1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 CLASS(fd, f)(fd); 970 int ret = 0; 971 972 if (fd_empty(f)) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) 978 return PTR_ERR(css); 979 980 ret = perf_cgroup_ensure_storage(event, css); 981 if (ret) 982 return ret; 983 984 cgrp = container_of(css, struct perf_cgroup, css); 985 event->cgrp = cgrp; 986 987 /* 988 * all events in a group must monitor 989 * the same cgroup because a task belongs 990 * to only one perf cgroup at a time 991 */ 992 if (group_leader && group_leader->cgrp != cgrp) { 993 perf_detach_cgroup(event); 994 ret = -EINVAL; 995 } 996 return ret; 997 } 998 999 static inline void 1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 1004 if (!is_cgroup_event(event)) 1005 return; 1006 1007 event->pmu_ctx->nr_cgroups++; 1008 1009 /* 1010 * Because cgroup events are always per-cpu events, 1011 * @ctx == &cpuctx->ctx. 1012 */ 1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1014 1015 if (ctx->nr_cgroups++) 1016 return; 1017 1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 event->pmu_ctx->nr_cgroups--; 1030 1031 /* 1032 * Because cgroup events are always per-cpu events, 1033 * @ctx == &cpuctx->ctx. 1034 */ 1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1036 1037 if (--ctx->nr_cgroups) 1038 return; 1039 1040 cpuctx->cgrp = NULL; 1041 } 1042 1043 #else /* !CONFIG_CGROUP_PERF */ 1044 1045 static inline bool 1046 perf_cgroup_match(struct perf_event *event) 1047 { 1048 return true; 1049 } 1050 1051 static inline void perf_detach_cgroup(struct perf_event *event) 1052 {} 1053 1054 static inline int is_cgroup_event(struct perf_event *event) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void update_cgrp_time_from_event(struct perf_event *event) 1060 { 1061 } 1062 1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1064 bool final) 1065 { 1066 } 1067 1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1069 struct perf_event_attr *attr, 1070 struct perf_event *group_leader) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void 1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1077 { 1078 } 1079 1080 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1081 { 1082 return 0; 1083 } 1084 1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void 1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1097 { 1098 } 1099 1100 static void perf_cgroup_switch(struct task_struct *task) 1101 { 1102 } 1103 #endif 1104 1105 /* 1106 * set default to be dependent on timer tick just 1107 * like original code 1108 */ 1109 #define PERF_CPU_HRTIMER (1000 / HZ) 1110 /* 1111 * function must be called with interrupts disabled 1112 */ 1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1114 { 1115 struct perf_cpu_pmu_context *cpc; 1116 bool rotations; 1117 1118 lockdep_assert_irqs_disabled(); 1119 1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1121 rotations = perf_rotate_context(cpc); 1122 1123 raw_spin_lock(&cpc->hrtimer_lock); 1124 if (rotations) 1125 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1126 else 1127 cpc->hrtimer_active = 0; 1128 raw_spin_unlock(&cpc->hrtimer_lock); 1129 1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1131 } 1132 1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1134 { 1135 struct hrtimer *timer = &cpc->hrtimer; 1136 struct pmu *pmu = cpc->epc.pmu; 1137 u64 interval; 1138 1139 /* 1140 * check default is sane, if not set then force to 1141 * default interval (1/tick) 1142 */ 1143 interval = pmu->hrtimer_interval_ms; 1144 if (interval < 1) 1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1146 1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1148 1149 raw_spin_lock_init(&cpc->hrtimer_lock); 1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1151 timer->function = perf_mux_hrtimer_handler; 1152 } 1153 1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1155 { 1156 struct hrtimer *timer = &cpc->hrtimer; 1157 unsigned long flags; 1158 1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1160 if (!cpc->hrtimer_active) { 1161 cpc->hrtimer_active = 1; 1162 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1164 } 1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1166 1167 return 0; 1168 } 1169 1170 static int perf_mux_hrtimer_restart_ipi(void *arg) 1171 { 1172 return perf_mux_hrtimer_restart(arg); 1173 } 1174 1175 void perf_pmu_disable(struct pmu *pmu) 1176 { 1177 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1178 if (!(*count)++) 1179 pmu->pmu_disable(pmu); 1180 } 1181 1182 void perf_pmu_enable(struct pmu *pmu) 1183 { 1184 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1185 if (!--(*count)) 1186 pmu->pmu_enable(pmu); 1187 } 1188 1189 static void perf_assert_pmu_disabled(struct pmu *pmu) 1190 { 1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1192 } 1193 1194 static void get_ctx(struct perf_event_context *ctx) 1195 { 1196 refcount_inc(&ctx->refcount); 1197 } 1198 1199 static void *alloc_task_ctx_data(struct pmu *pmu) 1200 { 1201 if (pmu->task_ctx_cache) 1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1203 1204 return NULL; 1205 } 1206 1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1208 { 1209 if (pmu->task_ctx_cache && task_ctx_data) 1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1211 } 1212 1213 static void free_ctx(struct rcu_head *head) 1214 { 1215 struct perf_event_context *ctx; 1216 1217 ctx = container_of(head, struct perf_event_context, rcu_head); 1218 kfree(ctx); 1219 } 1220 1221 static void put_ctx(struct perf_event_context *ctx) 1222 { 1223 if (refcount_dec_and_test(&ctx->refcount)) { 1224 if (ctx->parent_ctx) 1225 put_ctx(ctx->parent_ctx); 1226 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1227 put_task_struct(ctx->task); 1228 call_rcu(&ctx->rcu_head, free_ctx); 1229 } 1230 } 1231 1232 /* 1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1234 * perf_pmu_migrate_context() we need some magic. 1235 * 1236 * Those places that change perf_event::ctx will hold both 1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1238 * 1239 * Lock ordering is by mutex address. There are two other sites where 1240 * perf_event_context::mutex nests and those are: 1241 * 1242 * - perf_event_exit_task_context() [ child , 0 ] 1243 * perf_event_exit_event() 1244 * put_event() [ parent, 1 ] 1245 * 1246 * - perf_event_init_context() [ parent, 0 ] 1247 * inherit_task_group() 1248 * inherit_group() 1249 * inherit_event() 1250 * perf_event_alloc() 1251 * perf_init_event() 1252 * perf_try_init_event() [ child , 1 ] 1253 * 1254 * While it appears there is an obvious deadlock here -- the parent and child 1255 * nesting levels are inverted between the two. This is in fact safe because 1256 * life-time rules separate them. That is an exiting task cannot fork, and a 1257 * spawning task cannot (yet) exit. 1258 * 1259 * But remember that these are parent<->child context relations, and 1260 * migration does not affect children, therefore these two orderings should not 1261 * interact. 