1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 393 /* 394 * perf event paranoia level: 395 * -1 - not paranoid at all 396 * 0 - disallow raw tracepoint access for unpriv 397 * 1 - disallow cpu events for unpriv 398 * 2 - disallow kernel profiling for unpriv 399 */ 400 int sysctl_perf_event_paranoid __read_mostly = 2; 401 402 /* Minimum for 512 kiB + 1 user control page */ 403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 404 405 /* 406 * max perf event sample rate 407 */ 408 #define DEFAULT_MAX_SAMPLE_RATE 100000 409 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 410 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 411 412 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 413 414 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 415 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 416 417 static int perf_sample_allowed_ns __read_mostly = 418 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 419 420 static void update_perf_cpu_limits(void) 421 { 422 u64 tmp = perf_sample_period_ns; 423 424 tmp *= sysctl_perf_cpu_time_max_percent; 425 tmp = div_u64(tmp, 100); 426 if (!tmp) 427 tmp = 1; 428 429 WRITE_ONCE(perf_sample_allowed_ns, tmp); 430 } 431 432 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 433 434 int perf_proc_update_handler(struct ctl_table *table, int write, 435 void __user *buffer, size_t *lenp, 436 loff_t *ppos) 437 { 438 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 439 440 if (ret || !write) 441 return ret; 442 443 /* 444 * If throttling is disabled don't allow the write: 445 */ 446 if (sysctl_perf_cpu_time_max_percent == 100 || 447 sysctl_perf_cpu_time_max_percent == 0) 448 return -EINVAL; 449 450 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 451 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 452 update_perf_cpu_limits(); 453 454 return 0; 455 } 456 457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 458 459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 460 void __user *buffer, size_t *lenp, 461 loff_t *ppos) 462 { 463 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 465 if (ret || !write) 466 return ret; 467 468 if (sysctl_perf_cpu_time_max_percent == 100 || 469 sysctl_perf_cpu_time_max_percent == 0) { 470 printk(KERN_WARNING 471 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 472 WRITE_ONCE(perf_sample_allowed_ns, 0); 473 } else { 474 update_perf_cpu_limits(); 475 } 476 477 return 0; 478 } 479 480 /* 481 * perf samples are done in some very critical code paths (NMIs). 482 * If they take too much CPU time, the system can lock up and not 483 * get any real work done. This will drop the sample rate when 484 * we detect that events are taking too long. 485 */ 486 #define NR_ACCUMULATED_SAMPLES 128 487 static DEFINE_PER_CPU(u64, running_sample_length); 488 489 static u64 __report_avg; 490 static u64 __report_allowed; 491 492 static void perf_duration_warn(struct irq_work *w) 493 { 494 printk_ratelimited(KERN_INFO 495 "perf: interrupt took too long (%lld > %lld), lowering " 496 "kernel.perf_event_max_sample_rate to %d\n", 497 __report_avg, __report_allowed, 498 sysctl_perf_event_sample_rate); 499 } 500 501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 502 503 void perf_sample_event_took(u64 sample_len_ns) 504 { 505 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 506 u64 running_len; 507 u64 avg_len; 508 u32 max; 509 510 if (max_len == 0) 511 return; 512 513 /* Decay the counter by 1 average sample. */ 514 running_len = __this_cpu_read(running_sample_length); 515 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 516 running_len += sample_len_ns; 517 __this_cpu_write(running_sample_length, running_len); 518 519 /* 520 * Note: this will be biased artifically low until we have 521 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 522 * from having to maintain a count. 523 */ 524 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 525 if (avg_len <= max_len) 526 return; 527 528 __report_avg = avg_len; 529 __report_allowed = max_len; 530 531 /* 532 * Compute a throttle threshold 25% below the current duration. 533 */ 534 avg_len += avg_len / 4; 535 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 536 if (avg_len < max) 537 max /= (u32)avg_len; 538 else 539 max = 1; 540 541 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 542 WRITE_ONCE(max_samples_per_tick, max); 543 544 sysctl_perf_event_sample_rate = max * HZ; 545 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 546 547 if (!irq_work_queue(&perf_duration_work)) { 548 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 549 "kernel.perf_event_max_sample_rate to %d\n", 550 __report_avg, __report_allowed, 551 sysctl_perf_event_sample_rate); 552 } 553 } 554 555 static atomic64_t perf_event_id; 556 557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 558 enum event_type_t event_type); 559 560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 561 enum event_type_t event_type, 562 struct task_struct *task); 563 564 static void update_context_time(struct perf_event_context *ctx); 565 static u64 perf_event_time(struct perf_event *event); 566 567 void __weak perf_event_print_debug(void) { } 568 569 extern __weak const char *perf_pmu_name(void) 570 { 571 return "pmu"; 572 } 573 574 static inline u64 perf_clock(void) 575 { 576 return local_clock(); 577 } 578 579 static inline u64 perf_event_clock(struct perf_event *event) 580 { 581 return event->clock(); 582 } 583 584 #ifdef CONFIG_CGROUP_PERF 585 586 static inline bool 587 perf_cgroup_match(struct perf_event *event) 588 { 589 struct perf_event_context *ctx = event->ctx; 590 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 591 592 /* @event doesn't care about cgroup */ 593 if (!event->cgrp) 594 return true; 595 596 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 597 if (!cpuctx->cgrp) 598 return false; 599 600 /* 601 * Cgroup scoping is recursive. An event enabled for a cgroup is 602 * also enabled for all its descendant cgroups. If @cpuctx's 603 * cgroup is a descendant of @event's (the test covers identity 604 * case), it's a match. 605 */ 606 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 607 event->cgrp->css.cgroup); 608 } 609 610 static inline void perf_detach_cgroup(struct perf_event *event) 611 { 612 css_put(&event->cgrp->css); 613 event->cgrp = NULL; 614 } 615 616 static inline int is_cgroup_event(struct perf_event *event) 617 { 618 return event->cgrp != NULL; 619 } 620 621 static inline u64 perf_cgroup_event_time(struct perf_event *event) 622 { 623 struct perf_cgroup_info *t; 624 625 t = per_cpu_ptr(event->cgrp->info, event->cpu); 626 return t->time; 627 } 628 629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 630 { 631 struct perf_cgroup_info *info; 632 u64 now; 633 634 now = perf_clock(); 635 636 info = this_cpu_ptr(cgrp->info); 637 638 info->time += now - info->timestamp; 639 info->timestamp = now; 640 } 641 642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 643 { 644 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 645 if (cgrp_out) 646 __update_cgrp_time(cgrp_out); 647 } 648 649 static inline void update_cgrp_time_from_event(struct perf_event *event) 650 { 651 struct perf_cgroup *cgrp; 652 653 /* 654 * ensure we access cgroup data only when needed and 655 * when we know the cgroup is pinned (css_get) 656 */ 657 if (!is_cgroup_event(event)) 658 return; 659 660 cgrp = perf_cgroup_from_task(current, event->ctx); 661 /* 662 * Do not update time when cgroup is not active 663 */ 664 if (cgrp == event->cgrp) 665 __update_cgrp_time(event->cgrp); 666 } 667 668 static inline void 669 perf_cgroup_set_timestamp(struct task_struct *task, 670 struct perf_event_context *ctx) 671 { 672 struct perf_cgroup *cgrp; 673 struct perf_cgroup_info *info; 674 675 /* 676 * ctx->lock held by caller 677 * ensure we do not access cgroup data 678 * unless we have the cgroup pinned (css_get) 679 */ 680 if (!task || !ctx->nr_cgroups) 681 return; 682 683 cgrp = perf_cgroup_from_task(task, ctx); 684 info = this_cpu_ptr(cgrp->info); 685 info->timestamp = ctx->timestamp; 686 } 687 688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 689 690 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 691 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 692 693 /* 694 * reschedule events based on the cgroup constraint of task. 695 * 696 * mode SWOUT : schedule out everything 697 * mode SWIN : schedule in based on cgroup for next 698 */ 699 static void perf_cgroup_switch(struct task_struct *task, int mode) 700 { 701 struct perf_cpu_context *cpuctx; 702 struct list_head *list; 703 unsigned long flags; 704 705 /* 706 * Disable interrupts and preemption to avoid this CPU's 707 * cgrp_cpuctx_entry to change under us. 708 */ 709 local_irq_save(flags); 710 711 list = this_cpu_ptr(&cgrp_cpuctx_list); 712 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 713 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 714 715 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 716 perf_pmu_disable(cpuctx->ctx.pmu); 717 718 if (mode & PERF_CGROUP_SWOUT) { 719 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 720 /* 721 * must not be done before ctxswout due 722 * to event_filter_match() in event_sched_out() 723 */ 724 cpuctx->cgrp = NULL; 725 } 726 727 if (mode & PERF_CGROUP_SWIN) { 728 WARN_ON_ONCE(cpuctx->cgrp); 729 /* 730 * set cgrp before ctxsw in to allow 731 * event_filter_match() to not have to pass 732 * task around 733 * we pass the cpuctx->ctx to perf_cgroup_from_task() 734 * because cgorup events are only per-cpu 735 */ 736 cpuctx->cgrp = perf_cgroup_from_task(task, 737 &cpuctx->ctx); 738 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 739 } 740 perf_pmu_enable(cpuctx->ctx.pmu); 741 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 742 } 743 744 local_irq_restore(flags); 745 } 746 747 static inline void perf_cgroup_sched_out(struct task_struct *task, 748 struct task_struct *next) 749 { 750 struct perf_cgroup *cgrp1; 751 struct perf_cgroup *cgrp2 = NULL; 752 753 rcu_read_lock(); 754 /* 755 * we come here when we know perf_cgroup_events > 0 756 * we do not need to pass the ctx here because we know 757 * we are holding the rcu lock 758 */ 759 cgrp1 = perf_cgroup_from_task(task, NULL); 760 cgrp2 = perf_cgroup_from_task(next, NULL); 761 762 /* 763 * only schedule out current cgroup events if we know 764 * that we are switching to a different cgroup. Otherwise, 765 * do no touch the cgroup events. 766 */ 767 if (cgrp1 != cgrp2) 768 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 769 770 rcu_read_unlock(); 771 } 772 773 static inline void perf_cgroup_sched_in(struct task_struct *prev, 774 struct task_struct *task) 775 { 776 struct perf_cgroup *cgrp1; 777 struct perf_cgroup *cgrp2 = NULL; 778 779 rcu_read_lock(); 780 /* 781 * we come here when we know perf_cgroup_events > 0 782 * we do not need to pass the ctx here because we know 783 * we are holding the rcu lock 784 */ 785 cgrp1 = perf_cgroup_from_task(task, NULL); 786 cgrp2 = perf_cgroup_from_task(prev, NULL); 787 788 /* 789 * only need to schedule in cgroup events if we are changing 790 * cgroup during ctxsw. Cgroup events were not scheduled 791 * out of ctxsw out if that was not the case. 792 */ 793 if (cgrp1 != cgrp2) 794 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 795 796 rcu_read_unlock(); 797 } 798 799 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 800 struct perf_event_attr *attr, 801 struct perf_event *group_leader) 802 { 803 struct perf_cgroup *cgrp; 804 struct cgroup_subsys_state *css; 805 struct fd f = fdget(fd); 806 int ret = 0; 807 808 if (!f.file) 809 return -EBADF; 810 811 css = css_tryget_online_from_dir(f.file->f_path.dentry, 812 &perf_event_cgrp_subsys); 813 if (IS_ERR(css)) { 814 ret = PTR_ERR(css); 815 goto out; 816 } 817 818 cgrp = container_of(css, struct perf_cgroup, css); 819 event->cgrp = cgrp; 820 821 /* 822 * all events in a group must monitor 823 * the same cgroup because a task belongs 824 * to only one perf cgroup at a time 825 */ 826 if (group_leader && group_leader->cgrp != cgrp) { 827 perf_detach_cgroup(event); 828 ret = -EINVAL; 829 } 830 out: 831 fdput(f); 832 return ret; 833 } 834 835 static inline void 836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 837 { 838 struct perf_cgroup_info *t; 839 t = per_cpu_ptr(event->cgrp->info, event->cpu); 840 event->shadow_ctx_time = now - t->timestamp; 841 } 842 843 static inline void 844 perf_cgroup_defer_enabled(struct perf_event *event) 845 { 846 /* 847 * when the current task's perf cgroup does not match 848 * the event's, we need to remember to call the 849 * perf_mark_enable() function the first time a task with 850 * a matching perf cgroup is scheduled in. 851 */ 852 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 853 event->cgrp_defer_enabled = 1; 854 } 855 856 static inline void 857 perf_cgroup_mark_enabled(struct perf_event *event, 858 struct perf_event_context *ctx) 859 { 860 struct perf_event *sub; 861 u64 tstamp = perf_event_time(event); 862 863 if (!event->cgrp_defer_enabled) 864 return; 865 866 event->cgrp_defer_enabled = 0; 867 868 event->tstamp_enabled = tstamp - event->total_time_enabled; 869 list_for_each_entry(sub, &event->sibling_list, group_entry) { 870 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 871 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 872 sub->cgrp_defer_enabled = 0; 873 } 874 } 875 } 876 877 /* 878 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 879 * cleared when last cgroup event is removed. 880 */ 881 static inline void 882 list_update_cgroup_event(struct perf_event *event, 883 struct perf_event_context *ctx, bool add) 884 { 885 struct perf_cpu_context *cpuctx; 886 struct list_head *cpuctx_entry; 887 888 if (!is_cgroup_event(event)) 889 return; 890 891 if (add && ctx->nr_cgroups++) 892 return; 893 else if (!add && --ctx->nr_cgroups) 894 return; 895 /* 896 * Because cgroup events are always per-cpu events, 897 * this will always be called from the right CPU. 898 */ 899 cpuctx = __get_cpu_context(ctx); 900 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 901 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 902 if (add) { 903 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 904 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 905 cpuctx->cgrp = event->cgrp; 906 } else { 907 list_del(cpuctx_entry); 908 cpuctx->cgrp = NULL; 909 } 910 } 911 912 #else /* !CONFIG_CGROUP_PERF */ 913 914 static inline bool 915 perf_cgroup_match(struct perf_event *event) 916 { 917 return true; 918 } 919 920 static inline void perf_detach_cgroup(struct perf_event *event) 921 {} 922 923 static inline int is_cgroup_event(struct perf_event *event) 924 { 925 return 0; 926 } 927 928 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 929 { 930 return 0; 931 } 932 933 static inline void update_cgrp_time_from_event(struct perf_event *event) 934 { 935 } 936 937 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 938 { 939 } 940 941 static inline void perf_cgroup_sched_out(struct task_struct *task, 942 struct task_struct *next) 943 { 944 } 945 946 static inline void perf_cgroup_sched_in(struct task_struct *prev, 947 struct task_struct *task) 948 { 949 } 950 951 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 952 struct perf_event_attr *attr, 953 struct perf_event *group_leader) 954 { 955 return -EINVAL; 956 } 957 958 static inline void 959 perf_cgroup_set_timestamp(struct task_struct *task, 960 struct perf_event_context *ctx) 961 { 962 } 963 964 void 965 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 966 { 967 } 968 969 static inline void 970 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 971 { 972 } 973 974 static inline u64 perf_cgroup_event_time(struct perf_event *event) 975 { 976 return 0; 977 } 978 979 static inline void 980 perf_cgroup_defer_enabled(struct perf_event *event) 981 { 982 } 983 984 static inline void 985 perf_cgroup_mark_enabled(struct perf_event *event, 986 struct perf_event_context *ctx) 987 { 988 } 989 990 static inline void 991 list_update_cgroup_event(struct perf_event *event, 992 struct perf_event_context *ctx, bool add) 993 { 994 } 995 996 #endif 997 998 /* 999 * set default to be dependent on timer tick just 1000 * like original code 1001 */ 1002 #define PERF_CPU_HRTIMER (1000 / HZ) 1003 /* 1004 * function must be called with interrupts disabled 1005 */ 1006 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1007 { 1008 struct perf_cpu_context *cpuctx; 1009 int rotations = 0; 1010 1011 WARN_ON(!irqs_disabled()); 1012 1013 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1014 rotations = perf_rotate_context(cpuctx); 1015 1016 raw_spin_lock(&cpuctx->hrtimer_lock); 1017 if (rotations) 1018 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1019 else 1020 cpuctx->hrtimer_active = 0; 1021 raw_spin_unlock(&cpuctx->hrtimer_lock); 1022 1023 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1024 } 1025 1026 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1027 { 1028 struct hrtimer *timer = &cpuctx->hrtimer; 1029 struct pmu *pmu = cpuctx->ctx.pmu; 1030 u64 interval; 1031 1032 /* no multiplexing needed for SW PMU */ 1033 if (pmu->task_ctx_nr == perf_sw_context) 1034 return; 1035 1036 /* 1037 * check default is sane, if not set then force to 1038 * default interval (1/tick) 1039 */ 1040 interval = pmu->hrtimer_interval_ms; 1041 if (interval < 1) 1042 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1043 1044 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1045 1046 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1047 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1048 timer->function = perf_mux_hrtimer_handler; 1049 } 1050 1051 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1052 { 1053 struct hrtimer *timer = &cpuctx->hrtimer; 1054 struct pmu *pmu = cpuctx->ctx.pmu; 1055 unsigned long flags; 1056 1057 /* not for SW PMU */ 1058 if (pmu->task_ctx_nr == perf_sw_context) 1059 return 0; 1060 1061 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1062 if (!cpuctx->hrtimer_active) { 1063 cpuctx->hrtimer_active = 1; 1064 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1065 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1066 } 1067 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1068 1069 return 0; 1070 } 1071 1072 void perf_pmu_disable(struct pmu *pmu) 1073 { 1074 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1075 if (!(*count)++) 1076 pmu->pmu_disable(pmu); 1077 } 1078 1079 void perf_pmu_enable(struct pmu *pmu) 1080 { 1081 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1082 if (!--(*count)) 1083 pmu->pmu_enable(pmu); 1084 } 1085 1086 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1087 1088 /* 1089 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1090 * perf_event_task_tick() are fully serialized because they're strictly cpu 1091 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1092 * disabled, while perf_event_task_tick is called from IRQ context. 1093 */ 1094 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1095 { 1096 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1097 1098 WARN_ON(!irqs_disabled()); 1099 1100 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1101 1102 list_add(&ctx->active_ctx_list, head); 1103 } 1104 1105 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1106 { 1107 WARN_ON(!irqs_disabled()); 1108 1109 WARN_ON(list_empty(&ctx->active_ctx_list)); 1110 1111 list_del_init(&ctx->active_ctx_list); 1112 } 1113 1114 static void get_ctx(struct perf_event_context *ctx) 1115 { 1116 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1117 } 1118 1119 static void free_ctx(struct rcu_head *head) 1120 { 1121 struct perf_event_context *ctx; 1122 1123 ctx = container_of(head, struct perf_event_context, rcu_head); 1124 kfree(ctx->task_ctx_data); 1125 kfree(ctx); 1126 } 1127 1128 static void put_ctx(struct perf_event_context *ctx) 1129 { 1130 if (atomic_dec_and_test(&ctx->refcount)) { 1131 if (ctx->parent_ctx) 1132 put_ctx(ctx->parent_ctx); 1133 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1134 put_task_struct(ctx->task); 1135 call_rcu(&ctx->rcu_head, free_ctx); 1136 } 1137 } 1138 1139 /* 1140 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1141 * perf_pmu_migrate_context() we need some magic. 1142 * 1143 * Those places that change perf_event::ctx will hold both 1144 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1145 * 1146 * Lock ordering is by mutex address. There are two other sites where 1147 * perf_event_context::mutex nests and those are: 1148 * 1149 * - perf_event_exit_task_context() [ child , 0 ] 1150 * perf_event_exit_event() 1151 * put_event() [ parent, 1 ] 1152 * 1153 * - perf_event_init_context() [ parent, 0 ] 1154 * inherit_task_group() 1155 * inherit_group() 1156 * inherit_event() 1157 * perf_event_alloc() 1158 * perf_init_event() 1159 * perf_try_init_event() [ child , 1 ] 1160 * 1161 * While it appears there is an obvious deadlock here -- the parent and child 1162 * nesting levels are inverted between the two. This is in fact safe because 1163 * life-time rules separate them. That is an exiting task cannot fork, and a 1164 * spawning task cannot (yet) exit. 1165 * 1166 * But remember that that these are parent<->child context relations, and 1167 * migration does not affect children, therefore these two orderings should not 1168 * interact. 1169 * 1170 * The change in perf_event::ctx does not affect children (as claimed above) 1171 * because the sys_perf_event_open() case will install a new event and break 1172 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1173 * concerned with cpuctx and that doesn't have children. 1174 * 1175 * The places that change perf_event::ctx will issue: 1176 * 1177 * perf_remove_from_context(); 1178 * synchronize_rcu(); 1179 * perf_install_in_context(); 1180 * 1181 * to affect the change. The remove_from_context() + synchronize_rcu() should 1182 * quiesce the event, after which we can install it in the new location. This 1183 * means that only external vectors (perf_fops, prctl) can perturb the event 1184 * while in transit. Therefore all such accessors should also acquire 1185 * perf_event_context::mutex to serialize against this. 1186 * 1187 * However; because event->ctx can change while we're waiting to acquire 1188 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1189 * function. 1190 * 1191 * Lock order: 1192 * cred_guard_mutex 1193 * task_struct::perf_event_mutex 1194 * perf_event_context::mutex 1195 * perf_event::child_mutex; 1196 * perf_event_context::lock 1197 * perf_event::mmap_mutex 1198 * mmap_sem 1199 */ 1200 static struct perf_event_context * 1201 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1202 { 1203 struct perf_event_context *ctx; 1204 1205 again: 1206 rcu_read_lock(); 1207 ctx = ACCESS_ONCE(event->ctx); 1208 if (!atomic_inc_not_zero(&ctx->refcount)) { 1209 rcu_read_unlock(); 1210 goto again; 1211 } 1212 rcu_read_unlock(); 1213 1214 mutex_lock_nested(&ctx->mutex, nesting); 1215 if (event->ctx != ctx) { 1216 mutex_unlock(&ctx->mutex); 1217 put_ctx(ctx); 1218 goto again; 1219 } 1220 1221 return ctx; 1222 } 1223 1224 static inline struct perf_event_context * 1225 perf_event_ctx_lock(struct perf_event *event) 1226 { 1227 return perf_event_ctx_lock_nested(event, 0); 1228 } 1229 1230 static void perf_event_ctx_unlock(struct perf_event *event, 1231 struct perf_event_context *ctx) 1232 { 1233 mutex_unlock(&ctx->mutex); 1234 put_ctx(ctx); 1235 } 1236 1237 /* 1238 * This must be done under the ctx->lock, such as to serialize against 1239 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1240 * calling scheduler related locks and ctx->lock nests inside those. 1241 */ 1242 static __must_check struct perf_event_context * 1243 unclone_ctx(struct perf_event_context *ctx) 1244 { 1245 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1246 1247 lockdep_assert_held(&ctx->lock); 1248 1249 if (parent_ctx) 1250 ctx->parent_ctx = NULL; 1251 ctx->generation++; 1252 1253 return parent_ctx; 1254 } 1255 1256 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1257 { 1258 /* 1259 * only top level events have the pid namespace they were created in 1260 */ 1261 if (event->parent) 1262 event = event->parent; 1263 1264 return task_tgid_nr_ns(p, event->ns); 1265 } 1266 1267 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1268 { 1269 /* 1270 * only top level events have the pid namespace they were created in 1271 */ 1272 if (event->parent) 1273 event = event->parent; 1274 1275 return task_pid_nr_ns(p, event->ns); 1276 } 1277 1278 /* 1279 * If we inherit events we want to return the parent event id 1280 * to userspace. 1281 */ 1282 static u64 primary_event_id(struct perf_event *event) 1283 { 1284 u64 id = event->id; 1285 1286 if (event->parent) 1287 id = event->parent->id; 1288 1289 return id; 1290 } 1291 1292 /* 1293 * Get the perf_event_context for a task and lock it. 1294 * 1295 * This has to cope with with the fact that until it is locked, 1296 * the context could get moved to another task. 1297 */ 1298 static struct perf_event_context * 1299 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1300 { 1301 struct perf_event_context *ctx; 1302 1303 retry: 1304 /* 1305 * One of the few rules of preemptible RCU is that one cannot do 1306 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1307 * part of the read side critical section was irqs-enabled -- see 1308 * rcu_read_unlock_special(). 1309 * 1310 * Since ctx->lock nests under rq->lock we must ensure the entire read 1311 * side critical section has interrupts disabled. 1312 */ 1313 local_irq_save(*flags); 1314 rcu_read_lock(); 1315 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1316 if (ctx) { 1317 /* 1318 * If this context is a clone of another, it might 1319 * get swapped for another underneath us by 1320 * perf_event_task_sched_out, though the 1321 * rcu_read_lock() protects us from any context 1322 * getting freed. Lock the context and check if it 1323 * got swapped before we could get the lock, and retry 1324 * if so. If we locked the right context, then it 1325 * can't get swapped on us any more. 1326 */ 1327 raw_spin_lock(&ctx->lock); 1328 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1329 raw_spin_unlock(&ctx->lock); 1330 rcu_read_unlock(); 1331 local_irq_restore(*flags); 1332 goto retry; 1333 } 1334 1335 if (ctx->task == TASK_TOMBSTONE || 1336 !atomic_inc_not_zero(&ctx->refcount)) { 1337 raw_spin_unlock(&ctx->lock); 1338 ctx = NULL; 1339 } else { 1340 WARN_ON_ONCE(ctx->task != task); 1341 } 1342 } 1343 rcu_read_unlock(); 1344 if (!ctx) 1345 local_irq_restore(*flags); 1346 return ctx; 1347 } 1348 1349 /* 1350 * Get the context for a task and increment its pin_count so it 1351 * can't get swapped to another task. This also increments its 1352 * reference count so that the context can't get freed. 1353 */ 1354 static struct perf_event_context * 1355 perf_pin_task_context(struct task_struct *task, int ctxn) 1356 { 1357 struct perf_event_context *ctx; 1358 unsigned long flags; 1359 1360 ctx = perf_lock_task_context(task, ctxn, &flags); 1361 if (ctx) { 1362 ++ctx->pin_count; 1363 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1364 } 1365 return ctx; 1366 } 1367 1368 static void perf_unpin_context(struct perf_event_context *ctx) 1369 { 1370 unsigned long flags; 1371 1372 raw_spin_lock_irqsave(&ctx->lock, flags); 1373 --ctx->pin_count; 1374 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1375 } 1376 1377 /* 1378 * Update the record of the current time in a context. 1379 */ 1380 static void update_context_time(struct perf_event_context *ctx) 1381 { 1382 u64 now = perf_clock(); 1383 1384 ctx->time += now - ctx->timestamp; 1385 ctx->timestamp = now; 1386 } 1387 1388 static u64 perf_event_time(struct perf_event *event) 1389 { 1390 struct perf_event_context *ctx = event->ctx; 1391 1392 if (is_cgroup_event(event)) 1393 return perf_cgroup_event_time(event); 1394 1395 return ctx ? ctx->time : 0; 1396 } 1397 1398 /* 1399 * Update the total_time_enabled and total_time_running fields for a event. 1400 */ 1401 static void update_event_times(struct perf_event *event) 1402 { 1403 struct perf_event_context *ctx = event->ctx; 1404 u64 run_end; 1405 1406 lockdep_assert_held(&ctx->lock); 1407 1408 if (event->state < PERF_EVENT_STATE_INACTIVE || 1409 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1410 return; 1411 1412 /* 1413 * in cgroup mode, time_enabled represents 1414 * the time the event was enabled AND active 1415 * tasks were in the monitored cgroup. This is 1416 * independent of the activity of the context as 1417 * there may be a mix of cgroup and non-cgroup events. 1418 * 1419 * That is why we treat cgroup events differently 1420 * here. 1421 */ 1422 if (is_cgroup_event(event)) 1423 run_end = perf_cgroup_event_time(event); 1424 else if (ctx->is_active) 1425 run_end = ctx->time; 1426 else 1427 run_end = event->tstamp_stopped; 1428 1429 event->total_time_enabled = run_end - event->tstamp_enabled; 1430 1431 if (event->state == PERF_EVENT_STATE_INACTIVE) 1432 run_end = event->tstamp_stopped; 1433 else 1434 run_end = perf_event_time(event); 1435 1436 event->total_time_running = run_end - event->tstamp_running; 1437 1438 } 1439 1440 /* 1441 * Update total_time_enabled and total_time_running for all events in a group. 1442 */ 1443 static void update_group_times(struct perf_event *leader) 1444 { 1445 struct perf_event *event; 1446 1447 update_event_times(leader); 1448 list_for_each_entry(event, &leader->sibling_list, group_entry) 1449 update_event_times(event); 1450 } 1451 1452 static enum event_type_t get_event_type(struct perf_event *event) 1453 { 1454 struct perf_event_context *ctx = event->ctx; 1455 enum event_type_t event_type; 1456 1457 lockdep_assert_held(&ctx->lock); 1458 1459 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1460 if (!ctx->task) 1461 event_type |= EVENT_CPU; 1462 1463 return event_type; 1464 } 1465 1466 static struct list_head * 1467 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1468 { 1469 if (event->attr.pinned) 1470 return &ctx->pinned_groups; 1471 else 1472 return &ctx->flexible_groups; 1473 } 1474 1475 /* 1476 * Add a event from the lists for its context. 1477 * Must be called with ctx->mutex and ctx->lock held. 1478 */ 1479 static void 1480 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1481 { 1482 lockdep_assert_held(&ctx->lock); 1483 1484 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1485 event->attach_state |= PERF_ATTACH_CONTEXT; 1486 1487 /* 1488 * If we're a stand alone event or group leader, we go to the context 1489 * list, group events are kept attached to the group so that 1490 * perf_group_detach can, at all times, locate all siblings. 1491 */ 1492 if (event->group_leader == event) { 1493 struct list_head *list; 1494 1495 event->group_caps = event->event_caps; 1496 1497 list = ctx_group_list(event, ctx); 1498 list_add_tail(&event->group_entry, list); 1499 } 1500 1501 list_update_cgroup_event(event, ctx, true); 1502 1503 list_add_rcu(&event->event_entry, &ctx->event_list); 1504 ctx->nr_events++; 1505 if (event->attr.inherit_stat) 1506 ctx->nr_stat++; 1507 1508 ctx->generation++; 1509 } 1510 1511 /* 1512 * Initialize event state based on the perf_event_attr::disabled. 1513 */ 1514 static inline void perf_event__state_init(struct perf_event *event) 1515 { 1516 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1517 PERF_EVENT_STATE_INACTIVE; 1518 } 1519 1520 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1521 { 1522 int entry = sizeof(u64); /* value */ 1523 int size = 0; 1524 int nr = 1; 1525 1526 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1527 size += sizeof(u64); 1528 1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1530 size += sizeof(u64); 1531 1532 if (event->attr.read_format & PERF_FORMAT_ID) 1533 entry += sizeof(u64); 1534 1535 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1536 nr += nr_siblings; 1537 size += sizeof(u64); 1538 } 1539 1540 size += entry * nr; 1541 event->read_size = size; 1542 } 1543 1544 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1545 { 1546 struct perf_sample_data *data; 1547 u16 size = 0; 1548 1549 if (sample_type & PERF_SAMPLE_IP) 1550 size += sizeof(data->ip); 1551 1552 if (sample_type & PERF_SAMPLE_ADDR) 1553 size += sizeof(data->addr); 1554 1555 if (sample_type & PERF_SAMPLE_PERIOD) 1556 size += sizeof(data->period); 1557 1558 if (sample_type & PERF_SAMPLE_WEIGHT) 1559 size += sizeof(data->weight); 1560 1561 if (sample_type & PERF_SAMPLE_READ) 1562 size += event->read_size; 1563 1564 if (sample_type & PERF_SAMPLE_DATA_SRC) 1565 size += sizeof(data->data_src.val); 1566 1567 if (sample_type & PERF_SAMPLE_TRANSACTION) 1568 size += sizeof(data->txn); 1569 1570 event->header_size = size; 1571 } 1572 1573 /* 1574 * Called at perf_event creation and when events are attached/detached from a 1575 * group. 1576 */ 1577 static void perf_event__header_size(struct perf_event *event) 1578 { 1579 __perf_event_read_size(event, 1580 event->group_leader->nr_siblings); 1581 __perf_event_header_size(event, event->attr.sample_type); 1582 } 1583 1584 static void perf_event__id_header_size(struct perf_event *event) 1585 { 1586 struct perf_sample_data *data; 1587 u64 sample_type = event->attr.sample_type; 1588 u16 size = 0; 1589 1590 if (sample_type & PERF_SAMPLE_TID) 1591 size += sizeof(data->tid_entry); 1592 1593 if (sample_type & PERF_SAMPLE_TIME) 1594 size += sizeof(data->time); 1595 1596 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1597 size += sizeof(data->id); 1598 1599 if (sample_type & PERF_SAMPLE_ID) 1600 size += sizeof(data->id); 1601 1602 if (sample_type & PERF_SAMPLE_STREAM_ID) 1603 size += sizeof(data->stream_id); 1604 1605 if (sample_type & PERF_SAMPLE_CPU) 1606 size += sizeof(data->cpu_entry); 1607 1608 event->id_header_size = size; 1609 } 1610 1611 static bool perf_event_validate_size(struct perf_event *event) 1612 { 1613 /* 1614 * The values computed here will be over-written when we actually 1615 * attach the event. 1616 */ 1617 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1618 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1619 perf_event__id_header_size(event); 1620 1621 /* 1622 * Sum the lot; should not exceed the 64k limit we have on records. 1623 * Conservative limit to allow for callchains and other variable fields. 1624 */ 1625 if (event->read_size + event->header_size + 1626 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1627 return false; 1628 1629 return true; 1630 } 1631 1632 static void perf_group_attach(struct perf_event *event) 1633 { 1634 struct perf_event *group_leader = event->group_leader, *pos; 1635 1636 lockdep_assert_held(&event->ctx->lock); 1637 1638 /* 1639 * We can have double attach due to group movement in perf_event_open. 1640 */ 1641 if (event->attach_state & PERF_ATTACH_GROUP) 1642 return; 1643 1644 event->attach_state |= PERF_ATTACH_GROUP; 1645 1646 if (group_leader == event) 1647 return; 1648 1649 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1650 1651 group_leader->group_caps &= event->event_caps; 1652 1653 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1654 group_leader->nr_siblings++; 1655 1656 perf_event__header_size(group_leader); 1657 1658 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1659 perf_event__header_size(pos); 1660 } 1661 1662 /* 1663 * Remove a event from the lists for its context. 1664 * Must be called with ctx->mutex and ctx->lock held. 1665 */ 1666 static void 1667 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1668 { 1669 WARN_ON_ONCE(event->ctx != ctx); 1670 lockdep_assert_held(&ctx->lock); 1671 1672 /* 1673 * We can have double detach due to exit/hot-unplug + close. 1674 */ 1675 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1676 return; 1677 1678 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1679 1680 list_update_cgroup_event(event, ctx, false); 1681 1682 ctx->nr_events--; 1683 if (event->attr.inherit_stat) 1684 ctx->nr_stat--; 1685 1686 list_del_rcu(&event->event_entry); 1687 1688 if (event->group_leader == event) 1689 list_del_init(&event->group_entry); 1690 1691 update_group_times(event); 1692 1693 /* 1694 * If event was in error state, then keep it 1695 * that way, otherwise bogus counts will be 1696 * returned on read(). The only way to get out 1697 * of error state is by explicit re-enabling 1698 * of the event 1699 */ 1700 if (event->state > PERF_EVENT_STATE_OFF) 1701 event->state = PERF_EVENT_STATE_OFF; 1702 1703 ctx->generation++; 1704 } 1705 1706 static void perf_group_detach(struct perf_event *event) 1707 { 1708 struct perf_event *sibling, *tmp; 1709 struct list_head *list = NULL; 1710 1711 lockdep_assert_held(&event->ctx->lock); 1712 1713 /* 1714 * We can have double detach due to exit/hot-unplug + close. 