xref: /linux/kernel/events/core.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 
393 /*
394  * perf event paranoia level:
395  *  -1 - not paranoid at all
396  *   0 - disallow raw tracepoint access for unpriv
397  *   1 - disallow cpu events for unpriv
398  *   2 - disallow kernel profiling for unpriv
399  */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401 
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404 
405 /*
406  * max perf event sample rate
407  */
408 #define DEFAULT_MAX_SAMPLE_RATE		100000
409 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
411 
412 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
413 
414 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
416 
417 static int perf_sample_allowed_ns __read_mostly =
418 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419 
420 static void update_perf_cpu_limits(void)
421 {
422 	u64 tmp = perf_sample_period_ns;
423 
424 	tmp *= sysctl_perf_cpu_time_max_percent;
425 	tmp = div_u64(tmp, 100);
426 	if (!tmp)
427 		tmp = 1;
428 
429 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431 
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433 
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435 		void __user *buffer, size_t *lenp,
436 		loff_t *ppos)
437 {
438 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439 
440 	if (ret || !write)
441 		return ret;
442 
443 	/*
444 	 * If throttling is disabled don't allow the write:
445 	 */
446 	if (sysctl_perf_cpu_time_max_percent == 100 ||
447 	    sysctl_perf_cpu_time_max_percent == 0)
448 		return -EINVAL;
449 
450 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452 	update_perf_cpu_limits();
453 
454 	return 0;
455 }
456 
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458 
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460 				void __user *buffer, size_t *lenp,
461 				loff_t *ppos)
462 {
463 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 
465 	if (ret || !write)
466 		return ret;
467 
468 	if (sysctl_perf_cpu_time_max_percent == 100 ||
469 	    sysctl_perf_cpu_time_max_percent == 0) {
470 		printk(KERN_WARNING
471 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472 		WRITE_ONCE(perf_sample_allowed_ns, 0);
473 	} else {
474 		update_perf_cpu_limits();
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * perf samples are done in some very critical code paths (NMIs).
482  * If they take too much CPU time, the system can lock up and not
483  * get any real work done.  This will drop the sample rate when
484  * we detect that events are taking too long.
485  */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488 
489 static u64 __report_avg;
490 static u64 __report_allowed;
491 
492 static void perf_duration_warn(struct irq_work *w)
493 {
494 	printk_ratelimited(KERN_INFO
495 		"perf: interrupt took too long (%lld > %lld), lowering "
496 		"kernel.perf_event_max_sample_rate to %d\n",
497 		__report_avg, __report_allowed,
498 		sysctl_perf_event_sample_rate);
499 }
500 
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502 
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506 	u64 running_len;
507 	u64 avg_len;
508 	u32 max;
509 
510 	if (max_len == 0)
511 		return;
512 
513 	/* Decay the counter by 1 average sample. */
514 	running_len = __this_cpu_read(running_sample_length);
515 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516 	running_len += sample_len_ns;
517 	__this_cpu_write(running_sample_length, running_len);
518 
519 	/*
520 	 * Note: this will be biased artifically low until we have
521 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522 	 * from having to maintain a count.
523 	 */
524 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525 	if (avg_len <= max_len)
526 		return;
527 
528 	__report_avg = avg_len;
529 	__report_allowed = max_len;
530 
531 	/*
532 	 * Compute a throttle threshold 25% below the current duration.
533 	 */
534 	avg_len += avg_len / 4;
535 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536 	if (avg_len < max)
537 		max /= (u32)avg_len;
538 	else
539 		max = 1;
540 
541 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542 	WRITE_ONCE(max_samples_per_tick, max);
543 
544 	sysctl_perf_event_sample_rate = max * HZ;
545 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546 
547 	if (!irq_work_queue(&perf_duration_work)) {
548 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549 			     "kernel.perf_event_max_sample_rate to %d\n",
550 			     __report_avg, __report_allowed,
551 			     sysctl_perf_event_sample_rate);
552 	}
553 }
554 
555 static atomic64_t perf_event_id;
556 
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558 			      enum event_type_t event_type);
559 
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561 			     enum event_type_t event_type,
562 			     struct task_struct *task);
563 
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566 
567 void __weak perf_event_print_debug(void)	{ }
568 
569 extern __weak const char *perf_pmu_name(void)
570 {
571 	return "pmu";
572 }
573 
574 static inline u64 perf_clock(void)
575 {
576 	return local_clock();
577 }
578 
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581 	return event->clock();
582 }
583 
584 #ifdef CONFIG_CGROUP_PERF
585 
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589 	struct perf_event_context *ctx = event->ctx;
590 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591 
592 	/* @event doesn't care about cgroup */
593 	if (!event->cgrp)
594 		return true;
595 
596 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
597 	if (!cpuctx->cgrp)
598 		return false;
599 
600 	/*
601 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
602 	 * also enabled for all its descendant cgroups.  If @cpuctx's
603 	 * cgroup is a descendant of @event's (the test covers identity
604 	 * case), it's a match.
605 	 */
606 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607 				    event->cgrp->css.cgroup);
608 }
609 
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612 	css_put(&event->cgrp->css);
613 	event->cgrp = NULL;
614 }
615 
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618 	return event->cgrp != NULL;
619 }
620 
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623 	struct perf_cgroup_info *t;
624 
625 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
626 	return t->time;
627 }
628 
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631 	struct perf_cgroup_info *info;
632 	u64 now;
633 
634 	now = perf_clock();
635 
636 	info = this_cpu_ptr(cgrp->info);
637 
638 	info->time += now - info->timestamp;
639 	info->timestamp = now;
640 }
641 
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645 	if (cgrp_out)
646 		__update_cgrp_time(cgrp_out);
647 }
648 
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651 	struct perf_cgroup *cgrp;
652 
653 	/*
654 	 * ensure we access cgroup data only when needed and
655 	 * when we know the cgroup is pinned (css_get)
656 	 */
657 	if (!is_cgroup_event(event))
658 		return;
659 
660 	cgrp = perf_cgroup_from_task(current, event->ctx);
661 	/*
662 	 * Do not update time when cgroup is not active
663 	 */
664 	if (cgrp == event->cgrp)
665 		__update_cgrp_time(event->cgrp);
666 }
667 
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670 			  struct perf_event_context *ctx)
671 {
672 	struct perf_cgroup *cgrp;
673 	struct perf_cgroup_info *info;
674 
675 	/*
676 	 * ctx->lock held by caller
677 	 * ensure we do not access cgroup data
678 	 * unless we have the cgroup pinned (css_get)
679 	 */
680 	if (!task || !ctx->nr_cgroups)
681 		return;
682 
683 	cgrp = perf_cgroup_from_task(task, ctx);
684 	info = this_cpu_ptr(cgrp->info);
685 	info->timestamp = ctx->timestamp;
686 }
687 
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689 
690 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
692 
693 /*
694  * reschedule events based on the cgroup constraint of task.
695  *
696  * mode SWOUT : schedule out everything
697  * mode SWIN : schedule in based on cgroup for next
698  */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701 	struct perf_cpu_context *cpuctx;
702 	struct list_head *list;
703 	unsigned long flags;
704 
705 	/*
706 	 * Disable interrupts and preemption to avoid this CPU's
707 	 * cgrp_cpuctx_entry to change under us.
708 	 */
709 	local_irq_save(flags);
710 
711 	list = this_cpu_ptr(&cgrp_cpuctx_list);
712 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714 
715 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716 		perf_pmu_disable(cpuctx->ctx.pmu);
717 
718 		if (mode & PERF_CGROUP_SWOUT) {
719 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720 			/*
721 			 * must not be done before ctxswout due
722 			 * to event_filter_match() in event_sched_out()
723 			 */
724 			cpuctx->cgrp = NULL;
725 		}
726 
727 		if (mode & PERF_CGROUP_SWIN) {
728 			WARN_ON_ONCE(cpuctx->cgrp);
729 			/*
730 			 * set cgrp before ctxsw in to allow
731 			 * event_filter_match() to not have to pass
732 			 * task around
733 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
734 			 * because cgorup events are only per-cpu
735 			 */
736 			cpuctx->cgrp = perf_cgroup_from_task(task,
737 							     &cpuctx->ctx);
738 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739 		}
740 		perf_pmu_enable(cpuctx->ctx.pmu);
741 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742 	}
743 
744 	local_irq_restore(flags);
745 }
746 
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748 					 struct task_struct *next)
749 {
750 	struct perf_cgroup *cgrp1;
751 	struct perf_cgroup *cgrp2 = NULL;
752 
753 	rcu_read_lock();
754 	/*
755 	 * we come here when we know perf_cgroup_events > 0
756 	 * we do not need to pass the ctx here because we know
757 	 * we are holding the rcu lock
758 	 */
759 	cgrp1 = perf_cgroup_from_task(task, NULL);
760 	cgrp2 = perf_cgroup_from_task(next, NULL);
761 
762 	/*
763 	 * only schedule out current cgroup events if we know
764 	 * that we are switching to a different cgroup. Otherwise,
765 	 * do no touch the cgroup events.
766 	 */
767 	if (cgrp1 != cgrp2)
768 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769 
770 	rcu_read_unlock();
771 }
772 
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774 					struct task_struct *task)
775 {
776 	struct perf_cgroup *cgrp1;
777 	struct perf_cgroup *cgrp2 = NULL;
778 
779 	rcu_read_lock();
780 	/*
781 	 * we come here when we know perf_cgroup_events > 0
782 	 * we do not need to pass the ctx here because we know
783 	 * we are holding the rcu lock
784 	 */
785 	cgrp1 = perf_cgroup_from_task(task, NULL);
786 	cgrp2 = perf_cgroup_from_task(prev, NULL);
787 
788 	/*
789 	 * only need to schedule in cgroup events if we are changing
790 	 * cgroup during ctxsw. Cgroup events were not scheduled
791 	 * out of ctxsw out if that was not the case.
792 	 */
793 	if (cgrp1 != cgrp2)
794 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795 
796 	rcu_read_unlock();
797 }
798 
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800 				      struct perf_event_attr *attr,
801 				      struct perf_event *group_leader)
802 {
803 	struct perf_cgroup *cgrp;
804 	struct cgroup_subsys_state *css;
805 	struct fd f = fdget(fd);
806 	int ret = 0;
807 
808 	if (!f.file)
809 		return -EBADF;
810 
811 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
812 					 &perf_event_cgrp_subsys);
813 	if (IS_ERR(css)) {
814 		ret = PTR_ERR(css);
815 		goto out;
816 	}
817 
818 	cgrp = container_of(css, struct perf_cgroup, css);
819 	event->cgrp = cgrp;
820 
821 	/*
822 	 * all events in a group must monitor
823 	 * the same cgroup because a task belongs
824 	 * to only one perf cgroup at a time
825 	 */
826 	if (group_leader && group_leader->cgrp != cgrp) {
827 		perf_detach_cgroup(event);
828 		ret = -EINVAL;
829 	}
830 out:
831 	fdput(f);
832 	return ret;
833 }
834 
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838 	struct perf_cgroup_info *t;
839 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
840 	event->shadow_ctx_time = now - t->timestamp;
841 }
842 
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846 	/*
847 	 * when the current task's perf cgroup does not match
848 	 * the event's, we need to remember to call the
849 	 * perf_mark_enable() function the first time a task with
850 	 * a matching perf cgroup is scheduled in.
851 	 */
852 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
853 		event->cgrp_defer_enabled = 1;
854 }
855 
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858 			 struct perf_event_context *ctx)
859 {
860 	struct perf_event *sub;
861 	u64 tstamp = perf_event_time(event);
862 
863 	if (!event->cgrp_defer_enabled)
864 		return;
865 
866 	event->cgrp_defer_enabled = 0;
867 
868 	event->tstamp_enabled = tstamp - event->total_time_enabled;
869 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
870 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872 			sub->cgrp_defer_enabled = 0;
873 		}
874 	}
875 }
876 
877 /*
878  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879  * cleared when last cgroup event is removed.
880  */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883 			 struct perf_event_context *ctx, bool add)
884 {
885 	struct perf_cpu_context *cpuctx;
886 	struct list_head *cpuctx_entry;
887 
888 	if (!is_cgroup_event(event))
889 		return;
890 
891 	if (add && ctx->nr_cgroups++)
892 		return;
893 	else if (!add && --ctx->nr_cgroups)
894 		return;
895 	/*
896 	 * Because cgroup events are always per-cpu events,
897 	 * this will always be called from the right CPU.
898 	 */
899 	cpuctx = __get_cpu_context(ctx);
900 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902 	if (add) {
903 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905 			cpuctx->cgrp = event->cgrp;
906 	} else {
907 		list_del(cpuctx_entry);
908 		cpuctx->cgrp = NULL;
909 	}
910 }
911 
912 #else /* !CONFIG_CGROUP_PERF */
913 
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917 	return true;
918 }
919 
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922 
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925 	return 0;
926 }
927 
928 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
929 {
930 	return 0;
931 }
932 
933 static inline void update_cgrp_time_from_event(struct perf_event *event)
934 {
935 }
936 
937 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
938 {
939 }
940 
941 static inline void perf_cgroup_sched_out(struct task_struct *task,
942 					 struct task_struct *next)
943 {
944 }
945 
946 static inline void perf_cgroup_sched_in(struct task_struct *prev,
947 					struct task_struct *task)
948 {
949 }
950 
951 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
952 				      struct perf_event_attr *attr,
953 				      struct perf_event *group_leader)
954 {
955 	return -EINVAL;
956 }
957 
958 static inline void
959 perf_cgroup_set_timestamp(struct task_struct *task,
960 			  struct perf_event_context *ctx)
961 {
962 }
963 
964 void
965 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
966 {
967 }
968 
969 static inline void
970 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
971 {
972 }
973 
974 static inline u64 perf_cgroup_event_time(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void
980 perf_cgroup_defer_enabled(struct perf_event *event)
981 {
982 }
983 
984 static inline void
985 perf_cgroup_mark_enabled(struct perf_event *event,
986 			 struct perf_event_context *ctx)
987 {
988 }
989 
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992 			 struct perf_event_context *ctx, bool add)
993 {
994 }
995 
996 #endif
997 
998 /*
999  * set default to be dependent on timer tick just
1000  * like original code
1001  */
1002 #define PERF_CPU_HRTIMER (1000 / HZ)
1003 /*
1004  * function must be called with interrupts disabled
1005  */
1006 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1007 {
1008 	struct perf_cpu_context *cpuctx;
1009 	int rotations = 0;
1010 
1011 	WARN_ON(!irqs_disabled());
1012 
1013 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1014 	rotations = perf_rotate_context(cpuctx);
1015 
1016 	raw_spin_lock(&cpuctx->hrtimer_lock);
1017 	if (rotations)
1018 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1019 	else
1020 		cpuctx->hrtimer_active = 0;
1021 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1022 
1023 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1024 }
1025 
1026 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1027 {
1028 	struct hrtimer *timer = &cpuctx->hrtimer;
1029 	struct pmu *pmu = cpuctx->ctx.pmu;
1030 	u64 interval;
1031 
1032 	/* no multiplexing needed for SW PMU */
1033 	if (pmu->task_ctx_nr == perf_sw_context)
1034 		return;
1035 
1036 	/*
1037 	 * check default is sane, if not set then force to
1038 	 * default interval (1/tick)
1039 	 */
1040 	interval = pmu->hrtimer_interval_ms;
1041 	if (interval < 1)
1042 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1043 
1044 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1045 
1046 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1047 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1048 	timer->function = perf_mux_hrtimer_handler;
1049 }
1050 
1051 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1052 {
1053 	struct hrtimer *timer = &cpuctx->hrtimer;
1054 	struct pmu *pmu = cpuctx->ctx.pmu;
1055 	unsigned long flags;
1056 
1057 	/* not for SW PMU */
1058 	if (pmu->task_ctx_nr == perf_sw_context)
1059 		return 0;
1060 
1061 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1062 	if (!cpuctx->hrtimer_active) {
1063 		cpuctx->hrtimer_active = 1;
1064 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1065 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1066 	}
1067 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1068 
1069 	return 0;
1070 }
1071 
1072 void perf_pmu_disable(struct pmu *pmu)
1073 {
1074 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1075 	if (!(*count)++)
1076 		pmu->pmu_disable(pmu);
1077 }
1078 
1079 void perf_pmu_enable(struct pmu *pmu)
1080 {
1081 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082 	if (!--(*count))
1083 		pmu->pmu_enable(pmu);
1084 }
1085 
1086 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1087 
1088 /*
1089  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1090  * perf_event_task_tick() are fully serialized because they're strictly cpu
1091  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1092  * disabled, while perf_event_task_tick is called from IRQ context.
1093  */
1094 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1095 {
1096 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1097 
1098 	WARN_ON(!irqs_disabled());
1099 
1100 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1101 
1102 	list_add(&ctx->active_ctx_list, head);
1103 }
1104 
1105 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1106 {
1107 	WARN_ON(!irqs_disabled());
1108 
1109 	WARN_ON(list_empty(&ctx->active_ctx_list));
1110 
1111 	list_del_init(&ctx->active_ctx_list);
1112 }
1113 
1114 static void get_ctx(struct perf_event_context *ctx)
1115 {
1116 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1117 }
1118 
1119 static void free_ctx(struct rcu_head *head)
1120 {
1121 	struct perf_event_context *ctx;
1122 
1123 	ctx = container_of(head, struct perf_event_context, rcu_head);
1124 	kfree(ctx->task_ctx_data);
1125 	kfree(ctx);
1126 }
1127 
1128 static void put_ctx(struct perf_event_context *ctx)
1129 {
1130 	if (atomic_dec_and_test(&ctx->refcount)) {
1131 		if (ctx->parent_ctx)
1132 			put_ctx(ctx->parent_ctx);
1133 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1134 			put_task_struct(ctx->task);
1135 		call_rcu(&ctx->rcu_head, free_ctx);
1136 	}
1137 }
1138 
1139 /*
1140  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1141  * perf_pmu_migrate_context() we need some magic.
1142  *
1143  * Those places that change perf_event::ctx will hold both
1144  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1145  *
1146  * Lock ordering is by mutex address. There are two other sites where
1147  * perf_event_context::mutex nests and those are:
1148  *
1149  *  - perf_event_exit_task_context()	[ child , 0 ]
1150  *      perf_event_exit_event()
1151  *        put_event()			[ parent, 1 ]
1152  *
1153  *  - perf_event_init_context()		[ parent, 0 ]
1154  *      inherit_task_group()
1155  *        inherit_group()
1156  *          inherit_event()
1157  *            perf_event_alloc()
1158  *              perf_init_event()
1159  *                perf_try_init_event()	[ child , 1 ]
1160  *
1161  * While it appears there is an obvious deadlock here -- the parent and child
1162  * nesting levels are inverted between the two. This is in fact safe because
1163  * life-time rules separate them. That is an exiting task cannot fork, and a
1164  * spawning task cannot (yet) exit.
1165  *
1166  * But remember that that these are parent<->child context relations, and
1167  * migration does not affect children, therefore these two orderings should not
1168  * interact.
1169  *
1170  * The change in perf_event::ctx does not affect children (as claimed above)
1171  * because the sys_perf_event_open() case will install a new event and break
1172  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1173  * concerned with cpuctx and that doesn't have children.
1174  *
1175  * The places that change perf_event::ctx will issue:
1176  *
1177  *   perf_remove_from_context();
1178  *   synchronize_rcu();
1179  *   perf_install_in_context();
1180  *
1181  * to affect the change. The remove_from_context() + synchronize_rcu() should
1182  * quiesce the event, after which we can install it in the new location. This
1183  * means that only external vectors (perf_fops, prctl) can perturb the event
1184  * while in transit. Therefore all such accessors should also acquire
1185  * perf_event_context::mutex to serialize against this.
1186  *
1187  * However; because event->ctx can change while we're waiting to acquire
1188  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189  * function.
1190  *
1191  * Lock order:
1192  *    cred_guard_mutex
1193  *	task_struct::perf_event_mutex
1194  *	  perf_event_context::mutex
1195  *	    perf_event::child_mutex;
1196  *	      perf_event_context::lock
1197  *	    perf_event::mmap_mutex
1198  *	    mmap_sem
1199  */
1200 static struct perf_event_context *
1201 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1202 {
1203 	struct perf_event_context *ctx;
1204 
1205 again:
1206 	rcu_read_lock();
1207 	ctx = ACCESS_ONCE(event->ctx);
1208 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1209 		rcu_read_unlock();
1210 		goto again;
1211 	}
1212 	rcu_read_unlock();
1213 
1214 	mutex_lock_nested(&ctx->mutex, nesting);
1215 	if (event->ctx != ctx) {
1216 		mutex_unlock(&ctx->mutex);
1217 		put_ctx(ctx);
1218 		goto again;
1219 	}
1220 
1221 	return ctx;
1222 }
1223 
1224 static inline struct perf_event_context *
1225 perf_event_ctx_lock(struct perf_event *event)
1226 {
1227 	return perf_event_ctx_lock_nested(event, 0);
1228 }
1229 
1230 static void perf_event_ctx_unlock(struct perf_event *event,
1231 				  struct perf_event_context *ctx)
1232 {
1233 	mutex_unlock(&ctx->mutex);
1234 	put_ctx(ctx);
1235 }
1236 
1237 /*
1238  * This must be done under the ctx->lock, such as to serialize against
1239  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1240  * calling scheduler related locks and ctx->lock nests inside those.
1241  */
1242 static __must_check struct perf_event_context *
1243 unclone_ctx(struct perf_event_context *ctx)
1244 {
1245 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1246 
1247 	lockdep_assert_held(&ctx->lock);
1248 
1249 	if (parent_ctx)
1250 		ctx->parent_ctx = NULL;
1251 	ctx->generation++;
1252 
1253 	return parent_ctx;
1254 }
1255 
1256 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1257 {
1258 	/*
1259 	 * only top level events have the pid namespace they were created in
1260 	 */
1261 	if (event->parent)
1262 		event = event->parent;
1263 
1264 	return task_tgid_nr_ns(p, event->ns);
1265 }
1266 
1267 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1268 {
1269 	/*
1270 	 * only top level events have the pid namespace they were created in
1271 	 */
1272 	if (event->parent)
1273 		event = event->parent;
1274 
1275 	return task_pid_nr_ns(p, event->ns);
1276 }
1277 
1278 /*
1279  * If we inherit events we want to return the parent event id
1280  * to userspace.
1281  */
1282 static u64 primary_event_id(struct perf_event *event)
1283 {
1284 	u64 id = event->id;
1285 
1286 	if (event->parent)
1287 		id = event->parent->id;
1288 
1289 	return id;
1290 }
1291 
1292 /*
1293  * Get the perf_event_context for a task and lock it.
1294  *
1295  * This has to cope with with the fact that until it is locked,
1296  * the context could get moved to another task.
1297  */
1298 static struct perf_event_context *
1299 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1300 {
1301 	struct perf_event_context *ctx;
1302 
1303 retry:
1304 	/*
1305 	 * One of the few rules of preemptible RCU is that one cannot do
1306 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1307 	 * part of the read side critical section was irqs-enabled -- see
1308 	 * rcu_read_unlock_special().
1309 	 *
1310 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1311 	 * side critical section has interrupts disabled.
1312 	 */
1313 	local_irq_save(*flags);
1314 	rcu_read_lock();
1315 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1316 	if (ctx) {
1317 		/*
1318 		 * If this context is a clone of another, it might
1319 		 * get swapped for another underneath us by
1320 		 * perf_event_task_sched_out, though the
1321 		 * rcu_read_lock() protects us from any context
1322 		 * getting freed.  Lock the context and check if it
1323 		 * got swapped before we could get the lock, and retry
1324 		 * if so.  If we locked the right context, then it
1325 		 * can't get swapped on us any more.
1326 		 */
1327 		raw_spin_lock(&ctx->lock);
1328 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1329 			raw_spin_unlock(&ctx->lock);
1330 			rcu_read_unlock();
1331 			local_irq_restore(*flags);
1332 			goto retry;
1333 		}
1334 
1335 		if (ctx->task == TASK_TOMBSTONE ||
1336 		    !atomic_inc_not_zero(&ctx->refcount)) {
1337 			raw_spin_unlock(&ctx->lock);
1338 			ctx = NULL;
1339 		} else {
1340 			WARN_ON_ONCE(ctx->task != task);
1341 		}
1342 	}
1343 	rcu_read_unlock();
1344 	if (!ctx)
1345 		local_irq_restore(*flags);
1346 	return ctx;
1347 }
1348 
1349 /*
1350  * Get the context for a task and increment its pin_count so it
1351  * can't get swapped to another task.  This also increments its
1352  * reference count so that the context can't get freed.
1353  */
1354 static struct perf_event_context *
1355 perf_pin_task_context(struct task_struct *task, int ctxn)
1356 {
1357 	struct perf_event_context *ctx;
1358 	unsigned long flags;
1359 
1360 	ctx = perf_lock_task_context(task, ctxn, &flags);
1361 	if (ctx) {
1362 		++ctx->pin_count;
1363 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1364 	}
1365 	return ctx;
1366 }
1367 
1368 static void perf_unpin_context(struct perf_event_context *ctx)
1369 {
1370 	unsigned long flags;
1371 
1372 	raw_spin_lock_irqsave(&ctx->lock, flags);
1373 	--ctx->pin_count;
1374 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1375 }
1376 
1377 /*
1378  * Update the record of the current time in a context.
1379  */
1380 static void update_context_time(struct perf_event_context *ctx)
1381 {
1382 	u64 now = perf_clock();
1383 
1384 	ctx->time += now - ctx->timestamp;
1385 	ctx->timestamp = now;
1386 }
1387 
1388 static u64 perf_event_time(struct perf_event *event)
1389 {
1390 	struct perf_event_context *ctx = event->ctx;
1391 
1392 	if (is_cgroup_event(event))
1393 		return perf_cgroup_event_time(event);
1394 
1395 	return ctx ? ctx->time : 0;
1396 }
1397 
1398 /*
1399  * Update the total_time_enabled and total_time_running fields for a event.
1400  */
1401 static void update_event_times(struct perf_event *event)
1402 {
1403 	struct perf_event_context *ctx = event->ctx;
1404 	u64 run_end;
1405 
1406 	lockdep_assert_held(&ctx->lock);
1407 
1408 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1409 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1410 		return;
1411 
1412 	/*
1413 	 * in cgroup mode, time_enabled represents
1414 	 * the time the event was enabled AND active
1415 	 * tasks were in the monitored cgroup. This is
1416 	 * independent of the activity of the context as
1417 	 * there may be a mix of cgroup and non-cgroup events.
1418 	 *
1419 	 * That is why we treat cgroup events differently
1420 	 * here.
1421 	 */
1422 	if (is_cgroup_event(event))
1423 		run_end = perf_cgroup_event_time(event);
1424 	else if (ctx->is_active)
1425 		run_end = ctx->time;
1426 	else
1427 		run_end = event->tstamp_stopped;
1428 
1429 	event->total_time_enabled = run_end - event->tstamp_enabled;
1430 
1431 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1432 		run_end = event->tstamp_stopped;
1433 	else
1434 		run_end = perf_event_time(event);
1435 
1436 	event->total_time_running = run_end - event->tstamp_running;
1437 
1438 }
1439 
1440 /*
1441  * Update total_time_enabled and total_time_running for all events in a group.
1442  */
1443 static void update_group_times(struct perf_event *leader)
1444 {
1445 	struct perf_event *event;
1446 
1447 	update_event_times(leader);
1448 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1449 		update_event_times(event);
1450 }
1451 
1452 static enum event_type_t get_event_type(struct perf_event *event)
1453 {
1454 	struct perf_event_context *ctx = event->ctx;
1455 	enum event_type_t event_type;
1456 
1457 	lockdep_assert_held(&ctx->lock);
1458 
1459 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1460 	if (!ctx->task)
1461 		event_type |= EVENT_CPU;
1462 
1463 	return event_type;
1464 }
1465 
1466 static struct list_head *
1467 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1468 {
1469 	if (event->attr.pinned)
1470 		return &ctx->pinned_groups;
1471 	else
1472 		return &ctx->flexible_groups;
1473 }
1474 
1475 /*
1476  * Add a event from the lists for its context.
1477  * Must be called with ctx->mutex and ctx->lock held.
1478  */
1479 static void
1480 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1481 {
1482 	lockdep_assert_held(&ctx->lock);
1483 
1484 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1485 	event->attach_state |= PERF_ATTACH_CONTEXT;
1486 
1487 	/*
1488 	 * If we're a stand alone event or group leader, we go to the context
1489 	 * list, group events are kept attached to the group so that
1490 	 * perf_group_detach can, at all times, locate all siblings.
1491 	 */
1492 	if (event->group_leader == event) {
1493 		struct list_head *list;
1494 
1495 		event->group_caps = event->event_caps;
1496 
1497 		list = ctx_group_list(event, ctx);
1498 		list_add_tail(&event->group_entry, list);
1499 	}
1500 
1501 	list_update_cgroup_event(event, ctx, true);
1502 
1503 	list_add_rcu(&event->event_entry, &ctx->event_list);
1504 	ctx->nr_events++;
1505 	if (event->attr.inherit_stat)
1506 		ctx->nr_stat++;
1507 
1508 	ctx->generation++;
1509 }
1510 
1511 /*
1512  * Initialize event state based on the perf_event_attr::disabled.
1513  */
1514 static inline void perf_event__state_init(struct perf_event *event)
1515 {
1516 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1517 					      PERF_EVENT_STATE_INACTIVE;
1518 }
1519 
1520 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 {
1522 	int entry = sizeof(u64); /* value */
1523 	int size = 0;
1524 	int nr = 1;
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527 		size += sizeof(u64);
1528 
1529 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1530 		size += sizeof(u64);
1531 
1532 	if (event->attr.read_format & PERF_FORMAT_ID)
1533 		entry += sizeof(u64);
1534 
1535 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1536 		nr += nr_siblings;
1537 		size += sizeof(u64);
1538 	}
1539 
1540 	size += entry * nr;
1541 	event->read_size = size;
1542 }
1543 
1544 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 {
1546 	struct perf_sample_data *data;
1547 	u16 size = 0;
1548 
1549 	if (sample_type & PERF_SAMPLE_IP)
1550 		size += sizeof(data->ip);
1551 
1552 	if (sample_type & PERF_SAMPLE_ADDR)
1553 		size += sizeof(data->addr);
1554 
1555 	if (sample_type & PERF_SAMPLE_PERIOD)
1556 		size += sizeof(data->period);
1557 
1558 	if (sample_type & PERF_SAMPLE_WEIGHT)
1559 		size += sizeof(data->weight);
1560 
1561 	if (sample_type & PERF_SAMPLE_READ)
1562 		size += event->read_size;
1563 
1564 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1565 		size += sizeof(data->data_src.val);
1566 
1567 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1568 		size += sizeof(data->txn);
1569 
1570 	event->header_size = size;
1571 }
1572 
1573 /*
1574  * Called at perf_event creation and when events are attached/detached from a
1575  * group.
1576  */
1577 static void perf_event__header_size(struct perf_event *event)
1578 {
1579 	__perf_event_read_size(event,
1580 			       event->group_leader->nr_siblings);
1581 	__perf_event_header_size(event, event->attr.sample_type);
1582 }
1583 
1584 static void perf_event__id_header_size(struct perf_event *event)
1585 {
1586 	struct perf_sample_data *data;
1587 	u64 sample_type = event->attr.sample_type;
1588 	u16 size = 0;
1589 
1590 	if (sample_type & PERF_SAMPLE_TID)
1591 		size += sizeof(data->tid_entry);
1592 
1593 	if (sample_type & PERF_SAMPLE_TIME)
1594 		size += sizeof(data->time);
1595 
1596 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1597 		size += sizeof(data->id);
1598 
1599 	if (sample_type & PERF_SAMPLE_ID)
1600 		size += sizeof(data->id);
1601 
1602 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1603 		size += sizeof(data->stream_id);
1604 
1605 	if (sample_type & PERF_SAMPLE_CPU)
1606 		size += sizeof(data->cpu_entry);
1607 
1608 	event->id_header_size = size;
1609 }
1610 
1611 static bool perf_event_validate_size(struct perf_event *event)
1612 {
1613 	/*
1614 	 * The values computed here will be over-written when we actually
1615 	 * attach the event.
1616 	 */
1617 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1618 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1619 	perf_event__id_header_size(event);
1620 
1621 	/*
1622 	 * Sum the lot; should not exceed the 64k limit we have on records.
1623 	 * Conservative limit to allow for callchains and other variable fields.
1624 	 */
1625 	if (event->read_size + event->header_size +
1626 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1627 		return false;
1628 
1629 	return true;
1630 }
1631 
1632 static void perf_group_attach(struct perf_event *event)
1633 {
1634 	struct perf_event *group_leader = event->group_leader, *pos;
1635 
1636 	lockdep_assert_held(&event->ctx->lock);
1637 
1638 	/*
1639 	 * We can have double attach due to group movement in perf_event_open.
1640 	 */
1641 	if (event->attach_state & PERF_ATTACH_GROUP)
1642 		return;
1643 
1644 	event->attach_state |= PERF_ATTACH_GROUP;
1645 
1646 	if (group_leader == event)
1647 		return;
1648 
1649 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1650 
1651 	group_leader->group_caps &= event->event_caps;
1652 
1653 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1654 	group_leader->nr_siblings++;
1655 
1656 	perf_event__header_size(group_leader);
1657 
1658 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1659 		perf_event__header_size(pos);
1660 }
1661 
1662 /*
1663  * Remove a event from the lists for its context.
1664  * Must be called with ctx->mutex and ctx->lock held.
1665  */
1666 static void
1667 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1668 {
1669 	WARN_ON_ONCE(event->ctx != ctx);
1670 	lockdep_assert_held(&ctx->lock);
1671 
1672 	/*
1673 	 * We can have double detach due to exit/hot-unplug + close.
1674 	 */
1675 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1676 		return;
1677 
1678 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1679 
1680 	list_update_cgroup_event(event, ctx, false);
1681 
1682 	ctx->nr_events--;
1683 	if (event->attr.inherit_stat)
1684 		ctx->nr_stat--;
1685 
1686 	list_del_rcu(&event->event_entry);
1687 
1688 	if (event->group_leader == event)
1689 		list_del_init(&event->group_entry);
1690 
1691 	update_group_times(event);
1692 
1693 	/*
1694 	 * If event was in error state, then keep it
1695 	 * that way, otherwise bogus counts will be
1696 	 * returned on read(). The only way to get out
1697 	 * of error state is by explicit re-enabling
1698 	 * of the event
1699 	 */
1700 	if (event->state > PERF_EVENT_STATE_OFF)
1701 		event->state = PERF_EVENT_STATE_OFF;
1702 
1703 	ctx->generation++;
1704 }
1705 
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 	struct perf_event *sibling, *tmp;
1709 	struct list_head *list = NULL;
1710 
1711 	lockdep_assert_held(&event->ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_GROUP;
1720 
1721 	/*
1722 	 * If this is a sibling, remove it from its group.
1723 	 */
1724 	if (event->group_leader != event) {
1725 		list_del_init(&event->group_entry);
1726 		event->group_leader->nr_siblings--;
1727 		goto out;
1728 	}
1729 
1730 	if (!list_empty(&event->group_entry))
1731 		list = &event->group_entry;
1732 
1733 	/*
1734 	 * If this was a group event with sibling events then
1735 	 * upgrade the siblings to singleton events by adding them
1736 	 * to whatever list we are on.
1737 	 */
1738 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 		if (list)
1740 			list_move_tail(&sibling->group_entry, list);
1741 		sibling->group_leader = sibling;
1742 
1743 		/* Inherit group flags from the previous leader */
1744 		sibling->group_caps = event->group_caps;
1745 
1746 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 	}
1748 
1749 out:
1750 	perf_event__header_size(event->group_leader);
1751 
1752 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 		perf_event__header_size(tmp);
1754 }
1755 
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 	return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760 
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 	struct pmu *pmu = event->pmu;
1764 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766 
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 	struct perf_event *child;
1776 
1777 	if (!__pmu_filter_match(event))
1778 		return 0;
1779 
1780 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 		if (!__pmu_filter_match(child))
1782 			return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794 
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 		  struct perf_cpu_context *cpuctx,
1798 		  struct perf_event_context *ctx)
1799 {
1800 	u64 tstamp = perf_event_time(event);
1801 	u64 delta;
1802 
1803 	WARN_ON_ONCE(event->ctx != ctx);
1804 	lockdep_assert_held(&ctx->lock);
1805 
1806 	/*
1807 	 * An event which could not be activated because of
1808 	 * filter mismatch still needs to have its timings
1809 	 * maintained, otherwise bogus information is return
1810 	 * via read() for time_enabled, time_running:
1811 	 */
1812 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1813 	    !event_filter_match(event)) {
1814 		delta = tstamp - event->tstamp_stopped;
1815 		event->tstamp_running += delta;
1816 		event->tstamp_stopped = tstamp;
1817 	}
1818 
1819 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1820 		return;
1821 
1822 	perf_pmu_disable(event->pmu);
1823 
1824 	event->tstamp_stopped = tstamp;
1825 	event->pmu->del(event, 0);
1826 	event->oncpu = -1;
1827 	event->state = PERF_EVENT_STATE_INACTIVE;
1828 	if (event->pending_disable) {
1829 		event->pending_disable = 0;
1830 		event->state = PERF_EVENT_STATE_OFF;
1831 	}
1832 
1833 	if (!is_software_event(event))
1834 		cpuctx->active_oncpu--;
1835 	if (!--ctx->nr_active)
1836 		perf_event_ctx_deactivate(ctx);
1837 	if (event->attr.freq && event->attr.sample_freq)
1838 		ctx->nr_freq--;
1839 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1840 		cpuctx->exclusive = 0;
1841 
1842 	perf_pmu_enable(event->pmu);
1843 }
1844 
1845 static void
1846 group_sched_out(struct perf_event *group_event,
1847 		struct perf_cpu_context *cpuctx,
1848 		struct perf_event_context *ctx)
1849 {
1850 	struct perf_event *event;
1851 	int state = group_event->state;
1852 
1853 	perf_pmu_disable(ctx->pmu);
1854 
1855 	event_sched_out(group_event, cpuctx, ctx);
1856 
1857 	/*
1858 	 * Schedule out siblings (if any):
1859 	 */
1860 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1861 		event_sched_out(event, cpuctx, ctx);
1862 
1863 	perf_pmu_enable(ctx->pmu);
1864 
1865 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1866 		cpuctx->exclusive = 0;
1867 }
1868 
1869 #define DETACH_GROUP	0x01UL
1870 
1871 /*
1872  * Cross CPU call to remove a performance event
1873  *
1874  * We disable the event on the hardware level first. After that we
1875  * remove it from the context list.
1876  */
1877 static void
1878 __perf_remove_from_context(struct perf_event *event,
1879 			   struct perf_cpu_context *cpuctx,
1880 			   struct perf_event_context *ctx,
1881 			   void *info)
1882 {
1883 	unsigned long flags = (unsigned long)info;
1884 
1885 	event_sched_out(event, cpuctx, ctx);
1886 	if (flags & DETACH_GROUP)
1887 		perf_group_detach(event);
1888 	list_del_event(event, ctx);
1889 
1890 	if (!ctx->nr_events && ctx->is_active) {
1891 		ctx->is_active = 0;
1892 		if (ctx->task) {
1893 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1894 			cpuctx->task_ctx = NULL;
1895 		}
1896 	}
1897 }
1898 
1899 /*
1900  * Remove the event from a task's (or a CPU's) list of events.
1901  *
1902  * If event->ctx is a cloned context, callers must make sure that
1903  * every task struct that event->ctx->task could possibly point to
1904  * remains valid.  This is OK when called from perf_release since
1905  * that only calls us on the top-level context, which can't be a clone.
1906  * When called from perf_event_exit_task, it's OK because the
1907  * context has been detached from its task.
1908  */
1909 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1910 {
1911 	struct perf_event_context *ctx = event->ctx;
1912 
1913 	lockdep_assert_held(&ctx->mutex);
1914 
1915 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1916 
1917 	/*
1918 	 * The above event_function_call() can NO-OP when it hits
1919 	 * TASK_TOMBSTONE. In that case we must already have been detached
1920 	 * from the context (by perf_event_exit_event()) but the grouping
1921 	 * might still be in-tact.
