xref: /linux/kernel/events/core.c (revision 06bd48b6cd97ef3889b68c8e09014d81dbc463f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 
55 #include "internal.h"
56 
57 #include <asm/irq_regs.h>
58 
59 typedef int (*remote_function_f)(void *);
60 
61 struct remote_function_call {
62 	struct task_struct	*p;
63 	remote_function_f	func;
64 	void			*info;
65 	int			ret;
66 };
67 
68 static void remote_function(void *data)
69 {
70 	struct remote_function_call *tfc = data;
71 	struct task_struct *p = tfc->p;
72 
73 	if (p) {
74 		/* -EAGAIN */
75 		if (task_cpu(p) != smp_processor_id())
76 			return;
77 
78 		/*
79 		 * Now that we're on right CPU with IRQs disabled, we can test
80 		 * if we hit the right task without races.
81 		 */
82 
83 		tfc->ret = -ESRCH; /* No such (running) process */
84 		if (p != current)
85 			return;
86 	}
87 
88 	tfc->ret = tfc->func(tfc->info);
89 }
90 
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:		the task to evaluate
94  * @func:	the function to be called
95  * @info:	the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly
99  *
100  * returns: @func return value, or
101  *	    -ESRCH  - when the process isn't running
102  *	    -EAGAIN - when the process moved away
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= p,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -EAGAIN,
112 	};
113 	int ret;
114 
115 	do {
116 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 		if (!ret)
118 			ret = data.ret;
119 	} while (ret == -EAGAIN);
120 
121 	return ret;
122 }
123 
124 /**
125  * cpu_function_call - call a function on the cpu
126  * @func:	the function to be called
127  * @info:	the function call argument
128  *
129  * Calls the function @func on the remote cpu.
130  *
131  * returns: @func return value or -ENXIO when the cpu is offline
132  */
133 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 {
135 	struct remote_function_call data = {
136 		.p	= NULL,
137 		.func	= func,
138 		.info	= info,
139 		.ret	= -ENXIO, /* No such CPU */
140 	};
141 
142 	smp_call_function_single(cpu, remote_function, &data, 1);
143 
144 	return data.ret;
145 }
146 
147 static inline struct perf_cpu_context *
148 __get_cpu_context(struct perf_event_context *ctx)
149 {
150 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 }
152 
153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154 			  struct perf_event_context *ctx)
155 {
156 	raw_spin_lock(&cpuctx->ctx.lock);
157 	if (ctx)
158 		raw_spin_lock(&ctx->lock);
159 }
160 
161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162 			    struct perf_event_context *ctx)
163 {
164 	if (ctx)
165 		raw_spin_unlock(&ctx->lock);
166 	raw_spin_unlock(&cpuctx->ctx.lock);
167 }
168 
169 #define TASK_TOMBSTONE ((void *)-1L)
170 
171 static bool is_kernel_event(struct perf_event *event)
172 {
173 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
174 }
175 
176 /*
177  * On task ctx scheduling...
178  *
179  * When !ctx->nr_events a task context will not be scheduled. This means
180  * we can disable the scheduler hooks (for performance) without leaving
181  * pending task ctx state.
182  *
183  * This however results in two special cases:
184  *
185  *  - removing the last event from a task ctx; this is relatively straight
186  *    forward and is done in __perf_remove_from_context.
187  *
188  *  - adding the first event to a task ctx; this is tricky because we cannot
189  *    rely on ctx->is_active and therefore cannot use event_function_call().
190  *    See perf_install_in_context().
191  *
192  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193  */
194 
195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196 			struct perf_event_context *, void *);
197 
198 struct event_function_struct {
199 	struct perf_event *event;
200 	event_f func;
201 	void *data;
202 };
203 
204 static int event_function(void *info)
205 {
206 	struct event_function_struct *efs = info;
207 	struct perf_event *event = efs->event;
208 	struct perf_event_context *ctx = event->ctx;
209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
211 	int ret = 0;
212 
213 	lockdep_assert_irqs_disabled();
214 
215 	perf_ctx_lock(cpuctx, task_ctx);
216 	/*
217 	 * Since we do the IPI call without holding ctx->lock things can have
218 	 * changed, double check we hit the task we set out to hit.
219 	 */
220 	if (ctx->task) {
221 		if (ctx->task != current) {
222 			ret = -ESRCH;
223 			goto unlock;
224 		}
225 
226 		/*
227 		 * We only use event_function_call() on established contexts,
228 		 * and event_function() is only ever called when active (or
229 		 * rather, we'll have bailed in task_function_call() or the
230 		 * above ctx->task != current test), therefore we must have
231 		 * ctx->is_active here.
232 		 */
233 		WARN_ON_ONCE(!ctx->is_active);
234 		/*
235 		 * And since we have ctx->is_active, cpuctx->task_ctx must
236 		 * match.
237 		 */
238 		WARN_ON_ONCE(task_ctx != ctx);
239 	} else {
240 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
241 	}
242 
243 	efs->func(event, cpuctx, ctx, efs->data);
244 unlock:
245 	perf_ctx_unlock(cpuctx, task_ctx);
246 
247 	return ret;
248 }
249 
250 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 {
252 	struct perf_event_context *ctx = event->ctx;
253 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
254 	struct event_function_struct efs = {
255 		.event = event,
256 		.func = func,
257 		.data = data,
258 	};
259 
260 	if (!event->parent) {
261 		/*
262 		 * If this is a !child event, we must hold ctx::mutex to
263 		 * stabilize the the event->ctx relation. See
264 		 * perf_event_ctx_lock().
265 		 */
266 		lockdep_assert_held(&ctx->mutex);
267 	}
268 
269 	if (!task) {
270 		cpu_function_call(event->cpu, event_function, &efs);
271 		return;
272 	}
273 
274 	if (task == TASK_TOMBSTONE)
275 		return;
276 
277 again:
278 	if (!task_function_call(task, event_function, &efs))
279 		return;
280 
281 	raw_spin_lock_irq(&ctx->lock);
282 	/*
283 	 * Reload the task pointer, it might have been changed by
284 	 * a concurrent perf_event_context_sched_out().
285 	 */
286 	task = ctx->task;
287 	if (task == TASK_TOMBSTONE) {
288 		raw_spin_unlock_irq(&ctx->lock);
289 		return;
290 	}
291 	if (ctx->is_active) {
292 		raw_spin_unlock_irq(&ctx->lock);
293 		goto again;
294 	}
295 	func(event, NULL, ctx, data);
296 	raw_spin_unlock_irq(&ctx->lock);
297 }
298 
299 /*
300  * Similar to event_function_call() + event_function(), but hard assumes IRQs
301  * are already disabled and we're on the right CPU.
302  */
303 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 {
305 	struct perf_event_context *ctx = event->ctx;
306 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307 	struct task_struct *task = READ_ONCE(ctx->task);
308 	struct perf_event_context *task_ctx = NULL;
309 
310 	lockdep_assert_irqs_disabled();
311 
312 	if (task) {
313 		if (task == TASK_TOMBSTONE)
314 			return;
315 
316 		task_ctx = ctx;
317 	}
318 
319 	perf_ctx_lock(cpuctx, task_ctx);
320 
321 	task = ctx->task;
322 	if (task == TASK_TOMBSTONE)
323 		goto unlock;
324 
325 	if (task) {
326 		/*
327 		 * We must be either inactive or active and the right task,
328 		 * otherwise we're screwed, since we cannot IPI to somewhere
329 		 * else.
330 		 */
331 		if (ctx->is_active) {
332 			if (WARN_ON_ONCE(task != current))
333 				goto unlock;
334 
335 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336 				goto unlock;
337 		}
338 	} else {
339 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 	}
341 
342 	func(event, cpuctx, ctx, data);
343 unlock:
344 	perf_ctx_unlock(cpuctx, task_ctx);
345 }
346 
347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348 		       PERF_FLAG_FD_OUTPUT  |\
349 		       PERF_FLAG_PID_CGROUP |\
350 		       PERF_FLAG_FD_CLOEXEC)
351 
352 /*
353  * branch priv levels that need permission checks
354  */
355 #define PERF_SAMPLE_BRANCH_PERM_PLM \
356 	(PERF_SAMPLE_BRANCH_KERNEL |\
357 	 PERF_SAMPLE_BRANCH_HV)
358 
359 enum event_type_t {
360 	EVENT_FLEXIBLE = 0x1,
361 	EVENT_PINNED = 0x2,
362 	EVENT_TIME = 0x4,
363 	/* see ctx_resched() for details */
364 	EVENT_CPU = 0x8,
365 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366 };
367 
368 /*
369  * perf_sched_events : >0 events exist
370  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371  */
372 
373 static void perf_sched_delayed(struct work_struct *work);
374 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376 static DEFINE_MUTEX(perf_sched_mutex);
377 static atomic_t perf_sched_count;
378 
379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
380 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 
383 static atomic_t nr_mmap_events __read_mostly;
384 static atomic_t nr_comm_events __read_mostly;
385 static atomic_t nr_namespaces_events __read_mostly;
386 static atomic_t nr_task_events __read_mostly;
387 static atomic_t nr_freq_events __read_mostly;
388 static atomic_t nr_switch_events __read_mostly;
389 static atomic_t nr_ksymbol_events __read_mostly;
390 static atomic_t nr_bpf_events __read_mostly;
391 static atomic_t nr_cgroup_events __read_mostly;
392 
393 static LIST_HEAD(pmus);
394 static DEFINE_MUTEX(pmus_lock);
395 static struct srcu_struct pmus_srcu;
396 static cpumask_var_t perf_online_mask;
397 
398 /*
399  * perf event paranoia level:
400  *  -1 - not paranoid at all
401  *   0 - disallow raw tracepoint access for unpriv
402  *   1 - disallow cpu events for unpriv
403  *   2 - disallow kernel profiling for unpriv
404  */
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406 
407 /* Minimum for 512 kiB + 1 user control page */
408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
409 
410 /*
411  * max perf event sample rate
412  */
413 #define DEFAULT_MAX_SAMPLE_RATE		100000
414 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
416 
417 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
418 
419 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
421 
422 static int perf_sample_allowed_ns __read_mostly =
423 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
424 
425 static void update_perf_cpu_limits(void)
426 {
427 	u64 tmp = perf_sample_period_ns;
428 
429 	tmp *= sysctl_perf_cpu_time_max_percent;
430 	tmp = div_u64(tmp, 100);
431 	if (!tmp)
432 		tmp = 1;
433 
434 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
435 }
436 
437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
438 
439 int perf_proc_update_handler(struct ctl_table *table, int write,
440 		void __user *buffer, size_t *lenp,
441 		loff_t *ppos)
442 {
443 	int ret;
444 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
445 	/*
446 	 * If throttling is disabled don't allow the write:
447 	 */
448 	if (write && (perf_cpu == 100 || perf_cpu == 0))
449 		return -EINVAL;
450 
451 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 	if (ret || !write)
453 		return ret;
454 
455 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
456 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457 	update_perf_cpu_limits();
458 
459 	return 0;
460 }
461 
462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463 
464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465 				void __user *buffer, size_t *lenp,
466 				loff_t *ppos)
467 {
468 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 
470 	if (ret || !write)
471 		return ret;
472 
473 	if (sysctl_perf_cpu_time_max_percent == 100 ||
474 	    sysctl_perf_cpu_time_max_percent == 0) {
475 		printk(KERN_WARNING
476 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477 		WRITE_ONCE(perf_sample_allowed_ns, 0);
478 	} else {
479 		update_perf_cpu_limits();
480 	}
481 
482 	return 0;
483 }
484 
485 /*
486  * perf samples are done in some very critical code paths (NMIs).
487  * If they take too much CPU time, the system can lock up and not
488  * get any real work done.  This will drop the sample rate when
489  * we detect that events are taking too long.
490  */
491 #define NR_ACCUMULATED_SAMPLES 128
492 static DEFINE_PER_CPU(u64, running_sample_length);
493 
494 static u64 __report_avg;
495 static u64 __report_allowed;
496 
497 static void perf_duration_warn(struct irq_work *w)
498 {
499 	printk_ratelimited(KERN_INFO
500 		"perf: interrupt took too long (%lld > %lld), lowering "
501 		"kernel.perf_event_max_sample_rate to %d\n",
502 		__report_avg, __report_allowed,
503 		sysctl_perf_event_sample_rate);
504 }
505 
506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507 
508 void perf_sample_event_took(u64 sample_len_ns)
509 {
510 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511 	u64 running_len;
512 	u64 avg_len;
513 	u32 max;
514 
515 	if (max_len == 0)
516 		return;
517 
518 	/* Decay the counter by 1 average sample. */
519 	running_len = __this_cpu_read(running_sample_length);
520 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521 	running_len += sample_len_ns;
522 	__this_cpu_write(running_sample_length, running_len);
523 
524 	/*
525 	 * Note: this will be biased artifically low until we have
526 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
527 	 * from having to maintain a count.
528 	 */
529 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530 	if (avg_len <= max_len)
531 		return;
532 
533 	__report_avg = avg_len;
534 	__report_allowed = max_len;
535 
536 	/*
537 	 * Compute a throttle threshold 25% below the current duration.
538 	 */
539 	avg_len += avg_len / 4;
540 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541 	if (avg_len < max)
542 		max /= (u32)avg_len;
543 	else
544 		max = 1;
545 
546 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547 	WRITE_ONCE(max_samples_per_tick, max);
548 
549 	sysctl_perf_event_sample_rate = max * HZ;
550 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
551 
552 	if (!irq_work_queue(&perf_duration_work)) {
553 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
554 			     "kernel.perf_event_max_sample_rate to %d\n",
555 			     __report_avg, __report_allowed,
556 			     sysctl_perf_event_sample_rate);
557 	}
558 }
559 
560 static atomic64_t perf_event_id;
561 
562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563 			      enum event_type_t event_type);
564 
565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
566 			     enum event_type_t event_type,
567 			     struct task_struct *task);
568 
569 static void update_context_time(struct perf_event_context *ctx);
570 static u64 perf_event_time(struct perf_event *event);
571 
572 void __weak perf_event_print_debug(void)	{ }
573 
574 extern __weak const char *perf_pmu_name(void)
575 {
576 	return "pmu";
577 }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 #ifdef CONFIG_CGROUP_PERF
672 
673 static inline bool
674 perf_cgroup_match(struct perf_event *event)
675 {
676 	struct perf_event_context *ctx = event->ctx;
677 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678 
679 	/* @event doesn't care about cgroup */
680 	if (!event->cgrp)
681 		return true;
682 
683 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
684 	if (!cpuctx->cgrp)
685 		return false;
686 
687 	/*
688 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
689 	 * also enabled for all its descendant cgroups.  If @cpuctx's
690 	 * cgroup is a descendant of @event's (the test covers identity
691 	 * case), it's a match.
692 	 */
693 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694 				    event->cgrp->css.cgroup);
695 }
696 
697 static inline void perf_detach_cgroup(struct perf_event *event)
698 {
699 	css_put(&event->cgrp->css);
700 	event->cgrp = NULL;
701 }
702 
703 static inline int is_cgroup_event(struct perf_event *event)
704 {
705 	return event->cgrp != NULL;
706 }
707 
708 static inline u64 perf_cgroup_event_time(struct perf_event *event)
709 {
710 	struct perf_cgroup_info *t;
711 
712 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 	return t->time;
714 }
715 
716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717 {
718 	struct perf_cgroup_info *info;
719 	u64 now;
720 
721 	now = perf_clock();
722 
723 	info = this_cpu_ptr(cgrp->info);
724 
725 	info->time += now - info->timestamp;
726 	info->timestamp = now;
727 }
728 
729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730 {
731 	struct perf_cgroup *cgrp = cpuctx->cgrp;
732 	struct cgroup_subsys_state *css;
733 
734 	if (cgrp) {
735 		for (css = &cgrp->css; css; css = css->parent) {
736 			cgrp = container_of(css, struct perf_cgroup, css);
737 			__update_cgrp_time(cgrp);
738 		}
739 	}
740 }
741 
742 static inline void update_cgrp_time_from_event(struct perf_event *event)
743 {
744 	struct perf_cgroup *cgrp;
745 
746 	/*
747 	 * ensure we access cgroup data only when needed and
748 	 * when we know the cgroup is pinned (css_get)
749 	 */
750 	if (!is_cgroup_event(event))
751 		return;
752 
753 	cgrp = perf_cgroup_from_task(current, event->ctx);
754 	/*
755 	 * Do not update time when cgroup is not active
756 	 */
757 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
758 		__update_cgrp_time(event->cgrp);
759 }
760 
761 static inline void
762 perf_cgroup_set_timestamp(struct task_struct *task,
763 			  struct perf_event_context *ctx)
764 {
765 	struct perf_cgroup *cgrp;
766 	struct perf_cgroup_info *info;
767 	struct cgroup_subsys_state *css;
768 
769 	/*
770 	 * ctx->lock held by caller
771 	 * ensure we do not access cgroup data
772 	 * unless we have the cgroup pinned (css_get)
773 	 */
774 	if (!task || !ctx->nr_cgroups)
775 		return;
776 
777 	cgrp = perf_cgroup_from_task(task, ctx);
778 
779 	for (css = &cgrp->css; css; css = css->parent) {
780 		cgrp = container_of(css, struct perf_cgroup, css);
781 		info = this_cpu_ptr(cgrp->info);
782 		info->timestamp = ctx->timestamp;
783 	}
784 }
785 
786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787 
788 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
789 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
790 
791 /*
792  * reschedule events based on the cgroup constraint of task.
793  *
794  * mode SWOUT : schedule out everything
795  * mode SWIN : schedule in based on cgroup for next
796  */
797 static void perf_cgroup_switch(struct task_struct *task, int mode)
798 {
799 	struct perf_cpu_context *cpuctx;
800 	struct list_head *list;
801 	unsigned long flags;
802 
803 	/*
804 	 * Disable interrupts and preemption to avoid this CPU's
805 	 * cgrp_cpuctx_entry to change under us.
806 	 */
807 	local_irq_save(flags);
808 
809 	list = this_cpu_ptr(&cgrp_cpuctx_list);
810 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
812 
813 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814 		perf_pmu_disable(cpuctx->ctx.pmu);
815 
816 		if (mode & PERF_CGROUP_SWOUT) {
817 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818 			/*
819 			 * must not be done before ctxswout due
820 			 * to event_filter_match() in event_sched_out()
821 			 */
822 			cpuctx->cgrp = NULL;
823 		}
824 
825 		if (mode & PERF_CGROUP_SWIN) {
826 			WARN_ON_ONCE(cpuctx->cgrp);
827 			/*
828 			 * set cgrp before ctxsw in to allow
829 			 * event_filter_match() to not have to pass
830 			 * task around
831 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
832 			 * because cgorup events are only per-cpu
833 			 */
834 			cpuctx->cgrp = perf_cgroup_from_task(task,
835 							     &cpuctx->ctx);
836 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
837 		}
838 		perf_pmu_enable(cpuctx->ctx.pmu);
839 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
840 	}
841 
842 	local_irq_restore(flags);
843 }
844 
845 static inline void perf_cgroup_sched_out(struct task_struct *task,
846 					 struct task_struct *next)
847 {
848 	struct perf_cgroup *cgrp1;
849 	struct perf_cgroup *cgrp2 = NULL;
850 
851 	rcu_read_lock();
852 	/*
853 	 * we come here when we know perf_cgroup_events > 0
854 	 * we do not need to pass the ctx here because we know
855 	 * we are holding the rcu lock
856 	 */
857 	cgrp1 = perf_cgroup_from_task(task, NULL);
858 	cgrp2 = perf_cgroup_from_task(next, NULL);
859 
860 	/*
861 	 * only schedule out current cgroup events if we know
862 	 * that we are switching to a different cgroup. Otherwise,
863 	 * do no touch the cgroup events.
864 	 */
865 	if (cgrp1 != cgrp2)
866 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867 
868 	rcu_read_unlock();
869 }
870 
871 static inline void perf_cgroup_sched_in(struct task_struct *prev,
872 					struct task_struct *task)
873 {
874 	struct perf_cgroup *cgrp1;
875 	struct perf_cgroup *cgrp2 = NULL;
876 
877 	rcu_read_lock();
878 	/*
879 	 * we come here when we know perf_cgroup_events > 0
880 	 * we do not need to pass the ctx here because we know
881 	 * we are holding the rcu lock
882 	 */
883 	cgrp1 = perf_cgroup_from_task(task, NULL);
884 	cgrp2 = perf_cgroup_from_task(prev, NULL);
885 
886 	/*
887 	 * only need to schedule in cgroup events if we are changing
888 	 * cgroup during ctxsw. Cgroup events were not scheduled
889 	 * out of ctxsw out if that was not the case.
890 	 */
891 	if (cgrp1 != cgrp2)
892 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893 
894 	rcu_read_unlock();
895 }
896 
897 static int perf_cgroup_ensure_storage(struct perf_event *event,
898 				struct cgroup_subsys_state *css)
899 {
900 	struct perf_cpu_context *cpuctx;
901 	struct perf_event **storage;
902 	int cpu, heap_size, ret = 0;
903 
904 	/*
905 	 * Allow storage to have sufficent space for an iterator for each
906 	 * possibly nested cgroup plus an iterator for events with no cgroup.
907 	 */
908 	for (heap_size = 1; css; css = css->parent)
909 		heap_size++;
910 
911 	for_each_possible_cpu(cpu) {
912 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913 		if (heap_size <= cpuctx->heap_size)
914 			continue;
915 
916 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917 				       GFP_KERNEL, cpu_to_node(cpu));
918 		if (!storage) {
919 			ret = -ENOMEM;
920 			break;
921 		}
922 
923 		raw_spin_lock_irq(&cpuctx->ctx.lock);
924 		if (cpuctx->heap_size < heap_size) {
925 			swap(cpuctx->heap, storage);
926 			if (storage == cpuctx->heap_default)
927 				storage = NULL;
928 			cpuctx->heap_size = heap_size;
929 		}
930 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
931 
932 		kfree(storage);
933 	}
934 
935 	return ret;
936 }
937 
938 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939 				      struct perf_event_attr *attr,
940 				      struct perf_event *group_leader)
941 {
942 	struct perf_cgroup *cgrp;
943 	struct cgroup_subsys_state *css;
944 	struct fd f = fdget(fd);
945 	int ret = 0;
946 
947 	if (!f.file)
948 		return -EBADF;
949 
950 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
951 					 &perf_event_cgrp_subsys);
952 	if (IS_ERR(css)) {
953 		ret = PTR_ERR(css);
954 		goto out;
955 	}
956 
957 	ret = perf_cgroup_ensure_storage(event, css);
958 	if (ret)
959 		goto out;
960 
961 	cgrp = container_of(css, struct perf_cgroup, css);
962 	event->cgrp = cgrp;
963 
964 	/*
965 	 * all events in a group must monitor
966 	 * the same cgroup because a task belongs
967 	 * to only one perf cgroup at a time
968 	 */
969 	if (group_leader && group_leader->cgrp != cgrp) {
970 		perf_detach_cgroup(event);
971 		ret = -EINVAL;
972 	}
973 out:
974 	fdput(f);
975 	return ret;
976 }
977 
978 static inline void
979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981 	struct perf_cgroup_info *t;
982 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
983 	event->shadow_ctx_time = now - t->timestamp;
984 }
985 
986 /*
987  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
988  * cleared when last cgroup event is removed.
989  */
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992 			 struct perf_event_context *ctx, bool add)
993 {
994 	struct perf_cpu_context *cpuctx;
995 	struct list_head *cpuctx_entry;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (add && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (add && ctx->nr_cgroups++)
1020 		return;
1021 	else if (!add && --ctx->nr_cgroups)
1022 		return;
1023 
1024 	/* no cgroup running */
1025 	if (!add)
1026 		cpuctx->cgrp = NULL;
1027 
1028 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1029 	if (add)
1030 		list_add(cpuctx_entry,
1031 			 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1032 	else
1033 		list_del(cpuctx_entry);
1034 }
1035 
1036 #else /* !CONFIG_CGROUP_PERF */
1037 
1038 static inline bool
1039 perf_cgroup_match(struct perf_event *event)
1040 {
1041 	return true;
1042 }
1043 
1044 static inline void perf_detach_cgroup(struct perf_event *event)
1045 {}
1046 
1047 static inline int is_cgroup_event(struct perf_event *event)
1048 {
1049 	return 0;
1050 }
1051 
1052 static inline void update_cgrp_time_from_event(struct perf_event *event)
1053 {
1054 }
1055 
1056 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1057 {
1058 }
1059 
1060 static inline void perf_cgroup_sched_out(struct task_struct *task,
1061 					 struct task_struct *next)
1062 {
1063 }
1064 
1065 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1066 					struct task_struct *task)
1067 {
1068 }
1069 
1070 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1071 				      struct perf_event_attr *attr,
1072 				      struct perf_event *group_leader)
1073 {
1074 	return -EINVAL;
1075 }
1076 
1077 static inline void
1078 perf_cgroup_set_timestamp(struct task_struct *task,
1079 			  struct perf_event_context *ctx)
1080 {
1081 }
1082 
1083 static inline void
1084 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1085 {
1086 }
1087 
1088 static inline void
1089 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1090 {
1091 }
1092 
1093 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1094 {
1095 	return 0;
1096 }
1097 
1098 static inline void
1099 list_update_cgroup_event(struct perf_event *event,
1100 			 struct perf_event_context *ctx, bool add)
1101 {
1102 }
1103 
1104 #endif
1105 
1106 /*
1107  * set default to be dependent on timer tick just
1108  * like original code
1109  */
1110 #define PERF_CPU_HRTIMER (1000 / HZ)
1111 /*
1112  * function must be called with interrupts disabled
1113  */
1114 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1115 {
1116 	struct perf_cpu_context *cpuctx;
1117 	bool rotations;
1118 
1119 	lockdep_assert_irqs_disabled();
1120 
1121 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1122 	rotations = perf_rotate_context(cpuctx);
1123 
1124 	raw_spin_lock(&cpuctx->hrtimer_lock);
1125 	if (rotations)
1126 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1127 	else
1128 		cpuctx->hrtimer_active = 0;
1129 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1130 
1131 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1132 }
1133 
1134 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1135 {
1136 	struct hrtimer *timer = &cpuctx->hrtimer;
1137 	struct pmu *pmu = cpuctx->ctx.pmu;
1138 	u64 interval;
1139 
1140 	/* no multiplexing needed for SW PMU */
1141 	if (pmu->task_ctx_nr == perf_sw_context)
1142 		return;
1143 
1144 	/*
1145 	 * check default is sane, if not set then force to
1146 	 * default interval (1/tick)
1147 	 */
1148 	interval = pmu->hrtimer_interval_ms;
1149 	if (interval < 1)
1150 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1151 
1152 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1153 
1154 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1155 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1156 	timer->function = perf_mux_hrtimer_handler;
1157 }
1158 
1159 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1160 {
1161 	struct hrtimer *timer = &cpuctx->hrtimer;
1162 	struct pmu *pmu = cpuctx->ctx.pmu;
1163 	unsigned long flags;
1164 
1165 	/* not for SW PMU */
1166 	if (pmu->task_ctx_nr == perf_sw_context)
1167 		return 0;
1168 
1169 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1170 	if (!cpuctx->hrtimer_active) {
1171 		cpuctx->hrtimer_active = 1;
1172 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1173 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1174 	}
1175 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1176 
1177 	return 0;
1178 }
1179 
1180 void perf_pmu_disable(struct pmu *pmu)
1181 {
1182 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1183 	if (!(*count)++)
1184 		pmu->pmu_disable(pmu);
1185 }
1186 
1187 void perf_pmu_enable(struct pmu *pmu)
1188 {
1189 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1190 	if (!--(*count))
1191 		pmu->pmu_enable(pmu);
1192 }
1193 
1194 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1195 
1196 /*
1197  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1198  * perf_event_task_tick() are fully serialized because they're strictly cpu
1199  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1200  * disabled, while perf_event_task_tick is called from IRQ context.
1201  */
1202 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1203 {
1204 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1205 
1206 	lockdep_assert_irqs_disabled();
1207 
1208 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1209 
1210 	list_add(&ctx->active_ctx_list, head);
1211 }
1212 
1213 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1214 {
1215 	lockdep_assert_irqs_disabled();
1216 
1217 	WARN_ON(list_empty(&ctx->active_ctx_list));
1218 
1219 	list_del_init(&ctx->active_ctx_list);
1220 }
1221 
1222 static void get_ctx(struct perf_event_context *ctx)
1223 {
1224 	refcount_inc(&ctx->refcount);
1225 }
1226 
1227 static void free_ctx(struct rcu_head *head)
1228 {
1229 	struct perf_event_context *ctx;
1230 
1231 	ctx = container_of(head, struct perf_event_context, rcu_head);
1232 	kfree(ctx->task_ctx_data);
1233 	kfree(ctx);
1234 }
1235 
1236 static void put_ctx(struct perf_event_context *ctx)
1237 {
1238 	if (refcount_dec_and_test(&ctx->refcount)) {
1239 		if (ctx->parent_ctx)
1240 			put_ctx(ctx->parent_ctx);
1241 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1242 			put_task_struct(ctx->task);
1243 		call_rcu(&ctx->rcu_head, free_ctx);
1244 	}
1245 }
1246 
1247 /*
1248  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1249  * perf_pmu_migrate_context() we need some magic.
1250  *
1251  * Those places that change perf_event::ctx will hold both
1252  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1253  *
1254  * Lock ordering is by mutex address. There are two other sites where
1255  * perf_event_context::mutex nests and those are:
1256  *
1257  *  - perf_event_exit_task_context()	[ child , 0 ]
1258  *      perf_event_exit_event()
1259  *        put_event()			[ parent, 1 ]
1260  *
1261  *  - perf_event_init_context()		[ parent, 0 ]
1262  *      inherit_task_group()
1263  *        inherit_group()
1264  *          inherit_event()
1265  *            perf_event_alloc()
1266  *              perf_init_event()
1267  *                perf_try_init_event()	[ child , 1 ]
1268  *
1269  * While it appears there is an obvious deadlock here -- the parent and child
1270  * nesting levels are inverted between the two. This is in fact safe because
1271  * life-time rules separate them. That is an exiting task cannot fork, and a
1272  * spawning task cannot (yet) exit.
1273  *
1274  * But remember that that these are parent<->child context relations, and
1275  * migration does not affect children, therefore these two orderings should not
1276  * interact.
1277  *
1278  * The change in perf_event::ctx does not affect children (as claimed above)
1279  * because the sys_perf_event_open() case will install a new event and break
1280  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1281  * concerned with cpuctx and that doesn't have children.
1282  *
1283  * The places that change perf_event::ctx will issue:
1284  *
1285  *   perf_remove_from_context();
1286  *   synchronize_rcu();
1287  *   perf_install_in_context();
1288  *
1289  * to affect the change. The remove_from_context() + synchronize_rcu() should
1290  * quiesce the event, after which we can install it in the new location. This
1291  * means that only external vectors (perf_fops, prctl) can perturb the event
1292  * while in transit. Therefore all such accessors should also acquire
1293  * perf_event_context::mutex to serialize against this.
1294  *
1295  * However; because event->ctx can change while we're waiting to acquire
1296  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1297  * function.
1298  *
1299  * Lock order:
1300  *    exec_update_mutex
1301  *	task_struct::perf_event_mutex
1302  *	  perf_event_context::mutex
1303  *	    perf_event::child_mutex;
1304  *	      perf_event_context::lock
1305  *	    perf_event::mmap_mutex
1306  *	    mmap_sem
1307  *	      perf_addr_filters_head::lock
1308  *
1309  *    cpu_hotplug_lock
1310  *      pmus_lock
1311  *	  cpuctx->mutex / perf_event_context::mutex
1312  */
1313 static struct perf_event_context *
1314 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1315 {
1316 	struct perf_event_context *ctx;
1317 
1318 again:
1319 	rcu_read_lock();
1320 	ctx = READ_ONCE(event->ctx);
1321 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1322 		rcu_read_unlock();
1323 		goto again;
1324 	}
1325 	rcu_read_unlock();
1326 
1327 	mutex_lock_nested(&ctx->mutex, nesting);
1328 	if (event->ctx != ctx) {
1329 		mutex_unlock(&ctx->mutex);
1330 		put_ctx(ctx);
1331 		goto again;
1332 	}
1333 
1334 	return ctx;
1335 }
1336 
1337 static inline struct perf_event_context *
1338 perf_event_ctx_lock(struct perf_event *event)
1339 {
1340 	return perf_event_ctx_lock_nested(event, 0);
1341 }
1342 
1343 static void perf_event_ctx_unlock(struct perf_event *event,
1344 				  struct perf_event_context *ctx)
1345 {
1346 	mutex_unlock(&ctx->mutex);
1347 	put_ctx(ctx);
1348 }
1349 
1350 /*
1351  * This must be done under the ctx->lock, such as to serialize against
1352  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1353  * calling scheduler related locks and ctx->lock nests inside those.
1354  */
1355 static __must_check struct perf_event_context *
1356 unclone_ctx(struct perf_event_context *ctx)
1357 {
1358 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1359 
1360 	lockdep_assert_held(&ctx->lock);
1361 
1362 	if (parent_ctx)
1363 		ctx->parent_ctx = NULL;
1364 	ctx->generation++;
1365 
1366 	return parent_ctx;
1367 }
1368 
1369 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1370 				enum pid_type type)
1371 {
1372 	u32 nr;
1373 	/*
1374 	 * only top level events have the pid namespace they were created in
1375 	 */
1376 	if (event->parent)
1377 		event = event->parent;
1378 
1379 	nr = __task_pid_nr_ns(p, type, event->ns);
1380 	/* avoid -1 if it is idle thread or runs in another ns */
1381 	if (!nr && !pid_alive(p))
1382 		nr = -1;
1383 	return nr;
1384 }
1385 
1386 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1387 {
1388 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1389 }
1390 
1391 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1392 {
1393 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1394 }
1395 
1396 /*
1397  * If we inherit events we want to return the parent event id
1398  * to userspace.
1399  */
1400 static u64 primary_event_id(struct perf_event *event)
1401 {
1402 	u64 id = event->id;
1403 
1404 	if (event->parent)
1405 		id = event->parent->id;
1406 
1407 	return id;
1408 }
1409 
1410 /*
1411  * Get the perf_event_context for a task and lock it.
1412  *
1413  * This has to cope with with the fact that until it is locked,
1414  * the context could get moved to another task.
1415  */
1416 static struct perf_event_context *
1417 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1418 {
1419 	struct perf_event_context *ctx;
1420 
1421 retry:
1422 	/*
1423 	 * One of the few rules of preemptible RCU is that one cannot do
1424 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1425 	 * part of the read side critical section was irqs-enabled -- see
1426 	 * rcu_read_unlock_special().
1427 	 *
1428 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1429 	 * side critical section has interrupts disabled.
1430 	 */
1431 	local_irq_save(*flags);
1432 	rcu_read_lock();
1433 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1434 	if (ctx) {
1435 		/*
1436 		 * If this context is a clone of another, it might
1437 		 * get swapped for another underneath us by
1438 		 * perf_event_task_sched_out, though the
1439 		 * rcu_read_lock() protects us from any context
1440 		 * getting freed.  Lock the context and check if it
1441 		 * got swapped before we could get the lock, and retry
1442 		 * if so.  If we locked the right context, then it
1443 		 * can't get swapped on us any more.
1444 		 */
1445 		raw_spin_lock(&ctx->lock);
1446 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1447 			raw_spin_unlock(&ctx->lock);
1448 			rcu_read_unlock();
1449 			local_irq_restore(*flags);
1450 			goto retry;
1451 		}
1452 
1453 		if (ctx->task == TASK_TOMBSTONE ||
1454 		    !refcount_inc_not_zero(&ctx->refcount)) {
1455 			raw_spin_unlock(&ctx->lock);
1456 			ctx = NULL;
1457 		} else {
1458 			WARN_ON_ONCE(ctx->task != task);
1459 		}
1460 	}
1461 	rcu_read_unlock();
1462 	if (!ctx)
1463 		local_irq_restore(*flags);
1464 	return ctx;
1465 }
1466 
1467 /*
1468  * Get the context for a task and increment its pin_count so it
1469  * can't get swapped to another task.  This also increments its
1470  * reference count so that the context can't get freed.
1471  */
1472 static struct perf_event_context *
1473 perf_pin_task_context(struct task_struct *task, int ctxn)
1474 {
1475 	struct perf_event_context *ctx;
1476 	unsigned long flags;
1477 
1478 	ctx = perf_lock_task_context(task, ctxn, &flags);
1479 	if (ctx) {
1480 		++ctx->pin_count;
1481 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1482 	}
1483 	return ctx;
1484 }
1485 
1486 static void perf_unpin_context(struct perf_event_context *ctx)
1487 {
1488 	unsigned long flags;
1489 
1490 	raw_spin_lock_irqsave(&ctx->lock, flags);
1491 	--ctx->pin_count;
1492 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1493 }
1494 
1495 /*
1496  * Update the record of the current time in a context.
1497  */
1498 static void update_context_time(struct perf_event_context *ctx)
1499 {
1500 	u64 now = perf_clock();
1501 
1502 	ctx->time += now - ctx->timestamp;
1503 	ctx->timestamp = now;
1504 }
1505 
1506 static u64 perf_event_time(struct perf_event *event)
1507 {
1508 	struct perf_event_context *ctx = event->ctx;
1509 
1510 	if (is_cgroup_event(event))
1511 		return perf_cgroup_event_time(event);
1512 
1513 	return ctx ? ctx->time : 0;
1514 }
1515 
1516 static enum event_type_t get_event_type(struct perf_event *event)
1517 {
1518 	struct perf_event_context *ctx = event->ctx;
1519 	enum event_type_t event_type;
1520 
1521 	lockdep_assert_held(&ctx->lock);
1522 
1523 	/*
1524 	 * It's 'group type', really, because if our group leader is
1525 	 * pinned, so are we.
1526 	 */
1527 	if (event->group_leader != event)
1528 		event = event->group_leader;
1529 
1530 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1531 	if (!ctx->task)
1532 		event_type |= EVENT_CPU;
1533 
1534 	return event_type;
1535 }
1536 
1537 /*
1538  * Helper function to initialize event group nodes.
1539  */
1540 static void init_event_group(struct perf_event *event)
1541 {
1542 	RB_CLEAR_NODE(&event->group_node);
1543 	event->group_index = 0;
1544 }
1545 
1546 /*
1547  * Extract pinned or flexible groups from the context
1548  * based on event attrs bits.
1549  */
1550 static struct perf_event_groups *
1551 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1552 {
1553 	if (event->attr.pinned)
1554 		return &ctx->pinned_groups;
1555 	else
1556 		return &ctx->flexible_groups;
1557 }
1558 
1559 /*
1560  * Helper function to initializes perf_event_group trees.
1561  */
1562 static void perf_event_groups_init(struct perf_event_groups *groups)
1563 {
1564 	groups->tree = RB_ROOT;
1565 	groups->index = 0;
1566 }
1567 
1568 /*
1569  * Compare function for event groups;
1570  *
1571  * Implements complex key that first sorts by CPU and then by virtual index
1572  * which provides ordering when rotating groups for the same CPU.
1573  */
1574 static bool
1575 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1576 {
1577 	if (left->cpu < right->cpu)
1578 		return true;
1579 	if (left->cpu > right->cpu)
1580 		return false;
1581 
1582 #ifdef CONFIG_CGROUP_PERF
1583 	if (left->cgrp != right->cgrp) {
1584 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1585 			/*
1586 			 * Left has no cgroup but right does, no cgroups come
1587 			 * first.
1588 			 */
1589 			return true;
1590 		}
1591 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1592 			/*
1593 			 * Right has no cgroup but left does, no cgroups come
1594 			 * first.
1595 			 */
1596 			return false;
1597 		}
1598 		/* Two dissimilar cgroups, order by id. */
1599 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1600 			return true;
1601 
1602 		return false;
1603 	}
1604 #endif
1605 
1606 	if (left->group_index < right->group_index)
1607 		return true;
1608 	if (left->group_index > right->group_index)
1609 		return false;
1610 
1611 	return false;
1612 }
1613 
1614 /*
1615  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1616  * key (see perf_event_groups_less). This places it last inside the CPU
1617  * subtree.
1618  */
1619 static void
1620 perf_event_groups_insert(struct perf_event_groups *groups,
1621 			 struct perf_event *event)
1622 {
1623 	struct perf_event *node_event;
1624 	struct rb_node *parent;
1625 	struct rb_node **node;
1626 
1627 	event->group_index = ++groups->index;
1628 
1629 	node = &groups->tree.rb_node;
1630 	parent = *node;
1631 
1632 	while (*node) {
1633 		parent = *node;
1634 		node_event = container_of(*node, struct perf_event, group_node);
1635 
1636 		if (perf_event_groups_less(event, node_event))
1637 			node = &parent->rb_left;
1638 		else
1639 			node = &parent->rb_right;
1640 	}
1641 
1642 	rb_link_node(&event->group_node, parent, node);
1643 	rb_insert_color(&event->group_node, &groups->tree);
1644 }
1645 
1646 /*
1647  * Helper function to insert event into the pinned or flexible groups.
1648  */
1649 static void
1650 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1651 {
1652 	struct perf_event_groups *groups;
1653 
1654 	groups = get_event_groups(event, ctx);
1655 	perf_event_groups_insert(groups, event);
1656 }
1657 
1658 /*
1659  * Delete a group from a tree.
1660  */
1661 static void
1662 perf_event_groups_delete(struct perf_event_groups *groups,
1663 			 struct perf_event *event)
1664 {
1665 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1666 		     RB_EMPTY_ROOT(&groups->tree));
1667 
1668 	rb_erase(&event->group_node, &groups->tree);
1669 	init_event_group(event);
1670 }
1671 
1672 /*
1673  * Helper function to delete event from its groups.
1674  */
1675 static void
1676 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1677 {
1678 	struct perf_event_groups *groups;
1679 
1680 	groups = get_event_groups(event, ctx);
1681 	perf_event_groups_delete(groups, event);
1682 }
1683 
1684 /*
1685  * Get the leftmost event in the cpu/cgroup subtree.
1686  */
1687 static struct perf_event *
1688 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1689 			struct cgroup *cgrp)
1690 {
1691 	struct perf_event *node_event = NULL, *match = NULL;
1692 	struct rb_node *node = groups->tree.rb_node;
1693 #ifdef CONFIG_CGROUP_PERF
1694 	u64 node_cgrp_id, cgrp_id = 0;
1695 
1696 	if (cgrp)
1697 		cgrp_id = cgrp->kn->id;
1698 #endif
1699 
1700 	while (node) {
1701 		node_event = container_of(node, struct perf_event, group_node);
1702 
1703 		if (cpu < node_event->cpu) {
1704 			node = node->rb_left;
1705 			continue;
1706 		}
1707 		if (cpu > node_event->cpu) {
1708 			node = node->rb_right;
1709 			continue;
1710 		}
1711 #ifdef CONFIG_CGROUP_PERF
1712 		node_cgrp_id = 0;
1713 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1714 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1715 
1716 		if (cgrp_id < node_cgrp_id) {
1717 			node = node->rb_left;
1718 			continue;
1719 		}
1720 		if (cgrp_id > node_cgrp_id) {
1721 			node = node->rb_right;
1722 			continue;
1723 		}
1724 #endif
1725 		match = node_event;
1726 		node = node->rb_left;
1727 	}
1728 
1729 	return match;
1730 }
1731 
1732 /*
1733  * Like rb_entry_next_safe() for the @cpu subtree.
1734  */
1735 static struct perf_event *
1736 perf_event_groups_next(struct perf_event *event)
1737 {
1738 	struct perf_event *next;
1739 #ifdef CONFIG_CGROUP_PERF
1740 	u64 curr_cgrp_id = 0;
1741 	u64 next_cgrp_id = 0;
1742 #endif
1743 
1744 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1745 	if (next == NULL || next->cpu != event->cpu)
1746 		return NULL;
1747 
1748 #ifdef CONFIG_CGROUP_PERF
1749 	if (event->cgrp && event->cgrp->css.cgroup)
1750 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1751 
1752 	if (next->cgrp && next->cgrp->css.cgroup)
1753 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1754 
1755 	if (curr_cgrp_id != next_cgrp_id)
1756 		return NULL;
1757 #endif
1758 	return next;
1759 }
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_update_cgroup_event(event, ctx, true);
1795 
1796 	list_add_rcu(&event->event_entry, &ctx->event_list);
1797 	ctx->nr_events++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	ctx->generation++;
1802 }
1803 
1804 /*
1805  * Initialize event state based on the perf_event_attr::disabled.
1806  */
1807 static inline void perf_event__state_init(struct perf_event *event)
1808 {
1809 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1810 					      PERF_EVENT_STATE_INACTIVE;
1811 }
1812 
1813 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1814 {
1815 	int entry = sizeof(u64); /* value */
1816 	int size = 0;
1817 	int nr = 1;
1818 
1819 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1820 		size += sizeof(u64);
1821 
1822 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1823 		size += sizeof(u64);
1824 
1825 	if (event->attr.read_format & PERF_FORMAT_ID)
1826 		entry += sizeof(u64);
1827 
1828 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1829 		nr += nr_siblings;
1830 		size += sizeof(u64);
1831 	}
1832 
1833 	size += entry * nr;
1834 	event->read_size = size;
1835 }
1836 
1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1838 {
1839 	struct perf_sample_data *data;
1840 	u16 size = 0;
1841 
1842 	if (sample_type & PERF_SAMPLE_IP)
1843 		size += sizeof(data->ip);
1844 
1845 	if (sample_type & PERF_SAMPLE_ADDR)
1846 		size += sizeof(data->addr);
1847 
1848 	if (sample_type & PERF_SAMPLE_PERIOD)
1849 		size += sizeof(data->period);
1850 
1851 	if (sample_type & PERF_SAMPLE_WEIGHT)
1852 		size += sizeof(data->weight);
1853 
1854 	if (sample_type & PERF_SAMPLE_READ)
1855 		size += event->read_size;
1856 
1857 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1858 		size += sizeof(data->data_src.val);
1859 
1860 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1861 		size += sizeof(data->txn);
1862 
1863 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864 		size += sizeof(data->phys_addr);
1865 
1866 	if (sample_type & PERF_SAMPLE_CGROUP)
1867 		size += sizeof(data->cgroup);
1868 
1869 	event->header_size = size;
1870 }
1871 
1872 /*
1873  * Called at perf_event creation and when events are attached/detached from a
1874  * group.
1875  */
1876 static void perf_event__header_size(struct perf_event *event)
1877 {
1878 	__perf_event_read_size(event,
1879 			       event->group_leader->nr_siblings);
1880 	__perf_event_header_size(event, event->attr.sample_type);
1881 }
1882 
1883 static void perf_event__id_header_size(struct perf_event *event)
1884 {
1885 	struct perf_sample_data *data;
1886 	u64 sample_type = event->attr.sample_type;
1887 	u16 size = 0;
1888 
1889 	if (sample_type & PERF_SAMPLE_TID)
1890 		size += sizeof(data->tid_entry);
1891 
1892 	if (sample_type & PERF_SAMPLE_TIME)
1893 		size += sizeof(data->time);
1894 
1895 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896 		size += sizeof(data->id);
1897 
1898 	if (sample_type & PERF_SAMPLE_ID)
1899 		size += sizeof(data->id);
1900 
1901 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1902 		size += sizeof(data->stream_id);
1903 
1904 	if (sample_type & PERF_SAMPLE_CPU)
1905 		size += sizeof(data->cpu_entry);
1906 
1907 	event->id_header_size = size;
1908 }
1909 
1910 static bool perf_event_validate_size(struct perf_event *event)
1911 {
1912 	/*
1913 	 * The values computed here will be over-written when we actually
1914 	 * attach the event.
