xref: /linux/kernel/events/core.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 static struct workqueue_struct *perf_wq;
51 
52 struct remote_function_call {
53 	struct task_struct	*p;
54 	int			(*func)(void *info);
55 	void			*info;
56 	int			ret;
57 };
58 
59 static void remote_function(void *data)
60 {
61 	struct remote_function_call *tfc = data;
62 	struct task_struct *p = tfc->p;
63 
64 	if (p) {
65 		tfc->ret = -EAGAIN;
66 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 			return;
68 	}
69 
70 	tfc->ret = tfc->func(tfc->info);
71 }
72 
73 /**
74  * task_function_call - call a function on the cpu on which a task runs
75  * @p:		the task to evaluate
76  * @func:	the function to be called
77  * @info:	the function call argument
78  *
79  * Calls the function @func when the task is currently running. This might
80  * be on the current CPU, which just calls the function directly
81  *
82  * returns: @func return value, or
83  *	    -ESRCH  - when the process isn't running
84  *	    -EAGAIN - when the process moved away
85  */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 	struct remote_function_call data = {
90 		.p	= p,
91 		.func	= func,
92 		.info	= info,
93 		.ret	= -ESRCH, /* No such (running) process */
94 	};
95 
96 	if (task_curr(p))
97 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98 
99 	return data.ret;
100 }
101 
102 /**
103  * cpu_function_call - call a function on the cpu
104  * @func:	the function to be called
105  * @info:	the function call argument
106  *
107  * Calls the function @func on the remote cpu.
108  *
109  * returns: @func return value or -ENXIO when the cpu is offline
110  */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= NULL,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -ENXIO, /* No such CPU */
118 	};
119 
120 	smp_call_function_single(cpu, remote_function, &data, 1);
121 
122 	return data.ret;
123 }
124 
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126 
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 	return event->owner == EVENT_OWNER_KERNEL;
130 }
131 
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 		       PERF_FLAG_FD_OUTPUT  |\
134 		       PERF_FLAG_PID_CGROUP |\
135 		       PERF_FLAG_FD_CLOEXEC)
136 
137 /*
138  * branch priv levels that need permission checks
139  */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 	(PERF_SAMPLE_BRANCH_KERNEL |\
142 	 PERF_SAMPLE_BRANCH_HV)
143 
144 enum event_type_t {
145 	EVENT_FLEXIBLE = 0x1,
146 	EVENT_PINNED = 0x2,
147 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149 
150 /*
151  * perf_sched_events : >0 events exist
152  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153  */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157 
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162 
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166 
167 /*
168  * perf event paranoia level:
169  *  -1 - not paranoid at all
170  *   0 - disallow raw tracepoint access for unpriv
171  *   1 - disallow cpu events for unpriv
172  *   2 - disallow kernel profiling for unpriv
173  */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175 
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 
179 /*
180  * max perf event sample rate
181  */
182 #define DEFAULT_MAX_SAMPLE_RATE		100000
183 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
185 
186 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
187 
188 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
190 
191 static int perf_sample_allowed_ns __read_mostly =
192 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 
194 void update_perf_cpu_limits(void)
195 {
196 	u64 tmp = perf_sample_period_ns;
197 
198 	tmp *= sysctl_perf_cpu_time_max_percent;
199 	do_div(tmp, 100);
200 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202 
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204 
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 		void __user *buffer, size_t *lenp,
207 		loff_t *ppos)
208 {
209 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 
211 	if (ret || !write)
212 		return ret;
213 
214 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 	update_perf_cpu_limits();
217 
218 	return 0;
219 }
220 
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222 
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 				void __user *buffer, size_t *lenp,
225 				loff_t *ppos)
226 {
227 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228 
229 	if (ret || !write)
230 		return ret;
231 
232 	update_perf_cpu_limits();
233 
234 	return 0;
235 }
236 
237 /*
238  * perf samples are done in some very critical code paths (NMIs).
239  * If they take too much CPU time, the system can lock up and not
240  * get any real work done.  This will drop the sample rate when
241  * we detect that events are taking too long.
242  */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245 
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 	u64 avg_local_sample_len;
250 	u64 local_samples_len;
251 
252 	local_samples_len = __this_cpu_read(running_sample_length);
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	printk_ratelimited(KERN_WARNING
256 			"perf interrupt took too long (%lld > %lld), lowering "
257 			"kernel.perf_event_max_sample_rate to %d\n",
258 			avg_local_sample_len, allowed_ns >> 1,
259 			sysctl_perf_event_sample_rate);
260 }
261 
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263 
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 	u64 avg_local_sample_len;
268 	u64 local_samples_len;
269 
270 	if (allowed_ns == 0)
271 		return;
272 
273 	/* decay the counter by 1 average sample */
274 	local_samples_len = __this_cpu_read(running_sample_length);
275 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 	local_samples_len += sample_len_ns;
277 	__this_cpu_write(running_sample_length, local_samples_len);
278 
279 	/*
280 	 * note: this will be biased artifically low until we have
281 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
282 	 * from having to maintain a count.
283 	 */
284 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285 
286 	if (avg_local_sample_len <= allowed_ns)
287 		return;
288 
289 	if (max_samples_per_tick <= 1)
290 		return;
291 
292 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295 
296 	update_perf_cpu_limits();
297 
298 	if (!irq_work_queue(&perf_duration_work)) {
299 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 			     "kernel.perf_event_max_sample_rate to %d\n",
301 			     avg_local_sample_len, allowed_ns >> 1,
302 			     sysctl_perf_event_sample_rate);
303 	}
304 }
305 
306 static atomic64_t perf_event_id;
307 
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 			      enum event_type_t event_type);
310 
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 			     enum event_type_t event_type,
313 			     struct task_struct *task);
314 
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317 
318 void __weak perf_event_print_debug(void)	{ }
319 
320 extern __weak const char *perf_pmu_name(void)
321 {
322 	return "pmu";
323 }
324 
325 static inline u64 perf_clock(void)
326 {
327 	return local_clock();
328 }
329 
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335 
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 			  struct perf_event_context *ctx)
338 {
339 	raw_spin_lock(&cpuctx->ctx.lock);
340 	if (ctx)
341 		raw_spin_lock(&ctx->lock);
342 }
343 
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 			    struct perf_event_context *ctx)
346 {
347 	if (ctx)
348 		raw_spin_unlock(&ctx->lock);
349 	raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351 
352 #ifdef CONFIG_CGROUP_PERF
353 
354 /*
355  * perf_cgroup_info keeps track of time_enabled for a cgroup.
356  * This is a per-cpu dynamically allocated data structure.
357  */
358 struct perf_cgroup_info {
359 	u64				time;
360 	u64				timestamp;
361 };
362 
363 struct perf_cgroup {
364 	struct cgroup_subsys_state	css;
365 	struct perf_cgroup_info	__percpu *info;
366 };
367 
368 /*
369  * Must ensure cgroup is pinned (css_get) before calling
370  * this function. In other words, we cannot call this function
371  * if there is no cgroup event for the current CPU context.
372  */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 	return container_of(task_css(task, perf_event_cgrp_id),
377 			    struct perf_cgroup, css);
378 }
379 
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 	struct perf_event_context *ctx = event->ctx;
384 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385 
386 	/* @event doesn't care about cgroup */
387 	if (!event->cgrp)
388 		return true;
389 
390 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
391 	if (!cpuctx->cgrp)
392 		return false;
393 
394 	/*
395 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
396 	 * also enabled for all its descendant cgroups.  If @cpuctx's
397 	 * cgroup is a descendant of @event's (the test covers identity
398 	 * case), it's a match.
399 	 */
400 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 				    event->cgrp->css.cgroup);
402 }
403 
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 	css_put(&event->cgrp->css);
407 	event->cgrp = NULL;
408 }
409 
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 	return event->cgrp != NULL;
413 }
414 
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 	struct perf_cgroup_info *t;
418 
419 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 	return t->time;
421 }
422 
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 	struct perf_cgroup_info *info;
426 	u64 now;
427 
428 	now = perf_clock();
429 
430 	info = this_cpu_ptr(cgrp->info);
431 
432 	info->time += now - info->timestamp;
433 	info->timestamp = now;
434 }
435 
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 	if (cgrp_out)
440 		__update_cgrp_time(cgrp_out);
441 }
442 
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 	struct perf_cgroup *cgrp;
446 
447 	/*
448 	 * ensure we access cgroup data only when needed and
449 	 * when we know the cgroup is pinned (css_get)
450 	 */
451 	if (!is_cgroup_event(event))
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(current);
455 	/*
456 	 * Do not update time when cgroup is not active
457 	 */
458 	if (cgrp == event->cgrp)
459 		__update_cgrp_time(event->cgrp);
460 }
461 
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 			  struct perf_event_context *ctx)
465 {
466 	struct perf_cgroup *cgrp;
467 	struct perf_cgroup_info *info;
468 
469 	/*
470 	 * ctx->lock held by caller
471 	 * ensure we do not access cgroup data
472 	 * unless we have the cgroup pinned (css_get)
473 	 */
474 	if (!task || !ctx->nr_cgroups)
475 		return;
476 
477 	cgrp = perf_cgroup_from_task(task);
478 	info = this_cpu_ptr(cgrp->info);
479 	info->timestamp = ctx->timestamp;
480 }
481 
482 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
484 
485 /*
486  * reschedule events based on the cgroup constraint of task.
487  *
488  * mode SWOUT : schedule out everything
489  * mode SWIN : schedule in based on cgroup for next
490  */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 	struct perf_cpu_context *cpuctx;
494 	struct pmu *pmu;
495 	unsigned long flags;
496 
497 	/*
498 	 * disable interrupts to avoid geting nr_cgroup
499 	 * changes via __perf_event_disable(). Also
500 	 * avoids preemption.
501 	 */
502 	local_irq_save(flags);
503 
504 	/*
505 	 * we reschedule only in the presence of cgroup
506 	 * constrained events.
507 	 */
508 	rcu_read_lock();
509 
510 	list_for_each_entry_rcu(pmu, &pmus, entry) {
511 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 		if (cpuctx->unique_pmu != pmu)
513 			continue; /* ensure we process each cpuctx once */
514 
515 		/*
516 		 * perf_cgroup_events says at least one
517 		 * context on this CPU has cgroup events.
518 		 *
519 		 * ctx->nr_cgroups reports the number of cgroup
520 		 * events for a context.
521 		 */
522 		if (cpuctx->ctx.nr_cgroups > 0) {
523 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 			perf_pmu_disable(cpuctx->ctx.pmu);
525 
526 			if (mode & PERF_CGROUP_SWOUT) {
527 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 				/*
529 				 * must not be done before ctxswout due
530 				 * to event_filter_match() in event_sched_out()
531 				 */
532 				cpuctx->cgrp = NULL;
533 			}
534 
535 			if (mode & PERF_CGROUP_SWIN) {
536 				WARN_ON_ONCE(cpuctx->cgrp);
537 				/*
538 				 * set cgrp before ctxsw in to allow
539 				 * event_filter_match() to not have to pass
540 				 * task around
541 				 */
542 				cpuctx->cgrp = perf_cgroup_from_task(task);
543 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 			}
545 			perf_pmu_enable(cpuctx->ctx.pmu);
546 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 		}
548 	}
549 
550 	rcu_read_unlock();
551 
552 	local_irq_restore(flags);
553 }
554 
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 					 struct task_struct *next)
557 {
558 	struct perf_cgroup *cgrp1;
559 	struct perf_cgroup *cgrp2 = NULL;
560 
561 	/*
562 	 * we come here when we know perf_cgroup_events > 0
563 	 */
564 	cgrp1 = perf_cgroup_from_task(task);
565 
566 	/*
567 	 * next is NULL when called from perf_event_enable_on_exec()
568 	 * that will systematically cause a cgroup_switch()
569 	 */
570 	if (next)
571 		cgrp2 = perf_cgroup_from_task(next);
572 
573 	/*
574 	 * only schedule out current cgroup events if we know
575 	 * that we are switching to a different cgroup. Otherwise,
576 	 * do no touch the cgroup events.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 	struct perf_cgroup *cgrp1;
586 	struct perf_cgroup *cgrp2 = NULL;
587 
588 	/*
589 	 * we come here when we know perf_cgroup_events > 0
590 	 */
591 	cgrp1 = perf_cgroup_from_task(task);
592 
593 	/* prev can never be NULL */
594 	cgrp2 = perf_cgroup_from_task(prev);
595 
596 	/*
597 	 * only need to schedule in cgroup events if we are changing
598 	 * cgroup during ctxsw. Cgroup events were not scheduled
599 	 * out of ctxsw out if that was not the case.
600 	 */
601 	if (cgrp1 != cgrp2)
602 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604 
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 				      struct perf_event_attr *attr,
607 				      struct perf_event *group_leader)
608 {
609 	struct perf_cgroup *cgrp;
610 	struct cgroup_subsys_state *css;
611 	struct fd f = fdget(fd);
612 	int ret = 0;
613 
614 	if (!f.file)
615 		return -EBADF;
616 
617 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 					 &perf_event_cgrp_subsys);
619 	if (IS_ERR(css)) {
620 		ret = PTR_ERR(css);
621 		goto out;
622 	}
623 
624 	cgrp = container_of(css, struct perf_cgroup, css);
625 	event->cgrp = cgrp;
626 
627 	/*
628 	 * all events in a group must monitor
629 	 * the same cgroup because a task belongs
630 	 * to only one perf cgroup at a time
631 	 */
632 	if (group_leader && group_leader->cgrp != cgrp) {
633 		perf_detach_cgroup(event);
634 		ret = -EINVAL;
635 	}
636 out:
637 	fdput(f);
638 	return ret;
639 }
640 
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 	struct perf_cgroup_info *t;
645 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 	event->shadow_ctx_time = now - t->timestamp;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 	/*
653 	 * when the current task's perf cgroup does not match
654 	 * the event's, we need to remember to call the
655 	 * perf_mark_enable() function the first time a task with
656 	 * a matching perf cgroup is scheduled in.
657 	 */
658 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 		event->cgrp_defer_enabled = 1;
660 }
661 
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 			 struct perf_event_context *ctx)
665 {
666 	struct perf_event *sub;
667 	u64 tstamp = perf_event_time(event);
668 
669 	if (!event->cgrp_defer_enabled)
670 		return;
671 
672 	event->cgrp_defer_enabled = 0;
673 
674 	event->tstamp_enabled = tstamp - event->total_time_enabled;
675 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 			sub->cgrp_defer_enabled = 0;
679 		}
680 	}
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683 
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 	return true;
688 }
689 
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692 
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 	return 0;
696 }
697 
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 	return 0;
701 }
702 
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706 
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710 
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 					 struct task_struct *next)
713 {
714 }
715 
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 					struct task_struct *task)
718 {
719 }
720 
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 				      struct perf_event_attr *attr,
723 				      struct perf_event *group_leader)
724 {
725 	return -EINVAL;
726 }
727 
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 			  struct perf_event_context *ctx)
731 {
732 }
733 
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738 
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743 
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 	return 0;
747 }
748 
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753 
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 			 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760 
761 /*
762  * set default to be dependent on timer tick just
763  * like original code
764  */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767  * function must be called with interrupts disbled
768  */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 	struct perf_cpu_context *cpuctx;
772 	enum hrtimer_restart ret = HRTIMER_NORESTART;
773 	int rotations = 0;
774 
775 	WARN_ON(!irqs_disabled());
776 
777 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778 
779 	rotations = perf_rotate_context(cpuctx);
780 
781 	/*
782 	 * arm timer if needed
783 	 */
784 	if (rotations) {
785 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 		ret = HRTIMER_RESTART;
787 	}
788 
789 	return ret;
790 }
791 
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct pmu *pmu;
797 	unsigned long flags;
798 
799 	if (WARN_ON(cpu != smp_processor_id()))
800 		return;
801 
802 	local_irq_save(flags);
803 
804 	rcu_read_lock();
805 
806 	list_for_each_entry_rcu(pmu, &pmus, entry) {
807 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808 
809 		if (pmu->task_ctx_nr == perf_sw_context)
810 			continue;
811 
812 		hrtimer_cancel(&cpuctx->hrtimer);
813 	}
814 
815 	rcu_read_unlock();
816 
817 	local_irq_restore(flags);
818 }
819 
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 	struct hrtimer *hr = &cpuctx->hrtimer;
823 	struct pmu *pmu = cpuctx->ctx.pmu;
824 	int timer;
825 
826 	/* no multiplexing needed for SW PMU */
827 	if (pmu->task_ctx_nr == perf_sw_context)
828 		return;
829 
830 	/*
831 	 * check default is sane, if not set then force to
832 	 * default interval (1/tick)
833 	 */
834 	timer = pmu->hrtimer_interval_ms;
835 	if (timer < 1)
836 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837 
838 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 
840 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 	hr->function = perf_cpu_hrtimer_handler;
842 }
843 
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 	struct hrtimer *hr = &cpuctx->hrtimer;
847 	struct pmu *pmu = cpuctx->ctx.pmu;
848 
849 	/* not for SW PMU */
850 	if (pmu->task_ctx_nr == perf_sw_context)
851 		return;
852 
853 	if (hrtimer_active(hr))
854 		return;
855 
856 	if (!hrtimer_callback_running(hr))
857 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 					 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860 
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 	if (!(*count)++)
865 		pmu->pmu_disable(pmu);
866 }
867 
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 	if (!--(*count))
872 		pmu->pmu_enable(pmu);
873 }
874 
875 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 
877 /*
878  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879  * perf_event_task_tick() are fully serialized because they're strictly cpu
880  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881  * disabled, while perf_event_task_tick is called from IRQ context.
882  */
883 static void perf_event_ctx_activate(struct perf_event_context *ctx)
884 {
885 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886 
887 	WARN_ON(!irqs_disabled());
888 
889 	WARN_ON(!list_empty(&ctx->active_ctx_list));
890 
891 	list_add(&ctx->active_ctx_list, head);
892 }
893 
894 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
895 {
896 	WARN_ON(!irqs_disabled());
897 
898 	WARN_ON(list_empty(&ctx->active_ctx_list));
899 
900 	list_del_init(&ctx->active_ctx_list);
901 }
902 
903 static void get_ctx(struct perf_event_context *ctx)
904 {
905 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 }
907 
908 static void put_ctx(struct perf_event_context *ctx)
909 {
910 	if (atomic_dec_and_test(&ctx->refcount)) {
911 		if (ctx->parent_ctx)
912 			put_ctx(ctx->parent_ctx);
913 		if (ctx->task)
914 			put_task_struct(ctx->task);
915 		kfree_rcu(ctx, rcu_head);
916 	}
917 }
918 
919 /*
920  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921  * perf_pmu_migrate_context() we need some magic.
922  *
923  * Those places that change perf_event::ctx will hold both
924  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
925  *
926  * Lock ordering is by mutex address. There is one other site where
927  * perf_event_context::mutex nests and that is put_event(). But remember that
928  * that is a parent<->child context relation, and migration does not affect
929  * children, therefore these two orderings should not interact.
930  *
931  * The change in perf_event::ctx does not affect children (as claimed above)
932  * because the sys_perf_event_open() case will install a new event and break
933  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934  * concerned with cpuctx and that doesn't have children.
935  *
936  * The places that change perf_event::ctx will issue:
937  *
938  *   perf_remove_from_context();
939  *   synchronize_rcu();
940  *   perf_install_in_context();
941  *
942  * to affect the change. The remove_from_context() + synchronize_rcu() should
943  * quiesce the event, after which we can install it in the new location. This
944  * means that only external vectors (perf_fops, prctl) can perturb the event
945  * while in transit. Therefore all such accessors should also acquire
946  * perf_event_context::mutex to serialize against this.
947  *
948  * However; because event->ctx can change while we're waiting to acquire
949  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
950  * function.
951  *
952  * Lock order:
953  *	task_struct::perf_event_mutex
954  *	  perf_event_context::mutex
955  *	    perf_event_context::lock
956  *	    perf_event::child_mutex;
957  *	    perf_event::mmap_mutex
958  *	    mmap_sem
959  */
960 static struct perf_event_context *
961 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
962 {
963 	struct perf_event_context *ctx;
964 
965 again:
966 	rcu_read_lock();
967 	ctx = ACCESS_ONCE(event->ctx);
968 	if (!atomic_inc_not_zero(&ctx->refcount)) {
969 		rcu_read_unlock();
970 		goto again;
971 	}
972 	rcu_read_unlock();
973 
974 	mutex_lock_nested(&ctx->mutex, nesting);
975 	if (event->ctx != ctx) {
976 		mutex_unlock(&ctx->mutex);
977 		put_ctx(ctx);
978 		goto again;
979 	}
980 
981 	return ctx;
982 }
983 
984 static inline struct perf_event_context *
985 perf_event_ctx_lock(struct perf_event *event)
986 {
987 	return perf_event_ctx_lock_nested(event, 0);
988 }
989 
990 static void perf_event_ctx_unlock(struct perf_event *event,
991 				  struct perf_event_context *ctx)
992 {
993 	mutex_unlock(&ctx->mutex);
994 	put_ctx(ctx);
995 }
996 
997 /*
998  * This must be done under the ctx->lock, such as to serialize against
999  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000  * calling scheduler related locks and ctx->lock nests inside those.
1001  */
1002 static __must_check struct perf_event_context *
1003 unclone_ctx(struct perf_event_context *ctx)
1004 {
1005 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1006 
1007 	lockdep_assert_held(&ctx->lock);
1008 
1009 	if (parent_ctx)
1010 		ctx->parent_ctx = NULL;
1011 	ctx->generation++;
1012 
1013 	return parent_ctx;
1014 }
1015 
1016 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1017 {
1018 	/*
1019 	 * only top level events have the pid namespace they were created in
1020 	 */
1021 	if (event->parent)
1022 		event = event->parent;
1023 
1024 	return task_tgid_nr_ns(p, event->ns);
1025 }
1026 
1027 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1028 {
1029 	/*
1030 	 * only top level events have the pid namespace they were created in
1031 	 */
1032 	if (event->parent)
1033 		event = event->parent;
1034 
1035 	return task_pid_nr_ns(p, event->ns);
1036 }
1037 
1038 /*
1039  * If we inherit events we want to return the parent event id
1040  * to userspace.
1041  */
1042 static u64 primary_event_id(struct perf_event *event)
1043 {
1044 	u64 id = event->id;
1045 
1046 	if (event->parent)
1047 		id = event->parent->id;
1048 
1049 	return id;
1050 }
1051 
1052 /*
1053  * Get the perf_event_context for a task and lock it.
1054  * This has to cope with with the fact that until it is locked,
1055  * the context could get moved to another task.
1056  */
1057 static struct perf_event_context *
1058 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059 {
1060 	struct perf_event_context *ctx;
1061 
1062 retry:
1063 	/*
1064 	 * One of the few rules of preemptible RCU is that one cannot do
1065 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 	 * part of the read side critical section was preemptible -- see
1067 	 * rcu_read_unlock_special().
1068 	 *
1069 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 	 * side critical section is non-preemptible.
1071 	 */
1072 	preempt_disable();
1073 	rcu_read_lock();
1074 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 	if (ctx) {
1076 		/*
1077 		 * If this context is a clone of another, it might
1078 		 * get swapped for another underneath us by
1079 		 * perf_event_task_sched_out, though the
1080 		 * rcu_read_lock() protects us from any context
1081 		 * getting freed.  Lock the context and check if it
1082 		 * got swapped before we could get the lock, and retry
1083 		 * if so.  If we locked the right context, then it
1084 		 * can't get swapped on us any more.
1085 		 */
1086 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1087 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 			rcu_read_unlock();
1090 			preempt_enable();
1091 			goto retry;
1092 		}
1093 
1094 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1095 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 			ctx = NULL;
1097 		}
1098 	}
1099 	rcu_read_unlock();
1100 	preempt_enable();
1101 	return ctx;
1102 }
1103 
1104 /*
1105  * Get the context for a task and increment its pin_count so it
1106  * can't get swapped to another task.  This also increments its
1107  * reference count so that the context can't get freed.
1108  */
1109 static struct perf_event_context *
1110 perf_pin_task_context(struct task_struct *task, int ctxn)
1111 {
1112 	struct perf_event_context *ctx;
1113 	unsigned long flags;
1114 
1115 	ctx = perf_lock_task_context(task, ctxn, &flags);
1116 	if (ctx) {
1117 		++ctx->pin_count;
1118 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 	}
1120 	return ctx;
1121 }
1122 
1123 static void perf_unpin_context(struct perf_event_context *ctx)
1124 {
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&ctx->lock, flags);
1128 	--ctx->pin_count;
1129 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 }
1131 
1132 /*
1133  * Update the record of the current time in a context.
1134  */
1135 static void update_context_time(struct perf_event_context *ctx)
1136 {
1137 	u64 now = perf_clock();
1138 
1139 	ctx->time += now - ctx->timestamp;
1140 	ctx->timestamp = now;
1141 }
1142 
1143 static u64 perf_event_time(struct perf_event *event)
1144 {
1145 	struct perf_event_context *ctx = event->ctx;
1146 
1147 	if (is_cgroup_event(event))
1148 		return perf_cgroup_event_time(event);
1149 
1150 	return ctx ? ctx->time : 0;
1151 }
1152 
1153 /*
1154  * Update the total_time_enabled and total_time_running fields for a event.
1155  * The caller of this function needs to hold the ctx->lock.
1156  */
1157 static void update_event_times(struct perf_event *event)
1158 {
1159 	struct perf_event_context *ctx = event->ctx;
1160 	u64 run_end;
1161 
1162 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1163 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1164 		return;
1165 	/*
1166 	 * in cgroup mode, time_enabled represents
1167 	 * the time the event was enabled AND active
1168 	 * tasks were in the monitored cgroup. This is
1169 	 * independent of the activity of the context as
1170 	 * there may be a mix of cgroup and non-cgroup events.
1171 	 *
1172 	 * That is why we treat cgroup events differently
1173 	 * here.
1174 	 */
1175 	if (is_cgroup_event(event))
1176 		run_end = perf_cgroup_event_time(event);
1177 	else if (ctx->is_active)
1178 		run_end = ctx->time;
1179 	else
1180 		run_end = event->tstamp_stopped;
1181 
1182 	event->total_time_enabled = run_end - event->tstamp_enabled;
1183 
1184 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1185 		run_end = event->tstamp_stopped;
1186 	else
1187 		run_end = perf_event_time(event);
1188 
1189 	event->total_time_running = run_end - event->tstamp_running;
1190 
1191 }
1192 
1193 /*
1194  * Update total_time_enabled and total_time_running for all events in a group.
1195  */
1196 static void update_group_times(struct perf_event *leader)
1197 {
1198 	struct perf_event *event;
1199 
1200 	update_event_times(leader);
1201 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1202 		update_event_times(event);
1203 }
1204 
1205 static struct list_head *
1206 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	if (event->attr.pinned)
1209 		return &ctx->pinned_groups;
1210 	else
1211 		return &ctx->flexible_groups;
1212 }
1213 
1214 /*
1215  * Add a event from the lists for its context.
1216  * Must be called with ctx->mutex and ctx->lock held.
1217  */
1218 static void
1219 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220 {
1221 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1222 	event->attach_state |= PERF_ATTACH_CONTEXT;
1223 
1224 	/*
1225 	 * If we're a stand alone event or group leader, we go to the context
1226 	 * list, group events are kept attached to the group so that
1227 	 * perf_group_detach can, at all times, locate all siblings.
1228 	 */
1229 	if (event->group_leader == event) {
1230 		struct list_head *list;
1231 
1232 		if (is_software_event(event))
1233 			event->group_flags |= PERF_GROUP_SOFTWARE;
1234 
1235 		list = ctx_group_list(event, ctx);
1236 		list_add_tail(&event->group_entry, list);
1237 	}
1238 
1239 	if (is_cgroup_event(event))
1240 		ctx->nr_cgroups++;
1241 
1242 	if (has_branch_stack(event))
1243 		ctx->nr_branch_stack++;
1244 
1245 	list_add_rcu(&event->event_entry, &ctx->event_list);
1246 	ctx->nr_events++;
1247 	if (event->attr.inherit_stat)
1248 		ctx->nr_stat++;
1249 
1250 	ctx->generation++;
1251 }
1252 
1253 /*
1254  * Initialize event state based on the perf_event_attr::disabled.
1255  */
1256 static inline void perf_event__state_init(struct perf_event *event)
1257 {
1258 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1259 					      PERF_EVENT_STATE_INACTIVE;
1260 }
1261 
1262 /*
1263  * Called at perf_event creation and when events are attached/detached from a
1264  * group.
1265  */
1266 static void perf_event__read_size(struct perf_event *event)
1267 {
1268 	int entry = sizeof(u64); /* value */
1269 	int size = 0;
1270 	int nr = 1;
1271 
1272 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273 		size += sizeof(u64);
1274 
1275 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276 		size += sizeof(u64);
1277 
1278 	if (event->attr.read_format & PERF_FORMAT_ID)
1279 		entry += sizeof(u64);
1280 
1281 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1282 		nr += event->group_leader->nr_siblings;
1283 		size += sizeof(u64);
1284 	}
1285 
1286 	size += entry * nr;
1287 	event->read_size = size;
1288 }
1289 
1290 static void perf_event__header_size(struct perf_event *event)
1291 {
1292 	struct perf_sample_data *data;
1293 	u64 sample_type = event->attr.sample_type;
1294 	u16 size = 0;
1295 
1296 	perf_event__read_size(event);
1297 
1298 	if (sample_type & PERF_SAMPLE_IP)
1299 		size += sizeof(data->ip);
1300 
1301 	if (sample_type & PERF_SAMPLE_ADDR)
1302 		size += sizeof(data->addr);
1303 
1304 	if (sample_type & PERF_SAMPLE_PERIOD)
1305 		size += sizeof(data->period);
1306 
1307 	if (sample_type & PERF_SAMPLE_WEIGHT)
1308 		size += sizeof(data->weight);
1309 
1310 	if (sample_type & PERF_SAMPLE_READ)
1311 		size += event->read_size;
1312 
1313 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1314 		size += sizeof(data->data_src.val);
1315 
1316 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1317 		size += sizeof(data->txn);
1318 
1319 	event->header_size = size;
1320 }
1321 
1322 static void perf_event__id_header_size(struct perf_event *event)
1323 {
1324 	struct perf_sample_data *data;
1325 	u64 sample_type = event->attr.sample_type;
1326 	u16 size = 0;
1327 
1328 	if (sample_type & PERF_SAMPLE_TID)
1329 		size += sizeof(data->tid_entry);
1330 
1331 	if (sample_type & PERF_SAMPLE_TIME)
1332 		size += sizeof(data->time);
1333 
1334 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1335 		size += sizeof(data->id);
1336 
1337 	if (sample_type & PERF_SAMPLE_ID)
1338 		size += sizeof(data->id);
1339 
1340 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1341 		size += sizeof(data->stream_id);
1342 
1343 	if (sample_type & PERF_SAMPLE_CPU)
1344 		size += sizeof(data->cpu_entry);
1345 
1346 	event->id_header_size = size;
1347 }
1348 
1349 static void perf_group_attach(struct perf_event *event)
1350 {
1351 	struct perf_event *group_leader = event->group_leader, *pos;
1352 
1353 	/*
1354 	 * We can have double attach due to group movement in perf_event_open.
