1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/vmalloc.h> 29 #include <linux/hardirq.h> 30 #include <linux/rculist.h> 31 #include <linux/uaccess.h> 32 #include <linux/syscalls.h> 33 #include <linux/anon_inodes.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/perf_event.h> 36 #include <linux/ftrace_event.h> 37 #include <linux/hw_breakpoint.h> 38 39 #include <asm/irq_regs.h> 40 41 struct remote_function_call { 42 struct task_struct *p; 43 int (*func)(void *info); 44 void *info; 45 int ret; 46 }; 47 48 static void remote_function(void *data) 49 { 50 struct remote_function_call *tfc = data; 51 struct task_struct *p = tfc->p; 52 53 if (p) { 54 tfc->ret = -EAGAIN; 55 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 56 return; 57 } 58 59 tfc->ret = tfc->func(tfc->info); 60 } 61 62 /** 63 * task_function_call - call a function on the cpu on which a task runs 64 * @p: the task to evaluate 65 * @func: the function to be called 66 * @info: the function call argument 67 * 68 * Calls the function @func when the task is currently running. This might 69 * be on the current CPU, which just calls the function directly 70 * 71 * returns: @func return value, or 72 * -ESRCH - when the process isn't running 73 * -EAGAIN - when the process moved away 74 */ 75 static int 76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 77 { 78 struct remote_function_call data = { 79 .p = p, 80 .func = func, 81 .info = info, 82 .ret = -ESRCH, /* No such (running) process */ 83 }; 84 85 if (task_curr(p)) 86 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 87 88 return data.ret; 89 } 90 91 /** 92 * cpu_function_call - call a function on the cpu 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func on the remote cpu. 97 * 98 * returns: @func return value or -ENXIO when the cpu is offline 99 */ 100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 101 { 102 struct remote_function_call data = { 103 .p = NULL, 104 .func = func, 105 .info = info, 106 .ret = -ENXIO, /* No such CPU */ 107 }; 108 109 smp_call_function_single(cpu, remote_function, &data, 1); 110 111 return data.ret; 112 } 113 114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 115 PERF_FLAG_FD_OUTPUT |\ 116 PERF_FLAG_PID_CGROUP) 117 118 enum event_type_t { 119 EVENT_FLEXIBLE = 0x1, 120 EVENT_PINNED = 0x2, 121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 122 }; 123 124 /* 125 * perf_sched_events : >0 events exist 126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 127 */ 128 struct jump_label_key perf_sched_events __read_mostly; 129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 130 131 static atomic_t nr_mmap_events __read_mostly; 132 static atomic_t nr_comm_events __read_mostly; 133 static atomic_t nr_task_events __read_mostly; 134 135 static LIST_HEAD(pmus); 136 static DEFINE_MUTEX(pmus_lock); 137 static struct srcu_struct pmus_srcu; 138 139 /* 140 * perf event paranoia level: 141 * -1 - not paranoid at all 142 * 0 - disallow raw tracepoint access for unpriv 143 * 1 - disallow cpu events for unpriv 144 * 2 - disallow kernel profiling for unpriv 145 */ 146 int sysctl_perf_event_paranoid __read_mostly = 1; 147 148 /* Minimum for 512 kiB + 1 user control page */ 149 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 150 151 /* 152 * max perf event sample rate 153 */ 154 #define DEFAULT_MAX_SAMPLE_RATE 100000 155 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 156 static int max_samples_per_tick __read_mostly = 157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 158 159 int perf_proc_update_handler(struct ctl_table *table, int write, 160 void __user *buffer, size_t *lenp, 161 loff_t *ppos) 162 { 163 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 164 165 if (ret || !write) 166 return ret; 167 168 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 169 170 return 0; 171 } 172 173 static atomic64_t perf_event_id; 174 175 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 176 enum event_type_t event_type); 177 178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 179 enum event_type_t event_type, 180 struct task_struct *task); 181 182 static void update_context_time(struct perf_event_context *ctx); 183 static u64 perf_event_time(struct perf_event *event); 184 185 void __weak perf_event_print_debug(void) { } 186 187 extern __weak const char *perf_pmu_name(void) 188 { 189 return "pmu"; 190 } 191 192 static inline u64 perf_clock(void) 193 { 194 return local_clock(); 195 } 196 197 static inline struct perf_cpu_context * 198 __get_cpu_context(struct perf_event_context *ctx) 199 { 200 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 201 } 202 203 #ifdef CONFIG_CGROUP_PERF 204 205 /* 206 * Must ensure cgroup is pinned (css_get) before calling 207 * this function. In other words, we cannot call this function 208 * if there is no cgroup event for the current CPU context. 209 */ 210 static inline struct perf_cgroup * 211 perf_cgroup_from_task(struct task_struct *task) 212 { 213 return container_of(task_subsys_state(task, perf_subsys_id), 214 struct perf_cgroup, css); 215 } 216 217 static inline bool 218 perf_cgroup_match(struct perf_event *event) 219 { 220 struct perf_event_context *ctx = event->ctx; 221 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 222 223 return !event->cgrp || event->cgrp == cpuctx->cgrp; 224 } 225 226 static inline void perf_get_cgroup(struct perf_event *event) 227 { 228 css_get(&event->cgrp->css); 229 } 230 231 static inline void perf_put_cgroup(struct perf_event *event) 232 { 233 css_put(&event->cgrp->css); 234 } 235 236 static inline void perf_detach_cgroup(struct perf_event *event) 237 { 238 perf_put_cgroup(event); 239 event->cgrp = NULL; 240 } 241 242 static inline int is_cgroup_event(struct perf_event *event) 243 { 244 return event->cgrp != NULL; 245 } 246 247 static inline u64 perf_cgroup_event_time(struct perf_event *event) 248 { 249 struct perf_cgroup_info *t; 250 251 t = per_cpu_ptr(event->cgrp->info, event->cpu); 252 return t->time; 253 } 254 255 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 256 { 257 struct perf_cgroup_info *info; 258 u64 now; 259 260 now = perf_clock(); 261 262 info = this_cpu_ptr(cgrp->info); 263 264 info->time += now - info->timestamp; 265 info->timestamp = now; 266 } 267 268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 269 { 270 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 271 if (cgrp_out) 272 __update_cgrp_time(cgrp_out); 273 } 274 275 static inline void update_cgrp_time_from_event(struct perf_event *event) 276 { 277 struct perf_cgroup *cgrp; 278 279 /* 280 * ensure we access cgroup data only when needed and 281 * when we know the cgroup is pinned (css_get) 282 */ 283 if (!is_cgroup_event(event)) 284 return; 285 286 cgrp = perf_cgroup_from_task(current); 287 /* 288 * Do not update time when cgroup is not active 289 */ 290 if (cgrp == event->cgrp) 291 __update_cgrp_time(event->cgrp); 292 } 293 294 static inline void 295 perf_cgroup_set_timestamp(struct task_struct *task, 296 struct perf_event_context *ctx) 297 { 298 struct perf_cgroup *cgrp; 299 struct perf_cgroup_info *info; 300 301 /* 302 * ctx->lock held by caller 303 * ensure we do not access cgroup data 304 * unless we have the cgroup pinned (css_get) 305 */ 306 if (!task || !ctx->nr_cgroups) 307 return; 308 309 cgrp = perf_cgroup_from_task(task); 310 info = this_cpu_ptr(cgrp->info); 311 info->timestamp = ctx->timestamp; 312 } 313 314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 316 317 /* 318 * reschedule events based on the cgroup constraint of task. 319 * 320 * mode SWOUT : schedule out everything 321 * mode SWIN : schedule in based on cgroup for next 322 */ 323 void perf_cgroup_switch(struct task_struct *task, int mode) 324 { 325 struct perf_cpu_context *cpuctx; 326 struct pmu *pmu; 327 unsigned long flags; 328 329 /* 330 * disable interrupts to avoid geting nr_cgroup 331 * changes via __perf_event_disable(). Also 332 * avoids preemption. 333 */ 334 local_irq_save(flags); 335 336 /* 337 * we reschedule only in the presence of cgroup 338 * constrained events. 339 */ 340 rcu_read_lock(); 341 342 list_for_each_entry_rcu(pmu, &pmus, entry) { 343 344 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 345 346 perf_pmu_disable(cpuctx->ctx.pmu); 347 348 /* 349 * perf_cgroup_events says at least one 350 * context on this CPU has cgroup events. 351 * 352 * ctx->nr_cgroups reports the number of cgroup 353 * events for a context. 354 */ 355 if (cpuctx->ctx.nr_cgroups > 0) { 356 357 if (mode & PERF_CGROUP_SWOUT) { 358 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 359 /* 360 * must not be done before ctxswout due 361 * to event_filter_match() in event_sched_out() 362 */ 363 cpuctx->cgrp = NULL; 364 } 365 366 if (mode & PERF_CGROUP_SWIN) { 367 WARN_ON_ONCE(cpuctx->cgrp); 368 /* set cgrp before ctxsw in to 369 * allow event_filter_match() to not 370 * have to pass task around 371 */ 372 cpuctx->cgrp = perf_cgroup_from_task(task); 373 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 374 } 375 } 376 377 perf_pmu_enable(cpuctx->ctx.pmu); 378 } 379 380 rcu_read_unlock(); 381 382 local_irq_restore(flags); 383 } 384 385 static inline void perf_cgroup_sched_out(struct task_struct *task) 386 { 387 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 388 } 389 390 static inline void perf_cgroup_sched_in(struct task_struct *task) 391 { 392 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 393 } 394 395 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 396 struct perf_event_attr *attr, 397 struct perf_event *group_leader) 398 { 399 struct perf_cgroup *cgrp; 400 struct cgroup_subsys_state *css; 401 struct file *file; 402 int ret = 0, fput_needed; 403 404 file = fget_light(fd, &fput_needed); 405 if (!file) 406 return -EBADF; 407 408 css = cgroup_css_from_dir(file, perf_subsys_id); 409 if (IS_ERR(css)) { 410 ret = PTR_ERR(css); 411 goto out; 412 } 413 414 cgrp = container_of(css, struct perf_cgroup, css); 415 event->cgrp = cgrp; 416 417 /* must be done before we fput() the file */ 418 perf_get_cgroup(event); 419 420 /* 421 * all events in a group must monitor 422 * the same cgroup because a task belongs 423 * to only one perf cgroup at a time 424 */ 425 if (group_leader && group_leader->cgrp != cgrp) { 426 perf_detach_cgroup(event); 427 ret = -EINVAL; 428 } 429 out: 430 fput_light(file, fput_needed); 431 return ret; 432 } 433 434 static inline void 435 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 436 { 437 struct perf_cgroup_info *t; 438 t = per_cpu_ptr(event->cgrp->info, event->cpu); 439 event->shadow_ctx_time = now - t->timestamp; 440 } 441 442 static inline void 443 perf_cgroup_defer_enabled(struct perf_event *event) 444 { 445 /* 446 * when the current task's perf cgroup does not match 447 * the event's, we need to remember to call the 448 * perf_mark_enable() function the first time a task with 449 * a matching perf cgroup is scheduled in. 450 */ 451 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 452 event->cgrp_defer_enabled = 1; 453 } 454 455 static inline void 456 perf_cgroup_mark_enabled(struct perf_event *event, 457 struct perf_event_context *ctx) 458 { 459 struct perf_event *sub; 460 u64 tstamp = perf_event_time(event); 461 462 if (!event->cgrp_defer_enabled) 463 return; 464 465 event->cgrp_defer_enabled = 0; 466 467 event->tstamp_enabled = tstamp - event->total_time_enabled; 468 list_for_each_entry(sub, &event->sibling_list, group_entry) { 469 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 470 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 471 sub->cgrp_defer_enabled = 0; 472 } 473 } 474 } 475 #else /* !CONFIG_CGROUP_PERF */ 476 477 static inline bool 478 perf_cgroup_match(struct perf_event *event) 479 { 480 return true; 481 } 482 483 static inline void perf_detach_cgroup(struct perf_event *event) 484 {} 485 486 static inline int is_cgroup_event(struct perf_event *event) 487 { 488 return 0; 489 } 490 491 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 492 { 493 return 0; 494 } 495 496 static inline void update_cgrp_time_from_event(struct perf_event *event) 497 { 498 } 499 500 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 501 { 502 } 503 504 static inline void perf_cgroup_sched_out(struct task_struct *task) 505 { 506 } 507 508 static inline void perf_cgroup_sched_in(struct task_struct *task) 509 { 510 } 511 512 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 513 struct perf_event_attr *attr, 514 struct perf_event *group_leader) 515 { 516 return -EINVAL; 517 } 518 519 static inline void 520 perf_cgroup_set_timestamp(struct task_struct *task, 521 struct perf_event_context *ctx) 522 { 523 } 524 525 void 526 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 527 { 528 } 529 530 static inline void 531 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 532 { 533 } 534 535 static inline u64 perf_cgroup_event_time(struct perf_event *event) 536 { 537 return 0; 538 } 539 540 static inline void 541 perf_cgroup_defer_enabled(struct perf_event *event) 542 { 543 } 544 545 static inline void 546 perf_cgroup_mark_enabled(struct perf_event *event, 547 struct perf_event_context *ctx) 548 { 549 } 550 #endif 551 552 void perf_pmu_disable(struct pmu *pmu) 553 { 554 int *count = this_cpu_ptr(pmu->pmu_disable_count); 555 if (!(*count)++) 556 pmu->pmu_disable(pmu); 557 } 558 559 void perf_pmu_enable(struct pmu *pmu) 560 { 561 int *count = this_cpu_ptr(pmu->pmu_disable_count); 562 if (!--(*count)) 563 pmu->pmu_enable(pmu); 564 } 565 566 static DEFINE_PER_CPU(struct list_head, rotation_list); 567 568 /* 569 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 570 * because they're strictly cpu affine and rotate_start is called with IRQs 571 * disabled, while rotate_context is called from IRQ context. 572 */ 573 static void perf_pmu_rotate_start(struct pmu *pmu) 574 { 575 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 576 struct list_head *head = &__get_cpu_var(rotation_list); 577 578 WARN_ON(!irqs_disabled()); 579 580 if (list_empty(&cpuctx->rotation_list)) 581 list_add(&cpuctx->rotation_list, head); 582 } 583 584 static void get_ctx(struct perf_event_context *ctx) 585 { 586 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 587 } 588 589 static void put_ctx(struct perf_event_context *ctx) 590 { 591 if (atomic_dec_and_test(&ctx->refcount)) { 592 if (ctx->parent_ctx) 593 put_ctx(ctx->parent_ctx); 594 if (ctx->task) 595 put_task_struct(ctx->task); 596 kfree_rcu(ctx, rcu_head); 597 } 598 } 599 600 static void unclone_ctx(struct perf_event_context *ctx) 601 { 602 if (ctx->parent_ctx) { 603 put_ctx(ctx->parent_ctx); 604 ctx->parent_ctx = NULL; 605 } 606 } 607 608 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 609 { 610 /* 611 * only top level events have the pid namespace they were created in 612 */ 613 if (event->parent) 614 event = event->parent; 615 616 return task_tgid_nr_ns(p, event->ns); 617 } 618 619 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 620 { 621 /* 622 * only top level events have the pid namespace they were created in 623 */ 624 if (event->parent) 625 event = event->parent; 626 627 return task_pid_nr_ns(p, event->ns); 628 } 629 630 /* 631 * If we inherit events we want to return the parent event id 632 * to userspace. 633 */ 634 static u64 primary_event_id(struct perf_event *event) 635 { 636 u64 id = event->id; 637 638 if (event->parent) 639 id = event->parent->id; 640 641 return id; 642 } 643 644 /* 645 * Get the perf_event_context for a task and lock it. 646 * This has to cope with with the fact that until it is locked, 647 * the context could get moved to another task. 648 */ 649 static struct perf_event_context * 650 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 651 { 652 struct perf_event_context *ctx; 653 654 rcu_read_lock(); 655 retry: 656 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 657 if (ctx) { 658 /* 659 * If this context is a clone of another, it might 660 * get swapped for another underneath us by 661 * perf_event_task_sched_out, though the 662 * rcu_read_lock() protects us from any context 663 * getting freed. Lock the context and check if it 664 * got swapped before we could get the lock, and retry 665 * if so. If we locked the right context, then it 666 * can't get swapped on us any more. 667 */ 668 raw_spin_lock_irqsave(&ctx->lock, *flags); 669 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 670 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 671 goto retry; 672 } 673 674 if (!atomic_inc_not_zero(&ctx->refcount)) { 675 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 676 ctx = NULL; 677 } 678 } 679 rcu_read_unlock(); 680 return ctx; 681 } 682 683 /* 684 * Get the context for a task and increment its pin_count so it 685 * can't get swapped to another task. This also increments its 686 * reference count so that the context can't get freed. 687 */ 688 static struct perf_event_context * 689 perf_pin_task_context(struct task_struct *task, int ctxn) 690 { 691 struct perf_event_context *ctx; 692 unsigned long flags; 693 694 ctx = perf_lock_task_context(task, ctxn, &flags); 695 if (ctx) { 696 ++ctx->pin_count; 697 raw_spin_unlock_irqrestore(&ctx->lock, flags); 698 } 699 return ctx; 700 } 701 702 static void perf_unpin_context(struct perf_event_context *ctx) 703 { 704 unsigned long flags; 705 706 raw_spin_lock_irqsave(&ctx->lock, flags); 707 --ctx->pin_count; 708 raw_spin_unlock_irqrestore(&ctx->lock, flags); 709 } 710 711 /* 712 * Update the record of the current time in a context. 713 */ 714 static void update_context_time(struct perf_event_context *ctx) 715 { 716 u64 now = perf_clock(); 717 718 ctx->time += now - ctx->timestamp; 719 ctx->timestamp = now; 720 } 721 722 static u64 perf_event_time(struct perf_event *event) 723 { 724 struct perf_event_context *ctx = event->ctx; 725 726 if (is_cgroup_event(event)) 727 return perf_cgroup_event_time(event); 728 729 return ctx ? ctx->time : 0; 730 } 731 732 /* 733 * Update the total_time_enabled and total_time_running fields for a event. 734 */ 735 static void update_event_times(struct perf_event *event) 736 { 737 struct perf_event_context *ctx = event->ctx; 738 u64 run_end; 739 740 if (event->state < PERF_EVENT_STATE_INACTIVE || 741 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 742 return; 743 /* 744 * in cgroup mode, time_enabled represents 745 * the time the event was enabled AND active 746 * tasks were in the monitored cgroup. This is 747 * independent of the activity of the context as 748 * there may be a mix of cgroup and non-cgroup events. 749 * 750 * That is why we treat cgroup events differently 751 * here. 752 */ 753 if (is_cgroup_event(event)) 754 run_end = perf_event_time(event); 755 else if (ctx->is_active) 756 run_end = ctx->time; 757 else 758 run_end = event->tstamp_stopped; 759 760 event->total_time_enabled = run_end - event->tstamp_enabled; 761 762 if (event->state == PERF_EVENT_STATE_INACTIVE) 763 run_end = event->tstamp_stopped; 764 else 765 run_end = perf_event_time(event); 766 767 event->total_time_running = run_end - event->tstamp_running; 768 769 } 770 771 /* 772 * Update total_time_enabled and total_time_running for all events in a group. 773 */ 774 static void update_group_times(struct perf_event *leader) 775 { 776 struct perf_event *event; 777 778 update_event_times(leader); 779 list_for_each_entry(event, &leader->sibling_list, group_entry) 780 update_event_times(event); 781 } 782 783 static struct list_head * 784 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 785 { 786 if (event->attr.pinned) 787 return &ctx->pinned_groups; 788 else 789 return &ctx->flexible_groups; 790 } 791 792 /* 793 * Add a event from the lists for its context. 794 * Must be called with ctx->mutex and ctx->lock held. 795 */ 796 static void 797 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 798 { 799 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 800 event->attach_state |= PERF_ATTACH_CONTEXT; 801 802 /* 803 * If we're a stand alone event or group leader, we go to the context 804 * list, group events are kept attached to the group so that 805 * perf_group_detach can, at all times, locate all siblings. 806 */ 807 if (event->group_leader == event) { 808 struct list_head *list; 809 810 if (is_software_event(event)) 811 event->group_flags |= PERF_GROUP_SOFTWARE; 812 813 list = ctx_group_list(event, ctx); 814 list_add_tail(&event->group_entry, list); 815 } 816 817 if (is_cgroup_event(event)) 818 ctx->nr_cgroups++; 819 820 list_add_rcu(&event->event_entry, &ctx->event_list); 821 if (!ctx->nr_events) 822 perf_pmu_rotate_start(ctx->pmu); 823 ctx->nr_events++; 824 if (event->attr.inherit_stat) 825 ctx->nr_stat++; 826 } 827 828 /* 829 * Called at perf_event creation and when events are attached/detached from a 830 * group. 831 */ 832 static void perf_event__read_size(struct perf_event *event) 833 { 834 int entry = sizeof(u64); /* value */ 835 int size = 0; 836 int nr = 1; 837 838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 839 size += sizeof(u64); 840 841 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 842 size += sizeof(u64); 843 844 if (event->attr.read_format & PERF_FORMAT_ID) 845 entry += sizeof(u64); 846 847 if (event->attr.read_format & PERF_FORMAT_GROUP) { 848 nr += event->group_leader->nr_siblings; 849 size += sizeof(u64); 850 } 851 852 size += entry * nr; 853 event->read_size = size; 854 } 855 856 static void perf_event__header_size(struct perf_event *event) 857 { 858 struct perf_sample_data *data; 859 u64 sample_type = event->attr.sample_type; 860 u16 size = 0; 861 862 perf_event__read_size(event); 863 864 if (sample_type & PERF_SAMPLE_IP) 865 size += sizeof(data->ip); 866 867 if (sample_type & PERF_SAMPLE_ADDR) 868 size += sizeof(data->addr); 869 870 if (sample_type & PERF_SAMPLE_PERIOD) 871 size += sizeof(data->period); 872 873 if (sample_type & PERF_SAMPLE_READ) 874 size += event->read_size; 875 876 event->header_size = size; 877 } 878 879 static void perf_event__id_header_size(struct perf_event *event) 880 { 881 struct perf_sample_data *data; 882 u64 sample_type = event->attr.sample_type; 883 u16 size = 0; 884 885 if (sample_type & PERF_SAMPLE_TID) 886 size += sizeof(data->tid_entry); 887 888 if (sample_type & PERF_SAMPLE_TIME) 889 size += sizeof(data->time); 890 891 if (sample_type & PERF_SAMPLE_ID) 892 size += sizeof(data->id); 893 894 if (sample_type & PERF_SAMPLE_STREAM_ID) 895 size += sizeof(data->stream_id); 896 897 if (sample_type & PERF_SAMPLE_CPU) 898 size += sizeof(data->cpu_entry); 899 900 event->id_header_size = size; 901 } 902 903 static void perf_group_attach(struct perf_event *event) 904 { 905 struct perf_event *group_leader = event->group_leader, *pos; 906 907 /* 908 * We can have double attach due to group movement in perf_event_open. 909 */ 910 if (event->attach_state & PERF_ATTACH_GROUP) 911 return; 912 913 event->attach_state |= PERF_ATTACH_GROUP; 914 915 if (group_leader == event) 916 return; 917 918 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 919 !is_software_event(event)) 920 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 921 922 list_add_tail(&event->group_entry, &group_leader->sibling_list); 923 group_leader->nr_siblings++; 924 925 perf_event__header_size(group_leader); 926 927 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 928 perf_event__header_size(pos); 929 } 930 931 /* 932 * Remove a event from the lists for its context. 933 * Must be called with ctx->mutex and ctx->lock held. 934 */ 935 static void 936 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 937 { 938 struct perf_cpu_context *cpuctx; 939 /* 940 * We can have double detach due to exit/hot-unplug + close. 941 */ 942 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 943 return; 944 945 event->attach_state &= ~PERF_ATTACH_CONTEXT; 946 947 if (is_cgroup_event(event)) { 948 ctx->nr_cgroups--; 949 cpuctx = __get_cpu_context(ctx); 950 /* 951 * if there are no more cgroup events 952 * then cler cgrp to avoid stale pointer 953 * in update_cgrp_time_from_cpuctx() 954 */ 955 if (!ctx->nr_cgroups) 956 cpuctx->cgrp = NULL; 957 } 958 959 ctx->nr_events--; 960 if (event->attr.inherit_stat) 961 ctx->nr_stat--; 962 963 list_del_rcu(&event->event_entry); 964 965 if (event->group_leader == event) 966 list_del_init(&event->group_entry); 967 968 update_group_times(event); 969 970 /* 971 * If event was in error state, then keep it 972 * that way, otherwise bogus counts will be 973 * returned on read(). The only way to get out 974 * of error state is by explicit re-enabling 975 * of the event 976 */ 977 if (event->state > PERF_EVENT_STATE_OFF) 978 event->state = PERF_EVENT_STATE_OFF; 979 } 980 981 static void perf_group_detach(struct perf_event *event) 982 { 983 struct perf_event *sibling, *tmp; 984 struct list_head *list = NULL; 985 986 /* 987 * We can have double detach due to exit/hot-unplug + close. 