1915 	 */
1916 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918 	perf_event__id_header_size(event);
1919 
1920 	/*
1921 	 * Sum the lot; should not exceed the 64k limit we have on records.
1922 	 * Conservative limit to allow for callchains and other variable fields.
1923 	 */
1924 	if (event->read_size + event->header_size +
1925 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926 		return false;
1927 
1928 	return true;
1929 }
1930 
1931 static void perf_group_attach(struct perf_event *event)
1932 {
1933 	struct perf_event *group_leader = event->group_leader, *pos;
1934 
1935 	lockdep_assert_held(&event->ctx->lock);
1936 
1937 	/*
1938 	 * We can have double attach due to group movement in perf_event_open.
1939 	 */
1940 	if (event->attach_state & PERF_ATTACH_GROUP)
1941 		return;
1942 
1943 	event->attach_state |= PERF_ATTACH_GROUP;
1944 
1945 	if (group_leader == event)
1946 		return;
1947 
1948 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949 
1950 	group_leader->group_caps &= event->event_caps;
1951 
1952 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1953 	group_leader->nr_siblings++;
1954 
1955 	perf_event__header_size(group_leader);
1956 
1957 	for_each_sibling_event(pos, group_leader)
1958 		perf_event__header_size(pos);
1959 }
1960 
1961 /*
1962  * Remove an event from the lists for its context.
1963  * Must be called with ctx->mutex and ctx->lock held.
1964  */
1965 static void
1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1967 {
1968 	WARN_ON_ONCE(event->ctx != ctx);
1969 	lockdep_assert_held(&ctx->lock);
1970 
1971 	/*
1972 	 * We can have double detach due to exit/hot-unplug + close.
1973 	 */
1974 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1975 		return;
1976 
1977 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978 
1979 	list_update_cgroup_event(event, ctx, false);
1980 
1981 	ctx->nr_events--;
1982 	if (event->attr.inherit_stat)
1983 		ctx->nr_stat--;
1984 
1985 	list_del_rcu(&event->event_entry);
1986 
1987 	if (event->group_leader == event)
1988 		del_event_from_groups(event, ctx);
1989 
1990 	/*
1991 	 * If event was in error state, then keep it
1992 	 * that way, otherwise bogus counts will be
1993 	 * returned on read(). The only way to get out
1994 	 * of error state is by explicit re-enabling
1995 	 * of the event
1996 	 */
1997 	if (event->state > PERF_EVENT_STATE_OFF)
1998 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1999 
2000 	ctx->generation++;
2001 }
2002 
2003 static int
2004 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2005 {
2006 	if (!has_aux(aux_event))
2007 		return 0;
2008 
2009 	if (!event->pmu->aux_output_match)
2010 		return 0;
2011 
2012 	return event->pmu->aux_output_match(aux_event);
2013 }
2014 
2015 static void put_event(struct perf_event *event);
2016 static void event_sched_out(struct perf_event *event,
2017 			    struct perf_cpu_context *cpuctx,
2018 			    struct perf_event_context *ctx);
2019 
2020 static void perf_put_aux_event(struct perf_event *event)
2021 {
2022 	struct perf_event_context *ctx = event->ctx;
2023 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2024 	struct perf_event *iter;
2025 
2026 	/*
2027 	 * If event uses aux_event tear down the link
2028 	 */
2029 	if (event->aux_event) {
2030 		iter = event->aux_event;
2031 		event->aux_event = NULL;
2032 		put_event(iter);
2033 		return;
2034 	}
2035 
2036 	/*
2037 	 * If the event is an aux_event, tear down all links to
2038 	 * it from other events.
2039 	 */
2040 	for_each_sibling_event(iter, event->group_leader) {
2041 		if (iter->aux_event != event)
2042 			continue;
2043 
2044 		iter->aux_event = NULL;
2045 		put_event(event);
2046 
2047 		/*
2048 		 * If it's ACTIVE, schedule it out and put it into ERROR
2049 		 * state so that we don't try to schedule it again. Note
2050 		 * that perf_event_enable() will clear the ERROR status.
2051 		 */
2052 		event_sched_out(iter, cpuctx, ctx);
2053 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2054 	}
2055 }
2056 
2057 static bool perf_need_aux_event(struct perf_event *event)
2058 {
2059 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2060 }
2061 
2062 static int perf_get_aux_event(struct perf_event *event,
2063 			      struct perf_event *group_leader)
2064 {
2065 	/*
2066 	 * Our group leader must be an aux event if we want to be
2067 	 * an aux_output. This way, the aux event will precede its
2068 	 * aux_output events in the group, and therefore will always
2069 	 * schedule first.
2070 	 */
2071 	if (!group_leader)
2072 		return 0;
2073 
2074 	/*
2075 	 * aux_output and aux_sample_size are mutually exclusive.
2076 	 */
2077 	if (event->attr.aux_output && event->attr.aux_sample_size)
2078 		return 0;
2079 
2080 	if (event->attr.aux_output &&
2081 	    !perf_aux_output_match(event, group_leader))
2082 		return 0;
2083 
2084 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2085 		return 0;
2086 
2087 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2088 		return 0;
2089 
2090 	/*
2091 	 * Link aux_outputs to their aux event; this is undone in
2092 	 * perf_group_detach() by perf_put_aux_event(). When the
2093 	 * group in torn down, the aux_output events loose their
2094 	 * link to the aux_event and can't schedule any more.
2095 	 */
2096 	event->aux_event = group_leader;
2097 
2098 	return 1;
2099 }
2100 
2101 static inline struct list_head *get_event_list(struct perf_event *event)
2102 {
2103 	struct perf_event_context *ctx = event->ctx;
2104 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2105 }
2106 
2107 static void perf_group_detach(struct perf_event *event)
2108 {
2109 	struct perf_event *sibling, *tmp;
2110 	struct perf_event_context *ctx = event->ctx;
2111 
2112 	lockdep_assert_held(&ctx->lock);
2113 
2114 	/*
2115 	 * We can have double detach due to exit/hot-unplug + close.
2116 	 */
2117 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2118 		return;
2119 
2120 	event->attach_state &= ~PERF_ATTACH_GROUP;
2121 
2122 	perf_put_aux_event(event);
2123 
2124 	/*
2125 	 * If this is a sibling, remove it from its group.
2126 	 */
2127 	if (event->group_leader != event) {
2128 		list_del_init(&event->sibling_list);
2129 		event->group_leader->nr_siblings--;
2130 		goto out;
2131 	}
2132 
2133 	/*
2134 	 * If this was a group event with sibling events then
2135 	 * upgrade the siblings to singleton events by adding them
2136 	 * to whatever list we are on.
2137 	 */
2138 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2139 
2140 		sibling->group_leader = sibling;
2141 		list_del_init(&sibling->sibling_list);
2142 
2143 		/* Inherit group flags from the previous leader */
2144 		sibling->group_caps = event->group_caps;
2145 
2146 		if (!RB_EMPTY_NODE(&event->group_node)) {
2147 			add_event_to_groups(sibling, event->ctx);
2148 
2149 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2150 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2151 		}
2152 
2153 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2154 	}
2155 
2156 out:
2157 	perf_event__header_size(event->group_leader);
2158 
2159 	for_each_sibling_event(tmp, event->group_leader)
2160 		perf_event__header_size(tmp);
2161 }
2162 
2163 static bool is_orphaned_event(struct perf_event *event)
2164 {
2165 	return event->state == PERF_EVENT_STATE_DEAD;
2166 }
2167 
2168 static inline int __pmu_filter_match(struct perf_event *event)
2169 {
2170 	struct pmu *pmu = event->pmu;
2171 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2172 }
2173 
2174 /*
2175  * Check whether we should attempt to schedule an event group based on
2176  * PMU-specific filtering. An event group can consist of HW and SW events,
2177  * potentially with a SW leader, so we must check all the filters, to
2178  * determine whether a group is schedulable:
2179  */
2180 static inline int pmu_filter_match(struct perf_event *event)
2181 {
2182 	struct perf_event *sibling;
2183 
2184 	if (!__pmu_filter_match(event))
2185 		return 0;
2186 
2187 	for_each_sibling_event(sibling, event) {
2188 		if (!__pmu_filter_match(sibling))
2189 			return 0;
2190 	}
2191 
2192 	return 1;
2193 }
2194 
2195 static inline int
2196 event_filter_match(struct perf_event *event)
2197 {
2198 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2199 	       perf_cgroup_match(event) && pmu_filter_match(event);
2200 }
2201 
2202 static void
2203 event_sched_out(struct perf_event *event,
2204 		  struct perf_cpu_context *cpuctx,
2205 		  struct perf_event_context *ctx)
2206 {
2207 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2208 
2209 	WARN_ON_ONCE(event->ctx != ctx);
2210 	lockdep_assert_held(&ctx->lock);
2211 
2212 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2213 		return;
2214 
2215 	/*
2216 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2217 	 * we can schedule events _OUT_ individually through things like
2218 	 * __perf_remove_from_context().
2219 	 */
2220 	list_del_init(&event->active_list);
2221 
2222 	perf_pmu_disable(event->pmu);
2223 
2224 	event->pmu->del(event, 0);
2225 	event->oncpu = -1;
2226 
2227 	if (READ_ONCE(event->pending_disable) >= 0) {
2228 		WRITE_ONCE(event->pending_disable, -1);
2229 		state = PERF_EVENT_STATE_OFF;
2230 	}
2231 	perf_event_set_state(event, state);
2232 
2233 	if (!is_software_event(event))
2234 		cpuctx->active_oncpu--;
2235 	if (!--ctx->nr_active)
2236 		perf_event_ctx_deactivate(ctx);
2237 	if (event->attr.freq && event->attr.sample_freq)
2238 		ctx->nr_freq--;
2239 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2240 		cpuctx->exclusive = 0;
2241 
2242 	perf_pmu_enable(event->pmu);
2243 }
2244 
2245 static void
2246 group_sched_out(struct perf_event *group_event,
2247 		struct perf_cpu_context *cpuctx,
2248 		struct perf_event_context *ctx)
2249 {
2250 	struct perf_event *event;
2251 
2252 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2253 		return;
2254 
2255 	perf_pmu_disable(ctx->pmu);
2256 
2257 	event_sched_out(group_event, cpuctx, ctx);
2258 
2259 	/*
2260 	 * Schedule out siblings (if any):
2261 	 */
2262 	for_each_sibling_event(event, group_event)
2263 		event_sched_out(event, cpuctx, ctx);
2264 
2265 	perf_pmu_enable(ctx->pmu);
2266 
2267 	if (group_event->attr.exclusive)
2268 		cpuctx->exclusive = 0;
2269 }
2270 
2271 #define DETACH_GROUP	0x01UL
2272 
2273 /*
2274  * Cross CPU call to remove a performance event
2275  *
2276  * We disable the event on the hardware level first. After that we
2277  * remove it from the context list.
2278  */
2279 static void
2280 __perf_remove_from_context(struct perf_event *event,
2281 			   struct perf_cpu_context *cpuctx,
2282 			   struct perf_event_context *ctx,
2283 			   void *info)
2284 {
2285 	unsigned long flags = (unsigned long)info;
2286 
2287 	if (ctx->is_active & EVENT_TIME) {
2288 		update_context_time(ctx);
2289 		update_cgrp_time_from_cpuctx(cpuctx);
2290 	}
2291 
2292 	event_sched_out(event, cpuctx, ctx);
2293 	if (flags & DETACH_GROUP)
2294 		perf_group_detach(event);
2295 	list_del_event(event, ctx);
2296 
2297 	if (!ctx->nr_events && ctx->is_active) {
2298 		ctx->is_active = 0;
2299 		ctx->rotate_necessary = 0;
2300 		if (ctx->task) {
2301 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2302 			cpuctx->task_ctx = NULL;
2303 		}
2304 	}
2305 }
2306 
2307 /*
2308  * Remove the event from a task's (or a CPU's) list of events.
2309  *
2310  * If event->ctx is a cloned context, callers must make sure that
2311  * every task struct that event->ctx->task could possibly point to
2312  * remains valid.  This is OK when called from perf_release since
2313  * that only calls us on the top-level context, which can't be a clone.
2314  * When called from perf_event_exit_task, it's OK because the
2315  * context has been detached from its task.
2316  */
2317 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2318 {
2319 	struct perf_event_context *ctx = event->ctx;
2320 
2321 	lockdep_assert_held(&ctx->mutex);
2322 
2323 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2324 
2325 	/*
2326 	 * The above event_function_call() can NO-OP when it hits
2327 	 * TASK_TOMBSTONE. In that case we must already have been detached
2328 	 * from the context (by perf_event_exit_event()) but the grouping
2329 	 * might still be in-tact.
2330 	 */
2331 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2332 	if ((flags & DETACH_GROUP) &&
2333 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2334 		/*
2335 		 * Since in that case we cannot possibly be scheduled, simply
2336 		 * detach now.
2337 		 */
2338 		raw_spin_lock_irq(&ctx->lock);
2339 		perf_group_detach(event);
2340 		raw_spin_unlock_irq(&ctx->lock);
2341 	}
2342 }
2343 
2344 /*
2345  * Cross CPU call to disable a performance event
2346  */
2347 static void __perf_event_disable(struct perf_event *event,
2348 				 struct perf_cpu_context *cpuctx,
2349 				 struct perf_event_context *ctx,
2350 				 void *info)
2351 {
2352 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2353 		return;
2354 
2355 	if (ctx->is_active & EVENT_TIME) {
2356 		update_context_time(ctx);
2357 		update_cgrp_time_from_event(event);
2358 	}
2359 
2360 	if (event == event->group_leader)
2361 		group_sched_out(event, cpuctx, ctx);
2362 	else
2363 		event_sched_out(event, cpuctx, ctx);
2364 
2365 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2366 }
2367 
2368 /*
2369  * Disable an event.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This condition is satisfied when called through
2374  * perf_event_for_each_child or perf_event_for_each because they
2375  * hold the top-level event's child_mutex, so any descendant that
2376  * goes to exit will block in perf_event_exit_event().
2377  *
2378  * When called from perf_pending_event it's OK because event->ctx
2379  * is the current context on this CPU and preemption is disabled,
2380  * hence we can't get into perf_event_task_sched_out for this context.
2381  */
2382 static void _perf_event_disable(struct perf_event *event)
2383 {
2384 	struct perf_event_context *ctx = event->ctx;
2385 
2386 	raw_spin_lock_irq(&ctx->lock);
2387 	if (event->state <= PERF_EVENT_STATE_OFF) {
2388 		raw_spin_unlock_irq(&ctx->lock);
2389 		return;
2390 	}
2391 	raw_spin_unlock_irq(&ctx->lock);
2392 
2393 	event_function_call(event, __perf_event_disable, NULL);
2394 }
2395 
2396 void perf_event_disable_local(struct perf_event *event)
2397 {
2398 	event_function_local(event, __perf_event_disable, NULL);
2399 }
2400 
2401 /*
2402  * Strictly speaking kernel users cannot create groups and therefore this
2403  * interface does not need the perf_event_ctx_lock() magic.
2404  */
2405 void perf_event_disable(struct perf_event *event)
2406 {
2407 	struct perf_event_context *ctx;
2408 
2409 	ctx = perf_event_ctx_lock(event);
2410 	_perf_event_disable(event);
2411 	perf_event_ctx_unlock(event, ctx);
2412 }
2413 EXPORT_SYMBOL_GPL(perf_event_disable);
2414 
2415 void perf_event_disable_inatomic(struct perf_event *event)
2416 {
2417 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2418 	/* can fail, see perf_pending_event_disable() */
2419 	irq_work_queue(&event->pending);
2420 }
2421 
2422 static void perf_set_shadow_time(struct perf_event *event,
2423 				 struct perf_event_context *ctx)
2424 {
2425 	/*
2426 	 * use the correct time source for the time snapshot
2427 	 *
2428 	 * We could get by without this by leveraging the
2429 	 * fact that to get to this function, the caller
2430 	 * has most likely already called update_context_time()
2431 	 * and update_cgrp_time_xx() and thus both timestamp
2432 	 * are identical (or very close). Given that tstamp is,
2433 	 * already adjusted for cgroup, we could say that:
2434 	 *    tstamp - ctx->timestamp
2435 	 * is equivalent to
2436 	 *    tstamp - cgrp->timestamp.
2437 	 *
2438 	 * Then, in perf_output_read(), the calculation would
2439 	 * work with no changes because:
2440 	 * - event is guaranteed scheduled in
2441 	 * - no scheduled out in between
2442 	 * - thus the timestamp would be the same
2443 	 *
2444 	 * But this is a bit hairy.
2445 	 *
2446 	 * So instead, we have an explicit cgroup call to remain
2447 	 * within the time time source all along. We believe it
2448 	 * is cleaner and simpler to understand.
2449 	 */
2450 	if (is_cgroup_event(event))
2451 		perf_cgroup_set_shadow_time(event, event->tstamp);
2452 	else
2453 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2454 }
2455 
2456 #define MAX_INTERRUPTS (~0ULL)
2457 
2458 static void perf_log_throttle(struct perf_event *event, int enable);
2459 static void perf_log_itrace_start(struct perf_event *event);
2460 
2461 static int
2462 event_sched_in(struct perf_event *event,
2463 		 struct perf_cpu_context *cpuctx,
2464 		 struct perf_event_context *ctx)
2465 {
2466 	int ret = 0;
2467 
2468 	WARN_ON_ONCE(event->ctx != ctx);
2469 
2470 	lockdep_assert_held(&ctx->lock);
2471 
2472 	if (event->state <= PERF_EVENT_STATE_OFF)
2473 		return 0;
2474 
2475 	WRITE_ONCE(event->oncpu, smp_processor_id());
2476 	/*
2477 	 * Order event::oncpu write to happen before the ACTIVE state is
2478 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2479 	 * ->oncpu if it sees ACTIVE.
2480 	 */
2481 	smp_wmb();
2482 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2483 
2484 	/*
2485 	 * Unthrottle events, since we scheduled we might have missed several
2486 	 * ticks already, also for a heavily scheduling task there is little
2487 	 * guarantee it'll get a tick in a timely manner.
2488 	 */
2489 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2490 		perf_log_throttle(event, 1);
2491 		event->hw.interrupts = 0;
2492 	}
2493 
2494 	perf_pmu_disable(event->pmu);
2495 
2496 	perf_set_shadow_time(event, ctx);
2497 
2498 	perf_log_itrace_start(event);
2499 
2500 	if (event->pmu->add(event, PERF_EF_START)) {
2501 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2502 		event->oncpu = -1;
2503 		ret = -EAGAIN;
2504 		goto out;
2505 	}
2506 
2507 	if (!is_software_event(event))
2508 		cpuctx->active_oncpu++;
2509 	if (!ctx->nr_active++)
2510 		perf_event_ctx_activate(ctx);
2511 	if (event->attr.freq && event->attr.sample_freq)
2512 		ctx->nr_freq++;
2513 
2514 	if (event->attr.exclusive)
2515 		cpuctx->exclusive = 1;
2516 
2517 out:
2518 	perf_pmu_enable(event->pmu);
2519 
2520 	return ret;
2521 }
2522 
2523 static int
2524 group_sched_in(struct perf_event *group_event,
2525 	       struct perf_cpu_context *cpuctx,
2526 	       struct perf_event_context *ctx)
2527 {
2528 	struct perf_event *event, *partial_group = NULL;
2529 	struct pmu *pmu = ctx->pmu;
2530 
2531 	if (group_event->state == PERF_EVENT_STATE_OFF)
2532 		return 0;
2533 
2534 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2535 
2536 	if (event_sched_in(group_event, cpuctx, ctx)) {
2537 		pmu->cancel_txn(pmu);
2538 		perf_mux_hrtimer_restart(cpuctx);
2539 		return -EAGAIN;
2540 	}
2541 
2542 	/*
2543 	 * Schedule in siblings as one group (if any):
2544 	 */
2545 	for_each_sibling_event(event, group_event) {
2546 		if (event_sched_in(event, cpuctx, ctx)) {
2547 			partial_group = event;
2548 			goto group_error;
2549 		}
2550 	}
2551 
2552 	if (!pmu->commit_txn(pmu))
2553 		return 0;
2554 
2555 group_error:
2556 	/*
2557 	 * Groups can be scheduled in as one unit only, so undo any
2558 	 * partial group before returning:
2559 	 * The events up to the failed event are scheduled out normally.
2560 	 */
2561 	for_each_sibling_event(event, group_event) {
2562 		if (event == partial_group)
2563 			break;
2564 
2565 		event_sched_out(event, cpuctx, ctx);
2566 	}
2567 	event_sched_out(group_event, cpuctx, ctx);
2568 
2569 	pmu->cancel_txn(pmu);
2570 
2571 	perf_mux_hrtimer_restart(cpuctx);
2572 
2573 	return -EAGAIN;
2574 }
2575 
2576 /*
2577  * Work out whether we can put this event group on the CPU now.
2578  */
2579 static int group_can_go_on(struct perf_event *event,
2580 			   struct perf_cpu_context *cpuctx,
2581 			   int can_add_hw)
2582 {
2583 	/*
2584 	 * Groups consisting entirely of software events can always go on.
2585 	 */
2586 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2587 		return 1;
2588 	/*
2589 	 * If an exclusive group is already on, no other hardware
2590 	 * events can go on.
2591 	 */
2592 	if (cpuctx->exclusive)
2593 		return 0;
2594 	/*
2595 	 * If this group is exclusive and there are already
2596 	 * events on the CPU, it can't go on.
2597 	 */
2598 	if (event->attr.exclusive && cpuctx->active_oncpu)
2599 		return 0;
2600 	/*
2601 	 * Otherwise, try to add it if all previous groups were able
2602 	 * to go on.
2603 	 */
2604 	return can_add_hw;
2605 }
2606 
2607 static void add_event_to_ctx(struct perf_event *event,
2608 			       struct perf_event_context *ctx)
2609 {
2610 	list_add_event(event, ctx);
2611 	perf_group_attach(event);
2612 }
2613 
2614 static void ctx_sched_out(struct perf_event_context *ctx,
2615 			  struct perf_cpu_context *cpuctx,
2616 			  enum event_type_t event_type);
2617 static void
2618 ctx_sched_in(struct perf_event_context *ctx,
2619 	     struct perf_cpu_context *cpuctx,
2620 	     enum event_type_t event_type,
2621 	     struct task_struct *task);
2622 
2623 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2624 			       struct perf_event_context *ctx,
2625 			       enum event_type_t event_type)
2626 {
2627 	if (!cpuctx->task_ctx)
2628 		return;
2629 
2630 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2631 		return;
2632 
2633 	ctx_sched_out(ctx, cpuctx, event_type);
2634 }
2635 
2636 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2637 				struct perf_event_context *ctx,
2638 				struct task_struct *task)
2639 {
2640 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2641 	if (ctx)
2642 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2643 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2644 	if (ctx)
2645 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2646 }
2647 
2648 /*
2649  * We want to maintain the following priority of scheduling:
2650  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2651  *  - task pinned (EVENT_PINNED)
2652  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2653  *  - task flexible (EVENT_FLEXIBLE).
2654  *
2655  * In order to avoid unscheduling and scheduling back in everything every
2656  * time an event is added, only do it for the groups of equal priority and
2657  * below.
2658  *
2659  * This can be called after a batch operation on task events, in which case
2660  * event_type is a bit mask of the types of events involved. For CPU events,
2661  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2662  */
2663 static void ctx_resched(struct perf_cpu_context *cpuctx,
2664 			struct perf_event_context *task_ctx,
2665 			enum event_type_t event_type)
2666 {
2667 	enum event_type_t ctx_event_type;
2668 	bool cpu_event = !!(event_type & EVENT_CPU);
2669 
2670 	/*
2671 	 * If pinned groups are involved, flexible groups also need to be
2672 	 * scheduled out.
2673 	 */
2674 	if (event_type & EVENT_PINNED)
2675 		event_type |= EVENT_FLEXIBLE;
2676 
2677 	ctx_event_type = event_type & EVENT_ALL;
2678 
2679 	perf_pmu_disable(cpuctx->ctx.pmu);
2680 	if (task_ctx)
2681 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2682 
2683 	/*
2684 	 * Decide which cpu ctx groups to schedule out based on the types
2685 	 * of events that caused rescheduling:
2686 	 *  - EVENT_CPU: schedule out corresponding groups;
2687 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2688 	 *  - otherwise, do nothing more.
2689 	 */
2690 	if (cpu_event)
2691 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2692 	else if (ctx_event_type & EVENT_PINNED)
2693 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2694 
2695 	perf_event_sched_in(cpuctx, task_ctx, current);
2696 	perf_pmu_enable(cpuctx->ctx.pmu);
2697 }
2698 
2699 void perf_pmu_resched(struct pmu *pmu)
2700 {
2701 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2702 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2703 
2704 	perf_ctx_lock(cpuctx, task_ctx);
2705 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2706 	perf_ctx_unlock(cpuctx, task_ctx);
2707 }
2708 
2709 /*
2710  * Cross CPU call to install and enable a performance event
2711  *
2712  * Very similar to remote_function() + event_function() but cannot assume that
2713  * things like ctx->is_active and cpuctx->task_ctx are set.
2714  */
2715 static int  __perf_install_in_context(void *info)
2716 {
2717 	struct perf_event *event = info;
2718 	struct perf_event_context *ctx = event->ctx;
2719 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2720 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2721 	bool reprogram = true;
2722 	int ret = 0;
2723 
2724 	raw_spin_lock(&cpuctx->ctx.lock);
2725 	if (ctx->task) {
2726 		raw_spin_lock(&ctx->lock);
2727 		task_ctx = ctx;
2728 
2729 		reprogram = (ctx->task == current);
2730 
2731 		/*
2732 		 * If the task is running, it must be running on this CPU,
2733 		 * otherwise we cannot reprogram things.
2734 		 *
2735 		 * If its not running, we don't care, ctx->lock will
2736 		 * serialize against it becoming runnable.
2737 		 */
2738 		if (task_curr(ctx->task) && !reprogram) {
2739 			ret = -ESRCH;
2740 			goto unlock;
2741 		}
2742 
2743 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2744 	} else if (task_ctx) {
2745 		raw_spin_lock(&task_ctx->lock);
2746 	}
2747 
2748 #ifdef CONFIG_CGROUP_PERF
2749 	if (is_cgroup_event(event)) {
2750 		/*
2751 		 * If the current cgroup doesn't match the event's
2752 		 * cgroup, we should not try to schedule it.
2753 		 */
2754 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2755 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2756 					event->cgrp->css.cgroup);
2757 	}
2758 #endif
2759 
2760 	if (reprogram) {
2761 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2762 		add_event_to_ctx(event, ctx);
2763 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2764 	} else {
2765 		add_event_to_ctx(event, ctx);
2766 	}
2767 
2768 unlock:
2769 	perf_ctx_unlock(cpuctx, task_ctx);
2770 
2771 	return ret;
2772 }
2773 
2774 static bool exclusive_event_installable(struct perf_event *event,
2775 					struct perf_event_context *ctx);
2776 
2777 /*
2778  * Attach a performance event to a context.
2779  *
2780  * Very similar to event_function_call, see comment there.
2781  */
2782 static void
2783 perf_install_in_context(struct perf_event_context *ctx,
2784 			struct perf_event *event,
2785 			int cpu)
2786 {
2787 	struct task_struct *task = READ_ONCE(ctx->task);
2788 
2789 	lockdep_assert_held(&ctx->mutex);
2790 
2791 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2792 
2793 	if (event->cpu != -1)
2794 		event->cpu = cpu;
2795 
2796 	/*
2797 	 * Ensures that if we can observe event->ctx, both the event and ctx
2798 	 * will be 'complete'. See perf_iterate_sb_cpu().
2799 	 */
2800 	smp_store_release(&event->ctx, ctx);
2801 
2802 	/*
2803 	 * perf_event_attr::disabled events will not run and can be initialized
2804 	 * without IPI. Except when this is the first event for the context, in
2805 	 * that case we need the magic of the IPI to set ctx->is_active.
2806 	 *
2807 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2808 	 * event will issue the IPI and reprogram the hardware.
2809 	 */
2810 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2811 		raw_spin_lock_irq(&ctx->lock);
2812 		if (ctx->task == TASK_TOMBSTONE) {
2813 			raw_spin_unlock_irq(&ctx->lock);
2814 			return;
2815 		}
2816 		add_event_to_ctx(event, ctx);
2817 		raw_spin_unlock_irq(&ctx->lock);
2818 		return;
2819 	}
2820 
2821 	if (!task) {
2822 		cpu_function_call(cpu, __perf_install_in_context, event);
2823 		return;
2824 	}
2825 
2826 	/*
2827 	 * Should not happen, we validate the ctx is still alive before calling.
2828 	 */
2829 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2830 		return;
2831 
2832 	/*
2833 	 * Installing events is tricky because we cannot rely on ctx->is_active
2834 	 * to be set in case this is the nr_events 0 -> 1 transition.
2835 	 *
2836 	 * Instead we use task_curr(), which tells us if the task is running.
2837 	 * However, since we use task_curr() outside of rq::lock, we can race
2838 	 * against the actual state. This means the result can be wrong.
2839 	 *
2840 	 * If we get a false positive, we retry, this is harmless.
2841 	 *
2842 	 * If we get a false negative, things are complicated. If we are after
2843 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2844 	 * value must be correct. If we're before, it doesn't matter since
2845 	 * perf_event_context_sched_in() will program the counter.
2846 	 *
2847 	 * However, this hinges on the remote context switch having observed
2848 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2849 	 * ctx::lock in perf_event_context_sched_in().
2850 	 *
2851 	 * We do this by task_function_call(), if the IPI fails to hit the task
2852 	 * we know any future context switch of task must see the
2853 	 * perf_event_ctpx[] store.
2854 	 */
2855 
2856 	/*
2857 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2858 	 * task_cpu() load, such that if the IPI then does not find the task
2859 	 * running, a future context switch of that task must observe the
2860 	 * store.
2861 	 */
2862 	smp_mb();
2863 again:
2864 	if (!task_function_call(task, __perf_install_in_context, event))
2865 		return;
2866 
2867 	raw_spin_lock_irq(&ctx->lock);
2868 	task = ctx->task;
2869 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2870 		/*
2871 		 * Cannot happen because we already checked above (which also
2872 		 * cannot happen), and we hold ctx->mutex, which serializes us
2873 		 * against perf_event_exit_task_context().
2874 		 */
2875 		raw_spin_unlock_irq(&ctx->lock);
2876 		return;
2877 	}
2878 	/*
2879 	 * If the task is not running, ctx->lock will avoid it becoming so,
2880 	 * thus we can safely install the event.
2881 	 */
2882 	if (task_curr(task)) {
2883 		raw_spin_unlock_irq(&ctx->lock);
2884 		goto again;
2885 	}
2886 	add_event_to_ctx(event, ctx);
2887 	raw_spin_unlock_irq(&ctx->lock);
2888 }
2889 
2890 /*
2891  * Cross CPU call to enable a performance event
2892  */
2893 static void __perf_event_enable(struct perf_event *event,
2894 				struct perf_cpu_context *cpuctx,
2895 				struct perf_event_context *ctx,
2896 				void *info)
2897 {
2898 	struct perf_event *leader = event->group_leader;
2899 	struct perf_event_context *task_ctx;
2900 
2901 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2902 	    event->state <= PERF_EVENT_STATE_ERROR)
2903 		return;
2904 
2905 	if (ctx->is_active)
2906 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2907 
2908 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2909 
2910 	if (!ctx->is_active)
2911 		return;
2912 
2913 	if (!event_filter_match(event)) {
2914 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2915 		return;
2916 	}
2917 
2918 	/*
2919 	 * If the event is in a group and isn't the group leader,
2920 	 * then don't put it on unless the group is on.
2921 	 */
2922 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2923 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2924 		return;
2925 	}
2926 
2927 	task_ctx = cpuctx->task_ctx;
2928 	if (ctx->task)
2929 		WARN_ON_ONCE(task_ctx != ctx);
2930 
2931 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2932 }
2933 
2934 /*
2935  * Enable an event.
2936  *
2937  * If event->ctx is a cloned context, callers must make sure that
2938  * every task struct that event->ctx->task could possibly point to
2939  * remains valid.  This condition is satisfied when called through
2940  * perf_event_for_each_child or perf_event_for_each as described
2941  * for perf_event_disable.
2942  */
2943 static void _perf_event_enable(struct perf_event *event)
2944 {
2945 	struct perf_event_context *ctx = event->ctx;
2946 
2947 	raw_spin_lock_irq(&ctx->lock);
2948 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2949 	    event->state <  PERF_EVENT_STATE_ERROR) {
2950 		raw_spin_unlock_irq(&ctx->lock);
2951 		return;
2952 	}
2953 
2954 	/*
2955 	 * If the event is in error state, clear that first.
2956 	 *
2957 	 * That way, if we see the event in error state below, we know that it
2958 	 * has gone back into error state, as distinct from the task having
2959 	 * been scheduled away before the cross-call arrived.
2960 	 */
2961 	if (event->state == PERF_EVENT_STATE_ERROR)
2962 		event->state = PERF_EVENT_STATE_OFF;
2963 	raw_spin_unlock_irq(&ctx->lock);
2964 
2965 	event_function_call(event, __perf_event_enable, NULL);
2966 }
2967 
2968 /*
2969  * See perf_event_disable();
2970  */
2971 void perf_event_enable(struct perf_event *event)
2972 {
2973 	struct perf_event_context *ctx;
2974 
2975 	ctx = perf_event_ctx_lock(event);
2976 	_perf_event_enable(event);
2977 	perf_event_ctx_unlock(event, ctx);
2978 }
2979 EXPORT_SYMBOL_GPL(perf_event_enable);
2980 
2981 struct stop_event_data {
2982 	struct perf_event	*event;
2983 	unsigned int		restart;
2984 };
2985 
2986 static int __perf_event_stop(void *info)
2987 {
2988 	struct stop_event_data *sd = info;
2989 	struct perf_event *event = sd->event;
2990 
2991 	/* if it's already INACTIVE, do nothing */
2992 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2993 		return 0;
2994 
2995 	/* matches smp_wmb() in event_sched_in() */
2996 	smp_rmb();
2997 
2998 	/*
2999 	 * There is a window with interrupts enabled before we get here,
3000 	 * so we need to check again lest we try to stop another CPU's event.
3001 	 */
3002 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3003 		return -EAGAIN;
3004 
3005 	event->pmu->stop(event, PERF_EF_UPDATE);
3006 
3007 	/*
3008 	 * May race with the actual stop (through perf_pmu_output_stop()),
3009 	 * but it is only used for events with AUX ring buffer, and such
3010 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3011 	 * see comments in perf_aux_output_begin().
3012 	 *
3013 	 * Since this is happening on an event-local CPU, no trace is lost
3014 	 * while restarting.
3015 	 */
3016 	if (sd->restart)
3017 		event->pmu->start(event, 0);
3018 
3019 	return 0;
3020 }
3021 
3022 static int perf_event_stop(struct perf_event *event, int restart)
3023 {
3024 	struct stop_event_data sd = {
3025 		.event		= event,
3026 		.restart	= restart,
3027 	};
3028 	int ret = 0;
3029 
3030 	do {
3031 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3032 			return 0;
3033 
3034 		/* matches smp_wmb() in event_sched_in() */
3035 		smp_rmb();
3036 
3037 		/*
3038 		 * We only want to restart ACTIVE events, so if the event goes
3039 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3040 		 * fall through with ret==-ENXIO.
3041 		 */
3042 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3043 					__perf_event_stop, &sd);
3044 	} while (ret == -EAGAIN);
3045 
3046 	return ret;
3047 }
3048 
3049 /*
3050  * In order to contain the amount of racy and tricky in the address filter
3051  * configuration management, it is a two part process:
3052  *
3053  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3054  *      we update the addresses of corresponding vmas in
3055  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3056  * (p2) when an event is scheduled in (pmu::add), it calls
3057  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3058  *      if the generation has changed since the previous call.
3059  *
3060  * If (p1) happens while the event is active, we restart it to force (p2).
3061  *
3062  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3063  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3064  *     ioctl;
3065  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3066  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3067  *     for reading;
3068  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3069  *     of exec.
3070  */
3071 void perf_event_addr_filters_sync(struct perf_event *event)
3072 {
3073 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3074 
3075 	if (!has_addr_filter(event))
3076 		return;
3077 
3078 	raw_spin_lock(&ifh->lock);
3079 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3080 		event->pmu->addr_filters_sync(event);
3081 		event->hw.addr_filters_gen = event->addr_filters_gen;
3082 	}
3083 	raw_spin_unlock(&ifh->lock);
3084 }
3085 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3086 
3087 static int _perf_event_refresh(struct perf_event *event, int refresh)
3088 {
3089 	/*
3090 	 * not supported on inherited events
3091 	 */
3092 	if (event->attr.inherit || !is_sampling_event(event))
3093 		return -EINVAL;
3094 
3095 	atomic_add(refresh, &event->event_limit);
3096 	_perf_event_enable(event);
3097 
3098 	return 0;
3099 }
3100 
3101 /*
3102  * See perf_event_disable()
3103  */
3104 int perf_event_refresh(struct perf_event *event, int refresh)
3105 {
3106 	struct perf_event_context *ctx;
3107 	int ret;
3108 
3109 	ctx = perf_event_ctx_lock(event);
3110 	ret = _perf_event_refresh(event, refresh);
3111 	perf_event_ctx_unlock(event, ctx);
3112 
3113 	return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_refresh);
3116 
3117 static int perf_event_modify_breakpoint(struct perf_event *bp,
3118 					 struct perf_event_attr *attr)
3119 {
3120 	int err;
3121 
3122 	_perf_event_disable(bp);
3123 
3124 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3125 
3126 	if (!bp->attr.disabled)
3127 		_perf_event_enable(bp);
3128 
3129 	return err;
3130 }
3131 
3132 static int perf_event_modify_attr(struct perf_event *event,
3133 				  struct perf_event_attr *attr)
3134 {
3135 	if (event->attr.type != attr->type)
3136 		return -EINVAL;
3137 
3138 	switch (event->attr.type) {
3139 	case PERF_TYPE_BREAKPOINT:
3140 		return perf_event_modify_breakpoint(event, attr);
3141 	default:
3142 		/* Place holder for future additions. */
3143 		return -EOPNOTSUPP;
3144 	}
3145 }
3146 
3147 static void ctx_sched_out(struct perf_event_context *ctx,
3148 			  struct perf_cpu_context *cpuctx,
3149 			  enum event_type_t event_type)
3150 {
3151 	struct perf_event *event, *tmp;
3152 	int is_active = ctx->is_active;
3153 
3154 	lockdep_assert_held(&ctx->lock);
3155 
3156 	if (likely(!ctx->nr_events)) {
3157 		/*
3158 		 * See __perf_remove_from_context().
3159 		 */
3160 		WARN_ON_ONCE(ctx->is_active);
3161 		if (ctx->task)
3162 			WARN_ON_ONCE(cpuctx->task_ctx);
3163 		return;
3164 	}
3165 
3166 	ctx->is_active &= ~event_type;
3167 	if (!(ctx->is_active & EVENT_ALL))
3168 		ctx->is_active = 0;
3169 
3170 	if (ctx->task) {
3171 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172 		if (!ctx->is_active)
3173 			cpuctx->task_ctx = NULL;
3174 	}
3175 
3176 	/*
3177 	 * Always update time if it was set; not only when it changes.
3178 	 * Otherwise we can 'forget' to update time for any but the last
3179 	 * context we sched out. For example:
3180 	 *
3181 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3182 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3183 	 *
3184 	 * would only update time for the pinned events.
3185 	 */
3186 	if (is_active & EVENT_TIME) {
3187 		/* update (and stop) ctx time */
3188 		update_context_time(ctx);
3189 		update_cgrp_time_from_cpuctx(cpuctx);
3190 	}
3191 
3192 	is_active ^= ctx->is_active; /* changed bits */
3193 
3194 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3195 		return;
3196 
3197 	perf_pmu_disable(ctx->pmu);
3198 	if (is_active & EVENT_PINNED) {
3199 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3200 			group_sched_out(event, cpuctx, ctx);
3201 	}
3202 
3203 	if (is_active & EVENT_FLEXIBLE) {
3204 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3205 			group_sched_out(event, cpuctx, ctx);
3206 
3207 		/*
3208 		 * Since we cleared EVENT_FLEXIBLE, also clear
3209 		 * rotate_necessary, is will be reset by
3210 		 * ctx_flexible_sched_in() when needed.
3211 		 */
3212 		ctx->rotate_necessary = 0;
3213 	}
3214 	perf_pmu_enable(ctx->pmu);
3215 }
3216 
3217 /*
3218  * Test whether two contexts are equivalent, i.e. whether they have both been
3219  * cloned from the same version of the same context.
3220  *
3221  * Equivalence is measured using a generation number in the context that is
3222  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3223  * and list_del_event().
3224  */
3225 static int context_equiv(struct perf_event_context *ctx1,
3226 			 struct perf_event_context *ctx2)
3227 {
3228 	lockdep_assert_held(&ctx1->lock);
3229 	lockdep_assert_held(&ctx2->lock);
3230 
3231 	/* Pinning disables the swap optimization */
3232 	if (ctx1->pin_count || ctx2->pin_count)
3233 		return 0;
3234 
3235 	/* If ctx1 is the parent of ctx2 */
3236 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3237 		return 1;
3238 
3239 	/* If ctx2 is the parent of ctx1 */
3240 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3241 		return 1;
3242 
3243 	/*
3244 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3245 	 * hierarchy, see perf_event_init_context().
3246 	 */
3247 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3248 			ctx1->parent_gen == ctx2->parent_gen)
3249 		return 1;
3250 
3251 	/* Unmatched */
3252 	return 0;
3253 }
3254 
3255 static void __perf_event_sync_stat(struct perf_event *event,
3256 				     struct perf_event *next_event)
3257 {
3258 	u64 value;
3259 
3260 	if (!event->attr.inherit_stat)
3261 		return;
3262 
3263 	/*
3264 	 * Update the event value, we cannot use perf_event_read()
3265 	 * because we're in the middle of a context switch and have IRQs
3266 	 * disabled, which upsets smp_call_function_single(), however
3267 	 * we know the event must be on the current CPU, therefore we
3268 	 * don't need to use it.
3269 	 */
3270 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3271 		event->pmu->read(event);
3272 
3273 	perf_event_update_time(event);
3274 
3275 	/*
3276 	 * In order to keep per-task stats reliable we need to flip the event
3277 	 * values when we flip the contexts.
3278 	 */
3279 	value = local64_read(&next_event->count);
3280 	value = local64_xchg(&event->count, value);
3281 	local64_set(&next_event->count, value);
3282 
3283 	swap(event->total_time_enabled, next_event->total_time_enabled);
3284 	swap(event->total_time_running, next_event->total_time_running);
3285 
3286 	/*
3287 	 * Since we swizzled the values, update the user visible data too.
3288 	 */
3289 	perf_event_update_userpage(event);
3290 	perf_event_update_userpage(next_event);
3291 }
3292 
3293 static void perf_event_sync_stat(struct perf_event_context *ctx,
3294 				   struct perf_event_context *next_ctx)
3295 {
3296 	struct perf_event *event, *next_event;
3297 
3298 	if (!ctx->nr_stat)
3299 		return;
3300 
3301 	update_context_time(ctx);
3302 
3303 	event = list_first_entry(&ctx->event_list,
3304 				   struct perf_event, event_entry);
3305 
3306 	next_event = list_first_entry(&next_ctx->event_list,
3307 					struct perf_event, event_entry);
3308 
3309 	while (&event->event_entry != &ctx->event_list &&
3310 	       &next_event->event_entry != &next_ctx->event_list) {
3311 
3312 		__perf_event_sync_stat(event, next_event);
3313 
3314 		event = list_next_entry(event, event_entry);
3315 		next_event = list_next_entry(next_event, event_entry);
3316 	}
3317 }
3318 
3319 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3320 					 struct task_struct *next)
3321 {
3322 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3323 	struct perf_event_context *next_ctx;
3324 	struct perf_event_context *parent, *next_parent;
3325 	struct perf_cpu_context *cpuctx;
3326 	int do_switch = 1;
3327 
3328 	if (likely(!ctx))
3329 		return;
3330 
3331 	cpuctx = __get_cpu_context(ctx);
3332 	if (!cpuctx->task_ctx)
3333 		return;
3334 
3335 	rcu_read_lock();
3336 	next_ctx = next->perf_event_ctxp[ctxn];
3337 	if (!next_ctx)
3338 		goto unlock;
3339 
3340 	parent = rcu_dereference(ctx->parent_ctx);
3341 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3342 
3343 	/* If neither context have a parent context; they cannot be clones. */
3344 	if (!parent && !next_parent)
3345 		goto unlock;
3346 
3347 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3348 		/*
3349 		 * Looks like the two contexts are clones, so we might be
3350 		 * able to optimize the context switch.  We lock both
3351 		 * contexts and check that they are clones under the
3352 		 * lock (including re-checking that neither has been
3353 		 * uncloned in the meantime).  It doesn't matter which
3354 		 * order we take the locks because no other cpu could
3355 		 * be trying to lock both of these tasks.
3356 		 */
3357 		raw_spin_lock(&ctx->lock);
3358 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3359 		if (context_equiv(ctx, next_ctx)) {
3360 			struct pmu *pmu = ctx->pmu;
3361 
3362 			WRITE_ONCE(ctx->task, next);
3363 			WRITE_ONCE(next_ctx->task, task);
3364 
3365 			/*
3366 			 * PMU specific parts of task perf context can require
3367 			 * additional synchronization. As an example of such
3368 			 * synchronization see implementation details of Intel
3369 			 * LBR call stack data profiling;
3370 			 */
3371 			if (pmu->swap_task_ctx)
3372 				pmu->swap_task_ctx(ctx, next_ctx);
3373 			else
3374 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3375 
3376 			/*
3377 			 * RCU_INIT_POINTER here is safe because we've not
3378 			 * modified the ctx and the above modification of
3379 			 * ctx->task and ctx->task_ctx_data are immaterial
3380 			 * since those values are always verified under
3381 			 * ctx->lock which we're now holding.
3382 			 */
3383 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3384 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3385 
3386 			do_switch = 0;
3387 
3388 			perf_event_sync_stat(ctx, next_ctx);
3389 		}
3390 		raw_spin_unlock(&next_ctx->lock);
3391 		raw_spin_unlock(&ctx->lock);
3392 	}
3393 unlock:
3394 	rcu_read_unlock();
3395 
3396 	if (do_switch) {
3397 		raw_spin_lock(&ctx->lock);
3398 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3399 		raw_spin_unlock(&ctx->lock);
3400 	}
3401 }
3402 
3403 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3404 
3405 void perf_sched_cb_dec(struct pmu *pmu)
3406 {
3407 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3408 
3409 	this_cpu_dec(perf_sched_cb_usages);
3410 
3411 	if (!--cpuctx->sched_cb_usage)
3412 		list_del(&cpuctx->sched_cb_entry);
3413 }
3414 
3415 
3416 void perf_sched_cb_inc(struct pmu *pmu)
3417 {
3418 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3419 
3420 	if (!cpuctx->sched_cb_usage++)
3421 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3422 
3423 	this_cpu_inc(perf_sched_cb_usages);
3424 }
3425 
3426 /*
3427  * This function provides the context switch callback to the lower code
3428  * layer. It is invoked ONLY when the context switch callback is enabled.
3429  *
3430  * This callback is relevant even to per-cpu events; for example multi event
3431  * PEBS requires this to provide PID/TID information. This requires we flush
3432  * all queued PEBS records before we context switch to a new task.