1922 	 */
1923 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1924 	if ((flags & DETACH_GROUP) &&
1925 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1926 		/*
1927 		 * Since in that case we cannot possibly be scheduled, simply
1928 		 * detach now.
1929 		 */
1930 		raw_spin_lock_irq(&ctx->lock);
1931 		perf_group_detach(event);
1932 		raw_spin_unlock_irq(&ctx->lock);
1933 	}
1934 }
1935 
1936 /*
1937  * Cross CPU call to disable a performance event
1938  */
1939 static void __perf_event_disable(struct perf_event *event,
1940 				 struct perf_cpu_context *cpuctx,
1941 				 struct perf_event_context *ctx,
1942 				 void *info)
1943 {
1944 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1945 		return;
1946 
1947 	update_context_time(ctx);
1948 	update_cgrp_time_from_event(event);
1949 	update_group_times(event);
1950 	if (event == event->group_leader)
1951 		group_sched_out(event, cpuctx, ctx);
1952 	else
1953 		event_sched_out(event, cpuctx, ctx);
1954 	event->state = PERF_EVENT_STATE_OFF;
1955 }
1956 
1957 /*
1958  * Disable a event.
1959  *
1960  * If event->ctx is a cloned context, callers must make sure that
1961  * every task struct that event->ctx->task could possibly point to
1962  * remains valid.  This condition is satisifed when called through
1963  * perf_event_for_each_child or perf_event_for_each because they
1964  * hold the top-level event's child_mutex, so any descendant that
1965  * goes to exit will block in perf_event_exit_event().
1966  *
1967  * When called from perf_pending_event it's OK because event->ctx
1968  * is the current context on this CPU and preemption is disabled,
1969  * hence we can't get into perf_event_task_sched_out for this context.
1970  */
1971 static void _perf_event_disable(struct perf_event *event)
1972 {
1973 	struct perf_event_context *ctx = event->ctx;
1974 
1975 	raw_spin_lock_irq(&ctx->lock);
1976 	if (event->state <= PERF_EVENT_STATE_OFF) {
1977 		raw_spin_unlock_irq(&ctx->lock);
1978 		return;
1979 	}
1980 	raw_spin_unlock_irq(&ctx->lock);
1981 
1982 	event_function_call(event, __perf_event_disable, NULL);
1983 }
1984 
1985 void perf_event_disable_local(struct perf_event *event)
1986 {
1987 	event_function_local(event, __perf_event_disable, NULL);
1988 }
1989 
1990 /*
1991  * Strictly speaking kernel users cannot create groups and therefore this
1992  * interface does not need the perf_event_ctx_lock() magic.
1993  */
1994 void perf_event_disable(struct perf_event *event)
1995 {
1996 	struct perf_event_context *ctx;
1997 
1998 	ctx = perf_event_ctx_lock(event);
1999 	_perf_event_disable(event);
2000 	perf_event_ctx_unlock(event, ctx);
2001 }
2002 EXPORT_SYMBOL_GPL(perf_event_disable);
2003 
2004 void perf_event_disable_inatomic(struct perf_event *event)
2005 {
2006 	event->pending_disable = 1;
2007 	irq_work_queue(&event->pending);
2008 }
2009 
2010 static void perf_set_shadow_time(struct perf_event *event,
2011 				 struct perf_event_context *ctx,
2012 				 u64 tstamp)
2013 {
2014 	/*
2015 	 * use the correct time source for the time snapshot
2016 	 *
2017 	 * We could get by without this by leveraging the
2018 	 * fact that to get to this function, the caller
2019 	 * has most likely already called update_context_time()
2020 	 * and update_cgrp_time_xx() and thus both timestamp
2021 	 * are identical (or very close). Given that tstamp is,
2022 	 * already adjusted for cgroup, we could say that:
2023 	 *    tstamp - ctx->timestamp
2024 	 * is equivalent to
2025 	 *    tstamp - cgrp->timestamp.
2026 	 *
2027 	 * Then, in perf_output_read(), the calculation would
2028 	 * work with no changes because:
2029 	 * - event is guaranteed scheduled in
2030 	 * - no scheduled out in between
2031 	 * - thus the timestamp would be the same
2032 	 *
2033 	 * But this is a bit hairy.
2034 	 *
2035 	 * So instead, we have an explicit cgroup call to remain
2036 	 * within the time time source all along. We believe it
2037 	 * is cleaner and simpler to understand.
2038 	 */
2039 	if (is_cgroup_event(event))
2040 		perf_cgroup_set_shadow_time(event, tstamp);
2041 	else
2042 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2043 }
2044 
2045 #define MAX_INTERRUPTS (~0ULL)
2046 
2047 static void perf_log_throttle(struct perf_event *event, int enable);
2048 static void perf_log_itrace_start(struct perf_event *event);
2049 
2050 static int
2051 event_sched_in(struct perf_event *event,
2052 		 struct perf_cpu_context *cpuctx,
2053 		 struct perf_event_context *ctx)
2054 {
2055 	u64 tstamp = perf_event_time(event);
2056 	int ret = 0;
2057 
2058 	lockdep_assert_held(&ctx->lock);
2059 
2060 	if (event->state <= PERF_EVENT_STATE_OFF)
2061 		return 0;
2062 
2063 	WRITE_ONCE(event->oncpu, smp_processor_id());
2064 	/*
2065 	 * Order event::oncpu write to happen before the ACTIVE state
2066 	 * is visible.
2067 	 */
2068 	smp_wmb();
2069 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2070 
2071 	/*
2072 	 * Unthrottle events, since we scheduled we might have missed several
2073 	 * ticks already, also for a heavily scheduling task there is little
2074 	 * guarantee it'll get a tick in a timely manner.
2075 	 */
2076 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077 		perf_log_throttle(event, 1);
2078 		event->hw.interrupts = 0;
2079 	}
2080 
2081 	/*
2082 	 * The new state must be visible before we turn it on in the hardware:
2083 	 */
2084 	smp_wmb();
2085 
2086 	perf_pmu_disable(event->pmu);
2087 
2088 	perf_set_shadow_time(event, ctx, tstamp);
2089 
2090 	perf_log_itrace_start(event);
2091 
2092 	if (event->pmu->add(event, PERF_EF_START)) {
2093 		event->state = PERF_EVENT_STATE_INACTIVE;
2094 		event->oncpu = -1;
2095 		ret = -EAGAIN;
2096 		goto out;
2097 	}
2098 
2099 	event->tstamp_running += tstamp - event->tstamp_stopped;
2100 
2101 	if (!is_software_event(event))
2102 		cpuctx->active_oncpu++;
2103 	if (!ctx->nr_active++)
2104 		perf_event_ctx_activate(ctx);
2105 	if (event->attr.freq && event->attr.sample_freq)
2106 		ctx->nr_freq++;
2107 
2108 	if (event->attr.exclusive)
2109 		cpuctx->exclusive = 1;
2110 
2111 out:
2112 	perf_pmu_enable(event->pmu);
2113 
2114 	return ret;
2115 }
2116 
2117 static int
2118 group_sched_in(struct perf_event *group_event,
2119 	       struct perf_cpu_context *cpuctx,
2120 	       struct perf_event_context *ctx)
2121 {
2122 	struct perf_event *event, *partial_group = NULL;
2123 	struct pmu *pmu = ctx->pmu;
2124 	u64 now = ctx->time;
2125 	bool simulate = false;
2126 
2127 	if (group_event->state == PERF_EVENT_STATE_OFF)
2128 		return 0;
2129 
2130 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2131 
2132 	if (event_sched_in(group_event, cpuctx, ctx)) {
2133 		pmu->cancel_txn(pmu);
2134 		perf_mux_hrtimer_restart(cpuctx);
2135 		return -EAGAIN;
2136 	}
2137 
2138 	/*
2139 	 * Schedule in siblings as one group (if any):
2140 	 */
2141 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2142 		if (event_sched_in(event, cpuctx, ctx)) {
2143 			partial_group = event;
2144 			goto group_error;
2145 		}
2146 	}
2147 
2148 	if (!pmu->commit_txn(pmu))
2149 		return 0;
2150 
2151 group_error:
2152 	/*
2153 	 * Groups can be scheduled in as one unit only, so undo any
2154 	 * partial group before returning:
2155 	 * The events up to the failed event are scheduled out normally,
2156 	 * tstamp_stopped will be updated.
2157 	 *
2158 	 * The failed events and the remaining siblings need to have
2159 	 * their timings updated as if they had gone thru event_sched_in()
2160 	 * and event_sched_out(). This is required to get consistent timings
2161 	 * across the group. This also takes care of the case where the group
2162 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2163 	 * the time the event was actually stopped, such that time delta
2164 	 * calculation in update_event_times() is correct.
2165 	 */
2166 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2167 		if (event == partial_group)
2168 			simulate = true;
2169 
2170 		if (simulate) {
2171 			event->tstamp_running += now - event->tstamp_stopped;
2172 			event->tstamp_stopped = now;
2173 		} else {
2174 			event_sched_out(event, cpuctx, ctx);
2175 		}
2176 	}
2177 	event_sched_out(group_event, cpuctx, ctx);
2178 
2179 	pmu->cancel_txn(pmu);
2180 
2181 	perf_mux_hrtimer_restart(cpuctx);
2182 
2183 	return -EAGAIN;
2184 }
2185 
2186 /*
2187  * Work out whether we can put this event group on the CPU now.
2188  */
2189 static int group_can_go_on(struct perf_event *event,
2190 			   struct perf_cpu_context *cpuctx,
2191 			   int can_add_hw)
2192 {
2193 	/*
2194 	 * Groups consisting entirely of software events can always go on.
2195 	 */
2196 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197 		return 1;
2198 	/*
2199 	 * If an exclusive group is already on, no other hardware
2200 	 * events can go on.
2201 	 */
2202 	if (cpuctx->exclusive)
2203 		return 0;
2204 	/*
2205 	 * If this group is exclusive and there are already
2206 	 * events on the CPU, it can't go on.
2207 	 */
2208 	if (event->attr.exclusive && cpuctx->active_oncpu)
2209 		return 0;
2210 	/*
2211 	 * Otherwise, try to add it if all previous groups were able
2212 	 * to go on.
2213 	 */
2214 	return can_add_hw;
2215 }
2216 
2217 static void add_event_to_ctx(struct perf_event *event,
2218 			       struct perf_event_context *ctx)
2219 {
2220 	u64 tstamp = perf_event_time(event);
2221 
2222 	list_add_event(event, ctx);
2223 	perf_group_attach(event);
2224 	event->tstamp_enabled = tstamp;
2225 	event->tstamp_running = tstamp;
2226 	event->tstamp_stopped = tstamp;
2227 }
2228 
2229 static void ctx_sched_out(struct perf_event_context *ctx,
2230 			  struct perf_cpu_context *cpuctx,
2231 			  enum event_type_t event_type);
2232 static void
2233 ctx_sched_in(struct perf_event_context *ctx,
2234 	     struct perf_cpu_context *cpuctx,
2235 	     enum event_type_t event_type,
2236 	     struct task_struct *task);
2237 
2238 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2239 			       struct perf_event_context *ctx,
2240 			       enum event_type_t event_type)
2241 {
2242 	if (!cpuctx->task_ctx)
2243 		return;
2244 
2245 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246 		return;
2247 
2248 	ctx_sched_out(ctx, cpuctx, event_type);
2249 }
2250 
2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252 				struct perf_event_context *ctx,
2253 				struct task_struct *task)
2254 {
2255 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256 	if (ctx)
2257 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259 	if (ctx)
2260 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2261 }
2262 
2263 /*
2264  * We want to maintain the following priority of scheduling:
2265  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2266  *  - task pinned (EVENT_PINNED)
2267  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2268  *  - task flexible (EVENT_FLEXIBLE).
2269  *
2270  * In order to avoid unscheduling and scheduling back in everything every
2271  * time an event is added, only do it for the groups of equal priority and
2272  * below.
2273  *
2274  * This can be called after a batch operation on task events, in which case
2275  * event_type is a bit mask of the types of events involved. For CPU events,
2276  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2277  */
2278 static void ctx_resched(struct perf_cpu_context *cpuctx,
2279 			struct perf_event_context *task_ctx,
2280 			enum event_type_t event_type)
2281 {
2282 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2283 	bool cpu_event = !!(event_type & EVENT_CPU);
2284 
2285 	/*
2286 	 * If pinned groups are involved, flexible groups also need to be
2287 	 * scheduled out.
2288 	 */
2289 	if (event_type & EVENT_PINNED)
2290 		event_type |= EVENT_FLEXIBLE;
2291 
2292 	perf_pmu_disable(cpuctx->ctx.pmu);
2293 	if (task_ctx)
2294 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2295 
2296 	/*
2297 	 * Decide which cpu ctx groups to schedule out based on the types
2298 	 * of events that caused rescheduling:
2299 	 *  - EVENT_CPU: schedule out corresponding groups;
2300 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2301 	 *  - otherwise, do nothing more.
2302 	 */
2303 	if (cpu_event)
2304 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2305 	else if (ctx_event_type & EVENT_PINNED)
2306 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2307 
2308 	perf_event_sched_in(cpuctx, task_ctx, current);
2309 	perf_pmu_enable(cpuctx->ctx.pmu);
2310 }
2311 
2312 /*
2313  * Cross CPU call to install and enable a performance event
2314  *
2315  * Very similar to remote_function() + event_function() but cannot assume that
2316  * things like ctx->is_active and cpuctx->task_ctx are set.
2317  */
2318 static int  __perf_install_in_context(void *info)
2319 {
2320 	struct perf_event *event = info;
2321 	struct perf_event_context *ctx = event->ctx;
2322 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2323 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2324 	bool reprogram = true;
2325 	int ret = 0;
2326 
2327 	raw_spin_lock(&cpuctx->ctx.lock);
2328 	if (ctx->task) {
2329 		raw_spin_lock(&ctx->lock);
2330 		task_ctx = ctx;
2331 
2332 		reprogram = (ctx->task == current);
2333 
2334 		/*
2335 		 * If the task is running, it must be running on this CPU,
2336 		 * otherwise we cannot reprogram things.
2337 		 *
2338 		 * If its not running, we don't care, ctx->lock will
2339 		 * serialize against it becoming runnable.
2340 		 */
2341 		if (task_curr(ctx->task) && !reprogram) {
2342 			ret = -ESRCH;
2343 			goto unlock;
2344 		}
2345 
2346 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2347 	} else if (task_ctx) {
2348 		raw_spin_lock(&task_ctx->lock);
2349 	}
2350 
2351 	if (reprogram) {
2352 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2353 		add_event_to_ctx(event, ctx);
2354 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2355 	} else {
2356 		add_event_to_ctx(event, ctx);
2357 	}
2358 
2359 unlock:
2360 	perf_ctx_unlock(cpuctx, task_ctx);
2361 
2362 	return ret;
2363 }
2364 
2365 /*
2366  * Attach a performance event to a context.
2367  *
2368  * Very similar to event_function_call, see comment there.
2369  */
2370 static void
2371 perf_install_in_context(struct perf_event_context *ctx,
2372 			struct perf_event *event,
2373 			int cpu)
2374 {
2375 	struct task_struct *task = READ_ONCE(ctx->task);
2376 
2377 	lockdep_assert_held(&ctx->mutex);
2378 
2379 	if (event->cpu != -1)
2380 		event->cpu = cpu;
2381 
2382 	/*
2383 	 * Ensures that if we can observe event->ctx, both the event and ctx
2384 	 * will be 'complete'. See perf_iterate_sb_cpu().
2385 	 */
2386 	smp_store_release(&event->ctx, ctx);
2387 
2388 	if (!task) {
2389 		cpu_function_call(cpu, __perf_install_in_context, event);
2390 		return;
2391 	}
2392 
2393 	/*
2394 	 * Should not happen, we validate the ctx is still alive before calling.
2395 	 */
2396 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2397 		return;
2398 
2399 	/*
2400 	 * Installing events is tricky because we cannot rely on ctx->is_active
2401 	 * to be set in case this is the nr_events 0 -> 1 transition.
2402 	 *
2403 	 * Instead we use task_curr(), which tells us if the task is running.
2404 	 * However, since we use task_curr() outside of rq::lock, we can race
2405 	 * against the actual state. This means the result can be wrong.
2406 	 *
2407 	 * If we get a false positive, we retry, this is harmless.
2408 	 *
2409 	 * If we get a false negative, things are complicated. If we are after
2410 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2411 	 * value must be correct. If we're before, it doesn't matter since
2412 	 * perf_event_context_sched_in() will program the counter.
2413 	 *
2414 	 * However, this hinges on the remote context switch having observed
2415 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2416 	 * ctx::lock in perf_event_context_sched_in().
2417 	 *
2418 	 * We do this by task_function_call(), if the IPI fails to hit the task
2419 	 * we know any future context switch of task must see the
2420 	 * perf_event_ctpx[] store.
2421 	 */
2422 
2423 	/*
2424 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2425 	 * task_cpu() load, such that if the IPI then does not find the task
2426 	 * running, a future context switch of that task must observe the
2427 	 * store.
2428 	 */
2429 	smp_mb();
2430 again:
2431 	if (!task_function_call(task, __perf_install_in_context, event))
2432 		return;
2433 
2434 	raw_spin_lock_irq(&ctx->lock);
2435 	task = ctx->task;
2436 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2437 		/*
2438 		 * Cannot happen because we already checked above (which also
2439 		 * cannot happen), and we hold ctx->mutex, which serializes us
2440 		 * against perf_event_exit_task_context().
2441 		 */
2442 		raw_spin_unlock_irq(&ctx->lock);
2443 		return;
2444 	}
2445 	/*
2446 	 * If the task is not running, ctx->lock will avoid it becoming so,
2447 	 * thus we can safely install the event.
2448 	 */
2449 	if (task_curr(task)) {
2450 		raw_spin_unlock_irq(&ctx->lock);
2451 		goto again;
2452 	}
2453 	add_event_to_ctx(event, ctx);
2454 	raw_spin_unlock_irq(&ctx->lock);
2455 }
2456 
2457 /*
2458  * Put a event into inactive state and update time fields.
2459  * Enabling the leader of a group effectively enables all
2460  * the group members that aren't explicitly disabled, so we
2461  * have to update their ->tstamp_enabled also.
2462  * Note: this works for group members as well as group leaders
2463  * since the non-leader members' sibling_lists will be empty.
2464  */
2465 static void __perf_event_mark_enabled(struct perf_event *event)
2466 {
2467 	struct perf_event *sub;
2468 	u64 tstamp = perf_event_time(event);
2469 
2470 	event->state = PERF_EVENT_STATE_INACTIVE;
2471 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2472 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2473 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2474 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2475 	}
2476 }
2477 
2478 /*
2479  * Cross CPU call to enable a performance event
2480  */
2481 static void __perf_event_enable(struct perf_event *event,
2482 				struct perf_cpu_context *cpuctx,
2483 				struct perf_event_context *ctx,
2484 				void *info)
2485 {
2486 	struct perf_event *leader = event->group_leader;
2487 	struct perf_event_context *task_ctx;
2488 
2489 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 	    event->state <= PERF_EVENT_STATE_ERROR)
2491 		return;
2492 
2493 	if (ctx->is_active)
2494 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2495 
2496 	__perf_event_mark_enabled(event);
2497 
2498 	if (!ctx->is_active)
2499 		return;
2500 
2501 	if (!event_filter_match(event)) {
2502 		if (is_cgroup_event(event))
2503 			perf_cgroup_defer_enabled(event);
2504 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2505 		return;
2506 	}
2507 
2508 	/*
2509 	 * If the event is in a group and isn't the group leader,
2510 	 * then don't put it on unless the group is on.
2511 	 */
2512 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2513 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2514 		return;
2515 	}
2516 
2517 	task_ctx = cpuctx->task_ctx;
2518 	if (ctx->task)
2519 		WARN_ON_ONCE(task_ctx != ctx);
2520 
2521 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2522 }
2523 
2524 /*
2525  * Enable a event.
2526  *
2527  * If event->ctx is a cloned context, callers must make sure that
2528  * every task struct that event->ctx->task could possibly point to
2529  * remains valid.  This condition is satisfied when called through
2530  * perf_event_for_each_child or perf_event_for_each as described
2531  * for perf_event_disable.
2532  */
2533 static void _perf_event_enable(struct perf_event *event)
2534 {
2535 	struct perf_event_context *ctx = event->ctx;
2536 
2537 	raw_spin_lock_irq(&ctx->lock);
2538 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2539 	    event->state <  PERF_EVENT_STATE_ERROR) {
2540 		raw_spin_unlock_irq(&ctx->lock);
2541 		return;
2542 	}
2543 
2544 	/*
2545 	 * If the event is in error state, clear that first.
2546 	 *
2547 	 * That way, if we see the event in error state below, we know that it
2548 	 * has gone back into error state, as distinct from the task having
2549 	 * been scheduled away before the cross-call arrived.
2550 	 */
2551 	if (event->state == PERF_EVENT_STATE_ERROR)
2552 		event->state = PERF_EVENT_STATE_OFF;
2553 	raw_spin_unlock_irq(&ctx->lock);
2554 
2555 	event_function_call(event, __perf_event_enable, NULL);
2556 }
2557 
2558 /*
2559  * See perf_event_disable();
2560  */
2561 void perf_event_enable(struct perf_event *event)
2562 {
2563 	struct perf_event_context *ctx;
2564 
2565 	ctx = perf_event_ctx_lock(event);
2566 	_perf_event_enable(event);
2567 	perf_event_ctx_unlock(event, ctx);
2568 }
2569 EXPORT_SYMBOL_GPL(perf_event_enable);
2570 
2571 struct stop_event_data {
2572 	struct perf_event	*event;
2573 	unsigned int		restart;
2574 };
2575 
2576 static int __perf_event_stop(void *info)
2577 {
2578 	struct stop_event_data *sd = info;
2579 	struct perf_event *event = sd->event;
2580 
2581 	/* if it's already INACTIVE, do nothing */
2582 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2583 		return 0;
2584 
2585 	/* matches smp_wmb() in event_sched_in() */
2586 	smp_rmb();
2587 
2588 	/*
2589 	 * There is a window with interrupts enabled before we get here,
2590 	 * so we need to check again lest we try to stop another CPU's event.
2591 	 */
2592 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2593 		return -EAGAIN;
2594 
2595 	event->pmu->stop(event, PERF_EF_UPDATE);
2596 
2597 	/*
2598 	 * May race with the actual stop (through perf_pmu_output_stop()),
2599 	 * but it is only used for events with AUX ring buffer, and such
2600 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2601 	 * see comments in perf_aux_output_begin().
2602 	 *
2603 	 * Since this is happening on a event-local CPU, no trace is lost
2604 	 * while restarting.
2605 	 */
2606 	if (sd->restart)
2607 		event->pmu->start(event, 0);
2608 
2609 	return 0;
2610 }
2611 
2612 static int perf_event_stop(struct perf_event *event, int restart)
2613 {
2614 	struct stop_event_data sd = {
2615 		.event		= event,
2616 		.restart	= restart,
2617 	};
2618 	int ret = 0;
2619 
2620 	do {
2621 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2622 			return 0;
2623 
2624 		/* matches smp_wmb() in event_sched_in() */
2625 		smp_rmb();
2626 
2627 		/*
2628 		 * We only want to restart ACTIVE events, so if the event goes
2629 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2630 		 * fall through with ret==-ENXIO.
2631 		 */
2632 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2633 					__perf_event_stop, &sd);
2634 	} while (ret == -EAGAIN);
2635 
2636 	return ret;
2637 }
2638 
2639 /*
2640  * In order to contain the amount of racy and tricky in the address filter
2641  * configuration management, it is a two part process:
2642  *
2643  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2644  *      we update the addresses of corresponding vmas in
2645  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2646  * (p2) when an event is scheduled in (pmu::add), it calls
2647  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2648  *      if the generation has changed since the previous call.
2649  *
2650  * If (p1) happens while the event is active, we restart it to force (p2).
2651  *
2652  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2653  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2654  *     ioctl;
2655  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2656  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2657  *     for reading;
2658  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2659  *     of exec.
2660  */
2661 void perf_event_addr_filters_sync(struct perf_event *event)
2662 {
2663 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2664 
2665 	if (!has_addr_filter(event))
2666 		return;
2667 
2668 	raw_spin_lock(&ifh->lock);
2669 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2670 		event->pmu->addr_filters_sync(event);
2671 		event->hw.addr_filters_gen = event->addr_filters_gen;
2672 	}
2673 	raw_spin_unlock(&ifh->lock);
2674 }
2675 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2676 
2677 static int _perf_event_refresh(struct perf_event *event, int refresh)
2678 {
2679 	/*
2680 	 * not supported on inherited events
2681 	 */
2682 	if (event->attr.inherit || !is_sampling_event(event))
2683 		return -EINVAL;
2684 
2685 	atomic_add(refresh, &event->event_limit);
2686 	_perf_event_enable(event);
2687 
2688 	return 0;
2689 }
2690 
2691 /*
2692  * See perf_event_disable()
2693  */
2694 int perf_event_refresh(struct perf_event *event, int refresh)
2695 {
2696 	struct perf_event_context *ctx;
2697 	int ret;
2698 
2699 	ctx = perf_event_ctx_lock(event);
2700 	ret = _perf_event_refresh(event, refresh);
2701 	perf_event_ctx_unlock(event, ctx);
2702 
2703 	return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(perf_event_refresh);
2706 
2707 static void ctx_sched_out(struct perf_event_context *ctx,
2708 			  struct perf_cpu_context *cpuctx,
2709 			  enum event_type_t event_type)
2710 {
2711 	int is_active = ctx->is_active;
2712 	struct perf_event *event;
2713 
2714 	lockdep_assert_held(&ctx->lock);
2715 
2716 	if (likely(!ctx->nr_events)) {
2717 		/*
2718 		 * See __perf_remove_from_context().
2719 		 */
2720 		WARN_ON_ONCE(ctx->is_active);
2721 		if (ctx->task)
2722 			WARN_ON_ONCE(cpuctx->task_ctx);
2723 		return;
2724 	}
2725 
2726 	ctx->is_active &= ~event_type;
2727 	if (!(ctx->is_active & EVENT_ALL))
2728 		ctx->is_active = 0;
2729 
2730 	if (ctx->task) {
2731 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2732 		if (!ctx->is_active)
2733 			cpuctx->task_ctx = NULL;
2734 	}
2735 
2736 	/*
2737 	 * Always update time if it was set; not only when it changes.
2738 	 * Otherwise we can 'forget' to update time for any but the last
2739 	 * context we sched out. For example:
2740 	 *
2741 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2742 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2743 	 *
2744 	 * would only update time for the pinned events.
2745 	 */
2746 	if (is_active & EVENT_TIME) {
2747 		/* update (and stop) ctx time */
2748 		update_context_time(ctx);
2749 		update_cgrp_time_from_cpuctx(cpuctx);
2750 	}
2751 
2752 	is_active ^= ctx->is_active; /* changed bits */
2753 
2754 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2755 		return;
2756 
2757 	perf_pmu_disable(ctx->pmu);
2758 	if (is_active & EVENT_PINNED) {
2759 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2760 			group_sched_out(event, cpuctx, ctx);
2761 	}
2762 
2763 	if (is_active & EVENT_FLEXIBLE) {
2764 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2765 			group_sched_out(event, cpuctx, ctx);
2766 	}
2767 	perf_pmu_enable(ctx->pmu);
2768 }
2769 
2770 /*
2771  * Test whether two contexts are equivalent, i.e. whether they have both been
2772  * cloned from the same version of the same context.
2773  *
2774  * Equivalence is measured using a generation number in the context that is
2775  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2776  * and list_del_event().
2777  */
2778 static int context_equiv(struct perf_event_context *ctx1,
2779 			 struct perf_event_context *ctx2)
2780 {
2781 	lockdep_assert_held(&ctx1->lock);
2782 	lockdep_assert_held(&ctx2->lock);
2783 
2784 	/* Pinning disables the swap optimization */
2785 	if (ctx1->pin_count || ctx2->pin_count)
2786 		return 0;
2787 
2788 	/* If ctx1 is the parent of ctx2 */
2789 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2790 		return 1;
2791 
2792 	/* If ctx2 is the parent of ctx1 */
2793 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2794 		return 1;
2795 
2796 	/*
2797 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2798 	 * hierarchy, see perf_event_init_context().
2799 	 */
2800 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2801 			ctx1->parent_gen == ctx2->parent_gen)
2802 		return 1;
2803 
2804 	/* Unmatched */
2805 	return 0;
2806 }
2807 
2808 static void __perf_event_sync_stat(struct perf_event *event,
2809 				     struct perf_event *next_event)
2810 {
2811 	u64 value;
2812 
2813 	if (!event->attr.inherit_stat)
2814 		return;
2815 
2816 	/*
2817 	 * Update the event value, we cannot use perf_event_read()
2818 	 * because we're in the middle of a context switch and have IRQs
2819 	 * disabled, which upsets smp_call_function_single(), however
2820 	 * we know the event must be on the current CPU, therefore we
2821 	 * don't need to use it.
2822 	 */
2823 	switch (event->state) {
2824 	case PERF_EVENT_STATE_ACTIVE:
2825 		event->pmu->read(event);
2826 		/* fall-through */
2827 
2828 	case PERF_EVENT_STATE_INACTIVE:
2829 		update_event_times(event);
2830 		break;
2831 
2832 	default:
2833 		break;
2834 	}
2835 
2836 	/*
2837 	 * In order to keep per-task stats reliable we need to flip the event
2838 	 * values when we flip the contexts.
2839 	 */
2840 	value = local64_read(&next_event->count);
2841 	value = local64_xchg(&event->count, value);
2842 	local64_set(&next_event->count, value);
2843 
2844 	swap(event->total_time_enabled, next_event->total_time_enabled);
2845 	swap(event->total_time_running, next_event->total_time_running);
2846 
2847 	/*
2848 	 * Since we swizzled the values, update the user visible data too.
2849 	 */
2850 	perf_event_update_userpage(event);
2851 	perf_event_update_userpage(next_event);
2852 }
2853 
2854 static void perf_event_sync_stat(struct perf_event_context *ctx,
2855 				   struct perf_event_context *next_ctx)
2856 {
2857 	struct perf_event *event, *next_event;
2858 
2859 	if (!ctx->nr_stat)
2860 		return;
2861 
2862 	update_context_time(ctx);
2863 
2864 	event = list_first_entry(&ctx->event_list,
2865 				   struct perf_event, event_entry);
2866 
2867 	next_event = list_first_entry(&next_ctx->event_list,
2868 					struct perf_event, event_entry);
2869 
2870 	while (&event->event_entry != &ctx->event_list &&
2871 	       &next_event->event_entry != &next_ctx->event_list) {
2872 
2873 		__perf_event_sync_stat(event, next_event);
2874 
2875 		event = list_next_entry(event, event_entry);
2876 		next_event = list_next_entry(next_event, event_entry);
2877 	}
2878 }
2879 
2880 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2881 					 struct task_struct *next)
2882 {
2883 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2884 	struct perf_event_context *next_ctx;
2885 	struct perf_event_context *parent, *next_parent;
2886 	struct perf_cpu_context *cpuctx;
2887 	int do_switch = 1;
2888 
2889 	if (likely(!ctx))
2890 		return;
2891 
2892 	cpuctx = __get_cpu_context(ctx);
2893 	if (!cpuctx->task_ctx)
2894 		return;
2895 
2896 	rcu_read_lock();
2897 	next_ctx = next->perf_event_ctxp[ctxn];
2898 	if (!next_ctx)
2899 		goto unlock;
2900 
2901 	parent = rcu_dereference(ctx->parent_ctx);
2902 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2903 
2904 	/* If neither context have a parent context; they cannot be clones. */
2905 	if (!parent && !next_parent)
2906 		goto unlock;
2907 
2908 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2909 		/*
2910 		 * Looks like the two contexts are clones, so we might be
2911 		 * able to optimize the context switch.  We lock both
2912 		 * contexts and check that they are clones under the
2913 		 * lock (including re-checking that neither has been
2914 		 * uncloned in the meantime).  It doesn't matter which
2915 		 * order we take the locks because no other cpu could
2916 		 * be trying to lock both of these tasks.
2917 		 */
2918 		raw_spin_lock(&ctx->lock);
2919 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2920 		if (context_equiv(ctx, next_ctx)) {
2921 			WRITE_ONCE(ctx->task, next);
2922 			WRITE_ONCE(next_ctx->task, task);
2923 
2924 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2925 
2926 			/*
2927 			 * RCU_INIT_POINTER here is safe because we've not
2928 			 * modified the ctx and the above modification of
2929 			 * ctx->task and ctx->task_ctx_data are immaterial
2930 			 * since those values are always verified under
2931 			 * ctx->lock which we're now holding.
2932 			 */
2933 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2934 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2935 
2936 			do_switch = 0;
2937 
2938 			perf_event_sync_stat(ctx, next_ctx);
2939 		}
2940 		raw_spin_unlock(&next_ctx->lock);
2941 		raw_spin_unlock(&ctx->lock);
2942 	}
2943 unlock:
2944 	rcu_read_unlock();
2945 
2946 	if (do_switch) {
2947 		raw_spin_lock(&ctx->lock);
2948 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2949 		raw_spin_unlock(&ctx->lock);
2950 	}
2951 }
2952 
2953 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2954 
2955 void perf_sched_cb_dec(struct pmu *pmu)
2956 {
2957 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2958 
2959 	this_cpu_dec(perf_sched_cb_usages);
2960 
2961 	if (!--cpuctx->sched_cb_usage)
2962 		list_del(&cpuctx->sched_cb_entry);
2963 }
2964 
2965 
2966 void perf_sched_cb_inc(struct pmu *pmu)
2967 {
2968 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2969 
2970 	if (!cpuctx->sched_cb_usage++)
2971 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2972 
2973 	this_cpu_inc(perf_sched_cb_usages);
2974 }
2975 
2976 /*
2977  * This function provides the context switch callback to the lower code
2978  * layer. It is invoked ONLY when the context switch callback is enabled.
2979  *
2980  * This callback is relevant even to per-cpu events; for example multi event
2981  * PEBS requires this to provide PID/TID information. This requires we flush
2982  * all queued PEBS records before we context switch to a new task.
2983  */
2984 static void perf_pmu_sched_task(struct task_struct *prev,
2985 				struct task_struct *next,
2986 				bool sched_in)
2987 {
2988 	struct perf_cpu_context *cpuctx;
2989 	struct pmu *pmu;
2990 
2991 	if (prev == next)
2992 		return;
2993 
2994 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2995 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2996 
2997 		if (WARN_ON_ONCE(!pmu->sched_task))
2998 			continue;
2999 
3000 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3001 		perf_pmu_disable(pmu);
3002 
3003 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3004 
3005 		perf_pmu_enable(pmu);
3006 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3007 	}
3008 }
3009 
3010 static void perf_event_switch(struct task_struct *task,
3011 			      struct task_struct *next_prev, bool sched_in);
3012 
3013 #define for_each_task_context_nr(ctxn)					\
3014 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3015 
3016 /*
3017  * Called from scheduler to remove the events of the current task,
3018  * with interrupts disabled.
3019  *
3020  * We stop each event and update the event value in event->count.
3021  *
3022  * This does not protect us against NMI, but disable()
3023  * sets the disabled bit in the control field of event _before_
3024  * accessing the event control register. If a NMI hits, then it will
3025  * not restart the event.
3026  */
3027 void __perf_event_task_sched_out(struct task_struct *task,
3028 				 struct task_struct *next)
3029 {
3030 	int ctxn;
3031 
3032 	if (__this_cpu_read(perf_sched_cb_usages))
3033 		perf_pmu_sched_task(task, next, false);
3034 
3035 	if (atomic_read(&nr_switch_events))
3036 		perf_event_switch(task, next, false);
3037 
3038 	for_each_task_context_nr(ctxn)
3039 		perf_event_context_sched_out(task, ctxn, next);
3040 
3041 	/*
3042 	 * if cgroup events exist on this CPU, then we need
3043 	 * to check if we have to switch out PMU state.
3044 	 * cgroup event are system-wide mode only
3045 	 */
3046 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3047 		perf_cgroup_sched_out(task, next);
3048 }
3049 
3050 /*
3051  * Called with IRQs disabled
3052  */
3053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3054 			      enum event_type_t event_type)
3055 {
3056 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3057 }
3058 
3059 static void
3060 ctx_pinned_sched_in(struct perf_event_context *ctx,
3061 		    struct perf_cpu_context *cpuctx)
3062 {
3063 	struct perf_event *event;
3064 
3065 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3066 		if (event->state <= PERF_EVENT_STATE_OFF)
3067 			continue;
3068 		if (!event_filter_match(event))
3069 			continue;
3070 
3071 		/* may need to reset tstamp_enabled */
3072 		if (is_cgroup_event(event))
3073 			perf_cgroup_mark_enabled(event, ctx);
3074 
3075 		if (group_can_go_on(event, cpuctx, 1))
3076 			group_sched_in(event, cpuctx, ctx);
3077 
3078 		/*
3079 		 * If this pinned group hasn't been scheduled,
3080 		 * put it in error state.
3081 		 */
3082 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3083 			update_group_times(event);
3084 			event->state = PERF_EVENT_STATE_ERROR;
3085 		}
3086 	}
3087 }
3088 
3089 static void
3090 ctx_flexible_sched_in(struct perf_event_context *ctx,
3091 		      struct perf_cpu_context *cpuctx)
3092 {
3093 	struct perf_event *event;
3094 	int can_add_hw = 1;
3095 
3096 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3097 		/* Ignore events in OFF or ERROR state */
3098 		if (event->state <= PERF_EVENT_STATE_OFF)
3099 			continue;
3100 		/*
3101 		 * Listen to the 'cpu' scheduling filter constraint
3102 		 * of events:
3103 		 */
3104 		if (!event_filter_match(event))
3105 			continue;
3106 
3107 		/* may need to reset tstamp_enabled */
3108 		if (is_cgroup_event(event))
3109 			perf_cgroup_mark_enabled(event, ctx);
3110 
3111 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3112 			if (group_sched_in(event, cpuctx, ctx))
3113 				can_add_hw = 0;
3114 		}
3115 	}
3116 }
3117 
3118 static void
3119 ctx_sched_in(struct perf_event_context *ctx,
3120 	     struct perf_cpu_context *cpuctx,
3121 	     enum event_type_t event_type,
3122 	     struct task_struct *task)
3123 {
3124 	int is_active = ctx->is_active;
3125 	u64 now;
3126 
3127 	lockdep_assert_held(&ctx->lock);
3128 
3129 	if (likely(!ctx->nr_events))
3130 		return;
3131 
3132 	ctx->is_active |= (event_type | EVENT_TIME);
3133 	if (ctx->task) {
3134 		if (!is_active)
3135 			cpuctx->task_ctx = ctx;
3136 		else
3137 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3138 	}
3139 
3140 	is_active ^= ctx->is_active; /* changed bits */
3141 
3142 	if (is_active & EVENT_TIME) {
3143 		/* start ctx time */
3144 		now = perf_clock();
3145 		ctx->timestamp = now;
3146 		perf_cgroup_set_timestamp(task, ctx);
3147 	}
3148 
3149 	/*
3150 	 * First go through the list and put on any pinned groups
3151 	 * in order to give them the best chance of going on.