1355 	 */
1356 	if (event->attach_state & PERF_ATTACH_GROUP)
1357 		return;
1358 
1359 	event->attach_state |= PERF_ATTACH_GROUP;
1360 
1361 	if (group_leader == event)
1362 		return;
1363 
1364 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1365 
1366 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1367 			!is_software_event(event))
1368 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1369 
1370 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1371 	group_leader->nr_siblings++;
1372 
1373 	perf_event__header_size(group_leader);
1374 
1375 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1376 		perf_event__header_size(pos);
1377 }
1378 
1379 /*
1380  * Remove a event from the lists for its context.
1381  * Must be called with ctx->mutex and ctx->lock held.
1382  */
1383 static void
1384 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1385 {
1386 	struct perf_cpu_context *cpuctx;
1387 
1388 	WARN_ON_ONCE(event->ctx != ctx);
1389 	lockdep_assert_held(&ctx->lock);
1390 
1391 	/*
1392 	 * We can have double detach due to exit/hot-unplug + close.
1393 	 */
1394 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1395 		return;
1396 
1397 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1398 
1399 	if (is_cgroup_event(event)) {
1400 		ctx->nr_cgroups--;
1401 		cpuctx = __get_cpu_context(ctx);
1402 		/*
1403 		 * if there are no more cgroup events
1404 		 * then cler cgrp to avoid stale pointer
1405 		 * in update_cgrp_time_from_cpuctx()
1406 		 */
1407 		if (!ctx->nr_cgroups)
1408 			cpuctx->cgrp = NULL;
1409 	}
1410 
1411 	if (has_branch_stack(event))
1412 		ctx->nr_branch_stack--;
1413 
1414 	ctx->nr_events--;
1415 	if (event->attr.inherit_stat)
1416 		ctx->nr_stat--;
1417 
1418 	list_del_rcu(&event->event_entry);
1419 
1420 	if (event->group_leader == event)
1421 		list_del_init(&event->group_entry);
1422 
1423 	update_group_times(event);
1424 
1425 	/*
1426 	 * If event was in error state, then keep it
1427 	 * that way, otherwise bogus counts will be
1428 	 * returned on read(). The only way to get out
1429 	 * of error state is by explicit re-enabling
1430 	 * of the event
1431 	 */
1432 	if (event->state > PERF_EVENT_STATE_OFF)
1433 		event->state = PERF_EVENT_STATE_OFF;
1434 
1435 	ctx->generation++;
1436 }
1437 
1438 static void perf_group_detach(struct perf_event *event)
1439 {
1440 	struct perf_event *sibling, *tmp;
1441 	struct list_head *list = NULL;
1442 
1443 	/*
1444 	 * We can have double detach due to exit/hot-unplug + close.
1445 	 */
1446 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1447 		return;
1448 
1449 	event->attach_state &= ~PERF_ATTACH_GROUP;
1450 
1451 	/*
1452 	 * If this is a sibling, remove it from its group.
1453 	 */
1454 	if (event->group_leader != event) {
1455 		list_del_init(&event->group_entry);
1456 		event->group_leader->nr_siblings--;
1457 		goto out;
1458 	}
1459 
1460 	if (!list_empty(&event->group_entry))
1461 		list = &event->group_entry;
1462 
1463 	/*
1464 	 * If this was a group event with sibling events then
1465 	 * upgrade the siblings to singleton events by adding them
1466 	 * to whatever list we are on.
1467 	 */
1468 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1469 		if (list)
1470 			list_move_tail(&sibling->group_entry, list);
1471 		sibling->group_leader = sibling;
1472 
1473 		/* Inherit group flags from the previous leader */
1474 		sibling->group_flags = event->group_flags;
1475 
1476 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1477 	}
1478 
1479 out:
1480 	perf_event__header_size(event->group_leader);
1481 
1482 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1483 		perf_event__header_size(tmp);
1484 }
1485 
1486 /*
1487  * User event without the task.
1488  */
1489 static bool is_orphaned_event(struct perf_event *event)
1490 {
1491 	return event && !is_kernel_event(event) && !event->owner;
1492 }
1493 
1494 /*
1495  * Event has a parent but parent's task finished and it's
1496  * alive only because of children holding refference.
1497  */
1498 static bool is_orphaned_child(struct perf_event *event)
1499 {
1500 	return is_orphaned_event(event->parent);
1501 }
1502 
1503 static void orphans_remove_work(struct work_struct *work);
1504 
1505 static void schedule_orphans_remove(struct perf_event_context *ctx)
1506 {
1507 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1508 		return;
1509 
1510 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1511 		get_ctx(ctx);
1512 		ctx->orphans_remove_sched = true;
1513 	}
1514 }
1515 
1516 static int __init perf_workqueue_init(void)
1517 {
1518 	perf_wq = create_singlethread_workqueue("perf");
1519 	WARN(!perf_wq, "failed to create perf workqueue\n");
1520 	return perf_wq ? 0 : -1;
1521 }
1522 
1523 core_initcall(perf_workqueue_init);
1524 
1525 static inline int
1526 event_filter_match(struct perf_event *event)
1527 {
1528 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1529 	    && perf_cgroup_match(event);
1530 }
1531 
1532 static void
1533 event_sched_out(struct perf_event *event,
1534 		  struct perf_cpu_context *cpuctx,
1535 		  struct perf_event_context *ctx)
1536 {
1537 	u64 tstamp = perf_event_time(event);
1538 	u64 delta;
1539 
1540 	WARN_ON_ONCE(event->ctx != ctx);
1541 	lockdep_assert_held(&ctx->lock);
1542 
1543 	/*
1544 	 * An event which could not be activated because of
1545 	 * filter mismatch still needs to have its timings
1546 	 * maintained, otherwise bogus information is return
1547 	 * via read() for time_enabled, time_running:
1548 	 */
1549 	if (event->state == PERF_EVENT_STATE_INACTIVE
1550 	    && !event_filter_match(event)) {
1551 		delta = tstamp - event->tstamp_stopped;
1552 		event->tstamp_running += delta;
1553 		event->tstamp_stopped = tstamp;
1554 	}
1555 
1556 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1557 		return;
1558 
1559 	perf_pmu_disable(event->pmu);
1560 
1561 	event->state = PERF_EVENT_STATE_INACTIVE;
1562 	if (event->pending_disable) {
1563 		event->pending_disable = 0;
1564 		event->state = PERF_EVENT_STATE_OFF;
1565 	}
1566 	event->tstamp_stopped = tstamp;
1567 	event->pmu->del(event, 0);
1568 	event->oncpu = -1;
1569 
1570 	if (!is_software_event(event))
1571 		cpuctx->active_oncpu--;
1572 	if (!--ctx->nr_active)
1573 		perf_event_ctx_deactivate(ctx);
1574 	if (event->attr.freq && event->attr.sample_freq)
1575 		ctx->nr_freq--;
1576 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1577 		cpuctx->exclusive = 0;
1578 
1579 	if (is_orphaned_child(event))
1580 		schedule_orphans_remove(ctx);
1581 
1582 	perf_pmu_enable(event->pmu);
1583 }
1584 
1585 static void
1586 group_sched_out(struct perf_event *group_event,
1587 		struct perf_cpu_context *cpuctx,
1588 		struct perf_event_context *ctx)
1589 {
1590 	struct perf_event *event;
1591 	int state = group_event->state;
1592 
1593 	event_sched_out(group_event, cpuctx, ctx);
1594 
1595 	/*
1596 	 * Schedule out siblings (if any):
1597 	 */
1598 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1599 		event_sched_out(event, cpuctx, ctx);
1600 
1601 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1602 		cpuctx->exclusive = 0;
1603 }
1604 
1605 struct remove_event {
1606 	struct perf_event *event;
1607 	bool detach_group;
1608 };
1609 
1610 /*
1611  * Cross CPU call to remove a performance event
1612  *
1613  * We disable the event on the hardware level first. After that we
1614  * remove it from the context list.
1615  */
1616 static int __perf_remove_from_context(void *info)
1617 {
1618 	struct remove_event *re = info;
1619 	struct perf_event *event = re->event;
1620 	struct perf_event_context *ctx = event->ctx;
1621 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1622 
1623 	raw_spin_lock(&ctx->lock);
1624 	event_sched_out(event, cpuctx, ctx);
1625 	if (re->detach_group)
1626 		perf_group_detach(event);
1627 	list_del_event(event, ctx);
1628 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1629 		ctx->is_active = 0;
1630 		cpuctx->task_ctx = NULL;
1631 	}
1632 	raw_spin_unlock(&ctx->lock);
1633 
1634 	return 0;
1635 }
1636 
1637 
1638 /*
1639  * Remove the event from a task's (or a CPU's) list of events.
1640  *
1641  * CPU events are removed with a smp call. For task events we only
1642  * call when the task is on a CPU.
1643  *
1644  * If event->ctx is a cloned context, callers must make sure that
1645  * every task struct that event->ctx->task could possibly point to
1646  * remains valid.  This is OK when called from perf_release since
1647  * that only calls us on the top-level context, which can't be a clone.
1648  * When called from perf_event_exit_task, it's OK because the
1649  * context has been detached from its task.
1650  */
1651 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1652 {
1653 	struct perf_event_context *ctx = event->ctx;
1654 	struct task_struct *task = ctx->task;
1655 	struct remove_event re = {
1656 		.event = event,
1657 		.detach_group = detach_group,
1658 	};
1659 
1660 	lockdep_assert_held(&ctx->mutex);
1661 
1662 	if (!task) {
1663 		/*
1664 		 * Per cpu events are removed via an smp call. The removal can
1665 		 * fail if the CPU is currently offline, but in that case we
1666 		 * already called __perf_remove_from_context from
1667 		 * perf_event_exit_cpu.
1668 		 */
1669 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1670 		return;
1671 	}
1672 
1673 retry:
1674 	if (!task_function_call(task, __perf_remove_from_context, &re))
1675 		return;
1676 
1677 	raw_spin_lock_irq(&ctx->lock);
1678 	/*
1679 	 * If we failed to find a running task, but find the context active now
1680 	 * that we've acquired the ctx->lock, retry.
1681 	 */
1682 	if (ctx->is_active) {
1683 		raw_spin_unlock_irq(&ctx->lock);
1684 		/*
1685 		 * Reload the task pointer, it might have been changed by
1686 		 * a concurrent perf_event_context_sched_out().
1687 		 */
1688 		task = ctx->task;
1689 		goto retry;
1690 	}
1691 
1692 	/*
1693 	 * Since the task isn't running, its safe to remove the event, us
1694 	 * holding the ctx->lock ensures the task won't get scheduled in.
1695 	 */
1696 	if (detach_group)
1697 		perf_group_detach(event);
1698 	list_del_event(event, ctx);
1699 	raw_spin_unlock_irq(&ctx->lock);
1700 }
1701 
1702 /*
1703  * Cross CPU call to disable a performance event
1704  */
1705 int __perf_event_disable(void *info)
1706 {
1707 	struct perf_event *event = info;
1708 	struct perf_event_context *ctx = event->ctx;
1709 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 
1711 	/*
1712 	 * If this is a per-task event, need to check whether this
1713 	 * event's task is the current task on this cpu.
1714 	 *
1715 	 * Can trigger due to concurrent perf_event_context_sched_out()
1716 	 * flipping contexts around.
1717 	 */
1718 	if (ctx->task && cpuctx->task_ctx != ctx)
1719 		return -EINVAL;
1720 
1721 	raw_spin_lock(&ctx->lock);
1722 
1723 	/*
1724 	 * If the event is on, turn it off.
1725 	 * If it is in error state, leave it in error state.
1726 	 */
1727 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1728 		update_context_time(ctx);
1729 		update_cgrp_time_from_event(event);
1730 		update_group_times(event);
1731 		if (event == event->group_leader)
1732 			group_sched_out(event, cpuctx, ctx);
1733 		else
1734 			event_sched_out(event, cpuctx, ctx);
1735 		event->state = PERF_EVENT_STATE_OFF;
1736 	}
1737 
1738 	raw_spin_unlock(&ctx->lock);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Disable a event.
1745  *
1746  * If event->ctx is a cloned context, callers must make sure that
1747  * every task struct that event->ctx->task could possibly point to
1748  * remains valid.  This condition is satisifed when called through
1749  * perf_event_for_each_child or perf_event_for_each because they
1750  * hold the top-level event's child_mutex, so any descendant that
1751  * goes to exit will block in sync_child_event.
1752  * When called from perf_pending_event it's OK because event->ctx
1753  * is the current context on this CPU and preemption is disabled,
1754  * hence we can't get into perf_event_task_sched_out for this context.
1755  */
1756 static void _perf_event_disable(struct perf_event *event)
1757 {
1758 	struct perf_event_context *ctx = event->ctx;
1759 	struct task_struct *task = ctx->task;
1760 
1761 	if (!task) {
1762 		/*
1763 		 * Disable the event on the cpu that it's on
1764 		 */
1765 		cpu_function_call(event->cpu, __perf_event_disable, event);
1766 		return;
1767 	}
1768 
1769 retry:
1770 	if (!task_function_call(task, __perf_event_disable, event))
1771 		return;
1772 
1773 	raw_spin_lock_irq(&ctx->lock);
1774 	/*
1775 	 * If the event is still active, we need to retry the cross-call.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1778 		raw_spin_unlock_irq(&ctx->lock);
1779 		/*
1780 		 * Reload the task pointer, it might have been changed by
1781 		 * a concurrent perf_event_context_sched_out().
1782 		 */
1783 		task = ctx->task;
1784 		goto retry;
1785 	}
1786 
1787 	/*
1788 	 * Since we have the lock this context can't be scheduled
1789 	 * in, so we can change the state safely.
1790 	 */
1791 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1792 		update_group_times(event);
1793 		event->state = PERF_EVENT_STATE_OFF;
1794 	}
1795 	raw_spin_unlock_irq(&ctx->lock);
1796 }
1797 
1798 /*
1799  * Strictly speaking kernel users cannot create groups and therefore this
1800  * interface does not need the perf_event_ctx_lock() magic.
1801  */
1802 void perf_event_disable(struct perf_event *event)
1803 {
1804 	struct perf_event_context *ctx;
1805 
1806 	ctx = perf_event_ctx_lock(event);
1807 	_perf_event_disable(event);
1808 	perf_event_ctx_unlock(event, ctx);
1809 }
1810 EXPORT_SYMBOL_GPL(perf_event_disable);
1811 
1812 static void perf_set_shadow_time(struct perf_event *event,
1813 				 struct perf_event_context *ctx,
1814 				 u64 tstamp)
1815 {
1816 	/*
1817 	 * use the correct time source for the time snapshot
1818 	 *
1819 	 * We could get by without this by leveraging the
1820 	 * fact that to get to this function, the caller
1821 	 * has most likely already called update_context_time()
1822 	 * and update_cgrp_time_xx() and thus both timestamp
1823 	 * are identical (or very close). Given that tstamp is,
1824 	 * already adjusted for cgroup, we could say that:
1825 	 *    tstamp - ctx->timestamp
1826 	 * is equivalent to
1827 	 *    tstamp - cgrp->timestamp.
1828 	 *
1829 	 * Then, in perf_output_read(), the calculation would
1830 	 * work with no changes because:
1831 	 * - event is guaranteed scheduled in
1832 	 * - no scheduled out in between
1833 	 * - thus the timestamp would be the same
1834 	 *
1835 	 * But this is a bit hairy.
1836 	 *
1837 	 * So instead, we have an explicit cgroup call to remain
1838 	 * within the time time source all along. We believe it
1839 	 * is cleaner and simpler to understand.
1840 	 */
1841 	if (is_cgroup_event(event))
1842 		perf_cgroup_set_shadow_time(event, tstamp);
1843 	else
1844 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1845 }
1846 
1847 #define MAX_INTERRUPTS (~0ULL)
1848 
1849 static void perf_log_throttle(struct perf_event *event, int enable);
1850 
1851 static int
1852 event_sched_in(struct perf_event *event,
1853 		 struct perf_cpu_context *cpuctx,
1854 		 struct perf_event_context *ctx)
1855 {
1856 	u64 tstamp = perf_event_time(event);
1857 	int ret = 0;
1858 
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	if (event->state <= PERF_EVENT_STATE_OFF)
1862 		return 0;
1863 
1864 	event->state = PERF_EVENT_STATE_ACTIVE;
1865 	event->oncpu = smp_processor_id();
1866 
1867 	/*
1868 	 * Unthrottle events, since we scheduled we might have missed several
1869 	 * ticks already, also for a heavily scheduling task there is little
1870 	 * guarantee it'll get a tick in a timely manner.
1871 	 */
1872 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1873 		perf_log_throttle(event, 1);
1874 		event->hw.interrupts = 0;
1875 	}
1876 
1877 	/*
1878 	 * The new state must be visible before we turn it on in the hardware:
1879 	 */
1880 	smp_wmb();
1881 
1882 	perf_pmu_disable(event->pmu);
1883 
1884 	if (event->pmu->add(event, PERF_EF_START)) {
1885 		event->state = PERF_EVENT_STATE_INACTIVE;
1886 		event->oncpu = -1;
1887 		ret = -EAGAIN;
1888 		goto out;
1889 	}
1890 
1891 	event->tstamp_running += tstamp - event->tstamp_stopped;
1892 
1893 	perf_set_shadow_time(event, ctx, tstamp);
1894 
1895 	if (!is_software_event(event))
1896 		cpuctx->active_oncpu++;
1897 	if (!ctx->nr_active++)
1898 		perf_event_ctx_activate(ctx);
1899 	if (event->attr.freq && event->attr.sample_freq)
1900 		ctx->nr_freq++;
1901 
1902 	if (event->attr.exclusive)
1903 		cpuctx->exclusive = 1;
1904 
1905 	if (is_orphaned_child(event))
1906 		schedule_orphans_remove(ctx);
1907 
1908 out:
1909 	perf_pmu_enable(event->pmu);
1910 
1911 	return ret;
1912 }
1913 
1914 static int
1915 group_sched_in(struct perf_event *group_event,
1916 	       struct perf_cpu_context *cpuctx,
1917 	       struct perf_event_context *ctx)
1918 {
1919 	struct perf_event *event, *partial_group = NULL;
1920 	struct pmu *pmu = ctx->pmu;
1921 	u64 now = ctx->time;
1922 	bool simulate = false;
1923 
1924 	if (group_event->state == PERF_EVENT_STATE_OFF)
1925 		return 0;
1926 
1927 	pmu->start_txn(pmu);
1928 
1929 	if (event_sched_in(group_event, cpuctx, ctx)) {
1930 		pmu->cancel_txn(pmu);
1931 		perf_cpu_hrtimer_restart(cpuctx);
1932 		return -EAGAIN;
1933 	}
1934 
1935 	/*
1936 	 * Schedule in siblings as one group (if any):
1937 	 */
1938 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1939 		if (event_sched_in(event, cpuctx, ctx)) {
1940 			partial_group = event;
1941 			goto group_error;
1942 		}
1943 	}
1944 
1945 	if (!pmu->commit_txn(pmu))
1946 		return 0;
1947 
1948 group_error:
1949 	/*
1950 	 * Groups can be scheduled in as one unit only, so undo any
1951 	 * partial group before returning:
1952 	 * The events up to the failed event are scheduled out normally,
1953 	 * tstamp_stopped will be updated.
1954 	 *
1955 	 * The failed events and the remaining siblings need to have
1956 	 * their timings updated as if they had gone thru event_sched_in()
1957 	 * and event_sched_out(). This is required to get consistent timings
1958 	 * across the group. This also takes care of the case where the group
1959 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 	 * the time the event was actually stopped, such that time delta
1961 	 * calculation in update_event_times() is correct.
1962 	 */
1963 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 		if (event == partial_group)
1965 			simulate = true;
1966 
1967 		if (simulate) {
1968 			event->tstamp_running += now - event->tstamp_stopped;
1969 			event->tstamp_stopped = now;
1970 		} else {
1971 			event_sched_out(event, cpuctx, ctx);
1972 		}
1973 	}
1974 	event_sched_out(group_event, cpuctx, ctx);
1975 
1976 	pmu->cancel_txn(pmu);
1977 
1978 	perf_cpu_hrtimer_restart(cpuctx);
1979 
1980 	return -EAGAIN;
1981 }
1982 
1983 /*
1984  * Work out whether we can put this event group on the CPU now.
1985  */
1986 static int group_can_go_on(struct perf_event *event,
1987 			   struct perf_cpu_context *cpuctx,
1988 			   int can_add_hw)
1989 {
1990 	/*
1991 	 * Groups consisting entirely of software events can always go on.
1992 	 */
1993 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1994 		return 1;
1995 	/*
1996 	 * If an exclusive group is already on, no other hardware
1997 	 * events can go on.
1998 	 */
1999 	if (cpuctx->exclusive)
2000 		return 0;
2001 	/*
2002 	 * If this group is exclusive and there are already
2003 	 * events on the CPU, it can't go on.
2004 	 */
2005 	if (event->attr.exclusive && cpuctx->active_oncpu)
2006 		return 0;
2007 	/*
2008 	 * Otherwise, try to add it if all previous groups were able
2009 	 * to go on.
2010 	 */
2011 	return can_add_hw;
2012 }
2013 
2014 static void add_event_to_ctx(struct perf_event *event,
2015 			       struct perf_event_context *ctx)
2016 {
2017 	u64 tstamp = perf_event_time(event);
2018 
2019 	list_add_event(event, ctx);
2020 	perf_group_attach(event);
2021 	event->tstamp_enabled = tstamp;
2022 	event->tstamp_running = tstamp;
2023 	event->tstamp_stopped = tstamp;
2024 }
2025 
2026 static void task_ctx_sched_out(struct perf_event_context *ctx);
2027 static void
2028 ctx_sched_in(struct perf_event_context *ctx,
2029 	     struct perf_cpu_context *cpuctx,
2030 	     enum event_type_t event_type,
2031 	     struct task_struct *task);
2032 
2033 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2034 				struct perf_event_context *ctx,
2035 				struct task_struct *task)
2036 {
2037 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2038 	if (ctx)
2039 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2040 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2041 	if (ctx)
2042 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2043 }
2044 
2045 /*
2046  * Cross CPU call to install and enable a performance event
2047  *
2048  * Must be called with ctx->mutex held
2049  */
2050 static int  __perf_install_in_context(void *info)
2051 {
2052 	struct perf_event *event = info;
2053 	struct perf_event_context *ctx = event->ctx;
2054 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2056 	struct task_struct *task = current;
2057 
2058 	perf_ctx_lock(cpuctx, task_ctx);
2059 	perf_pmu_disable(cpuctx->ctx.pmu);
2060 
2061 	/*
2062 	 * If there was an active task_ctx schedule it out.
2063 	 */
2064 	if (task_ctx)
2065 		task_ctx_sched_out(task_ctx);
2066 
2067 	/*
2068 	 * If the context we're installing events in is not the
2069 	 * active task_ctx, flip them.
2070 	 */
2071 	if (ctx->task && task_ctx != ctx) {
2072 		if (task_ctx)
2073 			raw_spin_unlock(&task_ctx->lock);
2074 		raw_spin_lock(&ctx->lock);
2075 		task_ctx = ctx;
2076 	}
2077 
2078 	if (task_ctx) {
2079 		cpuctx->task_ctx = task_ctx;
2080 		task = task_ctx->task;
2081 	}
2082 
2083 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2084 
2085 	update_context_time(ctx);
2086 	/*
2087 	 * update cgrp time only if current cgrp
2088 	 * matches event->cgrp. Must be done before
2089 	 * calling add_event_to_ctx()
2090 	 */
2091 	update_cgrp_time_from_event(event);
2092 
2093 	add_event_to_ctx(event, ctx);
2094 
2095 	/*
2096 	 * Schedule everything back in
2097 	 */
2098 	perf_event_sched_in(cpuctx, task_ctx, task);
2099 
2100 	perf_pmu_enable(cpuctx->ctx.pmu);
2101 	perf_ctx_unlock(cpuctx, task_ctx);
2102 
2103 	return 0;
2104 }
2105 
2106 /*
2107  * Attach a performance event to a context
2108  *
2109  * First we add the event to the list with the hardware enable bit
2110  * in event->hw_config cleared.
2111  *
2112  * If the event is attached to a task which is on a CPU we use a smp
2113  * call to enable it in the task context. The task might have been
2114  * scheduled away, but we check this in the smp call again.
2115  */
2116 static void
2117 perf_install_in_context(struct perf_event_context *ctx,
2118 			struct perf_event *event,
2119 			int cpu)
2120 {
2121 	struct task_struct *task = ctx->task;
2122 
2123 	lockdep_assert_held(&ctx->mutex);
2124 
2125 	event->ctx = ctx;
2126 	if (event->cpu != -1)
2127 		event->cpu = cpu;
2128 
2129 	if (!task) {
2130 		/*
2131 		 * Per cpu events are installed via an smp call and
2132 		 * the install is always successful.
2133 		 */
2134 		cpu_function_call(cpu, __perf_install_in_context, event);
2135 		return;
2136 	}
2137 
2138 retry:
2139 	if (!task_function_call(task, __perf_install_in_context, event))
2140 		return;
2141 
2142 	raw_spin_lock_irq(&ctx->lock);
2143 	/*
2144 	 * If we failed to find a running task, but find the context active now
2145 	 * that we've acquired the ctx->lock, retry.
2146 	 */
2147 	if (ctx->is_active) {
2148 		raw_spin_unlock_irq(&ctx->lock);
2149 		/*
2150 		 * Reload the task pointer, it might have been changed by
2151 		 * a concurrent perf_event_context_sched_out().
2152 		 */
2153 		task = ctx->task;
2154 		goto retry;
2155 	}
2156 
2157 	/*
2158 	 * Since the task isn't running, its safe to add the event, us holding
2159 	 * the ctx->lock ensures the task won't get scheduled in.
2160 	 */
2161 	add_event_to_ctx(event, ctx);
2162 	raw_spin_unlock_irq(&ctx->lock);
2163 }
2164 
2165 /*
2166  * Put a event into inactive state and update time fields.
2167  * Enabling the leader of a group effectively enables all
2168  * the group members that aren't explicitly disabled, so we
2169  * have to update their ->tstamp_enabled also.
2170  * Note: this works for group members as well as group leaders
2171  * since the non-leader members' sibling_lists will be empty.
2172  */
2173 static void __perf_event_mark_enabled(struct perf_event *event)
2174 {
2175 	struct perf_event *sub;
2176 	u64 tstamp = perf_event_time(event);
2177 
2178 	event->state = PERF_EVENT_STATE_INACTIVE;
2179 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2180 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2181 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2182 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2183 	}
2184 }
2185 
2186 /*
2187  * Cross CPU call to enable a performance event
2188  */
2189 static int __perf_event_enable(void *info)
2190 {
2191 	struct perf_event *event = info;
2192 	struct perf_event_context *ctx = event->ctx;
2193 	struct perf_event *leader = event->group_leader;
2194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2195 	int err;
2196 
2197 	/*
2198 	 * There's a time window between 'ctx->is_active' check
2199 	 * in perf_event_enable function and this place having:
2200 	 *   - IRQs on
2201 	 *   - ctx->lock unlocked
2202 	 *
2203 	 * where the task could be killed and 'ctx' deactivated
2204 	 * by perf_event_exit_task.
2205 	 */
2206 	if (!ctx->is_active)
2207 		return -EINVAL;
2208 
2209 	raw_spin_lock(&ctx->lock);
2210 	update_context_time(ctx);
2211 
2212 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2213 		goto unlock;
2214 
2215 	/*
2216 	 * set current task's cgroup time reference point
2217 	 */
2218 	perf_cgroup_set_timestamp(current, ctx);
2219 
2220 	__perf_event_mark_enabled(event);
2221 
2222 	if (!event_filter_match(event)) {
2223 		if (is_cgroup_event(event))
2224 			perf_cgroup_defer_enabled(event);
2225 		goto unlock;
2226 	}
2227 
2228 	/*
2229 	 * If the event is in a group and isn't the group leader,
2230 	 * then don't put it on unless the group is on.
2231 	 */
2232 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2233 		goto unlock;
2234 
2235 	if (!group_can_go_on(event, cpuctx, 1)) {
2236 		err = -EEXIST;
2237 	} else {
2238 		if (event == leader)
2239 			err = group_sched_in(event, cpuctx, ctx);
2240 		else
2241 			err = event_sched_in(event, cpuctx, ctx);
2242 	}
2243 
2244 	if (err) {
2245 		/*
2246 		 * If this event can't go on and it's part of a
2247 		 * group, then the whole group has to come off.
2248 		 */
2249 		if (leader != event) {
2250 			group_sched_out(leader, cpuctx, ctx);
2251 			perf_cpu_hrtimer_restart(cpuctx);
2252 		}
2253 		if (leader->attr.pinned) {
2254 			update_group_times(leader);
2255 			leader->state = PERF_EVENT_STATE_ERROR;
2256 		}
2257 	}
2258 
2259 unlock:
2260 	raw_spin_unlock(&ctx->lock);
2261 
2262 	return 0;
2263 }
2264 
2265 /*
2266  * Enable a event.
2267  *
2268  * If event->ctx is a cloned context, callers must make sure that
2269  * every task struct that event->ctx->task could possibly point to
2270  * remains valid.  This condition is satisfied when called through
2271  * perf_event_for_each_child or perf_event_for_each as described
2272  * for perf_event_disable.
2273  */
2274 static void _perf_event_enable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx = event->ctx;
2277 	struct task_struct *task = ctx->task;
2278 
2279 	if (!task) {
2280 		/*
2281 		 * Enable the event on the cpu that it's on
2282 		 */
2283 		cpu_function_call(event->cpu, __perf_event_enable, event);
2284 		return;
2285 	}
2286 
2287 	raw_spin_lock_irq(&ctx->lock);
2288 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2289 		goto out;
2290 
2291 	/*
2292 	 * If the event is in error state, clear that first.
2293 	 * That way, if we see the event in error state below, we
2294 	 * know that it has gone back into error state, as distinct
2295 	 * from the task having been scheduled away before the
2296 	 * cross-call arrived.
2297 	 */
2298 	if (event->state == PERF_EVENT_STATE_ERROR)
2299 		event->state = PERF_EVENT_STATE_OFF;
2300 
2301 retry:
2302 	if (!ctx->is_active) {
2303 		__perf_event_mark_enabled(event);
2304 		goto out;
2305 	}
2306 
2307 	raw_spin_unlock_irq(&ctx->lock);
2308 
2309 	if (!task_function_call(task, __perf_event_enable, event))
2310 		return;
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 
2314 	/*
2315 	 * If the context is active and the event is still off,
2316 	 * we need to retry the cross-call.