1262 * 1263 * The change in perf_event::ctx does not affect children (as claimed above) 1264 * because the sys_perf_event_open() case will install a new event and break 1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1266 * concerned with cpuctx and that doesn't have children. 1267 * 1268 * The places that change perf_event::ctx will issue: 1269 * 1270 * perf_remove_from_context(); 1271 * synchronize_rcu(); 1272 * perf_install_in_context(); 1273 * 1274 * to affect the change. The remove_from_context() + synchronize_rcu() should 1275 * quiesce the event, after which we can install it in the new location. This 1276 * means that only external vectors (perf_fops, prctl) can perturb the event 1277 * while in transit. Therefore all such accessors should also acquire 1278 * perf_event_context::mutex to serialize against this. 1279 * 1280 * However; because event->ctx can change while we're waiting to acquire 1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1282 * function. 1283 * 1284 * Lock order: 1285 * exec_update_lock 1286 * task_struct::perf_event_mutex 1287 * perf_event_context::mutex 1288 * perf_event::child_mutex; 1289 * perf_event_context::lock 1290 * mmap_lock 1291 * perf_event::mmap_mutex 1292 * perf_buffer::aux_mutex 1293 * perf_addr_filters_head::lock 1294 * 1295 * cpu_hotplug_lock 1296 * pmus_lock 1297 * cpuctx->mutex / perf_event_context::mutex 1298 */ 1299 static struct perf_event_context * 1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 again: 1305 rcu_read_lock(); 1306 ctx = READ_ONCE(event->ctx); 1307 if (!refcount_inc_not_zero(&ctx->refcount)) { 1308 rcu_read_unlock(); 1309 goto again; 1310 } 1311 rcu_read_unlock(); 1312 1313 mutex_lock_nested(&ctx->mutex, nesting); 1314 if (event->ctx != ctx) { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 goto again; 1318 } 1319 1320 return ctx; 1321 } 1322 1323 static inline struct perf_event_context * 1324 perf_event_ctx_lock(struct perf_event *event) 1325 { 1326 return perf_event_ctx_lock_nested(event, 0); 1327 } 1328 1329 static void perf_event_ctx_unlock(struct perf_event *event, 1330 struct perf_event_context *ctx) 1331 { 1332 mutex_unlock(&ctx->mutex); 1333 put_ctx(ctx); 1334 } 1335 1336 /* 1337 * This must be done under the ctx->lock, such as to serialize against 1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1339 * calling scheduler related locks and ctx->lock nests inside those. 1340 */ 1341 static __must_check struct perf_event_context * 1342 unclone_ctx(struct perf_event_context *ctx) 1343 { 1344 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1345 1346 lockdep_assert_held(&ctx->lock); 1347 1348 if (parent_ctx) 1349 ctx->parent_ctx = NULL; 1350 ctx->generation++; 1351 1352 return parent_ctx; 1353 } 1354 1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1356 enum pid_type type) 1357 { 1358 u32 nr; 1359 /* 1360 * only top level events have the pid namespace they were created in 1361 */ 1362 if (event->parent) 1363 event = event->parent; 1364 1365 nr = __task_pid_nr_ns(p, type, event->ns); 1366 /* avoid -1 if it is idle thread or runs in another ns */ 1367 if (!nr && !pid_alive(p)) 1368 nr = -1; 1369 return nr; 1370 } 1371 1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1373 { 1374 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1375 } 1376 1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1378 { 1379 return perf_event_pid_type(event, p, PIDTYPE_PID); 1380 } 1381 1382 /* 1383 * If we inherit events we want to return the parent event id 1384 * to userspace. 1385 */ 1386 static u64 primary_event_id(struct perf_event *event) 1387 { 1388 u64 id = event->id; 1389 1390 if (event->parent) 1391 id = event->parent->id; 1392 1393 return id; 1394 } 1395 1396 /* 1397 * Get the perf_event_context for a task and lock it. 1398 * 1399 * This has to cope with the fact that until it is locked, 1400 * the context could get moved to another task. 1401 */ 1402 static struct perf_event_context * 1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1404 { 1405 struct perf_event_context *ctx; 1406 1407 retry: 1408 /* 1409 * One of the few rules of preemptible RCU is that one cannot do 1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1411 * part of the read side critical section was irqs-enabled -- see 1412 * rcu_read_unlock_special(). 1413 * 1414 * Since ctx->lock nests under rq->lock we must ensure the entire read 1415 * side critical section has interrupts disabled. 1416 */ 1417 local_irq_save(*flags); 1418 rcu_read_lock(); 1419 ctx = rcu_dereference(task->perf_event_ctxp); 1420 if (ctx) { 1421 /* 1422 * If this context is a clone of another, it might 1423 * get swapped for another underneath us by 1424 * perf_event_task_sched_out, though the 1425 * rcu_read_lock() protects us from any context 1426 * getting freed. Lock the context and check if it 1427 * got swapped before we could get the lock, and retry 1428 * if so. If we locked the right context, then it 1429 * can't get swapped on us any more. 1430 */ 1431 raw_spin_lock(&ctx->lock); 1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1433 raw_spin_unlock(&ctx->lock); 1434 rcu_read_unlock(); 1435 local_irq_restore(*flags); 1436 goto retry; 1437 } 1438 1439 if (ctx->task == TASK_TOMBSTONE || 1440 !refcount_inc_not_zero(&ctx->refcount)) { 1441 raw_spin_unlock(&ctx->lock); 1442 ctx = NULL; 1443 } else { 1444 WARN_ON_ONCE(ctx->task != task); 1445 } 1446 } 1447 rcu_read_unlock(); 1448 if (!ctx) 1449 local_irq_restore(*flags); 1450 return ctx; 1451 } 1452 1453 /* 1454 * Get the context for a task and increment its pin_count so it 1455 * can't get swapped to another task. This also increments its 1456 * reference count so that the context can't get freed. 1457 */ 1458 static struct perf_event_context * 1459 perf_pin_task_context(struct task_struct *task) 1460 { 1461 struct perf_event_context *ctx; 1462 unsigned long flags; 1463 1464 ctx = perf_lock_task_context(task, &flags); 1465 if (ctx) { 1466 ++ctx->pin_count; 1467 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1468 } 1469 return ctx; 1470 } 1471 1472 static void perf_unpin_context(struct perf_event_context *ctx) 1473 { 1474 unsigned long flags; 1475 1476 raw_spin_lock_irqsave(&ctx->lock, flags); 1477 --ctx->pin_count; 1478 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1479 } 1480 1481 /* 1482 * Update the record of the current time in a context. 