3433  */
3434 static void perf_pmu_sched_task(struct task_struct *prev,
3435 				struct task_struct *next,
3436 				bool sched_in)
3437 {
3438 	struct perf_cpu_context *cpuctx;
3439 	struct pmu *pmu;
3440 
3441 	if (prev == next)
3442 		return;
3443 
3444 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3445 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3446 
3447 		if (WARN_ON_ONCE(!pmu->sched_task))
3448 			continue;
3449 
3450 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451 		perf_pmu_disable(pmu);
3452 
3453 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3454 
3455 		perf_pmu_enable(pmu);
3456 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 	}
3458 }
3459 
3460 static void perf_event_switch(struct task_struct *task,
3461 			      struct task_struct *next_prev, bool sched_in);
3462 
3463 #define for_each_task_context_nr(ctxn)					\
3464 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3465 
3466 /*
3467  * Called from scheduler to remove the events of the current task,
3468  * with interrupts disabled.
3469  *
3470  * We stop each event and update the event value in event->count.
3471  *
3472  * This does not protect us against NMI, but disable()
3473  * sets the disabled bit in the control field of event _before_
3474  * accessing the event control register. If a NMI hits, then it will
3475  * not restart the event.
3476  */
3477 void __perf_event_task_sched_out(struct task_struct *task,
3478 				 struct task_struct *next)
3479 {
3480 	int ctxn;
3481 
3482 	if (__this_cpu_read(perf_sched_cb_usages))
3483 		perf_pmu_sched_task(task, next, false);
3484 
3485 	if (atomic_read(&nr_switch_events))
3486 		perf_event_switch(task, next, false);
3487 
3488 	for_each_task_context_nr(ctxn)
3489 		perf_event_context_sched_out(task, ctxn, next);
3490 
3491 	/*
3492 	 * if cgroup events exist on this CPU, then we need
3493 	 * to check if we have to switch out PMU state.
3494 	 * cgroup event are system-wide mode only
3495 	 */
3496 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3497 		perf_cgroup_sched_out(task, next);
3498 }
3499 
3500 /*
3501  * Called with IRQs disabled
3502  */
3503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3504 			      enum event_type_t event_type)
3505 {
3506 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3507 }
3508 
3509 static bool perf_less_group_idx(const void *l, const void *r)
3510 {
3511 	const struct perf_event *le = l, *re = r;
3512 
3513 	return le->group_index < re->group_index;
3514 }
3515 
3516 static void swap_ptr(void *l, void *r)
3517 {
3518 	void **lp = l, **rp = r;
3519 
3520 	swap(*lp, *rp);
3521 }
3522 
3523 static const struct min_heap_callbacks perf_min_heap = {
3524 	.elem_size = sizeof(struct perf_event *),
3525 	.less = perf_less_group_idx,
3526 	.swp = swap_ptr,
3527 };
3528 
3529 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3530 {
3531 	struct perf_event **itrs = heap->data;
3532 
3533 	if (event) {
3534 		itrs[heap->nr] = event;
3535 		heap->nr++;
3536 	}
3537 }
3538 
3539 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3540 				struct perf_event_groups *groups, int cpu,
3541 				int (*func)(struct perf_event *, void *),
3542 				void *data)
3543 {
3544 #ifdef CONFIG_CGROUP_PERF
3545 	struct cgroup_subsys_state *css = NULL;
3546 #endif
3547 	/* Space for per CPU and/or any CPU event iterators. */
3548 	struct perf_event *itrs[2];
3549 	struct min_heap event_heap;
3550 	struct perf_event **evt;
3551 	int ret;
3552 
3553 	if (cpuctx) {
3554 		event_heap = (struct min_heap){
3555 			.data = cpuctx->heap,
3556 			.nr = 0,
3557 			.size = cpuctx->heap_size,
3558 		};
3559 
3560 		lockdep_assert_held(&cpuctx->ctx.lock);
3561 
3562 #ifdef CONFIG_CGROUP_PERF
3563 		if (cpuctx->cgrp)
3564 			css = &cpuctx->cgrp->css;
3565 #endif
3566 	} else {
3567 		event_heap = (struct min_heap){
3568 			.data = itrs,
3569 			.nr = 0,
3570 			.size = ARRAY_SIZE(itrs),
3571 		};
3572 		/* Events not within a CPU context may be on any CPU. */
3573 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3574 	}
3575 	evt = event_heap.data;
3576 
3577 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3578 
3579 #ifdef CONFIG_CGROUP_PERF
3580 	for (; css; css = css->parent)
3581 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3582 #endif
3583 
3584 	min_heapify_all(&event_heap, &perf_min_heap);
3585 
3586 	while (event_heap.nr) {
3587 		ret = func(*evt, data);
3588 		if (ret)
3589 			return ret;
3590 
3591 		*evt = perf_event_groups_next(*evt);
3592 		if (*evt)
3593 			min_heapify(&event_heap, 0, &perf_min_heap);
3594 		else
3595 			min_heap_pop(&event_heap, &perf_min_heap);
3596 	}
3597 
3598 	return 0;
3599 }
3600 
3601 static int merge_sched_in(struct perf_event *event, void *data)
3602 {
3603 	struct perf_event_context *ctx = event->ctx;
3604 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3605 	int *can_add_hw = data;
3606 
3607 	if (event->state <= PERF_EVENT_STATE_OFF)
3608 		return 0;
3609 
3610 	if (!event_filter_match(event))
3611 		return 0;
3612 
3613 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3614 		if (!group_sched_in(event, cpuctx, ctx))
3615 			list_add_tail(&event->active_list, get_event_list(event));
3616 	}
3617 
3618 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3619 		if (event->attr.pinned)
3620 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3621 
3622 		*can_add_hw = 0;
3623 		ctx->rotate_necessary = 1;
3624 	}
3625 
3626 	return 0;
3627 }
3628 
3629 static void
3630 ctx_pinned_sched_in(struct perf_event_context *ctx,
3631 		    struct perf_cpu_context *cpuctx)
3632 {
3633 	int can_add_hw = 1;
3634 
3635 	if (ctx != &cpuctx->ctx)
3636 		cpuctx = NULL;
3637 
3638 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3639 			   smp_processor_id(),
3640 			   merge_sched_in, &can_add_hw);
3641 }
3642 
3643 static void
3644 ctx_flexible_sched_in(struct perf_event_context *ctx,
3645 		      struct perf_cpu_context *cpuctx)
3646 {
3647 	int can_add_hw = 1;
3648 
3649 	if (ctx != &cpuctx->ctx)
3650 		cpuctx = NULL;
3651 
3652 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3653 			   smp_processor_id(),
3654 			   merge_sched_in, &can_add_hw);
3655 }
3656 
3657 static void
3658 ctx_sched_in(struct perf_event_context *ctx,
3659 	     struct perf_cpu_context *cpuctx,
3660 	     enum event_type_t event_type,
3661 	     struct task_struct *task)
3662 {
3663 	int is_active = ctx->is_active;
3664 	u64 now;
3665 
3666 	lockdep_assert_held(&ctx->lock);
3667 
3668 	if (likely(!ctx->nr_events))
3669 		return;
3670 
3671 	ctx->is_active |= (event_type | EVENT_TIME);
3672 	if (ctx->task) {
3673 		if (!is_active)
3674 			cpuctx->task_ctx = ctx;
3675 		else
3676 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3677 	}
3678 
3679 	is_active ^= ctx->is_active; /* changed bits */
3680 
3681 	if (is_active & EVENT_TIME) {
3682 		/* start ctx time */
3683 		now = perf_clock();
3684 		ctx->timestamp = now;
3685 		perf_cgroup_set_timestamp(task, ctx);
3686 	}
3687 
3688 	/*
3689 	 * First go through the list and put on any pinned groups
3690 	 * in order to give them the best chance of going on.
3691 	 */
3692 	if (is_active & EVENT_PINNED)
3693 		ctx_pinned_sched_in(ctx, cpuctx);
3694 
3695 	/* Then walk through the lower prio flexible groups */
3696 	if (is_active & EVENT_FLEXIBLE)
3697 		ctx_flexible_sched_in(ctx, cpuctx);
3698 }
3699 
3700 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3701 			     enum event_type_t event_type,
3702 			     struct task_struct *task)
3703 {
3704 	struct perf_event_context *ctx = &cpuctx->ctx;
3705 
3706 	ctx_sched_in(ctx, cpuctx, event_type, task);
3707 }
3708 
3709 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3710 					struct task_struct *task)
3711 {
3712 	struct perf_cpu_context *cpuctx;
3713 
3714 	cpuctx = __get_cpu_context(ctx);
3715 	if (cpuctx->task_ctx == ctx)
3716 		return;
3717 
3718 	perf_ctx_lock(cpuctx, ctx);
3719 	/*
3720 	 * We must check ctx->nr_events while holding ctx->lock, such
3721 	 * that we serialize against perf_install_in_context().
3722 	 */
3723 	if (!ctx->nr_events)
3724 		goto unlock;
3725 
3726 	perf_pmu_disable(ctx->pmu);
3727 	/*
3728 	 * We want to keep the following priority order:
3729 	 * cpu pinned (that don't need to move), task pinned,
3730 	 * cpu flexible, task flexible.
3731 	 *
3732 	 * However, if task's ctx is not carrying any pinned
3733 	 * events, no need to flip the cpuctx's events around.
3734 	 */
3735 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3736 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3737 	perf_event_sched_in(cpuctx, ctx, task);
3738 	perf_pmu_enable(ctx->pmu);
3739 
3740 unlock:
3741 	perf_ctx_unlock(cpuctx, ctx);
3742 }
3743 
3744 /*
3745  * Called from scheduler to add the events of the current task
3746  * with interrupts disabled.
3747  *
3748  * We restore the event value and then enable it.
3749  *
3750  * This does not protect us against NMI, but enable()
3751  * sets the enabled bit in the control field of event _before_
3752  * accessing the event control register. If a NMI hits, then it will
3753  * keep the event running.
3754  */
3755 void __perf_event_task_sched_in(struct task_struct *prev,
3756 				struct task_struct *task)
3757 {
3758 	struct perf_event_context *ctx;
3759 	int ctxn;
3760 
3761 	/*
3762 	 * If cgroup events exist on this CPU, then we need to check if we have
3763 	 * to switch in PMU state; cgroup event are system-wide mode only.
3764 	 *
3765 	 * Since cgroup events are CPU events, we must schedule these in before
3766 	 * we schedule in the task events.
3767 	 */
3768 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3769 		perf_cgroup_sched_in(prev, task);
3770 
3771 	for_each_task_context_nr(ctxn) {
3772 		ctx = task->perf_event_ctxp[ctxn];
3773 		if (likely(!ctx))
3774 			continue;
3775 
3776 		perf_event_context_sched_in(ctx, task);
3777 	}
3778 
3779 	if (atomic_read(&nr_switch_events))
3780 		perf_event_switch(task, prev, true);
3781 
3782 	if (__this_cpu_read(perf_sched_cb_usages))
3783 		perf_pmu_sched_task(prev, task, true);
3784 }
3785 
3786 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3787 {
3788 	u64 frequency = event->attr.sample_freq;
3789 	u64 sec = NSEC_PER_SEC;
3790 	u64 divisor, dividend;
3791 
3792 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3793 
3794 	count_fls = fls64(count);
3795 	nsec_fls = fls64(nsec);
3796 	frequency_fls = fls64(frequency);
3797 	sec_fls = 30;
3798 
3799 	/*
3800 	 * We got @count in @nsec, with a target of sample_freq HZ
3801 	 * the target period becomes:
3802 	 *
3803 	 *             @count * 10^9
3804 	 * period = -------------------
3805 	 *          @nsec * sample_freq
3806 	 *
3807 	 */
3808 
3809 	/*
3810 	 * Reduce accuracy by one bit such that @a and @b converge
3811 	 * to a similar magnitude.
3812 	 */
3813 #define REDUCE_FLS(a, b)		\
3814 do {					\
3815 	if (a##_fls > b##_fls) {	\
3816 		a >>= 1;		\
3817 		a##_fls--;		\
3818 	} else {			\
3819 		b >>= 1;		\
3820 		b##_fls--;		\
3821 	}				\
3822 } while (0)
3823 
3824 	/*
3825 	 * Reduce accuracy until either term fits in a u64, then proceed with
3826 	 * the other, so that finally we can do a u64/u64 division.
3827 	 */
3828 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3829 		REDUCE_FLS(nsec, frequency);
3830 		REDUCE_FLS(sec, count);
3831 	}
3832 
3833 	if (count_fls + sec_fls > 64) {
3834 		divisor = nsec * frequency;
3835 
3836 		while (count_fls + sec_fls > 64) {
3837 			REDUCE_FLS(count, sec);
3838 			divisor >>= 1;
3839 		}
3840 
3841 		dividend = count * sec;
3842 	} else {
3843 		dividend = count * sec;
3844 
3845 		while (nsec_fls + frequency_fls > 64) {
3846 			REDUCE_FLS(nsec, frequency);
3847 			dividend >>= 1;
3848 		}
3849 
3850 		divisor = nsec * frequency;
3851 	}
3852 
3853 	if (!divisor)
3854 		return dividend;
3855 
3856 	return div64_u64(dividend, divisor);
3857 }
3858 
3859 static DEFINE_PER_CPU(int, perf_throttled_count);
3860 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3861 
3862 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3863 {
3864 	struct hw_perf_event *hwc = &event->hw;
3865 	s64 period, sample_period;
3866 	s64 delta;
3867 
3868 	period = perf_calculate_period(event, nsec, count);
3869 
3870 	delta = (s64)(period - hwc->sample_period);
3871 	delta = (delta + 7) / 8; /* low pass filter */
3872 
3873 	sample_period = hwc->sample_period + delta;
3874 
3875 	if (!sample_period)
3876 		sample_period = 1;
3877 
3878 	hwc->sample_period = sample_period;
3879 
3880 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3881 		if (disable)
3882 			event->pmu->stop(event, PERF_EF_UPDATE);
3883 
3884 		local64_set(&hwc->period_left, 0);
3885 
3886 		if (disable)
3887 			event->pmu->start(event, PERF_EF_RELOAD);
3888 	}
3889 }
3890 
3891 /*
3892  * combine freq adjustment with unthrottling to avoid two passes over the
3893  * events. At the same time, make sure, having freq events does not change
3894  * the rate of unthrottling as that would introduce bias.
3895  */
3896 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3897 					   int needs_unthr)
3898 {
3899 	struct perf_event *event;
3900 	struct hw_perf_event *hwc;
3901 	u64 now, period = TICK_NSEC;
3902 	s64 delta;
3903 
3904 	/*
3905 	 * only need to iterate over all events iff:
3906 	 * - context have events in frequency mode (needs freq adjust)
3907 	 * - there are events to unthrottle on this cpu
3908 	 */
3909 	if (!(ctx->nr_freq || needs_unthr))
3910 		return;
3911 
3912 	raw_spin_lock(&ctx->lock);
3913 	perf_pmu_disable(ctx->pmu);
3914 
3915 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3916 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3917 			continue;
3918 
3919 		if (!event_filter_match(event))
3920 			continue;
3921 
3922 		perf_pmu_disable(event->pmu);
3923 
3924 		hwc = &event->hw;
3925 
3926 		if (hwc->interrupts == MAX_INTERRUPTS) {
3927 			hwc->interrupts = 0;
3928 			perf_log_throttle(event, 1);
3929 			event->pmu->start(event, 0);
3930 		}
3931 
3932 		if (!event->attr.freq || !event->attr.sample_freq)
3933 			goto next;
3934 
3935 		/*
3936 		 * stop the event and update event->count
3937 		 */
3938 		event->pmu->stop(event, PERF_EF_UPDATE);
3939 
3940 		now = local64_read(&event->count);
3941 		delta = now - hwc->freq_count_stamp;
3942 		hwc->freq_count_stamp = now;
3943 
3944 		/*
3945 		 * restart the event
3946 		 * reload only if value has changed
3947 		 * we have stopped the event so tell that
3948 		 * to perf_adjust_period() to avoid stopping it
3949 		 * twice.
3950 		 */
3951 		if (delta > 0)
3952 			perf_adjust_period(event, period, delta, false);
3953 
3954 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3955 	next:
3956 		perf_pmu_enable(event->pmu);
3957 	}
3958 
3959 	perf_pmu_enable(ctx->pmu);
3960 	raw_spin_unlock(&ctx->lock);
3961 }
3962 
3963 /*
3964  * Move @event to the tail of the @ctx's elegible events.
3965  */
3966 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3967 {
3968 	/*
3969 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3970 	 * disabled by the inheritance code.
3971 	 */
3972 	if (ctx->rotate_disable)
3973 		return;
3974 
3975 	perf_event_groups_delete(&ctx->flexible_groups, event);
3976 	perf_event_groups_insert(&ctx->flexible_groups, event);
3977 }
3978 
3979 /* pick an event from the flexible_groups to rotate */
3980 static inline struct perf_event *
3981 ctx_event_to_rotate(struct perf_event_context *ctx)
3982 {
3983 	struct perf_event *event;
3984 
3985 	/* pick the first active flexible event */
3986 	event = list_first_entry_or_null(&ctx->flexible_active,
3987 					 struct perf_event, active_list);
3988 
3989 	/* if no active flexible event, pick the first event */
3990 	if (!event) {
3991 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3992 				      typeof(*event), group_node);
3993 	}
3994 
3995 	/*
3996 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3997 	 * finds there are unschedulable events, it will set it again.
3998 	 */
3999 	ctx->rotate_necessary = 0;
4000 
4001 	return event;
4002 }
4003 
4004 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4005 {
4006 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4007 	struct perf_event_context *task_ctx = NULL;
4008 	int cpu_rotate, task_rotate;
4009 
4010 	/*
4011 	 * Since we run this from IRQ context, nobody can install new
4012 	 * events, thus the event count values are stable.
4013 	 */
4014 
4015 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4016 	task_ctx = cpuctx->task_ctx;
4017 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4018 
4019 	if (!(cpu_rotate || task_rotate))
4020 		return false;
4021 
4022 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4023 	perf_pmu_disable(cpuctx->ctx.pmu);
4024 
4025 	if (task_rotate)
4026 		task_event = ctx_event_to_rotate(task_ctx);
4027 	if (cpu_rotate)
4028 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4029 
4030 	/*
4031 	 * As per the order given at ctx_resched() first 'pop' task flexible
4032 	 * and then, if needed CPU flexible.
4033 	 */
4034 	if (task_event || (task_ctx && cpu_event))
4035 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4036 	if (cpu_event)
4037 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4038 
4039 	if (task_event)
4040 		rotate_ctx(task_ctx, task_event);
4041 	if (cpu_event)
4042 		rotate_ctx(&cpuctx->ctx, cpu_event);
4043 
4044 	perf_event_sched_in(cpuctx, task_ctx, current);
4045 
4046 	perf_pmu_enable(cpuctx->ctx.pmu);
4047 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4048 
4049 	return true;
4050 }
4051 
4052 void perf_event_task_tick(void)
4053 {
4054 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4055 	struct perf_event_context *ctx, *tmp;
4056 	int throttled;
4057 
4058 	lockdep_assert_irqs_disabled();
4059 
4060 	__this_cpu_inc(perf_throttled_seq);
4061 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4062 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4063 
4064 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4065 		perf_adjust_freq_unthr_context(ctx, throttled);
4066 }
4067 
4068 static int event_enable_on_exec(struct perf_event *event,
4069 				struct perf_event_context *ctx)
4070 {
4071 	if (!event->attr.enable_on_exec)
4072 		return 0;
4073 
4074 	event->attr.enable_on_exec = 0;
4075 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4076 		return 0;
4077 
4078 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4079 
4080 	return 1;
4081 }
4082 
4083 /*
4084  * Enable all of a task's events that have been marked enable-on-exec.
4085  * This expects task == current.
4086  */
4087 static void perf_event_enable_on_exec(int ctxn)
4088 {
4089 	struct perf_event_context *ctx, *clone_ctx = NULL;
4090 	enum event_type_t event_type = 0;
4091 	struct perf_cpu_context *cpuctx;
4092 	struct perf_event *event;
4093 	unsigned long flags;
4094 	int enabled = 0;
4095 
4096 	local_irq_save(flags);
4097 	ctx = current->perf_event_ctxp[ctxn];
4098 	if (!ctx || !ctx->nr_events)
4099 		goto out;
4100 
4101 	cpuctx = __get_cpu_context(ctx);
4102 	perf_ctx_lock(cpuctx, ctx);
4103 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4104 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4105 		enabled |= event_enable_on_exec(event, ctx);
4106 		event_type |= get_event_type(event);
4107 	}
4108 
4109 	/*
4110 	 * Unclone and reschedule this context if we enabled any event.
4111 	 */
4112 	if (enabled) {
4113 		clone_ctx = unclone_ctx(ctx);
4114 		ctx_resched(cpuctx, ctx, event_type);
4115 	} else {
4116 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4117 	}
4118 	perf_ctx_unlock(cpuctx, ctx);
4119 
4120 out:
4121 	local_irq_restore(flags);
4122 
4123 	if (clone_ctx)
4124 		put_ctx(clone_ctx);
4125 }
4126 
4127 struct perf_read_data {
4128 	struct perf_event *event;
4129 	bool group;
4130 	int ret;
4131 };
4132 
4133 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4134 {
4135 	u16 local_pkg, event_pkg;
4136 
4137 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4138 		int local_cpu = smp_processor_id();
4139 
4140 		event_pkg = topology_physical_package_id(event_cpu);
4141 		local_pkg = topology_physical_package_id(local_cpu);
4142 
4143 		if (event_pkg == local_pkg)
4144 			return local_cpu;
4145 	}
4146 
4147 	return event_cpu;
4148 }
4149 
4150 /*
4151  * Cross CPU call to read the hardware event
4152  */
4153 static void __perf_event_read(void *info)
4154 {
4155 	struct perf_read_data *data = info;
4156 	struct perf_event *sub, *event = data->event;
4157 	struct perf_event_context *ctx = event->ctx;
4158 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4159 	struct pmu *pmu = event->pmu;
4160 
4161 	/*
4162 	 * If this is a task context, we need to check whether it is
4163 	 * the current task context of this cpu.  If not it has been
4164 	 * scheduled out before the smp call arrived.  In that case
4165 	 * event->count would have been updated to a recent sample
4166 	 * when the event was scheduled out.
4167 	 */
4168 	if (ctx->task && cpuctx->task_ctx != ctx)
4169 		return;
4170 
4171 	raw_spin_lock(&ctx->lock);
4172 	if (ctx->is_active & EVENT_TIME) {
4173 		update_context_time(ctx);
4174 		update_cgrp_time_from_event(event);
4175 	}
4176 
4177 	perf_event_update_time(event);
4178 	if (data->group)
4179 		perf_event_update_sibling_time(event);
4180 
4181 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4182 		goto unlock;
4183 
4184 	if (!data->group) {
4185 		pmu->read(event);
4186 		data->ret = 0;
4187 		goto unlock;
4188 	}
4189 
4190 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4191 
4192 	pmu->read(event);
4193 
4194 	for_each_sibling_event(sub, event) {
4195 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4196 			/*
4197 			 * Use sibling's PMU rather than @event's since
4198 			 * sibling could be on different (eg: software) PMU.
4199 			 */
4200 			sub->pmu->read(sub);
4201 		}
4202 	}
4203 
4204 	data->ret = pmu->commit_txn(pmu);
4205 
4206 unlock:
4207 	raw_spin_unlock(&ctx->lock);
4208 }
4209 
4210 static inline u64 perf_event_count(struct perf_event *event)
4211 {
4212 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4213 }
4214 
4215 /*
4216  * NMI-safe method to read a local event, that is an event that
4217  * is:
4218  *   - either for the current task, or for this CPU
4219  *   - does not have inherit set, for inherited task events
4220  *     will not be local and we cannot read them atomically
4221  *   - must not have a pmu::count method
4222  */
4223 int perf_event_read_local(struct perf_event *event, u64 *value,
4224 			  u64 *enabled, u64 *running)
4225 {
4226 	unsigned long flags;
4227 	int ret = 0;
4228 
4229 	/*
4230 	 * Disabling interrupts avoids all counter scheduling (context
4231 	 * switches, timer based rotation and IPIs).
4232 	 */
4233 	local_irq_save(flags);
4234 
4235 	/*
4236 	 * It must not be an event with inherit set, we cannot read
4237 	 * all child counters from atomic context.
4238 	 */
4239 	if (event->attr.inherit) {
4240 		ret = -EOPNOTSUPP;
4241 		goto out;
4242 	}
4243 
4244 	/* If this is a per-task event, it must be for current */
4245 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4246 	    event->hw.target != current) {
4247 		ret = -EINVAL;
4248 		goto out;
4249 	}
4250 
4251 	/* If this is a per-CPU event, it must be for this CPU */
4252 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4253 	    event->cpu != smp_processor_id()) {
4254 		ret = -EINVAL;
4255 		goto out;
4256 	}
4257 
4258 	/* If this is a pinned event it must be running on this CPU */
4259 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4260 		ret = -EBUSY;
4261 		goto out;
4262 	}
4263 
4264 	/*
4265 	 * If the event is currently on this CPU, its either a per-task event,
4266 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4267 	 * oncpu == -1).
4268 	 */
4269 	if (event->oncpu == smp_processor_id())
4270 		event->pmu->read(event);
4271 
4272 	*value = local64_read(&event->count);
4273 	if (enabled || running) {
4274 		u64 now = event->shadow_ctx_time + perf_clock();
4275 		u64 __enabled, __running;
4276 
4277 		__perf_update_times(event, now, &__enabled, &__running);
4278 		if (enabled)
4279 			*enabled = __enabled;
4280 		if (running)
4281 			*running = __running;
4282 	}
4283 out:
4284 	local_irq_restore(flags);
4285 
4286 	return ret;
4287 }
4288 
4289 static int perf_event_read(struct perf_event *event, bool group)
4290 {
4291 	enum perf_event_state state = READ_ONCE(event->state);
4292 	int event_cpu, ret = 0;
4293 
4294 	/*
4295 	 * If event is enabled and currently active on a CPU, update the
4296 	 * value in the event structure:
4297 	 */
4298 again:
4299 	if (state == PERF_EVENT_STATE_ACTIVE) {
4300 		struct perf_read_data data;
4301 
4302 		/*
4303 		 * Orders the ->state and ->oncpu loads such that if we see
4304 		 * ACTIVE we must also see the right ->oncpu.
4305 		 *
4306 		 * Matches the smp_wmb() from event_sched_in().
4307 		 */
4308 		smp_rmb();
4309 
4310 		event_cpu = READ_ONCE(event->oncpu);
4311 		if ((unsigned)event_cpu >= nr_cpu_ids)
4312 			return 0;
4313 
4314 		data = (struct perf_read_data){
4315 			.event = event,
4316 			.group = group,
4317 			.ret = 0,
4318 		};
4319 
4320 		preempt_disable();
4321 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4322 
4323 		/*
4324 		 * Purposely ignore the smp_call_function_single() return
4325 		 * value.
4326 		 *
4327 		 * If event_cpu isn't a valid CPU it means the event got
4328 		 * scheduled out and that will have updated the event count.
4329 		 *
4330 		 * Therefore, either way, we'll have an up-to-date event count
4331 		 * after this.
4332 		 */
4333 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4334 		preempt_enable();
4335 		ret = data.ret;
4336 
4337 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4338 		struct perf_event_context *ctx = event->ctx;
4339 		unsigned long flags;
4340 
4341 		raw_spin_lock_irqsave(&ctx->lock, flags);
4342 		state = event->state;
4343 		if (state != PERF_EVENT_STATE_INACTIVE) {
4344 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4345 			goto again;
4346 		}
4347 
4348 		/*
4349 		 * May read while context is not active (e.g., thread is
4350 		 * blocked), in that case we cannot update context time
4351 		 */
4352 		if (ctx->is_active & EVENT_TIME) {
4353 			update_context_time(ctx);
4354 			update_cgrp_time_from_event(event);
4355 		}
4356 
4357 		perf_event_update_time(event);
4358 		if (group)
4359 			perf_event_update_sibling_time(event);
4360 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4361 	}
4362 
4363 	return ret;
4364 }
4365 
4366 /*
4367  * Initialize the perf_event context in a task_struct:
4368  */
4369 static void __perf_event_init_context(struct perf_event_context *ctx)
4370 {
4371 	raw_spin_lock_init(&ctx->lock);
4372 	mutex_init(&ctx->mutex);
4373 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4374 	perf_event_groups_init(&ctx->pinned_groups);
4375 	perf_event_groups_init(&ctx->flexible_groups);
4376 	INIT_LIST_HEAD(&ctx->event_list);
4377 	INIT_LIST_HEAD(&ctx->pinned_active);
4378 	INIT_LIST_HEAD(&ctx->flexible_active);
4379 	refcount_set(&ctx->refcount, 1);
4380 }
4381 
4382 static struct perf_event_context *
4383 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4384 {
4385 	struct perf_event_context *ctx;
4386 
4387 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4388 	if (!ctx)
4389 		return NULL;
4390 
4391 	__perf_event_init_context(ctx);
4392 	if (task)
4393 		ctx->task = get_task_struct(task);
4394 	ctx->pmu = pmu;
4395 
4396 	return ctx;
4397 }
4398 
4399 static struct task_struct *
4400 find_lively_task_by_vpid(pid_t vpid)
4401 {
4402 	struct task_struct *task;
4403 
4404 	rcu_read_lock();
4405 	if (!vpid)
4406 		task = current;
4407 	else
4408 		task = find_task_by_vpid(vpid);
4409 	if (task)
4410 		get_task_struct(task);
4411 	rcu_read_unlock();
4412 
4413 	if (!task)
4414 		return ERR_PTR(-ESRCH);
4415 
4416 	return task;
4417 }
4418 
4419 /*
4420  * Returns a matching context with refcount and pincount.
4421  */
4422 static struct perf_event_context *
4423 find_get_context(struct pmu *pmu, struct task_struct *task,
4424 		struct perf_event *event)
4425 {
4426 	struct perf_event_context *ctx, *clone_ctx = NULL;
4427 	struct perf_cpu_context *cpuctx;
4428 	void *task_ctx_data = NULL;
4429 	unsigned long flags;
4430 	int ctxn, err;
4431 	int cpu = event->cpu;
4432 
4433 	if (!task) {
4434 		/* Must be root to operate on a CPU event: */
4435 		err = perf_allow_cpu(&event->attr);
4436 		if (err)
4437 			return ERR_PTR(err);
4438 
4439 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4440 		ctx = &cpuctx->ctx;
4441 		get_ctx(ctx);
4442 		++ctx->pin_count;
4443 
4444 		return ctx;
4445 	}
4446 
4447 	err = -EINVAL;
4448 	ctxn = pmu->task_ctx_nr;
4449 	if (ctxn < 0)
4450 		goto errout;
4451 
4452 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4453 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4454 		if (!task_ctx_data) {
4455 			err = -ENOMEM;
4456 			goto errout;
4457 		}
4458 	}
4459 
4460 retry:
4461 	ctx = perf_lock_task_context(task, ctxn, &flags);
4462 	if (ctx) {
4463 		clone_ctx = unclone_ctx(ctx);
4464 		++ctx->pin_count;
4465 
4466 		if (task_ctx_data && !ctx->task_ctx_data) {
4467 			ctx->task_ctx_data = task_ctx_data;
4468 			task_ctx_data = NULL;
4469 		}
4470 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4471 
4472 		if (clone_ctx)
4473 			put_ctx(clone_ctx);
4474 	} else {
4475 		ctx = alloc_perf_context(pmu, task);
4476 		err = -ENOMEM;
4477 		if (!ctx)
4478 			goto errout;
4479 
4480 		if (task_ctx_data) {
4481 			ctx->task_ctx_data = task_ctx_data;
4482 			task_ctx_data = NULL;
4483 		}
4484 
4485 		err = 0;
4486 		mutex_lock(&task->perf_event_mutex);
4487 		/*
4488 		 * If it has already passed perf_event_exit_task().
4489 		 * we must see PF_EXITING, it takes this mutex too.
4490 		 */
4491 		if (task->flags & PF_EXITING)
4492 			err = -ESRCH;
4493 		else if (task->perf_event_ctxp[ctxn])
4494 			err = -EAGAIN;
4495 		else {
4496 			get_ctx(ctx);
4497 			++ctx->pin_count;
4498 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4499 		}
4500 		mutex_unlock(&task->perf_event_mutex);
4501 
4502 		if (unlikely(err)) {
4503 			put_ctx(ctx);
4504 
4505 			if (err == -EAGAIN)
4506 				goto retry;
4507 			goto errout;
4508 		}
4509 	}
4510 
4511 	kfree(task_ctx_data);
4512 	return ctx;
4513 
4514 errout:
4515 	kfree(task_ctx_data);
4516 	return ERR_PTR(err);
4517 }
4518 
4519 static void perf_event_free_filter(struct perf_event *event);
4520 static void perf_event_free_bpf_prog(struct perf_event *event);
4521 
4522 static void free_event_rcu(struct rcu_head *head)
4523 {
4524 	struct perf_event *event;
4525 
4526 	event = container_of(head, struct perf_event, rcu_head);
4527 	if (event->ns)
4528 		put_pid_ns(event->ns);
4529 	perf_event_free_filter(event);
4530 	kfree(event);
4531 }
4532 
4533 static void ring_buffer_attach(struct perf_event *event,
4534 			       struct perf_buffer *rb);
4535 
4536 static void detach_sb_event(struct perf_event *event)
4537 {
4538 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4539 
4540 	raw_spin_lock(&pel->lock);
4541 	list_del_rcu(&event->sb_list);
4542 	raw_spin_unlock(&pel->lock);
4543 }
4544 
4545 static bool is_sb_event(struct perf_event *event)
4546 {
4547 	struct perf_event_attr *attr = &event->attr;
4548 
4549 	if (event->parent)
4550 		return false;
4551 
4552 	if (event->attach_state & PERF_ATTACH_TASK)
4553 		return false;
4554 
4555 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4556 	    attr->comm || attr->comm_exec ||
4557 	    attr->task || attr->ksymbol ||
4558 	    attr->context_switch ||
4559 	    attr->bpf_event)
4560 		return true;
4561 	return false;
4562 }
4563 
4564 static void unaccount_pmu_sb_event(struct perf_event *event)
4565 {
4566 	if (is_sb_event(event))
4567 		detach_sb_event(event);
4568 }
4569 
4570 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4571 {
4572 	if (event->parent)
4573 		return;
4574 
4575 	if (is_cgroup_event(event))
4576 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4577 }
4578 
4579 #ifdef CONFIG_NO_HZ_FULL
4580 static DEFINE_SPINLOCK(nr_freq_lock);
4581 #endif
4582 
4583 static void unaccount_freq_event_nohz(void)
4584 {
4585 #ifdef CONFIG_NO_HZ_FULL
4586 	spin_lock(&nr_freq_lock);
4587 	if (atomic_dec_and_test(&nr_freq_events))
4588 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4589 	spin_unlock(&nr_freq_lock);
4590 #endif
4591 }
4592 
4593 static void unaccount_freq_event(void)
4594 {
4595 	if (tick_nohz_full_enabled())
4596 		unaccount_freq_event_nohz();
4597 	else
4598 		atomic_dec(&nr_freq_events);
4599 }
4600 
4601 static void unaccount_event(struct perf_event *event)
4602 {
4603 	bool dec = false;
4604 
4605 	if (event->parent)
4606 		return;
4607 
4608 	if (event->attach_state & PERF_ATTACH_TASK)
4609 		dec = true;
4610 	if (event->attr.mmap || event->attr.mmap_data)
4611 		atomic_dec(&nr_mmap_events);
4612 	if (event->attr.comm)
4613 		atomic_dec(&nr_comm_events);
4614 	if (event->attr.namespaces)
4615 		atomic_dec(&nr_namespaces_events);
4616 	if (event->attr.cgroup)
4617 		atomic_dec(&nr_cgroup_events);
4618 	if (event->attr.task)
4619 		atomic_dec(&nr_task_events);
4620 	if (event->attr.freq)
4621 		unaccount_freq_event();
4622 	if (event->attr.context_switch) {
4623 		dec = true;
4624 		atomic_dec(&nr_switch_events);
4625 	}
4626 	if (is_cgroup_event(event))
4627 		dec = true;
4628 	if (has_branch_stack(event))
4629 		dec = true;
4630 	if (event->attr.ksymbol)
4631 		atomic_dec(&nr_ksymbol_events);
4632 	if (event->attr.bpf_event)
4633 		atomic_dec(&nr_bpf_events);
4634 
4635 	if (dec) {
4636 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4637 			schedule_delayed_work(&perf_sched_work, HZ);
4638 	}
4639 
4640 	unaccount_event_cpu(event, event->cpu);
4641 
4642 	unaccount_pmu_sb_event(event);
4643 }
4644 
4645 static void perf_sched_delayed(struct work_struct *work)
4646 {
4647 	mutex_lock(&perf_sched_mutex);
4648 	if (atomic_dec_and_test(&perf_sched_count))
4649 		static_branch_disable(&perf_sched_events);
4650 	mutex_unlock(&perf_sched_mutex);
4651 }
4652 
4653 /*
4654  * The following implement mutual exclusion of events on "exclusive" pmus
4655  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4656  * at a time, so we disallow creating events that might conflict, namely:
4657  *
4658  *  1) cpu-wide events in the presence of per-task events,
4659  *  2) per-task events in the presence of cpu-wide events,
4660  *  3) two matching events on the same context.
4661  *
4662  * The former two cases are handled in the allocation path (perf_event_alloc(),
4663  * _free_event()), the latter -- before the first perf_install_in_context().
4664  */
4665 static int exclusive_event_init(struct perf_event *event)
4666 {
4667 	struct pmu *pmu = event->pmu;
4668 
4669 	if (!is_exclusive_pmu(pmu))
4670 		return 0;
4671 
4672 	/*
4673 	 * Prevent co-existence of per-task and cpu-wide events on the
4674 	 * same exclusive pmu.
4675 	 *
4676 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4677 	 * events on this "exclusive" pmu, positive means there are
4678 	 * per-task events.
4679 	 *
4680 	 * Since this is called in perf_event_alloc() path, event::ctx
4681 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4682 	 * to mean "per-task event", because unlike other attach states it
4683 	 * never gets cleared.
4684 	 */
4685 	if (event->attach_state & PERF_ATTACH_TASK) {
4686 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4687 			return -EBUSY;
4688 	} else {
4689 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4690 			return -EBUSY;
4691 	}
4692 
4693 	return 0;
4694 }
4695 
4696 static void exclusive_event_destroy(struct perf_event *event)
4697 {
4698 	struct pmu *pmu = event->pmu;
4699 
4700 	if (!is_exclusive_pmu(pmu))
4701 		return;
4702 
4703 	/* see comment in exclusive_event_init() */
4704 	if (event->attach_state & PERF_ATTACH_TASK)
4705 		atomic_dec(&pmu->exclusive_cnt);
4706 	else
4707 		atomic_inc(&pmu->exclusive_cnt);
4708 }
4709 
4710 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4711 {
4712 	if ((e1->pmu == e2->pmu) &&
4713 	    (e1->cpu == e2->cpu ||
4714 	     e1->cpu == -1 ||
4715 	     e2->cpu == -1))
4716 		return true;
4717 	return false;
4718 }
4719 
4720 static bool exclusive_event_installable(struct perf_event *event,
4721 					struct perf_event_context *ctx)
4722 {
4723 	struct perf_event *iter_event;
4724 	struct pmu *pmu = event->pmu;
4725 
4726 	lockdep_assert_held(&ctx->mutex);
4727 
4728 	if (!is_exclusive_pmu(pmu))
4729 		return true;
4730 
4731 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4732 		if (exclusive_event_match(iter_event, event))
4733 			return false;
4734 	}
4735 
4736 	return true;
4737 }
4738 
4739 static void perf_addr_filters_splice(struct perf_event *event,
4740 				       struct list_head *head);
4741 
4742 static void _free_event(struct perf_event *event)
4743 {
4744 	irq_work_sync(&event->pending);
4745 
4746 	unaccount_event(event);
4747 
4748 	security_perf_event_free(event);
4749 
4750 	if (event->rb) {
4751 		/*
4752 		 * Can happen when we close an event with re-directed output.
4753 		 *
4754 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4755 		 * over us; possibly making our ring_buffer_put() the last.
4756 		 */
4757 		mutex_lock(&event->mmap_mutex);
4758 		ring_buffer_attach(event, NULL);
4759 		mutex_unlock(&event->mmap_mutex);
4760 	}
4761 
4762 	if (is_cgroup_event(event))
4763 		perf_detach_cgroup(event);
4764 
4765 	if (!event->parent) {
4766 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4767 			put_callchain_buffers();
4768 	}
4769 
4770 	perf_event_free_bpf_prog(event);
4771 	perf_addr_filters_splice(event, NULL);
4772 	kfree(event->addr_filter_ranges);
4773 
4774 	if (event->destroy)
4775 		event->destroy(event);
4776 
4777 	/*
4778 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4779 	 * hw.target.
4780 	 */
4781 	if (event->hw.target)
4782 		put_task_struct(event->hw.target);
4783 
4784 	/*
4785 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4786 	 * all task references must be cleaned up.
4787 	 */
4788 	if (event->ctx)
4789 		put_ctx(event->ctx);
4790 
4791 	exclusive_event_destroy(event);
4792 	module_put(event->pmu->module);
4793 
4794 	call_rcu(&event->rcu_head, free_event_rcu);
4795 }
4796 
4797 /*
4798  * Used to free events which have a known refcount of 1, such as in error paths
4799  * where the event isn't exposed yet and inherited events.
4800  */
4801 static void free_event(struct perf_event *event)
4802 {
4803 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4804 				"unexpected event refcount: %ld; ptr=%p\n",
4805 				atomic_long_read(&event->refcount), event)) {
4806 		/* leak to avoid use-after-free */
4807 		return;
4808 	}
4809 
4810 	_free_event(event);
4811 }
4812 
4813 /*
4814  * Remove user event from the owner task.
4815  */
4816 static void perf_remove_from_owner(struct perf_event *event)
4817 {
4818 	struct task_struct *owner;
4819 
4820 	rcu_read_lock();
4821 	/*
4822 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4823 	 * observe !owner it means the list deletion is complete and we can
4824 	 * indeed free this event, otherwise we need to serialize on
4825 	 * owner->perf_event_mutex.
4826 	 */
4827 	owner = READ_ONCE(event->owner);
4828 	if (owner) {
4829 		/*
4830 		 * Since delayed_put_task_struct() also drops the last
4831 		 * task reference we can safely take a new reference
4832 		 * while holding the rcu_read_lock().
4833 		 */
4834 		get_task_struct(owner);
4835 	}
4836 	rcu_read_unlock();
4837 
4838 	if (owner) {
4839 		/*
4840 		 * If we're here through perf_event_exit_task() we're already
4841 		 * holding ctx->mutex which would be an inversion wrt. the
4842 		 * normal lock order.
4843 		 *
4844 		 * However we can safely take this lock because its the child
4845 		 * ctx->mutex.
4846 		 */
4847 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4848 
4849 		/*
4850 		 * We have to re-check the event->owner field, if it is cleared
4851 		 * we raced with perf_event_exit_task(), acquiring the mutex
4852 		 * ensured they're done, and we can proceed with freeing the
4853 		 * event.
4854 		 */
4855 		if (event->owner) {
4856 			list_del_init(&event->owner_entry);
4857 			smp_store_release(&event->owner, NULL);
4858 		}
4859 		mutex_unlock(&owner->perf_event_mutex);
4860 		put_task_struct(owner);
4861 	}
4862 }
4863 
4864 static void put_event(struct perf_event *event)
4865 {
4866 	if (!atomic_long_dec_and_test(&event->refcount))
4867 		return;
4868 
4869 	_free_event(event);
4870 }
4871 
4872 /*
4873  * Kill an event dead; while event:refcount will preserve the event
4874  * object, it will not preserve its functionality. Once the last 'user'
4875  * gives up the object, we'll destroy the thing.
4876  */
4877 int perf_event_release_kernel(struct perf_event *event)
4878 {
4879 	struct perf_event_context *ctx = event->ctx;
4880 	struct perf_event *child, *tmp;
4881 	LIST_HEAD(free_list);
4882 
4883 	/*
4884 	 * If we got here through err_file: fput(event_file); we will not have
4885 	 * attached to a context yet.
4886 	 */
4887 	if (!ctx) {
4888 		WARN_ON_ONCE(event->attach_state &
4889 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4890 		goto no_ctx;
4891 	}
4892 
4893 	if (!is_kernel_event(event))
4894 		perf_remove_from_owner(event);
4895 
4896 	ctx = perf_event_ctx_lock(event);
4897 	WARN_ON_ONCE(ctx->parent_ctx);
4898 	perf_remove_from_context(event, DETACH_GROUP);
4899 
4900 	raw_spin_lock_irq(&ctx->lock);
4901 	/*
4902 	 * Mark this event as STATE_DEAD, there is no external reference to it
4903 	 * anymore.
4904 	 *
4905 	 * Anybody acquiring event->child_mutex after the below loop _must_
4906 	 * also see this, most importantly inherit_event() which will avoid
4907 	 * placing more children on the list.
4908 	 *
4909 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4910 	 * child events.
4911 	 */
4912 	event->state = PERF_EVENT_STATE_DEAD;
4913 	raw_spin_unlock_irq(&ctx->lock);
4914 
4915 	perf_event_ctx_unlock(event, ctx);
4916 
4917 again:
4918 	mutex_lock(&event->child_mutex);
4919 	list_for_each_entry(child, &event->child_list, child_list) {
4920 
4921 		/*
4922 		 * Cannot change, child events are not migrated, see the
4923 		 * comment with perf_event_ctx_lock_nested().
4924 		 */
4925 		ctx = READ_ONCE(child->ctx);
4926 		/*
4927 		 * Since child_mutex nests inside ctx::mutex, we must jump
4928 		 * through hoops. We start by grabbing a reference on the ctx.
4929 		 *
4930 		 * Since the event cannot get freed while we hold the
4931 		 * child_mutex, the context must also exist and have a !0
4932 		 * reference count.
4933 		 */
4934 		get_ctx(ctx);
4935 
4936 		/*
4937 		 * Now that we have a ctx ref, we can drop child_mutex, and
4938 		 * acquire ctx::mutex without fear of it going away. Then we
4939 		 * can re-acquire child_mutex.
4940 		 */
4941 		mutex_unlock(&event->child_mutex);
4942 		mutex_lock(&ctx->mutex);
4943 		mutex_lock(&event->child_mutex);
4944 
4945 		/*
4946 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4947 		 * state, if child is still the first entry, it didn't get freed
4948 		 * and we can continue doing so.
4949 		 */
4950 		tmp = list_first_entry_or_null(&event->child_list,
4951 					       struct perf_event, child_list);
4952 		if (tmp == child) {
4953 			perf_remove_from_context(child, DETACH_GROUP);
4954 			list_move(&child->child_list, &free_list);
4955 			/*
4956 			 * This matches the refcount bump in inherit_event();
4957 			 * this can't be the last reference.
4958 			 */
4959 			put_event(event);
4960 		}
4961 
4962 		mutex_unlock(&event->child_mutex);
4963 		mutex_unlock(&ctx->mutex);
4964 		put_ctx(ctx);
4965 		goto again;
4966 	}
4967 	mutex_unlock(&event->child_mutex);
4968 
4969 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4970 		void *var = &child->ctx->refcount;
4971 
4972 		list_del(&child->child_list);
4973 		free_event(child);
4974 
4975 		/*
4976 		 * Wake any perf_event_free_task() waiting for this event to be
4977 		 * freed.