988 */ 989 if (!(event->attach_state & PERF_ATTACH_GROUP)) 990 return; 991 992 event->attach_state &= ~PERF_ATTACH_GROUP; 993 994 /* 995 * If this is a sibling, remove it from its group. 996 */ 997 if (event->group_leader != event) { 998 list_del_init(&event->group_entry); 999 event->group_leader->nr_siblings--; 1000 goto out; 1001 } 1002 1003 if (!list_empty(&event->group_entry)) 1004 list = &event->group_entry; 1005 1006 /* 1007 * If this was a group event with sibling events then 1008 * upgrade the siblings to singleton events by adding them 1009 * to whatever list we are on. 1010 */ 1011 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1012 if (list) 1013 list_move_tail(&sibling->group_entry, list); 1014 sibling->group_leader = sibling; 1015 1016 /* Inherit group flags from the previous leader */ 1017 sibling->group_flags = event->group_flags; 1018 } 1019 1020 out: 1021 perf_event__header_size(event->group_leader); 1022 1023 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1024 perf_event__header_size(tmp); 1025 } 1026 1027 static inline int 1028 event_filter_match(struct perf_event *event) 1029 { 1030 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1031 && perf_cgroup_match(event); 1032 } 1033 1034 static void 1035 event_sched_out(struct perf_event *event, 1036 struct perf_cpu_context *cpuctx, 1037 struct perf_event_context *ctx) 1038 { 1039 u64 tstamp = perf_event_time(event); 1040 u64 delta; 1041 /* 1042 * An event which could not be activated because of 1043 * filter mismatch still needs to have its timings 1044 * maintained, otherwise bogus information is return 1045 * via read() for time_enabled, time_running: 1046 */ 1047 if (event->state == PERF_EVENT_STATE_INACTIVE 1048 && !event_filter_match(event)) { 1049 delta = tstamp - event->tstamp_stopped; 1050 event->tstamp_running += delta; 1051 event->tstamp_stopped = tstamp; 1052 } 1053 1054 if (event->state != PERF_EVENT_STATE_ACTIVE) 1055 return; 1056 1057 event->state = PERF_EVENT_STATE_INACTIVE; 1058 if (event->pending_disable) { 1059 event->pending_disable = 0; 1060 event->state = PERF_EVENT_STATE_OFF; 1061 } 1062 event->tstamp_stopped = tstamp; 1063 event->pmu->del(event, 0); 1064 event->oncpu = -1; 1065 1066 if (!is_software_event(event)) 1067 cpuctx->active_oncpu--; 1068 ctx->nr_active--; 1069 if (event->attr.exclusive || !cpuctx->active_oncpu) 1070 cpuctx->exclusive = 0; 1071 } 1072 1073 static void 1074 group_sched_out(struct perf_event *group_event, 1075 struct perf_cpu_context *cpuctx, 1076 struct perf_event_context *ctx) 1077 { 1078 struct perf_event *event; 1079 int state = group_event->state; 1080 1081 event_sched_out(group_event, cpuctx, ctx); 1082 1083 /* 1084 * Schedule out siblings (if any): 1085 */ 1086 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1087 event_sched_out(event, cpuctx, ctx); 1088 1089 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1090 cpuctx->exclusive = 0; 1091 } 1092 1093 /* 1094 * Cross CPU call to remove a performance event 1095 * 1096 * We disable the event on the hardware level first. After that we 1097 * remove it from the context list. 1098 */ 1099 static int __perf_remove_from_context(void *info) 1100 { 1101 struct perf_event *event = info; 1102 struct perf_event_context *ctx = event->ctx; 1103 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1104 1105 raw_spin_lock(&ctx->lock); 1106 event_sched_out(event, cpuctx, ctx); 1107 list_del_event(event, ctx); 1108 raw_spin_unlock(&ctx->lock); 1109 1110 return 0; 1111 } 1112 1113 1114 /* 1115 * Remove the event from a task's (or a CPU's) list of events. 1116 * 1117 * CPU events are removed with a smp call. For task events we only 1118 * call when the task is on a CPU. 1119 * 1120 * If event->ctx is a cloned context, callers must make sure that 1121 * every task struct that event->ctx->task could possibly point to 1122 * remains valid. This is OK when called from perf_release since 1123 * that only calls us on the top-level context, which can't be a clone. 1124 * When called from perf_event_exit_task, it's OK because the 1125 * context has been detached from its task. 1126 */ 1127 static void perf_remove_from_context(struct perf_event *event) 1128 { 1129 struct perf_event_context *ctx = event->ctx; 1130 struct task_struct *task = ctx->task; 1131 1132 lockdep_assert_held(&ctx->mutex); 1133 1134 if (!task) { 1135 /* 1136 * Per cpu events are removed via an smp call and 1137 * the removal is always successful. 1138 */ 1139 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1140 return; 1141 } 1142 1143 retry: 1144 if (!task_function_call(task, __perf_remove_from_context, event)) 1145 return; 1146 1147 raw_spin_lock_irq(&ctx->lock); 1148 /* 1149 * If we failed to find a running task, but find the context active now 1150 * that we've acquired the ctx->lock, retry. 1151 */ 1152 if (ctx->is_active) { 1153 raw_spin_unlock_irq(&ctx->lock); 1154 goto retry; 1155 } 1156 1157 /* 1158 * Since the task isn't running, its safe to remove the event, us 1159 * holding the ctx->lock ensures the task won't get scheduled in. 1160 */ 1161 list_del_event(event, ctx); 1162 raw_spin_unlock_irq(&ctx->lock); 1163 } 1164 1165 /* 1166 * Cross CPU call to disable a performance event 1167 */ 1168 static int __perf_event_disable(void *info) 1169 { 1170 struct perf_event *event = info; 1171 struct perf_event_context *ctx = event->ctx; 1172 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1173 1174 /* 1175 * If this is a per-task event, need to check whether this 1176 * event's task is the current task on this cpu. 1177 * 1178 * Can trigger due to concurrent perf_event_context_sched_out() 1179 * flipping contexts around. 1180 */ 1181 if (ctx->task && cpuctx->task_ctx != ctx) 1182 return -EINVAL; 1183 1184 raw_spin_lock(&ctx->lock); 1185 1186 /* 1187 * If the event is on, turn it off. 1188 * If it is in error state, leave it in error state. 1189 */ 1190 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1191 update_context_time(ctx); 1192 update_cgrp_time_from_event(event); 1193 update_group_times(event); 1194 if (event == event->group_leader) 1195 group_sched_out(event, cpuctx, ctx); 1196 else 1197 event_sched_out(event, cpuctx, ctx); 1198 event->state = PERF_EVENT_STATE_OFF; 1199 } 1200 1201 raw_spin_unlock(&ctx->lock); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Disable a event. 1208 * 1209 * If event->ctx is a cloned context, callers must make sure that 1210 * every task struct that event->ctx->task could possibly point to 1211 * remains valid. This condition is satisifed when called through 1212 * perf_event_for_each_child or perf_event_for_each because they 1213 * hold the top-level event's child_mutex, so any descendant that 1214 * goes to exit will block in sync_child_event. 1215 * When called from perf_pending_event it's OK because event->ctx 1216 * is the current context on this CPU and preemption is disabled, 1217 * hence we can't get into perf_event_task_sched_out for this context. 1218 */ 1219 void perf_event_disable(struct perf_event *event) 1220 { 1221 struct perf_event_context *ctx = event->ctx; 1222 struct task_struct *task = ctx->task; 1223 1224 if (!task) { 1225 /* 1226 * Disable the event on the cpu that it's on 1227 */ 1228 cpu_function_call(event->cpu, __perf_event_disable, event); 1229 return; 1230 } 1231 1232 retry: 1233 if (!task_function_call(task, __perf_event_disable, event)) 1234 return; 1235 1236 raw_spin_lock_irq(&ctx->lock); 1237 /* 1238 * If the event is still active, we need to retry the cross-call. 1239 */ 1240 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1241 raw_spin_unlock_irq(&ctx->lock); 1242 /* 1243 * Reload the task pointer, it might have been changed by 1244 * a concurrent perf_event_context_sched_out(). 1245 */ 1246 task = ctx->task; 1247 goto retry; 1248 } 1249 1250 /* 1251 * Since we have the lock this context can't be scheduled 1252 * in, so we can change the state safely. 1253 */ 1254 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1255 update_group_times(event); 1256 event->state = PERF_EVENT_STATE_OFF; 1257 } 1258 raw_spin_unlock_irq(&ctx->lock); 1259 } 1260 1261 static void perf_set_shadow_time(struct perf_event *event, 1262 struct perf_event_context *ctx, 1263 u64 tstamp) 1264 { 1265 /* 1266 * use the correct time source for the time snapshot 1267 * 1268 * We could get by without this by leveraging the 1269 * fact that to get to this function, the caller 1270 * has most likely already called update_context_time() 1271 * and update_cgrp_time_xx() and thus both timestamp 1272 * are identical (or very close). Given that tstamp is, 1273 * already adjusted for cgroup, we could say that: 1274 * tstamp - ctx->timestamp 1275 * is equivalent to 1276 * tstamp - cgrp->timestamp. 1277 * 1278 * Then, in perf_output_read(), the calculation would 1279 * work with no changes because: 1280 * - event is guaranteed scheduled in 1281 * - no scheduled out in between 1282 * - thus the timestamp would be the same 1283 * 1284 * But this is a bit hairy. 1285 * 1286 * So instead, we have an explicit cgroup call to remain 1287 * within the time time source all along. We believe it 1288 * is cleaner and simpler to understand. 1289 */ 1290 if (is_cgroup_event(event)) 1291 perf_cgroup_set_shadow_time(event, tstamp); 1292 else 1293 event->shadow_ctx_time = tstamp - ctx->timestamp; 1294 } 1295 1296 #define MAX_INTERRUPTS (~0ULL) 1297 1298 static void perf_log_throttle(struct perf_event *event, int enable); 1299 1300 static int 1301 event_sched_in(struct perf_event *event, 1302 struct perf_cpu_context *cpuctx, 1303 struct perf_event_context *ctx) 1304 { 1305 u64 tstamp = perf_event_time(event); 1306 1307 if (event->state <= PERF_EVENT_STATE_OFF) 1308 return 0; 1309 1310 event->state = PERF_EVENT_STATE_ACTIVE; 1311 event->oncpu = smp_processor_id(); 1312 1313 /* 1314 * Unthrottle events, since we scheduled we might have missed several 1315 * ticks already, also for a heavily scheduling task there is little 1316 * guarantee it'll get a tick in a timely manner. 1317 */ 1318 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1319 perf_log_throttle(event, 1); 1320 event->hw.interrupts = 0; 1321 } 1322 1323 /* 1324 * The new state must be visible before we turn it on in the hardware: 1325 */ 1326 smp_wmb(); 1327 1328 if (event->pmu->add(event, PERF_EF_START)) { 1329 event->state = PERF_EVENT_STATE_INACTIVE; 1330 event->oncpu = -1; 1331 return -EAGAIN; 1332 } 1333 1334 event->tstamp_running += tstamp - event->tstamp_stopped; 1335 1336 perf_set_shadow_time(event, ctx, tstamp); 1337 1338 if (!is_software_event(event)) 1339 cpuctx->active_oncpu++; 1340 ctx->nr_active++; 1341 1342 if (event->attr.exclusive) 1343 cpuctx->exclusive = 1; 1344 1345 return 0; 1346 } 1347 1348 static int 1349 group_sched_in(struct perf_event *group_event, 1350 struct perf_cpu_context *cpuctx, 1351 struct perf_event_context *ctx) 1352 { 1353 struct perf_event *event, *partial_group = NULL; 1354 struct pmu *pmu = group_event->pmu; 1355 u64 now = ctx->time; 1356 bool simulate = false; 1357 1358 if (group_event->state == PERF_EVENT_STATE_OFF) 1359 return 0; 1360 1361 pmu->start_txn(pmu); 1362 1363 if (event_sched_in(group_event, cpuctx, ctx)) { 1364 pmu->cancel_txn(pmu); 1365 return -EAGAIN; 1366 } 1367 1368 /* 1369 * Schedule in siblings as one group (if any): 1370 */ 1371 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1372 if (event_sched_in(event, cpuctx, ctx)) { 1373 partial_group = event; 1374 goto group_error; 1375 } 1376 } 1377 1378 if (!pmu->commit_txn(pmu)) 1379 return 0; 1380 1381 group_error: 1382 /* 1383 * Groups can be scheduled in as one unit only, so undo any 1384 * partial group before returning: 1385 * The events up to the failed event are scheduled out normally, 1386 * tstamp_stopped will be updated. 1387 * 1388 * The failed events and the remaining siblings need to have 1389 * their timings updated as if they had gone thru event_sched_in() 1390 * and event_sched_out(). This is required to get consistent timings 1391 * across the group. This also takes care of the case where the group 1392 * could never be scheduled by ensuring tstamp_stopped is set to mark 1393 * the time the event was actually stopped, such that time delta 1394 * calculation in update_event_times() is correct. 1395 */ 1396 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1397 if (event == partial_group) 1398 simulate = true; 1399 1400 if (simulate) { 1401 event->tstamp_running += now - event->tstamp_stopped; 1402 event->tstamp_stopped = now; 1403 } else { 1404 event_sched_out(event, cpuctx, ctx); 1405 } 1406 } 1407 event_sched_out(group_event, cpuctx, ctx); 1408 1409 pmu->cancel_txn(pmu); 1410 1411 return -EAGAIN; 1412 } 1413 1414 /* 1415 * Work out whether we can put this event group on the CPU now. 1416 */ 1417 static int group_can_go_on(struct perf_event *event, 1418 struct perf_cpu_context *cpuctx, 1419 int can_add_hw) 1420 { 1421 /* 1422 * Groups consisting entirely of software events can always go on. 1423 */ 1424 if (event->group_flags & PERF_GROUP_SOFTWARE) 1425 return 1; 1426 /* 1427 * If an exclusive group is already on, no other hardware 1428 * events can go on. 1429 */ 1430 if (cpuctx->exclusive) 1431 return 0; 1432 /* 1433 * If this group is exclusive and there are already 1434 * events on the CPU, it can't go on. 1435 */ 1436 if (event->attr.exclusive && cpuctx->active_oncpu) 1437 return 0; 1438 /* 1439 * Otherwise, try to add it if all previous groups were able 1440 * to go on. 1441 */ 1442 return can_add_hw; 1443 } 1444 1445 static void add_event_to_ctx(struct perf_event *event, 1446 struct perf_event_context *ctx) 1447 { 1448 u64 tstamp = perf_event_time(event); 1449 1450 list_add_event(event, ctx); 1451 perf_group_attach(event); 1452 event->tstamp_enabled = tstamp; 1453 event->tstamp_running = tstamp; 1454 event->tstamp_stopped = tstamp; 1455 } 1456 1457 static void perf_event_context_sched_in(struct perf_event_context *ctx, 1458 struct task_struct *tsk); 1459 1460 /* 1461 * Cross CPU call to install and enable a performance event 1462 * 1463 * Must be called with ctx->mutex held 1464 */ 1465 static int __perf_install_in_context(void *info) 1466 { 1467 struct perf_event *event = info; 1468 struct perf_event_context *ctx = event->ctx; 1469 struct perf_event *leader = event->group_leader; 1470 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1471 int err; 1472 1473 /* 1474 * In case we're installing a new context to an already running task, 1475 * could also happen before perf_event_task_sched_in() on architectures 1476 * which do context switches with IRQs enabled. 1477 */ 1478 if (ctx->task && !cpuctx->task_ctx) 1479 perf_event_context_sched_in(ctx, ctx->task); 1480 1481 raw_spin_lock(&ctx->lock); 1482 ctx->is_active = 1; 1483 update_context_time(ctx); 1484 /* 1485 * update cgrp time only if current cgrp 1486 * matches event->cgrp. Must be done before 1487 * calling add_event_to_ctx() 1488 */ 1489 update_cgrp_time_from_event(event); 1490 1491 add_event_to_ctx(event, ctx); 1492 1493 if (!event_filter_match(event)) 1494 goto unlock; 1495 1496 /* 1497 * Don't put the event on if it is disabled or if 1498 * it is in a group and the group isn't on. 1499 */ 1500 if (event->state != PERF_EVENT_STATE_INACTIVE || 1501 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) 1502 goto unlock; 1503 1504 /* 1505 * An exclusive event can't go on if there are already active 1506 * hardware events, and no hardware event can go on if there 1507 * is already an exclusive event on. 1508 */ 1509 if (!group_can_go_on(event, cpuctx, 1)) 1510 err = -EEXIST; 1511 else 1512 err = event_sched_in(event, cpuctx, ctx); 1513 1514 if (err) { 1515 /* 1516 * This event couldn't go on. If it is in a group 1517 * then we have to pull the whole group off. 1518 * If the event group is pinned then put it in error state. 1519 */ 1520 if (leader != event) 1521 group_sched_out(leader, cpuctx, ctx); 1522 if (leader->attr.pinned) { 1523 update_group_times(leader); 1524 leader->state = PERF_EVENT_STATE_ERROR; 1525 } 1526 } 1527 1528 unlock: 1529 raw_spin_unlock(&ctx->lock); 1530 1531 return 0; 1532 } 1533 1534 /* 1535 * Attach a performance event to a context 1536 * 1537 * First we add the event to the list with the hardware enable bit 1538 * in event->hw_config cleared. 1539 * 1540 * If the event is attached to a task which is on a CPU we use a smp 1541 * call to enable it in the task context. The task might have been 1542 * scheduled away, but we check this in the smp call again. 1543 */ 1544 static void 1545 perf_install_in_context(struct perf_event_context *ctx, 1546 struct perf_event *event, 1547 int cpu) 1548 { 1549 struct task_struct *task = ctx->task; 1550 1551 lockdep_assert_held(&ctx->mutex); 1552 1553 event->ctx = ctx; 1554 1555 if (!task) { 1556 /* 1557 * Per cpu events are installed via an smp call and 1558 * the install is always successful. 1559 */ 1560 cpu_function_call(cpu, __perf_install_in_context, event); 1561 return; 1562 } 1563 1564 retry: 1565 if (!task_function_call(task, __perf_install_in_context, event)) 1566 return; 1567 1568 raw_spin_lock_irq(&ctx->lock); 1569 /* 1570 * If we failed to find a running task, but find the context active now 1571 * that we've acquired the ctx->lock, retry. 1572 */ 1573 if (ctx->is_active) { 1574 raw_spin_unlock_irq(&ctx->lock); 1575 goto retry; 1576 } 1577 1578 /* 1579 * Since the task isn't running, its safe to add the event, us holding 1580 * the ctx->lock ensures the task won't get scheduled in. 1581 */ 1582 add_event_to_ctx(event, ctx); 1583 raw_spin_unlock_irq(&ctx->lock); 1584 } 1585 1586 /* 1587 * Put a event into inactive state and update time fields. 1588 * Enabling the leader of a group effectively enables all 1589 * the group members that aren't explicitly disabled, so we 1590 * have to update their ->tstamp_enabled also. 1591 * Note: this works for group members as well as group leaders 1592 * since the non-leader members' sibling_lists will be empty. 1593 */ 1594 static void __perf_event_mark_enabled(struct perf_event *event, 1595 struct perf_event_context *ctx) 1596 { 1597 struct perf_event *sub; 1598 u64 tstamp = perf_event_time(event); 1599 1600 event->state = PERF_EVENT_STATE_INACTIVE; 1601 event->tstamp_enabled = tstamp - event->total_time_enabled; 1602 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1603 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1604 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1605 } 1606 } 1607 1608 /* 1609 * Cross CPU call to enable a performance event 1610 */ 1611 static int __perf_event_enable(void *info) 1612 { 1613 struct perf_event *event = info; 1614 struct perf_event_context *ctx = event->ctx; 1615 struct perf_event *leader = event->group_leader; 1616 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1617 int err; 1618 1619 if (WARN_ON_ONCE(!ctx->is_active)) 1620 return -EINVAL; 1621 1622 raw_spin_lock(&ctx->lock); 1623 update_context_time(ctx); 1624 1625 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1626 goto unlock; 1627 1628 /* 1629 * set current task's cgroup time reference point 1630 */ 1631 perf_cgroup_set_timestamp(current, ctx); 1632 1633 __perf_event_mark_enabled(event, ctx); 1634 1635 if (!event_filter_match(event)) { 1636 if (is_cgroup_event(event)) 1637 perf_cgroup_defer_enabled(event); 1638 goto unlock; 1639 } 1640 1641 /* 1642 * If the event is in a group and isn't the group leader, 1643 * then don't put it on unless the group is on. 1644 */ 1645 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1646 goto unlock; 1647 1648 if (!group_can_go_on(event, cpuctx, 1)) { 1649 err = -EEXIST; 1650 } else { 1651 if (event == leader) 1652 err = group_sched_in(event, cpuctx, ctx); 1653 else 1654 err = event_sched_in(event, cpuctx, ctx); 1655 } 1656 1657 if (err) { 1658 /* 1659 * If this event can't go on and it's part of a 1660 * group, then the whole group has to come off. 1661 */ 1662 if (leader != event) 1663 group_sched_out(leader, cpuctx, ctx); 1664 if (leader->attr.pinned) { 1665 update_group_times(leader); 1666 leader->state = PERF_EVENT_STATE_ERROR; 1667 } 1668 } 1669 1670 unlock: 1671 raw_spin_unlock(&ctx->lock); 1672 1673 return 0; 1674 } 1675 1676 /* 1677 * Enable a event. 1678 * 1679 * If event->ctx is a cloned context, callers must make sure that 1680 * every task struct that event->ctx->task could possibly point to 1681 * remains valid. This condition is satisfied when called through 1682 * perf_event_for_each_child or perf_event_for_each as described 1683 * for perf_event_disable. 1684 */ 1685 void perf_event_enable(struct perf_event *event) 1686 { 1687 struct perf_event_context *ctx = event->ctx; 1688 struct task_struct *task = ctx->task; 1689 1690 if (!task) { 1691 /* 1692 * Enable the event on the cpu that it's on 1693 */ 1694 cpu_function_call(event->cpu, __perf_event_enable, event); 1695 return; 1696 } 1697 1698 raw_spin_lock_irq(&ctx->lock); 1699 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1700 goto out; 1701 1702 /* 1703 * If the event is in error state, clear that first. 1704 * That way, if we see the event in error state below, we 1705 * know that it has gone back into error state, as distinct 1706 * from the task having been scheduled away before the 1707 * cross-call arrived. 1708 */ 1709 if (event->state == PERF_EVENT_STATE_ERROR) 1710 event->state = PERF_EVENT_STATE_OFF; 1711 1712 retry: 1713 if (!ctx->is_active) { 1714 __perf_event_mark_enabled(event, ctx); 1715 goto out; 1716 } 1717 1718 raw_spin_unlock_irq(&ctx->lock); 1719 1720 if (!task_function_call(task, __perf_event_enable, event)) 1721 return; 1722 1723 raw_spin_lock_irq(&ctx->lock); 1724 1725 /* 1726 * If the context is active and the event is still off, 1727 * we need to retry the cross-call. 1728 */ 1729 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1730 /* 1731 * task could have been flipped by a concurrent 1732 * perf_event_context_sched_out() 1733 */ 1734 task = ctx->task; 1735 goto retry; 1736 } 1737 1738 out: 1739 raw_spin_unlock_irq(&ctx->lock); 1740 } 1741 1742 static int perf_event_refresh(struct perf_event *event, int refresh) 1743 { 1744 /* 1745 * not supported on inherited events 1746 */ 1747 if (event->attr.inherit || !is_sampling_event(event)) 1748 return -EINVAL; 1749 1750 atomic_add(refresh, &event->event_limit); 1751 perf_event_enable(event); 1752 1753 return 0; 1754 } 1755 1756 static void ctx_sched_out(struct perf_event_context *ctx, 1757 struct perf_cpu_context *cpuctx, 1758 enum event_type_t event_type) 1759 { 1760 struct perf_event *event; 1761 1762 raw_spin_lock(&ctx->lock); 1763 perf_pmu_disable(ctx->pmu); 1764 ctx->is_active = 0; 1765 if (likely(!ctx->nr_events)) 1766 goto out; 1767 update_context_time(ctx); 1768 update_cgrp_time_from_cpuctx(cpuctx); 1769 1770 if (!ctx->nr_active) 1771 goto out; 1772 1773 if (event_type & EVENT_PINNED) { 1774 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1775 group_sched_out(event, cpuctx, ctx); 1776 } 1777 1778 if (event_type & EVENT_FLEXIBLE) { 1779 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1780 group_sched_out(event, cpuctx, ctx); 1781 } 1782 out: 1783 perf_pmu_enable(ctx->pmu); 1784 raw_spin_unlock(&ctx->lock); 1785 } 1786 1787 /* 1788 * Test whether two contexts are equivalent, i.e. whether they 1789 * have both been cloned from the same version of the same context 1790 * and they both have the same number of enabled events. 1791 * If the number of enabled events is the same, then the set 1792 * of enabled events should be the same, because these are both 1793 * inherited contexts, therefore we can't access individual events 1794 * in them directly with an fd; we can only enable/disable all 1795 * events via prctl, or enable/disable all events in a family 1796 * via ioctl, which will have the same effect on both contexts. 