 3252 return 0; 3253 } 3254 3255 static void __perf_event_sync_stat(struct perf_event *event, 3256 struct perf_event *next_event) 3257 { 3258 u64 value; 3259 3260 if (!event->attr.inherit_stat) 3261 return; 3262 3263 /* 3264 * Update the event value, we cannot use perf_event_read() 3265 * because we're in the middle of a context switch and have IRQs 3266 * disabled, which upsets smp_call_function_single(), however 3267 * we know the event must be on the current CPU, therefore we 3268 * don't need to use it. 3269 */ 3270 if (event->state == PERF_EVENT_STATE_ACTIVE) 3271 event->pmu->read(event); 3272 3273 perf_event_update_time(event); 3274 3275 /* 3276 * In order to keep per-task stats reliable we need to flip the event 3277 * values when we flip the contexts. 3278 */ 3279 value = local64_read(&next_event->count); 3280 value = local64_xchg(&event->count, value); 3281 local64_set(&next_event->count, value); 3282 3283 swap(event->total_time_enabled, next_event->total_time_enabled); 3284 swap(event->total_time_running, next_event->total_time_running); 3285 3286 /* 3287 * Since we swizzled the values, update the user visible data too. 3288 */ 3289 perf_event_update_userpage(event); 3290 perf_event_update_userpage(next_event); 3291 } 3292 3293 static void perf_event_sync_stat(struct perf_event_context *ctx, 3294 struct perf_event_context *next_ctx) 3295 { 3296 struct perf_event *event, *next_event; 3297 3298 if (!ctx->nr_stat) 3299 return; 3300 3301 update_context_time(ctx); 3302 3303 event = list_first_entry(&ctx->event_list, 3304 struct perf_event, event_entry); 3305 3306 next_event = list_first_entry(&next_ctx->event_list, 3307 struct perf_event, event_entry); 3308 3309 while (&event->event_entry != &ctx->event_list && 3310 &next_event->event_entry != &next_ctx->event_list) { 3311 3312 __perf_event_sync_stat(event, next_event); 3313 3314 event = list_next_entry(event, event_entry); 3315 next_event = list_next_entry(next_event, event_entry); 3316 } 3317 } 3318 3319 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3320 struct task_struct *next) 3321 { 3322 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3323 struct perf_event_context *next_ctx; 3324 struct perf_event_context *parent, *next_parent; 3325 struct perf_cpu_context *cpuctx; 3326 int do_switch = 1; 3327 3328 if (likely(!ctx)) 3329 return; 3330 3331 cpuctx = __get_cpu_context(ctx); 3332 if (!cpuctx->task_ctx) 3333 return; 3334 3335 rcu_read_lock(); 3336 next_ctx = next->perf_event_ctxp[ctxn]; 3337 if (!next_ctx) 3338 goto unlock; 3339 3340 parent = rcu_dereference(ctx->parent_ctx); 3341 next_parent = rcu_dereference(next_ctx->parent_ctx); 3342 3343 /* If neither context have a parent context; they cannot be clones. */ 3344 if (!parent && !next_parent) 3345 goto unlock; 3346 3347 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3348 /* 3349 * Looks like the two contexts are clones, so we might be 3350 * able to optimize the context switch. We lock both 3351 * contexts and check that they are clones under the 3352 * lock (including re-checking that neither has been 3353 * uncloned in the meantime). It doesn't matter which 3354 * order we take the locks because no other cpu could 3355 * be trying to lock both of these tasks. 3356 */ 3357 raw_spin_lock(&ctx->lock); 3358 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3359 if (context_equiv(ctx, next_ctx)) { 3360 struct pmu *pmu = ctx->pmu; 3361 3362 WRITE_ONCE(ctx->task, next); 3363 WRITE_ONCE(next_ctx->task, task); 3364 3365 /* 3366 * PMU specific parts of task perf context can require 3367 * additional synchronization. As an example of such 3368 * synchronization see implementation details of Intel 3369 * LBR call stack data profiling; 3370 */ 3371 if (pmu->swap_task_ctx) 3372 pmu->swap_task_ctx(ctx, next_ctx); 3373 else 3374 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3375 3376 /* 3377 * RCU_INIT_POINTER here is safe because we've not 3378 * modified the ctx and the above modification of 3379 * ctx->task and ctx->task_ctx_data are immaterial 3380 * since those values are always verified under 3381 * ctx->lock which we're now holding. 3382 */ 3383 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3384 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3385 3386 do_switch = 0; 3387 3388 perf_event_sync_stat(ctx, next_ctx); 3389 } 3390 raw_spin_unlock(&next_ctx->lock); 3391 raw_spin_unlock(&ctx->lock); 3392 } 3393 unlock: 3394 rcu_read_unlock(); 3395 3396 if (do_switch) { 3397 raw_spin_lock(&ctx->lock); 3398 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3399 raw_spin_unlock(&ctx->lock); 3400 } 3401 } 3402 3403 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3404 3405 void perf_sched_cb_dec(struct pmu *pmu) 3406 { 3407 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3408 3409 this_cpu_dec(perf_sched_cb_usages); 3410 3411 if (!--cpuctx->sched_cb_usage) 3412 list_del(&cpuctx->sched_cb_entry); 3413 } 3414 3415 3416 void perf_sched_cb_inc(struct pmu *pmu) 3417 { 3418 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3419 3420 if (!cpuctx->sched_cb_usage++) 3421 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3422 3423 this_cpu_inc(perf_sched_cb_usages); 3424 } 3425 3426 /* 3427 * This function provides the context switch callback to the lower code 3428 * layer. It is invoked ONLY when the context switch callback is enabled. 3429 * 3430 * This callback is relevant even to per-cpu events; for example multi event 3431 * PEBS requires this to provide PID/TID information. This requires we flush 3432 * all queued PEBS records before we context switch to a new task. 3433 */ 3434 static void perf_pmu_sched_task(struct task_struct *prev, 3435 struct task_struct *next, 3436 bool sched_in) 3437 { 3438 struct perf_cpu_context *cpuctx; 3439 struct pmu *pmu; 3440 3441 if (prev == next) 3442 return; 3443 3444 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3445 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3446 3447 if (WARN_ON_ONCE(!pmu->sched_task)) 3448 continue; 3449 3450 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3451 perf_pmu_disable(pmu); 3452 3453 pmu->sched_task(cpuctx->task_ctx, sched_in); 3454 3455 perf_pmu_enable(pmu); 3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3457 } 3458 } 3459 3460 static void perf_event_switch(struct task_struct *task, 3461 struct task_struct *next_prev, bool sched_in); 3462 3463 #define for_each_task_context_nr(ctxn) \ 3464 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3465 3466 /* 3467 * Called from scheduler to remove the events of the current task, 3468 * with interrupts disabled. 3469 * 3470 * We stop each event and update the event value in event->count. 3471 * 3472 * This does not protect us against NMI, but disable() 3473 * sets the disabled bit in the control field of event _before_ 3474 * accessing the event control register. If a NMI hits, then it will 3475 * not restart the event. 3476 */ 3477 void __perf_event_task_sched_out(struct task_struct *task, 3478 struct task_struct *next) 3479 { 3480 int ctxn; 3481 3482 if (__this_cpu_read(perf_sched_cb_usages)) 3483 perf_pmu_sched_task(task, next, false); 3484 3485 if (atomic_read(&nr_switch_events)) 3486 perf_event_switch(task, next, false); 3487 3488 for_each_task_context_nr(ctxn) 3489 perf_event_context_sched_out(task, ctxn, next); 3490 3491 /* 3492 * if cgroup events exist on this CPU, then we need 3493 * to check if we have to switch out PMU state. 3494 * cgroup event are system-wide mode only 3495 */ 3496 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3497 perf_cgroup_sched_out(task, next); 3498 } 3499 3500 /* 3501 * Called with IRQs disabled 3502 */ 3503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3504 enum event_type_t event_type) 3505 { 3506 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3507 } 3508 3509 static bool perf_less_group_idx(const void *l, const void *r) 3510 { 3511 const struct perf_event *le = l, *re = r; 3512 3513 return le->group_index < re->group_index; 3514 } 3515 3516 static void swap_ptr(void *l, void *r) 3517 { 3518 void **lp = l, **rp = r; 3519 3520 swap(*lp, *rp); 3521 } 3522 3523 static const struct min_heap_callbacks perf_min_heap = { 3524 .elem_size = sizeof(struct perf_event *), 3525 .less = perf_less_group_idx, 3526 .swp = swap_ptr, 3527 }; 3528 3529 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3530 { 3531 struct perf_event **itrs = heap->data; 3532 3533 if (event) { 3534 itrs[heap->nr] = event; 3535 heap->nr++; 3536 } 3537 } 3538 3539 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3540 struct perf_event_groups *groups, int cpu, 3541 int (*func)(struct perf_event *, void *), 3542 void *data) 3543 { 3544 #ifdef CONFIG_CGROUP_PERF 3545 struct cgroup_subsys_state *css = NULL; 3546 #endif 3547 /* Space for per CPU and/or any CPU event iterators. */ 3548 struct perf_event *itrs[2]; 3549 struct min_heap event_heap; 3550 struct perf_event **evt; 3551 int ret; 3552 3553 if (cpuctx) { 3554 event_heap = (struct min_heap){ 3555 .data = cpuctx->heap, 3556 .nr = 0, 3557 .size = cpuctx->heap_size, 3558 }; 3559 3560 lockdep_assert_held(&cpuctx->ctx.lock); 3561 3562 #ifdef CONFIG_CGROUP_PERF 3563 if (cpuctx->cgrp) 3564 css = &cpuctx->cgrp->css; 3565 #endif 3566 } else { 3567 event_heap = (struct min_heap){ 3568 .data = itrs, 3569 .nr = 0, 3570 .size = ARRAY_SIZE(itrs), 3571 }; 3572 /* Events not within a CPU context may be on any CPU. */ 3573 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3574 } 3575 evt = event_heap.data; 3576 3577 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3578 3579 #ifdef CONFIG_CGROUP_PERF 3580 for (; css; css = css->parent) 3581 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3582 #endif 3583 3584 min_heapify_all(&event_heap, &perf_min_heap); 3585 3586 while (event_heap.nr) { 3587 ret = func(*evt, data); 3588 if (ret) 3589 return ret; 3590 3591 *evt = perf_event_groups_next(*evt); 3592 if (*evt) 3593 min_heapify(&event_heap, 0, &perf_min_heap); 3594 else 3595 min_heap_pop(&event_heap, &perf_min_heap); 3596 } 3597 3598 return 0; 3599 } 3600 3601 static int merge_sched_in(struct perf_event *event, void *data) 3602 { 3603 struct perf_event_context *ctx = event->ctx; 3604 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3605 int *can_add_hw = data; 3606 3607 if (event->state <= PERF_EVENT_STATE_OFF) 3608 return 0; 3609 3610 if (!event_filter_match(event)) 3611 return 0; 3612 3613 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3614 if (!group_sched_in(event, cpuctx, ctx)) 3615 list_add_tail(&event->active_list, get_event_list(event)); 3616 } 3617 3618 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3619 if (event->attr.pinned) 3620 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3621 3622 *can_add_hw = 0; 3623 ctx->rotate_necessary = 1; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static void 3630 ctx_pinned_sched_in(struct perf_event_context *ctx, 3631 struct perf_cpu_context *cpuctx) 3632 { 3633 int can_add_hw = 1; 3634 3635 if (ctx != &cpuctx->ctx) 3636 cpuctx = NULL; 3637 3638 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3639 smp_processor_id(), 3640 merge_sched_in, &can_add_hw); 3641 } 3642 3643 static void 3644 ctx_flexible_sched_in(struct perf_event_context *ctx, 3645 struct perf_cpu_context *cpuctx) 3646 { 3647 int can_add_hw = 1; 3648 3649 if (ctx != &cpuctx->ctx) 3650 cpuctx = NULL; 3651 3652 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3653 smp_processor_id(), 3654 merge_sched_in, &can_add_hw); 3655 } 3656 3657 static void 3658 ctx_sched_in(struct perf_event_context *ctx, 3659 struct perf_cpu_context *cpuctx, 3660 enum event_type_t event_type, 3661 struct task_struct *task) 3662 { 3663 int is_active = ctx->is_active; 3664 u64 now; 3665 3666 lockdep_assert_held(&ctx->lock); 3667 3668 if (likely(!ctx->nr_events)) 3669 return; 3670 3671 ctx->is_active |= (event_type | EVENT_TIME); 3672 if (ctx->task) { 3673 if (!is_active) 3674 cpuctx->task_ctx = ctx; 3675 else 3676 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3677 } 3678 3679 is_active ^= ctx->is_active; /* changed bits */ 3680 3681 if (is_active & EVENT_TIME) { 3682 /* start ctx time */ 3683 now = perf_clock(); 3684 ctx->timestamp = now; 3685 perf_cgroup_set_timestamp(task, ctx); 3686 } 3687 3688 /* 3689 * First go through the list and put on any pinned groups 3690 * in order to give them the best chance of going on. 3691 */ 3692 if (is_active & EVENT_PINNED) 3693 ctx_pinned_sched_in(ctx, cpuctx); 3694 3695 /* Then walk through the lower prio flexible groups */ 3696 if (is_active & EVENT_FLEXIBLE) 3697 ctx_flexible_sched_in(ctx, cpuctx); 3698 } 3699 3700 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3701 enum event_type_t event_type, 3702 struct task_struct *task) 3703 { 3704 struct perf_event_context *ctx = &cpuctx->ctx; 3705 3706 ctx_sched_in(ctx, cpuctx, event_type, task); 3707 } 3708 3709 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3710 struct task_struct *task) 3711 { 3712 struct perf_cpu_context *cpuctx; 3713 3714 cpuctx = __get_cpu_context(ctx); 3715 if (cpuctx->task_ctx == ctx) 3716 return; 3717 3718 perf_ctx_lock(cpuctx, ctx); 3719 /* 3720 * We must check ctx->nr_events while holding ctx->lock, such 3721 * that we serialize against perf_install_in_context(). 3722 */ 3723 if (!ctx->nr_events) 3724 goto unlock; 3725 3726 perf_pmu_disable(ctx->pmu); 3727 /* 3728 * We want to keep the following priority order: 3729 * cpu pinned (that don't need to move), task pinned, 3730 * cpu flexible, task flexible. 3731 * 3732 * However, if task's ctx is not carrying any pinned 3733 * events, no need to flip the cpuctx's events around. 3734 */ 3735 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3736 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3737 perf_event_sched_in(cpuctx, ctx, task); 3738 perf_pmu_enable(ctx->pmu); 3739 3740 unlock: 3741 perf_ctx_unlock(cpuctx, ctx); 3742 } 3743 3744 /* 3745 * Called from scheduler to add the events of the current task 3746 * with interrupts disabled. 3747 * 3748 * We restore the event value and then enable it. 3749 * 3750 * This does not protect us against NMI, but enable() 3751 * sets the enabled bit in the control field of event _before_ 3752 * accessing the event control register. If a NMI hits, then it will 3753 * keep the event running. 3754 */ 3755 void __perf_event_task_sched_in(struct task_struct *prev, 3756 struct task_struct *task) 3757 { 3758 struct perf_event_context *ctx; 3759 int ctxn; 3760 3761 /* 3762 * If cgroup events exist on this CPU, then we need to check if we have 3763 * to switch in PMU state; cgroup event are system-wide mode only. 3764 * 3765 * Since cgroup events are CPU events, we must schedule these in before 3766 * we schedule in the task events. 3767 */ 3768 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3769 perf_cgroup_sched_in(prev, task); 3770 3771 for_each_task_context_nr(ctxn) { 3772 ctx = task->perf_event_ctxp[ctxn]; 3773 if (likely(!ctx)) 3774 continue; 3775 3776 perf_event_context_sched_in(ctx, task); 3777 } 3778 3779 if (atomic_read(&nr_switch_events)) 3780 perf_event_switch(task, prev, true); 3781 3782 if (__this_cpu_read(perf_sched_cb_usages)) 3783 perf_pmu_sched_task(prev, task, true); 3784 } 3785 3786 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3787 { 3788 u64 frequency = event->attr.sample_freq; 3789 u64 sec = NSEC_PER_SEC; 3790 u64 divisor, dividend; 3791 3792 int count_fls, nsec_fls, frequency_fls, sec_fls; 3793 3794 count_fls = fls64(count); 3795 nsec_fls = fls64(nsec); 3796 frequency_fls = fls64(frequency); 3797 sec_fls = 30; 3798 3799 /* 3800 * We got @count in @nsec, with a target of sample_freq HZ 3801 * the target period becomes: 3802 * 3803 * @count * 10^9 3804 * period = ------------------- 3805 * @nsec * sample_freq 3806 * 3807 */ 3808 3809 /* 3810 * Reduce accuracy by one bit such that @a and @b converge 3811 * to a similar magnitude. 3812 */ 3813 #define REDUCE_FLS(a, b) \ 3814 do { \ 3815 if (a##_fls > b##_fls) { \ 3816 a >>= 1; \ 3817 a##_fls--; \ 3818 } else { \ 3819 b >>= 1; \ 3820 b##_fls--; \ 3821 } \ 3822 } while (0) 3823 3824 /* 3825 * Reduce accuracy until either term fits in a u64, then proceed with 3826 * the other, so that finally we can do a u64/u64 division. 3827 */ 3828 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3829 REDUCE_FLS(nsec, frequency); 3830 REDUCE_FLS(sec, count); 3831 } 3832 3833 if (count_fls + sec_fls > 64) { 3834 divisor = nsec * frequency; 3835 3836 while (count_fls + sec_fls > 64) { 3837 REDUCE_FLS(count, sec); 3838 divisor >>= 1; 3839 } 3840 3841 dividend = count * sec; 3842 } else { 3843 dividend = count * sec; 3844 3845 while (nsec_fls + frequency_fls > 64) { 3846 REDUCE_FLS(nsec, frequency); 3847 dividend >>= 1; 3848 } 3849 3850 divisor = nsec * frequency; 3851 } 3852 3853 if (!divisor) 3854 return dividend; 3855 3856 return div64_u64(dividend, divisor); 3857 } 3858 3859 static DEFINE_PER_CPU(int, perf_throttled_count); 3860 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3861 3862 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3863 { 3864 struct hw_perf_event *hwc = &event->hw; 3865 s64 period, sample_period; 3866 s64 delta; 3867 3868 period = perf_calculate_period(event, nsec, count); 3869 3870 delta = (s64)(period - hwc->sample_period); 3871 delta = (delta + 7) / 8; /* low pass filter */ 3872 3873 sample_period = hwc->sample_period + delta; 3874 3875 if (!sample_period) 3876 sample_period = 1; 3877 3878 hwc->sample_period = sample_period; 3879 3880 if (local64_read(&hwc->period_left) > 8*sample_period) { 3881 if (disable) 3882 event->pmu->stop(event, PERF_EF_UPDATE); 3883 3884 local64_set(&hwc->period_left, 0); 3885 3886 if (disable) 3887 event->pmu->start(event, PERF_EF_RELOAD); 3888 } 3889 } 3890 3891 /* 3892 * combine freq adjustment with unthrottling to avoid two passes over the 3893 * events. At the same time, make sure, having freq events does not change 3894 * the rate of unthrottling as that would introduce bias. 3895 */ 3896 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3897 int needs_unthr) 3898 { 3899 struct perf_event *event; 3900 struct hw_perf_event *hwc; 3901 u64 now, period = TICK_NSEC; 3902 s64 delta; 3903 3904 /* 3905 * only need to iterate over all events iff: 3906 * - context have events in frequency mode (needs freq adjust) 3907 * - there are events to unthrottle on this cpu 3908 */ 3909 if (!(ctx->nr_freq || needs_unthr)) 3910 return; 3911 3912 raw_spin_lock(&ctx->lock); 3913 perf_pmu_disable(ctx->pmu); 3914 3915 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3916 if (event->state != PERF_EVENT_STATE_ACTIVE) 3917 continue; 3918 3919 if (!event_filter_match(event)) 3920 continue; 3921 3922 perf_pmu_disable(event->pmu); 3923 3924 hwc = &event->hw; 3925 3926 if (hwc->interrupts == MAX_INTERRUPTS) { 3927 hwc->interrupts = 0; 3928 perf_log_throttle(event, 1); 3929 event->pmu->start(event, 0); 3930 } 3931 3932 if (!event->attr.freq || !event->attr.sample_freq) 3933 goto next; 3934 3935 /* 3936 * stop the event and update event->count 3937 */ 3938 event->pmu->stop(event, PERF_EF_UPDATE); 3939 3940 now = local64_read(&event->count); 3941 delta = now - hwc->freq_count_stamp; 3942 hwc->freq_count_stamp = now; 3943 3944 /* 3945 * restart the event 3946 * reload only if value has changed 3947 * we have stopped the event so tell that 3948 * to perf_adjust_period() to avoid stopping it 3949 * twice. 3950 */ 3951 if (delta > 0) 3952 perf_adjust_period(event, period, delta, false); 3953 3954 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3955 next: 3956 perf_pmu_enable(event->pmu); 3957 } 3958 3959 perf_pmu_enable(ctx->pmu); 3960 raw_spin_unlock(&ctx->lock); 3961 } 3962 3963 /* 3964 * Move @event to the tail of the @ctx's elegible events. 3965 */ 3966 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3967 { 3968 /* 3969 * Rotate the first entry last of non-pinned groups. Rotation might be 3970 * disabled by the inheritance code. 3971 */ 3972 if (ctx->rotate_disable) 3973 return; 3974 3975 perf_event_groups_delete(&ctx->flexible_groups, event); 3976 perf_event_groups_insert(&ctx->flexible_groups, event); 3977 } 3978 3979 /* pick an event from the flexible_groups to rotate */ 3980 static inline struct perf_event * 3981 ctx_event_to_rotate(struct perf_event_context *ctx) 3982 { 3983 struct perf_event *event; 3984 3985 /* pick the first active flexible event */ 3986 event = list_first_entry_or_null(&ctx->flexible_active, 3987 struct perf_event, active_list); 3988 3989 /* if no active flexible event, pick the first event */ 3990 if (!event) { 3991 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3992 typeof(*event), group_node); 3993 } 3994 3995 /* 3996 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 3997 * finds there are unschedulable events, it will set it again. 3998 */ 3999 ctx->rotate_necessary = 0; 4000 4001 return event; 4002 } 4003 4004 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4005 { 4006 struct perf_event *cpu_event = NULL, *task_event = NULL; 4007 struct perf_event_context *task_ctx = NULL; 4008 int cpu_rotate, task_rotate; 4009 4010 /* 4011 * Since we run this from IRQ context, nobody can install new 4012 * events, thus the event count values are stable. 4013 */ 4014 4015 cpu_rotate = cpuctx->ctx.rotate_necessary; 4016 task_ctx = cpuctx->task_ctx; 4017 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4018 4019 if (!(cpu_rotate || task_rotate)) 4020 return false; 4021 4022 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4023 perf_pmu_disable(cpuctx->ctx.pmu); 4024 4025 if (task_rotate) 4026 task_event = ctx_event_to_rotate(task_ctx); 4027 if (cpu_rotate) 4028 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4029 4030 /* 4031 * As per the order given at ctx_resched() first 'pop' task flexible 4032 * and then, if needed CPU flexible. 4033 */ 4034 if (task_event || (task_ctx && cpu_event)) 4035 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4036 if (cpu_event) 4037 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4038 4039 if (task_event) 4040 rotate_ctx(task_ctx, task_event); 4041 if (cpu_event) 4042 rotate_ctx(&cpuctx->ctx, cpu_event); 4043 4044 perf_event_sched_in(cpuctx, task_ctx, current); 4045 4046 perf_pmu_enable(cpuctx->ctx.pmu); 4047 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4048 4049 return true; 4050 } 4051 4052 void perf_event_task_tick(void) 4053 { 4054 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4055 struct perf_event_context *ctx, *tmp; 4056 int throttled; 4057 4058 lockdep_assert_irqs_disabled(); 4059 4060 __this_cpu_inc(perf_throttled_seq); 4061 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4062 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4063 4064 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4065 perf_adjust_freq_unthr_context(ctx, throttled); 4066 } 4067 4068 static int event_enable_on_exec(struct perf_event *event, 4069 struct perf_event_context *ctx) 4070 { 4071 if (!event->attr.enable_on_exec) 4072 return 0; 4073 4074 event->attr.enable_on_exec = 0; 4075 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4076 return 0; 4077 4078 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4079 4080 return 1; 4081 } 4082 4083 /* 4084 * Enable all of a task's events that have been marked enable-on-exec. 4085 * This expects task == current. 4086 */ 4087 static void perf_event_enable_on_exec(int ctxn) 4088 { 4089 struct perf_event_context *ctx, *clone_ctx = NULL; 4090 enum event_type_t event_type = 0; 4091 struct perf_cpu_context *cpuctx; 4092 struct perf_event *event; 4093 unsigned long flags; 4094 int enabled = 0; 4095 4096 local_irq_save(flags); 4097 ctx = current->perf_event_ctxp[ctxn]; 4098 if (!ctx || !ctx->nr_events) 4099 goto out; 4100 4101 cpuctx = __get_cpu_context(ctx); 4102 perf_ctx_lock(cpuctx, ctx); 4103 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4104 list_for_each_entry(event, &ctx->event_list, event_entry) { 4105 enabled |= event_enable_on_exec(event, ctx); 4106 event_type |= get_event_type(event); 4107 } 4108 4109 /* 4110 * Unclone and reschedule this context if we enabled any event. 4111 */ 4112 if (enabled) { 4113 clone_ctx = unclone_ctx(ctx); 4114 ctx_resched(cpuctx, ctx, event_type); 4115 } else { 4116 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4117 } 4118 perf_ctx_unlock(cpuctx, ctx); 4119 4120 out: 4121 local_irq_restore(flags); 4122 4123 if (clone_ctx) 4124 put_ctx(clone_ctx); 4125 } 4126 4127 struct perf_read_data { 4128 struct perf_event *event; 4129 bool group; 4130 int ret; 4131 }; 4132 4133 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4134 { 4135 u16 local_pkg, event_pkg; 4136 4137 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4138 int local_cpu = smp_processor_id(); 4139 4140 event_pkg = topology_physical_package_id(event_cpu); 4141 local_pkg = topology_physical_package_id(local_cpu); 4142 4143 if (event_pkg == local_pkg) 4144 return local_cpu; 4145 } 4146 4147 return event_cpu; 4148 } 4149 4150 /* 4151 * Cross CPU call to read the hardware event 4152 */ 4153 static void __perf_event_read(void *info) 4154 { 4155 struct perf_read_data *data = info; 4156 struct perf_event *sub, *event = data->event; 4157 struct perf_event_context *ctx = event->ctx; 4158 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4159 struct pmu *pmu = event->pmu; 4160 4161 /* 4162 * If this is a task context, we need to check whether it is 4163 * the current task context of this cpu. If not it has been 4164 * scheduled out before the smp call arrived. In that case 4165 * event->count would have been updated to a recent sample 4166 * when the event was scheduled out. 4167 */ 4168 if (ctx->task && cpuctx->task_ctx != ctx) 4169 return; 4170 4171 raw_spin_lock(&ctx->lock); 4172 if (ctx->is_active & EVENT_TIME) { 4173 update_context_time(ctx); 4174 update_cgrp_time_from_event(event); 4175 } 4176 4177 perf_event_update_time(event); 4178 if (data->group) 4179 perf_event_update_sibling_time(event); 4180 4181 if (event->state != PERF_EVENT_STATE_ACTIVE) 4182 goto unlock; 4183 4184 if (!data->group) { 4185 pmu->read(event); 4186 data->ret = 0; 4187 goto unlock; 4188 } 4189 4190 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4191 4192 pmu->read(event); 4193 4194 for_each_sibling_event(sub, event) { 4195 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4196 /* 4197 * Use sibling's PMU rather than @event's since 4198 * sibling could be on different (eg: software) PMU. 4199 */ 4200 sub->pmu->read(sub); 4201 } 4202 } 4203 4204 data->ret = pmu->commit_txn(pmu); 4205 4206 unlock: 4207 raw_spin_unlock(&ctx->lock); 4208 } 4209 4210 static inline u64 perf_event_count(struct perf_event *event) 4211 { 4212 return local64_read(&event->count) + atomic64_read(&event->child_count); 4213 } 4214 4215 /* 4216 * NMI-safe method to read a local event, that is an event that 4217 * is: 4218 * - either for the current task, or for this CPU 4219 * - does not have inherit set, for inherited task events 4220 * will not be local and we cannot read them atomically 4221 * - must not have a pmu::count method 4222 */ 4223 int perf_event_read_local(struct perf_event *event, u64 *value, 4224 u64 *enabled, u64 *running) 4225 { 4226 unsigned long flags; 4227 int ret = 0; 4228 4229 /* 4230 * Disabling interrupts avoids all counter scheduling (context 4231 * switches, timer based rotation and IPIs). 4232 */ 4233 local_irq_save(flags); 4234 4235 /* 4236 * It must not be an event with inherit set, we cannot read 4237 * all child counters from atomic context. 4238 */ 4239 if (event->attr.inherit) { 4240 ret = -EOPNOTSUPP; 4241 goto out; 4242 } 4243 4244 /* If this is a per-task event, it must be for current */ 4245 if ((event->attach_state & PERF_ATTACH_TASK) && 4246 event->hw.target != current) { 4247 ret = -EINVAL; 4248 goto out; 4249 } 4250 4251 /* If this is a per-CPU event, it must be for this CPU */ 4252 if (!(event->attach_state & PERF_ATTACH_TASK) && 4253 event->cpu != smp_processor_id()) { 4254 ret = -EINVAL; 4255 goto out; 4256 } 4257 4258 /* If this is a pinned event it must be running on this CPU */ 4259 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4260 ret = -EBUSY; 4261 goto out; 4262 } 4263 4264 /* 4265 * If the event is currently on this CPU, its either a per-task event, 4266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4267 * oncpu == -1). 4268 */ 4269 if (event->oncpu == smp_processor_id()) 4270 event->pmu->read(event); 4271 4272 *value = local64_read(&event->count); 4273 if (enabled || running) { 4274 u64 now = event->shadow_ctx_time + perf_clock(); 4275 u64 __enabled, __running; 4276 4277 __perf_update_times(event, now, &__enabled, &__running); 4278 if (enabled) 4279 *enabled = __enabled; 4280 if (running) 4281 *running = __running; 4282 } 4283 out: 4284 local_irq_restore(flags); 4285 4286 return ret; 4287 } 4288 4289 static int perf_event_read(struct perf_event *event, bool group) 4290 { 4291 enum perf_event_state state = READ_ONCE(event->state); 4292 int event_cpu, ret = 0; 4293 4294 /* 4295 * If event is enabled and currently active on a CPU, update the 4296 * value in the event structure: 4297 */ 4298 again: 4299 if (state == PERF_EVENT_STATE_ACTIVE) { 4300 struct perf_read_data data; 4301 4302 /* 4303 * Orders the ->state and ->oncpu loads such that if we see 4304 * ACTIVE we must also see the right ->oncpu. 4305 * 4306 * Matches the smp_wmb() from event_sched_in(). 4307 */ 4308 smp_rmb(); 4309 4310 event_cpu = READ_ONCE(event->oncpu); 4311 if ((unsigned)event_cpu >= nr_cpu_ids) 4312 return 0; 4313 4314 data = (struct perf_read_data){ 4315 .event = event, 4316 .group = group, 4317 .ret = 0, 4318 }; 4319 4320 preempt_disable(); 4321 event_cpu = __perf_event_read_cpu(event, event_cpu); 4322 4323 /* 4324 * Purposely ignore the smp_call_function_single() return 4325 * value. 4326 * 4327 * If event_cpu isn't a valid CPU it means the event got 4328 * scheduled out and that will have updated the event count. 4329 * 4330 * Therefore, either way, we'll have an up-to-date event count 4331 * after this. 4332 */ 4333 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4334 preempt_enable(); 4335 ret = data.ret; 4336 4337 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4338 struct perf_event_context *ctx = event->ctx; 4339 unsigned long flags; 4340 4341 raw_spin_lock_irqsave(&ctx->lock, flags); 4342 state = event->state; 4343 if (state != PERF_EVENT_STATE_INACTIVE) { 4344 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4345 goto again; 4346 } 4347 4348 /* 4349 * May read while context is not active (e.g., thread is 4350 * blocked), in that case we cannot update context time 4351 */ 4352 if (ctx->is_active & EVENT_TIME) { 4353 update_context_time(ctx); 4354 update_cgrp_time_from_event(event); 4355 } 4356 4357 perf_event_update_time(event); 4358 if (group) 4359 perf_event_update_sibling_time(event); 4360 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4361 } 4362 4363 return ret; 4364 } 4365 4366 /* 4367 * Initialize the perf_event context in a task_struct: 4368 */ 4369 static void __perf_event_init_context(struct perf_event_context *ctx) 4370 { 4371 raw_spin_lock_init(&ctx->lock); 4372 mutex_init(&ctx->mutex); 4373 INIT_LIST_HEAD(&ctx->active_ctx_list); 4374 perf_event_groups_init(&ctx->pinned_groups); 4375 perf_event_groups_init(&ctx->flexible_groups); 4376 INIT_LIST_HEAD(&ctx->event_list); 4377 INIT_LIST_HEAD(&ctx->pinned_active); 4378 INIT_LIST_HEAD(&ctx->flexible_active); 4379 refcount_set(&ctx->refcount, 1); 4380 } 4381 4382 static struct perf_event_context * 4383 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4384 { 4385 struct perf_event_context *ctx; 4386 4387 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4388 if (!ctx) 4389 return NULL; 4390 4391 __perf_event_init_context(ctx); 4392 if (task) 4393 ctx->task = get_task_struct(task); 4394 ctx->pmu = pmu; 4395 4396 return ctx; 4397 } 4398 4399 static struct task_struct * 4400 find_lively_task_by_vpid(pid_t vpid) 4401 { 4402 struct task_struct *task; 4403 4404 rcu_read_lock(); 4405 if (!vpid) 4406 task = current; 4407 else 4408 task = find_task_by_vpid(vpid); 4409 if (task) 4410 get_task_struct(task); 4411 rcu_read_unlock(); 4412 4413 if (!task) 4414 return ERR_PTR(-ESRCH); 4415 4416 return task; 4417 } 4418 4419 /* 4420 * Returns a matching context with refcount and pincount. 