4978 		 */
4979 		smp_mb(); /* pairs with wait_var_event() */
4980 		wake_up_var(var);
4981 	}
4982 
4983 no_ctx:
4984 	put_event(event); /* Must be the 'last' reference */
4985 	return 0;
4986 }
4987 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4988 
4989 /*
4990  * Called when the last reference to the file is gone.
4991  */
4992 static int perf_release(struct inode *inode, struct file *file)
4993 {
4994 	perf_event_release_kernel(file->private_data);
4995 	return 0;
4996 }
4997 
4998 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4999 {
5000 	struct perf_event *child;
5001 	u64 total = 0;
5002 
5003 	*enabled = 0;
5004 	*running = 0;
5005 
5006 	mutex_lock(&event->child_mutex);
5007 
5008 	(void)perf_event_read(event, false);
5009 	total += perf_event_count(event);
5010 
5011 	*enabled += event->total_time_enabled +
5012 			atomic64_read(&event->child_total_time_enabled);
5013 	*running += event->total_time_running +
5014 			atomic64_read(&event->child_total_time_running);
5015 
5016 	list_for_each_entry(child, &event->child_list, child_list) {
5017 		(void)perf_event_read(child, false);
5018 		total += perf_event_count(child);
5019 		*enabled += child->total_time_enabled;
5020 		*running += child->total_time_running;
5021 	}
5022 	mutex_unlock(&event->child_mutex);
5023 
5024 	return total;
5025 }
5026 
5027 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5028 {
5029 	struct perf_event_context *ctx;
5030 	u64 count;
5031 
5032 	ctx = perf_event_ctx_lock(event);
5033 	count = __perf_event_read_value(event, enabled, running);
5034 	perf_event_ctx_unlock(event, ctx);
5035 
5036 	return count;
5037 }
5038 EXPORT_SYMBOL_GPL(perf_event_read_value);
5039 
5040 static int __perf_read_group_add(struct perf_event *leader,
5041 					u64 read_format, u64 *values)
5042 {
5043 	struct perf_event_context *ctx = leader->ctx;
5044 	struct perf_event *sub;
5045 	unsigned long flags;
5046 	int n = 1; /* skip @nr */
5047 	int ret;
5048 
5049 	ret = perf_event_read(leader, true);
5050 	if (ret)
5051 		return ret;
5052 
5053 	raw_spin_lock_irqsave(&ctx->lock, flags);
5054 
5055 	/*
5056 	 * Since we co-schedule groups, {enabled,running} times of siblings
5057 	 * will be identical to those of the leader, so we only publish one
5058 	 * set.
5059 	 */
5060 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5061 		values[n++] += leader->total_time_enabled +
5062 			atomic64_read(&leader->child_total_time_enabled);
5063 	}
5064 
5065 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5066 		values[n++] += leader->total_time_running +
5067 			atomic64_read(&leader->child_total_time_running);
5068 	}
5069 
5070 	/*
5071 	 * Write {count,id} tuples for every sibling.
5072 	 */
5073 	values[n++] += perf_event_count(leader);
5074 	if (read_format & PERF_FORMAT_ID)
5075 		values[n++] = primary_event_id(leader);
5076 
5077 	for_each_sibling_event(sub, leader) {
5078 		values[n++] += perf_event_count(sub);
5079 		if (read_format & PERF_FORMAT_ID)
5080 			values[n++] = primary_event_id(sub);
5081 	}
5082 
5083 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5084 	return 0;
5085 }
5086 
5087 static int perf_read_group(struct perf_event *event,
5088 				   u64 read_format, char __user *buf)
5089 {
5090 	struct perf_event *leader = event->group_leader, *child;
5091 	struct perf_event_context *ctx = leader->ctx;
5092 	int ret;
5093 	u64 *values;
5094 
5095 	lockdep_assert_held(&ctx->mutex);
5096 
5097 	values = kzalloc(event->read_size, GFP_KERNEL);
5098 	if (!values)
5099 		return -ENOMEM;
5100 
5101 	values[0] = 1 + leader->nr_siblings;
5102 
5103 	/*
5104 	 * By locking the child_mutex of the leader we effectively
5105 	 * lock the child list of all siblings.. XXX explain how.
5106 	 */
5107 	mutex_lock(&leader->child_mutex);
5108 
5109 	ret = __perf_read_group_add(leader, read_format, values);
5110 	if (ret)
5111 		goto unlock;
5112 
5113 	list_for_each_entry(child, &leader->child_list, child_list) {
5114 		ret = __perf_read_group_add(child, read_format, values);
5115 		if (ret)
5116 			goto unlock;
5117 	}
5118 
5119 	mutex_unlock(&leader->child_mutex);
5120 
5121 	ret = event->read_size;
5122 	if (copy_to_user(buf, values, event->read_size))
5123 		ret = -EFAULT;
5124 	goto out;
5125 
5126 unlock:
5127 	mutex_unlock(&leader->child_mutex);
5128 out:
5129 	kfree(values);
5130 	return ret;
5131 }
5132 
5133 static int perf_read_one(struct perf_event *event,
5134 				 u64 read_format, char __user *buf)
5135 {
5136 	u64 enabled, running;
5137 	u64 values[4];
5138 	int n = 0;
5139 
5140 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5141 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5142 		values[n++] = enabled;
5143 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5144 		values[n++] = running;
5145 	if (read_format & PERF_FORMAT_ID)
5146 		values[n++] = primary_event_id(event);
5147 
5148 	if (copy_to_user(buf, values, n * sizeof(u64)))
5149 		return -EFAULT;
5150 
5151 	return n * sizeof(u64);
5152 }
5153 
5154 static bool is_event_hup(struct perf_event *event)
5155 {
5156 	bool no_children;
5157 
5158 	if (event->state > PERF_EVENT_STATE_EXIT)
5159 		return false;
5160 
5161 	mutex_lock(&event->child_mutex);
5162 	no_children = list_empty(&event->child_list);
5163 	mutex_unlock(&event->child_mutex);
5164 	return no_children;
5165 }
5166 
5167 /*
5168  * Read the performance event - simple non blocking version for now
5169  */
5170 static ssize_t
5171 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5172 {
5173 	u64 read_format = event->attr.read_format;
5174 	int ret;
5175 
5176 	/*
5177 	 * Return end-of-file for a read on an event that is in
5178 	 * error state (i.e. because it was pinned but it couldn't be
5179 	 * scheduled on to the CPU at some point).
5180 	 */
5181 	if (event->state == PERF_EVENT_STATE_ERROR)
5182 		return 0;
5183 
5184 	if (count < event->read_size)
5185 		return -ENOSPC;
5186 
5187 	WARN_ON_ONCE(event->ctx->parent_ctx);
5188 	if (read_format & PERF_FORMAT_GROUP)
5189 		ret = perf_read_group(event, read_format, buf);
5190 	else
5191 		ret = perf_read_one(event, read_format, buf);
5192 
5193 	return ret;
5194 }
5195 
5196 static ssize_t
5197 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5198 {
5199 	struct perf_event *event = file->private_data;
5200 	struct perf_event_context *ctx;
5201 	int ret;
5202 
5203 	ret = security_perf_event_read(event);
5204 	if (ret)
5205 		return ret;
5206 
5207 	ctx = perf_event_ctx_lock(event);
5208 	ret = __perf_read(event, buf, count);
5209 	perf_event_ctx_unlock(event, ctx);
5210 
5211 	return ret;
5212 }
5213 
5214 static __poll_t perf_poll(struct file *file, poll_table *wait)
5215 {
5216 	struct perf_event *event = file->private_data;
5217 	struct perf_buffer *rb;
5218 	__poll_t events = EPOLLHUP;
5219 
5220 	poll_wait(file, &event->waitq, wait);
5221 
5222 	if (is_event_hup(event))
5223 		return events;
5224 
5225 	/*
5226 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5227 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5228 	 */
5229 	mutex_lock(&event->mmap_mutex);
5230 	rb = event->rb;
5231 	if (rb)
5232 		events = atomic_xchg(&rb->poll, 0);
5233 	mutex_unlock(&event->mmap_mutex);
5234 	return events;
5235 }
5236 
5237 static void _perf_event_reset(struct perf_event *event)
5238 {
5239 	(void)perf_event_read(event, false);
5240 	local64_set(&event->count, 0);
5241 	perf_event_update_userpage(event);
5242 }
5243 
5244 /* Assume it's not an event with inherit set. */
5245 u64 perf_event_pause(struct perf_event *event, bool reset)
5246 {
5247 	struct perf_event_context *ctx;
5248 	u64 count;
5249 
5250 	ctx = perf_event_ctx_lock(event);
5251 	WARN_ON_ONCE(event->attr.inherit);
5252 	_perf_event_disable(event);
5253 	count = local64_read(&event->count);
5254 	if (reset)
5255 		local64_set(&event->count, 0);
5256 	perf_event_ctx_unlock(event, ctx);
5257 
5258 	return count;
5259 }
5260 EXPORT_SYMBOL_GPL(perf_event_pause);
5261 
5262 /*
5263  * Holding the top-level event's child_mutex means that any
5264  * descendant process that has inherited this event will block
5265  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5266  * task existence requirements of perf_event_enable/disable.
5267  */
5268 static void perf_event_for_each_child(struct perf_event *event,
5269 					void (*func)(struct perf_event *))
5270 {
5271 	struct perf_event *child;
5272 
5273 	WARN_ON_ONCE(event->ctx->parent_ctx);
5274 
5275 	mutex_lock(&event->child_mutex);
5276 	func(event);
5277 	list_for_each_entry(child, &event->child_list, child_list)
5278 		func(child);
5279 	mutex_unlock(&event->child_mutex);
5280 }
5281 
5282 static void perf_event_for_each(struct perf_event *event,
5283 				  void (*func)(struct perf_event *))
5284 {
5285 	struct perf_event_context *ctx = event->ctx;
5286 	struct perf_event *sibling;
5287 
5288 	lockdep_assert_held(&ctx->mutex);
5289 
5290 	event = event->group_leader;
5291 
5292 	perf_event_for_each_child(event, func);
5293 	for_each_sibling_event(sibling, event)
5294 		perf_event_for_each_child(sibling, func);
5295 }
5296 
5297 static void __perf_event_period(struct perf_event *event,
5298 				struct perf_cpu_context *cpuctx,
5299 				struct perf_event_context *ctx,
5300 				void *info)
5301 {
5302 	u64 value = *((u64 *)info);
5303 	bool active;
5304 
5305 	if (event->attr.freq) {
5306 		event->attr.sample_freq = value;
5307 	} else {
5308 		event->attr.sample_period = value;
5309 		event->hw.sample_period = value;
5310 	}
5311 
5312 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5313 	if (active) {
5314 		perf_pmu_disable(ctx->pmu);
5315 		/*
5316 		 * We could be throttled; unthrottle now to avoid the tick
5317 		 * trying to unthrottle while we already re-started the event.
5318 		 */
5319 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5320 			event->hw.interrupts = 0;
5321 			perf_log_throttle(event, 1);
5322 		}
5323 		event->pmu->stop(event, PERF_EF_UPDATE);
5324 	}
5325 
5326 	local64_set(&event->hw.period_left, 0);
5327 
5328 	if (active) {
5329 		event->pmu->start(event, PERF_EF_RELOAD);
5330 		perf_pmu_enable(ctx->pmu);
5331 	}
5332 }
5333 
5334 static int perf_event_check_period(struct perf_event *event, u64 value)
5335 {
5336 	return event->pmu->check_period(event, value);
5337 }
5338 
5339 static int _perf_event_period(struct perf_event *event, u64 value)
5340 {
5341 	if (!is_sampling_event(event))
5342 		return -EINVAL;
5343 
5344 	if (!value)
5345 		return -EINVAL;
5346 
5347 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5348 		return -EINVAL;
5349 
5350 	if (perf_event_check_period(event, value))
5351 		return -EINVAL;
5352 
5353 	if (!event->attr.freq && (value & (1ULL << 63)))
5354 		return -EINVAL;
5355 
5356 	event_function_call(event, __perf_event_period, &value);
5357 
5358 	return 0;
5359 }
5360 
5361 int perf_event_period(struct perf_event *event, u64 value)
5362 {
5363 	struct perf_event_context *ctx;
5364 	int ret;
5365 
5366 	ctx = perf_event_ctx_lock(event);
5367 	ret = _perf_event_period(event, value);
5368 	perf_event_ctx_unlock(event, ctx);
5369 
5370 	return ret;
5371 }
5372 EXPORT_SYMBOL_GPL(perf_event_period);
5373 
5374 static const struct file_operations perf_fops;
5375 
5376 static inline int perf_fget_light(int fd, struct fd *p)
5377 {
5378 	struct fd f = fdget(fd);
5379 	if (!f.file)
5380 		return -EBADF;
5381 
5382 	if (f.file->f_op != &perf_fops) {
5383 		fdput(f);
5384 		return -EBADF;
5385 	}
5386 	*p = f;
5387 	return 0;
5388 }
5389 
5390 static int perf_event_set_output(struct perf_event *event,
5391 				 struct perf_event *output_event);
5392 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5393 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5394 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5395 			  struct perf_event_attr *attr);
5396 
5397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5398 {
5399 	void (*func)(struct perf_event *);
5400 	u32 flags = arg;
5401 
5402 	switch (cmd) {
5403 	case PERF_EVENT_IOC_ENABLE:
5404 		func = _perf_event_enable;
5405 		break;
5406 	case PERF_EVENT_IOC_DISABLE:
5407 		func = _perf_event_disable;
5408 		break;
5409 	case PERF_EVENT_IOC_RESET:
5410 		func = _perf_event_reset;
5411 		break;
5412 
5413 	case PERF_EVENT_IOC_REFRESH:
5414 		return _perf_event_refresh(event, arg);
5415 
5416 	case PERF_EVENT_IOC_PERIOD:
5417 	{
5418 		u64 value;
5419 
5420 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5421 			return -EFAULT;
5422 
5423 		return _perf_event_period(event, value);
5424 	}
5425 	case PERF_EVENT_IOC_ID:
5426 	{
5427 		u64 id = primary_event_id(event);
5428 
5429 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5430 			return -EFAULT;
5431 		return 0;
5432 	}
5433 
5434 	case PERF_EVENT_IOC_SET_OUTPUT:
5435 	{
5436 		int ret;
5437 		if (arg != -1) {
5438 			struct perf_event *output_event;
5439 			struct fd output;
5440 			ret = perf_fget_light(arg, &output);
5441 			if (ret)
5442 				return ret;
5443 			output_event = output.file->private_data;
5444 			ret = perf_event_set_output(event, output_event);
5445 			fdput(output);
5446 		} else {
5447 			ret = perf_event_set_output(event, NULL);
5448 		}
5449 		return ret;
5450 	}
5451 
5452 	case PERF_EVENT_IOC_SET_FILTER:
5453 		return perf_event_set_filter(event, (void __user *)arg);
5454 
5455 	case PERF_EVENT_IOC_SET_BPF:
5456 		return perf_event_set_bpf_prog(event, arg);
5457 
5458 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5459 		struct perf_buffer *rb;
5460 
5461 		rcu_read_lock();
5462 		rb = rcu_dereference(event->rb);
5463 		if (!rb || !rb->nr_pages) {
5464 			rcu_read_unlock();
5465 			return -EINVAL;
5466 		}
5467 		rb_toggle_paused(rb, !!arg);
5468 		rcu_read_unlock();
5469 		return 0;
5470 	}
5471 
5472 	case PERF_EVENT_IOC_QUERY_BPF:
5473 		return perf_event_query_prog_array(event, (void __user *)arg);
5474 
5475 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5476 		struct perf_event_attr new_attr;
5477 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5478 					 &new_attr);
5479 
5480 		if (err)
5481 			return err;
5482 
5483 		return perf_event_modify_attr(event,  &new_attr);
5484 	}
5485 	default:
5486 		return -ENOTTY;
5487 	}
5488 
5489 	if (flags & PERF_IOC_FLAG_GROUP)
5490 		perf_event_for_each(event, func);
5491 	else
5492 		perf_event_for_each_child(event, func);
5493 
5494 	return 0;
5495 }
5496 
5497 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5498 {
5499 	struct perf_event *event = file->private_data;
5500 	struct perf_event_context *ctx;
5501 	long ret;
5502 
5503 	/* Treat ioctl like writes as it is likely a mutating operation. */
5504 	ret = security_perf_event_write(event);
5505 	if (ret)
5506 		return ret;
5507 
5508 	ctx = perf_event_ctx_lock(event);
5509 	ret = _perf_ioctl(event, cmd, arg);
5510 	perf_event_ctx_unlock(event, ctx);
5511 
5512 	return ret;
5513 }
5514 
5515 #ifdef CONFIG_COMPAT
5516 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5517 				unsigned long arg)
5518 {
5519 	switch (_IOC_NR(cmd)) {
5520 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5521 	case _IOC_NR(PERF_EVENT_IOC_ID):
5522 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5523 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5524 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5525 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5526 			cmd &= ~IOCSIZE_MASK;
5527 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5528 		}
5529 		break;
5530 	}
5531 	return perf_ioctl(file, cmd, arg);
5532 }
5533 #else
5534 # define perf_compat_ioctl NULL
5535 #endif
5536 
5537 int perf_event_task_enable(void)
5538 {
5539 	struct perf_event_context *ctx;
5540 	struct perf_event *event;
5541 
5542 	mutex_lock(&current->perf_event_mutex);
5543 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5544 		ctx = perf_event_ctx_lock(event);
5545 		perf_event_for_each_child(event, _perf_event_enable);
5546 		perf_event_ctx_unlock(event, ctx);
5547 	}
5548 	mutex_unlock(&current->perf_event_mutex);
5549 
5550 	return 0;
5551 }
5552 
5553 int perf_event_task_disable(void)
5554 {
5555 	struct perf_event_context *ctx;
5556 	struct perf_event *event;
5557 
5558 	mutex_lock(&current->perf_event_mutex);
5559 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5560 		ctx = perf_event_ctx_lock(event);
5561 		perf_event_for_each_child(event, _perf_event_disable);
5562 		perf_event_ctx_unlock(event, ctx);
5563 	}
5564 	mutex_unlock(&current->perf_event_mutex);
5565 
5566 	return 0;
5567 }
5568 
5569 static int perf_event_index(struct perf_event *event)
5570 {
5571 	if (event->hw.state & PERF_HES_STOPPED)
5572 		return 0;
5573 
5574 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5575 		return 0;
5576 
5577 	return event->pmu->event_idx(event);
5578 }
5579 
5580 static void calc_timer_values(struct perf_event *event,
5581 				u64 *now,
5582 				u64 *enabled,
5583 				u64 *running)
5584 {
5585 	u64 ctx_time;
5586 
5587 	*now = perf_clock();
5588 	ctx_time = event->shadow_ctx_time + *now;
5589 	__perf_update_times(event, ctx_time, enabled, running);
5590 }
5591 
5592 static void perf_event_init_userpage(struct perf_event *event)
5593 {
5594 	struct perf_event_mmap_page *userpg;
5595 	struct perf_buffer *rb;
5596 
5597 	rcu_read_lock();
5598 	rb = rcu_dereference(event->rb);
5599 	if (!rb)
5600 		goto unlock;
5601 
5602 	userpg = rb->user_page;
5603 
5604 	/* Allow new userspace to detect that bit 0 is deprecated */
5605 	userpg->cap_bit0_is_deprecated = 1;
5606 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5607 	userpg->data_offset = PAGE_SIZE;
5608 	userpg->data_size = perf_data_size(rb);
5609 
5610 unlock:
5611 	rcu_read_unlock();
5612 }
5613 
5614 void __weak arch_perf_update_userpage(
5615 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5616 {
5617 }
5618 
5619 /*
5620  * Callers need to ensure there can be no nesting of this function, otherwise
5621  * the seqlock logic goes bad. We can not serialize this because the arch
5622  * code calls this from NMI context.
5623  */
5624 void perf_event_update_userpage(struct perf_event *event)
5625 {
5626 	struct perf_event_mmap_page *userpg;
5627 	struct perf_buffer *rb;
5628 	u64 enabled, running, now;
5629 
5630 	rcu_read_lock();
5631 	rb = rcu_dereference(event->rb);
5632 	if (!rb)
5633 		goto unlock;
5634 
5635 	/*
5636 	 * compute total_time_enabled, total_time_running
5637 	 * based on snapshot values taken when the event
5638 	 * was last scheduled in.
5639 	 *
5640 	 * we cannot simply called update_context_time()
5641 	 * because of locking issue as we can be called in
5642 	 * NMI context
5643 	 */
5644 	calc_timer_values(event, &now, &enabled, &running);
5645 
5646 	userpg = rb->user_page;
5647 	/*
5648 	 * Disable preemption to guarantee consistent time stamps are stored to
5649 	 * the user page.
5650 	 */
5651 	preempt_disable();
5652 	++userpg->lock;
5653 	barrier();
5654 	userpg->index = perf_event_index(event);
5655 	userpg->offset = perf_event_count(event);
5656 	if (userpg->index)
5657 		userpg->offset -= local64_read(&event->hw.prev_count);
5658 
5659 	userpg->time_enabled = enabled +
5660 			atomic64_read(&event->child_total_time_enabled);
5661 
5662 	userpg->time_running = running +
5663 			atomic64_read(&event->child_total_time_running);
5664 
5665 	arch_perf_update_userpage(event, userpg, now);
5666 
5667 	barrier();
5668 	++userpg->lock;
5669 	preempt_enable();
5670 unlock:
5671 	rcu_read_unlock();
5672 }
5673 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5674 
5675 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5676 {
5677 	struct perf_event *event = vmf->vma->vm_file->private_data;
5678 	struct perf_buffer *rb;
5679 	vm_fault_t ret = VM_FAULT_SIGBUS;
5680 
5681 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5682 		if (vmf->pgoff == 0)
5683 			ret = 0;
5684 		return ret;
5685 	}
5686 
5687 	rcu_read_lock();
5688 	rb = rcu_dereference(event->rb);
5689 	if (!rb)
5690 		goto unlock;
5691 
5692 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5693 		goto unlock;
5694 
5695 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5696 	if (!vmf->page)
5697 		goto unlock;
5698 
5699 	get_page(vmf->page);
5700 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5701 	vmf->page->index   = vmf->pgoff;
5702 
5703 	ret = 0;
5704 unlock:
5705 	rcu_read_unlock();
5706 
5707 	return ret;
5708 }
5709 
5710 static void ring_buffer_attach(struct perf_event *event,
5711 			       struct perf_buffer *rb)
5712 {
5713 	struct perf_buffer *old_rb = NULL;
5714 	unsigned long flags;
5715 
5716 	if (event->rb) {
5717 		/*
5718 		 * Should be impossible, we set this when removing
5719 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5720 		 */
5721 		WARN_ON_ONCE(event->rcu_pending);
5722 
5723 		old_rb = event->rb;
5724 		spin_lock_irqsave(&old_rb->event_lock, flags);
5725 		list_del_rcu(&event->rb_entry);
5726 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5727 
5728 		event->rcu_batches = get_state_synchronize_rcu();
5729 		event->rcu_pending = 1;
5730 	}
5731 
5732 	if (rb) {
5733 		if (event->rcu_pending) {
5734 			cond_synchronize_rcu(event->rcu_batches);
5735 			event->rcu_pending = 0;
5736 		}
5737 
5738 		spin_lock_irqsave(&rb->event_lock, flags);
5739 		list_add_rcu(&event->rb_entry, &rb->event_list);
5740 		spin_unlock_irqrestore(&rb->event_lock, flags);
5741 	}
5742 
5743 	/*
5744 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5745 	 * before swizzling the event::rb pointer; if it's getting
5746 	 * unmapped, its aux_mmap_count will be 0 and it won't
5747 	 * restart. See the comment in __perf_pmu_output_stop().
5748 	 *
5749 	 * Data will inevitably be lost when set_output is done in
5750 	 * mid-air, but then again, whoever does it like this is
5751 	 * not in for the data anyway.
5752 	 */
5753 	if (has_aux(event))
5754 		perf_event_stop(event, 0);
5755 
5756 	rcu_assign_pointer(event->rb, rb);
5757 
5758 	if (old_rb) {
5759 		ring_buffer_put(old_rb);
5760 		/*
5761 		 * Since we detached before setting the new rb, so that we
5762 		 * could attach the new rb, we could have missed a wakeup.
5763 		 * Provide it now.
5764 		 */
5765 		wake_up_all(&event->waitq);
5766 	}
5767 }
5768 
5769 static void ring_buffer_wakeup(struct perf_event *event)
5770 {
5771 	struct perf_buffer *rb;
5772 
5773 	rcu_read_lock();
5774 	rb = rcu_dereference(event->rb);
5775 	if (rb) {
5776 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5777 			wake_up_all(&event->waitq);
5778 	}
5779 	rcu_read_unlock();
5780 }
5781 
5782 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5783 {
5784 	struct perf_buffer *rb;
5785 
5786 	rcu_read_lock();
5787 	rb = rcu_dereference(event->rb);
5788 	if (rb) {
5789 		if (!refcount_inc_not_zero(&rb->refcount))
5790 			rb = NULL;
5791 	}
5792 	rcu_read_unlock();
5793 
5794 	return rb;
5795 }
5796 
5797 void ring_buffer_put(struct perf_buffer *rb)
5798 {
5799 	if (!refcount_dec_and_test(&rb->refcount))
5800 		return;
5801 
5802 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5803 
5804 	call_rcu(&rb->rcu_head, rb_free_rcu);
5805 }
5806 
5807 static void perf_mmap_open(struct vm_area_struct *vma)
5808 {
5809 	struct perf_event *event = vma->vm_file->private_data;
5810 
5811 	atomic_inc(&event->mmap_count);
5812 	atomic_inc(&event->rb->mmap_count);
5813 
5814 	if (vma->vm_pgoff)
5815 		atomic_inc(&event->rb->aux_mmap_count);
5816 
5817 	if (event->pmu->event_mapped)
5818 		event->pmu->event_mapped(event, vma->vm_mm);
5819 }
5820 
5821 static void perf_pmu_output_stop(struct perf_event *event);
5822 
5823 /*
5824  * A buffer can be mmap()ed multiple times; either directly through the same
5825  * event, or through other events by use of perf_event_set_output().
5826  *
5827  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5828  * the buffer here, where we still have a VM context. This means we need
5829  * to detach all events redirecting to us.
5830  */
5831 static void perf_mmap_close(struct vm_area_struct *vma)
5832 {
5833 	struct perf_event *event = vma->vm_file->private_data;
5834 
5835 	struct perf_buffer *rb = ring_buffer_get(event);
5836 	struct user_struct *mmap_user = rb->mmap_user;
5837 	int mmap_locked = rb->mmap_locked;
5838 	unsigned long size = perf_data_size(rb);
5839 
5840 	if (event->pmu->event_unmapped)
5841 		event->pmu->event_unmapped(event, vma->vm_mm);
5842 
5843 	/*
5844 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5845 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5846 	 * serialize with perf_mmap here.
5847 	 */
5848 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5849 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5850 		/*
5851 		 * Stop all AUX events that are writing to this buffer,
5852 		 * so that we can free its AUX pages and corresponding PMU
5853 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5854 		 * they won't start any more (see perf_aux_output_begin()).
5855 		 */
5856 		perf_pmu_output_stop(event);
5857 
5858 		/* now it's safe to free the pages */
5859 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5860 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5861 
5862 		/* this has to be the last one */
5863 		rb_free_aux(rb);
5864 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5865 
5866 		mutex_unlock(&event->mmap_mutex);
5867 	}
5868 
5869 	atomic_dec(&rb->mmap_count);
5870 
5871 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5872 		goto out_put;
5873 
5874 	ring_buffer_attach(event, NULL);
5875 	mutex_unlock(&event->mmap_mutex);
5876 
5877 	/* If there's still other mmap()s of this buffer, we're done. */
5878 	if (atomic_read(&rb->mmap_count))
5879 		goto out_put;
5880 
5881 	/*
5882 	 * No other mmap()s, detach from all other events that might redirect
5883 	 * into the now unreachable buffer. Somewhat complicated by the
5884 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5885 	 */
5886 again:
5887 	rcu_read_lock();
5888 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5889 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5890 			/*
5891 			 * This event is en-route to free_event() which will
5892 			 * detach it and remove it from the list.
5893 			 */
5894 			continue;
5895 		}
5896 		rcu_read_unlock();
5897 
5898 		mutex_lock(&event->mmap_mutex);
5899 		/*
5900 		 * Check we didn't race with perf_event_set_output() which can
5901 		 * swizzle the rb from under us while we were waiting to
5902 		 * acquire mmap_mutex.
5903 		 *
5904 		 * If we find a different rb; ignore this event, a next
5905 		 * iteration will no longer find it on the list. We have to
5906 		 * still restart the iteration to make sure we're not now
5907 		 * iterating the wrong list.
5908 		 */
5909 		if (event->rb == rb)
5910 			ring_buffer_attach(event, NULL);
5911 
5912 		mutex_unlock(&event->mmap_mutex);
5913 		put_event(event);
5914 
5915 		/*
5916 		 * Restart the iteration; either we're on the wrong list or
5917 		 * destroyed its integrity by doing a deletion.
5918 		 */
5919 		goto again;
5920 	}
5921 	rcu_read_unlock();
5922 
5923 	/*
5924 	 * It could be there's still a few 0-ref events on the list; they'll
5925 	 * get cleaned up by free_event() -- they'll also still have their
5926 	 * ref on the rb and will free it whenever they are done with it.
5927 	 *
5928 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5929 	 * undo the VM accounting.
5930 	 */
5931 
5932 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5933 			&mmap_user->locked_vm);
5934 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5935 	free_uid(mmap_user);
5936 
5937 out_put:
5938 	ring_buffer_put(rb); /* could be last */
5939 }
5940 
5941 static const struct vm_operations_struct perf_mmap_vmops = {
5942 	.open		= perf_mmap_open,
5943 	.close		= perf_mmap_close, /* non mergeable */
5944 	.fault		= perf_mmap_fault,
5945 	.page_mkwrite	= perf_mmap_fault,
5946 };
5947 
5948 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5949 {
5950 	struct perf_event *event = file->private_data;
5951 	unsigned long user_locked, user_lock_limit;
5952 	struct user_struct *user = current_user();
5953 	struct perf_buffer *rb = NULL;
5954 	unsigned long locked, lock_limit;
5955 	unsigned long vma_size;
5956 	unsigned long nr_pages;
5957 	long user_extra = 0, extra = 0;
5958 	int ret = 0, flags = 0;
5959 
5960 	/*
5961 	 * Don't allow mmap() of inherited per-task counters. This would
5962 	 * create a performance issue due to all children writing to the
5963 	 * same rb.
5964 	 */
5965 	if (event->cpu == -1 && event->attr.inherit)
5966 		return -EINVAL;
5967 
5968 	if (!(vma->vm_flags & VM_SHARED))
5969 		return -EINVAL;
5970 
5971 	ret = security_perf_event_read(event);
5972 	if (ret)
5973 		return ret;
5974 
5975 	vma_size = vma->vm_end - vma->vm_start;
5976 
5977 	if (vma->vm_pgoff == 0) {
5978 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5979 	} else {
5980 		/*
5981 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5982 		 * mapped, all subsequent mappings should have the same size
5983 		 * and offset. Must be above the normal perf buffer.
5984 		 */
5985 		u64 aux_offset, aux_size;
5986 
5987 		if (!event->rb)
5988 			return -EINVAL;
5989 
5990 		nr_pages = vma_size / PAGE_SIZE;
5991 
5992 		mutex_lock(&event->mmap_mutex);
5993 		ret = -EINVAL;
5994 
5995 		rb = event->rb;
5996 		if (!rb)
5997 			goto aux_unlock;
5998 
5999 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6000 		aux_size = READ_ONCE(rb->user_page->aux_size);
6001 
6002 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6003 			goto aux_unlock;
6004 
6005 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6006 			goto aux_unlock;
6007 
6008 		/* already mapped with a different offset */
6009 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6010 			goto aux_unlock;
6011 
6012 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6013 			goto aux_unlock;
6014 
6015 		/* already mapped with a different size */
6016 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6017 			goto aux_unlock;
6018 
6019 		if (!is_power_of_2(nr_pages))
6020 			goto aux_unlock;
6021 
6022 		if (!atomic_inc_not_zero(&rb->mmap_count))
6023 			goto aux_unlock;
6024 
6025 		if (rb_has_aux(rb)) {
6026 			atomic_inc(&rb->aux_mmap_count);
6027 			ret = 0;
6028 			goto unlock;
6029 		}
6030 
6031 		atomic_set(&rb->aux_mmap_count, 1);
6032 		user_extra = nr_pages;
6033 
6034 		goto accounting;
6035 	}
6036 
6037 	/*
6038 	 * If we have rb pages ensure they're a power-of-two number, so we
6039 	 * can do bitmasks instead of modulo.
6040 	 */
6041 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6042 		return -EINVAL;
6043 
6044 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6045 		return -EINVAL;
6046 
6047 	WARN_ON_ONCE(event->ctx->parent_ctx);
6048 again:
6049 	mutex_lock(&event->mmap_mutex);
6050 	if (event->rb) {
6051 		if (event->rb->nr_pages != nr_pages) {
6052 			ret = -EINVAL;
6053 			goto unlock;
6054 		}
6055 
6056 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6057 			/*
6058 			 * Raced against perf_mmap_close() through
6059 			 * perf_event_set_output(). Try again, hope for better
6060 			 * luck.
6061 			 */
6062 			mutex_unlock(&event->mmap_mutex);
6063 			goto again;
6064 		}
6065 
6066 		goto unlock;
6067 	}
6068 
6069 	user_extra = nr_pages + 1;
6070 
6071 accounting:
6072 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6073 
6074 	/*
6075 	 * Increase the limit linearly with more CPUs:
6076 	 */
6077 	user_lock_limit *= num_online_cpus();
6078 
6079 	user_locked = atomic_long_read(&user->locked_vm);
6080 
6081 	/*
6082 	 * sysctl_perf_event_mlock may have changed, so that
6083 	 *     user->locked_vm > user_lock_limit
6084 	 */
6085 	if (user_locked > user_lock_limit)
6086 		user_locked = user_lock_limit;
6087 	user_locked += user_extra;
6088 
6089 	if (user_locked > user_lock_limit) {
6090 		/*
6091 		 * charge locked_vm until it hits user_lock_limit;
6092 		 * charge the rest from pinned_vm
6093 		 */
6094 		extra = user_locked - user_lock_limit;
6095 		user_extra -= extra;
6096 	}
6097 
6098 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6099 	lock_limit >>= PAGE_SHIFT;
6100 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6101 
6102 	if ((locked > lock_limit) && perf_is_paranoid() &&
6103 		!capable(CAP_IPC_LOCK)) {
6104 		ret = -EPERM;
6105 		goto unlock;
6106 	}
6107 
6108 	WARN_ON(!rb && event->rb);
6109 
6110 	if (vma->vm_flags & VM_WRITE)
6111 		flags |= RING_BUFFER_WRITABLE;
6112 
6113 	if (!rb) {
6114 		rb = rb_alloc(nr_pages,
6115 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6116 			      event->cpu, flags);
6117 
6118 		if (!rb) {
6119 			ret = -ENOMEM;
6120 			goto unlock;
6121 		}
6122 
6123 		atomic_set(&rb->mmap_count, 1);
6124 		rb->mmap_user = get_current_user();
6125 		rb->mmap_locked = extra;
6126 
6127 		ring_buffer_attach(event, rb);
6128 
6129 		perf_event_init_userpage(event);
6130 		perf_event_update_userpage(event);
6131 	} else {
6132 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6133 				   event->attr.aux_watermark, flags);
6134 		if (!ret)
6135 			rb->aux_mmap_locked = extra;
6136 	}
6137 
6138 unlock:
6139 	if (!ret) {
6140 		atomic_long_add(user_extra, &user->locked_vm);
6141 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6142 
6143 		atomic_inc(&event->mmap_count);
6144 	} else if (rb) {
6145 		atomic_dec(&rb->mmap_count);
6146 	}
6147 aux_unlock:
6148 	mutex_unlock(&event->mmap_mutex);
6149 
6150 	/*
6151 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6152 	 * vma.
6153 	 */
6154 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6155 	vma->vm_ops = &perf_mmap_vmops;
6156 
6157 	if (event->pmu->event_mapped)
6158 		event->pmu->event_mapped(event, vma->vm_mm);
6159 
6160 	return ret;
6161 }
6162 
6163 static int perf_fasync(int fd, struct file *filp, int on)
6164 {
6165 	struct inode *inode = file_inode(filp);
6166 	struct perf_event *event = filp->private_data;
6167 	int retval;
6168 
6169 	inode_lock(inode);
6170 	retval = fasync_helper(fd, filp, on, &event->fasync);
6171 	inode_unlock(inode);
6172 
6173 	if (retval < 0)
6174 		return retval;
6175 
6176 	return 0;
6177 }
6178 
6179 static const struct file_operations perf_fops = {
6180 	.llseek			= no_llseek,
6181 	.release		= perf_release,
6182 	.read			= perf_read,
6183 	.poll			= perf_poll,
6184 	.unlocked_ioctl		= perf_ioctl,
6185 	.compat_ioctl		= perf_compat_ioctl,
6186 	.mmap			= perf_mmap,
6187 	.fasync			= perf_fasync,
6188 };
6189 
6190 /*
6191  * Perf event wakeup
6192  *
6193  * If there's data, ensure we set the poll() state and publish everything
6194  * to user-space before waking everybody up.
6195  */
6196 
6197 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6198 {
6199 	/* only the parent has fasync state */
6200 	if (event->parent)
6201 		event = event->parent;
6202 	return &event->fasync;
6203 }
6204 
6205 void perf_event_wakeup(struct perf_event *event)
6206 {
6207 	ring_buffer_wakeup(event);
6208 
6209 	if (event->pending_kill) {
6210 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6211 		event->pending_kill = 0;
6212 	}
6213 }
6214 
6215 static void perf_pending_event_disable(struct perf_event *event)
6216 {
6217 	int cpu = READ_ONCE(event->pending_disable);
6218 
6219 	if (cpu < 0)
6220 		return;
6221 
6222 	if (cpu == smp_processor_id()) {
6223 		WRITE_ONCE(event->pending_disable, -1);
6224 		perf_event_disable_local(event);
6225 		return;
6226 	}
6227 
6228 	/*
6229 	 *  CPU-A			CPU-B
6230 	 *
6231 	 *  perf_event_disable_inatomic()
6232 	 *    @pending_disable = CPU-A;
6233 	 *    irq_work_queue();
6234 	 *
6235 	 *  sched-out
6236 	 *    @pending_disable = -1;
6237 	 *
6238 	 *				sched-in
6239 	 *				perf_event_disable_inatomic()
6240 	 *				  @pending_disable = CPU-B;
6241 	 *				  irq_work_queue(); // FAILS
6242 	 *
6243 	 *  irq_work_run()
6244 	 *    perf_pending_event()
6245 	 *
6246 	 * But the event runs on CPU-B and wants disabling there.
6247 	 */
6248 	irq_work_queue_on(&event->pending, cpu);
6249 }
6250 
6251 static void perf_pending_event(struct irq_work *entry)
6252 {
6253 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6254 	int rctx;
6255 
6256 	rctx = perf_swevent_get_recursion_context();
6257 	/*
6258 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6259 	 * and we won't recurse 'further'.
6260 	 */
6261 
6262 	perf_pending_event_disable(event);
6263 
6264 	if (event->pending_wakeup) {
6265 		event->pending_wakeup = 0;
6266 		perf_event_wakeup(event);
6267 	}
6268 
6269 	if (rctx >= 0)
6270 		perf_swevent_put_recursion_context(rctx);
6271 }
6272 
6273 /*
6274  * We assume there is only KVM supporting the callbacks.
6275  * Later on, we might change it to a list if there is
6276  * another virtualization implementation supporting the callbacks.
6277  */
6278 struct perf_guest_info_callbacks *perf_guest_cbs;
6279 
6280 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281 {
6282 	perf_guest_cbs = cbs;
6283 	return 0;
6284 }
6285 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6286 
6287 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6288 {
6289 	perf_guest_cbs = NULL;
6290 	return 0;
6291 }
6292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6293 
6294 static void
6295 perf_output_sample_regs(struct perf_output_handle *handle,
6296 			struct pt_regs *regs, u64 mask)
6297 {
6298 	int bit;
6299 	DECLARE_BITMAP(_mask, 64);
6300 
6301 	bitmap_from_u64(_mask, mask);
6302 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6303 		u64 val;
6304 
6305 		val = perf_reg_value(regs, bit);
6306 		perf_output_put(handle, val);
6307 	}
6308 }
6309 
6310 static void perf_sample_regs_user(struct perf_regs *regs_user,
6311 				  struct pt_regs *regs,
6312 				  struct pt_regs *regs_user_copy)
6313 {
6314 	if (user_mode(regs)) {
6315 		regs_user->abi = perf_reg_abi(current);
6316 		regs_user->regs = regs;
6317 	} else if (!(current->flags & PF_KTHREAD)) {
6318 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6319 	} else {
6320 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6321 		regs_user->regs = NULL;
6322 	}
6323 }
6324 
6325 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6326 				  struct pt_regs *regs)
6327 {
6328 	regs_intr->regs = regs;
6329 	regs_intr->abi  = perf_reg_abi(current);
6330 }
6331 
6332 
6333 /*
6334  * Get remaining task size from user stack pointer.
6335  *
6336  * It'd be better to take stack vma map and limit this more
6337  * precisely, but there's no way to get it safely under interrupt,
6338  * so using TASK_SIZE as limit.
6339  */
6340 static u64 perf_ustack_task_size(struct pt_regs *regs)
6341 {
6342 	unsigned long addr = perf_user_stack_pointer(regs);
6343 
6344 	if (!addr || addr >= TASK_SIZE)
6345 		return 0;
6346 
6347 	return TASK_SIZE - addr;
6348 }
6349 
6350 static u16
6351 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6352 			struct pt_regs *regs)
6353 {
6354 	u64 task_size;
6355 
6356 	/* No regs, no stack pointer, no dump. */
6357 	if (!regs)
6358 		return 0;
6359 
6360 	/*
6361 	 * Check if we fit in with the requested stack size into the:
6362 	 * - TASK_SIZE
6363 	 *   If we don't, we limit the size to the TASK_SIZE.
6364 	 *
6365 	 * - remaining sample size
6366 	 *   If we don't, we customize the stack size to
6367 	 *   fit in to the remaining sample size.
6368 	 */
6369 
6370 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6371 	stack_size = min(stack_size, (u16) task_size);
6372 
6373 	/* Current header size plus static size and dynamic size. */
6374 	header_size += 2 * sizeof(u64);
6375 
6376 	/* Do we fit in with the current stack dump size? */
6377 	if ((u16) (header_size + stack_size) < header_size) {
6378 		/*
6379 		 * If we overflow the maximum size for the sample,
6380 		 * we customize the stack dump size to fit in.
6381 		 */
6382 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6383 		stack_size = round_up(stack_size, sizeof(u64));
6384 	}
6385 
6386 	return stack_size;
6387 }
6388 
6389 static void
6390 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6391 			  struct pt_regs *regs)
6392 {
6393 	/* Case of a kernel thread, nothing to dump */
6394 	if (!regs) {
6395 		u64 size = 0;
6396 		perf_output_put(handle, size);
6397 	} else {
6398 		unsigned long sp;
6399 		unsigned int rem;
6400 		u64 dyn_size;
6401 		mm_segment_t fs;
6402 
6403 		/*
6404 		 * We dump:
6405 		 * static size
6406 		 *   - the size requested by user or the best one we can fit
6407 		 *     in to the sample max size
6408 		 * data
6409 		 *   - user stack dump data
6410 		 * dynamic size
6411 		 *   - the actual dumped size
6412 		 */
6413 
6414 		/* Static size. */
6415 		perf_output_put(handle, dump_size);
6416 
6417 		/* Data. */
6418 		sp = perf_user_stack_pointer(regs);
6419 		fs = get_fs();
6420 		set_fs(USER_DS);
6421 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6422 		set_fs(fs);
6423 		dyn_size = dump_size - rem;
6424 
6425 		perf_output_skip(handle, rem);
6426 
6427 		/* Dynamic size. */
6428 		perf_output_put(handle, dyn_size);
6429 	}
6430 }
6431 
6432 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6433 					  struct perf_sample_data *data,
6434 					  size_t size)
6435 {
6436 	struct perf_event *sampler = event->aux_event;
6437 	struct perf_buffer *rb;
6438 
6439 	data->aux_size = 0;
6440 
6441 	if (!sampler)
6442 		goto out;
6443 
6444 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6445 		goto out;
6446 
6447 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6448 		goto out;
6449 
6450 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6451 	if (!rb)
6452 		goto out;
6453 
6454 	/*
6455 	 * If this is an NMI hit inside sampling code, don't take
6456 	 * the sample. See also perf_aux_sample_output().
6457 	 */
6458 	if (READ_ONCE(rb->aux_in_sampling)) {
6459 		data->aux_size = 0;
6460 	} else {
6461 		size = min_t(size_t, size, perf_aux_size(rb));
6462 		data->aux_size = ALIGN(size, sizeof(u64));
6463 	}
6464 	ring_buffer_put(rb);
6465 
6466 out:
6467 	return data->aux_size;
6468 }
6469 
6470 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6471 			   struct perf_event *event,
6472 			   struct perf_output_handle *handle,
6473 			   unsigned long size)
6474 {
6475 	unsigned long flags;
6476 	long ret;
6477 
6478 	/*
6479 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6480 	 * paths. If we start calling them in NMI context, they may race with
6481 	 * the IRQ ones, that is, for example, re-starting an event that's just
6482 	 * been stopped, which is why we're using a separate callback that
6483 	 * doesn't change the event state.
6484 	 *
6485 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6486 	 */
6487 	local_irq_save(flags);
6488 	/*
6489 	 * Guard against NMI hits inside the critical section;
6490 	 * see also perf_prepare_sample_aux().
6491 	 */
6492 	WRITE_ONCE(rb->aux_in_sampling, 1);
6493 	barrier();
6494 
6495 	ret = event->pmu->snapshot_aux(event, handle, size);
6496 
6497 	barrier();
6498 	WRITE_ONCE(rb->aux_in_sampling, 0);
6499 	local_irq_restore(flags);
6500 
6501 	return ret;
6502 }
6503 
6504 static void perf_aux_sample_output(struct perf_event *event,
6505 				   struct perf_output_handle *handle,
6506 				   struct perf_sample_data *data)
6507 {
6508 	struct perf_event *sampler = event->aux_event;
6509 	struct perf_buffer *rb;
6510 	unsigned long pad;
6511 	long size;
6512 
6513 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6514 		return;
6515 
6516 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6517 	if (!rb)
6518 		return;
6519 
6520 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6521 
6522 	/*
6523 	 * An error here means that perf_output_copy() failed (returned a
6524 	 * non-zero surplus that it didn't copy), which in its current
6525 	 * enlightened implementation is not possible. If that changes, we'd
6526 	 * like to know.
6527 	 */
6528 	if (WARN_ON_ONCE(size < 0))
6529 		goto out_put;
6530 
6531 	/*
6532 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6533 	 * perf_prepare_sample_aux(), so should not be more than that.