1797 */ 1798 static int context_equiv(struct perf_event_context *ctx1, 1799 struct perf_event_context *ctx2) 1800 { 1801 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1802 && ctx1->parent_gen == ctx2->parent_gen 1803 && !ctx1->pin_count && !ctx2->pin_count; 1804 } 1805 1806 static void __perf_event_sync_stat(struct perf_event *event, 1807 struct perf_event *next_event) 1808 { 1809 u64 value; 1810 1811 if (!event->attr.inherit_stat) 1812 return; 1813 1814 /* 1815 * Update the event value, we cannot use perf_event_read() 1816 * because we're in the middle of a context switch and have IRQs 1817 * disabled, which upsets smp_call_function_single(), however 1818 * we know the event must be on the current CPU, therefore we 1819 * don't need to use it. 1820 */ 1821 switch (event->state) { 1822 case PERF_EVENT_STATE_ACTIVE: 1823 event->pmu->read(event); 1824 /* fall-through */ 1825 1826 case PERF_EVENT_STATE_INACTIVE: 1827 update_event_times(event); 1828 break; 1829 1830 default: 1831 break; 1832 } 1833 1834 /* 1835 * In order to keep per-task stats reliable we need to flip the event 1836 * values when we flip the contexts. 1837 */ 1838 value = local64_read(&next_event->count); 1839 value = local64_xchg(&event->count, value); 1840 local64_set(&next_event->count, value); 1841 1842 swap(event->total_time_enabled, next_event->total_time_enabled); 1843 swap(event->total_time_running, next_event->total_time_running); 1844 1845 /* 1846 * Since we swizzled the values, update the user visible data too. 1847 */ 1848 perf_event_update_userpage(event); 1849 perf_event_update_userpage(next_event); 1850 } 1851 1852 #define list_next_entry(pos, member) \ 1853 list_entry(pos->member.next, typeof(*pos), member) 1854 1855 static void perf_event_sync_stat(struct perf_event_context *ctx, 1856 struct perf_event_context *next_ctx) 1857 { 1858 struct perf_event *event, *next_event; 1859 1860 if (!ctx->nr_stat) 1861 return; 1862 1863 update_context_time(ctx); 1864 1865 event = list_first_entry(&ctx->event_list, 1866 struct perf_event, event_entry); 1867 1868 next_event = list_first_entry(&next_ctx->event_list, 1869 struct perf_event, event_entry); 1870 1871 while (&event->event_entry != &ctx->event_list && 1872 &next_event->event_entry != &next_ctx->event_list) { 1873 1874 __perf_event_sync_stat(event, next_event); 1875 1876 event = list_next_entry(event, event_entry); 1877 next_event = list_next_entry(next_event, event_entry); 1878 } 1879 } 1880 1881 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1882 struct task_struct *next) 1883 { 1884 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1885 struct perf_event_context *next_ctx; 1886 struct perf_event_context *parent; 1887 struct perf_cpu_context *cpuctx; 1888 int do_switch = 1; 1889 1890 if (likely(!ctx)) 1891 return; 1892 1893 cpuctx = __get_cpu_context(ctx); 1894 if (!cpuctx->task_ctx) 1895 return; 1896 1897 rcu_read_lock(); 1898 parent = rcu_dereference(ctx->parent_ctx); 1899 next_ctx = next->perf_event_ctxp[ctxn]; 1900 if (parent && next_ctx && 1901 rcu_dereference(next_ctx->parent_ctx) == parent) { 1902 /* 1903 * Looks like the two contexts are clones, so we might be 1904 * able to optimize the context switch. We lock both 1905 * contexts and check that they are clones under the 1906 * lock (including re-checking that neither has been 1907 * uncloned in the meantime). It doesn't matter which 1908 * order we take the locks because no other cpu could 1909 * be trying to lock both of these tasks. 1910 */ 1911 raw_spin_lock(&ctx->lock); 1912 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1913 if (context_equiv(ctx, next_ctx)) { 1914 /* 1915 * XXX do we need a memory barrier of sorts 1916 * wrt to rcu_dereference() of perf_event_ctxp 1917 */ 1918 task->perf_event_ctxp[ctxn] = next_ctx; 1919 next->perf_event_ctxp[ctxn] = ctx; 1920 ctx->task = next; 1921 next_ctx->task = task; 1922 do_switch = 0; 1923 1924 perf_event_sync_stat(ctx, next_ctx); 1925 } 1926 raw_spin_unlock(&next_ctx->lock); 1927 raw_spin_unlock(&ctx->lock); 1928 } 1929 rcu_read_unlock(); 1930 1931 if (do_switch) { 1932 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 1933 cpuctx->task_ctx = NULL; 1934 } 1935 } 1936 1937 #define for_each_task_context_nr(ctxn) \ 1938 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 1939 1940 /* 1941 * Called from scheduler to remove the events of the current task, 1942 * with interrupts disabled. 1943 * 1944 * We stop each event and update the event value in event->count. 1945 * 1946 * This does not protect us against NMI, but disable() 1947 * sets the disabled bit in the control field of event _before_ 1948 * accessing the event control register. If a NMI hits, then it will 1949 * not restart the event. 1950 */ 1951 void __perf_event_task_sched_out(struct task_struct *task, 1952 struct task_struct *next) 1953 { 1954 int ctxn; 1955 1956 for_each_task_context_nr(ctxn) 1957 perf_event_context_sched_out(task, ctxn, next); 1958 1959 /* 1960 * if cgroup events exist on this CPU, then we need 1961 * to check if we have to switch out PMU state. 1962 * cgroup event are system-wide mode only 1963 */ 1964 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 1965 perf_cgroup_sched_out(task); 1966 } 1967 1968 static void task_ctx_sched_out(struct perf_event_context *ctx, 1969 enum event_type_t event_type) 1970 { 1971 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1972 1973 if (!cpuctx->task_ctx) 1974 return; 1975 1976 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 1977 return; 1978 1979 ctx_sched_out(ctx, cpuctx, event_type); 1980 cpuctx->task_ctx = NULL; 1981 } 1982 1983 /* 1984 * Called with IRQs disabled 1985 */ 1986 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 1987 enum event_type_t event_type) 1988 { 1989 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 1990 } 1991 1992 static void 1993 ctx_pinned_sched_in(struct perf_event_context *ctx, 1994 struct perf_cpu_context *cpuctx) 1995 { 1996 struct perf_event *event; 1997 1998 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 1999 if (event->state <= PERF_EVENT_STATE_OFF) 2000 continue; 2001 if (!event_filter_match(event)) 2002 continue; 2003 2004 /* may need to reset tstamp_enabled */ 2005 if (is_cgroup_event(event)) 2006 perf_cgroup_mark_enabled(event, ctx); 2007 2008 if (group_can_go_on(event, cpuctx, 1)) 2009 group_sched_in(event, cpuctx, ctx); 2010 2011 /* 2012 * If this pinned group hasn't been scheduled, 2013 * put it in error state. 2014 */ 2015 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2016 update_group_times(event); 2017 event->state = PERF_EVENT_STATE_ERROR; 2018 } 2019 } 2020 } 2021 2022 static void 2023 ctx_flexible_sched_in(struct perf_event_context *ctx, 2024 struct perf_cpu_context *cpuctx) 2025 { 2026 struct perf_event *event; 2027 int can_add_hw = 1; 2028 2029 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2030 /* Ignore events in OFF or ERROR state */ 2031 if (event->state <= PERF_EVENT_STATE_OFF) 2032 continue; 2033 /* 2034 * Listen to the 'cpu' scheduling filter constraint 2035 * of events: 2036 */ 2037 if (!event_filter_match(event)) 2038 continue; 2039 2040 /* may need to reset tstamp_enabled */ 2041 if (is_cgroup_event(event)) 2042 perf_cgroup_mark_enabled(event, ctx); 2043 2044 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2045 if (group_sched_in(event, cpuctx, ctx)) 2046 can_add_hw = 0; 2047 } 2048 } 2049 } 2050 2051 static void 2052 ctx_sched_in(struct perf_event_context *ctx, 2053 struct perf_cpu_context *cpuctx, 2054 enum event_type_t event_type, 2055 struct task_struct *task) 2056 { 2057 u64 now; 2058 2059 raw_spin_lock(&ctx->lock); 2060 ctx->is_active = 1; 2061 if (likely(!ctx->nr_events)) 2062 goto out; 2063 2064 now = perf_clock(); 2065 ctx->timestamp = now; 2066 perf_cgroup_set_timestamp(task, ctx); 2067 /* 2068 * First go through the list and put on any pinned groups 2069 * in order to give them the best chance of going on. 2070 */ 2071 if (event_type & EVENT_PINNED) 2072 ctx_pinned_sched_in(ctx, cpuctx); 2073 2074 /* Then walk through the lower prio flexible groups */ 2075 if (event_type & EVENT_FLEXIBLE) 2076 ctx_flexible_sched_in(ctx, cpuctx); 2077 2078 out: 2079 raw_spin_unlock(&ctx->lock); 2080 } 2081 2082 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2083 enum event_type_t event_type, 2084 struct task_struct *task) 2085 { 2086 struct perf_event_context *ctx = &cpuctx->ctx; 2087 2088 ctx_sched_in(ctx, cpuctx, event_type, task); 2089 } 2090 2091 static void task_ctx_sched_in(struct perf_event_context *ctx, 2092 enum event_type_t event_type) 2093 { 2094 struct perf_cpu_context *cpuctx; 2095 2096 cpuctx = __get_cpu_context(ctx); 2097 if (cpuctx->task_ctx == ctx) 2098 return; 2099 2100 ctx_sched_in(ctx, cpuctx, event_type, NULL); 2101 cpuctx->task_ctx = ctx; 2102 } 2103 2104 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2105 struct task_struct *task) 2106 { 2107 struct perf_cpu_context *cpuctx; 2108 2109 cpuctx = __get_cpu_context(ctx); 2110 if (cpuctx->task_ctx == ctx) 2111 return; 2112 2113 perf_pmu_disable(ctx->pmu); 2114 /* 2115 * We want to keep the following priority order: 2116 * cpu pinned (that don't need to move), task pinned, 2117 * cpu flexible, task flexible. 2118 */ 2119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2120 2121 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2122 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2123 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2124 2125 cpuctx->task_ctx = ctx; 2126 2127 /* 2128 * Since these rotations are per-cpu, we need to ensure the 2129 * cpu-context we got scheduled on is actually rotating. 2130 */ 2131 perf_pmu_rotate_start(ctx->pmu); 2132 perf_pmu_enable(ctx->pmu); 2133 } 2134 2135 /* 2136 * Called from scheduler to add the events of the current task 2137 * with interrupts disabled. 2138 * 2139 * We restore the event value and then enable it. 2140 * 2141 * This does not protect us against NMI, but enable() 2142 * sets the enabled bit in the control field of event _before_ 2143 * accessing the event control register. If a NMI hits, then it will 2144 * keep the event running. 2145 */ 2146 void __perf_event_task_sched_in(struct task_struct *task) 2147 { 2148 struct perf_event_context *ctx; 2149 int ctxn; 2150 2151 for_each_task_context_nr(ctxn) { 2152 ctx = task->perf_event_ctxp[ctxn]; 2153 if (likely(!ctx)) 2154 continue; 2155 2156 perf_event_context_sched_in(ctx, task); 2157 } 2158 /* 2159 * if cgroup events exist on this CPU, then we need 2160 * to check if we have to switch in PMU state. 2161 * cgroup event are system-wide mode only 2162 */ 2163 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2164 perf_cgroup_sched_in(task); 2165 } 2166 2167 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2168 { 2169 u64 frequency = event->attr.sample_freq; 2170 u64 sec = NSEC_PER_SEC; 2171 u64 divisor, dividend; 2172 2173 int count_fls, nsec_fls, frequency_fls, sec_fls; 2174 2175 count_fls = fls64(count); 2176 nsec_fls = fls64(nsec); 2177 frequency_fls = fls64(frequency); 2178 sec_fls = 30; 2179 2180 /* 2181 * We got @count in @nsec, with a target of sample_freq HZ 2182 * the target period becomes: 2183 * 2184 * @count * 10^9 2185 * period = ------------------- 2186 * @nsec * sample_freq 2187 * 2188 */ 2189 2190 /* 2191 * Reduce accuracy by one bit such that @a and @b converge 2192 * to a similar magnitude. 2193 */ 2194 #define REDUCE_FLS(a, b) \ 2195 do { \ 2196 if (a##_fls > b##_fls) { \ 2197 a >>= 1; \ 2198 a##_fls--; \ 2199 } else { \ 2200 b >>= 1; \ 2201 b##_fls--; \ 2202 } \ 2203 } while (0) 2204 2205 /* 2206 * Reduce accuracy until either term fits in a u64, then proceed with 2207 * the other, so that finally we can do a u64/u64 division. 2208 */ 2209 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2210 REDUCE_FLS(nsec, frequency); 2211 REDUCE_FLS(sec, count); 2212 } 2213 2214 if (count_fls + sec_fls > 64) { 2215 divisor = nsec * frequency; 2216 2217 while (count_fls + sec_fls > 64) { 2218 REDUCE_FLS(count, sec); 2219 divisor >>= 1; 2220 } 2221 2222 dividend = count * sec; 2223 } else { 2224 dividend = count * sec; 2225 2226 while (nsec_fls + frequency_fls > 64) { 2227 REDUCE_FLS(nsec, frequency); 2228 dividend >>= 1; 2229 } 2230 2231 divisor = nsec * frequency; 2232 } 2233 2234 if (!divisor) 2235 return dividend; 2236 2237 return div64_u64(dividend, divisor); 2238 } 2239 2240 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2241 { 2242 struct hw_perf_event *hwc = &event->hw; 2243 s64 period, sample_period; 2244 s64 delta; 2245 2246 period = perf_calculate_period(event, nsec, count); 2247 2248 delta = (s64)(period - hwc->sample_period); 2249 delta = (delta + 7) / 8; /* low pass filter */ 2250 2251 sample_period = hwc->sample_period + delta; 2252 2253 if (!sample_period) 2254 sample_period = 1; 2255 2256 hwc->sample_period = sample_period; 2257 2258 if (local64_read(&hwc->period_left) > 8*sample_period) { 2259 event->pmu->stop(event, PERF_EF_UPDATE); 2260 local64_set(&hwc->period_left, 0); 2261 event->pmu->start(event, PERF_EF_RELOAD); 2262 } 2263 } 2264 2265 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2266 { 2267 struct perf_event *event; 2268 struct hw_perf_event *hwc; 2269 u64 interrupts, now; 2270 s64 delta; 2271 2272 raw_spin_lock(&ctx->lock); 2273 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2274 if (event->state != PERF_EVENT_STATE_ACTIVE) 2275 continue; 2276 2277 if (!event_filter_match(event)) 2278 continue; 2279 2280 hwc = &event->hw; 2281 2282 interrupts = hwc->interrupts; 2283 hwc->interrupts = 0; 2284 2285 /* 2286 * unthrottle events on the tick 2287 */ 2288 if (interrupts == MAX_INTERRUPTS) { 2289 perf_log_throttle(event, 1); 2290 event->pmu->start(event, 0); 2291 } 2292 2293 if (!event->attr.freq || !event->attr.sample_freq) 2294 continue; 2295 2296 event->pmu->read(event); 2297 now = local64_read(&event->count); 2298 delta = now - hwc->freq_count_stamp; 2299 hwc->freq_count_stamp = now; 2300 2301 if (delta > 0) 2302 perf_adjust_period(event, period, delta); 2303 } 2304 raw_spin_unlock(&ctx->lock); 2305 } 2306 2307 /* 2308 * Round-robin a context's events: 2309 */ 2310 static void rotate_ctx(struct perf_event_context *ctx) 2311 { 2312 raw_spin_lock(&ctx->lock); 2313 2314 /* 2315 * Rotate the first entry last of non-pinned groups. Rotation might be 2316 * disabled by the inheritance code. 2317 */ 2318 if (!ctx->rotate_disable) 2319 list_rotate_left(&ctx->flexible_groups); 2320 2321 raw_spin_unlock(&ctx->lock); 2322 } 2323 2324 /* 2325 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2326 * because they're strictly cpu affine and rotate_start is called with IRQs 2327 * disabled, while rotate_context is called from IRQ context. 2328 */ 2329 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2330 { 2331 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2332 struct perf_event_context *ctx = NULL; 2333 int rotate = 0, remove = 1; 2334 2335 if (cpuctx->ctx.nr_events) { 2336 remove = 0; 2337 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2338 rotate = 1; 2339 } 2340 2341 ctx = cpuctx->task_ctx; 2342 if (ctx && ctx->nr_events) { 2343 remove = 0; 2344 if (ctx->nr_events != ctx->nr_active) 2345 rotate = 1; 2346 } 2347 2348 perf_pmu_disable(cpuctx->ctx.pmu); 2349 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2350 if (ctx) 2351 perf_ctx_adjust_freq(ctx, interval); 2352 2353 if (!rotate) 2354 goto done; 2355 2356 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2357 if (ctx) 2358 task_ctx_sched_out(ctx, EVENT_FLEXIBLE); 2359 2360 rotate_ctx(&cpuctx->ctx); 2361 if (ctx) 2362 rotate_ctx(ctx); 2363 2364 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current); 2365 if (ctx) 2366 task_ctx_sched_in(ctx, EVENT_FLEXIBLE); 2367 2368 done: 2369 if (remove) 2370 list_del_init(&cpuctx->rotation_list); 2371 2372 perf_pmu_enable(cpuctx->ctx.pmu); 2373 } 2374 2375 void perf_event_task_tick(void) 2376 { 2377 struct list_head *head = &__get_cpu_var(rotation_list); 2378 struct perf_cpu_context *cpuctx, *tmp; 2379 2380 WARN_ON(!irqs_disabled()); 2381 2382 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2383 if (cpuctx->jiffies_interval == 1 || 2384 !(jiffies % cpuctx->jiffies_interval)) 2385 perf_rotate_context(cpuctx); 2386 } 2387 } 2388 2389 static int event_enable_on_exec(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 if (!event->attr.enable_on_exec) 2393 return 0; 2394 2395 event->attr.enable_on_exec = 0; 2396 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2397 return 0; 2398 2399 __perf_event_mark_enabled(event, ctx); 2400 2401 return 1; 2402 } 2403 2404 /* 2405 * Enable all of a task's events that have been marked enable-on-exec. 2406 * This expects task == current. 2407 */ 2408 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2409 { 2410 struct perf_event *event; 2411 unsigned long flags; 2412 int enabled = 0; 2413 int ret; 2414 2415 local_irq_save(flags); 2416 if (!ctx || !ctx->nr_events) 2417 goto out; 2418 2419 /* 2420 * We must ctxsw out cgroup events to avoid conflict 2421 * when invoking perf_task_event_sched_in() later on 2422 * in this function. Otherwise we end up trying to 2423 * ctxswin cgroup events which are already scheduled 2424 * in. 2425 */ 2426 perf_cgroup_sched_out(current); 2427 task_ctx_sched_out(ctx, EVENT_ALL); 2428 2429 raw_spin_lock(&ctx->lock); 2430 2431 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2432 ret = event_enable_on_exec(event, ctx); 2433 if (ret) 2434 enabled = 1; 2435 } 2436 2437 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2438 ret = event_enable_on_exec(event, ctx); 2439 if (ret) 2440 enabled = 1; 2441 } 2442 2443 /* 2444 * Unclone this context if we enabled any event. 2445 */ 2446 if (enabled) 2447 unclone_ctx(ctx); 2448 2449 raw_spin_unlock(&ctx->lock); 2450 2451 /* 2452 * Also calls ctxswin for cgroup events, if any: 2453 */ 2454 perf_event_context_sched_in(ctx, ctx->task); 2455 out: 2456 local_irq_restore(flags); 2457 } 2458 2459 /* 2460 * Cross CPU call to read the hardware event 2461 */ 2462 static void __perf_event_read(void *info) 2463 { 2464 struct perf_event *event = info; 2465 struct perf_event_context *ctx = event->ctx; 2466 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2467 2468 /* 2469 * If this is a task context, we need to check whether it is 2470 * the current task context of this cpu. If not it has been 2471 * scheduled out before the smp call arrived. In that case 2472 * event->count would have been updated to a recent sample 2473 * when the event was scheduled out. 2474 */ 2475 if (ctx->task && cpuctx->task_ctx != ctx) 2476 return; 2477 2478 raw_spin_lock(&ctx->lock); 2479 if (ctx->is_active) { 2480 update_context_time(ctx); 2481 update_cgrp_time_from_event(event); 2482 } 2483 update_event_times(event); 2484 if (event->state == PERF_EVENT_STATE_ACTIVE) 2485 event->pmu->read(event); 2486 raw_spin_unlock(&ctx->lock); 2487 } 2488 2489 static inline u64 perf_event_count(struct perf_event *event) 2490 { 2491 return local64_read(&event->count) + atomic64_read(&event->child_count); 2492 } 2493 2494 static u64 perf_event_read(struct perf_event *event) 2495 { 2496 /* 2497 * If event is enabled and currently active on a CPU, update the 2498 * value in the event structure: 2499 */ 2500 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2501 smp_call_function_single(event->oncpu, 2502 __perf_event_read, event, 1); 2503 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2504 struct perf_event_context *ctx = event->ctx; 2505 unsigned long flags; 2506 2507 raw_spin_lock_irqsave(&ctx->lock, flags); 2508 /* 2509 * may read while context is not active 2510 * (e.g., thread is blocked), in that case 2511 * we cannot update context time 2512 */ 2513 if (ctx->is_active) { 2514 update_context_time(ctx); 2515 update_cgrp_time_from_event(event); 2516 } 2517 update_event_times(event); 2518 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2519 } 2520 2521 return perf_event_count(event); 2522 } 2523 2524 /* 2525 * Callchain support 2526 */ 2527 2528 struct callchain_cpus_entries { 2529 struct rcu_head rcu_head; 2530 struct perf_callchain_entry *cpu_entries[0]; 2531 }; 2532 2533 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 2534 static atomic_t nr_callchain_events; 2535 static DEFINE_MUTEX(callchain_mutex); 2536 struct callchain_cpus_entries *callchain_cpus_entries; 2537 2538 2539 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, 2540 struct pt_regs *regs) 2541 { 2542 } 2543 2544 __weak void perf_callchain_user(struct perf_callchain_entry *entry, 2545 struct pt_regs *regs) 2546 { 2547 } 2548 2549 static void release_callchain_buffers_rcu(struct rcu_head *head) 2550 { 2551 struct callchain_cpus_entries *entries; 2552 int cpu; 2553 2554 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 2555 2556 for_each_possible_cpu(cpu) 2557 kfree(entries->cpu_entries[cpu]); 2558 2559 kfree(entries); 2560 } 2561 2562 static void release_callchain_buffers(void) 2563 { 2564 struct callchain_cpus_entries *entries; 2565 2566 entries = callchain_cpus_entries; 2567 rcu_assign_pointer(callchain_cpus_entries, NULL); 2568 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 2569 } 2570 2571 static int alloc_callchain_buffers(void) 2572 { 2573 int cpu; 2574 int size; 2575 struct callchain_cpus_entries *entries; 2576 2577 /* 2578 * We can't use the percpu allocation API for data that can be 2579 * accessed from NMI. Use a temporary manual per cpu allocation 2580 * until that gets sorted out. 2581 */ 2582 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 2583 2584 entries = kzalloc(size, GFP_KERNEL); 2585 if (!entries) 2586 return -ENOMEM; 2587 2588 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; 2589 2590 for_each_possible_cpu(cpu) { 2591 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 2592 cpu_to_node(cpu)); 2593 if (!entries->cpu_entries[cpu]) 2594 goto fail; 2595 } 2596 2597 rcu_assign_pointer(callchain_cpus_entries, entries); 2598 2599 return 0; 2600 2601 fail: 2602 for_each_possible_cpu(cpu) 2603 kfree(entries->cpu_entries[cpu]); 2604 kfree(entries); 2605 2606 return -ENOMEM; 2607 } 2608 2609 static int get_callchain_buffers(void) 2610 { 2611 int err = 0; 2612 int count; 2613 2614 mutex_lock(&callchain_mutex); 2615 2616 count = atomic_inc_return(&nr_callchain_events); 2617 if (WARN_ON_ONCE(count < 1)) { 2618 err = -EINVAL; 2619 goto exit; 2620 } 2621 2622 if (count > 1) { 2623 /* If the allocation failed, give up */ 2624 if (!callchain_cpus_entries) 2625 err = -ENOMEM; 2626 goto exit; 2627 } 2628 2629 err = alloc_callchain_buffers(); 2630 if (err) 2631 release_callchain_buffers(); 2632 exit: 2633 mutex_unlock(&callchain_mutex); 2634 2635 return err; 2636 } 2637 2638 static void put_callchain_buffers(void) 2639 { 2640 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 2641 release_callchain_buffers(); 2642 mutex_unlock(&callchain_mutex); 2643 } 2644 } 2645 2646 static int get_recursion_context(int *recursion) 2647 { 2648 int rctx; 2649 2650 if (in_nmi()) 2651 rctx = 3; 2652 else if (in_irq()) 2653 rctx = 2; 2654 else if (in_softirq()) 2655 rctx = 1; 2656 else 2657 rctx = 0; 2658 2659 if (recursion[rctx]) 2660 return -1; 2661 2662 recursion[rctx]++; 2663 barrier(); 2664 2665 return rctx; 2666 } 2667 2668 static inline void put_recursion_context(int *recursion, int rctx) 2669 { 2670 barrier(); 2671 recursion[rctx]--; 2672 } 2673 2674 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 2675 { 2676 int cpu; 2677 struct callchain_cpus_entries *entries; 2678 2679 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); 2680 if (*rctx == -1) 2681 return NULL; 2682 2683 entries = rcu_dereference(callchain_cpus_entries); 2684 if (!entries) 2685 return NULL; 2686 2687 cpu = smp_processor_id(); 2688 2689 return &entries->cpu_entries[cpu][*rctx]; 2690 } 2691 2692 static void 2693 put_callchain_entry(int rctx) 2694 { 2695 put_recursion_context(__get_cpu_var(callchain_recursion), rctx); 2696 } 2697 2698 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) 2699 { 2700 int rctx; 2701 struct perf_callchain_entry *entry; 2702 2703 2704 entry = get_callchain_entry(&rctx); 2705 if (rctx == -1) 2706 return NULL; 2707 2708 if (!entry) 2709 goto exit_put; 2710 2711 entry->nr = 0; 2712 2713 if (!user_mode(regs)) { 2714 perf_callchain_store(entry, PERF_CONTEXT_KERNEL); 2715 perf_callchain_kernel(entry, regs); 2716 if (current->mm) 2717 regs = task_pt_regs(current); 2718 else 2719 regs = NULL; 2720 } 2721 2722 if (regs) { 2723 perf_callchain_store(entry, PERF_CONTEXT_USER); 2724 perf_callchain_user(entry, regs); 2725 } 2726 2727 exit_put: 2728 put_callchain_entry(rctx); 2729 2730 return entry; 2731 } 2732 2733 /* 2734 * Initialize the perf_event context in a task_struct: 2735 */ 2736 static void __perf_event_init_context(struct perf_event_context *ctx) 2737 { 2738 raw_spin_lock_init(&ctx->lock); 2739 mutex_init(&ctx->mutex); 2740 INIT_LIST_HEAD(&ctx->pinned_groups); 2741 INIT_LIST_HEAD(&ctx->flexible_groups); 2742 INIT_LIST_HEAD(&ctx->event_list); 2743 atomic_set(&ctx->refcount, 1); 2744 } 2745 2746 static struct perf_event_context * 2747 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2748 { 2749 struct perf_event_context *ctx; 2750 2751 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2752 if (!ctx) 2753 return NULL; 2754 2755 __perf_event_init_context(ctx); 2756 if (task) { 2757 ctx->task = task; 2758 get_task_struct(task); 2759 } 2760 ctx->pmu = pmu; 2761 2762 return ctx; 2763 } 2764 2765 static struct task_struct * 2766 find_lively_task_by_vpid(pid_t vpid) 2767 { 2768 struct task_struct *task; 2769 int err; 2770 2771 rcu_read_lock(); 2772 if (!vpid) 2773 task = current; 2774 else 2775 task = find_task_by_vpid(vpid); 2776 if (task) 2777 get_task_struct(task); 2778 rcu_read_unlock(); 2779 2780 if (!task) 2781 return ERR_PTR(-ESRCH); 2782 2783 /* Reuse ptrace permission checks for now. */ 2784 err = -EACCES; 2785 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2786 goto errout; 2787 2788 return task; 2789 errout: 2790 put_task_struct(task); 2791 return ERR_PTR(err); 2792 2793 } 2794 2795 /* 2796 * Returns a matching context with refcount and pincount. 