4421 */ 4422 static struct perf_event_context * 4423 find_get_context(struct pmu *pmu, struct task_struct *task, 4424 struct perf_event *event) 4425 { 4426 struct perf_event_context *ctx, *clone_ctx = NULL; 4427 struct perf_cpu_context *cpuctx; 4428 void *task_ctx_data = NULL; 4429 unsigned long flags; 4430 int ctxn, err; 4431 int cpu = event->cpu; 4432 4433 if (!task) { 4434 /* Must be root to operate on a CPU event: */ 4435 err = perf_allow_cpu(&event->attr); 4436 if (err) 4437 return ERR_PTR(err); 4438 4439 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4440 ctx = &cpuctx->ctx; 4441 get_ctx(ctx); 4442 ++ctx->pin_count; 4443 4444 return ctx; 4445 } 4446 4447 err = -EINVAL; 4448 ctxn = pmu->task_ctx_nr; 4449 if (ctxn < 0) 4450 goto errout; 4451 4452 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4453 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4454 if (!task_ctx_data) { 4455 err = -ENOMEM; 4456 goto errout; 4457 } 4458 } 4459 4460 retry: 4461 ctx = perf_lock_task_context(task, ctxn, &flags); 4462 if (ctx) { 4463 clone_ctx = unclone_ctx(ctx); 4464 ++ctx->pin_count; 4465 4466 if (task_ctx_data && !ctx->task_ctx_data) { 4467 ctx->task_ctx_data = task_ctx_data; 4468 task_ctx_data = NULL; 4469 } 4470 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4471 4472 if (clone_ctx) 4473 put_ctx(clone_ctx); 4474 } else { 4475 ctx = alloc_perf_context(pmu, task); 4476 err = -ENOMEM; 4477 if (!ctx) 4478 goto errout; 4479 4480 if (task_ctx_data) { 4481 ctx->task_ctx_data = task_ctx_data; 4482 task_ctx_data = NULL; 4483 } 4484 4485 err = 0; 4486 mutex_lock(&task->perf_event_mutex); 4487 /* 4488 * If it has already passed perf_event_exit_task(). 4489 * we must see PF_EXITING, it takes this mutex too. 4490 */ 4491 if (task->flags & PF_EXITING) 4492 err = -ESRCH; 4493 else if (task->perf_event_ctxp[ctxn]) 4494 err = -EAGAIN; 4495 else { 4496 get_ctx(ctx); 4497 ++ctx->pin_count; 4498 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4499 } 4500 mutex_unlock(&task->perf_event_mutex); 4501 4502 if (unlikely(err)) { 4503 put_ctx(ctx); 4504 4505 if (err == -EAGAIN) 4506 goto retry; 4507 goto errout; 4508 } 4509 } 4510 4511 kfree(task_ctx_data); 4512 return ctx; 4513 4514 errout: 4515 kfree(task_ctx_data); 4516 return ERR_PTR(err); 4517 } 4518 4519 static void perf_event_free_filter(struct perf_event *event); 4520 static void perf_event_free_bpf_prog(struct perf_event *event); 4521 4522 static void free_event_rcu(struct rcu_head *head) 4523 { 4524 struct perf_event *event; 4525 4526 event = container_of(head, struct perf_event, rcu_head); 4527 if (event->ns) 4528 put_pid_ns(event->ns); 4529 perf_event_free_filter(event); 4530 kfree(event); 4531 } 4532 4533 static void ring_buffer_attach(struct perf_event *event, 4534 struct perf_buffer *rb); 4535 4536 static void detach_sb_event(struct perf_event *event) 4537 { 4538 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4539 4540 raw_spin_lock(&pel->lock); 4541 list_del_rcu(&event->sb_list); 4542 raw_spin_unlock(&pel->lock); 4543 } 4544 4545 static bool is_sb_event(struct perf_event *event) 4546 { 4547 struct perf_event_attr *attr = &event->attr; 4548 4549 if (event->parent) 4550 return false; 4551 4552 if (event->attach_state & PERF_ATTACH_TASK) 4553 return false; 4554 4555 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4556 attr->comm || attr->comm_exec || 4557 attr->task || attr->ksymbol || 4558 attr->context_switch || 4559 attr->bpf_event) 4560 return true; 4561 return false; 4562 } 4563 4564 static void unaccount_pmu_sb_event(struct perf_event *event) 4565 { 4566 if (is_sb_event(event)) 4567 detach_sb_event(event); 4568 } 4569 4570 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4571 { 4572 if (event->parent) 4573 return; 4574 4575 if (is_cgroup_event(event)) 4576 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4577 } 4578 4579 #ifdef CONFIG_NO_HZ_FULL 4580 static DEFINE_SPINLOCK(nr_freq_lock); 4581 #endif 4582 4583 static void unaccount_freq_event_nohz(void) 4584 { 4585 #ifdef CONFIG_NO_HZ_FULL 4586 spin_lock(&nr_freq_lock); 4587 if (atomic_dec_and_test(&nr_freq_events)) 4588 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4589 spin_unlock(&nr_freq_lock); 4590 #endif 4591 } 4592 4593 static void unaccount_freq_event(void) 4594 { 4595 if (tick_nohz_full_enabled()) 4596 unaccount_freq_event_nohz(); 4597 else 4598 atomic_dec(&nr_freq_events); 4599 } 4600 4601 static void unaccount_event(struct perf_event *event) 4602 { 4603 bool dec = false; 4604 4605 if (event->parent) 4606 return; 4607 4608 if (event->attach_state & PERF_ATTACH_TASK) 4609 dec = true; 4610 if (event->attr.mmap || event->attr.mmap_data) 4611 atomic_dec(&nr_mmap_events); 4612 if (event->attr.comm) 4613 atomic_dec(&nr_comm_events); 4614 if (event->attr.namespaces) 4615 atomic_dec(&nr_namespaces_events); 4616 if (event->attr.cgroup) 4617 atomic_dec(&nr_cgroup_events); 4618 if (event->attr.task) 4619 atomic_dec(&nr_task_events); 4620 if (event->attr.freq) 4621 unaccount_freq_event(); 4622 if (event->attr.context_switch) { 4623 dec = true; 4624 atomic_dec(&nr_switch_events); 4625 } 4626 if (is_cgroup_event(event)) 4627 dec = true; 4628 if (has_branch_stack(event)) 4629 dec = true; 4630 if (event->attr.ksymbol) 4631 atomic_dec(&nr_ksymbol_events); 4632 if (event->attr.bpf_event) 4633 atomic_dec(&nr_bpf_events); 4634 4635 if (dec) { 4636 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4637 schedule_delayed_work(&perf_sched_work, HZ); 4638 } 4639 4640 unaccount_event_cpu(event, event->cpu); 4641 4642 unaccount_pmu_sb_event(event); 4643 } 4644 4645 static void perf_sched_delayed(struct work_struct *work) 4646 { 4647 mutex_lock(&perf_sched_mutex); 4648 if (atomic_dec_and_test(&perf_sched_count)) 4649 static_branch_disable(&perf_sched_events); 4650 mutex_unlock(&perf_sched_mutex); 4651 } 4652 4653 /* 4654 * The following implement mutual exclusion of events on "exclusive" pmus 4655 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4656 * at a time, so we disallow creating events that might conflict, namely: 4657 * 4658 * 1) cpu-wide events in the presence of per-task events, 4659 * 2) per-task events in the presence of cpu-wide events, 4660 * 3) two matching events on the same context. 4661 * 4662 * The former two cases are handled in the allocation path (perf_event_alloc(), 4663 * _free_event()), the latter -- before the first perf_install_in_context(). 4664 */ 4665 static int exclusive_event_init(struct perf_event *event) 4666 { 4667 struct pmu *pmu = event->pmu; 4668 4669 if (!is_exclusive_pmu(pmu)) 4670 return 0; 4671 4672 /* 4673 * Prevent co-existence of per-task and cpu-wide events on the 4674 * same exclusive pmu. 4675 * 4676 * Negative pmu::exclusive_cnt means there are cpu-wide 4677 * events on this "exclusive" pmu, positive means there are 4678 * per-task events. 4679 * 4680 * Since this is called in perf_event_alloc() path, event::ctx 4681 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4682 * to mean "per-task event", because unlike other attach states it 4683 * never gets cleared. 4684 */ 4685 if (event->attach_state & PERF_ATTACH_TASK) { 4686 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4687 return -EBUSY; 4688 } else { 4689 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4690 return -EBUSY; 4691 } 4692 4693 return 0; 4694 } 4695 4696 static void exclusive_event_destroy(struct perf_event *event) 4697 { 4698 struct pmu *pmu = event->pmu; 4699 4700 if (!is_exclusive_pmu(pmu)) 4701 return; 4702 4703 /* see comment in exclusive_event_init() */ 4704 if (event->attach_state & PERF_ATTACH_TASK) 4705 atomic_dec(&pmu->exclusive_cnt); 4706 else 4707 atomic_inc(&pmu->exclusive_cnt); 4708 } 4709 4710 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4711 { 4712 if ((e1->pmu == e2->pmu) && 4713 (e1->cpu == e2->cpu || 4714 e1->cpu == -1 || 4715 e2->cpu == -1)) 4716 return true; 4717 return false; 4718 } 4719 4720 static bool exclusive_event_installable(struct perf_event *event, 4721 struct perf_event_context *ctx) 4722 { 4723 struct perf_event *iter_event; 4724 struct pmu *pmu = event->pmu; 4725 4726 lockdep_assert_held(&ctx->mutex); 4727 4728 if (!is_exclusive_pmu(pmu)) 4729 return true; 4730 4731 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4732 if (exclusive_event_match(iter_event, event)) 4733 return false; 4734 } 4735 4736 return true; 4737 } 4738 4739 static void perf_addr_filters_splice(struct perf_event *event, 4740 struct list_head *head); 4741 4742 static void _free_event(struct perf_event *event) 4743 { 4744 irq_work_sync(&event->pending); 4745 4746 unaccount_event(event); 4747 4748 security_perf_event_free(event); 4749 4750 if (event->rb) { 4751 /* 4752 * Can happen when we close an event with re-directed output. 4753 * 4754 * Since we have a 0 refcount, perf_mmap_close() will skip 4755 * over us; possibly making our ring_buffer_put() the last. 4756 */ 4757 mutex_lock(&event->mmap_mutex); 4758 ring_buffer_attach(event, NULL); 4759 mutex_unlock(&event->mmap_mutex); 4760 } 4761 4762 if (is_cgroup_event(event)) 4763 perf_detach_cgroup(event); 4764 4765 if (!event->parent) { 4766 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4767 put_callchain_buffers(); 4768 } 4769 4770 perf_event_free_bpf_prog(event); 4771 perf_addr_filters_splice(event, NULL); 4772 kfree(event->addr_filter_ranges); 4773 4774 if (event->destroy) 4775 event->destroy(event); 4776 4777 /* 4778 * Must be after ->destroy(), due to uprobe_perf_close() using 4779 * hw.target. 4780 */ 4781 if (event->hw.target) 4782 put_task_struct(event->hw.target); 4783 4784 /* 4785 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4786 * all task references must be cleaned up. 4787 */ 4788 if (event->ctx) 4789 put_ctx(event->ctx); 4790 4791 exclusive_event_destroy(event); 4792 module_put(event->pmu->module); 4793 4794 call_rcu(&event->rcu_head, free_event_rcu); 4795 } 4796 4797 /* 4798 * Used to free events which have a known refcount of 1, such as in error paths 4799 * where the event isn't exposed yet and inherited events. 4800 */ 4801 static void free_event(struct perf_event *event) 4802 { 4803 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4804 "unexpected event refcount: %ld; ptr=%p\n", 4805 atomic_long_read(&event->refcount), event)) { 4806 /* leak to avoid use-after-free */ 4807 return; 4808 } 4809 4810 _free_event(event); 4811 } 4812 4813 /* 4814 * Remove user event from the owner task. 4815 */ 4816 static void perf_remove_from_owner(struct perf_event *event) 4817 { 4818 struct task_struct *owner; 4819 4820 rcu_read_lock(); 4821 /* 4822 * Matches the smp_store_release() in perf_event_exit_task(). If we 4823 * observe !owner it means the list deletion is complete and we can 4824 * indeed free this event, otherwise we need to serialize on 4825 * owner->perf_event_mutex. 4826 */ 4827 owner = READ_ONCE(event->owner); 4828 if (owner) { 4829 /* 4830 * Since delayed_put_task_struct() also drops the last 4831 * task reference we can safely take a new reference 4832 * while holding the rcu_read_lock(). 4833 */ 4834 get_task_struct(owner); 4835 } 4836 rcu_read_unlock(); 4837 4838 if (owner) { 4839 /* 4840 * If we're here through perf_event_exit_task() we're already 4841 * holding ctx->mutex which would be an inversion wrt. the 4842 * normal lock order. 4843 * 4844 * However we can safely take this lock because its the child 4845 * ctx->mutex. 4846 */ 4847 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4848 4849 /* 4850 * We have to re-check the event->owner field, if it is cleared 4851 * we raced with perf_event_exit_task(), acquiring the mutex 4852 * ensured they're done, and we can proceed with freeing the 4853 * event. 4854 */ 4855 if (event->owner) { 4856 list_del_init(&event->owner_entry); 4857 smp_store_release(&event->owner, NULL); 4858 } 4859 mutex_unlock(&owner->perf_event_mutex); 4860 put_task_struct(owner); 4861 } 4862 } 4863 4864 static void put_event(struct perf_event *event) 4865 { 4866 if (!atomic_long_dec_and_test(&event->refcount)) 4867 return; 4868 4869 _free_event(event); 4870 } 4871 4872 /* 4873 * Kill an event dead; while event:refcount will preserve the event 4874 * object, it will not preserve its functionality. Once the last 'user' 4875 * gives up the object, we'll destroy the thing. 4876 */ 4877 int perf_event_release_kernel(struct perf_event *event) 4878 { 4879 struct perf_event_context *ctx = event->ctx; 4880 struct perf_event *child, *tmp; 4881 LIST_HEAD(free_list); 4882 4883 /* 4884 * If we got here through err_file: fput(event_file); we will not have 4885 * attached to a context yet. 4886 */ 4887 if (!ctx) { 4888 WARN_ON_ONCE(event->attach_state & 4889 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4890 goto no_ctx; 4891 } 4892 4893 if (!is_kernel_event(event)) 4894 perf_remove_from_owner(event); 4895 4896 ctx = perf_event_ctx_lock(event); 4897 WARN_ON_ONCE(ctx->parent_ctx); 4898 perf_remove_from_context(event, DETACH_GROUP); 4899 4900 raw_spin_lock_irq(&ctx->lock); 4901 /* 4902 * Mark this event as STATE_DEAD, there is no external reference to it 4903 * anymore. 4904 * 4905 * Anybody acquiring event->child_mutex after the below loop _must_ 4906 * also see this, most importantly inherit_event() which will avoid 4907 * placing more children on the list. 4908 * 4909 * Thus this guarantees that we will in fact observe and kill _ALL_ 4910 * child events. 4911 */ 4912 event->state = PERF_EVENT_STATE_DEAD; 4913 raw_spin_unlock_irq(&ctx->lock); 4914 4915 perf_event_ctx_unlock(event, ctx); 4916 4917 again: 4918 mutex_lock(&event->child_mutex); 4919 list_for_each_entry(child, &event->child_list, child_list) { 4920 4921 /* 4922 * Cannot change, child events are not migrated, see the 4923 * comment with perf_event_ctx_lock_nested(). 4924 */ 4925 ctx = READ_ONCE(child->ctx); 4926 /* 4927 * Since child_mutex nests inside ctx::mutex, we must jump 4928 * through hoops. We start by grabbing a reference on the ctx. 4929 * 4930 * Since the event cannot get freed while we hold the 4931 * child_mutex, the context must also exist and have a !0 4932 * reference count. 4933 */ 4934 get_ctx(ctx); 4935 4936 /* 4937 * Now that we have a ctx ref, we can drop child_mutex, and 4938 * acquire ctx::mutex without fear of it going away. Then we 4939 * can re-acquire child_mutex. 4940 */ 4941 mutex_unlock(&event->child_mutex); 4942 mutex_lock(&ctx->mutex); 4943 mutex_lock(&event->child_mutex); 4944 4945 /* 4946 * Now that we hold ctx::mutex and child_mutex, revalidate our 4947 * state, if child is still the first entry, it didn't get freed 4948 * and we can continue doing so. 4949 */ 4950 tmp = list_first_entry_or_null(&event->child_list, 4951 struct perf_event, child_list); 4952 if (tmp == child) { 4953 perf_remove_from_context(child, DETACH_GROUP); 4954 list_move(&child->child_list, &free_list); 4955 /* 4956 * This matches the refcount bump in inherit_event(); 4957 * this can't be the last reference. 4958 */ 4959 put_event(event); 4960 } 4961 4962 mutex_unlock(&event->child_mutex); 4963 mutex_unlock(&ctx->mutex); 4964 put_ctx(ctx); 4965 goto again; 4966 } 4967 mutex_unlock(&event->child_mutex); 4968 4969 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4970 void *var = &child->ctx->refcount; 4971 4972 list_del(&child->child_list); 4973 free_event(child); 4974 4975 /* 4976 * Wake any perf_event_free_task() waiting for this event to be 4977 * freed. 4978 */ 4979 smp_mb(); /* pairs with wait_var_event() */ 4980 wake_up_var(var); 4981 } 4982 4983 no_ctx: 4984 put_event(event); /* Must be the 'last' reference */ 4985 return 0; 4986 } 4987 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4988 4989 /* 4990 * Called when the last reference to the file is gone. 4991 */ 4992 static int perf_release(struct inode *inode, struct file *file) 4993 { 4994 perf_event_release_kernel(file->private_data); 4995 return 0; 4996 } 4997 4998 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4999 { 5000 struct perf_event *child; 5001 u64 total = 0; 5002 5003 *enabled = 0; 5004 *running = 0; 5005 5006 mutex_lock(&event->child_mutex); 5007 5008 (void)perf_event_read(event, false); 5009 total += perf_event_count(event); 5010 5011 *enabled += event->total_time_enabled + 5012 atomic64_read(&event->child_total_time_enabled); 5013 *running += event->total_time_running + 5014 atomic64_read(&event->child_total_time_running); 5015 5016 list_for_each_entry(child, &event->child_list, child_list) { 5017 (void)perf_event_read(child, false); 5018 total += perf_event_count(child); 5019 *enabled += child->total_time_enabled; 5020 *running += child->total_time_running; 5021 } 5022 mutex_unlock(&event->child_mutex); 5023 5024 return total; 5025 } 5026 5027 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5028 { 5029 struct perf_event_context *ctx; 5030 u64 count; 5031 5032 ctx = perf_event_ctx_lock(event); 5033 count = __perf_event_read_value(event, enabled, running); 5034 perf_event_ctx_unlock(event, ctx); 5035 5036 return count; 5037 } 5038 EXPORT_SYMBOL_GPL(perf_event_read_value); 5039 5040 static int __perf_read_group_add(struct perf_event *leader, 5041 u64 read_format, u64 *values) 5042 { 5043 struct perf_event_context *ctx = leader->ctx; 5044 struct perf_event *sub; 5045 unsigned long flags; 5046 int n = 1; /* skip @nr */ 5047 int ret; 5048 5049 ret = perf_event_read(leader, true); 5050 if (ret) 5051 return ret; 5052 5053 raw_spin_lock_irqsave(&ctx->lock, flags); 5054 5055 /* 5056 * Since we co-schedule groups, {enabled,running} times of siblings 5057 * will be identical to those of the leader, so we only publish one 5058 * set. 5059 */ 5060 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5061 values[n++] += leader->total_time_enabled + 5062 atomic64_read(&leader->child_total_time_enabled); 5063 } 5064 5065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5066 values[n++] += leader->total_time_running + 5067 atomic64_read(&leader->child_total_time_running); 5068 } 5069 5070 /* 5071 * Write {count,id} tuples for every sibling. 5072 */ 5073 values[n++] += perf_event_count(leader); 5074 if (read_format & PERF_FORMAT_ID) 5075 values[n++] = primary_event_id(leader); 5076 5077 for_each_sibling_event(sub, leader) { 5078 values[n++] += perf_event_count(sub); 5079 if (read_format & PERF_FORMAT_ID) 5080 values[n++] = primary_event_id(sub); 5081 } 5082 5083 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5084 return 0; 5085 } 5086 5087 static int perf_read_group(struct perf_event *event, 5088 u64 read_format, char __user *buf) 5089 { 5090 struct perf_event *leader = event->group_leader, *child; 5091 struct perf_event_context *ctx = leader->ctx; 5092 int ret; 5093 u64 *values; 5094 5095 lockdep_assert_held(&ctx->mutex); 5096 5097 values = kzalloc(event->read_size, GFP_KERNEL); 5098 if (!values) 5099 return -ENOMEM; 5100 5101 values[0] = 1 + leader->nr_siblings; 5102 5103 /* 5104 * By locking the child_mutex of the leader we effectively 5105 * lock the child list of all siblings.. XXX explain how. 5106 */ 5107 mutex_lock(&leader->child_mutex); 5108 5109 ret = __perf_read_group_add(leader, read_format, values); 5110 if (ret) 5111 goto unlock; 5112 5113 list_for_each_entry(child, &leader->child_list, child_list) { 5114 ret = __perf_read_group_add(child, read_format, values); 5115 if (ret) 5116 goto unlock; 5117 } 5118 5119 mutex_unlock(&leader->child_mutex); 5120 5121 ret = event->read_size; 5122 if (copy_to_user(buf, values, event->read_size)) 5123 ret = -EFAULT; 5124 goto out; 5125 5126 unlock: 5127 mutex_unlock(&leader->child_mutex); 5128 out: 5129 kfree(values); 5130 return ret; 5131 } 5132 5133 static int perf_read_one(struct perf_event *event, 5134 u64 read_format, char __user *buf) 5135 { 5136 u64 enabled, running; 5137 u64 values[4]; 5138 int n = 0; 5139 5140 values[n++] = __perf_event_read_value(event, &enabled, &running); 5141 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5142 values[n++] = enabled; 5143 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5144 values[n++] = running; 5145 if (read_format & PERF_FORMAT_ID) 5146 values[n++] = primary_event_id(event); 5147 5148 if (copy_to_user(buf, values, n * sizeof(u64))) 5149 return -EFAULT; 5150 5151 return n * sizeof(u64); 5152 } 5153 5154 static bool is_event_hup(struct perf_event *event) 5155 { 5156 bool no_children; 5157 5158 if (event->state > PERF_EVENT_STATE_EXIT) 5159 return false; 5160 5161 mutex_lock(&event->child_mutex); 5162 no_children = list_empty(&event->child_list); 5163 mutex_unlock(&event->child_mutex); 5164 return no_children; 5165 } 5166 5167 /* 5168 * Read the performance event - simple non blocking version for now 5169 */ 5170 static ssize_t 5171 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5172 { 5173 u64 read_format = event->attr.read_format; 5174 int ret; 5175 5176 /* 5177 * Return end-of-file for a read on an event that is in 5178 * error state (i.e. because it was pinned but it couldn't be 5179 * scheduled on to the CPU at some point). 5180 */ 5181 if (event->state == PERF_EVENT_STATE_ERROR) 5182 return 0; 5183 5184 if (count < event->read_size) 5185 return -ENOSPC; 5186 5187 WARN_ON_ONCE(event->ctx->parent_ctx); 5188 if (read_format & PERF_FORMAT_GROUP) 5189 ret = perf_read_group(event, read_format, buf); 5190 else 5191 ret = perf_read_one(event, read_format, buf); 5192 5193 return ret; 5194 } 5195 5196 static ssize_t 5197 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5198 { 5199 struct perf_event *event = file->private_data; 5200 struct perf_event_context *ctx; 5201 int ret; 5202 5203 ret = security_perf_event_read(event); 5204 if (ret) 5205 return ret; 5206 5207 ctx = perf_event_ctx_lock(event); 5208 ret = __perf_read(event, buf, count); 5209 perf_event_ctx_unlock(event, ctx); 5210 5211 return ret; 5212 } 5213 5214 static __poll_t perf_poll(struct file *file, poll_table *wait) 5215 { 5216 struct perf_event *event = file->private_data; 5217 struct perf_buffer *rb; 5218 __poll_t events = EPOLLHUP; 5219 5220 poll_wait(file, &event->waitq, wait); 5221 5222 if (is_event_hup(event)) 5223 return events; 5224 5225 /* 5226 * Pin the event->rb by taking event->mmap_mutex; otherwise 5227 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5228 */ 5229 mutex_lock(&event->mmap_mutex); 5230 rb = event->rb; 5231 if (rb) 5232 events = atomic_xchg(&rb->poll, 0); 5233 mutex_unlock(&event->mmap_mutex); 5234 return events; 5235 } 5236 5237 static void _perf_event_reset(struct perf_event *event) 5238 { 5239 (void)perf_event_read(event, false); 5240 local64_set(&event->count, 0); 5241 perf_event_update_userpage(event); 5242 } 5243 5244 /* Assume it's not an event with inherit set. */ 5245 u64 perf_event_pause(struct perf_event *event, bool reset) 5246 { 5247 struct perf_event_context *ctx; 5248 u64 count; 5249 5250 ctx = perf_event_ctx_lock(event); 5251 WARN_ON_ONCE(event->attr.inherit); 5252 _perf_event_disable(event); 5253 count = local64_read(&event->count); 5254 if (reset) 5255 local64_set(&event->count, 0); 5256 perf_event_ctx_unlock(event, ctx); 5257 5258 return count; 5259 } 5260 EXPORT_SYMBOL_GPL(perf_event_pause); 5261 5262 /* 5263 * Holding the top-level event's child_mutex means that any 5264 * descendant process that has inherited this event will block 5265 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5266 * task existence requirements of perf_event_enable/disable. 5267 */ 5268 static void perf_event_for_each_child(struct perf_event *event, 5269 void (*func)(struct perf_event *)) 5270 { 5271 struct perf_event *child; 5272 5273 WARN_ON_ONCE(event->ctx->parent_ctx); 5274 5275 mutex_lock(&event->child_mutex); 5276 func(event); 5277 list_for_each_entry(child, &event->child_list, child_list) 5278 func(child); 5279 mutex_unlock(&event->child_mutex); 5280 } 5281 5282 static void perf_event_for_each(struct perf_event *event, 5283 void (*func)(struct perf_event *)) 5284 { 5285 struct perf_event_context *ctx = event->ctx; 5286 struct perf_event *sibling; 5287 5288 lockdep_assert_held(&ctx->mutex); 5289 5290 event = event->group_leader; 5291 5292 perf_event_for_each_child(event, func); 5293 for_each_sibling_event(sibling, event) 5294 perf_event_for_each_child(sibling, func); 5295 } 5296 5297 static void __perf_event_period(struct perf_event *event, 5298 struct perf_cpu_context *cpuctx, 5299 struct perf_event_context *ctx, 5300 void *info) 5301 { 5302 u64 value = *((u64 *)info); 5303 bool active; 5304 5305 if (event->attr.freq) { 5306 event->attr.sample_freq = value; 5307 } else { 5308 event->attr.sample_period = value; 5309 event->hw.sample_period = value; 5310 } 5311 5312 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5313 if (active) { 5314 perf_pmu_disable(ctx->pmu); 5315 /* 5316 * We could be throttled; unthrottle now to avoid the tick 5317 * trying to unthrottle while we already re-started the event. 5318 */ 5319 if (event->hw.interrupts == MAX_INTERRUPTS) { 5320 event->hw.interrupts = 0; 5321 perf_log_throttle(event, 1); 5322 } 5323 event->pmu->stop(event, PERF_EF_UPDATE); 5324 } 5325 5326 local64_set(&event->hw.period_left, 0); 5327 5328 if (active) { 5329 event->pmu->start(event, PERF_EF_RELOAD); 5330 perf_pmu_enable(ctx->pmu); 5331 } 5332 } 5333 5334 static int perf_event_check_period(struct perf_event *event, u64 value) 5335 { 5336 return event->pmu->check_period(event, value); 5337 } 5338 5339 static int _perf_event_period(struct perf_event *event, u64 value) 5340 { 5341 if (!is_sampling_event(event)) 5342 return -EINVAL; 5343 5344 if (!value) 5345 return -EINVAL; 5346 5347 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5348 return -EINVAL; 5349 5350 if (perf_event_check_period(event, value)) 5351 return -EINVAL; 5352 5353 if (!event->attr.freq && (value & (1ULL << 63))) 5354 return -EINVAL; 5355 5356 event_function_call(event, __perf_event_period, &value); 5357 5358 return 0; 5359 } 5360 5361 int perf_event_period(struct perf_event *event, u64 value) 5362 { 5363 struct perf_event_context *ctx; 5364 int ret; 5365 5366 ctx = perf_event_ctx_lock(event); 5367 ret = _perf_event_period(event, value); 5368 perf_event_ctx_unlock(event, ctx); 5369 5370 return ret; 5371 } 5372 EXPORT_SYMBOL_GPL(perf_event_period); 5373 5374 static const struct file_operations perf_fops; 5375 5376 static inline int perf_fget_light(int fd, struct fd *p) 5377 { 5378 struct fd f = fdget(fd); 5379 if (!f.file) 5380 return -EBADF; 5381 5382 if (f.file->f_op != &perf_fops) { 5383 fdput(f); 5384 return -EBADF; 5385 } 5386 *p = f; 5387 return 0; 5388 } 5389 5390 static int perf_event_set_output(struct perf_event *event, 5391 struct perf_event *output_event); 5392 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5393 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5394 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5395 struct perf_event_attr *attr); 5396 5397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5398 { 5399 void (*func)(struct perf_event *); 5400 u32 flags = arg; 5401 5402 switch (cmd) { 5403 case PERF_EVENT_IOC_ENABLE: 5404 func = _perf_event_enable; 5405 break; 5406 case PERF_EVENT_IOC_DISABLE: 5407 func = _perf_event_disable; 5408 break; 5409 case PERF_EVENT_IOC_RESET: 5410 func = _perf_event_reset; 5411 break; 5412 5413 case PERF_EVENT_IOC_REFRESH: 5414 return _perf_event_refresh(event, arg); 5415 5416 case PERF_EVENT_IOC_PERIOD: 5417 { 5418 u64 value; 5419 5420 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5421 return -EFAULT; 5422 5423 return _perf_event_period(event, value); 5424 } 5425 case PERF_EVENT_IOC_ID: 5426 { 5427 u64 id = primary_event_id(event); 5428 5429 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5430 return -EFAULT; 5431 return 0; 5432 } 5433 5434 case PERF_EVENT_IOC_SET_OUTPUT: 5435 { 5436 int ret; 5437 if (arg != -1) { 5438 struct perf_event *output_event; 5439 struct fd output; 5440 ret = perf_fget_light(arg, &output); 5441 if (ret) 5442 return ret; 5443 output_event = output.file->private_data; 5444 ret = perf_event_set_output(event, output_event); 5445 fdput(output); 5446 } else { 5447 ret = perf_event_set_output(event, NULL); 5448 } 5449 return ret; 5450 } 5451 5452 case PERF_EVENT_IOC_SET_FILTER: 5453 return perf_event_set_filter(event, (void __user *)arg); 5454 5455 case PERF_EVENT_IOC_SET_BPF: 5456 return perf_event_set_bpf_prog(event, arg); 5457 5458 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5459 struct perf_buffer *rb; 5460 5461 rcu_read_lock(); 5462 rb = rcu_dereference(event->rb); 5463 if (!rb || !rb->nr_pages) { 5464 rcu_read_unlock(); 5465 return -EINVAL; 5466 } 5467 rb_toggle_paused(rb, !!arg); 5468 rcu_read_unlock(); 5469 return 0; 5470 } 5471 5472 case PERF_EVENT_IOC_QUERY_BPF: 5473 return perf_event_query_prog_array(event, (void __user *)arg); 5474 5475 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5476 struct perf_event_attr new_attr; 5477 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5478 &new_attr); 5479 5480 if (err) 5481 return err; 5482 5483 return perf_event_modify_attr(event, &new_attr); 5484 } 5485 default: 5486 return -ENOTTY; 5487 } 5488 5489 if (flags & PERF_IOC_FLAG_GROUP) 5490 perf_event_for_each(event, func); 5491 else 5492 perf_event_for_each_child(event, func); 5493 5494 return 0; 5495 } 5496 5497 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5498 { 5499 struct perf_event *event = file->private_data; 5500 struct perf_event_context *ctx; 5501 long ret; 5502 5503 /* Treat ioctl like writes as it is likely a mutating operation. */ 5504 ret = security_perf_event_write(event); 5505 if (ret) 5506 return ret; 5507 5508 ctx = perf_event_ctx_lock(event); 5509 ret = _perf_ioctl(event, cmd, arg); 5510 perf_event_ctx_unlock(event, ctx); 5511 5512 return ret; 5513 } 5514 5515 #ifdef CONFIG_COMPAT 5516 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5517 unsigned long arg) 5518 { 5519 switch (_IOC_NR(cmd)) { 5520 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5521 case _IOC_NR(PERF_EVENT_IOC_ID): 5522 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5523 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5524 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5525 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5526 cmd &= ~IOCSIZE_MASK; 5527 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5528 } 5529 break; 5530 } 5531 return perf_ioctl(file, cmd, arg); 5532 } 5533 #else 5534 # define perf_compat_ioctl NULL 5535 #endif 5536 5537 int perf_event_task_enable(void) 5538 { 5539 struct perf_event_context *ctx; 5540 struct perf_event *event; 5541 5542 mutex_lock(¤t->perf_event_mutex); 5543 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5544 ctx = perf_event_ctx_lock(event); 5545 perf_event_for_each_child(event, _perf_event_enable); 5546 perf_event_ctx_unlock(event, ctx); 5547 } 5548 mutex_unlock(¤t->perf_event_mutex); 5549 5550 return 0; 5551 } 5552 5553 int perf_event_task_disable(void) 5554 { 5555 struct perf_event_context *ctx; 5556 struct perf_event *event; 5557 5558 mutex_lock(¤t->perf_event_mutex); 5559 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5560 ctx = perf_event_ctx_lock(event); 5561 perf_event_for_each_child(event, _perf_event_disable); 5562 perf_event_ctx_unlock(event, ctx); 5563 } 5564 mutex_unlock(¤t->perf_event_mutex); 5565 5566 return 0; 5567 } 5568 5569 static int perf_event_index(struct perf_event *event) 5570 { 5571 if (event->hw.state & PERF_HES_STOPPED) 5572 return 0; 5573 5574 if (event->state != PERF_EVENT_STATE_ACTIVE) 5575 return 0; 5576 5577 return event->pmu->event_idx(event); 5578 } 5579 5580 static void calc_timer_values(struct perf_event *event, 5581 u64 *now, 5582 u64 *enabled, 5583 u64 *running) 5584 { 5585 u64 ctx_time; 5586 5587 *now = perf_clock(); 5588 ctx_time = event->shadow_ctx_time + *now; 5589 __perf_update_times(event, ctx_time, enabled, running); 5590 } 5591 5592 static void perf_event_init_userpage(struct perf_event *event) 5593 { 5594 struct perf_event_mmap_page *userpg; 5595 struct perf_buffer *rb; 5596 5597 rcu_read_lock(); 5598 rb = rcu_dereference(event->rb); 5599 if (!rb) 5600 goto unlock; 5601 5602 userpg = rb->user_page; 5603 5604 /* Allow new userspace to detect that bit 0 is deprecated */ 5605 userpg->cap_bit0_is_deprecated = 1; 5606 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5607 userpg->data_offset = PAGE_SIZE; 5608 userpg->data_size = perf_data_size(rb); 5609 5610 unlock: 5611 rcu_read_unlock(); 5612 } 5613 5614 void __weak arch_perf_update_userpage( 5615 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5616 { 5617 } 5618 5619 /* 5620 * Callers need to ensure there can be no nesting of this function, otherwise 5621 * the seqlock logic goes bad. We can not serialize this because the arch 5622 * code calls this from NMI context. 