2317 	 */
2318 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2319 		/*
2320 		 * task could have been flipped by a concurrent
2321 		 * perf_event_context_sched_out()
2322 		 */
2323 		task = ctx->task;
2324 		goto retry;
2325 	}
2326 
2327 out:
2328 	raw_spin_unlock_irq(&ctx->lock);
2329 }
2330 
2331 /*
2332  * See perf_event_disable();
2333  */
2334 void perf_event_enable(struct perf_event *event)
2335 {
2336 	struct perf_event_context *ctx;
2337 
2338 	ctx = perf_event_ctx_lock(event);
2339 	_perf_event_enable(event);
2340 	perf_event_ctx_unlock(event, ctx);
2341 }
2342 EXPORT_SYMBOL_GPL(perf_event_enable);
2343 
2344 static int _perf_event_refresh(struct perf_event *event, int refresh)
2345 {
2346 	/*
2347 	 * not supported on inherited events
2348 	 */
2349 	if (event->attr.inherit || !is_sampling_event(event))
2350 		return -EINVAL;
2351 
2352 	atomic_add(refresh, &event->event_limit);
2353 	_perf_event_enable(event);
2354 
2355 	return 0;
2356 }
2357 
2358 /*
2359  * See perf_event_disable()
2360  */
2361 int perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 	struct perf_event_context *ctx;
2364 	int ret;
2365 
2366 	ctx = perf_event_ctx_lock(event);
2367 	ret = _perf_event_refresh(event, refresh);
2368 	perf_event_ctx_unlock(event, ctx);
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(perf_event_refresh);
2373 
2374 static void ctx_sched_out(struct perf_event_context *ctx,
2375 			  struct perf_cpu_context *cpuctx,
2376 			  enum event_type_t event_type)
2377 {
2378 	struct perf_event *event;
2379 	int is_active = ctx->is_active;
2380 
2381 	ctx->is_active &= ~event_type;
2382 	if (likely(!ctx->nr_events))
2383 		return;
2384 
2385 	update_context_time(ctx);
2386 	update_cgrp_time_from_cpuctx(cpuctx);
2387 	if (!ctx->nr_active)
2388 		return;
2389 
2390 	perf_pmu_disable(ctx->pmu);
2391 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2392 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2393 			group_sched_out(event, cpuctx, ctx);
2394 	}
2395 
2396 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2397 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2398 			group_sched_out(event, cpuctx, ctx);
2399 	}
2400 	perf_pmu_enable(ctx->pmu);
2401 }
2402 
2403 /*
2404  * Test whether two contexts are equivalent, i.e. whether they have both been
2405  * cloned from the same version of the same context.
2406  *
2407  * Equivalence is measured using a generation number in the context that is
2408  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409  * and list_del_event().
2410  */
2411 static int context_equiv(struct perf_event_context *ctx1,
2412 			 struct perf_event_context *ctx2)
2413 {
2414 	lockdep_assert_held(&ctx1->lock);
2415 	lockdep_assert_held(&ctx2->lock);
2416 
2417 	/* Pinning disables the swap optimization */
2418 	if (ctx1->pin_count || ctx2->pin_count)
2419 		return 0;
2420 
2421 	/* If ctx1 is the parent of ctx2 */
2422 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2423 		return 1;
2424 
2425 	/* If ctx2 is the parent of ctx1 */
2426 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2427 		return 1;
2428 
2429 	/*
2430 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 	 * hierarchy, see perf_event_init_context().
2432 	 */
2433 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2434 			ctx1->parent_gen == ctx2->parent_gen)
2435 		return 1;
2436 
2437 	/* Unmatched */
2438 	return 0;
2439 }
2440 
2441 static void __perf_event_sync_stat(struct perf_event *event,
2442 				     struct perf_event *next_event)
2443 {
2444 	u64 value;
2445 
2446 	if (!event->attr.inherit_stat)
2447 		return;
2448 
2449 	/*
2450 	 * Update the event value, we cannot use perf_event_read()
2451 	 * because we're in the middle of a context switch and have IRQs
2452 	 * disabled, which upsets smp_call_function_single(), however
2453 	 * we know the event must be on the current CPU, therefore we
2454 	 * don't need to use it.
2455 	 */
2456 	switch (event->state) {
2457 	case PERF_EVENT_STATE_ACTIVE:
2458 		event->pmu->read(event);
2459 		/* fall-through */
2460 
2461 	case PERF_EVENT_STATE_INACTIVE:
2462 		update_event_times(event);
2463 		break;
2464 
2465 	default:
2466 		break;
2467 	}
2468 
2469 	/*
2470 	 * In order to keep per-task stats reliable we need to flip the event
2471 	 * values when we flip the contexts.
2472 	 */
2473 	value = local64_read(&next_event->count);
2474 	value = local64_xchg(&event->count, value);
2475 	local64_set(&next_event->count, value);
2476 
2477 	swap(event->total_time_enabled, next_event->total_time_enabled);
2478 	swap(event->total_time_running, next_event->total_time_running);
2479 
2480 	/*
2481 	 * Since we swizzled the values, update the user visible data too.
2482 	 */
2483 	perf_event_update_userpage(event);
2484 	perf_event_update_userpage(next_event);
2485 }
2486 
2487 static void perf_event_sync_stat(struct perf_event_context *ctx,
2488 				   struct perf_event_context *next_ctx)
2489 {
2490 	struct perf_event *event, *next_event;
2491 
2492 	if (!ctx->nr_stat)
2493 		return;
2494 
2495 	update_context_time(ctx);
2496 
2497 	event = list_first_entry(&ctx->event_list,
2498 				   struct perf_event, event_entry);
2499 
2500 	next_event = list_first_entry(&next_ctx->event_list,
2501 					struct perf_event, event_entry);
2502 
2503 	while (&event->event_entry != &ctx->event_list &&
2504 	       &next_event->event_entry != &next_ctx->event_list) {
2505 
2506 		__perf_event_sync_stat(event, next_event);
2507 
2508 		event = list_next_entry(event, event_entry);
2509 		next_event = list_next_entry(next_event, event_entry);
2510 	}
2511 }
2512 
2513 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2514 					 struct task_struct *next)
2515 {
2516 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2517 	struct perf_event_context *next_ctx;
2518 	struct perf_event_context *parent, *next_parent;
2519 	struct perf_cpu_context *cpuctx;
2520 	int do_switch = 1;
2521 
2522 	if (likely(!ctx))
2523 		return;
2524 
2525 	cpuctx = __get_cpu_context(ctx);
2526 	if (!cpuctx->task_ctx)
2527 		return;
2528 
2529 	rcu_read_lock();
2530 	next_ctx = next->perf_event_ctxp[ctxn];
2531 	if (!next_ctx)
2532 		goto unlock;
2533 
2534 	parent = rcu_dereference(ctx->parent_ctx);
2535 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2536 
2537 	/* If neither context have a parent context; they cannot be clones. */
2538 	if (!parent && !next_parent)
2539 		goto unlock;
2540 
2541 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2542 		/*
2543 		 * Looks like the two contexts are clones, so we might be
2544 		 * able to optimize the context switch.  We lock both
2545 		 * contexts and check that they are clones under the
2546 		 * lock (including re-checking that neither has been
2547 		 * uncloned in the meantime).  It doesn't matter which
2548 		 * order we take the locks because no other cpu could
2549 		 * be trying to lock both of these tasks.
2550 		 */
2551 		raw_spin_lock(&ctx->lock);
2552 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2553 		if (context_equiv(ctx, next_ctx)) {
2554 			/*
2555 			 * XXX do we need a memory barrier of sorts
2556 			 * wrt to rcu_dereference() of perf_event_ctxp
2557 			 */
2558 			task->perf_event_ctxp[ctxn] = next_ctx;
2559 			next->perf_event_ctxp[ctxn] = ctx;
2560 			ctx->task = next;
2561 			next_ctx->task = task;
2562 			do_switch = 0;
2563 
2564 			perf_event_sync_stat(ctx, next_ctx);
2565 		}
2566 		raw_spin_unlock(&next_ctx->lock);
2567 		raw_spin_unlock(&ctx->lock);
2568 	}
2569 unlock:
2570 	rcu_read_unlock();
2571 
2572 	if (do_switch) {
2573 		raw_spin_lock(&ctx->lock);
2574 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2575 		cpuctx->task_ctx = NULL;
2576 		raw_spin_unlock(&ctx->lock);
2577 	}
2578 }
2579 
2580 #define for_each_task_context_nr(ctxn)					\
2581 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2582 
2583 /*
2584  * Called from scheduler to remove the events of the current task,
2585  * with interrupts disabled.
2586  *
2587  * We stop each event and update the event value in event->count.
2588  *
2589  * This does not protect us against NMI, but disable()
2590  * sets the disabled bit in the control field of event _before_
2591  * accessing the event control register. If a NMI hits, then it will
2592  * not restart the event.
2593  */
2594 void __perf_event_task_sched_out(struct task_struct *task,
2595 				 struct task_struct *next)
2596 {
2597 	int ctxn;
2598 
2599 	for_each_task_context_nr(ctxn)
2600 		perf_event_context_sched_out(task, ctxn, next);
2601 
2602 	/*
2603 	 * if cgroup events exist on this CPU, then we need
2604 	 * to check if we have to switch out PMU state.
2605 	 * cgroup event are system-wide mode only
2606 	 */
2607 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2608 		perf_cgroup_sched_out(task, next);
2609 }
2610 
2611 static void task_ctx_sched_out(struct perf_event_context *ctx)
2612 {
2613 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2614 
2615 	if (!cpuctx->task_ctx)
2616 		return;
2617 
2618 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2619 		return;
2620 
2621 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2622 	cpuctx->task_ctx = NULL;
2623 }
2624 
2625 /*
2626  * Called with IRQs disabled
2627  */
2628 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 			      enum event_type_t event_type)
2630 {
2631 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2632 }
2633 
2634 static void
2635 ctx_pinned_sched_in(struct perf_event_context *ctx,
2636 		    struct perf_cpu_context *cpuctx)
2637 {
2638 	struct perf_event *event;
2639 
2640 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2641 		if (event->state <= PERF_EVENT_STATE_OFF)
2642 			continue;
2643 		if (!event_filter_match(event))
2644 			continue;
2645 
2646 		/* may need to reset tstamp_enabled */
2647 		if (is_cgroup_event(event))
2648 			perf_cgroup_mark_enabled(event, ctx);
2649 
2650 		if (group_can_go_on(event, cpuctx, 1))
2651 			group_sched_in(event, cpuctx, ctx);
2652 
2653 		/*
2654 		 * If this pinned group hasn't been scheduled,
2655 		 * put it in error state.
2656 		 */
2657 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2658 			update_group_times(event);
2659 			event->state = PERF_EVENT_STATE_ERROR;
2660 		}
2661 	}
2662 }
2663 
2664 static void
2665 ctx_flexible_sched_in(struct perf_event_context *ctx,
2666 		      struct perf_cpu_context *cpuctx)
2667 {
2668 	struct perf_event *event;
2669 	int can_add_hw = 1;
2670 
2671 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2672 		/* Ignore events in OFF or ERROR state */
2673 		if (event->state <= PERF_EVENT_STATE_OFF)
2674 			continue;
2675 		/*
2676 		 * Listen to the 'cpu' scheduling filter constraint
2677 		 * of events:
2678 		 */
2679 		if (!event_filter_match(event))
2680 			continue;
2681 
2682 		/* may need to reset tstamp_enabled */
2683 		if (is_cgroup_event(event))
2684 			perf_cgroup_mark_enabled(event, ctx);
2685 
2686 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2687 			if (group_sched_in(event, cpuctx, ctx))
2688 				can_add_hw = 0;
2689 		}
2690 	}
2691 }
2692 
2693 static void
2694 ctx_sched_in(struct perf_event_context *ctx,
2695 	     struct perf_cpu_context *cpuctx,
2696 	     enum event_type_t event_type,
2697 	     struct task_struct *task)
2698 {
2699 	u64 now;
2700 	int is_active = ctx->is_active;
2701 
2702 	ctx->is_active |= event_type;
2703 	if (likely(!ctx->nr_events))
2704 		return;
2705 
2706 	now = perf_clock();
2707 	ctx->timestamp = now;
2708 	perf_cgroup_set_timestamp(task, ctx);
2709 	/*
2710 	 * First go through the list and put on any pinned groups
2711 	 * in order to give them the best chance of going on.
2712 	 */
2713 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2714 		ctx_pinned_sched_in(ctx, cpuctx);
2715 
2716 	/* Then walk through the lower prio flexible groups */
2717 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2718 		ctx_flexible_sched_in(ctx, cpuctx);
2719 }
2720 
2721 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2722 			     enum event_type_t event_type,
2723 			     struct task_struct *task)
2724 {
2725 	struct perf_event_context *ctx = &cpuctx->ctx;
2726 
2727 	ctx_sched_in(ctx, cpuctx, event_type, task);
2728 }
2729 
2730 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2731 					struct task_struct *task)
2732 {
2733 	struct perf_cpu_context *cpuctx;
2734 
2735 	cpuctx = __get_cpu_context(ctx);
2736 	if (cpuctx->task_ctx == ctx)
2737 		return;
2738 
2739 	perf_ctx_lock(cpuctx, ctx);
2740 	perf_pmu_disable(ctx->pmu);
2741 	/*
2742 	 * We want to keep the following priority order:
2743 	 * cpu pinned (that don't need to move), task pinned,
2744 	 * cpu flexible, task flexible.
2745 	 */
2746 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747 
2748 	if (ctx->nr_events)
2749 		cpuctx->task_ctx = ctx;
2750 
2751 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2752 
2753 	perf_pmu_enable(ctx->pmu);
2754 	perf_ctx_unlock(cpuctx, ctx);
2755 }
2756 
2757 /*
2758  * When sampling the branck stack in system-wide, it may be necessary
2759  * to flush the stack on context switch. This happens when the branch
2760  * stack does not tag its entries with the pid of the current task.
2761  * Otherwise it becomes impossible to associate a branch entry with a
2762  * task. This ambiguity is more likely to appear when the branch stack
2763  * supports priv level filtering and the user sets it to monitor only
2764  * at the user level (which could be a useful measurement in system-wide
2765  * mode). In that case, the risk is high of having a branch stack with
2766  * branch from multiple tasks. Flushing may mean dropping the existing
2767  * entries or stashing them somewhere in the PMU specific code layer.
2768  *
2769  * This function provides the context switch callback to the lower code
2770  * layer. It is invoked ONLY when there is at least one system-wide context
2771  * with at least one active event using taken branch sampling.
2772  */
2773 static void perf_branch_stack_sched_in(struct task_struct *prev,
2774 				       struct task_struct *task)
2775 {
2776 	struct perf_cpu_context *cpuctx;
2777 	struct pmu *pmu;
2778 	unsigned long flags;
2779 
2780 	/* no need to flush branch stack if not changing task */
2781 	if (prev == task)
2782 		return;
2783 
2784 	local_irq_save(flags);
2785 
2786 	rcu_read_lock();
2787 
2788 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2789 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2790 
2791 		/*
2792 		 * check if the context has at least one
2793 		 * event using PERF_SAMPLE_BRANCH_STACK
2794 		 */
2795 		if (cpuctx->ctx.nr_branch_stack > 0
2796 		    && pmu->flush_branch_stack) {
2797 
2798 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2799 
2800 			perf_pmu_disable(pmu);
2801 
2802 			pmu->flush_branch_stack();
2803 
2804 			perf_pmu_enable(pmu);
2805 
2806 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 		}
2808 	}
2809 
2810 	rcu_read_unlock();
2811 
2812 	local_irq_restore(flags);
2813 }
2814 
2815 /*
2816  * Called from scheduler to add the events of the current task
2817  * with interrupts disabled.
2818  *
2819  * We restore the event value and then enable it.
2820  *
2821  * This does not protect us against NMI, but enable()
2822  * sets the enabled bit in the control field of event _before_
2823  * accessing the event control register. If a NMI hits, then it will
2824  * keep the event running.
2825  */
2826 void __perf_event_task_sched_in(struct task_struct *prev,
2827 				struct task_struct *task)
2828 {
2829 	struct perf_event_context *ctx;
2830 	int ctxn;
2831 
2832 	for_each_task_context_nr(ctxn) {
2833 		ctx = task->perf_event_ctxp[ctxn];
2834 		if (likely(!ctx))
2835 			continue;
2836 
2837 		perf_event_context_sched_in(ctx, task);
2838 	}
2839 	/*
2840 	 * if cgroup events exist on this CPU, then we need
2841 	 * to check if we have to switch in PMU state.
2842 	 * cgroup event are system-wide mode only
2843 	 */
2844 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2845 		perf_cgroup_sched_in(prev, task);
2846 
2847 	/* check for system-wide branch_stack events */
2848 	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2849 		perf_branch_stack_sched_in(prev, task);
2850 }
2851 
2852 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2853 {
2854 	u64 frequency = event->attr.sample_freq;
2855 	u64 sec = NSEC_PER_SEC;
2856 	u64 divisor, dividend;
2857 
2858 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2859 
2860 	count_fls = fls64(count);
2861 	nsec_fls = fls64(nsec);
2862 	frequency_fls = fls64(frequency);
2863 	sec_fls = 30;
2864 
2865 	/*
2866 	 * We got @count in @nsec, with a target of sample_freq HZ
2867 	 * the target period becomes:
2868 	 *
2869 	 *             @count * 10^9
2870 	 * period = -------------------
2871 	 *          @nsec * sample_freq
2872 	 *
2873 	 */
2874 
2875 	/*
2876 	 * Reduce accuracy by one bit such that @a and @b converge
2877 	 * to a similar magnitude.
2878 	 */
2879 #define REDUCE_FLS(a, b)		\
2880 do {					\
2881 	if (a##_fls > b##_fls) {	\
2882 		a >>= 1;		\
2883 		a##_fls--;		\
2884 	} else {			\
2885 		b >>= 1;		\
2886 		b##_fls--;		\
2887 	}				\
2888 } while (0)
2889 
2890 	/*
2891 	 * Reduce accuracy until either term fits in a u64, then proceed with
2892 	 * the other, so that finally we can do a u64/u64 division.
2893 	 */
2894 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 		REDUCE_FLS(nsec, frequency);
2896 		REDUCE_FLS(sec, count);
2897 	}
2898 
2899 	if (count_fls + sec_fls > 64) {
2900 		divisor = nsec * frequency;
2901 
2902 		while (count_fls + sec_fls > 64) {
2903 			REDUCE_FLS(count, sec);
2904 			divisor >>= 1;
2905 		}
2906 
2907 		dividend = count * sec;
2908 	} else {
2909 		dividend = count * sec;
2910 
2911 		while (nsec_fls + frequency_fls > 64) {
2912 			REDUCE_FLS(nsec, frequency);
2913 			dividend >>= 1;
2914 		}
2915 
2916 		divisor = nsec * frequency;
2917 	}
2918 
2919 	if (!divisor)
2920 		return dividend;
2921 
2922 	return div64_u64(dividend, divisor);
2923 }
2924 
2925 static DEFINE_PER_CPU(int, perf_throttled_count);
2926 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2927 
2928 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929 {
2930 	struct hw_perf_event *hwc = &event->hw;
2931 	s64 period, sample_period;
2932 	s64 delta;
2933 
2934 	period = perf_calculate_period(event, nsec, count);
2935 
2936 	delta = (s64)(period - hwc->sample_period);
2937 	delta = (delta + 7) / 8; /* low pass filter */
2938 
2939 	sample_period = hwc->sample_period + delta;
2940 
2941 	if (!sample_period)
2942 		sample_period = 1;
2943 
2944 	hwc->sample_period = sample_period;
2945 
2946 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 		if (disable)
2948 			event->pmu->stop(event, PERF_EF_UPDATE);
2949 
2950 		local64_set(&hwc->period_left, 0);
2951 
2952 		if (disable)
2953 			event->pmu->start(event, PERF_EF_RELOAD);
2954 	}
2955 }
2956 
2957 /*
2958  * combine freq adjustment with unthrottling to avoid two passes over the
2959  * events. At the same time, make sure, having freq events does not change
2960  * the rate of unthrottling as that would introduce bias.
2961  */
2962 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2963 					   int needs_unthr)
2964 {
2965 	struct perf_event *event;
2966 	struct hw_perf_event *hwc;
2967 	u64 now, period = TICK_NSEC;
2968 	s64 delta;
2969 
2970 	/*
2971 	 * only need to iterate over all events iff:
2972 	 * - context have events in frequency mode (needs freq adjust)
2973 	 * - there are events to unthrottle on this cpu
2974 	 */
2975 	if (!(ctx->nr_freq || needs_unthr))
2976 		return;
2977 
2978 	raw_spin_lock(&ctx->lock);
2979 	perf_pmu_disable(ctx->pmu);
2980 
2981 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 			continue;
2984 
2985 		if (!event_filter_match(event))
2986 			continue;
2987 
2988 		perf_pmu_disable(event->pmu);
2989 
2990 		hwc = &event->hw;
2991 
2992 		if (hwc->interrupts == MAX_INTERRUPTS) {
2993 			hwc->interrupts = 0;
2994 			perf_log_throttle(event, 1);
2995 			event->pmu->start(event, 0);
2996 		}
2997 
2998 		if (!event->attr.freq || !event->attr.sample_freq)
2999 			goto next;
3000 
3001 		/*
3002 		 * stop the event and update event->count
3003 		 */
3004 		event->pmu->stop(event, PERF_EF_UPDATE);
3005 
3006 		now = local64_read(&event->count);
3007 		delta = now - hwc->freq_count_stamp;
3008 		hwc->freq_count_stamp = now;
3009 
3010 		/*
3011 		 * restart the event
3012 		 * reload only if value has changed
3013 		 * we have stopped the event so tell that
3014 		 * to perf_adjust_period() to avoid stopping it
3015 		 * twice.
3016 		 */
3017 		if (delta > 0)
3018 			perf_adjust_period(event, period, delta, false);
3019 
3020 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 	next:
3022 		perf_pmu_enable(event->pmu);
3023 	}
3024 
3025 	perf_pmu_enable(ctx->pmu);
3026 	raw_spin_unlock(&ctx->lock);
3027 }
3028 
3029 /*
3030  * Round-robin a context's events:
3031  */
3032 static void rotate_ctx(struct perf_event_context *ctx)
3033 {
3034 	/*
3035 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 	 * disabled by the inheritance code.
3037 	 */
3038 	if (!ctx->rotate_disable)
3039 		list_rotate_left(&ctx->flexible_groups);
3040 }
3041 
3042 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043 {
3044 	struct perf_event_context *ctx = NULL;
3045 	int rotate = 0;
3046 
3047 	if (cpuctx->ctx.nr_events) {
3048 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3049 			rotate = 1;
3050 	}
3051 
3052 	ctx = cpuctx->task_ctx;
3053 	if (ctx && ctx->nr_events) {
3054 		if (ctx->nr_events != ctx->nr_active)
3055 			rotate = 1;
3056 	}
3057 
3058 	if (!rotate)
3059 		goto done;
3060 
3061 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3062 	perf_pmu_disable(cpuctx->ctx.pmu);
3063 
3064 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3065 	if (ctx)
3066 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3067 
3068 	rotate_ctx(&cpuctx->ctx);
3069 	if (ctx)
3070 		rotate_ctx(ctx);
3071 
3072 	perf_event_sched_in(cpuctx, ctx, current);
3073 
3074 	perf_pmu_enable(cpuctx->ctx.pmu);
3075 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076 done:
3077 
3078 	return rotate;
3079 }
3080 
3081 #ifdef CONFIG_NO_HZ_FULL
3082 bool perf_event_can_stop_tick(void)
3083 {
3084 	if (atomic_read(&nr_freq_events) ||
3085 	    __this_cpu_read(perf_throttled_count))
3086 		return false;
3087 	else
3088 		return true;
3089 }
3090 #endif
3091 
3092 void perf_event_task_tick(void)
3093 {
3094 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 	struct perf_event_context *ctx, *tmp;
3096 	int throttled;
3097 
3098 	WARN_ON(!irqs_disabled());
3099 
3100 	__this_cpu_inc(perf_throttled_seq);
3101 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3102 
3103 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104 		perf_adjust_freq_unthr_context(ctx, throttled);
3105 }
3106 
3107 static int event_enable_on_exec(struct perf_event *event,
3108 				struct perf_event_context *ctx)
3109 {
3110 	if (!event->attr.enable_on_exec)
3111 		return 0;
3112 
3113 	event->attr.enable_on_exec = 0;
3114 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3115 		return 0;
3116 
3117 	__perf_event_mark_enabled(event);
3118 
3119 	return 1;
3120 }
3121 
3122 /*
3123  * Enable all of a task's events that have been marked enable-on-exec.
3124  * This expects task == current.
3125  */
3126 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127 {
3128 	struct perf_event_context *clone_ctx = NULL;
3129 	struct perf_event *event;
3130 	unsigned long flags;
3131 	int enabled = 0;
3132 	int ret;
3133 
3134 	local_irq_save(flags);
3135 	if (!ctx || !ctx->nr_events)
3136 		goto out;
3137 
3138 	/*
3139 	 * We must ctxsw out cgroup events to avoid conflict
3140 	 * when invoking perf_task_event_sched_in() later on
3141 	 * in this function. Otherwise we end up trying to
3142 	 * ctxswin cgroup events which are already scheduled
3143 	 * in.
3144 	 */
3145 	perf_cgroup_sched_out(current, NULL);
3146 
3147 	raw_spin_lock(&ctx->lock);
3148 	task_ctx_sched_out(ctx);
3149 
3150 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 		ret = event_enable_on_exec(event, ctx);
3152 		if (ret)
3153 			enabled = 1;
3154 	}
3155 
3156 	/*
3157 	 * Unclone this context if we enabled any event.
3158 	 */
3159 	if (enabled)
3160 		clone_ctx = unclone_ctx(ctx);
3161 
3162 	raw_spin_unlock(&ctx->lock);
3163 
3164 	/*
3165 	 * Also calls ctxswin for cgroup events, if any:
3166 	 */
3167 	perf_event_context_sched_in(ctx, ctx->task);
3168 out:
3169 	local_irq_restore(flags);
3170 
3171 	if (clone_ctx)
3172 		put_ctx(clone_ctx);
3173 }
3174 
3175 void perf_event_exec(void)
3176 {
3177 	struct perf_event_context *ctx;
3178 	int ctxn;
3179 
3180 	rcu_read_lock();
3181 	for_each_task_context_nr(ctxn) {
3182 		ctx = current->perf_event_ctxp[ctxn];
3183 		if (!ctx)
3184 			continue;
3185 
3186 		perf_event_enable_on_exec(ctx);
3187 	}
3188 	rcu_read_unlock();
3189 }
3190 
3191 /*
3192  * Cross CPU call to read the hardware event
3193  */
3194 static void __perf_event_read(void *info)
3195 {
3196 	struct perf_event *event = info;
3197 	struct perf_event_context *ctx = event->ctx;
3198 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3199 
3200 	/*
3201 	 * If this is a task context, we need to check whether it is
3202 	 * the current task context of this cpu.  If not it has been
3203 	 * scheduled out before the smp call arrived.  In that case
3204 	 * event->count would have been updated to a recent sample
3205 	 * when the event was scheduled out.
3206 	 */
3207 	if (ctx->task && cpuctx->task_ctx != ctx)
3208 		return;
3209 
3210 	raw_spin_lock(&ctx->lock);
3211 	if (ctx->is_active) {
3212 		update_context_time(ctx);
3213 		update_cgrp_time_from_event(event);
3214 	}
3215 	update_event_times(event);
3216 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 		event->pmu->read(event);
3218 	raw_spin_unlock(&ctx->lock);
3219 }
3220 
3221 static inline u64 perf_event_count(struct perf_event *event)
3222 {
3223 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3224 }
3225 
3226 static u64 perf_event_read(struct perf_event *event)
3227 {
3228 	/*
3229 	 * If event is enabled and currently active on a CPU, update the
3230 	 * value in the event structure:
3231 	 */
3232 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 		smp_call_function_single(event->oncpu,
3234 					 __perf_event_read, event, 1);
3235 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3236 		struct perf_event_context *ctx = event->ctx;
3237 		unsigned long flags;
3238 
3239 		raw_spin_lock_irqsave(&ctx->lock, flags);
3240 		/*
3241 		 * may read while context is not active
3242 		 * (e.g., thread is blocked), in that case
3243 		 * we cannot update context time
3244 		 */
3245 		if (ctx->is_active) {
3246 			update_context_time(ctx);
3247 			update_cgrp_time_from_event(event);
3248 		}
3249 		update_event_times(event);
3250 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3251 	}
3252 
3253 	return perf_event_count(event);
3254 }
3255 
3256 /*
3257  * Initialize the perf_event context in a task_struct:
3258  */
3259 static void __perf_event_init_context(struct perf_event_context *ctx)
3260 {
3261 	raw_spin_lock_init(&ctx->lock);
3262 	mutex_init(&ctx->mutex);
3263 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 	INIT_LIST_HEAD(&ctx->pinned_groups);
3265 	INIT_LIST_HEAD(&ctx->flexible_groups);
3266 	INIT_LIST_HEAD(&ctx->event_list);
3267 	atomic_set(&ctx->refcount, 1);
3268 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 }
3270 
3271 static struct perf_event_context *
3272 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3273 {
3274 	struct perf_event_context *ctx;
3275 
3276 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3277 	if (!ctx)
3278 		return NULL;
3279 
3280 	__perf_event_init_context(ctx);
3281 	if (task) {
3282 		ctx->task = task;
3283 		get_task_struct(task);
3284 	}
3285 	ctx->pmu = pmu;
3286 
3287 	return ctx;
3288 }
3289 
3290 static struct task_struct *
3291 find_lively_task_by_vpid(pid_t vpid)
3292 {
3293 	struct task_struct *task;
3294 	int err;
3295 
3296 	rcu_read_lock();
3297 	if (!vpid)
3298 		task = current;
3299 	else
3300 		task = find_task_by_vpid(vpid);
3301 	if (task)
3302 		get_task_struct(task);
3303 	rcu_read_unlock();
3304 
3305 	if (!task)
3306 		return ERR_PTR(-ESRCH);
3307 
3308 	/* Reuse ptrace permission checks for now. */
3309 	err = -EACCES;
3310 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3311 		goto errout;
3312 
3313 	return task;
3314 errout:
3315 	put_task_struct(task);
3316 	return ERR_PTR(err);
3317 
3318 }
3319 
3320 /*
3321  * Returns a matching context with refcount and pincount.
3322  */
3323 static struct perf_event_context *
3324 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3325 {
3326 	struct perf_event_context *ctx, *clone_ctx = NULL;
3327 	struct perf_cpu_context *cpuctx;
3328 	unsigned long flags;
3329 	int ctxn, err;
3330 
3331 	if (!task) {
3332 		/* Must be root to operate on a CPU event: */
3333 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3334 			return ERR_PTR(-EACCES);
3335 
3336 		/*
3337 		 * We could be clever and allow to attach a event to an
3338 		 * offline CPU and activate it when the CPU comes up, but
3339 		 * that's for later.
3340 		 */
3341 		if (!cpu_online(cpu))
3342 			return ERR_PTR(-ENODEV);
3343 
3344 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3345 		ctx = &cpuctx->ctx;
3346 		get_ctx(ctx);
3347 		++ctx->pin_count;
3348 
3349 		return ctx;
3350 	}
3351 
3352 	err = -EINVAL;
3353 	ctxn = pmu->task_ctx_nr;
3354 	if (ctxn < 0)
3355 		goto errout;
3356 
3357 retry:
3358 	ctx = perf_lock_task_context(task, ctxn, &flags);
3359 	if (ctx) {
3360 		clone_ctx = unclone_ctx(ctx);
3361 		++ctx->pin_count;
3362 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3363 
3364 		if (clone_ctx)
3365 			put_ctx(clone_ctx);
3366 	} else {
3367 		ctx = alloc_perf_context(pmu, task);
3368 		err = -ENOMEM;
3369 		if (!ctx)
3370 			goto errout;
3371 
3372 		err = 0;
3373 		mutex_lock(&task->perf_event_mutex);
3374 		/*
3375 		 * If it has already passed perf_event_exit_task().
3376 		 * we must see PF_EXITING, it takes this mutex too.