1483 */ 1484 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1485 { 1486 u64 now = perf_clock(); 1487 1488 lockdep_assert_held(&ctx->lock); 1489 1490 if (adv) 1491 ctx->time += now - ctx->timestamp; 1492 ctx->timestamp = now; 1493 1494 /* 1495 * The above: time' = time + (now - timestamp), can be re-arranged 1496 * into: time` = now + (time - timestamp), which gives a single value 1497 * offset to compute future time without locks on. 1498 * 1499 * See perf_event_time_now(), which can be used from NMI context where 1500 * it's (obviously) not possible to acquire ctx->lock in order to read 1501 * both the above values in a consistent manner. 1502 */ 1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1504 } 1505 1506 static void update_context_time(struct perf_event_context *ctx) 1507 { 1508 __update_context_time(ctx, true); 1509 } 1510 1511 static u64 perf_event_time(struct perf_event *event) 1512 { 1513 struct perf_event_context *ctx = event->ctx; 1514 1515 if (unlikely(!ctx)) 1516 return 0; 1517 1518 if (is_cgroup_event(event)) 1519 return perf_cgroup_event_time(event); 1520 1521 return ctx->time; 1522 } 1523 1524 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 1528 if (unlikely(!ctx)) 1529 return 0; 1530 1531 if (is_cgroup_event(event)) 1532 return perf_cgroup_event_time_now(event, now); 1533 1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1535 return ctx->time; 1536 1537 now += READ_ONCE(ctx->timeoffset); 1538 return now; 1539 } 1540 1541 static enum event_type_t get_event_type(struct perf_event *event) 1542 { 1543 struct perf_event_context *ctx = event->ctx; 1544 enum event_type_t event_type; 1545 1546 lockdep_assert_held(&ctx->lock); 1547 1548 /* 1549 * It's 'group type', really, because if our group leader is 1550 * pinned, so are we. 1551 */ 1552 if (event->group_leader != event) 1553 event = event->group_leader; 1554 1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1556 if (!ctx->task) 1557 event_type |= EVENT_CPU; 1558 1559 return event_type; 1560 } 1561 1562 /* 1563 * Helper function to initialize event group nodes. 1564 */ 1565 static void init_event_group(struct perf_event *event) 1566 { 1567 RB_CLEAR_NODE(&event->group_node); 1568 event->group_index = 0; 1569 } 1570 1571 /* 1572 * Extract pinned or flexible groups from the context 1573 * based on event attrs bits. 1574 */ 1575 static struct perf_event_groups * 1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1577 { 1578 if (event->attr.pinned) 1579 return &ctx->pinned_groups; 1580 else 1581 return &ctx->flexible_groups; 1582 } 1583 1584 /* 1585 * Helper function to initializes perf_event_group trees. 1586 */ 1587 static void perf_event_groups_init(struct perf_event_groups *groups) 1588 { 1589 groups->tree = RB_ROOT; 1590 groups->index = 0; 1591 } 1592 1593 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1594 { 1595 struct cgroup *cgroup = NULL; 1596 1597 #ifdef CONFIG_CGROUP_PERF 1598 if (event->cgrp) 1599 cgroup = event->cgrp->css.cgroup; 1600 #endif 1601 1602 return cgroup; 1603 } 1604 1605 /* 1606 * Compare function for event groups; 1607 * 1608 * Implements complex key that first sorts by CPU and then by virtual index 1609 * which provides ordering when rotating groups for the same CPU. 1610 */ 1611 static __always_inline int 1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1613 const struct cgroup *left_cgroup, const u64 left_group_index, 1614 const struct perf_event *right) 1615 { 1616 if (left_cpu < right->cpu) 1617 return -1; 1618 if (left_cpu > right->cpu) 1619 return 1; 1620 1621 if (left_pmu) { 1622 if (left_pmu < right->pmu_ctx->pmu) 1623 return -1; 1624 if (left_pmu > right->pmu_ctx->pmu) 1625 return 1; 1626 } 1627 1628 #ifdef CONFIG_CGROUP_PERF 1629 { 1630 const struct cgroup *right_cgroup = event_cgroup(right); 1631 1632 if (left_cgroup != right_cgroup) { 1633 if (!left_cgroup) { 1634 /* 1635 * Left has no cgroup but right does, no 1636 * cgroups come first. 1637 */ 1638 return -1; 1639 } 1640 if (!right_cgroup) { 1641 /* 1642 * Right has no cgroup but left does, no 1643 * cgroups come first. 1644 */ 1645 return 1; 1646 } 1647 /* Two dissimilar cgroups, order by id. */ 1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1649 return -1; 1650 1651 return 1; 1652 } 1653 } 1654 #endif 1655 1656 if (left_group_index < right->group_index) 1657 return -1; 1658 if (left_group_index > right->group_index) 1659 return 1; 1660 1661 return 0; 1662 } 1663 1664 #define __node_2_pe(node) \ 1665 rb_entry((node), struct perf_event, group_node) 1666 1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1668 { 1669 struct perf_event *e = __node_2_pe(a); 1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1671 e->group_index, __node_2_pe(b)) < 0; 1672 } 1673 1674 struct __group_key { 1675 int cpu; 1676 struct pmu *pmu; 1677 struct cgroup *cgroup; 1678 }; 1679 1680 static inline int __group_cmp(const void *key, const struct rb_node *node) 1681 { 1682 const struct __group_key *a = key; 1683 const struct perf_event *b = __node_2_pe(node); 1684 1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1687 } 1688 1689 static inline int 1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1691 { 1692 const struct __group_key *a = key; 1693 const struct perf_event *b = __node_2_pe(node); 1694 1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1697 b->group_index, b); 1698 } 1699 1700 /* 1701 * Insert @event into @groups' tree; using 1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1704 */ 1705 static void 1706 perf_event_groups_insert(struct perf_event_groups *groups, 1707 struct perf_event *event) 1708 { 1709 event->group_index = ++groups->index; 1710 1711 rb_add(&event->group_node, &groups->tree, __group_less); 1712 } 1713 1714 /* 1715 * Helper function to insert event into the pinned or flexible groups. 1716 */ 1717 static void 1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1719 { 1720 struct perf_event_groups *groups; 1721 1722 groups = get_event_groups(event, ctx); 1723 perf_event_groups_insert(groups, event); 1724 } 1725 1726 /* 1727 * Delete a group from a tree. 1728 */ 1729 static void 1730 perf_event_groups_delete(struct perf_event_groups *groups, 1731 struct perf_event *event) 1732 { 1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1734 RB_EMPTY_ROOT(&groups->tree)); 1735 1736 rb_erase(&event->group_node, &groups->tree); 1737 init_event_group(event); 1738 } 1739 1740 /* 1741 * Helper function to delete event from its groups. 