1715 */ 1716 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1717 return; 1718 1719 event->attach_state &= ~PERF_ATTACH_GROUP; 1720 1721 /* 1722 * If this is a sibling, remove it from its group. 1723 */ 1724 if (event->group_leader != event) { 1725 list_del_init(&event->group_entry); 1726 event->group_leader->nr_siblings--; 1727 goto out; 1728 } 1729 1730 if (!list_empty(&event->group_entry)) 1731 list = &event->group_entry; 1732 1733 /* 1734 * If this was a group event with sibling events then 1735 * upgrade the siblings to singleton events by adding them 1736 * to whatever list we are on. 1737 */ 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1739 if (list) 1740 list_move_tail(&sibling->group_entry, list); 1741 sibling->group_leader = sibling; 1742 1743 /* Inherit group flags from the previous leader */ 1744 sibling->group_caps = event->group_caps; 1745 1746 WARN_ON_ONCE(sibling->ctx != event->ctx); 1747 } 1748 1749 out: 1750 perf_event__header_size(event->group_leader); 1751 1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1753 perf_event__header_size(tmp); 1754 } 1755 1756 static bool is_orphaned_event(struct perf_event *event) 1757 { 1758 return event->state == PERF_EVENT_STATE_DEAD; 1759 } 1760 1761 static inline int __pmu_filter_match(struct perf_event *event) 1762 { 1763 struct pmu *pmu = event->pmu; 1764 return pmu->filter_match ? pmu->filter_match(event) : 1; 1765 } 1766 1767 /* 1768 * Check whether we should attempt to schedule an event group based on 1769 * PMU-specific filtering. An event group can consist of HW and SW events, 1770 * potentially with a SW leader, so we must check all the filters, to 1771 * determine whether a group is schedulable: 1772 */ 1773 static inline int pmu_filter_match(struct perf_event *event) 1774 { 1775 struct perf_event *child; 1776 1777 if (!__pmu_filter_match(event)) 1778 return 0; 1779 1780 list_for_each_entry(child, &event->sibling_list, group_entry) { 1781 if (!__pmu_filter_match(child)) 1782 return 0; 1783 } 1784 1785 return 1; 1786 } 1787 1788 static inline int 1789 event_filter_match(struct perf_event *event) 1790 { 1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1792 perf_cgroup_match(event) && pmu_filter_match(event); 1793 } 1794 1795 static void 1796 event_sched_out(struct perf_event *event, 1797 struct perf_cpu_context *cpuctx, 1798 struct perf_event_context *ctx) 1799 { 1800 u64 tstamp = perf_event_time(event); 1801 u64 delta; 1802 1803 WARN_ON_ONCE(event->ctx != ctx); 1804 lockdep_assert_held(&ctx->lock); 1805 1806 /* 1807 * An event which could not be activated because of 1808 * filter mismatch still needs to have its timings 1809 * maintained, otherwise bogus information is return 1810 * via read() for time_enabled, time_running: 1811 */ 1812 if (event->state == PERF_EVENT_STATE_INACTIVE && 1813 !event_filter_match(event)) { 1814 delta = tstamp - event->tstamp_stopped; 1815 event->tstamp_running += delta; 1816 event->tstamp_stopped = tstamp; 1817 } 1818 1819 if (event->state != PERF_EVENT_STATE_ACTIVE) 1820 return; 1821 1822 perf_pmu_disable(event->pmu); 1823 1824 event->tstamp_stopped = tstamp; 1825 event->pmu->del(event, 0); 1826 event->oncpu = -1; 1827 event->state = PERF_EVENT_STATE_INACTIVE; 1828 if (event->pending_disable) { 1829 event->pending_disable = 0; 1830 event->state = PERF_EVENT_STATE_OFF; 1831 } 1832 1833 if (!is_software_event(event)) 1834 cpuctx->active_oncpu--; 1835 if (!--ctx->nr_active) 1836 perf_event_ctx_deactivate(ctx); 1837 if (event->attr.freq && event->attr.sample_freq) 1838 ctx->nr_freq--; 1839 if (event->attr.exclusive || !cpuctx->active_oncpu) 1840 cpuctx->exclusive = 0; 1841 1842 perf_pmu_enable(event->pmu); 1843 } 1844 1845 static void 1846 group_sched_out(struct perf_event *group_event, 1847 struct perf_cpu_context *cpuctx, 1848 struct perf_event_context *ctx) 1849 { 1850 struct perf_event *event; 1851 int state = group_event->state; 1852 1853 perf_pmu_disable(ctx->pmu); 1854 1855 event_sched_out(group_event, cpuctx, ctx); 1856 1857 /* 1858 * Schedule out siblings (if any): 1859 */ 1860 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1861 event_sched_out(event, cpuctx, ctx); 1862 1863 perf_pmu_enable(ctx->pmu); 1864 1865 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1866 cpuctx->exclusive = 0; 1867 } 1868 1869 #define DETACH_GROUP 0x01UL 1870 1871 /* 1872 * Cross CPU call to remove a performance event 1873 * 1874 * We disable the event on the hardware level first. After that we 1875 * remove it from the context list. 1876 */ 1877 static void 1878 __perf_remove_from_context(struct perf_event *event, 1879 struct perf_cpu_context *cpuctx, 1880 struct perf_event_context *ctx, 1881 void *info) 1882 { 1883 unsigned long flags = (unsigned long)info; 1884 1885 event_sched_out(event, cpuctx, ctx); 1886 if (flags & DETACH_GROUP) 1887 perf_group_detach(event); 1888 list_del_event(event, ctx); 1889 1890 if (!ctx->nr_events && ctx->is_active) { 1891 ctx->is_active = 0; 1892 if (ctx->task) { 1893 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1894 cpuctx->task_ctx = NULL; 1895 } 1896 } 1897 } 1898 1899 /* 1900 * Remove the event from a task's (or a CPU's) list of events. 1901 * 1902 * If event->ctx is a cloned context, callers must make sure that 1903 * every task struct that event->ctx->task could possibly point to 1904 * remains valid. This is OK when called from perf_release since 1905 * that only calls us on the top-level context, which can't be a clone. 1906 * When called from perf_event_exit_task, it's OK because the 1907 * context has been detached from its task. 1908 */ 1909 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1910 { 1911 struct perf_event_context *ctx = event->ctx; 1912 1913 lockdep_assert_held(&ctx->mutex); 1914 1915 event_function_call(event, __perf_remove_from_context, (void *)flags); 1916 1917 /* 1918 * The above event_function_call() can NO-OP when it hits 1919 * TASK_TOMBSTONE. In that case we must already have been detached 1920 * from the context (by perf_event_exit_event()) but the grouping 1921 * might still be in-tact. 1922 */ 1923 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1924 if ((flags & DETACH_GROUP) && 1925 (event->attach_state & PERF_ATTACH_GROUP)) { 1926 /* 1927 * Since in that case we cannot possibly be scheduled, simply 1928 * detach now. 1929 */ 1930 raw_spin_lock_irq(&ctx->lock); 1931 perf_group_detach(event); 1932 raw_spin_unlock_irq(&ctx->lock); 1933 } 1934 } 1935 1936 /* 1937 * Cross CPU call to disable a performance event 1938 */ 1939 static void __perf_event_disable(struct perf_event *event, 1940 struct perf_cpu_context *cpuctx, 1941 struct perf_event_context *ctx, 1942 void *info) 1943 { 1944 if (event->state < PERF_EVENT_STATE_INACTIVE) 1945 return; 1946 1947 update_context_time(ctx); 1948 update_cgrp_time_from_event(event); 1949 update_group_times(event); 1950 if (event == event->group_leader) 1951 group_sched_out(event, cpuctx, ctx); 1952 else 1953 event_sched_out(event, cpuctx, ctx); 1954 event->state = PERF_EVENT_STATE_OFF; 1955 } 1956 1957 /* 1958 * Disable a event. 1959 * 1960 * If event->ctx is a cloned context, callers must make sure that 1961 * every task struct that event->ctx->task could possibly point to 1962 * remains valid. This condition is satisifed when called through 1963 * perf_event_for_each_child or perf_event_for_each because they 1964 * hold the top-level event's child_mutex, so any descendant that 1965 * goes to exit will block in perf_event_exit_event(). 1966 * 1967 * When called from perf_pending_event it's OK because event->ctx 1968 * is the current context on this CPU and preemption is disabled, 1969 * hence we can't get into perf_event_task_sched_out for this context. 1970 */ 1971 static void _perf_event_disable(struct perf_event *event) 1972 { 1973 struct perf_event_context *ctx = event->ctx; 1974 1975 raw_spin_lock_irq(&ctx->lock); 1976 if (event->state <= PERF_EVENT_STATE_OFF) { 1977 raw_spin_unlock_irq(&ctx->lock); 1978 return; 1979 } 1980 raw_spin_unlock_irq(&ctx->lock); 1981 1982 event_function_call(event, __perf_event_disable, NULL); 1983 } 1984 1985 void perf_event_disable_local(struct perf_event *event) 1986 { 1987 event_function_local(event, __perf_event_disable, NULL); 1988 } 1989 1990 /* 1991 * Strictly speaking kernel users cannot create groups and therefore this 1992 * interface does not need the perf_event_ctx_lock() magic. 1993 */ 1994 void perf_event_disable(struct perf_event *event) 1995 { 1996 struct perf_event_context *ctx; 1997 1998 ctx = perf_event_ctx_lock(event); 1999 _perf_event_disable(event); 2000 perf_event_ctx_unlock(event, ctx); 2001 } 2002 EXPORT_SYMBOL_GPL(perf_event_disable); 2003 2004 void perf_event_disable_inatomic(struct perf_event *event) 2005 { 2006 event->pending_disable = 1; 2007 irq_work_queue(&event->pending); 2008 } 2009 2010 static void perf_set_shadow_time(struct perf_event *event, 2011 struct perf_event_context *ctx, 2012 u64 tstamp) 2013 { 2014 /* 2015 * use the correct time source for the time snapshot 2016 * 2017 * We could get by without this by leveraging the 2018 * fact that to get to this function, the caller 2019 * has most likely already called update_context_time() 2020 * and update_cgrp_time_xx() and thus both timestamp 2021 * are identical (or very close). Given that tstamp is, 2022 * already adjusted for cgroup, we could say that: 2023 * tstamp - ctx->timestamp 2024 * is equivalent to 2025 * tstamp - cgrp->timestamp. 2026 * 2027 * Then, in perf_output_read(), the calculation would 2028 * work with no changes because: 2029 * - event is guaranteed scheduled in 2030 * - no scheduled out in between 2031 * - thus the timestamp would be the same 2032 * 2033 * But this is a bit hairy. 2034 * 2035 * So instead, we have an explicit cgroup call to remain 2036 * within the time time source all along. We believe it 2037 * is cleaner and simpler to understand. 2038 */ 2039 if (is_cgroup_event(event)) 2040 perf_cgroup_set_shadow_time(event, tstamp); 2041 else 2042 event->shadow_ctx_time = tstamp - ctx->timestamp; 2043 } 2044 2045 #define MAX_INTERRUPTS (~0ULL) 2046 2047 static void perf_log_throttle(struct perf_event *event, int enable); 2048 static void perf_log_itrace_start(struct perf_event *event); 2049 2050 static int 2051 event_sched_in(struct perf_event *event, 2052 struct perf_cpu_context *cpuctx, 2053 struct perf_event_context *ctx) 2054 { 2055 u64 tstamp = perf_event_time(event); 2056 int ret = 0; 2057 2058 lockdep_assert_held(&ctx->lock); 2059 2060 if (event->state <= PERF_EVENT_STATE_OFF) 2061 return 0; 2062 2063 WRITE_ONCE(event->oncpu, smp_processor_id()); 2064 /* 2065 * Order event::oncpu write to happen before the ACTIVE state 2066 * is visible. 2067 */ 2068 smp_wmb(); 2069 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2070 2071 /* 2072 * Unthrottle events, since we scheduled we might have missed several 2073 * ticks already, also for a heavily scheduling task there is little 2074 * guarantee it'll get a tick in a timely manner. 2075 */ 2076 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2077 perf_log_throttle(event, 1); 2078 event->hw.interrupts = 0; 2079 } 2080 2081 /* 2082 * The new state must be visible before we turn it on in the hardware: 2083 */ 2084 smp_wmb(); 2085 2086 perf_pmu_disable(event->pmu); 2087 2088 perf_set_shadow_time(event, ctx, tstamp); 2089 2090 perf_log_itrace_start(event); 2091 2092 if (event->pmu->add(event, PERF_EF_START)) { 2093 event->state = PERF_EVENT_STATE_INACTIVE; 2094 event->oncpu = -1; 2095 ret = -EAGAIN; 2096 goto out; 2097 } 2098 2099 event->tstamp_running += tstamp - event->tstamp_stopped; 2100 2101 if (!is_software_event(event)) 2102 cpuctx->active_oncpu++; 2103 if (!ctx->nr_active++) 2104 perf_event_ctx_activate(ctx); 2105 if (event->attr.freq && event->attr.sample_freq) 2106 ctx->nr_freq++; 2107 2108 if (event->attr.exclusive) 2109 cpuctx->exclusive = 1; 2110 2111 out: 2112 perf_pmu_enable(event->pmu); 2113 2114 return ret; 2115 } 2116 2117 static int 2118 group_sched_in(struct perf_event *group_event, 2119 struct perf_cpu_context *cpuctx, 2120 struct perf_event_context *ctx) 2121 { 2122 struct perf_event *event, *partial_group = NULL; 2123 struct pmu *pmu = ctx->pmu; 2124 u64 now = ctx->time; 2125 bool simulate = false; 2126 2127 if (group_event->state == PERF_EVENT_STATE_OFF) 2128 return 0; 2129 2130 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2131 2132 if (event_sched_in(group_event, cpuctx, ctx)) { 2133 pmu->cancel_txn(pmu); 2134 perf_mux_hrtimer_restart(cpuctx); 2135 return -EAGAIN; 2136 } 2137 2138 /* 2139 * Schedule in siblings as one group (if any): 2140 */ 2141 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2142 if (event_sched_in(event, cpuctx, ctx)) { 2143 partial_group = event; 2144 goto group_error; 2145 } 2146 } 2147 2148 if (!pmu->commit_txn(pmu)) 2149 return 0; 2150 2151 group_error: 2152 /* 2153 * Groups can be scheduled in as one unit only, so undo any 2154 * partial group before returning: 2155 * The events up to the failed event are scheduled out normally, 2156 * tstamp_stopped will be updated. 2157 * 2158 * The failed events and the remaining siblings need to have 2159 * their timings updated as if they had gone thru event_sched_in() 2160 * and event_sched_out(). This is required to get consistent timings 2161 * across the group. This also takes care of the case where the group 2162 * could never be scheduled by ensuring tstamp_stopped is set to mark 2163 * the time the event was actually stopped, such that time delta 2164 * calculation in update_event_times() is correct. 2165 */ 2166 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2167 if (event == partial_group) 2168 simulate = true; 2169 2170 if (simulate) { 2171 event->tstamp_running += now - event->tstamp_stopped; 2172 event->tstamp_stopped = now; 2173 } else { 2174 event_sched_out(event, cpuctx, ctx); 2175 } 2176 } 2177 event_sched_out(group_event, cpuctx, ctx); 2178 2179 pmu->cancel_txn(pmu); 2180 2181 perf_mux_hrtimer_restart(cpuctx); 2182 2183 return -EAGAIN; 2184 } 2185 2186 /* 2187 * Work out whether we can put this event group on the CPU now. 2188 */ 2189 static int group_can_go_on(struct perf_event *event, 2190 struct perf_cpu_context *cpuctx, 2191 int can_add_hw) 2192 { 2193 /* 2194 * Groups consisting entirely of software events can always go on. 2195 */ 2196 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2197 return 1; 2198 /* 2199 * If an exclusive group is already on, no other hardware 2200 * events can go on. 2201 */ 2202 if (cpuctx->exclusive) 2203 return 0; 2204 /* 2205 * If this group is exclusive and there are already 2206 * events on the CPU, it can't go on. 2207 */ 2208 if (event->attr.exclusive && cpuctx->active_oncpu) 2209 return 0; 2210 /* 2211 * Otherwise, try to add it if all previous groups were able 2212 * to go on. 2213 */ 2214 return can_add_hw; 2215 } 2216 2217 static void add_event_to_ctx(struct perf_event *event, 2218 struct perf_event_context *ctx) 2219 { 2220 u64 tstamp = perf_event_time(event); 2221 2222 list_add_event(event, ctx); 2223 perf_group_attach(event); 2224 event->tstamp_enabled = tstamp; 2225 event->tstamp_running = tstamp; 2226 event->tstamp_stopped = tstamp; 2227 } 2228 2229 static void ctx_sched_out(struct perf_event_context *ctx, 2230 struct perf_cpu_context *cpuctx, 2231 enum event_type_t event_type); 2232 static void 2233 ctx_sched_in(struct perf_event_context *ctx, 2234 struct perf_cpu_context *cpuctx, 2235 enum event_type_t event_type, 2236 struct task_struct *task); 2237 2238 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2239 struct perf_event_context *ctx, 2240 enum event_type_t event_type) 2241 { 2242 if (!cpuctx->task_ctx) 2243 return; 2244 2245 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2246 return; 2247 2248 ctx_sched_out(ctx, cpuctx, event_type); 2249 } 2250 2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2252 struct perf_event_context *ctx, 2253 struct task_struct *task) 2254 { 2255 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2256 if (ctx) 2257 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2258 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2259 if (ctx) 2260 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2261 } 2262 2263 /* 2264 * We want to maintain the following priority of scheduling: 2265 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2266 * - task pinned (EVENT_PINNED) 2267 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2268 * - task flexible (EVENT_FLEXIBLE). 2269 * 2270 * In order to avoid unscheduling and scheduling back in everything every 2271 * time an event is added, only do it for the groups of equal priority and 2272 * below. 2273 * 2274 * This can be called after a batch operation on task events, in which case 2275 * event_type is a bit mask of the types of events involved. For CPU events, 2276 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2277 */ 2278 static void ctx_resched(struct perf_cpu_context *cpuctx, 2279 struct perf_event_context *task_ctx, 2280 enum event_type_t event_type) 2281 { 2282 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2283 bool cpu_event = !!(event_type & EVENT_CPU); 2284 2285 /* 2286 * If pinned groups are involved, flexible groups also need to be 2287 * scheduled out. 2288 */ 2289 if (event_type & EVENT_PINNED) 2290 event_type |= EVENT_FLEXIBLE; 2291 2292 perf_pmu_disable(cpuctx->ctx.pmu); 2293 if (task_ctx) 2294 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2295 2296 /* 2297 * Decide which cpu ctx groups to schedule out based on the types 2298 * of events that caused rescheduling: 2299 * - EVENT_CPU: schedule out corresponding groups; 2300 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2301 * - otherwise, do nothing more. 2302 */ 2303 if (cpu_event) 2304 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2305 else if (ctx_event_type & EVENT_PINNED) 2306 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2307 2308 perf_event_sched_in(cpuctx, task_ctx, current); 2309 perf_pmu_enable(cpuctx->ctx.pmu); 2310 } 2311 2312 /* 2313 * Cross CPU call to install and enable a performance event 2314 * 2315 * Very similar to remote_function() + event_function() but cannot assume that 2316 * things like ctx->is_active and cpuctx->task_ctx are set. 2317 */ 2318 static int __perf_install_in_context(void *info) 2319 { 2320 struct perf_event *event = info; 2321 struct perf_event_context *ctx = event->ctx; 2322 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2323 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2324 bool reprogram = true; 2325 int ret = 0; 2326 2327 raw_spin_lock(&cpuctx->ctx.lock); 2328 if (ctx->task) { 2329 raw_spin_lock(&ctx->lock); 2330 task_ctx = ctx; 2331 2332 reprogram = (ctx->task == current); 2333 2334 /* 2335 * If the task is running, it must be running on this CPU, 2336 * otherwise we cannot reprogram things. 2337 * 2338 * If its not running, we don't care, ctx->lock will 2339 * serialize against it becoming runnable. 2340 */ 2341 if (task_curr(ctx->task) && !reprogram) { 2342 ret = -ESRCH; 2343 goto unlock; 2344 } 2345 2346 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2347 } else if (task_ctx) { 2348 raw_spin_lock(&task_ctx->lock); 2349 } 2350 2351 if (reprogram) { 2352 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2353 add_event_to_ctx(event, ctx); 2354 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2355 } else { 2356 add_event_to_ctx(event, ctx); 2357 } 2358 2359 unlock: 2360 perf_ctx_unlock(cpuctx, task_ctx); 2361 2362 return ret; 2363 } 2364 2365 /* 2366 * Attach a performance event to a context. 2367 * 2368 * Very similar to event_function_call, see comment there. 2369 */ 2370 static void 2371 perf_install_in_context(struct perf_event_context *ctx, 2372 struct perf_event *event, 2373 int cpu) 2374 { 2375 struct task_struct *task = READ_ONCE(ctx->task); 2376 2377 lockdep_assert_held(&ctx->mutex); 2378 2379 if (event->cpu != -1) 2380 event->cpu = cpu; 2381 2382 /* 2383 * Ensures that if we can observe event->ctx, both the event and ctx 2384 * will be 'complete'. See perf_iterate_sb_cpu(). 2385 */ 2386 smp_store_release(&event->ctx, ctx); 2387 2388 if (!task) { 2389 cpu_function_call(cpu, __perf_install_in_context, event); 2390 return; 2391 } 2392 2393 /* 2394 * Should not happen, we validate the ctx is still alive before calling. 2395 */ 2396 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2397 return; 2398 2399 /* 2400 * Installing events is tricky because we cannot rely on ctx->is_active 2401 * to be set in case this is the nr_events 0 -> 1 transition. 2402 * 2403 * Instead we use task_curr(), which tells us if the task is running. 2404 * However, since we use task_curr() outside of rq::lock, we can race 2405 * against the actual state. This means the result can be wrong. 2406 * 2407 * If we get a false positive, we retry, this is harmless. 2408 * 2409 * If we get a false negative, things are complicated. If we are after 2410 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2411 * value must be correct. If we're before, it doesn't matter since 2412 * perf_event_context_sched_in() will program the counter. 2413 * 2414 * However, this hinges on the remote context switch having observed 2415 * our task->perf_event_ctxp[] store, such that it will in fact take 2416 * ctx::lock in perf_event_context_sched_in(). 2417 * 2418 * We do this by task_function_call(), if the IPI fails to hit the task 2419 * we know any future context switch of task must see the 2420 * perf_event_ctpx[] store. 2421 */ 2422 2423 /* 2424 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2425 * task_cpu() load, such that if the IPI then does not find the task 2426 * running, a future context switch of that task must observe the 2427 * store. 2428 */ 2429 smp_mb(); 2430 again: 2431 if (!task_function_call(task, __perf_install_in_context, event)) 2432 return; 2433 2434 raw_spin_lock_irq(&ctx->lock); 2435 task = ctx->task; 2436 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2437 /* 2438 * Cannot happen because we already checked above (which also 2439 * cannot happen), and we hold ctx->mutex, which serializes us 2440 * against perf_event_exit_task_context(). 2441 */ 2442 raw_spin_unlock_irq(&ctx->lock); 2443 return; 2444 } 2445 /* 2446 * If the task is not running, ctx->lock will avoid it becoming so, 2447 * thus we can safely install the event. 2448 */ 2449 if (task_curr(task)) { 2450 raw_spin_unlock_irq(&ctx->lock); 2451 goto again; 2452 } 2453 add_event_to_ctx(event, ctx); 2454 raw_spin_unlock_irq(&ctx->lock); 2455 } 2456 2457 /* 2458 * Put a event into inactive state and update time fields. 2459 * Enabling the leader of a group effectively enables all 2460 * the group members that aren't explicitly disabled, so we 2461 * have to update their ->tstamp_enabled also. 2462 * Note: this works for group members as well as group leaders 2463 * since the non-leader members' sibling_lists will be empty. 2464 */ 2465 static void __perf_event_mark_enabled(struct perf_event *event) 2466 { 2467 struct perf_event *sub; 2468 u64 tstamp = perf_event_time(event); 2469 2470 event->state = PERF_EVENT_STATE_INACTIVE; 2471 event->tstamp_enabled = tstamp - event->total_time_enabled; 2472 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2473 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2474 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2475 } 2476 } 2477 2478 /* 2479 * Cross CPU call to enable a performance event 2480 */ 2481 static void __perf_event_enable(struct perf_event *event, 2482 struct perf_cpu_context *cpuctx, 2483 struct perf_event_context *ctx, 2484 void *info) 2485 { 2486 struct perf_event *leader = event->group_leader; 2487 struct perf_event_context *task_ctx; 2488 2489 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2490 event->state <= PERF_EVENT_STATE_ERROR) 2491 return; 2492 2493 if (ctx->is_active) 2494 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2495 2496 __perf_event_mark_enabled(event); 2497 2498 if (!ctx->is_active) 2499 return; 2500 2501 if (!event_filter_match(event)) { 2502 if (is_cgroup_event(event)) 2503 perf_cgroup_defer_enabled(event); 2504 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2505 return; 2506 } 2507 2508 /* 2509 * If the event is in a group and isn't the group leader, 2510 * then don't put it on unless the group is on. 2511 */ 2512 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2513 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2514 return; 2515 } 2516 2517 task_ctx = cpuctx->task_ctx; 2518 if (ctx->task) 2519 WARN_ON_ONCE(task_ctx != ctx); 2520 2521 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2522 } 2523 2524 /* 2525 * Enable a event. 2526 * 2527 * If event->ctx is a cloned context, callers must make sure that 2528 * every task struct that event->ctx->task could possibly point to 2529 * remains valid. This condition is satisfied when called through 2530 * perf_event_for_each_child or perf_event_for_each as described 2531 * for perf_event_disable. 2532 */ 2533 static void _perf_event_enable(struct perf_event *event) 2534 { 2535 struct perf_event_context *ctx = event->ctx; 2536 2537 raw_spin_lock_irq(&ctx->lock); 2538 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2539 event->state < PERF_EVENT_STATE_ERROR) { 2540 raw_spin_unlock_irq(&ctx->lock); 2541 return; 2542 } 2543 2544 /* 2545 * If the event is in error state, clear that first. 2546 * 2547 * That way, if we see the event in error state below, we know that it 2548 * has gone back into error state, as distinct from the task having 2549 * been scheduled away before the cross-call arrived. 2550 */ 2551 if (event->state == PERF_EVENT_STATE_ERROR) 2552 event->state = PERF_EVENT_STATE_OFF; 2553 raw_spin_unlock_irq(&ctx->lock); 2554 2555 event_function_call(event, __perf_event_enable, NULL); 2556 } 2557 2558 /* 2559 * See perf_event_disable(); 2560 */ 2561 void perf_event_enable(struct perf_event *event) 2562 { 2563 struct perf_event_context *ctx; 2564 2565 ctx = perf_event_ctx_lock(event); 2566 _perf_event_enable(event); 2567 perf_event_ctx_unlock(event, ctx); 2568 } 2569 EXPORT_SYMBOL_GPL(perf_event_enable); 2570 2571 struct stop_event_data { 2572 struct perf_event *event; 2573 unsigned int restart; 2574 }; 2575 2576 static int __perf_event_stop(void *info) 2577 { 2578 struct stop_event_data *sd = info; 2579 struct perf_event *event = sd->event; 2580 2581 /* if it's already INACTIVE, do nothing */ 2582 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2583 return 0; 2584 2585 /* matches smp_wmb() in event_sched_in() */ 2586 smp_rmb(); 2587 2588 /* 2589 * There is a window with interrupts enabled before we get here, 2590 * so we need to check again lest we try to stop another CPU's event. 2591 */ 2592 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2593 return -EAGAIN; 2594 2595 event->pmu->stop(event, PERF_EF_UPDATE); 2596 2597 /* 2598 * May race with the actual stop (through perf_pmu_output_stop()), 2599 * but it is only used for events with AUX ring buffer, and such 2600 * events will refuse to restart because of rb::aux_mmap_count==0, 2601 * see comments in perf_aux_output_begin(). 2602 * 2603 * Since this is happening on a event-local CPU, no trace is lost 2604 * while restarting. 2605 */ 2606 if (sd->restart) 2607 event->pmu->start(event, 0); 2608 2609 return 0; 2610 } 2611 2612 static int perf_event_stop(struct perf_event *event, int restart) 2613 { 2614 struct stop_event_data sd = { 2615 .event = event, 2616 .restart = restart, 2617 }; 2618 int ret = 0; 2619 2620 do { 2621 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2622 return 0; 2623 2624 /* matches smp_wmb() in event_sched_in() */ 2625 smp_rmb(); 2626 2627 /* 2628 * We only want to restart ACTIVE events, so if the event goes 2629 * inactive here (event->oncpu==-1), there's nothing more to do; 2630 * fall through with ret==-ENXIO. 2631 */ 2632 ret = cpu_function_call(READ_ONCE(event->oncpu), 2633 __perf_event_stop, &sd); 2634 } while (ret == -EAGAIN); 2635 2636 return ret; 2637 } 2638 2639 /* 2640 * In order to contain the amount of racy and tricky in the address filter 2641 * configuration management, it is a two part process: 2642 * 2643 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2644 * we update the addresses of corresponding vmas in 2645 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2646 * (p2) when an event is scheduled in (pmu::add), it calls 2647 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2648 * if the generation has changed since the previous call. 2649 * 2650 * If (p1) happens while the event is active, we restart it to force (p2). 2651 * 2652 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2653 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2654 * ioctl; 2655 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2656 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2657 * for reading; 2658 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2659 * of exec. 2660 */ 2661 void perf_event_addr_filters_sync(struct perf_event *event) 2662 { 2663 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2664 2665 if (!has_addr_filter(event)) 2666 return; 2667 2668 raw_spin_lock(&ifh->lock); 2669 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2670 event->pmu->addr_filters_sync(event); 2671 event->hw.addr_filters_gen = event->addr_filters_gen; 2672 } 2673 raw_spin_unlock(&ifh->lock); 2674 } 2675 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2676 2677 static int _perf_event_refresh(struct perf_event *event, int refresh) 2678 { 2679 /* 2680 * not supported on inherited events 2681 */ 2682 if (event->attr.inherit || !is_sampling_event(event)) 2683 return -EINVAL; 2684 2685 atomic_add(refresh, &event->event_limit); 2686 _perf_event_enable(event); 2687 2688 return 0; 2689 } 2690 2691 /* 2692 * See perf_event_disable() 2693 */ 2694 int perf_event_refresh(struct perf_event *event, int refresh) 2695 { 2696 struct perf_event_context *ctx; 2697 int ret; 2698 2699 ctx = perf_event_ctx_lock(event); 2700 ret = _perf_event_refresh(event, refresh); 2701 perf_event_ctx_unlock(event, ctx); 2702 2703 return ret; 2704 } 2705 EXPORT_SYMBOL_GPL(perf_event_refresh); 2706 2707 static void ctx_sched_out(struct perf_event_context *ctx, 2708 struct perf_cpu_context *cpuctx, 2709 enum event_type_t event_type) 2710 { 2711 int is_active = ctx->is_active; 2712 struct perf_event *event; 2713 2714 lockdep_assert_held(&ctx->lock); 2715 2716 if (likely(!ctx->nr_events)) { 2717 /* 2718 * See __perf_remove_from_context(). 2719 */ 2720 WARN_ON_ONCE(ctx->is_active); 2721 if (ctx->task) 2722 WARN_ON_ONCE(cpuctx->task_ctx); 2723 return; 2724 } 2725 2726 ctx->is_active &= ~event_type; 2727 if (!(ctx->is_active & EVENT_ALL)) 2728 ctx->is_active = 0; 2729 2730 if (ctx->task) { 2731 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2732 if (!ctx->is_active) 2733 cpuctx->task_ctx = NULL; 2734 } 2735 2736 /* 2737 * Always update time if it was set; not only when it changes. 2738 * Otherwise we can 'forget' to update time for any but the last 2739 * context we sched out. For example: 2740 * 2741 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2742 * ctx_sched_out(.event_type = EVENT_PINNED) 2743 * 2744 * would only update time for the pinned events. 2745 */ 2746 if (is_active & EVENT_TIME) { 2747 /* update (and stop) ctx time */ 2748 update_context_time(ctx); 2749 update_cgrp_time_from_cpuctx(cpuctx); 2750 } 2751 2752 is_active ^= ctx->is_active; /* changed bits */ 2753 2754 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2755 return; 2756 2757 perf_pmu_disable(ctx->pmu); 2758 if (is_active & EVENT_PINNED) { 2759 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2760 group_sched_out(event, cpuctx, ctx); 2761 } 2762 2763 if (is_active & EVENT_FLEXIBLE) { 2764 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2765 group_sched_out(event, cpuctx, ctx); 2766 } 2767 perf_pmu_enable(ctx->pmu); 2768 } 2769 2770 /* 2771 * Test whether two contexts are equivalent, i.e. whether they have both been 2772 * cloned from the same version of the same context. 2773 * 2774 * Equivalence is measured using a generation number in the context that is 2775 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2776 * and list_del_event(). 2777 */ 2778 static int context_equiv(struct perf_event_context *ctx1, 2779 struct perf_event_context *ctx2) 2780 { 2781 lockdep_assert_held(&ctx1->lock); 2782 lockdep_assert_held(&ctx2->lock); 2783 2784 /* Pinning disables the swap optimization */ 2785 if (ctx1->pin_count || ctx2->pin_count) 2786 return 0; 2787 2788 /* If ctx1 is the parent of ctx2 */ 2789 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2790 return 1; 2791 2792 /* If ctx2 is the parent of ctx1 */ 2793 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2794 return 1; 2795 2796 /* 2797 * If ctx1 and ctx2 have the same parent; we flatten the parent 2798 * hierarchy, see perf_event_init_context(). 2799 */ 2800 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2801 ctx1->parent_gen == ctx2->parent_gen) 2802 return 1; 2803 2804 /* Unmatched */ 2805 return 0; 2806 } 2807 2808 static void __perf_event_sync_stat(struct perf_event *event, 2809 struct perf_event *next_event) 2810 { 2811 u64 value; 2812 2813 if (!event->attr.inherit_stat) 2814 return; 2815 2816 /* 2817 * Update the event value, we cannot use perf_event_read() 2818 * because we're in the middle of a context switch and have IRQs 2819 * disabled, which upsets smp_call_function_single(), however 2820 * we know the event must be on the current CPU, therefore we 2821 * don't need to use it. 2822 */ 2823 switch (event->state) { 2824 case PERF_EVENT_STATE_ACTIVE: 2825 event->pmu->read(event); 2826 /* fall-through */ 2827 2828 case PERF_EVENT_STATE_INACTIVE: 2829 update_event_times(event); 2830 break; 2831 2832 default: 2833 break; 2834 } 2835 2836 /* 2837 * In order to keep per-task stats reliable we need to flip the event 2838 * values when we flip the contexts. 2839 */ 2840 value = local64_read(&next_event->count); 2841 value = local64_xchg(&event->count, value); 2842 local64_set(&next_event->count, value); 2843 2844 swap(event->total_time_enabled, next_event->total_time_enabled); 2845 swap(event->total_time_running, next_event->total_time_running); 2846 2847 /* 2848 * Since we swizzled the values, update the user visible data too. 2849 */ 2850 perf_event_update_userpage(event); 2851 perf_event_update_userpage(next_event); 2852 } 2853 2854 static void perf_event_sync_stat(struct perf_event_context *ctx, 2855 struct perf_event_context *next_ctx) 2856 { 2857 struct perf_event *event, *next_event; 2858 2859 if (!ctx->nr_stat) 2860 return; 2861 2862 update_context_time(ctx); 2863 2864 event = list_first_entry(&ctx->event_list, 2865 struct perf_event, event_entry); 2866 2867 next_event = list_first_entry(&next_ctx->event_list, 2868 struct perf_event, event_entry); 2869 2870 while (&event->event_entry != &ctx->event_list && 2871 &next_event->event_entry != &next_ctx->event_list) { 2872 2873 __perf_event_sync_stat(event, next_event); 2874 2875 event = list_next_entry(event, event_entry); 2876 next_event = list_next_entry(next_event, event_entry); 2877 } 2878 } 2879 2880 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2881 struct task_struct *next) 2882 { 2883 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2884 struct perf_event_context *next_ctx; 2885 struct perf_event_context *parent, *next_parent; 2886 struct perf_cpu_context *cpuctx; 2887 int do_switch = 1; 2888 2889 if (likely(!ctx)) 2890 return; 2891 2892 cpuctx = __get_cpu_context(ctx); 2893 if (!cpuctx->task_ctx) 2894 return; 2895 2896 rcu_read_lock(); 2897 next_ctx = next->perf_event_ctxp[ctxn]; 2898 if (!next_ctx) 2899 goto unlock; 2900 2901 parent = rcu_dereference(ctx->parent_ctx); 2902 next_parent = rcu_dereference(next_ctx->parent_ctx); 2903 2904 /* If neither context have a parent context; they cannot be clones. */ 2905 if (!parent && !next_parent) 2906 goto unlock; 2907 2908 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2909 /* 2910 * Looks like the two contexts are clones, so we might be 2911 * able to optimize the context switch. We lock both 2912 * contexts and check that they are clones under the 2913 * lock (including re-checking that neither has been 2914 * uncloned in the meantime). It doesn't matter which 2915 * order we take the locks because no other cpu could 2916 * be trying to lock both of these tasks. 