3377 		 */
3378 		if (task->flags & PF_EXITING)
3379 			err = -ESRCH;
3380 		else if (task->perf_event_ctxp[ctxn])
3381 			err = -EAGAIN;
3382 		else {
3383 			get_ctx(ctx);
3384 			++ctx->pin_count;
3385 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3386 		}
3387 		mutex_unlock(&task->perf_event_mutex);
3388 
3389 		if (unlikely(err)) {
3390 			put_ctx(ctx);
3391 
3392 			if (err == -EAGAIN)
3393 				goto retry;
3394 			goto errout;
3395 		}
3396 	}
3397 
3398 	return ctx;
3399 
3400 errout:
3401 	return ERR_PTR(err);
3402 }
3403 
3404 static void perf_event_free_filter(struct perf_event *event);
3405 
3406 static void free_event_rcu(struct rcu_head *head)
3407 {
3408 	struct perf_event *event;
3409 
3410 	event = container_of(head, struct perf_event, rcu_head);
3411 	if (event->ns)
3412 		put_pid_ns(event->ns);
3413 	perf_event_free_filter(event);
3414 	kfree(event);
3415 }
3416 
3417 static void ring_buffer_put(struct ring_buffer *rb);
3418 static void ring_buffer_attach(struct perf_event *event,
3419 			       struct ring_buffer *rb);
3420 
3421 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422 {
3423 	if (event->parent)
3424 		return;
3425 
3426 	if (has_branch_stack(event)) {
3427 		if (!(event->attach_state & PERF_ATTACH_TASK))
3428 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3429 	}
3430 	if (is_cgroup_event(event))
3431 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3432 }
3433 
3434 static void unaccount_event(struct perf_event *event)
3435 {
3436 	if (event->parent)
3437 		return;
3438 
3439 	if (event->attach_state & PERF_ATTACH_TASK)
3440 		static_key_slow_dec_deferred(&perf_sched_events);
3441 	if (event->attr.mmap || event->attr.mmap_data)
3442 		atomic_dec(&nr_mmap_events);
3443 	if (event->attr.comm)
3444 		atomic_dec(&nr_comm_events);
3445 	if (event->attr.task)
3446 		atomic_dec(&nr_task_events);
3447 	if (event->attr.freq)
3448 		atomic_dec(&nr_freq_events);
3449 	if (is_cgroup_event(event))
3450 		static_key_slow_dec_deferred(&perf_sched_events);
3451 	if (has_branch_stack(event))
3452 		static_key_slow_dec_deferred(&perf_sched_events);
3453 
3454 	unaccount_event_cpu(event, event->cpu);
3455 }
3456 
3457 static void __free_event(struct perf_event *event)
3458 {
3459 	if (!event->parent) {
3460 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3461 			put_callchain_buffers();
3462 	}
3463 
3464 	if (event->destroy)
3465 		event->destroy(event);
3466 
3467 	if (event->ctx)
3468 		put_ctx(event->ctx);
3469 
3470 	if (event->pmu)
3471 		module_put(event->pmu->module);
3472 
3473 	call_rcu(&event->rcu_head, free_event_rcu);
3474 }
3475 
3476 static void _free_event(struct perf_event *event)
3477 {
3478 	irq_work_sync(&event->pending);
3479 
3480 	unaccount_event(event);
3481 
3482 	if (event->rb) {
3483 		/*
3484 		 * Can happen when we close an event with re-directed output.
3485 		 *
3486 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 		 * over us; possibly making our ring_buffer_put() the last.
3488 		 */
3489 		mutex_lock(&event->mmap_mutex);
3490 		ring_buffer_attach(event, NULL);
3491 		mutex_unlock(&event->mmap_mutex);
3492 	}
3493 
3494 	if (is_cgroup_event(event))
3495 		perf_detach_cgroup(event);
3496 
3497 	__free_event(event);
3498 }
3499 
3500 /*
3501  * Used to free events which have a known refcount of 1, such as in error paths
3502  * where the event isn't exposed yet and inherited events.
3503  */
3504 static void free_event(struct perf_event *event)
3505 {
3506 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3507 				"unexpected event refcount: %ld; ptr=%p\n",
3508 				atomic_long_read(&event->refcount), event)) {
3509 		/* leak to avoid use-after-free */
3510 		return;
3511 	}
3512 
3513 	_free_event(event);
3514 }
3515 
3516 /*
3517  * Remove user event from the owner task.
3518  */
3519 static void perf_remove_from_owner(struct perf_event *event)
3520 {
3521 	struct task_struct *owner;
3522 
3523 	rcu_read_lock();
3524 	owner = ACCESS_ONCE(event->owner);
3525 	/*
3526 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 	 * !owner it means the list deletion is complete and we can indeed
3528 	 * free this event, otherwise we need to serialize on
3529 	 * owner->perf_event_mutex.
3530 	 */
3531 	smp_read_barrier_depends();
3532 	if (owner) {
3533 		/*
3534 		 * Since delayed_put_task_struct() also drops the last
3535 		 * task reference we can safely take a new reference
3536 		 * while holding the rcu_read_lock().
3537 		 */
3538 		get_task_struct(owner);
3539 	}
3540 	rcu_read_unlock();
3541 
3542 	if (owner) {
3543 		/*
3544 		 * If we're here through perf_event_exit_task() we're already
3545 		 * holding ctx->mutex which would be an inversion wrt. the
3546 		 * normal lock order.
3547 		 *
3548 		 * However we can safely take this lock because its the child
3549 		 * ctx->mutex.
3550 		 */
3551 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3552 
3553 		/*
3554 		 * We have to re-check the event->owner field, if it is cleared
3555 		 * we raced with perf_event_exit_task(), acquiring the mutex
3556 		 * ensured they're done, and we can proceed with freeing the
3557 		 * event.
3558 		 */
3559 		if (event->owner)
3560 			list_del_init(&event->owner_entry);
3561 		mutex_unlock(&owner->perf_event_mutex);
3562 		put_task_struct(owner);
3563 	}
3564 }
3565 
3566 /*
3567  * Called when the last reference to the file is gone.
3568  */
3569 static void put_event(struct perf_event *event)
3570 {
3571 	struct perf_event_context *ctx;
3572 
3573 	if (!atomic_long_dec_and_test(&event->refcount))
3574 		return;
3575 
3576 	if (!is_kernel_event(event))
3577 		perf_remove_from_owner(event);
3578 
3579 	/*
3580 	 * There are two ways this annotation is useful:
3581 	 *
3582 	 *  1) there is a lock recursion from perf_event_exit_task
3583 	 *     see the comment there.
3584 	 *
3585 	 *  2) there is a lock-inversion with mmap_sem through
3586 	 *     perf_event_read_group(), which takes faults while
3587 	 *     holding ctx->mutex, however this is called after
3588 	 *     the last filedesc died, so there is no possibility
3589 	 *     to trigger the AB-BA case.
3590 	 */
3591 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3592 	WARN_ON_ONCE(ctx->parent_ctx);
3593 	perf_remove_from_context(event, true);
3594 	mutex_unlock(&ctx->mutex);
3595 
3596 	_free_event(event);
3597 }
3598 
3599 int perf_event_release_kernel(struct perf_event *event)
3600 {
3601 	put_event(event);
3602 	return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3605 
3606 static int perf_release(struct inode *inode, struct file *file)
3607 {
3608 	put_event(file->private_data);
3609 	return 0;
3610 }
3611 
3612 /*
3613  * Remove all orphanes events from the context.
3614  */
3615 static void orphans_remove_work(struct work_struct *work)
3616 {
3617 	struct perf_event_context *ctx;
3618 	struct perf_event *event, *tmp;
3619 
3620 	ctx = container_of(work, struct perf_event_context,
3621 			   orphans_remove.work);
3622 
3623 	mutex_lock(&ctx->mutex);
3624 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3625 		struct perf_event *parent_event = event->parent;
3626 
3627 		if (!is_orphaned_child(event))
3628 			continue;
3629 
3630 		perf_remove_from_context(event, true);
3631 
3632 		mutex_lock(&parent_event->child_mutex);
3633 		list_del_init(&event->child_list);
3634 		mutex_unlock(&parent_event->child_mutex);
3635 
3636 		free_event(event);
3637 		put_event(parent_event);
3638 	}
3639 
3640 	raw_spin_lock_irq(&ctx->lock);
3641 	ctx->orphans_remove_sched = false;
3642 	raw_spin_unlock_irq(&ctx->lock);
3643 	mutex_unlock(&ctx->mutex);
3644 
3645 	put_ctx(ctx);
3646 }
3647 
3648 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3649 {
3650 	struct perf_event *child;
3651 	u64 total = 0;
3652 
3653 	*enabled = 0;
3654 	*running = 0;
3655 
3656 	mutex_lock(&event->child_mutex);
3657 	total += perf_event_read(event);
3658 	*enabled += event->total_time_enabled +
3659 			atomic64_read(&event->child_total_time_enabled);
3660 	*running += event->total_time_running +
3661 			atomic64_read(&event->child_total_time_running);
3662 
3663 	list_for_each_entry(child, &event->child_list, child_list) {
3664 		total += perf_event_read(child);
3665 		*enabled += child->total_time_enabled;
3666 		*running += child->total_time_running;
3667 	}
3668 	mutex_unlock(&event->child_mutex);
3669 
3670 	return total;
3671 }
3672 EXPORT_SYMBOL_GPL(perf_event_read_value);
3673 
3674 static int perf_event_read_group(struct perf_event *event,
3675 				   u64 read_format, char __user *buf)
3676 {
3677 	struct perf_event *leader = event->group_leader, *sub;
3678 	struct perf_event_context *ctx = leader->ctx;
3679 	int n = 0, size = 0, ret;
3680 	u64 count, enabled, running;
3681 	u64 values[5];
3682 
3683 	lockdep_assert_held(&ctx->mutex);
3684 
3685 	count = perf_event_read_value(leader, &enabled, &running);
3686 
3687 	values[n++] = 1 + leader->nr_siblings;
3688 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3689 		values[n++] = enabled;
3690 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3691 		values[n++] = running;
3692 	values[n++] = count;
3693 	if (read_format & PERF_FORMAT_ID)
3694 		values[n++] = primary_event_id(leader);
3695 
3696 	size = n * sizeof(u64);
3697 
3698 	if (copy_to_user(buf, values, size))
3699 		return -EFAULT;
3700 
3701 	ret = size;
3702 
3703 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3704 		n = 0;
3705 
3706 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3707 		if (read_format & PERF_FORMAT_ID)
3708 			values[n++] = primary_event_id(sub);
3709 
3710 		size = n * sizeof(u64);
3711 
3712 		if (copy_to_user(buf + ret, values, size)) {
3713 			return -EFAULT;
3714 		}
3715 
3716 		ret += size;
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 static int perf_event_read_one(struct perf_event *event,
3723 				 u64 read_format, char __user *buf)
3724 {
3725 	u64 enabled, running;
3726 	u64 values[4];
3727 	int n = 0;
3728 
3729 	values[n++] = perf_event_read_value(event, &enabled, &running);
3730 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3731 		values[n++] = enabled;
3732 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3733 		values[n++] = running;
3734 	if (read_format & PERF_FORMAT_ID)
3735 		values[n++] = primary_event_id(event);
3736 
3737 	if (copy_to_user(buf, values, n * sizeof(u64)))
3738 		return -EFAULT;
3739 
3740 	return n * sizeof(u64);
3741 }
3742 
3743 static bool is_event_hup(struct perf_event *event)
3744 {
3745 	bool no_children;
3746 
3747 	if (event->state != PERF_EVENT_STATE_EXIT)
3748 		return false;
3749 
3750 	mutex_lock(&event->child_mutex);
3751 	no_children = list_empty(&event->child_list);
3752 	mutex_unlock(&event->child_mutex);
3753 	return no_children;
3754 }
3755 
3756 /*
3757  * Read the performance event - simple non blocking version for now
3758  */
3759 static ssize_t
3760 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3761 {
3762 	u64 read_format = event->attr.read_format;
3763 	int ret;
3764 
3765 	/*
3766 	 * Return end-of-file for a read on a event that is in
3767 	 * error state (i.e. because it was pinned but it couldn't be
3768 	 * scheduled on to the CPU at some point).
3769 	 */
3770 	if (event->state == PERF_EVENT_STATE_ERROR)
3771 		return 0;
3772 
3773 	if (count < event->read_size)
3774 		return -ENOSPC;
3775 
3776 	WARN_ON_ONCE(event->ctx->parent_ctx);
3777 	if (read_format & PERF_FORMAT_GROUP)
3778 		ret = perf_event_read_group(event, read_format, buf);
3779 	else
3780 		ret = perf_event_read_one(event, read_format, buf);
3781 
3782 	return ret;
3783 }
3784 
3785 static ssize_t
3786 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3787 {
3788 	struct perf_event *event = file->private_data;
3789 	struct perf_event_context *ctx;
3790 	int ret;
3791 
3792 	ctx = perf_event_ctx_lock(event);
3793 	ret = perf_read_hw(event, buf, count);
3794 	perf_event_ctx_unlock(event, ctx);
3795 
3796 	return ret;
3797 }
3798 
3799 static unsigned int perf_poll(struct file *file, poll_table *wait)
3800 {
3801 	struct perf_event *event = file->private_data;
3802 	struct ring_buffer *rb;
3803 	unsigned int events = POLLHUP;
3804 
3805 	poll_wait(file, &event->waitq, wait);
3806 
3807 	if (is_event_hup(event))
3808 		return events;
3809 
3810 	/*
3811 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3813 	 */
3814 	mutex_lock(&event->mmap_mutex);
3815 	rb = event->rb;
3816 	if (rb)
3817 		events = atomic_xchg(&rb->poll, 0);
3818 	mutex_unlock(&event->mmap_mutex);
3819 	return events;
3820 }
3821 
3822 static void _perf_event_reset(struct perf_event *event)
3823 {
3824 	(void)perf_event_read(event);
3825 	local64_set(&event->count, 0);
3826 	perf_event_update_userpage(event);
3827 }
3828 
3829 /*
3830  * Holding the top-level event's child_mutex means that any
3831  * descendant process that has inherited this event will block
3832  * in sync_child_event if it goes to exit, thus satisfying the
3833  * task existence requirements of perf_event_enable/disable.
3834  */
3835 static void perf_event_for_each_child(struct perf_event *event,
3836 					void (*func)(struct perf_event *))
3837 {
3838 	struct perf_event *child;
3839 
3840 	WARN_ON_ONCE(event->ctx->parent_ctx);
3841 
3842 	mutex_lock(&event->child_mutex);
3843 	func(event);
3844 	list_for_each_entry(child, &event->child_list, child_list)
3845 		func(child);
3846 	mutex_unlock(&event->child_mutex);
3847 }
3848 
3849 static void perf_event_for_each(struct perf_event *event,
3850 				  void (*func)(struct perf_event *))
3851 {
3852 	struct perf_event_context *ctx = event->ctx;
3853 	struct perf_event *sibling;
3854 
3855 	lockdep_assert_held(&ctx->mutex);
3856 
3857 	event = event->group_leader;
3858 
3859 	perf_event_for_each_child(event, func);
3860 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3861 		perf_event_for_each_child(sibling, func);
3862 }
3863 
3864 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3865 {
3866 	struct perf_event_context *ctx = event->ctx;
3867 	int ret = 0, active;
3868 	u64 value;
3869 
3870 	if (!is_sampling_event(event))
3871 		return -EINVAL;
3872 
3873 	if (copy_from_user(&value, arg, sizeof(value)))
3874 		return -EFAULT;
3875 
3876 	if (!value)
3877 		return -EINVAL;
3878 
3879 	raw_spin_lock_irq(&ctx->lock);
3880 	if (event->attr.freq) {
3881 		if (value > sysctl_perf_event_sample_rate) {
3882 			ret = -EINVAL;
3883 			goto unlock;
3884 		}
3885 
3886 		event->attr.sample_freq = value;
3887 	} else {
3888 		event->attr.sample_period = value;
3889 		event->hw.sample_period = value;
3890 	}
3891 
3892 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3893 	if (active) {
3894 		perf_pmu_disable(ctx->pmu);
3895 		event->pmu->stop(event, PERF_EF_UPDATE);
3896 	}
3897 
3898 	local64_set(&event->hw.period_left, 0);
3899 
3900 	if (active) {
3901 		event->pmu->start(event, PERF_EF_RELOAD);
3902 		perf_pmu_enable(ctx->pmu);
3903 	}
3904 
3905 unlock:
3906 	raw_spin_unlock_irq(&ctx->lock);
3907 
3908 	return ret;
3909 }
3910 
3911 static const struct file_operations perf_fops;
3912 
3913 static inline int perf_fget_light(int fd, struct fd *p)
3914 {
3915 	struct fd f = fdget(fd);
3916 	if (!f.file)
3917 		return -EBADF;
3918 
3919 	if (f.file->f_op != &perf_fops) {
3920 		fdput(f);
3921 		return -EBADF;
3922 	}
3923 	*p = f;
3924 	return 0;
3925 }
3926 
3927 static int perf_event_set_output(struct perf_event *event,
3928 				 struct perf_event *output_event);
3929 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3930 
3931 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3932 {
3933 	void (*func)(struct perf_event *);
3934 	u32 flags = arg;
3935 
3936 	switch (cmd) {
3937 	case PERF_EVENT_IOC_ENABLE:
3938 		func = _perf_event_enable;
3939 		break;
3940 	case PERF_EVENT_IOC_DISABLE:
3941 		func = _perf_event_disable;
3942 		break;
3943 	case PERF_EVENT_IOC_RESET:
3944 		func = _perf_event_reset;
3945 		break;
3946 
3947 	case PERF_EVENT_IOC_REFRESH:
3948 		return _perf_event_refresh(event, arg);
3949 
3950 	case PERF_EVENT_IOC_PERIOD:
3951 		return perf_event_period(event, (u64 __user *)arg);
3952 
3953 	case PERF_EVENT_IOC_ID:
3954 	{
3955 		u64 id = primary_event_id(event);
3956 
3957 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3958 			return -EFAULT;
3959 		return 0;
3960 	}
3961 
3962 	case PERF_EVENT_IOC_SET_OUTPUT:
3963 	{
3964 		int ret;
3965 		if (arg != -1) {
3966 			struct perf_event *output_event;
3967 			struct fd output;
3968 			ret = perf_fget_light(arg, &output);
3969 			if (ret)
3970 				return ret;
3971 			output_event = output.file->private_data;
3972 			ret = perf_event_set_output(event, output_event);
3973 			fdput(output);
3974 		} else {
3975 			ret = perf_event_set_output(event, NULL);
3976 		}
3977 		return ret;
3978 	}
3979 
3980 	case PERF_EVENT_IOC_SET_FILTER:
3981 		return perf_event_set_filter(event, (void __user *)arg);
3982 
3983 	default:
3984 		return -ENOTTY;
3985 	}
3986 
3987 	if (flags & PERF_IOC_FLAG_GROUP)
3988 		perf_event_for_each(event, func);
3989 	else
3990 		perf_event_for_each_child(event, func);
3991 
3992 	return 0;
3993 }
3994 
3995 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3996 {
3997 	struct perf_event *event = file->private_data;
3998 	struct perf_event_context *ctx;
3999 	long ret;
4000 
4001 	ctx = perf_event_ctx_lock(event);
4002 	ret = _perf_ioctl(event, cmd, arg);
4003 	perf_event_ctx_unlock(event, ctx);
4004 
4005 	return ret;
4006 }
4007 
4008 #ifdef CONFIG_COMPAT
4009 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4010 				unsigned long arg)
4011 {
4012 	switch (_IOC_NR(cmd)) {
4013 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4014 	case _IOC_NR(PERF_EVENT_IOC_ID):
4015 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4017 			cmd &= ~IOCSIZE_MASK;
4018 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4019 		}
4020 		break;
4021 	}
4022 	return perf_ioctl(file, cmd, arg);
4023 }
4024 #else
4025 # define perf_compat_ioctl NULL
4026 #endif
4027 
4028 int perf_event_task_enable(void)
4029 {
4030 	struct perf_event_context *ctx;
4031 	struct perf_event *event;
4032 
4033 	mutex_lock(&current->perf_event_mutex);
4034 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4035 		ctx = perf_event_ctx_lock(event);
4036 		perf_event_for_each_child(event, _perf_event_enable);
4037 		perf_event_ctx_unlock(event, ctx);
4038 	}
4039 	mutex_unlock(&current->perf_event_mutex);
4040 
4041 	return 0;
4042 }
4043 
4044 int perf_event_task_disable(void)
4045 {
4046 	struct perf_event_context *ctx;
4047 	struct perf_event *event;
4048 
4049 	mutex_lock(&current->perf_event_mutex);
4050 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4051 		ctx = perf_event_ctx_lock(event);
4052 		perf_event_for_each_child(event, _perf_event_disable);
4053 		perf_event_ctx_unlock(event, ctx);
4054 	}
4055 	mutex_unlock(&current->perf_event_mutex);
4056 
4057 	return 0;
4058 }
4059 
4060 static int perf_event_index(struct perf_event *event)
4061 {
4062 	if (event->hw.state & PERF_HES_STOPPED)
4063 		return 0;
4064 
4065 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4066 		return 0;
4067 
4068 	return event->pmu->event_idx(event);
4069 }
4070 
4071 static void calc_timer_values(struct perf_event *event,
4072 				u64 *now,
4073 				u64 *enabled,
4074 				u64 *running)
4075 {
4076 	u64 ctx_time;
4077 
4078 	*now = perf_clock();
4079 	ctx_time = event->shadow_ctx_time + *now;
4080 	*enabled = ctx_time - event->tstamp_enabled;
4081 	*running = ctx_time - event->tstamp_running;
4082 }
4083 
4084 static void perf_event_init_userpage(struct perf_event *event)
4085 {
4086 	struct perf_event_mmap_page *userpg;
4087 	struct ring_buffer *rb;
4088 
4089 	rcu_read_lock();
4090 	rb = rcu_dereference(event->rb);
4091 	if (!rb)
4092 		goto unlock;
4093 
4094 	userpg = rb->user_page;
4095 
4096 	/* Allow new userspace to detect that bit 0 is deprecated */
4097 	userpg->cap_bit0_is_deprecated = 1;
4098 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4099 
4100 unlock:
4101 	rcu_read_unlock();
4102 }
4103 
4104 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
4105 {
4106 }
4107 
4108 /*
4109  * Callers need to ensure there can be no nesting of this function, otherwise
4110  * the seqlock logic goes bad. We can not serialize this because the arch
4111  * code calls this from NMI context.
4112  */
4113 void perf_event_update_userpage(struct perf_event *event)
4114 {
4115 	struct perf_event_mmap_page *userpg;
4116 	struct ring_buffer *rb;
4117 	u64 enabled, running, now;
4118 
4119 	rcu_read_lock();
4120 	rb = rcu_dereference(event->rb);
4121 	if (!rb)
4122 		goto unlock;
4123 
4124 	/*
4125 	 * compute total_time_enabled, total_time_running
4126 	 * based on snapshot values taken when the event
4127 	 * was last scheduled in.
4128 	 *
4129 	 * we cannot simply called update_context_time()
4130 	 * because of locking issue as we can be called in
4131 	 * NMI context
4132 	 */
4133 	calc_timer_values(event, &now, &enabled, &running);
4134 
4135 	userpg = rb->user_page;
4136 	/*
4137 	 * Disable preemption so as to not let the corresponding user-space
4138 	 * spin too long if we get preempted.
4139 	 */
4140 	preempt_disable();
4141 	++userpg->lock;
4142 	barrier();
4143 	userpg->index = perf_event_index(event);
4144 	userpg->offset = perf_event_count(event);
4145 	if (userpg->index)
4146 		userpg->offset -= local64_read(&event->hw.prev_count);
4147 
4148 	userpg->time_enabled = enabled +
4149 			atomic64_read(&event->child_total_time_enabled);
4150 
4151 	userpg->time_running = running +
4152 			atomic64_read(&event->child_total_time_running);
4153 
4154 	arch_perf_update_userpage(userpg, now);
4155 
4156 	barrier();
4157 	++userpg->lock;
4158 	preempt_enable();
4159 unlock:
4160 	rcu_read_unlock();
4161 }
4162 
4163 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4164 {
4165 	struct perf_event *event = vma->vm_file->private_data;
4166 	struct ring_buffer *rb;
4167 	int ret = VM_FAULT_SIGBUS;
4168 
4169 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4170 		if (vmf->pgoff == 0)
4171 			ret = 0;
4172 		return ret;
4173 	}
4174 
4175 	rcu_read_lock();
4176 	rb = rcu_dereference(event->rb);
4177 	if (!rb)
4178 		goto unlock;
4179 
4180 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4181 		goto unlock;
4182 
4183 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4184 	if (!vmf->page)
4185 		goto unlock;
4186 
4187 	get_page(vmf->page);
4188 	vmf->page->mapping = vma->vm_file->f_mapping;
4189 	vmf->page->index   = vmf->pgoff;
4190 
4191 	ret = 0;
4192 unlock:
4193 	rcu_read_unlock();
4194 
4195 	return ret;
4196 }
4197 
4198 static void ring_buffer_attach(struct perf_event *event,
4199 			       struct ring_buffer *rb)
4200 {
4201 	struct ring_buffer *old_rb = NULL;
4202 	unsigned long flags;
4203 
4204 	if (event->rb) {
4205 		/*
4206 		 * Should be impossible, we set this when removing
4207 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4208 		 */
4209 		WARN_ON_ONCE(event->rcu_pending);
4210 
4211 		old_rb = event->rb;
4212 		event->rcu_batches = get_state_synchronize_rcu();
4213 		event->rcu_pending = 1;
4214 
4215 		spin_lock_irqsave(&old_rb->event_lock, flags);
4216 		list_del_rcu(&event->rb_entry);
4217 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4218 	}
4219 
4220 	if (event->rcu_pending && rb) {
4221 		cond_synchronize_rcu(event->rcu_batches);
4222 		event->rcu_pending = 0;
4223 	}
4224 
4225 	if (rb) {
4226 		spin_lock_irqsave(&rb->event_lock, flags);
4227 		list_add_rcu(&event->rb_entry, &rb->event_list);
4228 		spin_unlock_irqrestore(&rb->event_lock, flags);
4229 	}
4230 
4231 	rcu_assign_pointer(event->rb, rb);
4232 
4233 	if (old_rb) {
4234 		ring_buffer_put(old_rb);
4235 		/*
4236 		 * Since we detached before setting the new rb, so that we
4237 		 * could attach the new rb, we could have missed a wakeup.
4238 		 * Provide it now.
4239 		 */
4240 		wake_up_all(&event->waitq);
4241 	}
4242 }
4243 
4244 static void ring_buffer_wakeup(struct perf_event *event)
4245 {
4246 	struct ring_buffer *rb;
4247 
4248 	rcu_read_lock();
4249 	rb = rcu_dereference(event->rb);
4250 	if (rb) {
4251 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4252 			wake_up_all(&event->waitq);
4253 	}
4254 	rcu_read_unlock();
4255 }
4256 
4257 static void rb_free_rcu(struct rcu_head *rcu_head)
4258 {
4259 	struct ring_buffer *rb;
4260 
4261 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4262 	rb_free(rb);
4263 }
4264 
4265 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4266 {
4267 	struct ring_buffer *rb;
4268 
4269 	rcu_read_lock();
4270 	rb = rcu_dereference(event->rb);
4271 	if (rb) {
4272 		if (!atomic_inc_not_zero(&rb->refcount))
4273 			rb = NULL;
4274 	}
4275 	rcu_read_unlock();
4276 
4277 	return rb;
4278 }
4279 
4280 static void ring_buffer_put(struct ring_buffer *rb)
4281 {
4282 	if (!atomic_dec_and_test(&rb->refcount))
4283 		return;
4284 
4285 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4286 
4287 	call_rcu(&rb->rcu_head, rb_free_rcu);
4288 }
4289 
4290 static void perf_mmap_open(struct vm_area_struct *vma)
4291 {
4292 	struct perf_event *event = vma->vm_file->private_data;
4293 
4294 	atomic_inc(&event->mmap_count);
4295 	atomic_inc(&event->rb->mmap_count);
4296 }
4297 
4298 /*
4299  * A buffer can be mmap()ed multiple times; either directly through the same
4300  * event, or through other events by use of perf_event_set_output().
4301  *
4302  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4303  * the buffer here, where we still have a VM context. This means we need
4304  * to detach all events redirecting to us.
4305  */
4306 static void perf_mmap_close(struct vm_area_struct *vma)
4307 {
4308 	struct perf_event *event = vma->vm_file->private_data;
4309 
4310 	struct ring_buffer *rb = ring_buffer_get(event);
4311 	struct user_struct *mmap_user = rb->mmap_user;
4312 	int mmap_locked = rb->mmap_locked;
4313 	unsigned long size = perf_data_size(rb);
4314 
4315 	atomic_dec(&rb->mmap_count);
4316 
4317 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4318 		goto out_put;
4319 
4320 	ring_buffer_attach(event, NULL);
4321 	mutex_unlock(&event->mmap_mutex);
4322 
4323 	/* If there's still other mmap()s of this buffer, we're done. */
4324 	if (atomic_read(&rb->mmap_count))
4325 		goto out_put;
4326 
4327 	/*
4328 	 * No other mmap()s, detach from all other events that might redirect
4329 	 * into the now unreachable buffer. Somewhat complicated by the
4330 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4331 	 */
4332 again:
4333 	rcu_read_lock();
4334 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4335 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4336 			/*
4337 			 * This event is en-route to free_event() which will
4338 			 * detach it and remove it from the list.
4339 			 */
4340 			continue;
4341 		}
4342 		rcu_read_unlock();
4343 
4344 		mutex_lock(&event->mmap_mutex);
4345 		/*
4346 		 * Check we didn't race with perf_event_set_output() which can
4347 		 * swizzle the rb from under us while we were waiting to
4348 		 * acquire mmap_mutex.
4349 		 *
4350 		 * If we find a different rb; ignore this event, a next
4351 		 * iteration will no longer find it on the list. We have to
4352 		 * still restart the iteration to make sure we're not now
4353 		 * iterating the wrong list.
4354 		 */
4355 		if (event->rb == rb)
4356 			ring_buffer_attach(event, NULL);
4357 
4358 		mutex_unlock(&event->mmap_mutex);
4359 		put_event(event);
4360 
4361 		/*
4362 		 * Restart the iteration; either we're on the wrong list or
4363 		 * destroyed its integrity by doing a deletion.
4364 		 */
4365 		goto again;
4366 	}
4367 	rcu_read_unlock();
4368 
4369 	/*
4370 	 * It could be there's still a few 0-ref events on the list; they'll
4371 	 * get cleaned up by free_event() -- they'll also still have their
4372 	 * ref on the rb and will free it whenever they are done with it.
4373 	 *
4374 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4375 	 * undo the VM accounting.
4376 	 */
4377 
4378 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4379 	vma->vm_mm->pinned_vm -= mmap_locked;
4380 	free_uid(mmap_user);
4381 
4382 out_put:
4383 	ring_buffer_put(rb); /* could be last */
4384 }
4385 
4386 static const struct vm_operations_struct perf_mmap_vmops = {
4387 	.open		= perf_mmap_open,
4388 	.close		= perf_mmap_close,
4389 	.fault		= perf_mmap_fault,
4390 	.page_mkwrite	= perf_mmap_fault,
4391 };
4392 
4393 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4394 {
4395 	struct perf_event *event = file->private_data;
4396 	unsigned long user_locked, user_lock_limit;
4397 	struct user_struct *user = current_user();
4398 	unsigned long locked, lock_limit;
4399 	struct ring_buffer *rb;
4400 	unsigned long vma_size;
4401 	unsigned long nr_pages;
4402 	long user_extra, extra;
4403 	int ret = 0, flags = 0;
4404 
4405 	/*
4406 	 * Don't allow mmap() of inherited per-task counters. This would
4407 	 * create a performance issue due to all children writing to the
4408 	 * same rb.