1742 */ 1743 static void 1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1745 { 1746 struct perf_event_groups *groups; 1747 1748 groups = get_event_groups(event, ctx); 1749 perf_event_groups_delete(groups, event); 1750 } 1751 1752 /* 1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1754 */ 1755 static struct perf_event * 1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1757 struct pmu *pmu, struct cgroup *cgrp) 1758 { 1759 struct __group_key key = { 1760 .cpu = cpu, 1761 .pmu = pmu, 1762 .cgroup = cgrp, 1763 }; 1764 struct rb_node *node; 1765 1766 node = rb_find_first(&key, &groups->tree, __group_cmp); 1767 if (node) 1768 return __node_2_pe(node); 1769 1770 return NULL; 1771 } 1772 1773 static struct perf_event * 1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1775 { 1776 struct __group_key key = { 1777 .cpu = event->cpu, 1778 .pmu = pmu, 1779 .cgroup = event_cgroup(event), 1780 }; 1781 struct rb_node *next; 1782 1783 next = rb_next_match(&key, &event->group_node, __group_cmp); 1784 if (next) 1785 return __node_2_pe(next); 1786 1787 return NULL; 1788 } 1789 1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1792 event; event = perf_event_groups_next(event, pmu)) 1793 1794 /* 1795 * Iterate through the whole groups tree. 1796 */ 1797 #define perf_event_groups_for_each(event, groups) \ 1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1799 typeof(*event), group_node); event; \ 1800 event = rb_entry_safe(rb_next(&event->group_node), \ 1801 typeof(*event), group_node)) 1802 1803 /* 1804 * Does the event attribute request inherit with PERF_SAMPLE_READ 1805 */ 1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1807 { 1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1809 } 1810 1811 /* 1812 * Add an event from the lists for its context. 1813 * Must be called with ctx->mutex and ctx->lock held. 1814 */ 1815 static void 1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1817 { 1818 lockdep_assert_held(&ctx->lock); 1819 1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1821 event->attach_state |= PERF_ATTACH_CONTEXT; 1822 1823 event->tstamp = perf_event_time(event); 1824 1825 /* 1826 * If we're a stand alone event or group leader, we go to the context 1827 * list, group events are kept attached to the group so that 1828 * perf_group_detach can, at all times, locate all siblings. 1829 */ 1830 if (event->group_leader == event) { 1831 event->group_caps = event->event_caps; 1832 add_event_to_groups(event, ctx); 1833 } 1834 1835 list_add_rcu(&event->event_entry, &ctx->event_list); 1836 ctx->nr_events++; 1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1838 ctx->nr_user++; 1839 if (event->attr.inherit_stat) 1840 ctx->nr_stat++; 1841 if (has_inherit_and_sample_read(&event->attr)) 1842 local_inc(&ctx->nr_no_switch_fast); 1843 1844 if (event->state > PERF_EVENT_STATE_OFF) 1845 perf_cgroup_event_enable(event, ctx); 1846 1847 ctx->generation++; 1848 event->pmu_ctx->nr_events++; 1849 } 1850 1851 /* 1852 * Initialize event state based on the perf_event_attr::disabled. 1853 */ 1854 static inline void perf_event__state_init(struct perf_event *event) 1855 { 1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1857 PERF_EVENT_STATE_INACTIVE; 1858 } 1859 1860 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1861 { 1862 int entry = sizeof(u64); /* value */ 1863 int size = 0; 1864 int nr = 1; 1865 1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1867 size += sizeof(u64); 1868 1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1870 size += sizeof(u64); 1871 1872 if (read_format & PERF_FORMAT_ID) 1873 entry += sizeof(u64); 1874 1875 if (read_format & PERF_FORMAT_LOST) 1876 entry += sizeof(u64); 1877 1878 if (read_format & PERF_FORMAT_GROUP) { 1879 nr += nr_siblings; 1880 size += sizeof(u64); 1881 } 1882 1883 /* 1884 * Since perf_event_validate_size() limits this to 16k and inhibits 1885 * adding more siblings, this will never overflow. 1886 */ 1887 return size + nr * entry; 1888 } 1889 1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1891 { 1892 struct perf_sample_data *data; 1893 u16 size = 0; 1894 1895 if (sample_type & PERF_SAMPLE_IP) 1896 size += sizeof(data->ip); 1897 1898 if (sample_type & PERF_SAMPLE_ADDR) 1899 size += sizeof(data->addr); 1900 1901 if (sample_type & PERF_SAMPLE_PERIOD) 1902 size += sizeof(data->period); 1903 1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1905 size += sizeof(data->weight.full); 1906 1907 if (sample_type & PERF_SAMPLE_READ) 1908 size += event->read_size; 1909 1910 if (sample_type & PERF_SAMPLE_DATA_SRC) 1911 size += sizeof(data->data_src.val); 1912 1913 if (sample_type & PERF_SAMPLE_TRANSACTION) 1914 size += sizeof(data->txn); 1915 1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1917 size += sizeof(data->phys_addr); 1918 1919 if (sample_type & PERF_SAMPLE_CGROUP) 1920 size += sizeof(data->cgroup); 1921 1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1923 size += sizeof(data->data_page_size); 1924 1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1926 size += sizeof(data->code_page_size); 1927 1928 event->header_size = size; 1929 } 1930 1931 /* 1932 * Called at perf_event creation and when events are attached/detached from a 1933 * group. 1934 */ 1935 static void perf_event__header_size(struct perf_event *event) 1936 { 1937 event->read_size = 1938 __perf_event_read_size(event->attr.read_format, 1939 event->group_leader->nr_siblings); 1940 __perf_event_header_size(event, event->attr.sample_type); 1941 } 1942 1943 static void perf_event__id_header_size(struct perf_event *event) 1944 { 1945 struct perf_sample_data *data; 1946 u64 sample_type = event->attr.sample_type; 1947 u16 size = 0; 1948 1949 if (sample_type & PERF_SAMPLE_TID) 1950 size += sizeof(data->tid_entry); 1951 1952 if (sample_type & PERF_SAMPLE_TIME) 1953 size += sizeof(data->time); 1954 1955 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1956 size += sizeof(data->id); 1957 1958 if (sample_type & PERF_SAMPLE_ID) 1959 size += sizeof(data->id); 1960 1961 if (sample_type & PERF_SAMPLE_STREAM_ID) 1962 size += sizeof(data->stream_id); 1963 1964 if (sample_type & PERF_SAMPLE_CPU) 1965 size += sizeof(data->cpu_entry); 1966 1967 event->id_header_size = size; 1968 } 1969 1970 /* 1971 * Check that adding an event to the group does not result in anybody 1972 * overflowing the 64k event limit imposed by the output buffer. 1973 * 1974 * Specifically, check that the read_size for the event does not exceed 16k, 1975 * read_size being the one term that grows with groups size. Since read_size 1976 * depends on per-event read_format, also (re)check the existing events. 1977 * 1978 * This leaves 48k for the constant size fields and things like callchains, 1979 * branch stacks and register sets. 1980 */ 1981 static bool perf_event_validate_size(struct perf_event *event) 1982 { 1983 struct perf_event *sibling, *group_leader = event->group_leader; 1984 1985 if (__perf_event_read_size(event->attr.read_format, 1986 group_leader->nr_siblings + 1) > 16*1024) 1987 return false; 1988 1989 if (__perf_event_read_size(group_leader->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 /* 1994 * When creating a new group leader, group_leader->ctx is initialized 1995 * after the size has been validated, but we cannot safely use 1996 * for_each_sibling_event() until group_leader->ctx is set. A new group 1997 * leader cannot have any siblings yet, so we can safely skip checking 1998 * the non-existent siblings. 