3152 	 */
3153 	if (is_active & EVENT_PINNED)
3154 		ctx_pinned_sched_in(ctx, cpuctx);
3155 
3156 	/* Then walk through the lower prio flexible groups */
3157 	if (is_active & EVENT_FLEXIBLE)
3158 		ctx_flexible_sched_in(ctx, cpuctx);
3159 }
3160 
3161 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3162 			     enum event_type_t event_type,
3163 			     struct task_struct *task)
3164 {
3165 	struct perf_event_context *ctx = &cpuctx->ctx;
3166 
3167 	ctx_sched_in(ctx, cpuctx, event_type, task);
3168 }
3169 
3170 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3171 					struct task_struct *task)
3172 {
3173 	struct perf_cpu_context *cpuctx;
3174 
3175 	cpuctx = __get_cpu_context(ctx);
3176 	if (cpuctx->task_ctx == ctx)
3177 		return;
3178 
3179 	perf_ctx_lock(cpuctx, ctx);
3180 	perf_pmu_disable(ctx->pmu);
3181 	/*
3182 	 * We want to keep the following priority order:
3183 	 * cpu pinned (that don't need to move), task pinned,
3184 	 * cpu flexible, task flexible.
3185 	 *
3186 	 * However, if task's ctx is not carrying any pinned
3187 	 * events, no need to flip the cpuctx's events around.
3188 	 */
3189 	if (!list_empty(&ctx->pinned_groups))
3190 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3191 	perf_event_sched_in(cpuctx, ctx, task);
3192 	perf_pmu_enable(ctx->pmu);
3193 	perf_ctx_unlock(cpuctx, ctx);
3194 }
3195 
3196 /*
3197  * Called from scheduler to add the events of the current task
3198  * with interrupts disabled.
3199  *
3200  * We restore the event value and then enable it.
3201  *
3202  * This does not protect us against NMI, but enable()
3203  * sets the enabled bit in the control field of event _before_
3204  * accessing the event control register. If a NMI hits, then it will
3205  * keep the event running.
3206  */
3207 void __perf_event_task_sched_in(struct task_struct *prev,
3208 				struct task_struct *task)
3209 {
3210 	struct perf_event_context *ctx;
3211 	int ctxn;
3212 
3213 	/*
3214 	 * If cgroup events exist on this CPU, then we need to check if we have
3215 	 * to switch in PMU state; cgroup event are system-wide mode only.
3216 	 *
3217 	 * Since cgroup events are CPU events, we must schedule these in before
3218 	 * we schedule in the task events.
3219 	 */
3220 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3221 		perf_cgroup_sched_in(prev, task);
3222 
3223 	for_each_task_context_nr(ctxn) {
3224 		ctx = task->perf_event_ctxp[ctxn];
3225 		if (likely(!ctx))
3226 			continue;
3227 
3228 		perf_event_context_sched_in(ctx, task);
3229 	}
3230 
3231 	if (atomic_read(&nr_switch_events))
3232 		perf_event_switch(task, prev, true);
3233 
3234 	if (__this_cpu_read(perf_sched_cb_usages))
3235 		perf_pmu_sched_task(prev, task, true);
3236 }
3237 
3238 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3239 {
3240 	u64 frequency = event->attr.sample_freq;
3241 	u64 sec = NSEC_PER_SEC;
3242 	u64 divisor, dividend;
3243 
3244 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3245 
3246 	count_fls = fls64(count);
3247 	nsec_fls = fls64(nsec);
3248 	frequency_fls = fls64(frequency);
3249 	sec_fls = 30;
3250 
3251 	/*
3252 	 * We got @count in @nsec, with a target of sample_freq HZ
3253 	 * the target period becomes:
3254 	 *
3255 	 *             @count * 10^9
3256 	 * period = -------------------
3257 	 *          @nsec * sample_freq
3258 	 *
3259 	 */
3260 
3261 	/*
3262 	 * Reduce accuracy by one bit such that @a and @b converge
3263 	 * to a similar magnitude.
3264 	 */
3265 #define REDUCE_FLS(a, b)		\
3266 do {					\
3267 	if (a##_fls > b##_fls) {	\
3268 		a >>= 1;		\
3269 		a##_fls--;		\
3270 	} else {			\
3271 		b >>= 1;		\
3272 		b##_fls--;		\
3273 	}				\
3274 } while (0)
3275 
3276 	/*
3277 	 * Reduce accuracy until either term fits in a u64, then proceed with
3278 	 * the other, so that finally we can do a u64/u64 division.
3279 	 */
3280 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3281 		REDUCE_FLS(nsec, frequency);
3282 		REDUCE_FLS(sec, count);
3283 	}
3284 
3285 	if (count_fls + sec_fls > 64) {
3286 		divisor = nsec * frequency;
3287 
3288 		while (count_fls + sec_fls > 64) {
3289 			REDUCE_FLS(count, sec);
3290 			divisor >>= 1;
3291 		}
3292 
3293 		dividend = count * sec;
3294 	} else {
3295 		dividend = count * sec;
3296 
3297 		while (nsec_fls + frequency_fls > 64) {
3298 			REDUCE_FLS(nsec, frequency);
3299 			dividend >>= 1;
3300 		}
3301 
3302 		divisor = nsec * frequency;
3303 	}
3304 
3305 	if (!divisor)
3306 		return dividend;
3307 
3308 	return div64_u64(dividend, divisor);
3309 }
3310 
3311 static DEFINE_PER_CPU(int, perf_throttled_count);
3312 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3313 
3314 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3315 {
3316 	struct hw_perf_event *hwc = &event->hw;
3317 	s64 period, sample_period;
3318 	s64 delta;
3319 
3320 	period = perf_calculate_period(event, nsec, count);
3321 
3322 	delta = (s64)(period - hwc->sample_period);
3323 	delta = (delta + 7) / 8; /* low pass filter */
3324 
3325 	sample_period = hwc->sample_period + delta;
3326 
3327 	if (!sample_period)
3328 		sample_period = 1;
3329 
3330 	hwc->sample_period = sample_period;
3331 
3332 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3333 		if (disable)
3334 			event->pmu->stop(event, PERF_EF_UPDATE);
3335 
3336 		local64_set(&hwc->period_left, 0);
3337 
3338 		if (disable)
3339 			event->pmu->start(event, PERF_EF_RELOAD);
3340 	}
3341 }
3342 
3343 /*
3344  * combine freq adjustment with unthrottling to avoid two passes over the
3345  * events. At the same time, make sure, having freq events does not change
3346  * the rate of unthrottling as that would introduce bias.
3347  */
3348 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3349 					   int needs_unthr)
3350 {
3351 	struct perf_event *event;
3352 	struct hw_perf_event *hwc;
3353 	u64 now, period = TICK_NSEC;
3354 	s64 delta;
3355 
3356 	/*
3357 	 * only need to iterate over all events iff:
3358 	 * - context have events in frequency mode (needs freq adjust)
3359 	 * - there are events to unthrottle on this cpu
3360 	 */
3361 	if (!(ctx->nr_freq || needs_unthr))
3362 		return;
3363 
3364 	raw_spin_lock(&ctx->lock);
3365 	perf_pmu_disable(ctx->pmu);
3366 
3367 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3369 			continue;
3370 
3371 		if (!event_filter_match(event))
3372 			continue;
3373 
3374 		perf_pmu_disable(event->pmu);
3375 
3376 		hwc = &event->hw;
3377 
3378 		if (hwc->interrupts == MAX_INTERRUPTS) {
3379 			hwc->interrupts = 0;
3380 			perf_log_throttle(event, 1);
3381 			event->pmu->start(event, 0);
3382 		}
3383 
3384 		if (!event->attr.freq || !event->attr.sample_freq)
3385 			goto next;
3386 
3387 		/*
3388 		 * stop the event and update event->count
3389 		 */
3390 		event->pmu->stop(event, PERF_EF_UPDATE);
3391 
3392 		now = local64_read(&event->count);
3393 		delta = now - hwc->freq_count_stamp;
3394 		hwc->freq_count_stamp = now;
3395 
3396 		/*
3397 		 * restart the event
3398 		 * reload only if value has changed
3399 		 * we have stopped the event so tell that
3400 		 * to perf_adjust_period() to avoid stopping it
3401 		 * twice.
3402 		 */
3403 		if (delta > 0)
3404 			perf_adjust_period(event, period, delta, false);
3405 
3406 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3407 	next:
3408 		perf_pmu_enable(event->pmu);
3409 	}
3410 
3411 	perf_pmu_enable(ctx->pmu);
3412 	raw_spin_unlock(&ctx->lock);
3413 }
3414 
3415 /*
3416  * Round-robin a context's events:
3417  */
3418 static void rotate_ctx(struct perf_event_context *ctx)
3419 {
3420 	/*
3421 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3422 	 * disabled by the inheritance code.
3423 	 */
3424 	if (!ctx->rotate_disable)
3425 		list_rotate_left(&ctx->flexible_groups);
3426 }
3427 
3428 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3429 {
3430 	struct perf_event_context *ctx = NULL;
3431 	int rotate = 0;
3432 
3433 	if (cpuctx->ctx.nr_events) {
3434 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3435 			rotate = 1;
3436 	}
3437 
3438 	ctx = cpuctx->task_ctx;
3439 	if (ctx && ctx->nr_events) {
3440 		if (ctx->nr_events != ctx->nr_active)
3441 			rotate = 1;
3442 	}
3443 
3444 	if (!rotate)
3445 		goto done;
3446 
3447 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3448 	perf_pmu_disable(cpuctx->ctx.pmu);
3449 
3450 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3451 	if (ctx)
3452 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3453 
3454 	rotate_ctx(&cpuctx->ctx);
3455 	if (ctx)
3456 		rotate_ctx(ctx);
3457 
3458 	perf_event_sched_in(cpuctx, ctx, current);
3459 
3460 	perf_pmu_enable(cpuctx->ctx.pmu);
3461 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3462 done:
3463 
3464 	return rotate;
3465 }
3466 
3467 void perf_event_task_tick(void)
3468 {
3469 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3470 	struct perf_event_context *ctx, *tmp;
3471 	int throttled;
3472 
3473 	WARN_ON(!irqs_disabled());
3474 
3475 	__this_cpu_inc(perf_throttled_seq);
3476 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3477 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3478 
3479 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3480 		perf_adjust_freq_unthr_context(ctx, throttled);
3481 }
3482 
3483 static int event_enable_on_exec(struct perf_event *event,
3484 				struct perf_event_context *ctx)
3485 {
3486 	if (!event->attr.enable_on_exec)
3487 		return 0;
3488 
3489 	event->attr.enable_on_exec = 0;
3490 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3491 		return 0;
3492 
3493 	__perf_event_mark_enabled(event);
3494 
3495 	return 1;
3496 }
3497 
3498 /*
3499  * Enable all of a task's events that have been marked enable-on-exec.
3500  * This expects task == current.
3501  */
3502 static void perf_event_enable_on_exec(int ctxn)
3503 {
3504 	struct perf_event_context *ctx, *clone_ctx = NULL;
3505 	enum event_type_t event_type = 0;
3506 	struct perf_cpu_context *cpuctx;
3507 	struct perf_event *event;
3508 	unsigned long flags;
3509 	int enabled = 0;
3510 
3511 	local_irq_save(flags);
3512 	ctx = current->perf_event_ctxp[ctxn];
3513 	if (!ctx || !ctx->nr_events)
3514 		goto out;
3515 
3516 	cpuctx = __get_cpu_context(ctx);
3517 	perf_ctx_lock(cpuctx, ctx);
3518 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3519 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3520 		enabled |= event_enable_on_exec(event, ctx);
3521 		event_type |= get_event_type(event);
3522 	}
3523 
3524 	/*
3525 	 * Unclone and reschedule this context if we enabled any event.
3526 	 */
3527 	if (enabled) {
3528 		clone_ctx = unclone_ctx(ctx);
3529 		ctx_resched(cpuctx, ctx, event_type);
3530 	} else {
3531 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3532 	}
3533 	perf_ctx_unlock(cpuctx, ctx);
3534 
3535 out:
3536 	local_irq_restore(flags);
3537 
3538 	if (clone_ctx)
3539 		put_ctx(clone_ctx);
3540 }
3541 
3542 struct perf_read_data {
3543 	struct perf_event *event;
3544 	bool group;
3545 	int ret;
3546 };
3547 
3548 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3549 {
3550 	u16 local_pkg, event_pkg;
3551 
3552 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3553 		int local_cpu = smp_processor_id();
3554 
3555 		event_pkg = topology_physical_package_id(event_cpu);
3556 		local_pkg = topology_physical_package_id(local_cpu);
3557 
3558 		if (event_pkg == local_pkg)
3559 			return local_cpu;
3560 	}
3561 
3562 	return event_cpu;
3563 }
3564 
3565 /*
3566  * Cross CPU call to read the hardware event
3567  */
3568 static void __perf_event_read(void *info)
3569 {
3570 	struct perf_read_data *data = info;
3571 	struct perf_event *sub, *event = data->event;
3572 	struct perf_event_context *ctx = event->ctx;
3573 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3574 	struct pmu *pmu = event->pmu;
3575 
3576 	/*
3577 	 * If this is a task context, we need to check whether it is
3578 	 * the current task context of this cpu.  If not it has been
3579 	 * scheduled out before the smp call arrived.  In that case
3580 	 * event->count would have been updated to a recent sample
3581 	 * when the event was scheduled out.
3582 	 */
3583 	if (ctx->task && cpuctx->task_ctx != ctx)
3584 		return;
3585 
3586 	raw_spin_lock(&ctx->lock);
3587 	if (ctx->is_active) {
3588 		update_context_time(ctx);
3589 		update_cgrp_time_from_event(event);
3590 	}
3591 
3592 	update_event_times(event);
3593 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3594 		goto unlock;
3595 
3596 	if (!data->group) {
3597 		pmu->read(event);
3598 		data->ret = 0;
3599 		goto unlock;
3600 	}
3601 
3602 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3603 
3604 	pmu->read(event);
3605 
3606 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3607 		update_event_times(sub);
3608 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3609 			/*
3610 			 * Use sibling's PMU rather than @event's since
3611 			 * sibling could be on different (eg: software) PMU.
3612 			 */
3613 			sub->pmu->read(sub);
3614 		}
3615 	}
3616 
3617 	data->ret = pmu->commit_txn(pmu);
3618 
3619 unlock:
3620 	raw_spin_unlock(&ctx->lock);
3621 }
3622 
3623 static inline u64 perf_event_count(struct perf_event *event)
3624 {
3625 	if (event->pmu->count)
3626 		return event->pmu->count(event);
3627 
3628 	return __perf_event_count(event);
3629 }
3630 
3631 /*
3632  * NMI-safe method to read a local event, that is an event that
3633  * is:
3634  *   - either for the current task, or for this CPU
3635  *   - does not have inherit set, for inherited task events
3636  *     will not be local and we cannot read them atomically
3637  *   - must not have a pmu::count method
3638  */
3639 int perf_event_read_local(struct perf_event *event, u64 *value)
3640 {
3641 	unsigned long flags;
3642 	int ret = 0;
3643 
3644 	/*
3645 	 * Disabling interrupts avoids all counter scheduling (context
3646 	 * switches, timer based rotation and IPIs).
3647 	 */
3648 	local_irq_save(flags);
3649 
3650 	/*
3651 	 * It must not be an event with inherit set, we cannot read
3652 	 * all child counters from atomic context.
3653 	 */
3654 	if (event->attr.inherit) {
3655 		ret = -EOPNOTSUPP;
3656 		goto out;
3657 	}
3658 
3659 	/*
3660 	 * It must not have a pmu::count method, those are not
3661 	 * NMI safe.
3662 	 */
3663 	if (event->pmu->count) {
3664 		ret = -EOPNOTSUPP;
3665 		goto out;
3666 	}
3667 
3668 	/* If this is a per-task event, it must be for current */
3669 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3670 	    event->hw.target != current) {
3671 		ret = -EINVAL;
3672 		goto out;
3673 	}
3674 
3675 	/* If this is a per-CPU event, it must be for this CPU */
3676 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3677 	    event->cpu != smp_processor_id()) {
3678 		ret = -EINVAL;
3679 		goto out;
3680 	}
3681 
3682 	/*
3683 	 * If the event is currently on this CPU, its either a per-task event,
3684 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3685 	 * oncpu == -1).
3686 	 */
3687 	if (event->oncpu == smp_processor_id())
3688 		event->pmu->read(event);
3689 
3690 	*value = local64_read(&event->count);
3691 out:
3692 	local_irq_restore(flags);
3693 
3694 	return ret;
3695 }
3696 
3697 static int perf_event_read(struct perf_event *event, bool group)
3698 {
3699 	int event_cpu, ret = 0;
3700 
3701 	/*
3702 	 * If event is enabled and currently active on a CPU, update the
3703 	 * value in the event structure:
3704 	 */
3705 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3706 		struct perf_read_data data = {
3707 			.event = event,
3708 			.group = group,
3709 			.ret = 0,
3710 		};
3711 
3712 		event_cpu = READ_ONCE(event->oncpu);
3713 		if ((unsigned)event_cpu >= nr_cpu_ids)
3714 			return 0;
3715 
3716 		preempt_disable();
3717 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3718 
3719 		/*
3720 		 * Purposely ignore the smp_call_function_single() return
3721 		 * value.
3722 		 *
3723 		 * If event_cpu isn't a valid CPU it means the event got
3724 		 * scheduled out and that will have updated the event count.
3725 		 *
3726 		 * Therefore, either way, we'll have an up-to-date event count
3727 		 * after this.
3728 		 */
3729 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3730 		preempt_enable();
3731 		ret = data.ret;
3732 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3733 		struct perf_event_context *ctx = event->ctx;
3734 		unsigned long flags;
3735 
3736 		raw_spin_lock_irqsave(&ctx->lock, flags);
3737 		/*
3738 		 * may read while context is not active
3739 		 * (e.g., thread is blocked), in that case
3740 		 * we cannot update context time
3741 		 */
3742 		if (ctx->is_active) {
3743 			update_context_time(ctx);
3744 			update_cgrp_time_from_event(event);
3745 		}
3746 		if (group)
3747 			update_group_times(event);
3748 		else
3749 			update_event_times(event);
3750 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3751 	}
3752 
3753 	return ret;
3754 }
3755 
3756 /*
3757  * Initialize the perf_event context in a task_struct:
3758  */
3759 static void __perf_event_init_context(struct perf_event_context *ctx)
3760 {
3761 	raw_spin_lock_init(&ctx->lock);
3762 	mutex_init(&ctx->mutex);
3763 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3764 	INIT_LIST_HEAD(&ctx->pinned_groups);
3765 	INIT_LIST_HEAD(&ctx->flexible_groups);
3766 	INIT_LIST_HEAD(&ctx->event_list);
3767 	atomic_set(&ctx->refcount, 1);
3768 }
3769 
3770 static struct perf_event_context *
3771 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3772 {
3773 	struct perf_event_context *ctx;
3774 
3775 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3776 	if (!ctx)
3777 		return NULL;
3778 
3779 	__perf_event_init_context(ctx);
3780 	if (task) {
3781 		ctx->task = task;
3782 		get_task_struct(task);
3783 	}
3784 	ctx->pmu = pmu;
3785 
3786 	return ctx;
3787 }
3788 
3789 static struct task_struct *
3790 find_lively_task_by_vpid(pid_t vpid)
3791 {
3792 	struct task_struct *task;
3793 
3794 	rcu_read_lock();
3795 	if (!vpid)
3796 		task = current;
3797 	else
3798 		task = find_task_by_vpid(vpid);
3799 	if (task)
3800 		get_task_struct(task);
3801 	rcu_read_unlock();
3802 
3803 	if (!task)
3804 		return ERR_PTR(-ESRCH);
3805 
3806 	return task;
3807 }
3808 
3809 /*
3810  * Returns a matching context with refcount and pincount.
3811  */
3812 static struct perf_event_context *
3813 find_get_context(struct pmu *pmu, struct task_struct *task,
3814 		struct perf_event *event)
3815 {
3816 	struct perf_event_context *ctx, *clone_ctx = NULL;
3817 	struct perf_cpu_context *cpuctx;
3818 	void *task_ctx_data = NULL;
3819 	unsigned long flags;
3820 	int ctxn, err;
3821 	int cpu = event->cpu;
3822 
3823 	if (!task) {
3824 		/* Must be root to operate on a CPU event: */
3825 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3826 			return ERR_PTR(-EACCES);
3827 
3828 		/*
3829 		 * We could be clever and allow to attach a event to an
3830 		 * offline CPU and activate it when the CPU comes up, but
3831 		 * that's for later.
3832 		 */
3833 		if (!cpu_online(cpu))
3834 			return ERR_PTR(-ENODEV);
3835 
3836 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3837 		ctx = &cpuctx->ctx;
3838 		get_ctx(ctx);
3839 		++ctx->pin_count;
3840 
3841 		return ctx;
3842 	}
3843 
3844 	err = -EINVAL;
3845 	ctxn = pmu->task_ctx_nr;
3846 	if (ctxn < 0)
3847 		goto errout;
3848 
3849 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3850 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3851 		if (!task_ctx_data) {
3852 			err = -ENOMEM;
3853 			goto errout;
3854 		}
3855 	}
3856 
3857 retry:
3858 	ctx = perf_lock_task_context(task, ctxn, &flags);
3859 	if (ctx) {
3860 		clone_ctx = unclone_ctx(ctx);
3861 		++ctx->pin_count;
3862 
3863 		if (task_ctx_data && !ctx->task_ctx_data) {
3864 			ctx->task_ctx_data = task_ctx_data;
3865 			task_ctx_data = NULL;
3866 		}
3867 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3868 
3869 		if (clone_ctx)
3870 			put_ctx(clone_ctx);
3871 	} else {
3872 		ctx = alloc_perf_context(pmu, task);
3873 		err = -ENOMEM;
3874 		if (!ctx)
3875 			goto errout;
3876 
3877 		if (task_ctx_data) {
3878 			ctx->task_ctx_data = task_ctx_data;
3879 			task_ctx_data = NULL;
3880 		}
3881 
3882 		err = 0;
3883 		mutex_lock(&task->perf_event_mutex);
3884 		/*
3885 		 * If it has already passed perf_event_exit_task().
3886 		 * we must see PF_EXITING, it takes this mutex too.
3887 		 */
3888 		if (task->flags & PF_EXITING)
3889 			err = -ESRCH;
3890 		else if (task->perf_event_ctxp[ctxn])
3891 			err = -EAGAIN;
3892 		else {
3893 			get_ctx(ctx);
3894 			++ctx->pin_count;
3895 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3896 		}
3897 		mutex_unlock(&task->perf_event_mutex);
3898 
3899 		if (unlikely(err)) {
3900 			put_ctx(ctx);
3901 
3902 			if (err == -EAGAIN)
3903 				goto retry;
3904 			goto errout;
3905 		}
3906 	}
3907 
3908 	kfree(task_ctx_data);
3909 	return ctx;
3910 
3911 errout:
3912 	kfree(task_ctx_data);
3913 	return ERR_PTR(err);
3914 }
3915 
3916 static void perf_event_free_filter(struct perf_event *event);
3917 static void perf_event_free_bpf_prog(struct perf_event *event);
3918 
3919 static void free_event_rcu(struct rcu_head *head)
3920 {
3921 	struct perf_event *event;
3922 
3923 	event = container_of(head, struct perf_event, rcu_head);
3924 	if (event->ns)
3925 		put_pid_ns(event->ns);
3926 	perf_event_free_filter(event);
3927 	kfree(event);
3928 }
3929 
3930 static void ring_buffer_attach(struct perf_event *event,
3931 			       struct ring_buffer *rb);
3932 
3933 static void detach_sb_event(struct perf_event *event)
3934 {
3935 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3936 
3937 	raw_spin_lock(&pel->lock);
3938 	list_del_rcu(&event->sb_list);
3939 	raw_spin_unlock(&pel->lock);
3940 }
3941 
3942 static bool is_sb_event(struct perf_event *event)
3943 {
3944 	struct perf_event_attr *attr = &event->attr;
3945 
3946 	if (event->parent)
3947 		return false;
3948 
3949 	if (event->attach_state & PERF_ATTACH_TASK)
3950 		return false;
3951 
3952 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3953 	    attr->comm || attr->comm_exec ||
3954 	    attr->task ||
3955 	    attr->context_switch)
3956 		return true;
3957 	return false;
3958 }
3959 
3960 static void unaccount_pmu_sb_event(struct perf_event *event)
3961 {
3962 	if (is_sb_event(event))
3963 		detach_sb_event(event);
3964 }
3965 
3966 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3967 {
3968 	if (event->parent)
3969 		return;
3970 
3971 	if (is_cgroup_event(event))
3972 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3973 }
3974 
3975 #ifdef CONFIG_NO_HZ_FULL
3976 static DEFINE_SPINLOCK(nr_freq_lock);
3977 #endif
3978 
3979 static void unaccount_freq_event_nohz(void)
3980 {
3981 #ifdef CONFIG_NO_HZ_FULL
3982 	spin_lock(&nr_freq_lock);
3983 	if (atomic_dec_and_test(&nr_freq_events))
3984 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3985 	spin_unlock(&nr_freq_lock);
3986 #endif
3987 }
3988 
3989 static void unaccount_freq_event(void)
3990 {
3991 	if (tick_nohz_full_enabled())
3992 		unaccount_freq_event_nohz();
3993 	else
3994 		atomic_dec(&nr_freq_events);
3995 }
3996 
3997 static void unaccount_event(struct perf_event *event)
3998 {
3999 	bool dec = false;
4000 
4001 	if (event->parent)
4002 		return;
4003 
4004 	if (event->attach_state & PERF_ATTACH_TASK)
4005 		dec = true;
4006 	if (event->attr.mmap || event->attr.mmap_data)
4007 		atomic_dec(&nr_mmap_events);
4008 	if (event->attr.comm)
4009 		atomic_dec(&nr_comm_events);
4010 	if (event->attr.namespaces)
4011 		atomic_dec(&nr_namespaces_events);
4012 	if (event->attr.task)
4013 		atomic_dec(&nr_task_events);
4014 	if (event->attr.freq)
4015 		unaccount_freq_event();
4016 	if (event->attr.context_switch) {
4017 		dec = true;
4018 		atomic_dec(&nr_switch_events);
4019 	}
4020 	if (is_cgroup_event(event))
4021 		dec = true;
4022 	if (has_branch_stack(event))
4023 		dec = true;
4024 
4025 	if (dec) {
4026 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4027 			schedule_delayed_work(&perf_sched_work, HZ);
4028 	}
4029 
4030 	unaccount_event_cpu(event, event->cpu);
4031 
4032 	unaccount_pmu_sb_event(event);
4033 }
4034 
4035 static void perf_sched_delayed(struct work_struct *work)
4036 {
4037 	mutex_lock(&perf_sched_mutex);
4038 	if (atomic_dec_and_test(&perf_sched_count))
4039 		static_branch_disable(&perf_sched_events);
4040 	mutex_unlock(&perf_sched_mutex);
4041 }
4042 
4043 /*
4044  * The following implement mutual exclusion of events on "exclusive" pmus
4045  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4046  * at a time, so we disallow creating events that might conflict, namely:
4047  *
4048  *  1) cpu-wide events in the presence of per-task events,
4049  *  2) per-task events in the presence of cpu-wide events,
4050  *  3) two matching events on the same context.
4051  *
4052  * The former two cases are handled in the allocation path (perf_event_alloc(),
4053  * _free_event()), the latter -- before the first perf_install_in_context().
4054  */
4055 static int exclusive_event_init(struct perf_event *event)
4056 {
4057 	struct pmu *pmu = event->pmu;
4058 
4059 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060 		return 0;
4061 
4062 	/*
4063 	 * Prevent co-existence of per-task and cpu-wide events on the
4064 	 * same exclusive pmu.
4065 	 *
4066 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4067 	 * events on this "exclusive" pmu, positive means there are
4068 	 * per-task events.
4069 	 *
4070 	 * Since this is called in perf_event_alloc() path, event::ctx
4071 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4072 	 * to mean "per-task event", because unlike other attach states it
4073 	 * never gets cleared.
4074 	 */
4075 	if (event->attach_state & PERF_ATTACH_TASK) {
4076 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4077 			return -EBUSY;
4078 	} else {
4079 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4080 			return -EBUSY;
4081 	}
4082 
4083 	return 0;
4084 }
4085 
4086 static void exclusive_event_destroy(struct perf_event *event)
4087 {
4088 	struct pmu *pmu = event->pmu;
4089 
4090 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091 		return;
4092 
4093 	/* see comment in exclusive_event_init() */
4094 	if (event->attach_state & PERF_ATTACH_TASK)
4095 		atomic_dec(&pmu->exclusive_cnt);
4096 	else
4097 		atomic_inc(&pmu->exclusive_cnt);
4098 }
4099 
4100 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4101 {
4102 	if ((e1->pmu == e2->pmu) &&
4103 	    (e1->cpu == e2->cpu ||
4104 	     e1->cpu == -1 ||
4105 	     e2->cpu == -1))
4106 		return true;
4107 	return false;
4108 }
4109 
4110 /* Called under the same ctx::mutex as perf_install_in_context() */
4111 static bool exclusive_event_installable(struct perf_event *event,
4112 					struct perf_event_context *ctx)
4113 {
4114 	struct perf_event *iter_event;
4115 	struct pmu *pmu = event->pmu;
4116 
4117 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4118 		return true;
4119 
4120 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4121 		if (exclusive_event_match(iter_event, event))
4122 			return false;
4123 	}
4124 
4125 	return true;
4126 }
4127 
4128 static void perf_addr_filters_splice(struct perf_event *event,
4129 				       struct list_head *head);
4130 
4131 static void _free_event(struct perf_event *event)
4132 {
4133 	irq_work_sync(&event->pending);
4134 
4135 	unaccount_event(event);
4136 
4137 	if (event->rb) {
4138 		/*
4139 		 * Can happen when we close an event with re-directed output.
4140 		 *
4141 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4142 		 * over us; possibly making our ring_buffer_put() the last.
4143 		 */
4144 		mutex_lock(&event->mmap_mutex);
4145 		ring_buffer_attach(event, NULL);
4146 		mutex_unlock(&event->mmap_mutex);
4147 	}
4148 
4149 	if (is_cgroup_event(event))
4150 		perf_detach_cgroup(event);
4151 
4152 	if (!event->parent) {
4153 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4154 			put_callchain_buffers();
4155 	}
4156 
4157 	perf_event_free_bpf_prog(event);
4158 	perf_addr_filters_splice(event, NULL);
4159 	kfree(event->addr_filters_offs);
4160 
4161 	if (event->destroy)
4162 		event->destroy(event);
4163 
4164 	if (event->ctx)
4165 		put_ctx(event->ctx);
4166 
4167 	exclusive_event_destroy(event);
4168 	module_put(event->pmu->module);
4169 
4170 	call_rcu(&event->rcu_head, free_event_rcu);
4171 }
4172 
4173 /*
4174  * Used to free events which have a known refcount of 1, such as in error paths
4175  * where the event isn't exposed yet and inherited events.
4176  */
4177 static void free_event(struct perf_event *event)
4178 {
4179 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4180 				"unexpected event refcount: %ld; ptr=%p\n",
4181 				atomic_long_read(&event->refcount), event)) {
4182 		/* leak to avoid use-after-free */
4183 		return;
4184 	}
4185 
4186 	_free_event(event);
4187 }
4188 
4189 /*
4190  * Remove user event from the owner task.
4191  */
4192 static void perf_remove_from_owner(struct perf_event *event)
4193 {
4194 	struct task_struct *owner;
4195 
4196 	rcu_read_lock();
4197 	/*
4198 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4199 	 * observe !owner it means the list deletion is complete and we can
4200 	 * indeed free this event, otherwise we need to serialize on
4201 	 * owner->perf_event_mutex.
4202 	 */
4203 	owner = lockless_dereference(event->owner);
4204 	if (owner) {
4205 		/*
4206 		 * Since delayed_put_task_struct() also drops the last
4207 		 * task reference we can safely take a new reference
4208 		 * while holding the rcu_read_lock().
4209 		 */
4210 		get_task_struct(owner);
4211 	}
4212 	rcu_read_unlock();
4213 
4214 	if (owner) {
4215 		/*
4216 		 * If we're here through perf_event_exit_task() we're already
4217 		 * holding ctx->mutex which would be an inversion wrt. the
4218 		 * normal lock order.
4219 		 *
4220 		 * However we can safely take this lock because its the child
4221 		 * ctx->mutex.
4222 		 */
4223 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4224 
4225 		/*
4226 		 * We have to re-check the event->owner field, if it is cleared
4227 		 * we raced with perf_event_exit_task(), acquiring the mutex
4228 		 * ensured they're done, and we can proceed with freeing the
4229 		 * event.
4230 		 */
4231 		if (event->owner) {
4232 			list_del_init(&event->owner_entry);
4233 			smp_store_release(&event->owner, NULL);
4234 		}
4235 		mutex_unlock(&owner->perf_event_mutex);
4236 		put_task_struct(owner);
4237 	}
4238 }
4239 
4240 static void put_event(struct perf_event *event)
4241 {
4242 	if (!atomic_long_dec_and_test(&event->refcount))
4243 		return;
4244 
4245 	_free_event(event);
4246 }
4247 
4248 /*
4249  * Kill an event dead; while event:refcount will preserve the event
4250  * object, it will not preserve its functionality. Once the last 'user'
4251  * gives up the object, we'll destroy the thing.
4252  */
4253 int perf_event_release_kernel(struct perf_event *event)
4254 {
4255 	struct perf_event_context *ctx = event->ctx;
4256 	struct perf_event *child, *tmp;
4257 
4258 	/*
4259 	 * If we got here through err_file: fput(event_file); we will not have
4260 	 * attached to a context yet.
4261 	 */
4262 	if (!ctx) {
4263 		WARN_ON_ONCE(event->attach_state &
4264 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4265 		goto no_ctx;
4266 	}
4267 
4268 	if (!is_kernel_event(event))
4269 		perf_remove_from_owner(event);
4270 
4271 	ctx = perf_event_ctx_lock(event);
4272 	WARN_ON_ONCE(ctx->parent_ctx);
4273 	perf_remove_from_context(event, DETACH_GROUP);
4274 
4275 	raw_spin_lock_irq(&ctx->lock);
4276 	/*
4277 	 * Mark this event as STATE_DEAD, there is no external reference to it
4278 	 * anymore.
4279 	 *
4280 	 * Anybody acquiring event->child_mutex after the below loop _must_
4281 	 * also see this, most importantly inherit_event() which will avoid
4282 	 * placing more children on the list.
4283 	 *
4284 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4285 	 * child events.
4286 	 */
4287 	event->state = PERF_EVENT_STATE_DEAD;
4288 	raw_spin_unlock_irq(&ctx->lock);
4289 
4290 	perf_event_ctx_unlock(event, ctx);
4291 
4292 again:
4293 	mutex_lock(&event->child_mutex);
4294 	list_for_each_entry(child, &event->child_list, child_list) {
4295 
4296 		/*
4297 		 * Cannot change, child events are not migrated, see the
4298 		 * comment with perf_event_ctx_lock_nested().
4299 		 */
4300 		ctx = lockless_dereference(child->ctx);
4301 		/*
4302 		 * Since child_mutex nests inside ctx::mutex, we must jump
4303 		 * through hoops. We start by grabbing a reference on the ctx.
4304 		 *
4305 		 * Since the event cannot get freed while we hold the
4306 		 * child_mutex, the context must also exist and have a !0
4307 		 * reference count.
4308 		 */
4309 		get_ctx(ctx);
4310 
4311 		/*
4312 		 * Now that we have a ctx ref, we can drop child_mutex, and
4313 		 * acquire ctx::mutex without fear of it going away. Then we
4314 		 * can re-acquire child_mutex.
4315 		 */
4316 		mutex_unlock(&event->child_mutex);
4317 		mutex_lock(&ctx->mutex);
4318 		mutex_lock(&event->child_mutex);
4319 
4320 		/*
4321 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4322 		 * state, if child is still the first entry, it didn't get freed
4323 		 * and we can continue doing so.
4324 		 */
4325 		tmp = list_first_entry_or_null(&event->child_list,
4326 					       struct perf_event, child_list);
4327 		if (tmp == child) {
4328 			perf_remove_from_context(child, DETACH_GROUP);
4329 			list_del(&child->child_list);
4330 			free_event(child);
4331 			/*
4332 			 * This matches the refcount bump in inherit_event();
4333 			 * this can't be the last reference.
4334 			 */
4335 			put_event(event);
4336 		}
4337 
4338 		mutex_unlock(&event->child_mutex);
4339 		mutex_unlock(&ctx->mutex);
4340 		put_ctx(ctx);
4341 		goto again;
4342 	}
4343 	mutex_unlock(&event->child_mutex);
4344 
4345 no_ctx:
4346 	put_event(event); /* Must be the 'last' reference */
4347 	return 0;
4348 }
4349 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4350 
4351 /*
4352  * Called when the last reference to the file is gone.
4353  */
4354 static int perf_release(struct inode *inode, struct file *file)
4355 {
4356 	perf_event_release_kernel(file->private_data);
4357 	return 0;
4358 }
4359 
4360 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4361 {
4362 	struct perf_event *child;
4363 	u64 total = 0;
4364 
4365 	*enabled = 0;
4366 	*running = 0;
4367 
4368 	mutex_lock(&event->child_mutex);
4369 
4370 	(void)perf_event_read(event, false);
4371 	total += perf_event_count(event);
4372 
4373 	*enabled += event->total_time_enabled +
4374 			atomic64_read(&event->child_total_time_enabled);
4375 	*running += event->total_time_running +
4376 			atomic64_read(&event->child_total_time_running);
4377 
4378 	list_for_each_entry(child, &event->child_list, child_list) {
4379 		(void)perf_event_read(child, false);
4380 		total += perf_event_count(child);
4381 		*enabled += child->total_time_enabled;
4382 		*running += child->total_time_running;
4383 	}
4384 	mutex_unlock(&event->child_mutex);
4385 
4386 	return total;
4387 }
4388 EXPORT_SYMBOL_GPL(perf_event_read_value);
4389 
4390 static int __perf_read_group_add(struct perf_event *leader,
4391 					u64 read_format, u64 *values)
4392 {
4393 	struct perf_event *sub;
4394 	int n = 1; /* skip @nr */
4395 	int ret;
4396 
4397 	ret = perf_event_read(leader, true);
4398 	if (ret)
4399 		return ret;
4400 
4401 	/*
4402 	 * Since we co-schedule groups, {enabled,running} times of siblings
4403 	 * will be identical to those of the leader, so we only publish one
4404 	 * set.
4405 	 */
4406 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4407 		values[n++] += leader->total_time_enabled +
4408 			atomic64_read(&leader->child_total_time_enabled);
4409 	}
4410 
4411 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4412 		values[n++] += leader->total_time_running +
4413 			atomic64_read(&leader->child_total_time_running);
4414 	}
4415 
4416 	/*
4417 	 * Write {count,id} tuples for every sibling.
4418 	 */
4419 	values[n++] += perf_event_count(leader);
4420 	if (read_format & PERF_FORMAT_ID)
4421 		values[n++] = primary_event_id(leader);
4422 
4423 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4424 		values[n++] += perf_event_count(sub);
4425 		if (read_format & PERF_FORMAT_ID)
4426 			values[n++] = primary_event_id(sub);
4427 	}
4428 
4429 	return 0;
4430 }
4431 
4432 static int perf_read_group(struct perf_event *event,
4433 				   u64 read_format, char __user *buf)
4434 {
4435 	struct perf_event *leader = event->group_leader, *child;
4436 	struct perf_event_context *ctx = leader->ctx;
4437 	int ret;
4438 	u64 *values;
4439 
4440 	lockdep_assert_held(&ctx->mutex);
4441 
4442 	values = kzalloc(event->read_size, GFP_KERNEL);
4443 	if (!values)
4444 		return -ENOMEM;
4445 
4446 	values[0] = 1 + leader->nr_siblings;
4447 
4448 	/*
4449 	 * By locking the child_mutex of the leader we effectively
4450 	 * lock the child list of all siblings.. XXX explain how.