2797 */ 2798 static struct perf_event_context * 2799 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2800 { 2801 struct perf_event_context *ctx; 2802 struct perf_cpu_context *cpuctx; 2803 unsigned long flags; 2804 int ctxn, err; 2805 2806 if (!task) { 2807 /* Must be root to operate on a CPU event: */ 2808 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2809 return ERR_PTR(-EACCES); 2810 2811 /* 2812 * We could be clever and allow to attach a event to an 2813 * offline CPU and activate it when the CPU comes up, but 2814 * that's for later. 2815 */ 2816 if (!cpu_online(cpu)) 2817 return ERR_PTR(-ENODEV); 2818 2819 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2820 ctx = &cpuctx->ctx; 2821 get_ctx(ctx); 2822 ++ctx->pin_count; 2823 2824 return ctx; 2825 } 2826 2827 err = -EINVAL; 2828 ctxn = pmu->task_ctx_nr; 2829 if (ctxn < 0) 2830 goto errout; 2831 2832 retry: 2833 ctx = perf_lock_task_context(task, ctxn, &flags); 2834 if (ctx) { 2835 unclone_ctx(ctx); 2836 ++ctx->pin_count; 2837 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2838 } 2839 2840 if (!ctx) { 2841 ctx = alloc_perf_context(pmu, task); 2842 err = -ENOMEM; 2843 if (!ctx) 2844 goto errout; 2845 2846 get_ctx(ctx); 2847 2848 err = 0; 2849 mutex_lock(&task->perf_event_mutex); 2850 /* 2851 * If it has already passed perf_event_exit_task(). 2852 * we must see PF_EXITING, it takes this mutex too. 2853 */ 2854 if (task->flags & PF_EXITING) 2855 err = -ESRCH; 2856 else if (task->perf_event_ctxp[ctxn]) 2857 err = -EAGAIN; 2858 else { 2859 ++ctx->pin_count; 2860 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2861 } 2862 mutex_unlock(&task->perf_event_mutex); 2863 2864 if (unlikely(err)) { 2865 put_task_struct(task); 2866 kfree(ctx); 2867 2868 if (err == -EAGAIN) 2869 goto retry; 2870 goto errout; 2871 } 2872 } 2873 2874 return ctx; 2875 2876 errout: 2877 return ERR_PTR(err); 2878 } 2879 2880 static void perf_event_free_filter(struct perf_event *event); 2881 2882 static void free_event_rcu(struct rcu_head *head) 2883 { 2884 struct perf_event *event; 2885 2886 event = container_of(head, struct perf_event, rcu_head); 2887 if (event->ns) 2888 put_pid_ns(event->ns); 2889 perf_event_free_filter(event); 2890 kfree(event); 2891 } 2892 2893 static void perf_buffer_put(struct perf_buffer *buffer); 2894 2895 static void free_event(struct perf_event *event) 2896 { 2897 irq_work_sync(&event->pending); 2898 2899 if (!event->parent) { 2900 if (event->attach_state & PERF_ATTACH_TASK) 2901 jump_label_dec(&perf_sched_events); 2902 if (event->attr.mmap || event->attr.mmap_data) 2903 atomic_dec(&nr_mmap_events); 2904 if (event->attr.comm) 2905 atomic_dec(&nr_comm_events); 2906 if (event->attr.task) 2907 atomic_dec(&nr_task_events); 2908 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2909 put_callchain_buffers(); 2910 if (is_cgroup_event(event)) { 2911 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2912 jump_label_dec(&perf_sched_events); 2913 } 2914 } 2915 2916 if (event->buffer) { 2917 perf_buffer_put(event->buffer); 2918 event->buffer = NULL; 2919 } 2920 2921 if (is_cgroup_event(event)) 2922 perf_detach_cgroup(event); 2923 2924 if (event->destroy) 2925 event->destroy(event); 2926 2927 if (event->ctx) 2928 put_ctx(event->ctx); 2929 2930 call_rcu(&event->rcu_head, free_event_rcu); 2931 } 2932 2933 int perf_event_release_kernel(struct perf_event *event) 2934 { 2935 struct perf_event_context *ctx = event->ctx; 2936 2937 /* 2938 * Remove from the PMU, can't get re-enabled since we got 2939 * here because the last ref went. 2940 */ 2941 perf_event_disable(event); 2942 2943 WARN_ON_ONCE(ctx->parent_ctx); 2944 /* 2945 * There are two ways this annotation is useful: 2946 * 2947 * 1) there is a lock recursion from perf_event_exit_task 2948 * see the comment there. 2949 * 2950 * 2) there is a lock-inversion with mmap_sem through 2951 * perf_event_read_group(), which takes faults while 2952 * holding ctx->mutex, however this is called after 2953 * the last filedesc died, so there is no possibility 2954 * to trigger the AB-BA case. 2955 */ 2956 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2957 raw_spin_lock_irq(&ctx->lock); 2958 perf_group_detach(event); 2959 list_del_event(event, ctx); 2960 raw_spin_unlock_irq(&ctx->lock); 2961 mutex_unlock(&ctx->mutex); 2962 2963 free_event(event); 2964 2965 return 0; 2966 } 2967 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2968 2969 /* 2970 * Called when the last reference to the file is gone. 2971 */ 2972 static int perf_release(struct inode *inode, struct file *file) 2973 { 2974 struct perf_event *event = file->private_data; 2975 struct task_struct *owner; 2976 2977 file->private_data = NULL; 2978 2979 rcu_read_lock(); 2980 owner = ACCESS_ONCE(event->owner); 2981 /* 2982 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2983 * !owner it means the list deletion is complete and we can indeed 2984 * free this event, otherwise we need to serialize on 2985 * owner->perf_event_mutex. 2986 */ 2987 smp_read_barrier_depends(); 2988 if (owner) { 2989 /* 2990 * Since delayed_put_task_struct() also drops the last 2991 * task reference we can safely take a new reference 2992 * while holding the rcu_read_lock(). 2993 */ 2994 get_task_struct(owner); 2995 } 2996 rcu_read_unlock(); 2997 2998 if (owner) { 2999 mutex_lock(&owner->perf_event_mutex); 3000 /* 3001 * We have to re-check the event->owner field, if it is cleared 3002 * we raced with perf_event_exit_task(), acquiring the mutex 3003 * ensured they're done, and we can proceed with freeing the 3004 * event. 3005 */ 3006 if (event->owner) 3007 list_del_init(&event->owner_entry); 3008 mutex_unlock(&owner->perf_event_mutex); 3009 put_task_struct(owner); 3010 } 3011 3012 return perf_event_release_kernel(event); 3013 } 3014 3015 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3016 { 3017 struct perf_event *child; 3018 u64 total = 0; 3019 3020 *enabled = 0; 3021 *running = 0; 3022 3023 mutex_lock(&event->child_mutex); 3024 total += perf_event_read(event); 3025 *enabled += event->total_time_enabled + 3026 atomic64_read(&event->child_total_time_enabled); 3027 *running += event->total_time_running + 3028 atomic64_read(&event->child_total_time_running); 3029 3030 list_for_each_entry(child, &event->child_list, child_list) { 3031 total += perf_event_read(child); 3032 *enabled += child->total_time_enabled; 3033 *running += child->total_time_running; 3034 } 3035 mutex_unlock(&event->child_mutex); 3036 3037 return total; 3038 } 3039 EXPORT_SYMBOL_GPL(perf_event_read_value); 3040 3041 static int perf_event_read_group(struct perf_event *event, 3042 u64 read_format, char __user *buf) 3043 { 3044 struct perf_event *leader = event->group_leader, *sub; 3045 int n = 0, size = 0, ret = -EFAULT; 3046 struct perf_event_context *ctx = leader->ctx; 3047 u64 values[5]; 3048 u64 count, enabled, running; 3049 3050 mutex_lock(&ctx->mutex); 3051 count = perf_event_read_value(leader, &enabled, &running); 3052 3053 values[n++] = 1 + leader->nr_siblings; 3054 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3055 values[n++] = enabled; 3056 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3057 values[n++] = running; 3058 values[n++] = count; 3059 if (read_format & PERF_FORMAT_ID) 3060 values[n++] = primary_event_id(leader); 3061 3062 size = n * sizeof(u64); 3063 3064 if (copy_to_user(buf, values, size)) 3065 goto unlock; 3066 3067 ret = size; 3068 3069 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3070 n = 0; 3071 3072 values[n++] = perf_event_read_value(sub, &enabled, &running); 3073 if (read_format & PERF_FORMAT_ID) 3074 values[n++] = primary_event_id(sub); 3075 3076 size = n * sizeof(u64); 3077 3078 if (copy_to_user(buf + ret, values, size)) { 3079 ret = -EFAULT; 3080 goto unlock; 3081 } 3082 3083 ret += size; 3084 } 3085 unlock: 3086 mutex_unlock(&ctx->mutex); 3087 3088 return ret; 3089 } 3090 3091 static int perf_event_read_one(struct perf_event *event, 3092 u64 read_format, char __user *buf) 3093 { 3094 u64 enabled, running; 3095 u64 values[4]; 3096 int n = 0; 3097 3098 values[n++] = perf_event_read_value(event, &enabled, &running); 3099 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3100 values[n++] = enabled; 3101 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3102 values[n++] = running; 3103 if (read_format & PERF_FORMAT_ID) 3104 values[n++] = primary_event_id(event); 3105 3106 if (copy_to_user(buf, values, n * sizeof(u64))) 3107 return -EFAULT; 3108 3109 return n * sizeof(u64); 3110 } 3111 3112 /* 3113 * Read the performance event - simple non blocking version for now 3114 */ 3115 static ssize_t 3116 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3117 { 3118 u64 read_format = event->attr.read_format; 3119 int ret; 3120 3121 /* 3122 * Return end-of-file for a read on a event that is in 3123 * error state (i.e. because it was pinned but it couldn't be 3124 * scheduled on to the CPU at some point). 3125 */ 3126 if (event->state == PERF_EVENT_STATE_ERROR) 3127 return 0; 3128 3129 if (count < event->read_size) 3130 return -ENOSPC; 3131 3132 WARN_ON_ONCE(event->ctx->parent_ctx); 3133 if (read_format & PERF_FORMAT_GROUP) 3134 ret = perf_event_read_group(event, read_format, buf); 3135 else 3136 ret = perf_event_read_one(event, read_format, buf); 3137 3138 return ret; 3139 } 3140 3141 static ssize_t 3142 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3143 { 3144 struct perf_event *event = file->private_data; 3145 3146 return perf_read_hw(event, buf, count); 3147 } 3148 3149 static unsigned int perf_poll(struct file *file, poll_table *wait) 3150 { 3151 struct perf_event *event = file->private_data; 3152 struct perf_buffer *buffer; 3153 unsigned int events = POLL_HUP; 3154 3155 rcu_read_lock(); 3156 buffer = rcu_dereference(event->buffer); 3157 if (buffer) 3158 events = atomic_xchg(&buffer->poll, 0); 3159 rcu_read_unlock(); 3160 3161 poll_wait(file, &event->waitq, wait); 3162 3163 return events; 3164 } 3165 3166 static void perf_event_reset(struct perf_event *event) 3167 { 3168 (void)perf_event_read(event); 3169 local64_set(&event->count, 0); 3170 perf_event_update_userpage(event); 3171 } 3172 3173 /* 3174 * Holding the top-level event's child_mutex means that any 3175 * descendant process that has inherited this event will block 3176 * in sync_child_event if it goes to exit, thus satisfying the 3177 * task existence requirements of perf_event_enable/disable. 3178 */ 3179 static void perf_event_for_each_child(struct perf_event *event, 3180 void (*func)(struct perf_event *)) 3181 { 3182 struct perf_event *child; 3183 3184 WARN_ON_ONCE(event->ctx->parent_ctx); 3185 mutex_lock(&event->child_mutex); 3186 func(event); 3187 list_for_each_entry(child, &event->child_list, child_list) 3188 func(child); 3189 mutex_unlock(&event->child_mutex); 3190 } 3191 3192 static void perf_event_for_each(struct perf_event *event, 3193 void (*func)(struct perf_event *)) 3194 { 3195 struct perf_event_context *ctx = event->ctx; 3196 struct perf_event *sibling; 3197 3198 WARN_ON_ONCE(ctx->parent_ctx); 3199 mutex_lock(&ctx->mutex); 3200 event = event->group_leader; 3201 3202 perf_event_for_each_child(event, func); 3203 func(event); 3204 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3205 perf_event_for_each_child(event, func); 3206 mutex_unlock(&ctx->mutex); 3207 } 3208 3209 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3210 { 3211 struct perf_event_context *ctx = event->ctx; 3212 int ret = 0; 3213 u64 value; 3214 3215 if (!is_sampling_event(event)) 3216 return -EINVAL; 3217 3218 if (copy_from_user(&value, arg, sizeof(value))) 3219 return -EFAULT; 3220 3221 if (!value) 3222 return -EINVAL; 3223 3224 raw_spin_lock_irq(&ctx->lock); 3225 if (event->attr.freq) { 3226 if (value > sysctl_perf_event_sample_rate) { 3227 ret = -EINVAL; 3228 goto unlock; 3229 } 3230 3231 event->attr.sample_freq = value; 3232 } else { 3233 event->attr.sample_period = value; 3234 event->hw.sample_period = value; 3235 } 3236 unlock: 3237 raw_spin_unlock_irq(&ctx->lock); 3238 3239 return ret; 3240 } 3241 3242 static const struct file_operations perf_fops; 3243 3244 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3245 { 3246 struct file *file; 3247 3248 file = fget_light(fd, fput_needed); 3249 if (!file) 3250 return ERR_PTR(-EBADF); 3251 3252 if (file->f_op != &perf_fops) { 3253 fput_light(file, *fput_needed); 3254 *fput_needed = 0; 3255 return ERR_PTR(-EBADF); 3256 } 3257 3258 return file->private_data; 3259 } 3260 3261 static int perf_event_set_output(struct perf_event *event, 3262 struct perf_event *output_event); 3263 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3264 3265 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3266 { 3267 struct perf_event *event = file->private_data; 3268 void (*func)(struct perf_event *); 3269 u32 flags = arg; 3270 3271 switch (cmd) { 3272 case PERF_EVENT_IOC_ENABLE: 3273 func = perf_event_enable; 3274 break; 3275 case PERF_EVENT_IOC_DISABLE: 3276 func = perf_event_disable; 3277 break; 3278 case PERF_EVENT_IOC_RESET: 3279 func = perf_event_reset; 3280 break; 3281 3282 case PERF_EVENT_IOC_REFRESH: 3283 return perf_event_refresh(event, arg); 3284 3285 case PERF_EVENT_IOC_PERIOD: 3286 return perf_event_period(event, (u64 __user *)arg); 3287 3288 case PERF_EVENT_IOC_SET_OUTPUT: 3289 { 3290 struct perf_event *output_event = NULL; 3291 int fput_needed = 0; 3292 int ret; 3293 3294 if (arg != -1) { 3295 output_event = perf_fget_light(arg, &fput_needed); 3296 if (IS_ERR(output_event)) 3297 return PTR_ERR(output_event); 3298 } 3299 3300 ret = perf_event_set_output(event, output_event); 3301 if (output_event) 3302 fput_light(output_event->filp, fput_needed); 3303 3304 return ret; 3305 } 3306 3307 case PERF_EVENT_IOC_SET_FILTER: 3308 return perf_event_set_filter(event, (void __user *)arg); 3309 3310 default: 3311 return -ENOTTY; 3312 } 3313 3314 if (flags & PERF_IOC_FLAG_GROUP) 3315 perf_event_for_each(event, func); 3316 else 3317 perf_event_for_each_child(event, func); 3318 3319 return 0; 3320 } 3321 3322 int perf_event_task_enable(void) 3323 { 3324 struct perf_event *event; 3325 3326 mutex_lock(¤t->perf_event_mutex); 3327 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3328 perf_event_for_each_child(event, perf_event_enable); 3329 mutex_unlock(¤t->perf_event_mutex); 3330 3331 return 0; 3332 } 3333 3334 int perf_event_task_disable(void) 3335 { 3336 struct perf_event *event; 3337 3338 mutex_lock(¤t->perf_event_mutex); 3339 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3340 perf_event_for_each_child(event, perf_event_disable); 3341 mutex_unlock(¤t->perf_event_mutex); 3342 3343 return 0; 3344 } 3345 3346 #ifndef PERF_EVENT_INDEX_OFFSET 3347 # define PERF_EVENT_INDEX_OFFSET 0 3348 #endif 3349 3350 static int perf_event_index(struct perf_event *event) 3351 { 3352 if (event->hw.state & PERF_HES_STOPPED) 3353 return 0; 3354 3355 if (event->state != PERF_EVENT_STATE_ACTIVE) 3356 return 0; 3357 3358 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3359 } 3360 3361 /* 3362 * Callers need to ensure there can be no nesting of this function, otherwise 3363 * the seqlock logic goes bad. We can not serialize this because the arch 3364 * code calls this from NMI context. 3365 */ 3366 void perf_event_update_userpage(struct perf_event *event) 3367 { 3368 struct perf_event_mmap_page *userpg; 3369 struct perf_buffer *buffer; 3370 3371 rcu_read_lock(); 3372 buffer = rcu_dereference(event->buffer); 3373 if (!buffer) 3374 goto unlock; 3375 3376 userpg = buffer->user_page; 3377 3378 /* 3379 * Disable preemption so as to not let the corresponding user-space 3380 * spin too long if we get preempted. 3381 */ 3382 preempt_disable(); 3383 ++userpg->lock; 3384 barrier(); 3385 userpg->index = perf_event_index(event); 3386 userpg->offset = perf_event_count(event); 3387 if (event->state == PERF_EVENT_STATE_ACTIVE) 3388 userpg->offset -= local64_read(&event->hw.prev_count); 3389 3390 userpg->time_enabled = event->total_time_enabled + 3391 atomic64_read(&event->child_total_time_enabled); 3392 3393 userpg->time_running = event->total_time_running + 3394 atomic64_read(&event->child_total_time_running); 3395 3396 barrier(); 3397 ++userpg->lock; 3398 preempt_enable(); 3399 unlock: 3400 rcu_read_unlock(); 3401 } 3402 3403 static unsigned long perf_data_size(struct perf_buffer *buffer); 3404 3405 static void 3406 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags) 3407 { 3408 long max_size = perf_data_size(buffer); 3409 3410 if (watermark) 3411 buffer->watermark = min(max_size, watermark); 3412 3413 if (!buffer->watermark) 3414 buffer->watermark = max_size / 2; 3415 3416 if (flags & PERF_BUFFER_WRITABLE) 3417 buffer->writable = 1; 3418 3419 atomic_set(&buffer->refcount, 1); 3420 } 3421 3422 #ifndef CONFIG_PERF_USE_VMALLOC 3423 3424 /* 3425 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 3426 */ 3427 3428 static struct page * 3429 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) 3430 { 3431 if (pgoff > buffer->nr_pages) 3432 return NULL; 3433 3434 if (pgoff == 0) 3435 return virt_to_page(buffer->user_page); 3436 3437 return virt_to_page(buffer->data_pages[pgoff - 1]); 3438 } 3439 3440 static void *perf_mmap_alloc_page(int cpu) 3441 { 3442 struct page *page; 3443 int node; 3444 3445 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 3446 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 3447 if (!page) 3448 return NULL; 3449 3450 return page_address(page); 3451 } 3452 3453 static struct perf_buffer * 3454 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) 3455 { 3456 struct perf_buffer *buffer; 3457 unsigned long size; 3458 int i; 3459 3460 size = sizeof(struct perf_buffer); 3461 size += nr_pages * sizeof(void *); 3462 3463 buffer = kzalloc(size, GFP_KERNEL); 3464 if (!buffer) 3465 goto fail; 3466 3467 buffer->user_page = perf_mmap_alloc_page(cpu); 3468 if (!buffer->user_page) 3469 goto fail_user_page; 3470 3471 for (i = 0; i < nr_pages; i++) { 3472 buffer->data_pages[i] = perf_mmap_alloc_page(cpu); 3473 if (!buffer->data_pages[i]) 3474 goto fail_data_pages; 3475 } 3476 3477 buffer->nr_pages = nr_pages; 3478 3479 perf_buffer_init(buffer, watermark, flags); 3480 3481 return buffer; 3482 3483 fail_data_pages: 3484 for (i--; i >= 0; i--) 3485 free_page((unsigned long)buffer->data_pages[i]); 3486 3487 free_page((unsigned long)buffer->user_page); 3488 3489 fail_user_page: 3490 kfree(buffer); 3491 3492 fail: 3493 return NULL; 3494 } 3495 3496 static void perf_mmap_free_page(unsigned long addr) 3497 { 3498 struct page *page = virt_to_page((void *)addr); 3499 3500 page->mapping = NULL; 3501 __free_page(page); 3502 } 3503 3504 static void perf_buffer_free(struct perf_buffer *buffer) 3505 { 3506 int i; 3507 3508 perf_mmap_free_page((unsigned long)buffer->user_page); 3509 for (i = 0; i < buffer->nr_pages; i++) 3510 perf_mmap_free_page((unsigned long)buffer->data_pages[i]); 3511 kfree(buffer); 3512 } 3513 3514 static inline int page_order(struct perf_buffer *buffer) 3515 { 3516 return 0; 3517 } 3518 3519 #else 3520 3521 /* 3522 * Back perf_mmap() with vmalloc memory. 3523 * 3524 * Required for architectures that have d-cache aliasing issues. 3525 */ 3526 3527 static inline int page_order(struct perf_buffer *buffer) 3528 { 3529 return buffer->page_order; 3530 } 3531 3532 static struct page * 3533 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) 3534 { 3535 if (pgoff > (1UL << page_order(buffer))) 3536 return NULL; 3537 3538 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE); 3539 } 3540 3541 static void perf_mmap_unmark_page(void *addr) 3542 { 3543 struct page *page = vmalloc_to_page(addr); 3544 3545 page->mapping = NULL; 3546 } 3547 3548 static void perf_buffer_free_work(struct work_struct *work) 3549 { 3550 struct perf_buffer *buffer; 3551 void *base; 3552 int i, nr; 3553 3554 buffer = container_of(work, struct perf_buffer, work); 3555 nr = 1 << page_order(buffer); 3556 3557 base = buffer->user_page; 3558 for (i = 0; i < nr + 1; i++) 3559 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 3560 3561 vfree(base); 3562 kfree(buffer); 3563 } 3564 3565 static void perf_buffer_free(struct perf_buffer *buffer) 3566 { 3567 schedule_work(&buffer->work); 3568 } 3569 3570 static struct perf_buffer * 3571 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) 3572 { 3573 struct perf_buffer *buffer; 3574 unsigned long size; 3575 void *all_buf; 3576 3577 size = sizeof(struct perf_buffer); 3578 size += sizeof(void *); 3579 3580 buffer = kzalloc(size, GFP_KERNEL); 3581 if (!buffer) 3582 goto fail; 3583 3584 INIT_WORK(&buffer->work, perf_buffer_free_work); 3585 3586 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 3587 if (!all_buf) 3588 goto fail_all_buf; 3589 3590 buffer->user_page = all_buf; 3591 buffer->data_pages[0] = all_buf + PAGE_SIZE; 3592 buffer->page_order = ilog2(nr_pages); 3593 buffer->nr_pages = 1; 3594 3595 perf_buffer_init(buffer, watermark, flags); 3596 3597 return buffer; 3598 3599 fail_all_buf: 3600 kfree(buffer); 3601 3602 fail: 3603 return NULL; 3604 } 3605 3606 #endif 3607 3608 static unsigned long perf_data_size(struct perf_buffer *buffer) 3609 { 3610 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer)); 3611 } 3612 3613 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3614 { 3615 struct perf_event *event = vma->vm_file->private_data; 3616 struct perf_buffer *buffer; 3617 int ret = VM_FAULT_SIGBUS; 3618 3619 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3620 if (vmf->pgoff == 0) 3621 ret = 0; 3622 return ret; 3623 } 3624 3625 rcu_read_lock(); 3626 buffer = rcu_dereference(event->buffer); 3627 if (!buffer) 3628 goto unlock; 3629 3630 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3631 goto unlock; 3632 3633 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff); 3634 if (!vmf->page) 3635 goto unlock; 3636 3637 get_page(vmf->page); 3638 vmf->page->mapping = vma->vm_file->f_mapping; 3639 vmf->page->index = vmf->pgoff; 3640 3641 ret = 0; 3642 unlock: 3643 rcu_read_unlock(); 3644 3645 return ret; 3646 } 3647 3648 static void perf_buffer_free_rcu(struct rcu_head *rcu_head) 3649 { 3650 struct perf_buffer *buffer; 3651 3652 buffer = container_of(rcu_head, struct perf_buffer, rcu_head); 3653 perf_buffer_free(buffer); 3654 } 3655 3656 static struct perf_buffer *perf_buffer_get(struct perf_event *event) 3657 { 3658 struct perf_buffer *buffer; 3659 3660 rcu_read_lock(); 3661 buffer = rcu_dereference(event->buffer); 3662 if (buffer) { 3663 if (!atomic_inc_not_zero(&buffer->refcount)) 3664 buffer = NULL; 3665 } 3666 rcu_read_unlock(); 3667 3668 return buffer; 3669 } 3670 3671 static void perf_buffer_put(struct perf_buffer *buffer) 3672 { 3673 if (!atomic_dec_and_test(&buffer->refcount)) 3674 return; 3675 3676 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu); 3677 } 3678 3679 static void perf_mmap_open(struct vm_area_struct *vma) 3680 { 3681 struct perf_event *event = vma->vm_file->private_data; 3682 3683 atomic_inc(&event->mmap_count); 3684 } 3685 3686 static void perf_mmap_close(struct vm_area_struct *vma) 3687 { 3688 struct perf_event *event = vma->vm_file->private_data; 3689 3690 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3691 unsigned long size = perf_data_size(event->buffer); 3692 struct user_struct *user = event->mmap_user; 3693 struct perf_buffer *buffer = event->buffer; 3694 3695 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3696 vma->vm_mm->locked_vm -= event->mmap_locked; 3697 rcu_assign_pointer(event->buffer, NULL); 3698 mutex_unlock(&event->mmap_mutex); 3699 3700 perf_buffer_put(buffer); 3701 free_uid(user); 3702 } 3703 } 3704 3705 static const struct vm_operations_struct perf_mmap_vmops = { 3706 .open = perf_mmap_open, 3707 .close = perf_mmap_close, 3708 .fault = perf_mmap_fault, 3709 .page_mkwrite = perf_mmap_fault, 3710 }; 3711 3712 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3713 { 3714 struct perf_event *event = file->private_data; 3715 unsigned long user_locked, user_lock_limit; 3716 struct user_struct *user = current_user(); 3717 unsigned long locked, lock_limit; 3718 struct perf_buffer *buffer; 3719 unsigned long vma_size; 3720 unsigned long nr_pages; 3721 long user_extra, extra; 3722 int ret = 0, flags = 0; 3723 3724 /* 3725 * Don't allow mmap() of inherited per-task counters. This would 3726 * create a performance issue due to all children writing to the 3727 * same buffer. 