6534 	 */
6535 	pad = data->aux_size - size;
6536 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6537 		pad = 8;
6538 
6539 	if (pad) {
6540 		u64 zero = 0;
6541 		perf_output_copy(handle, &zero, pad);
6542 	}
6543 
6544 out_put:
6545 	ring_buffer_put(rb);
6546 }
6547 
6548 static void __perf_event_header__init_id(struct perf_event_header *header,
6549 					 struct perf_sample_data *data,
6550 					 struct perf_event *event)
6551 {
6552 	u64 sample_type = event->attr.sample_type;
6553 
6554 	data->type = sample_type;
6555 	header->size += event->id_header_size;
6556 
6557 	if (sample_type & PERF_SAMPLE_TID) {
6558 		/* namespace issues */
6559 		data->tid_entry.pid = perf_event_pid(event, current);
6560 		data->tid_entry.tid = perf_event_tid(event, current);
6561 	}
6562 
6563 	if (sample_type & PERF_SAMPLE_TIME)
6564 		data->time = perf_event_clock(event);
6565 
6566 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6567 		data->id = primary_event_id(event);
6568 
6569 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6570 		data->stream_id = event->id;
6571 
6572 	if (sample_type & PERF_SAMPLE_CPU) {
6573 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6574 		data->cpu_entry.reserved = 0;
6575 	}
6576 }
6577 
6578 void perf_event_header__init_id(struct perf_event_header *header,
6579 				struct perf_sample_data *data,
6580 				struct perf_event *event)
6581 {
6582 	if (event->attr.sample_id_all)
6583 		__perf_event_header__init_id(header, data, event);
6584 }
6585 
6586 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6587 					   struct perf_sample_data *data)
6588 {
6589 	u64 sample_type = data->type;
6590 
6591 	if (sample_type & PERF_SAMPLE_TID)
6592 		perf_output_put(handle, data->tid_entry);
6593 
6594 	if (sample_type & PERF_SAMPLE_TIME)
6595 		perf_output_put(handle, data->time);
6596 
6597 	if (sample_type & PERF_SAMPLE_ID)
6598 		perf_output_put(handle, data->id);
6599 
6600 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6601 		perf_output_put(handle, data->stream_id);
6602 
6603 	if (sample_type & PERF_SAMPLE_CPU)
6604 		perf_output_put(handle, data->cpu_entry);
6605 
6606 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6607 		perf_output_put(handle, data->id);
6608 }
6609 
6610 void perf_event__output_id_sample(struct perf_event *event,
6611 				  struct perf_output_handle *handle,
6612 				  struct perf_sample_data *sample)
6613 {
6614 	if (event->attr.sample_id_all)
6615 		__perf_event__output_id_sample(handle, sample);
6616 }
6617 
6618 static void perf_output_read_one(struct perf_output_handle *handle,
6619 				 struct perf_event *event,
6620 				 u64 enabled, u64 running)
6621 {
6622 	u64 read_format = event->attr.read_format;
6623 	u64 values[4];
6624 	int n = 0;
6625 
6626 	values[n++] = perf_event_count(event);
6627 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6628 		values[n++] = enabled +
6629 			atomic64_read(&event->child_total_time_enabled);
6630 	}
6631 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6632 		values[n++] = running +
6633 			atomic64_read(&event->child_total_time_running);
6634 	}
6635 	if (read_format & PERF_FORMAT_ID)
6636 		values[n++] = primary_event_id(event);
6637 
6638 	__output_copy(handle, values, n * sizeof(u64));
6639 }
6640 
6641 static void perf_output_read_group(struct perf_output_handle *handle,
6642 			    struct perf_event *event,
6643 			    u64 enabled, u64 running)
6644 {
6645 	struct perf_event *leader = event->group_leader, *sub;
6646 	u64 read_format = event->attr.read_format;
6647 	u64 values[5];
6648 	int n = 0;
6649 
6650 	values[n++] = 1 + leader->nr_siblings;
6651 
6652 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6653 		values[n++] = enabled;
6654 
6655 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6656 		values[n++] = running;
6657 
6658 	if ((leader != event) &&
6659 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6660 		leader->pmu->read(leader);
6661 
6662 	values[n++] = perf_event_count(leader);
6663 	if (read_format & PERF_FORMAT_ID)
6664 		values[n++] = primary_event_id(leader);
6665 
6666 	__output_copy(handle, values, n * sizeof(u64));
6667 
6668 	for_each_sibling_event(sub, leader) {
6669 		n = 0;
6670 
6671 		if ((sub != event) &&
6672 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6673 			sub->pmu->read(sub);
6674 
6675 		values[n++] = perf_event_count(sub);
6676 		if (read_format & PERF_FORMAT_ID)
6677 			values[n++] = primary_event_id(sub);
6678 
6679 		__output_copy(handle, values, n * sizeof(u64));
6680 	}
6681 }
6682 
6683 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6684 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6685 
6686 /*
6687  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6688  *
6689  * The problem is that its both hard and excessively expensive to iterate the
6690  * child list, not to mention that its impossible to IPI the children running
6691  * on another CPU, from interrupt/NMI context.
6692  */
6693 static void perf_output_read(struct perf_output_handle *handle,
6694 			     struct perf_event *event)
6695 {
6696 	u64 enabled = 0, running = 0, now;
6697 	u64 read_format = event->attr.read_format;
6698 
6699 	/*
6700 	 * compute total_time_enabled, total_time_running
6701 	 * based on snapshot values taken when the event
6702 	 * was last scheduled in.
6703 	 *
6704 	 * we cannot simply called update_context_time()
6705 	 * because of locking issue as we are called in
6706 	 * NMI context
6707 	 */
6708 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6709 		calc_timer_values(event, &now, &enabled, &running);
6710 
6711 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6712 		perf_output_read_group(handle, event, enabled, running);
6713 	else
6714 		perf_output_read_one(handle, event, enabled, running);
6715 }
6716 
6717 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6718 {
6719 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6720 }
6721 
6722 void perf_output_sample(struct perf_output_handle *handle,
6723 			struct perf_event_header *header,
6724 			struct perf_sample_data *data,
6725 			struct perf_event *event)
6726 {
6727 	u64 sample_type = data->type;
6728 
6729 	perf_output_put(handle, *header);
6730 
6731 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6732 		perf_output_put(handle, data->id);
6733 
6734 	if (sample_type & PERF_SAMPLE_IP)
6735 		perf_output_put(handle, data->ip);
6736 
6737 	if (sample_type & PERF_SAMPLE_TID)
6738 		perf_output_put(handle, data->tid_entry);
6739 
6740 	if (sample_type & PERF_SAMPLE_TIME)
6741 		perf_output_put(handle, data->time);
6742 
6743 	if (sample_type & PERF_SAMPLE_ADDR)
6744 		perf_output_put(handle, data->addr);
6745 
6746 	if (sample_type & PERF_SAMPLE_ID)
6747 		perf_output_put(handle, data->id);
6748 
6749 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6750 		perf_output_put(handle, data->stream_id);
6751 
6752 	if (sample_type & PERF_SAMPLE_CPU)
6753 		perf_output_put(handle, data->cpu_entry);
6754 
6755 	if (sample_type & PERF_SAMPLE_PERIOD)
6756 		perf_output_put(handle, data->period);
6757 
6758 	if (sample_type & PERF_SAMPLE_READ)
6759 		perf_output_read(handle, event);
6760 
6761 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6762 		int size = 1;
6763 
6764 		size += data->callchain->nr;
6765 		size *= sizeof(u64);
6766 		__output_copy(handle, data->callchain, size);
6767 	}
6768 
6769 	if (sample_type & PERF_SAMPLE_RAW) {
6770 		struct perf_raw_record *raw = data->raw;
6771 
6772 		if (raw) {
6773 			struct perf_raw_frag *frag = &raw->frag;
6774 
6775 			perf_output_put(handle, raw->size);
6776 			do {
6777 				if (frag->copy) {
6778 					__output_custom(handle, frag->copy,
6779 							frag->data, frag->size);
6780 				} else {
6781 					__output_copy(handle, frag->data,
6782 						      frag->size);
6783 				}
6784 				if (perf_raw_frag_last(frag))
6785 					break;
6786 				frag = frag->next;
6787 			} while (1);
6788 			if (frag->pad)
6789 				__output_skip(handle, NULL, frag->pad);
6790 		} else {
6791 			struct {
6792 				u32	size;
6793 				u32	data;
6794 			} raw = {
6795 				.size = sizeof(u32),
6796 				.data = 0,
6797 			};
6798 			perf_output_put(handle, raw);
6799 		}
6800 	}
6801 
6802 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6803 		if (data->br_stack) {
6804 			size_t size;
6805 
6806 			size = data->br_stack->nr
6807 			     * sizeof(struct perf_branch_entry);
6808 
6809 			perf_output_put(handle, data->br_stack->nr);
6810 			if (perf_sample_save_hw_index(event))
6811 				perf_output_put(handle, data->br_stack->hw_idx);
6812 			perf_output_copy(handle, data->br_stack->entries, size);
6813 		} else {
6814 			/*
6815 			 * we always store at least the value of nr
6816 			 */
6817 			u64 nr = 0;
6818 			perf_output_put(handle, nr);
6819 		}
6820 	}
6821 
6822 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6823 		u64 abi = data->regs_user.abi;
6824 
6825 		/*
6826 		 * If there are no regs to dump, notice it through
6827 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6828 		 */
6829 		perf_output_put(handle, abi);
6830 
6831 		if (abi) {
6832 			u64 mask = event->attr.sample_regs_user;
6833 			perf_output_sample_regs(handle,
6834 						data->regs_user.regs,
6835 						mask);
6836 		}
6837 	}
6838 
6839 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6840 		perf_output_sample_ustack(handle,
6841 					  data->stack_user_size,
6842 					  data->regs_user.regs);
6843 	}
6844 
6845 	if (sample_type & PERF_SAMPLE_WEIGHT)
6846 		perf_output_put(handle, data->weight);
6847 
6848 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6849 		perf_output_put(handle, data->data_src.val);
6850 
6851 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6852 		perf_output_put(handle, data->txn);
6853 
6854 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6855 		u64 abi = data->regs_intr.abi;
6856 		/*
6857 		 * If there are no regs to dump, notice it through
6858 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6859 		 */
6860 		perf_output_put(handle, abi);
6861 
6862 		if (abi) {
6863 			u64 mask = event->attr.sample_regs_intr;
6864 
6865 			perf_output_sample_regs(handle,
6866 						data->regs_intr.regs,
6867 						mask);
6868 		}
6869 	}
6870 
6871 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6872 		perf_output_put(handle, data->phys_addr);
6873 
6874 	if (sample_type & PERF_SAMPLE_CGROUP)
6875 		perf_output_put(handle, data->cgroup);
6876 
6877 	if (sample_type & PERF_SAMPLE_AUX) {
6878 		perf_output_put(handle, data->aux_size);
6879 
6880 		if (data->aux_size)
6881 			perf_aux_sample_output(event, handle, data);
6882 	}
6883 
6884 	if (!event->attr.watermark) {
6885 		int wakeup_events = event->attr.wakeup_events;
6886 
6887 		if (wakeup_events) {
6888 			struct perf_buffer *rb = handle->rb;
6889 			int events = local_inc_return(&rb->events);
6890 
6891 			if (events >= wakeup_events) {
6892 				local_sub(wakeup_events, &rb->events);
6893 				local_inc(&rb->wakeup);
6894 			}
6895 		}
6896 	}
6897 }
6898 
6899 static u64 perf_virt_to_phys(u64 virt)
6900 {
6901 	u64 phys_addr = 0;
6902 	struct page *p = NULL;
6903 
6904 	if (!virt)
6905 		return 0;
6906 
6907 	if (virt >= TASK_SIZE) {
6908 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6909 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6910 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6911 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6912 	} else {
6913 		/*
6914 		 * Walking the pages tables for user address.
6915 		 * Interrupts are disabled, so it prevents any tear down
6916 		 * of the page tables.
6917 		 * Try IRQ-safe __get_user_pages_fast first.
6918 		 * If failed, leave phys_addr as 0.
6919 		 */
6920 		if ((current->mm != NULL) &&
6921 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6922 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6923 
6924 		if (p)
6925 			put_page(p);
6926 	}
6927 
6928 	return phys_addr;
6929 }
6930 
6931 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6932 
6933 struct perf_callchain_entry *
6934 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6935 {
6936 	bool kernel = !event->attr.exclude_callchain_kernel;
6937 	bool user   = !event->attr.exclude_callchain_user;
6938 	/* Disallow cross-task user callchains. */
6939 	bool crosstask = event->ctx->task && event->ctx->task != current;
6940 	const u32 max_stack = event->attr.sample_max_stack;
6941 	struct perf_callchain_entry *callchain;
6942 
6943 	if (!kernel && !user)
6944 		return &__empty_callchain;
6945 
6946 	callchain = get_perf_callchain(regs, 0, kernel, user,
6947 				       max_stack, crosstask, true);
6948 	return callchain ?: &__empty_callchain;
6949 }
6950 
6951 void perf_prepare_sample(struct perf_event_header *header,
6952 			 struct perf_sample_data *data,
6953 			 struct perf_event *event,
6954 			 struct pt_regs *regs)
6955 {
6956 	u64 sample_type = event->attr.sample_type;
6957 
6958 	header->type = PERF_RECORD_SAMPLE;
6959 	header->size = sizeof(*header) + event->header_size;
6960 
6961 	header->misc = 0;
6962 	header->misc |= perf_misc_flags(regs);
6963 
6964 	__perf_event_header__init_id(header, data, event);
6965 
6966 	if (sample_type & PERF_SAMPLE_IP)
6967 		data->ip = perf_instruction_pointer(regs);
6968 
6969 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6970 		int size = 1;
6971 
6972 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6973 			data->callchain = perf_callchain(event, regs);
6974 
6975 		size += data->callchain->nr;
6976 
6977 		header->size += size * sizeof(u64);
6978 	}
6979 
6980 	if (sample_type & PERF_SAMPLE_RAW) {
6981 		struct perf_raw_record *raw = data->raw;
6982 		int size;
6983 
6984 		if (raw) {
6985 			struct perf_raw_frag *frag = &raw->frag;
6986 			u32 sum = 0;
6987 
6988 			do {
6989 				sum += frag->size;
6990 				if (perf_raw_frag_last(frag))
6991 					break;
6992 				frag = frag->next;
6993 			} while (1);
6994 
6995 			size = round_up(sum + sizeof(u32), sizeof(u64));
6996 			raw->size = size - sizeof(u32);
6997 			frag->pad = raw->size - sum;
6998 		} else {
6999 			size = sizeof(u64);
7000 		}
7001 
7002 		header->size += size;
7003 	}
7004 
7005 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7006 		int size = sizeof(u64); /* nr */
7007 		if (data->br_stack) {
7008 			if (perf_sample_save_hw_index(event))
7009 				size += sizeof(u64);
7010 
7011 			size += data->br_stack->nr
7012 			      * sizeof(struct perf_branch_entry);
7013 		}
7014 		header->size += size;
7015 	}
7016 
7017 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7018 		perf_sample_regs_user(&data->regs_user, regs,
7019 				      &data->regs_user_copy);
7020 
7021 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7022 		/* regs dump ABI info */
7023 		int size = sizeof(u64);
7024 
7025 		if (data->regs_user.regs) {
7026 			u64 mask = event->attr.sample_regs_user;
7027 			size += hweight64(mask) * sizeof(u64);
7028 		}
7029 
7030 		header->size += size;
7031 	}
7032 
7033 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7034 		/*
7035 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7036 		 * processed as the last one or have additional check added
7037 		 * in case new sample type is added, because we could eat
7038 		 * up the rest of the sample size.
7039 		 */
7040 		u16 stack_size = event->attr.sample_stack_user;
7041 		u16 size = sizeof(u64);
7042 
7043 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7044 						     data->regs_user.regs);
7045 
7046 		/*
7047 		 * If there is something to dump, add space for the dump
7048 		 * itself and for the field that tells the dynamic size,
7049 		 * which is how many have been actually dumped.
7050 		 */
7051 		if (stack_size)
7052 			size += sizeof(u64) + stack_size;
7053 
7054 		data->stack_user_size = stack_size;
7055 		header->size += size;
7056 	}
7057 
7058 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7059 		/* regs dump ABI info */
7060 		int size = sizeof(u64);
7061 
7062 		perf_sample_regs_intr(&data->regs_intr, regs);
7063 
7064 		if (data->regs_intr.regs) {
7065 			u64 mask = event->attr.sample_regs_intr;
7066 
7067 			size += hweight64(mask) * sizeof(u64);
7068 		}
7069 
7070 		header->size += size;
7071 	}
7072 
7073 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7074 		data->phys_addr = perf_virt_to_phys(data->addr);
7075 
7076 #ifdef CONFIG_CGROUP_PERF
7077 	if (sample_type & PERF_SAMPLE_CGROUP) {
7078 		struct cgroup *cgrp;
7079 
7080 		/* protected by RCU */
7081 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7082 		data->cgroup = cgroup_id(cgrp);
7083 	}
7084 #endif
7085 
7086 	if (sample_type & PERF_SAMPLE_AUX) {
7087 		u64 size;
7088 
7089 		header->size += sizeof(u64); /* size */
7090 
7091 		/*
7092 		 * Given the 16bit nature of header::size, an AUX sample can
7093 		 * easily overflow it, what with all the preceding sample bits.
7094 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7095 		 * per sample in total (rounded down to 8 byte boundary).
7096 		 */
7097 		size = min_t(size_t, U16_MAX - header->size,
7098 			     event->attr.aux_sample_size);
7099 		size = rounddown(size, 8);
7100 		size = perf_prepare_sample_aux(event, data, size);
7101 
7102 		WARN_ON_ONCE(size + header->size > U16_MAX);
7103 		header->size += size;
7104 	}
7105 	/*
7106 	 * If you're adding more sample types here, you likely need to do
7107 	 * something about the overflowing header::size, like repurpose the
7108 	 * lowest 3 bits of size, which should be always zero at the moment.
7109 	 * This raises a more important question, do we really need 512k sized
7110 	 * samples and why, so good argumentation is in order for whatever you
7111 	 * do here next.
7112 	 */
7113 	WARN_ON_ONCE(header->size & 7);
7114 }
7115 
7116 static __always_inline int
7117 __perf_event_output(struct perf_event *event,
7118 		    struct perf_sample_data *data,
7119 		    struct pt_regs *regs,
7120 		    int (*output_begin)(struct perf_output_handle *,
7121 					struct perf_event *,
7122 					unsigned int))
7123 {
7124 	struct perf_output_handle handle;
7125 	struct perf_event_header header;
7126 	int err;
7127 
7128 	/* protect the callchain buffers */
7129 	rcu_read_lock();
7130 
7131 	perf_prepare_sample(&header, data, event, regs);
7132 
7133 	err = output_begin(&handle, event, header.size);
7134 	if (err)
7135 		goto exit;
7136 
7137 	perf_output_sample(&handle, &header, data, event);
7138 
7139 	perf_output_end(&handle);
7140 
7141 exit:
7142 	rcu_read_unlock();
7143 	return err;
7144 }
7145 
7146 void
7147 perf_event_output_forward(struct perf_event *event,
7148 			 struct perf_sample_data *data,
7149 			 struct pt_regs *regs)
7150 {
7151 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7152 }
7153 
7154 void
7155 perf_event_output_backward(struct perf_event *event,
7156 			   struct perf_sample_data *data,
7157 			   struct pt_regs *regs)
7158 {
7159 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7160 }
7161 
7162 int
7163 perf_event_output(struct perf_event *event,
7164 		  struct perf_sample_data *data,
7165 		  struct pt_regs *regs)
7166 {
7167 	return __perf_event_output(event, data, regs, perf_output_begin);
7168 }
7169 
7170 /*
7171  * read event_id
7172  */
7173 
7174 struct perf_read_event {
7175 	struct perf_event_header	header;
7176 
7177 	u32				pid;
7178 	u32				tid;
7179 };
7180 
7181 static void
7182 perf_event_read_event(struct perf_event *event,
7183 			struct task_struct *task)
7184 {
7185 	struct perf_output_handle handle;
7186 	struct perf_sample_data sample;
7187 	struct perf_read_event read_event = {
7188 		.header = {
7189 			.type = PERF_RECORD_READ,
7190 			.misc = 0,
7191 			.size = sizeof(read_event) + event->read_size,
7192 		},
7193 		.pid = perf_event_pid(event, task),
7194 		.tid = perf_event_tid(event, task),
7195 	};
7196 	int ret;
7197 
7198 	perf_event_header__init_id(&read_event.header, &sample, event);
7199 	ret = perf_output_begin(&handle, event, read_event.header.size);
7200 	if (ret)
7201 		return;
7202 
7203 	perf_output_put(&handle, read_event);
7204 	perf_output_read(&handle, event);
7205 	perf_event__output_id_sample(event, &handle, &sample);
7206 
7207 	perf_output_end(&handle);
7208 }
7209 
7210 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7211 
7212 static void
7213 perf_iterate_ctx(struct perf_event_context *ctx,
7214 		   perf_iterate_f output,
7215 		   void *data, bool all)
7216 {
7217 	struct perf_event *event;
7218 
7219 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7220 		if (!all) {
7221 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7222 				continue;
7223 			if (!event_filter_match(event))
7224 				continue;
7225 		}
7226 
7227 		output(event, data);
7228 	}
7229 }
7230 
7231 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7232 {
7233 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7234 	struct perf_event *event;
7235 
7236 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7237 		/*
7238 		 * Skip events that are not fully formed yet; ensure that
7239 		 * if we observe event->ctx, both event and ctx will be
7240 		 * complete enough. See perf_install_in_context().
7241 		 */
7242 		if (!smp_load_acquire(&event->ctx))
7243 			continue;
7244 
7245 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7246 			continue;
7247 		if (!event_filter_match(event))
7248 			continue;
7249 		output(event, data);
7250 	}
7251 }
7252 
7253 /*
7254  * Iterate all events that need to receive side-band events.
7255  *
7256  * For new callers; ensure that account_pmu_sb_event() includes
7257  * your event, otherwise it might not get delivered.
7258  */
7259 static void
7260 perf_iterate_sb(perf_iterate_f output, void *data,
7261 	       struct perf_event_context *task_ctx)
7262 {
7263 	struct perf_event_context *ctx;
7264 	int ctxn;
7265 
7266 	rcu_read_lock();
7267 	preempt_disable();
7268 
7269 	/*
7270 	 * If we have task_ctx != NULL we only notify the task context itself.
7271 	 * The task_ctx is set only for EXIT events before releasing task
7272 	 * context.
7273 	 */
7274 	if (task_ctx) {
7275 		perf_iterate_ctx(task_ctx, output, data, false);
7276 		goto done;
7277 	}
7278 
7279 	perf_iterate_sb_cpu(output, data);
7280 
7281 	for_each_task_context_nr(ctxn) {
7282 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7283 		if (ctx)
7284 			perf_iterate_ctx(ctx, output, data, false);
7285 	}
7286 done:
7287 	preempt_enable();
7288 	rcu_read_unlock();
7289 }
7290 
7291 /*
7292  * Clear all file-based filters at exec, they'll have to be
7293  * re-instated when/if these objects are mmapped again.
7294  */
7295 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7296 {
7297 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7298 	struct perf_addr_filter *filter;
7299 	unsigned int restart = 0, count = 0;
7300 	unsigned long flags;
7301 
7302 	if (!has_addr_filter(event))
7303 		return;
7304 
7305 	raw_spin_lock_irqsave(&ifh->lock, flags);
7306 	list_for_each_entry(filter, &ifh->list, entry) {
7307 		if (filter->path.dentry) {
7308 			event->addr_filter_ranges[count].start = 0;
7309 			event->addr_filter_ranges[count].size = 0;
7310 			restart++;
7311 		}
7312 
7313 		count++;
7314 	}
7315 
7316 	if (restart)
7317 		event->addr_filters_gen++;
7318 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7319 
7320 	if (restart)
7321 		perf_event_stop(event, 1);
7322 }
7323 
7324 void perf_event_exec(void)
7325 {
7326 	struct perf_event_context *ctx;
7327 	int ctxn;
7328 
7329 	rcu_read_lock();
7330 	for_each_task_context_nr(ctxn) {
7331 		ctx = current->perf_event_ctxp[ctxn];
7332 		if (!ctx)
7333 			continue;
7334 
7335 		perf_event_enable_on_exec(ctxn);
7336 
7337 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7338 				   true);
7339 	}
7340 	rcu_read_unlock();
7341 }
7342 
7343 struct remote_output {
7344 	struct perf_buffer	*rb;
7345 	int			err;
7346 };
7347 
7348 static void __perf_event_output_stop(struct perf_event *event, void *data)
7349 {
7350 	struct perf_event *parent = event->parent;
7351 	struct remote_output *ro = data;
7352 	struct perf_buffer *rb = ro->rb;
7353 	struct stop_event_data sd = {
7354 		.event	= event,
7355 	};
7356 
7357 	if (!has_aux(event))
7358 		return;
7359 
7360 	if (!parent)
7361 		parent = event;
7362 
7363 	/*
7364 	 * In case of inheritance, it will be the parent that links to the
7365 	 * ring-buffer, but it will be the child that's actually using it.
7366 	 *
7367 	 * We are using event::rb to determine if the event should be stopped,
7368 	 * however this may race with ring_buffer_attach() (through set_output),
7369 	 * which will make us skip the event that actually needs to be stopped.
7370 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7371 	 * its rb pointer.
7372 	 */
7373 	if (rcu_dereference(parent->rb) == rb)
7374 		ro->err = __perf_event_stop(&sd);
7375 }
7376 
7377 static int __perf_pmu_output_stop(void *info)
7378 {
7379 	struct perf_event *event = info;
7380 	struct pmu *pmu = event->ctx->pmu;
7381 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7382 	struct remote_output ro = {
7383 		.rb	= event->rb,
7384 	};
7385 
7386 	rcu_read_lock();
7387 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7388 	if (cpuctx->task_ctx)
7389 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7390 				   &ro, false);
7391 	rcu_read_unlock();
7392 
7393 	return ro.err;
7394 }
7395 
7396 static void perf_pmu_output_stop(struct perf_event *event)
7397 {
7398 	struct perf_event *iter;
7399 	int err, cpu;
7400 
7401 restart:
7402 	rcu_read_lock();
7403 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7404 		/*
7405 		 * For per-CPU events, we need to make sure that neither they
7406 		 * nor their children are running; for cpu==-1 events it's
7407 		 * sufficient to stop the event itself if it's active, since
7408 		 * it can't have children.
7409 		 */
7410 		cpu = iter->cpu;
7411 		if (cpu == -1)
7412 			cpu = READ_ONCE(iter->oncpu);
7413 
7414 		if (cpu == -1)
7415 			continue;
7416 
7417 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7418 		if (err == -EAGAIN) {
7419 			rcu_read_unlock();
7420 			goto restart;
7421 		}
7422 	}
7423 	rcu_read_unlock();
7424 }
7425 
7426 /*
7427  * task tracking -- fork/exit
7428  *
7429  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7430  */
7431 
7432 struct perf_task_event {
7433 	struct task_struct		*task;
7434 	struct perf_event_context	*task_ctx;
7435 
7436 	struct {
7437 		struct perf_event_header	header;
7438 
7439 		u32				pid;
7440 		u32				ppid;
7441 		u32				tid;
7442 		u32				ptid;
7443 		u64				time;
7444 	} event_id;
7445 };
7446 
7447 static int perf_event_task_match(struct perf_event *event)
7448 {
7449 	return event->attr.comm  || event->attr.mmap ||
7450 	       event->attr.mmap2 || event->attr.mmap_data ||
7451 	       event->attr.task;
7452 }
7453 
7454 static void perf_event_task_output(struct perf_event *event,
7455 				   void *data)
7456 {
7457 	struct perf_task_event *task_event = data;
7458 	struct perf_output_handle handle;
7459 	struct perf_sample_data	sample;
7460 	struct task_struct *task = task_event->task;
7461 	int ret, size = task_event->event_id.header.size;
7462 
7463 	if (!perf_event_task_match(event))
7464 		return;
7465 
7466 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7467 
7468 	ret = perf_output_begin(&handle, event,
7469 				task_event->event_id.header.size);
7470 	if (ret)
7471 		goto out;
7472 
7473 	task_event->event_id.pid = perf_event_pid(event, task);
7474 	task_event->event_id.ppid = perf_event_pid(event, current);
7475 
7476 	task_event->event_id.tid = perf_event_tid(event, task);
7477 	task_event->event_id.ptid = perf_event_tid(event, current);
7478 
7479 	task_event->event_id.time = perf_event_clock(event);
7480 
7481 	perf_output_put(&handle, task_event->event_id);
7482 
7483 	perf_event__output_id_sample(event, &handle, &sample);
7484 
7485 	perf_output_end(&handle);
7486 out:
7487 	task_event->event_id.header.size = size;
7488 }
7489 
7490 static void perf_event_task(struct task_struct *task,
7491 			      struct perf_event_context *task_ctx,
7492 			      int new)
7493 {
7494 	struct perf_task_event task_event;
7495 
7496 	if (!atomic_read(&nr_comm_events) &&
7497 	    !atomic_read(&nr_mmap_events) &&
7498 	    !atomic_read(&nr_task_events))
7499 		return;
7500 
7501 	task_event = (struct perf_task_event){
7502 		.task	  = task,
7503 		.task_ctx = task_ctx,
7504 		.event_id    = {
7505 			.header = {
7506 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7507 				.misc = 0,
7508 				.size = sizeof(task_event.event_id),
7509 			},
7510 			/* .pid  */
7511 			/* .ppid */
7512 			/* .tid  */
7513 			/* .ptid */
7514 			/* .time */
7515 		},
7516 	};
7517 
7518 	perf_iterate_sb(perf_event_task_output,
7519 		       &task_event,
7520 		       task_ctx);
7521 }
7522 
7523 void perf_event_fork(struct task_struct *task)
7524 {
7525 	perf_event_task(task, NULL, 1);
7526 	perf_event_namespaces(task);
7527 }
7528 
7529 /*
7530  * comm tracking
7531  */
7532 
7533 struct perf_comm_event {
7534 	struct task_struct	*task;
7535 	char			*comm;
7536 	int			comm_size;
7537 
7538 	struct {
7539 		struct perf_event_header	header;
7540 
7541 		u32				pid;
7542 		u32				tid;
7543 	} event_id;
7544 };
7545 
7546 static int perf_event_comm_match(struct perf_event *event)
7547 {
7548 	return event->attr.comm;
7549 }
7550 
7551 static void perf_event_comm_output(struct perf_event *event,
7552 				   void *data)
7553 {
7554 	struct perf_comm_event *comm_event = data;
7555 	struct perf_output_handle handle;
7556 	struct perf_sample_data sample;
7557 	int size = comm_event->event_id.header.size;
7558 	int ret;
7559 
7560 	if (!perf_event_comm_match(event))
7561 		return;
7562 
7563 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7564 	ret = perf_output_begin(&handle, event,
7565 				comm_event->event_id.header.size);
7566 
7567 	if (ret)
7568 		goto out;
7569 
7570 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7571 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7572 
7573 	perf_output_put(&handle, comm_event->event_id);
7574 	__output_copy(&handle, comm_event->comm,
7575 				   comm_event->comm_size);
7576 
7577 	perf_event__output_id_sample(event, &handle, &sample);
7578 
7579 	perf_output_end(&handle);
7580 out:
7581 	comm_event->event_id.header.size = size;
7582 }
7583 
7584 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7585 {
7586 	char comm[TASK_COMM_LEN];
7587 	unsigned int size;
7588 
7589 	memset(comm, 0, sizeof(comm));
7590 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7591 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7592 
7593 	comm_event->comm = comm;
7594 	comm_event->comm_size = size;
7595 
7596 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7597 
7598 	perf_iterate_sb(perf_event_comm_output,
7599 		       comm_event,
7600 		       NULL);
7601 }
7602 
7603 void perf_event_comm(struct task_struct *task, bool exec)
7604 {
7605 	struct perf_comm_event comm_event;
7606 
7607 	if (!atomic_read(&nr_comm_events))
7608 		return;
7609 
7610 	comm_event = (struct perf_comm_event){
7611 		.task	= task,
7612 		/* .comm      */
7613 		/* .comm_size */
7614 		.event_id  = {
7615 			.header = {
7616 				.type = PERF_RECORD_COMM,
7617 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7618 				/* .size */
7619 			},
7620 			/* .pid */
7621 			/* .tid */
7622 		},
7623 	};
7624 
7625 	perf_event_comm_event(&comm_event);
7626 }
7627 
7628 /*
7629  * namespaces tracking
7630  */
7631 
7632 struct perf_namespaces_event {
7633 	struct task_struct		*task;
7634 
7635 	struct {
7636 		struct perf_event_header	header;
7637 
7638 		u32				pid;
7639 		u32				tid;
7640 		u64				nr_namespaces;
7641 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7642 	} event_id;
7643 };
7644 
7645 static int perf_event_namespaces_match(struct perf_event *event)
7646 {
7647 	return event->attr.namespaces;
7648 }
7649 
7650 static void perf_event_namespaces_output(struct perf_event *event,
7651 					 void *data)
7652 {
7653 	struct perf_namespaces_event *namespaces_event = data;
7654 	struct perf_output_handle handle;
7655 	struct perf_sample_data sample;
7656 	u16 header_size = namespaces_event->event_id.header.size;
7657 	int ret;
7658 
7659 	if (!perf_event_namespaces_match(event))
7660 		return;
7661 
7662 	perf_event_header__init_id(&namespaces_event->event_id.header,
7663 				   &sample, event);
7664 	ret = perf_output_begin(&handle, event,
7665 				namespaces_event->event_id.header.size);
7666 	if (ret)
7667 		goto out;
7668 
7669 	namespaces_event->event_id.pid = perf_event_pid(event,
7670 							namespaces_event->task);
7671 	namespaces_event->event_id.tid = perf_event_tid(event,
7672 							namespaces_event->task);
7673 
7674 	perf_output_put(&handle, namespaces_event->event_id);
7675 
7676 	perf_event__output_id_sample(event, &handle, &sample);
7677 
7678 	perf_output_end(&handle);
7679 out:
7680 	namespaces_event->event_id.header.size = header_size;
7681 }
7682 
7683 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7684 				   struct task_struct *task,
7685 				   const struct proc_ns_operations *ns_ops)
7686 {
7687 	struct path ns_path;
7688 	struct inode *ns_inode;
7689 	int error;
7690 
7691 	error = ns_get_path(&ns_path, task, ns_ops);
7692 	if (!error) {
7693 		ns_inode = ns_path.dentry->d_inode;
7694 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7695 		ns_link_info->ino = ns_inode->i_ino;
7696 		path_put(&ns_path);
7697 	}
7698 }
7699 
7700 void perf_event_namespaces(struct task_struct *task)
7701 {
7702 	struct perf_namespaces_event namespaces_event;
7703 	struct perf_ns_link_info *ns_link_info;
7704 
7705 	if (!atomic_read(&nr_namespaces_events))
7706 		return;
7707 
7708 	namespaces_event = (struct perf_namespaces_event){
7709 		.task	= task,
7710 		.event_id  = {
7711 			.header = {
7712 				.type = PERF_RECORD_NAMESPACES,
7713 				.misc = 0,
7714 				.size = sizeof(namespaces_event.event_id),
7715 			},
7716 			/* .pid */
7717 			/* .tid */
7718 			.nr_namespaces = NR_NAMESPACES,
7719 			/* .link_info[NR_NAMESPACES] */
7720 		},
7721 	};
7722 
7723 	ns_link_info = namespaces_event.event_id.link_info;
7724 
7725 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7726 			       task, &mntns_operations);
7727 
7728 #ifdef CONFIG_USER_NS
7729 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7730 			       task, &userns_operations);
7731 #endif
7732 #ifdef CONFIG_NET_NS
7733 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7734 			       task, &netns_operations);
7735 #endif
7736 #ifdef CONFIG_UTS_NS
7737 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7738 			       task, &utsns_operations);
7739 #endif
7740 #ifdef CONFIG_IPC_NS
7741 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7742 			       task, &ipcns_operations);
7743 #endif
7744 #ifdef CONFIG_PID_NS
7745 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7746 			       task, &pidns_operations);
7747 #endif
7748 #ifdef CONFIG_CGROUPS
7749 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7750 			       task, &cgroupns_operations);
7751 #endif
7752 
7753 	perf_iterate_sb(perf_event_namespaces_output,
7754 			&namespaces_event,
7755 			NULL);
7756 }
7757 
7758 /*
7759  * cgroup tracking
7760  */
7761 #ifdef CONFIG_CGROUP_PERF
7762 
7763 struct perf_cgroup_event {
7764 	char				*path;
7765 	int				path_size;
7766 	struct {
7767 		struct perf_event_header	header;
7768 		u64				id;
7769 		char				path[];
7770 	} event_id;
7771 };
7772 
7773 static int perf_event_cgroup_match(struct perf_event *event)
7774 {
7775 	return event->attr.cgroup;
7776 }
7777 
7778 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7779 {
7780 	struct perf_cgroup_event *cgroup_event = data;
7781 	struct perf_output_handle handle;
7782 	struct perf_sample_data sample;
7783 	u16 header_size = cgroup_event->event_id.header.size;
7784 	int ret;
7785 
7786 	if (!perf_event_cgroup_match(event))
7787 		return;
7788 
7789 	perf_event_header__init_id(&cgroup_event->event_id.header,
7790 				   &sample, event);
7791 	ret = perf_output_begin(&handle, event,
7792 				cgroup_event->event_id.header.size);
7793 	if (ret)
7794 		goto out;
7795 
7796 	perf_output_put(&handle, cgroup_event->event_id);
7797 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7798 
7799 	perf_event__output_id_sample(event, &handle, &sample);
7800 
7801 	perf_output_end(&handle);
7802 out:
7803 	cgroup_event->event_id.header.size = header_size;
7804 }
7805 
7806 static void perf_event_cgroup(struct cgroup *cgrp)
7807 {
7808 	struct perf_cgroup_event cgroup_event;
7809 	char path_enomem[16] = "//enomem";
7810 	char *pathname;
7811 	size_t size;
7812 
7813 	if (!atomic_read(&nr_cgroup_events))
7814 		return;
7815 
7816 	cgroup_event = (struct perf_cgroup_event){
7817 		.event_id  = {
7818 			.header = {
7819 				.type = PERF_RECORD_CGROUP,
7820 				.misc = 0,
7821 				.size = sizeof(cgroup_event.event_id),
7822 			},
7823 			.id = cgroup_id(cgrp),
7824 		},
7825 	};
7826 
7827 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7828 	if (pathname == NULL) {
7829 		cgroup_event.path = path_enomem;
7830 	} else {
7831 		/* just to be sure to have enough space for alignment */
7832 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7833 		cgroup_event.path = pathname;
7834 	}
7835 
7836 	/*
7837 	 * Since our buffer works in 8 byte units we need to align our string
7838 	 * size to a multiple of 8. However, we must guarantee the tail end is
7839 	 * zero'd out to avoid leaking random bits to userspace.
7840 	 */
7841 	size = strlen(cgroup_event.path) + 1;
7842 	while (!IS_ALIGNED(size, sizeof(u64)))
7843 		cgroup_event.path[size++] = '\0';
7844 
7845 	cgroup_event.event_id.header.size += size;
7846 	cgroup_event.path_size = size;
7847 
7848 	perf_iterate_sb(perf_event_cgroup_output,
7849 			&cgroup_event,
7850 			NULL);
7851 
7852 	kfree(pathname);
7853 }
7854 
7855 #endif
7856 
7857 /*
7858  * mmap tracking
7859  */
7860 
7861 struct perf_mmap_event {
7862 	struct vm_area_struct	*vma;
7863 
7864 	const char		*file_name;
7865 	int			file_size;
7866 	int			maj, min;
7867 	u64			ino;
7868 	u64			ino_generation;
7869 	u32			prot, flags;
7870 
7871 	struct {
7872 		struct perf_event_header	header;
7873 
7874 		u32				pid;
7875 		u32				tid;
7876 		u64				start;
7877 		u64				len;
7878 		u64				pgoff;
7879 	} event_id;
7880 };
7881 
7882 static int perf_event_mmap_match(struct perf_event *event,
7883 				 void *data)
7884 {
7885 	struct perf_mmap_event *mmap_event = data;
7886 	struct vm_area_struct *vma = mmap_event->vma;
7887 	int executable = vma->vm_flags & VM_EXEC;
7888 
7889 	return (!executable && event->attr.mmap_data) ||
7890 	       (executable && (event->attr.mmap || event->attr.mmap2));
7891 }
7892 
7893 static void perf_event_mmap_output(struct perf_event *event,
7894 				   void *data)
7895 {
7896 	struct perf_mmap_event *mmap_event = data;
7897 	struct perf_output_handle handle;
7898 	struct perf_sample_data sample;
7899 	int size = mmap_event->event_id.header.size;
7900 	u32 type = mmap_event->event_id.header.type;
7901 	int ret;
7902 
7903 	if (!perf_event_mmap_match(event, data))
7904 		return;
7905 
7906 	if (event->attr.mmap2) {
7907 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7908 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7909 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7910 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7911 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7912 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7913 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7914 	}
7915 
7916 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7917 	ret = perf_output_begin(&handle, event,
7918 				mmap_event->event_id.header.size);
7919 	if (ret)
7920 		goto out;
7921 
7922 	mmap_event->event_id.pid = perf_event_pid(event, current);
7923 	mmap_event->event_id.tid = perf_event_tid(event, current);
7924 
7925 	perf_output_put(&handle, mmap_event->event_id);
7926 
7927 	if (event->attr.mmap2) {
7928 		perf_output_put(&handle, mmap_event->maj);
7929 		perf_output_put(&handle, mmap_event->min);
7930 		perf_output_put(&handle, mmap_event->ino);
7931 		perf_output_put(&handle, mmap_event->ino_generation);
7932 		perf_output_put(&handle, mmap_event->prot);
7933 		perf_output_put(&handle, mmap_event->flags);
7934 	}
7935 
7936 	__output_copy(&handle, mmap_event->file_name,
7937 				   mmap_event->file_size);
7938 
7939 	perf_event__output_id_sample(event, &handle, &sample);
7940 
7941 	perf_output_end(&handle);
7942 out:
7943 	mmap_event->event_id.header.size = size;
7944 	mmap_event->event_id.header.type = type;
7945 }
7946 
7947 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7948 {
7949 	struct vm_area_struct *vma = mmap_event->vma;
7950 	struct file *file = vma->vm_file;
7951 	int maj = 0, min = 0;
7952 	u64 ino = 0, gen = 0;
7953 	u32 prot = 0, flags = 0;
7954 	unsigned int size;
7955 	char tmp[16];
7956 	char *buf = NULL;
7957 	char *name;
7958 
7959 	if (vma->vm_flags & VM_READ)
7960 		prot |= PROT_READ;
7961 	if (vma->vm_flags & VM_WRITE)
7962 		prot |= PROT_WRITE;
7963 	if (vma->vm_flags & VM_EXEC)
7964 		prot |= PROT_EXEC;
7965 
7966 	if (vma->vm_flags & VM_MAYSHARE)
7967 		flags = MAP_SHARED;
7968 	else
7969 		flags = MAP_PRIVATE;
7970 
7971 	if (vma->vm_flags & VM_DENYWRITE)
7972 		flags |= MAP_DENYWRITE;
7973 	if (vma->vm_flags & VM_MAYEXEC)
7974 		flags |= MAP_EXECUTABLE;
7975 	if (vma->vm_flags & VM_LOCKED)
7976 		flags |= MAP_LOCKED;
7977 	if (is_vm_hugetlb_page(vma))
7978 		flags |= MAP_HUGETLB;
7979 
7980 	if (file) {
7981 		struct inode *inode;
7982 		dev_t dev;
7983 
7984 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7985 		if (!buf) {
7986 			name = "//enomem";
7987 			goto cpy_name;
7988 		}
7989 		/*
7990 		 * d_path() works from the end of the rb backwards, so we
7991 		 * need to add enough zero bytes after the string to handle
7992 		 * the 64bit alignment we do later.
7993 		 */
7994 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7995 		if (IS_ERR(name)) {
7996 			name = "//toolong";
7997 			goto cpy_name;
7998 		}
7999 		inode = file_inode(vma->vm_file);
8000 		dev = inode->i_sb->s_dev;
8001 		ino = inode->i_ino;
8002 		gen = inode->i_generation;
8003 		maj = MAJOR(dev);
8004 		min = MINOR(dev);
8005 
8006 		goto got_name;
8007 	} else {
8008 		if (vma->vm_ops && vma->vm_ops->name) {
8009 			name = (char *) vma->vm_ops->name(vma);
8010 			if (name)
8011 				goto cpy_name;
8012 		}
8013 
8014 		name = (char *)arch_vma_name(vma);
8015 		if (name)
8016 			goto cpy_name;
8017 
8018 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8019 				vma->vm_end >= vma->vm_mm->brk) {
8020 			name = "[heap]";
8021 			goto cpy_name;
8022 		}
8023 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8024 				vma->vm_end >= vma->vm_mm->start_stack) {
8025 			name = "[stack]";
8026 			goto cpy_name;
8027 		}
8028 
8029 		name = "//anon";
8030 		goto cpy_name;
8031 	}
8032 
8033 cpy_name:
8034 	strlcpy(tmp, name, sizeof(tmp));
8035 	name = tmp;
8036 got_name:
8037 	/*
8038 	 * Since our buffer works in 8 byte units we need to align our string
8039 	 * size to a multiple of 8. However, we must guarantee the tail end is
8040 	 * zero'd out to avoid leaking random bits to userspace.
8041 	 */
8042 	size = strlen(name)+1;
8043 	while (!IS_ALIGNED(size, sizeof(u64)))
8044 		name[size++] = '\0';
8045 
8046 	mmap_event->file_name = name;
8047 	mmap_event->file_size = size;
8048 	mmap_event->maj = maj;
8049 	mmap_event->min = min;
8050 	mmap_event->ino = ino;
8051 	mmap_event->ino_generation = gen;
8052 	mmap_event->prot = prot;
8053 	mmap_event->flags = flags;
8054 
8055 	if (!(vma->vm_flags & VM_EXEC))
8056 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8057 
8058 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8059 
8060 	perf_iterate_sb(perf_event_mmap_output,
8061 		       mmap_event,
8062 		       NULL);
8063 
8064 	kfree(buf);
8065 }
8066 
8067 /*
8068  * Check whether inode and address range match filter criteria.