4451 	 */
4452 	mutex_lock(&leader->child_mutex);
4453 
4454 	ret = __perf_read_group_add(leader, read_format, values);
4455 	if (ret)
4456 		goto unlock;
4457 
4458 	list_for_each_entry(child, &leader->child_list, child_list) {
4459 		ret = __perf_read_group_add(child, read_format, values);
4460 		if (ret)
4461 			goto unlock;
4462 	}
4463 
4464 	mutex_unlock(&leader->child_mutex);
4465 
4466 	ret = event->read_size;
4467 	if (copy_to_user(buf, values, event->read_size))
4468 		ret = -EFAULT;
4469 	goto out;
4470 
4471 unlock:
4472 	mutex_unlock(&leader->child_mutex);
4473 out:
4474 	kfree(values);
4475 	return ret;
4476 }
4477 
4478 static int perf_read_one(struct perf_event *event,
4479 				 u64 read_format, char __user *buf)
4480 {
4481 	u64 enabled, running;
4482 	u64 values[4];
4483 	int n = 0;
4484 
4485 	values[n++] = perf_event_read_value(event, &enabled, &running);
4486 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4487 		values[n++] = enabled;
4488 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4489 		values[n++] = running;
4490 	if (read_format & PERF_FORMAT_ID)
4491 		values[n++] = primary_event_id(event);
4492 
4493 	if (copy_to_user(buf, values, n * sizeof(u64)))
4494 		return -EFAULT;
4495 
4496 	return n * sizeof(u64);
4497 }
4498 
4499 static bool is_event_hup(struct perf_event *event)
4500 {
4501 	bool no_children;
4502 
4503 	if (event->state > PERF_EVENT_STATE_EXIT)
4504 		return false;
4505 
4506 	mutex_lock(&event->child_mutex);
4507 	no_children = list_empty(&event->child_list);
4508 	mutex_unlock(&event->child_mutex);
4509 	return no_children;
4510 }
4511 
4512 /*
4513  * Read the performance event - simple non blocking version for now
4514  */
4515 static ssize_t
4516 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4517 {
4518 	u64 read_format = event->attr.read_format;
4519 	int ret;
4520 
4521 	/*
4522 	 * Return end-of-file for a read on a event that is in
4523 	 * error state (i.e. because it was pinned but it couldn't be
4524 	 * scheduled on to the CPU at some point).
4525 	 */
4526 	if (event->state == PERF_EVENT_STATE_ERROR)
4527 		return 0;
4528 
4529 	if (count < event->read_size)
4530 		return -ENOSPC;
4531 
4532 	WARN_ON_ONCE(event->ctx->parent_ctx);
4533 	if (read_format & PERF_FORMAT_GROUP)
4534 		ret = perf_read_group(event, read_format, buf);
4535 	else
4536 		ret = perf_read_one(event, read_format, buf);
4537 
4538 	return ret;
4539 }
4540 
4541 static ssize_t
4542 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4543 {
4544 	struct perf_event *event = file->private_data;
4545 	struct perf_event_context *ctx;
4546 	int ret;
4547 
4548 	ctx = perf_event_ctx_lock(event);
4549 	ret = __perf_read(event, buf, count);
4550 	perf_event_ctx_unlock(event, ctx);
4551 
4552 	return ret;
4553 }
4554 
4555 static unsigned int perf_poll(struct file *file, poll_table *wait)
4556 {
4557 	struct perf_event *event = file->private_data;
4558 	struct ring_buffer *rb;
4559 	unsigned int events = POLLHUP;
4560 
4561 	poll_wait(file, &event->waitq, wait);
4562 
4563 	if (is_event_hup(event))
4564 		return events;
4565 
4566 	/*
4567 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4568 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4569 	 */
4570 	mutex_lock(&event->mmap_mutex);
4571 	rb = event->rb;
4572 	if (rb)
4573 		events = atomic_xchg(&rb->poll, 0);
4574 	mutex_unlock(&event->mmap_mutex);
4575 	return events;
4576 }
4577 
4578 static void _perf_event_reset(struct perf_event *event)
4579 {
4580 	(void)perf_event_read(event, false);
4581 	local64_set(&event->count, 0);
4582 	perf_event_update_userpage(event);
4583 }
4584 
4585 /*
4586  * Holding the top-level event's child_mutex means that any
4587  * descendant process that has inherited this event will block
4588  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4589  * task existence requirements of perf_event_enable/disable.
4590  */
4591 static void perf_event_for_each_child(struct perf_event *event,
4592 					void (*func)(struct perf_event *))
4593 {
4594 	struct perf_event *child;
4595 
4596 	WARN_ON_ONCE(event->ctx->parent_ctx);
4597 
4598 	mutex_lock(&event->child_mutex);
4599 	func(event);
4600 	list_for_each_entry(child, &event->child_list, child_list)
4601 		func(child);
4602 	mutex_unlock(&event->child_mutex);
4603 }
4604 
4605 static void perf_event_for_each(struct perf_event *event,
4606 				  void (*func)(struct perf_event *))
4607 {
4608 	struct perf_event_context *ctx = event->ctx;
4609 	struct perf_event *sibling;
4610 
4611 	lockdep_assert_held(&ctx->mutex);
4612 
4613 	event = event->group_leader;
4614 
4615 	perf_event_for_each_child(event, func);
4616 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4617 		perf_event_for_each_child(sibling, func);
4618 }
4619 
4620 static void __perf_event_period(struct perf_event *event,
4621 				struct perf_cpu_context *cpuctx,
4622 				struct perf_event_context *ctx,
4623 				void *info)
4624 {
4625 	u64 value = *((u64 *)info);
4626 	bool active;
4627 
4628 	if (event->attr.freq) {
4629 		event->attr.sample_freq = value;
4630 	} else {
4631 		event->attr.sample_period = value;
4632 		event->hw.sample_period = value;
4633 	}
4634 
4635 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4636 	if (active) {
4637 		perf_pmu_disable(ctx->pmu);
4638 		/*
4639 		 * We could be throttled; unthrottle now to avoid the tick
4640 		 * trying to unthrottle while we already re-started the event.
4641 		 */
4642 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4643 			event->hw.interrupts = 0;
4644 			perf_log_throttle(event, 1);
4645 		}
4646 		event->pmu->stop(event, PERF_EF_UPDATE);
4647 	}
4648 
4649 	local64_set(&event->hw.period_left, 0);
4650 
4651 	if (active) {
4652 		event->pmu->start(event, PERF_EF_RELOAD);
4653 		perf_pmu_enable(ctx->pmu);
4654 	}
4655 }
4656 
4657 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4658 {
4659 	u64 value;
4660 
4661 	if (!is_sampling_event(event))
4662 		return -EINVAL;
4663 
4664 	if (copy_from_user(&value, arg, sizeof(value)))
4665 		return -EFAULT;
4666 
4667 	if (!value)
4668 		return -EINVAL;
4669 
4670 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4671 		return -EINVAL;
4672 
4673 	event_function_call(event, __perf_event_period, &value);
4674 
4675 	return 0;
4676 }
4677 
4678 static const struct file_operations perf_fops;
4679 
4680 static inline int perf_fget_light(int fd, struct fd *p)
4681 {
4682 	struct fd f = fdget(fd);
4683 	if (!f.file)
4684 		return -EBADF;
4685 
4686 	if (f.file->f_op != &perf_fops) {
4687 		fdput(f);
4688 		return -EBADF;
4689 	}
4690 	*p = f;
4691 	return 0;
4692 }
4693 
4694 static int perf_event_set_output(struct perf_event *event,
4695 				 struct perf_event *output_event);
4696 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4697 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4698 
4699 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4700 {
4701 	void (*func)(struct perf_event *);
4702 	u32 flags = arg;
4703 
4704 	switch (cmd) {
4705 	case PERF_EVENT_IOC_ENABLE:
4706 		func = _perf_event_enable;
4707 		break;
4708 	case PERF_EVENT_IOC_DISABLE:
4709 		func = _perf_event_disable;
4710 		break;
4711 	case PERF_EVENT_IOC_RESET:
4712 		func = _perf_event_reset;
4713 		break;
4714 
4715 	case PERF_EVENT_IOC_REFRESH:
4716 		return _perf_event_refresh(event, arg);
4717 
4718 	case PERF_EVENT_IOC_PERIOD:
4719 		return perf_event_period(event, (u64 __user *)arg);
4720 
4721 	case PERF_EVENT_IOC_ID:
4722 	{
4723 		u64 id = primary_event_id(event);
4724 
4725 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4726 			return -EFAULT;
4727 		return 0;
4728 	}
4729 
4730 	case PERF_EVENT_IOC_SET_OUTPUT:
4731 	{
4732 		int ret;
4733 		if (arg != -1) {
4734 			struct perf_event *output_event;
4735 			struct fd output;
4736 			ret = perf_fget_light(arg, &output);
4737 			if (ret)
4738 				return ret;
4739 			output_event = output.file->private_data;
4740 			ret = perf_event_set_output(event, output_event);
4741 			fdput(output);
4742 		} else {
4743 			ret = perf_event_set_output(event, NULL);
4744 		}
4745 		return ret;
4746 	}
4747 
4748 	case PERF_EVENT_IOC_SET_FILTER:
4749 		return perf_event_set_filter(event, (void __user *)arg);
4750 
4751 	case PERF_EVENT_IOC_SET_BPF:
4752 		return perf_event_set_bpf_prog(event, arg);
4753 
4754 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4755 		struct ring_buffer *rb;
4756 
4757 		rcu_read_lock();
4758 		rb = rcu_dereference(event->rb);
4759 		if (!rb || !rb->nr_pages) {
4760 			rcu_read_unlock();
4761 			return -EINVAL;
4762 		}
4763 		rb_toggle_paused(rb, !!arg);
4764 		rcu_read_unlock();
4765 		return 0;
4766 	}
4767 	default:
4768 		return -ENOTTY;
4769 	}
4770 
4771 	if (flags & PERF_IOC_FLAG_GROUP)
4772 		perf_event_for_each(event, func);
4773 	else
4774 		perf_event_for_each_child(event, func);
4775 
4776 	return 0;
4777 }
4778 
4779 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4780 {
4781 	struct perf_event *event = file->private_data;
4782 	struct perf_event_context *ctx;
4783 	long ret;
4784 
4785 	ctx = perf_event_ctx_lock(event);
4786 	ret = _perf_ioctl(event, cmd, arg);
4787 	perf_event_ctx_unlock(event, ctx);
4788 
4789 	return ret;
4790 }
4791 
4792 #ifdef CONFIG_COMPAT
4793 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4794 				unsigned long arg)
4795 {
4796 	switch (_IOC_NR(cmd)) {
4797 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4798 	case _IOC_NR(PERF_EVENT_IOC_ID):
4799 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4800 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4801 			cmd &= ~IOCSIZE_MASK;
4802 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4803 		}
4804 		break;
4805 	}
4806 	return perf_ioctl(file, cmd, arg);
4807 }
4808 #else
4809 # define perf_compat_ioctl NULL
4810 #endif
4811 
4812 int perf_event_task_enable(void)
4813 {
4814 	struct perf_event_context *ctx;
4815 	struct perf_event *event;
4816 
4817 	mutex_lock(&current->perf_event_mutex);
4818 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4819 		ctx = perf_event_ctx_lock(event);
4820 		perf_event_for_each_child(event, _perf_event_enable);
4821 		perf_event_ctx_unlock(event, ctx);
4822 	}
4823 	mutex_unlock(&current->perf_event_mutex);
4824 
4825 	return 0;
4826 }
4827 
4828 int perf_event_task_disable(void)
4829 {
4830 	struct perf_event_context *ctx;
4831 	struct perf_event *event;
4832 
4833 	mutex_lock(&current->perf_event_mutex);
4834 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4835 		ctx = perf_event_ctx_lock(event);
4836 		perf_event_for_each_child(event, _perf_event_disable);
4837 		perf_event_ctx_unlock(event, ctx);
4838 	}
4839 	mutex_unlock(&current->perf_event_mutex);
4840 
4841 	return 0;
4842 }
4843 
4844 static int perf_event_index(struct perf_event *event)
4845 {
4846 	if (event->hw.state & PERF_HES_STOPPED)
4847 		return 0;
4848 
4849 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4850 		return 0;
4851 
4852 	return event->pmu->event_idx(event);
4853 }
4854 
4855 static void calc_timer_values(struct perf_event *event,
4856 				u64 *now,
4857 				u64 *enabled,
4858 				u64 *running)
4859 {
4860 	u64 ctx_time;
4861 
4862 	*now = perf_clock();
4863 	ctx_time = event->shadow_ctx_time + *now;
4864 	*enabled = ctx_time - event->tstamp_enabled;
4865 	*running = ctx_time - event->tstamp_running;
4866 }
4867 
4868 static void perf_event_init_userpage(struct perf_event *event)
4869 {
4870 	struct perf_event_mmap_page *userpg;
4871 	struct ring_buffer *rb;
4872 
4873 	rcu_read_lock();
4874 	rb = rcu_dereference(event->rb);
4875 	if (!rb)
4876 		goto unlock;
4877 
4878 	userpg = rb->user_page;
4879 
4880 	/* Allow new userspace to detect that bit 0 is deprecated */
4881 	userpg->cap_bit0_is_deprecated = 1;
4882 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4883 	userpg->data_offset = PAGE_SIZE;
4884 	userpg->data_size = perf_data_size(rb);
4885 
4886 unlock:
4887 	rcu_read_unlock();
4888 }
4889 
4890 void __weak arch_perf_update_userpage(
4891 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4892 {
4893 }
4894 
4895 /*
4896  * Callers need to ensure there can be no nesting of this function, otherwise
4897  * the seqlock logic goes bad. We can not serialize this because the arch
4898  * code calls this from NMI context.
4899  */
4900 void perf_event_update_userpage(struct perf_event *event)
4901 {
4902 	struct perf_event_mmap_page *userpg;
4903 	struct ring_buffer *rb;
4904 	u64 enabled, running, now;
4905 
4906 	rcu_read_lock();
4907 	rb = rcu_dereference(event->rb);
4908 	if (!rb)
4909 		goto unlock;
4910 
4911 	/*
4912 	 * compute total_time_enabled, total_time_running
4913 	 * based on snapshot values taken when the event
4914 	 * was last scheduled in.
4915 	 *
4916 	 * we cannot simply called update_context_time()
4917 	 * because of locking issue as we can be called in
4918 	 * NMI context
4919 	 */
4920 	calc_timer_values(event, &now, &enabled, &running);
4921 
4922 	userpg = rb->user_page;
4923 	/*
4924 	 * Disable preemption so as to not let the corresponding user-space
4925 	 * spin too long if we get preempted.
4926 	 */
4927 	preempt_disable();
4928 	++userpg->lock;
4929 	barrier();
4930 	userpg->index = perf_event_index(event);
4931 	userpg->offset = perf_event_count(event);
4932 	if (userpg->index)
4933 		userpg->offset -= local64_read(&event->hw.prev_count);
4934 
4935 	userpg->time_enabled = enabled +
4936 			atomic64_read(&event->child_total_time_enabled);
4937 
4938 	userpg->time_running = running +
4939 			atomic64_read(&event->child_total_time_running);
4940 
4941 	arch_perf_update_userpage(event, userpg, now);
4942 
4943 	barrier();
4944 	++userpg->lock;
4945 	preempt_enable();
4946 unlock:
4947 	rcu_read_unlock();
4948 }
4949 
4950 static int perf_mmap_fault(struct vm_fault *vmf)
4951 {
4952 	struct perf_event *event = vmf->vma->vm_file->private_data;
4953 	struct ring_buffer *rb;
4954 	int ret = VM_FAULT_SIGBUS;
4955 
4956 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4957 		if (vmf->pgoff == 0)
4958 			ret = 0;
4959 		return ret;
4960 	}
4961 
4962 	rcu_read_lock();
4963 	rb = rcu_dereference(event->rb);
4964 	if (!rb)
4965 		goto unlock;
4966 
4967 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4968 		goto unlock;
4969 
4970 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4971 	if (!vmf->page)
4972 		goto unlock;
4973 
4974 	get_page(vmf->page);
4975 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4976 	vmf->page->index   = vmf->pgoff;
4977 
4978 	ret = 0;
4979 unlock:
4980 	rcu_read_unlock();
4981 
4982 	return ret;
4983 }
4984 
4985 static void ring_buffer_attach(struct perf_event *event,
4986 			       struct ring_buffer *rb)
4987 {
4988 	struct ring_buffer *old_rb = NULL;
4989 	unsigned long flags;
4990 
4991 	if (event->rb) {
4992 		/*
4993 		 * Should be impossible, we set this when removing
4994 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4995 		 */
4996 		WARN_ON_ONCE(event->rcu_pending);
4997 
4998 		old_rb = event->rb;
4999 		spin_lock_irqsave(&old_rb->event_lock, flags);
5000 		list_del_rcu(&event->rb_entry);
5001 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5002 
5003 		event->rcu_batches = get_state_synchronize_rcu();
5004 		event->rcu_pending = 1;
5005 	}
5006 
5007 	if (rb) {
5008 		if (event->rcu_pending) {
5009 			cond_synchronize_rcu(event->rcu_batches);
5010 			event->rcu_pending = 0;
5011 		}
5012 
5013 		spin_lock_irqsave(&rb->event_lock, flags);
5014 		list_add_rcu(&event->rb_entry, &rb->event_list);
5015 		spin_unlock_irqrestore(&rb->event_lock, flags);
5016 	}
5017 
5018 	/*
5019 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5020 	 * before swizzling the event::rb pointer; if it's getting
5021 	 * unmapped, its aux_mmap_count will be 0 and it won't
5022 	 * restart. See the comment in __perf_pmu_output_stop().
5023 	 *
5024 	 * Data will inevitably be lost when set_output is done in
5025 	 * mid-air, but then again, whoever does it like this is
5026 	 * not in for the data anyway.
5027 	 */
5028 	if (has_aux(event))
5029 		perf_event_stop(event, 0);
5030 
5031 	rcu_assign_pointer(event->rb, rb);
5032 
5033 	if (old_rb) {
5034 		ring_buffer_put(old_rb);
5035 		/*
5036 		 * Since we detached before setting the new rb, so that we
5037 		 * could attach the new rb, we could have missed a wakeup.
5038 		 * Provide it now.
5039 		 */
5040 		wake_up_all(&event->waitq);
5041 	}
5042 }
5043 
5044 static void ring_buffer_wakeup(struct perf_event *event)
5045 {
5046 	struct ring_buffer *rb;
5047 
5048 	rcu_read_lock();
5049 	rb = rcu_dereference(event->rb);
5050 	if (rb) {
5051 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5052 			wake_up_all(&event->waitq);
5053 	}
5054 	rcu_read_unlock();
5055 }
5056 
5057 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5058 {
5059 	struct ring_buffer *rb;
5060 
5061 	rcu_read_lock();
5062 	rb = rcu_dereference(event->rb);
5063 	if (rb) {
5064 		if (!atomic_inc_not_zero(&rb->refcount))
5065 			rb = NULL;
5066 	}
5067 	rcu_read_unlock();
5068 
5069 	return rb;
5070 }
5071 
5072 void ring_buffer_put(struct ring_buffer *rb)
5073 {
5074 	if (!atomic_dec_and_test(&rb->refcount))
5075 		return;
5076 
5077 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5078 
5079 	call_rcu(&rb->rcu_head, rb_free_rcu);
5080 }
5081 
5082 static void perf_mmap_open(struct vm_area_struct *vma)
5083 {
5084 	struct perf_event *event = vma->vm_file->private_data;
5085 
5086 	atomic_inc(&event->mmap_count);
5087 	atomic_inc(&event->rb->mmap_count);
5088 
5089 	if (vma->vm_pgoff)
5090 		atomic_inc(&event->rb->aux_mmap_count);
5091 
5092 	if (event->pmu->event_mapped)
5093 		event->pmu->event_mapped(event);
5094 }
5095 
5096 static void perf_pmu_output_stop(struct perf_event *event);
5097 
5098 /*
5099  * A buffer can be mmap()ed multiple times; either directly through the same
5100  * event, or through other events by use of perf_event_set_output().
5101  *
5102  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5103  * the buffer here, where we still have a VM context. This means we need
5104  * to detach all events redirecting to us.
5105  */
5106 static void perf_mmap_close(struct vm_area_struct *vma)
5107 {
5108 	struct perf_event *event = vma->vm_file->private_data;
5109 
5110 	struct ring_buffer *rb = ring_buffer_get(event);
5111 	struct user_struct *mmap_user = rb->mmap_user;
5112 	int mmap_locked = rb->mmap_locked;
5113 	unsigned long size = perf_data_size(rb);
5114 
5115 	if (event->pmu->event_unmapped)
5116 		event->pmu->event_unmapped(event);
5117 
5118 	/*
5119 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5120 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5121 	 * serialize with perf_mmap here.
5122 	 */
5123 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5124 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5125 		/*
5126 		 * Stop all AUX events that are writing to this buffer,
5127 		 * so that we can free its AUX pages and corresponding PMU
5128 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5129 		 * they won't start any more (see perf_aux_output_begin()).
5130 		 */
5131 		perf_pmu_output_stop(event);
5132 
5133 		/* now it's safe to free the pages */
5134 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5135 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5136 
5137 		/* this has to be the last one */
5138 		rb_free_aux(rb);
5139 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5140 
5141 		mutex_unlock(&event->mmap_mutex);
5142 	}
5143 
5144 	atomic_dec(&rb->mmap_count);
5145 
5146 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5147 		goto out_put;
5148 
5149 	ring_buffer_attach(event, NULL);
5150 	mutex_unlock(&event->mmap_mutex);
5151 
5152 	/* If there's still other mmap()s of this buffer, we're done. */
5153 	if (atomic_read(&rb->mmap_count))
5154 		goto out_put;
5155 
5156 	/*
5157 	 * No other mmap()s, detach from all other events that might redirect
5158 	 * into the now unreachable buffer. Somewhat complicated by the
5159 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5160 	 */
5161 again:
5162 	rcu_read_lock();
5163 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5164 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5165 			/*
5166 			 * This event is en-route to free_event() which will
5167 			 * detach it and remove it from the list.
5168 			 */
5169 			continue;
5170 		}
5171 		rcu_read_unlock();
5172 
5173 		mutex_lock(&event->mmap_mutex);
5174 		/*
5175 		 * Check we didn't race with perf_event_set_output() which can
5176 		 * swizzle the rb from under us while we were waiting to
5177 		 * acquire mmap_mutex.
5178 		 *
5179 		 * If we find a different rb; ignore this event, a next
5180 		 * iteration will no longer find it on the list. We have to
5181 		 * still restart the iteration to make sure we're not now
5182 		 * iterating the wrong list.
5183 		 */
5184 		if (event->rb == rb)
5185 			ring_buffer_attach(event, NULL);
5186 
5187 		mutex_unlock(&event->mmap_mutex);
5188 		put_event(event);
5189 
5190 		/*
5191 		 * Restart the iteration; either we're on the wrong list or
5192 		 * destroyed its integrity by doing a deletion.
5193 		 */
5194 		goto again;
5195 	}
5196 	rcu_read_unlock();
5197 
5198 	/*
5199 	 * It could be there's still a few 0-ref events on the list; they'll
5200 	 * get cleaned up by free_event() -- they'll also still have their
5201 	 * ref on the rb and will free it whenever they are done with it.
5202 	 *
5203 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5204 	 * undo the VM accounting.
5205 	 */
5206 
5207 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5208 	vma->vm_mm->pinned_vm -= mmap_locked;
5209 	free_uid(mmap_user);
5210 
5211 out_put:
5212 	ring_buffer_put(rb); /* could be last */
5213 }
5214 
5215 static const struct vm_operations_struct perf_mmap_vmops = {
5216 	.open		= perf_mmap_open,
5217 	.close		= perf_mmap_close, /* non mergable */
5218 	.fault		= perf_mmap_fault,
5219 	.page_mkwrite	= perf_mmap_fault,
5220 };
5221 
5222 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5223 {
5224 	struct perf_event *event = file->private_data;
5225 	unsigned long user_locked, user_lock_limit;
5226 	struct user_struct *user = current_user();
5227 	unsigned long locked, lock_limit;
5228 	struct ring_buffer *rb = NULL;
5229 	unsigned long vma_size;
5230 	unsigned long nr_pages;
5231 	long user_extra = 0, extra = 0;
5232 	int ret = 0, flags = 0;
5233 
5234 	/*
5235 	 * Don't allow mmap() of inherited per-task counters. This would
5236 	 * create a performance issue due to all children writing to the
5237 	 * same rb.
5238 	 */
5239 	if (event->cpu == -1 && event->attr.inherit)
5240 		return -EINVAL;
5241 
5242 	if (!(vma->vm_flags & VM_SHARED))
5243 		return -EINVAL;
5244 
5245 	vma_size = vma->vm_end - vma->vm_start;
5246 
5247 	if (vma->vm_pgoff == 0) {
5248 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5249 	} else {
5250 		/*
5251 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5252 		 * mapped, all subsequent mappings should have the same size
5253 		 * and offset. Must be above the normal perf buffer.
5254 		 */
5255 		u64 aux_offset, aux_size;
5256 
5257 		if (!event->rb)
5258 			return -EINVAL;
5259 
5260 		nr_pages = vma_size / PAGE_SIZE;
5261 
5262 		mutex_lock(&event->mmap_mutex);
5263 		ret = -EINVAL;
5264 
5265 		rb = event->rb;
5266 		if (!rb)
5267 			goto aux_unlock;
5268 
5269 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5270 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5271 
5272 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5273 			goto aux_unlock;
5274 
5275 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5276 			goto aux_unlock;
5277 
5278 		/* already mapped with a different offset */
5279 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5280 			goto aux_unlock;
5281 
5282 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5283 			goto aux_unlock;
5284 
5285 		/* already mapped with a different size */
5286 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5287 			goto aux_unlock;
5288 
5289 		if (!is_power_of_2(nr_pages))
5290 			goto aux_unlock;
5291 
5292 		if (!atomic_inc_not_zero(&rb->mmap_count))
5293 			goto aux_unlock;
5294 
5295 		if (rb_has_aux(rb)) {
5296 			atomic_inc(&rb->aux_mmap_count);
5297 			ret = 0;
5298 			goto unlock;
5299 		}
5300 
5301 		atomic_set(&rb->aux_mmap_count, 1);
5302 		user_extra = nr_pages;
5303 
5304 		goto accounting;
5305 	}
5306 
5307 	/*
5308 	 * If we have rb pages ensure they're a power-of-two number, so we
5309 	 * can do bitmasks instead of modulo.
5310 	 */
5311 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5312 		return -EINVAL;
5313 
5314 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5315 		return -EINVAL;
5316 
5317 	WARN_ON_ONCE(event->ctx->parent_ctx);
5318 again:
5319 	mutex_lock(&event->mmap_mutex);
5320 	if (event->rb) {
5321 		if (event->rb->nr_pages != nr_pages) {
5322 			ret = -EINVAL;
5323 			goto unlock;
5324 		}
5325 
5326 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5327 			/*
5328 			 * Raced against perf_mmap_close() through
5329 			 * perf_event_set_output(). Try again, hope for better
5330 			 * luck.
5331 			 */
5332 			mutex_unlock(&event->mmap_mutex);
5333 			goto again;
5334 		}
5335 
5336 		goto unlock;
5337 	}
5338 
5339 	user_extra = nr_pages + 1;
5340 
5341 accounting:
5342 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5343 
5344 	/*
5345 	 * Increase the limit linearly with more CPUs:
5346 	 */
5347 	user_lock_limit *= num_online_cpus();
5348 
5349 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5350 
5351 	if (user_locked > user_lock_limit)
5352 		extra = user_locked - user_lock_limit;
5353 
5354 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5355 	lock_limit >>= PAGE_SHIFT;
5356 	locked = vma->vm_mm->pinned_vm + extra;
5357 
5358 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5359 		!capable(CAP_IPC_LOCK)) {
5360 		ret = -EPERM;
5361 		goto unlock;
5362 	}
5363 
5364 	WARN_ON(!rb && event->rb);
5365 
5366 	if (vma->vm_flags & VM_WRITE)
5367 		flags |= RING_BUFFER_WRITABLE;
5368 
5369 	if (!rb) {
5370 		rb = rb_alloc(nr_pages,
5371 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5372 			      event->cpu, flags);
5373 
5374 		if (!rb) {
5375 			ret = -ENOMEM;
5376 			goto unlock;
5377 		}
5378 
5379 		atomic_set(&rb->mmap_count, 1);
5380 		rb->mmap_user = get_current_user();
5381 		rb->mmap_locked = extra;
5382 
5383 		ring_buffer_attach(event, rb);
5384 
5385 		perf_event_init_userpage(event);
5386 		perf_event_update_userpage(event);
5387 	} else {
5388 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5389 				   event->attr.aux_watermark, flags);
5390 		if (!ret)
5391 			rb->aux_mmap_locked = extra;
5392 	}
5393 
5394 unlock:
5395 	if (!ret) {
5396 		atomic_long_add(user_extra, &user->locked_vm);
5397 		vma->vm_mm->pinned_vm += extra;
5398 
5399 		atomic_inc(&event->mmap_count);
5400 	} else if (rb) {
5401 		atomic_dec(&rb->mmap_count);
5402 	}
5403 aux_unlock:
5404 	mutex_unlock(&event->mmap_mutex);
5405 
5406 	/*
5407 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5408 	 * vma.
5409 	 */
5410 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5411 	vma->vm_ops = &perf_mmap_vmops;
5412 
5413 	if (event->pmu->event_mapped)
5414 		event->pmu->event_mapped(event);
5415 
5416 	return ret;
5417 }
5418 
5419 static int perf_fasync(int fd, struct file *filp, int on)
5420 {
5421 	struct inode *inode = file_inode(filp);
5422 	struct perf_event *event = filp->private_data;
5423 	int retval;
5424 
5425 	inode_lock(inode);
5426 	retval = fasync_helper(fd, filp, on, &event->fasync);
5427 	inode_unlock(inode);
5428 
5429 	if (retval < 0)
5430 		return retval;
5431 
5432 	return 0;
5433 }
5434 
5435 static const struct file_operations perf_fops = {
5436 	.llseek			= no_llseek,
5437 	.release		= perf_release,
5438 	.read			= perf_read,
5439 	.poll			= perf_poll,
5440 	.unlocked_ioctl		= perf_ioctl,
5441 	.compat_ioctl		= perf_compat_ioctl,
5442 	.mmap			= perf_mmap,
5443 	.fasync			= perf_fasync,
5444 };
5445 
5446 /*
5447  * Perf event wakeup
5448  *
5449  * If there's data, ensure we set the poll() state and publish everything
5450  * to user-space before waking everybody up.
5451  */
5452 
5453 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5454 {
5455 	/* only the parent has fasync state */
5456 	if (event->parent)
5457 		event = event->parent;
5458 	return &event->fasync;
5459 }
5460 
5461 void perf_event_wakeup(struct perf_event *event)
5462 {
5463 	ring_buffer_wakeup(event);
5464 
5465 	if (event->pending_kill) {
5466 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5467 		event->pending_kill = 0;
5468 	}
5469 }
5470 
5471 static void perf_pending_event(struct irq_work *entry)
5472 {
5473 	struct perf_event *event = container_of(entry,
5474 			struct perf_event, pending);
5475 	int rctx;
5476 
5477 	rctx = perf_swevent_get_recursion_context();
5478 	/*
5479 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5480 	 * and we won't recurse 'further'.
5481 	 */
5482 
5483 	if (event->pending_disable) {
5484 		event->pending_disable = 0;
5485 		perf_event_disable_local(event);
5486 	}
5487 
5488 	if (event->pending_wakeup) {
5489 		event->pending_wakeup = 0;
5490 		perf_event_wakeup(event);
5491 	}
5492 
5493 	if (rctx >= 0)
5494 		perf_swevent_put_recursion_context(rctx);
5495 }
5496 
5497 /*
5498  * We assume there is only KVM supporting the callbacks.
5499  * Later on, we might change it to a list if there is
5500  * another virtualization implementation supporting the callbacks.
5501  */
5502 struct perf_guest_info_callbacks *perf_guest_cbs;
5503 
5504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5505 {
5506 	perf_guest_cbs = cbs;
5507 	return 0;
5508 }
5509 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5510 
5511 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5512 {
5513 	perf_guest_cbs = NULL;
5514 	return 0;
5515 }
5516 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5517 
5518 static void
5519 perf_output_sample_regs(struct perf_output_handle *handle,
5520 			struct pt_regs *regs, u64 mask)
5521 {
5522 	int bit;
5523 	DECLARE_BITMAP(_mask, 64);
5524 
5525 	bitmap_from_u64(_mask, mask);
5526 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5527 		u64 val;
5528 
5529 		val = perf_reg_value(regs, bit);
5530 		perf_output_put(handle, val);
5531 	}
5532 }
5533 
5534 static void perf_sample_regs_user(struct perf_regs *regs_user,
5535 				  struct pt_regs *regs,
5536 				  struct pt_regs *regs_user_copy)
5537 {
5538 	if (user_mode(regs)) {
5539 		regs_user->abi = perf_reg_abi(current);
5540 		regs_user->regs = regs;
5541 	} else if (current->mm) {
5542 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5543 	} else {
5544 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5545 		regs_user->regs = NULL;
5546 	}
5547 }
5548 
5549 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5550 				  struct pt_regs *regs)
5551 {
5552 	regs_intr->regs = regs;
5553 	regs_intr->abi  = perf_reg_abi(current);
5554 }
5555 
5556 
5557 /*
5558  * Get remaining task size from user stack pointer.
5559  *
5560  * It'd be better to take stack vma map and limit this more
5561  * precisly, but there's no way to get it safely under interrupt,
5562  * so using TASK_SIZE as limit.
5563  */
5564 static u64 perf_ustack_task_size(struct pt_regs *regs)
5565 {
5566 	unsigned long addr = perf_user_stack_pointer(regs);
5567 
5568 	if (!addr || addr >= TASK_SIZE)
5569 		return 0;
5570 
5571 	return TASK_SIZE - addr;
5572 }
5573 
5574 static u16
5575 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5576 			struct pt_regs *regs)
5577 {
5578 	u64 task_size;
5579 
5580 	/* No regs, no stack pointer, no dump. */
5581 	if (!regs)
5582 		return 0;
5583 
5584 	/*
5585 	 * Check if we fit in with the requested stack size into the:
5586 	 * - TASK_SIZE
5587 	 *   If we don't, we limit the size to the TASK_SIZE.
5588 	 *
5589 	 * - remaining sample size
5590 	 *   If we don't, we customize the stack size to
5591 	 *   fit in to the remaining sample size.
5592 	 */
5593 
5594 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5595 	stack_size = min(stack_size, (u16) task_size);
5596 
5597 	/* Current header size plus static size and dynamic size. */
5598 	header_size += 2 * sizeof(u64);
5599 
5600 	/* Do we fit in with the current stack dump size? */
5601 	if ((u16) (header_size + stack_size) < header_size) {
5602 		/*
5603 		 * If we overflow the maximum size for the sample,
5604 		 * we customize the stack dump size to fit in.
5605 		 */
5606 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5607 		stack_size = round_up(stack_size, sizeof(u64));
5608 	}
5609 
5610 	return stack_size;
5611 }
5612 
5613 static void
5614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5615 			  struct pt_regs *regs)
5616 {
5617 	/* Case of a kernel thread, nothing to dump */
5618 	if (!regs) {
5619 		u64 size = 0;
5620 		perf_output_put(handle, size);
5621 	} else {
5622 		unsigned long sp;
5623 		unsigned int rem;
5624 		u64 dyn_size;
5625 
5626 		/*
5627 		 * We dump:
5628 		 * static size
5629 		 *   - the size requested by user or the best one we can fit
5630 		 *     in to the sample max size
5631 		 * data
5632 		 *   - user stack dump data
5633 		 * dynamic size
5634 		 *   - the actual dumped size
5635 		 */
5636 
5637 		/* Static size. */
5638 		perf_output_put(handle, dump_size);
5639 
5640 		/* Data. */
5641 		sp = perf_user_stack_pointer(regs);
5642 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5643 		dyn_size = dump_size - rem;
5644 
5645 		perf_output_skip(handle, rem);
5646 
5647 		/* Dynamic size. */
5648 		perf_output_put(handle, dyn_size);
5649 	}
5650 }
5651 
5652 static void __perf_event_header__init_id(struct perf_event_header *header,
5653 					 struct perf_sample_data *data,
5654 					 struct perf_event *event)
5655 {
5656 	u64 sample_type = event->attr.sample_type;
5657 
5658 	data->type = sample_type;
5659 	header->size += event->id_header_size;
5660 
5661 	if (sample_type & PERF_SAMPLE_TID) {
5662 		/* namespace issues */
5663 		data->tid_entry.pid = perf_event_pid(event, current);
5664 		data->tid_entry.tid = perf_event_tid(event, current);
5665 	}
5666 
5667 	if (sample_type & PERF_SAMPLE_TIME)
5668 		data->time = perf_event_clock(event);
5669 
5670 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5671 		data->id = primary_event_id(event);
5672 
5673 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5674 		data->stream_id = event->id;
5675 
5676 	if (sample_type & PERF_SAMPLE_CPU) {
5677 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5678 		data->cpu_entry.reserved = 0;
5679 	}
5680 }
5681 
5682 void perf_event_header__init_id(struct perf_event_header *header,
5683 				struct perf_sample_data *data,
5684 				struct perf_event *event)
5685 {
5686 	if (event->attr.sample_id_all)
5687 		__perf_event_header__init_id(header, data, event);
5688 }
5689 
5690 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5691 					   struct perf_sample_data *data)
5692 {
5693 	u64 sample_type = data->type;
5694 
5695 	if (sample_type & PERF_SAMPLE_TID)
5696 		perf_output_put(handle, data->tid_entry);
5697 
5698 	if (sample_type & PERF_SAMPLE_TIME)
5699 		perf_output_put(handle, data->time);
5700 
5701 	if (sample_type & PERF_SAMPLE_ID)
5702 		perf_output_put(handle, data->id);
5703 
5704 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5705 		perf_output_put(handle, data->stream_id);
5706 
5707 	if (sample_type & PERF_SAMPLE_CPU)
5708 		perf_output_put(handle, data->cpu_entry);
5709 
5710 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5711 		perf_output_put(handle, data->id);
5712 }
5713 
5714 void perf_event__output_id_sample(struct perf_event *event,
5715 				  struct perf_output_handle *handle,
5716 				  struct perf_sample_data *sample)
5717 {
5718 	if (event->attr.sample_id_all)
5719 		__perf_event__output_id_sample(handle, sample);
5720 }
5721 
5722 static void perf_output_read_one(struct perf_output_handle *handle,
5723 				 struct perf_event *event,
5724 				 u64 enabled, u64 running)
5725 {
5726 	u64 read_format = event->attr.read_format;
5727 	u64 values[4];
5728 	int n = 0;
5729 
5730 	values[n++] = perf_event_count(event);
5731 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5732 		values[n++] = enabled +
5733 			atomic64_read(&event->child_total_time_enabled);
5734 	}
5735 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5736 		values[n++] = running +
5737 			atomic64_read(&event->child_total_time_running);
5738 	}
5739 	if (read_format & PERF_FORMAT_ID)
5740 		values[n++] = primary_event_id(event);
5741 
5742 	__output_copy(handle, values, n * sizeof(u64));
5743 }
5744 
5745 /*
5746  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5747  */
5748 static void perf_output_read_group(struct perf_output_handle *handle,
5749 			    struct perf_event *event,
5750 			    u64 enabled, u64 running)
5751 {
5752 	struct perf_event *leader = event->group_leader, *sub;
5753 	u64 read_format = event->attr.read_format;
5754 	u64 values[5];
5755 	int n = 0;
5756 
5757 	values[n++] = 1 + leader->nr_siblings;
5758 
5759 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5760 		values[n++] = enabled;
5761 
5762 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5763 		values[n++] = running;
5764 
5765 	if (leader != event)
5766 		leader->pmu->read(leader);
5767 
5768 	values[n++] = perf_event_count(leader);
5769 	if (read_format & PERF_FORMAT_ID)
5770 		values[n++] = primary_event_id(leader);
5771 
5772 	__output_copy(handle, values, n * sizeof(u64));
5773 
5774 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5775 		n = 0;
5776 
5777 		if ((sub != event) &&
5778 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5779 			sub->pmu->read(sub);
5780 
5781 		values[n++] = perf_event_count(sub);
5782 		if (read_format & PERF_FORMAT_ID)
5783 			values[n++] = primary_event_id(sub);
5784 
5785 		__output_copy(handle, values, n * sizeof(u64));
5786 	}
5787 }
5788 
5789 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5790 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5791 
5792 static void perf_output_read(struct perf_output_handle *handle,
5793 			     struct perf_event *event)
5794 {
5795 	u64 enabled = 0, running = 0, now;
5796 	u64 read_format = event->attr.read_format;
5797 
5798 	/*
5799 	 * compute total_time_enabled, total_time_running
5800 	 * based on snapshot values taken when the event
5801 	 * was last scheduled in.