2917 */ 2918 raw_spin_lock(&ctx->lock); 2919 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2920 if (context_equiv(ctx, next_ctx)) { 2921 WRITE_ONCE(ctx->task, next); 2922 WRITE_ONCE(next_ctx->task, task); 2923 2924 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2925 2926 /* 2927 * RCU_INIT_POINTER here is safe because we've not 2928 * modified the ctx and the above modification of 2929 * ctx->task and ctx->task_ctx_data are immaterial 2930 * since those values are always verified under 2931 * ctx->lock which we're now holding. 2932 */ 2933 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2934 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2935 2936 do_switch = 0; 2937 2938 perf_event_sync_stat(ctx, next_ctx); 2939 } 2940 raw_spin_unlock(&next_ctx->lock); 2941 raw_spin_unlock(&ctx->lock); 2942 } 2943 unlock: 2944 rcu_read_unlock(); 2945 2946 if (do_switch) { 2947 raw_spin_lock(&ctx->lock); 2948 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2949 raw_spin_unlock(&ctx->lock); 2950 } 2951 } 2952 2953 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2954 2955 void perf_sched_cb_dec(struct pmu *pmu) 2956 { 2957 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2958 2959 this_cpu_dec(perf_sched_cb_usages); 2960 2961 if (!--cpuctx->sched_cb_usage) 2962 list_del(&cpuctx->sched_cb_entry); 2963 } 2964 2965 2966 void perf_sched_cb_inc(struct pmu *pmu) 2967 { 2968 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2969 2970 if (!cpuctx->sched_cb_usage++) 2971 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2972 2973 this_cpu_inc(perf_sched_cb_usages); 2974 } 2975 2976 /* 2977 * This function provides the context switch callback to the lower code 2978 * layer. It is invoked ONLY when the context switch callback is enabled. 2979 * 2980 * This callback is relevant even to per-cpu events; for example multi event 2981 * PEBS requires this to provide PID/TID information. This requires we flush 2982 * all queued PEBS records before we context switch to a new task. 2983 */ 2984 static void perf_pmu_sched_task(struct task_struct *prev, 2985 struct task_struct *next, 2986 bool sched_in) 2987 { 2988 struct perf_cpu_context *cpuctx; 2989 struct pmu *pmu; 2990 2991 if (prev == next) 2992 return; 2993 2994 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2995 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2996 2997 if (WARN_ON_ONCE(!pmu->sched_task)) 2998 continue; 2999 3000 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3001 perf_pmu_disable(pmu); 3002 3003 pmu->sched_task(cpuctx->task_ctx, sched_in); 3004 3005 perf_pmu_enable(pmu); 3006 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3007 } 3008 } 3009 3010 static void perf_event_switch(struct task_struct *task, 3011 struct task_struct *next_prev, bool sched_in); 3012 3013 #define for_each_task_context_nr(ctxn) \ 3014 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3015 3016 /* 3017 * Called from scheduler to remove the events of the current task, 3018 * with interrupts disabled. 3019 * 3020 * We stop each event and update the event value in event->count. 3021 * 3022 * This does not protect us against NMI, but disable() 3023 * sets the disabled bit in the control field of event _before_ 3024 * accessing the event control register. If a NMI hits, then it will 3025 * not restart the event. 3026 */ 3027 void __perf_event_task_sched_out(struct task_struct *task, 3028 struct task_struct *next) 3029 { 3030 int ctxn; 3031 3032 if (__this_cpu_read(perf_sched_cb_usages)) 3033 perf_pmu_sched_task(task, next, false); 3034 3035 if (atomic_read(&nr_switch_events)) 3036 perf_event_switch(task, next, false); 3037 3038 for_each_task_context_nr(ctxn) 3039 perf_event_context_sched_out(task, ctxn, next); 3040 3041 /* 3042 * if cgroup events exist on this CPU, then we need 3043 * to check if we have to switch out PMU state. 3044 * cgroup event are system-wide mode only 3045 */ 3046 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3047 perf_cgroup_sched_out(task, next); 3048 } 3049 3050 /* 3051 * Called with IRQs disabled 3052 */ 3053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3054 enum event_type_t event_type) 3055 { 3056 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3057 } 3058 3059 static void 3060 ctx_pinned_sched_in(struct perf_event_context *ctx, 3061 struct perf_cpu_context *cpuctx) 3062 { 3063 struct perf_event *event; 3064 3065 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3066 if (event->state <= PERF_EVENT_STATE_OFF) 3067 continue; 3068 if (!event_filter_match(event)) 3069 continue; 3070 3071 /* may need to reset tstamp_enabled */ 3072 if (is_cgroup_event(event)) 3073 perf_cgroup_mark_enabled(event, ctx); 3074 3075 if (group_can_go_on(event, cpuctx, 1)) 3076 group_sched_in(event, cpuctx, ctx); 3077 3078 /* 3079 * If this pinned group hasn't been scheduled, 3080 * put it in error state. 3081 */ 3082 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3083 update_group_times(event); 3084 event->state = PERF_EVENT_STATE_ERROR; 3085 } 3086 } 3087 } 3088 3089 static void 3090 ctx_flexible_sched_in(struct perf_event_context *ctx, 3091 struct perf_cpu_context *cpuctx) 3092 { 3093 struct perf_event *event; 3094 int can_add_hw = 1; 3095 3096 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3097 /* Ignore events in OFF or ERROR state */ 3098 if (event->state <= PERF_EVENT_STATE_OFF) 3099 continue; 3100 /* 3101 * Listen to the 'cpu' scheduling filter constraint 3102 * of events: 3103 */ 3104 if (!event_filter_match(event)) 3105 continue; 3106 3107 /* may need to reset tstamp_enabled */ 3108 if (is_cgroup_event(event)) 3109 perf_cgroup_mark_enabled(event, ctx); 3110 3111 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3112 if (group_sched_in(event, cpuctx, ctx)) 3113 can_add_hw = 0; 3114 } 3115 } 3116 } 3117 3118 static void 3119 ctx_sched_in(struct perf_event_context *ctx, 3120 struct perf_cpu_context *cpuctx, 3121 enum event_type_t event_type, 3122 struct task_struct *task) 3123 { 3124 int is_active = ctx->is_active; 3125 u64 now; 3126 3127 lockdep_assert_held(&ctx->lock); 3128 3129 if (likely(!ctx->nr_events)) 3130 return; 3131 3132 ctx->is_active |= (event_type | EVENT_TIME); 3133 if (ctx->task) { 3134 if (!is_active) 3135 cpuctx->task_ctx = ctx; 3136 else 3137 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3138 } 3139 3140 is_active ^= ctx->is_active; /* changed bits */ 3141 3142 if (is_active & EVENT_TIME) { 3143 /* start ctx time */ 3144 now = perf_clock(); 3145 ctx->timestamp = now; 3146 perf_cgroup_set_timestamp(task, ctx); 3147 } 3148 3149 /* 3150 * First go through the list and put on any pinned groups 3151 * in order to give them the best chance of going on. 3152 */ 3153 if (is_active & EVENT_PINNED) 3154 ctx_pinned_sched_in(ctx, cpuctx); 3155 3156 /* Then walk through the lower prio flexible groups */ 3157 if (is_active & EVENT_FLEXIBLE) 3158 ctx_flexible_sched_in(ctx, cpuctx); 3159 } 3160 3161 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3162 enum event_type_t event_type, 3163 struct task_struct *task) 3164 { 3165 struct perf_event_context *ctx = &cpuctx->ctx; 3166 3167 ctx_sched_in(ctx, cpuctx, event_type, task); 3168 } 3169 3170 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3171 struct task_struct *task) 3172 { 3173 struct perf_cpu_context *cpuctx; 3174 3175 cpuctx = __get_cpu_context(ctx); 3176 if (cpuctx->task_ctx == ctx) 3177 return; 3178 3179 perf_ctx_lock(cpuctx, ctx); 3180 perf_pmu_disable(ctx->pmu); 3181 /* 3182 * We want to keep the following priority order: 3183 * cpu pinned (that don't need to move), task pinned, 3184 * cpu flexible, task flexible. 3185 * 3186 * However, if task's ctx is not carrying any pinned 3187 * events, no need to flip the cpuctx's events around. 3188 */ 3189 if (!list_empty(&ctx->pinned_groups)) 3190 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3191 perf_event_sched_in(cpuctx, ctx, task); 3192 perf_pmu_enable(ctx->pmu); 3193 perf_ctx_unlock(cpuctx, ctx); 3194 } 3195 3196 /* 3197 * Called from scheduler to add the events of the current task 3198 * with interrupts disabled. 3199 * 3200 * We restore the event value and then enable it. 3201 * 3202 * This does not protect us against NMI, but enable() 3203 * sets the enabled bit in the control field of event _before_ 3204 * accessing the event control register. If a NMI hits, then it will 3205 * keep the event running. 3206 */ 3207 void __perf_event_task_sched_in(struct task_struct *prev, 3208 struct task_struct *task) 3209 { 3210 struct perf_event_context *ctx; 3211 int ctxn; 3212 3213 /* 3214 * If cgroup events exist on this CPU, then we need to check if we have 3215 * to switch in PMU state; cgroup event are system-wide mode only. 3216 * 3217 * Since cgroup events are CPU events, we must schedule these in before 3218 * we schedule in the task events. 3219 */ 3220 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3221 perf_cgroup_sched_in(prev, task); 3222 3223 for_each_task_context_nr(ctxn) { 3224 ctx = task->perf_event_ctxp[ctxn]; 3225 if (likely(!ctx)) 3226 continue; 3227 3228 perf_event_context_sched_in(ctx, task); 3229 } 3230 3231 if (atomic_read(&nr_switch_events)) 3232 perf_event_switch(task, prev, true); 3233 3234 if (__this_cpu_read(perf_sched_cb_usages)) 3235 perf_pmu_sched_task(prev, task, true); 3236 } 3237 3238 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3239 { 3240 u64 frequency = event->attr.sample_freq; 3241 u64 sec = NSEC_PER_SEC; 3242 u64 divisor, dividend; 3243 3244 int count_fls, nsec_fls, frequency_fls, sec_fls; 3245 3246 count_fls = fls64(count); 3247 nsec_fls = fls64(nsec); 3248 frequency_fls = fls64(frequency); 3249 sec_fls = 30; 3250 3251 /* 3252 * We got @count in @nsec, with a target of sample_freq HZ 3253 * the target period becomes: 3254 * 3255 * @count * 10^9 3256 * period = ------------------- 3257 * @nsec * sample_freq 3258 * 3259 */ 3260 3261 /* 3262 * Reduce accuracy by one bit such that @a and @b converge 3263 * to a similar magnitude. 3264 */ 3265 #define REDUCE_FLS(a, b) \ 3266 do { \ 3267 if (a##_fls > b##_fls) { \ 3268 a >>= 1; \ 3269 a##_fls--; \ 3270 } else { \ 3271 b >>= 1; \ 3272 b##_fls--; \ 3273 } \ 3274 } while (0) 3275 3276 /* 3277 * Reduce accuracy until either term fits in a u64, then proceed with 3278 * the other, so that finally we can do a u64/u64 division. 3279 */ 3280 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3281 REDUCE_FLS(nsec, frequency); 3282 REDUCE_FLS(sec, count); 3283 } 3284 3285 if (count_fls + sec_fls > 64) { 3286 divisor = nsec * frequency; 3287 3288 while (count_fls + sec_fls > 64) { 3289 REDUCE_FLS(count, sec); 3290 divisor >>= 1; 3291 } 3292 3293 dividend = count * sec; 3294 } else { 3295 dividend = count * sec; 3296 3297 while (nsec_fls + frequency_fls > 64) { 3298 REDUCE_FLS(nsec, frequency); 3299 dividend >>= 1; 3300 } 3301 3302 divisor = nsec * frequency; 3303 } 3304 3305 if (!divisor) 3306 return dividend; 3307 3308 return div64_u64(dividend, divisor); 3309 } 3310 3311 static DEFINE_PER_CPU(int, perf_throttled_count); 3312 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3313 3314 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3315 { 3316 struct hw_perf_event *hwc = &event->hw; 3317 s64 period, sample_period; 3318 s64 delta; 3319 3320 period = perf_calculate_period(event, nsec, count); 3321 3322 delta = (s64)(period - hwc->sample_period); 3323 delta = (delta + 7) / 8; /* low pass filter */ 3324 3325 sample_period = hwc->sample_period + delta; 3326 3327 if (!sample_period) 3328 sample_period = 1; 3329 3330 hwc->sample_period = sample_period; 3331 3332 if (local64_read(&hwc->period_left) > 8*sample_period) { 3333 if (disable) 3334 event->pmu->stop(event, PERF_EF_UPDATE); 3335 3336 local64_set(&hwc->period_left, 0); 3337 3338 if (disable) 3339 event->pmu->start(event, PERF_EF_RELOAD); 3340 } 3341 } 3342 3343 /* 3344 * combine freq adjustment with unthrottling to avoid two passes over the 3345 * events. At the same time, make sure, having freq events does not change 3346 * the rate of unthrottling as that would introduce bias. 3347 */ 3348 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3349 int needs_unthr) 3350 { 3351 struct perf_event *event; 3352 struct hw_perf_event *hwc; 3353 u64 now, period = TICK_NSEC; 3354 s64 delta; 3355 3356 /* 3357 * only need to iterate over all events iff: 3358 * - context have events in frequency mode (needs freq adjust) 3359 * - there are events to unthrottle on this cpu 3360 */ 3361 if (!(ctx->nr_freq || needs_unthr)) 3362 return; 3363 3364 raw_spin_lock(&ctx->lock); 3365 perf_pmu_disable(ctx->pmu); 3366 3367 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3368 if (event->state != PERF_EVENT_STATE_ACTIVE) 3369 continue; 3370 3371 if (!event_filter_match(event)) 3372 continue; 3373 3374 perf_pmu_disable(event->pmu); 3375 3376 hwc = &event->hw; 3377 3378 if (hwc->interrupts == MAX_INTERRUPTS) { 3379 hwc->interrupts = 0; 3380 perf_log_throttle(event, 1); 3381 event->pmu->start(event, 0); 3382 } 3383 3384 if (!event->attr.freq || !event->attr.sample_freq) 3385 goto next; 3386 3387 /* 3388 * stop the event and update event->count 3389 */ 3390 event->pmu->stop(event, PERF_EF_UPDATE); 3391 3392 now = local64_read(&event->count); 3393 delta = now - hwc->freq_count_stamp; 3394 hwc->freq_count_stamp = now; 3395 3396 /* 3397 * restart the event 3398 * reload only if value has changed 3399 * we have stopped the event so tell that 3400 * to perf_adjust_period() to avoid stopping it 3401 * twice. 3402 */ 3403 if (delta > 0) 3404 perf_adjust_period(event, period, delta, false); 3405 3406 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3407 next: 3408 perf_pmu_enable(event->pmu); 3409 } 3410 3411 perf_pmu_enable(ctx->pmu); 3412 raw_spin_unlock(&ctx->lock); 3413 } 3414 3415 /* 3416 * Round-robin a context's events: 3417 */ 3418 static void rotate_ctx(struct perf_event_context *ctx) 3419 { 3420 /* 3421 * Rotate the first entry last of non-pinned groups. Rotation might be 3422 * disabled by the inheritance code. 3423 */ 3424 if (!ctx->rotate_disable) 3425 list_rotate_left(&ctx->flexible_groups); 3426 } 3427 3428 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3429 { 3430 struct perf_event_context *ctx = NULL; 3431 int rotate = 0; 3432 3433 if (cpuctx->ctx.nr_events) { 3434 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3435 rotate = 1; 3436 } 3437 3438 ctx = cpuctx->task_ctx; 3439 if (ctx && ctx->nr_events) { 3440 if (ctx->nr_events != ctx->nr_active) 3441 rotate = 1; 3442 } 3443 3444 if (!rotate) 3445 goto done; 3446 3447 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3448 perf_pmu_disable(cpuctx->ctx.pmu); 3449 3450 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3451 if (ctx) 3452 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3453 3454 rotate_ctx(&cpuctx->ctx); 3455 if (ctx) 3456 rotate_ctx(ctx); 3457 3458 perf_event_sched_in(cpuctx, ctx, current); 3459 3460 perf_pmu_enable(cpuctx->ctx.pmu); 3461 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3462 done: 3463 3464 return rotate; 3465 } 3466 3467 void perf_event_task_tick(void) 3468 { 3469 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3470 struct perf_event_context *ctx, *tmp; 3471 int throttled; 3472 3473 WARN_ON(!irqs_disabled()); 3474 3475 __this_cpu_inc(perf_throttled_seq); 3476 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3477 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3478 3479 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3480 perf_adjust_freq_unthr_context(ctx, throttled); 3481 } 3482 3483 static int event_enable_on_exec(struct perf_event *event, 3484 struct perf_event_context *ctx) 3485 { 3486 if (!event->attr.enable_on_exec) 3487 return 0; 3488 3489 event->attr.enable_on_exec = 0; 3490 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3491 return 0; 3492 3493 __perf_event_mark_enabled(event); 3494 3495 return 1; 3496 } 3497 3498 /* 3499 * Enable all of a task's events that have been marked enable-on-exec. 3500 * This expects task == current. 3501 */ 3502 static void perf_event_enable_on_exec(int ctxn) 3503 { 3504 struct perf_event_context *ctx, *clone_ctx = NULL; 3505 enum event_type_t event_type = 0; 3506 struct perf_cpu_context *cpuctx; 3507 struct perf_event *event; 3508 unsigned long flags; 3509 int enabled = 0; 3510 3511 local_irq_save(flags); 3512 ctx = current->perf_event_ctxp[ctxn]; 3513 if (!ctx || !ctx->nr_events) 3514 goto out; 3515 3516 cpuctx = __get_cpu_context(ctx); 3517 perf_ctx_lock(cpuctx, ctx); 3518 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3519 list_for_each_entry(event, &ctx->event_list, event_entry) { 3520 enabled |= event_enable_on_exec(event, ctx); 3521 event_type |= get_event_type(event); 3522 } 3523 3524 /* 3525 * Unclone and reschedule this context if we enabled any event. 3526 */ 3527 if (enabled) { 3528 clone_ctx = unclone_ctx(ctx); 3529 ctx_resched(cpuctx, ctx, event_type); 3530 } else { 3531 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3532 } 3533 perf_ctx_unlock(cpuctx, ctx); 3534 3535 out: 3536 local_irq_restore(flags); 3537 3538 if (clone_ctx) 3539 put_ctx(clone_ctx); 3540 } 3541 3542 struct perf_read_data { 3543 struct perf_event *event; 3544 bool group; 3545 int ret; 3546 }; 3547 3548 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3549 { 3550 u16 local_pkg, event_pkg; 3551 3552 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3553 int local_cpu = smp_processor_id(); 3554 3555 event_pkg = topology_physical_package_id(event_cpu); 3556 local_pkg = topology_physical_package_id(local_cpu); 3557 3558 if (event_pkg == local_pkg) 3559 return local_cpu; 3560 } 3561 3562 return event_cpu; 3563 } 3564 3565 /* 3566 * Cross CPU call to read the hardware event 3567 */ 3568 static void __perf_event_read(void *info) 3569 { 3570 struct perf_read_data *data = info; 3571 struct perf_event *sub, *event = data->event; 3572 struct perf_event_context *ctx = event->ctx; 3573 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3574 struct pmu *pmu = event->pmu; 3575 3576 /* 3577 * If this is a task context, we need to check whether it is 3578 * the current task context of this cpu. If not it has been 3579 * scheduled out before the smp call arrived. In that case 3580 * event->count would have been updated to a recent sample 3581 * when the event was scheduled out. 3582 */ 3583 if (ctx->task && cpuctx->task_ctx != ctx) 3584 return; 3585 3586 raw_spin_lock(&ctx->lock); 3587 if (ctx->is_active) { 3588 update_context_time(ctx); 3589 update_cgrp_time_from_event(event); 3590 } 3591 3592 update_event_times(event); 3593 if (event->state != PERF_EVENT_STATE_ACTIVE) 3594 goto unlock; 3595 3596 if (!data->group) { 3597 pmu->read(event); 3598 data->ret = 0; 3599 goto unlock; 3600 } 3601 3602 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3603 3604 pmu->read(event); 3605 3606 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3607 update_event_times(sub); 3608 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3609 /* 3610 * Use sibling's PMU rather than @event's since 3611 * sibling could be on different (eg: software) PMU. 3612 */ 3613 sub->pmu->read(sub); 3614 } 3615 } 3616 3617 data->ret = pmu->commit_txn(pmu); 3618 3619 unlock: 3620 raw_spin_unlock(&ctx->lock); 3621 } 3622 3623 static inline u64 perf_event_count(struct perf_event *event) 3624 { 3625 if (event->pmu->count) 3626 return event->pmu->count(event); 3627 3628 return __perf_event_count(event); 3629 } 3630 3631 /* 3632 * NMI-safe method to read a local event, that is an event that 3633 * is: 3634 * - either for the current task, or for this CPU 3635 * - does not have inherit set, for inherited task events 3636 * will not be local and we cannot read them atomically 3637 * - must not have a pmu::count method 3638 */ 3639 int perf_event_read_local(struct perf_event *event, u64 *value) 3640 { 3641 unsigned long flags; 3642 int ret = 0; 3643 3644 /* 3645 * Disabling interrupts avoids all counter scheduling (context 3646 * switches, timer based rotation and IPIs). 3647 */ 3648 local_irq_save(flags); 3649 3650 /* 3651 * It must not be an event with inherit set, we cannot read 3652 * all child counters from atomic context. 3653 */ 3654 if (event->attr.inherit) { 3655 ret = -EOPNOTSUPP; 3656 goto out; 3657 } 3658 3659 /* 3660 * It must not have a pmu::count method, those are not 3661 * NMI safe. 3662 */ 3663 if (event->pmu->count) { 3664 ret = -EOPNOTSUPP; 3665 goto out; 3666 } 3667 3668 /* If this is a per-task event, it must be for current */ 3669 if ((event->attach_state & PERF_ATTACH_TASK) && 3670 event->hw.target != current) { 3671 ret = -EINVAL; 3672 goto out; 3673 } 3674 3675 /* If this is a per-CPU event, it must be for this CPU */ 3676 if (!(event->attach_state & PERF_ATTACH_TASK) && 3677 event->cpu != smp_processor_id()) { 3678 ret = -EINVAL; 3679 goto out; 3680 } 3681 3682 /* 3683 * If the event is currently on this CPU, its either a per-task event, 3684 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3685 * oncpu == -1). 3686 */ 3687 if (event->oncpu == smp_processor_id()) 3688 event->pmu->read(event); 3689 3690 *value = local64_read(&event->count); 3691 out: 3692 local_irq_restore(flags); 3693 3694 return ret; 3695 } 3696 3697 static int perf_event_read(struct perf_event *event, bool group) 3698 { 3699 int event_cpu, ret = 0; 3700 3701 /* 3702 * If event is enabled and currently active on a CPU, update the 3703 * value in the event structure: 3704 */ 3705 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3706 struct perf_read_data data = { 3707 .event = event, 3708 .group = group, 3709 .ret = 0, 3710 }; 3711 3712 event_cpu = READ_ONCE(event->oncpu); 3713 if ((unsigned)event_cpu >= nr_cpu_ids) 3714 return 0; 3715 3716 preempt_disable(); 3717 event_cpu = __perf_event_read_cpu(event, event_cpu); 3718 3719 /* 3720 * Purposely ignore the smp_call_function_single() return 3721 * value. 3722 * 3723 * If event_cpu isn't a valid CPU it means the event got 3724 * scheduled out and that will have updated the event count. 3725 * 3726 * Therefore, either way, we'll have an up-to-date event count 3727 * after this. 3728 */ 3729 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3730 preempt_enable(); 3731 ret = data.ret; 3732 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3733 struct perf_event_context *ctx = event->ctx; 3734 unsigned long flags; 3735 3736 raw_spin_lock_irqsave(&ctx->lock, flags); 3737 /* 3738 * may read while context is not active 3739 * (e.g., thread is blocked), in that case 3740 * we cannot update context time 3741 */ 3742 if (ctx->is_active) { 3743 update_context_time(ctx); 3744 update_cgrp_time_from_event(event); 3745 } 3746 if (group) 3747 update_group_times(event); 3748 else 3749 update_event_times(event); 3750 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3751 } 3752 3753 return ret; 3754 } 3755 3756 /* 3757 * Initialize the perf_event context in a task_struct: 3758 */ 3759 static void __perf_event_init_context(struct perf_event_context *ctx) 3760 { 3761 raw_spin_lock_init(&ctx->lock); 3762 mutex_init(&ctx->mutex); 3763 INIT_LIST_HEAD(&ctx->active_ctx_list); 3764 INIT_LIST_HEAD(&ctx->pinned_groups); 3765 INIT_LIST_HEAD(&ctx->flexible_groups); 3766 INIT_LIST_HEAD(&ctx->event_list); 3767 atomic_set(&ctx->refcount, 1); 3768 } 3769 3770 static struct perf_event_context * 3771 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3772 { 3773 struct perf_event_context *ctx; 3774 3775 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3776 if (!ctx) 3777 return NULL; 3778 3779 __perf_event_init_context(ctx); 3780 if (task) { 3781 ctx->task = task; 3782 get_task_struct(task); 3783 } 3784 ctx->pmu = pmu; 3785 3786 return ctx; 3787 } 3788 3789 static struct task_struct * 3790 find_lively_task_by_vpid(pid_t vpid) 3791 { 3792 struct task_struct *task; 3793 3794 rcu_read_lock(); 3795 if (!vpid) 3796 task = current; 3797 else 3798 task = find_task_by_vpid(vpid); 3799 if (task) 3800 get_task_struct(task); 3801 rcu_read_unlock(); 3802 3803 if (!task) 3804 return ERR_PTR(-ESRCH); 3805 3806 return task; 3807 } 3808 3809 /* 3810 * Returns a matching context with refcount and pincount. 3811 */ 3812 static struct perf_event_context * 3813 find_get_context(struct pmu *pmu, struct task_struct *task, 3814 struct perf_event *event) 3815 { 3816 struct perf_event_context *ctx, *clone_ctx = NULL; 3817 struct perf_cpu_context *cpuctx; 3818 void *task_ctx_data = NULL; 3819 unsigned long flags; 3820 int ctxn, err; 3821 int cpu = event->cpu; 3822 3823 if (!task) { 3824 /* Must be root to operate on a CPU event: */ 3825 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3826 return ERR_PTR(-EACCES); 3827 3828 /* 3829 * We could be clever and allow to attach a event to an 3830 * offline CPU and activate it when the CPU comes up, but 3831 * that's for later. 3832 */ 3833 if (!cpu_online(cpu)) 3834 return ERR_PTR(-ENODEV); 3835 3836 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3837 ctx = &cpuctx->ctx; 3838 get_ctx(ctx); 3839 ++ctx->pin_count; 3840 3841 return ctx; 3842 } 3843 3844 err = -EINVAL; 3845 ctxn = pmu->task_ctx_nr; 3846 if (ctxn < 0) 3847 goto errout; 3848 3849 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3850 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3851 if (!task_ctx_data) { 3852 err = -ENOMEM; 3853 goto errout; 3854 } 3855 } 3856 3857 retry: 3858 ctx = perf_lock_task_context(task, ctxn, &flags); 3859 if (ctx) { 3860 clone_ctx = unclone_ctx(ctx); 3861 ++ctx->pin_count; 3862 3863 if (task_ctx_data && !ctx->task_ctx_data) { 3864 ctx->task_ctx_data = task_ctx_data; 3865 task_ctx_data = NULL; 3866 } 3867 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3868 3869 if (clone_ctx) 3870 put_ctx(clone_ctx); 3871 } else { 3872 ctx = alloc_perf_context(pmu, task); 3873 err = -ENOMEM; 3874 if (!ctx) 3875 goto errout; 3876 3877 if (task_ctx_data) { 3878 ctx->task_ctx_data = task_ctx_data; 3879 task_ctx_data = NULL; 3880 } 3881 3882 err = 0; 3883 mutex_lock(&task->perf_event_mutex); 3884 /* 3885 * If it has already passed perf_event_exit_task(). 3886 * we must see PF_EXITING, it takes this mutex too. 3887 */ 3888 if (task->flags & PF_EXITING) 3889 err = -ESRCH; 3890 else if (task->perf_event_ctxp[ctxn]) 3891 err = -EAGAIN; 3892 else { 3893 get_ctx(ctx); 3894 ++ctx->pin_count; 3895 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3896 } 3897 mutex_unlock(&task->perf_event_mutex); 3898 3899 if (unlikely(err)) { 3900 put_ctx(ctx); 3901 3902 if (err == -EAGAIN) 3903 goto retry; 3904 goto errout; 3905 } 3906 } 3907 3908 kfree(task_ctx_data); 3909 return ctx; 3910 3911 errout: 3912 kfree(task_ctx_data); 3913 return ERR_PTR(err); 3914 } 3915 3916 static void perf_event_free_filter(struct perf_event *event); 3917 static void perf_event_free_bpf_prog(struct perf_event *event); 3918 3919 static void free_event_rcu(struct rcu_head *head) 3920 { 3921 struct perf_event *event; 3922 3923 event = container_of(head, struct perf_event, rcu_head); 3924 if (event->ns) 3925 put_pid_ns(event->ns); 3926 perf_event_free_filter(event); 3927 kfree(event); 3928 } 3929 3930 static void ring_buffer_attach(struct perf_event *event, 3931 struct ring_buffer *rb); 3932 3933 static void detach_sb_event(struct perf_event *event) 3934 { 3935 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3936 3937 raw_spin_lock(&pel->lock); 3938 list_del_rcu(&event->sb_list); 3939 raw_spin_unlock(&pel->lock); 3940 } 3941 3942 static bool is_sb_event(struct perf_event *event) 3943 { 3944 struct perf_event_attr *attr = &event->attr; 3945 3946 if (event->parent) 3947 return false; 3948 3949 if (event->attach_state & PERF_ATTACH_TASK) 3950 return false; 3951 3952 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3953 attr->comm || attr->comm_exec || 3954 attr->task || 3955 attr->context_switch) 3956 return true; 3957 return false; 3958 } 3959 3960 static void unaccount_pmu_sb_event(struct perf_event *event) 3961 { 3962 if (is_sb_event(event)) 3963 detach_sb_event(event); 3964 } 3965 3966 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3967 { 3968 if (event->parent) 3969 return; 3970 3971 if (is_cgroup_event(event)) 3972 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3973 } 3974 3975 #ifdef CONFIG_NO_HZ_FULL 3976 static DEFINE_SPINLOCK(nr_freq_lock); 3977 #endif 3978 3979 static void unaccount_freq_event_nohz(void) 3980 { 3981 #ifdef CONFIG_NO_HZ_FULL 3982 spin_lock(&nr_freq_lock); 3983 if (atomic_dec_and_test(&nr_freq_events)) 3984 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3985 spin_unlock(&nr_freq_lock); 3986 #endif 3987 } 3988 3989 static void unaccount_freq_event(void) 3990 { 3991 if (tick_nohz_full_enabled()) 3992 unaccount_freq_event_nohz(); 3993 else 3994 atomic_dec(&nr_freq_events); 3995 } 3996 3997 static void unaccount_event(struct perf_event *event) 3998 { 3999 bool dec = false; 4000 4001 if (event->parent) 4002 return; 4003 4004 if (event->attach_state & PERF_ATTACH_TASK) 4005 dec = true; 4006 if (event->attr.mmap || event->attr.mmap_data) 4007 atomic_dec(&nr_mmap_events); 4008 if (event->attr.comm) 4009 atomic_dec(&nr_comm_events); 4010 if (event->attr.namespaces) 4011 atomic_dec(&nr_namespaces_events); 4012 if (event->attr.task) 4013 atomic_dec(&nr_task_events); 4014 if (event->attr.freq) 4015 unaccount_freq_event(); 4016 if (event->attr.context_switch) { 4017 dec = true; 4018 atomic_dec(&nr_switch_events); 4019 } 4020 if (is_cgroup_event(event)) 4021 dec = true; 4022 if (has_branch_stack(event)) 4023 dec = true; 4024 4025 if (dec) { 4026 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4027 schedule_delayed_work(&perf_sched_work, HZ); 4028 } 4029 4030 unaccount_event_cpu(event, event->cpu); 4031 4032 unaccount_pmu_sb_event(event); 4033 } 4034 4035 static void perf_sched_delayed(struct work_struct *work) 4036 { 4037 mutex_lock(&perf_sched_mutex); 4038 if (atomic_dec_and_test(&perf_sched_count)) 4039 static_branch_disable(&perf_sched_events); 4040 mutex_unlock(&perf_sched_mutex); 4041 } 4042 4043 /* 4044 * The following implement mutual exclusion of events on "exclusive" pmus 4045 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4046 * at a time, so we disallow creating events that might conflict, namely: 4047 * 4048 * 1) cpu-wide events in the presence of per-task events, 4049 * 2) per-task events in the presence of cpu-wide events, 4050 * 3) two matching events on the same context. 4051 * 4052 * The former two cases are handled in the allocation path (perf_event_alloc(), 4053 * _free_event()), the latter -- before the first perf_install_in_context(). 4054 */ 4055 static int exclusive_event_init(struct perf_event *event) 4056 { 4057 struct pmu *pmu = event->pmu; 4058 4059 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4060 return 0; 4061 4062 /* 4063 * Prevent co-existence of per-task and cpu-wide events on the 4064 * same exclusive pmu. 4065 * 4066 * Negative pmu::exclusive_cnt means there are cpu-wide 4067 * events on this "exclusive" pmu, positive means there are 4068 * per-task events. 4069 * 4070 * Since this is called in perf_event_alloc() path, event::ctx 4071 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4072 * to mean "per-task event", because unlike other attach states it 4073 * never gets cleared. 4074 */ 4075 if (event->attach_state & PERF_ATTACH_TASK) { 4076 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4077 return -EBUSY; 4078 } else { 4079 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4080 return -EBUSY; 4081 } 4082 4083 return 0; 4084 } 4085 4086 static void exclusive_event_destroy(struct perf_event *event) 4087 { 4088 struct pmu *pmu = event->pmu; 4089 4090 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4091 return; 4092 4093 /* see comment in exclusive_event_init() */ 4094 if (event->attach_state & PERF_ATTACH_TASK) 4095 atomic_dec(&pmu->exclusive_cnt); 4096 else 4097 atomic_inc(&pmu->exclusive_cnt); 4098 } 4099 4100 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4101 { 4102 if ((e1->pmu == e2->pmu) && 4103 (e1->cpu == e2->cpu || 4104 e1->cpu == -1 || 4105 e2->cpu == -1)) 4106 return true; 4107 return false; 4108 } 4109 4110 /* Called under the same ctx::mutex as perf_install_in_context() */ 4111 static bool exclusive_event_installable(struct perf_event *event, 4112 struct perf_event_context *ctx) 4113 { 4114 struct perf_event *iter_event; 4115 struct pmu *pmu = event->pmu; 4116 4117 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4118 return true; 4119 4120 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4121 if (exclusive_event_match(iter_event, event)) 4122 return false; 4123 } 4124 4125 return true; 4126 } 4127 4128 static void perf_addr_filters_splice(struct perf_event *event, 4129 struct list_head *head); 4130 4131 static void _free_event(struct perf_event *event) 4132 { 4133 irq_work_sync(&event->pending); 4134 4135 unaccount_event(event); 4136 4137 if (event->rb) { 4138 /* 4139 * Can happen when we close an event with re-directed output. 4140 * 4141 * Since we have a 0 refcount, perf_mmap_close() will skip 4142 * over us; possibly making our ring_buffer_put() the last. 4143 */ 4144 mutex_lock(&event->mmap_mutex); 4145 ring_buffer_attach(event, NULL); 4146 mutex_unlock(&event->mmap_mutex); 4147 } 4148 4149 if (is_cgroup_event(event)) 4150 perf_detach_cgroup(event); 4151 4152 if (!event->parent) { 4153 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4154 put_callchain_buffers(); 4155 } 4156 4157 perf_event_free_bpf_prog(event); 4158 perf_addr_filters_splice(event, NULL); 4159 kfree(event->addr_filters_offs); 4160 4161 if (event->destroy) 4162 event->destroy(event); 4163 4164 if (event->ctx) 4165 put_ctx(event->ctx); 4166 4167 exclusive_event_destroy(event); 4168 module_put(event->pmu->module); 4169 4170 call_rcu(&event->rcu_head, free_event_rcu); 4171 } 4172 4173 /* 4174 * Used to free events which have a known refcount of 1, such as in error paths 4175 * where the event isn't exposed yet and inherited events. 4176 */ 4177 static void free_event(struct perf_event *event) 4178 { 4179 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4180 "unexpected event refcount: %ld; ptr=%p\n", 4181 atomic_long_read(&event->refcount), event)) { 4182 /* leak to avoid use-after-free */ 4183 return; 4184 } 4185 4186 _free_event(event); 4187 } 4188 4189 /* 4190 * Remove user event from the owner task. 4191 */ 4192 static void perf_remove_from_owner(struct perf_event *event) 4193 { 4194 struct task_struct *owner; 4195 4196 rcu_read_lock(); 4197 /* 4198 * Matches the smp_store_release() in perf_event_exit_task(). If we 4199 * observe !owner it means the list deletion is complete and we can 4200 * indeed free this event, otherwise we need to serialize on 4201 * owner->perf_event_mutex. 4202 */ 4203 owner = lockless_dereference(event->owner); 4204 if (owner) { 4205 /* 4206 * Since delayed_put_task_struct() also drops the last 4207 * task reference we can safely take a new reference 4208 * while holding the rcu_read_lock(). 4209 */ 4210 get_task_struct(owner); 4211 } 4212 rcu_read_unlock(); 4213 4214 if (owner) { 4215 /* 4216 * If we're here through perf_event_exit_task() we're already 4217 * holding ctx->mutex which would be an inversion wrt. the 4218 * normal lock order. 4219 * 4220 * However we can safely take this lock because its the child 4221 * ctx->mutex. 4222 */ 4223 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4224 4225 /* 4226 * We have to re-check the event->owner field, if it is cleared 4227 * we raced with perf_event_exit_task(), acquiring the mutex 4228 * ensured they're done, and we can proceed with freeing the 4229 * event. 4230 */ 4231 if (event->owner) { 4232 list_del_init(&event->owner_entry); 4233 smp_store_release(&event->owner, NULL); 4234 } 4235 mutex_unlock(&owner->perf_event_mutex); 4236 put_task_struct(owner); 4237 } 4238 } 4239 4240 static void put_event(struct perf_event *event) 4241 { 4242 if (!atomic_long_dec_and_test(&event->refcount)) 4243 return; 4244 4245 _free_event(event); 4246 } 4247 4248 /* 4249 * Kill an event dead; while event:refcount will preserve the event 4250 * object, it will not preserve its functionality. Once the last 'user' 4251 * gives up the object, we'll destroy the thing. 4252 */ 4253 int perf_event_release_kernel(struct perf_event *event) 4254 { 4255 struct perf_event_context *ctx = event->ctx; 4256 struct perf_event *child, *tmp; 4257 4258 /* 4259 * If we got here through err_file: fput(event_file); we will not have 4260 * attached to a context yet. 4261 */ 4262 if (!ctx) { 4263 WARN_ON_ONCE(event->attach_state & 4264 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4265 goto no_ctx; 4266 } 4267 4268 if (!is_kernel_event(event)) 4269 perf_remove_from_owner(event); 4270 4271 ctx = perf_event_ctx_lock(event); 4272 WARN_ON_ONCE(ctx->parent_ctx); 4273 perf_remove_from_context(event, DETACH_GROUP); 4274 4275 raw_spin_lock_irq(&ctx->lock); 4276 /* 4277 * Mark this event as STATE_DEAD, there is no external reference to it 4278 * anymore. 