5623 */ 5624 void perf_event_update_userpage(struct perf_event *event) 5625 { 5626 struct perf_event_mmap_page *userpg; 5627 struct perf_buffer *rb; 5628 u64 enabled, running, now; 5629 5630 rcu_read_lock(); 5631 rb = rcu_dereference(event->rb); 5632 if (!rb) 5633 goto unlock; 5634 5635 /* 5636 * compute total_time_enabled, total_time_running 5637 * based on snapshot values taken when the event 5638 * was last scheduled in. 5639 * 5640 * we cannot simply called update_context_time() 5641 * because of locking issue as we can be called in 5642 * NMI context 5643 */ 5644 calc_timer_values(event, &now, &enabled, &running); 5645 5646 userpg = rb->user_page; 5647 /* 5648 * Disable preemption to guarantee consistent time stamps are stored to 5649 * the user page. 5650 */ 5651 preempt_disable(); 5652 ++userpg->lock; 5653 barrier(); 5654 userpg->index = perf_event_index(event); 5655 userpg->offset = perf_event_count(event); 5656 if (userpg->index) 5657 userpg->offset -= local64_read(&event->hw.prev_count); 5658 5659 userpg->time_enabled = enabled + 5660 atomic64_read(&event->child_total_time_enabled); 5661 5662 userpg->time_running = running + 5663 atomic64_read(&event->child_total_time_running); 5664 5665 arch_perf_update_userpage(event, userpg, now); 5666 5667 barrier(); 5668 ++userpg->lock; 5669 preempt_enable(); 5670 unlock: 5671 rcu_read_unlock(); 5672 } 5673 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5674 5675 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5676 { 5677 struct perf_event *event = vmf->vma->vm_file->private_data; 5678 struct perf_buffer *rb; 5679 vm_fault_t ret = VM_FAULT_SIGBUS; 5680 5681 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5682 if (vmf->pgoff == 0) 5683 ret = 0; 5684 return ret; 5685 } 5686 5687 rcu_read_lock(); 5688 rb = rcu_dereference(event->rb); 5689 if (!rb) 5690 goto unlock; 5691 5692 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5693 goto unlock; 5694 5695 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5696 if (!vmf->page) 5697 goto unlock; 5698 5699 get_page(vmf->page); 5700 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5701 vmf->page->index = vmf->pgoff; 5702 5703 ret = 0; 5704 unlock: 5705 rcu_read_unlock(); 5706 5707 return ret; 5708 } 5709 5710 static void ring_buffer_attach(struct perf_event *event, 5711 struct perf_buffer *rb) 5712 { 5713 struct perf_buffer *old_rb = NULL; 5714 unsigned long flags; 5715 5716 if (event->rb) { 5717 /* 5718 * Should be impossible, we set this when removing 5719 * event->rb_entry and wait/clear when adding event->rb_entry. 5720 */ 5721 WARN_ON_ONCE(event->rcu_pending); 5722 5723 old_rb = event->rb; 5724 spin_lock_irqsave(&old_rb->event_lock, flags); 5725 list_del_rcu(&event->rb_entry); 5726 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5727 5728 event->rcu_batches = get_state_synchronize_rcu(); 5729 event->rcu_pending = 1; 5730 } 5731 5732 if (rb) { 5733 if (event->rcu_pending) { 5734 cond_synchronize_rcu(event->rcu_batches); 5735 event->rcu_pending = 0; 5736 } 5737 5738 spin_lock_irqsave(&rb->event_lock, flags); 5739 list_add_rcu(&event->rb_entry, &rb->event_list); 5740 spin_unlock_irqrestore(&rb->event_lock, flags); 5741 } 5742 5743 /* 5744 * Avoid racing with perf_mmap_close(AUX): stop the event 5745 * before swizzling the event::rb pointer; if it's getting 5746 * unmapped, its aux_mmap_count will be 0 and it won't 5747 * restart. See the comment in __perf_pmu_output_stop(). 5748 * 5749 * Data will inevitably be lost when set_output is done in 5750 * mid-air, but then again, whoever does it like this is 5751 * not in for the data anyway. 5752 */ 5753 if (has_aux(event)) 5754 perf_event_stop(event, 0); 5755 5756 rcu_assign_pointer(event->rb, rb); 5757 5758 if (old_rb) { 5759 ring_buffer_put(old_rb); 5760 /* 5761 * Since we detached before setting the new rb, so that we 5762 * could attach the new rb, we could have missed a wakeup. 5763 * Provide it now. 5764 */ 5765 wake_up_all(&event->waitq); 5766 } 5767 } 5768 5769 static void ring_buffer_wakeup(struct perf_event *event) 5770 { 5771 struct perf_buffer *rb; 5772 5773 rcu_read_lock(); 5774 rb = rcu_dereference(event->rb); 5775 if (rb) { 5776 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5777 wake_up_all(&event->waitq); 5778 } 5779 rcu_read_unlock(); 5780 } 5781 5782 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5783 { 5784 struct perf_buffer *rb; 5785 5786 rcu_read_lock(); 5787 rb = rcu_dereference(event->rb); 5788 if (rb) { 5789 if (!refcount_inc_not_zero(&rb->refcount)) 5790 rb = NULL; 5791 } 5792 rcu_read_unlock(); 5793 5794 return rb; 5795 } 5796 5797 void ring_buffer_put(struct perf_buffer *rb) 5798 { 5799 if (!refcount_dec_and_test(&rb->refcount)) 5800 return; 5801 5802 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5803 5804 call_rcu(&rb->rcu_head, rb_free_rcu); 5805 } 5806 5807 static void perf_mmap_open(struct vm_area_struct *vma) 5808 { 5809 struct perf_event *event = vma->vm_file->private_data; 5810 5811 atomic_inc(&event->mmap_count); 5812 atomic_inc(&event->rb->mmap_count); 5813 5814 if (vma->vm_pgoff) 5815 atomic_inc(&event->rb->aux_mmap_count); 5816 5817 if (event->pmu->event_mapped) 5818 event->pmu->event_mapped(event, vma->vm_mm); 5819 } 5820 5821 static void perf_pmu_output_stop(struct perf_event *event); 5822 5823 /* 5824 * A buffer can be mmap()ed multiple times; either directly through the same 5825 * event, or through other events by use of perf_event_set_output(). 5826 * 5827 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5828 * the buffer here, where we still have a VM context. This means we need 5829 * to detach all events redirecting to us. 5830 */ 5831 static void perf_mmap_close(struct vm_area_struct *vma) 5832 { 5833 struct perf_event *event = vma->vm_file->private_data; 5834 5835 struct perf_buffer *rb = ring_buffer_get(event); 5836 struct user_struct *mmap_user = rb->mmap_user; 5837 int mmap_locked = rb->mmap_locked; 5838 unsigned long size = perf_data_size(rb); 5839 5840 if (event->pmu->event_unmapped) 5841 event->pmu->event_unmapped(event, vma->vm_mm); 5842 5843 /* 5844 * rb->aux_mmap_count will always drop before rb->mmap_count and 5845 * event->mmap_count, so it is ok to use event->mmap_mutex to 5846 * serialize with perf_mmap here. 5847 */ 5848 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5849 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5850 /* 5851 * Stop all AUX events that are writing to this buffer, 5852 * so that we can free its AUX pages and corresponding PMU 5853 * data. Note that after rb::aux_mmap_count dropped to zero, 5854 * they won't start any more (see perf_aux_output_begin()). 5855 */ 5856 perf_pmu_output_stop(event); 5857 5858 /* now it's safe to free the pages */ 5859 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5860 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5861 5862 /* this has to be the last one */ 5863 rb_free_aux(rb); 5864 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5865 5866 mutex_unlock(&event->mmap_mutex); 5867 } 5868 5869 atomic_dec(&rb->mmap_count); 5870 5871 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5872 goto out_put; 5873 5874 ring_buffer_attach(event, NULL); 5875 mutex_unlock(&event->mmap_mutex); 5876 5877 /* If there's still other mmap()s of this buffer, we're done. */ 5878 if (atomic_read(&rb->mmap_count)) 5879 goto out_put; 5880 5881 /* 5882 * No other mmap()s, detach from all other events that might redirect 5883 * into the now unreachable buffer. Somewhat complicated by the 5884 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5885 */ 5886 again: 5887 rcu_read_lock(); 5888 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5889 if (!atomic_long_inc_not_zero(&event->refcount)) { 5890 /* 5891 * This event is en-route to free_event() which will 5892 * detach it and remove it from the list. 5893 */ 5894 continue; 5895 } 5896 rcu_read_unlock(); 5897 5898 mutex_lock(&event->mmap_mutex); 5899 /* 5900 * Check we didn't race with perf_event_set_output() which can 5901 * swizzle the rb from under us while we were waiting to 5902 * acquire mmap_mutex. 5903 * 5904 * If we find a different rb; ignore this event, a next 5905 * iteration will no longer find it on the list. We have to 5906 * still restart the iteration to make sure we're not now 5907 * iterating the wrong list. 5908 */ 5909 if (event->rb == rb) 5910 ring_buffer_attach(event, NULL); 5911 5912 mutex_unlock(&event->mmap_mutex); 5913 put_event(event); 5914 5915 /* 5916 * Restart the iteration; either we're on the wrong list or 5917 * destroyed its integrity by doing a deletion. 5918 */ 5919 goto again; 5920 } 5921 rcu_read_unlock(); 5922 5923 /* 5924 * It could be there's still a few 0-ref events on the list; they'll 5925 * get cleaned up by free_event() -- they'll also still have their 5926 * ref on the rb and will free it whenever they are done with it. 5927 * 5928 * Aside from that, this buffer is 'fully' detached and unmapped, 5929 * undo the VM accounting. 5930 */ 5931 5932 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5933 &mmap_user->locked_vm); 5934 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5935 free_uid(mmap_user); 5936 5937 out_put: 5938 ring_buffer_put(rb); /* could be last */ 5939 } 5940 5941 static const struct vm_operations_struct perf_mmap_vmops = { 5942 .open = perf_mmap_open, 5943 .close = perf_mmap_close, /* non mergeable */ 5944 .fault = perf_mmap_fault, 5945 .page_mkwrite = perf_mmap_fault, 5946 }; 5947 5948 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5949 { 5950 struct perf_event *event = file->private_data; 5951 unsigned long user_locked, user_lock_limit; 5952 struct user_struct *user = current_user(); 5953 struct perf_buffer *rb = NULL; 5954 unsigned long locked, lock_limit; 5955 unsigned long vma_size; 5956 unsigned long nr_pages; 5957 long user_extra = 0, extra = 0; 5958 int ret = 0, flags = 0; 5959 5960 /* 5961 * Don't allow mmap() of inherited per-task counters. This would 5962 * create a performance issue due to all children writing to the 5963 * same rb. 5964 */ 5965 if (event->cpu == -1 && event->attr.inherit) 5966 return -EINVAL; 5967 5968 if (!(vma->vm_flags & VM_SHARED)) 5969 return -EINVAL; 5970 5971 ret = security_perf_event_read(event); 5972 if (ret) 5973 return ret; 5974 5975 vma_size = vma->vm_end - vma->vm_start; 5976 5977 if (vma->vm_pgoff == 0) { 5978 nr_pages = (vma_size / PAGE_SIZE) - 1; 5979 } else { 5980 /* 5981 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5982 * mapped, all subsequent mappings should have the same size 5983 * and offset. Must be above the normal perf buffer. 5984 */ 5985 u64 aux_offset, aux_size; 5986 5987 if (!event->rb) 5988 return -EINVAL; 5989 5990 nr_pages = vma_size / PAGE_SIZE; 5991 5992 mutex_lock(&event->mmap_mutex); 5993 ret = -EINVAL; 5994 5995 rb = event->rb; 5996 if (!rb) 5997 goto aux_unlock; 5998 5999 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6000 aux_size = READ_ONCE(rb->user_page->aux_size); 6001 6002 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6003 goto aux_unlock; 6004 6005 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6006 goto aux_unlock; 6007 6008 /* already mapped with a different offset */ 6009 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6010 goto aux_unlock; 6011 6012 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6013 goto aux_unlock; 6014 6015 /* already mapped with a different size */ 6016 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6017 goto aux_unlock; 6018 6019 if (!is_power_of_2(nr_pages)) 6020 goto aux_unlock; 6021 6022 if (!atomic_inc_not_zero(&rb->mmap_count)) 6023 goto aux_unlock; 6024 6025 if (rb_has_aux(rb)) { 6026 atomic_inc(&rb->aux_mmap_count); 6027 ret = 0; 6028 goto unlock; 6029 } 6030 6031 atomic_set(&rb->aux_mmap_count, 1); 6032 user_extra = nr_pages; 6033 6034 goto accounting; 6035 } 6036 6037 /* 6038 * If we have rb pages ensure they're a power-of-two number, so we 6039 * can do bitmasks instead of modulo. 6040 */ 6041 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6042 return -EINVAL; 6043 6044 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6045 return -EINVAL; 6046 6047 WARN_ON_ONCE(event->ctx->parent_ctx); 6048 again: 6049 mutex_lock(&event->mmap_mutex); 6050 if (event->rb) { 6051 if (event->rb->nr_pages != nr_pages) { 6052 ret = -EINVAL; 6053 goto unlock; 6054 } 6055 6056 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6057 /* 6058 * Raced against perf_mmap_close() through 6059 * perf_event_set_output(). Try again, hope for better 6060 * luck. 6061 */ 6062 mutex_unlock(&event->mmap_mutex); 6063 goto again; 6064 } 6065 6066 goto unlock; 6067 } 6068 6069 user_extra = nr_pages + 1; 6070 6071 accounting: 6072 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6073 6074 /* 6075 * Increase the limit linearly with more CPUs: 6076 */ 6077 user_lock_limit *= num_online_cpus(); 6078 6079 user_locked = atomic_long_read(&user->locked_vm); 6080 6081 /* 6082 * sysctl_perf_event_mlock may have changed, so that 6083 * user->locked_vm > user_lock_limit 6084 */ 6085 if (user_locked > user_lock_limit) 6086 user_locked = user_lock_limit; 6087 user_locked += user_extra; 6088 6089 if (user_locked > user_lock_limit) { 6090 /* 6091 * charge locked_vm until it hits user_lock_limit; 6092 * charge the rest from pinned_vm 6093 */ 6094 extra = user_locked - user_lock_limit; 6095 user_extra -= extra; 6096 } 6097 6098 lock_limit = rlimit(RLIMIT_MEMLOCK); 6099 lock_limit >>= PAGE_SHIFT; 6100 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6101 6102 if ((locked > lock_limit) && perf_is_paranoid() && 6103 !capable(CAP_IPC_LOCK)) { 6104 ret = -EPERM; 6105 goto unlock; 6106 } 6107 6108 WARN_ON(!rb && event->rb); 6109 6110 if (vma->vm_flags & VM_WRITE) 6111 flags |= RING_BUFFER_WRITABLE; 6112 6113 if (!rb) { 6114 rb = rb_alloc(nr_pages, 6115 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6116 event->cpu, flags); 6117 6118 if (!rb) { 6119 ret = -ENOMEM; 6120 goto unlock; 6121 } 6122 6123 atomic_set(&rb->mmap_count, 1); 6124 rb->mmap_user = get_current_user(); 6125 rb->mmap_locked = extra; 6126 6127 ring_buffer_attach(event, rb); 6128 6129 perf_event_init_userpage(event); 6130 perf_event_update_userpage(event); 6131 } else { 6132 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6133 event->attr.aux_watermark, flags); 6134 if (!ret) 6135 rb->aux_mmap_locked = extra; 6136 } 6137 6138 unlock: 6139 if (!ret) { 6140 atomic_long_add(user_extra, &user->locked_vm); 6141 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6142 6143 atomic_inc(&event->mmap_count); 6144 } else if (rb) { 6145 atomic_dec(&rb->mmap_count); 6146 } 6147 aux_unlock: 6148 mutex_unlock(&event->mmap_mutex); 6149 6150 /* 6151 * Since pinned accounting is per vm we cannot allow fork() to copy our 6152 * vma. 6153 */ 6154 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6155 vma->vm_ops = &perf_mmap_vmops; 6156 6157 if (event->pmu->event_mapped) 6158 event->pmu->event_mapped(event, vma->vm_mm); 6159 6160 return ret; 6161 } 6162 6163 static int perf_fasync(int fd, struct file *filp, int on) 6164 { 6165 struct inode *inode = file_inode(filp); 6166 struct perf_event *event = filp->private_data; 6167 int retval; 6168 6169 inode_lock(inode); 6170 retval = fasync_helper(fd, filp, on, &event->fasync); 6171 inode_unlock(inode); 6172 6173 if (retval < 0) 6174 return retval; 6175 6176 return 0; 6177 } 6178 6179 static const struct file_operations perf_fops = { 6180 .llseek = no_llseek, 6181 .release = perf_release, 6182 .read = perf_read, 6183 .poll = perf_poll, 6184 .unlocked_ioctl = perf_ioctl, 6185 .compat_ioctl = perf_compat_ioctl, 6186 .mmap = perf_mmap, 6187 .fasync = perf_fasync, 6188 }; 6189 6190 /* 6191 * Perf event wakeup 6192 * 6193 * If there's data, ensure we set the poll() state and publish everything 6194 * to user-space before waking everybody up. 6195 */ 6196 6197 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6198 { 6199 /* only the parent has fasync state */ 6200 if (event->parent) 6201 event = event->parent; 6202 return &event->fasync; 6203 } 6204 6205 void perf_event_wakeup(struct perf_event *event) 6206 { 6207 ring_buffer_wakeup(event); 6208 6209 if (event->pending_kill) { 6210 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6211 event->pending_kill = 0; 6212 } 6213 } 6214 6215 static void perf_pending_event_disable(struct perf_event *event) 6216 { 6217 int cpu = READ_ONCE(event->pending_disable); 6218 6219 if (cpu < 0) 6220 return; 6221 6222 if (cpu == smp_processor_id()) { 6223 WRITE_ONCE(event->pending_disable, -1); 6224 perf_event_disable_local(event); 6225 return; 6226 } 6227 6228 /* 6229 * CPU-A CPU-B 6230 * 6231 * perf_event_disable_inatomic() 6232 * @pending_disable = CPU-A; 6233 * irq_work_queue(); 6234 * 6235 * sched-out 6236 * @pending_disable = -1; 6237 * 6238 * sched-in 6239 * perf_event_disable_inatomic() 6240 * @pending_disable = CPU-B; 6241 * irq_work_queue(); // FAILS 6242 * 6243 * irq_work_run() 6244 * perf_pending_event() 6245 * 6246 * But the event runs on CPU-B and wants disabling there. 6247 */ 6248 irq_work_queue_on(&event->pending, cpu); 6249 } 6250 6251 static void perf_pending_event(struct irq_work *entry) 6252 { 6253 struct perf_event *event = container_of(entry, struct perf_event, pending); 6254 int rctx; 6255 6256 rctx = perf_swevent_get_recursion_context(); 6257 /* 6258 * If we 'fail' here, that's OK, it means recursion is already disabled 6259 * and we won't recurse 'further'. 6260 */ 6261 6262 perf_pending_event_disable(event); 6263 6264 if (event->pending_wakeup) { 6265 event->pending_wakeup = 0; 6266 perf_event_wakeup(event); 6267 } 6268 6269 if (rctx >= 0) 6270 perf_swevent_put_recursion_context(rctx); 6271 } 6272 6273 /* 6274 * We assume there is only KVM supporting the callbacks. 6275 * Later on, we might change it to a list if there is 6276 * another virtualization implementation supporting the callbacks. 6277 */ 6278 struct perf_guest_info_callbacks *perf_guest_cbs; 6279 6280 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6281 { 6282 perf_guest_cbs = cbs; 6283 return 0; 6284 } 6285 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6286 6287 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6288 { 6289 perf_guest_cbs = NULL; 6290 return 0; 6291 } 6292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6293 6294 static void 6295 perf_output_sample_regs(struct perf_output_handle *handle, 6296 struct pt_regs *regs, u64 mask) 6297 { 6298 int bit; 6299 DECLARE_BITMAP(_mask, 64); 6300 6301 bitmap_from_u64(_mask, mask); 6302 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6303 u64 val; 6304 6305 val = perf_reg_value(regs, bit); 6306 perf_output_put(handle, val); 6307 } 6308 } 6309 6310 static void perf_sample_regs_user(struct perf_regs *regs_user, 6311 struct pt_regs *regs, 6312 struct pt_regs *regs_user_copy) 6313 { 6314 if (user_mode(regs)) { 6315 regs_user->abi = perf_reg_abi(current); 6316 regs_user->regs = regs; 6317 } else if (!(current->flags & PF_KTHREAD)) { 6318 perf_get_regs_user(regs_user, regs, regs_user_copy); 6319 } else { 6320 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6321 regs_user->regs = NULL; 6322 } 6323 } 6324 6325 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6326 struct pt_regs *regs) 6327 { 6328 regs_intr->regs = regs; 6329 regs_intr->abi = perf_reg_abi(current); 6330 } 6331 6332 6333 /* 6334 * Get remaining task size from user stack pointer. 6335 * 6336 * It'd be better to take stack vma map and limit this more 6337 * precisely, but there's no way to get it safely under interrupt, 6338 * so using TASK_SIZE as limit. 6339 */ 6340 static u64 perf_ustack_task_size(struct pt_regs *regs) 6341 { 6342 unsigned long addr = perf_user_stack_pointer(regs); 6343 6344 if (!addr || addr >= TASK_SIZE) 6345 return 0; 6346 6347 return TASK_SIZE - addr; 6348 } 6349 6350 static u16 6351 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6352 struct pt_regs *regs) 6353 { 6354 u64 task_size; 6355 6356 /* No regs, no stack pointer, no dump. */ 6357 if (!regs) 6358 return 0; 6359 6360 /* 6361 * Check if we fit in with the requested stack size into the: 6362 * - TASK_SIZE 6363 * If we don't, we limit the size to the TASK_SIZE. 6364 * 6365 * - remaining sample size 6366 * If we don't, we customize the stack size to 6367 * fit in to the remaining sample size. 6368 */ 6369 6370 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6371 stack_size = min(stack_size, (u16) task_size); 6372 6373 /* Current header size plus static size and dynamic size. */ 6374 header_size += 2 * sizeof(u64); 6375 6376 /* Do we fit in with the current stack dump size? */ 6377 if ((u16) (header_size + stack_size) < header_size) { 6378 /* 6379 * If we overflow the maximum size for the sample, 6380 * we customize the stack dump size to fit in. 6381 */ 6382 stack_size = USHRT_MAX - header_size - sizeof(u64); 6383 stack_size = round_up(stack_size, sizeof(u64)); 6384 } 6385 6386 return stack_size; 6387 } 6388 6389 static void 6390 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6391 struct pt_regs *regs) 6392 { 6393 /* Case of a kernel thread, nothing to dump */ 6394 if (!regs) { 6395 u64 size = 0; 6396 perf_output_put(handle, size); 6397 } else { 6398 unsigned long sp; 6399 unsigned int rem; 6400 u64 dyn_size; 6401 mm_segment_t fs; 6402 6403 /* 6404 * We dump: 6405 * static size 6406 * - the size requested by user or the best one we can fit 6407 * in to the sample max size 6408 * data 6409 * - user stack dump data 6410 * dynamic size 6411 * - the actual dumped size 6412 */ 6413 6414 /* Static size. */ 6415 perf_output_put(handle, dump_size); 6416 6417 /* Data. */ 6418 sp = perf_user_stack_pointer(regs); 6419 fs = get_fs(); 6420 set_fs(USER_DS); 6421 rem = __output_copy_user(handle, (void *) sp, dump_size); 6422 set_fs(fs); 6423 dyn_size = dump_size - rem; 6424 6425 perf_output_skip(handle, rem); 6426 6427 /* Dynamic size. */ 6428 perf_output_put(handle, dyn_size); 6429 } 6430 } 6431 6432 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6433 struct perf_sample_data *data, 6434 size_t size) 6435 { 6436 struct perf_event *sampler = event->aux_event; 6437 struct perf_buffer *rb; 6438 6439 data->aux_size = 0; 6440 6441 if (!sampler) 6442 goto out; 6443 6444 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6445 goto out; 6446 6447 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6448 goto out; 6449 6450 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6451 if (!rb) 6452 goto out; 6453 6454 /* 6455 * If this is an NMI hit inside sampling code, don't take 6456 * the sample. See also perf_aux_sample_output(). 6457 */ 6458 if (READ_ONCE(rb->aux_in_sampling)) { 6459 data->aux_size = 0; 6460 } else { 6461 size = min_t(size_t, size, perf_aux_size(rb)); 6462 data->aux_size = ALIGN(size, sizeof(u64)); 6463 } 6464 ring_buffer_put(rb); 6465 6466 out: 6467 return data->aux_size; 6468 } 6469 6470 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6471 struct perf_event *event, 6472 struct perf_output_handle *handle, 6473 unsigned long size) 6474 { 6475 unsigned long flags; 6476 long ret; 6477 6478 /* 6479 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6480 * paths. If we start calling them in NMI context, they may race with 6481 * the IRQ ones, that is, for example, re-starting an event that's just 6482 * been stopped, which is why we're using a separate callback that 6483 * doesn't change the event state. 6484 * 6485 * IRQs need to be disabled to prevent IPIs from racing with us. 6486 */ 6487 local_irq_save(flags); 6488 /* 6489 * Guard against NMI hits inside the critical section; 6490 * see also perf_prepare_sample_aux(). 6491 */ 6492 WRITE_ONCE(rb->aux_in_sampling, 1); 6493 barrier(); 6494 6495 ret = event->pmu->snapshot_aux(event, handle, size); 6496 6497 barrier(); 6498 WRITE_ONCE(rb->aux_in_sampling, 0); 6499 local_irq_restore(flags); 6500 6501 return ret; 6502 } 6503 6504 static void perf_aux_sample_output(struct perf_event *event, 6505 struct perf_output_handle *handle, 6506 struct perf_sample_data *data) 6507 { 6508 struct perf_event *sampler = event->aux_event; 6509 struct perf_buffer *rb; 6510 unsigned long pad; 6511 long size; 6512 6513 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6514 return; 6515 6516 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6517 if (!rb) 6518 return; 6519 6520 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6521 6522 /* 6523 * An error here means that perf_output_copy() failed (returned a 6524 * non-zero surplus that it didn't copy), which in its current 6525 * enlightened implementation is not possible. If that changes, we'd 6526 * like to know. 6527 */ 6528 if (WARN_ON_ONCE(size < 0)) 6529 goto out_put; 6530 6531 /* 6532 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6533 * perf_prepare_sample_aux(), so should not be more than that. 6534 */ 6535 pad = data->aux_size - size; 6536 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6537 pad = 8; 6538 6539 if (pad) { 6540 u64 zero = 0; 6541 perf_output_copy(handle, &zero, pad); 6542 } 6543 6544 out_put: 6545 ring_buffer_put(rb); 6546 } 6547 6548 static void __perf_event_header__init_id(struct perf_event_header *header, 6549 struct perf_sample_data *data, 6550 struct perf_event *event) 6551 { 6552 u64 sample_type = event->attr.sample_type; 6553 6554 data->type = sample_type; 6555 header->size += event->id_header_size; 6556 6557 if (sample_type & PERF_SAMPLE_TID) { 6558 /* namespace issues */ 6559 data->tid_entry.pid = perf_event_pid(event, current); 6560 data->tid_entry.tid = perf_event_tid(event, current); 6561 } 6562 6563 if (sample_type & PERF_SAMPLE_TIME) 6564 data->time = perf_event_clock(event); 6565 6566 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6567 data->id = primary_event_id(event); 6568 6569 if (sample_type & PERF_SAMPLE_STREAM_ID) 6570 data->stream_id = event->id; 6571 6572 if (sample_type & PERF_SAMPLE_CPU) { 6573 data->cpu_entry.cpu = raw_smp_processor_id(); 6574 data->cpu_entry.reserved = 0; 6575 } 6576 } 6577 6578 void perf_event_header__init_id(struct perf_event_header *header, 6579 struct perf_sample_data *data, 6580 struct perf_event *event) 6581 { 6582 if (event->attr.sample_id_all) 6583 __perf_event_header__init_id(header, data, event); 6584 } 6585 6586 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6587 struct perf_sample_data *data) 6588 { 6589 u64 sample_type = data->type; 6590 6591 if (sample_type & PERF_SAMPLE_TID) 6592 perf_output_put(handle, data->tid_entry); 6593 6594 if (sample_type & PERF_SAMPLE_TIME) 6595 perf_output_put(handle, data->time); 6596 6597 if (sample_type & PERF_SAMPLE_ID) 6598 perf_output_put(handle, data->id); 6599 6600 if (sample_type & PERF_SAMPLE_STREAM_ID) 6601 perf_output_put(handle, data->stream_id); 6602 6603 if (sample_type & PERF_SAMPLE_CPU) 6604 perf_output_put(handle, data->cpu_entry); 6605 6606 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6607 perf_output_put(handle, data->id); 6608 } 6609 6610 void perf_event__output_id_sample(struct perf_event *event, 6611 struct perf_output_handle *handle, 6612 struct perf_sample_data *sample) 6613 { 6614 if (event->attr.sample_id_all) 6615 __perf_event__output_id_sample(handle, sample); 6616 } 6617 6618 static void perf_output_read_one(struct perf_output_handle *handle, 6619 struct perf_event *event, 6620 u64 enabled, u64 running) 6621 { 6622 u64 read_format = event->attr.read_format; 6623 u64 values[4]; 6624 int n = 0; 6625 6626 values[n++] = perf_event_count(event); 6627 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6628 values[n++] = enabled + 6629 atomic64_read(&event->child_total_time_enabled); 6630 } 6631 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6632 values[n++] = running + 6633 atomic64_read(&event->child_total_time_running); 6634 } 6635 if (read_format & PERF_FORMAT_ID) 6636 values[n++] = primary_event_id(event); 6637 6638 __output_copy(handle, values, n * sizeof(u64)); 6639 } 6640 6641 static void perf_output_read_group(struct perf_output_handle *handle, 6642 struct perf_event *event, 6643 u64 enabled, u64 running) 6644 { 6645 struct perf_event *leader = event->group_leader, *sub; 6646 u64 read_format = event->attr.read_format; 6647 u64 values[5]; 6648 int n = 0; 6649 6650 values[n++] = 1 + leader->nr_siblings; 6651 6652 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6653 values[n++] = enabled; 6654 6655 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6656 values[n++] = running; 6657 6658 if ((leader != event) && 6659 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6660 leader->pmu->read(leader); 6661 6662 values[n++] = perf_event_count(leader); 6663 if (read_format & PERF_FORMAT_ID) 6664 values[n++] = primary_event_id(leader); 6665 6666 __output_copy(handle, values, n * sizeof(u64)); 6667 6668 for_each_sibling_event(sub, leader) { 6669 n = 0; 6670 6671 if ((sub != event) && 6672 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6673 sub->pmu->read(sub); 6674 6675 values[n++] = perf_event_count(sub); 6676 if (read_format & PERF_FORMAT_ID) 6677 values[n++] = primary_event_id(sub); 6678 6679 __output_copy(handle, values, n * sizeof(u64)); 6680 } 6681 } 6682 6683 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6684 PERF_FORMAT_TOTAL_TIME_RUNNING) 6685 6686 /* 6687 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6688 * 6689 * The problem is that its both hard and excessively expensive to iterate the 6690 * child list, not to mention that its impossible to IPI the children running 6691 * on another CPU, from interrupt/NMI context. 6692 */ 6693 static void perf_output_read(struct perf_output_handle *handle, 6694 struct perf_event *event) 6695 { 6696 u64 enabled = 0, running = 0, now; 6697 u64 read_format = event->attr.read_format; 6698 6699 /* 6700 * compute total_time_enabled, total_time_running 6701 * based on snapshot values taken when the event 6702 * was last scheduled in. 6703 * 6704 * we cannot simply called update_context_time() 6705 * because of locking issue as we are called in 6706 * NMI context 6707 */ 6708 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6709 calc_timer_values(event, &now, &enabled, &running); 6710 6711 if (event->attr.read_format & PERF_FORMAT_GROUP) 6712 perf_output_read_group(handle, event, enabled, running); 6713 else 6714 perf_output_read_one(handle, event, enabled, running); 6715 } 6716 6717 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6718 { 6719 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6720 } 6721 6722 void perf_output_sample(struct perf_output_handle *handle, 6723 struct perf_event_header *header, 6724 struct perf_sample_data *data, 6725 struct perf_event *event) 6726 { 6727 u64 sample_type = data->type; 6728 6729 perf_output_put(handle, *header); 6730 6731 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6732 perf_output_put(handle, data->id); 6733 6734 if (sample_type & PERF_SAMPLE_IP) 6735 perf_output_put(handle, data->ip); 6736 6737 if (sample_type & PERF_SAMPLE_TID) 6738 perf_output_put(handle, data->tid_entry); 6739 6740 if (sample_type & PERF_SAMPLE_TIME) 6741 perf_output_put(handle, data->time); 6742 6743 if (sample_type & PERF_SAMPLE_ADDR) 6744 perf_output_put(handle, data->addr); 6745 6746 if (sample_type & PERF_SAMPLE_ID) 6747 perf_output_put(handle, data->id); 6748 6749 if (sample_type & PERF_SAMPLE_STREAM_ID) 6750 perf_output_put(handle, data->stream_id); 6751 6752 if (sample_type & PERF_SAMPLE_CPU) 6753 perf_output_put(handle, data->cpu_entry); 6754 6755 if (sample_type & PERF_SAMPLE_PERIOD) 6756 perf_output_put(handle, data->period); 6757 6758 if (sample_type & PERF_SAMPLE_READ) 6759 perf_output_read(handle, event); 6760 6761 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6762 int size = 1; 6763 6764 size += data->callchain->nr; 6765 size *= sizeof(u64); 6766 __output_copy(handle, data->callchain, size); 6767 } 6768 6769 if (sample_type & PERF_SAMPLE_RAW) { 6770 struct perf_raw_record *raw = data->raw; 6771 6772 if (raw) { 6773 struct perf_raw_frag *frag = &raw->frag; 6774 6775 perf_output_put(handle, raw->size); 6776 do { 6777 if (frag->copy) { 6778 __output_custom(handle, frag->copy, 6779 frag->data, frag->size); 6780 } else { 6781 __output_copy(handle, frag->data, 6782 frag->size); 6783 } 6784 if (perf_raw_frag_last(frag)) 6785 break; 6786 frag = frag->next; 6787 } while (1); 6788 if (frag->pad) 6789 __output_skip(handle, NULL, frag->pad); 6790 } else { 6791 struct { 6792 u32 size; 6793 u32 data; 6794 } raw = { 6795 .size = sizeof(u32), 6796 .data = 0, 6797 }; 6798 perf_output_put(handle, raw); 6799 } 6800 } 6801 6802 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6803 if (data->br_stack) { 6804 size_t size; 6805 6806 size = data->br_stack->nr 6807 * sizeof(struct perf_branch_entry); 6808 6809 perf_output_put(handle, data->br_stack->nr); 6810 if (perf_sample_save_hw_index(event)) 6811 perf_output_put(handle, data->br_stack->hw_idx); 6812 perf_output_copy(handle, data->br_stack->entries, size); 6813 } else { 6814 /* 6815 * we always store at least the value of nr 6816 */ 6817 u64 nr = 0; 6818 perf_output_put(handle, nr); 6819 } 6820 } 6821 6822 if (sample_type & PERF_SAMPLE_REGS_USER) { 6823 u64 abi = data->regs_user.abi; 6824 6825 /* 6826 * If there are no regs to dump, notice it through 6827 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6828 */ 6829 perf_output_put(handle, abi); 6830 6831 if (abi) { 6832 u64 mask = event->attr.sample_regs_user; 6833 perf_output_sample_regs(handle, 6834 data->regs_user.regs, 6835 mask); 6836 } 6837 } 6838 6839 if (sample_type & PERF_SAMPLE_STACK_USER) { 6840 perf_output_sample_ustack(handle, 6841 data->stack_user_size, 6842 data->regs_user.regs); 6843 } 6844 6845 if (sample_type & PERF_SAMPLE_WEIGHT) 6846 perf_output_put(handle, data->weight); 6847 6848 if (sample_type & PERF_SAMPLE_DATA_SRC) 6849 perf_output_put(handle, data->data_src.val); 6850 6851 if (sample_type & PERF_SAMPLE_TRANSACTION) 6852 perf_output_put(handle, data->txn); 6853 6854 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6855 u64 abi = data->regs_intr.abi; 6856 /* 6857 * If there are no regs to dump, notice it through 6858 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6859 */ 6860 perf_output_put(handle, abi); 6861 6862 if (abi) { 6863 u64 mask = event->attr.sample_regs_intr; 6864 6865 perf_output_sample_regs(handle, 6866 data->regs_intr.regs, 6867 mask); 6868 } 6869 } 6870 6871 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6872 perf_output_put(handle, data->phys_addr); 6873 6874 if (sample_type & PERF_SAMPLE_CGROUP) 6875 perf_output_put(handle, data->cgroup); 6876 6877 if (sample_type & PERF_SAMPLE_AUX) { 6878 perf_output_put(handle, data->aux_size); 6879 6880 if (data->aux_size) 6881 perf_aux_sample_output(event, handle, data); 6882 } 6883 6884 if (!event->attr.watermark) { 6885 int wakeup_events = event->attr.wakeup_events; 6886 6887 if (wakeup_events) { 6888 struct perf_buffer *rb = handle->rb; 6889 int events = local_inc_return(&rb->events); 6890 6891 if (events >= wakeup_events) { 6892 local_sub(wakeup_events, &rb->events); 6893 local_inc(&rb->wakeup); 6894 } 6895 } 6896 } 6897 } 6898 6899 static u64 perf_virt_to_phys(u64 virt) 6900 { 6901 u64 phys_addr = 0; 6902 struct page *p = NULL; 6903 6904 if (!virt) 6905 return 0; 6906 6907 if (virt >= TASK_SIZE) { 6908 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6909 if (virt_addr_valid((void *)(uintptr_t)virt) && 6910 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6911 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6912 } else { 6913 /* 6914 * Walking the pages tables for user address. 