4409 	 */
4410 	if (event->cpu == -1 && event->attr.inherit)
4411 		return -EINVAL;
4412 
4413 	if (!(vma->vm_flags & VM_SHARED))
4414 		return -EINVAL;
4415 
4416 	vma_size = vma->vm_end - vma->vm_start;
4417 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4418 
4419 	/*
4420 	 * If we have rb pages ensure they're a power-of-two number, so we
4421 	 * can do bitmasks instead of modulo.
4422 	 */
4423 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4424 		return -EINVAL;
4425 
4426 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4427 		return -EINVAL;
4428 
4429 	if (vma->vm_pgoff != 0)
4430 		return -EINVAL;
4431 
4432 	WARN_ON_ONCE(event->ctx->parent_ctx);
4433 again:
4434 	mutex_lock(&event->mmap_mutex);
4435 	if (event->rb) {
4436 		if (event->rb->nr_pages != nr_pages) {
4437 			ret = -EINVAL;
4438 			goto unlock;
4439 		}
4440 
4441 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4442 			/*
4443 			 * Raced against perf_mmap_close() through
4444 			 * perf_event_set_output(). Try again, hope for better
4445 			 * luck.
4446 			 */
4447 			mutex_unlock(&event->mmap_mutex);
4448 			goto again;
4449 		}
4450 
4451 		goto unlock;
4452 	}
4453 
4454 	user_extra = nr_pages + 1;
4455 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4456 
4457 	/*
4458 	 * Increase the limit linearly with more CPUs:
4459 	 */
4460 	user_lock_limit *= num_online_cpus();
4461 
4462 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4463 
4464 	extra = 0;
4465 	if (user_locked > user_lock_limit)
4466 		extra = user_locked - user_lock_limit;
4467 
4468 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4469 	lock_limit >>= PAGE_SHIFT;
4470 	locked = vma->vm_mm->pinned_vm + extra;
4471 
4472 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4473 		!capable(CAP_IPC_LOCK)) {
4474 		ret = -EPERM;
4475 		goto unlock;
4476 	}
4477 
4478 	WARN_ON(event->rb);
4479 
4480 	if (vma->vm_flags & VM_WRITE)
4481 		flags |= RING_BUFFER_WRITABLE;
4482 
4483 	rb = rb_alloc(nr_pages,
4484 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4485 		event->cpu, flags);
4486 
4487 	if (!rb) {
4488 		ret = -ENOMEM;
4489 		goto unlock;
4490 	}
4491 
4492 	atomic_set(&rb->mmap_count, 1);
4493 	rb->mmap_locked = extra;
4494 	rb->mmap_user = get_current_user();
4495 
4496 	atomic_long_add(user_extra, &user->locked_vm);
4497 	vma->vm_mm->pinned_vm += extra;
4498 
4499 	ring_buffer_attach(event, rb);
4500 
4501 	perf_event_init_userpage(event);
4502 	perf_event_update_userpage(event);
4503 
4504 unlock:
4505 	if (!ret)
4506 		atomic_inc(&event->mmap_count);
4507 	mutex_unlock(&event->mmap_mutex);
4508 
4509 	/*
4510 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4511 	 * vma.
4512 	 */
4513 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4514 	vma->vm_ops = &perf_mmap_vmops;
4515 
4516 	return ret;
4517 }
4518 
4519 static int perf_fasync(int fd, struct file *filp, int on)
4520 {
4521 	struct inode *inode = file_inode(filp);
4522 	struct perf_event *event = filp->private_data;
4523 	int retval;
4524 
4525 	mutex_lock(&inode->i_mutex);
4526 	retval = fasync_helper(fd, filp, on, &event->fasync);
4527 	mutex_unlock(&inode->i_mutex);
4528 
4529 	if (retval < 0)
4530 		return retval;
4531 
4532 	return 0;
4533 }
4534 
4535 static const struct file_operations perf_fops = {
4536 	.llseek			= no_llseek,
4537 	.release		= perf_release,
4538 	.read			= perf_read,
4539 	.poll			= perf_poll,
4540 	.unlocked_ioctl		= perf_ioctl,
4541 	.compat_ioctl		= perf_compat_ioctl,
4542 	.mmap			= perf_mmap,
4543 	.fasync			= perf_fasync,
4544 };
4545 
4546 /*
4547  * Perf event wakeup
4548  *
4549  * If there's data, ensure we set the poll() state and publish everything
4550  * to user-space before waking everybody up.
4551  */
4552 
4553 void perf_event_wakeup(struct perf_event *event)
4554 {
4555 	ring_buffer_wakeup(event);
4556 
4557 	if (event->pending_kill) {
4558 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4559 		event->pending_kill = 0;
4560 	}
4561 }
4562 
4563 static void perf_pending_event(struct irq_work *entry)
4564 {
4565 	struct perf_event *event = container_of(entry,
4566 			struct perf_event, pending);
4567 
4568 	if (event->pending_disable) {
4569 		event->pending_disable = 0;
4570 		__perf_event_disable(event);
4571 	}
4572 
4573 	if (event->pending_wakeup) {
4574 		event->pending_wakeup = 0;
4575 		perf_event_wakeup(event);
4576 	}
4577 }
4578 
4579 /*
4580  * We assume there is only KVM supporting the callbacks.
4581  * Later on, we might change it to a list if there is
4582  * another virtualization implementation supporting the callbacks.
4583  */
4584 struct perf_guest_info_callbacks *perf_guest_cbs;
4585 
4586 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4587 {
4588 	perf_guest_cbs = cbs;
4589 	return 0;
4590 }
4591 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4592 
4593 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4594 {
4595 	perf_guest_cbs = NULL;
4596 	return 0;
4597 }
4598 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4599 
4600 static void
4601 perf_output_sample_regs(struct perf_output_handle *handle,
4602 			struct pt_regs *regs, u64 mask)
4603 {
4604 	int bit;
4605 
4606 	for_each_set_bit(bit, (const unsigned long *) &mask,
4607 			 sizeof(mask) * BITS_PER_BYTE) {
4608 		u64 val;
4609 
4610 		val = perf_reg_value(regs, bit);
4611 		perf_output_put(handle, val);
4612 	}
4613 }
4614 
4615 static void perf_sample_regs_user(struct perf_regs *regs_user,
4616 				  struct pt_regs *regs,
4617 				  struct pt_regs *regs_user_copy)
4618 {
4619 	if (user_mode(regs)) {
4620 		regs_user->abi = perf_reg_abi(current);
4621 		regs_user->regs = regs;
4622 	} else if (current->mm) {
4623 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4624 	} else {
4625 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4626 		regs_user->regs = NULL;
4627 	}
4628 }
4629 
4630 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4631 				  struct pt_regs *regs)
4632 {
4633 	regs_intr->regs = regs;
4634 	regs_intr->abi  = perf_reg_abi(current);
4635 }
4636 
4637 
4638 /*
4639  * Get remaining task size from user stack pointer.
4640  *
4641  * It'd be better to take stack vma map and limit this more
4642  * precisly, but there's no way to get it safely under interrupt,
4643  * so using TASK_SIZE as limit.
4644  */
4645 static u64 perf_ustack_task_size(struct pt_regs *regs)
4646 {
4647 	unsigned long addr = perf_user_stack_pointer(regs);
4648 
4649 	if (!addr || addr >= TASK_SIZE)
4650 		return 0;
4651 
4652 	return TASK_SIZE - addr;
4653 }
4654 
4655 static u16
4656 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4657 			struct pt_regs *regs)
4658 {
4659 	u64 task_size;
4660 
4661 	/* No regs, no stack pointer, no dump. */
4662 	if (!regs)
4663 		return 0;
4664 
4665 	/*
4666 	 * Check if we fit in with the requested stack size into the:
4667 	 * - TASK_SIZE
4668 	 *   If we don't, we limit the size to the TASK_SIZE.
4669 	 *
4670 	 * - remaining sample size
4671 	 *   If we don't, we customize the stack size to
4672 	 *   fit in to the remaining sample size.
4673 	 */
4674 
4675 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4676 	stack_size = min(stack_size, (u16) task_size);
4677 
4678 	/* Current header size plus static size and dynamic size. */
4679 	header_size += 2 * sizeof(u64);
4680 
4681 	/* Do we fit in with the current stack dump size? */
4682 	if ((u16) (header_size + stack_size) < header_size) {
4683 		/*
4684 		 * If we overflow the maximum size for the sample,
4685 		 * we customize the stack dump size to fit in.
4686 		 */
4687 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4688 		stack_size = round_up(stack_size, sizeof(u64));
4689 	}
4690 
4691 	return stack_size;
4692 }
4693 
4694 static void
4695 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4696 			  struct pt_regs *regs)
4697 {
4698 	/* Case of a kernel thread, nothing to dump */
4699 	if (!regs) {
4700 		u64 size = 0;
4701 		perf_output_put(handle, size);
4702 	} else {
4703 		unsigned long sp;
4704 		unsigned int rem;
4705 		u64 dyn_size;
4706 
4707 		/*
4708 		 * We dump:
4709 		 * static size
4710 		 *   - the size requested by user or the best one we can fit
4711 		 *     in to the sample max size
4712 		 * data
4713 		 *   - user stack dump data
4714 		 * dynamic size
4715 		 *   - the actual dumped size
4716 		 */
4717 
4718 		/* Static size. */
4719 		perf_output_put(handle, dump_size);
4720 
4721 		/* Data. */
4722 		sp = perf_user_stack_pointer(regs);
4723 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4724 		dyn_size = dump_size - rem;
4725 
4726 		perf_output_skip(handle, rem);
4727 
4728 		/* Dynamic size. */
4729 		perf_output_put(handle, dyn_size);
4730 	}
4731 }
4732 
4733 static void __perf_event_header__init_id(struct perf_event_header *header,
4734 					 struct perf_sample_data *data,
4735 					 struct perf_event *event)
4736 {
4737 	u64 sample_type = event->attr.sample_type;
4738 
4739 	data->type = sample_type;
4740 	header->size += event->id_header_size;
4741 
4742 	if (sample_type & PERF_SAMPLE_TID) {
4743 		/* namespace issues */
4744 		data->tid_entry.pid = perf_event_pid(event, current);
4745 		data->tid_entry.tid = perf_event_tid(event, current);
4746 	}
4747 
4748 	if (sample_type & PERF_SAMPLE_TIME)
4749 		data->time = perf_clock();
4750 
4751 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4752 		data->id = primary_event_id(event);
4753 
4754 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4755 		data->stream_id = event->id;
4756 
4757 	if (sample_type & PERF_SAMPLE_CPU) {
4758 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4759 		data->cpu_entry.reserved = 0;
4760 	}
4761 }
4762 
4763 void perf_event_header__init_id(struct perf_event_header *header,
4764 				struct perf_sample_data *data,
4765 				struct perf_event *event)
4766 {
4767 	if (event->attr.sample_id_all)
4768 		__perf_event_header__init_id(header, data, event);
4769 }
4770 
4771 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4772 					   struct perf_sample_data *data)
4773 {
4774 	u64 sample_type = data->type;
4775 
4776 	if (sample_type & PERF_SAMPLE_TID)
4777 		perf_output_put(handle, data->tid_entry);
4778 
4779 	if (sample_type & PERF_SAMPLE_TIME)
4780 		perf_output_put(handle, data->time);
4781 
4782 	if (sample_type & PERF_SAMPLE_ID)
4783 		perf_output_put(handle, data->id);
4784 
4785 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4786 		perf_output_put(handle, data->stream_id);
4787 
4788 	if (sample_type & PERF_SAMPLE_CPU)
4789 		perf_output_put(handle, data->cpu_entry);
4790 
4791 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4792 		perf_output_put(handle, data->id);
4793 }
4794 
4795 void perf_event__output_id_sample(struct perf_event *event,
4796 				  struct perf_output_handle *handle,
4797 				  struct perf_sample_data *sample)
4798 {
4799 	if (event->attr.sample_id_all)
4800 		__perf_event__output_id_sample(handle, sample);
4801 }
4802 
4803 static void perf_output_read_one(struct perf_output_handle *handle,
4804 				 struct perf_event *event,
4805 				 u64 enabled, u64 running)
4806 {
4807 	u64 read_format = event->attr.read_format;
4808 	u64 values[4];
4809 	int n = 0;
4810 
4811 	values[n++] = perf_event_count(event);
4812 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4813 		values[n++] = enabled +
4814 			atomic64_read(&event->child_total_time_enabled);
4815 	}
4816 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4817 		values[n++] = running +
4818 			atomic64_read(&event->child_total_time_running);
4819 	}
4820 	if (read_format & PERF_FORMAT_ID)
4821 		values[n++] = primary_event_id(event);
4822 
4823 	__output_copy(handle, values, n * sizeof(u64));
4824 }
4825 
4826 /*
4827  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4828  */
4829 static void perf_output_read_group(struct perf_output_handle *handle,
4830 			    struct perf_event *event,
4831 			    u64 enabled, u64 running)
4832 {
4833 	struct perf_event *leader = event->group_leader, *sub;
4834 	u64 read_format = event->attr.read_format;
4835 	u64 values[5];
4836 	int n = 0;
4837 
4838 	values[n++] = 1 + leader->nr_siblings;
4839 
4840 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4841 		values[n++] = enabled;
4842 
4843 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4844 		values[n++] = running;
4845 
4846 	if (leader != event)
4847 		leader->pmu->read(leader);
4848 
4849 	values[n++] = perf_event_count(leader);
4850 	if (read_format & PERF_FORMAT_ID)
4851 		values[n++] = primary_event_id(leader);
4852 
4853 	__output_copy(handle, values, n * sizeof(u64));
4854 
4855 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4856 		n = 0;
4857 
4858 		if ((sub != event) &&
4859 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4860 			sub->pmu->read(sub);
4861 
4862 		values[n++] = perf_event_count(sub);
4863 		if (read_format & PERF_FORMAT_ID)
4864 			values[n++] = primary_event_id(sub);
4865 
4866 		__output_copy(handle, values, n * sizeof(u64));
4867 	}
4868 }
4869 
4870 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4871 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4872 
4873 static void perf_output_read(struct perf_output_handle *handle,
4874 			     struct perf_event *event)
4875 {
4876 	u64 enabled = 0, running = 0, now;
4877 	u64 read_format = event->attr.read_format;
4878 
4879 	/*
4880 	 * compute total_time_enabled, total_time_running
4881 	 * based on snapshot values taken when the event
4882 	 * was last scheduled in.
4883 	 *
4884 	 * we cannot simply called update_context_time()
4885 	 * because of locking issue as we are called in
4886 	 * NMI context
4887 	 */
4888 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4889 		calc_timer_values(event, &now, &enabled, &running);
4890 
4891 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4892 		perf_output_read_group(handle, event, enabled, running);
4893 	else
4894 		perf_output_read_one(handle, event, enabled, running);
4895 }
4896 
4897 void perf_output_sample(struct perf_output_handle *handle,
4898 			struct perf_event_header *header,
4899 			struct perf_sample_data *data,
4900 			struct perf_event *event)
4901 {
4902 	u64 sample_type = data->type;
4903 
4904 	perf_output_put(handle, *header);
4905 
4906 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4907 		perf_output_put(handle, data->id);
4908 
4909 	if (sample_type & PERF_SAMPLE_IP)
4910 		perf_output_put(handle, data->ip);
4911 
4912 	if (sample_type & PERF_SAMPLE_TID)
4913 		perf_output_put(handle, data->tid_entry);
4914 
4915 	if (sample_type & PERF_SAMPLE_TIME)
4916 		perf_output_put(handle, data->time);
4917 
4918 	if (sample_type & PERF_SAMPLE_ADDR)
4919 		perf_output_put(handle, data->addr);
4920 
4921 	if (sample_type & PERF_SAMPLE_ID)
4922 		perf_output_put(handle, data->id);
4923 
4924 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4925 		perf_output_put(handle, data->stream_id);
4926 
4927 	if (sample_type & PERF_SAMPLE_CPU)
4928 		perf_output_put(handle, data->cpu_entry);
4929 
4930 	if (sample_type & PERF_SAMPLE_PERIOD)
4931 		perf_output_put(handle, data->period);
4932 
4933 	if (sample_type & PERF_SAMPLE_READ)
4934 		perf_output_read(handle, event);
4935 
4936 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4937 		if (data->callchain) {
4938 			int size = 1;
4939 
4940 			if (data->callchain)
4941 				size += data->callchain->nr;
4942 
4943 			size *= sizeof(u64);
4944 
4945 			__output_copy(handle, data->callchain, size);
4946 		} else {
4947 			u64 nr = 0;
4948 			perf_output_put(handle, nr);
4949 		}
4950 	}
4951 
4952 	if (sample_type & PERF_SAMPLE_RAW) {
4953 		if (data->raw) {
4954 			perf_output_put(handle, data->raw->size);
4955 			__output_copy(handle, data->raw->data,
4956 					   data->raw->size);
4957 		} else {
4958 			struct {
4959 				u32	size;
4960 				u32	data;
4961 			} raw = {
4962 				.size = sizeof(u32),
4963 				.data = 0,
4964 			};
4965 			perf_output_put(handle, raw);
4966 		}
4967 	}
4968 
4969 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4970 		if (data->br_stack) {
4971 			size_t size;
4972 
4973 			size = data->br_stack->nr
4974 			     * sizeof(struct perf_branch_entry);
4975 
4976 			perf_output_put(handle, data->br_stack->nr);
4977 			perf_output_copy(handle, data->br_stack->entries, size);
4978 		} else {
4979 			/*
4980 			 * we always store at least the value of nr
4981 			 */
4982 			u64 nr = 0;
4983 			perf_output_put(handle, nr);
4984 		}
4985 	}
4986 
4987 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4988 		u64 abi = data->regs_user.abi;
4989 
4990 		/*
4991 		 * If there are no regs to dump, notice it through
4992 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4993 		 */
4994 		perf_output_put(handle, abi);
4995 
4996 		if (abi) {
4997 			u64 mask = event->attr.sample_regs_user;
4998 			perf_output_sample_regs(handle,
4999 						data->regs_user.regs,
5000 						mask);
5001 		}
5002 	}
5003 
5004 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5005 		perf_output_sample_ustack(handle,
5006 					  data->stack_user_size,
5007 					  data->regs_user.regs);
5008 	}
5009 
5010 	if (sample_type & PERF_SAMPLE_WEIGHT)
5011 		perf_output_put(handle, data->weight);
5012 
5013 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5014 		perf_output_put(handle, data->data_src.val);
5015 
5016 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5017 		perf_output_put(handle, data->txn);
5018 
5019 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5020 		u64 abi = data->regs_intr.abi;
5021 		/*
5022 		 * If there are no regs to dump, notice it through
5023 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5024 		 */
5025 		perf_output_put(handle, abi);
5026 
5027 		if (abi) {
5028 			u64 mask = event->attr.sample_regs_intr;
5029 
5030 			perf_output_sample_regs(handle,
5031 						data->regs_intr.regs,
5032 						mask);
5033 		}
5034 	}
5035 
5036 	if (!event->attr.watermark) {
5037 		int wakeup_events = event->attr.wakeup_events;
5038 
5039 		if (wakeup_events) {
5040 			struct ring_buffer *rb = handle->rb;
5041 			int events = local_inc_return(&rb->events);
5042 
5043 			if (events >= wakeup_events) {
5044 				local_sub(wakeup_events, &rb->events);
5045 				local_inc(&rb->wakeup);
5046 			}
5047 		}
5048 	}
5049 }
5050 
5051 void perf_prepare_sample(struct perf_event_header *header,
5052 			 struct perf_sample_data *data,
5053 			 struct perf_event *event,
5054 			 struct pt_regs *regs)
5055 {
5056 	u64 sample_type = event->attr.sample_type;
5057 
5058 	header->type = PERF_RECORD_SAMPLE;
5059 	header->size = sizeof(*header) + event->header_size;
5060 
5061 	header->misc = 0;
5062 	header->misc |= perf_misc_flags(regs);
5063 
5064 	__perf_event_header__init_id(header, data, event);
5065 
5066 	if (sample_type & PERF_SAMPLE_IP)
5067 		data->ip = perf_instruction_pointer(regs);
5068 
5069 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5070 		int size = 1;
5071 
5072 		data->callchain = perf_callchain(event, regs);
5073 
5074 		if (data->callchain)
5075 			size += data->callchain->nr;
5076 
5077 		header->size += size * sizeof(u64);
5078 	}
5079 
5080 	if (sample_type & PERF_SAMPLE_RAW) {
5081 		int size = sizeof(u32);
5082 
5083 		if (data->raw)
5084 			size += data->raw->size;
5085 		else
5086 			size += sizeof(u32);
5087 
5088 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5089 		header->size += size;
5090 	}
5091 
5092 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5093 		int size = sizeof(u64); /* nr */
5094 		if (data->br_stack) {
5095 			size += data->br_stack->nr
5096 			      * sizeof(struct perf_branch_entry);
5097 		}
5098 		header->size += size;
5099 	}
5100 
5101 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5102 		perf_sample_regs_user(&data->regs_user, regs,
5103 				      &data->regs_user_copy);
5104 
5105 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5106 		/* regs dump ABI info */
5107 		int size = sizeof(u64);
5108 
5109 		if (data->regs_user.regs) {
5110 			u64 mask = event->attr.sample_regs_user;
5111 			size += hweight64(mask) * sizeof(u64);
5112 		}
5113 
5114 		header->size += size;
5115 	}
5116 
5117 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5118 		/*
5119 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5120 		 * processed as the last one or have additional check added
5121 		 * in case new sample type is added, because we could eat
5122 		 * up the rest of the sample size.
5123 		 */
5124 		u16 stack_size = event->attr.sample_stack_user;
5125 		u16 size = sizeof(u64);
5126 
5127 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5128 						     data->regs_user.regs);
5129 
5130 		/*
5131 		 * If there is something to dump, add space for the dump
5132 		 * itself and for the field that tells the dynamic size,
5133 		 * which is how many have been actually dumped.
5134 		 */
5135 		if (stack_size)
5136 			size += sizeof(u64) + stack_size;
5137 
5138 		data->stack_user_size = stack_size;
5139 		header->size += size;
5140 	}
5141 
5142 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5143 		/* regs dump ABI info */
5144 		int size = sizeof(u64);
5145 
5146 		perf_sample_regs_intr(&data->regs_intr, regs);
5147 
5148 		if (data->regs_intr.regs) {
5149 			u64 mask = event->attr.sample_regs_intr;
5150 
5151 			size += hweight64(mask) * sizeof(u64);
5152 		}
5153 
5154 		header->size += size;
5155 	}
5156 }
5157 
5158 static void perf_event_output(struct perf_event *event,
5159 				struct perf_sample_data *data,
5160 				struct pt_regs *regs)
5161 {
5162 	struct perf_output_handle handle;
5163 	struct perf_event_header header;
5164 
5165 	/* protect the callchain buffers */
5166 	rcu_read_lock();
5167 
5168 	perf_prepare_sample(&header, data, event, regs);
5169 
5170 	if (perf_output_begin(&handle, event, header.size))
5171 		goto exit;
5172 
5173 	perf_output_sample(&handle, &header, data, event);
5174 
5175 	perf_output_end(&handle);
5176 
5177 exit:
5178 	rcu_read_unlock();
5179 }
5180 
5181 /*
5182  * read event_id
5183  */
5184 
5185 struct perf_read_event {
5186 	struct perf_event_header	header;
5187 
5188 	u32				pid;
5189 	u32				tid;
5190 };
5191 
5192 static void
5193 perf_event_read_event(struct perf_event *event,
5194 			struct task_struct *task)
5195 {
5196 	struct perf_output_handle handle;
5197 	struct perf_sample_data sample;
5198 	struct perf_read_event read_event = {
5199 		.header = {
5200 			.type = PERF_RECORD_READ,
5201 			.misc = 0,
5202 			.size = sizeof(read_event) + event->read_size,
5203 		},
5204 		.pid = perf_event_pid(event, task),
5205 		.tid = perf_event_tid(event, task),
5206 	};
5207 	int ret;
5208 
5209 	perf_event_header__init_id(&read_event.header, &sample, event);
5210 	ret = perf_output_begin(&handle, event, read_event.header.size);
5211 	if (ret)
5212 		return;
5213 
5214 	perf_output_put(&handle, read_event);
5215 	perf_output_read(&handle, event);
5216 	perf_event__output_id_sample(event, &handle, &sample);
5217 
5218 	perf_output_end(&handle);
5219 }
5220 
5221 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5222 
5223 static void
5224 perf_event_aux_ctx(struct perf_event_context *ctx,
5225 		   perf_event_aux_output_cb output,
5226 		   void *data)
5227 {
5228 	struct perf_event *event;
5229 
5230 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5231 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5232 			continue;
5233 		if (!event_filter_match(event))
5234 			continue;
5235 		output(event, data);
5236 	}
5237 }
5238 
5239 static void
5240 perf_event_aux(perf_event_aux_output_cb output, void *data,
5241 	       struct perf_event_context *task_ctx)
5242 {
5243 	struct perf_cpu_context *cpuctx;
5244 	struct perf_event_context *ctx;
5245 	struct pmu *pmu;
5246 	int ctxn;
5247 
5248 	rcu_read_lock();
5249 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5250 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5251 		if (cpuctx->unique_pmu != pmu)
5252 			goto next;
5253 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5254 		if (task_ctx)
5255 			goto next;
5256 		ctxn = pmu->task_ctx_nr;
5257 		if (ctxn < 0)
5258 			goto next;
5259 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5260 		if (ctx)
5261 			perf_event_aux_ctx(ctx, output, data);
5262 next:
5263 		put_cpu_ptr(pmu->pmu_cpu_context);
5264 	}
5265 
5266 	if (task_ctx) {
5267 		preempt_disable();
5268 		perf_event_aux_ctx(task_ctx, output, data);
5269 		preempt_enable();
5270 	}
5271 	rcu_read_unlock();
5272 }
5273 
5274 /*
5275  * task tracking -- fork/exit
5276  *
5277  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5278  */
5279 
5280 struct perf_task_event {
5281 	struct task_struct		*task;
5282 	struct perf_event_context	*task_ctx;
5283 
5284 	struct {
5285 		struct perf_event_header	header;
5286 
5287 		u32				pid;
5288 		u32				ppid;
5289 		u32				tid;
5290 		u32				ptid;
5291 		u64				time;
5292 	} event_id;
5293 };
5294 
5295 static int perf_event_task_match(struct perf_event *event)
5296 {
5297 	return event->attr.comm  || event->attr.mmap ||
5298 	       event->attr.mmap2 || event->attr.mmap_data ||
5299 	       event->attr.task;
5300 }
5301 
5302 static void perf_event_task_output(struct perf_event *event,
5303 				   void *data)
5304 {
5305 	struct perf_task_event *task_event = data;
5306 	struct perf_output_handle handle;
5307 	struct perf_sample_data	sample;
5308 	struct task_struct *task = task_event->task;
5309 	int ret, size = task_event->event_id.header.size;
5310 
5311 	if (!perf_event_task_match(event))
5312 		return;
5313 
5314 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5315 
5316 	ret = perf_output_begin(&handle, event,
5317 				task_event->event_id.header.size);
5318 	if (ret)
5319 		goto out;
5320 
5321 	task_event->event_id.pid = perf_event_pid(event, task);
5322 	task_event->event_id.ppid = perf_event_pid(event, current);
5323 
5324 	task_event->event_id.tid = perf_event_tid(event, task);
5325 	task_event->event_id.ptid = perf_event_tid(event, current);
5326 
5327 	perf_output_put(&handle, task_event->event_id);
5328 
5329 	perf_event__output_id_sample(event, &handle, &sample);
5330 
5331 	perf_output_end(&handle);
5332 out:
5333 	task_event->event_id.header.size = size;
5334 }
5335 
5336 static void perf_event_task(struct task_struct *task,
5337 			      struct perf_event_context *task_ctx,
5338 			      int new)
5339 {
5340 	struct perf_task_event task_event;
5341 
5342 	if (!atomic_read(&nr_comm_events) &&
5343 	    !atomic_read(&nr_mmap_events) &&
5344 	    !atomic_read(&nr_task_events))
5345 		return;
5346 
5347 	task_event = (struct perf_task_event){
5348 		.task	  = task,
5349 		.task_ctx = task_ctx,
5350 		.event_id    = {
5351 			.header = {
5352 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5353 				.misc = 0,
5354 				.size = sizeof(task_event.event_id),
5355 			},
5356 			/* .pid  */
5357 			/* .ppid */
5358 			/* .tid  */
5359 			/* .ptid */
5360 			.time = perf_clock(),
5361 		},
5362 	};
5363 
5364 	perf_event_aux(perf_event_task_output,
5365 		       &task_event,
5366 		       task_ctx);
5367 }
5368 
5369 void perf_event_fork(struct task_struct *task)
5370 {
5371 	perf_event_task(task, NULL, 1);
5372 }
5373 
5374 /*
5375  * comm tracking
5376  */
5377 
5378 struct perf_comm_event {
5379 	struct task_struct	*task;
5380 	char			*comm;
5381 	int			comm_size;
5382 
5383 	struct {
5384 		struct perf_event_header	header;
5385 
5386 		u32				pid;
5387 		u32				tid;
5388 	} event_id;
5389 };
5390 
5391 static int perf_event_comm_match(struct perf_event *event)
5392 {
5393 	return event->attr.comm;
5394 }
5395 
5396 static void perf_event_comm_output(struct perf_event *event,
5397 				   void *data)
5398 {
5399 	struct perf_comm_event *comm_event = data;
5400 	struct perf_output_handle handle;
5401 	struct perf_sample_data sample;
5402 	int size = comm_event->event_id.header.size;
5403 	int ret;
5404 
5405 	if (!perf_event_comm_match(event))
5406 		return;
5407 
5408 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5409 	ret = perf_output_begin(&handle, event,
5410 				comm_event->event_id.header.size);
5411 
5412 	if (ret)
5413 		goto out;
5414 
5415 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5416 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5417 
5418 	perf_output_put(&handle, comm_event->event_id);
5419 	__output_copy(&handle, comm_event->comm,
5420 				   comm_event->comm_size);
5421 
5422 	perf_event__output_id_sample(event, &handle, &sample);
5423 
5424 	perf_output_end(&handle);
5425 out:
5426 	comm_event->event_id.header.size = size;
5427 }
5428 
5429 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5430 {
5431 	char comm[TASK_COMM_LEN];
5432 	unsigned int size;
5433 
5434 	memset(comm, 0, sizeof(comm));
5435 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5436 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5437 
5438 	comm_event->comm = comm;
5439 	comm_event->comm_size = size;
5440 
5441 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5442 
5443 	perf_event_aux(perf_event_comm_output,
5444 		       comm_event,
5445 		       NULL);
5446 }
5447 
5448 void perf_event_comm(struct task_struct *task, bool exec)
5449 {
5450 	struct perf_comm_event comm_event;
5451 
5452 	if (!atomic_read(&nr_comm_events))
5453 		return;
5454 
5455 	comm_event = (struct perf_comm_event){
5456 		.task	= task,
5457 		/* .comm      */
5458 		/* .comm_size */
5459 		.event_id  = {
5460 			.header = {
5461 				.type = PERF_RECORD_COMM,
5462 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5463 				/* .size */
5464 			},
5465 			/* .pid */
5466 			/* .tid */
5467 		},
5468 	};
5469 
5470 	perf_event_comm_event(&comm_event);
5471 }
5472 
5473 /*
5474  * mmap tracking
5475  */
5476 
5477 struct perf_mmap_event {
5478 	struct vm_area_struct	*vma;
5479 
5480 	const char		*file_name;
5481 	int			file_size;
5482 	int			maj, min;
5483 	u64			ino;
5484 	u64			ino_generation;
5485 	u32			prot, flags;
5486 
5487 	struct {
5488 		struct perf_event_header	header;
5489 
5490 		u32				pid;
5491 		u32				tid;
5492 		u64				start;
5493 		u64				len;
5494 		u64				pgoff;
5495 	} event_id;
5496 };
5497 
5498 static int perf_event_mmap_match(struct perf_event *event,
5499 				 void *data)
5500 {
5501 	struct perf_mmap_event *mmap_event = data;
5502 	struct vm_area_struct *vma = mmap_event->vma;
5503 	int executable = vma->vm_flags & VM_EXEC;
5504 
5505 	return (!executable && event->attr.mmap_data) ||
5506 	       (executable && (event->attr.mmap || event->attr.mmap2));
5507 }
5508 
5509 static void perf_event_mmap_output(struct perf_event *event,
5510 				   void *data)
5511 {
5512 	struct perf_mmap_event *mmap_event = data;
5513 	struct perf_output_handle handle;
5514 	struct perf_sample_data sample;
5515 	int size = mmap_event->event_id.header.size;
5516 	int ret;
5517 
5518 	if (!perf_event_mmap_match(event, data))
5519 		return;
5520 
5521 	if (event->attr.mmap2) {
5522 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5523 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5524 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5525 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5526 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5527 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5528 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5529 	}
5530 
5531 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5532 	ret = perf_output_begin(&handle, event,
5533 				mmap_event->event_id.header.size);
5534 	if (ret)
5535 		goto out;
5536 
5537 	mmap_event->event_id.pid = perf_event_pid(event, current);
5538 	mmap_event->event_id.tid = perf_event_tid(event, current);
5539 
5540 	perf_output_put(&handle, mmap_event->event_id);
5541 
5542 	if (event->attr.mmap2) {
5543 		perf_output_put(&handle, mmap_event->maj);
5544 		perf_output_put(&handle, mmap_event->min);
5545 		perf_output_put(&handle, mmap_event->ino);
5546 		perf_output_put(&handle, mmap_event->ino_generation);
5547 		perf_output_put(&handle, mmap_event->prot);
5548 		perf_output_put(&handle, mmap_event->flags);
5549 	}
5550 
5551 	__output_copy(&handle, mmap_event->file_name,
5552 				   mmap_event->file_size);
5553 
5554 	perf_event__output_id_sample(event, &handle, &sample);
5555 
5556 	perf_output_end(&handle);
5557 out:
5558 	mmap_event->event_id.header.size = size;
5559 }
5560 
5561 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5562 {
5563 	struct vm_area_struct *vma = mmap_event->vma;
5564 	struct file *file = vma->vm_file;
5565 	int maj = 0, min = 0;
5566 	u64 ino = 0, gen = 0;
5567 	u32 prot = 0, flags = 0;
5568 	unsigned int size;
5569 	char tmp[16];
5570 	char *buf = NULL;
5571 	char *name;
5572 
5573 	if (file) {
5574 		struct inode *inode;
5575 		dev_t dev;
5576 
5577 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5578 		if (!buf) {
5579 			name = "//enomem";
5580 			goto cpy_name;
5581 		}
5582 		/*
5583 		 * d_path() works from the end of the rb backwards, so we
5584 		 * need to add enough zero bytes after the string to handle
5585 		 * the 64bit alignment we do later.