4279 * 4280 * Anybody acquiring event->child_mutex after the below loop _must_ 4281 * also see this, most importantly inherit_event() which will avoid 4282 * placing more children on the list. 4283 * 4284 * Thus this guarantees that we will in fact observe and kill _ALL_ 4285 * child events. 4286 */ 4287 event->state = PERF_EVENT_STATE_DEAD; 4288 raw_spin_unlock_irq(&ctx->lock); 4289 4290 perf_event_ctx_unlock(event, ctx); 4291 4292 again: 4293 mutex_lock(&event->child_mutex); 4294 list_for_each_entry(child, &event->child_list, child_list) { 4295 4296 /* 4297 * Cannot change, child events are not migrated, see the 4298 * comment with perf_event_ctx_lock_nested(). 4299 */ 4300 ctx = lockless_dereference(child->ctx); 4301 /* 4302 * Since child_mutex nests inside ctx::mutex, we must jump 4303 * through hoops. We start by grabbing a reference on the ctx. 4304 * 4305 * Since the event cannot get freed while we hold the 4306 * child_mutex, the context must also exist and have a !0 4307 * reference count. 4308 */ 4309 get_ctx(ctx); 4310 4311 /* 4312 * Now that we have a ctx ref, we can drop child_mutex, and 4313 * acquire ctx::mutex without fear of it going away. Then we 4314 * can re-acquire child_mutex. 4315 */ 4316 mutex_unlock(&event->child_mutex); 4317 mutex_lock(&ctx->mutex); 4318 mutex_lock(&event->child_mutex); 4319 4320 /* 4321 * Now that we hold ctx::mutex and child_mutex, revalidate our 4322 * state, if child is still the first entry, it didn't get freed 4323 * and we can continue doing so. 4324 */ 4325 tmp = list_first_entry_or_null(&event->child_list, 4326 struct perf_event, child_list); 4327 if (tmp == child) { 4328 perf_remove_from_context(child, DETACH_GROUP); 4329 list_del(&child->child_list); 4330 free_event(child); 4331 /* 4332 * This matches the refcount bump in inherit_event(); 4333 * this can't be the last reference. 4334 */ 4335 put_event(event); 4336 } 4337 4338 mutex_unlock(&event->child_mutex); 4339 mutex_unlock(&ctx->mutex); 4340 put_ctx(ctx); 4341 goto again; 4342 } 4343 mutex_unlock(&event->child_mutex); 4344 4345 no_ctx: 4346 put_event(event); /* Must be the 'last' reference */ 4347 return 0; 4348 } 4349 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4350 4351 /* 4352 * Called when the last reference to the file is gone. 4353 */ 4354 static int perf_release(struct inode *inode, struct file *file) 4355 { 4356 perf_event_release_kernel(file->private_data); 4357 return 0; 4358 } 4359 4360 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4361 { 4362 struct perf_event *child; 4363 u64 total = 0; 4364 4365 *enabled = 0; 4366 *running = 0; 4367 4368 mutex_lock(&event->child_mutex); 4369 4370 (void)perf_event_read(event, false); 4371 total += perf_event_count(event); 4372 4373 *enabled += event->total_time_enabled + 4374 atomic64_read(&event->child_total_time_enabled); 4375 *running += event->total_time_running + 4376 atomic64_read(&event->child_total_time_running); 4377 4378 list_for_each_entry(child, &event->child_list, child_list) { 4379 (void)perf_event_read(child, false); 4380 total += perf_event_count(child); 4381 *enabled += child->total_time_enabled; 4382 *running += child->total_time_running; 4383 } 4384 mutex_unlock(&event->child_mutex); 4385 4386 return total; 4387 } 4388 EXPORT_SYMBOL_GPL(perf_event_read_value); 4389 4390 static int __perf_read_group_add(struct perf_event *leader, 4391 u64 read_format, u64 *values) 4392 { 4393 struct perf_event *sub; 4394 int n = 1; /* skip @nr */ 4395 int ret; 4396 4397 ret = perf_event_read(leader, true); 4398 if (ret) 4399 return ret; 4400 4401 /* 4402 * Since we co-schedule groups, {enabled,running} times of siblings 4403 * will be identical to those of the leader, so we only publish one 4404 * set. 4405 */ 4406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4407 values[n++] += leader->total_time_enabled + 4408 atomic64_read(&leader->child_total_time_enabled); 4409 } 4410 4411 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4412 values[n++] += leader->total_time_running + 4413 atomic64_read(&leader->child_total_time_running); 4414 } 4415 4416 /* 4417 * Write {count,id} tuples for every sibling. 4418 */ 4419 values[n++] += perf_event_count(leader); 4420 if (read_format & PERF_FORMAT_ID) 4421 values[n++] = primary_event_id(leader); 4422 4423 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4424 values[n++] += perf_event_count(sub); 4425 if (read_format & PERF_FORMAT_ID) 4426 values[n++] = primary_event_id(sub); 4427 } 4428 4429 return 0; 4430 } 4431 4432 static int perf_read_group(struct perf_event *event, 4433 u64 read_format, char __user *buf) 4434 { 4435 struct perf_event *leader = event->group_leader, *child; 4436 struct perf_event_context *ctx = leader->ctx; 4437 int ret; 4438 u64 *values; 4439 4440 lockdep_assert_held(&ctx->mutex); 4441 4442 values = kzalloc(event->read_size, GFP_KERNEL); 4443 if (!values) 4444 return -ENOMEM; 4445 4446 values[0] = 1 + leader->nr_siblings; 4447 4448 /* 4449 * By locking the child_mutex of the leader we effectively 4450 * lock the child list of all siblings.. XXX explain how. 4451 */ 4452 mutex_lock(&leader->child_mutex); 4453 4454 ret = __perf_read_group_add(leader, read_format, values); 4455 if (ret) 4456 goto unlock; 4457 4458 list_for_each_entry(child, &leader->child_list, child_list) { 4459 ret = __perf_read_group_add(child, read_format, values); 4460 if (ret) 4461 goto unlock; 4462 } 4463 4464 mutex_unlock(&leader->child_mutex); 4465 4466 ret = event->read_size; 4467 if (copy_to_user(buf, values, event->read_size)) 4468 ret = -EFAULT; 4469 goto out; 4470 4471 unlock: 4472 mutex_unlock(&leader->child_mutex); 4473 out: 4474 kfree(values); 4475 return ret; 4476 } 4477 4478 static int perf_read_one(struct perf_event *event, 4479 u64 read_format, char __user *buf) 4480 { 4481 u64 enabled, running; 4482 u64 values[4]; 4483 int n = 0; 4484 4485 values[n++] = perf_event_read_value(event, &enabled, &running); 4486 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4487 values[n++] = enabled; 4488 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4489 values[n++] = running; 4490 if (read_format & PERF_FORMAT_ID) 4491 values[n++] = primary_event_id(event); 4492 4493 if (copy_to_user(buf, values, n * sizeof(u64))) 4494 return -EFAULT; 4495 4496 return n * sizeof(u64); 4497 } 4498 4499 static bool is_event_hup(struct perf_event *event) 4500 { 4501 bool no_children; 4502 4503 if (event->state > PERF_EVENT_STATE_EXIT) 4504 return false; 4505 4506 mutex_lock(&event->child_mutex); 4507 no_children = list_empty(&event->child_list); 4508 mutex_unlock(&event->child_mutex); 4509 return no_children; 4510 } 4511 4512 /* 4513 * Read the performance event - simple non blocking version for now 4514 */ 4515 static ssize_t 4516 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4517 { 4518 u64 read_format = event->attr.read_format; 4519 int ret; 4520 4521 /* 4522 * Return end-of-file for a read on a event that is in 4523 * error state (i.e. because it was pinned but it couldn't be 4524 * scheduled on to the CPU at some point). 4525 */ 4526 if (event->state == PERF_EVENT_STATE_ERROR) 4527 return 0; 4528 4529 if (count < event->read_size) 4530 return -ENOSPC; 4531 4532 WARN_ON_ONCE(event->ctx->parent_ctx); 4533 if (read_format & PERF_FORMAT_GROUP) 4534 ret = perf_read_group(event, read_format, buf); 4535 else 4536 ret = perf_read_one(event, read_format, buf); 4537 4538 return ret; 4539 } 4540 4541 static ssize_t 4542 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4543 { 4544 struct perf_event *event = file->private_data; 4545 struct perf_event_context *ctx; 4546 int ret; 4547 4548 ctx = perf_event_ctx_lock(event); 4549 ret = __perf_read(event, buf, count); 4550 perf_event_ctx_unlock(event, ctx); 4551 4552 return ret; 4553 } 4554 4555 static unsigned int perf_poll(struct file *file, poll_table *wait) 4556 { 4557 struct perf_event *event = file->private_data; 4558 struct ring_buffer *rb; 4559 unsigned int events = POLLHUP; 4560 4561 poll_wait(file, &event->waitq, wait); 4562 4563 if (is_event_hup(event)) 4564 return events; 4565 4566 /* 4567 * Pin the event->rb by taking event->mmap_mutex; otherwise 4568 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4569 */ 4570 mutex_lock(&event->mmap_mutex); 4571 rb = event->rb; 4572 if (rb) 4573 events = atomic_xchg(&rb->poll, 0); 4574 mutex_unlock(&event->mmap_mutex); 4575 return events; 4576 } 4577 4578 static void _perf_event_reset(struct perf_event *event) 4579 { 4580 (void)perf_event_read(event, false); 4581 local64_set(&event->count, 0); 4582 perf_event_update_userpage(event); 4583 } 4584 4585 /* 4586 * Holding the top-level event's child_mutex means that any 4587 * descendant process that has inherited this event will block 4588 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4589 * task existence requirements of perf_event_enable/disable. 4590 */ 4591 static void perf_event_for_each_child(struct perf_event *event, 4592 void (*func)(struct perf_event *)) 4593 { 4594 struct perf_event *child; 4595 4596 WARN_ON_ONCE(event->ctx->parent_ctx); 4597 4598 mutex_lock(&event->child_mutex); 4599 func(event); 4600 list_for_each_entry(child, &event->child_list, child_list) 4601 func(child); 4602 mutex_unlock(&event->child_mutex); 4603 } 4604 4605 static void perf_event_for_each(struct perf_event *event, 4606 void (*func)(struct perf_event *)) 4607 { 4608 struct perf_event_context *ctx = event->ctx; 4609 struct perf_event *sibling; 4610 4611 lockdep_assert_held(&ctx->mutex); 4612 4613 event = event->group_leader; 4614 4615 perf_event_for_each_child(event, func); 4616 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4617 perf_event_for_each_child(sibling, func); 4618 } 4619 4620 static void __perf_event_period(struct perf_event *event, 4621 struct perf_cpu_context *cpuctx, 4622 struct perf_event_context *ctx, 4623 void *info) 4624 { 4625 u64 value = *((u64 *)info); 4626 bool active; 4627 4628 if (event->attr.freq) { 4629 event->attr.sample_freq = value; 4630 } else { 4631 event->attr.sample_period = value; 4632 event->hw.sample_period = value; 4633 } 4634 4635 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4636 if (active) { 4637 perf_pmu_disable(ctx->pmu); 4638 /* 4639 * We could be throttled; unthrottle now to avoid the tick 4640 * trying to unthrottle while we already re-started the event. 4641 */ 4642 if (event->hw.interrupts == MAX_INTERRUPTS) { 4643 event->hw.interrupts = 0; 4644 perf_log_throttle(event, 1); 4645 } 4646 event->pmu->stop(event, PERF_EF_UPDATE); 4647 } 4648 4649 local64_set(&event->hw.period_left, 0); 4650 4651 if (active) { 4652 event->pmu->start(event, PERF_EF_RELOAD); 4653 perf_pmu_enable(ctx->pmu); 4654 } 4655 } 4656 4657 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4658 { 4659 u64 value; 4660 4661 if (!is_sampling_event(event)) 4662 return -EINVAL; 4663 4664 if (copy_from_user(&value, arg, sizeof(value))) 4665 return -EFAULT; 4666 4667 if (!value) 4668 return -EINVAL; 4669 4670 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4671 return -EINVAL; 4672 4673 event_function_call(event, __perf_event_period, &value); 4674 4675 return 0; 4676 } 4677 4678 static const struct file_operations perf_fops; 4679 4680 static inline int perf_fget_light(int fd, struct fd *p) 4681 { 4682 struct fd f = fdget(fd); 4683 if (!f.file) 4684 return -EBADF; 4685 4686 if (f.file->f_op != &perf_fops) { 4687 fdput(f); 4688 return -EBADF; 4689 } 4690 *p = f; 4691 return 0; 4692 } 4693 4694 static int perf_event_set_output(struct perf_event *event, 4695 struct perf_event *output_event); 4696 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4697 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4698 4699 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4700 { 4701 void (*func)(struct perf_event *); 4702 u32 flags = arg; 4703 4704 switch (cmd) { 4705 case PERF_EVENT_IOC_ENABLE: 4706 func = _perf_event_enable; 4707 break; 4708 case PERF_EVENT_IOC_DISABLE: 4709 func = _perf_event_disable; 4710 break; 4711 case PERF_EVENT_IOC_RESET: 4712 func = _perf_event_reset; 4713 break; 4714 4715 case PERF_EVENT_IOC_REFRESH: 4716 return _perf_event_refresh(event, arg); 4717 4718 case PERF_EVENT_IOC_PERIOD: 4719 return perf_event_period(event, (u64 __user *)arg); 4720 4721 case PERF_EVENT_IOC_ID: 4722 { 4723 u64 id = primary_event_id(event); 4724 4725 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4726 return -EFAULT; 4727 return 0; 4728 } 4729 4730 case PERF_EVENT_IOC_SET_OUTPUT: 4731 { 4732 int ret; 4733 if (arg != -1) { 4734 struct perf_event *output_event; 4735 struct fd output; 4736 ret = perf_fget_light(arg, &output); 4737 if (ret) 4738 return ret; 4739 output_event = output.file->private_data; 4740 ret = perf_event_set_output(event, output_event); 4741 fdput(output); 4742 } else { 4743 ret = perf_event_set_output(event, NULL); 4744 } 4745 return ret; 4746 } 4747 4748 case PERF_EVENT_IOC_SET_FILTER: 4749 return perf_event_set_filter(event, (void __user *)arg); 4750 4751 case PERF_EVENT_IOC_SET_BPF: 4752 return perf_event_set_bpf_prog(event, arg); 4753 4754 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4755 struct ring_buffer *rb; 4756 4757 rcu_read_lock(); 4758 rb = rcu_dereference(event->rb); 4759 if (!rb || !rb->nr_pages) { 4760 rcu_read_unlock(); 4761 return -EINVAL; 4762 } 4763 rb_toggle_paused(rb, !!arg); 4764 rcu_read_unlock(); 4765 return 0; 4766 } 4767 default: 4768 return -ENOTTY; 4769 } 4770 4771 if (flags & PERF_IOC_FLAG_GROUP) 4772 perf_event_for_each(event, func); 4773 else 4774 perf_event_for_each_child(event, func); 4775 4776 return 0; 4777 } 4778 4779 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4780 { 4781 struct perf_event *event = file->private_data; 4782 struct perf_event_context *ctx; 4783 long ret; 4784 4785 ctx = perf_event_ctx_lock(event); 4786 ret = _perf_ioctl(event, cmd, arg); 4787 perf_event_ctx_unlock(event, ctx); 4788 4789 return ret; 4790 } 4791 4792 #ifdef CONFIG_COMPAT 4793 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4794 unsigned long arg) 4795 { 4796 switch (_IOC_NR(cmd)) { 4797 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4798 case _IOC_NR(PERF_EVENT_IOC_ID): 4799 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4800 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4801 cmd &= ~IOCSIZE_MASK; 4802 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4803 } 4804 break; 4805 } 4806 return perf_ioctl(file, cmd, arg); 4807 } 4808 #else 4809 # define perf_compat_ioctl NULL 4810 #endif 4811 4812 int perf_event_task_enable(void) 4813 { 4814 struct perf_event_context *ctx; 4815 struct perf_event *event; 4816 4817 mutex_lock(¤t->perf_event_mutex); 4818 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4819 ctx = perf_event_ctx_lock(event); 4820 perf_event_for_each_child(event, _perf_event_enable); 4821 perf_event_ctx_unlock(event, ctx); 4822 } 4823 mutex_unlock(¤t->perf_event_mutex); 4824 4825 return 0; 4826 } 4827 4828 int perf_event_task_disable(void) 4829 { 4830 struct perf_event_context *ctx; 4831 struct perf_event *event; 4832 4833 mutex_lock(¤t->perf_event_mutex); 4834 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4835 ctx = perf_event_ctx_lock(event); 4836 perf_event_for_each_child(event, _perf_event_disable); 4837 perf_event_ctx_unlock(event, ctx); 4838 } 4839 mutex_unlock(¤t->perf_event_mutex); 4840 4841 return 0; 4842 } 4843 4844 static int perf_event_index(struct perf_event *event) 4845 { 4846 if (event->hw.state & PERF_HES_STOPPED) 4847 return 0; 4848 4849 if (event->state != PERF_EVENT_STATE_ACTIVE) 4850 return 0; 4851 4852 return event->pmu->event_idx(event); 4853 } 4854 4855 static void calc_timer_values(struct perf_event *event, 4856 u64 *now, 4857 u64 *enabled, 4858 u64 *running) 4859 { 4860 u64 ctx_time; 4861 4862 *now = perf_clock(); 4863 ctx_time = event->shadow_ctx_time + *now; 4864 *enabled = ctx_time - event->tstamp_enabled; 4865 *running = ctx_time - event->tstamp_running; 4866 } 4867 4868 static void perf_event_init_userpage(struct perf_event *event) 4869 { 4870 struct perf_event_mmap_page *userpg; 4871 struct ring_buffer *rb; 4872 4873 rcu_read_lock(); 4874 rb = rcu_dereference(event->rb); 4875 if (!rb) 4876 goto unlock; 4877 4878 userpg = rb->user_page; 4879 4880 /* Allow new userspace to detect that bit 0 is deprecated */ 4881 userpg->cap_bit0_is_deprecated = 1; 4882 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4883 userpg->data_offset = PAGE_SIZE; 4884 userpg->data_size = perf_data_size(rb); 4885 4886 unlock: 4887 rcu_read_unlock(); 4888 } 4889 4890 void __weak arch_perf_update_userpage( 4891 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4892 { 4893 } 4894 4895 /* 4896 * Callers need to ensure there can be no nesting of this function, otherwise 4897 * the seqlock logic goes bad. We can not serialize this because the arch 4898 * code calls this from NMI context. 4899 */ 4900 void perf_event_update_userpage(struct perf_event *event) 4901 { 4902 struct perf_event_mmap_page *userpg; 4903 struct ring_buffer *rb; 4904 u64 enabled, running, now; 4905 4906 rcu_read_lock(); 4907 rb = rcu_dereference(event->rb); 4908 if (!rb) 4909 goto unlock; 4910 4911 /* 4912 * compute total_time_enabled, total_time_running 4913 * based on snapshot values taken when the event 4914 * was last scheduled in. 4915 * 4916 * we cannot simply called update_context_time() 4917 * because of locking issue as we can be called in 4918 * NMI context 4919 */ 4920 calc_timer_values(event, &now, &enabled, &running); 4921 4922 userpg = rb->user_page; 4923 /* 4924 * Disable preemption so as to not let the corresponding user-space 4925 * spin too long if we get preempted. 4926 */ 4927 preempt_disable(); 4928 ++userpg->lock; 4929 barrier(); 4930 userpg->index = perf_event_index(event); 4931 userpg->offset = perf_event_count(event); 4932 if (userpg->index) 4933 userpg->offset -= local64_read(&event->hw.prev_count); 4934 4935 userpg->time_enabled = enabled + 4936 atomic64_read(&event->child_total_time_enabled); 4937 4938 userpg->time_running = running + 4939 atomic64_read(&event->child_total_time_running); 4940 4941 arch_perf_update_userpage(event, userpg, now); 4942 4943 barrier(); 4944 ++userpg->lock; 4945 preempt_enable(); 4946 unlock: 4947 rcu_read_unlock(); 4948 } 4949 4950 static int perf_mmap_fault(struct vm_fault *vmf) 4951 { 4952 struct perf_event *event = vmf->vma->vm_file->private_data; 4953 struct ring_buffer *rb; 4954 int ret = VM_FAULT_SIGBUS; 4955 4956 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4957 if (vmf->pgoff == 0) 4958 ret = 0; 4959 return ret; 4960 } 4961 4962 rcu_read_lock(); 4963 rb = rcu_dereference(event->rb); 4964 if (!rb) 4965 goto unlock; 4966 4967 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4968 goto unlock; 4969 4970 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4971 if (!vmf->page) 4972 goto unlock; 4973 4974 get_page(vmf->page); 4975 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4976 vmf->page->index = vmf->pgoff; 4977 4978 ret = 0; 4979 unlock: 4980 rcu_read_unlock(); 4981 4982 return ret; 4983 } 4984 4985 static void ring_buffer_attach(struct perf_event *event, 4986 struct ring_buffer *rb) 4987 { 4988 struct ring_buffer *old_rb = NULL; 4989 unsigned long flags; 4990 4991 if (event->rb) { 4992 /* 4993 * Should be impossible, we set this when removing 4994 * event->rb_entry and wait/clear when adding event->rb_entry. 4995 */ 4996 WARN_ON_ONCE(event->rcu_pending); 4997 4998 old_rb = event->rb; 4999 spin_lock_irqsave(&old_rb->event_lock, flags); 5000 list_del_rcu(&event->rb_entry); 5001 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5002 5003 event->rcu_batches = get_state_synchronize_rcu(); 5004 event->rcu_pending = 1; 5005 } 5006 5007 if (rb) { 5008 if (event->rcu_pending) { 5009 cond_synchronize_rcu(event->rcu_batches); 5010 event->rcu_pending = 0; 5011 } 5012 5013 spin_lock_irqsave(&rb->event_lock, flags); 5014 list_add_rcu(&event->rb_entry, &rb->event_list); 5015 spin_unlock_irqrestore(&rb->event_lock, flags); 5016 } 5017 5018 /* 5019 * Avoid racing with perf_mmap_close(AUX): stop the event 5020 * before swizzling the event::rb pointer; if it's getting 5021 * unmapped, its aux_mmap_count will be 0 and it won't 5022 * restart. See the comment in __perf_pmu_output_stop(). 5023 * 5024 * Data will inevitably be lost when set_output is done in 5025 * mid-air, but then again, whoever does it like this is 5026 * not in for the data anyway. 5027 */ 5028 if (has_aux(event)) 5029 perf_event_stop(event, 0); 5030 5031 rcu_assign_pointer(event->rb, rb); 5032 5033 if (old_rb) { 5034 ring_buffer_put(old_rb); 5035 /* 5036 * Since we detached before setting the new rb, so that we 5037 * could attach the new rb, we could have missed a wakeup. 5038 * Provide it now. 5039 */ 5040 wake_up_all(&event->waitq); 5041 } 5042 } 5043 5044 static void ring_buffer_wakeup(struct perf_event *event) 5045 { 5046 struct ring_buffer *rb; 5047 5048 rcu_read_lock(); 5049 rb = rcu_dereference(event->rb); 5050 if (rb) { 5051 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5052 wake_up_all(&event->waitq); 5053 } 5054 rcu_read_unlock(); 5055 } 5056 5057 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5058 { 5059 struct ring_buffer *rb; 5060 5061 rcu_read_lock(); 5062 rb = rcu_dereference(event->rb); 5063 if (rb) { 5064 if (!atomic_inc_not_zero(&rb->refcount)) 5065 rb = NULL; 5066 } 5067 rcu_read_unlock(); 5068 5069 return rb; 5070 } 5071 5072 void ring_buffer_put(struct ring_buffer *rb) 5073 { 5074 if (!atomic_dec_and_test(&rb->refcount)) 5075 return; 5076 5077 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5078 5079 call_rcu(&rb->rcu_head, rb_free_rcu); 5080 } 5081 5082 static void perf_mmap_open(struct vm_area_struct *vma) 5083 { 5084 struct perf_event *event = vma->vm_file->private_data; 5085 5086 atomic_inc(&event->mmap_count); 5087 atomic_inc(&event->rb->mmap_count); 5088 5089 if (vma->vm_pgoff) 5090 atomic_inc(&event->rb->aux_mmap_count); 5091 5092 if (event->pmu->event_mapped) 5093 event->pmu->event_mapped(event); 5094 } 5095 5096 static void perf_pmu_output_stop(struct perf_event *event); 5097 5098 /* 5099 * A buffer can be mmap()ed multiple times; either directly through the same 5100 * event, or through other events by use of perf_event_set_output(). 5101 * 5102 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5103 * the buffer here, where we still have a VM context. This means we need 5104 * to detach all events redirecting to us. 5105 */ 5106 static void perf_mmap_close(struct vm_area_struct *vma) 5107 { 5108 struct perf_event *event = vma->vm_file->private_data; 5109 5110 struct ring_buffer *rb = ring_buffer_get(event); 5111 struct user_struct *mmap_user = rb->mmap_user; 5112 int mmap_locked = rb->mmap_locked; 5113 unsigned long size = perf_data_size(rb); 5114 5115 if (event->pmu->event_unmapped) 5116 event->pmu->event_unmapped(event); 5117 5118 /* 5119 * rb->aux_mmap_count will always drop before rb->mmap_count and 5120 * event->mmap_count, so it is ok to use event->mmap_mutex to 5121 * serialize with perf_mmap here. 5122 */ 5123 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5124 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5125 /* 5126 * Stop all AUX events that are writing to this buffer, 5127 * so that we can free its AUX pages and corresponding PMU 5128 * data. Note that after rb::aux_mmap_count dropped to zero, 5129 * they won't start any more (see perf_aux_output_begin()). 5130 */ 5131 perf_pmu_output_stop(event); 5132 5133 /* now it's safe to free the pages */ 5134 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5135 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5136 5137 /* this has to be the last one */ 5138 rb_free_aux(rb); 5139 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5140 5141 mutex_unlock(&event->mmap_mutex); 5142 } 5143 5144 atomic_dec(&rb->mmap_count); 5145 5146 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5147 goto out_put; 5148 5149 ring_buffer_attach(event, NULL); 5150 mutex_unlock(&event->mmap_mutex); 5151 5152 /* If there's still other mmap()s of this buffer, we're done. */ 5153 if (atomic_read(&rb->mmap_count)) 5154 goto out_put; 5155 5156 /* 5157 * No other mmap()s, detach from all other events that might redirect 5158 * into the now unreachable buffer. Somewhat complicated by the 5159 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5160 */ 5161 again: 5162 rcu_read_lock(); 5163 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5164 if (!atomic_long_inc_not_zero(&event->refcount)) { 5165 /* 5166 * This event is en-route to free_event() which will 5167 * detach it and remove it from the list. 5168 */ 5169 continue; 5170 } 5171 rcu_read_unlock(); 5172 5173 mutex_lock(&event->mmap_mutex); 5174 /* 5175 * Check we didn't race with perf_event_set_output() which can 5176 * swizzle the rb from under us while we were waiting to 5177 * acquire mmap_mutex. 5178 * 5179 * If we find a different rb; ignore this event, a next 5180 * iteration will no longer find it on the list. We have to 5181 * still restart the iteration to make sure we're not now 5182 * iterating the wrong list. 5183 */ 5184 if (event->rb == rb) 5185 ring_buffer_attach(event, NULL); 5186 5187 mutex_unlock(&event->mmap_mutex); 5188 put_event(event); 5189 5190 /* 5191 * Restart the iteration; either we're on the wrong list or 5192 * destroyed its integrity by doing a deletion. 5193 */ 5194 goto again; 5195 } 5196 rcu_read_unlock(); 5197 5198 /* 5199 * It could be there's still a few 0-ref events on the list; they'll 5200 * get cleaned up by free_event() -- they'll also still have their 5201 * ref on the rb and will free it whenever they are done with it. 5202 * 5203 * Aside from that, this buffer is 'fully' detached and unmapped, 5204 * undo the VM accounting. 5205 */ 5206 5207 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5208 vma->vm_mm->pinned_vm -= mmap_locked; 5209 free_uid(mmap_user); 5210 5211 out_put: 5212 ring_buffer_put(rb); /* could be last */ 5213 } 5214 5215 static const struct vm_operations_struct perf_mmap_vmops = { 5216 .open = perf_mmap_open, 5217 .close = perf_mmap_close, /* non mergable */ 5218 .fault = perf_mmap_fault, 5219 .page_mkwrite = perf_mmap_fault, 5220 }; 5221 5222 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5223 { 5224 struct perf_event *event = file->private_data; 5225 unsigned long user_locked, user_lock_limit; 5226 struct user_struct *user = current_user(); 5227 unsigned long locked, lock_limit; 5228 struct ring_buffer *rb = NULL; 5229 unsigned long vma_size; 5230 unsigned long nr_pages; 5231 long user_extra = 0, extra = 0; 5232 int ret = 0, flags = 0; 5233 5234 /* 5235 * Don't allow mmap() of inherited per-task counters. This would 5236 * create a performance issue due to all children writing to the 5237 * same rb. 5238 */ 5239 if (event->cpu == -1 && event->attr.inherit) 5240 return -EINVAL; 5241 5242 if (!(vma->vm_flags & VM_SHARED)) 5243 return -EINVAL; 5244 5245 vma_size = vma->vm_end - vma->vm_start; 5246 5247 if (vma->vm_pgoff == 0) { 5248 nr_pages = (vma_size / PAGE_SIZE) - 1; 5249 } else { 5250 /* 5251 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5252 * mapped, all subsequent mappings should have the same size 5253 * and offset. Must be above the normal perf buffer. 5254 */ 5255 u64 aux_offset, aux_size; 5256 5257 if (!event->rb) 5258 return -EINVAL; 5259 5260 nr_pages = vma_size / PAGE_SIZE; 5261 5262 mutex_lock(&event->mmap_mutex); 5263 ret = -EINVAL; 5264 5265 rb = event->rb; 5266 if (!rb) 5267 goto aux_unlock; 5268 5269 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5270 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5271 5272 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5273 goto aux_unlock; 5274 5275 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5276 goto aux_unlock; 5277 5278 /* already mapped with a different offset */ 5279 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5280 goto aux_unlock; 5281 5282 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5283 goto aux_unlock; 5284 5285 /* already mapped with a different size */ 5286 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5287 goto aux_unlock; 5288 5289 if (!is_power_of_2(nr_pages)) 5290 goto aux_unlock; 5291 5292 if (!atomic_inc_not_zero(&rb->mmap_count)) 5293 goto aux_unlock; 5294 5295 if (rb_has_aux(rb)) { 5296 atomic_inc(&rb->aux_mmap_count); 5297 ret = 0; 5298 goto unlock; 5299 } 5300 5301 atomic_set(&rb->aux_mmap_count, 1); 5302 user_extra = nr_pages; 5303 5304 goto accounting; 5305 } 5306 5307 /* 5308 * If we have rb pages ensure they're a power-of-two number, so we 5309 * can do bitmasks instead of modulo. 5310 */ 5311 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5312 return -EINVAL; 5313 5314 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5315 return -EINVAL; 5316 5317 WARN_ON_ONCE(event->ctx->parent_ctx); 5318 again: 5319 mutex_lock(&event->mmap_mutex); 5320 if (event->rb) { 5321 if (event->rb->nr_pages != nr_pages) { 5322 ret = -EINVAL; 5323 goto unlock; 5324 } 5325 5326 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5327 /* 5328 * Raced against perf_mmap_close() through 5329 * perf_event_set_output(). Try again, hope for better 5330 * luck. 5331 */ 5332 mutex_unlock(&event->mmap_mutex); 5333 goto again; 5334 } 5335 5336 goto unlock; 5337 } 5338 5339 user_extra = nr_pages + 1; 5340 5341 accounting: 5342 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5343 5344 /* 5345 * Increase the limit linearly with more CPUs: 5346 */ 5347 user_lock_limit *= num_online_cpus(); 5348 5349 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5350 5351 if (user_locked > user_lock_limit) 5352 extra = user_locked - user_lock_limit; 5353 5354 lock_limit = rlimit(RLIMIT_MEMLOCK); 5355 lock_limit >>= PAGE_SHIFT; 5356 locked = vma->vm_mm->pinned_vm + extra; 5357 5358 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5359 !capable(CAP_IPC_LOCK)) { 5360 ret = -EPERM; 5361 goto unlock; 5362 } 5363 5364 WARN_ON(!rb && event->rb); 5365 5366 if (vma->vm_flags & VM_WRITE) 5367 flags |= RING_BUFFER_WRITABLE; 5368 5369 if (!rb) { 5370 rb = rb_alloc(nr_pages, 5371 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5372 event->cpu, flags); 5373 5374 if (!rb) { 5375 ret = -ENOMEM; 5376 goto unlock; 5377 } 5378 5379 atomic_set(&rb->mmap_count, 1); 5380 rb->mmap_user = get_current_user(); 5381 rb->mmap_locked = extra; 5382 5383 ring_buffer_attach(event, rb); 5384 5385 perf_event_init_userpage(event); 5386 perf_event_update_userpage(event); 5387 } else { 5388 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5389 event->attr.aux_watermark, flags); 5390 if (!ret) 5391 rb->aux_mmap_locked = extra; 5392 } 5393 5394 unlock: 5395 if (!ret) { 5396 atomic_long_add(user_extra, &user->locked_vm); 5397 vma->vm_mm->pinned_vm += extra; 5398 5399 atomic_inc(&event->mmap_count); 5400 } else if (rb) { 5401 atomic_dec(&rb->mmap_count); 5402 } 5403 aux_unlock: 5404 mutex_unlock(&event->mmap_mutex); 5405 5406 /* 5407 * Since pinned accounting is per vm we cannot allow fork() to copy our 5408 * vma. 5409 */ 5410 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5411 vma->vm_ops = &perf_mmap_vmops; 5412 5413 if (event->pmu->event_mapped) 5414 event->pmu->event_mapped(event); 5415 5416 return ret; 5417 } 5418 5419 static int perf_fasync(int fd, struct file *filp, int on) 5420 { 5421 struct inode *inode = file_inode(filp); 5422 struct perf_event *event = filp->private_data; 5423 int retval; 5424 5425 inode_lock(inode); 5426 retval = fasync_helper(fd, filp, on, &event->fasync); 5427 inode_unlock(inode); 5428 5429 if (retval < 0) 5430 return retval; 5431 5432 return 0; 5433 } 5434 5435 static const struct file_operations perf_fops = { 5436 .llseek = no_llseek, 5437 .release = perf_release, 5438 .read = perf_read, 5439 .poll = perf_poll, 5440 .unlocked_ioctl = perf_ioctl, 5441 .compat_ioctl = perf_compat_ioctl, 5442 .mmap = perf_mmap, 5443 .fasync = perf_fasync, 5444 }; 5445 5446 /* 5447 * Perf event wakeup 5448 * 5449 * If there's data, ensure we set the poll() state and publish everything 5450 * to user-space before waking everybody up. 5451 */ 5452 5453 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5454 { 5455 /* only the parent has fasync state */ 5456 if (event->parent) 5457 event = event->parent; 5458 return &event->fasync; 5459 } 5460 5461 void perf_event_wakeup(struct perf_event *event) 5462 { 5463 ring_buffer_wakeup(event); 5464 5465 if (event->pending_kill) { 5466 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5467 event->pending_kill = 0; 5468 } 5469 } 5470 5471 static void perf_pending_event(struct irq_work *entry) 5472 { 5473 struct perf_event *event = container_of(entry, 5474 struct perf_event, pending); 5475 int rctx; 5476 5477 rctx = perf_swevent_get_recursion_context(); 5478 /* 5479 * If we 'fail' here, that's OK, it means recursion is already disabled 5480 * and we won't recurse 'further'. 5481 */ 5482 5483 if (event->pending_disable) { 5484 event->pending_disable = 0; 5485 perf_event_disable_local(event); 5486 } 5487 5488 if (event->pending_wakeup) { 5489 event->pending_wakeup = 0; 5490 perf_event_wakeup(event); 5491 } 5492 5493 if (rctx >= 0) 5494 perf_swevent_put_recursion_context(rctx); 5495 } 5496 5497 /* 5498 * We assume there is only KVM supporting the callbacks. 5499 * Later on, we might change it to a list if there is 5500 * another virtualization implementation supporting the callbacks. 5501 */ 5502 struct perf_guest_info_callbacks *perf_guest_cbs; 5503 5504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5505 { 5506 perf_guest_cbs = cbs; 5507 return 0; 5508 } 5509 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5510 5511 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5512 { 5513 perf_guest_cbs = NULL; 5514 return 0; 5515 } 5516 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5517 5518 static void 5519 perf_output_sample_regs(struct perf_output_handle *handle, 5520 struct pt_regs *regs, u64 mask) 5521 { 5522 int bit; 5523 DECLARE_BITMAP(_mask, 64); 5524 5525 bitmap_from_u64(_mask, mask); 5526 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5527 u64 val; 5528 5529 val = perf_reg_value(regs, bit); 5530 perf_output_put(handle, val); 5531 } 5532 } 5533 5534 static void perf_sample_regs_user(struct perf_regs *regs_user, 5535 struct pt_regs *regs, 5536 struct pt_regs *regs_user_copy) 5537 { 5538 if (user_mode(regs)) { 5539 regs_user->abi = perf_reg_abi(current); 5540 regs_user->regs = regs; 5541 } else if (current->mm) { 5542 perf_get_regs_user(regs_user, regs, regs_user_copy); 5543 } else { 5544 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5545 regs_user->regs = NULL; 5546 } 5547 } 5548 5549 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5550 struct pt_regs *regs) 5551 { 5552 regs_intr->regs = regs; 5553 regs_intr->abi = perf_reg_abi(current); 5554 } 5555 5556 5557 /* 5558 * Get remaining task size from user stack pointer. 5559 * 5560 * It'd be better to take stack vma map and limit this more 5561 * precisly, but there's no way to get it safely under interrupt, 5562 * so using TASK_SIZE as limit. 