8069  */
8070 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8071 				     struct file *file, unsigned long offset,
8072 				     unsigned long size)
8073 {
8074 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8075 	if (!filter->path.dentry)
8076 		return false;
8077 
8078 	if (d_inode(filter->path.dentry) != file_inode(file))
8079 		return false;
8080 
8081 	if (filter->offset > offset + size)
8082 		return false;
8083 
8084 	if (filter->offset + filter->size < offset)
8085 		return false;
8086 
8087 	return true;
8088 }
8089 
8090 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8091 					struct vm_area_struct *vma,
8092 					struct perf_addr_filter_range *fr)
8093 {
8094 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8095 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8096 	struct file *file = vma->vm_file;
8097 
8098 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8099 		return false;
8100 
8101 	if (filter->offset < off) {
8102 		fr->start = vma->vm_start;
8103 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8104 	} else {
8105 		fr->start = vma->vm_start + filter->offset - off;
8106 		fr->size = min(vma->vm_end - fr->start, filter->size);
8107 	}
8108 
8109 	return true;
8110 }
8111 
8112 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8113 {
8114 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8115 	struct vm_area_struct *vma = data;
8116 	struct perf_addr_filter *filter;
8117 	unsigned int restart = 0, count = 0;
8118 	unsigned long flags;
8119 
8120 	if (!has_addr_filter(event))
8121 		return;
8122 
8123 	if (!vma->vm_file)
8124 		return;
8125 
8126 	raw_spin_lock_irqsave(&ifh->lock, flags);
8127 	list_for_each_entry(filter, &ifh->list, entry) {
8128 		if (perf_addr_filter_vma_adjust(filter, vma,
8129 						&event->addr_filter_ranges[count]))
8130 			restart++;
8131 
8132 		count++;
8133 	}
8134 
8135 	if (restart)
8136 		event->addr_filters_gen++;
8137 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8138 
8139 	if (restart)
8140 		perf_event_stop(event, 1);
8141 }
8142 
8143 /*
8144  * Adjust all task's events' filters to the new vma
8145  */
8146 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8147 {
8148 	struct perf_event_context *ctx;
8149 	int ctxn;
8150 
8151 	/*
8152 	 * Data tracing isn't supported yet and as such there is no need
8153 	 * to keep track of anything that isn't related to executable code:
8154 	 */
8155 	if (!(vma->vm_flags & VM_EXEC))
8156 		return;
8157 
8158 	rcu_read_lock();
8159 	for_each_task_context_nr(ctxn) {
8160 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8161 		if (!ctx)
8162 			continue;
8163 
8164 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8165 	}
8166 	rcu_read_unlock();
8167 }
8168 
8169 void perf_event_mmap(struct vm_area_struct *vma)
8170 {
8171 	struct perf_mmap_event mmap_event;
8172 
8173 	if (!atomic_read(&nr_mmap_events))
8174 		return;
8175 
8176 	mmap_event = (struct perf_mmap_event){
8177 		.vma	= vma,
8178 		/* .file_name */
8179 		/* .file_size */
8180 		.event_id  = {
8181 			.header = {
8182 				.type = PERF_RECORD_MMAP,
8183 				.misc = PERF_RECORD_MISC_USER,
8184 				/* .size */
8185 			},
8186 			/* .pid */
8187 			/* .tid */
8188 			.start  = vma->vm_start,
8189 			.len    = vma->vm_end - vma->vm_start,
8190 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8191 		},
8192 		/* .maj (attr_mmap2 only) */
8193 		/* .min (attr_mmap2 only) */
8194 		/* .ino (attr_mmap2 only) */
8195 		/* .ino_generation (attr_mmap2 only) */
8196 		/* .prot (attr_mmap2 only) */
8197 		/* .flags (attr_mmap2 only) */
8198 	};
8199 
8200 	perf_addr_filters_adjust(vma);
8201 	perf_event_mmap_event(&mmap_event);
8202 }
8203 
8204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8205 			  unsigned long size, u64 flags)
8206 {
8207 	struct perf_output_handle handle;
8208 	struct perf_sample_data sample;
8209 	struct perf_aux_event {
8210 		struct perf_event_header	header;
8211 		u64				offset;
8212 		u64				size;
8213 		u64				flags;
8214 	} rec = {
8215 		.header = {
8216 			.type = PERF_RECORD_AUX,
8217 			.misc = 0,
8218 			.size = sizeof(rec),
8219 		},
8220 		.offset		= head,
8221 		.size		= size,
8222 		.flags		= flags,
8223 	};
8224 	int ret;
8225 
8226 	perf_event_header__init_id(&rec.header, &sample, event);
8227 	ret = perf_output_begin(&handle, event, rec.header.size);
8228 
8229 	if (ret)
8230 		return;
8231 
8232 	perf_output_put(&handle, rec);
8233 	perf_event__output_id_sample(event, &handle, &sample);
8234 
8235 	perf_output_end(&handle);
8236 }
8237 
8238 /*
8239  * Lost/dropped samples logging
8240  */
8241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8242 {
8243 	struct perf_output_handle handle;
8244 	struct perf_sample_data sample;
8245 	int ret;
8246 
8247 	struct {
8248 		struct perf_event_header	header;
8249 		u64				lost;
8250 	} lost_samples_event = {
8251 		.header = {
8252 			.type = PERF_RECORD_LOST_SAMPLES,
8253 			.misc = 0,
8254 			.size = sizeof(lost_samples_event),
8255 		},
8256 		.lost		= lost,
8257 	};
8258 
8259 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8260 
8261 	ret = perf_output_begin(&handle, event,
8262 				lost_samples_event.header.size);
8263 	if (ret)
8264 		return;
8265 
8266 	perf_output_put(&handle, lost_samples_event);
8267 	perf_event__output_id_sample(event, &handle, &sample);
8268 	perf_output_end(&handle);
8269 }
8270 
8271 /*
8272  * context_switch tracking
8273  */
8274 
8275 struct perf_switch_event {
8276 	struct task_struct	*task;
8277 	struct task_struct	*next_prev;
8278 
8279 	struct {
8280 		struct perf_event_header	header;
8281 		u32				next_prev_pid;
8282 		u32				next_prev_tid;
8283 	} event_id;
8284 };
8285 
8286 static int perf_event_switch_match(struct perf_event *event)
8287 {
8288 	return event->attr.context_switch;
8289 }
8290 
8291 static void perf_event_switch_output(struct perf_event *event, void *data)
8292 {
8293 	struct perf_switch_event *se = data;
8294 	struct perf_output_handle handle;
8295 	struct perf_sample_data sample;
8296 	int ret;
8297 
8298 	if (!perf_event_switch_match(event))
8299 		return;
8300 
8301 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8302 	if (event->ctx->task) {
8303 		se->event_id.header.type = PERF_RECORD_SWITCH;
8304 		se->event_id.header.size = sizeof(se->event_id.header);
8305 	} else {
8306 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8307 		se->event_id.header.size = sizeof(se->event_id);
8308 		se->event_id.next_prev_pid =
8309 					perf_event_pid(event, se->next_prev);
8310 		se->event_id.next_prev_tid =
8311 					perf_event_tid(event, se->next_prev);
8312 	}
8313 
8314 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8315 
8316 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8317 	if (ret)
8318 		return;
8319 
8320 	if (event->ctx->task)
8321 		perf_output_put(&handle, se->event_id.header);
8322 	else
8323 		perf_output_put(&handle, se->event_id);
8324 
8325 	perf_event__output_id_sample(event, &handle, &sample);
8326 
8327 	perf_output_end(&handle);
8328 }
8329 
8330 static void perf_event_switch(struct task_struct *task,
8331 			      struct task_struct *next_prev, bool sched_in)
8332 {
8333 	struct perf_switch_event switch_event;
8334 
8335 	/* N.B. caller checks nr_switch_events != 0 */
8336 
8337 	switch_event = (struct perf_switch_event){
8338 		.task		= task,
8339 		.next_prev	= next_prev,
8340 		.event_id	= {
8341 			.header = {
8342 				/* .type */
8343 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8344 				/* .size */
8345 			},
8346 			/* .next_prev_pid */
8347 			/* .next_prev_tid */
8348 		},
8349 	};
8350 
8351 	if (!sched_in && task->state == TASK_RUNNING)
8352 		switch_event.event_id.header.misc |=
8353 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8354 
8355 	perf_iterate_sb(perf_event_switch_output,
8356 		       &switch_event,
8357 		       NULL);
8358 }
8359 
8360 /*
8361  * IRQ throttle logging
8362  */
8363 
8364 static void perf_log_throttle(struct perf_event *event, int enable)
8365 {
8366 	struct perf_output_handle handle;
8367 	struct perf_sample_data sample;
8368 	int ret;
8369 
8370 	struct {
8371 		struct perf_event_header	header;
8372 		u64				time;
8373 		u64				id;
8374 		u64				stream_id;
8375 	} throttle_event = {
8376 		.header = {
8377 			.type = PERF_RECORD_THROTTLE,
8378 			.misc = 0,
8379 			.size = sizeof(throttle_event),
8380 		},
8381 		.time		= perf_event_clock(event),
8382 		.id		= primary_event_id(event),
8383 		.stream_id	= event->id,
8384 	};
8385 
8386 	if (enable)
8387 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8388 
8389 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8390 
8391 	ret = perf_output_begin(&handle, event,
8392 				throttle_event.header.size);
8393 	if (ret)
8394 		return;
8395 
8396 	perf_output_put(&handle, throttle_event);
8397 	perf_event__output_id_sample(event, &handle, &sample);
8398 	perf_output_end(&handle);
8399 }
8400 
8401 /*
8402  * ksymbol register/unregister tracking
8403  */
8404 
8405 struct perf_ksymbol_event {
8406 	const char	*name;
8407 	int		name_len;
8408 	struct {
8409 		struct perf_event_header        header;
8410 		u64				addr;
8411 		u32				len;
8412 		u16				ksym_type;
8413 		u16				flags;
8414 	} event_id;
8415 };
8416 
8417 static int perf_event_ksymbol_match(struct perf_event *event)
8418 {
8419 	return event->attr.ksymbol;
8420 }
8421 
8422 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8423 {
8424 	struct perf_ksymbol_event *ksymbol_event = data;
8425 	struct perf_output_handle handle;
8426 	struct perf_sample_data sample;
8427 	int ret;
8428 
8429 	if (!perf_event_ksymbol_match(event))
8430 		return;
8431 
8432 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8433 				   &sample, event);
8434 	ret = perf_output_begin(&handle, event,
8435 				ksymbol_event->event_id.header.size);
8436 	if (ret)
8437 		return;
8438 
8439 	perf_output_put(&handle, ksymbol_event->event_id);
8440 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8441 	perf_event__output_id_sample(event, &handle, &sample);
8442 
8443 	perf_output_end(&handle);
8444 }
8445 
8446 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8447 			const char *sym)
8448 {
8449 	struct perf_ksymbol_event ksymbol_event;
8450 	char name[KSYM_NAME_LEN];
8451 	u16 flags = 0;
8452 	int name_len;
8453 
8454 	if (!atomic_read(&nr_ksymbol_events))
8455 		return;
8456 
8457 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8458 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8459 		goto err;
8460 
8461 	strlcpy(name, sym, KSYM_NAME_LEN);
8462 	name_len = strlen(name) + 1;
8463 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8464 		name[name_len++] = '\0';
8465 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8466 
8467 	if (unregister)
8468 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8469 
8470 	ksymbol_event = (struct perf_ksymbol_event){
8471 		.name = name,
8472 		.name_len = name_len,
8473 		.event_id = {
8474 			.header = {
8475 				.type = PERF_RECORD_KSYMBOL,
8476 				.size = sizeof(ksymbol_event.event_id) +
8477 					name_len,
8478 			},
8479 			.addr = addr,
8480 			.len = len,
8481 			.ksym_type = ksym_type,
8482 			.flags = flags,
8483 		},
8484 	};
8485 
8486 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8487 	return;
8488 err:
8489 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8490 }
8491 
8492 /*
8493  * bpf program load/unload tracking
8494  */
8495 
8496 struct perf_bpf_event {
8497 	struct bpf_prog	*prog;
8498 	struct {
8499 		struct perf_event_header        header;
8500 		u16				type;
8501 		u16				flags;
8502 		u32				id;
8503 		u8				tag[BPF_TAG_SIZE];
8504 	} event_id;
8505 };
8506 
8507 static int perf_event_bpf_match(struct perf_event *event)
8508 {
8509 	return event->attr.bpf_event;
8510 }
8511 
8512 static void perf_event_bpf_output(struct perf_event *event, void *data)
8513 {
8514 	struct perf_bpf_event *bpf_event = data;
8515 	struct perf_output_handle handle;
8516 	struct perf_sample_data sample;
8517 	int ret;
8518 
8519 	if (!perf_event_bpf_match(event))
8520 		return;
8521 
8522 	perf_event_header__init_id(&bpf_event->event_id.header,
8523 				   &sample, event);
8524 	ret = perf_output_begin(&handle, event,
8525 				bpf_event->event_id.header.size);
8526 	if (ret)
8527 		return;
8528 
8529 	perf_output_put(&handle, bpf_event->event_id);
8530 	perf_event__output_id_sample(event, &handle, &sample);
8531 
8532 	perf_output_end(&handle);
8533 }
8534 
8535 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8536 					 enum perf_bpf_event_type type)
8537 {
8538 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8539 	int i;
8540 
8541 	if (prog->aux->func_cnt == 0) {
8542 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8543 				   (u64)(unsigned long)prog->bpf_func,
8544 				   prog->jited_len, unregister,
8545 				   prog->aux->ksym.name);
8546 	} else {
8547 		for (i = 0; i < prog->aux->func_cnt; i++) {
8548 			struct bpf_prog *subprog = prog->aux->func[i];
8549 
8550 			perf_event_ksymbol(
8551 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8552 				(u64)(unsigned long)subprog->bpf_func,
8553 				subprog->jited_len, unregister,
8554 				prog->aux->ksym.name);
8555 		}
8556 	}
8557 }
8558 
8559 void perf_event_bpf_event(struct bpf_prog *prog,
8560 			  enum perf_bpf_event_type type,
8561 			  u16 flags)
8562 {
8563 	struct perf_bpf_event bpf_event;
8564 
8565 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8566 	    type >= PERF_BPF_EVENT_MAX)
8567 		return;
8568 
8569 	switch (type) {
8570 	case PERF_BPF_EVENT_PROG_LOAD:
8571 	case PERF_BPF_EVENT_PROG_UNLOAD:
8572 		if (atomic_read(&nr_ksymbol_events))
8573 			perf_event_bpf_emit_ksymbols(prog, type);
8574 		break;
8575 	default:
8576 		break;
8577 	}
8578 
8579 	if (!atomic_read(&nr_bpf_events))
8580 		return;
8581 
8582 	bpf_event = (struct perf_bpf_event){
8583 		.prog = prog,
8584 		.event_id = {
8585 			.header = {
8586 				.type = PERF_RECORD_BPF_EVENT,
8587 				.size = sizeof(bpf_event.event_id),
8588 			},
8589 			.type = type,
8590 			.flags = flags,
8591 			.id = prog->aux->id,
8592 		},
8593 	};
8594 
8595 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8596 
8597 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8598 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8599 }
8600 
8601 void perf_event_itrace_started(struct perf_event *event)
8602 {
8603 	event->attach_state |= PERF_ATTACH_ITRACE;
8604 }
8605 
8606 static void perf_log_itrace_start(struct perf_event *event)
8607 {
8608 	struct perf_output_handle handle;
8609 	struct perf_sample_data sample;
8610 	struct perf_aux_event {
8611 		struct perf_event_header        header;
8612 		u32				pid;
8613 		u32				tid;
8614 	} rec;
8615 	int ret;
8616 
8617 	if (event->parent)
8618 		event = event->parent;
8619 
8620 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8621 	    event->attach_state & PERF_ATTACH_ITRACE)
8622 		return;
8623 
8624 	rec.header.type	= PERF_RECORD_ITRACE_START;
8625 	rec.header.misc	= 0;
8626 	rec.header.size	= sizeof(rec);
8627 	rec.pid	= perf_event_pid(event, current);
8628 	rec.tid	= perf_event_tid(event, current);
8629 
8630 	perf_event_header__init_id(&rec.header, &sample, event);
8631 	ret = perf_output_begin(&handle, event, rec.header.size);
8632 
8633 	if (ret)
8634 		return;
8635 
8636 	perf_output_put(&handle, rec);
8637 	perf_event__output_id_sample(event, &handle, &sample);
8638 
8639 	perf_output_end(&handle);
8640 }
8641 
8642 static int
8643 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8644 {
8645 	struct hw_perf_event *hwc = &event->hw;
8646 	int ret = 0;
8647 	u64 seq;
8648 
8649 	seq = __this_cpu_read(perf_throttled_seq);
8650 	if (seq != hwc->interrupts_seq) {
8651 		hwc->interrupts_seq = seq;
8652 		hwc->interrupts = 1;
8653 	} else {
8654 		hwc->interrupts++;
8655 		if (unlikely(throttle
8656 			     && hwc->interrupts >= max_samples_per_tick)) {
8657 			__this_cpu_inc(perf_throttled_count);
8658 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8659 			hwc->interrupts = MAX_INTERRUPTS;
8660 			perf_log_throttle(event, 0);
8661 			ret = 1;
8662 		}
8663 	}
8664 
8665 	if (event->attr.freq) {
8666 		u64 now = perf_clock();
8667 		s64 delta = now - hwc->freq_time_stamp;
8668 
8669 		hwc->freq_time_stamp = now;
8670 
8671 		if (delta > 0 && delta < 2*TICK_NSEC)
8672 			perf_adjust_period(event, delta, hwc->last_period, true);
8673 	}
8674 
8675 	return ret;
8676 }
8677 
8678 int perf_event_account_interrupt(struct perf_event *event)
8679 {
8680 	return __perf_event_account_interrupt(event, 1);
8681 }
8682 
8683 /*
8684  * Generic event overflow handling, sampling.
8685  */
8686 
8687 static int __perf_event_overflow(struct perf_event *event,
8688 				   int throttle, struct perf_sample_data *data,
8689 				   struct pt_regs *regs)
8690 {
8691 	int events = atomic_read(&event->event_limit);
8692 	int ret = 0;
8693 
8694 	/*
8695 	 * Non-sampling counters might still use the PMI to fold short
8696 	 * hardware counters, ignore those.
8697 	 */
8698 	if (unlikely(!is_sampling_event(event)))
8699 		return 0;
8700 
8701 	ret = __perf_event_account_interrupt(event, throttle);
8702 
8703 	/*
8704 	 * XXX event_limit might not quite work as expected on inherited
8705 	 * events
8706 	 */
8707 
8708 	event->pending_kill = POLL_IN;
8709 	if (events && atomic_dec_and_test(&event->event_limit)) {
8710 		ret = 1;
8711 		event->pending_kill = POLL_HUP;
8712 
8713 		perf_event_disable_inatomic(event);
8714 	}
8715 
8716 	READ_ONCE(event->overflow_handler)(event, data, regs);
8717 
8718 	if (*perf_event_fasync(event) && event->pending_kill) {
8719 		event->pending_wakeup = 1;
8720 		irq_work_queue(&event->pending);
8721 	}
8722 
8723 	return ret;
8724 }
8725 
8726 int perf_event_overflow(struct perf_event *event,
8727 			  struct perf_sample_data *data,
8728 			  struct pt_regs *regs)
8729 {
8730 	return __perf_event_overflow(event, 1, data, regs);
8731 }
8732 
8733 /*
8734  * Generic software event infrastructure
8735  */
8736 
8737 struct swevent_htable {
8738 	struct swevent_hlist		*swevent_hlist;
8739 	struct mutex			hlist_mutex;
8740 	int				hlist_refcount;
8741 
8742 	/* Recursion avoidance in each contexts */
8743 	int				recursion[PERF_NR_CONTEXTS];
8744 };
8745 
8746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8747 
8748 /*
8749  * We directly increment event->count and keep a second value in
8750  * event->hw.period_left to count intervals. This period event
8751  * is kept in the range [-sample_period, 0] so that we can use the
8752  * sign as trigger.
8753  */
8754 
8755 u64 perf_swevent_set_period(struct perf_event *event)
8756 {
8757 	struct hw_perf_event *hwc = &event->hw;
8758 	u64 period = hwc->last_period;
8759 	u64 nr, offset;
8760 	s64 old, val;
8761 
8762 	hwc->last_period = hwc->sample_period;
8763 
8764 again:
8765 	old = val = local64_read(&hwc->period_left);
8766 	if (val < 0)
8767 		return 0;
8768 
8769 	nr = div64_u64(period + val, period);
8770 	offset = nr * period;
8771 	val -= offset;
8772 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8773 		goto again;
8774 
8775 	return nr;
8776 }
8777 
8778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8779 				    struct perf_sample_data *data,
8780 				    struct pt_regs *regs)
8781 {
8782 	struct hw_perf_event *hwc = &event->hw;
8783 	int throttle = 0;
8784 
8785 	if (!overflow)
8786 		overflow = perf_swevent_set_period(event);
8787 
8788 	if (hwc->interrupts == MAX_INTERRUPTS)
8789 		return;
8790 
8791 	for (; overflow; overflow--) {
8792 		if (__perf_event_overflow(event, throttle,
8793 					    data, regs)) {
8794 			/*
8795 			 * We inhibit the overflow from happening when
8796 			 * hwc->interrupts == MAX_INTERRUPTS.
8797 			 */
8798 			break;
8799 		}
8800 		throttle = 1;
8801 	}
8802 }
8803 
8804 static void perf_swevent_event(struct perf_event *event, u64 nr,
8805 			       struct perf_sample_data *data,
8806 			       struct pt_regs *regs)
8807 {
8808 	struct hw_perf_event *hwc = &event->hw;
8809 
8810 	local64_add(nr, &event->count);
8811 
8812 	if (!regs)
8813 		return;
8814 
8815 	if (!is_sampling_event(event))
8816 		return;
8817 
8818 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8819 		data->period = nr;
8820 		return perf_swevent_overflow(event, 1, data, regs);
8821 	} else
8822 		data->period = event->hw.last_period;
8823 
8824 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8825 		return perf_swevent_overflow(event, 1, data, regs);
8826 
8827 	if (local64_add_negative(nr, &hwc->period_left))
8828 		return;
8829 
8830 	perf_swevent_overflow(event, 0, data, regs);
8831 }
8832 
8833 static int perf_exclude_event(struct perf_event *event,
8834 			      struct pt_regs *regs)
8835 {
8836 	if (event->hw.state & PERF_HES_STOPPED)
8837 		return 1;
8838 
8839 	if (regs) {
8840 		if (event->attr.exclude_user && user_mode(regs))
8841 			return 1;
8842 
8843 		if (event->attr.exclude_kernel && !user_mode(regs))
8844 			return 1;
8845 	}
8846 
8847 	return 0;
8848 }
8849 
8850 static int perf_swevent_match(struct perf_event *event,
8851 				enum perf_type_id type,
8852 				u32 event_id,
8853 				struct perf_sample_data *data,
8854 				struct pt_regs *regs)
8855 {
8856 	if (event->attr.type != type)
8857 		return 0;
8858 
8859 	if (event->attr.config != event_id)
8860 		return 0;
8861 
8862 	if (perf_exclude_event(event, regs))
8863 		return 0;
8864 
8865 	return 1;
8866 }
8867 
8868 static inline u64 swevent_hash(u64 type, u32 event_id)
8869 {
8870 	u64 val = event_id | (type << 32);
8871 
8872 	return hash_64(val, SWEVENT_HLIST_BITS);
8873 }
8874 
8875 static inline struct hlist_head *
8876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8877 {
8878 	u64 hash = swevent_hash(type, event_id);
8879 
8880 	return &hlist->heads[hash];
8881 }
8882 
8883 /* For the read side: events when they trigger */
8884 static inline struct hlist_head *
8885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8886 {
8887 	struct swevent_hlist *hlist;
8888 
8889 	hlist = rcu_dereference(swhash->swevent_hlist);
8890 	if (!hlist)
8891 		return NULL;
8892 
8893 	return __find_swevent_head(hlist, type, event_id);
8894 }
8895 
8896 /* For the event head insertion and removal in the hlist */
8897 static inline struct hlist_head *
8898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8899 {
8900 	struct swevent_hlist *hlist;
8901 	u32 event_id = event->attr.config;
8902 	u64 type = event->attr.type;
8903 
8904 	/*
8905 	 * Event scheduling is always serialized against hlist allocation
8906 	 * and release. Which makes the protected version suitable here.
8907 	 * The context lock guarantees that.
8908 	 */
8909 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8910 					  lockdep_is_held(&event->ctx->lock));
8911 	if (!hlist)
8912 		return NULL;
8913 
8914 	return __find_swevent_head(hlist, type, event_id);
8915 }
8916 
8917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8918 				    u64 nr,
8919 				    struct perf_sample_data *data,
8920 				    struct pt_regs *regs)
8921 {
8922 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8923 	struct perf_event *event;
8924 	struct hlist_head *head;
8925 
8926 	rcu_read_lock();
8927 	head = find_swevent_head_rcu(swhash, type, event_id);
8928 	if (!head)
8929 		goto end;
8930 
8931 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8932 		if (perf_swevent_match(event, type, event_id, data, regs))
8933 			perf_swevent_event(event, nr, data, regs);
8934 	}
8935 end:
8936 	rcu_read_unlock();
8937 }
8938 
8939 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8940 
8941 int perf_swevent_get_recursion_context(void)
8942 {
8943 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8944 
8945 	return get_recursion_context(swhash->recursion);
8946 }
8947 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8948 
8949 void perf_swevent_put_recursion_context(int rctx)
8950 {
8951 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8952 
8953 	put_recursion_context(swhash->recursion, rctx);
8954 }
8955 
8956 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8957 {
8958 	struct perf_sample_data data;
8959 
8960 	if (WARN_ON_ONCE(!regs))
8961 		return;
8962 
8963 	perf_sample_data_init(&data, addr, 0);
8964 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8965 }
8966 
8967 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8968 {
8969 	int rctx;
8970 
8971 	preempt_disable_notrace();
8972 	rctx = perf_swevent_get_recursion_context();
8973 	if (unlikely(rctx < 0))
8974 		goto fail;
8975 
8976 	___perf_sw_event(event_id, nr, regs, addr);
8977 
8978 	perf_swevent_put_recursion_context(rctx);
8979 fail:
8980 	preempt_enable_notrace();
8981 }
8982 
8983 static void perf_swevent_read(struct perf_event *event)
8984 {
8985 }
8986 
8987 static int perf_swevent_add(struct perf_event *event, int flags)
8988 {
8989 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8990 	struct hw_perf_event *hwc = &event->hw;
8991 	struct hlist_head *head;
8992 
8993 	if (is_sampling_event(event)) {
8994 		hwc->last_period = hwc->sample_period;
8995 		perf_swevent_set_period(event);
8996 	}
8997 
8998 	hwc->state = !(flags & PERF_EF_START);
8999 
9000 	head = find_swevent_head(swhash, event);
9001 	if (WARN_ON_ONCE(!head))
9002 		return -EINVAL;
9003 
9004 	hlist_add_head_rcu(&event->hlist_entry, head);
9005 	perf_event_update_userpage(event);
9006 
9007 	return 0;
9008 }
9009 
9010 static void perf_swevent_del(struct perf_event *event, int flags)
9011 {
9012 	hlist_del_rcu(&event->hlist_entry);
9013 }
9014 
9015 static void perf_swevent_start(struct perf_event *event, int flags)
9016 {
9017 	event->hw.state = 0;
9018 }
9019 
9020 static void perf_swevent_stop(struct perf_event *event, int flags)
9021 {
9022 	event->hw.state = PERF_HES_STOPPED;
9023 }
9024 
9025 /* Deref the hlist from the update side */
9026 static inline struct swevent_hlist *
9027 swevent_hlist_deref(struct swevent_htable *swhash)
9028 {
9029 	return rcu_dereference_protected(swhash->swevent_hlist,
9030 					 lockdep_is_held(&swhash->hlist_mutex));
9031 }
9032 
9033 static void swevent_hlist_release(struct swevent_htable *swhash)
9034 {
9035 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9036 
9037 	if (!hlist)
9038 		return;
9039 
9040 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9041 	kfree_rcu(hlist, rcu_head);
9042 }
9043 
9044 static void swevent_hlist_put_cpu(int cpu)
9045 {
9046 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9047 
9048 	mutex_lock(&swhash->hlist_mutex);
9049 
9050 	if (!--swhash->hlist_refcount)
9051 		swevent_hlist_release(swhash);
9052 
9053 	mutex_unlock(&swhash->hlist_mutex);
9054 }
9055 
9056 static void swevent_hlist_put(void)
9057 {
9058 	int cpu;
9059 
9060 	for_each_possible_cpu(cpu)
9061 		swevent_hlist_put_cpu(cpu);
9062 }
9063 
9064 static int swevent_hlist_get_cpu(int cpu)
9065 {
9066 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9067 	int err = 0;
9068 
9069 	mutex_lock(&swhash->hlist_mutex);
9070 	if (!swevent_hlist_deref(swhash) &&
9071 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9072 		struct swevent_hlist *hlist;
9073 
9074 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9075 		if (!hlist) {
9076 			err = -ENOMEM;
9077 			goto exit;
9078 		}
9079 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9080 	}
9081 	swhash->hlist_refcount++;
9082 exit:
9083 	mutex_unlock(&swhash->hlist_mutex);
9084 
9085 	return err;
9086 }
9087 
9088 static int swevent_hlist_get(void)
9089 {
9090 	int err, cpu, failed_cpu;
9091 
9092 	mutex_lock(&pmus_lock);
9093 	for_each_possible_cpu(cpu) {
9094 		err = swevent_hlist_get_cpu(cpu);
9095 		if (err) {
9096 			failed_cpu = cpu;
9097 			goto fail;
9098 		}
9099 	}
9100 	mutex_unlock(&pmus_lock);
9101 	return 0;
9102 fail:
9103 	for_each_possible_cpu(cpu) {
9104 		if (cpu == failed_cpu)
9105 			break;
9106 		swevent_hlist_put_cpu(cpu);
9107 	}
9108 	mutex_unlock(&pmus_lock);
9109 	return err;
9110 }
9111 
9112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9113 
9114 static void sw_perf_event_destroy(struct perf_event *event)
9115 {
9116 	u64 event_id = event->attr.config;
9117 
9118 	WARN_ON(event->parent);
9119 
9120 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9121 	swevent_hlist_put();
9122 }
9123 
9124 static int perf_swevent_init(struct perf_event *event)
9125 {
9126 	u64 event_id = event->attr.config;
9127 
9128 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9129 		return -ENOENT;
9130 
9131 	/*
9132 	 * no branch sampling for software events
9133 	 */
9134 	if (has_branch_stack(event))
9135 		return -EOPNOTSUPP;
9136 
9137 	switch (event_id) {
9138 	case PERF_COUNT_SW_CPU_CLOCK:
9139 	case PERF_COUNT_SW_TASK_CLOCK:
9140 		return -ENOENT;
9141 
9142 	default:
9143 		break;
9144 	}
9145 
9146 	if (event_id >= PERF_COUNT_SW_MAX)
9147 		return -ENOENT;
9148 
9149 	if (!event->parent) {
9150 		int err;
9151 
9152 		err = swevent_hlist_get();
9153 		if (err)
9154 			return err;
9155 
9156 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9157 		event->destroy = sw_perf_event_destroy;
9158 	}
9159 
9160 	return 0;
9161 }
9162 
9163 static struct pmu perf_swevent = {
9164 	.task_ctx_nr	= perf_sw_context,
9165 
9166 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9167 
9168 	.event_init	= perf_swevent_init,
9169 	.add		= perf_swevent_add,
9170 	.del		= perf_swevent_del,
9171 	.start		= perf_swevent_start,
9172 	.stop		= perf_swevent_stop,
9173 	.read		= perf_swevent_read,
9174 };
9175 
9176 #ifdef CONFIG_EVENT_TRACING
9177 
9178 static int perf_tp_filter_match(struct perf_event *event,
9179 				struct perf_sample_data *data)
9180 {
9181 	void *record = data->raw->frag.data;
9182 
9183 	/* only top level events have filters set */
9184 	if (event->parent)
9185 		event = event->parent;
9186 
9187 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9188 		return 1;
9189 	return 0;
9190 }
9191 
9192 static int perf_tp_event_match(struct perf_event *event,
9193 				struct perf_sample_data *data,
9194 				struct pt_regs *regs)
9195 {
9196 	if (event->hw.state & PERF_HES_STOPPED)
9197 		return 0;
9198 	/*
9199 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9200 	 */
9201 	if (event->attr.exclude_kernel && !user_mode(regs))
9202 		return 0;
9203 
9204 	if (!perf_tp_filter_match(event, data))
9205 		return 0;
9206 
9207 	return 1;
9208 }
9209 
9210 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9211 			       struct trace_event_call *call, u64 count,
9212 			       struct pt_regs *regs, struct hlist_head *head,
9213 			       struct task_struct *task)
9214 {
9215 	if (bpf_prog_array_valid(call)) {
9216 		*(struct pt_regs **)raw_data = regs;
9217 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9218 			perf_swevent_put_recursion_context(rctx);
9219 			return;
9220 		}
9221 	}
9222 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9223 		      rctx, task);
9224 }
9225 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9226 
9227 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9228 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9229 		   struct task_struct *task)
9230 {
9231 	struct perf_sample_data data;
9232 	struct perf_event *event;
9233 
9234 	struct perf_raw_record raw = {
9235 		.frag = {
9236 			.size = entry_size,
9237 			.data = record,
9238 		},
9239 	};
9240 
9241 	perf_sample_data_init(&data, 0, 0);
9242 	data.raw = &raw;
9243 
9244 	perf_trace_buf_update(record, event_type);
9245 
9246 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9247 		if (perf_tp_event_match(event, &data, regs))
9248 			perf_swevent_event(event, count, &data, regs);
9249 	}
9250 
9251 	/*
9252 	 * If we got specified a target task, also iterate its context and
9253 	 * deliver this event there too.
9254 	 */
9255 	if (task && task != current) {
9256 		struct perf_event_context *ctx;
9257 		struct trace_entry *entry = record;
9258 
9259 		rcu_read_lock();
9260 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9261 		if (!ctx)
9262 			goto unlock;
9263 
9264 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9265 			if (event->cpu != smp_processor_id())
9266 				continue;
9267 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9268 				continue;
9269 			if (event->attr.config != entry->type)
9270 				continue;
9271 			if (perf_tp_event_match(event, &data, regs))
9272 				perf_swevent_event(event, count, &data, regs);
9273 		}
9274 unlock:
9275 		rcu_read_unlock();
9276 	}
9277 
9278 	perf_swevent_put_recursion_context(rctx);
9279 }
9280 EXPORT_SYMBOL_GPL(perf_tp_event);
9281 
9282 static void tp_perf_event_destroy(struct perf_event *event)
9283 {
9284 	perf_trace_destroy(event);
9285 }
9286 
9287 static int perf_tp_event_init(struct perf_event *event)
9288 {
9289 	int err;
9290 
9291 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9292 		return -ENOENT;
9293 
9294 	/*
9295 	 * no branch sampling for tracepoint events
9296 	 */
9297 	if (has_branch_stack(event))
9298 		return -EOPNOTSUPP;
9299 
9300 	err = perf_trace_init(event);
9301 	if (err)
9302 		return err;
9303 
9304 	event->destroy = tp_perf_event_destroy;
9305 
9306 	return 0;
9307 }
9308 
9309 static struct pmu perf_tracepoint = {
9310 	.task_ctx_nr	= perf_sw_context,
9311 
9312 	.event_init	= perf_tp_event_init,
9313 	.add		= perf_trace_add,
9314 	.del		= perf_trace_del,
9315 	.start		= perf_swevent_start,
9316 	.stop		= perf_swevent_stop,
9317 	.read		= perf_swevent_read,
9318 };
9319 
9320 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9321 /*
9322  * Flags in config, used by dynamic PMU kprobe and uprobe
9323  * The flags should match following PMU_FORMAT_ATTR().
9324  *
9325  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9326  *                               if not set, create kprobe/uprobe
9327  *
9328  * The following values specify a reference counter (or semaphore in the
9329  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9330  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9331  *
9332  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9333  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9334  */
9335 enum perf_probe_config {
9336 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9337 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9338 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9339 };
9340 
9341 PMU_FORMAT_ATTR(retprobe, "config:0");
9342 #endif
9343 
9344 #ifdef CONFIG_KPROBE_EVENTS
9345 static struct attribute *kprobe_attrs[] = {
9346 	&format_attr_retprobe.attr,
9347 	NULL,
9348 };
9349 
9350 static struct attribute_group kprobe_format_group = {
9351 	.name = "format",
9352 	.attrs = kprobe_attrs,
9353 };
9354 
9355 static const struct attribute_group *kprobe_attr_groups[] = {
9356 	&kprobe_format_group,
9357 	NULL,
9358 };
9359 
9360 static int perf_kprobe_event_init(struct perf_event *event);
9361 static struct pmu perf_kprobe = {
9362 	.task_ctx_nr	= perf_sw_context,
9363 	.event_init	= perf_kprobe_event_init,
9364 	.add		= perf_trace_add,
9365 	.del		= perf_trace_del,
9366 	.start		= perf_swevent_start,
9367 	.stop		= perf_swevent_stop,
9368 	.read		= perf_swevent_read,
9369 	.attr_groups	= kprobe_attr_groups,
9370 };
9371 
9372 static int perf_kprobe_event_init(struct perf_event *event)
9373 {
9374 	int err;
9375 	bool is_retprobe;
9376 
9377 	if (event->attr.type != perf_kprobe.type)
9378 		return -ENOENT;
9379 
9380 	if (!capable(CAP_SYS_ADMIN))
9381 		return -EACCES;
9382 
9383 	/*
9384 	 * no branch sampling for probe events
9385 	 */
9386 	if (has_branch_stack(event))
9387 		return -EOPNOTSUPP;
9388 
9389 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9390 	err = perf_kprobe_init(event, is_retprobe);
9391 	if (err)
9392 		return err;
9393 
9394 	event->destroy = perf_kprobe_destroy;
9395 
9396 	return 0;
9397 }
9398 #endif /* CONFIG_KPROBE_EVENTS */
9399 
9400 #ifdef CONFIG_UPROBE_EVENTS
9401 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9402 
9403 static struct attribute *uprobe_attrs[] = {
9404 	&format_attr_retprobe.attr,
9405 	&format_attr_ref_ctr_offset.attr,
9406 	NULL,
9407 };
9408 
9409 static struct attribute_group uprobe_format_group = {
9410 	.name = "format",
9411 	.attrs = uprobe_attrs,
9412 };
9413 
9414 static const struct attribute_group *uprobe_attr_groups[] = {
9415 	&uprobe_format_group,
9416 	NULL,
9417 };
9418 
9419 static int perf_uprobe_event_init(struct perf_event *event);
9420 static struct pmu perf_uprobe = {
9421 	.task_ctx_nr	= perf_sw_context,
9422 	.event_init	= perf_uprobe_event_init,
9423 	.add		= perf_trace_add,
9424 	.del		= perf_trace_del,
9425 	.start		= perf_swevent_start,
9426 	.stop		= perf_swevent_stop,
9427 	.read		= perf_swevent_read,
9428 	.attr_groups	= uprobe_attr_groups,
9429 };
9430 
9431 static int perf_uprobe_event_init(struct perf_event *event)
9432 {
9433 	int err;
9434 	unsigned long ref_ctr_offset;
9435 	bool is_retprobe;
9436 
9437 	if (event->attr.type != perf_uprobe.type)
9438 		return -ENOENT;
9439 
9440 	if (!capable(CAP_SYS_ADMIN))
9441 		return -EACCES;
9442 
9443 	/*
9444 	 * no branch sampling for probe events
9445 	 */
9446 	if (has_branch_stack(event))
9447 		return -EOPNOTSUPP;
9448 
9449 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9450 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9451 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9452 	if (err)
9453 		return err;
9454 
9455 	event->destroy = perf_uprobe_destroy;
9456 
9457 	return 0;
9458 }
9459 #endif /* CONFIG_UPROBE_EVENTS */
9460 
9461 static inline void perf_tp_register(void)
9462 {
9463 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9464 #ifdef CONFIG_KPROBE_EVENTS
9465 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9466 #endif
9467 #ifdef CONFIG_UPROBE_EVENTS
9468 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9469 #endif
9470 }
9471 
9472 static void perf_event_free_filter(struct perf_event *event)
9473 {
9474 	ftrace_profile_free_filter(event);
9475 }
9476 
9477 #ifdef CONFIG_BPF_SYSCALL
9478 static void bpf_overflow_handler(struct perf_event *event,
9479 				 struct perf_sample_data *data,
9480 				 struct pt_regs *regs)
9481 {
9482 	struct bpf_perf_event_data_kern ctx = {
9483 		.data = data,
9484 		.event = event,
9485 	};
9486 	int ret = 0;
9487 
9488 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9489 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9490 		goto out;
9491 	rcu_read_lock();
9492 	ret = BPF_PROG_RUN(event->prog, &ctx);
9493 	rcu_read_unlock();
9494 out:
9495 	__this_cpu_dec(bpf_prog_active);
9496 	if (!ret)
9497 		return;
9498 
9499 	event->orig_overflow_handler(event, data, regs);
9500 }
9501 
9502 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9503 {
9504 	struct bpf_prog *prog;
9505 
9506 	if (event->overflow_handler_context)
9507 		/* hw breakpoint or kernel counter */
9508 		return -EINVAL;
9509 
9510 	if (event->prog)
9511 		return -EEXIST;
9512 
9513 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9514 	if (IS_ERR(prog))
9515 		return PTR_ERR(prog);
9516 
9517 	event->prog = prog;
9518 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9519 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9520 	return 0;
9521 }
9522 
9523 static void perf_event_free_bpf_handler(struct perf_event *event)
9524 {
9525 	struct bpf_prog *prog = event->prog;
9526 
9527 	if (!prog)
9528 		return;
9529 
9530 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9531 	event->prog = NULL;
9532 	bpf_prog_put(prog);
9533 }
9534 #else
9535 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9536 {
9537 	return -EOPNOTSUPP;
9538 }
9539 static void perf_event_free_bpf_handler(struct perf_event *event)
9540 {
9541 }
9542 #endif
9543 
9544 /*
9545  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9546  * with perf_event_open()
9547  */
9548 static inline bool perf_event_is_tracing(struct perf_event *event)
9549 {
9550 	if (event->pmu == &perf_tracepoint)
9551 		return true;
9552 #ifdef CONFIG_KPROBE_EVENTS
9553 	if (event->pmu == &perf_kprobe)
9554 		return true;
9555 #endif
9556 #ifdef CONFIG_UPROBE_EVENTS
9557 	if (event->pmu == &perf_uprobe)
9558 		return true;
9559 #endif
9560 	return false;
9561 }
9562 
9563 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9564 {
9565 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9566 	struct bpf_prog *prog;
9567 	int ret;
9568 
9569 	if (!perf_event_is_tracing(event))
9570 		return perf_event_set_bpf_handler(event, prog_fd);
9571 
9572 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9573 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9574 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9575 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9576 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9577 		return -EINVAL;
9578 
9579 	prog = bpf_prog_get(prog_fd);
9580 	if (IS_ERR(prog))
9581 		return PTR_ERR(prog);
9582 
9583 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9584 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9585 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9586 		/* valid fd, but invalid bpf program type */
9587 		bpf_prog_put(prog);
9588 		return -EINVAL;
9589 	}
9590 
9591 	/* Kprobe override only works for kprobes, not uprobes. */
9592 	if (prog->kprobe_override &&
9593 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9594 		bpf_prog_put(prog);
9595 		return -EINVAL;
9596 	}
9597 
9598 	if (is_tracepoint || is_syscall_tp) {
9599 		int off = trace_event_get_offsets(event->tp_event);
9600 
9601 		if (prog->aux->max_ctx_offset > off) {
9602 			bpf_prog_put(prog);
9603 			return -EACCES;
9604 		}
9605 	}
9606 
9607 	ret = perf_event_attach_bpf_prog(event, prog);
9608 	if (ret)
9609 		bpf_prog_put(prog);
9610 	return ret;
9611 }
9612 
9613 static void perf_event_free_bpf_prog(struct perf_event *event)
9614 {
9615 	if (!perf_event_is_tracing(event)) {
9616 		perf_event_free_bpf_handler(event);
9617 		return;
9618 	}
9619 	perf_event_detach_bpf_prog(event);
9620 }
9621 
9622 #else
9623 
9624 static inline void perf_tp_register(void)
9625 {
9626 }
9627 
9628 static void perf_event_free_filter(struct perf_event *event)
9629 {
9630 }
9631 
9632 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9633 {
9634 	return -ENOENT;
9635 }
9636 
9637 static void perf_event_free_bpf_prog(struct perf_event *event)
9638 {
9639 }
9640 #endif /* CONFIG_EVENT_TRACING */
9641 
9642 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9643 void perf_bp_event(struct perf_event *bp, void *data)
9644 {
9645 	struct perf_sample_data sample;
9646 	struct pt_regs *regs = data;
9647 
9648 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9649 
9650 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9651 		perf_swevent_event(bp, 1, &sample, regs);
9652 }
9653 #endif
9654 
9655 /*
9656  * Allocate a new address filter
9657  */
9658 static struct perf_addr_filter *
9659 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9660 {
9661 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9662 	struct perf_addr_filter *filter;
9663 
9664 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9665 	if (!filter)
9666 		return NULL;
9667 
9668 	INIT_LIST_HEAD(&filter->entry);
9669 	list_add_tail(&filter->entry, filters);
9670 
9671 	return filter;
9672 }
9673 
9674 static void free_filters_list(struct list_head *filters)
9675 {
9676 	struct perf_addr_filter *filter, *iter;
9677 
9678 	list_for_each_entry_safe(filter, iter, filters, entry) {
9679 		path_put(&filter->path);
9680 		list_del(&filter->entry);
9681 		kfree(filter);
9682 	}
9683 }
9684 
9685 /*
9686  * Free existing address filters and optionally install new ones
9687  */
9688 static void perf_addr_filters_splice(struct perf_event *event,
9689 				     struct list_head *head)
9690 {
9691 	unsigned long flags;
9692 	LIST_HEAD(list);
9693 
9694 	if (!has_addr_filter(event))
9695 		return;
9696 
9697 	/* don't bother with children, they don't have their own filters */
9698 	if (event->parent)
9699 		return;
9700 
9701 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9702 
9703 	list_splice_init(&event->addr_filters.list, &list);
9704 	if (head)
9705 		list_splice(head, &event->addr_filters.list);
9706 
9707 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9708 
9709 	free_filters_list(&list);
9710 }
9711 
9712 /*
9713  * Scan through mm's vmas and see if one of them matches the
9714  * @filter; if so, adjust filter's address range.
9715  * Called with mm::mmap_sem down for reading.
9716  */
9717 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9718 				   struct mm_struct *mm,
9719 				   struct perf_addr_filter_range *fr)
9720 {
9721 	struct vm_area_struct *vma;
9722 
9723 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9724 		if (!vma->vm_file)
9725 			continue;
9726 
9727 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9728 			return;
9729 	}
9730 }
9731 
9732 /*
9733  * Update event's address range filters based on the
9734  * task's existing mappings, if any.
9735  */
9736 static void perf_event_addr_filters_apply(struct perf_event *event)
9737 {
9738 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9739 	struct task_struct *task = READ_ONCE(event->ctx->task);
9740 	struct perf_addr_filter *filter;
9741 	struct mm_struct *mm = NULL;
9742 	unsigned int count = 0;
9743 	unsigned long flags;
9744 
9745 	/*
9746 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9747 	 * will stop on the parent's child_mutex that our caller is also holding
9748 	 */
9749 	if (task == TASK_TOMBSTONE)
9750 		return;
9751 
9752 	if (ifh->nr_file_filters) {
9753 		mm = get_task_mm(event->ctx->task);
9754 		if (!mm)
9755 			goto restart;
9756 
9757 		down_read(&mm->mmap_sem);
9758 	}
9759 
9760 	raw_spin_lock_irqsave(&ifh->lock, flags);
9761 	list_for_each_entry(filter, &ifh->list, entry) {
9762 		if (filter->path.dentry) {
9763 			/*
9764 			 * Adjust base offset if the filter is associated to a
9765 			 * binary that needs to be mapped:
9766 			 */
9767 			event->addr_filter_ranges[count].start = 0;
9768 			event->addr_filter_ranges[count].size = 0;
9769 
9770 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9771 		} else {
9772 			event->addr_filter_ranges[count].start = filter->offset;
9773 			event->addr_filter_ranges[count].size  = filter->size;
9774 		}
9775 
9776 		count++;
9777 	}
9778 
9779 	event->addr_filters_gen++;
9780 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9781 
9782 	if (ifh->nr_file_filters) {
9783 		up_read(&mm->mmap_sem);
9784 
9785 		mmput(mm);
9786 	}
9787 
9788 restart:
9789 	perf_event_stop(event, 1);
9790 }
9791 
9792 /*
9793  * Address range filtering: limiting the data to certain
9794  * instruction address ranges. Filters are ioctl()ed to us from
9795  * userspace as ascii strings.