5586 		 */
5587 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5588 		if (IS_ERR(name)) {
5589 			name = "//toolong";
5590 			goto cpy_name;
5591 		}
5592 		inode = file_inode(vma->vm_file);
5593 		dev = inode->i_sb->s_dev;
5594 		ino = inode->i_ino;
5595 		gen = inode->i_generation;
5596 		maj = MAJOR(dev);
5597 		min = MINOR(dev);
5598 
5599 		if (vma->vm_flags & VM_READ)
5600 			prot |= PROT_READ;
5601 		if (vma->vm_flags & VM_WRITE)
5602 			prot |= PROT_WRITE;
5603 		if (vma->vm_flags & VM_EXEC)
5604 			prot |= PROT_EXEC;
5605 
5606 		if (vma->vm_flags & VM_MAYSHARE)
5607 			flags = MAP_SHARED;
5608 		else
5609 			flags = MAP_PRIVATE;
5610 
5611 		if (vma->vm_flags & VM_DENYWRITE)
5612 			flags |= MAP_DENYWRITE;
5613 		if (vma->vm_flags & VM_MAYEXEC)
5614 			flags |= MAP_EXECUTABLE;
5615 		if (vma->vm_flags & VM_LOCKED)
5616 			flags |= MAP_LOCKED;
5617 		if (vma->vm_flags & VM_HUGETLB)
5618 			flags |= MAP_HUGETLB;
5619 
5620 		goto got_name;
5621 	} else {
5622 		if (vma->vm_ops && vma->vm_ops->name) {
5623 			name = (char *) vma->vm_ops->name(vma);
5624 			if (name)
5625 				goto cpy_name;
5626 		}
5627 
5628 		name = (char *)arch_vma_name(vma);
5629 		if (name)
5630 			goto cpy_name;
5631 
5632 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5633 				vma->vm_end >= vma->vm_mm->brk) {
5634 			name = "[heap]";
5635 			goto cpy_name;
5636 		}
5637 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5638 				vma->vm_end >= vma->vm_mm->start_stack) {
5639 			name = "[stack]";
5640 			goto cpy_name;
5641 		}
5642 
5643 		name = "//anon";
5644 		goto cpy_name;
5645 	}
5646 
5647 cpy_name:
5648 	strlcpy(tmp, name, sizeof(tmp));
5649 	name = tmp;
5650 got_name:
5651 	/*
5652 	 * Since our buffer works in 8 byte units we need to align our string
5653 	 * size to a multiple of 8. However, we must guarantee the tail end is
5654 	 * zero'd out to avoid leaking random bits to userspace.
5655 	 */
5656 	size = strlen(name)+1;
5657 	while (!IS_ALIGNED(size, sizeof(u64)))
5658 		name[size++] = '\0';
5659 
5660 	mmap_event->file_name = name;
5661 	mmap_event->file_size = size;
5662 	mmap_event->maj = maj;
5663 	mmap_event->min = min;
5664 	mmap_event->ino = ino;
5665 	mmap_event->ino_generation = gen;
5666 	mmap_event->prot = prot;
5667 	mmap_event->flags = flags;
5668 
5669 	if (!(vma->vm_flags & VM_EXEC))
5670 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5671 
5672 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5673 
5674 	perf_event_aux(perf_event_mmap_output,
5675 		       mmap_event,
5676 		       NULL);
5677 
5678 	kfree(buf);
5679 }
5680 
5681 void perf_event_mmap(struct vm_area_struct *vma)
5682 {
5683 	struct perf_mmap_event mmap_event;
5684 
5685 	if (!atomic_read(&nr_mmap_events))
5686 		return;
5687 
5688 	mmap_event = (struct perf_mmap_event){
5689 		.vma	= vma,
5690 		/* .file_name */
5691 		/* .file_size */
5692 		.event_id  = {
5693 			.header = {
5694 				.type = PERF_RECORD_MMAP,
5695 				.misc = PERF_RECORD_MISC_USER,
5696 				/* .size */
5697 			},
5698 			/* .pid */
5699 			/* .tid */
5700 			.start  = vma->vm_start,
5701 			.len    = vma->vm_end - vma->vm_start,
5702 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5703 		},
5704 		/* .maj (attr_mmap2 only) */
5705 		/* .min (attr_mmap2 only) */
5706 		/* .ino (attr_mmap2 only) */
5707 		/* .ino_generation (attr_mmap2 only) */
5708 		/* .prot (attr_mmap2 only) */
5709 		/* .flags (attr_mmap2 only) */
5710 	};
5711 
5712 	perf_event_mmap_event(&mmap_event);
5713 }
5714 
5715 /*
5716  * IRQ throttle logging
5717  */
5718 
5719 static void perf_log_throttle(struct perf_event *event, int enable)
5720 {
5721 	struct perf_output_handle handle;
5722 	struct perf_sample_data sample;
5723 	int ret;
5724 
5725 	struct {
5726 		struct perf_event_header	header;
5727 		u64				time;
5728 		u64				id;
5729 		u64				stream_id;
5730 	} throttle_event = {
5731 		.header = {
5732 			.type = PERF_RECORD_THROTTLE,
5733 			.misc = 0,
5734 			.size = sizeof(throttle_event),
5735 		},
5736 		.time		= perf_clock(),
5737 		.id		= primary_event_id(event),
5738 		.stream_id	= event->id,
5739 	};
5740 
5741 	if (enable)
5742 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5743 
5744 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5745 
5746 	ret = perf_output_begin(&handle, event,
5747 				throttle_event.header.size);
5748 	if (ret)
5749 		return;
5750 
5751 	perf_output_put(&handle, throttle_event);
5752 	perf_event__output_id_sample(event, &handle, &sample);
5753 	perf_output_end(&handle);
5754 }
5755 
5756 /*
5757  * Generic event overflow handling, sampling.
5758  */
5759 
5760 static int __perf_event_overflow(struct perf_event *event,
5761 				   int throttle, struct perf_sample_data *data,
5762 				   struct pt_regs *regs)
5763 {
5764 	int events = atomic_read(&event->event_limit);
5765 	struct hw_perf_event *hwc = &event->hw;
5766 	u64 seq;
5767 	int ret = 0;
5768 
5769 	/*
5770 	 * Non-sampling counters might still use the PMI to fold short
5771 	 * hardware counters, ignore those.
5772 	 */
5773 	if (unlikely(!is_sampling_event(event)))
5774 		return 0;
5775 
5776 	seq = __this_cpu_read(perf_throttled_seq);
5777 	if (seq != hwc->interrupts_seq) {
5778 		hwc->interrupts_seq = seq;
5779 		hwc->interrupts = 1;
5780 	} else {
5781 		hwc->interrupts++;
5782 		if (unlikely(throttle
5783 			     && hwc->interrupts >= max_samples_per_tick)) {
5784 			__this_cpu_inc(perf_throttled_count);
5785 			hwc->interrupts = MAX_INTERRUPTS;
5786 			perf_log_throttle(event, 0);
5787 			tick_nohz_full_kick();
5788 			ret = 1;
5789 		}
5790 	}
5791 
5792 	if (event->attr.freq) {
5793 		u64 now = perf_clock();
5794 		s64 delta = now - hwc->freq_time_stamp;
5795 
5796 		hwc->freq_time_stamp = now;
5797 
5798 		if (delta > 0 && delta < 2*TICK_NSEC)
5799 			perf_adjust_period(event, delta, hwc->last_period, true);
5800 	}
5801 
5802 	/*
5803 	 * XXX event_limit might not quite work as expected on inherited
5804 	 * events
5805 	 */
5806 
5807 	event->pending_kill = POLL_IN;
5808 	if (events && atomic_dec_and_test(&event->event_limit)) {
5809 		ret = 1;
5810 		event->pending_kill = POLL_HUP;
5811 		event->pending_disable = 1;
5812 		irq_work_queue(&event->pending);
5813 	}
5814 
5815 	if (event->overflow_handler)
5816 		event->overflow_handler(event, data, regs);
5817 	else
5818 		perf_event_output(event, data, regs);
5819 
5820 	if (event->fasync && event->pending_kill) {
5821 		event->pending_wakeup = 1;
5822 		irq_work_queue(&event->pending);
5823 	}
5824 
5825 	return ret;
5826 }
5827 
5828 int perf_event_overflow(struct perf_event *event,
5829 			  struct perf_sample_data *data,
5830 			  struct pt_regs *regs)
5831 {
5832 	return __perf_event_overflow(event, 1, data, regs);
5833 }
5834 
5835 /*
5836  * Generic software event infrastructure
5837  */
5838 
5839 struct swevent_htable {
5840 	struct swevent_hlist		*swevent_hlist;
5841 	struct mutex			hlist_mutex;
5842 	int				hlist_refcount;
5843 
5844 	/* Recursion avoidance in each contexts */
5845 	int				recursion[PERF_NR_CONTEXTS];
5846 
5847 	/* Keeps track of cpu being initialized/exited */
5848 	bool				online;
5849 };
5850 
5851 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5852 
5853 /*
5854  * We directly increment event->count and keep a second value in
5855  * event->hw.period_left to count intervals. This period event
5856  * is kept in the range [-sample_period, 0] so that we can use the
5857  * sign as trigger.
5858  */
5859 
5860 u64 perf_swevent_set_period(struct perf_event *event)
5861 {
5862 	struct hw_perf_event *hwc = &event->hw;
5863 	u64 period = hwc->last_period;
5864 	u64 nr, offset;
5865 	s64 old, val;
5866 
5867 	hwc->last_period = hwc->sample_period;
5868 
5869 again:
5870 	old = val = local64_read(&hwc->period_left);
5871 	if (val < 0)
5872 		return 0;
5873 
5874 	nr = div64_u64(period + val, period);
5875 	offset = nr * period;
5876 	val -= offset;
5877 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5878 		goto again;
5879 
5880 	return nr;
5881 }
5882 
5883 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5884 				    struct perf_sample_data *data,
5885 				    struct pt_regs *regs)
5886 {
5887 	struct hw_perf_event *hwc = &event->hw;
5888 	int throttle = 0;
5889 
5890 	if (!overflow)
5891 		overflow = perf_swevent_set_period(event);
5892 
5893 	if (hwc->interrupts == MAX_INTERRUPTS)
5894 		return;
5895 
5896 	for (; overflow; overflow--) {
5897 		if (__perf_event_overflow(event, throttle,
5898 					    data, regs)) {
5899 			/*
5900 			 * We inhibit the overflow from happening when
5901 			 * hwc->interrupts == MAX_INTERRUPTS.
5902 			 */
5903 			break;
5904 		}
5905 		throttle = 1;
5906 	}
5907 }
5908 
5909 static void perf_swevent_event(struct perf_event *event, u64 nr,
5910 			       struct perf_sample_data *data,
5911 			       struct pt_regs *regs)
5912 {
5913 	struct hw_perf_event *hwc = &event->hw;
5914 
5915 	local64_add(nr, &event->count);
5916 
5917 	if (!regs)
5918 		return;
5919 
5920 	if (!is_sampling_event(event))
5921 		return;
5922 
5923 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5924 		data->period = nr;
5925 		return perf_swevent_overflow(event, 1, data, regs);
5926 	} else
5927 		data->period = event->hw.last_period;
5928 
5929 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5930 		return perf_swevent_overflow(event, 1, data, regs);
5931 
5932 	if (local64_add_negative(nr, &hwc->period_left))
5933 		return;
5934 
5935 	perf_swevent_overflow(event, 0, data, regs);
5936 }
5937 
5938 static int perf_exclude_event(struct perf_event *event,
5939 			      struct pt_regs *regs)
5940 {
5941 	if (event->hw.state & PERF_HES_STOPPED)
5942 		return 1;
5943 
5944 	if (regs) {
5945 		if (event->attr.exclude_user && user_mode(regs))
5946 			return 1;
5947 
5948 		if (event->attr.exclude_kernel && !user_mode(regs))
5949 			return 1;
5950 	}
5951 
5952 	return 0;
5953 }
5954 
5955 static int perf_swevent_match(struct perf_event *event,
5956 				enum perf_type_id type,
5957 				u32 event_id,
5958 				struct perf_sample_data *data,
5959 				struct pt_regs *regs)
5960 {
5961 	if (event->attr.type != type)
5962 		return 0;
5963 
5964 	if (event->attr.config != event_id)
5965 		return 0;
5966 
5967 	if (perf_exclude_event(event, regs))
5968 		return 0;
5969 
5970 	return 1;
5971 }
5972 
5973 static inline u64 swevent_hash(u64 type, u32 event_id)
5974 {
5975 	u64 val = event_id | (type << 32);
5976 
5977 	return hash_64(val, SWEVENT_HLIST_BITS);
5978 }
5979 
5980 static inline struct hlist_head *
5981 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5982 {
5983 	u64 hash = swevent_hash(type, event_id);
5984 
5985 	return &hlist->heads[hash];
5986 }
5987 
5988 /* For the read side: events when they trigger */
5989 static inline struct hlist_head *
5990 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5991 {
5992 	struct swevent_hlist *hlist;
5993 
5994 	hlist = rcu_dereference(swhash->swevent_hlist);
5995 	if (!hlist)
5996 		return NULL;
5997 
5998 	return __find_swevent_head(hlist, type, event_id);
5999 }
6000 
6001 /* For the event head insertion and removal in the hlist */
6002 static inline struct hlist_head *
6003 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6004 {
6005 	struct swevent_hlist *hlist;
6006 	u32 event_id = event->attr.config;
6007 	u64 type = event->attr.type;
6008 
6009 	/*
6010 	 * Event scheduling is always serialized against hlist allocation
6011 	 * and release. Which makes the protected version suitable here.
6012 	 * The context lock guarantees that.
6013 	 */
6014 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6015 					  lockdep_is_held(&event->ctx->lock));
6016 	if (!hlist)
6017 		return NULL;
6018 
6019 	return __find_swevent_head(hlist, type, event_id);
6020 }
6021 
6022 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6023 				    u64 nr,
6024 				    struct perf_sample_data *data,
6025 				    struct pt_regs *regs)
6026 {
6027 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6028 	struct perf_event *event;
6029 	struct hlist_head *head;
6030 
6031 	rcu_read_lock();
6032 	head = find_swevent_head_rcu(swhash, type, event_id);
6033 	if (!head)
6034 		goto end;
6035 
6036 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6037 		if (perf_swevent_match(event, type, event_id, data, regs))
6038 			perf_swevent_event(event, nr, data, regs);
6039 	}
6040 end:
6041 	rcu_read_unlock();
6042 }
6043 
6044 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6045 
6046 int perf_swevent_get_recursion_context(void)
6047 {
6048 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6049 
6050 	return get_recursion_context(swhash->recursion);
6051 }
6052 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6053 
6054 inline void perf_swevent_put_recursion_context(int rctx)
6055 {
6056 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6057 
6058 	put_recursion_context(swhash->recursion, rctx);
6059 }
6060 
6061 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6062 {
6063 	struct perf_sample_data data;
6064 
6065 	if (WARN_ON_ONCE(!regs))
6066 		return;
6067 
6068 	perf_sample_data_init(&data, addr, 0);
6069 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6070 }
6071 
6072 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6073 {
6074 	int rctx;
6075 
6076 	preempt_disable_notrace();
6077 	rctx = perf_swevent_get_recursion_context();
6078 	if (unlikely(rctx < 0))
6079 		goto fail;
6080 
6081 	___perf_sw_event(event_id, nr, regs, addr);
6082 
6083 	perf_swevent_put_recursion_context(rctx);
6084 fail:
6085 	preempt_enable_notrace();
6086 }
6087 
6088 static void perf_swevent_read(struct perf_event *event)
6089 {
6090 }
6091 
6092 static int perf_swevent_add(struct perf_event *event, int flags)
6093 {
6094 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6095 	struct hw_perf_event *hwc = &event->hw;
6096 	struct hlist_head *head;
6097 
6098 	if (is_sampling_event(event)) {
6099 		hwc->last_period = hwc->sample_period;
6100 		perf_swevent_set_period(event);
6101 	}
6102 
6103 	hwc->state = !(flags & PERF_EF_START);
6104 
6105 	head = find_swevent_head(swhash, event);
6106 	if (!head) {
6107 		/*
6108 		 * We can race with cpu hotplug code. Do not
6109 		 * WARN if the cpu just got unplugged.
6110 		 */
6111 		WARN_ON_ONCE(swhash->online);
6112 		return -EINVAL;
6113 	}
6114 
6115 	hlist_add_head_rcu(&event->hlist_entry, head);
6116 
6117 	return 0;
6118 }
6119 
6120 static void perf_swevent_del(struct perf_event *event, int flags)
6121 {
6122 	hlist_del_rcu(&event->hlist_entry);
6123 }
6124 
6125 static void perf_swevent_start(struct perf_event *event, int flags)
6126 {
6127 	event->hw.state = 0;
6128 }
6129 
6130 static void perf_swevent_stop(struct perf_event *event, int flags)
6131 {
6132 	event->hw.state = PERF_HES_STOPPED;
6133 }
6134 
6135 /* Deref the hlist from the update side */
6136 static inline struct swevent_hlist *
6137 swevent_hlist_deref(struct swevent_htable *swhash)
6138 {
6139 	return rcu_dereference_protected(swhash->swevent_hlist,
6140 					 lockdep_is_held(&swhash->hlist_mutex));
6141 }
6142 
6143 static void swevent_hlist_release(struct swevent_htable *swhash)
6144 {
6145 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6146 
6147 	if (!hlist)
6148 		return;
6149 
6150 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6151 	kfree_rcu(hlist, rcu_head);
6152 }
6153 
6154 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6155 {
6156 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6157 
6158 	mutex_lock(&swhash->hlist_mutex);
6159 
6160 	if (!--swhash->hlist_refcount)
6161 		swevent_hlist_release(swhash);
6162 
6163 	mutex_unlock(&swhash->hlist_mutex);
6164 }
6165 
6166 static void swevent_hlist_put(struct perf_event *event)
6167 {
6168 	int cpu;
6169 
6170 	for_each_possible_cpu(cpu)
6171 		swevent_hlist_put_cpu(event, cpu);
6172 }
6173 
6174 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6175 {
6176 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6177 	int err = 0;
6178 
6179 	mutex_lock(&swhash->hlist_mutex);
6180 
6181 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6182 		struct swevent_hlist *hlist;
6183 
6184 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6185 		if (!hlist) {
6186 			err = -ENOMEM;
6187 			goto exit;
6188 		}
6189 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6190 	}
6191 	swhash->hlist_refcount++;
6192 exit:
6193 	mutex_unlock(&swhash->hlist_mutex);
6194 
6195 	return err;
6196 }
6197 
6198 static int swevent_hlist_get(struct perf_event *event)
6199 {
6200 	int err;
6201 	int cpu, failed_cpu;
6202 
6203 	get_online_cpus();
6204 	for_each_possible_cpu(cpu) {
6205 		err = swevent_hlist_get_cpu(event, cpu);
6206 		if (err) {
6207 			failed_cpu = cpu;
6208 			goto fail;
6209 		}
6210 	}
6211 	put_online_cpus();
6212 
6213 	return 0;
6214 fail:
6215 	for_each_possible_cpu(cpu) {
6216 		if (cpu == failed_cpu)
6217 			break;
6218 		swevent_hlist_put_cpu(event, cpu);
6219 	}
6220 
6221 	put_online_cpus();
6222 	return err;
6223 }
6224 
6225 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6226 
6227 static void sw_perf_event_destroy(struct perf_event *event)
6228 {
6229 	u64 event_id = event->attr.config;
6230 
6231 	WARN_ON(event->parent);
6232 
6233 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6234 	swevent_hlist_put(event);
6235 }
6236 
6237 static int perf_swevent_init(struct perf_event *event)
6238 {
6239 	u64 event_id = event->attr.config;
6240 
6241 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6242 		return -ENOENT;
6243 
6244 	/*
6245 	 * no branch sampling for software events
6246 	 */
6247 	if (has_branch_stack(event))
6248 		return -EOPNOTSUPP;
6249 
6250 	switch (event_id) {
6251 	case PERF_COUNT_SW_CPU_CLOCK:
6252 	case PERF_COUNT_SW_TASK_CLOCK:
6253 		return -ENOENT;
6254 
6255 	default:
6256 		break;
6257 	}
6258 
6259 	if (event_id >= PERF_COUNT_SW_MAX)
6260 		return -ENOENT;
6261 
6262 	if (!event->parent) {
6263 		int err;
6264 
6265 		err = swevent_hlist_get(event);
6266 		if (err)
6267 			return err;
6268 
6269 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6270 		event->destroy = sw_perf_event_destroy;
6271 	}
6272 
6273 	return 0;
6274 }
6275 
6276 static struct pmu perf_swevent = {
6277 	.task_ctx_nr	= perf_sw_context,
6278 
6279 	.event_init	= perf_swevent_init,
6280 	.add		= perf_swevent_add,
6281 	.del		= perf_swevent_del,
6282 	.start		= perf_swevent_start,
6283 	.stop		= perf_swevent_stop,
6284 	.read		= perf_swevent_read,
6285 };
6286 
6287 #ifdef CONFIG_EVENT_TRACING
6288 
6289 static int perf_tp_filter_match(struct perf_event *event,
6290 				struct perf_sample_data *data)
6291 {
6292 	void *record = data->raw->data;
6293 
6294 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6295 		return 1;
6296 	return 0;
6297 }
6298 
6299 static int perf_tp_event_match(struct perf_event *event,
6300 				struct perf_sample_data *data,
6301 				struct pt_regs *regs)
6302 {
6303 	if (event->hw.state & PERF_HES_STOPPED)
6304 		return 0;
6305 	/*
6306 	 * All tracepoints are from kernel-space.
6307 	 */
6308 	if (event->attr.exclude_kernel)
6309 		return 0;
6310 
6311 	if (!perf_tp_filter_match(event, data))
6312 		return 0;
6313 
6314 	return 1;
6315 }
6316 
6317 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6318 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6319 		   struct task_struct *task)
6320 {
6321 	struct perf_sample_data data;
6322 	struct perf_event *event;
6323 
6324 	struct perf_raw_record raw = {
6325 		.size = entry_size,
6326 		.data = record,
6327 	};
6328 
6329 	perf_sample_data_init(&data, addr, 0);
6330 	data.raw = &raw;
6331 
6332 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6333 		if (perf_tp_event_match(event, &data, regs))
6334 			perf_swevent_event(event, count, &data, regs);
6335 	}
6336 
6337 	/*
6338 	 * If we got specified a target task, also iterate its context and
6339 	 * deliver this event there too.
6340 	 */
6341 	if (task && task != current) {
6342 		struct perf_event_context *ctx;
6343 		struct trace_entry *entry = record;
6344 
6345 		rcu_read_lock();
6346 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6347 		if (!ctx)
6348 			goto unlock;
6349 
6350 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6351 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6352 				continue;
6353 			if (event->attr.config != entry->type)
6354 				continue;
6355 			if (perf_tp_event_match(event, &data, regs))
6356 				perf_swevent_event(event, count, &data, regs);
6357 		}
6358 unlock:
6359 		rcu_read_unlock();
6360 	}
6361 
6362 	perf_swevent_put_recursion_context(rctx);
6363 }
6364 EXPORT_SYMBOL_GPL(perf_tp_event);
6365 
6366 static void tp_perf_event_destroy(struct perf_event *event)
6367 {
6368 	perf_trace_destroy(event);
6369 }
6370 
6371 static int perf_tp_event_init(struct perf_event *event)
6372 {
6373 	int err;
6374 
6375 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6376 		return -ENOENT;
6377 
6378 	/*
6379 	 * no branch sampling for tracepoint events
6380 	 */
6381 	if (has_branch_stack(event))
6382 		return -EOPNOTSUPP;
6383 
6384 	err = perf_trace_init(event);
6385 	if (err)
6386 		return err;
6387 
6388 	event->destroy = tp_perf_event_destroy;
6389 
6390 	return 0;
6391 }
6392 
6393 static struct pmu perf_tracepoint = {
6394 	.task_ctx_nr	= perf_sw_context,
6395 
6396 	.event_init	= perf_tp_event_init,
6397 	.add		= perf_trace_add,
6398 	.del		= perf_trace_del,
6399 	.start		= perf_swevent_start,
6400 	.stop		= perf_swevent_stop,
6401 	.read		= perf_swevent_read,
6402 };
6403 
6404 static inline void perf_tp_register(void)
6405 {
6406 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6407 }
6408 
6409 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6410 {
6411 	char *filter_str;
6412 	int ret;
6413 
6414 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6415 		return -EINVAL;
6416 
6417 	filter_str = strndup_user(arg, PAGE_SIZE);
6418 	if (IS_ERR(filter_str))
6419 		return PTR_ERR(filter_str);
6420 
6421 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6422 
6423 	kfree(filter_str);
6424 	return ret;
6425 }
6426 
6427 static void perf_event_free_filter(struct perf_event *event)
6428 {
6429 	ftrace_profile_free_filter(event);
6430 }
6431 
6432 #else
6433 
6434 static inline void perf_tp_register(void)
6435 {
6436 }
6437 
6438 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6439 {
6440 	return -ENOENT;
6441 }
6442 
6443 static void perf_event_free_filter(struct perf_event *event)
6444 {
6445 }
6446 
6447 #endif /* CONFIG_EVENT_TRACING */
6448 
6449 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6450 void perf_bp_event(struct perf_event *bp, void *data)
6451 {
6452 	struct perf_sample_data sample;
6453 	struct pt_regs *regs = data;
6454 
6455 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6456 
6457 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6458 		perf_swevent_event(bp, 1, &sample, regs);
6459 }
6460 #endif
6461 
6462 /*
6463  * hrtimer based swevent callback
6464  */
6465 
6466 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6467 {
6468 	enum hrtimer_restart ret = HRTIMER_RESTART;
6469 	struct perf_sample_data data;
6470 	struct pt_regs *regs;
6471 	struct perf_event *event;
6472 	u64 period;
6473 
6474 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6475 
6476 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6477 		return HRTIMER_NORESTART;
6478 
6479 	event->pmu->read(event);
6480 
6481 	perf_sample_data_init(&data, 0, event->hw.last_period);
6482 	regs = get_irq_regs();
6483 
6484 	if (regs && !perf_exclude_event(event, regs)) {
6485 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6486 			if (__perf_event_overflow(event, 1, &data, regs))
6487 				ret = HRTIMER_NORESTART;
6488 	}
6489 
6490 	period = max_t(u64, 10000, event->hw.sample_period);
6491 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6492 
6493 	return ret;
6494 }
6495 
6496 static void perf_swevent_start_hrtimer(struct perf_event *event)
6497 {
6498 	struct hw_perf_event *hwc = &event->hw;
6499 	s64 period;
6500 
6501 	if (!is_sampling_event(event))
6502 		return;
6503 
6504 	period = local64_read(&hwc->period_left);
6505 	if (period) {
6506 		if (period < 0)
6507 			period = 10000;
6508 
6509 		local64_set(&hwc->period_left, 0);
6510 	} else {
6511 		period = max_t(u64, 10000, hwc->sample_period);
6512 	}
6513 	__hrtimer_start_range_ns(&hwc->hrtimer,
6514 				ns_to_ktime(period), 0,
6515 				HRTIMER_MODE_REL_PINNED, 0);
6516 }
6517 
6518 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6519 {
6520 	struct hw_perf_event *hwc = &event->hw;
6521 
6522 	if (is_sampling_event(event)) {
6523 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6524 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6525 
6526 		hrtimer_cancel(&hwc->hrtimer);
6527 	}
6528 }
6529 
6530 static void perf_swevent_init_hrtimer(struct perf_event *event)
6531 {
6532 	struct hw_perf_event *hwc = &event->hw;
6533 
6534 	if (!is_sampling_event(event))
6535 		return;
6536 
6537 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6538 	hwc->hrtimer.function = perf_swevent_hrtimer;
6539 
6540 	/*
6541 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6542 	 * mapping and avoid the whole period adjust feedback stuff.