5563 */ 5564 static u64 perf_ustack_task_size(struct pt_regs *regs) 5565 { 5566 unsigned long addr = perf_user_stack_pointer(regs); 5567 5568 if (!addr || addr >= TASK_SIZE) 5569 return 0; 5570 5571 return TASK_SIZE - addr; 5572 } 5573 5574 static u16 5575 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5576 struct pt_regs *regs) 5577 { 5578 u64 task_size; 5579 5580 /* No regs, no stack pointer, no dump. */ 5581 if (!regs) 5582 return 0; 5583 5584 /* 5585 * Check if we fit in with the requested stack size into the: 5586 * - TASK_SIZE 5587 * If we don't, we limit the size to the TASK_SIZE. 5588 * 5589 * - remaining sample size 5590 * If we don't, we customize the stack size to 5591 * fit in to the remaining sample size. 5592 */ 5593 5594 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5595 stack_size = min(stack_size, (u16) task_size); 5596 5597 /* Current header size plus static size and dynamic size. */ 5598 header_size += 2 * sizeof(u64); 5599 5600 /* Do we fit in with the current stack dump size? */ 5601 if ((u16) (header_size + stack_size) < header_size) { 5602 /* 5603 * If we overflow the maximum size for the sample, 5604 * we customize the stack dump size to fit in. 5605 */ 5606 stack_size = USHRT_MAX - header_size - sizeof(u64); 5607 stack_size = round_up(stack_size, sizeof(u64)); 5608 } 5609 5610 return stack_size; 5611 } 5612 5613 static void 5614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5615 struct pt_regs *regs) 5616 { 5617 /* Case of a kernel thread, nothing to dump */ 5618 if (!regs) { 5619 u64 size = 0; 5620 perf_output_put(handle, size); 5621 } else { 5622 unsigned long sp; 5623 unsigned int rem; 5624 u64 dyn_size; 5625 5626 /* 5627 * We dump: 5628 * static size 5629 * - the size requested by user or the best one we can fit 5630 * in to the sample max size 5631 * data 5632 * - user stack dump data 5633 * dynamic size 5634 * - the actual dumped size 5635 */ 5636 5637 /* Static size. */ 5638 perf_output_put(handle, dump_size); 5639 5640 /* Data. */ 5641 sp = perf_user_stack_pointer(regs); 5642 rem = __output_copy_user(handle, (void *) sp, dump_size); 5643 dyn_size = dump_size - rem; 5644 5645 perf_output_skip(handle, rem); 5646 5647 /* Dynamic size. */ 5648 perf_output_put(handle, dyn_size); 5649 } 5650 } 5651 5652 static void __perf_event_header__init_id(struct perf_event_header *header, 5653 struct perf_sample_data *data, 5654 struct perf_event *event) 5655 { 5656 u64 sample_type = event->attr.sample_type; 5657 5658 data->type = sample_type; 5659 header->size += event->id_header_size; 5660 5661 if (sample_type & PERF_SAMPLE_TID) { 5662 /* namespace issues */ 5663 data->tid_entry.pid = perf_event_pid(event, current); 5664 data->tid_entry.tid = perf_event_tid(event, current); 5665 } 5666 5667 if (sample_type & PERF_SAMPLE_TIME) 5668 data->time = perf_event_clock(event); 5669 5670 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5671 data->id = primary_event_id(event); 5672 5673 if (sample_type & PERF_SAMPLE_STREAM_ID) 5674 data->stream_id = event->id; 5675 5676 if (sample_type & PERF_SAMPLE_CPU) { 5677 data->cpu_entry.cpu = raw_smp_processor_id(); 5678 data->cpu_entry.reserved = 0; 5679 } 5680 } 5681 5682 void perf_event_header__init_id(struct perf_event_header *header, 5683 struct perf_sample_data *data, 5684 struct perf_event *event) 5685 { 5686 if (event->attr.sample_id_all) 5687 __perf_event_header__init_id(header, data, event); 5688 } 5689 5690 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5691 struct perf_sample_data *data) 5692 { 5693 u64 sample_type = data->type; 5694 5695 if (sample_type & PERF_SAMPLE_TID) 5696 perf_output_put(handle, data->tid_entry); 5697 5698 if (sample_type & PERF_SAMPLE_TIME) 5699 perf_output_put(handle, data->time); 5700 5701 if (sample_type & PERF_SAMPLE_ID) 5702 perf_output_put(handle, data->id); 5703 5704 if (sample_type & PERF_SAMPLE_STREAM_ID) 5705 perf_output_put(handle, data->stream_id); 5706 5707 if (sample_type & PERF_SAMPLE_CPU) 5708 perf_output_put(handle, data->cpu_entry); 5709 5710 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5711 perf_output_put(handle, data->id); 5712 } 5713 5714 void perf_event__output_id_sample(struct perf_event *event, 5715 struct perf_output_handle *handle, 5716 struct perf_sample_data *sample) 5717 { 5718 if (event->attr.sample_id_all) 5719 __perf_event__output_id_sample(handle, sample); 5720 } 5721 5722 static void perf_output_read_one(struct perf_output_handle *handle, 5723 struct perf_event *event, 5724 u64 enabled, u64 running) 5725 { 5726 u64 read_format = event->attr.read_format; 5727 u64 values[4]; 5728 int n = 0; 5729 5730 values[n++] = perf_event_count(event); 5731 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5732 values[n++] = enabled + 5733 atomic64_read(&event->child_total_time_enabled); 5734 } 5735 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5736 values[n++] = running + 5737 atomic64_read(&event->child_total_time_running); 5738 } 5739 if (read_format & PERF_FORMAT_ID) 5740 values[n++] = primary_event_id(event); 5741 5742 __output_copy(handle, values, n * sizeof(u64)); 5743 } 5744 5745 /* 5746 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5747 */ 5748 static void perf_output_read_group(struct perf_output_handle *handle, 5749 struct perf_event *event, 5750 u64 enabled, u64 running) 5751 { 5752 struct perf_event *leader = event->group_leader, *sub; 5753 u64 read_format = event->attr.read_format; 5754 u64 values[5]; 5755 int n = 0; 5756 5757 values[n++] = 1 + leader->nr_siblings; 5758 5759 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5760 values[n++] = enabled; 5761 5762 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5763 values[n++] = running; 5764 5765 if (leader != event) 5766 leader->pmu->read(leader); 5767 5768 values[n++] = perf_event_count(leader); 5769 if (read_format & PERF_FORMAT_ID) 5770 values[n++] = primary_event_id(leader); 5771 5772 __output_copy(handle, values, n * sizeof(u64)); 5773 5774 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5775 n = 0; 5776 5777 if ((sub != event) && 5778 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5779 sub->pmu->read(sub); 5780 5781 values[n++] = perf_event_count(sub); 5782 if (read_format & PERF_FORMAT_ID) 5783 values[n++] = primary_event_id(sub); 5784 5785 __output_copy(handle, values, n * sizeof(u64)); 5786 } 5787 } 5788 5789 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5790 PERF_FORMAT_TOTAL_TIME_RUNNING) 5791 5792 static void perf_output_read(struct perf_output_handle *handle, 5793 struct perf_event *event) 5794 { 5795 u64 enabled = 0, running = 0, now; 5796 u64 read_format = event->attr.read_format; 5797 5798 /* 5799 * compute total_time_enabled, total_time_running 5800 * based on snapshot values taken when the event 5801 * was last scheduled in. 5802 * 5803 * we cannot simply called update_context_time() 5804 * because of locking issue as we are called in 5805 * NMI context 5806 */ 5807 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5808 calc_timer_values(event, &now, &enabled, &running); 5809 5810 if (event->attr.read_format & PERF_FORMAT_GROUP) 5811 perf_output_read_group(handle, event, enabled, running); 5812 else 5813 perf_output_read_one(handle, event, enabled, running); 5814 } 5815 5816 void perf_output_sample(struct perf_output_handle *handle, 5817 struct perf_event_header *header, 5818 struct perf_sample_data *data, 5819 struct perf_event *event) 5820 { 5821 u64 sample_type = data->type; 5822 5823 perf_output_put(handle, *header); 5824 5825 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5826 perf_output_put(handle, data->id); 5827 5828 if (sample_type & PERF_SAMPLE_IP) 5829 perf_output_put(handle, data->ip); 5830 5831 if (sample_type & PERF_SAMPLE_TID) 5832 perf_output_put(handle, data->tid_entry); 5833 5834 if (sample_type & PERF_SAMPLE_TIME) 5835 perf_output_put(handle, data->time); 5836 5837 if (sample_type & PERF_SAMPLE_ADDR) 5838 perf_output_put(handle, data->addr); 5839 5840 if (sample_type & PERF_SAMPLE_ID) 5841 perf_output_put(handle, data->id); 5842 5843 if (sample_type & PERF_SAMPLE_STREAM_ID) 5844 perf_output_put(handle, data->stream_id); 5845 5846 if (sample_type & PERF_SAMPLE_CPU) 5847 perf_output_put(handle, data->cpu_entry); 5848 5849 if (sample_type & PERF_SAMPLE_PERIOD) 5850 perf_output_put(handle, data->period); 5851 5852 if (sample_type & PERF_SAMPLE_READ) 5853 perf_output_read(handle, event); 5854 5855 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5856 if (data->callchain) { 5857 int size = 1; 5858 5859 if (data->callchain) 5860 size += data->callchain->nr; 5861 5862 size *= sizeof(u64); 5863 5864 __output_copy(handle, data->callchain, size); 5865 } else { 5866 u64 nr = 0; 5867 perf_output_put(handle, nr); 5868 } 5869 } 5870 5871 if (sample_type & PERF_SAMPLE_RAW) { 5872 struct perf_raw_record *raw = data->raw; 5873 5874 if (raw) { 5875 struct perf_raw_frag *frag = &raw->frag; 5876 5877 perf_output_put(handle, raw->size); 5878 do { 5879 if (frag->copy) { 5880 __output_custom(handle, frag->copy, 5881 frag->data, frag->size); 5882 } else { 5883 __output_copy(handle, frag->data, 5884 frag->size); 5885 } 5886 if (perf_raw_frag_last(frag)) 5887 break; 5888 frag = frag->next; 5889 } while (1); 5890 if (frag->pad) 5891 __output_skip(handle, NULL, frag->pad); 5892 } else { 5893 struct { 5894 u32 size; 5895 u32 data; 5896 } raw = { 5897 .size = sizeof(u32), 5898 .data = 0, 5899 }; 5900 perf_output_put(handle, raw); 5901 } 5902 } 5903 5904 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5905 if (data->br_stack) { 5906 size_t size; 5907 5908 size = data->br_stack->nr 5909 * sizeof(struct perf_branch_entry); 5910 5911 perf_output_put(handle, data->br_stack->nr); 5912 perf_output_copy(handle, data->br_stack->entries, size); 5913 } else { 5914 /* 5915 * we always store at least the value of nr 5916 */ 5917 u64 nr = 0; 5918 perf_output_put(handle, nr); 5919 } 5920 } 5921 5922 if (sample_type & PERF_SAMPLE_REGS_USER) { 5923 u64 abi = data->regs_user.abi; 5924 5925 /* 5926 * If there are no regs to dump, notice it through 5927 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5928 */ 5929 perf_output_put(handle, abi); 5930 5931 if (abi) { 5932 u64 mask = event->attr.sample_regs_user; 5933 perf_output_sample_regs(handle, 5934 data->regs_user.regs, 5935 mask); 5936 } 5937 } 5938 5939 if (sample_type & PERF_SAMPLE_STACK_USER) { 5940 perf_output_sample_ustack(handle, 5941 data->stack_user_size, 5942 data->regs_user.regs); 5943 } 5944 5945 if (sample_type & PERF_SAMPLE_WEIGHT) 5946 perf_output_put(handle, data->weight); 5947 5948 if (sample_type & PERF_SAMPLE_DATA_SRC) 5949 perf_output_put(handle, data->data_src.val); 5950 5951 if (sample_type & PERF_SAMPLE_TRANSACTION) 5952 perf_output_put(handle, data->txn); 5953 5954 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5955 u64 abi = data->regs_intr.abi; 5956 /* 5957 * If there are no regs to dump, notice it through 5958 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5959 */ 5960 perf_output_put(handle, abi); 5961 5962 if (abi) { 5963 u64 mask = event->attr.sample_regs_intr; 5964 5965 perf_output_sample_regs(handle, 5966 data->regs_intr.regs, 5967 mask); 5968 } 5969 } 5970 5971 if (!event->attr.watermark) { 5972 int wakeup_events = event->attr.wakeup_events; 5973 5974 if (wakeup_events) { 5975 struct ring_buffer *rb = handle->rb; 5976 int events = local_inc_return(&rb->events); 5977 5978 if (events >= wakeup_events) { 5979 local_sub(wakeup_events, &rb->events); 5980 local_inc(&rb->wakeup); 5981 } 5982 } 5983 } 5984 } 5985 5986 void perf_prepare_sample(struct perf_event_header *header, 5987 struct perf_sample_data *data, 5988 struct perf_event *event, 5989 struct pt_regs *regs) 5990 { 5991 u64 sample_type = event->attr.sample_type; 5992 5993 header->type = PERF_RECORD_SAMPLE; 5994 header->size = sizeof(*header) + event->header_size; 5995 5996 header->misc = 0; 5997 header->misc |= perf_misc_flags(regs); 5998 5999 __perf_event_header__init_id(header, data, event); 6000 6001 if (sample_type & PERF_SAMPLE_IP) 6002 data->ip = perf_instruction_pointer(regs); 6003 6004 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6005 int size = 1; 6006 6007 data->callchain = perf_callchain(event, regs); 6008 6009 if (data->callchain) 6010 size += data->callchain->nr; 6011 6012 header->size += size * sizeof(u64); 6013 } 6014 6015 if (sample_type & PERF_SAMPLE_RAW) { 6016 struct perf_raw_record *raw = data->raw; 6017 int size; 6018 6019 if (raw) { 6020 struct perf_raw_frag *frag = &raw->frag; 6021 u32 sum = 0; 6022 6023 do { 6024 sum += frag->size; 6025 if (perf_raw_frag_last(frag)) 6026 break; 6027 frag = frag->next; 6028 } while (1); 6029 6030 size = round_up(sum + sizeof(u32), sizeof(u64)); 6031 raw->size = size - sizeof(u32); 6032 frag->pad = raw->size - sum; 6033 } else { 6034 size = sizeof(u64); 6035 } 6036 6037 header->size += size; 6038 } 6039 6040 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6041 int size = sizeof(u64); /* nr */ 6042 if (data->br_stack) { 6043 size += data->br_stack->nr 6044 * sizeof(struct perf_branch_entry); 6045 } 6046 header->size += size; 6047 } 6048 6049 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6050 perf_sample_regs_user(&data->regs_user, regs, 6051 &data->regs_user_copy); 6052 6053 if (sample_type & PERF_SAMPLE_REGS_USER) { 6054 /* regs dump ABI info */ 6055 int size = sizeof(u64); 6056 6057 if (data->regs_user.regs) { 6058 u64 mask = event->attr.sample_regs_user; 6059 size += hweight64(mask) * sizeof(u64); 6060 } 6061 6062 header->size += size; 6063 } 6064 6065 if (sample_type & PERF_SAMPLE_STACK_USER) { 6066 /* 6067 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6068 * processed as the last one or have additional check added 6069 * in case new sample type is added, because we could eat 6070 * up the rest of the sample size. 6071 */ 6072 u16 stack_size = event->attr.sample_stack_user; 6073 u16 size = sizeof(u64); 6074 6075 stack_size = perf_sample_ustack_size(stack_size, header->size, 6076 data->regs_user.regs); 6077 6078 /* 6079 * If there is something to dump, add space for the dump 6080 * itself and for the field that tells the dynamic size, 6081 * which is how many have been actually dumped. 6082 */ 6083 if (stack_size) 6084 size += sizeof(u64) + stack_size; 6085 6086 data->stack_user_size = stack_size; 6087 header->size += size; 6088 } 6089 6090 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6091 /* regs dump ABI info */ 6092 int size = sizeof(u64); 6093 6094 perf_sample_regs_intr(&data->regs_intr, regs); 6095 6096 if (data->regs_intr.regs) { 6097 u64 mask = event->attr.sample_regs_intr; 6098 6099 size += hweight64(mask) * sizeof(u64); 6100 } 6101 6102 header->size += size; 6103 } 6104 } 6105 6106 static void __always_inline 6107 __perf_event_output(struct perf_event *event, 6108 struct perf_sample_data *data, 6109 struct pt_regs *regs, 6110 int (*output_begin)(struct perf_output_handle *, 6111 struct perf_event *, 6112 unsigned int)) 6113 { 6114 struct perf_output_handle handle; 6115 struct perf_event_header header; 6116 6117 /* protect the callchain buffers */ 6118 rcu_read_lock(); 6119 6120 perf_prepare_sample(&header, data, event, regs); 6121 6122 if (output_begin(&handle, event, header.size)) 6123 goto exit; 6124 6125 perf_output_sample(&handle, &header, data, event); 6126 6127 perf_output_end(&handle); 6128 6129 exit: 6130 rcu_read_unlock(); 6131 } 6132 6133 void 6134 perf_event_output_forward(struct perf_event *event, 6135 struct perf_sample_data *data, 6136 struct pt_regs *regs) 6137 { 6138 __perf_event_output(event, data, regs, perf_output_begin_forward); 6139 } 6140 6141 void 6142 perf_event_output_backward(struct perf_event *event, 6143 struct perf_sample_data *data, 6144 struct pt_regs *regs) 6145 { 6146 __perf_event_output(event, data, regs, perf_output_begin_backward); 6147 } 6148 6149 void 6150 perf_event_output(struct perf_event *event, 6151 struct perf_sample_data *data, 6152 struct pt_regs *regs) 6153 { 6154 __perf_event_output(event, data, regs, perf_output_begin); 6155 } 6156 6157 /* 6158 * read event_id 6159 */ 6160 6161 struct perf_read_event { 6162 struct perf_event_header header; 6163 6164 u32 pid; 6165 u32 tid; 6166 }; 6167 6168 static void 6169 perf_event_read_event(struct perf_event *event, 6170 struct task_struct *task) 6171 { 6172 struct perf_output_handle handle; 6173 struct perf_sample_data sample; 6174 struct perf_read_event read_event = { 6175 .header = { 6176 .type = PERF_RECORD_READ, 6177 .misc = 0, 6178 .size = sizeof(read_event) + event->read_size, 6179 }, 6180 .pid = perf_event_pid(event, task), 6181 .tid = perf_event_tid(event, task), 6182 }; 6183 int ret; 6184 6185 perf_event_header__init_id(&read_event.header, &sample, event); 6186 ret = perf_output_begin(&handle, event, read_event.header.size); 6187 if (ret) 6188 return; 6189 6190 perf_output_put(&handle, read_event); 6191 perf_output_read(&handle, event); 6192 perf_event__output_id_sample(event, &handle, &sample); 6193 6194 perf_output_end(&handle); 6195 } 6196 6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6198 6199 static void 6200 perf_iterate_ctx(struct perf_event_context *ctx, 6201 perf_iterate_f output, 6202 void *data, bool all) 6203 { 6204 struct perf_event *event; 6205 6206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6207 if (!all) { 6208 if (event->state < PERF_EVENT_STATE_INACTIVE) 6209 continue; 6210 if (!event_filter_match(event)) 6211 continue; 6212 } 6213 6214 output(event, data); 6215 } 6216 } 6217 6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6219 { 6220 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6221 struct perf_event *event; 6222 6223 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6224 /* 6225 * Skip events that are not fully formed yet; ensure that 6226 * if we observe event->ctx, both event and ctx will be 6227 * complete enough. See perf_install_in_context(). 6228 */ 6229 if (!smp_load_acquire(&event->ctx)) 6230 continue; 6231 6232 if (event->state < PERF_EVENT_STATE_INACTIVE) 6233 continue; 6234 if (!event_filter_match(event)) 6235 continue; 6236 output(event, data); 6237 } 6238 } 6239 6240 /* 6241 * Iterate all events that need to receive side-band events. 6242 * 6243 * For new callers; ensure that account_pmu_sb_event() includes 6244 * your event, otherwise it might not get delivered. 6245 */ 6246 static void 6247 perf_iterate_sb(perf_iterate_f output, void *data, 6248 struct perf_event_context *task_ctx) 6249 { 6250 struct perf_event_context *ctx; 6251 int ctxn; 6252 6253 rcu_read_lock(); 6254 preempt_disable(); 6255 6256 /* 6257 * If we have task_ctx != NULL we only notify the task context itself. 6258 * The task_ctx is set only for EXIT events before releasing task 6259 * context. 6260 */ 6261 if (task_ctx) { 6262 perf_iterate_ctx(task_ctx, output, data, false); 6263 goto done; 6264 } 6265 6266 perf_iterate_sb_cpu(output, data); 6267 6268 for_each_task_context_nr(ctxn) { 6269 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6270 if (ctx) 6271 perf_iterate_ctx(ctx, output, data, false); 6272 } 6273 done: 6274 preempt_enable(); 6275 rcu_read_unlock(); 6276 } 6277 6278 /* 6279 * Clear all file-based filters at exec, they'll have to be 6280 * re-instated when/if these objects are mmapped again. 6281 */ 6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6283 { 6284 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6285 struct perf_addr_filter *filter; 6286 unsigned int restart = 0, count = 0; 6287 unsigned long flags; 6288 6289 if (!has_addr_filter(event)) 6290 return; 6291 6292 raw_spin_lock_irqsave(&ifh->lock, flags); 6293 list_for_each_entry(filter, &ifh->list, entry) { 6294 if (filter->inode) { 6295 event->addr_filters_offs[count] = 0; 6296 restart++; 6297 } 6298 6299 count++; 6300 } 6301 6302 if (restart) 6303 event->addr_filters_gen++; 6304 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6305 6306 if (restart) 6307 perf_event_stop(event, 1); 6308 } 6309 6310 void perf_event_exec(void) 6311 { 6312 struct perf_event_context *ctx; 6313 int ctxn; 6314 6315 rcu_read_lock(); 6316 for_each_task_context_nr(ctxn) { 6317 ctx = current->perf_event_ctxp[ctxn]; 6318 if (!ctx) 6319 continue; 6320 6321 perf_event_enable_on_exec(ctxn); 6322 6323 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6324 true); 6325 } 6326 rcu_read_unlock(); 6327 } 6328 6329 struct remote_output { 6330 struct ring_buffer *rb; 6331 int err; 6332 }; 6333 6334 static void __perf_event_output_stop(struct perf_event *event, void *data) 6335 { 6336 struct perf_event *parent = event->parent; 6337 struct remote_output *ro = data; 6338 struct ring_buffer *rb = ro->rb; 6339 struct stop_event_data sd = { 6340 .event = event, 6341 }; 6342 6343 if (!has_aux(event)) 6344 return; 6345 6346 if (!parent) 6347 parent = event; 6348 6349 /* 6350 * In case of inheritance, it will be the parent that links to the 6351 * ring-buffer, but it will be the child that's actually using it. 6352 * 6353 * We are using event::rb to determine if the event should be stopped, 6354 * however this may race with ring_buffer_attach() (through set_output), 6355 * which will make us skip the event that actually needs to be stopped. 6356 * So ring_buffer_attach() has to stop an aux event before re-assigning 6357 * its rb pointer. 6358 */ 6359 if (rcu_dereference(parent->rb) == rb) 6360 ro->err = __perf_event_stop(&sd); 6361 } 6362 6363 static int __perf_pmu_output_stop(void *info) 6364 { 6365 struct perf_event *event = info; 6366 struct pmu *pmu = event->pmu; 6367 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6368 struct remote_output ro = { 6369 .rb = event->rb, 6370 }; 6371 6372 rcu_read_lock(); 6373 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6374 if (cpuctx->task_ctx) 6375 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6376 &ro, false); 6377 rcu_read_unlock(); 6378 6379 return ro.err; 6380 } 6381 6382 static void perf_pmu_output_stop(struct perf_event *event) 6383 { 6384 struct perf_event *iter; 6385 int err, cpu; 6386 6387 restart: 6388 rcu_read_lock(); 6389 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6390 /* 6391 * For per-CPU events, we need to make sure that neither they 6392 * nor their children are running; for cpu==-1 events it's 6393 * sufficient to stop the event itself if it's active, since 6394 * it can't have children. 6395 */ 6396 cpu = iter->cpu; 6397 if (cpu == -1) 6398 cpu = READ_ONCE(iter->oncpu); 6399 6400 if (cpu == -1) 6401 continue; 6402 6403 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6404 if (err == -EAGAIN) { 6405 rcu_read_unlock(); 6406 goto restart; 6407 } 6408 } 6409 rcu_read_unlock(); 6410 } 6411 6412 /* 6413 * task tracking -- fork/exit 6414 * 6415 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6416 */ 6417 6418 struct perf_task_event { 6419 struct task_struct *task; 6420 struct perf_event_context *task_ctx; 6421 6422 struct { 6423 struct perf_event_header header; 6424 6425 u32 pid; 6426 u32 ppid; 6427 u32 tid; 6428 u32 ptid; 6429 u64 time; 6430 } event_id; 6431 }; 6432 6433 static int perf_event_task_match(struct perf_event *event) 6434 { 6435 return event->attr.comm || event->attr.mmap || 6436 event->attr.mmap2 || event->attr.mmap_data || 6437 event->attr.task; 6438 } 6439 6440 static void perf_event_task_output(struct perf_event *event, 6441 void *data) 6442 { 6443 struct perf_task_event *task_event = data; 6444 struct perf_output_handle handle; 6445 struct perf_sample_data sample; 6446 struct task_struct *task = task_event->task; 6447 int ret, size = task_event->event_id.header.size; 6448 6449 if (!perf_event_task_match(event)) 6450 return; 6451 6452 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6453 6454 ret = perf_output_begin(&handle, event, 6455 task_event->event_id.header.size); 6456 if (ret) 6457 goto out; 6458 6459 task_event->event_id.pid = perf_event_pid(event, task); 6460 task_event->event_id.ppid = perf_event_pid(event, current); 6461 6462 task_event->event_id.tid = perf_event_tid(event, task); 6463 task_event->event_id.ptid = perf_event_tid(event, current); 6464 6465 task_event->event_id.time = perf_event_clock(event); 6466 6467 perf_output_put(&handle, task_event->event_id); 6468 6469 perf_event__output_id_sample(event, &handle, &sample); 6470 6471 perf_output_end(&handle); 6472 out: 6473 task_event->event_id.header.size = size; 6474 } 6475 6476 static void perf_event_task(struct task_struct *task, 6477 struct perf_event_context *task_ctx, 6478 int new) 6479 { 6480 struct perf_task_event task_event; 6481 6482 if (!atomic_read(&nr_comm_events) && 6483 !atomic_read(&nr_mmap_events) && 6484 !atomic_read(&nr_task_events)) 6485 return; 6486 6487 task_event = (struct perf_task_event){ 6488 .task = task, 6489 .task_ctx = task_ctx, 6490 .event_id = { 6491 .header = { 6492 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6493 .misc = 0, 6494 .size = sizeof(task_event.event_id), 6495 }, 6496 /* .pid */ 6497 /* .ppid */ 6498 /* .tid */ 6499 /* .ptid */ 6500 /* .time */ 6501 }, 6502 }; 6503 6504 perf_iterate_sb(perf_event_task_output, 6505 &task_event, 6506 task_ctx); 6507 } 6508 6509 void perf_event_fork(struct task_struct *task) 6510 { 6511 perf_event_task(task, NULL, 1); 6512 perf_event_namespaces(task); 6513 } 6514 6515 /* 6516 * comm tracking 6517 */ 6518 6519 struct perf_comm_event { 6520 struct task_struct *task; 6521 char *comm; 6522 int comm_size; 6523 6524 struct { 6525 struct perf_event_header header; 6526 6527 u32 pid; 6528 u32 tid; 6529 } event_id; 6530 }; 6531 6532 static int perf_event_comm_match(struct perf_event *event) 6533 { 6534 return event->attr.comm; 6535 } 6536 6537 static void perf_event_comm_output(struct perf_event *event, 6538 void *data) 6539 { 6540 struct perf_comm_event *comm_event = data; 6541 struct perf_output_handle handle; 6542 struct perf_sample_data sample; 6543 int size = comm_event->event_id.header.size; 6544 int ret; 6545 6546 if (!perf_event_comm_match(event)) 6547 return; 6548 6549 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6550 ret = perf_output_begin(&handle, event, 6551 comm_event->event_id.header.size); 6552 6553 if (ret) 6554 goto out; 6555 6556 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6557 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6558 6559 perf_output_put(&handle, comm_event->event_id); 6560 __output_copy(&handle, comm_event->comm, 6561 comm_event->comm_size); 6562 6563 perf_event__output_id_sample(event, &handle, &sample); 6564 6565 perf_output_end(&handle); 6566 out: 6567 comm_event->event_id.header.size = size; 6568 } 6569 6570 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6571 { 6572 char comm[TASK_COMM_LEN]; 6573 unsigned int size; 6574 6575 memset(comm, 0, sizeof(comm)); 6576 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6577 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6578 6579 comm_event->comm = comm; 6580 comm_event->comm_size = size; 6581 6582 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6583 6584 perf_iterate_sb(perf_event_comm_output, 6585 comm_event, 6586 NULL); 6587 } 6588 6589 void perf_event_comm(struct task_struct *task, bool exec) 6590 { 6591 struct perf_comm_event comm_event; 6592 6593 if (!atomic_read(&nr_comm_events)) 6594 return; 6595 6596 comm_event = (struct perf_comm_event){ 6597 .task = task, 6598 /* .comm */ 6599 /* .comm_size */ 6600 .event_id = { 6601 .header = { 6602 .type = PERF_RECORD_COMM, 6603 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6604 /* .size */ 6605 }, 6606 /* .pid */ 6607 /* .tid */ 6608 }, 6609 }; 6610 6611 perf_event_comm_event(&comm_event); 6612 } 6613 6614 /* 6615 * namespaces tracking 6616 */ 6617 6618 struct perf_namespaces_event { 6619 struct task_struct *task; 6620 6621 struct { 6622 struct perf_event_header header; 6623 6624 u32 pid; 6625 u32 tid; 6626 u64 nr_namespaces; 6627 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6628 } event_id; 6629 }; 6630 6631 static int perf_event_namespaces_match(struct perf_event *event) 6632 { 6633 return event->attr.namespaces; 6634 } 6635 6636 static void perf_event_namespaces_output(struct perf_event *event, 6637 void *data) 6638 { 6639 struct perf_namespaces_event *namespaces_event = data; 6640 struct perf_output_handle handle; 6641 struct perf_sample_data sample; 6642 int ret; 6643 6644 if (!perf_event_namespaces_match(event)) 6645 return; 6646 6647 perf_event_header__init_id(&namespaces_event->event_id.header, 6648 &sample, event); 6649 ret = perf_output_begin(&handle, event, 6650 namespaces_event->event_id.header.size); 6651 if (ret) 6652 return; 6653 6654 namespaces_event->event_id.pid = perf_event_pid(event, 6655 namespaces_event->task); 6656 namespaces_event->event_id.tid = perf_event_tid(event, 6657 namespaces_event->task); 6658 6659 perf_output_put(&handle, namespaces_event->event_id); 6660 6661 perf_event__output_id_sample(event, &handle, &sample); 6662 6663 perf_output_end(&handle); 6664 } 6665 6666 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6667 struct task_struct *task, 6668 const struct proc_ns_operations *ns_ops) 6669 { 6670 struct path ns_path; 6671 struct inode *ns_inode; 6672 void *error; 6673 6674 error = ns_get_path(&ns_path, task, ns_ops); 6675 if (!error) { 6676 ns_inode = ns_path.dentry->d_inode; 6677 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6678 ns_link_info->ino = ns_inode->i_ino; 6679 } 6680 } 6681 6682 void perf_event_namespaces(struct task_struct *task) 6683 { 6684 struct perf_namespaces_event namespaces_event; 6685 struct perf_ns_link_info *ns_link_info; 6686 6687 if (!atomic_read(&nr_namespaces_events)) 6688 return; 6689 6690 namespaces_event = (struct perf_namespaces_event){ 6691 .task = task, 6692 .event_id = { 6693 .header = { 6694 .type = PERF_RECORD_NAMESPACES, 6695 .misc = 0, 6696 .size = sizeof(namespaces_event.event_id), 6697 }, 6698 /* .pid */ 6699 /* .tid */ 6700 .nr_namespaces = NR_NAMESPACES, 6701 /* .link_info[NR_NAMESPACES] */ 6702 }, 6703 }; 6704 6705 ns_link_info = namespaces_event.event_id.link_info; 6706 6707 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6708 task, &mntns_operations); 6709 6710 #ifdef CONFIG_USER_NS 6711 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6712 task, &userns_operations); 6713 #endif 6714 #ifdef CONFIG_NET_NS 6715 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6716 task, &netns_operations); 6717 #endif 6718 #ifdef CONFIG_UTS_NS 6719 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6720 task, &utsns_operations); 6721 #endif 6722 #ifdef CONFIG_IPC_NS 6723 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6724 task, &ipcns_operations); 6725 #endif 6726 #ifdef CONFIG_PID_NS 6727 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6728 task, &pidns_operations); 6729 #endif 6730 #ifdef CONFIG_CGROUPS 6731 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6732 task, &cgroupns_operations); 6733 #endif 6734 6735 perf_iterate_sb(perf_event_namespaces_output, 6736 &namespaces_event, 6737 NULL); 6738 } 6739 6740 /* 6741 * mmap tracking 6742 */ 6743 6744 struct perf_mmap_event { 6745 struct vm_area_struct *vma; 6746 6747 const char *file_name; 6748 int file_size; 6749 int maj, min; 6750 u64 ino; 6751 u64 ino_generation; 6752 u32 prot, flags; 6753 6754 struct { 6755 struct perf_event_header header; 6756 6757 u32 pid; 6758 u32 tid; 6759 u64 start; 6760 u64 len; 6761 u64 pgoff; 6762 } event_id; 6763 }; 6764 6765 static int perf_event_mmap_match(struct perf_event *event, 6766 void *data) 6767 { 6768 struct perf_mmap_event *mmap_event = data; 6769 struct vm_area_struct *vma = mmap_event->vma; 6770 int executable = vma->vm_flags & VM_EXEC; 6771 6772 return (!executable && event->attr.mmap_data) || 6773 (executable && (event->attr.mmap || event->attr.mmap2)); 6774 } 6775 6776 static void perf_event_mmap_output(struct perf_event *event, 6777 void *data) 6778 { 6779 struct perf_mmap_event *mmap_event = data; 6780 struct perf_output_handle handle; 6781 struct perf_sample_data sample; 6782 int size = mmap_event->event_id.header.size; 6783 int ret; 6784 6785 if (!perf_event_mmap_match(event, data)) 6786 return; 6787 6788 if (event->attr.mmap2) { 6789 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6790 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6791 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6792 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6793 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6794 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6795 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6796 } 6797 6798 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6799 ret = perf_output_begin(&handle, event, 6800 mmap_event->event_id.header.size); 6801 if (ret) 6802 goto out; 6803 6804 mmap_event->event_id.pid = perf_event_pid(event, current); 6805 mmap_event->event_id.tid = perf_event_tid(event, current); 6806 6807 perf_output_put(&handle, mmap_event->event_id); 6808 6809 if (event->attr.mmap2) { 6810 perf_output_put(&handle, mmap_event->maj); 6811 perf_output_put(&handle, mmap_event->min); 6812 perf_output_put(&handle, mmap_event->ino); 6813 perf_output_put(&handle, mmap_event->ino_generation); 6814 perf_output_put(&handle, mmap_event->prot); 6815 perf_output_put(&handle, mmap_event->flags); 6816 } 6817 6818 __output_copy(&handle, mmap_event->file_name, 6819 mmap_event->file_size); 6820 6821 perf_event__output_id_sample(event, &handle, &sample); 6822 6823 perf_output_end(&handle); 6824 out: 6825 mmap_event->event_id.header.size = size; 6826 } 6827 6828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6829 { 6830 struct vm_area_struct *vma = mmap_event->vma; 6831 struct file *file = vma->vm_file; 6832 int maj = 0, min = 0; 6833 u64 ino = 0, gen = 0; 6834 u32 prot = 0, flags = 0; 6835 unsigned int size; 6836 char tmp[16]; 6837 char *buf = NULL; 6838 char *name; 6839 6840 if (vma->vm_flags & VM_READ) 6841 prot |= PROT_READ; 6842 if (vma->vm_flags & VM_WRITE) 6843 prot |= PROT_WRITE; 6844 if (vma->vm_flags & VM_EXEC) 6845 prot |= PROT_EXEC; 6846 6847 if (vma->vm_flags & VM_MAYSHARE) 6848 flags = MAP_SHARED; 6849 else 6850 flags = MAP_PRIVATE; 6851 6852 if (vma->vm_flags & VM_DENYWRITE) 6853 flags |= MAP_DENYWRITE; 6854 if (vma->vm_flags & VM_MAYEXEC) 6855 flags |= MAP_EXECUTABLE; 6856 if (vma->vm_flags & VM_LOCKED) 6857 flags |= MAP_LOCKED; 6858 if (vma->vm_flags & VM_HUGETLB) 6859 flags |= MAP_HUGETLB; 6860 6861 if (file) { 6862 struct inode *inode; 6863 dev_t dev; 6864 6865 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6866 if (!buf) { 6867 name = "//enomem"; 6868 goto cpy_name; 6869 } 6870 /* 6871 * d_path() works from the end of the rb backwards, so we 6872 * need to add enough zero bytes after the string to handle 6873 * the 64bit alignment we do later. 6874 */ 6875 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6876 if (IS_ERR(name)) { 6877 name = "//toolong"; 6878 goto cpy_name; 6879 } 6880 inode = file_inode(vma->vm_file); 6881 dev = inode->i_sb->s_dev; 6882 ino = inode->i_ino; 6883 gen = inode->i_generation; 6884 maj = MAJOR(dev); 6885 min = MINOR(dev); 6886 6887 goto got_name; 6888 } else { 6889 if (vma->vm_ops && vma->vm_ops->name) { 6890 name = (char *) vma->vm_ops->name(vma); 6891 if (name) 6892 goto cpy_name; 6893 } 6894 6895 name = (char *)arch_vma_name(vma); 6896 if (name) 6897 goto cpy_name; 6898 6899 if (vma->vm_start <= vma->vm_mm->start_brk && 6900 vma->vm_end >= vma->vm_mm->brk) { 6901 name = "[heap]"; 6902 goto cpy_name; 6903 } 6904 if (vma->vm_start <= vma->vm_mm->start_stack && 6905 vma->vm_end >= vma->vm_mm->start_stack) { 6906 name = "[stack]"; 6907 goto cpy_name; 6908 } 6909 6910 name = "//anon"; 6911 goto cpy_name; 6912 } 6913 6914 cpy_name: 6915 strlcpy(tmp, name, sizeof(tmp)); 6916 name = tmp; 6917 got_name: 6918 /* 6919 * Since our buffer works in 8 byte units we need to align our string 6920 * size to a multiple of 8. However, we must guarantee the tail end is 6921 * zero'd out to avoid leaking random bits to userspace. 6922 */ 6923 size = strlen(name)+1; 6924 while (!IS_ALIGNED(size, sizeof(u64))) 6925 name[size++] = '\0'; 6926 6927 mmap_event->file_name = name; 6928 mmap_event->file_size = size; 6929 mmap_event->maj = maj; 6930 mmap_event->min = min; 6931 mmap_event->ino = ino; 6932 mmap_event->ino_generation = gen; 6933 mmap_event->prot = prot; 6934 mmap_event->flags = flags; 6935 6936 if (!(vma->vm_flags & VM_EXEC)) 6937 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6938 6939 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6940 6941 perf_iterate_sb(perf_event_mmap_output, 6942 mmap_event, 6943 NULL); 6944 6945 kfree(buf); 6946 } 6947 6948 /* 6949 * Check whether inode and address range match filter criteria. 6950 */ 6951 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6952 struct file *file, unsigned long offset, 6953 unsigned long size) 6954 { 6955 if (filter->inode != file_inode(file)) 6956 return false; 6957 6958 if (filter->offset > offset + size) 6959 return false; 6960 6961 if (filter->offset + filter->size < offset) 6962 return false; 6963 6964 return true; 6965 } 6966 6967 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6968 { 6969 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6970 struct vm_area_struct *vma = data; 6971 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6972 struct file *file = vma->vm_file; 6973 struct perf_addr_filter *filter; 6974 unsigned int restart = 0, count = 0; 6975 6976 if (!has_addr_filter(event)) 6977 return; 6978 6979 if (!file) 6980 return; 6981 6982 raw_spin_lock_irqsave(&ifh->lock, flags); 6983 list_for_each_entry(filter, &ifh->list, entry) { 6984 if (perf_addr_filter_match(filter, file, off, 6985 vma->vm_end - vma->vm_start)) { 6986 event->addr_filters_offs[count] = vma->vm_start; 6987 restart++; 6988 } 6989 6990 count++; 6991 } 6992 6993 if (restart) 6994 event->addr_filters_gen++; 6995 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6996 6997 if (restart) 6998 perf_event_stop(event, 1); 6999 } 7000 7001 /* 7002 * Adjust all task's events' filters to the new vma 7003 */ 7004 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7005 { 7006 struct perf_event_context *ctx; 7007 int ctxn; 7008 7009 /* 7010 * Data tracing isn't supported yet and as such there is no need 7011 * to keep track of anything that isn't related to executable code: 7012 */ 7013 if (!