5802 	 *
5803 	 * we cannot simply called update_context_time()
5804 	 * because of locking issue as we are called in
5805 	 * NMI context
5806 	 */
5807 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5808 		calc_timer_values(event, &now, &enabled, &running);
5809 
5810 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5811 		perf_output_read_group(handle, event, enabled, running);
5812 	else
5813 		perf_output_read_one(handle, event, enabled, running);
5814 }
5815 
5816 void perf_output_sample(struct perf_output_handle *handle,
5817 			struct perf_event_header *header,
5818 			struct perf_sample_data *data,
5819 			struct perf_event *event)
5820 {
5821 	u64 sample_type = data->type;
5822 
5823 	perf_output_put(handle, *header);
5824 
5825 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5826 		perf_output_put(handle, data->id);
5827 
5828 	if (sample_type & PERF_SAMPLE_IP)
5829 		perf_output_put(handle, data->ip);
5830 
5831 	if (sample_type & PERF_SAMPLE_TID)
5832 		perf_output_put(handle, data->tid_entry);
5833 
5834 	if (sample_type & PERF_SAMPLE_TIME)
5835 		perf_output_put(handle, data->time);
5836 
5837 	if (sample_type & PERF_SAMPLE_ADDR)
5838 		perf_output_put(handle, data->addr);
5839 
5840 	if (sample_type & PERF_SAMPLE_ID)
5841 		perf_output_put(handle, data->id);
5842 
5843 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5844 		perf_output_put(handle, data->stream_id);
5845 
5846 	if (sample_type & PERF_SAMPLE_CPU)
5847 		perf_output_put(handle, data->cpu_entry);
5848 
5849 	if (sample_type & PERF_SAMPLE_PERIOD)
5850 		perf_output_put(handle, data->period);
5851 
5852 	if (sample_type & PERF_SAMPLE_READ)
5853 		perf_output_read(handle, event);
5854 
5855 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5856 		if (data->callchain) {
5857 			int size = 1;
5858 
5859 			if (data->callchain)
5860 				size += data->callchain->nr;
5861 
5862 			size *= sizeof(u64);
5863 
5864 			__output_copy(handle, data->callchain, size);
5865 		} else {
5866 			u64 nr = 0;
5867 			perf_output_put(handle, nr);
5868 		}
5869 	}
5870 
5871 	if (sample_type & PERF_SAMPLE_RAW) {
5872 		struct perf_raw_record *raw = data->raw;
5873 
5874 		if (raw) {
5875 			struct perf_raw_frag *frag = &raw->frag;
5876 
5877 			perf_output_put(handle, raw->size);
5878 			do {
5879 				if (frag->copy) {
5880 					__output_custom(handle, frag->copy,
5881 							frag->data, frag->size);
5882 				} else {
5883 					__output_copy(handle, frag->data,
5884 						      frag->size);
5885 				}
5886 				if (perf_raw_frag_last(frag))
5887 					break;
5888 				frag = frag->next;
5889 			} while (1);
5890 			if (frag->pad)
5891 				__output_skip(handle, NULL, frag->pad);
5892 		} else {
5893 			struct {
5894 				u32	size;
5895 				u32	data;
5896 			} raw = {
5897 				.size = sizeof(u32),
5898 				.data = 0,
5899 			};
5900 			perf_output_put(handle, raw);
5901 		}
5902 	}
5903 
5904 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5905 		if (data->br_stack) {
5906 			size_t size;
5907 
5908 			size = data->br_stack->nr
5909 			     * sizeof(struct perf_branch_entry);
5910 
5911 			perf_output_put(handle, data->br_stack->nr);
5912 			perf_output_copy(handle, data->br_stack->entries, size);
5913 		} else {
5914 			/*
5915 			 * we always store at least the value of nr
5916 			 */
5917 			u64 nr = 0;
5918 			perf_output_put(handle, nr);
5919 		}
5920 	}
5921 
5922 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5923 		u64 abi = data->regs_user.abi;
5924 
5925 		/*
5926 		 * If there are no regs to dump, notice it through
5927 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5928 		 */
5929 		perf_output_put(handle, abi);
5930 
5931 		if (abi) {
5932 			u64 mask = event->attr.sample_regs_user;
5933 			perf_output_sample_regs(handle,
5934 						data->regs_user.regs,
5935 						mask);
5936 		}
5937 	}
5938 
5939 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5940 		perf_output_sample_ustack(handle,
5941 					  data->stack_user_size,
5942 					  data->regs_user.regs);
5943 	}
5944 
5945 	if (sample_type & PERF_SAMPLE_WEIGHT)
5946 		perf_output_put(handle, data->weight);
5947 
5948 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5949 		perf_output_put(handle, data->data_src.val);
5950 
5951 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5952 		perf_output_put(handle, data->txn);
5953 
5954 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5955 		u64 abi = data->regs_intr.abi;
5956 		/*
5957 		 * If there are no regs to dump, notice it through
5958 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5959 		 */
5960 		perf_output_put(handle, abi);
5961 
5962 		if (abi) {
5963 			u64 mask = event->attr.sample_regs_intr;
5964 
5965 			perf_output_sample_regs(handle,
5966 						data->regs_intr.regs,
5967 						mask);
5968 		}
5969 	}
5970 
5971 	if (!event->attr.watermark) {
5972 		int wakeup_events = event->attr.wakeup_events;
5973 
5974 		if (wakeup_events) {
5975 			struct ring_buffer *rb = handle->rb;
5976 			int events = local_inc_return(&rb->events);
5977 
5978 			if (events >= wakeup_events) {
5979 				local_sub(wakeup_events, &rb->events);
5980 				local_inc(&rb->wakeup);
5981 			}
5982 		}
5983 	}
5984 }
5985 
5986 void perf_prepare_sample(struct perf_event_header *header,
5987 			 struct perf_sample_data *data,
5988 			 struct perf_event *event,
5989 			 struct pt_regs *regs)
5990 {
5991 	u64 sample_type = event->attr.sample_type;
5992 
5993 	header->type = PERF_RECORD_SAMPLE;
5994 	header->size = sizeof(*header) + event->header_size;
5995 
5996 	header->misc = 0;
5997 	header->misc |= perf_misc_flags(regs);
5998 
5999 	__perf_event_header__init_id(header, data, event);
6000 
6001 	if (sample_type & PERF_SAMPLE_IP)
6002 		data->ip = perf_instruction_pointer(regs);
6003 
6004 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6005 		int size = 1;
6006 
6007 		data->callchain = perf_callchain(event, regs);
6008 
6009 		if (data->callchain)
6010 			size += data->callchain->nr;
6011 
6012 		header->size += size * sizeof(u64);
6013 	}
6014 
6015 	if (sample_type & PERF_SAMPLE_RAW) {
6016 		struct perf_raw_record *raw = data->raw;
6017 		int size;
6018 
6019 		if (raw) {
6020 			struct perf_raw_frag *frag = &raw->frag;
6021 			u32 sum = 0;
6022 
6023 			do {
6024 				sum += frag->size;
6025 				if (perf_raw_frag_last(frag))
6026 					break;
6027 				frag = frag->next;
6028 			} while (1);
6029 
6030 			size = round_up(sum + sizeof(u32), sizeof(u64));
6031 			raw->size = size - sizeof(u32);
6032 			frag->pad = raw->size - sum;
6033 		} else {
6034 			size = sizeof(u64);
6035 		}
6036 
6037 		header->size += size;
6038 	}
6039 
6040 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6041 		int size = sizeof(u64); /* nr */
6042 		if (data->br_stack) {
6043 			size += data->br_stack->nr
6044 			      * sizeof(struct perf_branch_entry);
6045 		}
6046 		header->size += size;
6047 	}
6048 
6049 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6050 		perf_sample_regs_user(&data->regs_user, regs,
6051 				      &data->regs_user_copy);
6052 
6053 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6054 		/* regs dump ABI info */
6055 		int size = sizeof(u64);
6056 
6057 		if (data->regs_user.regs) {
6058 			u64 mask = event->attr.sample_regs_user;
6059 			size += hweight64(mask) * sizeof(u64);
6060 		}
6061 
6062 		header->size += size;
6063 	}
6064 
6065 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6066 		/*
6067 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6068 		 * processed as the last one or have additional check added
6069 		 * in case new sample type is added, because we could eat
6070 		 * up the rest of the sample size.
6071 		 */
6072 		u16 stack_size = event->attr.sample_stack_user;
6073 		u16 size = sizeof(u64);
6074 
6075 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6076 						     data->regs_user.regs);
6077 
6078 		/*
6079 		 * If there is something to dump, add space for the dump
6080 		 * itself and for the field that tells the dynamic size,
6081 		 * which is how many have been actually dumped.
6082 		 */
6083 		if (stack_size)
6084 			size += sizeof(u64) + stack_size;
6085 
6086 		data->stack_user_size = stack_size;
6087 		header->size += size;
6088 	}
6089 
6090 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6091 		/* regs dump ABI info */
6092 		int size = sizeof(u64);
6093 
6094 		perf_sample_regs_intr(&data->regs_intr, regs);
6095 
6096 		if (data->regs_intr.regs) {
6097 			u64 mask = event->attr.sample_regs_intr;
6098 
6099 			size += hweight64(mask) * sizeof(u64);
6100 		}
6101 
6102 		header->size += size;
6103 	}
6104 }
6105 
6106 static void __always_inline
6107 __perf_event_output(struct perf_event *event,
6108 		    struct perf_sample_data *data,
6109 		    struct pt_regs *regs,
6110 		    int (*output_begin)(struct perf_output_handle *,
6111 					struct perf_event *,
6112 					unsigned int))
6113 {
6114 	struct perf_output_handle handle;
6115 	struct perf_event_header header;
6116 
6117 	/* protect the callchain buffers */
6118 	rcu_read_lock();
6119 
6120 	perf_prepare_sample(&header, data, event, regs);
6121 
6122 	if (output_begin(&handle, event, header.size))
6123 		goto exit;
6124 
6125 	perf_output_sample(&handle, &header, data, event);
6126 
6127 	perf_output_end(&handle);
6128 
6129 exit:
6130 	rcu_read_unlock();
6131 }
6132 
6133 void
6134 perf_event_output_forward(struct perf_event *event,
6135 			 struct perf_sample_data *data,
6136 			 struct pt_regs *regs)
6137 {
6138 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6139 }
6140 
6141 void
6142 perf_event_output_backward(struct perf_event *event,
6143 			   struct perf_sample_data *data,
6144 			   struct pt_regs *regs)
6145 {
6146 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6147 }
6148 
6149 void
6150 perf_event_output(struct perf_event *event,
6151 		  struct perf_sample_data *data,
6152 		  struct pt_regs *regs)
6153 {
6154 	__perf_event_output(event, data, regs, perf_output_begin);
6155 }
6156 
6157 /*
6158  * read event_id
6159  */
6160 
6161 struct perf_read_event {
6162 	struct perf_event_header	header;
6163 
6164 	u32				pid;
6165 	u32				tid;
6166 };
6167 
6168 static void
6169 perf_event_read_event(struct perf_event *event,
6170 			struct task_struct *task)
6171 {
6172 	struct perf_output_handle handle;
6173 	struct perf_sample_data sample;
6174 	struct perf_read_event read_event = {
6175 		.header = {
6176 			.type = PERF_RECORD_READ,
6177 			.misc = 0,
6178 			.size = sizeof(read_event) + event->read_size,
6179 		},
6180 		.pid = perf_event_pid(event, task),
6181 		.tid = perf_event_tid(event, task),
6182 	};
6183 	int ret;
6184 
6185 	perf_event_header__init_id(&read_event.header, &sample, event);
6186 	ret = perf_output_begin(&handle, event, read_event.header.size);
6187 	if (ret)
6188 		return;
6189 
6190 	perf_output_put(&handle, read_event);
6191 	perf_output_read(&handle, event);
6192 	perf_event__output_id_sample(event, &handle, &sample);
6193 
6194 	perf_output_end(&handle);
6195 }
6196 
6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6198 
6199 static void
6200 perf_iterate_ctx(struct perf_event_context *ctx,
6201 		   perf_iterate_f output,
6202 		   void *data, bool all)
6203 {
6204 	struct perf_event *event;
6205 
6206 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6207 		if (!all) {
6208 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6209 				continue;
6210 			if (!event_filter_match(event))
6211 				continue;
6212 		}
6213 
6214 		output(event, data);
6215 	}
6216 }
6217 
6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6219 {
6220 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6221 	struct perf_event *event;
6222 
6223 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6224 		/*
6225 		 * Skip events that are not fully formed yet; ensure that
6226 		 * if we observe event->ctx, both event and ctx will be
6227 		 * complete enough. See perf_install_in_context().
6228 		 */
6229 		if (!smp_load_acquire(&event->ctx))
6230 			continue;
6231 
6232 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6233 			continue;
6234 		if (!event_filter_match(event))
6235 			continue;
6236 		output(event, data);
6237 	}
6238 }
6239 
6240 /*
6241  * Iterate all events that need to receive side-band events.
6242  *
6243  * For new callers; ensure that account_pmu_sb_event() includes
6244  * your event, otherwise it might not get delivered.
6245  */
6246 static void
6247 perf_iterate_sb(perf_iterate_f output, void *data,
6248 	       struct perf_event_context *task_ctx)
6249 {
6250 	struct perf_event_context *ctx;
6251 	int ctxn;
6252 
6253 	rcu_read_lock();
6254 	preempt_disable();
6255 
6256 	/*
6257 	 * If we have task_ctx != NULL we only notify the task context itself.
6258 	 * The task_ctx is set only for EXIT events before releasing task
6259 	 * context.
6260 	 */
6261 	if (task_ctx) {
6262 		perf_iterate_ctx(task_ctx, output, data, false);
6263 		goto done;
6264 	}
6265 
6266 	perf_iterate_sb_cpu(output, data);
6267 
6268 	for_each_task_context_nr(ctxn) {
6269 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6270 		if (ctx)
6271 			perf_iterate_ctx(ctx, output, data, false);
6272 	}
6273 done:
6274 	preempt_enable();
6275 	rcu_read_unlock();
6276 }
6277 
6278 /*
6279  * Clear all file-based filters at exec, they'll have to be
6280  * re-instated when/if these objects are mmapped again.
6281  */
6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6283 {
6284 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6285 	struct perf_addr_filter *filter;
6286 	unsigned int restart = 0, count = 0;
6287 	unsigned long flags;
6288 
6289 	if (!has_addr_filter(event))
6290 		return;
6291 
6292 	raw_spin_lock_irqsave(&ifh->lock, flags);
6293 	list_for_each_entry(filter, &ifh->list, entry) {
6294 		if (filter->inode) {
6295 			event->addr_filters_offs[count] = 0;
6296 			restart++;
6297 		}
6298 
6299 		count++;
6300 	}
6301 
6302 	if (restart)
6303 		event->addr_filters_gen++;
6304 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6305 
6306 	if (restart)
6307 		perf_event_stop(event, 1);
6308 }
6309 
6310 void perf_event_exec(void)
6311 {
6312 	struct perf_event_context *ctx;
6313 	int ctxn;
6314 
6315 	rcu_read_lock();
6316 	for_each_task_context_nr(ctxn) {
6317 		ctx = current->perf_event_ctxp[ctxn];
6318 		if (!ctx)
6319 			continue;
6320 
6321 		perf_event_enable_on_exec(ctxn);
6322 
6323 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6324 				   true);
6325 	}
6326 	rcu_read_unlock();
6327 }
6328 
6329 struct remote_output {
6330 	struct ring_buffer	*rb;
6331 	int			err;
6332 };
6333 
6334 static void __perf_event_output_stop(struct perf_event *event, void *data)
6335 {
6336 	struct perf_event *parent = event->parent;
6337 	struct remote_output *ro = data;
6338 	struct ring_buffer *rb = ro->rb;
6339 	struct stop_event_data sd = {
6340 		.event	= event,
6341 	};
6342 
6343 	if (!has_aux(event))
6344 		return;
6345 
6346 	if (!parent)
6347 		parent = event;
6348 
6349 	/*
6350 	 * In case of inheritance, it will be the parent that links to the
6351 	 * ring-buffer, but it will be the child that's actually using it.
6352 	 *
6353 	 * We are using event::rb to determine if the event should be stopped,
6354 	 * however this may race with ring_buffer_attach() (through set_output),
6355 	 * which will make us skip the event that actually needs to be stopped.
6356 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6357 	 * its rb pointer.
6358 	 */
6359 	if (rcu_dereference(parent->rb) == rb)
6360 		ro->err = __perf_event_stop(&sd);
6361 }
6362 
6363 static int __perf_pmu_output_stop(void *info)
6364 {
6365 	struct perf_event *event = info;
6366 	struct pmu *pmu = event->pmu;
6367 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6368 	struct remote_output ro = {
6369 		.rb	= event->rb,
6370 	};
6371 
6372 	rcu_read_lock();
6373 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6374 	if (cpuctx->task_ctx)
6375 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6376 				   &ro, false);
6377 	rcu_read_unlock();
6378 
6379 	return ro.err;
6380 }
6381 
6382 static void perf_pmu_output_stop(struct perf_event *event)
6383 {
6384 	struct perf_event *iter;
6385 	int err, cpu;
6386 
6387 restart:
6388 	rcu_read_lock();
6389 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6390 		/*
6391 		 * For per-CPU events, we need to make sure that neither they
6392 		 * nor their children are running; for cpu==-1 events it's
6393 		 * sufficient to stop the event itself if it's active, since
6394 		 * it can't have children.
6395 		 */
6396 		cpu = iter->cpu;
6397 		if (cpu == -1)
6398 			cpu = READ_ONCE(iter->oncpu);
6399 
6400 		if (cpu == -1)
6401 			continue;
6402 
6403 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6404 		if (err == -EAGAIN) {
6405 			rcu_read_unlock();
6406 			goto restart;
6407 		}
6408 	}
6409 	rcu_read_unlock();
6410 }
6411 
6412 /*
6413  * task tracking -- fork/exit
6414  *
6415  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6416  */
6417 
6418 struct perf_task_event {
6419 	struct task_struct		*task;
6420 	struct perf_event_context	*task_ctx;
6421 
6422 	struct {
6423 		struct perf_event_header	header;
6424 
6425 		u32				pid;
6426 		u32				ppid;
6427 		u32				tid;
6428 		u32				ptid;
6429 		u64				time;
6430 	} event_id;
6431 };
6432 
6433 static int perf_event_task_match(struct perf_event *event)
6434 {
6435 	return event->attr.comm  || event->attr.mmap ||
6436 	       event->attr.mmap2 || event->attr.mmap_data ||
6437 	       event->attr.task;
6438 }
6439 
6440 static void perf_event_task_output(struct perf_event *event,
6441 				   void *data)
6442 {
6443 	struct perf_task_event *task_event = data;
6444 	struct perf_output_handle handle;
6445 	struct perf_sample_data	sample;
6446 	struct task_struct *task = task_event->task;
6447 	int ret, size = task_event->event_id.header.size;
6448 
6449 	if (!perf_event_task_match(event))
6450 		return;
6451 
6452 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6453 
6454 	ret = perf_output_begin(&handle, event,
6455 				task_event->event_id.header.size);
6456 	if (ret)
6457 		goto out;
6458 
6459 	task_event->event_id.pid = perf_event_pid(event, task);
6460 	task_event->event_id.ppid = perf_event_pid(event, current);
6461 
6462 	task_event->event_id.tid = perf_event_tid(event, task);
6463 	task_event->event_id.ptid = perf_event_tid(event, current);
6464 
6465 	task_event->event_id.time = perf_event_clock(event);
6466 
6467 	perf_output_put(&handle, task_event->event_id);
6468 
6469 	perf_event__output_id_sample(event, &handle, &sample);
6470 
6471 	perf_output_end(&handle);
6472 out:
6473 	task_event->event_id.header.size = size;
6474 }
6475 
6476 static void perf_event_task(struct task_struct *task,
6477 			      struct perf_event_context *task_ctx,
6478 			      int new)
6479 {
6480 	struct perf_task_event task_event;
6481 
6482 	if (!atomic_read(&nr_comm_events) &&
6483 	    !atomic_read(&nr_mmap_events) &&
6484 	    !atomic_read(&nr_task_events))
6485 		return;
6486 
6487 	task_event = (struct perf_task_event){
6488 		.task	  = task,
6489 		.task_ctx = task_ctx,
6490 		.event_id    = {
6491 			.header = {
6492 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6493 				.misc = 0,
6494 				.size = sizeof(task_event.event_id),
6495 			},
6496 			/* .pid  */
6497 			/* .ppid */
6498 			/* .tid  */
6499 			/* .ptid */
6500 			/* .time */
6501 		},
6502 	};
6503 
6504 	perf_iterate_sb(perf_event_task_output,
6505 		       &task_event,
6506 		       task_ctx);
6507 }
6508 
6509 void perf_event_fork(struct task_struct *task)
6510 {
6511 	perf_event_task(task, NULL, 1);
6512 	perf_event_namespaces(task);
6513 }
6514 
6515 /*
6516  * comm tracking
6517  */
6518 
6519 struct perf_comm_event {
6520 	struct task_struct	*task;
6521 	char			*comm;
6522 	int			comm_size;
6523 
6524 	struct {
6525 		struct perf_event_header	header;
6526 
6527 		u32				pid;
6528 		u32				tid;
6529 	} event_id;
6530 };
6531 
6532 static int perf_event_comm_match(struct perf_event *event)
6533 {
6534 	return event->attr.comm;
6535 }
6536 
6537 static void perf_event_comm_output(struct perf_event *event,
6538 				   void *data)
6539 {
6540 	struct perf_comm_event *comm_event = data;
6541 	struct perf_output_handle handle;
6542 	struct perf_sample_data sample;
6543 	int size = comm_event->event_id.header.size;
6544 	int ret;
6545 
6546 	if (!perf_event_comm_match(event))
6547 		return;
6548 
6549 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6550 	ret = perf_output_begin(&handle, event,
6551 				comm_event->event_id.header.size);
6552 
6553 	if (ret)
6554 		goto out;
6555 
6556 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6557 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6558 
6559 	perf_output_put(&handle, comm_event->event_id);
6560 	__output_copy(&handle, comm_event->comm,
6561 				   comm_event->comm_size);
6562 
6563 	perf_event__output_id_sample(event, &handle, &sample);
6564 
6565 	perf_output_end(&handle);
6566 out:
6567 	comm_event->event_id.header.size = size;
6568 }
6569 
6570 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6571 {
6572 	char comm[TASK_COMM_LEN];
6573 	unsigned int size;
6574 
6575 	memset(comm, 0, sizeof(comm));
6576 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6577 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6578 
6579 	comm_event->comm = comm;
6580 	comm_event->comm_size = size;
6581 
6582 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6583 
6584 	perf_iterate_sb(perf_event_comm_output,
6585 		       comm_event,
6586 		       NULL);
6587 }
6588 
6589 void perf_event_comm(struct task_struct *task, bool exec)
6590 {
6591 	struct perf_comm_event comm_event;
6592 
6593 	if (!atomic_read(&nr_comm_events))
6594 		return;
6595 
6596 	comm_event = (struct perf_comm_event){
6597 		.task	= task,
6598 		/* .comm      */
6599 		/* .comm_size */
6600 		.event_id  = {
6601 			.header = {
6602 				.type = PERF_RECORD_COMM,
6603 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6604 				/* .size */
6605 			},
6606 			/* .pid */
6607 			/* .tid */
6608 		},
6609 	};
6610 
6611 	perf_event_comm_event(&comm_event);
6612 }
6613 
6614 /*
6615  * namespaces tracking
6616  */
6617 
6618 struct perf_namespaces_event {
6619 	struct task_struct		*task;
6620 
6621 	struct {
6622 		struct perf_event_header	header;
6623 
6624 		u32				pid;
6625 		u32				tid;
6626 		u64				nr_namespaces;
6627 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6628 	} event_id;
6629 };
6630 
6631 static int perf_event_namespaces_match(struct perf_event *event)
6632 {
6633 	return event->attr.namespaces;
6634 }
6635 
6636 static void perf_event_namespaces_output(struct perf_event *event,
6637 					 void *data)
6638 {
6639 	struct perf_namespaces_event *namespaces_event = data;
6640 	struct perf_output_handle handle;
6641 	struct perf_sample_data sample;
6642 	int ret;
6643 
6644 	if (!perf_event_namespaces_match(event))
6645 		return;
6646 
6647 	perf_event_header__init_id(&namespaces_event->event_id.header,
6648 				   &sample, event);
6649 	ret = perf_output_begin(&handle, event,
6650 				namespaces_event->event_id.header.size);
6651 	if (ret)
6652 		return;
6653 
6654 	namespaces_event->event_id.pid = perf_event_pid(event,
6655 							namespaces_event->task);
6656 	namespaces_event->event_id.tid = perf_event_tid(event,
6657 							namespaces_event->task);
6658 
6659 	perf_output_put(&handle, namespaces_event->event_id);
6660 
6661 	perf_event__output_id_sample(event, &handle, &sample);
6662 
6663 	perf_output_end(&handle);
6664 }
6665 
6666 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6667 				   struct task_struct *task,
6668 				   const struct proc_ns_operations *ns_ops)
6669 {
6670 	struct path ns_path;
6671 	struct inode *ns_inode;
6672 	void *error;
6673 
6674 	error = ns_get_path(&ns_path, task, ns_ops);
6675 	if (!error) {
6676 		ns_inode = ns_path.dentry->d_inode;
6677 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6678 		ns_link_info->ino = ns_inode->i_ino;
6679 	}
6680 }
6681 
6682 void perf_event_namespaces(struct task_struct *task)
6683 {
6684 	struct perf_namespaces_event namespaces_event;
6685 	struct perf_ns_link_info *ns_link_info;
6686 
6687 	if (!atomic_read(&nr_namespaces_events))
6688 		return;
6689 
6690 	namespaces_event = (struct perf_namespaces_event){
6691 		.task	= task,
6692 		.event_id  = {
6693 			.header = {
6694 				.type = PERF_RECORD_NAMESPACES,
6695 				.misc = 0,
6696 				.size = sizeof(namespaces_event.event_id),
6697 			},
6698 			/* .pid */
6699 			/* .tid */
6700 			.nr_namespaces = NR_NAMESPACES,
6701 			/* .link_info[NR_NAMESPACES] */
6702 		},
6703 	};
6704 
6705 	ns_link_info = namespaces_event.event_id.link_info;
6706 
6707 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6708 			       task, &mntns_operations);
6709 
6710 #ifdef CONFIG_USER_NS
6711 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6712 			       task, &userns_operations);
6713 #endif
6714 #ifdef CONFIG_NET_NS
6715 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6716 			       task, &netns_operations);
6717 #endif
6718 #ifdef CONFIG_UTS_NS
6719 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6720 			       task, &utsns_operations);
6721 #endif
6722 #ifdef CONFIG_IPC_NS
6723 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6724 			       task, &ipcns_operations);
6725 #endif
6726 #ifdef CONFIG_PID_NS
6727 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6728 			       task, &pidns_operations);
6729 #endif
6730 #ifdef CONFIG_CGROUPS
6731 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6732 			       task, &cgroupns_operations);
6733 #endif
6734 
6735 	perf_iterate_sb(perf_event_namespaces_output,
6736 			&namespaces_event,
6737 			NULL);
6738 }
6739 
6740 /*
6741  * mmap tracking
6742  */
6743 
6744 struct perf_mmap_event {
6745 	struct vm_area_struct	*vma;
6746 
6747 	const char		*file_name;
6748 	int			file_size;
6749 	int			maj, min;
6750 	u64			ino;
6751 	u64			ino_generation;
6752 	u32			prot, flags;
6753 
6754 	struct {
6755 		struct perf_event_header	header;
6756 
6757 		u32				pid;
6758 		u32				tid;
6759 		u64				start;
6760 		u64				len;
6761 		u64				pgoff;
6762 	} event_id;
6763 };
6764 
6765 static int perf_event_mmap_match(struct perf_event *event,
6766 				 void *data)
6767 {
6768 	struct perf_mmap_event *mmap_event = data;
6769 	struct vm_area_struct *vma = mmap_event->vma;
6770 	int executable = vma->vm_flags & VM_EXEC;
6771 
6772 	return (!executable && event->attr.mmap_data) ||
6773 	       (executable && (event->attr.mmap || event->attr.mmap2));
6774 }
6775 
6776 static void perf_event_mmap_output(struct perf_event *event,
6777 				   void *data)
6778 {
6779 	struct perf_mmap_event *mmap_event = data;
6780 	struct perf_output_handle handle;
6781 	struct perf_sample_data sample;
6782 	int size = mmap_event->event_id.header.size;
6783 	int ret;
6784 
6785 	if (!perf_event_mmap_match(event, data))
6786 		return;
6787 
6788 	if (event->attr.mmap2) {
6789 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6790 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6791 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6792 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6793 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6794 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6795 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6796 	}
6797 
6798 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6799 	ret = perf_output_begin(&handle, event,
6800 				mmap_event->event_id.header.size);
6801 	if (ret)
6802 		goto out;
6803 
6804 	mmap_event->event_id.pid = perf_event_pid(event, current);
6805 	mmap_event->event_id.tid = perf_event_tid(event, current);
6806 
6807 	perf_output_put(&handle, mmap_event->event_id);
6808 
6809 	if (event->attr.mmap2) {
6810 		perf_output_put(&handle, mmap_event->maj);
6811 		perf_output_put(&handle, mmap_event->min);
6812 		perf_output_put(&handle, mmap_event->ino);
6813 		perf_output_put(&handle, mmap_event->ino_generation);
6814 		perf_output_put(&handle, mmap_event->prot);
6815 		perf_output_put(&handle, mmap_event->flags);
6816 	}
6817 
6818 	__output_copy(&handle, mmap_event->file_name,
6819 				   mmap_event->file_size);
6820 
6821 	perf_event__output_id_sample(event, &handle, &sample);
6822 
6823 	perf_output_end(&handle);
6824 out:
6825 	mmap_event->event_id.header.size = size;
6826 }
6827 
6828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6829 {
6830 	struct vm_area_struct *vma = mmap_event->vma;
6831 	struct file *file = vma->vm_file;
6832 	int maj = 0, min = 0;
6833 	u64 ino = 0, gen = 0;
6834 	u32 prot = 0, flags = 0;
6835 	unsigned int size;
6836 	char tmp[16];
6837 	char *buf = NULL;
6838 	char *name;
6839 
6840 	if (vma->vm_flags & VM_READ)
6841 		prot |= PROT_READ;
6842 	if (vma->vm_flags & VM_WRITE)
6843 		prot |= PROT_WRITE;
6844 	if (vma->vm_flags & VM_EXEC)
6845 		prot |= PROT_EXEC;
6846 
6847 	if (vma->vm_flags & VM_MAYSHARE)
6848 		flags = MAP_SHARED;
6849 	else
6850 		flags = MAP_PRIVATE;
6851 
6852 	if (vma->vm_flags & VM_DENYWRITE)
6853 		flags |= MAP_DENYWRITE;
6854 	if (vma->vm_flags & VM_MAYEXEC)
6855 		flags |= MAP_EXECUTABLE;
6856 	if (vma->vm_flags & VM_LOCKED)
6857 		flags |= MAP_LOCKED;
6858 	if (vma->vm_flags & VM_HUGETLB)
6859 		flags |= MAP_HUGETLB;
6860 
6861 	if (file) {
6862 		struct inode *inode;
6863 		dev_t dev;
6864 
6865 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6866 		if (!buf) {
6867 			name = "//enomem";
6868 			goto cpy_name;
6869 		}
6870 		/*
6871 		 * d_path() works from the end of the rb backwards, so we
6872 		 * need to add enough zero bytes after the string to handle
6873 		 * the 64bit alignment we do later.
6874 		 */
6875 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6876 		if (IS_ERR(name)) {
6877 			name = "//toolong";
6878 			goto cpy_name;
6879 		}
6880 		inode = file_inode(vma->vm_file);
6881 		dev = inode->i_sb->s_dev;
6882 		ino = inode->i_ino;
6883 		gen = inode->i_generation;
6884 		maj = MAJOR(dev);
6885 		min = MINOR(dev);
6886 
6887 		goto got_name;
6888 	} else {
6889 		if (vma->vm_ops && vma->vm_ops->name) {
6890 			name = (char *) vma->vm_ops->name(vma);
6891 			if (name)
6892 				goto cpy_name;
6893 		}
6894 
6895 		name = (char *)arch_vma_name(vma);
6896 		if (name)
6897 			goto cpy_name;
6898 
6899 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6900 				vma->vm_end >= vma->vm_mm->brk) {
6901 			name = "[heap]";
6902 			goto cpy_name;
6903 		}
6904 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6905 				vma->vm_end >= vma->vm_mm->start_stack) {
6906 			name = "[stack]";
6907 			goto cpy_name;
6908 		}
6909 
6910 		name = "//anon";
6911 		goto cpy_name;
6912 	}
6913 
6914 cpy_name:
6915 	strlcpy(tmp, name, sizeof(tmp));
6916 	name = tmp;
6917 got_name:
6918 	/*
6919 	 * Since our buffer works in 8 byte units we need to align our string
6920 	 * size to a multiple of 8. However, we must guarantee the tail end is
6921 	 * zero'd out to avoid leaking random bits to userspace.
6922 	 */
6923 	size = strlen(name)+1;
6924 	while (!IS_ALIGNED(size, sizeof(u64)))
6925 		name[size++] = '\0';
6926 
6927 	mmap_event->file_name = name;
6928 	mmap_event->file_size = size;
6929 	mmap_event->maj = maj;
6930 	mmap_event->min = min;
6931 	mmap_event->ino = ino;
6932 	mmap_event->ino_generation = gen;
6933 	mmap_event->prot = prot;
6934 	mmap_event->flags = flags;
6935 
6936 	if (!(vma->vm_flags & VM_EXEC))
6937 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6938 
6939 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6940 
6941 	perf_iterate_sb(perf_event_mmap_output,
6942 		       mmap_event,
6943 		       NULL);
6944 
6945 	kfree(buf);
6946 }
6947 
6948 /*
6949  * Check whether inode and address range match filter criteria.