6543 	 */
6544 	if (event->attr.freq) {
6545 		long freq = event->attr.sample_freq;
6546 
6547 		event->attr.sample_period = NSEC_PER_SEC / freq;
6548 		hwc->sample_period = event->attr.sample_period;
6549 		local64_set(&hwc->period_left, hwc->sample_period);
6550 		hwc->last_period = hwc->sample_period;
6551 		event->attr.freq = 0;
6552 	}
6553 }
6554 
6555 /*
6556  * Software event: cpu wall time clock
6557  */
6558 
6559 static void cpu_clock_event_update(struct perf_event *event)
6560 {
6561 	s64 prev;
6562 	u64 now;
6563 
6564 	now = local_clock();
6565 	prev = local64_xchg(&event->hw.prev_count, now);
6566 	local64_add(now - prev, &event->count);
6567 }
6568 
6569 static void cpu_clock_event_start(struct perf_event *event, int flags)
6570 {
6571 	local64_set(&event->hw.prev_count, local_clock());
6572 	perf_swevent_start_hrtimer(event);
6573 }
6574 
6575 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6576 {
6577 	perf_swevent_cancel_hrtimer(event);
6578 	cpu_clock_event_update(event);
6579 }
6580 
6581 static int cpu_clock_event_add(struct perf_event *event, int flags)
6582 {
6583 	if (flags & PERF_EF_START)
6584 		cpu_clock_event_start(event, flags);
6585 
6586 	return 0;
6587 }
6588 
6589 static void cpu_clock_event_del(struct perf_event *event, int flags)
6590 {
6591 	cpu_clock_event_stop(event, flags);
6592 }
6593 
6594 static void cpu_clock_event_read(struct perf_event *event)
6595 {
6596 	cpu_clock_event_update(event);
6597 }
6598 
6599 static int cpu_clock_event_init(struct perf_event *event)
6600 {
6601 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6602 		return -ENOENT;
6603 
6604 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6605 		return -ENOENT;
6606 
6607 	/*
6608 	 * no branch sampling for software events
6609 	 */
6610 	if (has_branch_stack(event))
6611 		return -EOPNOTSUPP;
6612 
6613 	perf_swevent_init_hrtimer(event);
6614 
6615 	return 0;
6616 }
6617 
6618 static struct pmu perf_cpu_clock = {
6619 	.task_ctx_nr	= perf_sw_context,
6620 
6621 	.event_init	= cpu_clock_event_init,
6622 	.add		= cpu_clock_event_add,
6623 	.del		= cpu_clock_event_del,
6624 	.start		= cpu_clock_event_start,
6625 	.stop		= cpu_clock_event_stop,
6626 	.read		= cpu_clock_event_read,
6627 };
6628 
6629 /*
6630  * Software event: task time clock
6631  */
6632 
6633 static void task_clock_event_update(struct perf_event *event, u64 now)
6634 {
6635 	u64 prev;
6636 	s64 delta;
6637 
6638 	prev = local64_xchg(&event->hw.prev_count, now);
6639 	delta = now - prev;
6640 	local64_add(delta, &event->count);
6641 }
6642 
6643 static void task_clock_event_start(struct perf_event *event, int flags)
6644 {
6645 	local64_set(&event->hw.prev_count, event->ctx->time);
6646 	perf_swevent_start_hrtimer(event);
6647 }
6648 
6649 static void task_clock_event_stop(struct perf_event *event, int flags)
6650 {
6651 	perf_swevent_cancel_hrtimer(event);
6652 	task_clock_event_update(event, event->ctx->time);
6653 }
6654 
6655 static int task_clock_event_add(struct perf_event *event, int flags)
6656 {
6657 	if (flags & PERF_EF_START)
6658 		task_clock_event_start(event, flags);
6659 
6660 	return 0;
6661 }
6662 
6663 static void task_clock_event_del(struct perf_event *event, int flags)
6664 {
6665 	task_clock_event_stop(event, PERF_EF_UPDATE);
6666 }
6667 
6668 static void task_clock_event_read(struct perf_event *event)
6669 {
6670 	u64 now = perf_clock();
6671 	u64 delta = now - event->ctx->timestamp;
6672 	u64 time = event->ctx->time + delta;
6673 
6674 	task_clock_event_update(event, time);
6675 }
6676 
6677 static int task_clock_event_init(struct perf_event *event)
6678 {
6679 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6680 		return -ENOENT;
6681 
6682 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6683 		return -ENOENT;
6684 
6685 	/*
6686 	 * no branch sampling for software events
6687 	 */
6688 	if (has_branch_stack(event))
6689 		return -EOPNOTSUPP;
6690 
6691 	perf_swevent_init_hrtimer(event);
6692 
6693 	return 0;
6694 }
6695 
6696 static struct pmu perf_task_clock = {
6697 	.task_ctx_nr	= perf_sw_context,
6698 
6699 	.event_init	= task_clock_event_init,
6700 	.add		= task_clock_event_add,
6701 	.del		= task_clock_event_del,
6702 	.start		= task_clock_event_start,
6703 	.stop		= task_clock_event_stop,
6704 	.read		= task_clock_event_read,
6705 };
6706 
6707 static void perf_pmu_nop_void(struct pmu *pmu)
6708 {
6709 }
6710 
6711 static int perf_pmu_nop_int(struct pmu *pmu)
6712 {
6713 	return 0;
6714 }
6715 
6716 static void perf_pmu_start_txn(struct pmu *pmu)
6717 {
6718 	perf_pmu_disable(pmu);
6719 }
6720 
6721 static int perf_pmu_commit_txn(struct pmu *pmu)
6722 {
6723 	perf_pmu_enable(pmu);
6724 	return 0;
6725 }
6726 
6727 static void perf_pmu_cancel_txn(struct pmu *pmu)
6728 {
6729 	perf_pmu_enable(pmu);
6730 }
6731 
6732 static int perf_event_idx_default(struct perf_event *event)
6733 {
6734 	return 0;
6735 }
6736 
6737 /*
6738  * Ensures all contexts with the same task_ctx_nr have the same
6739  * pmu_cpu_context too.
6740  */
6741 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6742 {
6743 	struct pmu *pmu;
6744 
6745 	if (ctxn < 0)
6746 		return NULL;
6747 
6748 	list_for_each_entry(pmu, &pmus, entry) {
6749 		if (pmu->task_ctx_nr == ctxn)
6750 			return pmu->pmu_cpu_context;
6751 	}
6752 
6753 	return NULL;
6754 }
6755 
6756 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6757 {
6758 	int cpu;
6759 
6760 	for_each_possible_cpu(cpu) {
6761 		struct perf_cpu_context *cpuctx;
6762 
6763 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6764 
6765 		if (cpuctx->unique_pmu == old_pmu)
6766 			cpuctx->unique_pmu = pmu;
6767 	}
6768 }
6769 
6770 static void free_pmu_context(struct pmu *pmu)
6771 {
6772 	struct pmu *i;
6773 
6774 	mutex_lock(&pmus_lock);
6775 	/*
6776 	 * Like a real lame refcount.
6777 	 */
6778 	list_for_each_entry(i, &pmus, entry) {
6779 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6780 			update_pmu_context(i, pmu);
6781 			goto out;
6782 		}
6783 	}
6784 
6785 	free_percpu(pmu->pmu_cpu_context);
6786 out:
6787 	mutex_unlock(&pmus_lock);
6788 }
6789 static struct idr pmu_idr;
6790 
6791 static ssize_t
6792 type_show(struct device *dev, struct device_attribute *attr, char *page)
6793 {
6794 	struct pmu *pmu = dev_get_drvdata(dev);
6795 
6796 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6797 }
6798 static DEVICE_ATTR_RO(type);
6799 
6800 static ssize_t
6801 perf_event_mux_interval_ms_show(struct device *dev,
6802 				struct device_attribute *attr,
6803 				char *page)
6804 {
6805 	struct pmu *pmu = dev_get_drvdata(dev);
6806 
6807 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6808 }
6809 
6810 static ssize_t
6811 perf_event_mux_interval_ms_store(struct device *dev,
6812 				 struct device_attribute *attr,
6813 				 const char *buf, size_t count)
6814 {
6815 	struct pmu *pmu = dev_get_drvdata(dev);
6816 	int timer, cpu, ret;
6817 
6818 	ret = kstrtoint(buf, 0, &timer);
6819 	if (ret)
6820 		return ret;
6821 
6822 	if (timer < 1)
6823 		return -EINVAL;
6824 
6825 	/* same value, noting to do */
6826 	if (timer == pmu->hrtimer_interval_ms)
6827 		return count;
6828 
6829 	pmu->hrtimer_interval_ms = timer;
6830 
6831 	/* update all cpuctx for this PMU */
6832 	for_each_possible_cpu(cpu) {
6833 		struct perf_cpu_context *cpuctx;
6834 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6835 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6836 
6837 		if (hrtimer_active(&cpuctx->hrtimer))
6838 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6839 	}
6840 
6841 	return count;
6842 }
6843 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6844 
6845 static struct attribute *pmu_dev_attrs[] = {
6846 	&dev_attr_type.attr,
6847 	&dev_attr_perf_event_mux_interval_ms.attr,
6848 	NULL,
6849 };
6850 ATTRIBUTE_GROUPS(pmu_dev);
6851 
6852 static int pmu_bus_running;
6853 static struct bus_type pmu_bus = {
6854 	.name		= "event_source",
6855 	.dev_groups	= pmu_dev_groups,
6856 };
6857 
6858 static void pmu_dev_release(struct device *dev)
6859 {
6860 	kfree(dev);
6861 }
6862 
6863 static int pmu_dev_alloc(struct pmu *pmu)
6864 {
6865 	int ret = -ENOMEM;
6866 
6867 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6868 	if (!pmu->dev)
6869 		goto out;
6870 
6871 	pmu->dev->groups = pmu->attr_groups;
6872 	device_initialize(pmu->dev);
6873 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6874 	if (ret)
6875 		goto free_dev;
6876 
6877 	dev_set_drvdata(pmu->dev, pmu);
6878 	pmu->dev->bus = &pmu_bus;
6879 	pmu->dev->release = pmu_dev_release;
6880 	ret = device_add(pmu->dev);
6881 	if (ret)
6882 		goto free_dev;
6883 
6884 out:
6885 	return ret;
6886 
6887 free_dev:
6888 	put_device(pmu->dev);
6889 	goto out;
6890 }
6891 
6892 static struct lock_class_key cpuctx_mutex;
6893 static struct lock_class_key cpuctx_lock;
6894 
6895 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6896 {
6897 	int cpu, ret;
6898 
6899 	mutex_lock(&pmus_lock);
6900 	ret = -ENOMEM;
6901 	pmu->pmu_disable_count = alloc_percpu(int);
6902 	if (!pmu->pmu_disable_count)
6903 		goto unlock;
6904 
6905 	pmu->type = -1;
6906 	if (!name)
6907 		goto skip_type;
6908 	pmu->name = name;
6909 
6910 	if (type < 0) {
6911 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6912 		if (type < 0) {
6913 			ret = type;
6914 			goto free_pdc;
6915 		}
6916 	}
6917 	pmu->type = type;
6918 
6919 	if (pmu_bus_running) {
6920 		ret = pmu_dev_alloc(pmu);
6921 		if (ret)
6922 			goto free_idr;
6923 	}
6924 
6925 skip_type:
6926 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6927 	if (pmu->pmu_cpu_context)
6928 		goto got_cpu_context;
6929 
6930 	ret = -ENOMEM;
6931 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6932 	if (!pmu->pmu_cpu_context)
6933 		goto free_dev;
6934 
6935 	for_each_possible_cpu(cpu) {
6936 		struct perf_cpu_context *cpuctx;
6937 
6938 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6939 		__perf_event_init_context(&cpuctx->ctx);
6940 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6941 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6942 		cpuctx->ctx.pmu = pmu;
6943 
6944 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6945 
6946 		cpuctx->unique_pmu = pmu;
6947 	}
6948 
6949 got_cpu_context:
6950 	if (!pmu->start_txn) {
6951 		if (pmu->pmu_enable) {
6952 			/*
6953 			 * If we have pmu_enable/pmu_disable calls, install
6954 			 * transaction stubs that use that to try and batch
6955 			 * hardware accesses.
6956 			 */
6957 			pmu->start_txn  = perf_pmu_start_txn;
6958 			pmu->commit_txn = perf_pmu_commit_txn;
6959 			pmu->cancel_txn = perf_pmu_cancel_txn;
6960 		} else {
6961 			pmu->start_txn  = perf_pmu_nop_void;
6962 			pmu->commit_txn = perf_pmu_nop_int;
6963 			pmu->cancel_txn = perf_pmu_nop_void;
6964 		}
6965 	}
6966 
6967 	if (!pmu->pmu_enable) {
6968 		pmu->pmu_enable  = perf_pmu_nop_void;
6969 		pmu->pmu_disable = perf_pmu_nop_void;
6970 	}
6971 
6972 	if (!pmu->event_idx)
6973 		pmu->event_idx = perf_event_idx_default;
6974 
6975 	list_add_rcu(&pmu->entry, &pmus);
6976 	ret = 0;
6977 unlock:
6978 	mutex_unlock(&pmus_lock);
6979 
6980 	return ret;
6981 
6982 free_dev:
6983 	device_del(pmu->dev);
6984 	put_device(pmu->dev);
6985 
6986 free_idr:
6987 	if (pmu->type >= PERF_TYPE_MAX)
6988 		idr_remove(&pmu_idr, pmu->type);
6989 
6990 free_pdc:
6991 	free_percpu(pmu->pmu_disable_count);
6992 	goto unlock;
6993 }
6994 EXPORT_SYMBOL_GPL(perf_pmu_register);
6995 
6996 void perf_pmu_unregister(struct pmu *pmu)
6997 {
6998 	mutex_lock(&pmus_lock);
6999 	list_del_rcu(&pmu->entry);
7000 	mutex_unlock(&pmus_lock);
7001 
7002 	/*
7003 	 * We dereference the pmu list under both SRCU and regular RCU, so
7004 	 * synchronize against both of those.
7005 	 */
7006 	synchronize_srcu(&pmus_srcu);
7007 	synchronize_rcu();
7008 
7009 	free_percpu(pmu->pmu_disable_count);
7010 	if (pmu->type >= PERF_TYPE_MAX)
7011 		idr_remove(&pmu_idr, pmu->type);
7012 	device_del(pmu->dev);
7013 	put_device(pmu->dev);
7014 	free_pmu_context(pmu);
7015 }
7016 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7017 
7018 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7019 {
7020 	int ret;
7021 
7022 	if (!try_module_get(pmu->module))
7023 		return -ENODEV;
7024 	event->pmu = pmu;
7025 	ret = pmu->event_init(event);
7026 	if (ret)
7027 		module_put(pmu->module);
7028 
7029 	return ret;
7030 }
7031 
7032 struct pmu *perf_init_event(struct perf_event *event)
7033 {
7034 	struct pmu *pmu = NULL;
7035 	int idx;
7036 	int ret;
7037 
7038 	idx = srcu_read_lock(&pmus_srcu);
7039 
7040 	rcu_read_lock();
7041 	pmu = idr_find(&pmu_idr, event->attr.type);
7042 	rcu_read_unlock();
7043 	if (pmu) {
7044 		ret = perf_try_init_event(pmu, event);
7045 		if (ret)
7046 			pmu = ERR_PTR(ret);
7047 		goto unlock;
7048 	}
7049 
7050 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7051 		ret = perf_try_init_event(pmu, event);
7052 		if (!ret)
7053 			goto unlock;
7054 
7055 		if (ret != -ENOENT) {
7056 			pmu = ERR_PTR(ret);
7057 			goto unlock;
7058 		}
7059 	}
7060 	pmu = ERR_PTR(-ENOENT);
7061 unlock:
7062 	srcu_read_unlock(&pmus_srcu, idx);
7063 
7064 	return pmu;
7065 }
7066 
7067 static void account_event_cpu(struct perf_event *event, int cpu)
7068 {
7069 	if (event->parent)
7070 		return;
7071 
7072 	if (has_branch_stack(event)) {
7073 		if (!(event->attach_state & PERF_ATTACH_TASK))
7074 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7075 	}
7076 	if (is_cgroup_event(event))
7077 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7078 }
7079 
7080 static void account_event(struct perf_event *event)
7081 {
7082 	if (event->parent)
7083 		return;
7084 
7085 	if (event->attach_state & PERF_ATTACH_TASK)
7086 		static_key_slow_inc(&perf_sched_events.key);
7087 	if (event->attr.mmap || event->attr.mmap_data)
7088 		atomic_inc(&nr_mmap_events);
7089 	if (event->attr.comm)
7090 		atomic_inc(&nr_comm_events);
7091 	if (event->attr.task)
7092 		atomic_inc(&nr_task_events);
7093 	if (event->attr.freq) {
7094 		if (atomic_inc_return(&nr_freq_events) == 1)
7095 			tick_nohz_full_kick_all();
7096 	}
7097 	if (has_branch_stack(event))
7098 		static_key_slow_inc(&perf_sched_events.key);
7099 	if (is_cgroup_event(event))
7100 		static_key_slow_inc(&perf_sched_events.key);
7101 
7102 	account_event_cpu(event, event->cpu);
7103 }
7104 
7105 /*
7106  * Allocate and initialize a event structure
7107  */
7108 static struct perf_event *
7109 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7110 		 struct task_struct *task,
7111 		 struct perf_event *group_leader,
7112 		 struct perf_event *parent_event,
7113 		 perf_overflow_handler_t overflow_handler,
7114 		 void *context)
7115 {
7116 	struct pmu *pmu;
7117 	struct perf_event *event;
7118 	struct hw_perf_event *hwc;
7119 	long err = -EINVAL;
7120 
7121 	if ((unsigned)cpu >= nr_cpu_ids) {
7122 		if (!task || cpu != -1)
7123 			return ERR_PTR(-EINVAL);
7124 	}
7125 
7126 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7127 	if (!event)
7128 		return ERR_PTR(-ENOMEM);
7129 
7130 	/*
7131 	 * Single events are their own group leaders, with an
7132 	 * empty sibling list:
7133 	 */
7134 	if (!group_leader)
7135 		group_leader = event;
7136 
7137 	mutex_init(&event->child_mutex);
7138 	INIT_LIST_HEAD(&event->child_list);
7139 
7140 	INIT_LIST_HEAD(&event->group_entry);
7141 	INIT_LIST_HEAD(&event->event_entry);
7142 	INIT_LIST_HEAD(&event->sibling_list);
7143 	INIT_LIST_HEAD(&event->rb_entry);
7144 	INIT_LIST_HEAD(&event->active_entry);
7145 	INIT_HLIST_NODE(&event->hlist_entry);
7146 
7147 
7148 	init_waitqueue_head(&event->waitq);
7149 	init_irq_work(&event->pending, perf_pending_event);
7150 
7151 	mutex_init(&event->mmap_mutex);
7152 
7153 	atomic_long_set(&event->refcount, 1);
7154 	event->cpu		= cpu;
7155 	event->attr		= *attr;
7156 	event->group_leader	= group_leader;
7157 	event->pmu		= NULL;
7158 	event->oncpu		= -1;
7159 
7160 	event->parent		= parent_event;
7161 
7162 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7163 	event->id		= atomic64_inc_return(&perf_event_id);
7164 
7165 	event->state		= PERF_EVENT_STATE_INACTIVE;
7166 
7167 	if (task) {
7168 		event->attach_state = PERF_ATTACH_TASK;
7169 
7170 		if (attr->type == PERF_TYPE_TRACEPOINT)
7171 			event->hw.tp_target = task;
7172 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7173 		/*
7174 		 * hw_breakpoint is a bit difficult here..
7175 		 */
7176 		else if (attr->type == PERF_TYPE_BREAKPOINT)
7177 			event->hw.bp_target = task;
7178 #endif
7179 	}
7180 
7181 	if (!overflow_handler && parent_event) {
7182 		overflow_handler = parent_event->overflow_handler;
7183 		context = parent_event->overflow_handler_context;
7184 	}
7185 
7186 	event->overflow_handler	= overflow_handler;
7187 	event->overflow_handler_context = context;
7188 
7189 	perf_event__state_init(event);
7190 
7191 	pmu = NULL;
7192 
7193 	hwc = &event->hw;
7194 	hwc->sample_period = attr->sample_period;
7195 	if (attr->freq && attr->sample_freq)
7196 		hwc->sample_period = 1;
7197 	hwc->last_period = hwc->sample_period;
7198 
7199 	local64_set(&hwc->period_left, hwc->sample_period);
7200 
7201 	/*
7202 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7203 	 */
7204 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7205 		goto err_ns;
7206 
7207 	pmu = perf_init_event(event);
7208 	if (!pmu)
7209 		goto err_ns;
7210 	else if (IS_ERR(pmu)) {
7211 		err = PTR_ERR(pmu);
7212 		goto err_ns;
7213 	}
7214 
7215 	if (!event->parent) {
7216 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7217 			err = get_callchain_buffers();
7218 			if (err)
7219 				goto err_pmu;
7220 		}
7221 	}
7222 
7223 	return event;
7224 
7225 err_pmu:
7226 	if (event->destroy)
7227 		event->destroy(event);
7228 	module_put(pmu->module);
7229 err_ns:
7230 	if (event->ns)
7231 		put_pid_ns(event->ns);
7232 	kfree(event);
7233 
7234 	return ERR_PTR(err);
7235 }
7236 
7237 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7238 			  struct perf_event_attr *attr)
7239 {
7240 	u32 size;
7241 	int ret;
7242 
7243 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7244 		return -EFAULT;
7245 
7246 	/*
7247 	 * zero the full structure, so that a short copy will be nice.
7248 	 */
7249 	memset(attr, 0, sizeof(*attr));
7250 
7251 	ret = get_user(size, &uattr->size);
7252 	if (ret)
7253 		return ret;
7254 
7255 	if (size > PAGE_SIZE)	/* silly large */
7256 		goto err_size;
7257 
7258 	if (!size)		/* abi compat */
7259 		size = PERF_ATTR_SIZE_VER0;
7260 
7261 	if (size < PERF_ATTR_SIZE_VER0)
7262 		goto err_size;
7263 
7264 	/*
7265 	 * If we're handed a bigger struct than we know of,
7266 	 * ensure all the unknown bits are 0 - i.e. new
7267 	 * user-space does not rely on any kernel feature
7268 	 * extensions we dont know about yet.
7269 	 */
7270 	if (size > sizeof(*attr)) {
7271 		unsigned char __user *addr;
7272 		unsigned char __user *end;
7273 		unsigned char val;
7274 
7275 		addr = (void __user *)uattr + sizeof(*attr);
7276 		end  = (void __user *)uattr + size;
7277 
7278 		for (; addr < end; addr++) {
7279 			ret = get_user(val, addr);
7280 			if (ret)
7281 				return ret;
7282 			if (val)
7283 				goto err_size;
7284 		}
7285 		size = sizeof(*attr);
7286 	}
7287 
7288 	ret = copy_from_user(attr, uattr, size);
7289 	if (ret)
7290 		return -EFAULT;
7291 
7292 	if (attr->__reserved_1)
7293 		return -EINVAL;
7294 
7295 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7296 		return -EINVAL;
7297 
7298 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7299 		return -EINVAL;
7300 
7301 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7302 		u64 mask = attr->branch_sample_type;
7303 
7304 		/* only using defined bits */
7305 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7306 			return -EINVAL;
7307 
7308 		/* at least one branch bit must be set */
7309 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7310 			return -EINVAL;
7311 
7312 		/* propagate priv level, when not set for branch */
7313 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7314 
7315 			/* exclude_kernel checked on syscall entry */
7316 			if (!attr->exclude_kernel)
7317 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7318 
7319 			if (!attr->exclude_user)
7320 				mask |= PERF_SAMPLE_BRANCH_USER;
7321 
7322 			if (!attr->exclude_hv)
7323 				mask |= PERF_SAMPLE_BRANCH_HV;
7324 			/*
7325 			 * adjust user setting (for HW filter setup)
7326 			 */
7327 			attr->branch_sample_type = mask;
7328 		}
7329 		/* privileged levels capture (kernel, hv): check permissions */
7330 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7331 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7332 			return -EACCES;
7333 	}
7334 
7335 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7336 		ret = perf_reg_validate(attr->sample_regs_user);
7337 		if (ret)
7338 			return ret;
7339 	}
7340 
7341 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7342 		if (!arch_perf_have_user_stack_dump())
7343 			return -ENOSYS;
7344 
7345 		/*
7346 		 * We have __u32 type for the size, but so far
7347 		 * we can only use __u16 as maximum due to the
7348 		 * __u16 sample size limit.
7349 		 */
7350 		if (attr->sample_stack_user >= USHRT_MAX)
7351 			ret = -EINVAL;
7352 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7353 			ret = -EINVAL;
7354 	}
7355 
7356 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7357 		ret = perf_reg_validate(attr->sample_regs_intr);
7358 out:
7359 	return ret;
7360 
7361 err_size:
7362 	put_user(sizeof(*attr), &uattr->size);
7363 	ret = -E2BIG;
7364 	goto out;
7365 }
7366 
7367 static int
7368 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7369 {
7370 	struct ring_buffer *rb = NULL;
7371 	int ret = -EINVAL;
7372 
7373 	if (!output_event)
7374 		goto set;
7375 
7376 	/* don't allow circular references */
7377 	if (event == output_event)
7378 		goto out;
7379 
7380 	/*
7381 	 * Don't allow cross-cpu buffers
7382 	 */
7383 	if (output_event->cpu != event->cpu)
7384 		goto out;
7385 
7386 	/*
7387 	 * If its not a per-cpu rb, it must be the same task.
7388 	 */
7389 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7390 		goto out;
7391 
7392 set:
7393 	mutex_lock(&event->mmap_mutex);
7394 	/* Can't redirect output if we've got an active mmap() */
7395 	if (atomic_read(&event->mmap_count))
7396 		goto unlock;
7397 
7398 	if (output_event) {
7399 		/* get the rb we want to redirect to */
7400 		rb = ring_buffer_get(output_event);
7401 		if (!rb)
7402 			goto unlock;
7403 	}
7404 
7405 	ring_buffer_attach(event, rb);
7406 
7407 	ret = 0;
7408 unlock:
7409 	mutex_unlock(&event->mmap_mutex);
7410 
7411 out:
7412 	return ret;
7413 }
7414 
7415 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7416 {
7417 	if (b < a)
7418 		swap(a, b);
7419 
7420 	mutex_lock(a);
7421 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7422 }
7423 
7424 /**
7425  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7426  *
7427  * @attr_uptr:	event_id type attributes for monitoring/sampling
7428  * @pid:		target pid
7429  * @cpu:		target cpu
7430  * @group_fd:		group leader event fd
7431  */
7432 SYSCALL_DEFINE5(perf_event_open,
7433 		struct perf_event_attr __user *, attr_uptr,
7434 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7435 {
7436 	struct perf_event *group_leader = NULL, *output_event = NULL;
7437 	struct perf_event *event, *sibling;
7438 	struct perf_event_attr attr;
7439 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7440 	struct file *event_file = NULL;
7441 	struct fd group = {NULL, 0};
7442 	struct task_struct *task = NULL;
7443 	struct pmu *pmu;
7444 	int event_fd;
7445 	int move_group = 0;
7446 	int err;
7447 	int f_flags = O_RDWR;
7448 
7449 	/* for future expandability... */
7450 	if (flags & ~PERF_FLAG_ALL)
7451 		return -EINVAL;
7452 
7453 	err = perf_copy_attr(attr_uptr, &attr);
7454 	if (err)
7455 		return err;
7456 
7457 	if (!attr.exclude_kernel) {
7458 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7459 			return -EACCES;
7460 	}
7461 
7462 	if (attr.freq) {
7463 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7464 			return -EINVAL;
7465 	} else {
7466 		if (attr.sample_period & (1ULL << 63))
7467 			return -EINVAL;
7468 	}
7469 
7470 	/*
7471 	 * In cgroup mode, the pid argument is used to pass the fd
7472 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7473 	 * designates the cpu on which to monitor threads from that
7474 	 * cgroup.
7475 	 */
7476 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7477 		return -EINVAL;
7478 
7479 	if (flags & PERF_FLAG_FD_CLOEXEC)
7480 		f_flags |= O_CLOEXEC;
7481 
7482 	event_fd = get_unused_fd_flags(f_flags);
7483 	if (event_fd < 0)
7484 		return event_fd;
7485 
7486 	if (group_fd != -1) {
7487 		err = perf_fget_light(group_fd, &group);
7488 		if (err)
7489 			goto err_fd;
7490 		group_leader = group.file->private_data;
7491 		if (flags & PERF_FLAG_FD_OUTPUT)
7492 			output_event = group_leader;
7493 		if (flags & PERF_FLAG_FD_NO_GROUP)
7494 			group_leader = NULL;
7495 	}
7496 
7497 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7498 		task = find_lively_task_by_vpid(pid);
7499 		if (IS_ERR(task)) {
7500 			err = PTR_ERR(task);
7501 			goto err_group_fd;
7502 		}
7503 	}
7504 
7505 	if (task && group_leader &&
7506 	    group_leader->attr.inherit != attr.inherit) {
7507 		err = -EINVAL;
7508 		goto err_task;
7509 	}
7510 
7511 	get_online_cpus();
7512 
7513 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7514 				 NULL, NULL);
7515 	if (IS_ERR(event)) {
7516 		err = PTR_ERR(event);
7517 		goto err_cpus;
7518 	}
7519 
7520 	if (flags & PERF_FLAG_PID_CGROUP) {
7521 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7522 		if (err) {
7523 			__free_event(event);
7524 			goto err_cpus;
7525 		}
7526 	}
7527 
7528 	if (is_sampling_event(event)) {
7529 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7530 			err = -ENOTSUPP;
7531 			goto err_alloc;
7532 		}
7533 	}
7534 
7535 	account_event(event);
7536 
7537 	/*
7538 	 * Special case software events and allow them to be part of
7539 	 * any hardware group.
7540 	 */
7541 	pmu = event->pmu;
7542 
7543 	if (group_leader &&
7544 	    (is_software_event(event) != is_software_event(group_leader))) {
7545 		if (is_software_event(event)) {
7546 			/*
7547 			 * If event and group_leader are not both a software
7548 			 * event, and event is, then group leader is not.
7549 			 *
7550 			 * Allow the addition of software events to !software
7551 			 * groups, this is safe because software events never
7552 			 * fail to schedule.
7553 			 */
7554 			pmu = group_leader->pmu;
7555 		} else if (is_software_event(group_leader) &&
7556 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7557 			/*
7558 			 * In case the group is a pure software group, and we
7559 			 * try to add a hardware event, move the whole group to
7560 			 * the hardware context.
7561 			 */
7562 			move_group = 1;
7563 		}
7564 	}
7565 
7566 	/*
7567 	 * Get the target context (task or percpu):
7568 	 */
7569 	ctx = find_get_context(pmu, task, event->cpu);
7570 	if (IS_ERR(ctx)) {
7571 		err = PTR_ERR(ctx);
7572 		goto err_alloc;
7573 	}
7574 
7575 	if (task) {
7576 		put_task_struct(task);
7577 		task = NULL;
7578 	}
7579 
7580 	/*
7581 	 * Look up the group leader (we will attach this event to it):
7582 	 */
7583 	if (group_leader) {
7584 		err = -EINVAL;
7585 
7586 		/*
7587 		 * Do not allow a recursive hierarchy (this new sibling
7588 		 * becoming part of another group-sibling):
7589 		 */
7590 		if (group_leader->group_leader != group_leader)
7591 			goto err_context;
7592 		/*
7593 		 * Do not allow to attach to a group in a different
7594 		 * task or CPU context:
7595 		 */
7596 		if (move_group) {
7597 			/*
7598 			 * Make sure we're both on the same task, or both
7599 			 * per-cpu events.