(vma->vm_flags & VM_EXEC)) 7014 return; 7015 7016 rcu_read_lock(); 7017 for_each_task_context_nr(ctxn) { 7018 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7019 if (!ctx) 7020 continue; 7021 7022 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7023 } 7024 rcu_read_unlock(); 7025 } 7026 7027 void perf_event_mmap(struct vm_area_struct *vma) 7028 { 7029 struct perf_mmap_event mmap_event; 7030 7031 if (!atomic_read(&nr_mmap_events)) 7032 return; 7033 7034 mmap_event = (struct perf_mmap_event){ 7035 .vma = vma, 7036 /* .file_name */ 7037 /* .file_size */ 7038 .event_id = { 7039 .header = { 7040 .type = PERF_RECORD_MMAP, 7041 .misc = PERF_RECORD_MISC_USER, 7042 /* .size */ 7043 }, 7044 /* .pid */ 7045 /* .tid */ 7046 .start = vma->vm_start, 7047 .len = vma->vm_end - vma->vm_start, 7048 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7049 }, 7050 /* .maj (attr_mmap2 only) */ 7051 /* .min (attr_mmap2 only) */ 7052 /* .ino (attr_mmap2 only) */ 7053 /* .ino_generation (attr_mmap2 only) */ 7054 /* .prot (attr_mmap2 only) */ 7055 /* .flags (attr_mmap2 only) */ 7056 }; 7057 7058 perf_addr_filters_adjust(vma); 7059 perf_event_mmap_event(&mmap_event); 7060 } 7061 7062 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7063 unsigned long size, u64 flags) 7064 { 7065 struct perf_output_handle handle; 7066 struct perf_sample_data sample; 7067 struct perf_aux_event { 7068 struct perf_event_header header; 7069 u64 offset; 7070 u64 size; 7071 u64 flags; 7072 } rec = { 7073 .header = { 7074 .type = PERF_RECORD_AUX, 7075 .misc = 0, 7076 .size = sizeof(rec), 7077 }, 7078 .offset = head, 7079 .size = size, 7080 .flags = flags, 7081 }; 7082 int ret; 7083 7084 perf_event_header__init_id(&rec.header, &sample, event); 7085 ret = perf_output_begin(&handle, event, rec.header.size); 7086 7087 if (ret) 7088 return; 7089 7090 perf_output_put(&handle, rec); 7091 perf_event__output_id_sample(event, &handle, &sample); 7092 7093 perf_output_end(&handle); 7094 } 7095 7096 /* 7097 * Lost/dropped samples logging 7098 */ 7099 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7100 { 7101 struct perf_output_handle handle; 7102 struct perf_sample_data sample; 7103 int ret; 7104 7105 struct { 7106 struct perf_event_header header; 7107 u64 lost; 7108 } lost_samples_event = { 7109 .header = { 7110 .type = PERF_RECORD_LOST_SAMPLES, 7111 .misc = 0, 7112 .size = sizeof(lost_samples_event), 7113 }, 7114 .lost = lost, 7115 }; 7116 7117 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7118 7119 ret = perf_output_begin(&handle, event, 7120 lost_samples_event.header.size); 7121 if (ret) 7122 return; 7123 7124 perf_output_put(&handle, lost_samples_event); 7125 perf_event__output_id_sample(event, &handle, &sample); 7126 perf_output_end(&handle); 7127 } 7128 7129 /* 7130 * context_switch tracking 7131 */ 7132 7133 struct perf_switch_event { 7134 struct task_struct *task; 7135 struct task_struct *next_prev; 7136 7137 struct { 7138 struct perf_event_header header; 7139 u32 next_prev_pid; 7140 u32 next_prev_tid; 7141 } event_id; 7142 }; 7143 7144 static int perf_event_switch_match(struct perf_event *event) 7145 { 7146 return event->attr.context_switch; 7147 } 7148 7149 static void perf_event_switch_output(struct perf_event *event, void *data) 7150 { 7151 struct perf_switch_event *se = data; 7152 struct perf_output_handle handle; 7153 struct perf_sample_data sample; 7154 int ret; 7155 7156 if (!perf_event_switch_match(event)) 7157 return; 7158 7159 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7160 if (event->ctx->task) { 7161 se->event_id.header.type = PERF_RECORD_SWITCH; 7162 se->event_id.header.size = sizeof(se->event_id.header); 7163 } else { 7164 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7165 se->event_id.header.size = sizeof(se->event_id); 7166 se->event_id.next_prev_pid = 7167 perf_event_pid(event, se->next_prev); 7168 se->event_id.next_prev_tid = 7169 perf_event_tid(event, se->next_prev); 7170 } 7171 7172 perf_event_header__init_id(&se->event_id.header, &sample, event); 7173 7174 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7175 if (ret) 7176 return; 7177 7178 if (event->ctx->task) 7179 perf_output_put(&handle, se->event_id.header); 7180 else 7181 perf_output_put(&handle, se->event_id); 7182 7183 perf_event__output_id_sample(event, &handle, &sample); 7184 7185 perf_output_end(&handle); 7186 } 7187 7188 static void perf_event_switch(struct task_struct *task, 7189 struct task_struct *next_prev, bool sched_in) 7190 { 7191 struct perf_switch_event switch_event; 7192 7193 /* N.B. caller checks nr_switch_events != 0 */ 7194 7195 switch_event = (struct perf_switch_event){ 7196 .task = task, 7197 .next_prev = next_prev, 7198 .event_id = { 7199 .header = { 7200 /* .type */ 7201 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7202 /* .size */ 7203 }, 7204 /* .next_prev_pid */ 7205 /* .next_prev_tid */ 7206 }, 7207 }; 7208 7209 perf_iterate_sb(perf_event_switch_output, 7210 &switch_event, 7211 NULL); 7212 } 7213 7214 /* 7215 * IRQ throttle logging 7216 */ 7217 7218 static void perf_log_throttle(struct perf_event *event, int enable) 7219 { 7220 struct perf_output_handle handle; 7221 struct perf_sample_data sample; 7222 int ret; 7223 7224 struct { 7225 struct perf_event_header header; 7226 u64 time; 7227 u64 id; 7228 u64 stream_id; 7229 } throttle_event = { 7230 .header = { 7231 .type = PERF_RECORD_THROTTLE, 7232 .misc = 0, 7233 .size = sizeof(throttle_event), 7234 }, 7235 .time = perf_event_clock(event), 7236 .id = primary_event_id(event), 7237 .stream_id = event->id, 7238 }; 7239 7240 if (enable) 7241 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7242 7243 perf_event_header__init_id(&throttle_event.header, &sample, event); 7244 7245 ret = perf_output_begin(&handle, event, 7246 throttle_event.header.size); 7247 if (ret) 7248 return; 7249 7250 perf_output_put(&handle, throttle_event); 7251 perf_event__output_id_sample(event, &handle, &sample); 7252 perf_output_end(&handle); 7253 } 7254 7255 static void perf_log_itrace_start(struct perf_event *event) 7256 { 7257 struct perf_output_handle handle; 7258 struct perf_sample_data sample; 7259 struct perf_aux_event { 7260 struct perf_event_header header; 7261 u32 pid; 7262 u32 tid; 7263 } rec; 7264 int ret; 7265 7266 if (event->parent) 7267 event = event->parent; 7268 7269 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7270 event->hw.itrace_started) 7271 return; 7272 7273 rec.header.type = PERF_RECORD_ITRACE_START; 7274 rec.header.misc = 0; 7275 rec.header.size = sizeof(rec); 7276 rec.pid = perf_event_pid(event, current); 7277 rec.tid = perf_event_tid(event, current); 7278 7279 perf_event_header__init_id(&rec.header, &sample, event); 7280 ret = perf_output_begin(&handle, event, rec.header.size); 7281 7282 if (ret) 7283 return; 7284 7285 perf_output_put(&handle, rec); 7286 perf_event__output_id_sample(event, &handle, &sample); 7287 7288 perf_output_end(&handle); 7289 } 7290 7291 static int 7292 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7293 { 7294 struct hw_perf_event *hwc = &event->hw; 7295 int ret = 0; 7296 u64 seq; 7297 7298 seq = __this_cpu_read(perf_throttled_seq); 7299 if (seq != hwc->interrupts_seq) { 7300 hwc->interrupts_seq = seq; 7301 hwc->interrupts = 1; 7302 } else { 7303 hwc->interrupts++; 7304 if (unlikely(throttle 7305 && hwc->interrupts >= max_samples_per_tick)) { 7306 __this_cpu_inc(perf_throttled_count); 7307 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7308 hwc->interrupts = MAX_INTERRUPTS; 7309 perf_log_throttle(event, 0); 7310 ret = 1; 7311 } 7312 } 7313 7314 if (event->attr.freq) { 7315 u64 now = perf_clock(); 7316 s64 delta = now - hwc->freq_time_stamp; 7317 7318 hwc->freq_time_stamp = now; 7319 7320 if (delta > 0 && delta < 2*TICK_NSEC) 7321 perf_adjust_period(event, delta, hwc->last_period, true); 7322 } 7323 7324 return ret; 7325 } 7326 7327 int perf_event_account_interrupt(struct perf_event *event) 7328 { 7329 return __perf_event_account_interrupt(event, 1); 7330 } 7331 7332 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 7333 { 7334 /* 7335 * Due to interrupt latency (AKA "skid"), we may enter the 7336 * kernel before taking an overflow, even if the PMU is only 7337 * counting user events. 7338 * To avoid leaking information to userspace, we must always 7339 * reject kernel samples when exclude_kernel is set. 7340 */ 7341 if (event->attr.exclude_kernel && !user_mode(regs)) 7342 return false; 7343 7344 return true; 7345 } 7346 7347 /* 7348 * Generic event overflow handling, sampling. 7349 */ 7350 7351 static int __perf_event_overflow(struct perf_event *event, 7352 int throttle, struct perf_sample_data *data, 7353 struct pt_regs *regs) 7354 { 7355 int events = atomic_read(&event->event_limit); 7356 int ret = 0; 7357 7358 /* 7359 * Non-sampling counters might still use the PMI to fold short 7360 * hardware counters, ignore those. 7361 */ 7362 if (unlikely(!is_sampling_event(event))) 7363 return 0; 7364 7365 ret = __perf_event_account_interrupt(event, throttle); 7366 7367 /* 7368 * For security, drop the skid kernel samples if necessary. 7369 */ 7370 if (!sample_is_allowed(event, regs)) 7371 return ret; 7372 7373 /* 7374 * XXX event_limit might not quite work as expected on inherited 7375 * events 7376 */ 7377 7378 event->pending_kill = POLL_IN; 7379 if (events && atomic_dec_and_test(&event->event_limit)) { 7380 ret = 1; 7381 event->pending_kill = POLL_HUP; 7382 7383 perf_event_disable_inatomic(event); 7384 } 7385 7386 READ_ONCE(event->overflow_handler)(event, data, regs); 7387 7388 if (*perf_event_fasync(event) && event->pending_kill) { 7389 event->pending_wakeup = 1; 7390 irq_work_queue(&event->pending); 7391 } 7392 7393 return ret; 7394 } 7395 7396 int perf_event_overflow(struct perf_event *event, 7397 struct perf_sample_data *data, 7398 struct pt_regs *regs) 7399 { 7400 return __perf_event_overflow(event, 1, data, regs); 7401 } 7402 7403 /* 7404 * Generic software event infrastructure 7405 */ 7406 7407 struct swevent_htable { 7408 struct swevent_hlist *swevent_hlist; 7409 struct mutex hlist_mutex; 7410 int hlist_refcount; 7411 7412 /* Recursion avoidance in each contexts */ 7413 int recursion[PERF_NR_CONTEXTS]; 7414 }; 7415 7416 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7417 7418 /* 7419 * We directly increment event->count and keep a second value in 7420 * event->hw.period_left to count intervals. This period event 7421 * is kept in the range [-sample_period, 0] so that we can use the 7422 * sign as trigger. 7423 */ 7424 7425 u64 perf_swevent_set_period(struct perf_event *event) 7426 { 7427 struct hw_perf_event *hwc = &event->hw; 7428 u64 period = hwc->last_period; 7429 u64 nr, offset; 7430 s64 old, val; 7431 7432 hwc->last_period = hwc->sample_period; 7433 7434 again: 7435 old = val = local64_read(&hwc->period_left); 7436 if (val < 0) 7437 return 0; 7438 7439 nr = div64_u64(period + val, period); 7440 offset = nr * period; 7441 val -= offset; 7442 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7443 goto again; 7444 7445 return nr; 7446 } 7447 7448 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7449 struct perf_sample_data *data, 7450 struct pt_regs *regs) 7451 { 7452 struct hw_perf_event *hwc = &event->hw; 7453 int throttle = 0; 7454 7455 if (!overflow) 7456 overflow = perf_swevent_set_period(event); 7457 7458 if (hwc->interrupts == MAX_INTERRUPTS) 7459 return; 7460 7461 for (; overflow; overflow--) { 7462 if (__perf_event_overflow(event, throttle, 7463 data, regs)) { 7464 /* 7465 * We inhibit the overflow from happening when 7466 * hwc->interrupts == MAX_INTERRUPTS. 7467 */ 7468 break; 7469 } 7470 throttle = 1; 7471 } 7472 } 7473 7474 static void perf_swevent_event(struct perf_event *event, u64 nr, 7475 struct perf_sample_data *data, 7476 struct pt_regs *regs) 7477 { 7478 struct hw_perf_event *hwc = &event->hw; 7479 7480 local64_add(nr, &event->count); 7481 7482 if (!regs) 7483 return; 7484 7485 if (!is_sampling_event(event)) 7486 return; 7487 7488 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7489 data->period = nr; 7490 return perf_swevent_overflow(event, 1, data, regs); 7491 } else 7492 data->period = event->hw.last_period; 7493 7494 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7495 return perf_swevent_overflow(event, 1, data, regs); 7496 7497 if (local64_add_negative(nr, &hwc->period_left)) 7498 return; 7499 7500 perf_swevent_overflow(event, 0, data, regs); 7501 } 7502 7503 static int perf_exclude_event(struct perf_event *event, 7504 struct pt_regs *regs) 7505 { 7506 if (event->hw.state & PERF_HES_STOPPED) 7507 return 1; 7508 7509 if (regs) { 7510 if (event->attr.exclude_user && user_mode(regs)) 7511 return 1; 7512 7513 if (event->attr.exclude_kernel && !user_mode(regs)) 7514 return 1; 7515 } 7516 7517 return 0; 7518 } 7519 7520 static int perf_swevent_match(struct perf_event *event, 7521 enum perf_type_id type, 7522 u32 event_id, 7523 struct perf_sample_data *data, 7524 struct pt_regs *regs) 7525 { 7526 if (event->attr.type != type) 7527 return 0; 7528 7529 if (event->attr.config != event_id) 7530 return 0; 7531 7532 if (perf_exclude_event(event, regs)) 7533 return 0; 7534 7535 return 1; 7536 } 7537 7538 static inline u64 swevent_hash(u64 type, u32 event_id) 7539 { 7540 u64 val = event_id | (type << 32); 7541 7542 return hash_64(val, SWEVENT_HLIST_BITS); 7543 } 7544 7545 static inline struct hlist_head * 7546 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7547 { 7548 u64 hash = swevent_hash(type, event_id); 7549 7550 return &hlist->heads[hash]; 7551 } 7552 7553 /* For the read side: events when they trigger */ 7554 static inline struct hlist_head * 7555 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7556 { 7557 struct swevent_hlist *hlist; 7558 7559 hlist = rcu_dereference(swhash->swevent_hlist); 7560 if (!hlist) 7561 return NULL; 7562 7563 return __find_swevent_head(hlist, type, event_id); 7564 } 7565 7566 /* For the event head insertion and removal in the hlist */ 7567 static inline struct hlist_head * 7568 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7569 { 7570 struct swevent_hlist *hlist; 7571 u32 event_id = event->attr.config; 7572 u64 type = event->attr.type; 7573 7574 /* 7575 * Event scheduling is always serialized against hlist allocation 7576 * and release. Which makes the protected version suitable here. 7577 * The context lock guarantees that. 7578 */ 7579 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7580 lockdep_is_held(&event->ctx->lock)); 7581 if (!hlist) 7582 return NULL; 7583 7584 return __find_swevent_head(hlist, type, event_id); 7585 } 7586 7587 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7588 u64 nr, 7589 struct perf_sample_data *data, 7590 struct pt_regs *regs) 7591 { 7592 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7593 struct perf_event *event; 7594 struct hlist_head *head; 7595 7596 rcu_read_lock(); 7597 head = find_swevent_head_rcu(swhash, type, event_id); 7598 if (!head) 7599 goto end; 7600 7601 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7602 if (perf_swevent_match(event, type, event_id, data, regs)) 7603 perf_swevent_event(event, nr, data, regs); 7604 } 7605 end: 7606 rcu_read_unlock(); 7607 } 7608 7609 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7610 7611 int perf_swevent_get_recursion_context(void) 7612 { 7613 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7614 7615 return get_recursion_context(swhash->recursion); 7616 } 7617 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7618 7619 void perf_swevent_put_recursion_context(int rctx) 7620 { 7621 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7622 7623 put_recursion_context(swhash->recursion, rctx); 7624 } 7625 7626 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7627 { 7628 struct perf_sample_data data; 7629 7630 if (WARN_ON_ONCE(!regs)) 7631 return; 7632 7633 perf_sample_data_init(&data, addr, 0); 7634 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7635 } 7636 7637 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7638 { 7639 int rctx; 7640 7641 preempt_disable_notrace(); 7642 rctx = perf_swevent_get_recursion_context(); 7643 if (unlikely(rctx < 0)) 7644 goto fail; 7645 7646 ___perf_sw_event(event_id, nr, regs, addr); 7647 7648 perf_swevent_put_recursion_context(rctx); 7649 fail: 7650 preempt_enable_notrace(); 7651 } 7652 7653 static void perf_swevent_read(struct perf_event *event) 7654 { 7655 } 7656 7657 static int perf_swevent_add(struct perf_event *event, int flags) 7658 { 7659 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7660 struct hw_perf_event *hwc = &event->hw; 7661 struct hlist_head *head; 7662 7663 if (is_sampling_event(event)) { 7664 hwc->last_period = hwc->sample_period; 7665 perf_swevent_set_period(event); 7666 } 7667 7668 hwc->state = !(flags & PERF_EF_START); 7669 7670 head = find_swevent_head(swhash, event); 7671 if (WARN_ON_ONCE(!head)) 7672 return -EINVAL; 7673 7674 hlist_add_head_rcu(&event->hlist_entry, head); 7675 perf_event_update_userpage(event); 7676 7677 return 0; 7678 } 7679 7680 static void perf_swevent_del(struct perf_event *event, int flags) 7681 { 7682 hlist_del_rcu(&event->hlist_entry); 7683 } 7684 7685 static void perf_swevent_start(struct perf_event *event, int flags) 7686 { 7687 event->hw.state = 0; 7688 } 7689 7690 static void perf_swevent_stop(struct perf_event *event, int flags) 7691 { 7692 event->hw.state = PERF_HES_STOPPED; 7693 } 7694 7695 /* Deref the hlist from the update side */ 7696 static inline struct swevent_hlist * 7697 swevent_hlist_deref(struct swevent_htable *swhash) 7698 { 7699 return rcu_dereference_protected(swhash->swevent_hlist, 7700 lockdep_is_held(&swhash->hlist_mutex)); 7701 } 7702 7703 static void swevent_hlist_release(struct swevent_htable *swhash) 7704 { 7705 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7706 7707 if (!hlist) 7708 return; 7709 7710 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7711 kfree_rcu(hlist, rcu_head); 7712 } 7713 7714 static void swevent_hlist_put_cpu(int cpu) 7715 { 7716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7717 7718 mutex_lock(&swhash->hlist_mutex); 7719 7720 if (!--swhash->hlist_refcount) 7721 swevent_hlist_release(swhash); 7722 7723 mutex_unlock(&swhash->hlist_mutex); 7724 } 7725 7726 static void swevent_hlist_put(void) 7727 { 7728 int cpu; 7729 7730 for_each_possible_cpu(cpu) 7731 swevent_hlist_put_cpu(cpu); 7732 } 7733 7734 static int swevent_hlist_get_cpu(int cpu) 7735 { 7736 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7737 int err = 0; 7738 7739 mutex_lock(&swhash->hlist_mutex); 7740 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7741 struct swevent_hlist *hlist; 7742 7743 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7744 if (!hlist) { 7745 err = -ENOMEM; 7746 goto exit; 7747 } 7748 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7749 } 7750 swhash->hlist_refcount++; 7751 exit: 7752 mutex_unlock(&swhash->hlist_mutex); 7753 7754 return err; 7755 } 7756 7757 static int swevent_hlist_get(void) 7758 { 7759 int err, cpu, failed_cpu; 7760 7761 get_online_cpus(); 7762 for_each_possible_cpu(cpu) { 7763 err = swevent_hlist_get_cpu(cpu); 7764 if (err) { 7765 failed_cpu = cpu; 7766 goto fail; 7767 } 7768 } 7769 put_online_cpus(); 7770 7771 return 0; 7772 fail: 7773 for_each_possible_cpu(cpu) { 7774 if (cpu == failed_cpu) 7775 break; 7776 swevent_hlist_put_cpu(cpu); 7777 } 7778 7779 put_online_cpus(); 7780 return err; 7781 } 7782 7783 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7784 7785 static void sw_perf_event_destroy(struct perf_event *event) 7786 { 7787 u64 event_id = event->attr.config; 7788 7789 WARN_ON(event->parent); 7790 7791 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7792 swevent_hlist_put(); 7793 } 7794 7795 static int perf_swevent_init(struct perf_event *event) 7796 { 7797 u64 event_id = event->attr.config; 7798 7799 if (event->attr.type != PERF_TYPE_SOFTWARE) 7800 return -ENOENT; 7801 7802 /* 7803 * no branch sampling for software events 7804 */ 7805 if (has_branch_stack(event)) 7806 return -EOPNOTSUPP; 7807 7808 switch (event_id) { 7809 case PERF_COUNT_SW_CPU_CLOCK: 7810 case PERF_COUNT_SW_TASK_CLOCK: 7811 return -ENOENT; 7812 7813 default: 7814 break; 7815 } 7816 7817 if (event_id >= PERF_COUNT_SW_MAX) 7818 return -ENOENT; 7819 7820 if (!event->parent) { 7821 int err; 7822 7823 err = swevent_hlist_get(); 7824 if (err) 7825 return err; 7826 7827 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7828 event->destroy = sw_perf_event_destroy; 7829 } 7830 7831 return 0; 7832 } 7833 7834 static struct pmu perf_swevent = { 7835 .task_ctx_nr = perf_sw_context, 7836 7837 .capabilities = PERF_PMU_CAP_NO_NMI, 7838 7839 .event_init = perf_swevent_init, 7840 .add = perf_swevent_add, 7841 .del = perf_swevent_del, 7842 .start = perf_swevent_start, 7843 .stop = perf_swevent_stop, 7844 .read = perf_swevent_read, 7845 }; 7846 7847 #ifdef CONFIG_EVENT_TRACING 7848 7849 static int perf_tp_filter_match(struct perf_event *event, 7850 struct perf_sample_data *data) 7851 { 7852 void *record = data->raw->frag.data; 7853 7854 /* only top level events have filters set */ 7855 if (event->parent) 7856 event = event->parent; 7857 7858 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7859 return 1; 7860 return 0; 7861 } 7862 7863 static int perf_tp_event_match(struct perf_event *event, 7864 struct perf_sample_data *data, 7865 struct pt_regs *regs) 7866 { 7867 if (event->hw.state & PERF_HES_STOPPED) 7868 return 0; 7869 /* 7870 * All tracepoints are from kernel-space. 7871 */ 7872 if (event->attr.exclude_kernel) 7873 return 0; 7874 7875 if (!perf_tp_filter_match(event, data)) 7876 return 0; 7877 7878 return 1; 7879 } 7880 7881 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7882 struct trace_event_call *call, u64 count, 7883 struct pt_regs *regs, struct hlist_head *head, 7884 struct task_struct *task) 7885 { 7886 struct bpf_prog *prog = call->prog; 7887 7888 if (prog) { 7889 *(struct pt_regs **)raw_data = regs; 7890 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7891 perf_swevent_put_recursion_context(rctx); 7892 return; 7893 } 7894 } 7895 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7896 rctx, task); 7897 } 7898 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7899 7900 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7901 struct pt_regs *regs, struct hlist_head *head, int rctx, 7902 struct task_struct *task) 7903 { 7904 struct perf_sample_data data; 7905 struct perf_event *event; 7906 7907 struct perf_raw_record raw = { 7908 .frag = { 7909 .size = entry_size, 7910 .data = record, 7911 }, 7912 }; 7913 7914 perf_sample_data_init(&data, 0, 0); 7915 data.raw = &raw; 7916 7917 perf_trace_buf_update(record, event_type); 7918 7919 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7920 if (perf_tp_event_match(event, &data, regs)) 7921 perf_swevent_event(event, count, &data, regs); 7922 } 7923 7924 /* 7925 * If we got specified a target task, also iterate its context and 7926 * deliver this event there too. 7927 */ 7928 if (task && task != current) { 7929 struct perf_event_context *ctx; 7930 struct trace_entry *entry = record; 7931 7932 rcu_read_lock(); 7933 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7934 if (!ctx) 7935 goto unlock; 7936 7937 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7938 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7939 continue; 7940 if (event->attr.config != entry->type) 7941 continue; 7942 if (perf_tp_event_match(event, &data, regs)) 7943 perf_swevent_event(event, count, &data, regs); 7944 } 7945 unlock: 7946 rcu_read_unlock(); 7947 } 7948 7949 perf_swevent_put_recursion_context(rctx); 7950 } 7951 EXPORT_SYMBOL_GPL(perf_tp_event); 7952 7953 static void tp_perf_event_destroy(struct perf_event *event) 7954 { 7955 perf_trace_destroy(event); 7956 } 7957 7958 static int perf_tp_event_init(struct perf_event *event) 7959 { 7960 int err; 7961 7962 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7963 return -ENOENT; 7964 7965 /* 7966 * no branch sampling for tracepoint events 7967 */ 7968 if (has_branch_stack(event)) 7969 return -EOPNOTSUPP; 7970 7971 err = perf_trace_init(event); 7972 if (err) 7973 return err; 7974 7975 event->destroy = tp_perf_event_destroy; 7976 7977 return 0; 7978 } 7979 7980 static struct pmu perf_tracepoint = { 7981 .task_ctx_nr = perf_sw_context, 7982 7983 .event_init = perf_tp_event_init, 7984 .add = perf_trace_add, 7985 .del = perf_trace_del, 7986 .start = perf_swevent_start, 7987 .stop = perf_swevent_stop, 7988 .read = perf_swevent_read, 7989 }; 7990 7991 static inline void perf_tp_register(void) 7992 { 7993 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7994 } 7995 7996 static void perf_event_free_filter(struct perf_event *event) 7997 { 7998 ftrace_profile_free_filter(event); 7999 } 8000 8001 #ifdef CONFIG_BPF_SYSCALL 8002 static void bpf_overflow_handler(struct perf_event *event, 8003 struct perf_sample_data *data, 8004 struct pt_regs *regs) 8005 { 8006 struct bpf_perf_event_data_kern ctx = { 8007 .data = data, 8008 .regs = regs, 8009 }; 8010 int ret = 0; 8011 8012 preempt_disable(); 8013 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8014 goto out; 8015 rcu_read_lock(); 8016 ret = BPF_PROG_RUN(event->prog, &ctx); 8017 rcu_read_unlock(); 8018 out: 8019 __this_cpu_dec(bpf_prog_active); 8020 preempt_enable(); 8021 if (!ret) 8022 return; 8023 8024 event->orig_overflow_handler(event, data, regs); 8025 } 8026 8027 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8028 { 8029 struct bpf_prog *prog; 8030 8031 if (event->overflow_handler_context) 8032 /* hw breakpoint or kernel counter */ 8033 return -EINVAL; 8034 8035 if (event->prog) 8036 return -EEXIST; 8037 8038 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8039 if (IS_ERR(prog)) 8040 return PTR_ERR(prog); 8041 8042 event->prog = prog; 8043 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8044 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8045 return 0; 8046 } 8047 8048 static void perf_event_free_bpf_handler(struct perf_event *event) 8049 { 8050 struct bpf_prog *prog = event->prog; 8051 8052 if (!prog) 8053 return; 8054 8055 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8056 event->prog = NULL; 8057 bpf_prog_put(prog); 8058 } 8059 #else 8060 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8061 { 8062 return -EOPNOTSUPP; 8063 } 8064 static void perf_event_free_bpf_handler(struct perf_event *event) 8065 { 8066 } 8067 #endif 8068 8069 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8070 { 8071 bool is_kprobe, is_tracepoint; 8072 struct bpf_prog *prog; 8073 8074 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8075 return perf_event_set_bpf_handler(event, prog_fd); 8076 8077 if (event->tp_event->prog) 8078 return -EEXIST; 8079 8080 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8081 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8082 if (!is_kprobe && !is_tracepoint) 8083 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8084 return -EINVAL; 8085 8086 prog = bpf_prog_get(prog_fd); 8087 if (IS_ERR(prog)) 8088 return PTR_ERR(prog); 8089 8090 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8091 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8092 /* valid fd, but invalid bpf program type */ 8093 bpf_prog_put(prog); 8094 return -EINVAL; 8095 } 8096 8097 if (is_tracepoint) { 8098 int off = trace_event_get_offsets(event->tp_event); 8099 8100 if (prog->aux->max_ctx_offset > off) { 8101 bpf_prog_put(prog); 8102 return -EACCES; 8103 } 8104 } 8105 event->tp_event->prog = prog; 8106 8107 return 0; 8108 } 8109 8110 static void perf_event_free_bpf_prog(struct perf_event *event) 8111 { 8112 struct bpf_prog *prog; 8113 8114 perf_event_free_bpf_handler(event); 8115 8116 if (!event->tp_event) 8117 return; 8118 8119 prog = event->tp_event->prog; 8120 if (prog) { 8121 event->tp_event->prog = NULL; 8122 bpf_prog_put(prog); 8123 } 8124 } 8125 8126 #else 8127 8128 static inline void perf_tp_register(void) 8129 { 8130 } 8131 8132 static void perf_event_free_filter(struct perf_event *event) 8133 { 8134 } 8135 8136 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8137 { 8138 return -ENOENT; 8139 } 8140 8141 static void perf_event_free_bpf_prog(struct perf_event *event) 8142 { 8143 } 8144 #endif /* CONFIG_EVENT_TRACING */ 8145 8146 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8147 void perf_bp_event(struct perf_event *bp, void *data) 8148 { 8149 struct perf_sample_data sample; 8150 struct pt_regs *regs = data; 8151 8152 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8153 8154 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8155 perf_swevent_event(bp, 1, &sample, regs); 8156 } 8157 #endif 8158 8159 /* 8160 * Allocate a new address filter 8161 */ 8162 static struct perf_addr_filter * 8163 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8164 { 8165 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8166 struct perf_addr_filter *filter; 8167 8168 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8169 if (!filter) 8170 return NULL; 8171 8172 INIT_LIST_HEAD(&filter->entry); 8173 list_add_tail(&filter->entry, filters); 8174 8175 return filter; 8176 } 8177 8178 static void free_filters_list(struct list_head *filters) 8179 { 8180 struct perf_addr_filter *filter, *iter; 8181 8182 list_for_each_entry_safe(filter, iter, filters, entry) { 8183 if (filter->inode) 8184 iput(filter->inode); 8185 list_del(&filter->entry); 8186 kfree(filter); 8187 } 8188 } 8189 8190 /* 8191 * Free existing address filters and optionally install new ones 8192 */ 8193 static void perf_addr_filters_splice(struct perf_event *event, 8194 struct list_head *head) 8195 { 8196 unsigned long flags; 8197 LIST_HEAD(list); 8198 8199 if (!has_addr_filter(event)) 8200 return; 8201 8202 /* don't bother with children, they don't have their own filters */ 8203 if (event->parent) 8204 return; 8205 8206 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8207 8208 list_splice_init(&event->addr_filters.list, &list); 8209 if (head) 8210 list_splice(head, &event->addr_filters.list); 8211 8212 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8213 8214 free_filters_list(&list); 8215 } 8216 8217 /* 8218 * Scan through mm's vmas and see if one of them matches the 8219 * @filter; if so, adjust filter's address range. 8220 * Called with mm::mmap_sem down for reading. 8221 */ 8222 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8223 struct mm_struct *mm) 8224 { 8225 struct vm_area_struct *vma; 8226 8227 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8228 struct file *file = vma->vm_file; 8229 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8230 unsigned long vma_size = vma->vm_end - vma->vm_start; 8231 8232 if (!file) 8233 continue; 8234 8235 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8236 continue; 8237 8238 return vma->vm_start; 8239 } 8240 8241 return 0; 8242 } 8243 8244 /* 8245 * Update event's address range filters based on the 8246 * task's existing mappings, if any. 8247 */ 8248 static void perf_event_addr_filters_apply(struct perf_event *event) 8249 { 8250 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8251 struct task_struct *task = READ_ONCE(event->ctx->task); 8252 struct perf_addr_filter *filter; 8253 struct mm_struct *mm = NULL; 8254 unsigned int count = 0; 8255 unsigned long flags; 8256 8257 /* 8258 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8259 * will stop on the parent's child_mutex that our caller is also holding 8260 */ 8261 if (task == TASK_TOMBSTONE) 8262 return; 8263 8264 if (!ifh->nr_file_filters) 8265 return; 8266 8267 mm = get_task_mm(event->ctx->task); 8268 if (!mm) 8269 goto restart; 8270 8271 down_read(&mm->mmap_sem); 8272 8273 raw_spin_lock_irqsave(&ifh->lock, flags); 8274 list_for_each_entry(filter, &ifh->list, entry) { 8275 event->addr_filters_offs[count] = 0; 8276 8277 /* 8278 * Adjust base offset if the filter is associated to a binary 8279 * that needs to be mapped: 8280 */ 8281 if (filter->inode) 8282 event->addr_filters_offs[count] = 8283 perf_addr_filter_apply(filter, mm); 8284 8285 count++; 8286 } 8287 8288 event->addr_filters_gen++; 8289 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8290 8291 up_read(&mm->mmap_sem); 8292 8293 mmput(mm); 8294 8295 restart: 8296 perf_event_stop(event, 1); 8297 } 8298 8299 /* 8300 * Address range filtering: limiting the data to certain 8301 * instruction address ranges. Filters are ioctl()ed to us from 8302 * userspace as ascii strings. 8303 * 8304 * Filter string format: 8305 * 8306 * ACTION RANGE_SPEC 8307 * where ACTION is one of the 8308 * * "filter": limit the trace to this region 8309 * * "start": start tracing from this address 8310 * * "stop": stop tracing at this address/region; 8311 * RANGE_SPEC is 8312 * * for kernel addresses: <start address>[/<size>] 8313 * * for object files: <start address>[/<size>]@</path/to/object/file> 8314 * 8315 * if <size> is not specified, the range is treated as a single address. 8316 */ 8317 enum { 8318 IF_ACT_NONE = -1, 8319 IF_ACT_FILTER, 8320 IF_ACT_START, 8321 IF_ACT_STOP, 8322 IF_SRC_FILE, 8323 IF_SRC_KERNEL, 8324 IF_SRC_FILEADDR, 8325 IF_SRC_KERNELADDR, 8326 }; 8327 8328 enum { 8329 IF_STATE_ACTION = 0, 8330 IF_STATE_SOURCE, 8331 IF_STATE_END, 8332 }; 8333 8334 static const match_table_t if_tokens = { 8335 { IF_ACT_FILTER, "filter" }, 8336 { IF_ACT_START, "start" }, 8337 { IF_ACT_STOP, "stop" }, 8338 { IF_SRC_FILE, "%u/%u@%s" }, 8339 { IF_SRC_KERNEL, "%u/%u" }, 8340 { IF_SRC_FILEADDR, "%u@%s" }, 8341 { IF_SRC_KERNELADDR, "%u" }, 8342 { IF_ACT_NONE, NULL }, 8343 }; 8344 8345 /* 8346 * Address filter string parser 8347 */ 8348 static int 8349 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8350 struct list_head *filters) 8351 { 8352 struct perf_addr_filter *filter = NULL; 8353 char *start, *orig, *filename = NULL; 8354 struct path path; 8355 substring_t args[MAX_OPT_ARGS]; 8356 int state = IF_STATE_ACTION, token; 8357 unsigned int kernel = 0; 8358 int ret = -EINVAL; 8359 8360 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8361 if (!fstr) 8362 return -ENOMEM; 8363 8364 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8365 ret = -EINVAL; 8366 8367 if (!*start) 8368 continue; 8369 8370 /* filter definition begins */ 8371 if (state == IF_STATE_ACTION) { 8372 filter = perf_addr_filter_new(event, filters); 8373 if (!filter) 8374 goto fail; 8375 } 8376 8377 token = match_token(start, if_tokens, args); 8378 switch (token) { 8379 case IF_ACT_FILTER: 8380 case IF_ACT_START: 8381 filter->filter = 1; 8382 8383 case IF_ACT_STOP: 8384 if (state != IF_STATE_ACTION) 8385 goto fail; 8386 8387 state = IF_STATE_SOURCE; 8388 break; 8389 8390 case IF_SRC_KERNELADDR: 8391 case IF_SRC_KERNEL: 8392 kernel = 1; 8393 8394 case IF_SRC_FILEADDR: 8395 case IF_SRC_FILE: 8396 if (state != IF_STATE_SOURCE) 8397 goto fail; 8398 8399 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8400 filter->range = 1; 8401 8402 *args[0].to = 0; 8403 ret = kstrtoul(args[0].from, 0, &filter->offset); 8404 if (ret) 8405 goto fail; 8406 8407 if (filter->range) { 8408 *args[1].to = 0; 8409 ret = kstrtoul(args[1].from, 0, &filter->size); 8410 if (ret) 8411 goto fail; 8412 } 8413 8414 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8415 int fpos = filter->range ? 2 : 1; 8416 8417 filename = match_strdup(&args[fpos]); 8418 if (!filename) { 8419 ret = -ENOMEM; 8420 goto fail; 8421 } 8422 } 8423 8424 state = IF_STATE_END; 8425 break; 8426 8427 default: 8428 goto fail; 8429 } 8430 8431 /* 8432 * Filter definition is fully parsed, validate and install it. 8433 * Make sure that it doesn't contradict itself or the event's 8434 * attribute. 8435 */ 8436 if (state == IF_STATE_END) { 8437 ret = -EINVAL; 8438 if (kernel && event->attr.exclude_kernel) 8439 goto fail; 8440 8441 if (!kernel) { 8442 if (!filename) 8443 goto fail; 8444 8445 /* 8446 * For now, we only support file-based filters 8447 * in per-task events; doing so for CPU-wide 8448 * events requires additional context switching 8449 * trickery, since same object code will be 8450 * mapped at different virtual addresses in 8451 * different processes. 