1999 */ 2000 if (event == group_leader) 2001 return true; 2002 2003 for_each_sibling_event(sibling, group_leader) { 2004 if (__perf_event_read_size(sibling->attr.read_format, 2005 group_leader->nr_siblings + 1) > 16*1024) 2006 return false; 2007 } 2008 2009 return true; 2010 } 2011 2012 static void perf_group_attach(struct perf_event *event) 2013 { 2014 struct perf_event *group_leader = event->group_leader, *pos; 2015 2016 lockdep_assert_held(&event->ctx->lock); 2017 2018 /* 2019 * We can have double attach due to group movement (move_group) in 2020 * perf_event_open(). 2021 */ 2022 if (event->attach_state & PERF_ATTACH_GROUP) 2023 return; 2024 2025 event->attach_state |= PERF_ATTACH_GROUP; 2026 2027 if (group_leader == event) 2028 return; 2029 2030 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2031 2032 group_leader->group_caps &= event->event_caps; 2033 2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2035 group_leader->nr_siblings++; 2036 group_leader->group_generation++; 2037 2038 perf_event__header_size(group_leader); 2039 2040 for_each_sibling_event(pos, group_leader) 2041 perf_event__header_size(pos); 2042 } 2043 2044 /* 2045 * Remove an event from the lists for its context. 2046 * Must be called with ctx->mutex and ctx->lock held. 2047 */ 2048 static void 2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2050 { 2051 WARN_ON_ONCE(event->ctx != ctx); 2052 lockdep_assert_held(&ctx->lock); 2053 2054 /* 2055 * We can have double detach due to exit/hot-unplug + close. 2056 */ 2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2058 return; 2059 2060 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2061 2062 ctx->nr_events--; 2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2064 ctx->nr_user--; 2065 if (event->attr.inherit_stat) 2066 ctx->nr_stat--; 2067 if (has_inherit_and_sample_read(&event->attr)) 2068 local_dec(&ctx->nr_no_switch_fast); 2069 2070 list_del_rcu(&event->event_entry); 2071 2072 if (event->group_leader == event) 2073 del_event_from_groups(event, ctx); 2074 2075 /* 2076 * If event was in error state, then keep it 2077 * that way, otherwise bogus counts will be 2078 * returned on read(). The only way to get out 2079 * of error state is by explicit re-enabling 2080 * of the event 2081 */ 2082 if (event->state > PERF_EVENT_STATE_OFF) { 2083 perf_cgroup_event_disable(event, ctx); 2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2085 } 2086 2087 ctx->generation++; 2088 event->pmu_ctx->nr_events--; 2089 } 2090 2091 static int 2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2093 { 2094 if (!has_aux(aux_event)) 2095 return 0; 2096 2097 if (!event->pmu->aux_output_match) 2098 return 0; 2099 2100 return event->pmu->aux_output_match(aux_event); 2101 } 2102 2103 static void put_event(struct perf_event *event); 2104 static void event_sched_out(struct perf_event *event, 2105 struct perf_event_context *ctx); 2106 2107 static void perf_put_aux_event(struct perf_event *event) 2108 { 2109 struct perf_event_context *ctx = event->ctx; 2110 struct perf_event *iter; 2111 2112 /* 2113 * If event uses aux_event tear down the link 2114 */ 2115 if (event->aux_event) { 2116 iter = event->aux_event; 2117 event->aux_event = NULL; 2118 put_event(iter); 2119 return; 2120 } 2121 2122 /* 2123 * If the event is an aux_event, tear down all links to 2124 * it from other events. 2125 */ 2126 for_each_sibling_event(iter, event->group_leader) { 2127 if (iter->aux_event != event) 2128 continue; 2129 2130 iter->aux_event = NULL; 2131 put_event(event); 2132 2133 /* 2134 * If it's ACTIVE, schedule it out and put it into ERROR 2135 * state so that we don't try to schedule it again. Note 2136 * that perf_event_enable() will clear the ERROR status. 2137 */ 2138 event_sched_out(iter, ctx); 2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2140 } 2141 } 2142 2143 static bool perf_need_aux_event(struct perf_event *event) 2144 { 2145 return event->attr.aux_output || has_aux_action(event); 2146 } 2147 2148 static int perf_get_aux_event(struct perf_event *event, 2149 struct perf_event *group_leader) 2150 { 2151 /* 2152 * Our group leader must be an aux event if we want to be 2153 * an aux_output. This way, the aux event will precede its 2154 * aux_output events in the group, and therefore will always 2155 * schedule first. 2156 */ 2157 if (!group_leader) 2158 return 0; 2159 2160 /* 2161 * aux_output and aux_sample_size are mutually exclusive. 2162 */ 2163 if (event->attr.aux_output && event->attr.aux_sample_size) 2164 return 0; 2165 2166 if (event->attr.aux_output && 2167 !perf_aux_output_match(event, group_leader)) 2168 return 0; 2169 2170 if ((event->attr.aux_pause || event->attr.aux_resume) && 2171 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2172 return 0; 2173 2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2175 return 0; 2176 2177 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2178 return 0; 2179 2180 /* 2181 * Link aux_outputs to their aux event; this is undone in 2182 * perf_group_detach() by perf_put_aux_event(). When the 2183 * group in torn down, the aux_output events loose their 2184 * link to the aux_event and can't schedule any more. 2185 */ 2186 event->aux_event = group_leader; 2187 2188 return 1; 2189 } 2190 2191 static inline struct list_head *get_event_list(struct perf_event *event) 2192 { 2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2194 &event->pmu_ctx->flexible_active; 2195 } 2196 2197 /* 2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2199 * cannot exist on their own, schedule them out and move them into the ERROR 2200 * state. Also see _perf_event_enable(), it will not be able to recover 2201 * this ERROR state. 2202 */ 2203 static inline void perf_remove_sibling_event(struct perf_event *event) 2204 { 2205 event_sched_out(event, event->ctx); 2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2207 } 2208 2209 static void perf_group_detach(struct perf_event *event) 2210 { 2211 struct perf_event *leader = event->group_leader; 2212 struct perf_event *sibling, *tmp; 2213 struct perf_event_context *ctx = event->ctx; 2214 2215 lockdep_assert_held(&ctx->lock); 2216 2217 /* 2218 * We can have double detach due to exit/hot-unplug + close. 2219 */ 2220 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2221 return; 2222 2223 event->attach_state &= ~PERF_ATTACH_GROUP; 2224 2225 perf_put_aux_event(event); 2226 2227 /* 2228 * If this is a sibling, remove it from its group. 