6915 * Interrupts are disabled, so it prevents any tear down 6916 * of the page tables. 6917 * Try IRQ-safe __get_user_pages_fast first. 6918 * If failed, leave phys_addr as 0. 6919 */ 6920 if ((current->mm != NULL) && 6921 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6922 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6923 6924 if (p) 6925 put_page(p); 6926 } 6927 6928 return phys_addr; 6929 } 6930 6931 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6932 6933 struct perf_callchain_entry * 6934 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6935 { 6936 bool kernel = !event->attr.exclude_callchain_kernel; 6937 bool user = !event->attr.exclude_callchain_user; 6938 /* Disallow cross-task user callchains. */ 6939 bool crosstask = event->ctx->task && event->ctx->task != current; 6940 const u32 max_stack = event->attr.sample_max_stack; 6941 struct perf_callchain_entry *callchain; 6942 6943 if (!kernel && !user) 6944 return &__empty_callchain; 6945 6946 callchain = get_perf_callchain(regs, 0, kernel, user, 6947 max_stack, crosstask, true); 6948 return callchain ?: &__empty_callchain; 6949 } 6950 6951 void perf_prepare_sample(struct perf_event_header *header, 6952 struct perf_sample_data *data, 6953 struct perf_event *event, 6954 struct pt_regs *regs) 6955 { 6956 u64 sample_type = event->attr.sample_type; 6957 6958 header->type = PERF_RECORD_SAMPLE; 6959 header->size = sizeof(*header) + event->header_size; 6960 6961 header->misc = 0; 6962 header->misc |= perf_misc_flags(regs); 6963 6964 __perf_event_header__init_id(header, data, event); 6965 6966 if (sample_type & PERF_SAMPLE_IP) 6967 data->ip = perf_instruction_pointer(regs); 6968 6969 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6970 int size = 1; 6971 6972 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6973 data->callchain = perf_callchain(event, regs); 6974 6975 size += data->callchain->nr; 6976 6977 header->size += size * sizeof(u64); 6978 } 6979 6980 if (sample_type & PERF_SAMPLE_RAW) { 6981 struct perf_raw_record *raw = data->raw; 6982 int size; 6983 6984 if (raw) { 6985 struct perf_raw_frag *frag = &raw->frag; 6986 u32 sum = 0; 6987 6988 do { 6989 sum += frag->size; 6990 if (perf_raw_frag_last(frag)) 6991 break; 6992 frag = frag->next; 6993 } while (1); 6994 6995 size = round_up(sum + sizeof(u32), sizeof(u64)); 6996 raw->size = size - sizeof(u32); 6997 frag->pad = raw->size - sum; 6998 } else { 6999 size = sizeof(u64); 7000 } 7001 7002 header->size += size; 7003 } 7004 7005 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7006 int size = sizeof(u64); /* nr */ 7007 if (data->br_stack) { 7008 if (perf_sample_save_hw_index(event)) 7009 size += sizeof(u64); 7010 7011 size += data->br_stack->nr 7012 * sizeof(struct perf_branch_entry); 7013 } 7014 header->size += size; 7015 } 7016 7017 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7018 perf_sample_regs_user(&data->regs_user, regs, 7019 &data->regs_user_copy); 7020 7021 if (sample_type & PERF_SAMPLE_REGS_USER) { 7022 /* regs dump ABI info */ 7023 int size = sizeof(u64); 7024 7025 if (data->regs_user.regs) { 7026 u64 mask = event->attr.sample_regs_user; 7027 size += hweight64(mask) * sizeof(u64); 7028 } 7029 7030 header->size += size; 7031 } 7032 7033 if (sample_type & PERF_SAMPLE_STACK_USER) { 7034 /* 7035 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7036 * processed as the last one or have additional check added 7037 * in case new sample type is added, because we could eat 7038 * up the rest of the sample size. 7039 */ 7040 u16 stack_size = event->attr.sample_stack_user; 7041 u16 size = sizeof(u64); 7042 7043 stack_size = perf_sample_ustack_size(stack_size, header->size, 7044 data->regs_user.regs); 7045 7046 /* 7047 * If there is something to dump, add space for the dump 7048 * itself and for the field that tells the dynamic size, 7049 * which is how many have been actually dumped. 7050 */ 7051 if (stack_size) 7052 size += sizeof(u64) + stack_size; 7053 7054 data->stack_user_size = stack_size; 7055 header->size += size; 7056 } 7057 7058 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7059 /* regs dump ABI info */ 7060 int size = sizeof(u64); 7061 7062 perf_sample_regs_intr(&data->regs_intr, regs); 7063 7064 if (data->regs_intr.regs) { 7065 u64 mask = event->attr.sample_regs_intr; 7066 7067 size += hweight64(mask) * sizeof(u64); 7068 } 7069 7070 header->size += size; 7071 } 7072 7073 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7074 data->phys_addr = perf_virt_to_phys(data->addr); 7075 7076 #ifdef CONFIG_CGROUP_PERF 7077 if (sample_type & PERF_SAMPLE_CGROUP) { 7078 struct cgroup *cgrp; 7079 7080 /* protected by RCU */ 7081 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7082 data->cgroup = cgroup_id(cgrp); 7083 } 7084 #endif 7085 7086 if (sample_type & PERF_SAMPLE_AUX) { 7087 u64 size; 7088 7089 header->size += sizeof(u64); /* size */ 7090 7091 /* 7092 * Given the 16bit nature of header::size, an AUX sample can 7093 * easily overflow it, what with all the preceding sample bits. 7094 * Make sure this doesn't happen by using up to U16_MAX bytes 7095 * per sample in total (rounded down to 8 byte boundary). 7096 */ 7097 size = min_t(size_t, U16_MAX - header->size, 7098 event->attr.aux_sample_size); 7099 size = rounddown(size, 8); 7100 size = perf_prepare_sample_aux(event, data, size); 7101 7102 WARN_ON_ONCE(size + header->size > U16_MAX); 7103 header->size += size; 7104 } 7105 /* 7106 * If you're adding more sample types here, you likely need to do 7107 * something about the overflowing header::size, like repurpose the 7108 * lowest 3 bits of size, which should be always zero at the moment. 7109 * This raises a more important question, do we really need 512k sized 7110 * samples and why, so good argumentation is in order for whatever you 7111 * do here next. 7112 */ 7113 WARN_ON_ONCE(header->size & 7); 7114 } 7115 7116 static __always_inline int 7117 __perf_event_output(struct perf_event *event, 7118 struct perf_sample_data *data, 7119 struct pt_regs *regs, 7120 int (*output_begin)(struct perf_output_handle *, 7121 struct perf_event *, 7122 unsigned int)) 7123 { 7124 struct perf_output_handle handle; 7125 struct perf_event_header header; 7126 int err; 7127 7128 /* protect the callchain buffers */ 7129 rcu_read_lock(); 7130 7131 perf_prepare_sample(&header, data, event, regs); 7132 7133 err = output_begin(&handle, event, header.size); 7134 if (err) 7135 goto exit; 7136 7137 perf_output_sample(&handle, &header, data, event); 7138 7139 perf_output_end(&handle); 7140 7141 exit: 7142 rcu_read_unlock(); 7143 return err; 7144 } 7145 7146 void 7147 perf_event_output_forward(struct perf_event *event, 7148 struct perf_sample_data *data, 7149 struct pt_regs *regs) 7150 { 7151 __perf_event_output(event, data, regs, perf_output_begin_forward); 7152 } 7153 7154 void 7155 perf_event_output_backward(struct perf_event *event, 7156 struct perf_sample_data *data, 7157 struct pt_regs *regs) 7158 { 7159 __perf_event_output(event, data, regs, perf_output_begin_backward); 7160 } 7161 7162 int 7163 perf_event_output(struct perf_event *event, 7164 struct perf_sample_data *data, 7165 struct pt_regs *regs) 7166 { 7167 return __perf_event_output(event, data, regs, perf_output_begin); 7168 } 7169 7170 /* 7171 * read event_id 7172 */ 7173 7174 struct perf_read_event { 7175 struct perf_event_header header; 7176 7177 u32 pid; 7178 u32 tid; 7179 }; 7180 7181 static void 7182 perf_event_read_event(struct perf_event *event, 7183 struct task_struct *task) 7184 { 7185 struct perf_output_handle handle; 7186 struct perf_sample_data sample; 7187 struct perf_read_event read_event = { 7188 .header = { 7189 .type = PERF_RECORD_READ, 7190 .misc = 0, 7191 .size = sizeof(read_event) + event->read_size, 7192 }, 7193 .pid = perf_event_pid(event, task), 7194 .tid = perf_event_tid(event, task), 7195 }; 7196 int ret; 7197 7198 perf_event_header__init_id(&read_event.header, &sample, event); 7199 ret = perf_output_begin(&handle, event, read_event.header.size); 7200 if (ret) 7201 return; 7202 7203 perf_output_put(&handle, read_event); 7204 perf_output_read(&handle, event); 7205 perf_event__output_id_sample(event, &handle, &sample); 7206 7207 perf_output_end(&handle); 7208 } 7209 7210 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7211 7212 static void 7213 perf_iterate_ctx(struct perf_event_context *ctx, 7214 perf_iterate_f output, 7215 void *data, bool all) 7216 { 7217 struct perf_event *event; 7218 7219 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7220 if (!all) { 7221 if (event->state < PERF_EVENT_STATE_INACTIVE) 7222 continue; 7223 if (!event_filter_match(event)) 7224 continue; 7225 } 7226 7227 output(event, data); 7228 } 7229 } 7230 7231 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7232 { 7233 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7234 struct perf_event *event; 7235 7236 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7237 /* 7238 * Skip events that are not fully formed yet; ensure that 7239 * if we observe event->ctx, both event and ctx will be 7240 * complete enough. See perf_install_in_context(). 7241 */ 7242 if (!smp_load_acquire(&event->ctx)) 7243 continue; 7244 7245 if (event->state < PERF_EVENT_STATE_INACTIVE) 7246 continue; 7247 if (!event_filter_match(event)) 7248 continue; 7249 output(event, data); 7250 } 7251 } 7252 7253 /* 7254 * Iterate all events that need to receive side-band events. 7255 * 7256 * For new callers; ensure that account_pmu_sb_event() includes 7257 * your event, otherwise it might not get delivered. 7258 */ 7259 static void 7260 perf_iterate_sb(perf_iterate_f output, void *data, 7261 struct perf_event_context *task_ctx) 7262 { 7263 struct perf_event_context *ctx; 7264 int ctxn; 7265 7266 rcu_read_lock(); 7267 preempt_disable(); 7268 7269 /* 7270 * If we have task_ctx != NULL we only notify the task context itself. 7271 * The task_ctx is set only for EXIT events before releasing task 7272 * context. 7273 */ 7274 if (task_ctx) { 7275 perf_iterate_ctx(task_ctx, output, data, false); 7276 goto done; 7277 } 7278 7279 perf_iterate_sb_cpu(output, data); 7280 7281 for_each_task_context_nr(ctxn) { 7282 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7283 if (ctx) 7284 perf_iterate_ctx(ctx, output, data, false); 7285 } 7286 done: 7287 preempt_enable(); 7288 rcu_read_unlock(); 7289 } 7290 7291 /* 7292 * Clear all file-based filters at exec, they'll have to be 7293 * re-instated when/if these objects are mmapped again. 7294 */ 7295 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7296 { 7297 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7298 struct perf_addr_filter *filter; 7299 unsigned int restart = 0, count = 0; 7300 unsigned long flags; 7301 7302 if (!has_addr_filter(event)) 7303 return; 7304 7305 raw_spin_lock_irqsave(&ifh->lock, flags); 7306 list_for_each_entry(filter, &ifh->list, entry) { 7307 if (filter->path.dentry) { 7308 event->addr_filter_ranges[count].start = 0; 7309 event->addr_filter_ranges[count].size = 0; 7310 restart++; 7311 } 7312 7313 count++; 7314 } 7315 7316 if (restart) 7317 event->addr_filters_gen++; 7318 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7319 7320 if (restart) 7321 perf_event_stop(event, 1); 7322 } 7323 7324 void perf_event_exec(void) 7325 { 7326 struct perf_event_context *ctx; 7327 int ctxn; 7328 7329 rcu_read_lock(); 7330 for_each_task_context_nr(ctxn) { 7331 ctx = current->perf_event_ctxp[ctxn]; 7332 if (!ctx) 7333 continue; 7334 7335 perf_event_enable_on_exec(ctxn); 7336 7337 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7338 true); 7339 } 7340 rcu_read_unlock(); 7341 } 7342 7343 struct remote_output { 7344 struct perf_buffer *rb; 7345 int err; 7346 }; 7347 7348 static void __perf_event_output_stop(struct perf_event *event, void *data) 7349 { 7350 struct perf_event *parent = event->parent; 7351 struct remote_output *ro = data; 7352 struct perf_buffer *rb = ro->rb; 7353 struct stop_event_data sd = { 7354 .event = event, 7355 }; 7356 7357 if (!has_aux(event)) 7358 return; 7359 7360 if (!parent) 7361 parent = event; 7362 7363 /* 7364 * In case of inheritance, it will be the parent that links to the 7365 * ring-buffer, but it will be the child that's actually using it. 7366 * 7367 * We are using event::rb to determine if the event should be stopped, 7368 * however this may race with ring_buffer_attach() (through set_output), 7369 * which will make us skip the event that actually needs to be stopped. 7370 * So ring_buffer_attach() has to stop an aux event before re-assigning 7371 * its rb pointer. 7372 */ 7373 if (rcu_dereference(parent->rb) == rb) 7374 ro->err = __perf_event_stop(&sd); 7375 } 7376 7377 static int __perf_pmu_output_stop(void *info) 7378 { 7379 struct perf_event *event = info; 7380 struct pmu *pmu = event->ctx->pmu; 7381 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7382 struct remote_output ro = { 7383 .rb = event->rb, 7384 }; 7385 7386 rcu_read_lock(); 7387 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7388 if (cpuctx->task_ctx) 7389 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7390 &ro, false); 7391 rcu_read_unlock(); 7392 7393 return ro.err; 7394 } 7395 7396 static void perf_pmu_output_stop(struct perf_event *event) 7397 { 7398 struct perf_event *iter; 7399 int err, cpu; 7400 7401 restart: 7402 rcu_read_lock(); 7403 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7404 /* 7405 * For per-CPU events, we need to make sure that neither they 7406 * nor their children are running; for cpu==-1 events it's 7407 * sufficient to stop the event itself if it's active, since 7408 * it can't have children. 7409 */ 7410 cpu = iter->cpu; 7411 if (cpu == -1) 7412 cpu = READ_ONCE(iter->oncpu); 7413 7414 if (cpu == -1) 7415 continue; 7416 7417 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7418 if (err == -EAGAIN) { 7419 rcu_read_unlock(); 7420 goto restart; 7421 } 7422 } 7423 rcu_read_unlock(); 7424 } 7425 7426 /* 7427 * task tracking -- fork/exit 7428 * 7429 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7430 */ 7431 7432 struct perf_task_event { 7433 struct task_struct *task; 7434 struct perf_event_context *task_ctx; 7435 7436 struct { 7437 struct perf_event_header header; 7438 7439 u32 pid; 7440 u32 ppid; 7441 u32 tid; 7442 u32 ptid; 7443 u64 time; 7444 } event_id; 7445 }; 7446 7447 static int perf_event_task_match(struct perf_event *event) 7448 { 7449 return event->attr.comm || event->attr.mmap || 7450 event->attr.mmap2 || event->attr.mmap_data || 7451 event->attr.task; 7452 } 7453 7454 static void perf_event_task_output(struct perf_event *event, 7455 void *data) 7456 { 7457 struct perf_task_event *task_event = data; 7458 struct perf_output_handle handle; 7459 struct perf_sample_data sample; 7460 struct task_struct *task = task_event->task; 7461 int ret, size = task_event->event_id.header.size; 7462 7463 if (!perf_event_task_match(event)) 7464 return; 7465 7466 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7467 7468 ret = perf_output_begin(&handle, event, 7469 task_event->event_id.header.size); 7470 if (ret) 7471 goto out; 7472 7473 task_event->event_id.pid = perf_event_pid(event, task); 7474 task_event->event_id.ppid = perf_event_pid(event, current); 7475 7476 task_event->event_id.tid = perf_event_tid(event, task); 7477 task_event->event_id.ptid = perf_event_tid(event, current); 7478 7479 task_event->event_id.time = perf_event_clock(event); 7480 7481 perf_output_put(&handle, task_event->event_id); 7482 7483 perf_event__output_id_sample(event, &handle, &sample); 7484 7485 perf_output_end(&handle); 7486 out: 7487 task_event->event_id.header.size = size; 7488 } 7489 7490 static void perf_event_task(struct task_struct *task, 7491 struct perf_event_context *task_ctx, 7492 int new) 7493 { 7494 struct perf_task_event task_event; 7495 7496 if (!atomic_read(&nr_comm_events) && 7497 !atomic_read(&nr_mmap_events) && 7498 !atomic_read(&nr_task_events)) 7499 return; 7500 7501 task_event = (struct perf_task_event){ 7502 .task = task, 7503 .task_ctx = task_ctx, 7504 .event_id = { 7505 .header = { 7506 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7507 .misc = 0, 7508 .size = sizeof(task_event.event_id), 7509 }, 7510 /* .pid */ 7511 /* .ppid */ 7512 /* .tid */ 7513 /* .ptid */ 7514 /* .time */ 7515 }, 7516 }; 7517 7518 perf_iterate_sb(perf_event_task_output, 7519 &task_event, 7520 task_ctx); 7521 } 7522 7523 void perf_event_fork(struct task_struct *task) 7524 { 7525 perf_event_task(task, NULL, 1); 7526 perf_event_namespaces(task); 7527 } 7528 7529 /* 7530 * comm tracking 7531 */ 7532 7533 struct perf_comm_event { 7534 struct task_struct *task; 7535 char *comm; 7536 int comm_size; 7537 7538 struct { 7539 struct perf_event_header header; 7540 7541 u32 pid; 7542 u32 tid; 7543 } event_id; 7544 }; 7545 7546 static int perf_event_comm_match(struct perf_event *event) 7547 { 7548 return event->attr.comm; 7549 } 7550 7551 static void perf_event_comm_output(struct perf_event *event, 7552 void *data) 7553 { 7554 struct perf_comm_event *comm_event = data; 7555 struct perf_output_handle handle; 7556 struct perf_sample_data sample; 7557 int size = comm_event->event_id.header.size; 7558 int ret; 7559 7560 if (!perf_event_comm_match(event)) 7561 return; 7562 7563 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7564 ret = perf_output_begin(&handle, event, 7565 comm_event->event_id.header.size); 7566 7567 if (ret) 7568 goto out; 7569 7570 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7571 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7572 7573 perf_output_put(&handle, comm_event->event_id); 7574 __output_copy(&handle, comm_event->comm, 7575 comm_event->comm_size); 7576 7577 perf_event__output_id_sample(event, &handle, &sample); 7578 7579 perf_output_end(&handle); 7580 out: 7581 comm_event->event_id.header.size = size; 7582 } 7583 7584 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7585 { 7586 char comm[TASK_COMM_LEN]; 7587 unsigned int size; 7588 7589 memset(comm, 0, sizeof(comm)); 7590 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7591 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7592 7593 comm_event->comm = comm; 7594 comm_event->comm_size = size; 7595 7596 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7597 7598 perf_iterate_sb(perf_event_comm_output, 7599 comm_event, 7600 NULL); 7601 } 7602 7603 void perf_event_comm(struct task_struct *task, bool exec) 7604 { 7605 struct perf_comm_event comm_event; 7606 7607 if (!atomic_read(&nr_comm_events)) 7608 return; 7609 7610 comm_event = (struct perf_comm_event){ 7611 .task = task, 7612 /* .comm */ 7613 /* .comm_size */ 7614 .event_id = { 7615 .header = { 7616 .type = PERF_RECORD_COMM, 7617 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7618 /* .size */ 7619 }, 7620 /* .pid */ 7621 /* .tid */ 7622 }, 7623 }; 7624 7625 perf_event_comm_event(&comm_event); 7626 } 7627 7628 /* 7629 * namespaces tracking 7630 */ 7631 7632 struct perf_namespaces_event { 7633 struct task_struct *task; 7634 7635 struct { 7636 struct perf_event_header header; 7637 7638 u32 pid; 7639 u32 tid; 7640 u64 nr_namespaces; 7641 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7642 } event_id; 7643 }; 7644 7645 static int perf_event_namespaces_match(struct perf_event *event) 7646 { 7647 return event->attr.namespaces; 7648 } 7649 7650 static void perf_event_namespaces_output(struct perf_event *event, 7651 void *data) 7652 { 7653 struct perf_namespaces_event *namespaces_event = data; 7654 struct perf_output_handle handle; 7655 struct perf_sample_data sample; 7656 u16 header_size = namespaces_event->event_id.header.size; 7657 int ret; 7658 7659 if (!perf_event_namespaces_match(event)) 7660 return; 7661 7662 perf_event_header__init_id(&namespaces_event->event_id.header, 7663 &sample, event); 7664 ret = perf_output_begin(&handle, event, 7665 namespaces_event->event_id.header.size); 7666 if (ret) 7667 goto out; 7668 7669 namespaces_event->event_id.pid = perf_event_pid(event, 7670 namespaces_event->task); 7671 namespaces_event->event_id.tid = perf_event_tid(event, 7672 namespaces_event->task); 7673 7674 perf_output_put(&handle, namespaces_event->event_id); 7675 7676 perf_event__output_id_sample(event, &handle, &sample); 7677 7678 perf_output_end(&handle); 7679 out: 7680 namespaces_event->event_id.header.size = header_size; 7681 } 7682 7683 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7684 struct task_struct *task, 7685 const struct proc_ns_operations *ns_ops) 7686 { 7687 struct path ns_path; 7688 struct inode *ns_inode; 7689 int error; 7690 7691 error = ns_get_path(&ns_path, task, ns_ops); 7692 if (!error) { 7693 ns_inode = ns_path.dentry->d_inode; 7694 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7695 ns_link_info->ino = ns_inode->i_ino; 7696 path_put(&ns_path); 7697 } 7698 } 7699 7700 void perf_event_namespaces(struct task_struct *task) 7701 { 7702 struct perf_namespaces_event namespaces_event; 7703 struct perf_ns_link_info *ns_link_info; 7704 7705 if (!atomic_read(&nr_namespaces_events)) 7706 return; 7707 7708 namespaces_event = (struct perf_namespaces_event){ 7709 .task = task, 7710 .event_id = { 7711 .header = { 7712 .type = PERF_RECORD_NAMESPACES, 7713 .misc = 0, 7714 .size = sizeof(namespaces_event.event_id), 7715 }, 7716 /* .pid */ 7717 /* .tid */ 7718 .nr_namespaces = NR_NAMESPACES, 7719 /* .link_info[NR_NAMESPACES] */ 7720 }, 7721 }; 7722 7723 ns_link_info = namespaces_event.event_id.link_info; 7724 7725 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7726 task, &mntns_operations); 7727 7728 #ifdef CONFIG_USER_NS 7729 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7730 task, &userns_operations); 7731 #endif 7732 #ifdef CONFIG_NET_NS 7733 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7734 task, &netns_operations); 7735 #endif 7736 #ifdef CONFIG_UTS_NS 7737 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7738 task, &utsns_operations); 7739 #endif 7740 #ifdef CONFIG_IPC_NS 7741 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7742 task, &ipcns_operations); 7743 #endif 7744 #ifdef CONFIG_PID_NS 7745 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7746 task, &pidns_operations); 7747 #endif 7748 #ifdef CONFIG_CGROUPS 7749 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7750 task, &cgroupns_operations); 7751 #endif 7752 7753 perf_iterate_sb(perf_event_namespaces_output, 7754 &namespaces_event, 7755 NULL); 7756 } 7757 7758 /* 7759 * cgroup tracking 7760 */ 7761 #ifdef CONFIG_CGROUP_PERF 7762 7763 struct perf_cgroup_event { 7764 char *path; 7765 int path_size; 7766 struct { 7767 struct perf_event_header header; 7768 u64 id; 7769 char path[]; 7770 } event_id; 7771 }; 7772 7773 static int perf_event_cgroup_match(struct perf_event *event) 7774 { 7775 return event->attr.cgroup; 7776 } 7777 7778 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7779 { 7780 struct perf_cgroup_event *cgroup_event = data; 7781 struct perf_output_handle handle; 7782 struct perf_sample_data sample; 7783 u16 header_size = cgroup_event->event_id.header.size; 7784 int ret; 7785 7786 if (!perf_event_cgroup_match(event)) 7787 return; 7788 7789 perf_event_header__init_id(&cgroup_event->event_id.header, 7790 &sample, event); 7791 ret = perf_output_begin(&handle, event, 7792 cgroup_event->event_id.header.size); 7793 if (ret) 7794 goto out; 7795 7796 perf_output_put(&handle, cgroup_event->event_id); 7797 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7798 7799 perf_event__output_id_sample(event, &handle, &sample); 7800 7801 perf_output_end(&handle); 7802 out: 7803 cgroup_event->event_id.header.size = header_size; 7804 } 7805 7806 static void perf_event_cgroup(struct cgroup *cgrp) 7807 { 7808 struct perf_cgroup_event cgroup_event; 7809 char path_enomem[16] = "//enomem"; 7810 char *pathname; 7811 size_t size; 7812 7813 if (!atomic_read(&nr_cgroup_events)) 7814 return; 7815 7816 cgroup_event = (struct perf_cgroup_event){ 7817 .event_id = { 7818 .header = { 7819 .type = PERF_RECORD_CGROUP, 7820 .misc = 0, 7821 .size = sizeof(cgroup_event.event_id), 7822 }, 7823 .id = cgroup_id(cgrp), 7824 }, 7825 }; 7826 7827 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7828 if (pathname == NULL) { 7829 cgroup_event.path = path_enomem; 7830 } else { 7831 /* just to be sure to have enough space for alignment */ 7832 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7833 cgroup_event.path = pathname; 7834 } 7835 7836 /* 7837 * Since our buffer works in 8 byte units we need to align our string 7838 * size to a multiple of 8. However, we must guarantee the tail end is 7839 * zero'd out to avoid leaking random bits to userspace. 7840 */ 7841 size = strlen(cgroup_event.path) + 1; 7842 while (!IS_ALIGNED(size, sizeof(u64))) 7843 cgroup_event.path[size++] = '\0'; 7844 7845 cgroup_event.event_id.header.size += size; 7846 cgroup_event.path_size = size; 7847 7848 perf_iterate_sb(perf_event_cgroup_output, 7849 &cgroup_event, 7850 NULL); 7851 7852 kfree(pathname); 7853 } 7854 7855 #endif 7856 7857 /* 7858 * mmap tracking 7859 */ 7860 7861 struct perf_mmap_event { 7862 struct vm_area_struct *vma; 7863 7864 const char *file_name; 7865 int file_size; 7866 int maj, min; 7867 u64 ino; 7868 u64 ino_generation; 7869 u32 prot, flags; 7870 7871 struct { 7872 struct perf_event_header header; 7873 7874 u32 pid; 7875 u32 tid; 7876 u64 start; 7877 u64 len; 7878 u64 pgoff; 7879 } event_id; 7880 }; 7881 7882 static int perf_event_mmap_match(struct perf_event *event, 7883 void *data) 7884 { 7885 struct perf_mmap_event *mmap_event = data; 7886 struct vm_area_struct *vma = mmap_event->vma; 7887 int executable = vma->vm_flags & VM_EXEC; 7888 7889 return (!executable && event->attr.mmap_data) || 7890 (executable && (event->attr.mmap || event->attr.mmap2)); 7891 } 7892 7893 static void perf_event_mmap_output(struct perf_event *event, 7894 void *data) 7895 { 7896 struct perf_mmap_event *mmap_event = data; 7897 struct perf_output_handle handle; 7898 struct perf_sample_data sample; 7899 int size = mmap_event->event_id.header.size; 7900 u32 type = mmap_event->event_id.header.type; 7901 int ret; 7902 7903 if (!perf_event_mmap_match(event, data)) 7904 return; 7905 7906 if (event->attr.mmap2) { 7907 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7908 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7909 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7910 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7911 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7912 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7913 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7914 } 7915 7916 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7917 ret = perf_output_begin(&handle, event, 7918 mmap_event->event_id.header.size); 7919 if (ret) 7920 goto out; 7921 7922 mmap_event->event_id.pid = perf_event_pid(event, current); 7923 mmap_event->event_id.tid = perf_event_tid(event, current); 7924 7925 perf_output_put(&handle, mmap_event->event_id); 7926 7927 if (event->attr.mmap2) { 7928 perf_output_put(&handle, mmap_event->maj); 7929 perf_output_put(&handle, mmap_event->min); 7930 perf_output_put(&handle, mmap_event->ino); 7931 perf_output_put(&handle, mmap_event->ino_generation); 7932 perf_output_put(&handle, mmap_event->prot); 7933 perf_output_put(&handle, mmap_event->flags); 7934 } 7935 7936 __output_copy(&handle, mmap_event->file_name, 7937 mmap_event->file_size); 7938 7939 perf_event__output_id_sample(event, &handle, &sample); 7940 7941 perf_output_end(&handle); 7942 out: 7943 mmap_event->event_id.header.size = size; 7944 mmap_event->event_id.header.type = type; 7945 } 7946 7947 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7948 { 7949 struct vm_area_struct *vma = mmap_event->vma; 7950 struct file *file = vma->vm_file; 7951 int maj = 0, min = 0; 7952 u64 ino = 0, gen = 0; 7953 u32 prot = 0, flags = 0; 7954 unsigned int size; 7955 char tmp[16]; 7956 char *buf = NULL; 7957 char *name; 7958 7959 if (vma->vm_flags & VM_READ) 7960 prot |= PROT_READ; 7961 if (vma->vm_flags & VM_WRITE) 7962 prot |= PROT_WRITE; 7963 if (vma->vm_flags & VM_EXEC) 7964 prot |= PROT_EXEC; 7965 7966 if (vma->vm_flags & VM_MAYSHARE) 7967 flags = MAP_SHARED; 7968 else 7969 flags = MAP_PRIVATE; 7970 7971 if (vma->vm_flags & VM_DENYWRITE) 7972 flags |= MAP_DENYWRITE; 7973 if (vma->vm_flags & VM_MAYEXEC) 7974 flags |= MAP_EXECUTABLE; 7975 if (vma->vm_flags & VM_LOCKED) 7976 flags |= MAP_LOCKED; 7977 if (is_vm_hugetlb_page(vma)) 7978 flags |= MAP_HUGETLB; 7979 7980 if (file) { 7981 struct inode *inode; 7982 dev_t dev; 7983 7984 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7985 if (!buf) { 7986 name = "//enomem"; 7987 goto cpy_name; 7988 } 7989 /* 7990 * d_path() works from the end of the rb backwards, so we 7991 * need to add enough zero bytes after the string to handle 7992 * the 64bit alignment we do later. 7993 */ 7994 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7995 if (IS_ERR(name)) { 7996 name = "//toolong"; 7997 goto cpy_name; 7998 } 7999 inode = file_inode(vma->vm_file); 8000 dev = inode->i_sb->s_dev; 8001 ino = inode->i_ino; 8002 gen = inode->i_generation; 8003 maj = MAJOR(dev); 8004 min = MINOR(dev); 8005 8006 goto got_name; 8007 } else { 8008 if (vma->vm_ops && vma->vm_ops->name) { 8009 name = (char *) vma->vm_ops->name(vma); 8010 if (name) 8011 goto cpy_name; 8012 } 8013 8014 name = (char *)arch_vma_name(vma); 8015 if (name) 8016 goto cpy_name; 8017 8018 if (vma->vm_start <= vma->vm_mm->start_brk && 8019 vma->vm_end >= vma->vm_mm->brk) { 8020 name = "[heap]"; 8021 goto cpy_name; 8022 } 8023 if (vma->vm_start <= vma->vm_mm->start_stack && 8024 vma->vm_end >= vma->vm_mm->start_stack) { 8025 name = "[stack]"; 8026 goto cpy_name; 8027 } 8028 8029 name = "//anon"; 8030 goto cpy_name; 8031 } 8032 8033 cpy_name: 8034 strlcpy(tmp, name, sizeof(tmp)); 8035 name = tmp; 8036 got_name: 8037 /* 8038 * Since our buffer works in 8 byte units we need to align our string 8039 * size to a multiple of 8. However, we must guarantee the tail end is 8040 * zero'd out to avoid leaking random bits to userspace. 8041 */ 8042 size = strlen(name)+1; 8043 while (!IS_ALIGNED(size, sizeof(u64))) 8044 name[size++] = '\0'; 8045 8046 mmap_event->file_name = name; 8047 mmap_event->file_size = size; 8048 mmap_event->maj = maj; 8049 mmap_event->min = min; 8050 mmap_event->ino = ino; 8051 mmap_event->ino_generation = gen; 8052 mmap_event->prot = prot; 8053 mmap_event->flags = flags; 8054 8055 if (!(vma->vm_flags & VM_EXEC)) 8056 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8057 8058 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8059 8060 perf_iterate_sb(perf_event_mmap_output, 8061 mmap_event, 8062 NULL); 8063 8064 kfree(buf); 8065 } 8066 8067 /* 8068 * Check whether inode and address range match filter criteria. 