6950  */
6951 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6952 				     struct file *file, unsigned long offset,
6953 				     unsigned long size)
6954 {
6955 	if (filter->inode != file_inode(file))
6956 		return false;
6957 
6958 	if (filter->offset > offset + size)
6959 		return false;
6960 
6961 	if (filter->offset + filter->size < offset)
6962 		return false;
6963 
6964 	return true;
6965 }
6966 
6967 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6968 {
6969 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6970 	struct vm_area_struct *vma = data;
6971 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6972 	struct file *file = vma->vm_file;
6973 	struct perf_addr_filter *filter;
6974 	unsigned int restart = 0, count = 0;
6975 
6976 	if (!has_addr_filter(event))
6977 		return;
6978 
6979 	if (!file)
6980 		return;
6981 
6982 	raw_spin_lock_irqsave(&ifh->lock, flags);
6983 	list_for_each_entry(filter, &ifh->list, entry) {
6984 		if (perf_addr_filter_match(filter, file, off,
6985 					     vma->vm_end - vma->vm_start)) {
6986 			event->addr_filters_offs[count] = vma->vm_start;
6987 			restart++;
6988 		}
6989 
6990 		count++;
6991 	}
6992 
6993 	if (restart)
6994 		event->addr_filters_gen++;
6995 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6996 
6997 	if (restart)
6998 		perf_event_stop(event, 1);
6999 }
7000 
7001 /*
7002  * Adjust all task's events' filters to the new vma
7003  */
7004 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7005 {
7006 	struct perf_event_context *ctx;
7007 	int ctxn;
7008 
7009 	/*
7010 	 * Data tracing isn't supported yet and as such there is no need
7011 	 * to keep track of anything that isn't related to executable code:
7012 	 */
7013 	if (!(vma->vm_flags & VM_EXEC))
7014 		return;
7015 
7016 	rcu_read_lock();
7017 	for_each_task_context_nr(ctxn) {
7018 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7019 		if (!ctx)
7020 			continue;
7021 
7022 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7023 	}
7024 	rcu_read_unlock();
7025 }
7026 
7027 void perf_event_mmap(struct vm_area_struct *vma)
7028 {
7029 	struct perf_mmap_event mmap_event;
7030 
7031 	if (!atomic_read(&nr_mmap_events))
7032 		return;
7033 
7034 	mmap_event = (struct perf_mmap_event){
7035 		.vma	= vma,
7036 		/* .file_name */
7037 		/* .file_size */
7038 		.event_id  = {
7039 			.header = {
7040 				.type = PERF_RECORD_MMAP,
7041 				.misc = PERF_RECORD_MISC_USER,
7042 				/* .size */
7043 			},
7044 			/* .pid */
7045 			/* .tid */
7046 			.start  = vma->vm_start,
7047 			.len    = vma->vm_end - vma->vm_start,
7048 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7049 		},
7050 		/* .maj (attr_mmap2 only) */
7051 		/* .min (attr_mmap2 only) */
7052 		/* .ino (attr_mmap2 only) */
7053 		/* .ino_generation (attr_mmap2 only) */
7054 		/* .prot (attr_mmap2 only) */
7055 		/* .flags (attr_mmap2 only) */
7056 	};
7057 
7058 	perf_addr_filters_adjust(vma);
7059 	perf_event_mmap_event(&mmap_event);
7060 }
7061 
7062 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7063 			  unsigned long size, u64 flags)
7064 {
7065 	struct perf_output_handle handle;
7066 	struct perf_sample_data sample;
7067 	struct perf_aux_event {
7068 		struct perf_event_header	header;
7069 		u64				offset;
7070 		u64				size;
7071 		u64				flags;
7072 	} rec = {
7073 		.header = {
7074 			.type = PERF_RECORD_AUX,
7075 			.misc = 0,
7076 			.size = sizeof(rec),
7077 		},
7078 		.offset		= head,
7079 		.size		= size,
7080 		.flags		= flags,
7081 	};
7082 	int ret;
7083 
7084 	perf_event_header__init_id(&rec.header, &sample, event);
7085 	ret = perf_output_begin(&handle, event, rec.header.size);
7086 
7087 	if (ret)
7088 		return;
7089 
7090 	perf_output_put(&handle, rec);
7091 	perf_event__output_id_sample(event, &handle, &sample);
7092 
7093 	perf_output_end(&handle);
7094 }
7095 
7096 /*
7097  * Lost/dropped samples logging
7098  */
7099 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7100 {
7101 	struct perf_output_handle handle;
7102 	struct perf_sample_data sample;
7103 	int ret;
7104 
7105 	struct {
7106 		struct perf_event_header	header;
7107 		u64				lost;
7108 	} lost_samples_event = {
7109 		.header = {
7110 			.type = PERF_RECORD_LOST_SAMPLES,
7111 			.misc = 0,
7112 			.size = sizeof(lost_samples_event),
7113 		},
7114 		.lost		= lost,
7115 	};
7116 
7117 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7118 
7119 	ret = perf_output_begin(&handle, event,
7120 				lost_samples_event.header.size);
7121 	if (ret)
7122 		return;
7123 
7124 	perf_output_put(&handle, lost_samples_event);
7125 	perf_event__output_id_sample(event, &handle, &sample);
7126 	perf_output_end(&handle);
7127 }
7128 
7129 /*
7130  * context_switch tracking
7131  */
7132 
7133 struct perf_switch_event {
7134 	struct task_struct	*task;
7135 	struct task_struct	*next_prev;
7136 
7137 	struct {
7138 		struct perf_event_header	header;
7139 		u32				next_prev_pid;
7140 		u32				next_prev_tid;
7141 	} event_id;
7142 };
7143 
7144 static int perf_event_switch_match(struct perf_event *event)
7145 {
7146 	return event->attr.context_switch;
7147 }
7148 
7149 static void perf_event_switch_output(struct perf_event *event, void *data)
7150 {
7151 	struct perf_switch_event *se = data;
7152 	struct perf_output_handle handle;
7153 	struct perf_sample_data sample;
7154 	int ret;
7155 
7156 	if (!perf_event_switch_match(event))
7157 		return;
7158 
7159 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7160 	if (event->ctx->task) {
7161 		se->event_id.header.type = PERF_RECORD_SWITCH;
7162 		se->event_id.header.size = sizeof(se->event_id.header);
7163 	} else {
7164 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7165 		se->event_id.header.size = sizeof(se->event_id);
7166 		se->event_id.next_prev_pid =
7167 					perf_event_pid(event, se->next_prev);
7168 		se->event_id.next_prev_tid =
7169 					perf_event_tid(event, se->next_prev);
7170 	}
7171 
7172 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7173 
7174 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7175 	if (ret)
7176 		return;
7177 
7178 	if (event->ctx->task)
7179 		perf_output_put(&handle, se->event_id.header);
7180 	else
7181 		perf_output_put(&handle, se->event_id);
7182 
7183 	perf_event__output_id_sample(event, &handle, &sample);
7184 
7185 	perf_output_end(&handle);
7186 }
7187 
7188 static void perf_event_switch(struct task_struct *task,
7189 			      struct task_struct *next_prev, bool sched_in)
7190 {
7191 	struct perf_switch_event switch_event;
7192 
7193 	/* N.B. caller checks nr_switch_events != 0 */
7194 
7195 	switch_event = (struct perf_switch_event){
7196 		.task		= task,
7197 		.next_prev	= next_prev,
7198 		.event_id	= {
7199 			.header = {
7200 				/* .type */
7201 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7202 				/* .size */
7203 			},
7204 			/* .next_prev_pid */
7205 			/* .next_prev_tid */
7206 		},
7207 	};
7208 
7209 	perf_iterate_sb(perf_event_switch_output,
7210 		       &switch_event,
7211 		       NULL);
7212 }
7213 
7214 /*
7215  * IRQ throttle logging
7216  */
7217 
7218 static void perf_log_throttle(struct perf_event *event, int enable)
7219 {
7220 	struct perf_output_handle handle;
7221 	struct perf_sample_data sample;
7222 	int ret;
7223 
7224 	struct {
7225 		struct perf_event_header	header;
7226 		u64				time;
7227 		u64				id;
7228 		u64				stream_id;
7229 	} throttle_event = {
7230 		.header = {
7231 			.type = PERF_RECORD_THROTTLE,
7232 			.misc = 0,
7233 			.size = sizeof(throttle_event),
7234 		},
7235 		.time		= perf_event_clock(event),
7236 		.id		= primary_event_id(event),
7237 		.stream_id	= event->id,
7238 	};
7239 
7240 	if (enable)
7241 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7242 
7243 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7244 
7245 	ret = perf_output_begin(&handle, event,
7246 				throttle_event.header.size);
7247 	if (ret)
7248 		return;
7249 
7250 	perf_output_put(&handle, throttle_event);
7251 	perf_event__output_id_sample(event, &handle, &sample);
7252 	perf_output_end(&handle);
7253 }
7254 
7255 static void perf_log_itrace_start(struct perf_event *event)
7256 {
7257 	struct perf_output_handle handle;
7258 	struct perf_sample_data sample;
7259 	struct perf_aux_event {
7260 		struct perf_event_header        header;
7261 		u32				pid;
7262 		u32				tid;
7263 	} rec;
7264 	int ret;
7265 
7266 	if (event->parent)
7267 		event = event->parent;
7268 
7269 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7270 	    event->hw.itrace_started)
7271 		return;
7272 
7273 	rec.header.type	= PERF_RECORD_ITRACE_START;
7274 	rec.header.misc	= 0;
7275 	rec.header.size	= sizeof(rec);
7276 	rec.pid	= perf_event_pid(event, current);
7277 	rec.tid	= perf_event_tid(event, current);
7278 
7279 	perf_event_header__init_id(&rec.header, &sample, event);
7280 	ret = perf_output_begin(&handle, event, rec.header.size);
7281 
7282 	if (ret)
7283 		return;
7284 
7285 	perf_output_put(&handle, rec);
7286 	perf_event__output_id_sample(event, &handle, &sample);
7287 
7288 	perf_output_end(&handle);
7289 }
7290 
7291 static int
7292 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7293 {
7294 	struct hw_perf_event *hwc = &event->hw;
7295 	int ret = 0;
7296 	u64 seq;
7297 
7298 	seq = __this_cpu_read(perf_throttled_seq);
7299 	if (seq != hwc->interrupts_seq) {
7300 		hwc->interrupts_seq = seq;
7301 		hwc->interrupts = 1;
7302 	} else {
7303 		hwc->interrupts++;
7304 		if (unlikely(throttle
7305 			     && hwc->interrupts >= max_samples_per_tick)) {
7306 			__this_cpu_inc(perf_throttled_count);
7307 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7308 			hwc->interrupts = MAX_INTERRUPTS;
7309 			perf_log_throttle(event, 0);
7310 			ret = 1;
7311 		}
7312 	}
7313 
7314 	if (event->attr.freq) {
7315 		u64 now = perf_clock();
7316 		s64 delta = now - hwc->freq_time_stamp;
7317 
7318 		hwc->freq_time_stamp = now;
7319 
7320 		if (delta > 0 && delta < 2*TICK_NSEC)
7321 			perf_adjust_period(event, delta, hwc->last_period, true);
7322 	}
7323 
7324 	return ret;
7325 }
7326 
7327 int perf_event_account_interrupt(struct perf_event *event)
7328 {
7329 	return __perf_event_account_interrupt(event, 1);
7330 }
7331 
7332 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7333 {
7334 	/*
7335 	 * Due to interrupt latency (AKA "skid"), we may enter the
7336 	 * kernel before taking an overflow, even if the PMU is only
7337 	 * counting user events.
7338 	 * To avoid leaking information to userspace, we must always
7339 	 * reject kernel samples when exclude_kernel is set.
7340 	 */
7341 	if (event->attr.exclude_kernel && !user_mode(regs))
7342 		return false;
7343 
7344 	return true;
7345 }
7346 
7347 /*
7348  * Generic event overflow handling, sampling.
7349  */
7350 
7351 static int __perf_event_overflow(struct perf_event *event,
7352 				   int throttle, struct perf_sample_data *data,
7353 				   struct pt_regs *regs)
7354 {
7355 	int events = atomic_read(&event->event_limit);
7356 	int ret = 0;
7357 
7358 	/*
7359 	 * Non-sampling counters might still use the PMI to fold short
7360 	 * hardware counters, ignore those.
7361 	 */
7362 	if (unlikely(!is_sampling_event(event)))
7363 		return 0;
7364 
7365 	ret = __perf_event_account_interrupt(event, throttle);
7366 
7367 	/*
7368 	 * For security, drop the skid kernel samples if necessary.
7369 	 */
7370 	if (!sample_is_allowed(event, regs))
7371 		return ret;
7372 
7373 	/*
7374 	 * XXX event_limit might not quite work as expected on inherited
7375 	 * events
7376 	 */
7377 
7378 	event->pending_kill = POLL_IN;
7379 	if (events && atomic_dec_and_test(&event->event_limit)) {
7380 		ret = 1;
7381 		event->pending_kill = POLL_HUP;
7382 
7383 		perf_event_disable_inatomic(event);
7384 	}
7385 
7386 	READ_ONCE(event->overflow_handler)(event, data, regs);
7387 
7388 	if (*perf_event_fasync(event) && event->pending_kill) {
7389 		event->pending_wakeup = 1;
7390 		irq_work_queue(&event->pending);
7391 	}
7392 
7393 	return ret;
7394 }
7395 
7396 int perf_event_overflow(struct perf_event *event,
7397 			  struct perf_sample_data *data,
7398 			  struct pt_regs *regs)
7399 {
7400 	return __perf_event_overflow(event, 1, data, regs);
7401 }
7402 
7403 /*
7404  * Generic software event infrastructure
7405  */
7406 
7407 struct swevent_htable {
7408 	struct swevent_hlist		*swevent_hlist;
7409 	struct mutex			hlist_mutex;
7410 	int				hlist_refcount;
7411 
7412 	/* Recursion avoidance in each contexts */
7413 	int				recursion[PERF_NR_CONTEXTS];
7414 };
7415 
7416 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7417 
7418 /*
7419  * We directly increment event->count and keep a second value in
7420  * event->hw.period_left to count intervals. This period event
7421  * is kept in the range [-sample_period, 0] so that we can use the
7422  * sign as trigger.
7423  */
7424 
7425 u64 perf_swevent_set_period(struct perf_event *event)
7426 {
7427 	struct hw_perf_event *hwc = &event->hw;
7428 	u64 period = hwc->last_period;
7429 	u64 nr, offset;
7430 	s64 old, val;
7431 
7432 	hwc->last_period = hwc->sample_period;
7433 
7434 again:
7435 	old = val = local64_read(&hwc->period_left);
7436 	if (val < 0)
7437 		return 0;
7438 
7439 	nr = div64_u64(period + val, period);
7440 	offset = nr * period;
7441 	val -= offset;
7442 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7443 		goto again;
7444 
7445 	return nr;
7446 }
7447 
7448 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7449 				    struct perf_sample_data *data,
7450 				    struct pt_regs *regs)
7451 {
7452 	struct hw_perf_event *hwc = &event->hw;
7453 	int throttle = 0;
7454 
7455 	if (!overflow)
7456 		overflow = perf_swevent_set_period(event);
7457 
7458 	if (hwc->interrupts == MAX_INTERRUPTS)
7459 		return;
7460 
7461 	for (; overflow; overflow--) {
7462 		if (__perf_event_overflow(event, throttle,
7463 					    data, regs)) {
7464 			/*
7465 			 * We inhibit the overflow from happening when
7466 			 * hwc->interrupts == MAX_INTERRUPTS.
7467 			 */
7468 			break;
7469 		}
7470 		throttle = 1;
7471 	}
7472 }
7473 
7474 static void perf_swevent_event(struct perf_event *event, u64 nr,
7475 			       struct perf_sample_data *data,
7476 			       struct pt_regs *regs)
7477 {
7478 	struct hw_perf_event *hwc = &event->hw;
7479 
7480 	local64_add(nr, &event->count);
7481 
7482 	if (!regs)
7483 		return;
7484 
7485 	if (!is_sampling_event(event))
7486 		return;
7487 
7488 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7489 		data->period = nr;
7490 		return perf_swevent_overflow(event, 1, data, regs);
7491 	} else
7492 		data->period = event->hw.last_period;
7493 
7494 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7495 		return perf_swevent_overflow(event, 1, data, regs);
7496 
7497 	if (local64_add_negative(nr, &hwc->period_left))
7498 		return;
7499 
7500 	perf_swevent_overflow(event, 0, data, regs);
7501 }
7502 
7503 static int perf_exclude_event(struct perf_event *event,
7504 			      struct pt_regs *regs)
7505 {
7506 	if (event->hw.state & PERF_HES_STOPPED)
7507 		return 1;
7508 
7509 	if (regs) {
7510 		if (event->attr.exclude_user && user_mode(regs))
7511 			return 1;
7512 
7513 		if (event->attr.exclude_kernel && !user_mode(regs))
7514 			return 1;
7515 	}
7516 
7517 	return 0;
7518 }
7519 
7520 static int perf_swevent_match(struct perf_event *event,
7521 				enum perf_type_id type,
7522 				u32 event_id,
7523 				struct perf_sample_data *data,
7524 				struct pt_regs *regs)
7525 {
7526 	if (event->attr.type != type)
7527 		return 0;
7528 
7529 	if (event->attr.config != event_id)
7530 		return 0;
7531 
7532 	if (perf_exclude_event(event, regs))
7533 		return 0;
7534 
7535 	return 1;
7536 }
7537 
7538 static inline u64 swevent_hash(u64 type, u32 event_id)
7539 {
7540 	u64 val = event_id | (type << 32);
7541 
7542 	return hash_64(val, SWEVENT_HLIST_BITS);
7543 }
7544 
7545 static inline struct hlist_head *
7546 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7547 {
7548 	u64 hash = swevent_hash(type, event_id);
7549 
7550 	return &hlist->heads[hash];
7551 }
7552 
7553 /* For the read side: events when they trigger */
7554 static inline struct hlist_head *
7555 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7556 {
7557 	struct swevent_hlist *hlist;
7558 
7559 	hlist = rcu_dereference(swhash->swevent_hlist);
7560 	if (!hlist)
7561 		return NULL;
7562 
7563 	return __find_swevent_head(hlist, type, event_id);
7564 }
7565 
7566 /* For the event head insertion and removal in the hlist */
7567 static inline struct hlist_head *
7568 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7569 {
7570 	struct swevent_hlist *hlist;
7571 	u32 event_id = event->attr.config;
7572 	u64 type = event->attr.type;
7573 
7574 	/*
7575 	 * Event scheduling is always serialized against hlist allocation
7576 	 * and release. Which makes the protected version suitable here.
7577 	 * The context lock guarantees that.
7578 	 */
7579 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7580 					  lockdep_is_held(&event->ctx->lock));
7581 	if (!hlist)
7582 		return NULL;
7583 
7584 	return __find_swevent_head(hlist, type, event_id);
7585 }
7586 
7587 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7588 				    u64 nr,
7589 				    struct perf_sample_data *data,
7590 				    struct pt_regs *regs)
7591 {
7592 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7593 	struct perf_event *event;
7594 	struct hlist_head *head;
7595 
7596 	rcu_read_lock();
7597 	head = find_swevent_head_rcu(swhash, type, event_id);
7598 	if (!head)
7599 		goto end;
7600 
7601 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7602 		if (perf_swevent_match(event, type, event_id, data, regs))
7603 			perf_swevent_event(event, nr, data, regs);
7604 	}
7605 end:
7606 	rcu_read_unlock();
7607 }
7608 
7609 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7610 
7611 int perf_swevent_get_recursion_context(void)
7612 {
7613 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7614 
7615 	return get_recursion_context(swhash->recursion);
7616 }
7617 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7618 
7619 void perf_swevent_put_recursion_context(int rctx)
7620 {
7621 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7622 
7623 	put_recursion_context(swhash->recursion, rctx);
7624 }
7625 
7626 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7627 {
7628 	struct perf_sample_data data;
7629 
7630 	if (WARN_ON_ONCE(!regs))
7631 		return;
7632 
7633 	perf_sample_data_init(&data, addr, 0);
7634 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7635 }
7636 
7637 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7638 {
7639 	int rctx;
7640 
7641 	preempt_disable_notrace();
7642 	rctx = perf_swevent_get_recursion_context();
7643 	if (unlikely(rctx < 0))
7644 		goto fail;
7645 
7646 	___perf_sw_event(event_id, nr, regs, addr);
7647 
7648 	perf_swevent_put_recursion_context(rctx);
7649 fail:
7650 	preempt_enable_notrace();
7651 }
7652 
7653 static void perf_swevent_read(struct perf_event *event)
7654 {
7655 }
7656 
7657 static int perf_swevent_add(struct perf_event *event, int flags)
7658 {
7659 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7660 	struct hw_perf_event *hwc = &event->hw;
7661 	struct hlist_head *head;
7662 
7663 	if (is_sampling_event(event)) {
7664 		hwc->last_period = hwc->sample_period;
7665 		perf_swevent_set_period(event);
7666 	}
7667 
7668 	hwc->state = !(flags & PERF_EF_START);
7669 
7670 	head = find_swevent_head(swhash, event);
7671 	if (WARN_ON_ONCE(!head))
7672 		return -EINVAL;
7673 
7674 	hlist_add_head_rcu(&event->hlist_entry, head);
7675 	perf_event_update_userpage(event);
7676 
7677 	return 0;
7678 }
7679 
7680 static void perf_swevent_del(struct perf_event *event, int flags)
7681 {
7682 	hlist_del_rcu(&event->hlist_entry);
7683 }
7684 
7685 static void perf_swevent_start(struct perf_event *event, int flags)
7686 {
7687 	event->hw.state = 0;
7688 }
7689 
7690 static void perf_swevent_stop(struct perf_event *event, int flags)
7691 {
7692 	event->hw.state = PERF_HES_STOPPED;
7693 }
7694 
7695 /* Deref the hlist from the update side */
7696 static inline struct swevent_hlist *
7697 swevent_hlist_deref(struct swevent_htable *swhash)
7698 {
7699 	return rcu_dereference_protected(swhash->swevent_hlist,
7700 					 lockdep_is_held(&swhash->hlist_mutex));
7701 }
7702 
7703 static void swevent_hlist_release(struct swevent_htable *swhash)
7704 {
7705 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7706 
7707 	if (!hlist)
7708 		return;
7709 
7710 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7711 	kfree_rcu(hlist, rcu_head);
7712 }
7713 
7714 static void swevent_hlist_put_cpu(int cpu)
7715 {
7716 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7717 
7718 	mutex_lock(&swhash->hlist_mutex);
7719 
7720 	if (!--swhash->hlist_refcount)
7721 		swevent_hlist_release(swhash);
7722 
7723 	mutex_unlock(&swhash->hlist_mutex);
7724 }
7725 
7726 static void swevent_hlist_put(void)
7727 {
7728 	int cpu;
7729 
7730 	for_each_possible_cpu(cpu)
7731 		swevent_hlist_put_cpu(cpu);
7732 }
7733 
7734 static int swevent_hlist_get_cpu(int cpu)
7735 {
7736 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7737 	int err = 0;
7738 
7739 	mutex_lock(&swhash->hlist_mutex);
7740 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7741 		struct swevent_hlist *hlist;
7742 
7743 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7744 		if (!hlist) {
7745 			err = -ENOMEM;
7746 			goto exit;
7747 		}
7748 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7749 	}
7750 	swhash->hlist_refcount++;
7751 exit:
7752 	mutex_unlock(&swhash->hlist_mutex);
7753 
7754 	return err;
7755 }
7756 
7757 static int swevent_hlist_get(void)
7758 {
7759 	int err, cpu, failed_cpu;
7760 
7761 	get_online_cpus();
7762 	for_each_possible_cpu(cpu) {
7763 		err = swevent_hlist_get_cpu(cpu);
7764 		if (err) {
7765 			failed_cpu = cpu;
7766 			goto fail;
7767 		}
7768 	}
7769 	put_online_cpus();
7770 
7771 	return 0;
7772 fail:
7773 	for_each_possible_cpu(cpu) {
7774 		if (cpu == failed_cpu)
7775 			break;
7776 		swevent_hlist_put_cpu(cpu);
7777 	}
7778 
7779 	put_online_cpus();
7780 	return err;
7781 }
7782 
7783 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7784 
7785 static void sw_perf_event_destroy(struct perf_event *event)
7786 {
7787 	u64 event_id = event->attr.config;
7788 
7789 	WARN_ON(event->parent);
7790 
7791 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7792 	swevent_hlist_put();
7793 }
7794 
7795 static int perf_swevent_init(struct perf_event *event)
7796 {
7797 	u64 event_id = event->attr.config;
7798 
7799 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7800 		return -ENOENT;
7801 
7802 	/*
7803 	 * no branch sampling for software events
7804 	 */
7805 	if (has_branch_stack(event))
7806 		return -EOPNOTSUPP;
7807 
7808 	switch (event_id) {
7809 	case PERF_COUNT_SW_CPU_CLOCK:
7810 	case PERF_COUNT_SW_TASK_CLOCK:
7811 		return -ENOENT;
7812 
7813 	default:
7814 		break;
7815 	}
7816 
7817 	if (event_id >= PERF_COUNT_SW_MAX)
7818 		return -ENOENT;
7819 
7820 	if (!event->parent) {
7821 		int err;
7822 
7823 		err = swevent_hlist_get();
7824 		if (err)
7825 			return err;
7826 
7827 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7828 		event->destroy = sw_perf_event_destroy;
7829 	}
7830 
7831 	return 0;
7832 }
7833 
7834 static struct pmu perf_swevent = {
7835 	.task_ctx_nr	= perf_sw_context,
7836 
7837 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7838 
7839 	.event_init	= perf_swevent_init,
7840 	.add		= perf_swevent_add,
7841 	.del		= perf_swevent_del,
7842 	.start		= perf_swevent_start,
7843 	.stop		= perf_swevent_stop,
7844 	.read		= perf_swevent_read,
7845 };
7846 
7847 #ifdef CONFIG_EVENT_TRACING
7848 
7849 static int perf_tp_filter_match(struct perf_event *event,
7850 				struct perf_sample_data *data)
7851 {
7852 	void *record = data->raw->frag.data;
7853 
7854 	/* only top level events have filters set */
7855 	if (event->parent)
7856 		event = event->parent;
7857 
7858 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7859 		return 1;
7860 	return 0;
7861 }
7862 
7863 static int perf_tp_event_match(struct perf_event *event,
7864 				struct perf_sample_data *data,
7865 				struct pt_regs *regs)
7866 {
7867 	if (event->hw.state & PERF_HES_STOPPED)
7868 		return 0;
7869 	/*
7870 	 * All tracepoints are from kernel-space.
7871 	 */
7872 	if (event->attr.exclude_kernel)
7873 		return 0;
7874 
7875 	if (!perf_tp_filter_match(event, data))
7876 		return 0;
7877 
7878 	return 1;
7879 }
7880 
7881 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7882 			       struct trace_event_call *call, u64 count,
7883 			       struct pt_regs *regs, struct hlist_head *head,
7884 			       struct task_struct *task)
7885 {
7886 	struct bpf_prog *prog = call->prog;
7887 
7888 	if (prog) {
7889 		*(struct pt_regs **)raw_data = regs;
7890 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7891 			perf_swevent_put_recursion_context(rctx);
7892 			return;
7893 		}
7894 	}
7895 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7896 		      rctx, task);
7897 }
7898 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7899 
7900 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7901 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7902 		   struct task_struct *task)
7903 {
7904 	struct perf_sample_data data;
7905 	struct perf_event *event;
7906 
7907 	struct perf_raw_record raw = {
7908 		.frag = {
7909 			.size = entry_size,
7910 			.data = record,
7911 		},
7912 	};
7913 
7914 	perf_sample_data_init(&data, 0, 0);
7915 	data.raw = &raw;
7916 
7917 	perf_trace_buf_update(record, event_type);
7918 
7919 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7920 		if (perf_tp_event_match(event, &data, regs))
7921 			perf_swevent_event(event, count, &data, regs);
7922 	}
7923 
7924 	/*
7925 	 * If we got specified a target task, also iterate its context and
7926 	 * deliver this event there too.
7927 	 */
7928 	if (task && task != current) {
7929 		struct perf_event_context *ctx;
7930 		struct trace_entry *entry = record;
7931 
7932 		rcu_read_lock();
7933 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7934 		if (!ctx)
7935 			goto unlock;
7936 
7937 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7938 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7939 				continue;
7940 			if (event->attr.config != entry->type)
7941 				continue;
7942 			if (perf_tp_event_match(event, &data, regs))
7943 				perf_swevent_event(event, count, &data, regs);
7944 		}
7945 unlock:
7946 		rcu_read_unlock();
7947 	}
7948 
7949 	perf_swevent_put_recursion_context(rctx);
7950 }
7951 EXPORT_SYMBOL_GPL(perf_tp_event);
7952 
7953 static void tp_perf_event_destroy(struct perf_event *event)
7954 {
7955 	perf_trace_destroy(event);
7956 }
7957 
7958 static int perf_tp_event_init(struct perf_event *event)
7959 {
7960 	int err;
7961 
7962 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7963 		return -ENOENT;
7964 
7965 	/*
7966 	 * no branch sampling for tracepoint events
7967 	 */
7968 	if (has_branch_stack(event))
7969 		return -EOPNOTSUPP;
7970 
7971 	err = perf_trace_init(event);
7972 	if (err)
7973 		return err;
7974 
7975 	event->destroy = tp_perf_event_destroy;
7976 
7977 	return 0;
7978 }
7979 
7980 static struct pmu perf_tracepoint = {
7981 	.task_ctx_nr	= perf_sw_context,
7982 
7983 	.event_init	= perf_tp_event_init,
7984 	.add		= perf_trace_add,
7985 	.del		= perf_trace_del,
7986 	.start		= perf_swevent_start,
7987 	.stop		= perf_swevent_stop,
7988 	.read		= perf_swevent_read,
7989 };
7990 
7991 static inline void perf_tp_register(void)
7992 {
7993 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7994 }
7995 
7996 static void perf_event_free_filter(struct perf_event *event)
7997 {
7998 	ftrace_profile_free_filter(event);
7999 }
8000 
8001 #ifdef CONFIG_BPF_SYSCALL
8002 static void bpf_overflow_handler(struct perf_event *event,
8003 				 struct perf_sample_data *data,
8004 				 struct pt_regs *regs)
8005 {
8006 	struct bpf_perf_event_data_kern ctx = {
8007 		.data = data,
8008 		.regs = regs,
8009 	};
8010 	int ret = 0;
8011 
8012 	preempt_disable();
8013 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8014 		goto out;
8015 	rcu_read_lock();
8016 	ret = BPF_PROG_RUN(event->prog, &ctx);
8017 	rcu_read_unlock();
8018 out:
8019 	__this_cpu_dec(bpf_prog_active);
8020 	preempt_enable();
8021 	if (!ret)
8022 		return;
8023 
8024 	event->orig_overflow_handler(event, data, regs);
8025 }
8026 
8027 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8028 {
8029 	struct bpf_prog *prog;
8030 
8031 	if (event->overflow_handler_context)
8032 		/* hw breakpoint or kernel counter */
8033 		return -EINVAL;
8034 
8035 	if (event->prog)
8036 		return -EEXIST;
8037 
8038 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8039 	if (IS_ERR(prog))
8040 		return PTR_ERR(prog);
8041 
8042 	event->prog = prog;
8043 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8044 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8045 	return 0;
8046 }
8047 
8048 static void perf_event_free_bpf_handler(struct perf_event *event)
8049 {
8050 	struct bpf_prog *prog = event->prog;
8051 
8052 	if (!prog)
8053 		return;
8054 
8055 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8056 	event->prog = NULL;
8057 	bpf_prog_put(prog);
8058 }
8059 #else
8060 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8061 {
8062 	return -EOPNOTSUPP;
8063 }
8064 static void perf_event_free_bpf_handler(struct perf_event *event)
8065 {
8066 }
8067 #endif
8068 
8069 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8070 {
8071 	bool is_kprobe, is_tracepoint;
8072 	struct bpf_prog *prog;
8073 
8074 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8075 		return perf_event_set_bpf_handler(event, prog_fd);
8076 
8077 	if (event->tp_event->prog)
8078 		return -EEXIST;
8079 
8080 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8081 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8082 	if (!is_kprobe && !is_tracepoint)
8083 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8084 		return -EINVAL;
8085 
8086 	prog = bpf_prog_get(prog_fd);
8087 	if (IS_ERR(prog))
8088 		return PTR_ERR(prog);
8089 
8090 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8091 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8092 		/* valid fd, but invalid bpf program type */
8093 		bpf_prog_put(prog);
8094 		return -EINVAL;
8095 	}
8096 
8097 	if (is_tracepoint) {
8098 		int off = trace_event_get_offsets(event->tp_event);
8099 
8100 		if (prog->aux->max_ctx_offset > off) {
8101 			bpf_prog_put(prog);
8102 			return -EACCES;
8103 		}
8104 	}
8105 	event->tp_event->prog = prog;
8106 
8107 	return 0;
8108 }
8109 
8110 static void perf_event_free_bpf_prog(struct perf_event *event)
8111 {
8112 	struct bpf_prog *prog;
8113 
8114 	perf_event_free_bpf_handler(event);
8115 
8116 	if (!event->tp_event)
8117 		return;
8118 
8119 	prog = event->tp_event->prog;
8120 	if (prog) {
8121 		event->tp_event->prog = NULL;
8122 		bpf_prog_put(prog);
8123 	}
8124 }
8125 
8126 #else
8127 
8128 static inline void perf_tp_register(void)
8129 {
8130 }
8131 
8132 static void perf_event_free_filter(struct perf_event *event)
8133 {
8134 }
8135 
8136 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8137 {
8138 	return -ENOENT;
8139 }
8140 
8141 static void perf_event_free_bpf_prog(struct perf_event *event)
8142 {
8143 }
8144 #endif /* CONFIG_EVENT_TRACING */
8145 
8146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8147 void perf_bp_event(struct perf_event *bp, void *data)
8148 {
8149 	struct perf_sample_data sample;
8150 	struct pt_regs *regs = data;
8151 
8152 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8153 
8154 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8155 		perf_swevent_event(bp, 1, &sample, regs);
8156 }
8157 #endif
8158 
8159 /*
8160  * Allocate a new address filter
8161  */
8162 static struct perf_addr_filter *
8163 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8164 {
8165 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8166 	struct perf_addr_filter *filter;
8167 
8168 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8169 	if (!filter)
8170 		return NULL;
8171 
8172 	INIT_LIST_HEAD(&filter->entry);
8173 	list_add_tail(&filter->entry, filters);
8174 
8175 	return filter;
8176 }
8177 
8178 static void free_filters_list(struct list_head *filters)
8179 {
8180 	struct perf_addr_filter *filter, *iter;
8181 
8182 	list_for_each_entry_safe(filter, iter, filters, entry) {
8183 		if (filter->inode)
8184 			iput(filter->inode);
8185 		list_del(&filter->entry);
8186 		kfree(filter);
8187 	}
8188 }
8189 
8190 /*
8191  * Free existing address filters and optionally install new ones
8192  */
8193 static void perf_addr_filters_splice(struct perf_event *event,
8194 				     struct list_head *head)
8195 {
8196 	unsigned long flags;
8197 	LIST_HEAD(list);
8198 
8199 	if (!has_addr_filter(event))
8200 		return;
8201 
8202 	/* don't bother with children, they don't have their own filters */
8203 	if (event->parent)
8204 		return;
8205 
8206 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8207 
8208 	list_splice_init(&event->addr_filters.list, &list);
8209 	if (head)
8210 		list_splice(head, &event->addr_filters.list);
8211 
8212 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8213 
8214 	free_filters_list(&list);
8215 }
8216 
8217 /*
8218  * Scan through mm's vmas and see if one of them matches the
8219  * @filter; if so, adjust filter's address range.
8220  * Called with mm::mmap_sem down for reading.
8221  */
8222 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8223 					    struct mm_struct *mm)
8224 {
8225 	struct vm_area_struct *vma;
8226 
8227 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8228 		struct file *file = vma->vm_file;
8229 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8230 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8231 
8232 		if (!file)
8233 			continue;
8234 
8235 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8236 			continue;
8237 
8238 		return vma->vm_start;
8239 	}
8240 
8241 	return 0;
8242 }
8243 
8244 /*
8245  * Update event's address range filters based on the
8246  * task's existing mappings, if any.
8247  */
8248 static void perf_event_addr_filters_apply(struct perf_event *event)
8249 {
8250 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8251 	struct task_struct *task = READ_ONCE(event->ctx->task);
8252 	struct perf_addr_filter *filter;
8253 	struct mm_struct *mm = NULL;
8254 	unsigned int count = 0;
8255 	unsigned long flags;
8256 
8257 	/*
8258 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8259 	 * will stop on the parent's child_mutex that our caller is also holding
8260 	 */
8261 	if (task == TASK_TOMBSTONE)
8262 		return;
8263 
8264 	if (!ifh->nr_file_filters)
8265 		return;
8266 
8267 	mm = get_task_mm(event->ctx->task);
8268 	if (!mm)
8269 		goto restart;
8270 
8271 	down_read(&mm->mmap_sem);
8272 
8273 	raw_spin_lock_irqsave(&ifh->lock, flags);
8274 	list_for_each_entry(filter, &ifh->list, entry) {
8275 		event->addr_filters_offs[count] = 0;
8276 
8277 		/*
8278 		 * Adjust base offset if the filter is associated to a binary
8279 		 * that needs to be mapped:
8280 		 */
8281 		if (filter->inode)
8282 			event->addr_filters_offs[count] =
8283 				perf_addr_filter_apply(filter, mm);
8284 
8285 		count++;
8286 	}
8287 
8288 	event->addr_filters_gen++;
8289 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8290 
8291 	up_read(&mm->mmap_sem);
8292 
8293 	mmput(mm);
8294 
8295 restart:
8296 	perf_event_stop(event, 1);
8297 }
8298 
8299 /*
8300  * Address range filtering: limiting the data to certain
8301  * instruction address ranges. Filters are ioctl()ed to us from
8302  * userspace as ascii strings.
8303  *
8304  * Filter string format:
8305  *
8306  * ACTION RANGE_SPEC
8307  * where ACTION is one of the
8308  *  * "filter": limit the trace to this region
8309  *  * "start": start tracing from this address
8310  *  * "stop": stop tracing at this address/region;
8311  * RANGE_SPEC is
8312  *  * for kernel addresses: <start address>[/<size>]
8313  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8314  *
8315  * if <size> is not specified, the range is treated as a single address.
8316  */
8317 enum {
8318 	IF_ACT_NONE = -1,
8319 	IF_ACT_FILTER,
8320 	IF_ACT_START,
8321 	IF_ACT_STOP,
8322 	IF_SRC_FILE,
8323 	IF_SRC_KERNEL,
8324 	IF_SRC_FILEADDR,
8325 	IF_SRC_KERNELADDR,
8326 };
8327 
8328 enum {
8329 	IF_STATE_ACTION = 0,
8330 	IF_STATE_SOURCE,
8331 	IF_STATE_END,
8332 };
8333 
8334 static const match_table_t if_tokens = {
8335 	{ IF_ACT_FILTER,	"filter" },
8336 	{ IF_ACT_START,		"start" },
8337 	{ IF_ACT_STOP,		"stop" },
8338 	{ IF_SRC_FILE,		"%u/%u@%s" },
8339 	{ IF_SRC_KERNEL,	"%u/%u" },
8340 	{ IF_SRC_FILEADDR,	"%u@%s" },
8341 	{ IF_SRC_KERNELADDR,	"%u" },
8342 	{ IF_ACT_NONE,		NULL },
8343 };
8344 
8345 /*
8346  * Address filter string parser
8347  */
8348 static int
8349 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8350 			     struct list_head *filters)
8351 {
8352 	struct perf_addr_filter *filter = NULL;
8353 	char *start, *orig, *filename = NULL;
8354 	struct path path;
8355 	substring_t args[MAX_OPT_ARGS];
8356 	int state = IF_STATE_ACTION, token;
8357 	unsigned int kernel = 0;
8358 	int ret = -EINVAL;
8359 
8360 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8361 	if (!fstr)
8362 		return -ENOMEM;
8363 
8364 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8365 		ret = -EINVAL;
8366 
8367 		if (!*start)
8368 			continue;
8369 
8370 		/* filter definition begins */
8371 		if (state == IF_STATE_ACTION) {
8372 			filter = perf_addr_filter_new(event, filters);
8373 			if (!filter)
8374 				goto fail;
8375 		}
8376 
8377 		token = match_token(start, if_tokens, args);
8378 		switch (token) {
8379 		case IF_ACT_FILTER:
8380 		case IF_ACT_START:
8381 			filter->filter = 1;
8382 
8383 		case IF_ACT_STOP:
8384 			if (state != IF_STATE_ACTION)
8385 				goto fail;
8386 
8387 			state = IF_STATE_SOURCE;
8388 			break;
8389 
8390 		case IF_SRC_KERNELADDR:
8391 		case IF_SRC_KERNEL:
8392 			kernel = 1;
8393 
8394 		case IF_SRC_FILEADDR:
8395 		case IF_SRC_FILE:
8396 			if (state != IF_STATE_SOURCE)
8397 				goto fail;
8398 
8399 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8400 				filter->range = 1;
8401 
8402 			*args[0].to = 0;
8403 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8404 			if (ret)
8405 				goto fail;
8406 
8407 			if (filter->range) {
8408 				*args[1].to = 0;
8409 				ret = kstrtoul(args[1].from, 0, &filter->size);
8410 				if (ret)
8411 					goto fail;
8412 			}
8413 
8414 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8415 				int fpos = filter->range ? 2 : 1;
8416 
8417 				filename = match_strdup(&args[fpos]);
8418 				if (!filename) {
8419 					ret = -ENOMEM;
8420 					goto fail;
8421 				}
8422 			}
8423 
8424 			state = IF_STATE_END;
8425 			break;
8426 
8427 		default:
8428 			goto fail;
8429 		}
8430 
8431 		/*
8432 		 * Filter definition is fully parsed, validate and install it.
8433 		 * Make sure that it doesn't contradict itself or the event's
8434 		 * attribute.
8435 		 */
8436 		if (state == IF_STATE_END) {
8437 			ret = -EINVAL;
8438 			if (kernel && event->attr.exclude_kernel)
8439 				goto fail;
8440 
8441 			if (!kernel) {
8442 				if (!filename)
8443 					goto fail;
8444 
8445 				/*
8446 				 * For now, we only support file-based filters
8447 				 * in per-task events; doing so for CPU-wide
8448 				 * events requires additional context switching
8449 				 * trickery, since same object code will be
8450 				 * mapped at different virtual addresses in
8451 				 * different processes.
8452 				 */
8453 				ret = -EOPNOTSUPP;
8454 				if (!event->ctx->task)
8455 					goto fail_free_name;
8456 
8457 				/* look up the path and grab its inode */
8458 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8459 				if (ret)
8460 					goto fail_free_name;
8461 
8462 				filter->inode = igrab(d_inode(path.dentry));
8463 				path_put(&path);
8464 				kfree(filename);
8465 				filename = NULL;
8466 
8467 				ret = -EINVAL;
8468 				if (!filter->inode ||
8469 				    !S_ISREG(filter->inode->i_mode))
8470 					/* free_filters_list() will iput() */
8471 					goto fail;
8472 
8473 				event->addr_filters.nr_file_filters++;
8474 			}
8475 
8476 			/* ready to consume more filters */
8477 			state = IF_STATE_ACTION;
8478 			filter = NULL;
8479 		}
8480 	}
8481 
8482 	if (state != IF_STATE_ACTION)
8483 		goto fail;
8484 
8485 	kfree(orig);
8486 
8487 	return 0;
8488 
8489 fail_free_name:
8490 	kfree(filename);
8491 fail:
8492 	free_filters_list(filters);
8493 	kfree(orig);
8494 
8495 	return ret;
8496 }
8497 
8498 static int
8499 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8500 {
8501 	LIST_HEAD(filters);
8502 	int ret;
8503 
8504 	/*
8505 	 * Since this is called in perf_ioctl() path, we're already holding
8506 	 * ctx::mutex.