3728 */ 3729 if (event->cpu == -1 && event->attr.inherit) 3730 return -EINVAL; 3731 3732 if (!(vma->vm_flags & VM_SHARED)) 3733 return -EINVAL; 3734 3735 vma_size = vma->vm_end - vma->vm_start; 3736 nr_pages = (vma_size / PAGE_SIZE) - 1; 3737 3738 /* 3739 * If we have buffer pages ensure they're a power-of-two number, so we 3740 * can do bitmasks instead of modulo. 3741 */ 3742 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3743 return -EINVAL; 3744 3745 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3746 return -EINVAL; 3747 3748 if (vma->vm_pgoff != 0) 3749 return -EINVAL; 3750 3751 WARN_ON_ONCE(event->ctx->parent_ctx); 3752 mutex_lock(&event->mmap_mutex); 3753 if (event->buffer) { 3754 if (event->buffer->nr_pages == nr_pages) 3755 atomic_inc(&event->buffer->refcount); 3756 else 3757 ret = -EINVAL; 3758 goto unlock; 3759 } 3760 3761 user_extra = nr_pages + 1; 3762 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3763 3764 /* 3765 * Increase the limit linearly with more CPUs: 3766 */ 3767 user_lock_limit *= num_online_cpus(); 3768 3769 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3770 3771 extra = 0; 3772 if (user_locked > user_lock_limit) 3773 extra = user_locked - user_lock_limit; 3774 3775 lock_limit = rlimit(RLIMIT_MEMLOCK); 3776 lock_limit >>= PAGE_SHIFT; 3777 locked = vma->vm_mm->locked_vm + extra; 3778 3779 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3780 !capable(CAP_IPC_LOCK)) { 3781 ret = -EPERM; 3782 goto unlock; 3783 } 3784 3785 WARN_ON(event->buffer); 3786 3787 if (vma->vm_flags & VM_WRITE) 3788 flags |= PERF_BUFFER_WRITABLE; 3789 3790 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark, 3791 event->cpu, flags); 3792 if (!buffer) { 3793 ret = -ENOMEM; 3794 goto unlock; 3795 } 3796 rcu_assign_pointer(event->buffer, buffer); 3797 3798 atomic_long_add(user_extra, &user->locked_vm); 3799 event->mmap_locked = extra; 3800 event->mmap_user = get_current_user(); 3801 vma->vm_mm->locked_vm += event->mmap_locked; 3802 3803 unlock: 3804 if (!ret) 3805 atomic_inc(&event->mmap_count); 3806 mutex_unlock(&event->mmap_mutex); 3807 3808 vma->vm_flags |= VM_RESERVED; 3809 vma->vm_ops = &perf_mmap_vmops; 3810 3811 return ret; 3812 } 3813 3814 static int perf_fasync(int fd, struct file *filp, int on) 3815 { 3816 struct inode *inode = filp->f_path.dentry->d_inode; 3817 struct perf_event *event = filp->private_data; 3818 int retval; 3819 3820 mutex_lock(&inode->i_mutex); 3821 retval = fasync_helper(fd, filp, on, &event->fasync); 3822 mutex_unlock(&inode->i_mutex); 3823 3824 if (retval < 0) 3825 return retval; 3826 3827 return 0; 3828 } 3829 3830 static const struct file_operations perf_fops = { 3831 .llseek = no_llseek, 3832 .release = perf_release, 3833 .read = perf_read, 3834 .poll = perf_poll, 3835 .unlocked_ioctl = perf_ioctl, 3836 .compat_ioctl = perf_ioctl, 3837 .mmap = perf_mmap, 3838 .fasync = perf_fasync, 3839 }; 3840 3841 /* 3842 * Perf event wakeup 3843 * 3844 * If there's data, ensure we set the poll() state and publish everything 3845 * to user-space before waking everybody up. 3846 */ 3847 3848 void perf_event_wakeup(struct perf_event *event) 3849 { 3850 wake_up_all(&event->waitq); 3851 3852 if (event->pending_kill) { 3853 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3854 event->pending_kill = 0; 3855 } 3856 } 3857 3858 static void perf_pending_event(struct irq_work *entry) 3859 { 3860 struct perf_event *event = container_of(entry, 3861 struct perf_event, pending); 3862 3863 if (event->pending_disable) { 3864 event->pending_disable = 0; 3865 __perf_event_disable(event); 3866 } 3867 3868 if (event->pending_wakeup) { 3869 event->pending_wakeup = 0; 3870 perf_event_wakeup(event); 3871 } 3872 } 3873 3874 /* 3875 * We assume there is only KVM supporting the callbacks. 3876 * Later on, we might change it to a list if there is 3877 * another virtualization implementation supporting the callbacks. 3878 */ 3879 struct perf_guest_info_callbacks *perf_guest_cbs; 3880 3881 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3882 { 3883 perf_guest_cbs = cbs; 3884 return 0; 3885 } 3886 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3887 3888 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3889 { 3890 perf_guest_cbs = NULL; 3891 return 0; 3892 } 3893 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3894 3895 /* 3896 * Output 3897 */ 3898 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail, 3899 unsigned long offset, unsigned long head) 3900 { 3901 unsigned long mask; 3902 3903 if (!buffer->writable) 3904 return true; 3905 3906 mask = perf_data_size(buffer) - 1; 3907 3908 offset = (offset - tail) & mask; 3909 head = (head - tail) & mask; 3910 3911 if ((int)(head - offset) < 0) 3912 return false; 3913 3914 return true; 3915 } 3916 3917 static void perf_output_wakeup(struct perf_output_handle *handle) 3918 { 3919 atomic_set(&handle->buffer->poll, POLL_IN); 3920 3921 if (handle->nmi) { 3922 handle->event->pending_wakeup = 1; 3923 irq_work_queue(&handle->event->pending); 3924 } else 3925 perf_event_wakeup(handle->event); 3926 } 3927 3928 /* 3929 * We need to ensure a later event_id doesn't publish a head when a former 3930 * event isn't done writing. However since we need to deal with NMIs we 3931 * cannot fully serialize things. 3932 * 3933 * We only publish the head (and generate a wakeup) when the outer-most 3934 * event completes. 3935 */ 3936 static void perf_output_get_handle(struct perf_output_handle *handle) 3937 { 3938 struct perf_buffer *buffer = handle->buffer; 3939 3940 preempt_disable(); 3941 local_inc(&buffer->nest); 3942 handle->wakeup = local_read(&buffer->wakeup); 3943 } 3944 3945 static void perf_output_put_handle(struct perf_output_handle *handle) 3946 { 3947 struct perf_buffer *buffer = handle->buffer; 3948 unsigned long head; 3949 3950 again: 3951 head = local_read(&buffer->head); 3952 3953 /* 3954 * IRQ/NMI can happen here, which means we can miss a head update. 3955 */ 3956 3957 if (!local_dec_and_test(&buffer->nest)) 3958 goto out; 3959 3960 /* 3961 * Publish the known good head. Rely on the full barrier implied 3962 * by atomic_dec_and_test() order the buffer->head read and this 3963 * write. 3964 */ 3965 buffer->user_page->data_head = head; 3966 3967 /* 3968 * Now check if we missed an update, rely on the (compiler) 3969 * barrier in atomic_dec_and_test() to re-read buffer->head. 3970 */ 3971 if (unlikely(head != local_read(&buffer->head))) { 3972 local_inc(&buffer->nest); 3973 goto again; 3974 } 3975 3976 if (handle->wakeup != local_read(&buffer->wakeup)) 3977 perf_output_wakeup(handle); 3978 3979 out: 3980 preempt_enable(); 3981 } 3982 3983 __always_inline void perf_output_copy(struct perf_output_handle *handle, 3984 const void *buf, unsigned int len) 3985 { 3986 do { 3987 unsigned long size = min_t(unsigned long, handle->size, len); 3988 3989 memcpy(handle->addr, buf, size); 3990 3991 len -= size; 3992 handle->addr += size; 3993 buf += size; 3994 handle->size -= size; 3995 if (!handle->size) { 3996 struct perf_buffer *buffer = handle->buffer; 3997 3998 handle->page++; 3999 handle->page &= buffer->nr_pages - 1; 4000 handle->addr = buffer->data_pages[handle->page]; 4001 handle->size = PAGE_SIZE << page_order(buffer); 4002 } 4003 } while (len); 4004 } 4005 4006 static void __perf_event_header__init_id(struct perf_event_header *header, 4007 struct perf_sample_data *data, 4008 struct perf_event *event) 4009 { 4010 u64 sample_type = event->attr.sample_type; 4011 4012 data->type = sample_type; 4013 header->size += event->id_header_size; 4014 4015 if (sample_type & PERF_SAMPLE_TID) { 4016 /* namespace issues */ 4017 data->tid_entry.pid = perf_event_pid(event, current); 4018 data->tid_entry.tid = perf_event_tid(event, current); 4019 } 4020 4021 if (sample_type & PERF_SAMPLE_TIME) 4022 data->time = perf_clock(); 4023 4024 if (sample_type & PERF_SAMPLE_ID) 4025 data->id = primary_event_id(event); 4026 4027 if (sample_type & PERF_SAMPLE_STREAM_ID) 4028 data->stream_id = event->id; 4029 4030 if (sample_type & PERF_SAMPLE_CPU) { 4031 data->cpu_entry.cpu = raw_smp_processor_id(); 4032 data->cpu_entry.reserved = 0; 4033 } 4034 } 4035 4036 static void perf_event_header__init_id(struct perf_event_header *header, 4037 struct perf_sample_data *data, 4038 struct perf_event *event) 4039 { 4040 if (event->attr.sample_id_all) 4041 __perf_event_header__init_id(header, data, event); 4042 } 4043 4044 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4045 struct perf_sample_data *data) 4046 { 4047 u64 sample_type = data->type; 4048 4049 if (sample_type & PERF_SAMPLE_TID) 4050 perf_output_put(handle, data->tid_entry); 4051 4052 if (sample_type & PERF_SAMPLE_TIME) 4053 perf_output_put(handle, data->time); 4054 4055 if (sample_type & PERF_SAMPLE_ID) 4056 perf_output_put(handle, data->id); 4057 4058 if (sample_type & PERF_SAMPLE_STREAM_ID) 4059 perf_output_put(handle, data->stream_id); 4060 4061 if (sample_type & PERF_SAMPLE_CPU) 4062 perf_output_put(handle, data->cpu_entry); 4063 } 4064 4065 static void perf_event__output_id_sample(struct perf_event *event, 4066 struct perf_output_handle *handle, 4067 struct perf_sample_data *sample) 4068 { 4069 if (event->attr.sample_id_all) 4070 __perf_event__output_id_sample(handle, sample); 4071 } 4072 4073 int perf_output_begin(struct perf_output_handle *handle, 4074 struct perf_event *event, unsigned int size, 4075 int nmi, int sample) 4076 { 4077 struct perf_buffer *buffer; 4078 unsigned long tail, offset, head; 4079 int have_lost; 4080 struct perf_sample_data sample_data; 4081 struct { 4082 struct perf_event_header header; 4083 u64 id; 4084 u64 lost; 4085 } lost_event; 4086 4087 rcu_read_lock(); 4088 /* 4089 * For inherited events we send all the output towards the parent. 4090 */ 4091 if (event->parent) 4092 event = event->parent; 4093 4094 buffer = rcu_dereference(event->buffer); 4095 if (!buffer) 4096 goto out; 4097 4098 handle->buffer = buffer; 4099 handle->event = event; 4100 handle->nmi = nmi; 4101 handle->sample = sample; 4102 4103 if (!buffer->nr_pages) 4104 goto out; 4105 4106 have_lost = local_read(&buffer->lost); 4107 if (have_lost) { 4108 lost_event.header.size = sizeof(lost_event); 4109 perf_event_header__init_id(&lost_event.header, &sample_data, 4110 event); 4111 size += lost_event.header.size; 4112 } 4113 4114 perf_output_get_handle(handle); 4115 4116 do { 4117 /* 4118 * Userspace could choose to issue a mb() before updating the 4119 * tail pointer. So that all reads will be completed before the 4120 * write is issued. 4121 */ 4122 tail = ACCESS_ONCE(buffer->user_page->data_tail); 4123 smp_rmb(); 4124 offset = head = local_read(&buffer->head); 4125 head += size; 4126 if (unlikely(!perf_output_space(buffer, tail, offset, head))) 4127 goto fail; 4128 } while (local_cmpxchg(&buffer->head, offset, head) != offset); 4129 4130 if (head - local_read(&buffer->wakeup) > buffer->watermark) 4131 local_add(buffer->watermark, &buffer->wakeup); 4132 4133 handle->page = offset >> (PAGE_SHIFT + page_order(buffer)); 4134 handle->page &= buffer->nr_pages - 1; 4135 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1); 4136 handle->addr = buffer->data_pages[handle->page]; 4137 handle->addr += handle->size; 4138 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size; 4139 4140 if (have_lost) { 4141 lost_event.header.type = PERF_RECORD_LOST; 4142 lost_event.header.misc = 0; 4143 lost_event.id = event->id; 4144 lost_event.lost = local_xchg(&buffer->lost, 0); 4145 4146 perf_output_put(handle, lost_event); 4147 perf_event__output_id_sample(event, handle, &sample_data); 4148 } 4149 4150 return 0; 4151 4152 fail: 4153 local_inc(&buffer->lost); 4154 perf_output_put_handle(handle); 4155 out: 4156 rcu_read_unlock(); 4157 4158 return -ENOSPC; 4159 } 4160 4161 void perf_output_end(struct perf_output_handle *handle) 4162 { 4163 struct perf_event *event = handle->event; 4164 struct perf_buffer *buffer = handle->buffer; 4165 4166 int wakeup_events = event->attr.wakeup_events; 4167 4168 if (handle->sample && wakeup_events) { 4169 int events = local_inc_return(&buffer->events); 4170 if (events >= wakeup_events) { 4171 local_sub(wakeup_events, &buffer->events); 4172 local_inc(&buffer->wakeup); 4173 } 4174 } 4175 4176 perf_output_put_handle(handle); 4177 rcu_read_unlock(); 4178 } 4179 4180 static void perf_output_read_one(struct perf_output_handle *handle, 4181 struct perf_event *event, 4182 u64 enabled, u64 running) 4183 { 4184 u64 read_format = event->attr.read_format; 4185 u64 values[4]; 4186 int n = 0; 4187 4188 values[n++] = perf_event_count(event); 4189 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4190 values[n++] = enabled + 4191 atomic64_read(&event->child_total_time_enabled); 4192 } 4193 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4194 values[n++] = running + 4195 atomic64_read(&event->child_total_time_running); 4196 } 4197 if (read_format & PERF_FORMAT_ID) 4198 values[n++] = primary_event_id(event); 4199 4200 perf_output_copy(handle, values, n * sizeof(u64)); 4201 } 4202 4203 /* 4204 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4205 */ 4206 static void perf_output_read_group(struct perf_output_handle *handle, 4207 struct perf_event *event, 4208 u64 enabled, u64 running) 4209 { 4210 struct perf_event *leader = event->group_leader, *sub; 4211 u64 read_format = event->attr.read_format; 4212 u64 values[5]; 4213 int n = 0; 4214 4215 values[n++] = 1 + leader->nr_siblings; 4216 4217 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4218 values[n++] = enabled; 4219 4220 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4221 values[n++] = running; 4222 4223 if (leader != event) 4224 leader->pmu->read(leader); 4225 4226 values[n++] = perf_event_count(leader); 4227 if (read_format & PERF_FORMAT_ID) 4228 values[n++] = primary_event_id(leader); 4229 4230 perf_output_copy(handle, values, n * sizeof(u64)); 4231 4232 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4233 n = 0; 4234 4235 if (sub != event) 4236 sub->pmu->read(sub); 4237 4238 values[n++] = perf_event_count(sub); 4239 if (read_format & PERF_FORMAT_ID) 4240 values[n++] = primary_event_id(sub); 4241 4242 perf_output_copy(handle, values, n * sizeof(u64)); 4243 } 4244 } 4245 4246 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4247 PERF_FORMAT_TOTAL_TIME_RUNNING) 4248 4249 static void perf_output_read(struct perf_output_handle *handle, 4250 struct perf_event *event) 4251 { 4252 u64 enabled = 0, running = 0, now, ctx_time; 4253 u64 read_format = event->attr.read_format; 4254 4255 /* 4256 * compute total_time_enabled, total_time_running 4257 * based on snapshot values taken when the event 4258 * was last scheduled in. 4259 * 4260 * we cannot simply called update_context_time() 4261 * because of locking issue as we are called in 4262 * NMI context 4263 */ 4264 if (read_format & PERF_FORMAT_TOTAL_TIMES) { 4265 now = perf_clock(); 4266 ctx_time = event->shadow_ctx_time + now; 4267 enabled = ctx_time - event->tstamp_enabled; 4268 running = ctx_time - event->tstamp_running; 4269 } 4270 4271 if (event->attr.read_format & PERF_FORMAT_GROUP) 4272 perf_output_read_group(handle, event, enabled, running); 4273 else 4274 perf_output_read_one(handle, event, enabled, running); 4275 } 4276 4277 void perf_output_sample(struct perf_output_handle *handle, 4278 struct perf_event_header *header, 4279 struct perf_sample_data *data, 4280 struct perf_event *event) 4281 { 4282 u64 sample_type = data->type; 4283 4284 perf_output_put(handle, *header); 4285 4286 if (sample_type & PERF_SAMPLE_IP) 4287 perf_output_put(handle, data->ip); 4288 4289 if (sample_type & PERF_SAMPLE_TID) 4290 perf_output_put(handle, data->tid_entry); 4291 4292 if (sample_type & PERF_SAMPLE_TIME) 4293 perf_output_put(handle, data->time); 4294 4295 if (sample_type & PERF_SAMPLE_ADDR) 4296 perf_output_put(handle, data->addr); 4297 4298 if (sample_type & PERF_SAMPLE_ID) 4299 perf_output_put(handle, data->id); 4300 4301 if (sample_type & PERF_SAMPLE_STREAM_ID) 4302 perf_output_put(handle, data->stream_id); 4303 4304 if (sample_type & PERF_SAMPLE_CPU) 4305 perf_output_put(handle, data->cpu_entry); 4306 4307 if (sample_type & PERF_SAMPLE_PERIOD) 4308 perf_output_put(handle, data->period); 4309 4310 if (sample_type & PERF_SAMPLE_READ) 4311 perf_output_read(handle, event); 4312 4313 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4314 if (data->callchain) { 4315 int size = 1; 4316 4317 if (data->callchain) 4318 size += data->callchain->nr; 4319 4320 size *= sizeof(u64); 4321 4322 perf_output_copy(handle, data->callchain, size); 4323 } else { 4324 u64 nr = 0; 4325 perf_output_put(handle, nr); 4326 } 4327 } 4328 4329 if (sample_type & PERF_SAMPLE_RAW) { 4330 if (data->raw) { 4331 perf_output_put(handle, data->raw->size); 4332 perf_output_copy(handle, data->raw->data, 4333 data->raw->size); 4334 } else { 4335 struct { 4336 u32 size; 4337 u32 data; 4338 } raw = { 4339 .size = sizeof(u32), 4340 .data = 0, 4341 }; 4342 perf_output_put(handle, raw); 4343 } 4344 } 4345 } 4346 4347 void perf_prepare_sample(struct perf_event_header *header, 4348 struct perf_sample_data *data, 4349 struct perf_event *event, 4350 struct pt_regs *regs) 4351 { 4352 u64 sample_type = event->attr.sample_type; 4353 4354 header->type = PERF_RECORD_SAMPLE; 4355 header->size = sizeof(*header) + event->header_size; 4356 4357 header->misc = 0; 4358 header->misc |= perf_misc_flags(regs); 4359 4360 __perf_event_header__init_id(header, data, event); 4361 4362 if (sample_type & PERF_SAMPLE_IP) 4363 data->ip = perf_instruction_pointer(regs); 4364 4365 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4366 int size = 1; 4367 4368 data->callchain = perf_callchain(regs); 4369 4370 if (data->callchain) 4371 size += data->callchain->nr; 4372 4373 header->size += size * sizeof(u64); 4374 } 4375 4376 if (sample_type & PERF_SAMPLE_RAW) { 4377 int size = sizeof(u32); 4378 4379 if (data->raw) 4380 size += data->raw->size; 4381 else 4382 size += sizeof(u32); 4383 4384 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4385 header->size += size; 4386 } 4387 } 4388 4389 static void perf_event_output(struct perf_event *event, int nmi, 4390 struct perf_sample_data *data, 4391 struct pt_regs *regs) 4392 { 4393 struct perf_output_handle handle; 4394 struct perf_event_header header; 4395 4396 /* protect the callchain buffers */ 4397 rcu_read_lock(); 4398 4399 perf_prepare_sample(&header, data, event, regs); 4400 4401 if (perf_output_begin(&handle, event, header.size, nmi, 1)) 4402 goto exit; 4403 4404 perf_output_sample(&handle, &header, data, event); 4405 4406 perf_output_end(&handle); 4407 4408 exit: 4409 rcu_read_unlock(); 4410 } 4411 4412 /* 4413 * read event_id 4414 */ 4415 4416 struct perf_read_event { 4417 struct perf_event_header header; 4418 4419 u32 pid; 4420 u32 tid; 4421 }; 4422 4423 static void 4424 perf_event_read_event(struct perf_event *event, 4425 struct task_struct *task) 4426 { 4427 struct perf_output_handle handle; 4428 struct perf_sample_data sample; 4429 struct perf_read_event read_event = { 4430 .header = { 4431 .type = PERF_RECORD_READ, 4432 .misc = 0, 4433 .size = sizeof(read_event) + event->read_size, 4434 }, 4435 .pid = perf_event_pid(event, task), 4436 .tid = perf_event_tid(event, task), 4437 }; 4438 int ret; 4439 4440 perf_event_header__init_id(&read_event.header, &sample, event); 4441 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); 4442 if (ret) 4443 return; 4444 4445 perf_output_put(&handle, read_event); 4446 perf_output_read(&handle, event); 4447 perf_event__output_id_sample(event, &handle, &sample); 4448 4449 perf_output_end(&handle); 4450 } 4451 4452 /* 4453 * task tracking -- fork/exit 4454 * 4455 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4456 */ 4457 4458 struct perf_task_event { 4459 struct task_struct *task; 4460 struct perf_event_context *task_ctx; 4461 4462 struct { 4463 struct perf_event_header header; 4464 4465 u32 pid; 4466 u32 ppid; 4467 u32 tid; 4468 u32 ptid; 4469 u64 time; 4470 } event_id; 4471 }; 4472 4473 static void perf_event_task_output(struct perf_event *event, 4474 struct perf_task_event *task_event) 4475 { 4476 struct perf_output_handle handle; 4477 struct perf_sample_data sample; 4478 struct task_struct *task = task_event->task; 4479 int ret, size = task_event->event_id.header.size; 4480 4481 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4482 4483 ret = perf_output_begin(&handle, event, 4484 task_event->event_id.header.size, 0, 0); 4485 if (ret) 4486 goto out; 4487 4488 task_event->event_id.pid = perf_event_pid(event, task); 4489 task_event->event_id.ppid = perf_event_pid(event, current); 4490 4491 task_event->event_id.tid = perf_event_tid(event, task); 4492 task_event->event_id.ptid = perf_event_tid(event, current); 4493 4494 perf_output_put(&handle, task_event->event_id); 4495 4496 perf_event__output_id_sample(event, &handle, &sample); 4497 4498 perf_output_end(&handle); 4499 out: 4500 task_event->event_id.header.size = size; 4501 } 4502 4503 static int perf_event_task_match(struct perf_event *event) 4504 { 4505 if (event->state < PERF_EVENT_STATE_INACTIVE) 4506 return 0; 4507 4508 if (!event_filter_match(event)) 4509 return 0; 4510 4511 if (event->attr.comm || event->attr.mmap || 4512 event->attr.mmap_data || event->attr.task) 4513 return 1; 4514 4515 return 0; 4516 } 4517 4518 static void perf_event_task_ctx(struct perf_event_context *ctx, 4519 struct perf_task_event *task_event) 4520 { 4521 struct perf_event *event; 4522 4523 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4524 if (perf_event_task_match(event)) 4525 perf_event_task_output(event, task_event); 4526 } 4527 } 4528 4529 static void perf_event_task_event(struct perf_task_event *task_event) 4530 { 4531 struct perf_cpu_context *cpuctx; 4532 struct perf_event_context *ctx; 4533 struct pmu *pmu; 4534 int ctxn; 4535 4536 rcu_read_lock(); 4537 list_for_each_entry_rcu(pmu, &pmus, entry) { 4538 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4539 if (cpuctx->active_pmu != pmu) 4540 goto next; 4541 perf_event_task_ctx(&cpuctx->ctx, task_event); 4542 4543 ctx = task_event->task_ctx; 4544 if (!ctx) { 4545 ctxn = pmu->task_ctx_nr; 4546 if (ctxn < 0) 4547 goto next; 4548 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4549 } 4550 if (ctx) 4551 perf_event_task_ctx(ctx, task_event); 4552 next: 4553 put_cpu_ptr(pmu->pmu_cpu_context); 4554 } 4555 rcu_read_unlock(); 4556 } 4557 4558 static void perf_event_task(struct task_struct *task, 4559 struct perf_event_context *task_ctx, 4560 int new) 4561 { 4562 struct perf_task_event task_event; 4563 4564 if (!atomic_read(&nr_comm_events) && 4565 !atomic_read(&nr_mmap_events) && 4566 !atomic_read(&nr_task_events)) 4567 return; 4568 4569 task_event = (struct perf_task_event){ 4570 .task = task, 4571 .task_ctx = task_ctx, 4572 .event_id = { 4573 .header = { 4574 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4575 .misc = 0, 4576 .size = sizeof(task_event.event_id), 4577 }, 4578 /* .pid */ 4579 /* .ppid */ 4580 /* .tid */ 4581 /* .ptid */ 4582 .time = perf_clock(), 4583 }, 4584 }; 4585 4586 perf_event_task_event(&task_event); 4587 } 4588 4589 void perf_event_fork(struct task_struct *task) 4590 { 4591 perf_event_task(task, NULL, 1); 4592 } 4593 4594 /* 4595 * comm tracking 4596 */ 4597 4598 struct perf_comm_event { 4599 struct task_struct *task; 4600 char *comm; 4601 int comm_size; 4602 4603 struct { 4604 struct perf_event_header header; 4605 4606 u32 pid; 4607 u32 tid; 4608 } event_id; 4609 }; 4610 4611 static void perf_event_comm_output(struct perf_event *event, 4612 struct perf_comm_event *comm_event) 4613 { 4614 struct perf_output_handle handle; 4615 struct perf_sample_data sample; 4616 int size = comm_event->event_id.header.size; 4617 int ret; 4618 4619 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4620 ret = perf_output_begin(&handle, event, 4621 comm_event->event_id.header.size, 0, 0); 4622 4623 if (ret) 4624 goto out; 4625 4626 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4627 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4628 4629 perf_output_put(&handle, comm_event->event_id); 4630 perf_output_copy(&handle, comm_event->comm, 4631 comm_event->comm_size); 4632 4633 perf_event__output_id_sample(event, &handle, &sample); 4634 4635 perf_output_end(&handle); 4636 out: 4637 comm_event->event_id.header.size = size; 4638 } 4639 4640 static int perf_event_comm_match(struct perf_event *event) 4641 { 4642 if (event->state < PERF_EVENT_STATE_INACTIVE) 4643 return 0; 4644 4645 if (!event_filter_match(event)) 4646 return 0; 4647 4648 if (event->attr.comm) 4649 return 1; 4650 4651 return 0; 4652 } 4653 4654 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4655 struct perf_comm_event *comm_event) 4656 { 4657 struct perf_event *event; 4658 4659 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4660 if (perf_event_comm_match(event)) 4661 perf_event_comm_output(event, comm_event); 4662 } 4663 } 4664 4665 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4666 { 4667 struct perf_cpu_context *cpuctx; 4668 struct perf_event_context *ctx; 4669 char comm[TASK_COMM_LEN]; 4670 unsigned int size; 4671 struct pmu *pmu; 4672 int ctxn; 4673 4674 memset(comm, 0, sizeof(comm)); 4675 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4676 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4677 4678 comm_event->comm = comm; 4679 comm_event->comm_size = size; 4680 4681 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4682 rcu_read_lock(); 4683 list_for_each_entry_rcu(pmu, &pmus, entry) { 4684 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4685 if (cpuctx->active_pmu != pmu) 4686 goto next; 4687 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4688 4689 ctxn = pmu->task_ctx_nr; 4690 if (ctxn < 0) 4691 goto next; 4692 4693 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4694 if (ctx) 4695 perf_event_comm_ctx(ctx, comm_event); 4696 next: 4697 put_cpu_ptr(pmu->pmu_cpu_context); 4698 } 4699 rcu_read_unlock(); 4700 } 4701 4702 void perf_event_comm(struct task_struct *task) 4703 { 4704 struct perf_comm_event comm_event; 4705 struct perf_event_context *ctx; 4706 int ctxn; 4707 4708 for_each_task_context_nr(ctxn) { 4709 ctx = task->perf_event_ctxp[ctxn]; 4710 if (!ctx) 4711 continue; 4712 4713 perf_event_enable_on_exec(ctx); 4714 } 4715 4716 if (!atomic_read(&nr_comm_events)) 4717 return; 4718 4719 comm_event = (struct perf_comm_event){ 4720 .task = task, 4721 /* .comm */ 4722 /* .comm_size */ 4723 .event_id = { 4724 .header = { 4725 .type = PERF_RECORD_COMM, 4726 .misc = 0, 4727 /* .size */ 4728 }, 4729 /* .pid */ 4730 /* .tid */ 4731 }, 4732 }; 4733 4734 perf_event_comm_event(&comm_event); 4735 } 4736 4737 /* 4738 * mmap tracking 4739 */ 4740 4741 struct perf_mmap_event { 4742 struct vm_area_struct *vma; 4743 4744 const char *file_name; 4745 int file_size; 4746 4747 struct { 4748 struct perf_event_header header; 4749 4750 u32 pid; 4751 u32 tid; 4752 u64 start; 4753 u64 len; 4754 u64 pgoff; 4755 } event_id; 4756 }; 4757 4758 static void perf_event_mmap_output(struct perf_event *event, 4759 struct perf_mmap_event *mmap_event) 4760 { 4761 struct perf_output_handle handle; 4762 struct perf_sample_data sample; 4763 int size = mmap_event->event_id.header.size; 4764 int ret; 4765 4766 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4767 ret = perf_output_begin(&handle, event, 4768 mmap_event->event_id.header.size, 0, 0); 4769 if (ret) 4770 goto out; 4771 4772 mmap_event->event_id.pid = perf_event_pid(event, current); 4773 mmap_event->event_id.tid = perf_event_tid(event, current); 4774 4775 perf_output_put(&handle, mmap_event->event_id); 4776 perf_output_copy(&handle, mmap_event->file_name, 4777 mmap_event->file_size); 4778 4779 perf_event__output_id_sample(event, &handle, &sample); 4780 4781 perf_output_end(&handle); 4782 out: 4783 mmap_event->event_id.header.size = size; 4784 } 4785 4786 static int perf_event_mmap_match(struct perf_event *event, 4787 struct perf_mmap_event *mmap_event, 4788 int executable) 4789 { 4790 if (event->state < PERF_EVENT_STATE_INACTIVE) 4791 return 0; 4792 4793 if (!event_filter_match(event)) 4794 return 0; 4795 4796 if ((!executable && event->attr.mmap_data) || 4797 (executable && event->attr.mmap)) 4798 return 1; 4799 4800 return 0; 4801 } 4802 4803 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4804 struct perf_mmap_event *mmap_event, 4805 int executable) 4806 { 4807 struct perf_event *event; 4808 4809 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4810 if (perf_event_mmap_match(event, mmap_event, executable)) 4811 perf_event_mmap_output(event, mmap_event); 4812 } 4813 } 4814 4815 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4816 { 4817 struct perf_cpu_context *cpuctx; 4818 struct perf_event_context *ctx; 4819 struct vm_area_struct *vma = mmap_event->vma; 4820 struct file *file = vma->vm_file; 4821 unsigned int size; 4822 char tmp[16]; 4823 char *buf = NULL; 4824 const char *name; 4825 struct pmu *pmu; 4826 int ctxn; 4827 4828 memset(tmp, 0, sizeof(tmp)); 4829 4830 if (file) { 4831 /* 4832 * d_path works from the end of the buffer backwards, so we 4833 * need to add enough zero bytes after the string to handle 4834 * the 64bit alignment we do later. 4835 */ 4836 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4837 if (!buf) { 4838 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4839 goto got_name; 4840 } 4841 name = d_path(&file->f_path, buf, PATH_MAX); 4842 if (IS_ERR(name)) { 4843 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4844 goto got_name; 4845 } 4846 } else { 4847 if (arch_vma_name(mmap_event->vma)) { 4848 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4849 sizeof(tmp)); 4850 goto got_name; 4851 } 4852 4853 if (!vma->vm_mm) { 4854 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4855 goto got_name; 4856 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4857 vma->vm_end >= vma->vm_mm->brk) { 4858 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4859 goto got_name; 4860 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4861 vma->vm_end >= vma->vm_mm->start_stack) { 4862 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4863 goto got_name; 4864 } 4865 4866 name = strncpy(tmp, "//anon", sizeof(tmp)); 4867 goto got_name; 4868 } 4869 4870 got_name: 4871 size = ALIGN(strlen(name)+1, sizeof(u64)); 4872 4873 mmap_event->file_name = name; 4874 mmap_event->file_size = size; 4875 4876 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4877 4878 rcu_read_lock(); 4879 list_for_each_entry_rcu(pmu, &pmus, entry) { 4880 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4881 if (cpuctx->active_pmu != pmu) 4882 goto next; 4883 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4884 vma->vm_flags & VM_EXEC); 4885 4886 ctxn = pmu->task_ctx_nr; 4887 if (ctxn < 0) 4888 goto next; 4889 4890 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4891 if (ctx) { 4892 perf_event_mmap_ctx(ctx, mmap_event, 4893 vma->vm_flags & VM_EXEC); 4894 } 4895 next: 4896 put_cpu_ptr(pmu->pmu_cpu_context); 4897 } 4898 rcu_read_unlock(); 4899 4900 kfree(buf); 4901 } 4902 4903 void perf_event_mmap(struct vm_area_struct *vma) 4904 { 4905 struct perf_mmap_event mmap_event; 4906 4907 if (!atomic_read(&nr_mmap_events)) 4908 return; 4909 4910 mmap_event = (struct perf_mmap_event){ 4911 .vma = vma, 4912 /* .file_name */ 4913 /* .file_size */ 4914 .event_id = { 4915 .header = { 4916 .type = PERF_RECORD_MMAP, 4917 .misc = PERF_RECORD_MISC_USER, 4918 /* .size */ 4919 }, 4920 /* .pid */ 4921 /* .tid */ 4922 .start = vma->vm_start, 4923 .len = vma->vm_end - vma->vm_start, 4924 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4925 }, 4926 }; 4927 4928 perf_event_mmap_event(&mmap_event); 4929 } 4930 4931 /* 4932 * IRQ throttle logging 4933 */ 4934 4935 static void perf_log_throttle(struct perf_event *event, int enable) 4936 { 4937 struct perf_output_handle handle; 4938 struct perf_sample_data sample; 4939 int ret; 4940 4941 struct { 4942 struct perf_event_header header; 4943 u64 time; 4944 u64 id; 4945 u64 stream_id; 4946 } throttle_event = { 4947 .header = { 4948 .type = PERF_RECORD_THROTTLE, 4949 .misc = 0, 4950 .size = sizeof(throttle_event), 4951 }, 4952 .time = perf_clock(), 4953 .id = primary_event_id(event), 4954 .stream_id = event->id, 4955 }; 4956 4957 if (enable) 4958 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4959 4960 perf_event_header__init_id(&throttle_event.header, &sample, event); 4961 4962 ret = perf_output_begin(&handle, event, 4963 throttle_event.header.size, 1, 0); 4964 if (ret) 4965 return; 4966 4967 perf_output_put(&handle, throttle_event); 4968 perf_event__output_id_sample(event, &handle, &sample); 4969 perf_output_end(&handle); 4970 } 4971 4972 /* 4973 * Generic event overflow handling, sampling. 4974 */ 4975 4976 static int __perf_event_overflow(struct perf_event *event, int nmi, 4977 int throttle, struct perf_sample_data *data, 4978 struct pt_regs *regs) 4979 { 4980 int events = atomic_read(&event->event_limit); 4981 struct hw_perf_event *hwc = &event->hw; 4982 int ret = 0; 4983 4984 /* 4985 * Non-sampling counters might still use the PMI to fold short 4986 * hardware counters, ignore those. 4987 */ 4988 if (unlikely(!is_sampling_event(event))) 4989 return 0; 4990 4991 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4992 if (throttle) { 4993 hwc->interrupts = MAX_INTERRUPTS; 4994 perf_log_throttle(event, 0); 4995 ret = 1; 4996 } 4997 } else 4998 hwc->interrupts++; 4999 5000 if (event->attr.freq) { 5001 u64 now = perf_clock(); 5002 s64 delta = now - hwc->freq_time_stamp; 5003 5004 hwc->freq_time_stamp = now; 5005 5006 if (delta > 0 && delta < 2*TICK_NSEC) 5007 perf_adjust_period(event, delta, hwc->last_period); 5008 } 5009 5010 /* 5011 * XXX event_limit might not quite work as expected on inherited 5012 * events 5013 */ 5014 5015 event->pending_kill = POLL_IN; 5016 if (events && atomic_dec_and_test(&event->event_limit)) { 5017 ret = 1; 5018 event->pending_kill = POLL_HUP; 5019 if (nmi) { 5020 event->pending_disable = 1; 5021 irq_work_queue(&event->pending); 5022 } else 5023 perf_event_disable(event); 5024 } 5025 5026 if (event->overflow_handler) 5027 event->overflow_handler(event, nmi, data, regs); 5028 else 5029 perf_event_output(event, nmi, data, regs); 5030 5031 if (event->fasync && event->pending_kill) { 5032 if (nmi) { 5033 event->pending_wakeup = 1; 5034 irq_work_queue(&event->pending); 5035 } else 5036 perf_event_wakeup(event); 5037 } 5038 5039 return ret; 5040 } 5041 5042 int perf_event_overflow(struct perf_event *event, int nmi, 5043 struct perf_sample_data *data, 5044 struct pt_regs *regs) 5045 { 5046 return __perf_event_overflow(event, nmi, 1, data, regs); 5047 } 5048 5049 /* 5050 * Generic software event infrastructure 5051 */ 5052 5053 struct swevent_htable { 5054 struct swevent_hlist *swevent_hlist; 5055 struct mutex hlist_mutex; 5056 int hlist_refcount; 5057 5058 /* Recursion avoidance in each contexts */ 5059 int recursion[PERF_NR_CONTEXTS]; 5060 }; 5061 5062 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5063 5064 /* 5065 * We directly increment event->count and keep a second value in 5066 * event->hw.period_left to count intervals. This period event 5067 * is kept in the range [-sample_period, 0] so that we can use the 5068 * sign as trigger. 5069 */ 5070 5071 static u64 perf_swevent_set_period(struct perf_event *event) 5072 { 5073 struct hw_perf_event *hwc = &event->hw; 5074 u64 period = hwc->last_period; 5075 u64 nr, offset; 5076 s64 old, val; 5077 5078 hwc->last_period = hwc->sample_period; 5079 5080 again: 5081 old = val = local64_read(&hwc->period_left); 5082 if (val < 0) 5083 return 0; 5084 5085 nr = div64_u64(period + val, period); 5086 offset = nr * period; 5087 val -= offset; 5088 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5089 goto again; 5090 5091 return nr; 5092 } 5093 5094 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5095 int nmi, struct perf_sample_data *data, 5096 struct pt_regs *regs) 5097 { 5098 struct hw_perf_event *hwc = &event->hw; 5099 int throttle = 0; 5100 5101 data->period = event->hw.last_period; 5102 if (!overflow) 5103 overflow = perf_swevent_set_period(event); 5104 5105 if (hwc->interrupts == MAX_INTERRUPTS) 5106 return; 5107 5108 for (; overflow; overflow--) { 5109 if (__perf_event_overflow(event, nmi, throttle, 5110 data, regs)) { 5111 /* 5112 * We inhibit the overflow from happening when 5113 * hwc->interrupts == MAX_INTERRUPTS. 5114 */ 5115 break; 5116 } 5117 throttle = 1; 5118 } 5119 } 5120 5121 static void perf_swevent_event(struct perf_event *event, u64 nr, 5122 int nmi, struct perf_sample_data *data, 5123 struct pt_regs *regs) 5124 { 5125 struct hw_perf_event *hwc = &event->hw; 5126 5127 local64_add(nr, &event->count); 5128 5129 if (!regs) 5130 return; 5131 5132 if (!is_sampling_event(event)) 5133 return; 5134 5135 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5136 return perf_swevent_overflow(event, 1, nmi, data, regs); 5137 5138 if (local64_add_negative(nr, &hwc->period_left)) 5139 return; 5140 5141 perf_swevent_overflow(event, 0, nmi, data, regs); 5142 } 5143 5144 static int perf_exclude_event(struct perf_event *event, 5145 struct pt_regs *regs) 5146 { 5147 if (event->hw.state & PERF_HES_STOPPED) 5148 return 1; 5149 5150 if (regs) { 5151 if (event->attr.exclude_user && user_mode(regs)) 5152 return 1; 5153 5154 if (event->attr.exclude_kernel && !user_mode(regs)) 5155 return 1; 5156 } 5157 5158 return 0; 5159 } 5160 5161 static int perf_swevent_match(struct perf_event *event, 5162 enum perf_type_id type, 5163 u32 event_id, 5164 struct perf_sample_data *data, 5165 struct pt_regs *regs) 5166 { 5167 if (event->attr.type != type) 5168 return 0; 5169 5170 if (event->attr.config != event_id) 5171 return 0; 5172 5173 if (perf_exclude_event(event, regs)) 5174 return 0; 5175 5176 return 1; 5177 } 5178 5179 static inline u64 swevent_hash(u64 type, u32 event_id) 5180 { 5181 u64 val = event_id | (type << 32); 5182 5183 return hash_64(val, SWEVENT_HLIST_BITS); 5184 } 5185 5186 static inline struct hlist_head * 5187 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5188 { 5189 u64 hash = swevent_hash(type, event_id); 5190 5191 return &hlist->heads[hash]; 5192 } 5193 5194 /* For the read side: events when they trigger */ 5195 static inline struct hlist_head * 5196 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5197 { 5198 struct swevent_hlist *hlist; 5199 5200 hlist = rcu_dereference(swhash->swevent_hlist); 5201 if (!hlist) 5202 return NULL; 5203 5204 return __find_swevent_head(hlist, type, event_id); 5205 } 5206 5207 /* For the event head insertion and removal in the hlist */ 5208 static inline struct hlist_head * 5209 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5210 { 5211 struct swevent_hlist *hlist; 5212 u32 event_id = event->attr.config; 5213 u64 type = event->attr.type; 5214 5215 /* 5216 * Event scheduling is always serialized against hlist allocation 5217 * and release. Which makes the protected version suitable here. 5218 * The context lock guarantees that. 5219 */ 5220 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5221 lockdep_is_held(&event->ctx->lock)); 5222 if (!hlist) 5223 return NULL; 5224 5225 return __find_swevent_head(hlist, type, event_id); 5226 } 5227 5228 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5229 u64 nr, int nmi, 5230 struct perf_sample_data *data, 5231 struct pt_regs *regs) 5232 { 5233 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5234 struct perf_event *event; 5235 struct hlist_node *node; 5236 struct hlist_head *head; 5237 5238 rcu_read_lock(); 5239 head = find_swevent_head_rcu(swhash, type, event_id); 5240 if (!head) 5241 goto end; 5242 5243 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5244 if (perf_swevent_match(event, type, event_id, data, regs)) 5245 perf_swevent_event(event, nr, nmi, data, regs); 5246 } 5247 end: 5248 rcu_read_unlock(); 5249 } 5250 5251 int perf_swevent_get_recursion_context(void) 5252 { 5253 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5254 5255 return get_recursion_context(swhash->recursion); 5256 } 5257 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5258 5259 inline void perf_swevent_put_recursion_context(int rctx) 5260 { 5261 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5262 5263 put_recursion_context(swhash->recursion, rctx); 5264 } 5265 5266 void __perf_sw_event(u32 event_id, u64 nr, int nmi, 5267 struct pt_regs *regs, u64 addr) 5268 { 5269 struct perf_sample_data data; 5270 int rctx; 5271 5272 preempt_disable_notrace(); 5273 rctx = perf_swevent_get_recursion_context(); 5274 if (rctx < 0) 5275 return; 5276 5277 perf_sample_data_init(&data, addr); 5278 5279 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); 5280 5281 perf_swevent_put_recursion_context(rctx); 5282 preempt_enable_notrace(); 5283 } 5284 5285 static void perf_swevent_read(struct perf_event *event) 5286 { 5287 } 5288 5289 static int perf_swevent_add(struct perf_event *event, int flags) 5290 { 5291 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5292 struct hw_perf_event *hwc = &event->hw; 5293 struct hlist_head *head; 5294 5295 if (is_sampling_event(event)) { 5296 hwc->last_period = hwc->sample_period; 5297 perf_swevent_set_period(event); 5298 } 5299 5300 hwc->state = !(flags & PERF_EF_START); 5301 5302 head = find_swevent_head(swhash, event); 5303 if (WARN_ON_ONCE(!head)) 5304 return -EINVAL; 5305 5306 hlist_add_head_rcu(&event->hlist_entry, head); 5307 5308 return 0; 5309 } 5310 5311 static void perf_swevent_del(struct perf_event *event, int flags) 5312 { 5313 hlist_del_rcu(&event->hlist_entry); 5314 } 5315 5316 static void perf_swevent_start(struct perf_event *event, int flags) 5317 { 5318 event->hw.state = 0; 5319 } 5320 5321 static void perf_swevent_stop(struct perf_event *event, int flags) 5322 { 5323 event->hw.state = PERF_HES_STOPPED; 5324 } 5325 5326 /* Deref the hlist from the update side */ 5327 static inline struct swevent_hlist * 5328 swevent_hlist_deref(struct swevent_htable *swhash) 5329 { 5330 return rcu_dereference_protected(swhash->swevent_hlist, 5331 lockdep_is_held(&swhash->hlist_mutex)); 5332 } 5333 5334 static void swevent_hlist_release(struct swevent_htable *swhash) 5335 { 5336 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5337 5338 if (!hlist) 5339 return; 5340 5341 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5342 kfree_rcu(hlist, rcu_head); 5343 } 5344 5345 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5346 { 5347 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5348 5349 mutex_lock(&swhash->hlist_mutex); 5350 5351 if (!--swhash->hlist_refcount) 5352 swevent_hlist_release(swhash); 5353 5354 mutex_unlock(&swhash->hlist_mutex); 5355 } 5356 5357 static void swevent_hlist_put(struct perf_event *event) 5358 { 5359 int cpu; 5360 5361 if (event->cpu != -1) { 5362 swevent_hlist_put_cpu(event, event->cpu); 5363 return; 5364 } 5365 5366 for_each_possible_cpu(cpu) 5367 swevent_hlist_put_cpu(event, cpu); 5368 } 5369 5370 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5371 { 5372 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5373 int err = 0; 5374 5375 mutex_lock(&swhash->hlist_mutex); 5376 5377 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5378 struct swevent_hlist *hlist; 5379 5380 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5381 if (!hlist) { 5382 err = -ENOMEM; 5383 goto exit; 5384 } 5385 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5386 } 5387 swhash->hlist_refcount++; 5388 exit: 5389 mutex_unlock(&swhash->hlist_mutex); 5390 5391 return err; 5392 } 5393 5394 static int swevent_hlist_get(struct perf_event *event) 5395 { 5396 int err; 5397 int cpu, failed_cpu; 5398 5399 if (event->cpu != -1) 5400 return swevent_hlist_get_cpu(event, event->cpu); 5401 5402 get_online_cpus(); 5403 for_each_possible_cpu(cpu) { 5404 err = swevent_hlist_get_cpu(event, cpu); 5405 if (err) { 5406 failed_cpu = cpu; 5407 goto fail; 5408 } 5409 } 5410 put_online_cpus(); 5411 5412 return 0; 5413 fail: 5414 for_each_possible_cpu(cpu) { 5415 if (cpu == failed_cpu) 5416 break; 5417 swevent_hlist_put_cpu(event, cpu); 5418 } 5419 5420 put_online_cpus(); 5421 return err; 5422 } 5423 5424 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5425 5426 static void sw_perf_event_destroy(struct perf_event *event) 5427 { 5428 u64 event_id = event->attr.config; 5429 5430 WARN_ON(event->parent); 5431 5432 jump_label_dec(&perf_swevent_enabled[event_id]); 5433 swevent_hlist_put(event); 5434 } 5435 5436 static int perf_swevent_init(struct perf_event *event) 5437 { 5438 int event_id = event->attr.config; 5439 5440 if (event->attr.type != PERF_TYPE_SOFTWARE) 5441 return -ENOENT; 5442 5443 switch (event_id) { 5444 case PERF_COUNT_SW_CPU_CLOCK: 5445 case PERF_COUNT_SW_TASK_CLOCK: 5446 return -ENOENT; 5447 5448 default: 5449 break; 5450 } 5451 5452 if (event_id >= PERF_COUNT_SW_MAX) 5453 return -ENOENT; 5454 5455 if (!event->parent) { 5456 int err; 5457 5458 err = swevent_hlist_get(event); 5459 if (err) 5460 return err; 5461 5462 jump_label_inc(&perf_swevent_enabled[event_id]); 5463 event->destroy = sw_perf_event_destroy; 5464 } 5465 5466 return 0; 5467 } 5468 5469 static struct pmu perf_swevent = { 5470 .task_ctx_nr = perf_sw_context, 5471 5472 .event_init = perf_swevent_init, 5473 .add = perf_swevent_add, 5474 .del = perf_swevent_del, 5475 .start = perf_swevent_start, 5476 .stop = perf_swevent_stop, 5477 .read = perf_swevent_read, 5478 }; 5479 5480 #ifdef CONFIG_EVENT_TRACING 5481 5482 static int perf_tp_filter_match(struct perf_event *event, 5483 struct perf_sample_data *data) 5484 { 5485 void *record = data->raw->data; 5486 5487 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5488 return 1; 5489 return 0; 5490 } 5491 5492 static int perf_tp_event_match(struct perf_event *event, 5493 struct perf_sample_data *data, 5494 struct pt_regs *regs) 5495 { 5496 if (event->hw.state & PERF_HES_STOPPED) 5497 return 0; 5498 /* 5499 * All tracepoints are from kernel-space. 