7600 			 */
7601 			if (group_leader->ctx->task != ctx->task)
7602 				goto err_context;
7603 
7604 			/*
7605 			 * Make sure we're both events for the same CPU;
7606 			 * grouping events for different CPUs is broken; since
7607 			 * you can never concurrently schedule them anyhow.
7608 			 */
7609 			if (group_leader->cpu != event->cpu)
7610 				goto err_context;
7611 		} else {
7612 			if (group_leader->ctx != ctx)
7613 				goto err_context;
7614 		}
7615 
7616 		/*
7617 		 * Only a group leader can be exclusive or pinned
7618 		 */
7619 		if (attr.exclusive || attr.pinned)
7620 			goto err_context;
7621 	}
7622 
7623 	if (output_event) {
7624 		err = perf_event_set_output(event, output_event);
7625 		if (err)
7626 			goto err_context;
7627 	}
7628 
7629 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7630 					f_flags);
7631 	if (IS_ERR(event_file)) {
7632 		err = PTR_ERR(event_file);
7633 		goto err_context;
7634 	}
7635 
7636 	if (move_group) {
7637 		gctx = group_leader->ctx;
7638 
7639 		/*
7640 		 * See perf_event_ctx_lock() for comments on the details
7641 		 * of swizzling perf_event::ctx.
7642 		 */
7643 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7644 
7645 		perf_remove_from_context(group_leader, false);
7646 
7647 		list_for_each_entry(sibling, &group_leader->sibling_list,
7648 				    group_entry) {
7649 			perf_remove_from_context(sibling, false);
7650 			put_ctx(gctx);
7651 		}
7652 	} else {
7653 		mutex_lock(&ctx->mutex);
7654 	}
7655 
7656 	WARN_ON_ONCE(ctx->parent_ctx);
7657 
7658 	if (move_group) {
7659 		/*
7660 		 * Wait for everybody to stop referencing the events through
7661 		 * the old lists, before installing it on new lists.
7662 		 */
7663 		synchronize_rcu();
7664 
7665 		/*
7666 		 * Install the group siblings before the group leader.
7667 		 *
7668 		 * Because a group leader will try and install the entire group
7669 		 * (through the sibling list, which is still in-tact), we can
7670 		 * end up with siblings installed in the wrong context.
7671 		 *
7672 		 * By installing siblings first we NO-OP because they're not
7673 		 * reachable through the group lists.
7674 		 */
7675 		list_for_each_entry(sibling, &group_leader->sibling_list,
7676 				    group_entry) {
7677 			perf_event__state_init(sibling);
7678 			perf_install_in_context(ctx, sibling, sibling->cpu);
7679 			get_ctx(ctx);
7680 		}
7681 
7682 		/*
7683 		 * Removing from the context ends up with disabled
7684 		 * event. What we want here is event in the initial
7685 		 * startup state, ready to be add into new context.
7686 		 */
7687 		perf_event__state_init(group_leader);
7688 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7689 		get_ctx(ctx);
7690 	}
7691 
7692 	perf_install_in_context(ctx, event, event->cpu);
7693 	perf_unpin_context(ctx);
7694 
7695 	if (move_group) {
7696 		mutex_unlock(&gctx->mutex);
7697 		put_ctx(gctx);
7698 	}
7699 	mutex_unlock(&ctx->mutex);
7700 
7701 	put_online_cpus();
7702 
7703 	event->owner = current;
7704 
7705 	mutex_lock(&current->perf_event_mutex);
7706 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7707 	mutex_unlock(&current->perf_event_mutex);
7708 
7709 	/*
7710 	 * Precalculate sample_data sizes
7711 	 */
7712 	perf_event__header_size(event);
7713 	perf_event__id_header_size(event);
7714 
7715 	/*
7716 	 * Drop the reference on the group_event after placing the
7717 	 * new event on the sibling_list. This ensures destruction
7718 	 * of the group leader will find the pointer to itself in
7719 	 * perf_group_detach().
7720 	 */
7721 	fdput(group);
7722 	fd_install(event_fd, event_file);
7723 	return event_fd;
7724 
7725 err_context:
7726 	perf_unpin_context(ctx);
7727 	put_ctx(ctx);
7728 err_alloc:
7729 	free_event(event);
7730 err_cpus:
7731 	put_online_cpus();
7732 err_task:
7733 	if (task)
7734 		put_task_struct(task);
7735 err_group_fd:
7736 	fdput(group);
7737 err_fd:
7738 	put_unused_fd(event_fd);
7739 	return err;
7740 }
7741 
7742 /**
7743  * perf_event_create_kernel_counter
7744  *
7745  * @attr: attributes of the counter to create
7746  * @cpu: cpu in which the counter is bound
7747  * @task: task to profile (NULL for percpu)
7748  */
7749 struct perf_event *
7750 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7751 				 struct task_struct *task,
7752 				 perf_overflow_handler_t overflow_handler,
7753 				 void *context)
7754 {
7755 	struct perf_event_context *ctx;
7756 	struct perf_event *event;
7757 	int err;
7758 
7759 	/*
7760 	 * Get the target context (task or percpu):
7761 	 */
7762 
7763 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7764 				 overflow_handler, context);
7765 	if (IS_ERR(event)) {
7766 		err = PTR_ERR(event);
7767 		goto err;
7768 	}
7769 
7770 	/* Mark owner so we could distinguish it from user events. */
7771 	event->owner = EVENT_OWNER_KERNEL;
7772 
7773 	account_event(event);
7774 
7775 	ctx = find_get_context(event->pmu, task, cpu);
7776 	if (IS_ERR(ctx)) {
7777 		err = PTR_ERR(ctx);
7778 		goto err_free;
7779 	}
7780 
7781 	WARN_ON_ONCE(ctx->parent_ctx);
7782 	mutex_lock(&ctx->mutex);
7783 	perf_install_in_context(ctx, event, cpu);
7784 	perf_unpin_context(ctx);
7785 	mutex_unlock(&ctx->mutex);
7786 
7787 	return event;
7788 
7789 err_free:
7790 	free_event(event);
7791 err:
7792 	return ERR_PTR(err);
7793 }
7794 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7795 
7796 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7797 {
7798 	struct perf_event_context *src_ctx;
7799 	struct perf_event_context *dst_ctx;
7800 	struct perf_event *event, *tmp;
7801 	LIST_HEAD(events);
7802 
7803 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7804 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7805 
7806 	/*
7807 	 * See perf_event_ctx_lock() for comments on the details
7808 	 * of swizzling perf_event::ctx.
7809 	 */
7810 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7811 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7812 				 event_entry) {
7813 		perf_remove_from_context(event, false);
7814 		unaccount_event_cpu(event, src_cpu);
7815 		put_ctx(src_ctx);
7816 		list_add(&event->migrate_entry, &events);
7817 	}
7818 
7819 	/*
7820 	 * Wait for the events to quiesce before re-instating them.
7821 	 */
7822 	synchronize_rcu();
7823 
7824 	/*
7825 	 * Re-instate events in 2 passes.
7826 	 *
7827 	 * Skip over group leaders and only install siblings on this first
7828 	 * pass, siblings will not get enabled without a leader, however a
7829 	 * leader will enable its siblings, even if those are still on the old
7830 	 * context.
7831 	 */
7832 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7833 		if (event->group_leader == event)
7834 			continue;
7835 
7836 		list_del(&event->migrate_entry);
7837 		if (event->state >= PERF_EVENT_STATE_OFF)
7838 			event->state = PERF_EVENT_STATE_INACTIVE;
7839 		account_event_cpu(event, dst_cpu);
7840 		perf_install_in_context(dst_ctx, event, dst_cpu);
7841 		get_ctx(dst_ctx);
7842 	}
7843 
7844 	/*
7845 	 * Once all the siblings are setup properly, install the group leaders
7846 	 * to make it go.
7847 	 */
7848 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7849 		list_del(&event->migrate_entry);
7850 		if (event->state >= PERF_EVENT_STATE_OFF)
7851 			event->state = PERF_EVENT_STATE_INACTIVE;
7852 		account_event_cpu(event, dst_cpu);
7853 		perf_install_in_context(dst_ctx, event, dst_cpu);
7854 		get_ctx(dst_ctx);
7855 	}
7856 	mutex_unlock(&dst_ctx->mutex);
7857 	mutex_unlock(&src_ctx->mutex);
7858 }
7859 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7860 
7861 static void sync_child_event(struct perf_event *child_event,
7862 			       struct task_struct *child)
7863 {
7864 	struct perf_event *parent_event = child_event->parent;
7865 	u64 child_val;
7866 
7867 	if (child_event->attr.inherit_stat)
7868 		perf_event_read_event(child_event, child);
7869 
7870 	child_val = perf_event_count(child_event);
7871 
7872 	/*
7873 	 * Add back the child's count to the parent's count:
7874 	 */
7875 	atomic64_add(child_val, &parent_event->child_count);
7876 	atomic64_add(child_event->total_time_enabled,
7877 		     &parent_event->child_total_time_enabled);
7878 	atomic64_add(child_event->total_time_running,
7879 		     &parent_event->child_total_time_running);
7880 
7881 	/*
7882 	 * Remove this event from the parent's list
7883 	 */
7884 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7885 	mutex_lock(&parent_event->child_mutex);
7886 	list_del_init(&child_event->child_list);
7887 	mutex_unlock(&parent_event->child_mutex);
7888 
7889 	/*
7890 	 * Make sure user/parent get notified, that we just
7891 	 * lost one event.
7892 	 */
7893 	perf_event_wakeup(parent_event);
7894 
7895 	/*
7896 	 * Release the parent event, if this was the last
7897 	 * reference to it.
7898 	 */
7899 	put_event(parent_event);
7900 }
7901 
7902 static void
7903 __perf_event_exit_task(struct perf_event *child_event,
7904 			 struct perf_event_context *child_ctx,
7905 			 struct task_struct *child)
7906 {
7907 	/*
7908 	 * Do not destroy the 'original' grouping; because of the context
7909 	 * switch optimization the original events could've ended up in a
7910 	 * random child task.
7911 	 *
7912 	 * If we were to destroy the original group, all group related
7913 	 * operations would cease to function properly after this random
7914 	 * child dies.
7915 	 *
7916 	 * Do destroy all inherited groups, we don't care about those
7917 	 * and being thorough is better.
7918 	 */
7919 	perf_remove_from_context(child_event, !!child_event->parent);
7920 
7921 	/*
7922 	 * It can happen that the parent exits first, and has events
7923 	 * that are still around due to the child reference. These
7924 	 * events need to be zapped.
7925 	 */
7926 	if (child_event->parent) {
7927 		sync_child_event(child_event, child);
7928 		free_event(child_event);
7929 	} else {
7930 		child_event->state = PERF_EVENT_STATE_EXIT;
7931 		perf_event_wakeup(child_event);
7932 	}
7933 }
7934 
7935 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7936 {
7937 	struct perf_event *child_event, *next;
7938 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7939 	unsigned long flags;
7940 
7941 	if (likely(!child->perf_event_ctxp[ctxn])) {
7942 		perf_event_task(child, NULL, 0);
7943 		return;
7944 	}
7945 
7946 	local_irq_save(flags);
7947 	/*
7948 	 * We can't reschedule here because interrupts are disabled,
7949 	 * and either child is current or it is a task that can't be
7950 	 * scheduled, so we are now safe from rescheduling changing
7951 	 * our context.
7952 	 */
7953 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7954 
7955 	/*
7956 	 * Take the context lock here so that if find_get_context is
7957 	 * reading child->perf_event_ctxp, we wait until it has
7958 	 * incremented the context's refcount before we do put_ctx below.
7959 	 */
7960 	raw_spin_lock(&child_ctx->lock);
7961 	task_ctx_sched_out(child_ctx);
7962 	child->perf_event_ctxp[ctxn] = NULL;
7963 
7964 	/*
7965 	 * If this context is a clone; unclone it so it can't get
7966 	 * swapped to another process while we're removing all
7967 	 * the events from it.
7968 	 */
7969 	clone_ctx = unclone_ctx(child_ctx);
7970 	update_context_time(child_ctx);
7971 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7972 
7973 	if (clone_ctx)
7974 		put_ctx(clone_ctx);
7975 
7976 	/*
7977 	 * Report the task dead after unscheduling the events so that we
7978 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7979 	 * get a few PERF_RECORD_READ events.
7980 	 */
7981 	perf_event_task(child, child_ctx, 0);
7982 
7983 	/*
7984 	 * We can recurse on the same lock type through:
7985 	 *
7986 	 *   __perf_event_exit_task()
7987 	 *     sync_child_event()
7988 	 *       put_event()
7989 	 *         mutex_lock(&ctx->mutex)
7990 	 *
7991 	 * But since its the parent context it won't be the same instance.
7992 	 */
7993 	mutex_lock(&child_ctx->mutex);
7994 
7995 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7996 		__perf_event_exit_task(child_event, child_ctx, child);
7997 
7998 	mutex_unlock(&child_ctx->mutex);
7999 
8000 	put_ctx(child_ctx);
8001 }
8002 
8003 /*
8004  * When a child task exits, feed back event values to parent events.
8005  */
8006 void perf_event_exit_task(struct task_struct *child)
8007 {
8008 	struct perf_event *event, *tmp;
8009 	int ctxn;
8010 
8011 	mutex_lock(&child->perf_event_mutex);
8012 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8013 				 owner_entry) {
8014 		list_del_init(&event->owner_entry);
8015 
8016 		/*
8017 		 * Ensure the list deletion is visible before we clear
8018 		 * the owner, closes a race against perf_release() where
8019 		 * we need to serialize on the owner->perf_event_mutex.
8020 		 */
8021 		smp_wmb();
8022 		event->owner = NULL;
8023 	}
8024 	mutex_unlock(&child->perf_event_mutex);
8025 
8026 	for_each_task_context_nr(ctxn)
8027 		perf_event_exit_task_context(child, ctxn);
8028 }
8029 
8030 static void perf_free_event(struct perf_event *event,
8031 			    struct perf_event_context *ctx)
8032 {
8033 	struct perf_event *parent = event->parent;
8034 
8035 	if (WARN_ON_ONCE(!parent))
8036 		return;
8037 
8038 	mutex_lock(&parent->child_mutex);
8039 	list_del_init(&event->child_list);
8040 	mutex_unlock(&parent->child_mutex);
8041 
8042 	put_event(parent);
8043 
8044 	raw_spin_lock_irq(&ctx->lock);
8045 	perf_group_detach(event);
8046 	list_del_event(event, ctx);
8047 	raw_spin_unlock_irq(&ctx->lock);
8048 	free_event(event);
8049 }
8050 
8051 /*
8052  * Free an unexposed, unused context as created by inheritance by
8053  * perf_event_init_task below, used by fork() in case of fail.
8054  *
8055  * Not all locks are strictly required, but take them anyway to be nice and
8056  * help out with the lockdep assertions.
8057  */
8058 void perf_event_free_task(struct task_struct *task)
8059 {
8060 	struct perf_event_context *ctx;
8061 	struct perf_event *event, *tmp;
8062 	int ctxn;
8063 
8064 	for_each_task_context_nr(ctxn) {
8065 		ctx = task->perf_event_ctxp[ctxn];
8066 		if (!ctx)
8067 			continue;
8068 
8069 		mutex_lock(&ctx->mutex);
8070 again:
8071 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8072 				group_entry)
8073 			perf_free_event(event, ctx);
8074 
8075 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8076 				group_entry)
8077 			perf_free_event(event, ctx);
8078 
8079 		if (!list_empty(&ctx->pinned_groups) ||
8080 				!list_empty(&ctx->flexible_groups))
8081 			goto again;
8082 
8083 		mutex_unlock(&ctx->mutex);
8084 
8085 		put_ctx(ctx);
8086 	}
8087 }
8088 
8089 void perf_event_delayed_put(struct task_struct *task)
8090 {
8091 	int ctxn;
8092 
8093 	for_each_task_context_nr(ctxn)
8094 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8095 }
8096 
8097 /*
8098  * inherit a event from parent task to child task:
8099  */
8100 static struct perf_event *
8101 inherit_event(struct perf_event *parent_event,
8102 	      struct task_struct *parent,
8103 	      struct perf_event_context *parent_ctx,
8104 	      struct task_struct *child,
8105 	      struct perf_event *group_leader,
8106 	      struct perf_event_context *child_ctx)
8107 {
8108 	enum perf_event_active_state parent_state = parent_event->state;
8109 	struct perf_event *child_event;
8110 	unsigned long flags;
8111 
8112 	/*
8113 	 * Instead of creating recursive hierarchies of events,
8114 	 * we link inherited events back to the original parent,
8115 	 * which has a filp for sure, which we use as the reference
8116 	 * count:
8117 	 */
8118 	if (parent_event->parent)
8119 		parent_event = parent_event->parent;
8120 
8121 	child_event = perf_event_alloc(&parent_event->attr,
8122 					   parent_event->cpu,
8123 					   child,
8124 					   group_leader, parent_event,
8125 				           NULL, NULL);
8126 	if (IS_ERR(child_event))
8127 		return child_event;
8128 
8129 	if (is_orphaned_event(parent_event) ||
8130 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8131 		free_event(child_event);
8132 		return NULL;
8133 	}
8134 
8135 	get_ctx(child_ctx);
8136 
8137 	/*
8138 	 * Make the child state follow the state of the parent event,
8139 	 * not its attr.disabled bit.  We hold the parent's mutex,
8140 	 * so we won't race with perf_event_{en, dis}able_family.
8141 	 */
8142 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8143 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8144 	else
8145 		child_event->state = PERF_EVENT_STATE_OFF;
8146 
8147 	if (parent_event->attr.freq) {
8148 		u64 sample_period = parent_event->hw.sample_period;
8149 		struct hw_perf_event *hwc = &child_event->hw;
8150 
8151 		hwc->sample_period = sample_period;
8152 		hwc->last_period   = sample_period;
8153 
8154 		local64_set(&hwc->period_left, sample_period);
8155 	}
8156 
8157 	child_event->ctx = child_ctx;
8158 	child_event->overflow_handler = parent_event->overflow_handler;
8159 	child_event->overflow_handler_context
8160 		= parent_event->overflow_handler_context;
8161 
8162 	/*
8163 	 * Precalculate sample_data sizes
8164 	 */
8165 	perf_event__header_size(child_event);
8166 	perf_event__id_header_size(child_event);
8167 
8168 	/*
8169 	 * Link it up in the child's context:
8170 	 */
8171 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8172 	add_event_to_ctx(child_event, child_ctx);
8173 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8174 
8175 	/*
8176 	 * Link this into the parent event's child list
8177 	 */
8178 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8179 	mutex_lock(&parent_event->child_mutex);
8180 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8181 	mutex_unlock(&parent_event->child_mutex);
8182 
8183 	return child_event;
8184 }
8185 
8186 static int inherit_group(struct perf_event *parent_event,
8187 	      struct task_struct *parent,
8188 	      struct perf_event_context *parent_ctx,
8189 	      struct task_struct *child,
8190 	      struct perf_event_context *child_ctx)
8191 {
8192 	struct perf_event *leader;
8193 	struct perf_event *sub;
8194 	struct perf_event *child_ctr;
8195 
8196 	leader = inherit_event(parent_event, parent, parent_ctx,
8197 				 child, NULL, child_ctx);
8198 	if (IS_ERR(leader))
8199 		return PTR_ERR(leader);
8200 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8201 		child_ctr = inherit_event(sub, parent, parent_ctx,
8202 					    child, leader, child_ctx);
8203 		if (IS_ERR(child_ctr))
8204 			return PTR_ERR(child_ctr);
8205 	}
8206 	return 0;
8207 }
8208 
8209 static int
8210 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8211 		   struct perf_event_context *parent_ctx,
8212 		   struct task_struct *child, int ctxn,
8213 		   int *inherited_all)
8214 {
8215 	int ret;
8216 	struct perf_event_context *child_ctx;
8217 
8218 	if (!event->attr.inherit) {
8219 		*inherited_all = 0;
8220 		return 0;
8221 	}
8222 
8223 	child_ctx = child->perf_event_ctxp[ctxn];
8224 	if (!child_ctx) {
8225 		/*
8226 		 * This is executed from the parent task context, so
8227 		 * inherit events that have been marked for cloning.
8228 		 * First allocate and initialize a context for the
8229 		 * child.
8230 		 */
8231 
8232 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8233 		if (!child_ctx)
8234 			return -ENOMEM;
8235 
8236 		child->perf_event_ctxp[ctxn] = child_ctx;
8237 	}
8238 
8239 	ret = inherit_group(event, parent, parent_ctx,
8240 			    child, child_ctx);
8241 
8242 	if (ret)
8243 		*inherited_all = 0;
8244 
8245 	return ret;
8246 }
8247 
8248 /*
8249  * Initialize the perf_event context in task_struct
8250  */
8251 static int perf_event_init_context(struct task_struct *child, int ctxn)
8252 {
8253 	struct perf_event_context *child_ctx, *parent_ctx;
8254 	struct perf_event_context *cloned_ctx;
8255 	struct perf_event *event;
8256 	struct task_struct *parent = current;
8257 	int inherited_all = 1;
8258 	unsigned long flags;
8259 	int ret = 0;
8260 
8261 	if (likely(!parent->perf_event_ctxp[ctxn]))
8262 		return 0;
8263 
8264 	/*
8265 	 * If the parent's context is a clone, pin it so it won't get
8266 	 * swapped under us.
8267 	 */
8268 	parent_ctx = perf_pin_task_context(parent, ctxn);
8269 	if (!parent_ctx)
8270 		return 0;
8271 
8272 	/*
8273 	 * No need to check if parent_ctx != NULL here; since we saw
8274 	 * it non-NULL earlier, the only reason for it to become NULL
8275 	 * is if we exit, and since we're currently in the middle of
8276 	 * a fork we can't be exiting at the same time.
8277 	 */
8278 
8279 	/*
8280 	 * Lock the parent list. No need to lock the child - not PID
8281 	 * hashed yet and not running, so nobody can access it.
8282 	 */
8283 	mutex_lock(&parent_ctx->mutex);
8284 
8285 	/*
8286 	 * We dont have to disable NMIs - we are only looking at
8287 	 * the list, not manipulating it:
8288 	 */
8289 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8290 		ret = inherit_task_group(event, parent, parent_ctx,
8291 					 child, ctxn, &inherited_all);
8292 		if (ret)
8293 			break;
8294 	}
8295 
8296 	/*
8297 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8298 	 * to allocations, but we need to prevent rotation because
8299 	 * rotate_ctx() will change the list from interrupt context.
8300 	 */
8301 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8302 	parent_ctx->rotate_disable = 1;
8303 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8304 
8305 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8306 		ret = inherit_task_group(event, parent, parent_ctx,
8307 					 child, ctxn, &inherited_all);
8308 		if (ret)
8309 			break;
8310 	}
8311 
8312 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8313 	parent_ctx->rotate_disable = 0;
8314 
8315 	child_ctx = child->perf_event_ctxp[ctxn];
8316 
8317 	if (child_ctx && inherited_all) {
8318 		/*
8319 		 * Mark the child context as a clone of the parent
8320 		 * context, or of whatever the parent is a clone of.
8321 		 *
8322 		 * Note that if the parent is a clone, the holding of
8323 		 * parent_ctx->lock avoids it from being uncloned.
8324 		 */
8325 		cloned_ctx = parent_ctx->parent_ctx;
8326 		if (cloned_ctx) {
8327 			child_ctx->parent_ctx = cloned_ctx;
8328 			child_ctx->parent_gen = parent_ctx->parent_gen;
8329 		} else {
8330 			child_ctx->parent_ctx = parent_ctx;
8331 			child_ctx->parent_gen = parent_ctx->generation;
8332 		}
8333 		get_ctx(child_ctx->parent_ctx);
8334 	}
8335 
8336 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8337 	mutex_unlock(&parent_ctx->mutex);
8338 
8339 	perf_unpin_context(parent_ctx);
8340 	put_ctx(parent_ctx);
8341 
8342 	return ret;
8343 }
8344 
8345 /*
8346  * Initialize the perf_event context in task_struct
8347  */
8348 int perf_event_init_task(struct task_struct *child)
8349 {
8350 	int ctxn, ret;
8351 
8352 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8353 	mutex_init(&child->perf_event_mutex);
8354 	INIT_LIST_HEAD(&child->perf_event_list);
8355 
8356 	for_each_task_context_nr(ctxn) {
8357 		ret = perf_event_init_context(child, ctxn);
8358 		if (ret) {
8359 			perf_event_free_task(child);
8360 			return ret;
8361 		}
8362 	}
8363 
8364 	return 0;
8365 }
8366 
8367 static void __init perf_event_init_all_cpus(void)
8368 {
8369 	struct swevent_htable *swhash;
8370 	int cpu;
8371 
8372 	for_each_possible_cpu(cpu) {
8373 		swhash = &per_cpu(swevent_htable, cpu);
8374 		mutex_init(&swhash->hlist_mutex);
8375 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8376 	}
8377 }
8378 
8379 static void perf_event_init_cpu(int cpu)
8380 {
8381 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8382 
8383 	mutex_lock(&swhash->hlist_mutex);
8384 	swhash->online = true;
8385 	if (swhash->hlist_refcount > 0) {
8386 		struct swevent_hlist *hlist;
8387 
8388 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8389 		WARN_ON(!hlist);
8390 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8391 	}
8392 	mutex_unlock(&swhash->hlist_mutex);
8393 }
8394 
8395 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8396 static void __perf_event_exit_context(void *__info)
8397 {
8398 	struct remove_event re = { .detach_group = true };
8399 	struct perf_event_context *ctx = __info;
8400 
8401 	rcu_read_lock();
8402 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8403 		__perf_remove_from_context(&re);
8404 	rcu_read_unlock();
8405 }
8406 
8407 static void perf_event_exit_cpu_context(int cpu)
8408 {
8409 	struct perf_event_context *ctx;
8410 	struct pmu *pmu;
8411 	int idx;
8412 
8413 	idx = srcu_read_lock(&pmus_srcu);
8414 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8415 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8416 
8417 		mutex_lock(&ctx->mutex);
8418 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8419 		mutex_unlock(&ctx->mutex);
8420 	}
8421 	srcu_read_unlock(&pmus_srcu, idx);
8422 }
8423 
8424 static void perf_event_exit_cpu(int cpu)
8425 {
8426 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8427 
8428 	perf_event_exit_cpu_context(cpu);
8429 
8430 	mutex_lock(&swhash->hlist_mutex);
8431 	swhash->online = false;
8432 	swevent_hlist_release(swhash);
8433 	mutex_unlock(&swhash->hlist_mutex);
8434 }
8435 #else
8436 static inline void perf_event_exit_cpu(int cpu) { }
8437 #endif
8438 
8439 static int
8440 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8441 {
8442 	int cpu;
8443 
8444 	for_each_online_cpu(cpu)
8445 		perf_event_exit_cpu(cpu);
8446 
8447 	return NOTIFY_OK;
8448 }
8449 
8450 /*
8451  * Run the perf reboot notifier at the very last possible moment so that
8452  * the generic watchdog code runs as long as possible.
8453  */
8454 static struct notifier_block perf_reboot_notifier = {
8455 	.notifier_call = perf_reboot,
8456 	.priority = INT_MIN,
8457 };
8458 
8459 static int
8460 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8461 {
8462 	unsigned int cpu = (long)hcpu;
8463 
8464 	switch (action & ~CPU_TASKS_FROZEN) {
8465 
8466 	case CPU_UP_PREPARE:
8467 	case CPU_DOWN_FAILED:
8468 		perf_event_init_cpu(cpu);
8469 		break;
8470 
8471 	case CPU_UP_CANCELED:
8472 	case CPU_DOWN_PREPARE:
8473 		perf_event_exit_cpu(cpu);
8474 		break;
8475 	default:
8476 		break;
8477 	}
8478 
8479 	return NOTIFY_OK;
8480 }
8481 
8482 void __init perf_event_init(void)
8483 {
8484 	int ret;
8485 
8486 	idr_init(&pmu_idr);
8487 
8488 	perf_event_init_all_cpus();
8489 	init_srcu_struct(&pmus_srcu);
8490 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8491 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8492 	perf_pmu_register(&perf_task_clock, NULL, -1);
8493 	perf_tp_register();
8494 	perf_cpu_notifier(perf_cpu_notify);
8495 	register_reboot_notifier(&perf_reboot_notifier);
8496 
8497 	ret = init_hw_breakpoint();
8498 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8499 
8500 	/* do not patch jump label more than once per second */
8501 	jump_label_rate_limit(&perf_sched_events, HZ);
8502 
8503 	/*
8504 	 * Build time assertion that we keep the data_head at the intended
8505 	 * location.  IOW, validation we got the __reserved[] size right.
8506 	 */
8507 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8508 		     != 1024);
8509 }
8510 
8511 static int __init perf_event_sysfs_init(void)
8512 {
8513 	struct pmu *pmu;
8514 	int ret;
8515 
8516 	mutex_lock(&pmus_lock);
8517 
8518 	ret = bus_register(&pmu_bus);
8519 	if (ret)
8520 		goto unlock;
8521 
8522 	list_for_each_entry(pmu, &pmus, entry) {
8523 		if (!pmu->name || pmu->type < 0)
8524 			continue;
8525 
8526 		ret = pmu_dev_alloc(pmu);
8527 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8528 	}
8529 	pmu_bus_running = 1;
8530 	ret = 0;
8531 
8532 unlock:
8533 	mutex_unlock(&pmus_lock);
8534 
8535 	return ret;
8536 }
8537 device_initcall(perf_event_sysfs_init);
8538 
8539 #ifdef CONFIG_CGROUP_PERF
8540 static struct cgroup_subsys_state *
8541 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8542 {
8543 	struct perf_cgroup *jc;
8544 
8545 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8546 	if (!jc)
8547 		return ERR_PTR(-ENOMEM);
8548 
8549 	jc->info = alloc_percpu(struct perf_cgroup_info);
8550 	if (!jc->info) {
8551 		kfree(jc);
8552 		return ERR_PTR(-ENOMEM);
8553 	}
8554 
8555 	return &jc->css;
8556 }
8557 
8558 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8559 {
8560 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8561 
8562 	free_percpu(jc->info);
8563 	kfree(jc);
8564 }
8565 
8566 static int __perf_cgroup_move(void *info)
8567 {
8568 	struct task_struct *task = info;
8569 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8570 	return 0;
8571 }
8572 
8573 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8574 			       struct cgroup_taskset *tset)
8575 {
8576 	struct task_struct *task;
8577 
8578 	cgroup_taskset_for_each(task, tset)
8579 		task_function_call(task, __perf_cgroup_move, task);
8580 }
8581 
8582 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8583 			     struct cgroup_subsys_state *old_css,
8584 			     struct task_struct *task)
8585 {
8586 	/*
8587 	 * cgroup_exit() is called in the copy_process() failure path.
8588 	 * Ignore this case since the task hasn't ran yet, this avoids
8589 	 * trying to poke a half freed task state from generic code.
8590 	 */
8591 	if (!(task->flags & PF_EXITING))
8592 		return;
8593 
8594 	task_function_call(task, __perf_cgroup_move, task);
8595 }
8596 
8597 struct cgroup_subsys perf_event_cgrp_subsys = {
8598 	.css_alloc	= perf_cgroup_css_alloc,
8599 	.css_free	= perf_cgroup_css_free,
8600 	.exit		= perf_cgroup_exit,
8601 	.attach		= perf_cgroup_attach,
8602 };
8603 #endif /* CONFIG_CGROUP_PERF */
8604