9796  *
9797  * Filter string format:
9798  *
9799  * ACTION RANGE_SPEC
9800  * where ACTION is one of the
9801  *  * "filter": limit the trace to this region
9802  *  * "start": start tracing from this address
9803  *  * "stop": stop tracing at this address/region;
9804  * RANGE_SPEC is
9805  *  * for kernel addresses: <start address>[/<size>]
9806  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9807  *
9808  * if <size> is not specified or is zero, the range is treated as a single
9809  * address; not valid for ACTION=="filter".
9810  */
9811 enum {
9812 	IF_ACT_NONE = -1,
9813 	IF_ACT_FILTER,
9814 	IF_ACT_START,
9815 	IF_ACT_STOP,
9816 	IF_SRC_FILE,
9817 	IF_SRC_KERNEL,
9818 	IF_SRC_FILEADDR,
9819 	IF_SRC_KERNELADDR,
9820 };
9821 
9822 enum {
9823 	IF_STATE_ACTION = 0,
9824 	IF_STATE_SOURCE,
9825 	IF_STATE_END,
9826 };
9827 
9828 static const match_table_t if_tokens = {
9829 	{ IF_ACT_FILTER,	"filter" },
9830 	{ IF_ACT_START,		"start" },
9831 	{ IF_ACT_STOP,		"stop" },
9832 	{ IF_SRC_FILE,		"%u/%u@%s" },
9833 	{ IF_SRC_KERNEL,	"%u/%u" },
9834 	{ IF_SRC_FILEADDR,	"%u@%s" },
9835 	{ IF_SRC_KERNELADDR,	"%u" },
9836 	{ IF_ACT_NONE,		NULL },
9837 };
9838 
9839 /*
9840  * Address filter string parser
9841  */
9842 static int
9843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9844 			     struct list_head *filters)
9845 {
9846 	struct perf_addr_filter *filter = NULL;
9847 	char *start, *orig, *filename = NULL;
9848 	substring_t args[MAX_OPT_ARGS];
9849 	int state = IF_STATE_ACTION, token;
9850 	unsigned int kernel = 0;
9851 	int ret = -EINVAL;
9852 
9853 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9854 	if (!fstr)
9855 		return -ENOMEM;
9856 
9857 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9858 		static const enum perf_addr_filter_action_t actions[] = {
9859 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9860 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9861 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9862 		};
9863 		ret = -EINVAL;
9864 
9865 		if (!*start)
9866 			continue;
9867 
9868 		/* filter definition begins */
9869 		if (state == IF_STATE_ACTION) {
9870 			filter = perf_addr_filter_new(event, filters);
9871 			if (!filter)
9872 				goto fail;
9873 		}
9874 
9875 		token = match_token(start, if_tokens, args);
9876 		switch (token) {
9877 		case IF_ACT_FILTER:
9878 		case IF_ACT_START:
9879 		case IF_ACT_STOP:
9880 			if (state != IF_STATE_ACTION)
9881 				goto fail;
9882 
9883 			filter->action = actions[token];
9884 			state = IF_STATE_SOURCE;
9885 			break;
9886 
9887 		case IF_SRC_KERNELADDR:
9888 		case IF_SRC_KERNEL:
9889 			kernel = 1;
9890 			/* fall through */
9891 
9892 		case IF_SRC_FILEADDR:
9893 		case IF_SRC_FILE:
9894 			if (state != IF_STATE_SOURCE)
9895 				goto fail;
9896 
9897 			*args[0].to = 0;
9898 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9899 			if (ret)
9900 				goto fail;
9901 
9902 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9903 				*args[1].to = 0;
9904 				ret = kstrtoul(args[1].from, 0, &filter->size);
9905 				if (ret)
9906 					goto fail;
9907 			}
9908 
9909 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9910 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9911 
9912 				filename = match_strdup(&args[fpos]);
9913 				if (!filename) {
9914 					ret = -ENOMEM;
9915 					goto fail;
9916 				}
9917 			}
9918 
9919 			state = IF_STATE_END;
9920 			break;
9921 
9922 		default:
9923 			goto fail;
9924 		}
9925 
9926 		/*
9927 		 * Filter definition is fully parsed, validate and install it.
9928 		 * Make sure that it doesn't contradict itself or the event's
9929 		 * attribute.
9930 		 */
9931 		if (state == IF_STATE_END) {
9932 			ret = -EINVAL;
9933 			if (kernel && event->attr.exclude_kernel)
9934 				goto fail;
9935 
9936 			/*
9937 			 * ACTION "filter" must have a non-zero length region
9938 			 * specified.
9939 			 */
9940 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9941 			    !filter->size)
9942 				goto fail;
9943 
9944 			if (!kernel) {
9945 				if (!filename)
9946 					goto fail;
9947 
9948 				/*
9949 				 * For now, we only support file-based filters
9950 				 * in per-task events; doing so for CPU-wide
9951 				 * events requires additional context switching
9952 				 * trickery, since same object code will be
9953 				 * mapped at different virtual addresses in
9954 				 * different processes.
9955 				 */
9956 				ret = -EOPNOTSUPP;
9957 				if (!event->ctx->task)
9958 					goto fail_free_name;
9959 
9960 				/* look up the path and grab its inode */
9961 				ret = kern_path(filename, LOOKUP_FOLLOW,
9962 						&filter->path);
9963 				if (ret)
9964 					goto fail_free_name;
9965 
9966 				kfree(filename);
9967 				filename = NULL;
9968 
9969 				ret = -EINVAL;
9970 				if (!filter->path.dentry ||
9971 				    !S_ISREG(d_inode(filter->path.dentry)
9972 					     ->i_mode))
9973 					goto fail;
9974 
9975 				event->addr_filters.nr_file_filters++;
9976 			}
9977 
9978 			/* ready to consume more filters */
9979 			state = IF_STATE_ACTION;
9980 			filter = NULL;
9981 		}
9982 	}
9983 
9984 	if (state != IF_STATE_ACTION)
9985 		goto fail;
9986 
9987 	kfree(orig);
9988 
9989 	return 0;
9990 
9991 fail_free_name:
9992 	kfree(filename);
9993 fail:
9994 	free_filters_list(filters);
9995 	kfree(orig);
9996 
9997 	return ret;
9998 }
9999 
10000 static int
10001 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10002 {
10003 	LIST_HEAD(filters);
10004 	int ret;
10005 
10006 	/*
10007 	 * Since this is called in perf_ioctl() path, we're already holding
10008 	 * ctx::mutex.
10009 	 */
10010 	lockdep_assert_held(&event->ctx->mutex);
10011 
10012 	if (WARN_ON_ONCE(event->parent))
10013 		return -EINVAL;
10014 
10015 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10016 	if (ret)
10017 		goto fail_clear_files;
10018 
10019 	ret = event->pmu->addr_filters_validate(&filters);
10020 	if (ret)
10021 		goto fail_free_filters;
10022 
10023 	/* remove existing filters, if any */
10024 	perf_addr_filters_splice(event, &filters);
10025 
10026 	/* install new filters */
10027 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10028 
10029 	return ret;
10030 
10031 fail_free_filters:
10032 	free_filters_list(&filters);
10033 
10034 fail_clear_files:
10035 	event->addr_filters.nr_file_filters = 0;
10036 
10037 	return ret;
10038 }
10039 
10040 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10041 {
10042 	int ret = -EINVAL;
10043 	char *filter_str;
10044 
10045 	filter_str = strndup_user(arg, PAGE_SIZE);
10046 	if (IS_ERR(filter_str))
10047 		return PTR_ERR(filter_str);
10048 
10049 #ifdef CONFIG_EVENT_TRACING
10050 	if (perf_event_is_tracing(event)) {
10051 		struct perf_event_context *ctx = event->ctx;
10052 
10053 		/*
10054 		 * Beware, here be dragons!!
10055 		 *
10056 		 * the tracepoint muck will deadlock against ctx->mutex, but
10057 		 * the tracepoint stuff does not actually need it. So
10058 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10059 		 * already have a reference on ctx.
10060 		 *
10061 		 * This can result in event getting moved to a different ctx,
10062 		 * but that does not affect the tracepoint state.
10063 		 */
10064 		mutex_unlock(&ctx->mutex);
10065 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10066 		mutex_lock(&ctx->mutex);
10067 	} else
10068 #endif
10069 	if (has_addr_filter(event))
10070 		ret = perf_event_set_addr_filter(event, filter_str);
10071 
10072 	kfree(filter_str);
10073 	return ret;
10074 }
10075 
10076 /*
10077  * hrtimer based swevent callback
10078  */
10079 
10080 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10081 {
10082 	enum hrtimer_restart ret = HRTIMER_RESTART;
10083 	struct perf_sample_data data;
10084 	struct pt_regs *regs;
10085 	struct perf_event *event;
10086 	u64 period;
10087 
10088 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10089 
10090 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10091 		return HRTIMER_NORESTART;
10092 
10093 	event->pmu->read(event);
10094 
10095 	perf_sample_data_init(&data, 0, event->hw.last_period);
10096 	regs = get_irq_regs();
10097 
10098 	if (regs && !perf_exclude_event(event, regs)) {
10099 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10100 			if (__perf_event_overflow(event, 1, &data, regs))
10101 				ret = HRTIMER_NORESTART;
10102 	}
10103 
10104 	period = max_t(u64, 10000, event->hw.sample_period);
10105 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10106 
10107 	return ret;
10108 }
10109 
10110 static void perf_swevent_start_hrtimer(struct perf_event *event)
10111 {
10112 	struct hw_perf_event *hwc = &event->hw;
10113 	s64 period;
10114 
10115 	if (!is_sampling_event(event))
10116 		return;
10117 
10118 	period = local64_read(&hwc->period_left);
10119 	if (period) {
10120 		if (period < 0)
10121 			period = 10000;
10122 
10123 		local64_set(&hwc->period_left, 0);
10124 	} else {
10125 		period = max_t(u64, 10000, hwc->sample_period);
10126 	}
10127 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10128 		      HRTIMER_MODE_REL_PINNED_HARD);
10129 }
10130 
10131 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10132 {
10133 	struct hw_perf_event *hwc = &event->hw;
10134 
10135 	if (is_sampling_event(event)) {
10136 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10137 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10138 
10139 		hrtimer_cancel(&hwc->hrtimer);
10140 	}
10141 }
10142 
10143 static void perf_swevent_init_hrtimer(struct perf_event *event)
10144 {
10145 	struct hw_perf_event *hwc = &event->hw;
10146 
10147 	if (!is_sampling_event(event))
10148 		return;
10149 
10150 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10151 	hwc->hrtimer.function = perf_swevent_hrtimer;
10152 
10153 	/*
10154 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10155 	 * mapping and avoid the whole period adjust feedback stuff.
10156 	 */
10157 	if (event->attr.freq) {
10158 		long freq = event->attr.sample_freq;
10159 
10160 		event->attr.sample_period = NSEC_PER_SEC / freq;
10161 		hwc->sample_period = event->attr.sample_period;
10162 		local64_set(&hwc->period_left, hwc->sample_period);
10163 		hwc->last_period = hwc->sample_period;
10164 		event->attr.freq = 0;
10165 	}
10166 }
10167 
10168 /*
10169  * Software event: cpu wall time clock
10170  */
10171 
10172 static void cpu_clock_event_update(struct perf_event *event)
10173 {
10174 	s64 prev;
10175 	u64 now;
10176 
10177 	now = local_clock();
10178 	prev = local64_xchg(&event->hw.prev_count, now);
10179 	local64_add(now - prev, &event->count);
10180 }
10181 
10182 static void cpu_clock_event_start(struct perf_event *event, int flags)
10183 {
10184 	local64_set(&event->hw.prev_count, local_clock());
10185 	perf_swevent_start_hrtimer(event);
10186 }
10187 
10188 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10189 {
10190 	perf_swevent_cancel_hrtimer(event);
10191 	cpu_clock_event_update(event);
10192 }
10193 
10194 static int cpu_clock_event_add(struct perf_event *event, int flags)
10195 {
10196 	if (flags & PERF_EF_START)
10197 		cpu_clock_event_start(event, flags);
10198 	perf_event_update_userpage(event);
10199 
10200 	return 0;
10201 }
10202 
10203 static void cpu_clock_event_del(struct perf_event *event, int flags)
10204 {
10205 	cpu_clock_event_stop(event, flags);
10206 }
10207 
10208 static void cpu_clock_event_read(struct perf_event *event)
10209 {
10210 	cpu_clock_event_update(event);
10211 }
10212 
10213 static int cpu_clock_event_init(struct perf_event *event)
10214 {
10215 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10216 		return -ENOENT;
10217 
10218 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10219 		return -ENOENT;
10220 
10221 	/*
10222 	 * no branch sampling for software events
10223 	 */
10224 	if (has_branch_stack(event))
10225 		return -EOPNOTSUPP;
10226 
10227 	perf_swevent_init_hrtimer(event);
10228 
10229 	return 0;
10230 }
10231 
10232 static struct pmu perf_cpu_clock = {
10233 	.task_ctx_nr	= perf_sw_context,
10234 
10235 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10236 
10237 	.event_init	= cpu_clock_event_init,
10238 	.add		= cpu_clock_event_add,
10239 	.del		= cpu_clock_event_del,
10240 	.start		= cpu_clock_event_start,
10241 	.stop		= cpu_clock_event_stop,
10242 	.read		= cpu_clock_event_read,
10243 };
10244 
10245 /*
10246  * Software event: task time clock
10247  */
10248 
10249 static void task_clock_event_update(struct perf_event *event, u64 now)
10250 {
10251 	u64 prev;
10252 	s64 delta;
10253 
10254 	prev = local64_xchg(&event->hw.prev_count, now);
10255 	delta = now - prev;
10256 	local64_add(delta, &event->count);
10257 }
10258 
10259 static void task_clock_event_start(struct perf_event *event, int flags)
10260 {
10261 	local64_set(&event->hw.prev_count, event->ctx->time);
10262 	perf_swevent_start_hrtimer(event);
10263 }
10264 
10265 static void task_clock_event_stop(struct perf_event *event, int flags)
10266 {
10267 	perf_swevent_cancel_hrtimer(event);
10268 	task_clock_event_update(event, event->ctx->time);
10269 }
10270 
10271 static int task_clock_event_add(struct perf_event *event, int flags)
10272 {
10273 	if (flags & PERF_EF_START)
10274 		task_clock_event_start(event, flags);
10275 	perf_event_update_userpage(event);
10276 
10277 	return 0;
10278 }
10279 
10280 static void task_clock_event_del(struct perf_event *event, int flags)
10281 {
10282 	task_clock_event_stop(event, PERF_EF_UPDATE);
10283 }
10284 
10285 static void task_clock_event_read(struct perf_event *event)
10286 {
10287 	u64 now = perf_clock();
10288 	u64 delta = now - event->ctx->timestamp;
10289 	u64 time = event->ctx->time + delta;
10290 
10291 	task_clock_event_update(event, time);
10292 }
10293 
10294 static int task_clock_event_init(struct perf_event *event)
10295 {
10296 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10297 		return -ENOENT;
10298 
10299 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10300 		return -ENOENT;
10301 
10302 	/*
10303 	 * no branch sampling for software events
10304 	 */
10305 	if (has_branch_stack(event))
10306 		return -EOPNOTSUPP;
10307 
10308 	perf_swevent_init_hrtimer(event);
10309 
10310 	return 0;
10311 }
10312 
10313 static struct pmu perf_task_clock = {
10314 	.task_ctx_nr	= perf_sw_context,
10315 
10316 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10317 
10318 	.event_init	= task_clock_event_init,
10319 	.add		= task_clock_event_add,
10320 	.del		= task_clock_event_del,
10321 	.start		= task_clock_event_start,
10322 	.stop		= task_clock_event_stop,
10323 	.read		= task_clock_event_read,
10324 };
10325 
10326 static void perf_pmu_nop_void(struct pmu *pmu)
10327 {
10328 }
10329 
10330 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10331 {
10332 }
10333 
10334 static int perf_pmu_nop_int(struct pmu *pmu)
10335 {
10336 	return 0;
10337 }
10338 
10339 static int perf_event_nop_int(struct perf_event *event, u64 value)
10340 {
10341 	return 0;
10342 }
10343 
10344 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10345 
10346 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10347 {
10348 	__this_cpu_write(nop_txn_flags, flags);
10349 
10350 	if (flags & ~PERF_PMU_TXN_ADD)
10351 		return;
10352 
10353 	perf_pmu_disable(pmu);
10354 }
10355 
10356 static int perf_pmu_commit_txn(struct pmu *pmu)
10357 {
10358 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10359 
10360 	__this_cpu_write(nop_txn_flags, 0);
10361 
10362 	if (flags & ~PERF_PMU_TXN_ADD)
10363 		return 0;
10364 
10365 	perf_pmu_enable(pmu);
10366 	return 0;
10367 }
10368 
10369 static void perf_pmu_cancel_txn(struct pmu *pmu)
10370 {
10371 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10372 
10373 	__this_cpu_write(nop_txn_flags, 0);
10374 
10375 	if (flags & ~PERF_PMU_TXN_ADD)
10376 		return;
10377 
10378 	perf_pmu_enable(pmu);
10379 }
10380 
10381 static int perf_event_idx_default(struct perf_event *event)
10382 {
10383 	return 0;
10384 }
10385 
10386 /*
10387  * Ensures all contexts with the same task_ctx_nr have the same
10388  * pmu_cpu_context too.
10389  */
10390 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10391 {
10392 	struct pmu *pmu;
10393 
10394 	if (ctxn < 0)
10395 		return NULL;
10396 
10397 	list_for_each_entry(pmu, &pmus, entry) {
10398 		if (pmu->task_ctx_nr == ctxn)
10399 			return pmu->pmu_cpu_context;
10400 	}
10401 
10402 	return NULL;
10403 }
10404 
10405 static void free_pmu_context(struct pmu *pmu)
10406 {
10407 	/*
10408 	 * Static contexts such as perf_sw_context have a global lifetime
10409 	 * and may be shared between different PMUs. Avoid freeing them
10410 	 * when a single PMU is going away.
10411 	 */
10412 	if (pmu->task_ctx_nr > perf_invalid_context)
10413 		return;
10414 
10415 	free_percpu(pmu->pmu_cpu_context);
10416 }
10417 
10418 /*
10419  * Let userspace know that this PMU supports address range filtering:
10420  */
10421 static ssize_t nr_addr_filters_show(struct device *dev,
10422 				    struct device_attribute *attr,
10423 				    char *page)
10424 {
10425 	struct pmu *pmu = dev_get_drvdata(dev);
10426 
10427 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10428 }
10429 DEVICE_ATTR_RO(nr_addr_filters);
10430 
10431 static struct idr pmu_idr;
10432 
10433 static ssize_t
10434 type_show(struct device *dev, struct device_attribute *attr, char *page)
10435 {
10436 	struct pmu *pmu = dev_get_drvdata(dev);
10437 
10438 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10439 }
10440 static DEVICE_ATTR_RO(type);
10441 
10442 static ssize_t
10443 perf_event_mux_interval_ms_show(struct device *dev,
10444 				struct device_attribute *attr,
10445 				char *page)
10446 {
10447 	struct pmu *pmu = dev_get_drvdata(dev);
10448 
10449 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10450 }
10451 
10452 static DEFINE_MUTEX(mux_interval_mutex);
10453 
10454 static ssize_t
10455 perf_event_mux_interval_ms_store(struct device *dev,
10456 				 struct device_attribute *attr,
10457 				 const char *buf, size_t count)
10458 {
10459 	struct pmu *pmu = dev_get_drvdata(dev);
10460 	int timer, cpu, ret;
10461 
10462 	ret = kstrtoint(buf, 0, &timer);
10463 	if (ret)
10464 		return ret;
10465 
10466 	if (timer < 1)
10467 		return -EINVAL;
10468 
10469 	/* same value, noting to do */
10470 	if (timer == pmu->hrtimer_interval_ms)
10471 		return count;
10472 
10473 	mutex_lock(&mux_interval_mutex);
10474 	pmu->hrtimer_interval_ms = timer;
10475 
10476 	/* update all cpuctx for this PMU */
10477 	cpus_read_lock();
10478 	for_each_online_cpu(cpu) {
10479 		struct perf_cpu_context *cpuctx;
10480 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10481 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10482 
10483 		cpu_function_call(cpu,
10484 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10485 	}
10486 	cpus_read_unlock();
10487 	mutex_unlock(&mux_interval_mutex);
10488 
10489 	return count;
10490 }
10491 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10492 
10493 static struct attribute *pmu_dev_attrs[] = {
10494 	&dev_attr_type.attr,
10495 	&dev_attr_perf_event_mux_interval_ms.attr,
10496 	NULL,
10497 };
10498 ATTRIBUTE_GROUPS(pmu_dev);
10499 
10500 static int pmu_bus_running;
10501 static struct bus_type pmu_bus = {
10502 	.name		= "event_source",
10503 	.dev_groups	= pmu_dev_groups,
10504 };
10505 
10506 static void pmu_dev_release(struct device *dev)
10507 {
10508 	kfree(dev);
10509 }
10510 
10511 static int pmu_dev_alloc(struct pmu *pmu)
10512 {
10513 	int ret = -ENOMEM;
10514 
10515 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10516 	if (!pmu->dev)
10517 		goto out;
10518 
10519 	pmu->dev->groups = pmu->attr_groups;
10520 	device_initialize(pmu->dev);
10521 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10522 	if (ret)
10523 		goto free_dev;
10524 
10525 	dev_set_drvdata(pmu->dev, pmu);
10526 	pmu->dev->bus = &pmu_bus;
10527 	pmu->dev->release = pmu_dev_release;
10528 	ret = device_add(pmu->dev);
10529 	if (ret)
10530 		goto free_dev;
10531 
10532 	/* For PMUs with address filters, throw in an extra attribute: */
10533 	if (pmu->nr_addr_filters)
10534 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10535 
10536 	if (ret)
10537 		goto del_dev;
10538 
10539 	if (pmu->attr_update)
10540 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10541 
10542 	if (ret)
10543 		goto del_dev;
10544 
10545 out:
10546 	return ret;
10547 
10548 del_dev:
10549 	device_del(pmu->dev);
10550 
10551 free_dev:
10552 	put_device(pmu->dev);
10553 	goto out;
10554 }
10555 
10556 static struct lock_class_key cpuctx_mutex;
10557 static struct lock_class_key cpuctx_lock;
10558 
10559 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10560 {
10561 	int cpu, ret, max = PERF_TYPE_MAX;
10562 
10563 	mutex_lock(&pmus_lock);
10564 	ret = -ENOMEM;
10565 	pmu->pmu_disable_count = alloc_percpu(int);
10566 	if (!pmu->pmu_disable_count)
10567 		goto unlock;
10568 
10569 	pmu->type = -1;
10570 	if (!name)
10571 		goto skip_type;
10572 	pmu->name = name;
10573 
10574 	if (type != PERF_TYPE_SOFTWARE) {
10575 		if (type >= 0)
10576 			max = type;
10577 
10578 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10579 		if (ret < 0)
10580 			goto free_pdc;
10581 
10582 		WARN_ON(type >= 0 && ret != type);
10583 
10584 		type = ret;
10585 	}
10586 	pmu->type = type;
10587 
10588 	if (pmu_bus_running) {
10589 		ret = pmu_dev_alloc(pmu);
10590 		if (ret)
10591 			goto free_idr;
10592 	}
10593 
10594 skip_type:
10595 	if (pmu->task_ctx_nr == perf_hw_context) {
10596 		static int hw_context_taken = 0;
10597 
10598 		/*
10599 		 * Other than systems with heterogeneous CPUs, it never makes
10600 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10601 		 * uncore must use perf_invalid_context.
10602 		 */
10603 		if (WARN_ON_ONCE(hw_context_taken &&
10604 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10605 			pmu->task_ctx_nr = perf_invalid_context;
10606 
10607 		hw_context_taken = 1;
10608 	}
10609 
10610 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10611 	if (pmu->pmu_cpu_context)
10612 		goto got_cpu_context;
10613 
10614 	ret = -ENOMEM;
10615 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10616 	if (!pmu->pmu_cpu_context)
10617 		goto free_dev;
10618 
10619 	for_each_possible_cpu(cpu) {
10620 		struct perf_cpu_context *cpuctx;
10621 
10622 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10623 		__perf_event_init_context(&cpuctx->ctx);
10624 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10625 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10626 		cpuctx->ctx.pmu = pmu;
10627 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10628 
10629 		__perf_mux_hrtimer_init(cpuctx, cpu);
10630 
10631 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10632 		cpuctx->heap = cpuctx->heap_default;
10633 	}
10634 
10635 got_cpu_context:
10636 	if (!pmu->start_txn) {
10637 		if (pmu->pmu_enable) {
10638 			/*
10639 			 * If we have pmu_enable/pmu_disable calls, install
10640 			 * transaction stubs that use that to try and batch
10641 			 * hardware accesses.
10642 			 */
10643 			pmu->start_txn  = perf_pmu_start_txn;
10644 			pmu->commit_txn = perf_pmu_commit_txn;
10645 			pmu->cancel_txn = perf_pmu_cancel_txn;
10646 		} else {
10647 			pmu->start_txn  = perf_pmu_nop_txn;
10648 			pmu->commit_txn = perf_pmu_nop_int;
10649 			pmu->cancel_txn = perf_pmu_nop_void;
10650 		}
10651 	}
10652 
10653 	if (!pmu->pmu_enable) {
10654 		pmu->pmu_enable  = perf_pmu_nop_void;
10655 		pmu->pmu_disable = perf_pmu_nop_void;
10656 	}
10657 
10658 	if (!pmu->check_period)
10659 		pmu->check_period = perf_event_nop_int;
10660 
10661 	if (!pmu->event_idx)
10662 		pmu->event_idx = perf_event_idx_default;
10663 
10664 	/*
10665 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10666 	 * since these cannot be in the IDR. This way the linear search
10667 	 * is fast, provided a valid software event is provided.
10668 	 */
10669 	if (type == PERF_TYPE_SOFTWARE || !name)
10670 		list_add_rcu(&pmu->entry, &pmus);
10671 	else
10672 		list_add_tail_rcu(&pmu->entry, &pmus);
10673 
10674 	atomic_set(&pmu->exclusive_cnt, 0);
10675 	ret = 0;
10676 unlock:
10677 	mutex_unlock(&pmus_lock);
10678 
10679 	return ret;
10680 
10681 free_dev:
10682 	device_del(pmu->dev);
10683 	put_device(pmu->dev);
10684 
10685 free_idr:
10686 	if (pmu->type != PERF_TYPE_SOFTWARE)
10687 		idr_remove(&pmu_idr, pmu->type);
10688 
10689 free_pdc:
10690 	free_percpu(pmu->pmu_disable_count);
10691 	goto unlock;
10692 }
10693 EXPORT_SYMBOL_GPL(perf_pmu_register);
10694 
10695 void perf_pmu_unregister(struct pmu *pmu)
10696 {
10697 	mutex_lock(&pmus_lock);
10698 	list_del_rcu(&pmu->entry);
10699 
10700 	/*
10701 	 * We dereference the pmu list under both SRCU and regular RCU, so
10702 	 * synchronize against both of those.
10703 	 */
10704 	synchronize_srcu(&pmus_srcu);
10705 	synchronize_rcu();
10706 
10707 	free_percpu(pmu->pmu_disable_count);
10708 	if (pmu->type != PERF_TYPE_SOFTWARE)
10709 		idr_remove(&pmu_idr, pmu->type);
10710 	if (pmu_bus_running) {
10711 		if (pmu->nr_addr_filters)
10712 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10713 		device_del(pmu->dev);
10714 		put_device(pmu->dev);
10715 	}
10716 	free_pmu_context(pmu);
10717 	mutex_unlock(&pmus_lock);
10718 }
10719 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10720 
10721 static inline bool has_extended_regs(struct perf_event *event)
10722 {
10723 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10724 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10725 }
10726 
10727 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10728 {
10729 	struct perf_event_context *ctx = NULL;
10730 	int ret;
10731 
10732 	if (!try_module_get(pmu->module))
10733 		return -ENODEV;
10734 
10735 	/*
10736 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10737 	 * for example, validate if the group fits on the PMU. Therefore,
10738 	 * if this is a sibling event, acquire the ctx->mutex to protect
10739 	 * the sibling_list.
10740 	 */
10741 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10742 		/*
10743 		 * This ctx->mutex can nest when we're called through
10744 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10745 		 */
10746 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10747 						 SINGLE_DEPTH_NESTING);
10748 		BUG_ON(!ctx);
10749 	}
10750 
10751 	event->pmu = pmu;
10752 	ret = pmu->event_init(event);
10753 
10754 	if (ctx)
10755 		perf_event_ctx_unlock(event->group_leader, ctx);
10756 
10757 	if (!ret) {
10758 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10759 		    has_extended_regs(event))
10760 			ret = -EOPNOTSUPP;
10761 
10762 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10763 		    event_has_any_exclude_flag(event))
10764 			ret = -EINVAL;
10765 
10766 		if (ret && event->destroy)
10767 			event->destroy(event);
10768 	}
10769 
10770 	if (ret)
10771 		module_put(pmu->module);
10772 
10773 	return ret;
10774 }
10775 
10776 static struct pmu *perf_init_event(struct perf_event *event)
10777 {
10778 	int idx, type, ret;
10779 	struct pmu *pmu;
10780 
10781 	idx = srcu_read_lock(&pmus_srcu);
10782 
10783 	/* Try parent's PMU first: */
10784 	if (event->parent && event->parent->pmu) {
10785 		pmu = event->parent->pmu;
10786 		ret = perf_try_init_event(pmu, event);
10787 		if (!ret)
10788 			goto unlock;
10789 	}
10790 
10791 	/*
10792 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10793 	 * are often aliases for PERF_TYPE_RAW.
10794 	 */
10795 	type = event->attr.type;
10796 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10797 		type = PERF_TYPE_RAW;
10798 
10799 again:
10800 	rcu_read_lock();
10801 	pmu = idr_find(&pmu_idr, type);
10802 	rcu_read_unlock();
10803 	if (pmu) {
10804 		ret = perf_try_init_event(pmu, event);
10805 		if (ret == -ENOENT && event->attr.type != type) {
10806 			type = event->attr.type;
10807 			goto again;
10808 		}
10809 
10810 		if (ret)
10811 			pmu = ERR_PTR(ret);
10812 
10813 		goto unlock;
10814 	}
10815 
10816 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10817 		ret = perf_try_init_event(pmu, event);
10818 		if (!ret)
10819 			goto unlock;
10820 
10821 		if (ret != -ENOENT) {
10822 			pmu = ERR_PTR(ret);
10823 			goto unlock;
10824 		}
10825 	}
10826 	pmu = ERR_PTR(-ENOENT);
10827 unlock:
10828 	srcu_read_unlock(&pmus_srcu, idx);
10829 
10830 	return pmu;
10831 }
10832 
10833 static void attach_sb_event(struct perf_event *event)
10834 {
10835 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10836 
10837 	raw_spin_lock(&pel->lock);
10838 	list_add_rcu(&event->sb_list, &pel->list);
10839 	raw_spin_unlock(&pel->lock);
10840 }
10841 
10842 /*
10843  * We keep a list of all !task (and therefore per-cpu) events
10844  * that need to receive side-band records.
10845  *
10846  * This avoids having to scan all the various PMU per-cpu contexts
10847  * looking for them.
10848  */
10849 static void account_pmu_sb_event(struct perf_event *event)
10850 {
10851 	if (is_sb_event(event))
10852 		attach_sb_event(event);
10853 }
10854 
10855 static void account_event_cpu(struct perf_event *event, int cpu)
10856 {
10857 	if (event->parent)
10858 		return;
10859 
10860 	if (is_cgroup_event(event))
10861 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10862 }
10863 
10864 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10865 static void account_freq_event_nohz(void)
10866 {
10867 #ifdef CONFIG_NO_HZ_FULL
10868 	/* Lock so we don't race with concurrent unaccount */
10869 	spin_lock(&nr_freq_lock);
10870 	if (atomic_inc_return(&nr_freq_events) == 1)
10871 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10872 	spin_unlock(&nr_freq_lock);
10873 #endif
10874 }
10875 
10876 static void account_freq_event(void)
10877 {
10878 	if (tick_nohz_full_enabled())
10879 		account_freq_event_nohz();
10880 	else
10881 		atomic_inc(&nr_freq_events);
10882 }
10883 
10884 
10885 static void account_event(struct perf_event *event)
10886 {
10887 	bool inc = false;
10888 
10889 	if (event->parent)
10890 		return;
10891 
10892 	if (event->attach_state & PERF_ATTACH_TASK)
10893 		inc = true;
10894 	if (event->attr.mmap || event->attr.mmap_data)
10895 		atomic_inc(&nr_mmap_events);
10896 	if (event->attr.comm)
10897 		atomic_inc(&nr_comm_events);
10898 	if (event->attr.namespaces)
10899 		atomic_inc(&nr_namespaces_events);
10900 	if (event->attr.cgroup)
10901 		atomic_inc(&nr_cgroup_events);
10902 	if (event->attr.task)
10903 		atomic_inc(&nr_task_events);
10904 	if (event->attr.freq)
10905 		account_freq_event();
10906 	if (event->attr.context_switch) {
10907 		atomic_inc(&nr_switch_events);
10908 		inc = true;
10909 	}
10910 	if (has_branch_stack(event))
10911 		inc = true;
10912 	if (is_cgroup_event(event))
10913 		inc = true;
10914 	if (event->attr.ksymbol)
10915 		atomic_inc(&nr_ksymbol_events);
10916 	if (event->attr.bpf_event)
10917 		atomic_inc(&nr_bpf_events);
10918 
10919 	if (inc) {
10920 		/*
10921 		 * We need the mutex here because static_branch_enable()
10922 		 * must complete *before* the perf_sched_count increment
10923 		 * becomes visible.
10924 		 */
10925 		if (atomic_inc_not_zero(&perf_sched_count))
10926 			goto enabled;
10927 
10928 		mutex_lock(&perf_sched_mutex);
10929 		if (!atomic_read(&perf_sched_count)) {
10930 			static_branch_enable(&perf_sched_events);
10931 			/*
10932 			 * Guarantee that all CPUs observe they key change and
10933 			 * call the perf scheduling hooks before proceeding to
10934 			 * install events that need them.
10935 			 */
10936 			synchronize_rcu();
10937 		}
10938 		/*
10939 		 * Now that we have waited for the sync_sched(), allow further
10940 		 * increments to by-pass the mutex.
10941 		 */
10942 		atomic_inc(&perf_sched_count);
10943 		mutex_unlock(&perf_sched_mutex);
10944 	}
10945 enabled:
10946 
10947 	account_event_cpu(event, event->cpu);
10948 
10949 	account_pmu_sb_event(event);
10950 }
10951 
10952 /*
10953  * Allocate and initialize an event structure
10954  */
10955 static struct perf_event *
10956 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10957 		 struct task_struct *task,
10958 		 struct perf_event *group_leader,
10959 		 struct perf_event *parent_event,
10960 		 perf_overflow_handler_t overflow_handler,
10961 		 void *context, int cgroup_fd)
10962 {
10963 	struct pmu *pmu;
10964 	struct perf_event *event;
10965 	struct hw_perf_event *hwc;
10966 	long err = -EINVAL;
10967 
10968 	if ((unsigned)cpu >= nr_cpu_ids) {
10969 		if (!task || cpu != -1)
10970 			return ERR_PTR(-EINVAL);
10971 	}
10972 
10973 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10974 	if (!event)
10975 		return ERR_PTR(-ENOMEM);
10976 
10977 	/*
10978 	 * Single events are their own group leaders, with an
10979 	 * empty sibling list:
10980 	 */
10981 	if (!group_leader)
10982 		group_leader = event;
10983 
10984 	mutex_init(&event->child_mutex);
10985 	INIT_LIST_HEAD(&event->child_list);
10986 
10987 	INIT_LIST_HEAD(&event->event_entry);
10988 	INIT_LIST_HEAD(&event->sibling_list);
10989 	INIT_LIST_HEAD(&event->active_list);
10990 	init_event_group(event);
10991 	INIT_LIST_HEAD(&event->rb_entry);
10992 	INIT_LIST_HEAD(&event->active_entry);
10993 	INIT_LIST_HEAD(&event->addr_filters.list);
10994 	INIT_HLIST_NODE(&event->hlist_entry);
10995 
10996 
10997 	init_waitqueue_head(&event->waitq);
10998 	event->pending_disable = -1;
10999 	init_irq_work(&event->pending, perf_pending_event);
11000 
11001 	mutex_init(&event->mmap_mutex);
11002 	raw_spin_lock_init(&event->addr_filters.lock);
11003 
11004 	atomic_long_set(&event->refcount, 1);
11005 	event->cpu		= cpu;
11006 	event->attr		= *attr;
11007 	event->group_leader	= group_leader;
11008 	event->pmu		= NULL;
11009 	event->oncpu		= -1;
11010 
11011 	event->parent		= parent_event;
11012 
11013 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11014 	event->id		= atomic64_inc_return(&perf_event_id);
11015 
11016 	event->state		= PERF_EVENT_STATE_INACTIVE;
11017 
11018 	if (task) {
11019 		event->attach_state = PERF_ATTACH_TASK;
11020 		/*
11021 		 * XXX pmu::event_init needs to know what task to account to
11022 		 * and we cannot use the ctx information because we need the
11023 		 * pmu before we get a ctx.
11024 		 */
11025 		event->hw.target = get_task_struct(task);
11026 	}
11027 
11028 	event->clock = &local_clock;
11029 	if (parent_event)
11030 		event->clock = parent_event->clock;
11031 
11032 	if (!overflow_handler && parent_event) {
11033 		overflow_handler = parent_event->overflow_handler;
11034 		context = parent_event->overflow_handler_context;
11035 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11036 		if (overflow_handler == bpf_overflow_handler) {
11037 			struct bpf_prog *prog = parent_event->prog;
11038 
11039 			bpf_prog_inc(prog);
11040 			event->prog = prog;
11041 			event->orig_overflow_handler =
11042 				parent_event->orig_overflow_handler;
11043 		}
11044 #endif
11045 	}
11046 
11047 	if (overflow_handler) {
11048 		event->overflow_handler	= overflow_handler;
11049 		event->overflow_handler_context = context;
11050 	} else if (is_write_backward(event)){
11051 		event->overflow_handler = perf_event_output_backward;
11052 		event->overflow_handler_context = NULL;
11053 	} else {
11054 		event->overflow_handler = perf_event_output_forward;
11055 		event->overflow_handler_context = NULL;
11056 	}
11057 
11058 	perf_event__state_init(event);
11059 
11060 	pmu = NULL;
11061 
11062 	hwc = &event->hw;
11063 	hwc->sample_period = attr->sample_period;
11064 	if (attr->freq && attr->sample_freq)
11065 		hwc->sample_period = 1;
11066 	hwc->last_period = hwc->sample_period;
11067 
11068 	local64_set(&hwc->period_left, hwc->sample_period);
11069 
11070 	/*
11071 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11072 	 * See perf_output_read().
11073 	 */
11074 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11075 		goto err_ns;
11076 
11077 	if (!has_branch_stack(event))
11078 		event->attr.branch_sample_type = 0;
11079 
11080 	pmu = perf_init_event(event);
11081 	if (IS_ERR(pmu)) {
11082 		err = PTR_ERR(pmu);
11083 		goto err_ns;
11084 	}
11085 
11086 	/*
11087 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11088 	 * be different on other CPUs in the uncore mask.
11089 	 */
11090 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11091 		err = -EINVAL;
11092 		goto err_pmu;
11093 	}
11094 
11095 	if (event->attr.aux_output &&
11096 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11097 		err = -EOPNOTSUPP;
11098 		goto err_pmu;
11099 	}
11100 
11101 	if (cgroup_fd != -1) {
11102 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11103 		if (err)
11104 			goto err_pmu;
11105 	}
11106 
11107 	err = exclusive_event_init(event);
11108 	if (err)
11109 		goto err_pmu;
11110 
11111 	if (has_addr_filter(event)) {
11112 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11113 						    sizeof(struct perf_addr_filter_range),
11114 						    GFP_KERNEL);
11115 		if (!event->addr_filter_ranges) {
11116 			err = -ENOMEM;
11117 			goto err_per_task;
11118 		}
11119 
11120 		/*
11121 		 * Clone the parent's vma offsets: they are valid until exec()
11122 		 * even if the mm is not shared with the parent.
11123 		 */
11124 		if (event->parent) {
11125 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11126 
11127 			raw_spin_lock_irq(&ifh->lock);
11128 			memcpy(event->addr_filter_ranges,
11129 			       event->parent->addr_filter_ranges,
11130 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11131 			raw_spin_unlock_irq(&ifh->lock);
11132 		}
11133 
11134 		/* force hw sync on the address filters */
11135 		event->addr_filters_gen = 1;
11136 	}
11137 
11138 	if (!event->parent) {
11139 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11140 			err = get_callchain_buffers(attr->sample_max_stack);
11141 			if (err)
11142 				goto err_addr_filters;
11143 		}
11144 	}
11145 
11146 	err = security_perf_event_alloc(event);
11147 	if (err)
11148 		goto err_callchain_buffer;
11149 
11150 	/* symmetric to unaccount_event() in _free_event() */
11151 	account_event(event);
11152 
11153 	return event;
11154 
11155 err_callchain_buffer:
11156 	if (!event->parent) {
11157 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11158 			put_callchain_buffers();
11159 	}
11160 err_addr_filters:
11161 	kfree(event->addr_filter_ranges);
11162 
11163 err_per_task:
11164 	exclusive_event_destroy(event);
11165 
11166 err_pmu:
11167 	if (is_cgroup_event(event))
11168 		perf_detach_cgroup(event);
11169 	if (event->destroy)
11170 		event->destroy(event);
11171 	module_put(pmu->module);
11172 err_ns:
11173 	if (event->ns)
11174 		put_pid_ns(event->ns);
11175 	if (event->hw.target)
11176 		put_task_struct(event->hw.target);
11177 	kfree(event);
11178 
11179 	return ERR_PTR(err);
11180 }
11181 
11182 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11183 			  struct perf_event_attr *attr)
11184 {
11185 	u32 size;
11186 	int ret;
11187 
11188 	/* Zero the full structure, so that a short copy will be nice. */
11189 	memset(attr, 0, sizeof(*attr));
11190 
11191 	ret = get_user(size, &uattr->size);
11192 	if (ret)
11193 		return ret;
11194 
11195 	/* ABI compatibility quirk: */
11196 	if (!size)
11197 		size = PERF_ATTR_SIZE_VER0;
11198 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11199 		goto err_size;
11200 
11201 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11202 	if (ret) {
11203 		if (ret == -E2BIG)
11204 			goto err_size;
11205 		return ret;
11206 	}
11207 
11208 	attr->size = size;
11209 
11210 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11211 		return -EINVAL;
11212 
11213 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11214 		return -EINVAL;
11215 
11216 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11217 		return -EINVAL;
11218 
11219 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11220 		u64 mask = attr->branch_sample_type;
11221 
11222 		/* only using defined bits */
11223 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11224 			return -EINVAL;
11225 
11226 		/* at least one branch bit must be set */
11227 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11228 			return -EINVAL;
11229 
11230 		/* propagate priv level, when not set for branch */
11231 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11232 
11233 			/* exclude_kernel checked on syscall entry */
11234 			if (!attr->exclude_kernel)
11235 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11236 
11237 			if (!attr->exclude_user)
11238 				mask |= PERF_SAMPLE_BRANCH_USER;
11239 
11240 			if (!attr->exclude_hv)
11241 				mask |= PERF_SAMPLE_BRANCH_HV;
11242 			/*
11243 			 * adjust user setting (for HW filter setup)
11244 			 */
11245 			attr->branch_sample_type = mask;
11246 		}
11247 		/* privileged levels capture (kernel, hv): check permissions */
11248 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11249 			ret = perf_allow_kernel(attr);
11250 			if (ret)
11251 				return ret;
11252 		}
11253 	}
11254 
11255 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11256 		ret = perf_reg_validate(attr->sample_regs_user);
11257 		if (ret)
11258 			return ret;
11259 	}
11260 
11261 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11262 		if (!arch_perf_have_user_stack_dump())
11263 			return -ENOSYS;
11264 
11265 		/*
11266 		 * We have __u32 type for the size, but so far
11267 		 * we can only use __u16 as maximum due to the
11268 		 * __u16 sample size limit.
11269 		 */
11270 		if (attr->sample_stack_user >= USHRT_MAX)
11271 			return -EINVAL;
11272 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11273 			return -EINVAL;
11274 	}
11275 
11276 	if (!attr->sample_max_stack)
11277 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11278 
11279 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11280 		ret = perf_reg_validate(attr->sample_regs_intr);
11281 
11282 #ifndef CONFIG_CGROUP_PERF
11283 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11284 		return -EINVAL;
11285 #endif
11286 
11287 out:
11288 	return ret;
11289 
11290 err_size:
11291 	put_user(sizeof(*attr), &uattr->size);
11292 	ret = -E2BIG;
11293 	goto out;
11294 }
11295 
11296 static int
11297 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11298 {
11299 	struct perf_buffer *rb = NULL;
11300 	int ret = -EINVAL;
11301 
11302 	if (!output_event)
11303 		goto set;
11304 
11305 	/* don't allow circular references */
11306 	if (event == output_event)
11307 		goto out;
11308 
11309 	/*
11310 	 * Don't allow cross-cpu buffers
11311 	 */
11312 	if (output_event->cpu != event->cpu)
11313 		goto out;
11314 
11315 	/*
11316 	 * If its not a per-cpu rb, it must be the same task.
11317 	 */
11318 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11319 		goto out;
11320 
11321 	/*
11322 	 * Mixing clocks in the same buffer is trouble you don't need.
11323 	 */
11324 	if (output_event->clock != event->clock)
11325 		goto out;
11326 
11327 	/*
11328 	 * Either writing ring buffer from beginning or from end.
11329 	 * Mixing is not allowed.
11330 	 */
11331 	if (is_write_backward(output_event) != is_write_backward(event))
11332 		goto out;
11333 
11334 	/*
11335 	 * If both events generate aux data, they must be on the same PMU
11336 	 */
11337 	if (has_aux(event) && has_aux(output_event) &&
11338 	    event->pmu != output_event->pmu)
11339 		goto out;
11340 
11341 set:
11342 	mutex_lock(&event->mmap_mutex);
11343 	/* Can't redirect output if we've got an active mmap() */
11344 	if (atomic_read(&event->mmap_count))
11345 		goto unlock;
11346 
11347 	if (output_event) {
11348 		/* get the rb we want to redirect to */
11349 		rb = ring_buffer_get(output_event);
11350 		if (!rb)
11351 			goto unlock;
11352 	}
11353 
11354 	ring_buffer_attach(event, rb);
11355 
11356 	ret = 0;
11357 unlock:
11358 	mutex_unlock(&event->mmap_mutex);
11359 
11360 out:
11361 	return ret;
11362 }
11363 
11364 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11365 {
11366 	if (b < a)
11367 		swap(a, b);
11368 
11369 	mutex_lock(a);
11370 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11371 }
11372 
11373 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11374 {
11375 	bool nmi_safe = false;
11376 
11377 	switch (clk_id) {
11378 	case CLOCK_MONOTONIC:
11379 		event->clock = &ktime_get_mono_fast_ns;
11380 		nmi_safe = true;
11381 		break;
11382 
11383 	case CLOCK_MONOTONIC_RAW:
11384 		event->clock = &ktime_get_raw_fast_ns;
11385 		nmi_safe = true;
11386 		break;
11387 
11388 	case CLOCK_REALTIME:
11389 		event->clock = &ktime_get_real_ns;
11390 		break;
11391 
11392 	case CLOCK_BOOTTIME:
11393 		event->clock = &ktime_get_boottime_ns;
11394 		break;
11395 
11396 	case CLOCK_TAI:
11397 		event->clock = &ktime_get_clocktai_ns;
11398 		break;
11399 
11400 	default:
11401 		return -EINVAL;
11402 	}
11403 
11404 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11405 		return -EINVAL;
11406 
11407 	return 0;
11408 }
11409 
11410 /*
11411  * Variation on perf_event_ctx_lock_nested(), except we take two context
11412  * mutexes.