5500 */ 5501 if (event->attr.exclude_kernel) 5502 return 0; 5503 5504 if (!perf_tp_filter_match(event, data)) 5505 return 0; 5506 5507 return 1; 5508 } 5509 5510 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5511 struct pt_regs *regs, struct hlist_head *head, int rctx) 5512 { 5513 struct perf_sample_data data; 5514 struct perf_event *event; 5515 struct hlist_node *node; 5516 5517 struct perf_raw_record raw = { 5518 .size = entry_size, 5519 .data = record, 5520 }; 5521 5522 perf_sample_data_init(&data, addr); 5523 data.raw = &raw; 5524 5525 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5526 if (perf_tp_event_match(event, &data, regs)) 5527 perf_swevent_event(event, count, 1, &data, regs); 5528 } 5529 5530 perf_swevent_put_recursion_context(rctx); 5531 } 5532 EXPORT_SYMBOL_GPL(perf_tp_event); 5533 5534 static void tp_perf_event_destroy(struct perf_event *event) 5535 { 5536 perf_trace_destroy(event); 5537 } 5538 5539 static int perf_tp_event_init(struct perf_event *event) 5540 { 5541 int err; 5542 5543 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5544 return -ENOENT; 5545 5546 err = perf_trace_init(event); 5547 if (err) 5548 return err; 5549 5550 event->destroy = tp_perf_event_destroy; 5551 5552 return 0; 5553 } 5554 5555 static struct pmu perf_tracepoint = { 5556 .task_ctx_nr = perf_sw_context, 5557 5558 .event_init = perf_tp_event_init, 5559 .add = perf_trace_add, 5560 .del = perf_trace_del, 5561 .start = perf_swevent_start, 5562 .stop = perf_swevent_stop, 5563 .read = perf_swevent_read, 5564 }; 5565 5566 static inline void perf_tp_register(void) 5567 { 5568 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5569 } 5570 5571 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5572 { 5573 char *filter_str; 5574 int ret; 5575 5576 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5577 return -EINVAL; 5578 5579 filter_str = strndup_user(arg, PAGE_SIZE); 5580 if (IS_ERR(filter_str)) 5581 return PTR_ERR(filter_str); 5582 5583 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5584 5585 kfree(filter_str); 5586 return ret; 5587 } 5588 5589 static void perf_event_free_filter(struct perf_event *event) 5590 { 5591 ftrace_profile_free_filter(event); 5592 } 5593 5594 #else 5595 5596 static inline void perf_tp_register(void) 5597 { 5598 } 5599 5600 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5601 { 5602 return -ENOENT; 5603 } 5604 5605 static void perf_event_free_filter(struct perf_event *event) 5606 { 5607 } 5608 5609 #endif /* CONFIG_EVENT_TRACING */ 5610 5611 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5612 void perf_bp_event(struct perf_event *bp, void *data) 5613 { 5614 struct perf_sample_data sample; 5615 struct pt_regs *regs = data; 5616 5617 perf_sample_data_init(&sample, bp->attr.bp_addr); 5618 5619 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5620 perf_swevent_event(bp, 1, 1, &sample, regs); 5621 } 5622 #endif 5623 5624 /* 5625 * hrtimer based swevent callback 5626 */ 5627 5628 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5629 { 5630 enum hrtimer_restart ret = HRTIMER_RESTART; 5631 struct perf_sample_data data; 5632 struct pt_regs *regs; 5633 struct perf_event *event; 5634 u64 period; 5635 5636 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5637 5638 if (event->state != PERF_EVENT_STATE_ACTIVE) 5639 return HRTIMER_NORESTART; 5640 5641 event->pmu->read(event); 5642 5643 perf_sample_data_init(&data, 0); 5644 data.period = event->hw.last_period; 5645 regs = get_irq_regs(); 5646 5647 if (regs && !perf_exclude_event(event, regs)) { 5648 if (!(event->attr.exclude_idle && current->pid == 0)) 5649 if (perf_event_overflow(event, 0, &data, regs)) 5650 ret = HRTIMER_NORESTART; 5651 } 5652 5653 period = max_t(u64, 10000, event->hw.sample_period); 5654 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5655 5656 return ret; 5657 } 5658 5659 static void perf_swevent_start_hrtimer(struct perf_event *event) 5660 { 5661 struct hw_perf_event *hwc = &event->hw; 5662 s64 period; 5663 5664 if (!is_sampling_event(event)) 5665 return; 5666 5667 period = local64_read(&hwc->period_left); 5668 if (period) { 5669 if (period < 0) 5670 period = 10000; 5671 5672 local64_set(&hwc->period_left, 0); 5673 } else { 5674 period = max_t(u64, 10000, hwc->sample_period); 5675 } 5676 __hrtimer_start_range_ns(&hwc->hrtimer, 5677 ns_to_ktime(period), 0, 5678 HRTIMER_MODE_REL_PINNED, 0); 5679 } 5680 5681 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5682 { 5683 struct hw_perf_event *hwc = &event->hw; 5684 5685 if (is_sampling_event(event)) { 5686 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5687 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5688 5689 hrtimer_cancel(&hwc->hrtimer); 5690 } 5691 } 5692 5693 static void perf_swevent_init_hrtimer(struct perf_event *event) 5694 { 5695 struct hw_perf_event *hwc = &event->hw; 5696 5697 if (!is_sampling_event(event)) 5698 return; 5699 5700 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5701 hwc->hrtimer.function = perf_swevent_hrtimer; 5702 5703 /* 5704 * Since hrtimers have a fixed rate, we can do a static freq->period 5705 * mapping and avoid the whole period adjust feedback stuff. 5706 */ 5707 if (event->attr.freq) { 5708 long freq = event->attr.sample_freq; 5709 5710 event->attr.sample_period = NSEC_PER_SEC / freq; 5711 hwc->sample_period = event->attr.sample_period; 5712 local64_set(&hwc->period_left, hwc->sample_period); 5713 event->attr.freq = 0; 5714 } 5715 } 5716 5717 /* 5718 * Software event: cpu wall time clock 5719 */ 5720 5721 static void cpu_clock_event_update(struct perf_event *event) 5722 { 5723 s64 prev; 5724 u64 now; 5725 5726 now = local_clock(); 5727 prev = local64_xchg(&event->hw.prev_count, now); 5728 local64_add(now - prev, &event->count); 5729 } 5730 5731 static void cpu_clock_event_start(struct perf_event *event, int flags) 5732 { 5733 local64_set(&event->hw.prev_count, local_clock()); 5734 perf_swevent_start_hrtimer(event); 5735 } 5736 5737 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5738 { 5739 perf_swevent_cancel_hrtimer(event); 5740 cpu_clock_event_update(event); 5741 } 5742 5743 static int cpu_clock_event_add(struct perf_event *event, int flags) 5744 { 5745 if (flags & PERF_EF_START) 5746 cpu_clock_event_start(event, flags); 5747 5748 return 0; 5749 } 5750 5751 static void cpu_clock_event_del(struct perf_event *event, int flags) 5752 { 5753 cpu_clock_event_stop(event, flags); 5754 } 5755 5756 static void cpu_clock_event_read(struct perf_event *event) 5757 { 5758 cpu_clock_event_update(event); 5759 } 5760 5761 static int cpu_clock_event_init(struct perf_event *event) 5762 { 5763 if (event->attr.type != PERF_TYPE_SOFTWARE) 5764 return -ENOENT; 5765 5766 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5767 return -ENOENT; 5768 5769 perf_swevent_init_hrtimer(event); 5770 5771 return 0; 5772 } 5773 5774 static struct pmu perf_cpu_clock = { 5775 .task_ctx_nr = perf_sw_context, 5776 5777 .event_init = cpu_clock_event_init, 5778 .add = cpu_clock_event_add, 5779 .del = cpu_clock_event_del, 5780 .start = cpu_clock_event_start, 5781 .stop = cpu_clock_event_stop, 5782 .read = cpu_clock_event_read, 5783 }; 5784 5785 /* 5786 * Software event: task time clock 5787 */ 5788 5789 static void task_clock_event_update(struct perf_event *event, u64 now) 5790 { 5791 u64 prev; 5792 s64 delta; 5793 5794 prev = local64_xchg(&event->hw.prev_count, now); 5795 delta = now - prev; 5796 local64_add(delta, &event->count); 5797 } 5798 5799 static void task_clock_event_start(struct perf_event *event, int flags) 5800 { 5801 local64_set(&event->hw.prev_count, event->ctx->time); 5802 perf_swevent_start_hrtimer(event); 5803 } 5804 5805 static void task_clock_event_stop(struct perf_event *event, int flags) 5806 { 5807 perf_swevent_cancel_hrtimer(event); 5808 task_clock_event_update(event, event->ctx->time); 5809 } 5810 5811 static int task_clock_event_add(struct perf_event *event, int flags) 5812 { 5813 if (flags & PERF_EF_START) 5814 task_clock_event_start(event, flags); 5815 5816 return 0; 5817 } 5818 5819 static void task_clock_event_del(struct perf_event *event, int flags) 5820 { 5821 task_clock_event_stop(event, PERF_EF_UPDATE); 5822 } 5823 5824 static void task_clock_event_read(struct perf_event *event) 5825 { 5826 u64 now = perf_clock(); 5827 u64 delta = now - event->ctx->timestamp; 5828 u64 time = event->ctx->time + delta; 5829 5830 task_clock_event_update(event, time); 5831 } 5832 5833 static int task_clock_event_init(struct perf_event *event) 5834 { 5835 if (event->attr.type != PERF_TYPE_SOFTWARE) 5836 return -ENOENT; 5837 5838 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5839 return -ENOENT; 5840 5841 perf_swevent_init_hrtimer(event); 5842 5843 return 0; 5844 } 5845 5846 static struct pmu perf_task_clock = { 5847 .task_ctx_nr = perf_sw_context, 5848 5849 .event_init = task_clock_event_init, 5850 .add = task_clock_event_add, 5851 .del = task_clock_event_del, 5852 .start = task_clock_event_start, 5853 .stop = task_clock_event_stop, 5854 .read = task_clock_event_read, 5855 }; 5856 5857 static void perf_pmu_nop_void(struct pmu *pmu) 5858 { 5859 } 5860 5861 static int perf_pmu_nop_int(struct pmu *pmu) 5862 { 5863 return 0; 5864 } 5865 5866 static void perf_pmu_start_txn(struct pmu *pmu) 5867 { 5868 perf_pmu_disable(pmu); 5869 } 5870 5871 static int perf_pmu_commit_txn(struct pmu *pmu) 5872 { 5873 perf_pmu_enable(pmu); 5874 return 0; 5875 } 5876 5877 static void perf_pmu_cancel_txn(struct pmu *pmu) 5878 { 5879 perf_pmu_enable(pmu); 5880 } 5881 5882 /* 5883 * Ensures all contexts with the same task_ctx_nr have the same 5884 * pmu_cpu_context too. 5885 */ 5886 static void *find_pmu_context(int ctxn) 5887 { 5888 struct pmu *pmu; 5889 5890 if (ctxn < 0) 5891 return NULL; 5892 5893 list_for_each_entry(pmu, &pmus, entry) { 5894 if (pmu->task_ctx_nr == ctxn) 5895 return pmu->pmu_cpu_context; 5896 } 5897 5898 return NULL; 5899 } 5900 5901 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5902 { 5903 int cpu; 5904 5905 for_each_possible_cpu(cpu) { 5906 struct perf_cpu_context *cpuctx; 5907 5908 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5909 5910 if (cpuctx->active_pmu == old_pmu) 5911 cpuctx->active_pmu = pmu; 5912 } 5913 } 5914 5915 static void free_pmu_context(struct pmu *pmu) 5916 { 5917 struct pmu *i; 5918 5919 mutex_lock(&pmus_lock); 5920 /* 5921 * Like a real lame refcount. 5922 */ 5923 list_for_each_entry(i, &pmus, entry) { 5924 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5925 update_pmu_context(i, pmu); 5926 goto out; 5927 } 5928 } 5929 5930 free_percpu(pmu->pmu_cpu_context); 5931 out: 5932 mutex_unlock(&pmus_lock); 5933 } 5934 static struct idr pmu_idr; 5935 5936 static ssize_t 5937 type_show(struct device *dev, struct device_attribute *attr, char *page) 5938 { 5939 struct pmu *pmu = dev_get_drvdata(dev); 5940 5941 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5942 } 5943 5944 static struct device_attribute pmu_dev_attrs[] = { 5945 __ATTR_RO(type), 5946 __ATTR_NULL, 5947 }; 5948 5949 static int pmu_bus_running; 5950 static struct bus_type pmu_bus = { 5951 .name = "event_source", 5952 .dev_attrs = pmu_dev_attrs, 5953 }; 5954 5955 static void pmu_dev_release(struct device *dev) 5956 { 5957 kfree(dev); 5958 } 5959 5960 static int pmu_dev_alloc(struct pmu *pmu) 5961 { 5962 int ret = -ENOMEM; 5963 5964 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5965 if (!pmu->dev) 5966 goto out; 5967 5968 device_initialize(pmu->dev); 5969 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5970 if (ret) 5971 goto free_dev; 5972 5973 dev_set_drvdata(pmu->dev, pmu); 5974 pmu->dev->bus = &pmu_bus; 5975 pmu->dev->release = pmu_dev_release; 5976 ret = device_add(pmu->dev); 5977 if (ret) 5978 goto free_dev; 5979 5980 out: 5981 return ret; 5982 5983 free_dev: 5984 put_device(pmu->dev); 5985 goto out; 5986 } 5987 5988 static struct lock_class_key cpuctx_mutex; 5989 5990 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5991 { 5992 int cpu, ret; 5993 5994 mutex_lock(&pmus_lock); 5995 ret = -ENOMEM; 5996 pmu->pmu_disable_count = alloc_percpu(int); 5997 if (!pmu->pmu_disable_count) 5998 goto unlock; 5999 6000 pmu->type = -1; 6001 if (!name) 6002 goto skip_type; 6003 pmu->name = name; 6004 6005 if (type < 0) { 6006 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 6007 if (!err) 6008 goto free_pdc; 6009 6010 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 6011 if (err) { 6012 ret = err; 6013 goto free_pdc; 6014 } 6015 } 6016 pmu->type = type; 6017 6018 if (pmu_bus_running) { 6019 ret = pmu_dev_alloc(pmu); 6020 if (ret) 6021 goto free_idr; 6022 } 6023 6024 skip_type: 6025 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6026 if (pmu->pmu_cpu_context) 6027 goto got_cpu_context; 6028 6029 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6030 if (!pmu->pmu_cpu_context) 6031 goto free_dev; 6032 6033 for_each_possible_cpu(cpu) { 6034 struct perf_cpu_context *cpuctx; 6035 6036 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6037 __perf_event_init_context(&cpuctx->ctx); 6038 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6039 cpuctx->ctx.type = cpu_context; 6040 cpuctx->ctx.pmu = pmu; 6041 cpuctx->jiffies_interval = 1; 6042 INIT_LIST_HEAD(&cpuctx->rotation_list); 6043 cpuctx->active_pmu = pmu; 6044 } 6045 6046 got_cpu_context: 6047 if (!pmu->start_txn) { 6048 if (pmu->pmu_enable) { 6049 /* 6050 * If we have pmu_enable/pmu_disable calls, install 6051 * transaction stubs that use that to try and batch 6052 * hardware accesses. 6053 */ 6054 pmu->start_txn = perf_pmu_start_txn; 6055 pmu->commit_txn = perf_pmu_commit_txn; 6056 pmu->cancel_txn = perf_pmu_cancel_txn; 6057 } else { 6058 pmu->start_txn = perf_pmu_nop_void; 6059 pmu->commit_txn = perf_pmu_nop_int; 6060 pmu->cancel_txn = perf_pmu_nop_void; 6061 } 6062 } 6063 6064 if (!pmu->pmu_enable) { 6065 pmu->pmu_enable = perf_pmu_nop_void; 6066 pmu->pmu_disable = perf_pmu_nop_void; 6067 } 6068 6069 list_add_rcu(&pmu->entry, &pmus); 6070 ret = 0; 6071 unlock: 6072 mutex_unlock(&pmus_lock); 6073 6074 return ret; 6075 6076 free_dev: 6077 device_del(pmu->dev); 6078 put_device(pmu->dev); 6079 6080 free_idr: 6081 if (pmu->type >= PERF_TYPE_MAX) 6082 idr_remove(&pmu_idr, pmu->type); 6083 6084 free_pdc: 6085 free_percpu(pmu->pmu_disable_count); 6086 goto unlock; 6087 } 6088 6089 void perf_pmu_unregister(struct pmu *pmu) 6090 { 6091 mutex_lock(&pmus_lock); 6092 list_del_rcu(&pmu->entry); 6093 mutex_unlock(&pmus_lock); 6094 6095 /* 6096 * We dereference the pmu list under both SRCU and regular RCU, so 6097 * synchronize against both of those. 6098 */ 6099 synchronize_srcu(&pmus_srcu); 6100 synchronize_rcu(); 6101 6102 free_percpu(pmu->pmu_disable_count); 6103 if (pmu->type >= PERF_TYPE_MAX) 6104 idr_remove(&pmu_idr, pmu->type); 6105 device_del(pmu->dev); 6106 put_device(pmu->dev); 6107 free_pmu_context(pmu); 6108 } 6109 6110 struct pmu *perf_init_event(struct perf_event *event) 6111 { 6112 struct pmu *pmu = NULL; 6113 int idx; 6114 int ret; 6115 6116 idx = srcu_read_lock(&pmus_srcu); 6117 6118 rcu_read_lock(); 6119 pmu = idr_find(&pmu_idr, event->attr.type); 6120 rcu_read_unlock(); 6121 if (pmu) { 6122 ret = pmu->event_init(event); 6123 if (ret) 6124 pmu = ERR_PTR(ret); 6125 goto unlock; 6126 } 6127 6128 list_for_each_entry_rcu(pmu, &pmus, entry) { 6129 ret = pmu->event_init(event); 6130 if (!ret) 6131 goto unlock; 6132 6133 if (ret != -ENOENT) { 6134 pmu = ERR_PTR(ret); 6135 goto unlock; 6136 } 6137 } 6138 pmu = ERR_PTR(-ENOENT); 6139 unlock: 6140 srcu_read_unlock(&pmus_srcu, idx); 6141 6142 return pmu; 6143 } 6144 6145 /* 6146 * Allocate and initialize a event structure 6147 */ 6148 static struct perf_event * 6149 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6150 struct task_struct *task, 6151 struct perf_event *group_leader, 6152 struct perf_event *parent_event, 6153 perf_overflow_handler_t overflow_handler) 6154 { 6155 struct pmu *pmu; 6156 struct perf_event *event; 6157 struct hw_perf_event *hwc; 6158 long err; 6159 6160 if ((unsigned)cpu >= nr_cpu_ids) { 6161 if (!task || cpu != -1) 6162 return ERR_PTR(-EINVAL); 6163 } 6164 6165 event = kzalloc(sizeof(*event), GFP_KERNEL); 6166 if (!event) 6167 return ERR_PTR(-ENOMEM); 6168 6169 /* 6170 * Single events are their own group leaders, with an 6171 * empty sibling list: 6172 */ 6173 if (!group_leader) 6174 group_leader = event; 6175 6176 mutex_init(&event->child_mutex); 6177 INIT_LIST_HEAD(&event->child_list); 6178 6179 INIT_LIST_HEAD(&event->group_entry); 6180 INIT_LIST_HEAD(&event->event_entry); 6181 INIT_LIST_HEAD(&event->sibling_list); 6182 init_waitqueue_head(&event->waitq); 6183 init_irq_work(&event->pending, perf_pending_event); 6184 6185 mutex_init(&event->mmap_mutex); 6186 6187 event->cpu = cpu; 6188 event->attr = *attr; 6189 event->group_leader = group_leader; 6190 event->pmu = NULL; 6191 event->oncpu = -1; 6192 6193 event->parent = parent_event; 6194 6195 event->ns = get_pid_ns(current->nsproxy->pid_ns); 6196 event->id = atomic64_inc_return(&perf_event_id); 6197 6198 event->state = PERF_EVENT_STATE_INACTIVE; 6199 6200 if (task) { 6201 event->attach_state = PERF_ATTACH_TASK; 6202 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6203 /* 6204 * hw_breakpoint is a bit difficult here.. 6205 */ 6206 if (attr->type == PERF_TYPE_BREAKPOINT) 6207 event->hw.bp_target = task; 6208 #endif 6209 } 6210 6211 if (!overflow_handler && parent_event) 6212 overflow_handler = parent_event->overflow_handler; 6213 6214 event->overflow_handler = overflow_handler; 6215 6216 if (attr->disabled) 6217 event->state = PERF_EVENT_STATE_OFF; 6218 6219 pmu = NULL; 6220 6221 hwc = &event->hw; 6222 hwc->sample_period = attr->sample_period; 6223 if (attr->freq && attr->sample_freq) 6224 hwc->sample_period = 1; 6225 hwc->last_period = hwc->sample_period; 6226 6227 local64_set(&hwc->period_left, hwc->sample_period); 6228 6229 /* 6230 * we currently do not support PERF_FORMAT_GROUP on inherited events 6231 */ 6232 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6233 goto done; 6234 6235 pmu = perf_init_event(event); 6236 6237 done: 6238 err = 0; 6239 if (!pmu) 6240 err = -EINVAL; 6241 else if (IS_ERR(pmu)) 6242 err = PTR_ERR(pmu); 6243 6244 if (err) { 6245 if (event->ns) 6246 put_pid_ns(event->ns); 6247 kfree(event); 6248 return ERR_PTR(err); 6249 } 6250 6251 event->pmu = pmu; 6252 6253 if (!event->parent) { 6254 if (event->attach_state & PERF_ATTACH_TASK) 6255 jump_label_inc(&perf_sched_events); 6256 if (event->attr.mmap || event->attr.mmap_data) 6257 atomic_inc(&nr_mmap_events); 6258 if (event->attr.comm) 6259 atomic_inc(&nr_comm_events); 6260 if (event->attr.task) 6261 atomic_inc(&nr_task_events); 6262 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6263 err = get_callchain_buffers(); 6264 if (err) { 6265 free_event(event); 6266 return ERR_PTR(err); 6267 } 6268 } 6269 } 6270 6271 return event; 6272 } 6273 6274 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6275 struct perf_event_attr *attr) 6276 { 6277 u32 size; 6278 int ret; 6279 6280 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6281 return -EFAULT; 6282 6283 /* 6284 * zero the full structure, so that a short copy will be nice. 6285 */ 6286 memset(attr, 0, sizeof(*attr)); 6287 6288 ret = get_user(size, &uattr->size); 6289 if (ret) 6290 return ret; 6291 6292 if (size > PAGE_SIZE) /* silly large */ 6293 goto err_size; 6294 6295 if (!size) /* abi compat */ 6296 size = PERF_ATTR_SIZE_VER0; 6297 6298 if (size < PERF_ATTR_SIZE_VER0) 6299 goto err_size; 6300 6301 /* 6302 * If we're handed a bigger struct than we know of, 6303 * ensure all the unknown bits are 0 - i.e. new 6304 * user-space does not rely on any kernel feature 6305 * extensions we dont know about yet. 6306 */ 6307 if (size > sizeof(*attr)) { 6308 unsigned char __user *addr; 6309 unsigned char __user *end; 6310 unsigned char val; 6311 6312 addr = (void __user *)uattr + sizeof(*attr); 6313 end = (void __user *)uattr + size; 6314 6315 for (; addr < end; addr++) { 6316 ret = get_user(val, addr); 6317 if (ret) 6318 return ret; 6319 if (val) 6320 goto err_size; 6321 } 6322 size = sizeof(*attr); 6323 } 6324 6325 ret = copy_from_user(attr, uattr, size); 6326 if (ret) 6327 return -EFAULT; 6328 6329 /* 6330 * If the type exists, the corresponding creation will verify 6331 * the attr->config. 6332 */ 6333 if (attr->type >= PERF_TYPE_MAX) 6334 return -EINVAL; 6335 6336 if (attr->__reserved_1) 6337 return -EINVAL; 6338 6339 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6340 return -EINVAL; 6341 6342 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6343 return -EINVAL; 6344 6345 out: 6346 return ret; 6347 6348 err_size: 6349 put_user(sizeof(*attr), &uattr->size); 6350 ret = -E2BIG; 6351 goto out; 6352 } 6353 6354 static int 6355 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6356 { 6357 struct perf_buffer *buffer = NULL, *old_buffer = NULL; 6358 int ret = -EINVAL; 6359 6360 if (!output_event) 6361 goto set; 6362 6363 /* don't allow circular references */ 6364 if (event == output_event) 6365 goto out; 6366 6367 /* 6368 * Don't allow cross-cpu buffers 6369 */ 6370 if (output_event->cpu != event->cpu) 6371 goto out; 6372 6373 /* 6374 * If its not a per-cpu buffer, it must be the same task. 6375 */ 6376 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6377 goto out; 6378 6379 set: 6380 mutex_lock(&event->mmap_mutex); 6381 /* Can't redirect output if we've got an active mmap() */ 6382 if (atomic_read(&event->mmap_count)) 6383 goto unlock; 6384 6385 if (output_event) { 6386 /* get the buffer we want to redirect to */ 6387 buffer = perf_buffer_get(output_event); 6388 if (!buffer) 6389 goto unlock; 6390 } 6391 6392 old_buffer = event->buffer; 6393 rcu_assign_pointer(event->buffer, buffer); 6394 ret = 0; 6395 unlock: 6396 mutex_unlock(&event->mmap_mutex); 6397 6398 if (old_buffer) 6399 perf_buffer_put(old_buffer); 6400 out: 6401 return ret; 6402 } 6403 6404 /** 6405 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6406 * 6407 * @attr_uptr: event_id type attributes for monitoring/sampling 6408 * @pid: target pid 6409 * @cpu: target cpu 6410 * @group_fd: group leader event fd 6411 */ 6412 SYSCALL_DEFINE5(perf_event_open, 6413 struct perf_event_attr __user *, attr_uptr, 6414 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6415 { 6416 struct perf_event *group_leader = NULL, *output_event = NULL; 6417 struct perf_event *event, *sibling; 6418 struct perf_event_attr attr; 6419 struct perf_event_context *ctx; 6420 struct file *event_file = NULL; 6421 struct file *group_file = NULL; 6422 struct task_struct *task = NULL; 6423 struct pmu *pmu; 6424 int event_fd; 6425 int move_group = 0; 6426 int fput_needed = 0; 6427 int err; 6428 6429 /* for future expandability... */ 6430 if (flags & ~PERF_FLAG_ALL) 6431 return -EINVAL; 6432 6433 err = perf_copy_attr(attr_uptr, &attr); 6434 if (err) 6435 return err; 6436 6437 if (!attr.exclude_kernel) { 6438 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6439 return -EACCES; 6440 } 6441 6442 if (attr.freq) { 6443 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6444 return -EINVAL; 6445 } 6446 6447 /* 6448 * In cgroup mode, the pid argument is used to pass the fd 6449 * opened to the cgroup directory in cgroupfs. The cpu argument 6450 * designates the cpu on which to monitor threads from that 6451 * cgroup. 6452 */ 6453 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6454 return -EINVAL; 6455 6456 event_fd = get_unused_fd_flags(O_RDWR); 6457 if (event_fd < 0) 6458 return event_fd; 6459 6460 if (group_fd != -1) { 6461 group_leader = perf_fget_light(group_fd, &fput_needed); 6462 if (IS_ERR(group_leader)) { 6463 err = PTR_ERR(group_leader); 6464 goto err_fd; 6465 } 6466 group_file = group_leader->filp; 6467 if (flags & PERF_FLAG_FD_OUTPUT) 6468 output_event = group_leader; 6469 if (flags & PERF_FLAG_FD_NO_GROUP) 6470 group_leader = NULL; 6471 } 6472 6473 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6474 task = find_lively_task_by_vpid(pid); 6475 if (IS_ERR(task)) { 6476 err = PTR_ERR(task); 6477 goto err_group_fd; 6478 } 6479 } 6480 6481 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL); 6482 if (IS_ERR(event)) { 6483 err = PTR_ERR(event); 6484 goto err_task; 6485 } 6486 6487 if (flags & PERF_FLAG_PID_CGROUP) { 6488 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6489 if (err) 6490 goto err_alloc; 6491 /* 6492 * one more event: 6493 * - that has cgroup constraint on event->cpu 6494 * - that may need work on context switch 6495 */ 6496 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6497 jump_label_inc(&perf_sched_events); 6498 } 6499 6500 /* 6501 * Special case software events and allow them to be part of 6502 * any hardware group. 6503 */ 6504 pmu = event->pmu; 6505 6506 if (group_leader && 6507 (is_software_event(event) != is_software_event(group_leader))) { 6508 if (is_software_event(event)) { 6509 /* 6510 * If event and group_leader are not both a software 6511 * event, and event is, then group leader is not. 6512 * 6513 * Allow the addition of software events to !software 6514 * groups, this is safe because software events never 6515 * fail to schedule. 6516 */ 6517 pmu = group_leader->pmu; 6518 } else if (is_software_event(group_leader) && 6519 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6520 /* 6521 * In case the group is a pure software group, and we 6522 * try to add a hardware event, move the whole group to 6523 * the hardware context. 