8452 */ 8453 ret = -EOPNOTSUPP; 8454 if (!event->ctx->task) 8455 goto fail_free_name; 8456 8457 /* look up the path and grab its inode */ 8458 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8459 if (ret) 8460 goto fail_free_name; 8461 8462 filter->inode = igrab(d_inode(path.dentry)); 8463 path_put(&path); 8464 kfree(filename); 8465 filename = NULL; 8466 8467 ret = -EINVAL; 8468 if (!filter->inode || 8469 !S_ISREG(filter->inode->i_mode)) 8470 /* free_filters_list() will iput() */ 8471 goto fail; 8472 8473 event->addr_filters.nr_file_filters++; 8474 } 8475 8476 /* ready to consume more filters */ 8477 state = IF_STATE_ACTION; 8478 filter = NULL; 8479 } 8480 } 8481 8482 if (state != IF_STATE_ACTION) 8483 goto fail; 8484 8485 kfree(orig); 8486 8487 return 0; 8488 8489 fail_free_name: 8490 kfree(filename); 8491 fail: 8492 free_filters_list(filters); 8493 kfree(orig); 8494 8495 return ret; 8496 } 8497 8498 static int 8499 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8500 { 8501 LIST_HEAD(filters); 8502 int ret; 8503 8504 /* 8505 * Since this is called in perf_ioctl() path, we're already holding 8506 * ctx::mutex. 8507 */ 8508 lockdep_assert_held(&event->ctx->mutex); 8509 8510 if (WARN_ON_ONCE(event->parent)) 8511 return -EINVAL; 8512 8513 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8514 if (ret) 8515 goto fail_clear_files; 8516 8517 ret = event->pmu->addr_filters_validate(&filters); 8518 if (ret) 8519 goto fail_free_filters; 8520 8521 /* remove existing filters, if any */ 8522 perf_addr_filters_splice(event, &filters); 8523 8524 /* install new filters */ 8525 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8526 8527 return ret; 8528 8529 fail_free_filters: 8530 free_filters_list(&filters); 8531 8532 fail_clear_files: 8533 event->addr_filters.nr_file_filters = 0; 8534 8535 return ret; 8536 } 8537 8538 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8539 { 8540 char *filter_str; 8541 int ret = -EINVAL; 8542 8543 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8544 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8545 !has_addr_filter(event)) 8546 return -EINVAL; 8547 8548 filter_str = strndup_user(arg, PAGE_SIZE); 8549 if (IS_ERR(filter_str)) 8550 return PTR_ERR(filter_str); 8551 8552 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8553 event->attr.type == PERF_TYPE_TRACEPOINT) 8554 ret = ftrace_profile_set_filter(event, event->attr.config, 8555 filter_str); 8556 else if (has_addr_filter(event)) 8557 ret = perf_event_set_addr_filter(event, filter_str); 8558 8559 kfree(filter_str); 8560 return ret; 8561 } 8562 8563 /* 8564 * hrtimer based swevent callback 8565 */ 8566 8567 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8568 { 8569 enum hrtimer_restart ret = HRTIMER_RESTART; 8570 struct perf_sample_data data; 8571 struct pt_regs *regs; 8572 struct perf_event *event; 8573 u64 period; 8574 8575 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8576 8577 if (event->state != PERF_EVENT_STATE_ACTIVE) 8578 return HRTIMER_NORESTART; 8579 8580 event->pmu->read(event); 8581 8582 perf_sample_data_init(&data, 0, event->hw.last_period); 8583 regs = get_irq_regs(); 8584 8585 if (regs && !perf_exclude_event(event, regs)) { 8586 if (!(event->attr.exclude_idle && is_idle_task(current))) 8587 if (__perf_event_overflow(event, 1, &data, regs)) 8588 ret = HRTIMER_NORESTART; 8589 } 8590 8591 period = max_t(u64, 10000, event->hw.sample_period); 8592 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8593 8594 return ret; 8595 } 8596 8597 static void perf_swevent_start_hrtimer(struct perf_event *event) 8598 { 8599 struct hw_perf_event *hwc = &event->hw; 8600 s64 period; 8601 8602 if (!is_sampling_event(event)) 8603 return; 8604 8605 period = local64_read(&hwc->period_left); 8606 if (period) { 8607 if (period < 0) 8608 period = 10000; 8609 8610 local64_set(&hwc->period_left, 0); 8611 } else { 8612 period = max_t(u64, 10000, hwc->sample_period); 8613 } 8614 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8615 HRTIMER_MODE_REL_PINNED); 8616 } 8617 8618 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8619 { 8620 struct hw_perf_event *hwc = &event->hw; 8621 8622 if (is_sampling_event(event)) { 8623 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8624 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8625 8626 hrtimer_cancel(&hwc->hrtimer); 8627 } 8628 } 8629 8630 static void perf_swevent_init_hrtimer(struct perf_event *event) 8631 { 8632 struct hw_perf_event *hwc = &event->hw; 8633 8634 if (!is_sampling_event(event)) 8635 return; 8636 8637 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8638 hwc->hrtimer.function = perf_swevent_hrtimer; 8639 8640 /* 8641 * Since hrtimers have a fixed rate, we can do a static freq->period 8642 * mapping and avoid the whole period adjust feedback stuff. 8643 */ 8644 if (event->attr.freq) { 8645 long freq = event->attr.sample_freq; 8646 8647 event->attr.sample_period = NSEC_PER_SEC / freq; 8648 hwc->sample_period = event->attr.sample_period; 8649 local64_set(&hwc->period_left, hwc->sample_period); 8650 hwc->last_period = hwc->sample_period; 8651 event->attr.freq = 0; 8652 } 8653 } 8654 8655 /* 8656 * Software event: cpu wall time clock 8657 */ 8658 8659 static void cpu_clock_event_update(struct perf_event *event) 8660 { 8661 s64 prev; 8662 u64 now; 8663 8664 now = local_clock(); 8665 prev = local64_xchg(&event->hw.prev_count, now); 8666 local64_add(now - prev, &event->count); 8667 } 8668 8669 static void cpu_clock_event_start(struct perf_event *event, int flags) 8670 { 8671 local64_set(&event->hw.prev_count, local_clock()); 8672 perf_swevent_start_hrtimer(event); 8673 } 8674 8675 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8676 { 8677 perf_swevent_cancel_hrtimer(event); 8678 cpu_clock_event_update(event); 8679 } 8680 8681 static int cpu_clock_event_add(struct perf_event *event, int flags) 8682 { 8683 if (flags & PERF_EF_START) 8684 cpu_clock_event_start(event, flags); 8685 perf_event_update_userpage(event); 8686 8687 return 0; 8688 } 8689 8690 static void cpu_clock_event_del(struct perf_event *event, int flags) 8691 { 8692 cpu_clock_event_stop(event, flags); 8693 } 8694 8695 static void cpu_clock_event_read(struct perf_event *event) 8696 { 8697 cpu_clock_event_update(event); 8698 } 8699 8700 static int cpu_clock_event_init(struct perf_event *event) 8701 { 8702 if (event->attr.type != PERF_TYPE_SOFTWARE) 8703 return -ENOENT; 8704 8705 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8706 return -ENOENT; 8707 8708 /* 8709 * no branch sampling for software events 8710 */ 8711 if (has_branch_stack(event)) 8712 return -EOPNOTSUPP; 8713 8714 perf_swevent_init_hrtimer(event); 8715 8716 return 0; 8717 } 8718 8719 static struct pmu perf_cpu_clock = { 8720 .task_ctx_nr = perf_sw_context, 8721 8722 .capabilities = PERF_PMU_CAP_NO_NMI, 8723 8724 .event_init = cpu_clock_event_init, 8725 .add = cpu_clock_event_add, 8726 .del = cpu_clock_event_del, 8727 .start = cpu_clock_event_start, 8728 .stop = cpu_clock_event_stop, 8729 .read = cpu_clock_event_read, 8730 }; 8731 8732 /* 8733 * Software event: task time clock 8734 */ 8735 8736 static void task_clock_event_update(struct perf_event *event, u64 now) 8737 { 8738 u64 prev; 8739 s64 delta; 8740 8741 prev = local64_xchg(&event->hw.prev_count, now); 8742 delta = now - prev; 8743 local64_add(delta, &event->count); 8744 } 8745 8746 static void task_clock_event_start(struct perf_event *event, int flags) 8747 { 8748 local64_set(&event->hw.prev_count, event->ctx->time); 8749 perf_swevent_start_hrtimer(event); 8750 } 8751 8752 static void task_clock_event_stop(struct perf_event *event, int flags) 8753 { 8754 perf_swevent_cancel_hrtimer(event); 8755 task_clock_event_update(event, event->ctx->time); 8756 } 8757 8758 static int task_clock_event_add(struct perf_event *event, int flags) 8759 { 8760 if (flags & PERF_EF_START) 8761 task_clock_event_start(event, flags); 8762 perf_event_update_userpage(event); 8763 8764 return 0; 8765 } 8766 8767 static void task_clock_event_del(struct perf_event *event, int flags) 8768 { 8769 task_clock_event_stop(event, PERF_EF_UPDATE); 8770 } 8771 8772 static void task_clock_event_read(struct perf_event *event) 8773 { 8774 u64 now = perf_clock(); 8775 u64 delta = now - event->ctx->timestamp; 8776 u64 time = event->ctx->time + delta; 8777 8778 task_clock_event_update(event, time); 8779 } 8780 8781 static int task_clock_event_init(struct perf_event *event) 8782 { 8783 if (event->attr.type != PERF_TYPE_SOFTWARE) 8784 return -ENOENT; 8785 8786 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8787 return -ENOENT; 8788 8789 /* 8790 * no branch sampling for software events 8791 */ 8792 if (has_branch_stack(event)) 8793 return -EOPNOTSUPP; 8794 8795 perf_swevent_init_hrtimer(event); 8796 8797 return 0; 8798 } 8799 8800 static struct pmu perf_task_clock = { 8801 .task_ctx_nr = perf_sw_context, 8802 8803 .capabilities = PERF_PMU_CAP_NO_NMI, 8804 8805 .event_init = task_clock_event_init, 8806 .add = task_clock_event_add, 8807 .del = task_clock_event_del, 8808 .start = task_clock_event_start, 8809 .stop = task_clock_event_stop, 8810 .read = task_clock_event_read, 8811 }; 8812 8813 static void perf_pmu_nop_void(struct pmu *pmu) 8814 { 8815 } 8816 8817 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8818 { 8819 } 8820 8821 static int perf_pmu_nop_int(struct pmu *pmu) 8822 { 8823 return 0; 8824 } 8825 8826 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8827 8828 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8829 { 8830 __this_cpu_write(nop_txn_flags, flags); 8831 8832 if (flags & ~PERF_PMU_TXN_ADD) 8833 return; 8834 8835 perf_pmu_disable(pmu); 8836 } 8837 8838 static int perf_pmu_commit_txn(struct pmu *pmu) 8839 { 8840 unsigned int flags = __this_cpu_read(nop_txn_flags); 8841 8842 __this_cpu_write(nop_txn_flags, 0); 8843 8844 if (flags & ~PERF_PMU_TXN_ADD) 8845 return 0; 8846 8847 perf_pmu_enable(pmu); 8848 return 0; 8849 } 8850 8851 static void perf_pmu_cancel_txn(struct pmu *pmu) 8852 { 8853 unsigned int flags = __this_cpu_read(nop_txn_flags); 8854 8855 __this_cpu_write(nop_txn_flags, 0); 8856 8857 if (flags & ~PERF_PMU_TXN_ADD) 8858 return; 8859 8860 perf_pmu_enable(pmu); 8861 } 8862 8863 static int perf_event_idx_default(struct perf_event *event) 8864 { 8865 return 0; 8866 } 8867 8868 /* 8869 * Ensures all contexts with the same task_ctx_nr have the same 8870 * pmu_cpu_context too. 8871 */ 8872 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8873 { 8874 struct pmu *pmu; 8875 8876 if (ctxn < 0) 8877 return NULL; 8878 8879 list_for_each_entry(pmu, &pmus, entry) { 8880 if (pmu->task_ctx_nr == ctxn) 8881 return pmu->pmu_cpu_context; 8882 } 8883 8884 return NULL; 8885 } 8886 8887 static void free_pmu_context(struct pmu *pmu) 8888 { 8889 mutex_lock(&pmus_lock); 8890 free_percpu(pmu->pmu_cpu_context); 8891 mutex_unlock(&pmus_lock); 8892 } 8893 8894 /* 8895 * Let userspace know that this PMU supports address range filtering: 8896 */ 8897 static ssize_t nr_addr_filters_show(struct device *dev, 8898 struct device_attribute *attr, 8899 char *page) 8900 { 8901 struct pmu *pmu = dev_get_drvdata(dev); 8902 8903 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8904 } 8905 DEVICE_ATTR_RO(nr_addr_filters); 8906 8907 static struct idr pmu_idr; 8908 8909 static ssize_t 8910 type_show(struct device *dev, struct device_attribute *attr, char *page) 8911 { 8912 struct pmu *pmu = dev_get_drvdata(dev); 8913 8914 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8915 } 8916 static DEVICE_ATTR_RO(type); 8917 8918 static ssize_t 8919 perf_event_mux_interval_ms_show(struct device *dev, 8920 struct device_attribute *attr, 8921 char *page) 8922 { 8923 struct pmu *pmu = dev_get_drvdata(dev); 8924 8925 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8926 } 8927 8928 static DEFINE_MUTEX(mux_interval_mutex); 8929 8930 static ssize_t 8931 perf_event_mux_interval_ms_store(struct device *dev, 8932 struct device_attribute *attr, 8933 const char *buf, size_t count) 8934 { 8935 struct pmu *pmu = dev_get_drvdata(dev); 8936 int timer, cpu, ret; 8937 8938 ret = kstrtoint(buf, 0, &timer); 8939 if (ret) 8940 return ret; 8941 8942 if (timer < 1) 8943 return -EINVAL; 8944 8945 /* same value, noting to do */ 8946 if (timer == pmu->hrtimer_interval_ms) 8947 return count; 8948 8949 mutex_lock(&mux_interval_mutex); 8950 pmu->hrtimer_interval_ms = timer; 8951 8952 /* update all cpuctx for this PMU */ 8953 get_online_cpus(); 8954 for_each_online_cpu(cpu) { 8955 struct perf_cpu_context *cpuctx; 8956 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8957 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8958 8959 cpu_function_call(cpu, 8960 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8961 } 8962 put_online_cpus(); 8963 mutex_unlock(&mux_interval_mutex); 8964 8965 return count; 8966 } 8967 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8968 8969 static struct attribute *pmu_dev_attrs[] = { 8970 &dev_attr_type.attr, 8971 &dev_attr_perf_event_mux_interval_ms.attr, 8972 NULL, 8973 }; 8974 ATTRIBUTE_GROUPS(pmu_dev); 8975 8976 static int pmu_bus_running; 8977 static struct bus_type pmu_bus = { 8978 .name = "event_source", 8979 .dev_groups = pmu_dev_groups, 8980 }; 8981 8982 static void pmu_dev_release(struct device *dev) 8983 { 8984 kfree(dev); 8985 } 8986 8987 static int pmu_dev_alloc(struct pmu *pmu) 8988 { 8989 int ret = -ENOMEM; 8990 8991 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8992 if (!pmu->dev) 8993 goto out; 8994 8995 pmu->dev->groups = pmu->attr_groups; 8996 device_initialize(pmu->dev); 8997 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8998 if (ret) 8999 goto free_dev; 9000 9001 dev_set_drvdata(pmu->dev, pmu); 9002 pmu->dev->bus = &pmu_bus; 9003 pmu->dev->release = pmu_dev_release; 9004 ret = device_add(pmu->dev); 9005 if (ret) 9006 goto free_dev; 9007 9008 /* For PMUs with address filters, throw in an extra attribute: */ 9009 if (pmu->nr_addr_filters) 9010 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9011 9012 if (ret) 9013 goto del_dev; 9014 9015 out: 9016 return ret; 9017 9018 del_dev: 9019 device_del(pmu->dev); 9020 9021 free_dev: 9022 put_device(pmu->dev); 9023 goto out; 9024 } 9025 9026 static struct lock_class_key cpuctx_mutex; 9027 static struct lock_class_key cpuctx_lock; 9028 9029 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9030 { 9031 int cpu, ret; 9032 9033 mutex_lock(&pmus_lock); 9034 ret = -ENOMEM; 9035 pmu->pmu_disable_count = alloc_percpu(int); 9036 if (!pmu->pmu_disable_count) 9037 goto unlock; 9038 9039 pmu->type = -1; 9040 if (!name) 9041 goto skip_type; 9042 pmu->name = name; 9043 9044 if (type < 0) { 9045 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9046 if (type < 0) { 9047 ret = type; 9048 goto free_pdc; 9049 } 9050 } 9051 pmu->type = type; 9052 9053 if (pmu_bus_running) { 9054 ret = pmu_dev_alloc(pmu); 9055 if (ret) 9056 goto free_idr; 9057 } 9058 9059 skip_type: 9060 if (pmu->task_ctx_nr == perf_hw_context) { 9061 static int hw_context_taken = 0; 9062 9063 /* 9064 * Other than systems with heterogeneous CPUs, it never makes 9065 * sense for two PMUs to share perf_hw_context. PMUs which are 9066 * uncore must use perf_invalid_context. 9067 */ 9068 if (WARN_ON_ONCE(hw_context_taken && 9069 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9070 pmu->task_ctx_nr = perf_invalid_context; 9071 9072 hw_context_taken = 1; 9073 } 9074 9075 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9076 if (pmu->pmu_cpu_context) 9077 goto got_cpu_context; 9078 9079 ret = -ENOMEM; 9080 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9081 if (!pmu->pmu_cpu_context) 9082 goto free_dev; 9083 9084 for_each_possible_cpu(cpu) { 9085 struct perf_cpu_context *cpuctx; 9086 9087 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9088 __perf_event_init_context(&cpuctx->ctx); 9089 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9090 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9091 cpuctx->ctx.pmu = pmu; 9092 9093 __perf_mux_hrtimer_init(cpuctx, cpu); 9094 } 9095 9096 got_cpu_context: 9097 if (!pmu->start_txn) { 9098 if (pmu->pmu_enable) { 9099 /* 9100 * If we have pmu_enable/pmu_disable calls, install 9101 * transaction stubs that use that to try and batch 9102 * hardware accesses. 9103 */ 9104 pmu->start_txn = perf_pmu_start_txn; 9105 pmu->commit_txn = perf_pmu_commit_txn; 9106 pmu->cancel_txn = perf_pmu_cancel_txn; 9107 } else { 9108 pmu->start_txn = perf_pmu_nop_txn; 9109 pmu->commit_txn = perf_pmu_nop_int; 9110 pmu->cancel_txn = perf_pmu_nop_void; 9111 } 9112 } 9113 9114 if (!pmu->pmu_enable) { 9115 pmu->pmu_enable = perf_pmu_nop_void; 9116 pmu->pmu_disable = perf_pmu_nop_void; 9117 } 9118 9119 if (!pmu->event_idx) 9120 pmu->event_idx = perf_event_idx_default; 9121 9122 list_add_rcu(&pmu->entry, &pmus); 9123 atomic_set(&pmu->exclusive_cnt, 0); 9124 ret = 0; 9125 unlock: 9126 mutex_unlock(&pmus_lock); 9127 9128 return ret; 9129 9130 free_dev: 9131 device_del(pmu->dev); 9132 put_device(pmu->dev); 9133 9134 free_idr: 9135 if (pmu->type >= PERF_TYPE_MAX) 9136 idr_remove(&pmu_idr, pmu->type); 9137 9138 free_pdc: 9139 free_percpu(pmu->pmu_disable_count); 9140 goto unlock; 9141 } 9142 EXPORT_SYMBOL_GPL(perf_pmu_register); 9143 9144 void perf_pmu_unregister(struct pmu *pmu) 9145 { 9146 int remove_device; 9147 9148 mutex_lock(&pmus_lock); 9149 remove_device = pmu_bus_running; 9150 list_del_rcu(&pmu->entry); 9151 mutex_unlock(&pmus_lock); 9152 9153 /* 9154 * We dereference the pmu list under both SRCU and regular RCU, so 9155 * synchronize against both of those. 9156 */ 9157 synchronize_srcu(&pmus_srcu); 9158 synchronize_rcu(); 9159 9160 free_percpu(pmu->pmu_disable_count); 9161 if (pmu->type >= PERF_TYPE_MAX) 9162 idr_remove(&pmu_idr, pmu->type); 9163 if (remove_device) { 9164 if (pmu->nr_addr_filters) 9165 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9166 device_del(pmu->dev); 9167 put_device(pmu->dev); 9168 } 9169 free_pmu_context(pmu); 9170 } 9171 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9172 9173 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9174 { 9175 struct perf_event_context *ctx = NULL; 9176 int ret; 9177 9178 if (!try_module_get(pmu->module)) 9179 return -ENODEV; 9180 9181 if (event->group_leader != event) { 9182 /* 9183 * This ctx->mutex can nest when we're called through 9184 * inheritance. See the perf_event_ctx_lock_nested() comment. 9185 */ 9186 ctx = perf_event_ctx_lock_nested(event->group_leader, 9187 SINGLE_DEPTH_NESTING); 9188 BUG_ON(!ctx); 9189 } 9190 9191 event->pmu = pmu; 9192 ret = pmu->event_init(event); 9193 9194 if (ctx) 9195 perf_event_ctx_unlock(event->group_leader, ctx); 9196 9197 if (ret) 9198 module_put(pmu->module); 9199 9200 return ret; 9201 } 9202 9203 static struct pmu *perf_init_event(struct perf_event *event) 9204 { 9205 struct pmu *pmu = NULL; 9206 int idx; 9207 int ret; 9208 9209 idx = srcu_read_lock(&pmus_srcu); 9210 9211 /* Try parent's PMU first: */ 9212 if (event->parent && event->parent->pmu) { 9213 pmu = event->parent->pmu; 9214 ret = perf_try_init_event(pmu, event); 9215 if (!ret) 9216 goto unlock; 9217 } 9218 9219 rcu_read_lock(); 9220 pmu = idr_find(&pmu_idr, event->attr.type); 9221 rcu_read_unlock(); 9222 if (pmu) { 9223 ret = perf_try_init_event(pmu, event); 9224 if (ret) 9225 pmu = ERR_PTR(ret); 9226 goto unlock; 9227 } 9228 9229 list_for_each_entry_rcu(pmu, &pmus, entry) { 9230 ret = perf_try_init_event(pmu, event); 9231 if (!ret) 9232 goto unlock; 9233 9234 if (ret != -ENOENT) { 9235 pmu = ERR_PTR(ret); 9236 goto unlock; 9237 } 9238 } 9239 pmu = ERR_PTR(-ENOENT); 9240 unlock: 9241 srcu_read_unlock(&pmus_srcu, idx); 9242 9243 return pmu; 9244 } 9245 9246 static void attach_sb_event(struct perf_event *event) 9247 { 9248 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9249 9250 raw_spin_lock(&pel->lock); 9251 list_add_rcu(&event->sb_list, &pel->list); 9252 raw_spin_unlock(&pel->lock); 9253 } 9254 9255 /* 9256 * We keep a list of all !task (and therefore per-cpu) events 9257 * that need to receive side-band records. 9258 * 9259 * This avoids having to scan all the various PMU per-cpu contexts 9260 * looking for them. 9261 */ 9262 static void account_pmu_sb_event(struct perf_event *event) 9263 { 9264 if (is_sb_event(event)) 9265 attach_sb_event(event); 9266 } 9267 9268 static void account_event_cpu(struct perf_event *event, int cpu) 9269 { 9270 if (event->parent) 9271 return; 9272 9273 if (is_cgroup_event(event)) 9274 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9275 } 9276 9277 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9278 static void account_freq_event_nohz(void) 9279 { 9280 #ifdef CONFIG_NO_HZ_FULL 9281 /* Lock so we don't race with concurrent unaccount */ 9282 spin_lock(&nr_freq_lock); 9283 if (atomic_inc_return(&nr_freq_events) == 1) 9284 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9285 spin_unlock(&nr_freq_lock); 9286 #endif 9287 } 9288 9289 static void account_freq_event(void) 9290 { 9291 if (tick_nohz_full_enabled()) 9292 account_freq_event_nohz(); 9293 else 9294 atomic_inc(&nr_freq_events); 9295 } 9296 9297 9298 static void account_event(struct perf_event *event) 9299 { 9300 bool inc = false; 9301 9302 if (event->parent) 9303 return; 9304 9305 if (event->attach_state & PERF_ATTACH_TASK) 9306 inc = true; 9307 if (event->attr.mmap || event->attr.mmap_data) 9308 atomic_inc(&nr_mmap_events); 9309 if (event->attr.comm) 9310 atomic_inc(&nr_comm_events); 9311 if (event->attr.namespaces) 9312 atomic_inc(&nr_namespaces_events); 9313 if (event->attr.task) 9314 atomic_inc(&nr_task_events); 9315 if (event->attr.freq) 9316 account_freq_event(); 9317 if (event->attr.context_switch) { 9318 atomic_inc(&nr_switch_events); 9319 inc = true; 9320 } 9321 if (has_branch_stack(event)) 9322 inc = true; 9323 if (is_cgroup_event(event)) 9324 inc = true; 9325 9326 if (inc) { 9327 if (atomic_inc_not_zero(&perf_sched_count)) 9328 goto enabled; 9329 9330 mutex_lock(&perf_sched_mutex); 9331 if (!atomic_read(&perf_sched_count)) { 9332 static_branch_enable(&perf_sched_events); 9333 /* 9334 * Guarantee that all CPUs observe they key change and 9335 * call the perf scheduling hooks before proceeding to 9336 * install events that need them. 9337 */ 9338 synchronize_sched(); 9339 } 9340 /* 9341 * Now that we have waited for the sync_sched(), allow further 9342 * increments to by-pass the mutex. 9343 */ 9344 atomic_inc(&perf_sched_count); 9345 mutex_unlock(&perf_sched_mutex); 9346 } 9347 enabled: 9348 9349 account_event_cpu(event, event->cpu); 9350 9351 account_pmu_sb_event(event); 9352 } 9353 9354 /* 9355 * Allocate and initialize a event structure 9356 */ 9357 static struct perf_event * 9358 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9359 struct task_struct *task, 9360 struct perf_event *group_leader, 9361 struct perf_event *parent_event, 9362 perf_overflow_handler_t overflow_handler, 9363 void *context, int cgroup_fd) 9364 { 9365 struct pmu *pmu; 9366 struct perf_event *event; 9367 struct hw_perf_event *hwc; 9368 long err = -EINVAL; 9369 9370 if ((unsigned)cpu >= nr_cpu_ids) { 9371 if (!task || cpu != -1) 9372 return ERR_PTR(-EINVAL); 9373 } 9374 9375 event = kzalloc(sizeof(*event), GFP_KERNEL); 9376 if (!event) 9377 return ERR_PTR(-ENOMEM); 9378 9379 /* 9380 * Single events are their own group leaders, with an 9381 * empty sibling list: 9382 */ 9383 if (!group_leader) 9384 group_leader = event; 9385 9386 mutex_init(&event->child_mutex); 9387 INIT_LIST_HEAD(&event->child_list); 9388 9389 INIT_LIST_HEAD(&event->group_entry); 9390 INIT_LIST_HEAD(&event->event_entry); 9391 INIT_LIST_HEAD(&event->sibling_list); 9392 INIT_LIST_HEAD(&event->rb_entry); 9393 INIT_LIST_HEAD(&event->active_entry); 9394 INIT_LIST_HEAD(&event->addr_filters.list); 9395 INIT_HLIST_NODE(&event->hlist_entry); 9396 9397 9398 init_waitqueue_head(&event->waitq); 9399 init_irq_work(&event->pending, perf_pending_event); 9400 9401 mutex_init(&event->mmap_mutex); 9402 raw_spin_lock_init(&event->addr_filters.lock); 9403 9404 atomic_long_set(&event->refcount, 1); 9405 event->cpu = cpu; 9406 event->attr = *attr; 9407 event->group_leader = group_leader; 9408 event->pmu = NULL; 9409 event->oncpu = -1; 9410 9411 event->parent = parent_event; 9412 9413 event->ns = get_pid_ns(task_active_pid_ns(current)); 9414 event->id = atomic64_inc_return(&perf_event_id); 9415 9416 event->state = PERF_EVENT_STATE_INACTIVE; 9417 9418 if (task) { 9419 event->attach_state = PERF_ATTACH_TASK; 9420 /* 9421 * XXX pmu::event_init needs to know what task to account to 9422 * and we cannot use the ctx information because we need the 9423 * pmu before we get a ctx. 9424 */ 9425 event->hw.target = task; 9426 } 9427 9428 event->clock = &local_clock; 9429 if (parent_event) 9430 event->clock = parent_event->clock; 9431 9432 if (!overflow_handler && parent_event) { 9433 overflow_handler = parent_event->overflow_handler; 9434 context = parent_event->overflow_handler_context; 9435 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9436 if (overflow_handler == bpf_overflow_handler) { 9437 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9438 9439 if (IS_ERR(prog)) { 9440 err = PTR_ERR(prog); 9441 goto err_ns; 9442 } 9443 event->prog = prog; 9444 event->orig_overflow_handler = 9445 parent_event->orig_overflow_handler; 9446 } 9447 #endif 9448 } 9449 9450 if (overflow_handler) { 9451 event->overflow_handler = overflow_handler; 9452 event->overflow_handler_context = context; 9453 } else if (is_write_backward(event)){ 9454 event->overflow_handler = perf_event_output_backward; 9455 event->overflow_handler_context = NULL; 9456 } else { 9457 event->overflow_handler = perf_event_output_forward; 9458 event->overflow_handler_context = NULL; 9459 } 9460 9461 perf_event__state_init(event); 9462 9463 pmu = NULL; 9464 9465 hwc = &event->hw; 9466 hwc->sample_period = attr->sample_period; 9467 if (attr->freq && attr->sample_freq) 9468 hwc->sample_period = 1; 9469 hwc->last_period = hwc->sample_period; 9470 9471 local64_set(&hwc->period_left, hwc->sample_period); 9472 9473 /* 9474 * we currently do not support PERF_FORMAT_GROUP on inherited events 9475 */ 9476 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9477 goto err_ns; 9478 9479 if (!has_branch_stack(event)) 9480 event->attr.branch_sample_type = 0; 9481 9482 if (cgroup_fd != -1) { 9483 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9484 if (err) 9485 goto err_ns; 9486 } 9487 9488 pmu = perf_init_event(event); 9489 if (!pmu) 9490 goto err_ns; 9491 else if (IS_ERR(pmu)) { 9492 err = PTR_ERR(pmu); 9493 goto err_ns; 9494 } 9495 9496 err = exclusive_event_init(event); 9497 if (err) 9498 goto err_pmu; 9499 9500 if (has_addr_filter(event)) { 9501 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9502 sizeof(unsigned long), 9503 GFP_KERNEL); 9504 if (!event->addr_filters_offs) 9505 goto err_per_task; 9506 9507 /* force hw sync on the address filters */ 9508 event->addr_filters_gen = 1; 9509 } 9510 9511 if (!event->parent) { 9512 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9513 err = get_callchain_buffers(attr->sample_max_stack); 9514 if (err) 9515 goto err_addr_filters; 9516 } 9517 } 9518 9519 /* symmetric to unaccount_event() in _free_event() */ 9520 account_event(event); 9521 9522 return event; 9523 9524 err_addr_filters: 9525 kfree(event->addr_filters_offs); 9526 9527 err_per_task: 9528 exclusive_event_destroy(event); 9529 9530 err_pmu: 9531 if (event->destroy) 9532 event->destroy(event); 9533 module_put(pmu->module); 9534 err_ns: 9535 if (is_cgroup_event(event)) 9536 perf_detach_cgroup(event); 9537 if (event->ns) 9538 put_pid_ns(event->ns); 9539 kfree(event); 9540 9541 return ERR_PTR(err); 9542 } 9543 9544 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9545 struct perf_event_attr *attr) 9546 { 9547 u32 size; 9548 int ret; 9549 9550 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9551 return -EFAULT; 9552 9553 /* 9554 * zero the full structure, so that a short copy will be nice. 9555 */ 9556 memset(attr, 0, sizeof(*attr)); 9557 9558 ret = get_user(size, &uattr->size); 9559 if (ret) 9560 return ret; 9561 9562 if (size > PAGE_SIZE) /* silly large */ 9563 goto err_size; 9564 9565 if (!size) /* abi compat */ 9566 size = PERF_ATTR_SIZE_VER0; 9567 9568 if (size < PERF_ATTR_SIZE_VER0) 9569 goto err_size; 9570 9571 /* 9572 * If we're handed a bigger struct than we know of, 9573 * ensure all the unknown bits are 0 - i.e. new 9574 * user-space does not rely on any kernel feature 9575 * extensions we dont know about yet. 9576 */ 9577 if (size > sizeof(*attr)) { 9578 unsigned char __user *addr; 9579 unsigned char __user *end; 9580 unsigned char val; 9581 9582 addr = (void __user *)uattr + sizeof(*attr); 9583 end = (void __user *)uattr + size; 9584 9585 for (; addr < end; addr++) { 9586 ret = get_user(val, addr); 9587 if (ret) 9588 return ret; 9589 if (val) 9590 goto err_size; 9591 } 9592 size = sizeof(*attr); 9593 } 9594 9595 ret = copy_from_user(attr, uattr, size); 9596 if (ret) 9597 return -EFAULT; 9598 9599 if (attr->__reserved_1) 9600 return -EINVAL; 9601 9602 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9603 return -EINVAL; 9604 9605 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9606 return -EINVAL; 9607 9608 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9609 u64 mask = attr->branch_sample_type; 9610 9611 /* only using defined bits */ 9612 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9613 return -EINVAL; 9614 9615 /* at least one branch bit must be set */ 9616 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9617 return -EINVAL; 9618 9619 /* propagate priv level, when not set for branch */ 9620 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9621 9622 /* exclude_kernel checked on syscall entry */ 9623 if (!attr->exclude_kernel) 9624 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9625 9626 if (!attr->exclude_user) 9627 mask |= PERF_SAMPLE_BRANCH_USER; 9628 9629 if (!attr->exclude_hv) 9630 mask |= PERF_SAMPLE_BRANCH_HV; 9631 /* 9632 * adjust user setting (for HW filter setup) 9633 */ 9634 attr->branch_sample_type = mask; 9635 } 9636 /* privileged levels capture (kernel, hv): check permissions */ 9637 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9638 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9639 return -EACCES; 9640 } 9641 9642 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9643 ret = perf_reg_validate(attr->sample_regs_user); 9644 if (ret) 9645 return ret; 9646 } 9647 9648 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9649 if (!arch_perf_have_user_stack_dump()) 9650 return -ENOSYS; 9651 9652 /* 9653 * We have __u32 type for the size, but so far 9654 * we can only use __u16 as maximum due to the 9655 * __u16 sample size limit. 9656 */ 9657 if (attr->sample_stack_user >= USHRT_MAX) 9658 ret = -EINVAL; 9659 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9660 ret = -EINVAL; 9661 } 9662 9663 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9664 ret = perf_reg_validate(attr->sample_regs_intr); 9665 out: 9666 return ret; 9667 9668 err_size: 9669 put_user(sizeof(*attr), &uattr->size); 9670 ret = -E2BIG; 9671 goto out; 9672 } 9673 9674 static int 9675 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9676 { 9677 struct ring_buffer *rb = NULL; 9678 int ret = -EINVAL; 9679 9680 if (!output_event) 9681 goto set; 9682 9683 /* don't allow circular references */ 9684 if (event == output_event) 9685 goto out; 9686 9687 /* 9688 * Don't allow cross-cpu buffers 9689 */ 9690 if (output_event->cpu != event->cpu) 9691 goto out; 9692 9693 /* 9694 * If its not a per-cpu rb, it must be the same task. 9695 */ 9696 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9697 goto out; 9698 9699 /* 9700 * Mixing clocks in the same buffer is trouble you don't need. 9701 */ 9702 if (output_event->clock != event->clock) 9703 goto out; 9704 9705 /* 9706 * Either writing ring buffer from beginning or from end. 9707 * Mixing is not allowed. 9708 */ 9709 if (is_write_backward(output_event) != is_write_backward(event)) 9710 goto out; 9711 9712 /* 9713 * If both events generate aux data, they must be on the same PMU 9714 */ 9715 if (has_aux(event) && has_aux(output_event) && 9716 event->pmu != output_event->pmu) 9717 goto out; 9718 9719 set: 9720 mutex_lock(&event->mmap_mutex); 9721 /* Can't redirect output if we've got an active mmap() */ 9722 if (atomic_read(&event->mmap_count)) 9723 goto unlock; 9724 9725 if (output_event) { 9726 /* get the rb we want to redirect to */ 9727 rb = ring_buffer_get(output_event); 9728 if (!rb) 9729 goto unlock; 9730 } 9731 9732 ring_buffer_attach(event, rb); 9733 9734 ret = 0; 9735 unlock: 9736 mutex_unlock(&event->mmap_mutex); 9737 9738 out: 9739 return ret; 9740 } 9741 9742 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9743 { 9744 if (b < a) 9745 swap(a, b); 9746 9747 mutex_lock(a); 9748 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9749 } 9750 9751 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9752 { 9753 bool nmi_safe = false; 9754 9755 switch (clk_id) { 9756 case CLOCK_MONOTONIC: 9757 event->clock = &ktime_get_mono_fast_ns; 9758 nmi_safe = true; 9759 break; 9760 9761 case CLOCK_MONOTONIC_RAW: 9762 event->clock = &ktime_get_raw_fast_ns; 9763 nmi_safe = true; 9764 break; 9765 9766 case CLOCK_REALTIME: 9767 event->clock = &ktime_get_real_ns; 9768 break; 9769 9770 case CLOCK_BOOTTIME: 9771 event->clock = &ktime_get_boot_ns; 9772 break; 9773 9774 case CLOCK_TAI: 9775 event->clock = &ktime_get_tai_ns; 9776 break; 9777 9778 default: 9779 return -EINVAL; 9780 } 9781 9782 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9783 return -EINVAL; 9784 9785 return 0; 9786 } 9787 9788 /* 9789 * Variation on perf_event_ctx_lock_nested(), except we take two context 9790 * mutexes. 9791 */ 9792 static struct perf_event_context * 9793 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9794 struct perf_event_context *ctx) 9795 { 9796 struct perf_event_context *gctx; 9797 9798 again: 9799 rcu_read_lock(); 9800 gctx = READ_ONCE(group_leader->ctx); 9801 if (!atomic_inc_not_zero(&gctx->refcount)) { 9802 rcu_read_unlock(); 9803 goto again; 9804 } 9805 rcu_read_unlock(); 9806 9807 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9808 9809 if (group_leader->ctx != gctx) { 9810 mutex_unlock(&ctx->mutex); 9811 mutex_unlock(&gctx->mutex); 9812 put_ctx(gctx); 9813 goto again; 9814 } 9815 9816 return gctx; 9817 } 9818 9819 /** 9820 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9821 * 9822 * @attr_uptr: event_id type attributes for monitoring/sampling 9823 * @pid: target pid 9824 * @cpu: target cpu 9825 * @group_fd: group leader event fd 9826 */ 9827 SYSCALL_DEFINE5(perf_event_open, 9828 struct perf_event_attr __user *, attr_uptr, 9829 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9830 { 9831 struct perf_event *group_leader = NULL, *output_event = NULL; 9832 struct perf_event *event, *sibling; 9833 struct perf_event_attr attr; 9834 struct perf_event_context *ctx, *uninitialized_var(gctx); 9835 struct file *event_file = NULL; 9836 struct fd group = {NULL, 0}; 9837 struct task_struct *task = NULL; 9838 struct pmu *pmu; 9839 int event_fd; 9840 int move_group = 0; 9841 int err; 9842 int f_flags = O_RDWR; 9843 int cgroup_fd = -1; 9844 9845 /* for future expandability... */ 9846 if (flags & ~PERF_FLAG_ALL) 9847 return -EINVAL; 9848 9849 err = perf_copy_attr(attr_uptr, &attr); 9850 if (err) 9851 return err; 9852 9853 if (!attr.exclude_kernel) { 9854 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9855 return -EACCES; 9856 } 9857 9858 if (attr.namespaces) { 9859 if (!capable(CAP_SYS_ADMIN)) 9860 return -EACCES; 9861 } 9862 9863 if (attr.freq) { 9864 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9865 return -EINVAL; 9866 } else { 9867 if (attr.sample_period & (1ULL << 63)) 9868 return -EINVAL; 9869 } 9870 9871 if (!attr.sample_max_stack) 9872 attr.sample_max_stack = sysctl_perf_event_max_stack; 9873 9874 /* 9875 * In cgroup mode, the pid argument is used to pass the fd 9876 * opened to the cgroup directory in cgroupfs. The cpu argument 9877 * designates the cpu on which to monitor threads from that 9878 * cgroup. 9879 */ 9880 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9881 return -EINVAL; 9882 9883 if (flags & PERF_FLAG_FD_CLOEXEC) 9884 f_flags |= O_CLOEXEC; 9885 9886 event_fd = get_unused_fd_flags(f_flags); 9887 if (event_fd < 0) 9888 return event_fd; 9889 9890 if (group_fd != -1) { 9891 err = perf_fget_light(group_fd, &group); 9892 if (err) 9893 goto err_fd; 9894 group_leader = group.file->private_data; 9895 if (flags & PERF_FLAG_FD_OUTPUT) 9896 output_event = group_leader; 9897 if (flags & PERF_FLAG_FD_NO_GROUP) 9898 group_leader = NULL; 9899 } 9900 9901 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9902 task = find_lively_task_by_vpid(pid); 9903 if (IS_ERR(task)) { 9904 err = PTR_ERR(task); 9905 goto err_group_fd; 9906 } 9907 } 9908 9909 if (task && group_leader && 9910 group_leader->attr.inherit != attr.inherit) { 9911 err = -EINVAL; 9912 goto err_task; 9913 } 9914 9915 get_online_cpus(); 9916 9917 if (task) { 9918 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9919 if (err) 9920 goto err_cpus; 9921 9922 /* 9923 * Reuse ptrace permission checks for now. 9924 * 9925 * We must hold cred_guard_mutex across this and any potential 9926 * perf_install_in_context() call for this new event to 9927 * serialize against exec() altering our credentials (and the 9928 * perf_event_exit_task() that could imply). 