8069 */ 8070 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8071 struct file *file, unsigned long offset, 8072 unsigned long size) 8073 { 8074 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8075 if (!filter->path.dentry) 8076 return false; 8077 8078 if (d_inode(filter->path.dentry) != file_inode(file)) 8079 return false; 8080 8081 if (filter->offset > offset + size) 8082 return false; 8083 8084 if (filter->offset + filter->size < offset) 8085 return false; 8086 8087 return true; 8088 } 8089 8090 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8091 struct vm_area_struct *vma, 8092 struct perf_addr_filter_range *fr) 8093 { 8094 unsigned long vma_size = vma->vm_end - vma->vm_start; 8095 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8096 struct file *file = vma->vm_file; 8097 8098 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8099 return false; 8100 8101 if (filter->offset < off) { 8102 fr->start = vma->vm_start; 8103 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8104 } else { 8105 fr->start = vma->vm_start + filter->offset - off; 8106 fr->size = min(vma->vm_end - fr->start, filter->size); 8107 } 8108 8109 return true; 8110 } 8111 8112 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8113 { 8114 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8115 struct vm_area_struct *vma = data; 8116 struct perf_addr_filter *filter; 8117 unsigned int restart = 0, count = 0; 8118 unsigned long flags; 8119 8120 if (!has_addr_filter(event)) 8121 return; 8122 8123 if (!vma->vm_file) 8124 return; 8125 8126 raw_spin_lock_irqsave(&ifh->lock, flags); 8127 list_for_each_entry(filter, &ifh->list, entry) { 8128 if (perf_addr_filter_vma_adjust(filter, vma, 8129 &event->addr_filter_ranges[count])) 8130 restart++; 8131 8132 count++; 8133 } 8134 8135 if (restart) 8136 event->addr_filters_gen++; 8137 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8138 8139 if (restart) 8140 perf_event_stop(event, 1); 8141 } 8142 8143 /* 8144 * Adjust all task's events' filters to the new vma 8145 */ 8146 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8147 { 8148 struct perf_event_context *ctx; 8149 int ctxn; 8150 8151 /* 8152 * Data tracing isn't supported yet and as such there is no need 8153 * to keep track of anything that isn't related to executable code: 8154 */ 8155 if (!(vma->vm_flags & VM_EXEC)) 8156 return; 8157 8158 rcu_read_lock(); 8159 for_each_task_context_nr(ctxn) { 8160 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8161 if (!ctx) 8162 continue; 8163 8164 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8165 } 8166 rcu_read_unlock(); 8167 } 8168 8169 void perf_event_mmap(struct vm_area_struct *vma) 8170 { 8171 struct perf_mmap_event mmap_event; 8172 8173 if (!atomic_read(&nr_mmap_events)) 8174 return; 8175 8176 mmap_event = (struct perf_mmap_event){ 8177 .vma = vma, 8178 /* .file_name */ 8179 /* .file_size */ 8180 .event_id = { 8181 .header = { 8182 .type = PERF_RECORD_MMAP, 8183 .misc = PERF_RECORD_MISC_USER, 8184 /* .size */ 8185 }, 8186 /* .pid */ 8187 /* .tid */ 8188 .start = vma->vm_start, 8189 .len = vma->vm_end - vma->vm_start, 8190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8191 }, 8192 /* .maj (attr_mmap2 only) */ 8193 /* .min (attr_mmap2 only) */ 8194 /* .ino (attr_mmap2 only) */ 8195 /* .ino_generation (attr_mmap2 only) */ 8196 /* .prot (attr_mmap2 only) */ 8197 /* .flags (attr_mmap2 only) */ 8198 }; 8199 8200 perf_addr_filters_adjust(vma); 8201 perf_event_mmap_event(&mmap_event); 8202 } 8203 8204 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8205 unsigned long size, u64 flags) 8206 { 8207 struct perf_output_handle handle; 8208 struct perf_sample_data sample; 8209 struct perf_aux_event { 8210 struct perf_event_header header; 8211 u64 offset; 8212 u64 size; 8213 u64 flags; 8214 } rec = { 8215 .header = { 8216 .type = PERF_RECORD_AUX, 8217 .misc = 0, 8218 .size = sizeof(rec), 8219 }, 8220 .offset = head, 8221 .size = size, 8222 .flags = flags, 8223 }; 8224 int ret; 8225 8226 perf_event_header__init_id(&rec.header, &sample, event); 8227 ret = perf_output_begin(&handle, event, rec.header.size); 8228 8229 if (ret) 8230 return; 8231 8232 perf_output_put(&handle, rec); 8233 perf_event__output_id_sample(event, &handle, &sample); 8234 8235 perf_output_end(&handle); 8236 } 8237 8238 /* 8239 * Lost/dropped samples logging 8240 */ 8241 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8242 { 8243 struct perf_output_handle handle; 8244 struct perf_sample_data sample; 8245 int ret; 8246 8247 struct { 8248 struct perf_event_header header; 8249 u64 lost; 8250 } lost_samples_event = { 8251 .header = { 8252 .type = PERF_RECORD_LOST_SAMPLES, 8253 .misc = 0, 8254 .size = sizeof(lost_samples_event), 8255 }, 8256 .lost = lost, 8257 }; 8258 8259 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8260 8261 ret = perf_output_begin(&handle, event, 8262 lost_samples_event.header.size); 8263 if (ret) 8264 return; 8265 8266 perf_output_put(&handle, lost_samples_event); 8267 perf_event__output_id_sample(event, &handle, &sample); 8268 perf_output_end(&handle); 8269 } 8270 8271 /* 8272 * context_switch tracking 8273 */ 8274 8275 struct perf_switch_event { 8276 struct task_struct *task; 8277 struct task_struct *next_prev; 8278 8279 struct { 8280 struct perf_event_header header; 8281 u32 next_prev_pid; 8282 u32 next_prev_tid; 8283 } event_id; 8284 }; 8285 8286 static int perf_event_switch_match(struct perf_event *event) 8287 { 8288 return event->attr.context_switch; 8289 } 8290 8291 static void perf_event_switch_output(struct perf_event *event, void *data) 8292 { 8293 struct perf_switch_event *se = data; 8294 struct perf_output_handle handle; 8295 struct perf_sample_data sample; 8296 int ret; 8297 8298 if (!perf_event_switch_match(event)) 8299 return; 8300 8301 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8302 if (event->ctx->task) { 8303 se->event_id.header.type = PERF_RECORD_SWITCH; 8304 se->event_id.header.size = sizeof(se->event_id.header); 8305 } else { 8306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8307 se->event_id.header.size = sizeof(se->event_id); 8308 se->event_id.next_prev_pid = 8309 perf_event_pid(event, se->next_prev); 8310 se->event_id.next_prev_tid = 8311 perf_event_tid(event, se->next_prev); 8312 } 8313 8314 perf_event_header__init_id(&se->event_id.header, &sample, event); 8315 8316 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8317 if (ret) 8318 return; 8319 8320 if (event->ctx->task) 8321 perf_output_put(&handle, se->event_id.header); 8322 else 8323 perf_output_put(&handle, se->event_id); 8324 8325 perf_event__output_id_sample(event, &handle, &sample); 8326 8327 perf_output_end(&handle); 8328 } 8329 8330 static void perf_event_switch(struct task_struct *task, 8331 struct task_struct *next_prev, bool sched_in) 8332 { 8333 struct perf_switch_event switch_event; 8334 8335 /* N.B. caller checks nr_switch_events != 0 */ 8336 8337 switch_event = (struct perf_switch_event){ 8338 .task = task, 8339 .next_prev = next_prev, 8340 .event_id = { 8341 .header = { 8342 /* .type */ 8343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8344 /* .size */ 8345 }, 8346 /* .next_prev_pid */ 8347 /* .next_prev_tid */ 8348 }, 8349 }; 8350 8351 if (!sched_in && task->state == TASK_RUNNING) 8352 switch_event.event_id.header.misc |= 8353 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8354 8355 perf_iterate_sb(perf_event_switch_output, 8356 &switch_event, 8357 NULL); 8358 } 8359 8360 /* 8361 * IRQ throttle logging 8362 */ 8363 8364 static void perf_log_throttle(struct perf_event *event, int enable) 8365 { 8366 struct perf_output_handle handle; 8367 struct perf_sample_data sample; 8368 int ret; 8369 8370 struct { 8371 struct perf_event_header header; 8372 u64 time; 8373 u64 id; 8374 u64 stream_id; 8375 } throttle_event = { 8376 .header = { 8377 .type = PERF_RECORD_THROTTLE, 8378 .misc = 0, 8379 .size = sizeof(throttle_event), 8380 }, 8381 .time = perf_event_clock(event), 8382 .id = primary_event_id(event), 8383 .stream_id = event->id, 8384 }; 8385 8386 if (enable) 8387 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8388 8389 perf_event_header__init_id(&throttle_event.header, &sample, event); 8390 8391 ret = perf_output_begin(&handle, event, 8392 throttle_event.header.size); 8393 if (ret) 8394 return; 8395 8396 perf_output_put(&handle, throttle_event); 8397 perf_event__output_id_sample(event, &handle, &sample); 8398 perf_output_end(&handle); 8399 } 8400 8401 /* 8402 * ksymbol register/unregister tracking 8403 */ 8404 8405 struct perf_ksymbol_event { 8406 const char *name; 8407 int name_len; 8408 struct { 8409 struct perf_event_header header; 8410 u64 addr; 8411 u32 len; 8412 u16 ksym_type; 8413 u16 flags; 8414 } event_id; 8415 }; 8416 8417 static int perf_event_ksymbol_match(struct perf_event *event) 8418 { 8419 return event->attr.ksymbol; 8420 } 8421 8422 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8423 { 8424 struct perf_ksymbol_event *ksymbol_event = data; 8425 struct perf_output_handle handle; 8426 struct perf_sample_data sample; 8427 int ret; 8428 8429 if (!perf_event_ksymbol_match(event)) 8430 return; 8431 8432 perf_event_header__init_id(&ksymbol_event->event_id.header, 8433 &sample, event); 8434 ret = perf_output_begin(&handle, event, 8435 ksymbol_event->event_id.header.size); 8436 if (ret) 8437 return; 8438 8439 perf_output_put(&handle, ksymbol_event->event_id); 8440 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8441 perf_event__output_id_sample(event, &handle, &sample); 8442 8443 perf_output_end(&handle); 8444 } 8445 8446 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8447 const char *sym) 8448 { 8449 struct perf_ksymbol_event ksymbol_event; 8450 char name[KSYM_NAME_LEN]; 8451 u16 flags = 0; 8452 int name_len; 8453 8454 if (!atomic_read(&nr_ksymbol_events)) 8455 return; 8456 8457 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8458 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8459 goto err; 8460 8461 strlcpy(name, sym, KSYM_NAME_LEN); 8462 name_len = strlen(name) + 1; 8463 while (!IS_ALIGNED(name_len, sizeof(u64))) 8464 name[name_len++] = '\0'; 8465 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8466 8467 if (unregister) 8468 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8469 8470 ksymbol_event = (struct perf_ksymbol_event){ 8471 .name = name, 8472 .name_len = name_len, 8473 .event_id = { 8474 .header = { 8475 .type = PERF_RECORD_KSYMBOL, 8476 .size = sizeof(ksymbol_event.event_id) + 8477 name_len, 8478 }, 8479 .addr = addr, 8480 .len = len, 8481 .ksym_type = ksym_type, 8482 .flags = flags, 8483 }, 8484 }; 8485 8486 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8487 return; 8488 err: 8489 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8490 } 8491 8492 /* 8493 * bpf program load/unload tracking 8494 */ 8495 8496 struct perf_bpf_event { 8497 struct bpf_prog *prog; 8498 struct { 8499 struct perf_event_header header; 8500 u16 type; 8501 u16 flags; 8502 u32 id; 8503 u8 tag[BPF_TAG_SIZE]; 8504 } event_id; 8505 }; 8506 8507 static int perf_event_bpf_match(struct perf_event *event) 8508 { 8509 return event->attr.bpf_event; 8510 } 8511 8512 static void perf_event_bpf_output(struct perf_event *event, void *data) 8513 { 8514 struct perf_bpf_event *bpf_event = data; 8515 struct perf_output_handle handle; 8516 struct perf_sample_data sample; 8517 int ret; 8518 8519 if (!perf_event_bpf_match(event)) 8520 return; 8521 8522 perf_event_header__init_id(&bpf_event->event_id.header, 8523 &sample, event); 8524 ret = perf_output_begin(&handle, event, 8525 bpf_event->event_id.header.size); 8526 if (ret) 8527 return; 8528 8529 perf_output_put(&handle, bpf_event->event_id); 8530 perf_event__output_id_sample(event, &handle, &sample); 8531 8532 perf_output_end(&handle); 8533 } 8534 8535 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8536 enum perf_bpf_event_type type) 8537 { 8538 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8539 int i; 8540 8541 if (prog->aux->func_cnt == 0) { 8542 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8543 (u64)(unsigned long)prog->bpf_func, 8544 prog->jited_len, unregister, 8545 prog->aux->ksym.name); 8546 } else { 8547 for (i = 0; i < prog->aux->func_cnt; i++) { 8548 struct bpf_prog *subprog = prog->aux->func[i]; 8549 8550 perf_event_ksymbol( 8551 PERF_RECORD_KSYMBOL_TYPE_BPF, 8552 (u64)(unsigned long)subprog->bpf_func, 8553 subprog->jited_len, unregister, 8554 prog->aux->ksym.name); 8555 } 8556 } 8557 } 8558 8559 void perf_event_bpf_event(struct bpf_prog *prog, 8560 enum perf_bpf_event_type type, 8561 u16 flags) 8562 { 8563 struct perf_bpf_event bpf_event; 8564 8565 if (type <= PERF_BPF_EVENT_UNKNOWN || 8566 type >= PERF_BPF_EVENT_MAX) 8567 return; 8568 8569 switch (type) { 8570 case PERF_BPF_EVENT_PROG_LOAD: 8571 case PERF_BPF_EVENT_PROG_UNLOAD: 8572 if (atomic_read(&nr_ksymbol_events)) 8573 perf_event_bpf_emit_ksymbols(prog, type); 8574 break; 8575 default: 8576 break; 8577 } 8578 8579 if (!atomic_read(&nr_bpf_events)) 8580 return; 8581 8582 bpf_event = (struct perf_bpf_event){ 8583 .prog = prog, 8584 .event_id = { 8585 .header = { 8586 .type = PERF_RECORD_BPF_EVENT, 8587 .size = sizeof(bpf_event.event_id), 8588 }, 8589 .type = type, 8590 .flags = flags, 8591 .id = prog->aux->id, 8592 }, 8593 }; 8594 8595 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8596 8597 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8598 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8599 } 8600 8601 void perf_event_itrace_started(struct perf_event *event) 8602 { 8603 event->attach_state |= PERF_ATTACH_ITRACE; 8604 } 8605 8606 static void perf_log_itrace_start(struct perf_event *event) 8607 { 8608 struct perf_output_handle handle; 8609 struct perf_sample_data sample; 8610 struct perf_aux_event { 8611 struct perf_event_header header; 8612 u32 pid; 8613 u32 tid; 8614 } rec; 8615 int ret; 8616 8617 if (event->parent) 8618 event = event->parent; 8619 8620 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8621 event->attach_state & PERF_ATTACH_ITRACE) 8622 return; 8623 8624 rec.header.type = PERF_RECORD_ITRACE_START; 8625 rec.header.misc = 0; 8626 rec.header.size = sizeof(rec); 8627 rec.pid = perf_event_pid(event, current); 8628 rec.tid = perf_event_tid(event, current); 8629 8630 perf_event_header__init_id(&rec.header, &sample, event); 8631 ret = perf_output_begin(&handle, event, rec.header.size); 8632 8633 if (ret) 8634 return; 8635 8636 perf_output_put(&handle, rec); 8637 perf_event__output_id_sample(event, &handle, &sample); 8638 8639 perf_output_end(&handle); 8640 } 8641 8642 static int 8643 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8644 { 8645 struct hw_perf_event *hwc = &event->hw; 8646 int ret = 0; 8647 u64 seq; 8648 8649 seq = __this_cpu_read(perf_throttled_seq); 8650 if (seq != hwc->interrupts_seq) { 8651 hwc->interrupts_seq = seq; 8652 hwc->interrupts = 1; 8653 } else { 8654 hwc->interrupts++; 8655 if (unlikely(throttle 8656 && hwc->interrupts >= max_samples_per_tick)) { 8657 __this_cpu_inc(perf_throttled_count); 8658 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8659 hwc->interrupts = MAX_INTERRUPTS; 8660 perf_log_throttle(event, 0); 8661 ret = 1; 8662 } 8663 } 8664 8665 if (event->attr.freq) { 8666 u64 now = perf_clock(); 8667 s64 delta = now - hwc->freq_time_stamp; 8668 8669 hwc->freq_time_stamp = now; 8670 8671 if (delta > 0 && delta < 2*TICK_NSEC) 8672 perf_adjust_period(event, delta, hwc->last_period, true); 8673 } 8674 8675 return ret; 8676 } 8677 8678 int perf_event_account_interrupt(struct perf_event *event) 8679 { 8680 return __perf_event_account_interrupt(event, 1); 8681 } 8682 8683 /* 8684 * Generic event overflow handling, sampling. 8685 */ 8686 8687 static int __perf_event_overflow(struct perf_event *event, 8688 int throttle, struct perf_sample_data *data, 8689 struct pt_regs *regs) 8690 { 8691 int events = atomic_read(&event->event_limit); 8692 int ret = 0; 8693 8694 /* 8695 * Non-sampling counters might still use the PMI to fold short 8696 * hardware counters, ignore those. 8697 */ 8698 if (unlikely(!is_sampling_event(event))) 8699 return 0; 8700 8701 ret = __perf_event_account_interrupt(event, throttle); 8702 8703 /* 8704 * XXX event_limit might not quite work as expected on inherited 8705 * events 8706 */ 8707 8708 event->pending_kill = POLL_IN; 8709 if (events && atomic_dec_and_test(&event->event_limit)) { 8710 ret = 1; 8711 event->pending_kill = POLL_HUP; 8712 8713 perf_event_disable_inatomic(event); 8714 } 8715 8716 READ_ONCE(event->overflow_handler)(event, data, regs); 8717 8718 if (*perf_event_fasync(event) && event->pending_kill) { 8719 event->pending_wakeup = 1; 8720 irq_work_queue(&event->pending); 8721 } 8722 8723 return ret; 8724 } 8725 8726 int perf_event_overflow(struct perf_event *event, 8727 struct perf_sample_data *data, 8728 struct pt_regs *regs) 8729 { 8730 return __perf_event_overflow(event, 1, data, regs); 8731 } 8732 8733 /* 8734 * Generic software event infrastructure 8735 */ 8736 8737 struct swevent_htable { 8738 struct swevent_hlist *swevent_hlist; 8739 struct mutex hlist_mutex; 8740 int hlist_refcount; 8741 8742 /* Recursion avoidance in each contexts */ 8743 int recursion[PERF_NR_CONTEXTS]; 8744 }; 8745 8746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8747 8748 /* 8749 * We directly increment event->count and keep a second value in 8750 * event->hw.period_left to count intervals. This period event 8751 * is kept in the range [-sample_period, 0] so that we can use the 8752 * sign as trigger. 8753 */ 8754 8755 u64 perf_swevent_set_period(struct perf_event *event) 8756 { 8757 struct hw_perf_event *hwc = &event->hw; 8758 u64 period = hwc->last_period; 8759 u64 nr, offset; 8760 s64 old, val; 8761 8762 hwc->last_period = hwc->sample_period; 8763 8764 again: 8765 old = val = local64_read(&hwc->period_left); 8766 if (val < 0) 8767 return 0; 8768 8769 nr = div64_u64(period + val, period); 8770 offset = nr * period; 8771 val -= offset; 8772 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8773 goto again; 8774 8775 return nr; 8776 } 8777 8778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8779 struct perf_sample_data *data, 8780 struct pt_regs *regs) 8781 { 8782 struct hw_perf_event *hwc = &event->hw; 8783 int throttle = 0; 8784 8785 if (!overflow) 8786 overflow = perf_swevent_set_period(event); 8787 8788 if (hwc->interrupts == MAX_INTERRUPTS) 8789 return; 8790 8791 for (; overflow; overflow--) { 8792 if (__perf_event_overflow(event, throttle, 8793 data, regs)) { 8794 /* 8795 * We inhibit the overflow from happening when 8796 * hwc->interrupts == MAX_INTERRUPTS. 8797 */ 8798 break; 8799 } 8800 throttle = 1; 8801 } 8802 } 8803 8804 static void perf_swevent_event(struct perf_event *event, u64 nr, 8805 struct perf_sample_data *data, 8806 struct pt_regs *regs) 8807 { 8808 struct hw_perf_event *hwc = &event->hw; 8809 8810 local64_add(nr, &event->count); 8811 8812 if (!regs) 8813 return; 8814 8815 if (!is_sampling_event(event)) 8816 return; 8817 8818 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8819 data->period = nr; 8820 return perf_swevent_overflow(event, 1, data, regs); 8821 } else 8822 data->period = event->hw.last_period; 8823 8824 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8825 return perf_swevent_overflow(event, 1, data, regs); 8826 8827 if (local64_add_negative(nr, &hwc->period_left)) 8828 return; 8829 8830 perf_swevent_overflow(event, 0, data, regs); 8831 } 8832 8833 static int perf_exclude_event(struct perf_event *event, 8834 struct pt_regs *regs) 8835 { 8836 if (event->hw.state & PERF_HES_STOPPED) 8837 return 1; 8838 8839 if (regs) { 8840 if (event->attr.exclude_user && user_mode(regs)) 8841 return 1; 8842 8843 if (event->attr.exclude_kernel && !user_mode(regs)) 8844 return 1; 8845 } 8846 8847 return 0; 8848 } 8849 8850 static int perf_swevent_match(struct perf_event *event, 8851 enum perf_type_id type, 8852 u32 event_id, 8853 struct perf_sample_data *data, 8854 struct pt_regs *regs) 8855 { 8856 if (event->attr.type != type) 8857 return 0; 8858 8859 if (event->attr.config != event_id) 8860 return 0; 8861 8862 if (perf_exclude_event(event, regs)) 8863 return 0; 8864 8865 return 1; 8866 } 8867 8868 static inline u64 swevent_hash(u64 type, u32 event_id) 8869 { 8870 u64 val = event_id | (type << 32); 8871 8872 return hash_64(val, SWEVENT_HLIST_BITS); 8873 } 8874 8875 static inline struct hlist_head * 8876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8877 { 8878 u64 hash = swevent_hash(type, event_id); 8879 8880 return &hlist->heads[hash]; 8881 } 8882 8883 /* For the read side: events when they trigger */ 8884 static inline struct hlist_head * 8885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8886 { 8887 struct swevent_hlist *hlist; 8888 8889 hlist = rcu_dereference(swhash->swevent_hlist); 8890 if (!hlist) 8891 return NULL; 8892 8893 return __find_swevent_head(hlist, type, event_id); 8894 } 8895 8896 /* For the event head insertion and removal in the hlist */ 8897 static inline struct hlist_head * 8898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8899 { 8900 struct swevent_hlist *hlist; 8901 u32 event_id = event->attr.config; 8902 u64 type = event->attr.type; 8903 8904 /* 8905 * Event scheduling is always serialized against hlist allocation 8906 * and release. Which makes the protected version suitable here. 8907 * The context lock guarantees that. 8908 */ 8909 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8910 lockdep_is_held(&event->ctx->lock)); 8911 if (!hlist) 8912 return NULL; 8913 8914 return __find_swevent_head(hlist, type, event_id); 8915 } 8916 8917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8918 u64 nr, 8919 struct perf_sample_data *data, 8920 struct pt_regs *regs) 8921 { 8922 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8923 struct perf_event *event; 8924 struct hlist_head *head; 8925 8926 rcu_read_lock(); 8927 head = find_swevent_head_rcu(swhash, type, event_id); 8928 if (!head) 8929 goto end; 8930 8931 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8932 if (perf_swevent_match(event, type, event_id, data, regs)) 8933 perf_swevent_event(event, nr, data, regs); 8934 } 8935 end: 8936 rcu_read_unlock(); 8937 } 8938 8939 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8940 8941 int perf_swevent_get_recursion_context(void) 8942 { 8943 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8944 8945 return get_recursion_context(swhash->recursion); 8946 } 8947 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8948 8949 void perf_swevent_put_recursion_context(int rctx) 8950 { 8951 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8952 8953 put_recursion_context(swhash->recursion, rctx); 8954 } 8955 8956 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8957 { 8958 struct perf_sample_data data; 8959 8960 if (WARN_ON_ONCE(!regs)) 8961 return; 8962 8963 perf_sample_data_init(&data, addr, 0); 8964 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8965 } 8966 8967 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8968 { 8969 int rctx; 8970 8971 preempt_disable_notrace(); 8972 rctx = perf_swevent_get_recursion_context(); 8973 if (unlikely(rctx < 0)) 8974 goto fail; 8975 8976 ___perf_sw_event(event_id, nr, regs, addr); 8977 8978 perf_swevent_put_recursion_context(rctx); 8979 fail: 8980 preempt_enable_notrace(); 8981 } 8982 8983 static void perf_swevent_read(struct perf_event *event) 8984 { 8985 } 8986 8987 static int perf_swevent_add(struct perf_event *event, int flags) 8988 { 8989 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8990 struct hw_perf_event *hwc = &event->hw; 8991 struct hlist_head *head; 8992 8993 if (is_sampling_event(event)) { 8994 hwc->last_period = hwc->sample_period; 8995 perf_swevent_set_period(event); 8996 } 8997 8998 hwc->state = !(flags & PERF_EF_START); 8999 9000 head = find_swevent_head(swhash, event); 9001 if (WARN_ON_ONCE(!head)) 9002 return -EINVAL; 9003 9004 hlist_add_head_rcu(&event->hlist_entry, head); 9005 perf_event_update_userpage(event); 9006 9007 return 0; 9008 } 9009 9010 static void perf_swevent_del(struct perf_event *event, int flags) 9011 { 9012 hlist_del_rcu(&event->hlist_entry); 9013 } 9014 9015 static void perf_swevent_start(struct perf_event *event, int flags) 9016 { 9017 event->hw.state = 0; 9018 } 9019 9020 static void perf_swevent_stop(struct perf_event *event, int flags) 9021 { 9022 event->hw.state = PERF_HES_STOPPED; 9023 } 9024 9025 /* Deref the hlist from the update side */ 9026 static inline struct swevent_hlist * 9027 swevent_hlist_deref(struct swevent_htable *swhash) 9028 { 9029 return rcu_dereference_protected(swhash->swevent_hlist, 9030 lockdep_is_held(&swhash->hlist_mutex)); 9031 } 9032 9033 static void swevent_hlist_release(struct swevent_htable *swhash) 9034 { 9035 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9036 9037 if (!hlist) 9038 return; 9039 9040 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9041 kfree_rcu(hlist, rcu_head); 9042 } 9043 9044 static void swevent_hlist_put_cpu(int cpu) 9045 { 9046 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9047 9048 mutex_lock(&swhash->hlist_mutex); 9049 9050 if (!--swhash->hlist_refcount) 9051 swevent_hlist_release(swhash); 9052 9053 mutex_unlock(&swhash->hlist_mutex); 9054 } 9055 9056 static void swevent_hlist_put(void) 9057 { 9058 int cpu; 9059 9060 for_each_possible_cpu(cpu) 9061 swevent_hlist_put_cpu(cpu); 9062 } 9063 9064 static int swevent_hlist_get_cpu(int cpu) 9065 { 9066 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9067 int err = 0; 9068 9069 mutex_lock(&swhash->hlist_mutex); 9070 if (!swevent_hlist_deref(swhash) && 9071 cpumask_test_cpu(cpu, perf_online_mask)) { 9072 struct swevent_hlist *hlist; 9073 9074 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9075 if (!hlist) { 9076 err = -ENOMEM; 9077 goto exit; 9078 } 9079 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9080 } 9081 swhash->hlist_refcount++; 9082 exit: 9083 mutex_unlock(&swhash->hlist_mutex); 9084 9085 return err; 9086 } 9087 9088 static int swevent_hlist_get(void) 9089 { 9090 int err, cpu, failed_cpu; 9091 9092 mutex_lock(&pmus_lock); 9093 for_each_possible_cpu(cpu) { 9094 err = swevent_hlist_get_cpu(cpu); 9095 if (err) { 9096 failed_cpu = cpu; 9097 goto fail; 9098 } 9099 } 9100 mutex_unlock(&pmus_lock); 9101 return 0; 9102 fail: 9103 for_each_possible_cpu(cpu) { 9104 if (cpu == failed_cpu) 9105 break; 9106 swevent_hlist_put_cpu(cpu); 9107 } 9108 mutex_unlock(&pmus_lock); 9109 return err; 9110 } 9111 9112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9113 9114 static void sw_perf_event_destroy(struct perf_event *event) 9115 { 9116 u64 event_id = event->attr.config; 9117 9118 WARN_ON(event->parent); 9119 9120 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9121 swevent_hlist_put(); 9122 } 9123 9124 static int perf_swevent_init(struct perf_event *event) 9125 { 9126 u64 event_id = event->attr.config; 9127 9128 if (event->attr.type != PERF_TYPE_SOFTWARE) 9129 return -ENOENT; 9130 9131 /* 9132 * no branch sampling for software events 9133 */ 9134 if (has_branch_stack(event)) 9135 return -EOPNOTSUPP; 9136 9137 switch (event_id) { 9138 case PERF_COUNT_SW_CPU_CLOCK: 9139 case PERF_COUNT_SW_TASK_CLOCK: 9140 return -ENOENT; 9141 9142 default: 9143 break; 9144 } 9145 9146 if (event_id >= PERF_COUNT_SW_MAX) 9147 return -ENOENT; 9148 9149 if (!event->parent) { 9150 int err; 9151 9152 err = swevent_hlist_get(); 9153 if (err) 9154 return err; 9155 9156 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9157 event->destroy = sw_perf_event_destroy; 9158 } 9159 9160 return 0; 9161 } 9162 9163 static struct pmu perf_swevent = { 9164 .task_ctx_nr = perf_sw_context, 9165 9166 .capabilities = PERF_PMU_CAP_NO_NMI, 9167 9168 .event_init = perf_swevent_init, 9169 .add = perf_swevent_add, 9170 .del = perf_swevent_del, 9171 .start = perf_swevent_start, 9172 .stop = perf_swevent_stop, 9173 .read = perf_swevent_read, 9174 }; 9175 9176 #ifdef CONFIG_EVENT_TRACING 9177 9178 static int perf_tp_filter_match(struct perf_event *event, 9179 struct perf_sample_data *data) 9180 { 9181 void *record = data->raw->frag.data; 9182 9183 /* only top level events have filters set */ 9184 if (event->parent) 9185 event = event->parent; 9186 9187 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9188 return 1; 9189 return 0; 9190 } 9191 9192 static int perf_tp_event_match(struct perf_event *event, 9193 struct perf_sample_data *data, 9194 struct pt_regs *regs) 9195 { 9196 if (event->hw.state & PERF_HES_STOPPED) 9197 return 0; 9198 /* 9199 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9200 */ 9201 if (event->attr.exclude_kernel && !user_mode(regs)) 9202 return 0; 9203 9204 if (!perf_tp_filter_match(event, data)) 9205 return 0; 9206 9207 return 1; 9208 } 9209 9210 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9211 struct trace_event_call *call, u64 count, 9212 struct pt_regs *regs, struct hlist_head *head, 9213 struct task_struct *task) 9214 { 9215 if (bpf_prog_array_valid(call)) { 9216 *(struct pt_regs **)raw_data = regs; 9217 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9218 perf_swevent_put_recursion_context(rctx); 9219 return; 9220 } 9221 } 9222 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9223 rctx, task); 9224 } 9225 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9226 9227 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9228 struct pt_regs *regs, struct hlist_head *head, int rctx, 9229 struct task_struct *task) 9230 { 9231 struct perf_sample_data data; 9232 struct perf_event *event; 9233 9234 struct perf_raw_record raw = { 9235 .frag = { 9236 .size = entry_size, 9237 .data = record, 9238 }, 9239 }; 9240 9241 perf_sample_data_init(&data, 0, 0); 9242 data.raw = &raw; 9243 9244 perf_trace_buf_update(record, event_type); 9245 9246 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9247 if (perf_tp_event_match(event, &data, regs)) 9248 perf_swevent_event(event, count, &data, regs); 9249 } 9250 9251 /* 9252 * If we got specified a target task, also iterate its context and 9253 * deliver this event there too. 9254 */ 9255 if (task && task != current) { 9256 struct perf_event_context *ctx; 9257 struct trace_entry *entry = record; 9258 9259 rcu_read_lock(); 9260 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9261 if (!ctx) 9262 goto unlock; 9263 9264 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9265 if (event->cpu != smp_processor_id()) 9266 continue; 9267 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9268 continue; 9269 if (event->attr.config != entry->type) 9270 continue; 9271 if (perf_tp_event_match(event, &data, regs)) 9272 perf_swevent_event(event, count, &data, regs); 9273 } 9274 unlock: 9275 rcu_read_unlock(); 9276 } 9277 9278 perf_swevent_put_recursion_context(rctx); 9279 } 9280 EXPORT_SYMBOL_GPL(perf_tp_event); 9281 9282 static void tp_perf_event_destroy(struct perf_event *event) 9283 { 9284 perf_trace_destroy(event); 9285 } 9286 9287 static int perf_tp_event_init(struct perf_event *event) 9288 { 9289 int err; 9290 9291 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9292 return -ENOENT; 9293 9294 /* 9295 * no branch sampling for tracepoint events 9296 */ 9297 if (has_branch_stack(event)) 9298 return -EOPNOTSUPP; 9299 9300 err = perf_trace_init(event); 9301 if (err) 9302 return err; 9303 9304 event->destroy = tp_perf_event_destroy; 9305 9306 return 0; 9307 } 9308 9309 static struct pmu perf_tracepoint = { 9310 .task_ctx_nr = perf_sw_context, 9311 9312 .event_init = perf_tp_event_init, 9313 .add = perf_trace_add, 9314 .del = perf_trace_del, 9315 .start = perf_swevent_start, 9316 .stop = perf_swevent_stop, 9317 .read = perf_swevent_read, 9318 }; 9319 9320 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9321 /* 9322 * Flags in config, used by dynamic PMU kprobe and uprobe 9323 * The flags should match following PMU_FORMAT_ATTR(). 