8507 	 */
8508 	lockdep_assert_held(&event->ctx->mutex);
8509 
8510 	if (WARN_ON_ONCE(event->parent))
8511 		return -EINVAL;
8512 
8513 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8514 	if (ret)
8515 		goto fail_clear_files;
8516 
8517 	ret = event->pmu->addr_filters_validate(&filters);
8518 	if (ret)
8519 		goto fail_free_filters;
8520 
8521 	/* remove existing filters, if any */
8522 	perf_addr_filters_splice(event, &filters);
8523 
8524 	/* install new filters */
8525 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8526 
8527 	return ret;
8528 
8529 fail_free_filters:
8530 	free_filters_list(&filters);
8531 
8532 fail_clear_files:
8533 	event->addr_filters.nr_file_filters = 0;
8534 
8535 	return ret;
8536 }
8537 
8538 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8539 {
8540 	char *filter_str;
8541 	int ret = -EINVAL;
8542 
8543 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8544 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8545 	    !has_addr_filter(event))
8546 		return -EINVAL;
8547 
8548 	filter_str = strndup_user(arg, PAGE_SIZE);
8549 	if (IS_ERR(filter_str))
8550 		return PTR_ERR(filter_str);
8551 
8552 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8553 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8554 		ret = ftrace_profile_set_filter(event, event->attr.config,
8555 						filter_str);
8556 	else if (has_addr_filter(event))
8557 		ret = perf_event_set_addr_filter(event, filter_str);
8558 
8559 	kfree(filter_str);
8560 	return ret;
8561 }
8562 
8563 /*
8564  * hrtimer based swevent callback
8565  */
8566 
8567 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8568 {
8569 	enum hrtimer_restart ret = HRTIMER_RESTART;
8570 	struct perf_sample_data data;
8571 	struct pt_regs *regs;
8572 	struct perf_event *event;
8573 	u64 period;
8574 
8575 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8576 
8577 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8578 		return HRTIMER_NORESTART;
8579 
8580 	event->pmu->read(event);
8581 
8582 	perf_sample_data_init(&data, 0, event->hw.last_period);
8583 	regs = get_irq_regs();
8584 
8585 	if (regs && !perf_exclude_event(event, regs)) {
8586 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8587 			if (__perf_event_overflow(event, 1, &data, regs))
8588 				ret = HRTIMER_NORESTART;
8589 	}
8590 
8591 	period = max_t(u64, 10000, event->hw.sample_period);
8592 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8593 
8594 	return ret;
8595 }
8596 
8597 static void perf_swevent_start_hrtimer(struct perf_event *event)
8598 {
8599 	struct hw_perf_event *hwc = &event->hw;
8600 	s64 period;
8601 
8602 	if (!is_sampling_event(event))
8603 		return;
8604 
8605 	period = local64_read(&hwc->period_left);
8606 	if (period) {
8607 		if (period < 0)
8608 			period = 10000;
8609 
8610 		local64_set(&hwc->period_left, 0);
8611 	} else {
8612 		period = max_t(u64, 10000, hwc->sample_period);
8613 	}
8614 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8615 		      HRTIMER_MODE_REL_PINNED);
8616 }
8617 
8618 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8619 {
8620 	struct hw_perf_event *hwc = &event->hw;
8621 
8622 	if (is_sampling_event(event)) {
8623 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8624 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8625 
8626 		hrtimer_cancel(&hwc->hrtimer);
8627 	}
8628 }
8629 
8630 static void perf_swevent_init_hrtimer(struct perf_event *event)
8631 {
8632 	struct hw_perf_event *hwc = &event->hw;
8633 
8634 	if (!is_sampling_event(event))
8635 		return;
8636 
8637 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8638 	hwc->hrtimer.function = perf_swevent_hrtimer;
8639 
8640 	/*
8641 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8642 	 * mapping and avoid the whole period adjust feedback stuff.
8643 	 */
8644 	if (event->attr.freq) {
8645 		long freq = event->attr.sample_freq;
8646 
8647 		event->attr.sample_period = NSEC_PER_SEC / freq;
8648 		hwc->sample_period = event->attr.sample_period;
8649 		local64_set(&hwc->period_left, hwc->sample_period);
8650 		hwc->last_period = hwc->sample_period;
8651 		event->attr.freq = 0;
8652 	}
8653 }
8654 
8655 /*
8656  * Software event: cpu wall time clock
8657  */
8658 
8659 static void cpu_clock_event_update(struct perf_event *event)
8660 {
8661 	s64 prev;
8662 	u64 now;
8663 
8664 	now = local_clock();
8665 	prev = local64_xchg(&event->hw.prev_count, now);
8666 	local64_add(now - prev, &event->count);
8667 }
8668 
8669 static void cpu_clock_event_start(struct perf_event *event, int flags)
8670 {
8671 	local64_set(&event->hw.prev_count, local_clock());
8672 	perf_swevent_start_hrtimer(event);
8673 }
8674 
8675 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8676 {
8677 	perf_swevent_cancel_hrtimer(event);
8678 	cpu_clock_event_update(event);
8679 }
8680 
8681 static int cpu_clock_event_add(struct perf_event *event, int flags)
8682 {
8683 	if (flags & PERF_EF_START)
8684 		cpu_clock_event_start(event, flags);
8685 	perf_event_update_userpage(event);
8686 
8687 	return 0;
8688 }
8689 
8690 static void cpu_clock_event_del(struct perf_event *event, int flags)
8691 {
8692 	cpu_clock_event_stop(event, flags);
8693 }
8694 
8695 static void cpu_clock_event_read(struct perf_event *event)
8696 {
8697 	cpu_clock_event_update(event);
8698 }
8699 
8700 static int cpu_clock_event_init(struct perf_event *event)
8701 {
8702 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8703 		return -ENOENT;
8704 
8705 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8706 		return -ENOENT;
8707 
8708 	/*
8709 	 * no branch sampling for software events
8710 	 */
8711 	if (has_branch_stack(event))
8712 		return -EOPNOTSUPP;
8713 
8714 	perf_swevent_init_hrtimer(event);
8715 
8716 	return 0;
8717 }
8718 
8719 static struct pmu perf_cpu_clock = {
8720 	.task_ctx_nr	= perf_sw_context,
8721 
8722 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8723 
8724 	.event_init	= cpu_clock_event_init,
8725 	.add		= cpu_clock_event_add,
8726 	.del		= cpu_clock_event_del,
8727 	.start		= cpu_clock_event_start,
8728 	.stop		= cpu_clock_event_stop,
8729 	.read		= cpu_clock_event_read,
8730 };
8731 
8732 /*
8733  * Software event: task time clock
8734  */
8735 
8736 static void task_clock_event_update(struct perf_event *event, u64 now)
8737 {
8738 	u64 prev;
8739 	s64 delta;
8740 
8741 	prev = local64_xchg(&event->hw.prev_count, now);
8742 	delta = now - prev;
8743 	local64_add(delta, &event->count);
8744 }
8745 
8746 static void task_clock_event_start(struct perf_event *event, int flags)
8747 {
8748 	local64_set(&event->hw.prev_count, event->ctx->time);
8749 	perf_swevent_start_hrtimer(event);
8750 }
8751 
8752 static void task_clock_event_stop(struct perf_event *event, int flags)
8753 {
8754 	perf_swevent_cancel_hrtimer(event);
8755 	task_clock_event_update(event, event->ctx->time);
8756 }
8757 
8758 static int task_clock_event_add(struct perf_event *event, int flags)
8759 {
8760 	if (flags & PERF_EF_START)
8761 		task_clock_event_start(event, flags);
8762 	perf_event_update_userpage(event);
8763 
8764 	return 0;
8765 }
8766 
8767 static void task_clock_event_del(struct perf_event *event, int flags)
8768 {
8769 	task_clock_event_stop(event, PERF_EF_UPDATE);
8770 }
8771 
8772 static void task_clock_event_read(struct perf_event *event)
8773 {
8774 	u64 now = perf_clock();
8775 	u64 delta = now - event->ctx->timestamp;
8776 	u64 time = event->ctx->time + delta;
8777 
8778 	task_clock_event_update(event, time);
8779 }
8780 
8781 static int task_clock_event_init(struct perf_event *event)
8782 {
8783 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8784 		return -ENOENT;
8785 
8786 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8787 		return -ENOENT;
8788 
8789 	/*
8790 	 * no branch sampling for software events
8791 	 */
8792 	if (has_branch_stack(event))
8793 		return -EOPNOTSUPP;
8794 
8795 	perf_swevent_init_hrtimer(event);
8796 
8797 	return 0;
8798 }
8799 
8800 static struct pmu perf_task_clock = {
8801 	.task_ctx_nr	= perf_sw_context,
8802 
8803 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8804 
8805 	.event_init	= task_clock_event_init,
8806 	.add		= task_clock_event_add,
8807 	.del		= task_clock_event_del,
8808 	.start		= task_clock_event_start,
8809 	.stop		= task_clock_event_stop,
8810 	.read		= task_clock_event_read,
8811 };
8812 
8813 static void perf_pmu_nop_void(struct pmu *pmu)
8814 {
8815 }
8816 
8817 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8818 {
8819 }
8820 
8821 static int perf_pmu_nop_int(struct pmu *pmu)
8822 {
8823 	return 0;
8824 }
8825 
8826 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8827 
8828 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8829 {
8830 	__this_cpu_write(nop_txn_flags, flags);
8831 
8832 	if (flags & ~PERF_PMU_TXN_ADD)
8833 		return;
8834 
8835 	perf_pmu_disable(pmu);
8836 }
8837 
8838 static int perf_pmu_commit_txn(struct pmu *pmu)
8839 {
8840 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8841 
8842 	__this_cpu_write(nop_txn_flags, 0);
8843 
8844 	if (flags & ~PERF_PMU_TXN_ADD)
8845 		return 0;
8846 
8847 	perf_pmu_enable(pmu);
8848 	return 0;
8849 }
8850 
8851 static void perf_pmu_cancel_txn(struct pmu *pmu)
8852 {
8853 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8854 
8855 	__this_cpu_write(nop_txn_flags, 0);
8856 
8857 	if (flags & ~PERF_PMU_TXN_ADD)
8858 		return;
8859 
8860 	perf_pmu_enable(pmu);
8861 }
8862 
8863 static int perf_event_idx_default(struct perf_event *event)
8864 {
8865 	return 0;
8866 }
8867 
8868 /*
8869  * Ensures all contexts with the same task_ctx_nr have the same
8870  * pmu_cpu_context too.
8871  */
8872 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8873 {
8874 	struct pmu *pmu;
8875 
8876 	if (ctxn < 0)
8877 		return NULL;
8878 
8879 	list_for_each_entry(pmu, &pmus, entry) {
8880 		if (pmu->task_ctx_nr == ctxn)
8881 			return pmu->pmu_cpu_context;
8882 	}
8883 
8884 	return NULL;
8885 }
8886 
8887 static void free_pmu_context(struct pmu *pmu)
8888 {
8889 	mutex_lock(&pmus_lock);
8890 	free_percpu(pmu->pmu_cpu_context);
8891 	mutex_unlock(&pmus_lock);
8892 }
8893 
8894 /*
8895  * Let userspace know that this PMU supports address range filtering:
8896  */
8897 static ssize_t nr_addr_filters_show(struct device *dev,
8898 				    struct device_attribute *attr,
8899 				    char *page)
8900 {
8901 	struct pmu *pmu = dev_get_drvdata(dev);
8902 
8903 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8904 }
8905 DEVICE_ATTR_RO(nr_addr_filters);
8906 
8907 static struct idr pmu_idr;
8908 
8909 static ssize_t
8910 type_show(struct device *dev, struct device_attribute *attr, char *page)
8911 {
8912 	struct pmu *pmu = dev_get_drvdata(dev);
8913 
8914 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8915 }
8916 static DEVICE_ATTR_RO(type);
8917 
8918 static ssize_t
8919 perf_event_mux_interval_ms_show(struct device *dev,
8920 				struct device_attribute *attr,
8921 				char *page)
8922 {
8923 	struct pmu *pmu = dev_get_drvdata(dev);
8924 
8925 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8926 }
8927 
8928 static DEFINE_MUTEX(mux_interval_mutex);
8929 
8930 static ssize_t
8931 perf_event_mux_interval_ms_store(struct device *dev,
8932 				 struct device_attribute *attr,
8933 				 const char *buf, size_t count)
8934 {
8935 	struct pmu *pmu = dev_get_drvdata(dev);
8936 	int timer, cpu, ret;
8937 
8938 	ret = kstrtoint(buf, 0, &timer);
8939 	if (ret)
8940 		return ret;
8941 
8942 	if (timer < 1)
8943 		return -EINVAL;
8944 
8945 	/* same value, noting to do */
8946 	if (timer == pmu->hrtimer_interval_ms)
8947 		return count;
8948 
8949 	mutex_lock(&mux_interval_mutex);
8950 	pmu->hrtimer_interval_ms = timer;
8951 
8952 	/* update all cpuctx for this PMU */
8953 	get_online_cpus();
8954 	for_each_online_cpu(cpu) {
8955 		struct perf_cpu_context *cpuctx;
8956 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8957 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8958 
8959 		cpu_function_call(cpu,
8960 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8961 	}
8962 	put_online_cpus();
8963 	mutex_unlock(&mux_interval_mutex);
8964 
8965 	return count;
8966 }
8967 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8968 
8969 static struct attribute *pmu_dev_attrs[] = {
8970 	&dev_attr_type.attr,
8971 	&dev_attr_perf_event_mux_interval_ms.attr,
8972 	NULL,
8973 };
8974 ATTRIBUTE_GROUPS(pmu_dev);
8975 
8976 static int pmu_bus_running;
8977 static struct bus_type pmu_bus = {
8978 	.name		= "event_source",
8979 	.dev_groups	= pmu_dev_groups,
8980 };
8981 
8982 static void pmu_dev_release(struct device *dev)
8983 {
8984 	kfree(dev);
8985 }
8986 
8987 static int pmu_dev_alloc(struct pmu *pmu)
8988 {
8989 	int ret = -ENOMEM;
8990 
8991 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8992 	if (!pmu->dev)
8993 		goto out;
8994 
8995 	pmu->dev->groups = pmu->attr_groups;
8996 	device_initialize(pmu->dev);
8997 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8998 	if (ret)
8999 		goto free_dev;
9000 
9001 	dev_set_drvdata(pmu->dev, pmu);
9002 	pmu->dev->bus = &pmu_bus;
9003 	pmu->dev->release = pmu_dev_release;
9004 	ret = device_add(pmu->dev);
9005 	if (ret)
9006 		goto free_dev;
9007 
9008 	/* For PMUs with address filters, throw in an extra attribute: */
9009 	if (pmu->nr_addr_filters)
9010 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9011 
9012 	if (ret)
9013 		goto del_dev;
9014 
9015 out:
9016 	return ret;
9017 
9018 del_dev:
9019 	device_del(pmu->dev);
9020 
9021 free_dev:
9022 	put_device(pmu->dev);
9023 	goto out;
9024 }
9025 
9026 static struct lock_class_key cpuctx_mutex;
9027 static struct lock_class_key cpuctx_lock;
9028 
9029 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9030 {
9031 	int cpu, ret;
9032 
9033 	mutex_lock(&pmus_lock);
9034 	ret = -ENOMEM;
9035 	pmu->pmu_disable_count = alloc_percpu(int);
9036 	if (!pmu->pmu_disable_count)
9037 		goto unlock;
9038 
9039 	pmu->type = -1;
9040 	if (!name)
9041 		goto skip_type;
9042 	pmu->name = name;
9043 
9044 	if (type < 0) {
9045 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9046 		if (type < 0) {
9047 			ret = type;
9048 			goto free_pdc;
9049 		}
9050 	}
9051 	pmu->type = type;
9052 
9053 	if (pmu_bus_running) {
9054 		ret = pmu_dev_alloc(pmu);
9055 		if (ret)
9056 			goto free_idr;
9057 	}
9058 
9059 skip_type:
9060 	if (pmu->task_ctx_nr == perf_hw_context) {
9061 		static int hw_context_taken = 0;
9062 
9063 		/*
9064 		 * Other than systems with heterogeneous CPUs, it never makes
9065 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9066 		 * uncore must use perf_invalid_context.
9067 		 */
9068 		if (WARN_ON_ONCE(hw_context_taken &&
9069 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9070 			pmu->task_ctx_nr = perf_invalid_context;
9071 
9072 		hw_context_taken = 1;
9073 	}
9074 
9075 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9076 	if (pmu->pmu_cpu_context)
9077 		goto got_cpu_context;
9078 
9079 	ret = -ENOMEM;
9080 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9081 	if (!pmu->pmu_cpu_context)
9082 		goto free_dev;
9083 
9084 	for_each_possible_cpu(cpu) {
9085 		struct perf_cpu_context *cpuctx;
9086 
9087 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9088 		__perf_event_init_context(&cpuctx->ctx);
9089 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9090 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9091 		cpuctx->ctx.pmu = pmu;
9092 
9093 		__perf_mux_hrtimer_init(cpuctx, cpu);
9094 	}
9095 
9096 got_cpu_context:
9097 	if (!pmu->start_txn) {
9098 		if (pmu->pmu_enable) {
9099 			/*
9100 			 * If we have pmu_enable/pmu_disable calls, install
9101 			 * transaction stubs that use that to try and batch
9102 			 * hardware accesses.
9103 			 */
9104 			pmu->start_txn  = perf_pmu_start_txn;
9105 			pmu->commit_txn = perf_pmu_commit_txn;
9106 			pmu->cancel_txn = perf_pmu_cancel_txn;
9107 		} else {
9108 			pmu->start_txn  = perf_pmu_nop_txn;
9109 			pmu->commit_txn = perf_pmu_nop_int;
9110 			pmu->cancel_txn = perf_pmu_nop_void;
9111 		}
9112 	}
9113 
9114 	if (!pmu->pmu_enable) {
9115 		pmu->pmu_enable  = perf_pmu_nop_void;
9116 		pmu->pmu_disable = perf_pmu_nop_void;
9117 	}
9118 
9119 	if (!pmu->event_idx)
9120 		pmu->event_idx = perf_event_idx_default;
9121 
9122 	list_add_rcu(&pmu->entry, &pmus);
9123 	atomic_set(&pmu->exclusive_cnt, 0);
9124 	ret = 0;
9125 unlock:
9126 	mutex_unlock(&pmus_lock);
9127 
9128 	return ret;
9129 
9130 free_dev:
9131 	device_del(pmu->dev);
9132 	put_device(pmu->dev);
9133 
9134 free_idr:
9135 	if (pmu->type >= PERF_TYPE_MAX)
9136 		idr_remove(&pmu_idr, pmu->type);
9137 
9138 free_pdc:
9139 	free_percpu(pmu->pmu_disable_count);
9140 	goto unlock;
9141 }
9142 EXPORT_SYMBOL_GPL(perf_pmu_register);
9143 
9144 void perf_pmu_unregister(struct pmu *pmu)
9145 {
9146 	int remove_device;
9147 
9148 	mutex_lock(&pmus_lock);
9149 	remove_device = pmu_bus_running;
9150 	list_del_rcu(&pmu->entry);
9151 	mutex_unlock(&pmus_lock);
9152 
9153 	/*
9154 	 * We dereference the pmu list under both SRCU and regular RCU, so
9155 	 * synchronize against both of those.
9156 	 */
9157 	synchronize_srcu(&pmus_srcu);
9158 	synchronize_rcu();
9159 
9160 	free_percpu(pmu->pmu_disable_count);
9161 	if (pmu->type >= PERF_TYPE_MAX)
9162 		idr_remove(&pmu_idr, pmu->type);
9163 	if (remove_device) {
9164 		if (pmu->nr_addr_filters)
9165 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9166 		device_del(pmu->dev);
9167 		put_device(pmu->dev);
9168 	}
9169 	free_pmu_context(pmu);
9170 }
9171 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9172 
9173 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9174 {
9175 	struct perf_event_context *ctx = NULL;
9176 	int ret;
9177 
9178 	if (!try_module_get(pmu->module))
9179 		return -ENODEV;
9180 
9181 	if (event->group_leader != event) {
9182 		/*
9183 		 * This ctx->mutex can nest when we're called through
9184 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9185 		 */
9186 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9187 						 SINGLE_DEPTH_NESTING);
9188 		BUG_ON(!ctx);
9189 	}
9190 
9191 	event->pmu = pmu;
9192 	ret = pmu->event_init(event);
9193 
9194 	if (ctx)
9195 		perf_event_ctx_unlock(event->group_leader, ctx);
9196 
9197 	if (ret)
9198 		module_put(pmu->module);
9199 
9200 	return ret;
9201 }
9202 
9203 static struct pmu *perf_init_event(struct perf_event *event)
9204 {
9205 	struct pmu *pmu = NULL;
9206 	int idx;
9207 	int ret;
9208 
9209 	idx = srcu_read_lock(&pmus_srcu);
9210 
9211 	/* Try parent's PMU first: */
9212 	if (event->parent && event->parent->pmu) {
9213 		pmu = event->parent->pmu;
9214 		ret = perf_try_init_event(pmu, event);
9215 		if (!ret)
9216 			goto unlock;
9217 	}
9218 
9219 	rcu_read_lock();
9220 	pmu = idr_find(&pmu_idr, event->attr.type);
9221 	rcu_read_unlock();
9222 	if (pmu) {
9223 		ret = perf_try_init_event(pmu, event);
9224 		if (ret)
9225 			pmu = ERR_PTR(ret);
9226 		goto unlock;
9227 	}
9228 
9229 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9230 		ret = perf_try_init_event(pmu, event);
9231 		if (!ret)
9232 			goto unlock;
9233 
9234 		if (ret != -ENOENT) {
9235 			pmu = ERR_PTR(ret);
9236 			goto unlock;
9237 		}
9238 	}
9239 	pmu = ERR_PTR(-ENOENT);
9240 unlock:
9241 	srcu_read_unlock(&pmus_srcu, idx);
9242 
9243 	return pmu;
9244 }
9245 
9246 static void attach_sb_event(struct perf_event *event)
9247 {
9248 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9249 
9250 	raw_spin_lock(&pel->lock);
9251 	list_add_rcu(&event->sb_list, &pel->list);
9252 	raw_spin_unlock(&pel->lock);
9253 }
9254 
9255 /*
9256  * We keep a list of all !task (and therefore per-cpu) events
9257  * that need to receive side-band records.
9258  *
9259  * This avoids having to scan all the various PMU per-cpu contexts
9260  * looking for them.
9261  */
9262 static void account_pmu_sb_event(struct perf_event *event)
9263 {
9264 	if (is_sb_event(event))
9265 		attach_sb_event(event);
9266 }
9267 
9268 static void account_event_cpu(struct perf_event *event, int cpu)
9269 {
9270 	if (event->parent)
9271 		return;
9272 
9273 	if (is_cgroup_event(event))
9274 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9275 }
9276 
9277 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9278 static void account_freq_event_nohz(void)
9279 {
9280 #ifdef CONFIG_NO_HZ_FULL
9281 	/* Lock so we don't race with concurrent unaccount */
9282 	spin_lock(&nr_freq_lock);
9283 	if (atomic_inc_return(&nr_freq_events) == 1)
9284 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9285 	spin_unlock(&nr_freq_lock);
9286 #endif
9287 }
9288 
9289 static void account_freq_event(void)
9290 {
9291 	if (tick_nohz_full_enabled())
9292 		account_freq_event_nohz();
9293 	else
9294 		atomic_inc(&nr_freq_events);
9295 }
9296 
9297 
9298 static void account_event(struct perf_event *event)
9299 {
9300 	bool inc = false;
9301 
9302 	if (event->parent)
9303 		return;
9304 
9305 	if (event->attach_state & PERF_ATTACH_TASK)
9306 		inc = true;
9307 	if (event->attr.mmap || event->attr.mmap_data)
9308 		atomic_inc(&nr_mmap_events);
9309 	if (event->attr.comm)
9310 		atomic_inc(&nr_comm_events);
9311 	if (event->attr.namespaces)
9312 		atomic_inc(&nr_namespaces_events);
9313 	if (event->attr.task)
9314 		atomic_inc(&nr_task_events);
9315 	if (event->attr.freq)
9316 		account_freq_event();
9317 	if (event->attr.context_switch) {
9318 		atomic_inc(&nr_switch_events);
9319 		inc = true;
9320 	}
9321 	if (has_branch_stack(event))
9322 		inc = true;
9323 	if (is_cgroup_event(event))
9324 		inc = true;
9325 
9326 	if (inc) {
9327 		if (atomic_inc_not_zero(&perf_sched_count))
9328 			goto enabled;
9329 
9330 		mutex_lock(&perf_sched_mutex);
9331 		if (!atomic_read(&perf_sched_count)) {
9332 			static_branch_enable(&perf_sched_events);
9333 			/*
9334 			 * Guarantee that all CPUs observe they key change and
9335 			 * call the perf scheduling hooks before proceeding to
9336 			 * install events that need them.
9337 			 */
9338 			synchronize_sched();
9339 		}
9340 		/*
9341 		 * Now that we have waited for the sync_sched(), allow further
9342 		 * increments to by-pass the mutex.
9343 		 */
9344 		atomic_inc(&perf_sched_count);
9345 		mutex_unlock(&perf_sched_mutex);
9346 	}
9347 enabled:
9348 
9349 	account_event_cpu(event, event->cpu);
9350 
9351 	account_pmu_sb_event(event);
9352 }
9353 
9354 /*
9355  * Allocate and initialize a event structure
9356  */
9357 static struct perf_event *
9358 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9359 		 struct task_struct *task,
9360 		 struct perf_event *group_leader,
9361 		 struct perf_event *parent_event,
9362 		 perf_overflow_handler_t overflow_handler,
9363 		 void *context, int cgroup_fd)
9364 {
9365 	struct pmu *pmu;
9366 	struct perf_event *event;
9367 	struct hw_perf_event *hwc;
9368 	long err = -EINVAL;
9369 
9370 	if ((unsigned)cpu >= nr_cpu_ids) {
9371 		if (!task || cpu != -1)
9372 			return ERR_PTR(-EINVAL);
9373 	}
9374 
9375 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9376 	if (!event)
9377 		return ERR_PTR(-ENOMEM);
9378 
9379 	/*
9380 	 * Single events are their own group leaders, with an
9381 	 * empty sibling list:
9382 	 */
9383 	if (!group_leader)
9384 		group_leader = event;
9385 
9386 	mutex_init(&event->child_mutex);
9387 	INIT_LIST_HEAD(&event->child_list);
9388 
9389 	INIT_LIST_HEAD(&event->group_entry);
9390 	INIT_LIST_HEAD(&event->event_entry);
9391 	INIT_LIST_HEAD(&event->sibling_list);
9392 	INIT_LIST_HEAD(&event->rb_entry);
9393 	INIT_LIST_HEAD(&event->active_entry);
9394 	INIT_LIST_HEAD(&event->addr_filters.list);
9395 	INIT_HLIST_NODE(&event->hlist_entry);
9396 
9397 
9398 	init_waitqueue_head(&event->waitq);
9399 	init_irq_work(&event->pending, perf_pending_event);
9400 
9401 	mutex_init(&event->mmap_mutex);
9402 	raw_spin_lock_init(&event->addr_filters.lock);
9403 
9404 	atomic_long_set(&event->refcount, 1);
9405 	event->cpu		= cpu;
9406 	event->attr		= *attr;
9407 	event->group_leader	= group_leader;
9408 	event->pmu		= NULL;
9409 	event->oncpu		= -1;
9410 
9411 	event->parent		= parent_event;
9412 
9413 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9414 	event->id		= atomic64_inc_return(&perf_event_id);
9415 
9416 	event->state		= PERF_EVENT_STATE_INACTIVE;
9417 
9418 	if (task) {
9419 		event->attach_state = PERF_ATTACH_TASK;
9420 		/*
9421 		 * XXX pmu::event_init needs to know what task to account to
9422 		 * and we cannot use the ctx information because we need the
9423 		 * pmu before we get a ctx.
9424 		 */
9425 		event->hw.target = task;
9426 	}
9427 
9428 	event->clock = &local_clock;
9429 	if (parent_event)
9430 		event->clock = parent_event->clock;
9431 
9432 	if (!overflow_handler && parent_event) {
9433 		overflow_handler = parent_event->overflow_handler;
9434 		context = parent_event->overflow_handler_context;
9435 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9436 		if (overflow_handler == bpf_overflow_handler) {
9437 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9438 
9439 			if (IS_ERR(prog)) {
9440 				err = PTR_ERR(prog);
9441 				goto err_ns;
9442 			}
9443 			event->prog = prog;
9444 			event->orig_overflow_handler =
9445 				parent_event->orig_overflow_handler;
9446 		}
9447 #endif
9448 	}
9449 
9450 	if (overflow_handler) {
9451 		event->overflow_handler	= overflow_handler;
9452 		event->overflow_handler_context = context;
9453 	} else if (is_write_backward(event)){
9454 		event->overflow_handler = perf_event_output_backward;
9455 		event->overflow_handler_context = NULL;
9456 	} else {
9457 		event->overflow_handler = perf_event_output_forward;
9458 		event->overflow_handler_context = NULL;
9459 	}
9460 
9461 	perf_event__state_init(event);
9462 
9463 	pmu = NULL;
9464 
9465 	hwc = &event->hw;
9466 	hwc->sample_period = attr->sample_period;
9467 	if (attr->freq && attr->sample_freq)
9468 		hwc->sample_period = 1;
9469 	hwc->last_period = hwc->sample_period;
9470 
9471 	local64_set(&hwc->period_left, hwc->sample_period);
9472 
9473 	/*
9474 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9475 	 */
9476 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9477 		goto err_ns;
9478 
9479 	if (!has_branch_stack(event))
9480 		event->attr.branch_sample_type = 0;
9481 
9482 	if (cgroup_fd != -1) {
9483 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9484 		if (err)
9485 			goto err_ns;
9486 	}
9487 
9488 	pmu = perf_init_event(event);
9489 	if (!pmu)
9490 		goto err_ns;
9491 	else if (IS_ERR(pmu)) {
9492 		err = PTR_ERR(pmu);
9493 		goto err_ns;
9494 	}
9495 
9496 	err = exclusive_event_init(event);
9497 	if (err)
9498 		goto err_pmu;
9499 
9500 	if (has_addr_filter(event)) {
9501 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9502 						   sizeof(unsigned long),
9503 						   GFP_KERNEL);
9504 		if (!event->addr_filters_offs)
9505 			goto err_per_task;
9506 
9507 		/* force hw sync on the address filters */
9508 		event->addr_filters_gen = 1;
9509 	}
9510 
9511 	if (!event->parent) {
9512 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9513 			err = get_callchain_buffers(attr->sample_max_stack);
9514 			if (err)
9515 				goto err_addr_filters;
9516 		}
9517 	}
9518 
9519 	/* symmetric to unaccount_event() in _free_event() */
9520 	account_event(event);
9521 
9522 	return event;
9523 
9524 err_addr_filters:
9525 	kfree(event->addr_filters_offs);
9526 
9527 err_per_task:
9528 	exclusive_event_destroy(event);
9529 
9530 err_pmu:
9531 	if (event->destroy)
9532 		event->destroy(event);
9533 	module_put(pmu->module);
9534 err_ns:
9535 	if (is_cgroup_event(event))
9536 		perf_detach_cgroup(event);
9537 	if (event->ns)
9538 		put_pid_ns(event->ns);
9539 	kfree(event);
9540 
9541 	return ERR_PTR(err);
9542 }
9543 
9544 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9545 			  struct perf_event_attr *attr)
9546 {
9547 	u32 size;
9548 	int ret;
9549 
9550 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9551 		return -EFAULT;
9552 
9553 	/*
9554 	 * zero the full structure, so that a short copy will be nice.
9555 	 */
9556 	memset(attr, 0, sizeof(*attr));
9557 
9558 	ret = get_user(size, &uattr->size);
9559 	if (ret)
9560 		return ret;
9561 
9562 	if (size > PAGE_SIZE)	/* silly large */
9563 		goto err_size;
9564 
9565 	if (!size)		/* abi compat */
9566 		size = PERF_ATTR_SIZE_VER0;
9567 
9568 	if (size < PERF_ATTR_SIZE_VER0)
9569 		goto err_size;
9570 
9571 	/*
9572 	 * If we're handed a bigger struct than we know of,
9573 	 * ensure all the unknown bits are 0 - i.e. new
9574 	 * user-space does not rely on any kernel feature
9575 	 * extensions we dont know about yet.
9576 	 */
9577 	if (size > sizeof(*attr)) {
9578 		unsigned char __user *addr;
9579 		unsigned char __user *end;
9580 		unsigned char val;
9581 
9582 		addr = (void __user *)uattr + sizeof(*attr);
9583 		end  = (void __user *)uattr + size;
9584 
9585 		for (; addr < end; addr++) {
9586 			ret = get_user(val, addr);
9587 			if (ret)
9588 				return ret;
9589 			if (val)
9590 				goto err_size;
9591 		}
9592 		size = sizeof(*attr);
9593 	}
9594 
9595 	ret = copy_from_user(attr, uattr, size);
9596 	if (ret)
9597 		return -EFAULT;
9598 
9599 	if (attr->__reserved_1)
9600 		return -EINVAL;
9601 
9602 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9603 		return -EINVAL;
9604 
9605 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9606 		return -EINVAL;
9607 
9608 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9609 		u64 mask = attr->branch_sample_type;
9610 
9611 		/* only using defined bits */
9612 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9613 			return -EINVAL;
9614 
9615 		/* at least one branch bit must be set */
9616 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9617 			return -EINVAL;
9618 
9619 		/* propagate priv level, when not set for branch */
9620 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9621 
9622 			/* exclude_kernel checked on syscall entry */
9623 			if (!attr->exclude_kernel)
9624 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9625 
9626 			if (!attr->exclude_user)
9627 				mask |= PERF_SAMPLE_BRANCH_USER;
9628 
9629 			if (!attr->exclude_hv)
9630 				mask |= PERF_SAMPLE_BRANCH_HV;
9631 			/*
9632 			 * adjust user setting (for HW filter setup)
9633 			 */
9634 			attr->branch_sample_type = mask;
9635 		}
9636 		/* privileged levels capture (kernel, hv): check permissions */
9637 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9638 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9639 			return -EACCES;
9640 	}
9641 
9642 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9643 		ret = perf_reg_validate(attr->sample_regs_user);
9644 		if (ret)
9645 			return ret;
9646 	}
9647 
9648 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9649 		if (!arch_perf_have_user_stack_dump())
9650 			return -ENOSYS;
9651 
9652 		/*
9653 		 * We have __u32 type for the size, but so far
9654 		 * we can only use __u16 as maximum due to the
9655 		 * __u16 sample size limit.
9656 		 */
9657 		if (attr->sample_stack_user >= USHRT_MAX)
9658 			ret = -EINVAL;
9659 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9660 			ret = -EINVAL;
9661 	}
9662 
9663 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9664 		ret = perf_reg_validate(attr->sample_regs_intr);
9665 out:
9666 	return ret;
9667 
9668 err_size:
9669 	put_user(sizeof(*attr), &uattr->size);
9670 	ret = -E2BIG;
9671 	goto out;
9672 }
9673 
9674 static int
9675 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9676 {
9677 	struct ring_buffer *rb = NULL;
9678 	int ret = -EINVAL;
9679 
9680 	if (!output_event)
9681 		goto set;
9682 
9683 	/* don't allow circular references */
9684 	if (event == output_event)
9685 		goto out;
9686 
9687 	/*
9688 	 * Don't allow cross-cpu buffers
9689 	 */
9690 	if (output_event->cpu != event->cpu)
9691 		goto out;
9692 
9693 	/*
9694 	 * If its not a per-cpu rb, it must be the same task.
9695 	 */
9696 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9697 		goto out;
9698 
9699 	/*
9700 	 * Mixing clocks in the same buffer is trouble you don't need.
9701 	 */
9702 	if (output_event->clock != event->clock)
9703 		goto out;
9704 
9705 	/*
9706 	 * Either writing ring buffer from beginning or from end.
9707 	 * Mixing is not allowed.
9708 	 */
9709 	if (is_write_backward(output_event) != is_write_backward(event))
9710 		goto out;
9711 
9712 	/*
9713 	 * If both events generate aux data, they must be on the same PMU
9714 	 */
9715 	if (has_aux(event) && has_aux(output_event) &&
9716 	    event->pmu != output_event->pmu)
9717 		goto out;
9718 
9719 set:
9720 	mutex_lock(&event->mmap_mutex);
9721 	/* Can't redirect output if we've got an active mmap() */
9722 	if (atomic_read(&event->mmap_count))
9723 		goto unlock;
9724 
9725 	if (output_event) {
9726 		/* get the rb we want to redirect to */
9727 		rb = ring_buffer_get(output_event);
9728 		if (!rb)
9729 			goto unlock;
9730 	}
9731 
9732 	ring_buffer_attach(event, rb);
9733 
9734 	ret = 0;
9735 unlock:
9736 	mutex_unlock(&event->mmap_mutex);
9737 
9738 out:
9739 	return ret;
9740 }
9741 
9742 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9743 {
9744 	if (b < a)
9745 		swap(a, b);
9746 
9747 	mutex_lock(a);
9748 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9749 }
9750 
9751 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9752 {
9753 	bool nmi_safe = false;
9754 
9755 	switch (clk_id) {
9756 	case CLOCK_MONOTONIC:
9757 		event->clock = &ktime_get_mono_fast_ns;
9758 		nmi_safe = true;
9759 		break;
9760 
9761 	case CLOCK_MONOTONIC_RAW:
9762 		event->clock = &ktime_get_raw_fast_ns;
9763 		nmi_safe = true;
9764 		break;
9765 
9766 	case CLOCK_REALTIME:
9767 		event->clock = &ktime_get_real_ns;
9768 		break;
9769 
9770 	case CLOCK_BOOTTIME:
9771 		event->clock = &ktime_get_boot_ns;
9772 		break;
9773 
9774 	case CLOCK_TAI:
9775 		event->clock = &ktime_get_tai_ns;
9776 		break;
9777 
9778 	default:
9779 		return -EINVAL;
9780 	}
9781 
9782 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9783 		return -EINVAL;
9784 
9785 	return 0;
9786 }
9787 
9788 /*
9789  * Variation on perf_event_ctx_lock_nested(), except we take two context
9790  * mutexes.
9791  */
9792 static struct perf_event_context *
9793 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9794 			     struct perf_event_context *ctx)
9795 {
9796 	struct perf_event_context *gctx;
9797 
9798 again:
9799 	rcu_read_lock();
9800 	gctx = READ_ONCE(group_leader->ctx);
9801 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9802 		rcu_read_unlock();
9803 		goto again;
9804 	}
9805 	rcu_read_unlock();
9806 
9807 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9808 
9809 	if (group_leader->ctx != gctx) {
9810 		mutex_unlock(&ctx->mutex);
9811 		mutex_unlock(&gctx->mutex);
9812 		put_ctx(gctx);
9813 		goto again;
9814 	}
9815 
9816 	return gctx;
9817 }
9818 
9819 /**
9820  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9821  *
9822  * @attr_uptr:	event_id type attributes for monitoring/sampling
9823  * @pid:		target pid
9824  * @cpu:		target cpu
9825  * @group_fd:		group leader event fd
9826  */
9827 SYSCALL_DEFINE5(perf_event_open,
9828 		struct perf_event_attr __user *, attr_uptr,
9829 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9830 {
9831 	struct perf_event *group_leader = NULL, *output_event = NULL;
9832 	struct perf_event *event, *sibling;
9833 	struct perf_event_attr attr;
9834 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9835 	struct file *event_file = NULL;
9836 	struct fd group = {NULL, 0};
9837 	struct task_struct *task = NULL;
9838 	struct pmu *pmu;
9839 	int event_fd;
9840 	int move_group = 0;
9841 	int err;
9842 	int f_flags = O_RDWR;
9843 	int cgroup_fd = -1;
9844 
9845 	/* for future expandability... */
9846 	if (flags & ~PERF_FLAG_ALL)
9847 		return -EINVAL;
9848 
9849 	err = perf_copy_attr(attr_uptr, &attr);
9850 	if (err)
9851 		return err;
9852 
9853 	if (!attr.exclude_kernel) {
9854 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9855 			return -EACCES;
9856 	}
9857 
9858 	if (attr.namespaces) {
9859 		if (!capable(CAP_SYS_ADMIN))
9860 			return -EACCES;
9861 	}
9862 
9863 	if (attr.freq) {
9864 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9865 			return -EINVAL;
9866 	} else {
9867 		if (attr.sample_period & (1ULL << 63))
9868 			return -EINVAL;
9869 	}
9870 
9871 	if (!attr.sample_max_stack)
9872 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9873 
9874 	/*
9875 	 * In cgroup mode, the pid argument is used to pass the fd
9876 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9877 	 * designates the cpu on which to monitor threads from that
9878 	 * cgroup.