2229 */ 2230 if (leader != event) { 2231 list_del_init(&event->sibling_list); 2232 event->group_leader->nr_siblings--; 2233 event->group_leader->group_generation++; 2234 goto out; 2235 } 2236 2237 /* 2238 * If this was a group event with sibling events then 2239 * upgrade the siblings to singleton events by adding them 2240 * to whatever list we are on. 2241 */ 2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2243 2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2245 perf_remove_sibling_event(sibling); 2246 2247 sibling->group_leader = sibling; 2248 list_del_init(&sibling->sibling_list); 2249 2250 /* Inherit group flags from the previous leader */ 2251 sibling->group_caps = event->group_caps; 2252 2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2254 add_event_to_groups(sibling, event->ctx); 2255 2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2257 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2258 } 2259 2260 WARN_ON_ONCE(sibling->ctx != event->ctx); 2261 } 2262 2263 out: 2264 for_each_sibling_event(tmp, leader) 2265 perf_event__header_size(tmp); 2266 2267 perf_event__header_size(leader); 2268 } 2269 2270 static void sync_child_event(struct perf_event *child_event); 2271 2272 static void perf_child_detach(struct perf_event *event) 2273 { 2274 struct perf_event *parent_event = event->parent; 2275 2276 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2277 return; 2278 2279 event->attach_state &= ~PERF_ATTACH_CHILD; 2280 2281 if (WARN_ON_ONCE(!parent_event)) 2282 return; 2283 2284 lockdep_assert_held(&parent_event->child_mutex); 2285 2286 sync_child_event(event); 2287 list_del_init(&event->child_list); 2288 } 2289 2290 static bool is_orphaned_event(struct perf_event *event) 2291 { 2292 return event->state == PERF_EVENT_STATE_DEAD; 2293 } 2294 2295 static inline int 2296 event_filter_match(struct perf_event *event) 2297 { 2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2299 perf_cgroup_match(event); 2300 } 2301 2302 static void 2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2304 { 2305 struct perf_event_pmu_context *epc = event->pmu_ctx; 2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2308 2309 // XXX cpc serialization, probably per-cpu IRQ disabled 2310 2311 WARN_ON_ONCE(event->ctx != ctx); 2312 lockdep_assert_held(&ctx->lock); 2313 2314 if (event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 /* 2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2319 * we can schedule events _OUT_ individually through things like 2320 * __perf_remove_from_context(). 2321 */ 2322 list_del_init(&event->active_list); 2323 2324 perf_pmu_disable(event->pmu); 2325 2326 event->pmu->del(event, 0); 2327 event->oncpu = -1; 2328 2329 if (event->pending_disable) { 2330 event->pending_disable = 0; 2331 perf_cgroup_event_disable(event, ctx); 2332 state = PERF_EVENT_STATE_OFF; 2333 } 2334 2335 perf_event_set_state(event, state); 2336 2337 if (!is_software_event(event)) 2338 cpc->active_oncpu--; 2339 if (event->attr.freq && event->attr.sample_freq) { 2340 ctx->nr_freq--; 2341 epc->nr_freq--; 2342 } 2343 if (event->attr.exclusive || !cpc->active_oncpu) 2344 cpc->exclusive = 0; 2345 2346 perf_pmu_enable(event->pmu); 2347 } 2348 2349 static void 2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2351 { 2352 struct perf_event *event; 2353 2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2355 return; 2356 2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2358 2359 event_sched_out(group_event, ctx); 2360 2361 /* 2362 * Schedule out siblings (if any): 2363 */ 2364 for_each_sibling_event(event, group_event) 2365 event_sched_out(event, ctx); 2366 } 2367 2368 static inline void 2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2370 { 2371 if (ctx->is_active & EVENT_TIME) { 2372 if (ctx->is_active & EVENT_FROZEN) 2373 return; 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx, final); 2376 } 2377 } 2378 2379 static inline void 2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2381 { 2382 __ctx_time_update(cpuctx, ctx, false); 2383 } 2384 2385 /* 2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2387 */ 2388 static inline void 2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2390 { 2391 ctx_time_update(cpuctx, ctx); 2392 if (ctx->is_active & EVENT_TIME) 2393 ctx->is_active |= EVENT_FROZEN; 2394 } 2395 2396 static inline void 2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2398 { 2399 if (ctx->is_active & EVENT_TIME) { 2400 if (ctx->is_active & EVENT_FROZEN) 2401 return; 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 } 2406 2407 #define DETACH_GROUP 0x01UL 2408 #define DETACH_CHILD 0x02UL 2409 #define DETACH_DEAD 0x04UL 2410 2411 /* 2412 * Cross CPU call to remove a performance event 2413 * 2414 * We disable the event on the hardware level first. After that we 2415 * remove it from the context list. 2416 */ 2417 static void 2418 __perf_remove_from_context(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2424 unsigned long flags = (unsigned long)info; 2425 2426 ctx_time_update(cpuctx, ctx); 2427 2428 /* 2429 * Ensure event_sched_out() switches to OFF, at the very least 2430 * this avoids raising perf_pending_task() at this time. 2431 */ 2432 if (flags & DETACH_DEAD) 2433 event->pending_disable = 1; 2434 event_sched_out(event, ctx); 2435 if (flags & DETACH_GROUP) 2436 perf_group_detach(event); 2437 if (flags & DETACH_CHILD) 2438 perf_child_detach(event); 2439 list_del_event(event, ctx); 2440 if (flags & DETACH_DEAD) 2441 event->state = PERF_EVENT_STATE_DEAD; 2442 2443 if (!pmu_ctx->nr_events) { 2444 pmu_ctx->rotate_necessary = 0; 2445 2446 if (ctx->task && ctx->is_active) { 2447 struct perf_cpu_pmu_context *cpc; 2448 2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2451 cpc->task_epc = NULL; 2452 } 2453 } 2454 2455 if (!ctx->nr_events && ctx->is_active) { 2456 if (ctx == &cpuctx->ctx) 2457 update_cgrp_time_from_cpuctx(cpuctx, true); 2458 2459 ctx->is_active = 0; 2460 if (ctx->task) { 2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2462 cpuctx->task_ctx = NULL; 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Remove the event from a task's (or a CPU's) list of events. 2469 * 2470 * If event->ctx is a cloned context, callers must make sure that 2471 * every task struct that event->ctx->task could possibly point to 2472 * remains valid. This is OK when called from perf_release since 2473 * that only calls us on the top-level context, which can't be a clone. 