9324 * 9325 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9326 * if not set, create kprobe/uprobe 9327 * 9328 * The following values specify a reference counter (or semaphore in the 9329 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9330 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9331 * 9332 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9333 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9334 */ 9335 enum perf_probe_config { 9336 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9337 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9338 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9339 }; 9340 9341 PMU_FORMAT_ATTR(retprobe, "config:0"); 9342 #endif 9343 9344 #ifdef CONFIG_KPROBE_EVENTS 9345 static struct attribute *kprobe_attrs[] = { 9346 &format_attr_retprobe.attr, 9347 NULL, 9348 }; 9349 9350 static struct attribute_group kprobe_format_group = { 9351 .name = "format", 9352 .attrs = kprobe_attrs, 9353 }; 9354 9355 static const struct attribute_group *kprobe_attr_groups[] = { 9356 &kprobe_format_group, 9357 NULL, 9358 }; 9359 9360 static int perf_kprobe_event_init(struct perf_event *event); 9361 static struct pmu perf_kprobe = { 9362 .task_ctx_nr = perf_sw_context, 9363 .event_init = perf_kprobe_event_init, 9364 .add = perf_trace_add, 9365 .del = perf_trace_del, 9366 .start = perf_swevent_start, 9367 .stop = perf_swevent_stop, 9368 .read = perf_swevent_read, 9369 .attr_groups = kprobe_attr_groups, 9370 }; 9371 9372 static int perf_kprobe_event_init(struct perf_event *event) 9373 { 9374 int err; 9375 bool is_retprobe; 9376 9377 if (event->attr.type != perf_kprobe.type) 9378 return -ENOENT; 9379 9380 if (!capable(CAP_SYS_ADMIN)) 9381 return -EACCES; 9382 9383 /* 9384 * no branch sampling for probe events 9385 */ 9386 if (has_branch_stack(event)) 9387 return -EOPNOTSUPP; 9388 9389 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9390 err = perf_kprobe_init(event, is_retprobe); 9391 if (err) 9392 return err; 9393 9394 event->destroy = perf_kprobe_destroy; 9395 9396 return 0; 9397 } 9398 #endif /* CONFIG_KPROBE_EVENTS */ 9399 9400 #ifdef CONFIG_UPROBE_EVENTS 9401 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9402 9403 static struct attribute *uprobe_attrs[] = { 9404 &format_attr_retprobe.attr, 9405 &format_attr_ref_ctr_offset.attr, 9406 NULL, 9407 }; 9408 9409 static struct attribute_group uprobe_format_group = { 9410 .name = "format", 9411 .attrs = uprobe_attrs, 9412 }; 9413 9414 static const struct attribute_group *uprobe_attr_groups[] = { 9415 &uprobe_format_group, 9416 NULL, 9417 }; 9418 9419 static int perf_uprobe_event_init(struct perf_event *event); 9420 static struct pmu perf_uprobe = { 9421 .task_ctx_nr = perf_sw_context, 9422 .event_init = perf_uprobe_event_init, 9423 .add = perf_trace_add, 9424 .del = perf_trace_del, 9425 .start = perf_swevent_start, 9426 .stop = perf_swevent_stop, 9427 .read = perf_swevent_read, 9428 .attr_groups = uprobe_attr_groups, 9429 }; 9430 9431 static int perf_uprobe_event_init(struct perf_event *event) 9432 { 9433 int err; 9434 unsigned long ref_ctr_offset; 9435 bool is_retprobe; 9436 9437 if (event->attr.type != perf_uprobe.type) 9438 return -ENOENT; 9439 9440 if (!capable(CAP_SYS_ADMIN)) 9441 return -EACCES; 9442 9443 /* 9444 * no branch sampling for probe events 9445 */ 9446 if (has_branch_stack(event)) 9447 return -EOPNOTSUPP; 9448 9449 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9450 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9451 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9452 if (err) 9453 return err; 9454 9455 event->destroy = perf_uprobe_destroy; 9456 9457 return 0; 9458 } 9459 #endif /* CONFIG_UPROBE_EVENTS */ 9460 9461 static inline void perf_tp_register(void) 9462 { 9463 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9464 #ifdef CONFIG_KPROBE_EVENTS 9465 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9466 #endif 9467 #ifdef CONFIG_UPROBE_EVENTS 9468 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9469 #endif 9470 } 9471 9472 static void perf_event_free_filter(struct perf_event *event) 9473 { 9474 ftrace_profile_free_filter(event); 9475 } 9476 9477 #ifdef CONFIG_BPF_SYSCALL 9478 static void bpf_overflow_handler(struct perf_event *event, 9479 struct perf_sample_data *data, 9480 struct pt_regs *regs) 9481 { 9482 struct bpf_perf_event_data_kern ctx = { 9483 .data = data, 9484 .event = event, 9485 }; 9486 int ret = 0; 9487 9488 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9489 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9490 goto out; 9491 rcu_read_lock(); 9492 ret = BPF_PROG_RUN(event->prog, &ctx); 9493 rcu_read_unlock(); 9494 out: 9495 __this_cpu_dec(bpf_prog_active); 9496 if (!ret) 9497 return; 9498 9499 event->orig_overflow_handler(event, data, regs); 9500 } 9501 9502 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9503 { 9504 struct bpf_prog *prog; 9505 9506 if (event->overflow_handler_context) 9507 /* hw breakpoint or kernel counter */ 9508 return -EINVAL; 9509 9510 if (event->prog) 9511 return -EEXIST; 9512 9513 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9514 if (IS_ERR(prog)) 9515 return PTR_ERR(prog); 9516 9517 event->prog = prog; 9518 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9519 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9520 return 0; 9521 } 9522 9523 static void perf_event_free_bpf_handler(struct perf_event *event) 9524 { 9525 struct bpf_prog *prog = event->prog; 9526 9527 if (!prog) 9528 return; 9529 9530 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9531 event->prog = NULL; 9532 bpf_prog_put(prog); 9533 } 9534 #else 9535 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9536 { 9537 return -EOPNOTSUPP; 9538 } 9539 static void perf_event_free_bpf_handler(struct perf_event *event) 9540 { 9541 } 9542 #endif 9543 9544 /* 9545 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9546 * with perf_event_open() 9547 */ 9548 static inline bool perf_event_is_tracing(struct perf_event *event) 9549 { 9550 if (event->pmu == &perf_tracepoint) 9551 return true; 9552 #ifdef CONFIG_KPROBE_EVENTS 9553 if (event->pmu == &perf_kprobe) 9554 return true; 9555 #endif 9556 #ifdef CONFIG_UPROBE_EVENTS 9557 if (event->pmu == &perf_uprobe) 9558 return true; 9559 #endif 9560 return false; 9561 } 9562 9563 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9564 { 9565 bool is_kprobe, is_tracepoint, is_syscall_tp; 9566 struct bpf_prog *prog; 9567 int ret; 9568 9569 if (!perf_event_is_tracing(event)) 9570 return perf_event_set_bpf_handler(event, prog_fd); 9571 9572 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9573 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9574 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9575 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9576 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9577 return -EINVAL; 9578 9579 prog = bpf_prog_get(prog_fd); 9580 if (IS_ERR(prog)) 9581 return PTR_ERR(prog); 9582 9583 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9584 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9585 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9586 /* valid fd, but invalid bpf program type */ 9587 bpf_prog_put(prog); 9588 return -EINVAL; 9589 } 9590 9591 /* Kprobe override only works for kprobes, not uprobes. */ 9592 if (prog->kprobe_override && 9593 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9594 bpf_prog_put(prog); 9595 return -EINVAL; 9596 } 9597 9598 if (is_tracepoint || is_syscall_tp) { 9599 int off = trace_event_get_offsets(event->tp_event); 9600 9601 if (prog->aux->max_ctx_offset > off) { 9602 bpf_prog_put(prog); 9603 return -EACCES; 9604 } 9605 } 9606 9607 ret = perf_event_attach_bpf_prog(event, prog); 9608 if (ret) 9609 bpf_prog_put(prog); 9610 return ret; 9611 } 9612 9613 static void perf_event_free_bpf_prog(struct perf_event *event) 9614 { 9615 if (!perf_event_is_tracing(event)) { 9616 perf_event_free_bpf_handler(event); 9617 return; 9618 } 9619 perf_event_detach_bpf_prog(event); 9620 } 9621 9622 #else 9623 9624 static inline void perf_tp_register(void) 9625 { 9626 } 9627 9628 static void perf_event_free_filter(struct perf_event *event) 9629 { 9630 } 9631 9632 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9633 { 9634 return -ENOENT; 9635 } 9636 9637 static void perf_event_free_bpf_prog(struct perf_event *event) 9638 { 9639 } 9640 #endif /* CONFIG_EVENT_TRACING */ 9641 9642 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9643 void perf_bp_event(struct perf_event *bp, void *data) 9644 { 9645 struct perf_sample_data sample; 9646 struct pt_regs *regs = data; 9647 9648 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9649 9650 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9651 perf_swevent_event(bp, 1, &sample, regs); 9652 } 9653 #endif 9654 9655 /* 9656 * Allocate a new address filter 9657 */ 9658 static struct perf_addr_filter * 9659 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9660 { 9661 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9662 struct perf_addr_filter *filter; 9663 9664 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9665 if (!filter) 9666 return NULL; 9667 9668 INIT_LIST_HEAD(&filter->entry); 9669 list_add_tail(&filter->entry, filters); 9670 9671 return filter; 9672 } 9673 9674 static void free_filters_list(struct list_head *filters) 9675 { 9676 struct perf_addr_filter *filter, *iter; 9677 9678 list_for_each_entry_safe(filter, iter, filters, entry) { 9679 path_put(&filter->path); 9680 list_del(&filter->entry); 9681 kfree(filter); 9682 } 9683 } 9684 9685 /* 9686 * Free existing address filters and optionally install new ones 9687 */ 9688 static void perf_addr_filters_splice(struct perf_event *event, 9689 struct list_head *head) 9690 { 9691 unsigned long flags; 9692 LIST_HEAD(list); 9693 9694 if (!has_addr_filter(event)) 9695 return; 9696 9697 /* don't bother with children, they don't have their own filters */ 9698 if (event->parent) 9699 return; 9700 9701 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9702 9703 list_splice_init(&event->addr_filters.list, &list); 9704 if (head) 9705 list_splice(head, &event->addr_filters.list); 9706 9707 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9708 9709 free_filters_list(&list); 9710 } 9711 9712 /* 9713 * Scan through mm's vmas and see if one of them matches the 9714 * @filter; if so, adjust filter's address range. 9715 * Called with mm::mmap_sem down for reading. 9716 */ 9717 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9718 struct mm_struct *mm, 9719 struct perf_addr_filter_range *fr) 9720 { 9721 struct vm_area_struct *vma; 9722 9723 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9724 if (!vma->vm_file) 9725 continue; 9726 9727 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9728 return; 9729 } 9730 } 9731 9732 /* 9733 * Update event's address range filters based on the 9734 * task's existing mappings, if any. 9735 */ 9736 static void perf_event_addr_filters_apply(struct perf_event *event) 9737 { 9738 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9739 struct task_struct *task = READ_ONCE(event->ctx->task); 9740 struct perf_addr_filter *filter; 9741 struct mm_struct *mm = NULL; 9742 unsigned int count = 0; 9743 unsigned long flags; 9744 9745 /* 9746 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9747 * will stop on the parent's child_mutex that our caller is also holding 9748 */ 9749 if (task == TASK_TOMBSTONE) 9750 return; 9751 9752 if (ifh->nr_file_filters) { 9753 mm = get_task_mm(event->ctx->task); 9754 if (!mm) 9755 goto restart; 9756 9757 down_read(&mm->mmap_sem); 9758 } 9759 9760 raw_spin_lock_irqsave(&ifh->lock, flags); 9761 list_for_each_entry(filter, &ifh->list, entry) { 9762 if (filter->path.dentry) { 9763 /* 9764 * Adjust base offset if the filter is associated to a 9765 * binary that needs to be mapped: 9766 */ 9767 event->addr_filter_ranges[count].start = 0; 9768 event->addr_filter_ranges[count].size = 0; 9769 9770 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9771 } else { 9772 event->addr_filter_ranges[count].start = filter->offset; 9773 event->addr_filter_ranges[count].size = filter->size; 9774 } 9775 9776 count++; 9777 } 9778 9779 event->addr_filters_gen++; 9780 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9781 9782 if (ifh->nr_file_filters) { 9783 up_read(&mm->mmap_sem); 9784 9785 mmput(mm); 9786 } 9787 9788 restart: 9789 perf_event_stop(event, 1); 9790 } 9791 9792 /* 9793 * Address range filtering: limiting the data to certain 9794 * instruction address ranges. Filters are ioctl()ed to us from 9795 * userspace as ascii strings. 9796 * 9797 * Filter string format: 9798 * 9799 * ACTION RANGE_SPEC 9800 * where ACTION is one of the 9801 * * "filter": limit the trace to this region 9802 * * "start": start tracing from this address 9803 * * "stop": stop tracing at this address/region; 9804 * RANGE_SPEC is 9805 * * for kernel addresses: <start address>[/<size>] 9806 * * for object files: <start address>[/<size>]@</path/to/object/file> 9807 * 9808 * if <size> is not specified or is zero, the range is treated as a single 9809 * address; not valid for ACTION=="filter". 9810 */ 9811 enum { 9812 IF_ACT_NONE = -1, 9813 IF_ACT_FILTER, 9814 IF_ACT_START, 9815 IF_ACT_STOP, 9816 IF_SRC_FILE, 9817 IF_SRC_KERNEL, 9818 IF_SRC_FILEADDR, 9819 IF_SRC_KERNELADDR, 9820 }; 9821 9822 enum { 9823 IF_STATE_ACTION = 0, 9824 IF_STATE_SOURCE, 9825 IF_STATE_END, 9826 }; 9827 9828 static const match_table_t if_tokens = { 9829 { IF_ACT_FILTER, "filter" }, 9830 { IF_ACT_START, "start" }, 9831 { IF_ACT_STOP, "stop" }, 9832 { IF_SRC_FILE, "%u/%u@%s" }, 9833 { IF_SRC_KERNEL, "%u/%u" }, 9834 { IF_SRC_FILEADDR, "%u@%s" }, 9835 { IF_SRC_KERNELADDR, "%u" }, 9836 { IF_ACT_NONE, NULL }, 9837 }; 9838 9839 /* 9840 * Address filter string parser 9841 */ 9842 static int 9843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9844 struct list_head *filters) 9845 { 9846 struct perf_addr_filter *filter = NULL; 9847 char *start, *orig, *filename = NULL; 9848 substring_t args[MAX_OPT_ARGS]; 9849 int state = IF_STATE_ACTION, token; 9850 unsigned int kernel = 0; 9851 int ret = -EINVAL; 9852 9853 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9854 if (!fstr) 9855 return -ENOMEM; 9856 9857 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9858 static const enum perf_addr_filter_action_t actions[] = { 9859 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9860 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9861 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9862 }; 9863 ret = -EINVAL; 9864 9865 if (!*start) 9866 continue; 9867 9868 /* filter definition begins */ 9869 if (state == IF_STATE_ACTION) { 9870 filter = perf_addr_filter_new(event, filters); 9871 if (!filter) 9872 goto fail; 9873 } 9874 9875 token = match_token(start, if_tokens, args); 9876 switch (token) { 9877 case IF_ACT_FILTER: 9878 case IF_ACT_START: 9879 case IF_ACT_STOP: 9880 if (state != IF_STATE_ACTION) 9881 goto fail; 9882 9883 filter->action = actions[token]; 9884 state = IF_STATE_SOURCE; 9885 break; 9886 9887 case IF_SRC_KERNELADDR: 9888 case IF_SRC_KERNEL: 9889 kernel = 1; 9890 /* fall through */ 9891 9892 case IF_SRC_FILEADDR: 9893 case IF_SRC_FILE: 9894 if (state != IF_STATE_SOURCE) 9895 goto fail; 9896 9897 *args[0].to = 0; 9898 ret = kstrtoul(args[0].from, 0, &filter->offset); 9899 if (ret) 9900 goto fail; 9901 9902 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9903 *args[1].to = 0; 9904 ret = kstrtoul(args[1].from, 0, &filter->size); 9905 if (ret) 9906 goto fail; 9907 } 9908 9909 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9910 int fpos = token == IF_SRC_FILE ? 2 : 1; 9911 9912 filename = match_strdup(&args[fpos]); 9913 if (!filename) { 9914 ret = -ENOMEM; 9915 goto fail; 9916 } 9917 } 9918 9919 state = IF_STATE_END; 9920 break; 9921 9922 default: 9923 goto fail; 9924 } 9925 9926 /* 9927 * Filter definition is fully parsed, validate and install it. 9928 * Make sure that it doesn't contradict itself or the event's 9929 * attribute. 9930 */ 9931 if (state == IF_STATE_END) { 9932 ret = -EINVAL; 9933 if (kernel && event->attr.exclude_kernel) 9934 goto fail; 9935 9936 /* 9937 * ACTION "filter" must have a non-zero length region 9938 * specified. 9939 */ 9940 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9941 !filter->size) 9942 goto fail; 9943 9944 if (!kernel) { 9945 if (!filename) 9946 goto fail; 9947 9948 /* 9949 * For now, we only support file-based filters 9950 * in per-task events; doing so for CPU-wide 9951 * events requires additional context switching 9952 * trickery, since same object code will be 9953 * mapped at different virtual addresses in 9954 * different processes. 9955 */ 9956 ret = -EOPNOTSUPP; 9957 if (!event->ctx->task) 9958 goto fail_free_name; 9959 9960 /* look up the path and grab its inode */ 9961 ret = kern_path(filename, LOOKUP_FOLLOW, 9962 &filter->path); 9963 if (ret) 9964 goto fail_free_name; 9965 9966 kfree(filename); 9967 filename = NULL; 9968 9969 ret = -EINVAL; 9970 if (!filter->path.dentry || 9971 !S_ISREG(d_inode(filter->path.dentry) 9972 ->i_mode)) 9973 goto fail; 9974 9975 event->addr_filters.nr_file_filters++; 9976 } 9977 9978 /* ready to consume more filters */ 9979 state = IF_STATE_ACTION; 9980 filter = NULL; 9981 } 9982 } 9983 9984 if (state != IF_STATE_ACTION) 9985 goto fail; 9986 9987 kfree(orig); 9988 9989 return 0; 9990 9991 fail_free_name: 9992 kfree(filename); 9993 fail: 9994 free_filters_list(filters); 9995 kfree(orig); 9996 9997 return ret; 9998 } 9999 10000 static int 10001 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10002 { 10003 LIST_HEAD(filters); 10004 int ret; 10005 10006 /* 10007 * Since this is called in perf_ioctl() path, we're already holding 10008 * ctx::mutex. 10009 */ 10010 lockdep_assert_held(&event->ctx->mutex); 10011 10012 if (WARN_ON_ONCE(event->parent)) 10013 return -EINVAL; 10014 10015 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10016 if (ret) 10017 goto fail_clear_files; 10018 10019 ret = event->pmu->addr_filters_validate(&filters); 10020 if (ret) 10021 goto fail_free_filters; 10022 10023 /* remove existing filters, if any */ 10024 perf_addr_filters_splice(event, &filters); 10025 10026 /* install new filters */ 10027 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10028 10029 return ret; 10030 10031 fail_free_filters: 10032 free_filters_list(&filters); 10033 10034 fail_clear_files: 10035 event->addr_filters.nr_file_filters = 0; 10036 10037 return ret; 10038 } 10039 10040 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10041 { 10042 int ret = -EINVAL; 10043 char *filter_str; 10044 10045 filter_str = strndup_user(arg, PAGE_SIZE); 10046 if (IS_ERR(filter_str)) 10047 return PTR_ERR(filter_str); 10048 10049 #ifdef CONFIG_EVENT_TRACING 10050 if (perf_event_is_tracing(event)) { 10051 struct perf_event_context *ctx = event->ctx; 10052 10053 /* 10054 * Beware, here be dragons!! 10055 * 10056 * the tracepoint muck will deadlock against ctx->mutex, but 10057 * the tracepoint stuff does not actually need it. So 10058 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10059 * already have a reference on ctx. 10060 * 10061 * This can result in event getting moved to a different ctx, 10062 * but that does not affect the tracepoint state. 10063 */ 10064 mutex_unlock(&ctx->mutex); 10065 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10066 mutex_lock(&ctx->mutex); 10067 } else 10068 #endif 10069 if (has_addr_filter(event)) 10070 ret = perf_event_set_addr_filter(event, filter_str); 10071 10072 kfree(filter_str); 10073 return ret; 10074 } 10075 10076 /* 10077 * hrtimer based swevent callback 10078 */ 10079 10080 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10081 { 10082 enum hrtimer_restart ret = HRTIMER_RESTART; 10083 struct perf_sample_data data; 10084 struct pt_regs *regs; 10085 struct perf_event *event; 10086 u64 period; 10087 10088 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10089 10090 if (event->state != PERF_EVENT_STATE_ACTIVE) 10091 return HRTIMER_NORESTART; 10092 10093 event->pmu->read(event); 10094 10095 perf_sample_data_init(&data, 0, event->hw.last_period); 10096 regs = get_irq_regs(); 10097 10098 if (regs && !perf_exclude_event(event, regs)) { 10099 if (!(event->attr.exclude_idle && is_idle_task(current))) 10100 if (__perf_event_overflow(event, 1, &data, regs)) 10101 ret = HRTIMER_NORESTART; 10102 } 10103 10104 period = max_t(u64, 10000, event->hw.sample_period); 10105 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10106 10107 return ret; 10108 } 10109 10110 static void perf_swevent_start_hrtimer(struct perf_event *event) 10111 { 10112 struct hw_perf_event *hwc = &event->hw; 10113 s64 period; 10114 10115 if (!is_sampling_event(event)) 10116 return; 10117 10118 period = local64_read(&hwc->period_left); 10119 if (period) { 10120 if (period < 0) 10121 period = 10000; 10122 10123 local64_set(&hwc->period_left, 0); 10124 } else { 10125 period = max_t(u64, 10000, hwc->sample_period); 10126 } 10127 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10128 HRTIMER_MODE_REL_PINNED_HARD); 10129 } 10130 10131 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10132 { 10133 struct hw_perf_event *hwc = &event->hw; 10134 10135 if (is_sampling_event(event)) { 10136 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10137 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10138 10139 hrtimer_cancel(&hwc->hrtimer); 10140 } 10141 } 10142 10143 static void perf_swevent_init_hrtimer(struct perf_event *event) 10144 { 10145 struct hw_perf_event *hwc = &event->hw; 10146 10147 if (!is_sampling_event(event)) 10148 return; 10149 10150 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10151 hwc->hrtimer.function = perf_swevent_hrtimer; 10152 10153 /* 10154 * Since hrtimers have a fixed rate, we can do a static freq->period 10155 * mapping and avoid the whole period adjust feedback stuff. 10156 */ 10157 if (event->attr.freq) { 10158 long freq = event->attr.sample_freq; 10159 10160 event->attr.sample_period = NSEC_PER_SEC / freq; 10161 hwc->sample_period = event->attr.sample_period; 10162 local64_set(&hwc->period_left, hwc->sample_period); 10163 hwc->last_period = hwc->sample_period; 10164 event->attr.freq = 0; 10165 } 10166 } 10167 10168 /* 10169 * Software event: cpu wall time clock 10170 */ 10171 10172 static void cpu_clock_event_update(struct perf_event *event) 10173 { 10174 s64 prev; 10175 u64 now; 10176 10177 now = local_clock(); 10178 prev = local64_xchg(&event->hw.prev_count, now); 10179 local64_add(now - prev, &event->count); 10180 } 10181 10182 static void cpu_clock_event_start(struct perf_event *event, int flags) 10183 { 10184 local64_set(&event->hw.prev_count, local_clock()); 10185 perf_swevent_start_hrtimer(event); 10186 } 10187 10188 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10189 { 10190 perf_swevent_cancel_hrtimer(event); 10191 cpu_clock_event_update(event); 10192 } 10193 10194 static int cpu_clock_event_add(struct perf_event *event, int flags) 10195 { 10196 if (flags & PERF_EF_START) 10197 cpu_clock_event_start(event, flags); 10198 perf_event_update_userpage(event); 10199 10200 return 0; 10201 } 10202 10203 static void cpu_clock_event_del(struct perf_event *event, int flags) 10204 { 10205 cpu_clock_event_stop(event, flags); 10206 } 10207 10208 static void cpu_clock_event_read(struct perf_event *event) 10209 { 10210 cpu_clock_event_update(event); 10211 } 10212 10213 static int cpu_clock_event_init(struct perf_event *event) 10214 { 10215 if (event->attr.type != PERF_TYPE_SOFTWARE) 10216 return -ENOENT; 10217 10218 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10219 return -ENOENT; 10220 10221 /* 10222 * no branch sampling for software events 10223 */ 10224 if (has_branch_stack(event)) 10225 return -EOPNOTSUPP; 10226 10227 perf_swevent_init_hrtimer(event); 10228 10229 return 0; 10230 } 10231 10232 static struct pmu perf_cpu_clock = { 10233 .task_ctx_nr = perf_sw_context, 10234 10235 .capabilities = PERF_PMU_CAP_NO_NMI, 10236 10237 .event_init = cpu_clock_event_init, 10238 .add = cpu_clock_event_add, 10239 .del = cpu_clock_event_del, 10240 .start = cpu_clock_event_start, 10241 .stop = cpu_clock_event_stop, 10242 .read = cpu_clock_event_read, 10243 }; 10244 10245 /* 10246 * Software event: task time clock 10247 */ 10248 10249 static void task_clock_event_update(struct perf_event *event, u64 now) 10250 { 10251 u64 prev; 10252 s64 delta; 10253 10254 prev = local64_xchg(&event->hw.prev_count, now); 10255 delta = now - prev; 10256 local64_add(delta, &event->count); 10257 } 10258 10259 static void task_clock_event_start(struct perf_event *event, int flags) 10260 { 10261 local64_set(&event->hw.prev_count, event->ctx->time); 10262 perf_swevent_start_hrtimer(event); 10263 } 10264 10265 static void task_clock_event_stop(struct perf_event *event, int flags) 10266 { 10267 perf_swevent_cancel_hrtimer(event); 10268 task_clock_event_update(event, event->ctx->time); 10269 } 10270 10271 static int task_clock_event_add(struct perf_event *event, int flags) 10272 { 10273 if (flags & PERF_EF_START) 10274 task_clock_event_start(event, flags); 10275 perf_event_update_userpage(event); 10276 10277 return 0; 10278 } 10279 10280 static void task_clock_event_del(struct perf_event *event, int flags) 10281 { 10282 task_clock_event_stop(event, PERF_EF_UPDATE); 10283 } 10284 10285 static void task_clock_event_read(struct perf_event *event) 10286 { 10287 u64 now = perf_clock(); 10288 u64 delta = now - event->ctx->timestamp; 10289 u64 time = event->ctx->time + delta; 10290 10291 task_clock_event_update(event, time); 10292 } 10293 10294 static int task_clock_event_init(struct perf_event *event) 10295 { 10296 if (event->attr.type != PERF_TYPE_SOFTWARE) 10297 return -ENOENT; 10298 10299 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10300 return -ENOENT; 10301 10302 /* 10303 * no branch sampling for software events 10304 */ 10305 if (has_branch_stack(event)) 10306 return -EOPNOTSUPP; 10307 10308 perf_swevent_init_hrtimer(event); 10309 10310 return 0; 10311 } 10312 10313 static struct pmu perf_task_clock = { 10314 .task_ctx_nr = perf_sw_context, 10315 10316 .capabilities = PERF_PMU_CAP_NO_NMI, 10317 10318 .event_init = task_clock_event_init, 10319 .add = task_clock_event_add, 10320 .del = task_clock_event_del, 10321 .start = task_clock_event_start, 10322 .stop = task_clock_event_stop, 10323 .read = task_clock_event_read, 10324 }; 10325 10326 static void perf_pmu_nop_void(struct pmu *pmu) 10327 { 10328 } 10329 10330 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10331 { 10332 } 10333 10334 static int perf_pmu_nop_int(struct pmu *pmu) 10335 { 10336 return 0; 10337 } 10338 10339 static int perf_event_nop_int(struct perf_event *event, u64 value) 10340 { 10341 return 0; 10342 } 10343 10344 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10345 10346 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10347 { 10348 __this_cpu_write(nop_txn_flags, flags); 10349 10350 if (flags & ~PERF_PMU_TXN_ADD) 10351 return; 10352 10353 perf_pmu_disable(pmu); 10354 } 10355 10356 static int perf_pmu_commit_txn(struct pmu *pmu) 10357 { 10358 unsigned int flags = __this_cpu_read(nop_txn_flags); 10359 10360 __this_cpu_write(nop_txn_flags, 0); 10361 10362 if (flags & ~PERF_PMU_TXN_ADD) 10363 return 0; 10364 10365 perf_pmu_enable(pmu); 10366 return 0; 10367 } 10368 10369 static void perf_pmu_cancel_txn(struct pmu *pmu) 10370 { 10371 unsigned int flags = __this_cpu_read(nop_txn_flags); 10372 10373 __this_cpu_write(nop_txn_flags, 0); 10374 10375 if (flags & ~PERF_PMU_TXN_ADD) 10376 return; 10377 10378 perf_pmu_enable(pmu); 10379 } 10380 10381 static int perf_event_idx_default(struct perf_event *event) 10382 { 10383 return 0; 10384 } 10385 10386 /* 10387 * Ensures all contexts with the same task_ctx_nr have the same 10388 * pmu_cpu_context too. 10389 */ 10390 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10391 { 10392 struct pmu *pmu; 10393 10394 if (ctxn < 0) 10395 return NULL; 10396 10397 list_for_each_entry(pmu, &pmus, entry) { 10398 if (pmu->task_ctx_nr == ctxn) 10399 return pmu->pmu_cpu_context; 10400 } 10401 10402 return NULL; 10403 } 10404 10405 static void free_pmu_context(struct pmu *pmu) 10406 { 10407 /* 10408 * Static contexts such as perf_sw_context have a global lifetime 10409 * and may be shared between different PMUs. Avoid freeing them 10410 * when a single PMU is going away. 10411 */ 10412 if (pmu->task_ctx_nr > perf_invalid_context) 10413 return; 10414 10415 free_percpu(pmu->pmu_cpu_context); 10416 } 10417 10418 /* 10419 * Let userspace know that this PMU supports address range filtering: 10420 */ 10421 static ssize_t nr_addr_filters_show(struct device *dev, 10422 struct device_attribute *attr, 10423 char *page) 10424 { 10425 struct pmu *pmu = dev_get_drvdata(dev); 10426 10427 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10428 } 10429 DEVICE_ATTR_RO(nr_addr_filters); 10430 10431 static struct idr pmu_idr; 10432 10433 static ssize_t 10434 type_show(struct device *dev, struct device_attribute *attr, char *page) 10435 { 10436 struct pmu *pmu = dev_get_drvdata(dev); 10437 10438 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10439 } 10440 static DEVICE_ATTR_RO(type); 10441 10442 static ssize_t 10443 perf_event_mux_interval_ms_show(struct device *dev, 10444 struct device_attribute *attr, 10445 char *page) 10446 { 10447 struct pmu *pmu = dev_get_drvdata(dev); 10448 10449 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10450 } 10451 10452 static DEFINE_MUTEX(mux_interval_mutex); 10453 10454 static ssize_t 10455 perf_event_mux_interval_ms_store(struct device *dev, 10456 struct device_attribute *attr, 10457 const char *buf, size_t count) 10458 { 10459 struct pmu *pmu = dev_get_drvdata(dev); 10460 int timer, cpu, ret; 10461 10462 ret = kstrtoint(buf, 0, &timer); 10463 if (ret) 10464 return ret; 10465 10466 if (timer < 1) 10467 return -EINVAL; 10468 10469 /* same value, noting to do */ 10470 if (timer == pmu->hrtimer_interval_ms) 10471 return count; 10472 10473 mutex_lock(&mux_interval_mutex); 10474 pmu->hrtimer_interval_ms = timer; 10475 10476 /* update all cpuctx for this PMU */ 10477 cpus_read_lock(); 10478 for_each_online_cpu(cpu) { 10479 struct perf_cpu_context *cpuctx; 10480 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10481 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10482 10483 cpu_function_call(cpu, 10484 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10485 } 10486 cpus_read_unlock(); 10487 mutex_unlock(&mux_interval_mutex); 10488 10489 return count; 10490 } 10491 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10492 10493 static struct attribute *pmu_dev_attrs[] = { 10494 &dev_attr_type.attr, 10495 &dev_attr_perf_event_mux_interval_ms.attr, 10496 NULL, 10497 }; 10498 ATTRIBUTE_GROUPS(pmu_dev); 10499 10500 static int pmu_bus_running; 10501 static struct bus_type pmu_bus = { 10502 .name = "event_source", 10503 .dev_groups = pmu_dev_groups, 10504 }; 10505 10506 static void pmu_dev_release(struct device *dev) 10507 { 10508 kfree(dev); 10509 } 10510 10511 static int pmu_dev_alloc(struct pmu *pmu) 10512 { 10513 int ret = -ENOMEM; 10514 10515 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10516 if (!pmu->dev) 10517 goto out; 10518 10519 pmu->dev->groups = pmu->attr_groups; 10520 device_initialize(pmu->dev); 10521 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10522 if (ret) 10523 goto free_dev; 10524 10525 dev_set_drvdata(pmu->dev, pmu); 10526 pmu->dev->bus = &pmu_bus; 10527 pmu->dev->release = pmu_dev_release; 10528 ret = device_add(pmu->dev); 10529 if (ret) 10530 goto free_dev; 10531 10532 /* For PMUs with address filters, throw in an extra attribute: */ 10533 if (pmu->nr_addr_filters) 10534 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10535 10536 if (ret) 10537 goto del_dev; 10538 10539 if (pmu->attr_update) 10540 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10541 10542 if (ret) 10543 goto del_dev; 10544 10545 out: 10546 return ret; 10547 10548 del_dev: 10549 device_del(pmu->dev); 10550 10551 free_dev: 10552 put_device(pmu->dev); 10553 goto out; 10554 } 10555 10556 static struct lock_class_key cpuctx_mutex; 10557 static struct lock_class_key cpuctx_lock; 10558 10559 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10560 { 10561 int cpu, ret, max = PERF_TYPE_MAX; 10562 10563 mutex_lock(&pmus_lock); 10564 ret = -ENOMEM; 10565 pmu->pmu_disable_count = alloc_percpu(int); 10566 if (!pmu->pmu_disable_count) 10567 goto unlock; 10568 10569 pmu->type = -1; 10570 if (!name) 10571 goto skip_type; 10572 pmu->name = name; 10573 10574 if (type != PERF_TYPE_SOFTWARE) { 10575 if (type >= 0) 10576 max = type; 10577 10578 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10579 if (ret < 0) 10580 goto free_pdc; 10581 10582 WARN_ON(type >= 0 && ret != type); 10583 10584 type = ret; 10585 } 10586 pmu->type = type; 10587 10588 if (pmu_bus_running) { 10589 ret = pmu_dev_alloc(pmu); 10590 if (ret) 10591 goto free_idr; 10592 } 10593 10594 skip_type: 10595 if (pmu->task_ctx_nr == perf_hw_context) { 10596 static int hw_context_taken = 0; 10597 10598 /* 10599 * Other than systems with heterogeneous CPUs, it never makes 10600 * sense for two PMUs to share perf_hw_context. PMUs which are 10601 * uncore must use perf_invalid_context. 10602 */ 10603 if (WARN_ON_ONCE(hw_context_taken && 10604 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10605 pmu->task_ctx_nr = perf_invalid_context; 10606 10607 hw_context_taken = 1; 10608 } 10609 10610 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10611 if (pmu->pmu_cpu_context) 10612 goto got_cpu_context; 10613 10614 ret = -ENOMEM; 10615 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10616 if (!pmu->pmu_cpu_context) 10617 goto free_dev; 10618 10619 for_each_possible_cpu(cpu) { 10620 struct perf_cpu_context *cpuctx; 10621 10622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10623 __perf_event_init_context(&cpuctx->ctx); 10624 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10625 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10626 cpuctx->ctx.pmu = pmu; 10627 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10628 10629 __perf_mux_hrtimer_init(cpuctx, cpu); 10630 10631 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10632 cpuctx->heap = cpuctx->heap_default; 10633 } 10634 10635 got_cpu_context: 10636 if (!pmu->start_txn) { 10637 if (pmu->pmu_enable) { 10638 /* 10639 * If we have pmu_enable/pmu_disable calls, install 10640 * transaction stubs that use that to try and batch 10641 * hardware accesses. 