9879 	 */
9880 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9881 		return -EINVAL;
9882 
9883 	if (flags & PERF_FLAG_FD_CLOEXEC)
9884 		f_flags |= O_CLOEXEC;
9885 
9886 	event_fd = get_unused_fd_flags(f_flags);
9887 	if (event_fd < 0)
9888 		return event_fd;
9889 
9890 	if (group_fd != -1) {
9891 		err = perf_fget_light(group_fd, &group);
9892 		if (err)
9893 			goto err_fd;
9894 		group_leader = group.file->private_data;
9895 		if (flags & PERF_FLAG_FD_OUTPUT)
9896 			output_event = group_leader;
9897 		if (flags & PERF_FLAG_FD_NO_GROUP)
9898 			group_leader = NULL;
9899 	}
9900 
9901 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9902 		task = find_lively_task_by_vpid(pid);
9903 		if (IS_ERR(task)) {
9904 			err = PTR_ERR(task);
9905 			goto err_group_fd;
9906 		}
9907 	}
9908 
9909 	if (task && group_leader &&
9910 	    group_leader->attr.inherit != attr.inherit) {
9911 		err = -EINVAL;
9912 		goto err_task;
9913 	}
9914 
9915 	get_online_cpus();
9916 
9917 	if (task) {
9918 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9919 		if (err)
9920 			goto err_cpus;
9921 
9922 		/*
9923 		 * Reuse ptrace permission checks for now.
9924 		 *
9925 		 * We must hold cred_guard_mutex across this and any potential
9926 		 * perf_install_in_context() call for this new event to
9927 		 * serialize against exec() altering our credentials (and the
9928 		 * perf_event_exit_task() that could imply).
9929 		 */
9930 		err = -EACCES;
9931 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9932 			goto err_cred;
9933 	}
9934 
9935 	if (flags & PERF_FLAG_PID_CGROUP)
9936 		cgroup_fd = pid;
9937 
9938 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9939 				 NULL, NULL, cgroup_fd);
9940 	if (IS_ERR(event)) {
9941 		err = PTR_ERR(event);
9942 		goto err_cred;
9943 	}
9944 
9945 	if (is_sampling_event(event)) {
9946 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9947 			err = -EOPNOTSUPP;
9948 			goto err_alloc;
9949 		}
9950 	}
9951 
9952 	/*
9953 	 * Special case software events and allow them to be part of
9954 	 * any hardware group.
9955 	 */
9956 	pmu = event->pmu;
9957 
9958 	if (attr.use_clockid) {
9959 		err = perf_event_set_clock(event, attr.clockid);
9960 		if (err)
9961 			goto err_alloc;
9962 	}
9963 
9964 	if (pmu->task_ctx_nr == perf_sw_context)
9965 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9966 
9967 	if (group_leader &&
9968 	    (is_software_event(event) != is_software_event(group_leader))) {
9969 		if (is_software_event(event)) {
9970 			/*
9971 			 * If event and group_leader are not both a software
9972 			 * event, and event is, then group leader is not.
9973 			 *
9974 			 * Allow the addition of software events to !software
9975 			 * groups, this is safe because software events never
9976 			 * fail to schedule.
9977 			 */
9978 			pmu = group_leader->pmu;
9979 		} else if (is_software_event(group_leader) &&
9980 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9981 			/*
9982 			 * In case the group is a pure software group, and we
9983 			 * try to add a hardware event, move the whole group to
9984 			 * the hardware context.
9985 			 */
9986 			move_group = 1;
9987 		}
9988 	}
9989 
9990 	/*
9991 	 * Get the target context (task or percpu):
9992 	 */
9993 	ctx = find_get_context(pmu, task, event);
9994 	if (IS_ERR(ctx)) {
9995 		err = PTR_ERR(ctx);
9996 		goto err_alloc;
9997 	}
9998 
9999 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10000 		err = -EBUSY;
10001 		goto err_context;
10002 	}
10003 
10004 	/*
10005 	 * Look up the group leader (we will attach this event to it):
10006 	 */
10007 	if (group_leader) {
10008 		err = -EINVAL;
10009 
10010 		/*
10011 		 * Do not allow a recursive hierarchy (this new sibling
10012 		 * becoming part of another group-sibling):
10013 		 */
10014 		if (group_leader->group_leader != group_leader)
10015 			goto err_context;
10016 
10017 		/* All events in a group should have the same clock */
10018 		if (group_leader->clock != event->clock)
10019 			goto err_context;
10020 
10021 		/*
10022 		 * Do not allow to attach to a group in a different
10023 		 * task or CPU context:
10024 		 */
10025 		if (move_group) {
10026 			/*
10027 			 * Make sure we're both on the same task, or both
10028 			 * per-cpu events.
10029 			 */
10030 			if (group_leader->ctx->task != ctx->task)
10031 				goto err_context;
10032 
10033 			/*
10034 			 * Make sure we're both events for the same CPU;
10035 			 * grouping events for different CPUs is broken; since
10036 			 * you can never concurrently schedule them anyhow.
10037 			 */
10038 			if (group_leader->cpu != event->cpu)
10039 				goto err_context;
10040 		} else {
10041 			if (group_leader->ctx != ctx)
10042 				goto err_context;
10043 		}
10044 
10045 		/*
10046 		 * Only a group leader can be exclusive or pinned
10047 		 */
10048 		if (attr.exclusive || attr.pinned)
10049 			goto err_context;
10050 	}
10051 
10052 	if (output_event) {
10053 		err = perf_event_set_output(event, output_event);
10054 		if (err)
10055 			goto err_context;
10056 	}
10057 
10058 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10059 					f_flags);
10060 	if (IS_ERR(event_file)) {
10061 		err = PTR_ERR(event_file);
10062 		event_file = NULL;
10063 		goto err_context;
10064 	}
10065 
10066 	if (move_group) {
10067 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10068 
10069 		if (gctx->task == TASK_TOMBSTONE) {
10070 			err = -ESRCH;
10071 			goto err_locked;
10072 		}
10073 
10074 		/*
10075 		 * Check if we raced against another sys_perf_event_open() call
10076 		 * moving the software group underneath us.
10077 		 */
10078 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10079 			/*
10080 			 * If someone moved the group out from under us, check
10081 			 * if this new event wound up on the same ctx, if so
10082 			 * its the regular !move_group case, otherwise fail.
10083 			 */
10084 			if (gctx != ctx) {
10085 				err = -EINVAL;
10086 				goto err_locked;
10087 			} else {
10088 				perf_event_ctx_unlock(group_leader, gctx);
10089 				move_group = 0;
10090 			}
10091 		}
10092 	} else {
10093 		mutex_lock(&ctx->mutex);
10094 	}
10095 
10096 	if (ctx->task == TASK_TOMBSTONE) {
10097 		err = -ESRCH;
10098 		goto err_locked;
10099 	}
10100 
10101 	if (!perf_event_validate_size(event)) {
10102 		err = -E2BIG;
10103 		goto err_locked;
10104 	}
10105 
10106 	/*
10107 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10108 	 * because we need to serialize with concurrent event creation.
10109 	 */
10110 	if (!exclusive_event_installable(event, ctx)) {
10111 		/* exclusive and group stuff are assumed mutually exclusive */
10112 		WARN_ON_ONCE(move_group);
10113 
10114 		err = -EBUSY;
10115 		goto err_locked;
10116 	}
10117 
10118 	WARN_ON_ONCE(ctx->parent_ctx);
10119 
10120 	/*
10121 	 * This is the point on no return; we cannot fail hereafter. This is
10122 	 * where we start modifying current state.
10123 	 */
10124 
10125 	if (move_group) {
10126 		/*
10127 		 * See perf_event_ctx_lock() for comments on the details
10128 		 * of swizzling perf_event::ctx.
10129 		 */
10130 		perf_remove_from_context(group_leader, 0);
10131 		put_ctx(gctx);
10132 
10133 		list_for_each_entry(sibling, &group_leader->sibling_list,
10134 				    group_entry) {
10135 			perf_remove_from_context(sibling, 0);
10136 			put_ctx(gctx);
10137 		}
10138 
10139 		/*
10140 		 * Wait for everybody to stop referencing the events through
10141 		 * the old lists, before installing it on new lists.
10142 		 */
10143 		synchronize_rcu();
10144 
10145 		/*
10146 		 * Install the group siblings before the group leader.
10147 		 *
10148 		 * Because a group leader will try and install the entire group
10149 		 * (through the sibling list, which is still in-tact), we can
10150 		 * end up with siblings installed in the wrong context.
10151 		 *
10152 		 * By installing siblings first we NO-OP because they're not
10153 		 * reachable through the group lists.
10154 		 */
10155 		list_for_each_entry(sibling, &group_leader->sibling_list,
10156 				    group_entry) {
10157 			perf_event__state_init(sibling);
10158 			perf_install_in_context(ctx, sibling, sibling->cpu);
10159 			get_ctx(ctx);
10160 		}
10161 
10162 		/*
10163 		 * Removing from the context ends up with disabled
10164 		 * event. What we want here is event in the initial
10165 		 * startup state, ready to be add into new context.
10166 		 */
10167 		perf_event__state_init(group_leader);
10168 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10169 		get_ctx(ctx);
10170 	}
10171 
10172 	/*
10173 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10174 	 * that we're serialized against further additions and before
10175 	 * perf_install_in_context() which is the point the event is active and
10176 	 * can use these values.
10177 	 */
10178 	perf_event__header_size(event);
10179 	perf_event__id_header_size(event);
10180 
10181 	event->owner = current;
10182 
10183 	perf_install_in_context(ctx, event, event->cpu);
10184 	perf_unpin_context(ctx);
10185 
10186 	if (move_group)
10187 		perf_event_ctx_unlock(group_leader, gctx);
10188 	mutex_unlock(&ctx->mutex);
10189 
10190 	if (task) {
10191 		mutex_unlock(&task->signal->cred_guard_mutex);
10192 		put_task_struct(task);
10193 	}
10194 
10195 	put_online_cpus();
10196 
10197 	mutex_lock(&current->perf_event_mutex);
10198 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10199 	mutex_unlock(&current->perf_event_mutex);
10200 
10201 	/*
10202 	 * Drop the reference on the group_event after placing the
10203 	 * new event on the sibling_list. This ensures destruction
10204 	 * of the group leader will find the pointer to itself in
10205 	 * perf_group_detach().
10206 	 */
10207 	fdput(group);
10208 	fd_install(event_fd, event_file);
10209 	return event_fd;
10210 
10211 err_locked:
10212 	if (move_group)
10213 		perf_event_ctx_unlock(group_leader, gctx);
10214 	mutex_unlock(&ctx->mutex);
10215 /* err_file: */
10216 	fput(event_file);
10217 err_context:
10218 	perf_unpin_context(ctx);
10219 	put_ctx(ctx);
10220 err_alloc:
10221 	/*
10222 	 * If event_file is set, the fput() above will have called ->release()
10223 	 * and that will take care of freeing the event.
10224 	 */
10225 	if (!event_file)
10226 		free_event(event);
10227 err_cred:
10228 	if (task)
10229 		mutex_unlock(&task->signal->cred_guard_mutex);
10230 err_cpus:
10231 	put_online_cpus();
10232 err_task:
10233 	if (task)
10234 		put_task_struct(task);
10235 err_group_fd:
10236 	fdput(group);
10237 err_fd:
10238 	put_unused_fd(event_fd);
10239 	return err;
10240 }
10241 
10242 /**
10243  * perf_event_create_kernel_counter
10244  *
10245  * @attr: attributes of the counter to create
10246  * @cpu: cpu in which the counter is bound
10247  * @task: task to profile (NULL for percpu)
10248  */
10249 struct perf_event *
10250 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10251 				 struct task_struct *task,
10252 				 perf_overflow_handler_t overflow_handler,
10253 				 void *context)
10254 {
10255 	struct perf_event_context *ctx;
10256 	struct perf_event *event;
10257 	int err;
10258 
10259 	/*
10260 	 * Get the target context (task or percpu):
10261 	 */
10262 
10263 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10264 				 overflow_handler, context, -1);
10265 	if (IS_ERR(event)) {
10266 		err = PTR_ERR(event);
10267 		goto err;
10268 	}
10269 
10270 	/* Mark owner so we could distinguish it from user events. */
10271 	event->owner = TASK_TOMBSTONE;
10272 
10273 	ctx = find_get_context(event->pmu, task, event);
10274 	if (IS_ERR(ctx)) {
10275 		err = PTR_ERR(ctx);
10276 		goto err_free;
10277 	}
10278 
10279 	WARN_ON_ONCE(ctx->parent_ctx);
10280 	mutex_lock(&ctx->mutex);
10281 	if (ctx->task == TASK_TOMBSTONE) {
10282 		err = -ESRCH;
10283 		goto err_unlock;
10284 	}
10285 
10286 	if (!exclusive_event_installable(event, ctx)) {
10287 		err = -EBUSY;
10288 		goto err_unlock;
10289 	}
10290 
10291 	perf_install_in_context(ctx, event, cpu);
10292 	perf_unpin_context(ctx);
10293 	mutex_unlock(&ctx->mutex);
10294 
10295 	return event;
10296 
10297 err_unlock:
10298 	mutex_unlock(&ctx->mutex);
10299 	perf_unpin_context(ctx);
10300 	put_ctx(ctx);
10301 err_free:
10302 	free_event(event);
10303 err:
10304 	return ERR_PTR(err);
10305 }
10306 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10307 
10308 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10309 {
10310 	struct perf_event_context *src_ctx;
10311 	struct perf_event_context *dst_ctx;
10312 	struct perf_event *event, *tmp;
10313 	LIST_HEAD(events);
10314 
10315 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10316 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10317 
10318 	/*
10319 	 * See perf_event_ctx_lock() for comments on the details
10320 	 * of swizzling perf_event::ctx.
10321 	 */
10322 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10323 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10324 				 event_entry) {
10325 		perf_remove_from_context(event, 0);
10326 		unaccount_event_cpu(event, src_cpu);
10327 		put_ctx(src_ctx);
10328 		list_add(&event->migrate_entry, &events);
10329 	}
10330 
10331 	/*
10332 	 * Wait for the events to quiesce before re-instating them.
10333 	 */
10334 	synchronize_rcu();
10335 
10336 	/*
10337 	 * Re-instate events in 2 passes.
10338 	 *
10339 	 * Skip over group leaders and only install siblings on this first
10340 	 * pass, siblings will not get enabled without a leader, however a
10341 	 * leader will enable its siblings, even if those are still on the old
10342 	 * context.
10343 	 */
10344 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10345 		if (event->group_leader == event)
10346 			continue;
10347 
10348 		list_del(&event->migrate_entry);
10349 		if (event->state >= PERF_EVENT_STATE_OFF)
10350 			event->state = PERF_EVENT_STATE_INACTIVE;
10351 		account_event_cpu(event, dst_cpu);
10352 		perf_install_in_context(dst_ctx, event, dst_cpu);
10353 		get_ctx(dst_ctx);
10354 	}
10355 
10356 	/*
10357 	 * Once all the siblings are setup properly, install the group leaders
10358 	 * to make it go.
10359 	 */
10360 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10361 		list_del(&event->migrate_entry);
10362 		if (event->state >= PERF_EVENT_STATE_OFF)
10363 			event->state = PERF_EVENT_STATE_INACTIVE;
10364 		account_event_cpu(event, dst_cpu);
10365 		perf_install_in_context(dst_ctx, event, dst_cpu);
10366 		get_ctx(dst_ctx);
10367 	}
10368 	mutex_unlock(&dst_ctx->mutex);
10369 	mutex_unlock(&src_ctx->mutex);
10370 }
10371 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10372 
10373 static void sync_child_event(struct perf_event *child_event,
10374 			       struct task_struct *child)
10375 {
10376 	struct perf_event *parent_event = child_event->parent;
10377 	u64 child_val;
10378 
10379 	if (child_event->attr.inherit_stat)
10380 		perf_event_read_event(child_event, child);
10381 
10382 	child_val = perf_event_count(child_event);
10383 
10384 	/*
10385 	 * Add back the child's count to the parent's count:
10386 	 */
10387 	atomic64_add(child_val, &parent_event->child_count);
10388 	atomic64_add(child_event->total_time_enabled,
10389 		     &parent_event->child_total_time_enabled);
10390 	atomic64_add(child_event->total_time_running,
10391 		     &parent_event->child_total_time_running);
10392 }
10393 
10394 static void
10395 perf_event_exit_event(struct perf_event *child_event,
10396 		      struct perf_event_context *child_ctx,
10397 		      struct task_struct *child)
10398 {
10399 	struct perf_event *parent_event = child_event->parent;
10400 
10401 	/*
10402 	 * Do not destroy the 'original' grouping; because of the context
10403 	 * switch optimization the original events could've ended up in a
10404 	 * random child task.
10405 	 *
10406 	 * If we were to destroy the original group, all group related
10407 	 * operations would cease to function properly after this random
10408 	 * child dies.
10409 	 *
10410 	 * Do destroy all inherited groups, we don't care about those
10411 	 * and being thorough is better.
10412 	 */
10413 	raw_spin_lock_irq(&child_ctx->lock);
10414 	WARN_ON_ONCE(child_ctx->is_active);
10415 
10416 	if (parent_event)
10417 		perf_group_detach(child_event);
10418 	list_del_event(child_event, child_ctx);
10419 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10420 	raw_spin_unlock_irq(&child_ctx->lock);
10421 
10422 	/*
10423 	 * Parent events are governed by their filedesc, retain them.
10424 	 */
10425 	if (!parent_event) {
10426 		perf_event_wakeup(child_event);
10427 		return;
10428 	}
10429 	/*
10430 	 * Child events can be cleaned up.
10431 	 */
10432 
10433 	sync_child_event(child_event, child);
10434 
10435 	/*
10436 	 * Remove this event from the parent's list
10437 	 */
10438 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10439 	mutex_lock(&parent_event->child_mutex);
10440 	list_del_init(&child_event->child_list);
10441 	mutex_unlock(&parent_event->child_mutex);
10442 
10443 	/*
10444 	 * Kick perf_poll() for is_event_hup().
10445 	 */
10446 	perf_event_wakeup(parent_event);
10447 	free_event(child_event);
10448 	put_event(parent_event);
10449 }
10450 
10451 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10452 {
10453 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10454 	struct perf_event *child_event, *next;
10455 
10456 	WARN_ON_ONCE(child != current);
10457 
10458 	child_ctx = perf_pin_task_context(child, ctxn);
10459 	if (!child_ctx)
10460 		return;
10461 
10462 	/*
10463 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10464 	 * ctx::mutex over the entire thing. This serializes against almost
10465 	 * everything that wants to access the ctx.
10466 	 *
10467 	 * The exception is sys_perf_event_open() /
10468 	 * perf_event_create_kernel_count() which does find_get_context()
10469 	 * without ctx::mutex (it cannot because of the move_group double mutex
10470 	 * lock thing). See the comments in perf_install_in_context().
10471 	 */
10472 	mutex_lock(&child_ctx->mutex);
10473 
10474 	/*
10475 	 * In a single ctx::lock section, de-schedule the events and detach the
10476 	 * context from the task such that we cannot ever get it scheduled back
10477 	 * in.
10478 	 */
10479 	raw_spin_lock_irq(&child_ctx->lock);
10480 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10481 
10482 	/*
10483 	 * Now that the context is inactive, destroy the task <-> ctx relation
10484 	 * and mark the context dead.
10485 	 */
10486 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10487 	put_ctx(child_ctx); /* cannot be last */
10488 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10489 	put_task_struct(current); /* cannot be last */
10490 
10491 	clone_ctx = unclone_ctx(child_ctx);
10492 	raw_spin_unlock_irq(&child_ctx->lock);
10493 
10494 	if (clone_ctx)
10495 		put_ctx(clone_ctx);
10496 
10497 	/*
10498 	 * Report the task dead after unscheduling the events so that we
10499 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10500 	 * get a few PERF_RECORD_READ events.
10501 	 */
10502 	perf_event_task(child, child_ctx, 0);
10503 
10504 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10505 		perf_event_exit_event(child_event, child_ctx, child);
10506 
10507 	mutex_unlock(&child_ctx->mutex);
10508 
10509 	put_ctx(child_ctx);
10510 }
10511 
10512 /*
10513  * When a child task exits, feed back event values to parent events.
10514  *
10515  * Can be called with cred_guard_mutex held when called from
10516  * install_exec_creds().
10517  */
10518 void perf_event_exit_task(struct task_struct *child)
10519 {
10520 	struct perf_event *event, *tmp;
10521 	int ctxn;
10522 
10523 	mutex_lock(&child->perf_event_mutex);
10524 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10525 				 owner_entry) {
10526 		list_del_init(&event->owner_entry);
10527 
10528 		/*
10529 		 * Ensure the list deletion is visible before we clear
10530 		 * the owner, closes a race against perf_release() where
10531 		 * we need to serialize on the owner->perf_event_mutex.
10532 		 */
10533 		smp_store_release(&event->owner, NULL);
10534 	}
10535 	mutex_unlock(&child->perf_event_mutex);
10536 
10537 	for_each_task_context_nr(ctxn)
10538 		perf_event_exit_task_context(child, ctxn);
10539 
10540 	/*
10541 	 * The perf_event_exit_task_context calls perf_event_task
10542 	 * with child's task_ctx, which generates EXIT events for
10543 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10544 	 * At this point we need to send EXIT events to cpu contexts.
10545 	 */
10546 	perf_event_task(child, NULL, 0);
10547 }
10548 
10549 static void perf_free_event(struct perf_event *event,
10550 			    struct perf_event_context *ctx)
10551 {
10552 	struct perf_event *parent = event->parent;
10553 
10554 	if (WARN_ON_ONCE(!parent))
10555 		return;
10556 
10557 	mutex_lock(&parent->child_mutex);
10558 	list_del_init(&event->child_list);
10559 	mutex_unlock(&parent->child_mutex);
10560 
10561 	put_event(parent);
10562 
10563 	raw_spin_lock_irq(&ctx->lock);
10564 	perf_group_detach(event);
10565 	list_del_event(event, ctx);
10566 	raw_spin_unlock_irq(&ctx->lock);
10567 	free_event(event);
10568 }
10569 
10570 /*
10571  * Free an unexposed, unused context as created by inheritance by
10572  * perf_event_init_task below, used by fork() in case of fail.
10573  *
10574  * Not all locks are strictly required, but take them anyway to be nice and
10575  * help out with the lockdep assertions.
10576  */
10577 void perf_event_free_task(struct task_struct *task)
10578 {
10579 	struct perf_event_context *ctx;
10580 	struct perf_event *event, *tmp;
10581 	int ctxn;
10582 
10583 	for_each_task_context_nr(ctxn) {
10584 		ctx = task->perf_event_ctxp[ctxn];
10585 		if (!ctx)
10586 			continue;
10587 
10588 		mutex_lock(&ctx->mutex);
10589 		raw_spin_lock_irq(&ctx->lock);
10590 		/*
10591 		 * Destroy the task <-> ctx relation and mark the context dead.
10592 		 *
10593 		 * This is important because even though the task hasn't been
10594 		 * exposed yet the context has been (through child_list).
10595 		 */
10596 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10597 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10598 		put_task_struct(task); /* cannot be last */
10599 		raw_spin_unlock_irq(&ctx->lock);
10600 
10601 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10602 			perf_free_event(event, ctx);
10603 
10604 		mutex_unlock(&ctx->mutex);
10605 		put_ctx(ctx);
10606 	}
10607 }
10608 
10609 void perf_event_delayed_put(struct task_struct *task)
10610 {
10611 	int ctxn;
10612 
10613 	for_each_task_context_nr(ctxn)
10614 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10615 }
10616 
10617 struct file *perf_event_get(unsigned int fd)
10618 {
10619 	struct file *file;
10620 
10621 	file = fget_raw(fd);
10622 	if (!file)
10623 		return ERR_PTR(-EBADF);
10624 
10625 	if (file->f_op != &perf_fops) {
10626 		fput(file);
10627 		return ERR_PTR(-EBADF);
10628 	}
10629 
10630 	return file;
10631 }
10632 
10633 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10634 {
10635 	if (!event)
10636 		return ERR_PTR(-EINVAL);
10637 
10638 	return &event->attr;
10639 }
10640 
10641 /*
10642  * Inherit a event from parent task to child task.
10643  *
10644  * Returns:
10645  *  - valid pointer on success
10646  *  - NULL for orphaned events
10647  *  - IS_ERR() on error
10648  */
10649 static struct perf_event *
10650 inherit_event(struct perf_event *parent_event,
10651 	      struct task_struct *parent,
10652 	      struct perf_event_context *parent_ctx,
10653 	      struct task_struct *child,
10654 	      struct perf_event *group_leader,
10655 	      struct perf_event_context *child_ctx)
10656 {
10657 	enum perf_event_active_state parent_state = parent_event->state;
10658 	struct perf_event *child_event;
10659 	unsigned long flags;
10660 
10661 	/*
10662 	 * Instead of creating recursive hierarchies of events,
10663 	 * we link inherited events back to the original parent,
10664 	 * which has a filp for sure, which we use as the reference
10665 	 * count:
10666 	 */
10667 	if (parent_event->parent)
10668 		parent_event = parent_event->parent;
10669 
10670 	child_event = perf_event_alloc(&parent_event->attr,
10671 					   parent_event->cpu,
10672 					   child,
10673 					   group_leader, parent_event,
10674 					   NULL, NULL, -1);
10675 	if (IS_ERR(child_event))
10676 		return child_event;
10677 
10678 	/*
10679 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10680 	 * must be under the same lock in order to serialize against
10681 	 * perf_event_release_kernel(), such that either we must observe
10682 	 * is_orphaned_event() or they will observe us on the child_list.
10683 	 */
10684 	mutex_lock(&parent_event->child_mutex);
10685 	if (is_orphaned_event(parent_event) ||
10686 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10687 		mutex_unlock(&parent_event->child_mutex);
10688 		free_event(child_event);
10689 		return NULL;
10690 	}
10691 
10692 	get_ctx(child_ctx);
10693 
10694 	/*
10695 	 * Make the child state follow the state of the parent event,
10696 	 * not its attr.disabled bit.  We hold the parent's mutex,
10697 	 * so we won't race with perf_event_{en, dis}able_family.
10698 	 */
10699 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10700 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10701 	else
10702 		child_event->state = PERF_EVENT_STATE_OFF;
10703 
10704 	if (parent_event->attr.freq) {
10705 		u64 sample_period = parent_event->hw.sample_period;
10706 		struct hw_perf_event *hwc = &child_event->hw;
10707 
10708 		hwc->sample_period = sample_period;
10709 		hwc->last_period   = sample_period;
10710 
10711 		local64_set(&hwc->period_left, sample_period);
10712 	}
10713 
10714 	child_event->ctx = child_ctx;
10715 	child_event->overflow_handler = parent_event->overflow_handler;
10716 	child_event->overflow_handler_context
10717 		= parent_event->overflow_handler_context;
10718 
10719 	/*
10720 	 * Precalculate sample_data sizes
10721 	 */
10722 	perf_event__header_size(child_event);
10723 	perf_event__id_header_size(child_event);
10724 
10725 	/*
10726 	 * Link it up in the child's context:
10727 	 */
10728 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10729 	add_event_to_ctx(child_event, child_ctx);
10730 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10731 
10732 	/*
10733 	 * Link this into the parent event's child list
10734 	 */
10735 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10736 	mutex_unlock(&parent_event->child_mutex);
10737 
10738 	return child_event;
10739 }
10740 
10741 /*
10742  * Inherits an event group.
10743  *
10744  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10745  * This matches with perf_event_release_kernel() removing all child events.
10746  *
10747  * Returns:
10748  *  - 0 on success
10749  *  - <0 on error
10750  */
10751 static int inherit_group(struct perf_event *parent_event,
10752 	      struct task_struct *parent,
10753 	      struct perf_event_context *parent_ctx,
10754 	      struct task_struct *child,
10755 	      struct perf_event_context *child_ctx)
10756 {
10757 	struct perf_event *leader;
10758 	struct perf_event *sub;
10759 	struct perf_event *child_ctr;
10760 
10761 	leader = inherit_event(parent_event, parent, parent_ctx,
10762 				 child, NULL, child_ctx);
10763 	if (IS_ERR(leader))
10764 		return PTR_ERR(leader);
10765 	/*
10766 	 * @leader can be NULL here because of is_orphaned_event(). In this
10767 	 * case inherit_event() will create individual events, similar to what
10768 	 * perf_group_detach() would do anyway.
10769 	 */
10770 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10771 		child_ctr = inherit_event(sub, parent, parent_ctx,
10772 					    child, leader, child_ctx);
10773 		if (IS_ERR(child_ctr))
10774 			return PTR_ERR(child_ctr);
10775 	}
10776 	return 0;
10777 }
10778 
10779 /*
10780  * Creates the child task context and tries to inherit the event-group.
10781  *
10782  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10783  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10784  * consistent with perf_event_release_kernel() removing all child events.
10785  *
10786  * Returns:
10787  *  - 0 on success
10788  *  - <0 on error
10789  */
10790 static int
10791 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10792 		   struct perf_event_context *parent_ctx,
10793 		   struct task_struct *child, int ctxn,
10794 		   int *inherited_all)
10795 {
10796 	int ret;
10797 	struct perf_event_context *child_ctx;
10798 
10799 	if (!event->attr.inherit) {
10800 		*inherited_all = 0;
10801 		return 0;
10802 	}
10803 
10804 	child_ctx = child->perf_event_ctxp[ctxn];
10805 	if (!child_ctx) {
10806 		/*
10807 		 * This is executed from the parent task context, so
10808 		 * inherit events that have been marked for cloning.
10809 		 * First allocate and initialize a context for the
10810 		 * child.
10811 		 */
10812 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10813 		if (!child_ctx)
10814 			return -ENOMEM;
10815 
10816 		child->perf_event_ctxp[ctxn] = child_ctx;
10817 	}
10818 
10819 	ret = inherit_group(event, parent, parent_ctx,
10820 			    child, child_ctx);
10821 
10822 	if (ret)
10823 		*inherited_all = 0;
10824 
10825 	return ret;
10826 }
10827 
10828 /*
10829  * Initialize the perf_event context in task_struct
10830  */
10831 static int perf_event_init_context(struct task_struct *child, int ctxn)
10832 {
10833 	struct perf_event_context *child_ctx, *parent_ctx;
10834 	struct perf_event_context *cloned_ctx;
10835 	struct perf_event *event;
10836 	struct task_struct *parent = current;
10837 	int inherited_all = 1;
10838 	unsigned long flags;
10839 	int ret = 0;
10840 
10841 	if (likely(!parent->perf_event_ctxp[ctxn]))
10842 		return 0;
10843 
10844 	/*
10845 	 * If the parent's context is a clone, pin it so it won't get
10846 	 * swapped under us.
10847 	 */
10848 	parent_ctx = perf_pin_task_context(parent, ctxn);
10849 	if (!parent_ctx)
10850 		return 0;
10851 
10852 	/*
10853 	 * No need to check if parent_ctx != NULL here; since we saw
10854 	 * it non-NULL earlier, the only reason for it to become NULL
10855 	 * is if we exit, and since we're currently in the middle of
10856 	 * a fork we can't be exiting at the same time.
10857 	 */
10858 
10859 	/*
10860 	 * Lock the parent list. No need to lock the child - not PID
10861 	 * hashed yet and not running, so nobody can access it.
10862 	 */
10863 	mutex_lock(&parent_ctx->mutex);
10864 
10865 	/*
10866 	 * We dont have to disable NMIs - we are only looking at
10867 	 * the list, not manipulating it:
10868 	 */
10869 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10870 		ret = inherit_task_group(event, parent, parent_ctx,
10871 					 child, ctxn, &inherited_all);
10872 		if (ret)
10873 			goto out_unlock;
10874 	}
10875 
10876 	/*
10877 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10878 	 * to allocations, but we need to prevent rotation because
10879 	 * rotate_ctx() will change the list from interrupt context.
10880 	 */
10881 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10882 	parent_ctx->rotate_disable = 1;
10883 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10884 
10885 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10886 		ret = inherit_task_group(event, parent, parent_ctx,
10887 					 child, ctxn, &inherited_all);
10888 		if (ret)
10889 			goto out_unlock;
10890 	}
10891 
10892 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10893 	parent_ctx->rotate_disable = 0;
10894 
10895 	child_ctx = child->perf_event_ctxp[ctxn];
10896 
10897 	if (child_ctx && inherited_all) {
10898 		/*
10899 		 * Mark the child context as a clone of the parent
10900 		 * context, or of whatever the parent is a clone of.
10901 		 *
10902 		 * Note that if the parent is a clone, the holding of
10903 		 * parent_ctx->lock avoids it from being uncloned.
10904 		 */
10905 		cloned_ctx = parent_ctx->parent_ctx;
10906 		if (cloned_ctx) {
10907 			child_ctx->parent_ctx = cloned_ctx;
10908 			child_ctx->parent_gen = parent_ctx->parent_gen;
10909 		} else {
10910 			child_ctx->parent_ctx = parent_ctx;
10911 			child_ctx->parent_gen = parent_ctx->generation;
10912 		}
10913 		get_ctx(child_ctx->parent_ctx);
10914 	}
10915 
10916 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10917 out_unlock:
10918 	mutex_unlock(&parent_ctx->mutex);
10919 
10920 	perf_unpin_context(parent_ctx);
10921 	put_ctx(parent_ctx);
10922 
10923 	return ret;
10924 }
10925 
10926 /*
10927  * Initialize the perf_event context in task_struct
10928  */
10929 int perf_event_init_task(struct task_struct *child)
10930 {
10931 	int ctxn, ret;
10932 
10933 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10934 	mutex_init(&child->perf_event_mutex);
10935 	INIT_LIST_HEAD(&child->perf_event_list);
10936 
10937 	for_each_task_context_nr(ctxn) {
10938 		ret = perf_event_init_context(child, ctxn);
10939 		if (ret) {
10940 			perf_event_free_task(child);
10941 			return ret;
10942 		}
10943 	}
10944 
10945 	return 0;
10946 }
10947 
10948 static void __init perf_event_init_all_cpus(void)
10949 {
10950 	struct swevent_htable *swhash;
10951 	int cpu;
10952 
10953 	for_each_possible_cpu(cpu) {
10954 		swhash = &per_cpu(swevent_htable, cpu);
10955 		mutex_init(&swhash->hlist_mutex);
10956 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10957 
10958 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10959 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10960 
10961 #ifdef CONFIG_CGROUP_PERF
10962 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10963 #endif
10964 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10965 	}
10966 }
10967 
10968 int perf_event_init_cpu(unsigned int cpu)
10969 {
10970 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10971 
10972 	mutex_lock(&swhash->hlist_mutex);
10973 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10974 		struct swevent_hlist *hlist;
10975 
10976 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10977 		WARN_ON(!hlist);
10978 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10979 	}
10980 	mutex_unlock(&swhash->hlist_mutex);
10981 	return 0;
10982 }
10983 
10984 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10985 static void __perf_event_exit_context(void *__info)
10986 {
10987 	struct perf_event_context *ctx = __info;
10988 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10989 	struct perf_event *event;
10990 
10991 	raw_spin_lock(&ctx->lock);
10992 	list_for_each_entry(event, &ctx->event_list, event_entry)
10993 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10994 	raw_spin_unlock(&ctx->lock);
10995 }
10996 
10997 static void perf_event_exit_cpu_context(int cpu)
10998 {
10999 	struct perf_event_context *ctx;
11000 	struct pmu *pmu;
11001 	int idx;
11002 
11003 	idx = srcu_read_lock(&pmus_srcu);
11004 	list_for_each_entry_rcu(pmu, &pmus, entry) {
11005 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
11006 
11007 		mutex_lock(&ctx->mutex);
11008 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11009 		mutex_unlock(&ctx->mutex);
11010 	}
11011 	srcu_read_unlock(&pmus_srcu, idx);
11012 }
11013 #else
11014 
11015 static void perf_event_exit_cpu_context(int cpu) { }
11016 
11017 #endif
11018 
11019 int perf_event_exit_cpu(unsigned int cpu)
11020 {
11021 	perf_event_exit_cpu_context(cpu);
11022 	return 0;
11023 }
11024 
11025 static int
11026 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11027 {
11028 	int cpu;
11029 
11030 	for_each_online_cpu(cpu)
11031 		perf_event_exit_cpu(cpu);
11032 
11033 	return NOTIFY_OK;
11034 }
11035 
11036 /*
11037  * Run the perf reboot notifier at the very last possible moment so that
11038  * the generic watchdog code runs as long as possible.
11039  */
11040 static struct notifier_block perf_reboot_notifier = {
11041 	.notifier_call = perf_reboot,
11042 	.priority = INT_MIN,
11043 };
11044 
11045 void __init perf_event_init(void)
11046 {
11047 	int ret;
11048 
11049 	idr_init(&pmu_idr);
11050 
11051 	perf_event_init_all_cpus();
11052 	init_srcu_struct(&pmus_srcu);
11053 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11054 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11055 	perf_pmu_register(&perf_task_clock, NULL, -1);
11056 	perf_tp_register();
11057 	perf_event_init_cpu(smp_processor_id());
11058 	register_reboot_notifier(&perf_reboot_notifier);
11059 
11060 	ret = init_hw_breakpoint();
11061 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11062 
11063 	/*
11064 	 * Build time assertion that we keep the data_head at the intended
11065 	 * location.  IOW, validation we got the __reserved[] size right.
11066 	 */
11067 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11068 		     != 1024);
11069 }
11070 
11071 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11072 			      char *page)
11073 {
11074 	struct perf_pmu_events_attr *pmu_attr =
11075 		container_of(attr, struct perf_pmu_events_attr, attr);
11076 
11077 	if (pmu_attr->event_str)
11078 		return sprintf(page, "%s\n", pmu_attr->event_str);
11079 
11080 	return 0;
11081 }
11082 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11083 
11084 static int __init perf_event_sysfs_init(void)
11085 {
11086 	struct pmu *pmu;
11087 	int ret;
11088 
11089 	mutex_lock(&pmus_lock);
11090 
11091 	ret = bus_register(&pmu_bus);
11092 	if (ret)
11093 		goto unlock;
11094 
11095 	list_for_each_entry(pmu, &pmus, entry) {
11096 		if (!pmu->name || pmu->type < 0)
11097 			continue;
11098 
11099 		ret = pmu_dev_alloc(pmu);
11100 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11101 	}
11102 	pmu_bus_running = 1;
11103 	ret = 0;
11104 
11105 unlock:
11106 	mutex_unlock(&pmus_lock);
11107 
11108 	return ret;
11109 }
11110 device_initcall(perf_event_sysfs_init);
11111 
11112 #ifdef CONFIG_CGROUP_PERF
11113 static struct cgroup_subsys_state *
11114 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11115 {
11116 	struct perf_cgroup *jc;
11117 
11118 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11119 	if (!jc)
11120 		return ERR_PTR(-ENOMEM);
11121 
11122 	jc->info = alloc_percpu(struct perf_cgroup_info);
11123 	if (!jc->info) {
11124 		kfree(jc);
11125 		return ERR_PTR(-ENOMEM);
11126 	}
11127 
11128 	return &jc->css;
11129 }
11130 
11131 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11132 {
11133 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11134 
11135 	free_percpu(jc->info);
11136 	kfree(jc);
11137 }
11138 
11139 static int __perf_cgroup_move(void *info)
11140 {
11141 	struct task_struct *task = info;
11142 	rcu_read_lock();
11143 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11144 	rcu_read_unlock();
11145 	return 0;
11146 }
11147 
11148 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11149 {
11150 	struct task_struct *task;
11151 	struct cgroup_subsys_state *css;
11152 
11153 	cgroup_taskset_for_each(task, css, tset)
11154 		task_function_call(task, __perf_cgroup_move, task);
11155 }
11156 
11157 struct cgroup_subsys perf_event_cgrp_subsys = {
11158 	.css_alloc	= perf_cgroup_css_alloc,
11159 	.css_free	= perf_cgroup_css_free,
11160 	.attach		= perf_cgroup_attach,
11161 	/*
11162 	 * Implicitly enable on dfl hierarchy so that perf events can
11163 	 * always be filtered by cgroup2 path as long as perf_event
11164 	 * controller is not mounted on a legacy hierarchy.
11165 	 */
11166 	.implicit_on_dfl = true,
11167 };
11168 #endif /* CONFIG_CGROUP_PERF */
11169