2474 * When called from perf_event_exit_task, it's OK because the 2475 * context has been detached from its task. 2476 */ 2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 lockdep_assert_held(&ctx->mutex); 2482 2483 /* 2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2485 * to work in the face of TASK_TOMBSTONE, unlike every other 2486 * event_function_call() user. 2487 */ 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (!ctx->is_active) { 2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2491 ctx, (void *)flags); 2492 raw_spin_unlock_irq(&ctx->lock); 2493 return; 2494 } 2495 raw_spin_unlock_irq(&ctx->lock); 2496 2497 event_function_call(event, __perf_remove_from_context, (void *)flags); 2498 } 2499 2500 /* 2501 * Cross CPU call to disable a performance event 2502 */ 2503 static void __perf_event_disable(struct perf_event *event, 2504 struct perf_cpu_context *cpuctx, 2505 struct perf_event_context *ctx, 2506 void *info) 2507 { 2508 if (event->state < PERF_EVENT_STATE_INACTIVE) 2509 return; 2510 2511 perf_pmu_disable(event->pmu_ctx->pmu); 2512 ctx_time_update_event(ctx, event); 2513 2514 if (event == event->group_leader) 2515 group_sched_out(event, ctx); 2516 else 2517 event_sched_out(event, ctx); 2518 2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2520 perf_cgroup_event_disable(event, ctx); 2521 2522 perf_pmu_enable(event->pmu_ctx->pmu); 2523 } 2524 2525 /* 2526 * Disable an event. 2527 * 2528 * If event->ctx is a cloned context, callers must make sure that 2529 * every task struct that event->ctx->task could possibly point to 2530 * remains valid. This condition is satisfied when called through 2531 * perf_event_for_each_child or perf_event_for_each because they 2532 * hold the top-level event's child_mutex, so any descendant that 2533 * goes to exit will block in perf_event_exit_event(). 2534 * 2535 * When called from perf_pending_disable it's OK because event->ctx 2536 * is the current context on this CPU and preemption is disabled, 2537 * hence we can't get into perf_event_task_sched_out for this context. 2538 */ 2539 static void _perf_event_disable(struct perf_event *event) 2540 { 2541 struct perf_event_context *ctx = event->ctx; 2542 2543 raw_spin_lock_irq(&ctx->lock); 2544 if (event->state <= PERF_EVENT_STATE_OFF) { 2545 raw_spin_unlock_irq(&ctx->lock); 2546 return; 2547 } 2548 raw_spin_unlock_irq(&ctx->lock); 2549 2550 event_function_call(event, __perf_event_disable, NULL); 2551 } 2552 2553 void perf_event_disable_local(struct perf_event *event) 2554 { 2555 event_function_local(event, __perf_event_disable, NULL); 2556 } 2557 2558 /* 2559 * Strictly speaking kernel users cannot create groups and therefore this 2560 * interface does not need the perf_event_ctx_lock() magic. 2561 */ 2562 void perf_event_disable(struct perf_event *event) 2563 { 2564 struct perf_event_context *ctx; 2565 2566 ctx = perf_event_ctx_lock(event); 2567 _perf_event_disable(event); 2568 perf_event_ctx_unlock(event, ctx); 2569 } 2570 EXPORT_SYMBOL_GPL(perf_event_disable); 2571 2572 void perf_event_disable_inatomic(struct perf_event *event) 2573 { 2574 event->pending_disable = 1; 2575 irq_work_queue(&event->pending_disable_irq); 2576 } 2577 2578 #define MAX_INTERRUPTS (~0ULL) 2579 2580 static void perf_log_throttle(struct perf_event *event, int enable); 2581 static void perf_log_itrace_start(struct perf_event *event); 2582 2583 static int 2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 int ret = 0; 2589 2590 WARN_ON_ONCE(event->ctx != ctx); 2591 2592 lockdep_assert_held(&ctx->lock); 2593 2594 if (event->state <= PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 WRITE_ONCE(event->oncpu, smp_processor_id()); 2598 /* 2599 * Order event::oncpu write to happen before the ACTIVE state is 2600 * visible. This allows perf_event_{stop,read}() to observe the correct 2601 * ->oncpu if it sees ACTIVE. 2602 */ 2603 smp_wmb(); 2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2605 2606 /* 2607 * Unthrottle events, since we scheduled we might have missed several 2608 * ticks already, also for a heavily scheduling task there is little 2609 * guarantee it'll get a tick in a timely manner. 2610 */ 2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2612 perf_log_throttle(event, 1); 2613 event->hw.interrupts = 0; 2614 } 2615 2616 perf_pmu_disable(event->pmu); 2617 2618 perf_log_itrace_start(event); 2619 2620 if (event->pmu->add(event, PERF_EF_START)) { 2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2622 event->oncpu = -1; 2623 ret = -EAGAIN; 2624 goto out; 2625 } 2626 2627 if (!is_software_event(event)) 2628 cpc->active_oncpu++; 2629 if (event->attr.freq && event->attr.sample_freq) { 2630 ctx->nr_freq++; 2631 epc->nr_freq++; 2632 } 2633 if (event->attr.exclusive) 2634 cpc->exclusive = 1; 2635 2636 out: 2637 perf_pmu_enable(event->pmu); 2638 2639 return ret; 2640 } 2641 2642 static int 2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2644 { 2645 struct perf_event *event, *partial_group = NULL; 2646 struct pmu *pmu = group_event->pmu_ctx->pmu; 2647 2648 if (group_event->state == PERF_EVENT_STATE_OFF) 2649 return 0; 2650 2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2652 2653 if (event_sched_in(group_event, ctx)) 2654 goto error; 2655 2656 /* 2657 * Schedule in siblings as one group (if any): 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event_sched_in(event, ctx)) { 2661 partial_group = event; 2662 goto group_error; 2663 } 2664 } 2665 2666 if (!pmu->commit_txn(pmu)) 2667 return 0; 2668 2669 group_error: 2670 /* 2671 * Groups can be scheduled in as one unit only, so undo any 2672 * partial group before returning: 2673 * The events up to the failed event are scheduled out normally. 2674 */ 2675 for_each_sibling_event(event, group_event) { 2676 if (event == partial_group) 2677 break; 2678 2679 event_sched_out(event, ctx); 2680 } 2681 event_sched_out(group_event, ctx); 2682 2683 error: 2684 pmu->cancel_txn(pmu); 2685 return -EAGAIN; 2686 } 2687 2688 /* 2689 * Work out whether we can put this event group on the CPU now. 2690 */ 2691 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2692 { 2693 struct perf_event_pmu_context *epc = event->pmu_ctx; 2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2695 2696 /* 2697 * Groups consisting entirely of software events can always go on. 2698 */ 2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2700 return 1; 2701 /* 2702 * If an exclusive group is already on, no other hardware 2703 * events can go on. 2704 */ 2705 if (cpc->exclusive) 2706 return 0; 2707 /* 2708 * If this group is exclusive and there are already 2709 * events on the CPU, it can't go on. 2710 */ 2711 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2712 return 0; 2713 /* 2714 * Otherwise, try to add it if all previous groups were able 2715 * to go on. 2716 */ 2717 return can_add_hw; 2718 } 2719 2720 static void add_event_to_ctx(struct perf_event *event, 2721 struct perf_event_context *ctx) 2722 { 2723 list_add_event(event, ctx); 2724 perf_group_attach(event); 2725 } 2726 2727 static void task_ctx_sched_out(struct perf_event_context *ctx, 2728 struct pmu *pmu, 2729 enum event_type_t event_type) 2730 { 2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2732 2733 if (!cpuctx->task_ctx) 2734 return; 2735 2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2737 return; 2738 2739 ctx_sched_out(ctx, pmu, event_type); 2740 } 2741 2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 struct pmu *pmu) 2745 { 2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2747 if (ctx) 2748 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2750 if (ctx) 2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2752 } 2753 2754 /* 2755 * We want to maintain the following priority of scheduling: 2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2757 * - task pinned (EVENT_PINNED) 2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2759 * - task flexible (EVENT_FLEXIBLE). 