10642 */ 10643 pmu->start_txn = perf_pmu_start_txn; 10644 pmu->commit_txn = perf_pmu_commit_txn; 10645 pmu->cancel_txn = perf_pmu_cancel_txn; 10646 } else { 10647 pmu->start_txn = perf_pmu_nop_txn; 10648 pmu->commit_txn = perf_pmu_nop_int; 10649 pmu->cancel_txn = perf_pmu_nop_void; 10650 } 10651 } 10652 10653 if (!pmu->pmu_enable) { 10654 pmu->pmu_enable = perf_pmu_nop_void; 10655 pmu->pmu_disable = perf_pmu_nop_void; 10656 } 10657 10658 if (!pmu->check_period) 10659 pmu->check_period = perf_event_nop_int; 10660 10661 if (!pmu->event_idx) 10662 pmu->event_idx = perf_event_idx_default; 10663 10664 /* 10665 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10666 * since these cannot be in the IDR. This way the linear search 10667 * is fast, provided a valid software event is provided. 10668 */ 10669 if (type == PERF_TYPE_SOFTWARE || !name) 10670 list_add_rcu(&pmu->entry, &pmus); 10671 else 10672 list_add_tail_rcu(&pmu->entry, &pmus); 10673 10674 atomic_set(&pmu->exclusive_cnt, 0); 10675 ret = 0; 10676 unlock: 10677 mutex_unlock(&pmus_lock); 10678 10679 return ret; 10680 10681 free_dev: 10682 device_del(pmu->dev); 10683 put_device(pmu->dev); 10684 10685 free_idr: 10686 if (pmu->type != PERF_TYPE_SOFTWARE) 10687 idr_remove(&pmu_idr, pmu->type); 10688 10689 free_pdc: 10690 free_percpu(pmu->pmu_disable_count); 10691 goto unlock; 10692 } 10693 EXPORT_SYMBOL_GPL(perf_pmu_register); 10694 10695 void perf_pmu_unregister(struct pmu *pmu) 10696 { 10697 mutex_lock(&pmus_lock); 10698 list_del_rcu(&pmu->entry); 10699 10700 /* 10701 * We dereference the pmu list under both SRCU and regular RCU, so 10702 * synchronize against both of those. 10703 */ 10704 synchronize_srcu(&pmus_srcu); 10705 synchronize_rcu(); 10706 10707 free_percpu(pmu->pmu_disable_count); 10708 if (pmu->type != PERF_TYPE_SOFTWARE) 10709 idr_remove(&pmu_idr, pmu->type); 10710 if (pmu_bus_running) { 10711 if (pmu->nr_addr_filters) 10712 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10713 device_del(pmu->dev); 10714 put_device(pmu->dev); 10715 } 10716 free_pmu_context(pmu); 10717 mutex_unlock(&pmus_lock); 10718 } 10719 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10720 10721 static inline bool has_extended_regs(struct perf_event *event) 10722 { 10723 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10724 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10725 } 10726 10727 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10728 { 10729 struct perf_event_context *ctx = NULL; 10730 int ret; 10731 10732 if (!try_module_get(pmu->module)) 10733 return -ENODEV; 10734 10735 /* 10736 * A number of pmu->event_init() methods iterate the sibling_list to, 10737 * for example, validate if the group fits on the PMU. Therefore, 10738 * if this is a sibling event, acquire the ctx->mutex to protect 10739 * the sibling_list. 10740 */ 10741 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10742 /* 10743 * This ctx->mutex can nest when we're called through 10744 * inheritance. See the perf_event_ctx_lock_nested() comment. 10745 */ 10746 ctx = perf_event_ctx_lock_nested(event->group_leader, 10747 SINGLE_DEPTH_NESTING); 10748 BUG_ON(!ctx); 10749 } 10750 10751 event->pmu = pmu; 10752 ret = pmu->event_init(event); 10753 10754 if (ctx) 10755 perf_event_ctx_unlock(event->group_leader, ctx); 10756 10757 if (!ret) { 10758 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10759 has_extended_regs(event)) 10760 ret = -EOPNOTSUPP; 10761 10762 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10763 event_has_any_exclude_flag(event)) 10764 ret = -EINVAL; 10765 10766 if (ret && event->destroy) 10767 event->destroy(event); 10768 } 10769 10770 if (ret) 10771 module_put(pmu->module); 10772 10773 return ret; 10774 } 10775 10776 static struct pmu *perf_init_event(struct perf_event *event) 10777 { 10778 int idx, type, ret; 10779 struct pmu *pmu; 10780 10781 idx = srcu_read_lock(&pmus_srcu); 10782 10783 /* Try parent's PMU first: */ 10784 if (event->parent && event->parent->pmu) { 10785 pmu = event->parent->pmu; 10786 ret = perf_try_init_event(pmu, event); 10787 if (!ret) 10788 goto unlock; 10789 } 10790 10791 /* 10792 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10793 * are often aliases for PERF_TYPE_RAW. 10794 */ 10795 type = event->attr.type; 10796 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10797 type = PERF_TYPE_RAW; 10798 10799 again: 10800 rcu_read_lock(); 10801 pmu = idr_find(&pmu_idr, type); 10802 rcu_read_unlock(); 10803 if (pmu) { 10804 ret = perf_try_init_event(pmu, event); 10805 if (ret == -ENOENT && event->attr.type != type) { 10806 type = event->attr.type; 10807 goto again; 10808 } 10809 10810 if (ret) 10811 pmu = ERR_PTR(ret); 10812 10813 goto unlock; 10814 } 10815 10816 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10817 ret = perf_try_init_event(pmu, event); 10818 if (!ret) 10819 goto unlock; 10820 10821 if (ret != -ENOENT) { 10822 pmu = ERR_PTR(ret); 10823 goto unlock; 10824 } 10825 } 10826 pmu = ERR_PTR(-ENOENT); 10827 unlock: 10828 srcu_read_unlock(&pmus_srcu, idx); 10829 10830 return pmu; 10831 } 10832 10833 static void attach_sb_event(struct perf_event *event) 10834 { 10835 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10836 10837 raw_spin_lock(&pel->lock); 10838 list_add_rcu(&event->sb_list, &pel->list); 10839 raw_spin_unlock(&pel->lock); 10840 } 10841 10842 /* 10843 * We keep a list of all !task (and therefore per-cpu) events 10844 * that need to receive side-band records. 10845 * 10846 * This avoids having to scan all the various PMU per-cpu contexts 10847 * looking for them. 10848 */ 10849 static void account_pmu_sb_event(struct perf_event *event) 10850 { 10851 if (is_sb_event(event)) 10852 attach_sb_event(event); 10853 } 10854 10855 static void account_event_cpu(struct perf_event *event, int cpu) 10856 { 10857 if (event->parent) 10858 return; 10859 10860 if (is_cgroup_event(event)) 10861 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10862 } 10863 10864 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10865 static void account_freq_event_nohz(void) 10866 { 10867 #ifdef CONFIG_NO_HZ_FULL 10868 /* Lock so we don't race with concurrent unaccount */ 10869 spin_lock(&nr_freq_lock); 10870 if (atomic_inc_return(&nr_freq_events) == 1) 10871 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10872 spin_unlock(&nr_freq_lock); 10873 #endif 10874 } 10875 10876 static void account_freq_event(void) 10877 { 10878 if (tick_nohz_full_enabled()) 10879 account_freq_event_nohz(); 10880 else 10881 atomic_inc(&nr_freq_events); 10882 } 10883 10884 10885 static void account_event(struct perf_event *event) 10886 { 10887 bool inc = false; 10888 10889 if (event->parent) 10890 return; 10891 10892 if (event->attach_state & PERF_ATTACH_TASK) 10893 inc = true; 10894 if (event->attr.mmap || event->attr.mmap_data) 10895 atomic_inc(&nr_mmap_events); 10896 if (event->attr.comm) 10897 atomic_inc(&nr_comm_events); 10898 if (event->attr.namespaces) 10899 atomic_inc(&nr_namespaces_events); 10900 if (event->attr.cgroup) 10901 atomic_inc(&nr_cgroup_events); 10902 if (event->attr.task) 10903 atomic_inc(&nr_task_events); 10904 if (event->attr.freq) 10905 account_freq_event(); 10906 if (event->attr.context_switch) { 10907 atomic_inc(&nr_switch_events); 10908 inc = true; 10909 } 10910 if (has_branch_stack(event)) 10911 inc = true; 10912 if (is_cgroup_event(event)) 10913 inc = true; 10914 if (event->attr.ksymbol) 10915 atomic_inc(&nr_ksymbol_events); 10916 if (event->attr.bpf_event) 10917 atomic_inc(&nr_bpf_events); 10918 10919 if (inc) { 10920 /* 10921 * We need the mutex here because static_branch_enable() 10922 * must complete *before* the perf_sched_count increment 10923 * becomes visible. 10924 */ 10925 if (atomic_inc_not_zero(&perf_sched_count)) 10926 goto enabled; 10927 10928 mutex_lock(&perf_sched_mutex); 10929 if (!atomic_read(&perf_sched_count)) { 10930 static_branch_enable(&perf_sched_events); 10931 /* 10932 * Guarantee that all CPUs observe they key change and 10933 * call the perf scheduling hooks before proceeding to 10934 * install events that need them. 10935 */ 10936 synchronize_rcu(); 10937 } 10938 /* 10939 * Now that we have waited for the sync_sched(), allow further 10940 * increments to by-pass the mutex. 10941 */ 10942 atomic_inc(&perf_sched_count); 10943 mutex_unlock(&perf_sched_mutex); 10944 } 10945 enabled: 10946 10947 account_event_cpu(event, event->cpu); 10948 10949 account_pmu_sb_event(event); 10950 } 10951 10952 /* 10953 * Allocate and initialize an event structure 10954 */ 10955 static struct perf_event * 10956 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10957 struct task_struct *task, 10958 struct perf_event *group_leader, 10959 struct perf_event *parent_event, 10960 perf_overflow_handler_t overflow_handler, 10961 void *context, int cgroup_fd) 10962 { 10963 struct pmu *pmu; 10964 struct perf_event *event; 10965 struct hw_perf_event *hwc; 10966 long err = -EINVAL; 10967 10968 if ((unsigned)cpu >= nr_cpu_ids) { 10969 if (!task || cpu != -1) 10970 return ERR_PTR(-EINVAL); 10971 } 10972 10973 event = kzalloc(sizeof(*event), GFP_KERNEL); 10974 if (!event) 10975 return ERR_PTR(-ENOMEM); 10976 10977 /* 10978 * Single events are their own group leaders, with an 10979 * empty sibling list: 10980 */ 10981 if (!group_leader) 10982 group_leader = event; 10983 10984 mutex_init(&event->child_mutex); 10985 INIT_LIST_HEAD(&event->child_list); 10986 10987 INIT_LIST_HEAD(&event->event_entry); 10988 INIT_LIST_HEAD(&event->sibling_list); 10989 INIT_LIST_HEAD(&event->active_list); 10990 init_event_group(event); 10991 INIT_LIST_HEAD(&event->rb_entry); 10992 INIT_LIST_HEAD(&event->active_entry); 10993 INIT_LIST_HEAD(&event->addr_filters.list); 10994 INIT_HLIST_NODE(&event->hlist_entry); 10995 10996 10997 init_waitqueue_head(&event->waitq); 10998 event->pending_disable = -1; 10999 init_irq_work(&event->pending, perf_pending_event); 11000 11001 mutex_init(&event->mmap_mutex); 11002 raw_spin_lock_init(&event->addr_filters.lock); 11003 11004 atomic_long_set(&event->refcount, 1); 11005 event->cpu = cpu; 11006 event->attr = *attr; 11007 event->group_leader = group_leader; 11008 event->pmu = NULL; 11009 event->oncpu = -1; 11010 11011 event->parent = parent_event; 11012 11013 event->ns = get_pid_ns(task_active_pid_ns(current)); 11014 event->id = atomic64_inc_return(&perf_event_id); 11015 11016 event->state = PERF_EVENT_STATE_INACTIVE; 11017 11018 if (task) { 11019 event->attach_state = PERF_ATTACH_TASK; 11020 /* 11021 * XXX pmu::event_init needs to know what task to account to 11022 * and we cannot use the ctx information because we need the 11023 * pmu before we get a ctx. 11024 */ 11025 event->hw.target = get_task_struct(task); 11026 } 11027 11028 event->clock = &local_clock; 11029 if (parent_event) 11030 event->clock = parent_event->clock; 11031 11032 if (!overflow_handler && parent_event) { 11033 overflow_handler = parent_event->overflow_handler; 11034 context = parent_event->overflow_handler_context; 11035 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11036 if (overflow_handler == bpf_overflow_handler) { 11037 struct bpf_prog *prog = parent_event->prog; 11038 11039 bpf_prog_inc(prog); 11040 event->prog = prog; 11041 event->orig_overflow_handler = 11042 parent_event->orig_overflow_handler; 11043 } 11044 #endif 11045 } 11046 11047 if (overflow_handler) { 11048 event->overflow_handler = overflow_handler; 11049 event->overflow_handler_context = context; 11050 } else if (is_write_backward(event)){ 11051 event->overflow_handler = perf_event_output_backward; 11052 event->overflow_handler_context = NULL; 11053 } else { 11054 event->overflow_handler = perf_event_output_forward; 11055 event->overflow_handler_context = NULL; 11056 } 11057 11058 perf_event__state_init(event); 11059 11060 pmu = NULL; 11061 11062 hwc = &event->hw; 11063 hwc->sample_period = attr->sample_period; 11064 if (attr->freq && attr->sample_freq) 11065 hwc->sample_period = 1; 11066 hwc->last_period = hwc->sample_period; 11067 11068 local64_set(&hwc->period_left, hwc->sample_period); 11069 11070 /* 11071 * We currently do not support PERF_SAMPLE_READ on inherited events. 11072 * See perf_output_read(). 11073 */ 11074 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11075 goto err_ns; 11076 11077 if (!has_branch_stack(event)) 11078 event->attr.branch_sample_type = 0; 11079 11080 pmu = perf_init_event(event); 11081 if (IS_ERR(pmu)) { 11082 err = PTR_ERR(pmu); 11083 goto err_ns; 11084 } 11085 11086 /* 11087 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11088 * be different on other CPUs in the uncore mask. 11089 */ 11090 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11091 err = -EINVAL; 11092 goto err_pmu; 11093 } 11094 11095 if (event->attr.aux_output && 11096 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11097 err = -EOPNOTSUPP; 11098 goto err_pmu; 11099 } 11100 11101 if (cgroup_fd != -1) { 11102 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11103 if (err) 11104 goto err_pmu; 11105 } 11106 11107 err = exclusive_event_init(event); 11108 if (err) 11109 goto err_pmu; 11110 11111 if (has_addr_filter(event)) { 11112 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11113 sizeof(struct perf_addr_filter_range), 11114 GFP_KERNEL); 11115 if (!event->addr_filter_ranges) { 11116 err = -ENOMEM; 11117 goto err_per_task; 11118 } 11119 11120 /* 11121 * Clone the parent's vma offsets: they are valid until exec() 11122 * even if the mm is not shared with the parent. 11123 */ 11124 if (event->parent) { 11125 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11126 11127 raw_spin_lock_irq(&ifh->lock); 11128 memcpy(event->addr_filter_ranges, 11129 event->parent->addr_filter_ranges, 11130 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11131 raw_spin_unlock_irq(&ifh->lock); 11132 } 11133 11134 /* force hw sync on the address filters */ 11135 event->addr_filters_gen = 1; 11136 } 11137 11138 if (!event->parent) { 11139 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11140 err = get_callchain_buffers(attr->sample_max_stack); 11141 if (err) 11142 goto err_addr_filters; 11143 } 11144 } 11145 11146 err = security_perf_event_alloc(event); 11147 if (err) 11148 goto err_callchain_buffer; 11149 11150 /* symmetric to unaccount_event() in _free_event() */ 11151 account_event(event); 11152 11153 return event; 11154 11155 err_callchain_buffer: 11156 if (!event->parent) { 11157 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11158 put_callchain_buffers(); 11159 } 11160 err_addr_filters: 11161 kfree(event->addr_filter_ranges); 11162 11163 err_per_task: 11164 exclusive_event_destroy(event); 11165 11166 err_pmu: 11167 if (is_cgroup_event(event)) 11168 perf_detach_cgroup(event); 11169 if (event->destroy) 11170 event->destroy(event); 11171 module_put(pmu->module); 11172 err_ns: 11173 if (event->ns) 11174 put_pid_ns(event->ns); 11175 if (event->hw.target) 11176 put_task_struct(event->hw.target); 11177 kfree(event); 11178 11179 return ERR_PTR(err); 11180 } 11181 11182 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11183 struct perf_event_attr *attr) 11184 { 11185 u32 size; 11186 int ret; 11187 11188 /* Zero the full structure, so that a short copy will be nice. */ 11189 memset(attr, 0, sizeof(*attr)); 11190 11191 ret = get_user(size, &uattr->size); 11192 if (ret) 11193 return ret; 11194 11195 /* ABI compatibility quirk: */ 11196 if (!size) 11197 size = PERF_ATTR_SIZE_VER0; 11198 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11199 goto err_size; 11200 11201 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11202 if (ret) { 11203 if (ret == -E2BIG) 11204 goto err_size; 11205 return ret; 11206 } 11207 11208 attr->size = size; 11209 11210 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11211 return -EINVAL; 11212 11213 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11214 return -EINVAL; 11215 11216 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11217 return -EINVAL; 11218 11219 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11220 u64 mask = attr->branch_sample_type; 11221 11222 /* only using defined bits */ 11223 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11224 return -EINVAL; 11225 11226 /* at least one branch bit must be set */ 11227 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11228 return -EINVAL; 11229 11230 /* propagate priv level, when not set for branch */ 11231 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11232 11233 /* exclude_kernel checked on syscall entry */ 11234 if (!attr->exclude_kernel) 11235 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11236 11237 if (!attr->exclude_user) 11238 mask |= PERF_SAMPLE_BRANCH_USER; 11239 11240 if (!attr->exclude_hv) 11241 mask |= PERF_SAMPLE_BRANCH_HV; 11242 /* 11243 * adjust user setting (for HW filter setup) 11244 */ 11245 attr->branch_sample_type = mask; 11246 } 11247 /* privileged levels capture (kernel, hv): check permissions */ 11248 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11249 ret = perf_allow_kernel(attr); 11250 if (ret) 11251 return ret; 11252 } 11253 } 11254 11255 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11256 ret = perf_reg_validate(attr->sample_regs_user); 11257 if (ret) 11258 return ret; 11259 } 11260 11261 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11262 if (!arch_perf_have_user_stack_dump()) 11263 return -ENOSYS; 11264 11265 /* 11266 * We have __u32 type for the size, but so far 11267 * we can only use __u16 as maximum due to the 11268 * __u16 sample size limit. 11269 */ 11270 if (attr->sample_stack_user >= USHRT_MAX) 11271 return -EINVAL; 11272 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11273 return -EINVAL; 11274 } 11275 11276 if (!attr->sample_max_stack) 11277 attr->sample_max_stack = sysctl_perf_event_max_stack; 11278 11279 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11280 ret = perf_reg_validate(attr->sample_regs_intr); 11281 11282 #ifndef CONFIG_CGROUP_PERF 11283 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11284 return -EINVAL; 11285 #endif 11286 11287 out: 11288 return ret; 11289 11290 err_size: 11291 put_user(sizeof(*attr), &uattr->size); 11292 ret = -E2BIG; 11293 goto out; 11294 } 11295 11296 static int 11297 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11298 { 11299 struct perf_buffer *rb = NULL; 11300 int ret = -EINVAL; 11301 11302 if (!output_event) 11303 goto set; 11304 11305 /* don't allow circular references */ 11306 if (event == output_event) 11307 goto out; 11308 11309 /* 11310 * Don't allow cross-cpu buffers 11311 */ 11312 if (output_event->cpu != event->cpu) 11313 goto out; 11314 11315 /* 11316 * If its not a per-cpu rb, it must be the same task. 11317 */ 11318 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11319 goto out; 11320 11321 /* 11322 * Mixing clocks in the same buffer is trouble you don't need. 11323 */ 11324 if (output_event->clock != event->clock) 11325 goto out; 11326 11327 /* 11328 * Either writing ring buffer from beginning or from end. 11329 * Mixing is not allowed. 11330 */ 11331 if (is_write_backward(output_event) != is_write_backward(event)) 11332 goto out; 11333 11334 /* 11335 * If both events generate aux data, they must be on the same PMU 11336 */ 11337 if (has_aux(event) && has_aux(output_event) && 11338 event->pmu != output_event->pmu) 11339 goto out; 11340 11341 set: 11342 mutex_lock(&event->mmap_mutex); 11343 /* Can't redirect output if we've got an active mmap() */ 11344 if (atomic_read(&event->mmap_count)) 11345 goto unlock; 11346 11347 if (output_event) { 11348 /* get the rb we want to redirect to */ 11349 rb = ring_buffer_get(output_event); 11350 if (!rb) 11351 goto unlock; 11352 } 11353 11354 ring_buffer_attach(event, rb); 11355 11356 ret = 0; 11357 unlock: 11358 mutex_unlock(&event->mmap_mutex); 11359 11360 out: 11361 return ret; 11362 } 11363 11364 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11365 { 11366 if (b < a) 11367 swap(a, b); 11368 11369 mutex_lock(a); 11370 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11371 } 11372 11373 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11374 { 11375 bool nmi_safe = false; 11376 11377 switch (clk_id) { 11378 case CLOCK_MONOTONIC: 11379 event->clock = &ktime_get_mono_fast_ns; 11380 nmi_safe = true; 11381 break; 11382 11383 case CLOCK_MONOTONIC_RAW: 11384 event->clock = &ktime_get_raw_fast_ns; 11385 nmi_safe = true; 11386 break; 11387 11388 case CLOCK_REALTIME: 11389 event->clock = &ktime_get_real_ns; 11390 break; 11391 11392 case CLOCK_BOOTTIME: 11393 event->clock = &ktime_get_boottime_ns; 11394 break; 11395 11396 case CLOCK_TAI: 11397 event->clock = &ktime_get_clocktai_ns; 11398 break; 11399 11400 default: 11401 return -EINVAL; 11402 } 11403 11404 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11405 return -EINVAL; 11406 11407 return 0; 11408 } 11409 11410 /* 11411 * Variation on perf_event_ctx_lock_nested(), except we take two context 11412 * mutexes. 11413 */ 11414 static struct perf_event_context * 11415 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11416 struct perf_event_context *ctx) 11417 { 11418 struct perf_event_context *gctx; 11419 11420 again: 11421 rcu_read_lock(); 11422 gctx = READ_ONCE(group_leader->ctx); 11423 if (!refcount_inc_not_zero(&gctx->refcount)) { 11424 rcu_read_unlock(); 11425 goto again; 11426 } 11427 rcu_read_unlock(); 11428 11429 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11430 11431 if (group_leader->ctx != gctx) { 11432 mutex_unlock(&ctx->mutex); 11433 mutex_unlock(&gctx->mutex); 11434 put_ctx(gctx); 11435 goto again; 11436 } 11437 11438 return gctx; 11439 } 11440 11441 /** 11442 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11443 * 11444 * @attr_uptr: event_id type attributes for monitoring/sampling 11445 * @pid: target pid 11446 * @cpu: target cpu 11447 * @group_fd: group leader event fd 11448 */ 11449 SYSCALL_DEFINE5(perf_event_open, 11450 struct perf_event_attr __user *, attr_uptr, 11451 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11452 { 11453 struct perf_event *group_leader = NULL, *output_event = NULL; 11454 struct perf_event *event, *sibling; 11455 struct perf_event_attr attr; 11456 struct perf_event_context *ctx, *uninitialized_var(gctx); 11457 struct file *event_file = NULL; 11458 struct fd group = {NULL, 0}; 11459 struct task_struct *task = NULL; 11460 struct pmu *pmu; 11461 int event_fd; 11462 int move_group = 0; 11463 int err; 11464 int f_flags = O_RDWR; 11465 int cgroup_fd = -1; 11466 11467 /* for future expandability... */ 11468 if (flags & ~PERF_FLAG_ALL) 11469 return -EINVAL; 11470 11471 /* Do we allow access to perf_event_open(2) ? */ 11472 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11473 if (err) 11474 return err; 11475 11476 err = perf_copy_attr(attr_uptr, &attr); 11477 if (err) 11478 return err; 11479 11480 if (!attr.exclude_kernel) { 11481 err = perf_allow_kernel(&attr); 11482 if (err) 11483 return err; 11484 } 11485 11486 if (attr.namespaces) { 11487 if (!capable(CAP_SYS_ADMIN)) 11488 return -EACCES; 11489 } 11490 11491 if (attr.freq) { 11492 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11493 return -EINVAL; 11494 } else { 11495 if (attr.sample_period & (1ULL << 63)) 11496 return -EINVAL; 11497 } 11498 11499 /* Only privileged users can get physical addresses */ 11500 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11501 err = perf_allow_kernel(&attr); 11502 if (err) 11503 return err; 11504 } 11505 11506 err = security_locked_down(LOCKDOWN_PERF); 11507 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11508 /* REGS_INTR can leak data, lockdown must prevent this */ 11509 return err; 11510 11511 err = 0; 11512 11513 /* 11514 * In cgroup mode, the pid argument is used to pass the fd 11515 * opened to the cgroup directory in cgroupfs. The cpu argument 11516 * designates the cpu on which to monitor threads from that 11517 * cgroup. 11518 */ 11519 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11520 return -EINVAL; 11521 11522 if (flags & PERF_FLAG_FD_CLOEXEC) 11523 f_flags |= O_CLOEXEC; 11524 11525 event_fd = get_unused_fd_flags(f_flags); 11526 if (event_fd < 0) 11527 return event_fd; 11528 11529 if (group_fd != -1) { 11530 err = perf_fget_light(group_fd, &group); 11531 if (err) 11532 goto err_fd; 11533 group_leader = group.file->private_data; 11534 if (flags & PERF_FLAG_FD_OUTPUT) 11535 output_event = group_leader; 11536 if (flags & PERF_FLAG_FD_NO_GROUP) 11537 group_leader = NULL; 11538 } 11539 11540 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11541 task = find_lively_task_by_vpid(pid); 11542 if (IS_ERR(task)) { 11543 err = PTR_ERR(task); 11544 goto err_group_fd; 11545 } 11546 } 11547 11548 if (task && group_leader && 11549 group_leader->attr.inherit != attr.inherit) { 11550 err = -EINVAL; 11551 goto err_task; 11552 } 11553 11554 if (task) { 11555 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11556 if (err) 11557 goto err_task; 11558 11559 /* 11560 * Reuse ptrace permission checks for now. 11561 * 11562 * We must hold exec_update_mutex across this and any potential 11563 * perf_install_in_context() call for this new event to 11564 * serialize against exec() altering our credentials (and the 11565 * perf_event_exit_task() that could imply). 11566 */ 11567 err = -EACCES; 11568 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11569 goto err_cred; 11570 } 11571 11572 if (flags & PERF_FLAG_PID_CGROUP) 11573 cgroup_fd = pid; 11574 11575 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11576 NULL, NULL, cgroup_fd); 11577 if (IS_ERR(event)) { 11578 err = PTR_ERR(event); 11579 goto err_cred; 11580 } 11581 11582 if (is_sampling_event(event)) { 11583 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11584 err = -EOPNOTSUPP; 11585 goto err_alloc; 11586 } 11587 } 11588 11589 /* 11590 * Special case software events and allow them to be part of 11591 * any hardware group. 11592 */ 11593 pmu = event->pmu; 11594 11595 if (attr.use_clockid) { 11596 err = perf_event_set_clock(event, attr.clockid); 11597 if (err) 11598 goto err_alloc; 11599 } 11600 11601 if (pmu->task_ctx_nr == perf_sw_context) 11602 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11603 11604 if (group_leader) { 11605 if (is_software_event(event) && 11606 !in_software_context(group_leader)) { 11607 /* 11608 * If the event is a sw event, but the group_leader 11609 * is on hw context. 11610 * 11611 * Allow the addition of software events to hw 11612 * groups, this is safe because software events 11613 * never fail to schedule. 11614 */ 11615 pmu = group_leader->ctx->pmu; 11616 } else if (!is_software_event(event) && 11617 is_software_event(group_leader) && 11618 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11619 /* 11620 * In case the group is a pure software group, and we 11621 * try to add a hardware event, move the whole group to 11622 * the hardware context. 11623 */ 11624 move_group = 1; 11625 } 11626 } 11627 11628 /* 11629 * Get the target context (task or percpu): 11630 */ 11631 ctx = find_get_context(pmu, task, event); 11632 if (IS_ERR(ctx)) { 11633 err = PTR_ERR(ctx); 11634 goto err_alloc; 11635 } 11636 11637 /* 11638 * Look up the group leader (we will attach this event to it): 11639 */ 11640 if (group_leader) { 11641 err = -EINVAL; 11642 11643 /* 11644 * Do not allow a recursive hierarchy (this new sibling 11645 * becoming part of another group-sibling): 11646 */ 11647 if (group_leader->group_leader != group_leader) 11648 goto err_context; 11649 11650 /* All events in a group should have the same clock */ 11651 if (group_leader->clock != event->clock) 11652 goto err_context; 11653 11654 /* 11655 * Make sure we're both events for the same CPU; 11656 * grouping events for different CPUs is broken; since 11657 * you can never concurrently schedule them anyhow. 11658 */ 11659 if (group_leader->cpu != event->cpu) 11660 goto err_context; 11661 11662 /* 11663 * Make sure we're both on the same task, or both 11664 * per-CPU events. 11665 */ 11666 if (group_leader->ctx->task != ctx->task) 11667 goto err_context; 11668 11669 /* 11670 * Do not allow to attach to a group in a different task 11671 * or CPU context. If we're moving SW events, we'll fix 11672 * this up later, so allow that. 11673 */ 11674 if (!move_group && group_leader->ctx != ctx) 11675 goto err_context; 11676 11677 /* 11678 * Only a group leader can be exclusive or pinned 11679 */ 11680 if (attr.exclusive || attr.pinned) 11681 goto err_context; 11682 } 11683 11684 if (output_event) { 11685 err = perf_event_set_output(event, output_event); 11686 if (err) 11687 goto err_context; 11688 } 11689 11690 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11691 f_flags); 11692 if (IS_ERR(event_file)) { 11693 err = PTR_ERR(event_file); 11694 event_file = NULL; 11695 goto err_context; 11696 } 11697 11698 if (move_group) { 11699 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11700 11701 if (gctx->task == TASK_TOMBSTONE) { 11702 err = -ESRCH; 11703 goto err_locked; 11704 } 11705 11706 /* 11707 * Check if we raced against another sys_perf_event_open() call 11708 * moving the software group underneath us. 11709 */ 11710 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11711 /* 11712 * If someone moved the group out from under us, check 11713 * if this new event wound up on the same ctx, if so 11714 * its the regular !move_group case, otherwise fail. 11715 */ 11716 if (gctx != ctx) { 11717 err = -EINVAL; 11718 goto err_locked; 11719 } else { 11720 perf_event_ctx_unlock(group_leader, gctx); 11721 move_group = 0; 11722 } 11723 } 11724 11725 /* 11726 * Failure to create exclusive events returns -EBUSY. 11727 */ 11728 err = -EBUSY; 11729 if (!exclusive_event_installable(group_leader, ctx)) 11730 goto err_locked; 11731 11732 for_each_sibling_event(sibling, group_leader) { 11733 if (!exclusive_event_installable(sibling, ctx)) 11734 goto err_locked; 11735 } 11736 } else { 11737 mutex_lock(&ctx->mutex); 11738 } 11739 11740 if (ctx->task == TASK_TOMBSTONE) { 11741 err = -ESRCH; 11742 goto err_locked; 11743 } 11744 11745 if (!perf_event_validate_size(event)) { 11746 err = -E2BIG; 11747 goto err_locked; 11748 } 11749 11750 if (!task) { 11751 /* 11752 * Check if the @cpu we're creating an event for is online. 11753 * 11754 * We use the perf_cpu_context::ctx::mutex to serialize against 11755 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11756 */ 11757 struct perf_cpu_context *cpuctx = 11758 container_of(ctx, struct perf_cpu_context, ctx); 11759 11760 if (!cpuctx->online) { 11761 err = -ENODEV; 11762 goto err_locked; 11763 } 11764 } 11765 11766 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11767 err = -EINVAL; 11768 goto err_locked; 11769 } 11770 11771 /* 11772 * Must be under the same ctx::mutex as perf_install_in_context(), 11773 * because we need to serialize with concurrent event creation. 11774 */ 11775 if (!exclusive_event_installable(event, ctx)) { 11776 err = -EBUSY; 11777 goto err_locked; 11778 } 11779 11780 WARN_ON_ONCE(ctx->parent_ctx); 11781 11782 /* 11783 * This is the point on no return; we cannot fail hereafter. This is 11784 * where we start modifying current state. 11785 */ 11786 11787 if (move_group) { 11788 /* 11789 * See perf_event_ctx_lock() for comments on the details 11790 * of swizzling perf_event::ctx. 11791 */ 11792 perf_remove_from_context(group_leader, 0); 11793 put_ctx(gctx); 11794 11795 for_each_sibling_event(sibling, group_leader) { 11796 perf_remove_from_context(sibling, 0); 11797 put_ctx(gctx); 11798 } 11799 11800 /* 11801 * Wait for everybody to stop referencing the events through 11802 * the old lists, before installing it on new lists. 11803 */ 11804 synchronize_rcu(); 11805 11806 /* 11807 * Install the group siblings before the group leader. 11808 * 11809 * Because a group leader will try and install the entire group 11810 * (through the sibling list, which is still in-tact), we can 11811 * end up with siblings installed in the wrong context. 11812 * 11813 * By installing siblings first we NO-OP because they're not 11814 * reachable through the group lists. 11815 */ 11816 for_each_sibling_event(sibling, group_leader) { 11817 perf_event__state_init(sibling); 11818 perf_install_in_context(ctx, sibling, sibling->cpu); 11819 get_ctx(ctx); 11820 } 11821 11822 /* 11823 * Removing from the context ends up with disabled 11824 * event. What we want here is event in the initial 11825 * startup state, ready to be add into new context. 