6524 */ 6525 move_group = 1; 6526 } 6527 } 6528 6529 /* 6530 * Get the target context (task or percpu): 6531 */ 6532 ctx = find_get_context(pmu, task, cpu); 6533 if (IS_ERR(ctx)) { 6534 err = PTR_ERR(ctx); 6535 goto err_alloc; 6536 } 6537 6538 if (task) { 6539 put_task_struct(task); 6540 task = NULL; 6541 } 6542 6543 /* 6544 * Look up the group leader (we will attach this event to it): 6545 */ 6546 if (group_leader) { 6547 err = -EINVAL; 6548 6549 /* 6550 * Do not allow a recursive hierarchy (this new sibling 6551 * becoming part of another group-sibling): 6552 */ 6553 if (group_leader->group_leader != group_leader) 6554 goto err_context; 6555 /* 6556 * Do not allow to attach to a group in a different 6557 * task or CPU context: 6558 */ 6559 if (move_group) { 6560 if (group_leader->ctx->type != ctx->type) 6561 goto err_context; 6562 } else { 6563 if (group_leader->ctx != ctx) 6564 goto err_context; 6565 } 6566 6567 /* 6568 * Only a group leader can be exclusive or pinned 6569 */ 6570 if (attr.exclusive || attr.pinned) 6571 goto err_context; 6572 } 6573 6574 if (output_event) { 6575 err = perf_event_set_output(event, output_event); 6576 if (err) 6577 goto err_context; 6578 } 6579 6580 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6581 if (IS_ERR(event_file)) { 6582 err = PTR_ERR(event_file); 6583 goto err_context; 6584 } 6585 6586 if (move_group) { 6587 struct perf_event_context *gctx = group_leader->ctx; 6588 6589 mutex_lock(&gctx->mutex); 6590 perf_remove_from_context(group_leader); 6591 list_for_each_entry(sibling, &group_leader->sibling_list, 6592 group_entry) { 6593 perf_remove_from_context(sibling); 6594 put_ctx(gctx); 6595 } 6596 mutex_unlock(&gctx->mutex); 6597 put_ctx(gctx); 6598 } 6599 6600 event->filp = event_file; 6601 WARN_ON_ONCE(ctx->parent_ctx); 6602 mutex_lock(&ctx->mutex); 6603 6604 if (move_group) { 6605 perf_install_in_context(ctx, group_leader, cpu); 6606 get_ctx(ctx); 6607 list_for_each_entry(sibling, &group_leader->sibling_list, 6608 group_entry) { 6609 perf_install_in_context(ctx, sibling, cpu); 6610 get_ctx(ctx); 6611 } 6612 } 6613 6614 perf_install_in_context(ctx, event, cpu); 6615 ++ctx->generation; 6616 perf_unpin_context(ctx); 6617 mutex_unlock(&ctx->mutex); 6618 6619 event->owner = current; 6620 6621 mutex_lock(¤t->perf_event_mutex); 6622 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6623 mutex_unlock(¤t->perf_event_mutex); 6624 6625 /* 6626 * Precalculate sample_data sizes 6627 */ 6628 perf_event__header_size(event); 6629 perf_event__id_header_size(event); 6630 6631 /* 6632 * Drop the reference on the group_event after placing the 6633 * new event on the sibling_list. This ensures destruction 6634 * of the group leader will find the pointer to itself in 6635 * perf_group_detach(). 6636 */ 6637 fput_light(group_file, fput_needed); 6638 fd_install(event_fd, event_file); 6639 return event_fd; 6640 6641 err_context: 6642 perf_unpin_context(ctx); 6643 put_ctx(ctx); 6644 err_alloc: 6645 free_event(event); 6646 err_task: 6647 if (task) 6648 put_task_struct(task); 6649 err_group_fd: 6650 fput_light(group_file, fput_needed); 6651 err_fd: 6652 put_unused_fd(event_fd); 6653 return err; 6654 } 6655 6656 /** 6657 * perf_event_create_kernel_counter 6658 * 6659 * @attr: attributes of the counter to create 6660 * @cpu: cpu in which the counter is bound 6661 * @task: task to profile (NULL for percpu) 6662 */ 6663 struct perf_event * 6664 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6665 struct task_struct *task, 6666 perf_overflow_handler_t overflow_handler) 6667 { 6668 struct perf_event_context *ctx; 6669 struct perf_event *event; 6670 int err; 6671 6672 /* 6673 * Get the target context (task or percpu): 6674 */ 6675 6676 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler); 6677 if (IS_ERR(event)) { 6678 err = PTR_ERR(event); 6679 goto err; 6680 } 6681 6682 ctx = find_get_context(event->pmu, task, cpu); 6683 if (IS_ERR(ctx)) { 6684 err = PTR_ERR(ctx); 6685 goto err_free; 6686 } 6687 6688 event->filp = NULL; 6689 WARN_ON_ONCE(ctx->parent_ctx); 6690 mutex_lock(&ctx->mutex); 6691 perf_install_in_context(ctx, event, cpu); 6692 ++ctx->generation; 6693 perf_unpin_context(ctx); 6694 mutex_unlock(&ctx->mutex); 6695 6696 return event; 6697 6698 err_free: 6699 free_event(event); 6700 err: 6701 return ERR_PTR(err); 6702 } 6703 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6704 6705 static void sync_child_event(struct perf_event *child_event, 6706 struct task_struct *child) 6707 { 6708 struct perf_event *parent_event = child_event->parent; 6709 u64 child_val; 6710 6711 if (child_event->attr.inherit_stat) 6712 perf_event_read_event(child_event, child); 6713 6714 child_val = perf_event_count(child_event); 6715 6716 /* 6717 * Add back the child's count to the parent's count: 6718 */ 6719 atomic64_add(child_val, &parent_event->child_count); 6720 atomic64_add(child_event->total_time_enabled, 6721 &parent_event->child_total_time_enabled); 6722 atomic64_add(child_event->total_time_running, 6723 &parent_event->child_total_time_running); 6724 6725 /* 6726 * Remove this event from the parent's list 6727 */ 6728 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6729 mutex_lock(&parent_event->child_mutex); 6730 list_del_init(&child_event->child_list); 6731 mutex_unlock(&parent_event->child_mutex); 6732 6733 /* 6734 * Release the parent event, if this was the last 6735 * reference to it. 6736 */ 6737 fput(parent_event->filp); 6738 } 6739 6740 static void 6741 __perf_event_exit_task(struct perf_event *child_event, 6742 struct perf_event_context *child_ctx, 6743 struct task_struct *child) 6744 { 6745 if (child_event->parent) { 6746 raw_spin_lock_irq(&child_ctx->lock); 6747 perf_group_detach(child_event); 6748 raw_spin_unlock_irq(&child_ctx->lock); 6749 } 6750 6751 perf_remove_from_context(child_event); 6752 6753 /* 6754 * It can happen that the parent exits first, and has events 6755 * that are still around due to the child reference. These 6756 * events need to be zapped. 6757 */ 6758 if (child_event->parent) { 6759 sync_child_event(child_event, child); 6760 free_event(child_event); 6761 } 6762 } 6763 6764 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6765 { 6766 struct perf_event *child_event, *tmp; 6767 struct perf_event_context *child_ctx; 6768 unsigned long flags; 6769 6770 if (likely(!child->perf_event_ctxp[ctxn])) { 6771 perf_event_task(child, NULL, 0); 6772 return; 6773 } 6774 6775 local_irq_save(flags); 6776 /* 6777 * We can't reschedule here because interrupts are disabled, 6778 * and either child is current or it is a task that can't be 6779 * scheduled, so we are now safe from rescheduling changing 6780 * our context. 6781 */ 6782 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6783 task_ctx_sched_out(child_ctx, EVENT_ALL); 6784 6785 /* 6786 * Take the context lock here so that if find_get_context is 6787 * reading child->perf_event_ctxp, we wait until it has 6788 * incremented the context's refcount before we do put_ctx below. 6789 */ 6790 raw_spin_lock(&child_ctx->lock); 6791 child->perf_event_ctxp[ctxn] = NULL; 6792 /* 6793 * If this context is a clone; unclone it so it can't get 6794 * swapped to another process while we're removing all 6795 * the events from it. 6796 */ 6797 unclone_ctx(child_ctx); 6798 update_context_time(child_ctx); 6799 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6800 6801 /* 6802 * Report the task dead after unscheduling the events so that we 6803 * won't get any samples after PERF_RECORD_EXIT. We can however still 6804 * get a few PERF_RECORD_READ events. 6805 */ 6806 perf_event_task(child, child_ctx, 0); 6807 6808 /* 6809 * We can recurse on the same lock type through: 6810 * 6811 * __perf_event_exit_task() 6812 * sync_child_event() 6813 * fput(parent_event->filp) 6814 * perf_release() 6815 * mutex_lock(&ctx->mutex) 6816 * 6817 * But since its the parent context it won't be the same instance. 6818 */ 6819 mutex_lock(&child_ctx->mutex); 6820 6821 again: 6822 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6823 group_entry) 6824 __perf_event_exit_task(child_event, child_ctx, child); 6825 6826 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6827 group_entry) 6828 __perf_event_exit_task(child_event, child_ctx, child); 6829 6830 /* 6831 * If the last event was a group event, it will have appended all 6832 * its siblings to the list, but we obtained 'tmp' before that which 6833 * will still point to the list head terminating the iteration. 6834 */ 6835 if (!list_empty(&child_ctx->pinned_groups) || 6836 !list_empty(&child_ctx->flexible_groups)) 6837 goto again; 6838 6839 mutex_unlock(&child_ctx->mutex); 6840 6841 put_ctx(child_ctx); 6842 } 6843 6844 /* 6845 * When a child task exits, feed back event values to parent events. 6846 */ 6847 void perf_event_exit_task(struct task_struct *child) 6848 { 6849 struct perf_event *event, *tmp; 6850 int ctxn; 6851 6852 mutex_lock(&child->perf_event_mutex); 6853 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6854 owner_entry) { 6855 list_del_init(&event->owner_entry); 6856 6857 /* 6858 * Ensure the list deletion is visible before we clear 6859 * the owner, closes a race against perf_release() where 6860 * we need to serialize on the owner->perf_event_mutex. 6861 */ 6862 smp_wmb(); 6863 event->owner = NULL; 6864 } 6865 mutex_unlock(&child->perf_event_mutex); 6866 6867 for_each_task_context_nr(ctxn) 6868 perf_event_exit_task_context(child, ctxn); 6869 } 6870 6871 static void perf_free_event(struct perf_event *event, 6872 struct perf_event_context *ctx) 6873 { 6874 struct perf_event *parent = event->parent; 6875 6876 if (WARN_ON_ONCE(!parent)) 6877 return; 6878 6879 mutex_lock(&parent->child_mutex); 6880 list_del_init(&event->child_list); 6881 mutex_unlock(&parent->child_mutex); 6882 6883 fput(parent->filp); 6884 6885 perf_group_detach(event); 6886 list_del_event(event, ctx); 6887 free_event(event); 6888 } 6889 6890 /* 6891 * free an unexposed, unused context as created by inheritance by 6892 * perf_event_init_task below, used by fork() in case of fail. 6893 */ 6894 void perf_event_free_task(struct task_struct *task) 6895 { 6896 struct perf_event_context *ctx; 6897 struct perf_event *event, *tmp; 6898 int ctxn; 6899 6900 for_each_task_context_nr(ctxn) { 6901 ctx = task->perf_event_ctxp[ctxn]; 6902 if (!ctx) 6903 continue; 6904 6905 mutex_lock(&ctx->mutex); 6906 again: 6907 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6908 group_entry) 6909 perf_free_event(event, ctx); 6910 6911 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6912 group_entry) 6913 perf_free_event(event, ctx); 6914 6915 if (!list_empty(&ctx->pinned_groups) || 6916 !list_empty(&ctx->flexible_groups)) 6917 goto again; 6918 6919 mutex_unlock(&ctx->mutex); 6920 6921 put_ctx(ctx); 6922 } 6923 } 6924 6925 void perf_event_delayed_put(struct task_struct *task) 6926 { 6927 int ctxn; 6928 6929 for_each_task_context_nr(ctxn) 6930 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6931 } 6932 6933 /* 6934 * inherit a event from parent task to child task: 6935 */ 6936 static struct perf_event * 6937 inherit_event(struct perf_event *parent_event, 6938 struct task_struct *parent, 6939 struct perf_event_context *parent_ctx, 6940 struct task_struct *child, 6941 struct perf_event *group_leader, 6942 struct perf_event_context *child_ctx) 6943 { 6944 struct perf_event *child_event; 6945 unsigned long flags; 6946 6947 /* 6948 * Instead of creating recursive hierarchies of events, 6949 * we link inherited events back to the original parent, 6950 * which has a filp for sure, which we use as the reference 6951 * count: 6952 */ 6953 if (parent_event->parent) 6954 parent_event = parent_event->parent; 6955 6956 child_event = perf_event_alloc(&parent_event->attr, 6957 parent_event->cpu, 6958 child, 6959 group_leader, parent_event, 6960 NULL); 6961 if (IS_ERR(child_event)) 6962 return child_event; 6963 get_ctx(child_ctx); 6964 6965 /* 6966 * Make the child state follow the state of the parent event, 6967 * not its attr.disabled bit. We hold the parent's mutex, 6968 * so we won't race with perf_event_{en, dis}able_family. 6969 */ 6970 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6971 child_event->state = PERF_EVENT_STATE_INACTIVE; 6972 else 6973 child_event->state = PERF_EVENT_STATE_OFF; 6974 6975 if (parent_event->attr.freq) { 6976 u64 sample_period = parent_event->hw.sample_period; 6977 struct hw_perf_event *hwc = &child_event->hw; 6978 6979 hwc->sample_period = sample_period; 6980 hwc->last_period = sample_period; 6981 6982 local64_set(&hwc->period_left, sample_period); 6983 } 6984 6985 child_event->ctx = child_ctx; 6986 child_event->overflow_handler = parent_event->overflow_handler; 6987 6988 /* 6989 * Precalculate sample_data sizes 6990 */ 6991 perf_event__header_size(child_event); 6992 perf_event__id_header_size(child_event); 6993 6994 /* 6995 * Link it up in the child's context: 6996 */ 6997 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6998 add_event_to_ctx(child_event, child_ctx); 6999 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7000 7001 /* 7002 * Get a reference to the parent filp - we will fput it 7003 * when the child event exits. This is safe to do because 7004 * we are in the parent and we know that the filp still 7005 * exists and has a nonzero count: 7006 */ 7007 atomic_long_inc(&parent_event->filp->f_count); 7008 7009 /* 7010 * Link this into the parent event's child list 7011 */ 7012 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7013 mutex_lock(&parent_event->child_mutex); 7014 list_add_tail(&child_event->child_list, &parent_event->child_list); 7015 mutex_unlock(&parent_event->child_mutex); 7016 7017 return child_event; 7018 } 7019 7020 static int inherit_group(struct perf_event *parent_event, 7021 struct task_struct *parent, 7022 struct perf_event_context *parent_ctx, 7023 struct task_struct *child, 7024 struct perf_event_context *child_ctx) 7025 { 7026 struct perf_event *leader; 7027 struct perf_event *sub; 7028 struct perf_event *child_ctr; 7029 7030 leader = inherit_event(parent_event, parent, parent_ctx, 7031 child, NULL, child_ctx); 7032 if (IS_ERR(leader)) 7033 return PTR_ERR(leader); 7034 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7035 child_ctr = inherit_event(sub, parent, parent_ctx, 7036 child, leader, child_ctx); 7037 if (IS_ERR(child_ctr)) 7038 return PTR_ERR(child_ctr); 7039 } 7040 return 0; 7041 } 7042 7043 static int 7044 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7045 struct perf_event_context *parent_ctx, 7046 struct task_struct *child, int ctxn, 7047 int *inherited_all) 7048 { 7049 int ret; 7050 struct perf_event_context *child_ctx; 7051 7052 if (!event->attr.inherit) { 7053 *inherited_all = 0; 7054 return 0; 7055 } 7056 7057 child_ctx = child->perf_event_ctxp[ctxn]; 7058 if (!child_ctx) { 7059 /* 7060 * This is executed from the parent task context, so 7061 * inherit events that have been marked for cloning. 7062 * First allocate and initialize a context for the 7063 * child. 7064 */ 7065 7066 child_ctx = alloc_perf_context(event->pmu, child); 7067 if (!child_ctx) 7068 return -ENOMEM; 7069 7070 child->perf_event_ctxp[ctxn] = child_ctx; 7071 } 7072 7073 ret = inherit_group(event, parent, parent_ctx, 7074 child, child_ctx); 7075 7076 if (ret) 7077 *inherited_all = 0; 7078 7079 return ret; 7080 } 7081 7082 /* 7083 * Initialize the perf_event context in task_struct 7084 */ 7085 int perf_event_init_context(struct task_struct *child, int ctxn) 7086 { 7087 struct perf_event_context *child_ctx, *parent_ctx; 7088 struct perf_event_context *cloned_ctx; 7089 struct perf_event *event; 7090 struct task_struct *parent = current; 7091 int inherited_all = 1; 7092 unsigned long flags; 7093 int ret = 0; 7094 7095 if (likely(!parent->perf_event_ctxp[ctxn])) 7096 return 0; 7097 7098 /* 7099 * If the parent's context is a clone, pin it so it won't get 7100 * swapped under us. 7101 */ 7102 parent_ctx = perf_pin_task_context(parent, ctxn); 7103 7104 /* 7105 * No need to check if parent_ctx != NULL here; since we saw 7106 * it non-NULL earlier, the only reason for it to become NULL 7107 * is if we exit, and since we're currently in the middle of 7108 * a fork we can't be exiting at the same time. 7109 */ 7110 7111 /* 7112 * Lock the parent list. No need to lock the child - not PID 7113 * hashed yet and not running, so nobody can access it. 7114 */ 7115 mutex_lock(&parent_ctx->mutex); 7116 7117 /* 7118 * We dont have to disable NMIs - we are only looking at 7119 * the list, not manipulating it: 7120 */ 7121 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7122 ret = inherit_task_group(event, parent, parent_ctx, 7123 child, ctxn, &inherited_all); 7124 if (ret) 7125 break; 7126 } 7127 7128 /* 7129 * We can't hold ctx->lock when iterating the ->flexible_group list due 7130 * to allocations, but we need to prevent rotation because 7131 * rotate_ctx() will change the list from interrupt context. 7132 */ 7133 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7134 parent_ctx->rotate_disable = 1; 7135 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7136 7137 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7138 ret = inherit_task_group(event, parent, parent_ctx, 7139 child, ctxn, &inherited_all); 7140 if (ret) 7141 break; 7142 } 7143 7144 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7145 parent_ctx->rotate_disable = 0; 7146 7147 child_ctx = child->perf_event_ctxp[ctxn]; 7148 7149 if (child_ctx && inherited_all) { 7150 /* 7151 * Mark the child context as a clone of the parent 7152 * context, or of whatever the parent is a clone of. 7153 * 7154 * Note that if the parent is a clone, the holding of 7155 * parent_ctx->lock avoids it from being uncloned. 7156 */ 7157 cloned_ctx = parent_ctx->parent_ctx; 7158 if (cloned_ctx) { 7159 child_ctx->parent_ctx = cloned_ctx; 7160 child_ctx->parent_gen = parent_ctx->parent_gen; 7161 } else { 7162 child_ctx->parent_ctx = parent_ctx; 7163 child_ctx->parent_gen = parent_ctx->generation; 7164 } 7165 get_ctx(child_ctx->parent_ctx); 7166 } 7167 7168 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7169 mutex_unlock(&parent_ctx->mutex); 7170 7171 perf_unpin_context(parent_ctx); 7172 put_ctx(parent_ctx); 7173 7174 return ret; 7175 } 7176 7177 /* 7178 * Initialize the perf_event context in task_struct 7179 */ 7180 int perf_event_init_task(struct task_struct *child) 7181 { 7182 int ctxn, ret; 7183 7184 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7185 mutex_init(&child->perf_event_mutex); 7186 INIT_LIST_HEAD(&child->perf_event_list); 7187 7188 for_each_task_context_nr(ctxn) { 7189 ret = perf_event_init_context(child, ctxn); 7190 if (ret) 7191 return ret; 7192 } 7193 7194 return 0; 7195 } 7196 7197 static void __init perf_event_init_all_cpus(void) 7198 { 7199 struct swevent_htable *swhash; 7200 int cpu; 7201 7202 for_each_possible_cpu(cpu) { 7203 swhash = &per_cpu(swevent_htable, cpu); 7204 mutex_init(&swhash->hlist_mutex); 7205 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7206 } 7207 } 7208 7209 static void __cpuinit perf_event_init_cpu(int cpu) 7210 { 7211 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7212 7213 mutex_lock(&swhash->hlist_mutex); 7214 if (swhash->hlist_refcount > 0) { 7215 struct swevent_hlist *hlist; 7216 7217 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7218 WARN_ON(!hlist); 7219 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7220 } 7221 mutex_unlock(&swhash->hlist_mutex); 7222 } 7223 7224 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7225 static void perf_pmu_rotate_stop(struct pmu *pmu) 7226 { 7227 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7228 7229 WARN_ON(!irqs_disabled()); 7230 7231 list_del_init(&cpuctx->rotation_list); 7232 } 7233 7234 static void __perf_event_exit_context(void *__info) 7235 { 7236 struct perf_event_context *ctx = __info; 7237 struct perf_event *event, *tmp; 7238 7239 perf_pmu_rotate_stop(ctx->pmu); 7240 7241 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7242 __perf_remove_from_context(event); 7243 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7244 __perf_remove_from_context(event); 7245 } 7246 7247 static void perf_event_exit_cpu_context(int cpu) 7248 { 7249 struct perf_event_context *ctx; 7250 struct pmu *pmu; 7251 int idx; 7252 7253 idx = srcu_read_lock(&pmus_srcu); 7254 list_for_each_entry_rcu(pmu, &pmus, entry) { 7255 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7256 7257 mutex_lock(&ctx->mutex); 7258 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7259 mutex_unlock(&ctx->mutex); 7260 } 7261 srcu_read_unlock(&pmus_srcu, idx); 7262 } 7263 7264 static void perf_event_exit_cpu(int cpu) 7265 { 7266 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7267 7268 mutex_lock(&swhash->hlist_mutex); 7269 swevent_hlist_release(swhash); 7270 mutex_unlock(&swhash->hlist_mutex); 7271 7272 perf_event_exit_cpu_context(cpu); 7273 } 7274 #else 7275 static inline void perf_event_exit_cpu(int cpu) { } 7276 #endif 7277 7278 static int 7279 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7280 { 7281 int cpu; 7282 7283 for_each_online_cpu(cpu) 7284 perf_event_exit_cpu(cpu); 7285 7286 return NOTIFY_OK; 7287 } 7288 7289 /* 7290 * Run the perf reboot notifier at the very last possible moment so that 7291 * the generic watchdog code runs as long as possible. 7292 */ 7293 static struct notifier_block perf_reboot_notifier = { 7294 .notifier_call = perf_reboot, 7295 .priority = INT_MIN, 7296 }; 7297 7298 static int __cpuinit 7299 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7300 { 7301 unsigned int cpu = (long)hcpu; 7302 7303 switch (action & ~CPU_TASKS_FROZEN) { 7304 7305 case CPU_UP_PREPARE: 7306 case CPU_DOWN_FAILED: 7307 perf_event_init_cpu(cpu); 7308 break; 7309 7310 case CPU_UP_CANCELED: 7311 case CPU_DOWN_PREPARE: 7312 perf_event_exit_cpu(cpu); 7313 break; 7314 7315 default: 7316 break; 7317 } 7318 7319 return NOTIFY_OK; 7320 } 7321 7322 void __init perf_event_init(void) 7323 { 7324 int ret; 7325 7326 idr_init(&pmu_idr); 7327 7328 perf_event_init_all_cpus(); 7329 init_srcu_struct(&pmus_srcu); 7330 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7331 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7332 perf_pmu_register(&perf_task_clock, NULL, -1); 7333 perf_tp_register(); 7334 perf_cpu_notifier(perf_cpu_notify); 7335 register_reboot_notifier(&perf_reboot_notifier); 7336 7337 ret = init_hw_breakpoint(); 7338 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7339 } 7340 7341 static int __init perf_event_sysfs_init(void) 7342 { 7343 struct pmu *pmu; 7344 int ret; 7345 7346 mutex_lock(&pmus_lock); 7347 7348 ret = bus_register(&pmu_bus); 7349 if (ret) 7350 goto unlock; 7351 7352 list_for_each_entry(pmu, &pmus, entry) { 7353 if (!pmu->name || pmu->type < 0) 7354 continue; 7355 7356 ret = pmu_dev_alloc(pmu); 7357 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7358 } 7359 pmu_bus_running = 1; 7360 ret = 0; 7361 7362 unlock: 7363 mutex_unlock(&pmus_lock); 7364 7365 return ret; 7366 } 7367 device_initcall(perf_event_sysfs_init); 7368 7369 #ifdef CONFIG_CGROUP_PERF 7370 static struct cgroup_subsys_state *perf_cgroup_create( 7371 struct cgroup_subsys *ss, struct cgroup *cont) 7372 { 7373 struct perf_cgroup *jc; 7374 7375 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7376 if (!jc) 7377 return ERR_PTR(-ENOMEM); 7378 7379 jc->info = alloc_percpu(struct perf_cgroup_info); 7380 if (!jc->info) { 7381 kfree(jc); 7382 return ERR_PTR(-ENOMEM); 7383 } 7384 7385 return &jc->css; 7386 } 7387 7388 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 7389 struct cgroup *cont) 7390 { 7391 struct perf_cgroup *jc; 7392 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7393 struct perf_cgroup, css); 7394 free_percpu(jc->info); 7395 kfree(jc); 7396 } 7397 7398 static int __perf_cgroup_move(void *info) 7399 { 7400 struct task_struct *task = info; 7401 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7402 return 0; 7403 } 7404 7405 static void 7406 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task) 7407 { 7408 task_function_call(task, __perf_cgroup_move, task); 7409 } 7410 7411 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7412 struct cgroup *old_cgrp, struct task_struct *task) 7413 { 7414 /* 7415 * cgroup_exit() is called in the copy_process() failure path. 7416 * Ignore this case since the task hasn't ran yet, this avoids 7417 * trying to poke a half freed task state from generic code. 7418 */ 7419 if (!(task->flags & PF_EXITING)) 7420 return; 7421 7422 perf_cgroup_attach_task(cgrp, task); 7423 } 7424 7425 struct cgroup_subsys perf_subsys = { 7426 .name = "perf_event", 7427 .subsys_id = perf_subsys_id, 7428 .create = perf_cgroup_create, 7429 .destroy = perf_cgroup_destroy, 7430 .exit = perf_cgroup_exit, 7431 .attach_task = perf_cgroup_attach_task, 7432 }; 7433 #endif /* CONFIG_CGROUP_PERF */ 7434