11413  */
11414 static struct perf_event_context *
11415 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11416 			     struct perf_event_context *ctx)
11417 {
11418 	struct perf_event_context *gctx;
11419 
11420 again:
11421 	rcu_read_lock();
11422 	gctx = READ_ONCE(group_leader->ctx);
11423 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11424 		rcu_read_unlock();
11425 		goto again;
11426 	}
11427 	rcu_read_unlock();
11428 
11429 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11430 
11431 	if (group_leader->ctx != gctx) {
11432 		mutex_unlock(&ctx->mutex);
11433 		mutex_unlock(&gctx->mutex);
11434 		put_ctx(gctx);
11435 		goto again;
11436 	}
11437 
11438 	return gctx;
11439 }
11440 
11441 /**
11442  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11443  *
11444  * @attr_uptr:	event_id type attributes for monitoring/sampling
11445  * @pid:		target pid
11446  * @cpu:		target cpu
11447  * @group_fd:		group leader event fd
11448  */
11449 SYSCALL_DEFINE5(perf_event_open,
11450 		struct perf_event_attr __user *, attr_uptr,
11451 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11452 {
11453 	struct perf_event *group_leader = NULL, *output_event = NULL;
11454 	struct perf_event *event, *sibling;
11455 	struct perf_event_attr attr;
11456 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11457 	struct file *event_file = NULL;
11458 	struct fd group = {NULL, 0};
11459 	struct task_struct *task = NULL;
11460 	struct pmu *pmu;
11461 	int event_fd;
11462 	int move_group = 0;
11463 	int err;
11464 	int f_flags = O_RDWR;
11465 	int cgroup_fd = -1;
11466 
11467 	/* for future expandability... */
11468 	if (flags & ~PERF_FLAG_ALL)
11469 		return -EINVAL;
11470 
11471 	/* Do we allow access to perf_event_open(2) ? */
11472 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11473 	if (err)
11474 		return err;
11475 
11476 	err = perf_copy_attr(attr_uptr, &attr);
11477 	if (err)
11478 		return err;
11479 
11480 	if (!attr.exclude_kernel) {
11481 		err = perf_allow_kernel(&attr);
11482 		if (err)
11483 			return err;
11484 	}
11485 
11486 	if (attr.namespaces) {
11487 		if (!capable(CAP_SYS_ADMIN))
11488 			return -EACCES;
11489 	}
11490 
11491 	if (attr.freq) {
11492 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11493 			return -EINVAL;
11494 	} else {
11495 		if (attr.sample_period & (1ULL << 63))
11496 			return -EINVAL;
11497 	}
11498 
11499 	/* Only privileged users can get physical addresses */
11500 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11501 		err = perf_allow_kernel(&attr);
11502 		if (err)
11503 			return err;
11504 	}
11505 
11506 	err = security_locked_down(LOCKDOWN_PERF);
11507 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11508 		/* REGS_INTR can leak data, lockdown must prevent this */
11509 		return err;
11510 
11511 	err = 0;
11512 
11513 	/*
11514 	 * In cgroup mode, the pid argument is used to pass the fd
11515 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11516 	 * designates the cpu on which to monitor threads from that
11517 	 * cgroup.
11518 	 */
11519 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11520 		return -EINVAL;
11521 
11522 	if (flags & PERF_FLAG_FD_CLOEXEC)
11523 		f_flags |= O_CLOEXEC;
11524 
11525 	event_fd = get_unused_fd_flags(f_flags);
11526 	if (event_fd < 0)
11527 		return event_fd;
11528 
11529 	if (group_fd != -1) {
11530 		err = perf_fget_light(group_fd, &group);
11531 		if (err)
11532 			goto err_fd;
11533 		group_leader = group.file->private_data;
11534 		if (flags & PERF_FLAG_FD_OUTPUT)
11535 			output_event = group_leader;
11536 		if (flags & PERF_FLAG_FD_NO_GROUP)
11537 			group_leader = NULL;
11538 	}
11539 
11540 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11541 		task = find_lively_task_by_vpid(pid);
11542 		if (IS_ERR(task)) {
11543 			err = PTR_ERR(task);
11544 			goto err_group_fd;
11545 		}
11546 	}
11547 
11548 	if (task && group_leader &&
11549 	    group_leader->attr.inherit != attr.inherit) {
11550 		err = -EINVAL;
11551 		goto err_task;
11552 	}
11553 
11554 	if (task) {
11555 		err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11556 		if (err)
11557 			goto err_task;
11558 
11559 		/*
11560 		 * Reuse ptrace permission checks for now.
11561 		 *
11562 		 * We must hold exec_update_mutex across this and any potential
11563 		 * perf_install_in_context() call for this new event to
11564 		 * serialize against exec() altering our credentials (and the
11565 		 * perf_event_exit_task() that could imply).
11566 		 */
11567 		err = -EACCES;
11568 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11569 			goto err_cred;
11570 	}
11571 
11572 	if (flags & PERF_FLAG_PID_CGROUP)
11573 		cgroup_fd = pid;
11574 
11575 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11576 				 NULL, NULL, cgroup_fd);
11577 	if (IS_ERR(event)) {
11578 		err = PTR_ERR(event);
11579 		goto err_cred;
11580 	}
11581 
11582 	if (is_sampling_event(event)) {
11583 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11584 			err = -EOPNOTSUPP;
11585 			goto err_alloc;
11586 		}
11587 	}
11588 
11589 	/*
11590 	 * Special case software events and allow them to be part of
11591 	 * any hardware group.
11592 	 */
11593 	pmu = event->pmu;
11594 
11595 	if (attr.use_clockid) {
11596 		err = perf_event_set_clock(event, attr.clockid);
11597 		if (err)
11598 			goto err_alloc;
11599 	}
11600 
11601 	if (pmu->task_ctx_nr == perf_sw_context)
11602 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11603 
11604 	if (group_leader) {
11605 		if (is_software_event(event) &&
11606 		    !in_software_context(group_leader)) {
11607 			/*
11608 			 * If the event is a sw event, but the group_leader
11609 			 * is on hw context.
11610 			 *
11611 			 * Allow the addition of software events to hw
11612 			 * groups, this is safe because software events
11613 			 * never fail to schedule.
11614 			 */
11615 			pmu = group_leader->ctx->pmu;
11616 		} else if (!is_software_event(event) &&
11617 			   is_software_event(group_leader) &&
11618 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11619 			/*
11620 			 * In case the group is a pure software group, and we
11621 			 * try to add a hardware event, move the whole group to
11622 			 * the hardware context.
11623 			 */
11624 			move_group = 1;
11625 		}
11626 	}
11627 
11628 	/*
11629 	 * Get the target context (task or percpu):
11630 	 */
11631 	ctx = find_get_context(pmu, task, event);
11632 	if (IS_ERR(ctx)) {
11633 		err = PTR_ERR(ctx);
11634 		goto err_alloc;
11635 	}
11636 
11637 	/*
11638 	 * Look up the group leader (we will attach this event to it):
11639 	 */
11640 	if (group_leader) {
11641 		err = -EINVAL;
11642 
11643 		/*
11644 		 * Do not allow a recursive hierarchy (this new sibling
11645 		 * becoming part of another group-sibling):
11646 		 */
11647 		if (group_leader->group_leader != group_leader)
11648 			goto err_context;
11649 
11650 		/* All events in a group should have the same clock */
11651 		if (group_leader->clock != event->clock)
11652 			goto err_context;
11653 
11654 		/*
11655 		 * Make sure we're both events for the same CPU;
11656 		 * grouping events for different CPUs is broken; since
11657 		 * you can never concurrently schedule them anyhow.
11658 		 */
11659 		if (group_leader->cpu != event->cpu)
11660 			goto err_context;
11661 
11662 		/*
11663 		 * Make sure we're both on the same task, or both
11664 		 * per-CPU events.
11665 		 */
11666 		if (group_leader->ctx->task != ctx->task)
11667 			goto err_context;
11668 
11669 		/*
11670 		 * Do not allow to attach to a group in a different task
11671 		 * or CPU context. If we're moving SW events, we'll fix
11672 		 * this up later, so allow that.
11673 		 */
11674 		if (!move_group && group_leader->ctx != ctx)
11675 			goto err_context;
11676 
11677 		/*
11678 		 * Only a group leader can be exclusive or pinned
11679 		 */
11680 		if (attr.exclusive || attr.pinned)
11681 			goto err_context;
11682 	}
11683 
11684 	if (output_event) {
11685 		err = perf_event_set_output(event, output_event);
11686 		if (err)
11687 			goto err_context;
11688 	}
11689 
11690 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11691 					f_flags);
11692 	if (IS_ERR(event_file)) {
11693 		err = PTR_ERR(event_file);
11694 		event_file = NULL;
11695 		goto err_context;
11696 	}
11697 
11698 	if (move_group) {
11699 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11700 
11701 		if (gctx->task == TASK_TOMBSTONE) {
11702 			err = -ESRCH;
11703 			goto err_locked;
11704 		}
11705 
11706 		/*
11707 		 * Check if we raced against another sys_perf_event_open() call
11708 		 * moving the software group underneath us.
11709 		 */
11710 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11711 			/*
11712 			 * If someone moved the group out from under us, check
11713 			 * if this new event wound up on the same ctx, if so
11714 			 * its the regular !move_group case, otherwise fail.
11715 			 */
11716 			if (gctx != ctx) {
11717 				err = -EINVAL;
11718 				goto err_locked;
11719 			} else {
11720 				perf_event_ctx_unlock(group_leader, gctx);
11721 				move_group = 0;
11722 			}
11723 		}
11724 
11725 		/*
11726 		 * Failure to create exclusive events returns -EBUSY.
11727 		 */
11728 		err = -EBUSY;
11729 		if (!exclusive_event_installable(group_leader, ctx))
11730 			goto err_locked;
11731 
11732 		for_each_sibling_event(sibling, group_leader) {
11733 			if (!exclusive_event_installable(sibling, ctx))
11734 				goto err_locked;
11735 		}
11736 	} else {
11737 		mutex_lock(&ctx->mutex);
11738 	}
11739 
11740 	if (ctx->task == TASK_TOMBSTONE) {
11741 		err = -ESRCH;
11742 		goto err_locked;
11743 	}
11744 
11745 	if (!perf_event_validate_size(event)) {
11746 		err = -E2BIG;
11747 		goto err_locked;
11748 	}
11749 
11750 	if (!task) {
11751 		/*
11752 		 * Check if the @cpu we're creating an event for is online.
11753 		 *
11754 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11755 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11756 		 */
11757 		struct perf_cpu_context *cpuctx =
11758 			container_of(ctx, struct perf_cpu_context, ctx);
11759 
11760 		if (!cpuctx->online) {
11761 			err = -ENODEV;
11762 			goto err_locked;
11763 		}
11764 	}
11765 
11766 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11767 		err = -EINVAL;
11768 		goto err_locked;
11769 	}
11770 
11771 	/*
11772 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11773 	 * because we need to serialize with concurrent event creation.
11774 	 */
11775 	if (!exclusive_event_installable(event, ctx)) {
11776 		err = -EBUSY;
11777 		goto err_locked;
11778 	}
11779 
11780 	WARN_ON_ONCE(ctx->parent_ctx);
11781 
11782 	/*
11783 	 * This is the point on no return; we cannot fail hereafter. This is
11784 	 * where we start modifying current state.
11785 	 */
11786 
11787 	if (move_group) {
11788 		/*
11789 		 * See perf_event_ctx_lock() for comments on the details
11790 		 * of swizzling perf_event::ctx.
11791 		 */
11792 		perf_remove_from_context(group_leader, 0);
11793 		put_ctx(gctx);
11794 
11795 		for_each_sibling_event(sibling, group_leader) {
11796 			perf_remove_from_context(sibling, 0);
11797 			put_ctx(gctx);
11798 		}
11799 
11800 		/*
11801 		 * Wait for everybody to stop referencing the events through
11802 		 * the old lists, before installing it on new lists.
11803 		 */
11804 		synchronize_rcu();
11805 
11806 		/*
11807 		 * Install the group siblings before the group leader.
11808 		 *
11809 		 * Because a group leader will try and install the entire group
11810 		 * (through the sibling list, which is still in-tact), we can
11811 		 * end up with siblings installed in the wrong context.
11812 		 *
11813 		 * By installing siblings first we NO-OP because they're not
11814 		 * reachable through the group lists.
11815 		 */
11816 		for_each_sibling_event(sibling, group_leader) {
11817 			perf_event__state_init(sibling);
11818 			perf_install_in_context(ctx, sibling, sibling->cpu);
11819 			get_ctx(ctx);
11820 		}
11821 
11822 		/*
11823 		 * Removing from the context ends up with disabled
11824 		 * event. What we want here is event in the initial
11825 		 * startup state, ready to be add into new context.
11826 		 */
11827 		perf_event__state_init(group_leader);
11828 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11829 		get_ctx(ctx);
11830 	}
11831 
11832 	/*
11833 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11834 	 * that we're serialized against further additions and before
11835 	 * perf_install_in_context() which is the point the event is active and
11836 	 * can use these values.
11837 	 */
11838 	perf_event__header_size(event);
11839 	perf_event__id_header_size(event);
11840 
11841 	event->owner = current;
11842 
11843 	perf_install_in_context(ctx, event, event->cpu);
11844 	perf_unpin_context(ctx);
11845 
11846 	if (move_group)
11847 		perf_event_ctx_unlock(group_leader, gctx);
11848 	mutex_unlock(&ctx->mutex);
11849 
11850 	if (task) {
11851 		mutex_unlock(&task->signal->exec_update_mutex);
11852 		put_task_struct(task);
11853 	}
11854 
11855 	mutex_lock(&current->perf_event_mutex);
11856 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11857 	mutex_unlock(&current->perf_event_mutex);
11858 
11859 	/*
11860 	 * Drop the reference on the group_event after placing the
11861 	 * new event on the sibling_list. This ensures destruction
11862 	 * of the group leader will find the pointer to itself in
11863 	 * perf_group_detach().
11864 	 */
11865 	fdput(group);
11866 	fd_install(event_fd, event_file);
11867 	return event_fd;
11868 
11869 err_locked:
11870 	if (move_group)
11871 		perf_event_ctx_unlock(group_leader, gctx);
11872 	mutex_unlock(&ctx->mutex);
11873 /* err_file: */
11874 	fput(event_file);
11875 err_context:
11876 	perf_unpin_context(ctx);
11877 	put_ctx(ctx);
11878 err_alloc:
11879 	/*
11880 	 * If event_file is set, the fput() above will have called ->release()
11881 	 * and that will take care of freeing the event.
11882 	 */
11883 	if (!event_file)
11884 		free_event(event);
11885 err_cred:
11886 	if (task)
11887 		mutex_unlock(&task->signal->exec_update_mutex);
11888 err_task:
11889 	if (task)
11890 		put_task_struct(task);
11891 err_group_fd:
11892 	fdput(group);
11893 err_fd:
11894 	put_unused_fd(event_fd);
11895 	return err;
11896 }
11897 
11898 /**
11899  * perf_event_create_kernel_counter
11900  *
11901  * @attr: attributes of the counter to create
11902  * @cpu: cpu in which the counter is bound
11903  * @task: task to profile (NULL for percpu)
11904  */
11905 struct perf_event *
11906 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11907 				 struct task_struct *task,
11908 				 perf_overflow_handler_t overflow_handler,
11909 				 void *context)
11910 {
11911 	struct perf_event_context *ctx;
11912 	struct perf_event *event;
11913 	int err;
11914 
11915 	/*
11916 	 * Grouping is not supported for kernel events, neither is 'AUX',
11917 	 * make sure the caller's intentions are adjusted.
11918 	 */
11919 	if (attr->aux_output)
11920 		return ERR_PTR(-EINVAL);
11921 
11922 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11923 				 overflow_handler, context, -1);
11924 	if (IS_ERR(event)) {
11925 		err = PTR_ERR(event);
11926 		goto err;
11927 	}
11928 
11929 	/* Mark owner so we could distinguish it from user events. */
11930 	event->owner = TASK_TOMBSTONE;
11931 
11932 	/*
11933 	 * Get the target context (task or percpu):
11934 	 */
11935 	ctx = find_get_context(event->pmu, task, event);
11936 	if (IS_ERR(ctx)) {
11937 		err = PTR_ERR(ctx);
11938 		goto err_free;
11939 	}
11940 
11941 	WARN_ON_ONCE(ctx->parent_ctx);
11942 	mutex_lock(&ctx->mutex);
11943 	if (ctx->task == TASK_TOMBSTONE) {
11944 		err = -ESRCH;
11945 		goto err_unlock;
11946 	}
11947 
11948 	if (!task) {
11949 		/*
11950 		 * Check if the @cpu we're creating an event for is online.
11951 		 *
11952 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11953 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11954 		 */
11955 		struct perf_cpu_context *cpuctx =
11956 			container_of(ctx, struct perf_cpu_context, ctx);
11957 		if (!cpuctx->online) {
11958 			err = -ENODEV;
11959 			goto err_unlock;
11960 		}
11961 	}
11962 
11963 	if (!exclusive_event_installable(event, ctx)) {
11964 		err = -EBUSY;
11965 		goto err_unlock;
11966 	}
11967 
11968 	perf_install_in_context(ctx, event, event->cpu);
11969 	perf_unpin_context(ctx);
11970 	mutex_unlock(&ctx->mutex);
11971 
11972 	return event;
11973 
11974 err_unlock:
11975 	mutex_unlock(&ctx->mutex);
11976 	perf_unpin_context(ctx);
11977 	put_ctx(ctx);
11978 err_free:
11979 	free_event(event);
11980 err:
11981 	return ERR_PTR(err);
11982 }
11983 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11984 
11985 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11986 {
11987 	struct perf_event_context *src_ctx;
11988 	struct perf_event_context *dst_ctx;
11989 	struct perf_event *event, *tmp;
11990 	LIST_HEAD(events);
11991 
11992 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11993 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11994 
11995 	/*
11996 	 * See perf_event_ctx_lock() for comments on the details
11997 	 * of swizzling perf_event::ctx.
11998 	 */
11999 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12000 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12001 				 event_entry) {
12002 		perf_remove_from_context(event, 0);
12003 		unaccount_event_cpu(event, src_cpu);
12004 		put_ctx(src_ctx);
12005 		list_add(&event->migrate_entry, &events);
12006 	}
12007 
12008 	/*
12009 	 * Wait for the events to quiesce before re-instating them.
12010 	 */
12011 	synchronize_rcu();
12012 
12013 	/*
12014 	 * Re-instate events in 2 passes.
12015 	 *
12016 	 * Skip over group leaders and only install siblings on this first
12017 	 * pass, siblings will not get enabled without a leader, however a
12018 	 * leader will enable its siblings, even if those are still on the old
12019 	 * context.
12020 	 */
12021 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12022 		if (event->group_leader == event)
12023 			continue;
12024 
12025 		list_del(&event->migrate_entry);
12026 		if (event->state >= PERF_EVENT_STATE_OFF)
12027 			event->state = PERF_EVENT_STATE_INACTIVE;
12028 		account_event_cpu(event, dst_cpu);
12029 		perf_install_in_context(dst_ctx, event, dst_cpu);
12030 		get_ctx(dst_ctx);
12031 	}
12032 
12033 	/*
12034 	 * Once all the siblings are setup properly, install the group leaders
12035 	 * to make it go.
12036 	 */
12037 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12038 		list_del(&event->migrate_entry);
12039 		if (event->state >= PERF_EVENT_STATE_OFF)
12040 			event->state = PERF_EVENT_STATE_INACTIVE;
12041 		account_event_cpu(event, dst_cpu);
12042 		perf_install_in_context(dst_ctx, event, dst_cpu);
12043 		get_ctx(dst_ctx);
12044 	}
12045 	mutex_unlock(&dst_ctx->mutex);
12046 	mutex_unlock(&src_ctx->mutex);
12047 }
12048 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12049 
12050 static void sync_child_event(struct perf_event *child_event,
12051 			       struct task_struct *child)
12052 {
12053 	struct perf_event *parent_event = child_event->parent;
12054 	u64 child_val;
12055 
12056 	if (child_event->attr.inherit_stat)
12057 		perf_event_read_event(child_event, child);
12058 
12059 	child_val = perf_event_count(child_event);
12060 
12061 	/*
12062 	 * Add back the child's count to the parent's count:
12063 	 */
12064 	atomic64_add(child_val, &parent_event->child_count);
12065 	atomic64_add(child_event->total_time_enabled,
12066 		     &parent_event->child_total_time_enabled);
12067 	atomic64_add(child_event->total_time_running,
12068 		     &parent_event->child_total_time_running);
12069 }
12070 
12071 static void
12072 perf_event_exit_event(struct perf_event *child_event,
12073 		      struct perf_event_context *child_ctx,
12074 		      struct task_struct *child)
12075 {
12076 	struct perf_event *parent_event = child_event->parent;
12077 
12078 	/*
12079 	 * Do not destroy the 'original' grouping; because of the context
12080 	 * switch optimization the original events could've ended up in a
12081 	 * random child task.
12082 	 *
12083 	 * If we were to destroy the original group, all group related
12084 	 * operations would cease to function properly after this random
12085 	 * child dies.
12086 	 *
12087 	 * Do destroy all inherited groups, we don't care about those
12088 	 * and being thorough is better.
12089 	 */
12090 	raw_spin_lock_irq(&child_ctx->lock);
12091 	WARN_ON_ONCE(child_ctx->is_active);
12092 
12093 	if (parent_event)
12094 		perf_group_detach(child_event);
12095 	list_del_event(child_event, child_ctx);
12096 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12097 	raw_spin_unlock_irq(&child_ctx->lock);
12098 
12099 	/*
12100 	 * Parent events are governed by their filedesc, retain them.
12101 	 */
12102 	if (!parent_event) {
12103 		perf_event_wakeup(child_event);
12104 		return;
12105 	}
12106 	/*
12107 	 * Child events can be cleaned up.
12108 	 */
12109 
12110 	sync_child_event(child_event, child);
12111 
12112 	/*
12113 	 * Remove this event from the parent's list
12114 	 */
12115 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12116 	mutex_lock(&parent_event->child_mutex);
12117 	list_del_init(&child_event->child_list);
12118 	mutex_unlock(&parent_event->child_mutex);
12119 
12120 	/*
12121 	 * Kick perf_poll() for is_event_hup().
12122 	 */
12123 	perf_event_wakeup(parent_event);
12124 	free_event(child_event);
12125 	put_event(parent_event);
12126 }
12127 
12128 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12129 {
12130 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12131 	struct perf_event *child_event, *next;
12132 
12133 	WARN_ON_ONCE(child != current);
12134 
12135 	child_ctx = perf_pin_task_context(child, ctxn);
12136 	if (!child_ctx)
12137 		return;
12138 
12139 	/*
12140 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12141 	 * ctx::mutex over the entire thing. This serializes against almost
12142 	 * everything that wants to access the ctx.
12143 	 *
12144 	 * The exception is sys_perf_event_open() /
12145 	 * perf_event_create_kernel_count() which does find_get_context()
12146 	 * without ctx::mutex (it cannot because of the move_group double mutex
12147 	 * lock thing). See the comments in perf_install_in_context().
12148 	 */
12149 	mutex_lock(&child_ctx->mutex);
12150 
12151 	/*
12152 	 * In a single ctx::lock section, de-schedule the events and detach the
12153 	 * context from the task such that we cannot ever get it scheduled back
12154 	 * in.
12155 	 */
12156 	raw_spin_lock_irq(&child_ctx->lock);
12157 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12158 
12159 	/*
12160 	 * Now that the context is inactive, destroy the task <-> ctx relation
12161 	 * and mark the context dead.
12162 	 */
12163 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12164 	put_ctx(child_ctx); /* cannot be last */
12165 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12166 	put_task_struct(current); /* cannot be last */
12167 
12168 	clone_ctx = unclone_ctx(child_ctx);
12169 	raw_spin_unlock_irq(&child_ctx->lock);
12170 
12171 	if (clone_ctx)
12172 		put_ctx(clone_ctx);
12173 
12174 	/*
12175 	 * Report the task dead after unscheduling the events so that we
12176 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12177 	 * get a few PERF_RECORD_READ events.
12178 	 */
12179 	perf_event_task(child, child_ctx, 0);
12180 
12181 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12182 		perf_event_exit_event(child_event, child_ctx, child);
12183 
12184 	mutex_unlock(&child_ctx->mutex);
12185 
12186 	put_ctx(child_ctx);
12187 }
12188 
12189 /*
12190  * When a child task exits, feed back event values to parent events.
12191  *
12192  * Can be called with exec_update_mutex held when called from
12193  * install_exec_creds().
12194  */
12195 void perf_event_exit_task(struct task_struct *child)
12196 {
12197 	struct perf_event *event, *tmp;
12198 	int ctxn;
12199 
12200 	mutex_lock(&child->perf_event_mutex);
12201 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12202 				 owner_entry) {
12203 		list_del_init(&event->owner_entry);
12204 
12205 		/*
12206 		 * Ensure the list deletion is visible before we clear
12207 		 * the owner, closes a race against perf_release() where
12208 		 * we need to serialize on the owner->perf_event_mutex.
12209 		 */
12210 		smp_store_release(&event->owner, NULL);
12211 	}
12212 	mutex_unlock(&child->perf_event_mutex);
12213 
12214 	for_each_task_context_nr(ctxn)
12215 		perf_event_exit_task_context(child, ctxn);
12216 
12217 	/*
12218 	 * The perf_event_exit_task_context calls perf_event_task
12219 	 * with child's task_ctx, which generates EXIT events for
12220 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12221 	 * At this point we need to send EXIT events to cpu contexts.
12222 	 */
12223 	perf_event_task(child, NULL, 0);
12224 }
12225 
12226 static void perf_free_event(struct perf_event *event,
12227 			    struct perf_event_context *ctx)
12228 {
12229 	struct perf_event *parent = event->parent;
12230 
12231 	if (WARN_ON_ONCE(!parent))
12232 		return;
12233 
12234 	mutex_lock(&parent->child_mutex);
12235 	list_del_init(&event->child_list);
12236 	mutex_unlock(&parent->child_mutex);
12237 
12238 	put_event(parent);
12239 
12240 	raw_spin_lock_irq(&ctx->lock);
12241 	perf_group_detach(event);
12242 	list_del_event(event, ctx);
12243 	raw_spin_unlock_irq(&ctx->lock);
12244 	free_event(event);
12245 }
12246 
12247 /*
12248  * Free a context as created by inheritance by perf_event_init_task() below,
12249  * used by fork() in case of fail.
12250  *
12251  * Even though the task has never lived, the context and events have been
12252  * exposed through the child_list, so we must take care tearing it all down.
12253  */
12254 void perf_event_free_task(struct task_struct *task)
12255 {
12256 	struct perf_event_context *ctx;
12257 	struct perf_event *event, *tmp;
12258 	int ctxn;
12259 
12260 	for_each_task_context_nr(ctxn) {
12261 		ctx = task->perf_event_ctxp[ctxn];
12262 		if (!ctx)
12263 			continue;
12264 
12265 		mutex_lock(&ctx->mutex);
12266 		raw_spin_lock_irq(&ctx->lock);
12267 		/*
12268 		 * Destroy the task <-> ctx relation and mark the context dead.
12269 		 *
12270 		 * This is important because even though the task hasn't been
12271 		 * exposed yet the context has been (through child_list).
12272 		 */
12273 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12274 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12275 		put_task_struct(task); /* cannot be last */
12276 		raw_spin_unlock_irq(&ctx->lock);
12277 
12278 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12279 			perf_free_event(event, ctx);
12280 
12281 		mutex_unlock(&ctx->mutex);
12282 
12283 		/*
12284 		 * perf_event_release_kernel() could've stolen some of our
12285 		 * child events and still have them on its free_list. In that
12286 		 * case we must wait for these events to have been freed (in
12287 		 * particular all their references to this task must've been
12288 		 * dropped).
12289 		 *
12290 		 * Without this copy_process() will unconditionally free this
12291 		 * task (irrespective of its reference count) and
12292 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12293 		 * use-after-free.
12294 		 *
12295 		 * Wait for all events to drop their context reference.
12296 		 */
12297 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12298 		put_ctx(ctx); /* must be last */
12299 	}
12300 }
12301 
12302 void perf_event_delayed_put(struct task_struct *task)
12303 {
12304 	int ctxn;
12305 
12306 	for_each_task_context_nr(ctxn)
12307 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12308 }
12309 
12310 struct file *perf_event_get(unsigned int fd)
12311 {
12312 	struct file *file = fget(fd);
12313 	if (!file)
12314 		return ERR_PTR(-EBADF);
12315 
12316 	if (file->f_op != &perf_fops) {
12317 		fput(file);
12318 		return ERR_PTR(-EBADF);
12319 	}
12320 
12321 	return file;
12322 }
12323 
12324 const struct perf_event *perf_get_event(struct file *file)
12325 {
12326 	if (file->f_op != &perf_fops)
12327 		return ERR_PTR(-EINVAL);
12328 
12329 	return file->private_data;
12330 }
12331 
12332 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12333 {
12334 	if (!event)
12335 		return ERR_PTR(-EINVAL);
12336 
12337 	return &event->attr;
12338 }
12339 
12340 /*
12341  * Inherit an event from parent task to child task.
12342  *
12343  * Returns:
12344  *  - valid pointer on success
12345  *  - NULL for orphaned events
12346  *  - IS_ERR() on error
12347  */
12348 static struct perf_event *
12349 inherit_event(struct perf_event *parent_event,
12350 	      struct task_struct *parent,
12351 	      struct perf_event_context *parent_ctx,
12352 	      struct task_struct *child,
12353 	      struct perf_event *group_leader,
12354 	      struct perf_event_context *child_ctx)
12355 {
12356 	enum perf_event_state parent_state = parent_event->state;
12357 	struct perf_event *child_event;
12358 	unsigned long flags;
12359 
12360 	/*
12361 	 * Instead of creating recursive hierarchies of events,
12362 	 * we link inherited events back to the original parent,
12363 	 * which has a filp for sure, which we use as the reference
12364 	 * count:
12365 	 */
12366 	if (parent_event->parent)
12367 		parent_event = parent_event->parent;
12368 
12369 	child_event = perf_event_alloc(&parent_event->attr,
12370 					   parent_event->cpu,
12371 					   child,
12372 					   group_leader, parent_event,
12373 					   NULL, NULL, -1);
12374 	if (IS_ERR(child_event))
12375 		return child_event;
12376 
12377 
12378 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12379 	    !child_ctx->task_ctx_data) {
12380 		struct pmu *pmu = child_event->pmu;
12381 
12382 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12383 						   GFP_KERNEL);
12384 		if (!child_ctx->task_ctx_data) {
12385 			free_event(child_event);
12386 			return ERR_PTR(-ENOMEM);
12387 		}
12388 	}
12389 
12390 	/*
12391 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12392 	 * must be under the same lock in order to serialize against
12393 	 * perf_event_release_kernel(), such that either we must observe
12394 	 * is_orphaned_event() or they will observe us on the child_list.
12395 	 */
12396 	mutex_lock(&parent_event->child_mutex);
12397 	if (is_orphaned_event(parent_event) ||
12398 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12399 		mutex_unlock(&parent_event->child_mutex);
12400 		/* task_ctx_data is freed with child_ctx */
12401 		free_event(child_event);
12402 		return NULL;
12403 	}
12404 
12405 	get_ctx(child_ctx);
12406 
12407 	/*
12408 	 * Make the child state follow the state of the parent event,
12409 	 * not its attr.disabled bit.  We hold the parent's mutex,
12410 	 * so we won't race with perf_event_{en, dis}able_family.
12411 	 */
12412 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12413 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12414 	else
12415 		child_event->state = PERF_EVENT_STATE_OFF;
12416 
12417 	if (parent_event->attr.freq) {
12418 		u64 sample_period = parent_event->hw.sample_period;
12419 		struct hw_perf_event *hwc = &child_event->hw;
12420 
12421 		hwc->sample_period = sample_period;
12422 		hwc->last_period   = sample_period;
12423 
12424 		local64_set(&hwc->period_left, sample_period);
12425 	}
12426 
12427 	child_event->ctx = child_ctx;
12428 	child_event->overflow_handler = parent_event->overflow_handler;
12429 	child_event->overflow_handler_context
12430 		= parent_event->overflow_handler_context;
12431 
12432 	/*
12433 	 * Precalculate sample_data sizes
12434 	 */
12435 	perf_event__header_size(child_event);
12436 	perf_event__id_header_size(child_event);
12437 
12438 	/*
12439 	 * Link it up in the child's context:
12440 	 */
12441 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12442 	add_event_to_ctx(child_event, child_ctx);
12443 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12444 
12445 	/*
12446 	 * Link this into the parent event's child list
12447 	 */
12448 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12449 	mutex_unlock(&parent_event->child_mutex);
12450 
12451 	return child_event;
12452 }
12453 
12454 /*
12455  * Inherits an event group.
12456  *
12457  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12458  * This matches with perf_event_release_kernel() removing all child events.
12459  *
12460  * Returns:
12461  *  - 0 on success
12462  *  - <0 on error
12463  */
12464 static int inherit_group(struct perf_event *parent_event,
12465 	      struct task_struct *parent,
12466 	      struct perf_event_context *parent_ctx,
12467 	      struct task_struct *child,
12468 	      struct perf_event_context *child_ctx)
12469 {
12470 	struct perf_event *leader;
12471 	struct perf_event *sub;
12472 	struct perf_event *child_ctr;
12473 
12474 	leader = inherit_event(parent_event, parent, parent_ctx,
12475 				 child, NULL, child_ctx);
12476 	if (IS_ERR(leader))
12477 		return PTR_ERR(leader);
12478 	/*
12479 	 * @leader can be NULL here because of is_orphaned_event(). In this
12480 	 * case inherit_event() will create individual events, similar to what
12481 	 * perf_group_detach() would do anyway.
12482 	 */
12483 	for_each_sibling_event(sub, parent_event) {
12484 		child_ctr = inherit_event(sub, parent, parent_ctx,
12485 					    child, leader, child_ctx);
12486 		if (IS_ERR(child_ctr))
12487 			return PTR_ERR(child_ctr);
12488 
12489 		if (sub->aux_event == parent_event && child_ctr &&
12490 		    !perf_get_aux_event(child_ctr, leader))
12491 			return -EINVAL;
12492 	}
12493 	return 0;
12494 }
12495 
12496 /*
12497  * Creates the child task context and tries to inherit the event-group.
12498  *
12499  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12500  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12501  * consistent with perf_event_release_kernel() removing all child events.
12502  *
12503  * Returns:
12504  *  - 0 on success
12505  *  - <0 on error
12506  */
12507 static int
12508 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12509 		   struct perf_event_context *parent_ctx,
12510 		   struct task_struct *child, int ctxn,
12511 		   int *inherited_all)
12512 {
12513 	int ret;
12514 	struct perf_event_context *child_ctx;
12515 
12516 	if (!event->attr.inherit) {
12517 		*inherited_all = 0;
12518 		return 0;
12519 	}
12520 
12521 	child_ctx = child->perf_event_ctxp[ctxn];
12522 	if (!child_ctx) {
12523 		/*
12524 		 * This is executed from the parent task context, so
12525 		 * inherit events that have been marked for cloning.
12526 		 * First allocate and initialize a context for the
12527 		 * child.
12528 		 */
12529 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12530 		if (!child_ctx)
12531 			return -ENOMEM;
12532 
12533 		child->perf_event_ctxp[ctxn] = child_ctx;
12534 	}
12535 
12536 	ret = inherit_group(event, parent, parent_ctx,
12537 			    child, child_ctx);
12538 
12539 	if (ret)
12540 		*inherited_all = 0;
12541 
12542 	return ret;
12543 }
12544 
12545 /*
12546  * Initialize the perf_event context in task_struct
12547  */
12548 static int perf_event_init_context(struct task_struct *child, int ctxn)
12549 {
12550 	struct perf_event_context *child_ctx, *parent_ctx;
12551 	struct perf_event_context *cloned_ctx;
12552 	struct perf_event *event;
12553 	struct task_struct *parent = current;
12554 	int inherited_all = 1;
12555 	unsigned long flags;
12556 	int ret = 0;
12557 
12558 	if (likely(!parent->perf_event_ctxp[ctxn]))
12559 		return 0;
12560 
12561 	/*
12562 	 * If the parent's context is a clone, pin it so it won't get
12563 	 * swapped under us.
12564 	 */
12565 	parent_ctx = perf_pin_task_context(parent, ctxn);
12566 	if (!parent_ctx)
12567 		return 0;
12568 
12569 	/*
12570 	 * No need to check if parent_ctx != NULL here; since we saw
12571 	 * it non-NULL earlier, the only reason for it to become NULL
12572 	 * is if we exit, and since we're currently in the middle of
12573 	 * a fork we can't be exiting at the same time.
12574 	 */
12575 
12576 	/*
12577 	 * Lock the parent list. No need to lock the child - not PID
12578 	 * hashed yet and not running, so nobody can access it.
12579 	 */
12580 	mutex_lock(&parent_ctx->mutex);
12581 
12582 	/*
12583 	 * We dont have to disable NMIs - we are only looking at
12584 	 * the list, not manipulating it:
12585 	 */
12586 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12587 		ret = inherit_task_group(event, parent, parent_ctx,
12588 					 child, ctxn, &inherited_all);
12589 		if (ret)
12590 			goto out_unlock;
12591 	}
12592 
12593 	/*
12594 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12595 	 * to allocations, but we need to prevent rotation because
12596 	 * rotate_ctx() will change the list from interrupt context.
12597 	 */
12598 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12599 	parent_ctx->rotate_disable = 1;
12600 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12601 
12602 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12603 		ret = inherit_task_group(event, parent, parent_ctx,
12604 					 child, ctxn, &inherited_all);
12605 		if (ret)
12606 			goto out_unlock;
12607 	}
12608 
12609 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12610 	parent_ctx->rotate_disable = 0;
12611 
12612 	child_ctx = child->perf_event_ctxp[ctxn];
12613 
12614 	if (child_ctx && inherited_all) {
12615 		/*
12616 		 * Mark the child context as a clone of the parent
12617 		 * context, or of whatever the parent is a clone of.
12618 		 *
12619 		 * Note that if the parent is a clone, the holding of
12620 		 * parent_ctx->lock avoids it from being uncloned.
12621 		 */
12622 		cloned_ctx = parent_ctx->parent_ctx;
12623 		if (cloned_ctx) {
12624 			child_ctx->parent_ctx = cloned_ctx;
12625 			child_ctx->parent_gen = parent_ctx->parent_gen;
12626 		} else {
12627 			child_ctx->parent_ctx = parent_ctx;
12628 			child_ctx->parent_gen = parent_ctx->generation;
12629 		}
12630 		get_ctx(child_ctx->parent_ctx);
12631 	}
12632 
12633 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12634 out_unlock:
12635 	mutex_unlock(&parent_ctx->mutex);
12636 
12637 	perf_unpin_context(parent_ctx);
12638 	put_ctx(parent_ctx);
12639 
12640 	return ret;
12641 }
12642 
12643 /*
12644  * Initialize the perf_event context in task_struct
12645  */
12646 int perf_event_init_task(struct task_struct *child)
12647 {
12648 	int ctxn, ret;
12649 
12650 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12651 	mutex_init(&child->perf_event_mutex);
12652 	INIT_LIST_HEAD(&child->perf_event_list);
12653 
12654 	for_each_task_context_nr(ctxn) {
12655 		ret = perf_event_init_context(child, ctxn);
12656 		if (ret) {
12657 			perf_event_free_task(child);
12658 			return ret;
12659 		}
12660 	}
12661 
12662 	return 0;
12663 }
12664 
12665 static void __init perf_event_init_all_cpus(void)
12666 {
12667 	struct swevent_htable *swhash;
12668 	int cpu;
12669 
12670 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12671 
12672 	for_each_possible_cpu(cpu) {
12673 		swhash = &per_cpu(swevent_htable, cpu);
12674 		mutex_init(&swhash->hlist_mutex);
12675 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12676 
12677 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12678 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12679 
12680 #ifdef CONFIG_CGROUP_PERF
12681 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12682 #endif
12683 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12684 	}
12685 }
12686 
12687 static void perf_swevent_init_cpu(unsigned int cpu)
12688 {
12689 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12690 
12691 	mutex_lock(&swhash->hlist_mutex);
12692 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12693 		struct swevent_hlist *hlist;
12694 
12695 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12696 		WARN_ON(!hlist);
12697 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12698 	}
12699 	mutex_unlock(&swhash->hlist_mutex);
12700 }
12701 
12702 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12703 static void __perf_event_exit_context(void *__info)
12704 {
12705 	struct perf_event_context *ctx = __info;
12706 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12707 	struct perf_event *event;
12708 
12709 	raw_spin_lock(&ctx->lock);
12710 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12711 	list_for_each_entry(event, &ctx->event_list, event_entry)
12712 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12713 	raw_spin_unlock(&ctx->lock);
12714 }
12715 
12716 static void perf_event_exit_cpu_context(int cpu)
12717 {
12718 	struct perf_cpu_context *cpuctx;
12719 	struct perf_event_context *ctx;
12720 	struct pmu *pmu;
12721 
12722 	mutex_lock(&pmus_lock);
12723 	list_for_each_entry(pmu, &pmus, entry) {
12724 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12725 		ctx = &cpuctx->ctx;
12726 
12727 		mutex_lock(&ctx->mutex);
12728 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12729 		cpuctx->online = 0;
12730 		mutex_unlock(&ctx->mutex);
12731 	}
12732 	cpumask_clear_cpu(cpu, perf_online_mask);
12733 	mutex_unlock(&pmus_lock);
12734 }
12735 #else
12736 
12737 static void perf_event_exit_cpu_context(int cpu) { }
12738 
12739 #endif
12740 
12741 int perf_event_init_cpu(unsigned int cpu)
12742 {
12743 	struct perf_cpu_context *cpuctx;
12744 	struct perf_event_context *ctx;
12745 	struct pmu *pmu;
12746 
12747 	perf_swevent_init_cpu(cpu);
12748 
12749 	mutex_lock(&pmus_lock);
12750 	cpumask_set_cpu(cpu, perf_online_mask);
12751 	list_for_each_entry(pmu, &pmus, entry) {
12752 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12753 		ctx = &cpuctx->ctx;
12754 
12755 		mutex_lock(&ctx->mutex);
12756 		cpuctx->online = 1;
12757 		mutex_unlock(&ctx->mutex);
12758 	}
12759 	mutex_unlock(&pmus_lock);
12760 
12761 	return 0;
12762 }
12763 
12764 int perf_event_exit_cpu(unsigned int cpu)
12765 {
12766 	perf_event_exit_cpu_context(cpu);
12767 	return 0;
12768 }
12769 
12770 static int
12771 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12772 {
12773 	int cpu;
12774 
12775 	for_each_online_cpu(cpu)
12776 		perf_event_exit_cpu(cpu);
12777 
12778 	return NOTIFY_OK;
12779 }
12780 
12781 /*
12782  * Run the perf reboot notifier at the very last possible moment so that
12783  * the generic watchdog code runs as long as possible.
12784  */
12785 static struct notifier_block perf_reboot_notifier = {
12786 	.notifier_call = perf_reboot,
12787 	.priority = INT_MIN,
12788 };
12789 
12790 void __init perf_event_init(void)
12791 {
12792 	int ret;
12793 
12794 	idr_init(&pmu_idr);
12795 
12796 	perf_event_init_all_cpus();
12797 	init_srcu_struct(&pmus_srcu);
12798 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12799 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12800 	perf_pmu_register(&perf_task_clock, NULL, -1);
12801 	perf_tp_register();
12802 	perf_event_init_cpu(smp_processor_id());
12803 	register_reboot_notifier(&perf_reboot_notifier);
12804 
12805 	ret = init_hw_breakpoint();
12806 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12807 
12808 	/*
12809 	 * Build time assertion that we keep the data_head at the intended
12810 	 * location.  IOW, validation we got the __reserved[] size right.
12811 	 */
12812 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12813 		     != 1024);
12814 }
12815 
12816 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12817 			      char *page)
12818 {
12819 	struct perf_pmu_events_attr *pmu_attr =
12820 		container_of(attr, struct perf_pmu_events_attr, attr);
12821 
12822 	if (pmu_attr->event_str)
12823 		return sprintf(page, "%s\n", pmu_attr->event_str);
12824 
12825 	return 0;
12826 }
12827 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12828 
12829 static int __init perf_event_sysfs_init(void)
12830 {
12831 	struct pmu *pmu;
12832 	int ret;
12833 
12834 	mutex_lock(&pmus_lock);
12835 
12836 	ret = bus_register(&pmu_bus);
12837 	if (ret)
12838 		goto unlock;
12839 
12840 	list_for_each_entry(pmu, &pmus, entry) {
12841 		if (!pmu->name || pmu->type < 0)
12842 			continue;
12843 
12844 		ret = pmu_dev_alloc(pmu);
12845 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12846 	}
12847 	pmu_bus_running = 1;
12848 	ret = 0;
12849 
12850 unlock:
12851 	mutex_unlock(&pmus_lock);
12852 
12853 	return ret;
12854 }
12855 device_initcall(perf_event_sysfs_init);
12856 
12857 #ifdef CONFIG_CGROUP_PERF
12858 static struct cgroup_subsys_state *
12859 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12860 {
12861 	struct perf_cgroup *jc;
12862 
12863 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12864 	if (!jc)
12865 		return ERR_PTR(-ENOMEM);
12866 
12867 	jc->info = alloc_percpu(struct perf_cgroup_info);
12868 	if (!jc->info) {
12869 		kfree(jc);
12870 		return ERR_PTR(-ENOMEM);
12871 	}
12872 
12873 	return &jc->css;
12874 }
12875 
12876 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12877 {
12878 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12879 
12880 	free_percpu(jc->info);
12881 	kfree(jc);
12882 }
12883 
12884 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12885 {
12886 	perf_event_cgroup(css->cgroup);
12887 	return 0;
12888 }
12889 
12890 static int __perf_cgroup_move(void *info)
12891 {
12892 	struct task_struct *task = info;
12893 	rcu_read_lock();
12894 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12895 	rcu_read_unlock();
12896 	return 0;
12897 }
12898 
12899 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12900 {
12901 	struct task_struct *task;
12902 	struct cgroup_subsys_state *css;
12903 
12904 	cgroup_taskset_for_each(task, css, tset)
12905 		task_function_call(task, __perf_cgroup_move, task);
12906 }
12907 
12908 struct cgroup_subsys perf_event_cgrp_subsys = {
12909 	.css_alloc	= perf_cgroup_css_alloc,
12910 	.css_free	= perf_cgroup_css_free,
12911 	.css_online	= perf_cgroup_css_online,
12912 	.attach		= perf_cgroup_attach,
12913 	/*
12914 	 * Implicitly enable on dfl hierarchy so that perf events can
12915 	 * always be filtered by cgroup2 path as long as perf_event
12916 	 * controller is not mounted on a legacy hierarchy.
12917 	 */
12918 	.implicit_on_dfl = true,
12919 	.threaded	= true,
12920 };
12921 #endif /* CONFIG_CGROUP_PERF */
12922