11826 */ 11827 perf_event__state_init(group_leader); 11828 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11829 get_ctx(ctx); 11830 } 11831 11832 /* 11833 * Precalculate sample_data sizes; do while holding ctx::mutex such 11834 * that we're serialized against further additions and before 11835 * perf_install_in_context() which is the point the event is active and 11836 * can use these values. 11837 */ 11838 perf_event__header_size(event); 11839 perf_event__id_header_size(event); 11840 11841 event->owner = current; 11842 11843 perf_install_in_context(ctx, event, event->cpu); 11844 perf_unpin_context(ctx); 11845 11846 if (move_group) 11847 perf_event_ctx_unlock(group_leader, gctx); 11848 mutex_unlock(&ctx->mutex); 11849 11850 if (task) { 11851 mutex_unlock(&task->signal->exec_update_mutex); 11852 put_task_struct(task); 11853 } 11854 11855 mutex_lock(¤t->perf_event_mutex); 11856 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11857 mutex_unlock(¤t->perf_event_mutex); 11858 11859 /* 11860 * Drop the reference on the group_event after placing the 11861 * new event on the sibling_list. This ensures destruction 11862 * of the group leader will find the pointer to itself in 11863 * perf_group_detach(). 11864 */ 11865 fdput(group); 11866 fd_install(event_fd, event_file); 11867 return event_fd; 11868 11869 err_locked: 11870 if (move_group) 11871 perf_event_ctx_unlock(group_leader, gctx); 11872 mutex_unlock(&ctx->mutex); 11873 /* err_file: */ 11874 fput(event_file); 11875 err_context: 11876 perf_unpin_context(ctx); 11877 put_ctx(ctx); 11878 err_alloc: 11879 /* 11880 * If event_file is set, the fput() above will have called ->release() 11881 * and that will take care of freeing the event. 11882 */ 11883 if (!event_file) 11884 free_event(event); 11885 err_cred: 11886 if (task) 11887 mutex_unlock(&task->signal->exec_update_mutex); 11888 err_task: 11889 if (task) 11890 put_task_struct(task); 11891 err_group_fd: 11892 fdput(group); 11893 err_fd: 11894 put_unused_fd(event_fd); 11895 return err; 11896 } 11897 11898 /** 11899 * perf_event_create_kernel_counter 11900 * 11901 * @attr: attributes of the counter to create 11902 * @cpu: cpu in which the counter is bound 11903 * @task: task to profile (NULL for percpu) 11904 */ 11905 struct perf_event * 11906 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11907 struct task_struct *task, 11908 perf_overflow_handler_t overflow_handler, 11909 void *context) 11910 { 11911 struct perf_event_context *ctx; 11912 struct perf_event *event; 11913 int err; 11914 11915 /* 11916 * Grouping is not supported for kernel events, neither is 'AUX', 11917 * make sure the caller's intentions are adjusted. 11918 */ 11919 if (attr->aux_output) 11920 return ERR_PTR(-EINVAL); 11921 11922 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11923 overflow_handler, context, -1); 11924 if (IS_ERR(event)) { 11925 err = PTR_ERR(event); 11926 goto err; 11927 } 11928 11929 /* Mark owner so we could distinguish it from user events. */ 11930 event->owner = TASK_TOMBSTONE; 11931 11932 /* 11933 * Get the target context (task or percpu): 11934 */ 11935 ctx = find_get_context(event->pmu, task, event); 11936 if (IS_ERR(ctx)) { 11937 err = PTR_ERR(ctx); 11938 goto err_free; 11939 } 11940 11941 WARN_ON_ONCE(ctx->parent_ctx); 11942 mutex_lock(&ctx->mutex); 11943 if (ctx->task == TASK_TOMBSTONE) { 11944 err = -ESRCH; 11945 goto err_unlock; 11946 } 11947 11948 if (!task) { 11949 /* 11950 * Check if the @cpu we're creating an event for is online. 11951 * 11952 * We use the perf_cpu_context::ctx::mutex to serialize against 11953 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11954 */ 11955 struct perf_cpu_context *cpuctx = 11956 container_of(ctx, struct perf_cpu_context, ctx); 11957 if (!cpuctx->online) { 11958 err = -ENODEV; 11959 goto err_unlock; 11960 } 11961 } 11962 11963 if (!exclusive_event_installable(event, ctx)) { 11964 err = -EBUSY; 11965 goto err_unlock; 11966 } 11967 11968 perf_install_in_context(ctx, event, event->cpu); 11969 perf_unpin_context(ctx); 11970 mutex_unlock(&ctx->mutex); 11971 11972 return event; 11973 11974 err_unlock: 11975 mutex_unlock(&ctx->mutex); 11976 perf_unpin_context(ctx); 11977 put_ctx(ctx); 11978 err_free: 11979 free_event(event); 11980 err: 11981 return ERR_PTR(err); 11982 } 11983 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11984 11985 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11986 { 11987 struct perf_event_context *src_ctx; 11988 struct perf_event_context *dst_ctx; 11989 struct perf_event *event, *tmp; 11990 LIST_HEAD(events); 11991 11992 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11993 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11994 11995 /* 11996 * See perf_event_ctx_lock() for comments on the details 11997 * of swizzling perf_event::ctx. 11998 */ 11999 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12000 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12001 event_entry) { 12002 perf_remove_from_context(event, 0); 12003 unaccount_event_cpu(event, src_cpu); 12004 put_ctx(src_ctx); 12005 list_add(&event->migrate_entry, &events); 12006 } 12007 12008 /* 12009 * Wait for the events to quiesce before re-instating them. 12010 */ 12011 synchronize_rcu(); 12012 12013 /* 12014 * Re-instate events in 2 passes. 12015 * 12016 * Skip over group leaders and only install siblings on this first 12017 * pass, siblings will not get enabled without a leader, however a 12018 * leader will enable its siblings, even if those are still on the old 12019 * context. 12020 */ 12021 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12022 if (event->group_leader == event) 12023 continue; 12024 12025 list_del(&event->migrate_entry); 12026 if (event->state >= PERF_EVENT_STATE_OFF) 12027 event->state = PERF_EVENT_STATE_INACTIVE; 12028 account_event_cpu(event, dst_cpu); 12029 perf_install_in_context(dst_ctx, event, dst_cpu); 12030 get_ctx(dst_ctx); 12031 } 12032 12033 /* 12034 * Once all the siblings are setup properly, install the group leaders 12035 * to make it go. 12036 */ 12037 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12038 list_del(&event->migrate_entry); 12039 if (event->state >= PERF_EVENT_STATE_OFF) 12040 event->state = PERF_EVENT_STATE_INACTIVE; 12041 account_event_cpu(event, dst_cpu); 12042 perf_install_in_context(dst_ctx, event, dst_cpu); 12043 get_ctx(dst_ctx); 12044 } 12045 mutex_unlock(&dst_ctx->mutex); 12046 mutex_unlock(&src_ctx->mutex); 12047 } 12048 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12049 12050 static void sync_child_event(struct perf_event *child_event, 12051 struct task_struct *child) 12052 { 12053 struct perf_event *parent_event = child_event->parent; 12054 u64 child_val; 12055 12056 if (child_event->attr.inherit_stat) 12057 perf_event_read_event(child_event, child); 12058 12059 child_val = perf_event_count(child_event); 12060 12061 /* 12062 * Add back the child's count to the parent's count: 12063 */ 12064 atomic64_add(child_val, &parent_event->child_count); 12065 atomic64_add(child_event->total_time_enabled, 12066 &parent_event->child_total_time_enabled); 12067 atomic64_add(child_event->total_time_running, 12068 &parent_event->child_total_time_running); 12069 } 12070 12071 static void 12072 perf_event_exit_event(struct perf_event *child_event, 12073 struct perf_event_context *child_ctx, 12074 struct task_struct *child) 12075 { 12076 struct perf_event *parent_event = child_event->parent; 12077 12078 /* 12079 * Do not destroy the 'original' grouping; because of the context 12080 * switch optimization the original events could've ended up in a 12081 * random child task. 12082 * 12083 * If we were to destroy the original group, all group related 12084 * operations would cease to function properly after this random 12085 * child dies. 12086 * 12087 * Do destroy all inherited groups, we don't care about those 12088 * and being thorough is better. 12089 */ 12090 raw_spin_lock_irq(&child_ctx->lock); 12091 WARN_ON_ONCE(child_ctx->is_active); 12092 12093 if (parent_event) 12094 perf_group_detach(child_event); 12095 list_del_event(child_event, child_ctx); 12096 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12097 raw_spin_unlock_irq(&child_ctx->lock); 12098 12099 /* 12100 * Parent events are governed by their filedesc, retain them. 12101 */ 12102 if (!parent_event) { 12103 perf_event_wakeup(child_event); 12104 return; 12105 } 12106 /* 12107 * Child events can be cleaned up. 12108 */ 12109 12110 sync_child_event(child_event, child); 12111 12112 /* 12113 * Remove this event from the parent's list 12114 */ 12115 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12116 mutex_lock(&parent_event->child_mutex); 12117 list_del_init(&child_event->child_list); 12118 mutex_unlock(&parent_event->child_mutex); 12119 12120 /* 12121 * Kick perf_poll() for is_event_hup(). 12122 */ 12123 perf_event_wakeup(parent_event); 12124 free_event(child_event); 12125 put_event(parent_event); 12126 } 12127 12128 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12129 { 12130 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12131 struct perf_event *child_event, *next; 12132 12133 WARN_ON_ONCE(child != current); 12134 12135 child_ctx = perf_pin_task_context(child, ctxn); 12136 if (!child_ctx) 12137 return; 12138 12139 /* 12140 * In order to reduce the amount of tricky in ctx tear-down, we hold 12141 * ctx::mutex over the entire thing. This serializes against almost 12142 * everything that wants to access the ctx. 12143 * 12144 * The exception is sys_perf_event_open() / 12145 * perf_event_create_kernel_count() which does find_get_context() 12146 * without ctx::mutex (it cannot because of the move_group double mutex 12147 * lock thing). See the comments in perf_install_in_context(). 12148 */ 12149 mutex_lock(&child_ctx->mutex); 12150 12151 /* 12152 * In a single ctx::lock section, de-schedule the events and detach the 12153 * context from the task such that we cannot ever get it scheduled back 12154 * in. 12155 */ 12156 raw_spin_lock_irq(&child_ctx->lock); 12157 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12158 12159 /* 12160 * Now that the context is inactive, destroy the task <-> ctx relation 12161 * and mark the context dead. 12162 */ 12163 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12164 put_ctx(child_ctx); /* cannot be last */ 12165 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12166 put_task_struct(current); /* cannot be last */ 12167 12168 clone_ctx = unclone_ctx(child_ctx); 12169 raw_spin_unlock_irq(&child_ctx->lock); 12170 12171 if (clone_ctx) 12172 put_ctx(clone_ctx); 12173 12174 /* 12175 * Report the task dead after unscheduling the events so that we 12176 * won't get any samples after PERF_RECORD_EXIT. We can however still 12177 * get a few PERF_RECORD_READ events. 12178 */ 12179 perf_event_task(child, child_ctx, 0); 12180 12181 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12182 perf_event_exit_event(child_event, child_ctx, child); 12183 12184 mutex_unlock(&child_ctx->mutex); 12185 12186 put_ctx(child_ctx); 12187 } 12188 12189 /* 12190 * When a child task exits, feed back event values to parent events. 12191 * 12192 * Can be called with exec_update_mutex held when called from 12193 * install_exec_creds(). 12194 */ 12195 void perf_event_exit_task(struct task_struct *child) 12196 { 12197 struct perf_event *event, *tmp; 12198 int ctxn; 12199 12200 mutex_lock(&child->perf_event_mutex); 12201 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12202 owner_entry) { 12203 list_del_init(&event->owner_entry); 12204 12205 /* 12206 * Ensure the list deletion is visible before we clear 12207 * the owner, closes a race against perf_release() where 12208 * we need to serialize on the owner->perf_event_mutex. 12209 */ 12210 smp_store_release(&event->owner, NULL); 12211 } 12212 mutex_unlock(&child->perf_event_mutex); 12213 12214 for_each_task_context_nr(ctxn) 12215 perf_event_exit_task_context(child, ctxn); 12216 12217 /* 12218 * The perf_event_exit_task_context calls perf_event_task 12219 * with child's task_ctx, which generates EXIT events for 12220 * child contexts and sets child->perf_event_ctxp[] to NULL. 12221 * At this point we need to send EXIT events to cpu contexts. 12222 */ 12223 perf_event_task(child, NULL, 0); 12224 } 12225 12226 static void perf_free_event(struct perf_event *event, 12227 struct perf_event_context *ctx) 12228 { 12229 struct perf_event *parent = event->parent; 12230 12231 if (WARN_ON_ONCE(!parent)) 12232 return; 12233 12234 mutex_lock(&parent->child_mutex); 12235 list_del_init(&event->child_list); 12236 mutex_unlock(&parent->child_mutex); 12237 12238 put_event(parent); 12239 12240 raw_spin_lock_irq(&ctx->lock); 12241 perf_group_detach(event); 12242 list_del_event(event, ctx); 12243 raw_spin_unlock_irq(&ctx->lock); 12244 free_event(event); 12245 } 12246 12247 /* 12248 * Free a context as created by inheritance by perf_event_init_task() below, 12249 * used by fork() in case of fail. 12250 * 12251 * Even though the task has never lived, the context and events have been 12252 * exposed through the child_list, so we must take care tearing it all down. 12253 */ 12254 void perf_event_free_task(struct task_struct *task) 12255 { 12256 struct perf_event_context *ctx; 12257 struct perf_event *event, *tmp; 12258 int ctxn; 12259 12260 for_each_task_context_nr(ctxn) { 12261 ctx = task->perf_event_ctxp[ctxn]; 12262 if (!ctx) 12263 continue; 12264 12265 mutex_lock(&ctx->mutex); 12266 raw_spin_lock_irq(&ctx->lock); 12267 /* 12268 * Destroy the task <-> ctx relation and mark the context dead. 12269 * 12270 * This is important because even though the task hasn't been 12271 * exposed yet the context has been (through child_list). 12272 */ 12273 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12274 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12275 put_task_struct(task); /* cannot be last */ 12276 raw_spin_unlock_irq(&ctx->lock); 12277 12278 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12279 perf_free_event(event, ctx); 12280 12281 mutex_unlock(&ctx->mutex); 12282 12283 /* 12284 * perf_event_release_kernel() could've stolen some of our 12285 * child events and still have them on its free_list. In that 12286 * case we must wait for these events to have been freed (in 12287 * particular all their references to this task must've been 12288 * dropped). 12289 * 12290 * Without this copy_process() will unconditionally free this 12291 * task (irrespective of its reference count) and 12292 * _free_event()'s put_task_struct(event->hw.target) will be a 12293 * use-after-free. 12294 * 12295 * Wait for all events to drop their context reference. 12296 */ 12297 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12298 put_ctx(ctx); /* must be last */ 12299 } 12300 } 12301 12302 void perf_event_delayed_put(struct task_struct *task) 12303 { 12304 int ctxn; 12305 12306 for_each_task_context_nr(ctxn) 12307 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12308 } 12309 12310 struct file *perf_event_get(unsigned int fd) 12311 { 12312 struct file *file = fget(fd); 12313 if (!file) 12314 return ERR_PTR(-EBADF); 12315 12316 if (file->f_op != &perf_fops) { 12317 fput(file); 12318 return ERR_PTR(-EBADF); 12319 } 12320 12321 return file; 12322 } 12323 12324 const struct perf_event *perf_get_event(struct file *file) 12325 { 12326 if (file->f_op != &perf_fops) 12327 return ERR_PTR(-EINVAL); 12328 12329 return file->private_data; 12330 } 12331 12332 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12333 { 12334 if (!event) 12335 return ERR_PTR(-EINVAL); 12336 12337 return &event->attr; 12338 } 12339 12340 /* 12341 * Inherit an event from parent task to child task. 12342 * 12343 * Returns: 12344 * - valid pointer on success 12345 * - NULL for orphaned events 12346 * - IS_ERR() on error 12347 */ 12348 static struct perf_event * 12349 inherit_event(struct perf_event *parent_event, 12350 struct task_struct *parent, 12351 struct perf_event_context *parent_ctx, 12352 struct task_struct *child, 12353 struct perf_event *group_leader, 12354 struct perf_event_context *child_ctx) 12355 { 12356 enum perf_event_state parent_state = parent_event->state; 12357 struct perf_event *child_event; 12358 unsigned long flags; 12359 12360 /* 12361 * Instead of creating recursive hierarchies of events, 12362 * we link inherited events back to the original parent, 12363 * which has a filp for sure, which we use as the reference 12364 * count: 12365 */ 12366 if (parent_event->parent) 12367 parent_event = parent_event->parent; 12368 12369 child_event = perf_event_alloc(&parent_event->attr, 12370 parent_event->cpu, 12371 child, 12372 group_leader, parent_event, 12373 NULL, NULL, -1); 12374 if (IS_ERR(child_event)) 12375 return child_event; 12376 12377 12378 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12379 !child_ctx->task_ctx_data) { 12380 struct pmu *pmu = child_event->pmu; 12381 12382 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12383 GFP_KERNEL); 12384 if (!child_ctx->task_ctx_data) { 12385 free_event(child_event); 12386 return ERR_PTR(-ENOMEM); 12387 } 12388 } 12389 12390 /* 12391 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12392 * must be under the same lock in order to serialize against 12393 * perf_event_release_kernel(), such that either we must observe 12394 * is_orphaned_event() or they will observe us on the child_list. 12395 */ 12396 mutex_lock(&parent_event->child_mutex); 12397 if (is_orphaned_event(parent_event) || 12398 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12399 mutex_unlock(&parent_event->child_mutex); 12400 /* task_ctx_data is freed with child_ctx */ 12401 free_event(child_event); 12402 return NULL; 12403 } 12404 12405 get_ctx(child_ctx); 12406 12407 /* 12408 * Make the child state follow the state of the parent event, 12409 * not its attr.disabled bit. We hold the parent's mutex, 12410 * so we won't race with perf_event_{en, dis}able_family. 12411 */ 12412 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12413 child_event->state = PERF_EVENT_STATE_INACTIVE; 12414 else 12415 child_event->state = PERF_EVENT_STATE_OFF; 12416 12417 if (parent_event->attr.freq) { 12418 u64 sample_period = parent_event->hw.sample_period; 12419 struct hw_perf_event *hwc = &child_event->hw; 12420 12421 hwc->sample_period = sample_period; 12422 hwc->last_period = sample_period; 12423 12424 local64_set(&hwc->period_left, sample_period); 12425 } 12426 12427 child_event->ctx = child_ctx; 12428 child_event->overflow_handler = parent_event->overflow_handler; 12429 child_event->overflow_handler_context 12430 = parent_event->overflow_handler_context; 12431 12432 /* 12433 * Precalculate sample_data sizes 12434 */ 12435 perf_event__header_size(child_event); 12436 perf_event__id_header_size(child_event); 12437 12438 /* 12439 * Link it up in the child's context: 12440 */ 12441 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12442 add_event_to_ctx(child_event, child_ctx); 12443 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12444 12445 /* 12446 * Link this into the parent event's child list 12447 */ 12448 list_add_tail(&child_event->child_list, &parent_event->child_list); 12449 mutex_unlock(&parent_event->child_mutex); 12450 12451 return child_event; 12452 } 12453 12454 /* 12455 * Inherits an event group. 12456 * 12457 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12458 * This matches with perf_event_release_kernel() removing all child events. 12459 * 12460 * Returns: 12461 * - 0 on success 12462 * - <0 on error 12463 */ 12464 static int inherit_group(struct perf_event *parent_event, 12465 struct task_struct *parent, 12466 struct perf_event_context *parent_ctx, 12467 struct task_struct *child, 12468 struct perf_event_context *child_ctx) 12469 { 12470 struct perf_event *leader; 12471 struct perf_event *sub; 12472 struct perf_event *child_ctr; 12473 12474 leader = inherit_event(parent_event, parent, parent_ctx, 12475 child, NULL, child_ctx); 12476 if (IS_ERR(leader)) 12477 return PTR_ERR(leader); 12478 /* 12479 * @leader can be NULL here because of is_orphaned_event(). In this 12480 * case inherit_event() will create individual events, similar to what 12481 * perf_group_detach() would do anyway. 12482 */ 12483 for_each_sibling_event(sub, parent_event) { 12484 child_ctr = inherit_event(sub, parent, parent_ctx, 12485 child, leader, child_ctx); 12486 if (IS_ERR(child_ctr)) 12487 return PTR_ERR(child_ctr); 12488 12489 if (sub->aux_event == parent_event && child_ctr && 12490 !perf_get_aux_event(child_ctr, leader)) 12491 return -EINVAL; 12492 } 12493 return 0; 12494 } 12495 12496 /* 12497 * Creates the child task context and tries to inherit the event-group. 12498 * 12499 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12500 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12501 * consistent with perf_event_release_kernel() removing all child events. 12502 * 12503 * Returns: 12504 * - 0 on success 12505 * - <0 on error 12506 */ 12507 static int 12508 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12509 struct perf_event_context *parent_ctx, 12510 struct task_struct *child, int ctxn, 12511 int *inherited_all) 12512 { 12513 int ret; 12514 struct perf_event_context *child_ctx; 12515 12516 if (!event->attr.inherit) { 12517 *inherited_all = 0; 12518 return 0; 12519 } 12520 12521 child_ctx = child->perf_event_ctxp[ctxn]; 12522 if (!child_ctx) { 12523 /* 12524 * This is executed from the parent task context, so 12525 * inherit events that have been marked for cloning. 12526 * First allocate and initialize a context for the 12527 * child. 12528 */ 12529 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12530 if (!child_ctx) 12531 return -ENOMEM; 12532 12533 child->perf_event_ctxp[ctxn] = child_ctx; 12534 } 12535 12536 ret = inherit_group(event, parent, parent_ctx, 12537 child, child_ctx); 12538 12539 if (ret) 12540 *inherited_all = 0; 12541 12542 return ret; 12543 } 12544 12545 /* 12546 * Initialize the perf_event context in task_struct 12547 */ 12548 static int perf_event_init_context(struct task_struct *child, int ctxn) 12549 { 12550 struct perf_event_context *child_ctx, *parent_ctx; 12551 struct perf_event_context *cloned_ctx; 12552 struct perf_event *event; 12553 struct task_struct *parent = current; 12554 int inherited_all = 1; 12555 unsigned long flags; 12556 int ret = 0; 12557 12558 if (likely(!parent->perf_event_ctxp[ctxn])) 12559 return 0; 12560 12561 /* 12562 * If the parent's context is a clone, pin it so it won't get 12563 * swapped under us. 12564 */ 12565 parent_ctx = perf_pin_task_context(parent, ctxn); 12566 if (!parent_ctx) 12567 return 0; 12568 12569 /* 12570 * No need to check if parent_ctx != NULL here; since we saw 12571 * it non-NULL earlier, the only reason for it to become NULL 12572 * is if we exit, and since we're currently in the middle of 12573 * a fork we can't be exiting at the same time. 12574 */ 12575 12576 /* 12577 * Lock the parent list. No need to lock the child - not PID 12578 * hashed yet and not running, so nobody can access it. 12579 */ 12580 mutex_lock(&parent_ctx->mutex); 12581 12582 /* 12583 * We dont have to disable NMIs - we are only looking at 12584 * the list, not manipulating it: 12585 */ 12586 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12587 ret = inherit_task_group(event, parent, parent_ctx, 12588 child, ctxn, &inherited_all); 12589 if (ret) 12590 goto out_unlock; 12591 } 12592 12593 /* 12594 * We can't hold ctx->lock when iterating the ->flexible_group list due 12595 * to allocations, but we need to prevent rotation because 12596 * rotate_ctx() will change the list from interrupt context. 12597 */ 12598 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12599 parent_ctx->rotate_disable = 1; 12600 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12601 12602 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12603 ret = inherit_task_group(event, parent, parent_ctx, 12604 child, ctxn, &inherited_all); 12605 if (ret) 12606 goto out_unlock; 12607 } 12608 12609 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12610 parent_ctx->rotate_disable = 0; 12611 12612 child_ctx = child->perf_event_ctxp[ctxn]; 12613 12614 if (child_ctx && inherited_all) { 12615 /* 12616 * Mark the child context as a clone of the parent 12617 * context, or of whatever the parent is a clone of. 12618 * 12619 * Note that if the parent is a clone, the holding of 12620 * parent_ctx->lock avoids it from being uncloned. 12621 */ 12622 cloned_ctx = parent_ctx->parent_ctx; 12623 if (cloned_ctx) { 12624 child_ctx->parent_ctx = cloned_ctx; 12625 child_ctx->parent_gen = parent_ctx->parent_gen; 12626 } else { 12627 child_ctx->parent_ctx = parent_ctx; 12628 child_ctx->parent_gen = parent_ctx->generation; 12629 } 12630 get_ctx(child_ctx->parent_ctx); 12631 } 12632 12633 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12634 out_unlock: 12635 mutex_unlock(&parent_ctx->mutex); 12636 12637 perf_unpin_context(parent_ctx); 12638 put_ctx(parent_ctx); 12639 12640 return ret; 12641 } 12642 12643 /* 12644 * Initialize the perf_event context in task_struct 12645 */ 12646 int perf_event_init_task(struct task_struct *child) 12647 { 12648 int ctxn, ret; 12649 12650 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12651 mutex_init(&child->perf_event_mutex); 12652 INIT_LIST_HEAD(&child->perf_event_list); 12653 12654 for_each_task_context_nr(ctxn) { 12655 ret = perf_event_init_context(child, ctxn); 12656 if (ret) { 12657 perf_event_free_task(child); 12658 return ret; 12659 } 12660 } 12661 12662 return 0; 12663 } 12664 12665 static void __init perf_event_init_all_cpus(void) 12666 { 12667 struct swevent_htable *swhash; 12668 int cpu; 12669 12670 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12671 12672 for_each_possible_cpu(cpu) { 12673 swhash = &per_cpu(swevent_htable, cpu); 12674 mutex_init(&swhash->hlist_mutex); 12675 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12676 12677 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12678 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12679 12680 #ifdef CONFIG_CGROUP_PERF 12681 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12682 #endif 12683 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12684 } 12685 } 12686 12687 static void perf_swevent_init_cpu(unsigned int cpu) 12688 { 12689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12690 12691 mutex_lock(&swhash->hlist_mutex); 12692 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12693 struct swevent_hlist *hlist; 12694 12695 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12696 WARN_ON(!hlist); 12697 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12698 } 12699 mutex_unlock(&swhash->hlist_mutex); 12700 } 12701 12702 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12703 static void __perf_event_exit_context(void *__info) 12704 { 12705 struct perf_event_context *ctx = __info; 12706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12707 struct perf_event *event; 12708 12709 raw_spin_lock(&ctx->lock); 12710 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12711 list_for_each_entry(event, &ctx->event_list, event_entry) 12712 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12713 raw_spin_unlock(&ctx->lock); 12714 } 12715 12716 static void perf_event_exit_cpu_context(int cpu) 12717 { 12718 struct perf_cpu_context *cpuctx; 12719 struct perf_event_context *ctx; 12720 struct pmu *pmu; 12721 12722 mutex_lock(&pmus_lock); 12723 list_for_each_entry(pmu, &pmus, entry) { 12724 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12725 ctx = &cpuctx->ctx; 12726 12727 mutex_lock(&ctx->mutex); 12728 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12729 cpuctx->online = 0; 12730 mutex_unlock(&ctx->mutex); 12731 } 12732 cpumask_clear_cpu(cpu, perf_online_mask); 12733 mutex_unlock(&pmus_lock); 12734 } 12735 #else 12736 12737 static void perf_event_exit_cpu_context(int cpu) { } 12738 12739 #endif 12740 12741 int perf_event_init_cpu(unsigned int cpu) 12742 { 12743 struct perf_cpu_context *cpuctx; 12744 struct perf_event_context *ctx; 12745 struct pmu *pmu; 12746 12747 perf_swevent_init_cpu(cpu); 12748 12749 mutex_lock(&pmus_lock); 12750 cpumask_set_cpu(cpu, perf_online_mask); 12751 list_for_each_entry(pmu, &pmus, entry) { 12752 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12753 ctx = &cpuctx->ctx; 12754 12755 mutex_lock(&ctx->mutex); 12756 cpuctx->online = 1; 12757 mutex_unlock(&ctx->mutex); 12758 } 12759 mutex_unlock(&pmus_lock); 12760 12761 return 0; 12762 } 12763 12764 int perf_event_exit_cpu(unsigned int cpu) 12765 { 12766 perf_event_exit_cpu_context(cpu); 12767 return 0; 12768 } 12769 12770 static int 12771 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12772 { 12773 int cpu; 12774 12775 for_each_online_cpu(cpu) 12776 perf_event_exit_cpu(cpu); 12777 12778 return NOTIFY_OK; 12779 } 12780 12781 /* 12782 * Run the perf reboot notifier at the very last possible moment so that 12783 * the generic watchdog code runs as long as possible. 12784 */ 12785 static struct notifier_block perf_reboot_notifier = { 12786 .notifier_call = perf_reboot, 12787 .priority = INT_MIN, 12788 }; 12789 12790 void __init perf_event_init(void) 12791 { 12792 int ret; 12793 12794 idr_init(&pmu_idr); 12795 12796 perf_event_init_all_cpus(); 12797 init_srcu_struct(&pmus_srcu); 12798 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12799 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12800 perf_pmu_register(&perf_task_clock, NULL, -1); 12801 perf_tp_register(); 12802 perf_event_init_cpu(smp_processor_id()); 12803 register_reboot_notifier(&perf_reboot_notifier); 12804 12805 ret = init_hw_breakpoint(); 12806 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12807 12808 /* 12809 * Build time assertion that we keep the data_head at the intended 12810 * location. IOW, validation we got the __reserved[] size right. 12811 */ 12812 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12813 != 1024); 12814 } 12815 12816 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12817 char *page) 12818 { 12819 struct perf_pmu_events_attr *pmu_attr = 12820 container_of(attr, struct perf_pmu_events_attr, attr); 12821 12822 if (pmu_attr->event_str) 12823 return sprintf(page, "%s\n", pmu_attr->event_str); 12824 12825 return 0; 12826 } 12827 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12828 12829 static int __init perf_event_sysfs_init(void) 12830 { 12831 struct pmu *pmu; 12832 int ret; 12833 12834 mutex_lock(&pmus_lock); 12835 12836 ret = bus_register(&pmu_bus); 12837 if (ret) 12838 goto unlock; 12839 12840 list_for_each_entry(pmu, &pmus, entry) { 12841 if (!pmu->name || pmu->type < 0) 12842 continue; 12843 12844 ret = pmu_dev_alloc(pmu); 12845 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12846 } 12847 pmu_bus_running = 1; 12848 ret = 0; 12849 12850 unlock: 12851 mutex_unlock(&pmus_lock); 12852 12853 return ret; 12854 } 12855 device_initcall(perf_event_sysfs_init); 12856 12857 #ifdef CONFIG_CGROUP_PERF 12858 static struct cgroup_subsys_state * 12859 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12860 { 12861 struct perf_cgroup *jc; 12862 12863 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12864 if (!jc) 12865 return ERR_PTR(-ENOMEM); 12866 12867 jc->info = alloc_percpu(struct perf_cgroup_info); 12868 if (!jc->info) { 12869 kfree(jc); 12870 return ERR_PTR(-ENOMEM); 12871 } 12872 12873 return &jc->css; 12874 } 12875 12876 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12877 { 12878 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12879 12880 free_percpu(jc->info); 12881 kfree(jc); 12882 } 12883 12884 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 12885 { 12886 perf_event_cgroup(css->cgroup); 12887 return 0; 12888 } 12889 12890 static int __perf_cgroup_move(void *info) 12891 { 12892 struct task_struct *task = info; 12893 rcu_read_lock(); 12894 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12895 rcu_read_unlock(); 12896 return 0; 12897 } 12898 12899 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12900 { 12901 struct task_struct *task; 12902 struct cgroup_subsys_state *css; 12903 12904 cgroup_taskset_for_each(task, css, tset) 12905 task_function_call(task, __perf_cgroup_move, task); 12906 } 12907 12908 struct cgroup_subsys perf_event_cgrp_subsys = { 12909 .css_alloc = perf_cgroup_css_alloc, 12910 .css_free = perf_cgroup_css_free, 12911 .css_online = perf_cgroup_css_online, 12912 .attach = perf_cgroup_attach, 12913 /* 12914 * Implicitly enable on dfl hierarchy so that perf events can 12915 * always be filtered by cgroup2 path as long as perf_event 12916 * controller is not mounted on a legacy hierarchy. 12917 */ 12918 .implicit_on_dfl = true, 12919 .threaded = true, 12920 }; 12921 #endif /* CONFIG_CGROUP_PERF */ 12922