9929 */ 9930 err = -EACCES; 9931 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9932 goto err_cred; 9933 } 9934 9935 if (flags & PERF_FLAG_PID_CGROUP) 9936 cgroup_fd = pid; 9937 9938 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9939 NULL, NULL, cgroup_fd); 9940 if (IS_ERR(event)) { 9941 err = PTR_ERR(event); 9942 goto err_cred; 9943 } 9944 9945 if (is_sampling_event(event)) { 9946 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9947 err = -EOPNOTSUPP; 9948 goto err_alloc; 9949 } 9950 } 9951 9952 /* 9953 * Special case software events and allow them to be part of 9954 * any hardware group. 9955 */ 9956 pmu = event->pmu; 9957 9958 if (attr.use_clockid) { 9959 err = perf_event_set_clock(event, attr.clockid); 9960 if (err) 9961 goto err_alloc; 9962 } 9963 9964 if (pmu->task_ctx_nr == perf_sw_context) 9965 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9966 9967 if (group_leader && 9968 (is_software_event(event) != is_software_event(group_leader))) { 9969 if (is_software_event(event)) { 9970 /* 9971 * If event and group_leader are not both a software 9972 * event, and event is, then group leader is not. 9973 * 9974 * Allow the addition of software events to !software 9975 * groups, this is safe because software events never 9976 * fail to schedule. 9977 */ 9978 pmu = group_leader->pmu; 9979 } else if (is_software_event(group_leader) && 9980 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9981 /* 9982 * In case the group is a pure software group, and we 9983 * try to add a hardware event, move the whole group to 9984 * the hardware context. 9985 */ 9986 move_group = 1; 9987 } 9988 } 9989 9990 /* 9991 * Get the target context (task or percpu): 9992 */ 9993 ctx = find_get_context(pmu, task, event); 9994 if (IS_ERR(ctx)) { 9995 err = PTR_ERR(ctx); 9996 goto err_alloc; 9997 } 9998 9999 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10000 err = -EBUSY; 10001 goto err_context; 10002 } 10003 10004 /* 10005 * Look up the group leader (we will attach this event to it): 10006 */ 10007 if (group_leader) { 10008 err = -EINVAL; 10009 10010 /* 10011 * Do not allow a recursive hierarchy (this new sibling 10012 * becoming part of another group-sibling): 10013 */ 10014 if (group_leader->group_leader != group_leader) 10015 goto err_context; 10016 10017 /* All events in a group should have the same clock */ 10018 if (group_leader->clock != event->clock) 10019 goto err_context; 10020 10021 /* 10022 * Do not allow to attach to a group in a different 10023 * task or CPU context: 10024 */ 10025 if (move_group) { 10026 /* 10027 * Make sure we're both on the same task, or both 10028 * per-cpu events. 10029 */ 10030 if (group_leader->ctx->task != ctx->task) 10031 goto err_context; 10032 10033 /* 10034 * Make sure we're both events for the same CPU; 10035 * grouping events for different CPUs is broken; since 10036 * you can never concurrently schedule them anyhow. 10037 */ 10038 if (group_leader->cpu != event->cpu) 10039 goto err_context; 10040 } else { 10041 if (group_leader->ctx != ctx) 10042 goto err_context; 10043 } 10044 10045 /* 10046 * Only a group leader can be exclusive or pinned 10047 */ 10048 if (attr.exclusive || attr.pinned) 10049 goto err_context; 10050 } 10051 10052 if (output_event) { 10053 err = perf_event_set_output(event, output_event); 10054 if (err) 10055 goto err_context; 10056 } 10057 10058 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10059 f_flags); 10060 if (IS_ERR(event_file)) { 10061 err = PTR_ERR(event_file); 10062 event_file = NULL; 10063 goto err_context; 10064 } 10065 10066 if (move_group) { 10067 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10068 10069 if (gctx->task == TASK_TOMBSTONE) { 10070 err = -ESRCH; 10071 goto err_locked; 10072 } 10073 10074 /* 10075 * Check if we raced against another sys_perf_event_open() call 10076 * moving the software group underneath us. 10077 */ 10078 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10079 /* 10080 * If someone moved the group out from under us, check 10081 * if this new event wound up on the same ctx, if so 10082 * its the regular !move_group case, otherwise fail. 10083 */ 10084 if (gctx != ctx) { 10085 err = -EINVAL; 10086 goto err_locked; 10087 } else { 10088 perf_event_ctx_unlock(group_leader, gctx); 10089 move_group = 0; 10090 } 10091 } 10092 } else { 10093 mutex_lock(&ctx->mutex); 10094 } 10095 10096 if (ctx->task == TASK_TOMBSTONE) { 10097 err = -ESRCH; 10098 goto err_locked; 10099 } 10100 10101 if (!perf_event_validate_size(event)) { 10102 err = -E2BIG; 10103 goto err_locked; 10104 } 10105 10106 /* 10107 * Must be under the same ctx::mutex as perf_install_in_context(), 10108 * because we need to serialize with concurrent event creation. 10109 */ 10110 if (!exclusive_event_installable(event, ctx)) { 10111 /* exclusive and group stuff are assumed mutually exclusive */ 10112 WARN_ON_ONCE(move_group); 10113 10114 err = -EBUSY; 10115 goto err_locked; 10116 } 10117 10118 WARN_ON_ONCE(ctx->parent_ctx); 10119 10120 /* 10121 * This is the point on no return; we cannot fail hereafter. This is 10122 * where we start modifying current state. 10123 */ 10124 10125 if (move_group) { 10126 /* 10127 * See perf_event_ctx_lock() for comments on the details 10128 * of swizzling perf_event::ctx. 10129 */ 10130 perf_remove_from_context(group_leader, 0); 10131 put_ctx(gctx); 10132 10133 list_for_each_entry(sibling, &group_leader->sibling_list, 10134 group_entry) { 10135 perf_remove_from_context(sibling, 0); 10136 put_ctx(gctx); 10137 } 10138 10139 /* 10140 * Wait for everybody to stop referencing the events through 10141 * the old lists, before installing it on new lists. 10142 */ 10143 synchronize_rcu(); 10144 10145 /* 10146 * Install the group siblings before the group leader. 10147 * 10148 * Because a group leader will try and install the entire group 10149 * (through the sibling list, which is still in-tact), we can 10150 * end up with siblings installed in the wrong context. 10151 * 10152 * By installing siblings first we NO-OP because they're not 10153 * reachable through the group lists. 10154 */ 10155 list_for_each_entry(sibling, &group_leader->sibling_list, 10156 group_entry) { 10157 perf_event__state_init(sibling); 10158 perf_install_in_context(ctx, sibling, sibling->cpu); 10159 get_ctx(ctx); 10160 } 10161 10162 /* 10163 * Removing from the context ends up with disabled 10164 * event. What we want here is event in the initial 10165 * startup state, ready to be add into new context. 10166 */ 10167 perf_event__state_init(group_leader); 10168 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10169 get_ctx(ctx); 10170 } 10171 10172 /* 10173 * Precalculate sample_data sizes; do while holding ctx::mutex such 10174 * that we're serialized against further additions and before 10175 * perf_install_in_context() which is the point the event is active and 10176 * can use these values. 10177 */ 10178 perf_event__header_size(event); 10179 perf_event__id_header_size(event); 10180 10181 event->owner = current; 10182 10183 perf_install_in_context(ctx, event, event->cpu); 10184 perf_unpin_context(ctx); 10185 10186 if (move_group) 10187 perf_event_ctx_unlock(group_leader, gctx); 10188 mutex_unlock(&ctx->mutex); 10189 10190 if (task) { 10191 mutex_unlock(&task->signal->cred_guard_mutex); 10192 put_task_struct(task); 10193 } 10194 10195 put_online_cpus(); 10196 10197 mutex_lock(¤t->perf_event_mutex); 10198 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10199 mutex_unlock(¤t->perf_event_mutex); 10200 10201 /* 10202 * Drop the reference on the group_event after placing the 10203 * new event on the sibling_list. This ensures destruction 10204 * of the group leader will find the pointer to itself in 10205 * perf_group_detach(). 10206 */ 10207 fdput(group); 10208 fd_install(event_fd, event_file); 10209 return event_fd; 10210 10211 err_locked: 10212 if (move_group) 10213 perf_event_ctx_unlock(group_leader, gctx); 10214 mutex_unlock(&ctx->mutex); 10215 /* err_file: */ 10216 fput(event_file); 10217 err_context: 10218 perf_unpin_context(ctx); 10219 put_ctx(ctx); 10220 err_alloc: 10221 /* 10222 * If event_file is set, the fput() above will have called ->release() 10223 * and that will take care of freeing the event. 10224 */ 10225 if (!event_file) 10226 free_event(event); 10227 err_cred: 10228 if (task) 10229 mutex_unlock(&task->signal->cred_guard_mutex); 10230 err_cpus: 10231 put_online_cpus(); 10232 err_task: 10233 if (task) 10234 put_task_struct(task); 10235 err_group_fd: 10236 fdput(group); 10237 err_fd: 10238 put_unused_fd(event_fd); 10239 return err; 10240 } 10241 10242 /** 10243 * perf_event_create_kernel_counter 10244 * 10245 * @attr: attributes of the counter to create 10246 * @cpu: cpu in which the counter is bound 10247 * @task: task to profile (NULL for percpu) 10248 */ 10249 struct perf_event * 10250 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10251 struct task_struct *task, 10252 perf_overflow_handler_t overflow_handler, 10253 void *context) 10254 { 10255 struct perf_event_context *ctx; 10256 struct perf_event *event; 10257 int err; 10258 10259 /* 10260 * Get the target context (task or percpu): 10261 */ 10262 10263 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10264 overflow_handler, context, -1); 10265 if (IS_ERR(event)) { 10266 err = PTR_ERR(event); 10267 goto err; 10268 } 10269 10270 /* Mark owner so we could distinguish it from user events. */ 10271 event->owner = TASK_TOMBSTONE; 10272 10273 ctx = find_get_context(event->pmu, task, event); 10274 if (IS_ERR(ctx)) { 10275 err = PTR_ERR(ctx); 10276 goto err_free; 10277 } 10278 10279 WARN_ON_ONCE(ctx->parent_ctx); 10280 mutex_lock(&ctx->mutex); 10281 if (ctx->task == TASK_TOMBSTONE) { 10282 err = -ESRCH; 10283 goto err_unlock; 10284 } 10285 10286 if (!exclusive_event_installable(event, ctx)) { 10287 err = -EBUSY; 10288 goto err_unlock; 10289 } 10290 10291 perf_install_in_context(ctx, event, cpu); 10292 perf_unpin_context(ctx); 10293 mutex_unlock(&ctx->mutex); 10294 10295 return event; 10296 10297 err_unlock: 10298 mutex_unlock(&ctx->mutex); 10299 perf_unpin_context(ctx); 10300 put_ctx(ctx); 10301 err_free: 10302 free_event(event); 10303 err: 10304 return ERR_PTR(err); 10305 } 10306 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10307 10308 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10309 { 10310 struct perf_event_context *src_ctx; 10311 struct perf_event_context *dst_ctx; 10312 struct perf_event *event, *tmp; 10313 LIST_HEAD(events); 10314 10315 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10316 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10317 10318 /* 10319 * See perf_event_ctx_lock() for comments on the details 10320 * of swizzling perf_event::ctx. 10321 */ 10322 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10323 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10324 event_entry) { 10325 perf_remove_from_context(event, 0); 10326 unaccount_event_cpu(event, src_cpu); 10327 put_ctx(src_ctx); 10328 list_add(&event->migrate_entry, &events); 10329 } 10330 10331 /* 10332 * Wait for the events to quiesce before re-instating them. 10333 */ 10334 synchronize_rcu(); 10335 10336 /* 10337 * Re-instate events in 2 passes. 10338 * 10339 * Skip over group leaders and only install siblings on this first 10340 * pass, siblings will not get enabled without a leader, however a 10341 * leader will enable its siblings, even if those are still on the old 10342 * context. 10343 */ 10344 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10345 if (event->group_leader == event) 10346 continue; 10347 10348 list_del(&event->migrate_entry); 10349 if (event->state >= PERF_EVENT_STATE_OFF) 10350 event->state = PERF_EVENT_STATE_INACTIVE; 10351 account_event_cpu(event, dst_cpu); 10352 perf_install_in_context(dst_ctx, event, dst_cpu); 10353 get_ctx(dst_ctx); 10354 } 10355 10356 /* 10357 * Once all the siblings are setup properly, install the group leaders 10358 * to make it go. 10359 */ 10360 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10361 list_del(&event->migrate_entry); 10362 if (event->state >= PERF_EVENT_STATE_OFF) 10363 event->state = PERF_EVENT_STATE_INACTIVE; 10364 account_event_cpu(event, dst_cpu); 10365 perf_install_in_context(dst_ctx, event, dst_cpu); 10366 get_ctx(dst_ctx); 10367 } 10368 mutex_unlock(&dst_ctx->mutex); 10369 mutex_unlock(&src_ctx->mutex); 10370 } 10371 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10372 10373 static void sync_child_event(struct perf_event *child_event, 10374 struct task_struct *child) 10375 { 10376 struct perf_event *parent_event = child_event->parent; 10377 u64 child_val; 10378 10379 if (child_event->attr.inherit_stat) 10380 perf_event_read_event(child_event, child); 10381 10382 child_val = perf_event_count(child_event); 10383 10384 /* 10385 * Add back the child's count to the parent's count: 10386 */ 10387 atomic64_add(child_val, &parent_event->child_count); 10388 atomic64_add(child_event->total_time_enabled, 10389 &parent_event->child_total_time_enabled); 10390 atomic64_add(child_event->total_time_running, 10391 &parent_event->child_total_time_running); 10392 } 10393 10394 static void 10395 perf_event_exit_event(struct perf_event *child_event, 10396 struct perf_event_context *child_ctx, 10397 struct task_struct *child) 10398 { 10399 struct perf_event *parent_event = child_event->parent; 10400 10401 /* 10402 * Do not destroy the 'original' grouping; because of the context 10403 * switch optimization the original events could've ended up in a 10404 * random child task. 10405 * 10406 * If we were to destroy the original group, all group related 10407 * operations would cease to function properly after this random 10408 * child dies. 10409 * 10410 * Do destroy all inherited groups, we don't care about those 10411 * and being thorough is better. 10412 */ 10413 raw_spin_lock_irq(&child_ctx->lock); 10414 WARN_ON_ONCE(child_ctx->is_active); 10415 10416 if (parent_event) 10417 perf_group_detach(child_event); 10418 list_del_event(child_event, child_ctx); 10419 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10420 raw_spin_unlock_irq(&child_ctx->lock); 10421 10422 /* 10423 * Parent events are governed by their filedesc, retain them. 10424 */ 10425 if (!parent_event) { 10426 perf_event_wakeup(child_event); 10427 return; 10428 } 10429 /* 10430 * Child events can be cleaned up. 10431 */ 10432 10433 sync_child_event(child_event, child); 10434 10435 /* 10436 * Remove this event from the parent's list 10437 */ 10438 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10439 mutex_lock(&parent_event->child_mutex); 10440 list_del_init(&child_event->child_list); 10441 mutex_unlock(&parent_event->child_mutex); 10442 10443 /* 10444 * Kick perf_poll() for is_event_hup(). 10445 */ 10446 perf_event_wakeup(parent_event); 10447 free_event(child_event); 10448 put_event(parent_event); 10449 } 10450 10451 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10452 { 10453 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10454 struct perf_event *child_event, *next; 10455 10456 WARN_ON_ONCE(child != current); 10457 10458 child_ctx = perf_pin_task_context(child, ctxn); 10459 if (!child_ctx) 10460 return; 10461 10462 /* 10463 * In order to reduce the amount of tricky in ctx tear-down, we hold 10464 * ctx::mutex over the entire thing. This serializes against almost 10465 * everything that wants to access the ctx. 10466 * 10467 * The exception is sys_perf_event_open() / 10468 * perf_event_create_kernel_count() which does find_get_context() 10469 * without ctx::mutex (it cannot because of the move_group double mutex 10470 * lock thing). See the comments in perf_install_in_context(). 10471 */ 10472 mutex_lock(&child_ctx->mutex); 10473 10474 /* 10475 * In a single ctx::lock section, de-schedule the events and detach the 10476 * context from the task such that we cannot ever get it scheduled back 10477 * in. 10478 */ 10479 raw_spin_lock_irq(&child_ctx->lock); 10480 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10481 10482 /* 10483 * Now that the context is inactive, destroy the task <-> ctx relation 10484 * and mark the context dead. 10485 */ 10486 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10487 put_ctx(child_ctx); /* cannot be last */ 10488 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10489 put_task_struct(current); /* cannot be last */ 10490 10491 clone_ctx = unclone_ctx(child_ctx); 10492 raw_spin_unlock_irq(&child_ctx->lock); 10493 10494 if (clone_ctx) 10495 put_ctx(clone_ctx); 10496 10497 /* 10498 * Report the task dead after unscheduling the events so that we 10499 * won't get any samples after PERF_RECORD_EXIT. We can however still 10500 * get a few PERF_RECORD_READ events. 10501 */ 10502 perf_event_task(child, child_ctx, 0); 10503 10504 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10505 perf_event_exit_event(child_event, child_ctx, child); 10506 10507 mutex_unlock(&child_ctx->mutex); 10508 10509 put_ctx(child_ctx); 10510 } 10511 10512 /* 10513 * When a child task exits, feed back event values to parent events. 10514 * 10515 * Can be called with cred_guard_mutex held when called from 10516 * install_exec_creds(). 10517 */ 10518 void perf_event_exit_task(struct task_struct *child) 10519 { 10520 struct perf_event *event, *tmp; 10521 int ctxn; 10522 10523 mutex_lock(&child->perf_event_mutex); 10524 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10525 owner_entry) { 10526 list_del_init(&event->owner_entry); 10527 10528 /* 10529 * Ensure the list deletion is visible before we clear 10530 * the owner, closes a race against perf_release() where 10531 * we need to serialize on the owner->perf_event_mutex. 10532 */ 10533 smp_store_release(&event->owner, NULL); 10534 } 10535 mutex_unlock(&child->perf_event_mutex); 10536 10537 for_each_task_context_nr(ctxn) 10538 perf_event_exit_task_context(child, ctxn); 10539 10540 /* 10541 * The perf_event_exit_task_context calls perf_event_task 10542 * with child's task_ctx, which generates EXIT events for 10543 * child contexts and sets child->perf_event_ctxp[] to NULL. 10544 * At this point we need to send EXIT events to cpu contexts. 10545 */ 10546 perf_event_task(child, NULL, 0); 10547 } 10548 10549 static void perf_free_event(struct perf_event *event, 10550 struct perf_event_context *ctx) 10551 { 10552 struct perf_event *parent = event->parent; 10553 10554 if (WARN_ON_ONCE(!parent)) 10555 return; 10556 10557 mutex_lock(&parent->child_mutex); 10558 list_del_init(&event->child_list); 10559 mutex_unlock(&parent->child_mutex); 10560 10561 put_event(parent); 10562 10563 raw_spin_lock_irq(&ctx->lock); 10564 perf_group_detach(event); 10565 list_del_event(event, ctx); 10566 raw_spin_unlock_irq(&ctx->lock); 10567 free_event(event); 10568 } 10569 10570 /* 10571 * Free an unexposed, unused context as created by inheritance by 10572 * perf_event_init_task below, used by fork() in case of fail. 10573 * 10574 * Not all locks are strictly required, but take them anyway to be nice and 10575 * help out with the lockdep assertions. 10576 */ 10577 void perf_event_free_task(struct task_struct *task) 10578 { 10579 struct perf_event_context *ctx; 10580 struct perf_event *event, *tmp; 10581 int ctxn; 10582 10583 for_each_task_context_nr(ctxn) { 10584 ctx = task->perf_event_ctxp[ctxn]; 10585 if (!ctx) 10586 continue; 10587 10588 mutex_lock(&ctx->mutex); 10589 raw_spin_lock_irq(&ctx->lock); 10590 /* 10591 * Destroy the task <-> ctx relation and mark the context dead. 10592 * 10593 * This is important because even though the task hasn't been 10594 * exposed yet the context has been (through child_list). 10595 */ 10596 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10597 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10598 put_task_struct(task); /* cannot be last */ 10599 raw_spin_unlock_irq(&ctx->lock); 10600 10601 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10602 perf_free_event(event, ctx); 10603 10604 mutex_unlock(&ctx->mutex); 10605 put_ctx(ctx); 10606 } 10607 } 10608 10609 void perf_event_delayed_put(struct task_struct *task) 10610 { 10611 int ctxn; 10612 10613 for_each_task_context_nr(ctxn) 10614 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10615 } 10616 10617 struct file *perf_event_get(unsigned int fd) 10618 { 10619 struct file *file; 10620 10621 file = fget_raw(fd); 10622 if (!file) 10623 return ERR_PTR(-EBADF); 10624 10625 if (file->f_op != &perf_fops) { 10626 fput(file); 10627 return ERR_PTR(-EBADF); 10628 } 10629 10630 return file; 10631 } 10632 10633 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10634 { 10635 if (!event) 10636 return ERR_PTR(-EINVAL); 10637 10638 return &event->attr; 10639 } 10640 10641 /* 10642 * Inherit a event from parent task to child task. 10643 * 10644 * Returns: 10645 * - valid pointer on success 10646 * - NULL for orphaned events 10647 * - IS_ERR() on error 10648 */ 10649 static struct perf_event * 10650 inherit_event(struct perf_event *parent_event, 10651 struct task_struct *parent, 10652 struct perf_event_context *parent_ctx, 10653 struct task_struct *child, 10654 struct perf_event *group_leader, 10655 struct perf_event_context *child_ctx) 10656 { 10657 enum perf_event_active_state parent_state = parent_event->state; 10658 struct perf_event *child_event; 10659 unsigned long flags; 10660 10661 /* 10662 * Instead of creating recursive hierarchies of events, 10663 * we link inherited events back to the original parent, 10664 * which has a filp for sure, which we use as the reference 10665 * count: 10666 */ 10667 if (parent_event->parent) 10668 parent_event = parent_event->parent; 10669 10670 child_event = perf_event_alloc(&parent_event->attr, 10671 parent_event->cpu, 10672 child, 10673 group_leader, parent_event, 10674 NULL, NULL, -1); 10675 if (IS_ERR(child_event)) 10676 return child_event; 10677 10678 /* 10679 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10680 * must be under the same lock in order to serialize against 10681 * perf_event_release_kernel(), such that either we must observe 10682 * is_orphaned_event() or they will observe us on the child_list. 10683 */ 10684 mutex_lock(&parent_event->child_mutex); 10685 if (is_orphaned_event(parent_event) || 10686 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10687 mutex_unlock(&parent_event->child_mutex); 10688 free_event(child_event); 10689 return NULL; 10690 } 10691 10692 get_ctx(child_ctx); 10693 10694 /* 10695 * Make the child state follow the state of the parent event, 10696 * not its attr.disabled bit. We hold the parent's mutex, 10697 * so we won't race with perf_event_{en, dis}able_family. 10698 */ 10699 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10700 child_event->state = PERF_EVENT_STATE_INACTIVE; 10701 else 10702 child_event->state = PERF_EVENT_STATE_OFF; 10703 10704 if (parent_event->attr.freq) { 10705 u64 sample_period = parent_event->hw.sample_period; 10706 struct hw_perf_event *hwc = &child_event->hw; 10707 10708 hwc->sample_period = sample_period; 10709 hwc->last_period = sample_period; 10710 10711 local64_set(&hwc->period_left, sample_period); 10712 } 10713 10714 child_event->ctx = child_ctx; 10715 child_event->overflow_handler = parent_event->overflow_handler; 10716 child_event->overflow_handler_context 10717 = parent_event->overflow_handler_context; 10718 10719 /* 10720 * Precalculate sample_data sizes 10721 */ 10722 perf_event__header_size(child_event); 10723 perf_event__id_header_size(child_event); 10724 10725 /* 10726 * Link it up in the child's context: 10727 */ 10728 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10729 add_event_to_ctx(child_event, child_ctx); 10730 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10731 10732 /* 10733 * Link this into the parent event's child list 10734 */ 10735 list_add_tail(&child_event->child_list, &parent_event->child_list); 10736 mutex_unlock(&parent_event->child_mutex); 10737 10738 return child_event; 10739 } 10740 10741 /* 10742 * Inherits an event group. 10743 * 10744 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10745 * This matches with perf_event_release_kernel() removing all child events. 10746 * 10747 * Returns: 10748 * - 0 on success 10749 * - <0 on error 10750 */ 10751 static int inherit_group(struct perf_event *parent_event, 10752 struct task_struct *parent, 10753 struct perf_event_context *parent_ctx, 10754 struct task_struct *child, 10755 struct perf_event_context *child_ctx) 10756 { 10757 struct perf_event *leader; 10758 struct perf_event *sub; 10759 struct perf_event *child_ctr; 10760 10761 leader = inherit_event(parent_event, parent, parent_ctx, 10762 child, NULL, child_ctx); 10763 if (IS_ERR(leader)) 10764 return PTR_ERR(leader); 10765 /* 10766 * @leader can be NULL here because of is_orphaned_event(). In this 10767 * case inherit_event() will create individual events, similar to what 10768 * perf_group_detach() would do anyway. 10769 */ 10770 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10771 child_ctr = inherit_event(sub, parent, parent_ctx, 10772 child, leader, child_ctx); 10773 if (IS_ERR(child_ctr)) 10774 return PTR_ERR(child_ctr); 10775 } 10776 return 0; 10777 } 10778 10779 /* 10780 * Creates the child task context and tries to inherit the event-group. 10781 * 10782 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10783 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10784 * consistent with perf_event_release_kernel() removing all child events. 10785 * 10786 * Returns: 10787 * - 0 on success 10788 * - <0 on error 10789 */ 10790 static int 10791 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10792 struct perf_event_context *parent_ctx, 10793 struct task_struct *child, int ctxn, 10794 int *inherited_all) 10795 { 10796 int ret; 10797 struct perf_event_context *child_ctx; 10798 10799 if (!event->attr.inherit) { 10800 *inherited_all = 0; 10801 return 0; 10802 } 10803 10804 child_ctx = child->perf_event_ctxp[ctxn]; 10805 if (!child_ctx) { 10806 /* 10807 * This is executed from the parent task context, so 10808 * inherit events that have been marked for cloning. 10809 * First allocate and initialize a context for the 10810 * child. 10811 */ 10812 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10813 if (!child_ctx) 10814 return -ENOMEM; 10815 10816 child->perf_event_ctxp[ctxn] = child_ctx; 10817 } 10818 10819 ret = inherit_group(event, parent, parent_ctx, 10820 child, child_ctx); 10821 10822 if (ret) 10823 *inherited_all = 0; 10824 10825 return ret; 10826 } 10827 10828 /* 10829 * Initialize the perf_event context in task_struct 10830 */ 10831 static int perf_event_init_context(struct task_struct *child, int ctxn) 10832 { 10833 struct perf_event_context *child_ctx, *parent_ctx; 10834 struct perf_event_context *cloned_ctx; 10835 struct perf_event *event; 10836 struct task_struct *parent = current; 10837 int inherited_all = 1; 10838 unsigned long flags; 10839 int ret = 0; 10840 10841 if (likely(!parent->perf_event_ctxp[ctxn])) 10842 return 0; 10843 10844 /* 10845 * If the parent's context is a clone, pin it so it won't get 10846 * swapped under us. 10847 */ 10848 parent_ctx = perf_pin_task_context(parent, ctxn); 10849 if (!parent_ctx) 10850 return 0; 10851 10852 /* 10853 * No need to check if parent_ctx != NULL here; since we saw 10854 * it non-NULL earlier, the only reason for it to become NULL 10855 * is if we exit, and since we're currently in the middle of 10856 * a fork we can't be exiting at the same time. 10857 */ 10858 10859 /* 10860 * Lock the parent list. No need to lock the child - not PID 10861 * hashed yet and not running, so nobody can access it. 10862 */ 10863 mutex_lock(&parent_ctx->mutex); 10864 10865 /* 10866 * We dont have to disable NMIs - we are only looking at 10867 * the list, not manipulating it: 10868 */ 10869 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10870 ret = inherit_task_group(event, parent, parent_ctx, 10871 child, ctxn, &inherited_all); 10872 if (ret) 10873 goto out_unlock; 10874 } 10875 10876 /* 10877 * We can't hold ctx->lock when iterating the ->flexible_group list due 10878 * to allocations, but we need to prevent rotation because 10879 * rotate_ctx() will change the list from interrupt context. 10880 */ 10881 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10882 parent_ctx->rotate_disable = 1; 10883 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10884 10885 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10886 ret = inherit_task_group(event, parent, parent_ctx, 10887 child, ctxn, &inherited_all); 10888 if (ret) 10889 goto out_unlock; 10890 } 10891 10892 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10893 parent_ctx->rotate_disable = 0; 10894 10895 child_ctx = child->perf_event_ctxp[ctxn]; 10896 10897 if (child_ctx && inherited_all) { 10898 /* 10899 * Mark the child context as a clone of the parent 10900 * context, or of whatever the parent is a clone of. 10901 * 10902 * Note that if the parent is a clone, the holding of 10903 * parent_ctx->lock avoids it from being uncloned. 10904 */ 10905 cloned_ctx = parent_ctx->parent_ctx; 10906 if (cloned_ctx) { 10907 child_ctx->parent_ctx = cloned_ctx; 10908 child_ctx->parent_gen = parent_ctx->parent_gen; 10909 } else { 10910 child_ctx->parent_ctx = parent_ctx; 10911 child_ctx->parent_gen = parent_ctx->generation; 10912 } 10913 get_ctx(child_ctx->parent_ctx); 10914 } 10915 10916 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10917 out_unlock: 10918 mutex_unlock(&parent_ctx->mutex); 10919 10920 perf_unpin_context(parent_ctx); 10921 put_ctx(parent_ctx); 10922 10923 return ret; 10924 } 10925 10926 /* 10927 * Initialize the perf_event context in task_struct 10928 */ 10929 int perf_event_init_task(struct task_struct *child) 10930 { 10931 int ctxn, ret; 10932 10933 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10934 mutex_init(&child->perf_event_mutex); 10935 INIT_LIST_HEAD(&child->perf_event_list); 10936 10937 for_each_task_context_nr(ctxn) { 10938 ret = perf_event_init_context(child, ctxn); 10939 if (ret) { 10940 perf_event_free_task(child); 10941 return ret; 10942 } 10943 } 10944 10945 return 0; 10946 } 10947 10948 static void __init perf_event_init_all_cpus(void) 10949 { 10950 struct swevent_htable *swhash; 10951 int cpu; 10952 10953 for_each_possible_cpu(cpu) { 10954 swhash = &per_cpu(swevent_htable, cpu); 10955 mutex_init(&swhash->hlist_mutex); 10956 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10957 10958 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10959 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10960 10961 #ifdef CONFIG_CGROUP_PERF 10962 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 10963 #endif 10964 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10965 } 10966 } 10967 10968 int perf_event_init_cpu(unsigned int cpu) 10969 { 10970 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10971 10972 mutex_lock(&swhash->hlist_mutex); 10973 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10974 struct swevent_hlist *hlist; 10975 10976 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10977 WARN_ON(!hlist); 10978 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10979 } 10980 mutex_unlock(&swhash->hlist_mutex); 10981 return 0; 10982 } 10983 10984 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10985 static void __perf_event_exit_context(void *__info) 10986 { 10987 struct perf_event_context *ctx = __info; 10988 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10989 struct perf_event *event; 10990 10991 raw_spin_lock(&ctx->lock); 10992 list_for_each_entry(event, &ctx->event_list, event_entry) 10993 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10994 raw_spin_unlock(&ctx->lock); 10995 } 10996 10997 static void perf_event_exit_cpu_context(int cpu) 10998 { 10999 struct perf_event_context *ctx; 11000 struct pmu *pmu; 11001 int idx; 11002 11003 idx = srcu_read_lock(&pmus_srcu); 11004 list_for_each_entry_rcu(pmu, &pmus, entry) { 11005 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 11006 11007 mutex_lock(&ctx->mutex); 11008 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11009 mutex_unlock(&ctx->mutex); 11010 } 11011 srcu_read_unlock(&pmus_srcu, idx); 11012 } 11013 #else 11014 11015 static void perf_event_exit_cpu_context(int cpu) { } 11016 11017 #endif 11018 11019 int perf_event_exit_cpu(unsigned int cpu) 11020 { 11021 perf_event_exit_cpu_context(cpu); 11022 return 0; 11023 } 11024 11025 static int 11026 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11027 { 11028 int cpu; 11029 11030 for_each_online_cpu(cpu) 11031 perf_event_exit_cpu(cpu); 11032 11033 return NOTIFY_OK; 11034 } 11035 11036 /* 11037 * Run the perf reboot notifier at the very last possible moment so that 11038 * the generic watchdog code runs as long as possible. 11039 */ 11040 static struct notifier_block perf_reboot_notifier = { 11041 .notifier_call = perf_reboot, 11042 .priority = INT_MIN, 11043 }; 11044 11045 void __init perf_event_init(void) 11046 { 11047 int ret; 11048 11049 idr_init(&pmu_idr); 11050 11051 perf_event_init_all_cpus(); 11052 init_srcu_struct(&pmus_srcu); 11053 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11054 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11055 perf_pmu_register(&perf_task_clock, NULL, -1); 11056 perf_tp_register(); 11057 perf_event_init_cpu(smp_processor_id()); 11058 register_reboot_notifier(&perf_reboot_notifier); 11059 11060 ret = init_hw_breakpoint(); 11061 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11062 11063 /* 11064 * Build time assertion that we keep the data_head at the intended 11065 * location. IOW, validation we got the __reserved[] size right. 11066 */ 11067 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11068 != 1024); 11069 } 11070 11071 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11072 char *page) 11073 { 11074 struct perf_pmu_events_attr *pmu_attr = 11075 container_of(attr, struct perf_pmu_events_attr, attr); 11076 11077 if (pmu_attr->event_str) 11078 return sprintf(page, "%s\n", pmu_attr->event_str); 11079 11080 return 0; 11081 } 11082 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11083 11084 static int __init perf_event_sysfs_init(void) 11085 { 11086 struct pmu *pmu; 11087 int ret; 11088 11089 mutex_lock(&pmus_lock); 11090 11091 ret = bus_register(&pmu_bus); 11092 if (ret) 11093 goto unlock; 11094 11095 list_for_each_entry(pmu, &pmus, entry) { 11096 if (!pmu->name || pmu->type < 0) 11097 continue; 11098 11099 ret = pmu_dev_alloc(pmu); 11100 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11101 } 11102 pmu_bus_running = 1; 11103 ret = 0; 11104 11105 unlock: 11106 mutex_unlock(&pmus_lock); 11107 11108 return ret; 11109 } 11110 device_initcall(perf_event_sysfs_init); 11111 11112 #ifdef CONFIG_CGROUP_PERF 11113 static struct cgroup_subsys_state * 11114 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11115 { 11116 struct perf_cgroup *jc; 11117 11118 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11119 if (!jc) 11120 return ERR_PTR(-ENOMEM); 11121 11122 jc->info = alloc_percpu(struct perf_cgroup_info); 11123 if (!jc->info) { 11124 kfree(jc); 11125 return ERR_PTR(-ENOMEM); 11126 } 11127 11128 return &jc->css; 11129 } 11130 11131 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11132 { 11133 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11134 11135 free_percpu(jc->info); 11136 kfree(jc); 11137 } 11138 11139 static int __perf_cgroup_move(void *info) 11140 { 11141 struct task_struct *task = info; 11142 rcu_read_lock(); 11143 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11144 rcu_read_unlock(); 11145 return 0; 11146 } 11147 11148 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11149 { 11150 struct task_struct *task; 11151 struct cgroup_subsys_state *css; 11152 11153 cgroup_taskset_for_each(task, css, tset) 11154 task_function_call(task, __perf_cgroup_move, task); 11155 } 11156 11157 struct cgroup_subsys perf_event_cgrp_subsys = { 11158 .css_alloc = perf_cgroup_css_alloc, 11159 .css_free = perf_cgroup_css_free, 11160 .attach = perf_cgroup_attach, 11161 /* 11162 * Implicitly enable on dfl hierarchy so that perf events can 11163 * always be filtered by cgroup2 path as long as perf_event 11164 * controller is not mounted on a legacy hierarchy. 11165 */ 11166 .implicit_on_dfl = true, 11167 }; 11168 #endif /* CONFIG_CGROUP_PERF */ 11169