2760 * 2761 * In order to avoid unscheduling and scheduling back in everything every 2762 * time an event is added, only do it for the groups of equal priority and 2763 * below. 2764 * 2765 * This can be called after a batch operation on task events, in which case 2766 * event_type is a bit mask of the types of events involved. For CPU events, 2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2768 */ 2769 static void ctx_resched(struct perf_cpu_context *cpuctx, 2770 struct perf_event_context *task_ctx, 2771 struct pmu *pmu, enum event_type_t event_type) 2772 { 2773 bool cpu_event = !!(event_type & EVENT_CPU); 2774 struct perf_event_pmu_context *epc; 2775 2776 /* 2777 * If pinned groups are involved, flexible groups also need to be 2778 * scheduled out. 2779 */ 2780 if (event_type & EVENT_PINNED) 2781 event_type |= EVENT_FLEXIBLE; 2782 2783 event_type &= EVENT_ALL; 2784 2785 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 if (task_ctx) { 2789 for_each_epc(epc, task_ctx, pmu, false) 2790 perf_pmu_disable(epc->pmu); 2791 2792 task_ctx_sched_out(task_ctx, pmu, event_type); 2793 } 2794 2795 /* 2796 * Decide which cpu ctx groups to schedule out based on the types 2797 * of events that caused rescheduling: 2798 * - EVENT_CPU: schedule out corresponding groups; 2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2800 * - otherwise, do nothing more. 2801 */ 2802 if (cpu_event) 2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2804 else if (event_type & EVENT_PINNED) 2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2806 2807 perf_event_sched_in(cpuctx, task_ctx, pmu); 2808 2809 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 2812 if (task_ctx) { 2813 for_each_epc(epc, task_ctx, pmu, false) 2814 perf_pmu_enable(epc->pmu); 2815 } 2816 } 2817 2818 void perf_pmu_resched(struct pmu *pmu) 2819 { 2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2821 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2822 2823 perf_ctx_lock(cpuctx, task_ctx); 2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2825 perf_ctx_unlock(cpuctx, task_ctx); 2826 } 2827 2828 /* 2829 * Cross CPU call to install and enable a performance event 2830 * 2831 * Very similar to remote_function() + event_function() but cannot assume that 2832 * things like ctx->is_active and cpuctx->task_ctx are set. 2833 */ 2834 static int __perf_install_in_context(void *info) 2835 { 2836 struct perf_event *event = info; 2837 struct perf_event_context *ctx = event->ctx; 2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2839 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2840 bool reprogram = true; 2841 int ret = 0; 2842 2843 raw_spin_lock(&cpuctx->ctx.lock); 2844 if (ctx->task) { 2845 raw_spin_lock(&ctx->lock); 2846 task_ctx = ctx; 2847 2848 reprogram = (ctx->task == current); 2849 2850 /* 2851 * If the task is running, it must be running on this CPU, 2852 * otherwise we cannot reprogram things. 2853 * 2854 * If its not running, we don't care, ctx->lock will 2855 * serialize against it becoming runnable. 2856 */ 2857 if (task_curr(ctx->task) && !reprogram) { 2858 ret = -ESRCH; 2859 goto unlock; 2860 } 2861 2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2863 } else if (task_ctx) { 2864 raw_spin_lock(&task_ctx->lock); 2865 } 2866 2867 #ifdef CONFIG_CGROUP_PERF 2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2869 /* 2870 * If the current cgroup doesn't match the event's 2871 * cgroup, we should not try to schedule it. 2872 */ 2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2875 event->cgrp->css.cgroup); 2876 } 2877 #endif 2878 2879 if (reprogram) { 2880 ctx_time_freeze(cpuctx, ctx); 2881 add_event_to_ctx(event, ctx); 2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2883 get_event_type(event)); 2884 } else { 2885 add_event_to_ctx(event, ctx); 2886 } 2887 2888 unlock: 2889 perf_ctx_unlock(cpuctx, task_ctx); 2890 2891 return ret; 2892 } 2893 2894 static bool exclusive_event_installable(struct perf_event *event, 2895 struct perf_event_context *ctx); 2896 2897 /* 2898 * Attach a performance event to a context. 2899 * 2900 * Very similar to event_function_call, see comment there. 2901 */ 2902 static void 2903 perf_install_in_context(struct perf_event_context *ctx, 2904 struct perf_event *event, 2905 int cpu) 2906 { 2907 struct task_struct *task = READ_ONCE(ctx->task); 2908 2909 lockdep_assert_held(&ctx->mutex); 2910 2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2912 2913 if (event->cpu != -1) 2914 WARN_ON_ONCE(event->cpu != cpu); 2915 2916 /* 2917 * Ensures that if we can observe event->ctx, both the event and ctx 2918 * will be 'complete'. See perf_iterate_sb_cpu(). 2919 */ 2920 smp_store_release(&event->ctx, ctx); 2921 2922 /* 2923 * perf_event_attr::disabled events will not run and can be initialized 2924 * without IPI. Except when this is the first event for the context, in 2925 * that case we need the magic of the IPI to set ctx->is_active. 2926 * 2927 * The IOC_ENABLE that is sure to follow the creation of a disabled 2928 * event will issue the IPI and reprogram the hardware. 2929 */ 2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2931 ctx->nr_events && !is_cgroup_event(event)) { 2932 raw_spin_lock_irq(&ctx->lock); 2933 if (ctx->task == TASK_TOMBSTONE) { 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 add_event_to_ctx(event, ctx); 2938 raw_spin_unlock_irq(&ctx->lock); 2939 return; 2940 } 2941 2942 if (!task) { 2943 cpu_function_call(cpu, __perf_install_in_context, event); 2944 return; 2945 } 2946 2947 /* 2948 * Should not happen, we validate the ctx is still alive before calling. 2949 */ 2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2951 return; 2952 2953 /* 2954 * Installing events is tricky because we cannot rely on ctx->is_active 2955 * to be set in case this is the nr_events 0 -> 1 transition. 2956 * 2957 * Instead we use task_curr(), which tells us if the task is running. 2958 * However, since we use task_curr() outside of rq::lock, we can race 2959 * against the actual state. This means the result can be wrong. 2960 * 2961 * If we get a false positive, we retry, this is harmless. 2962 * 2963 * If we get a false negative, things are complicated. If we are after 2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2965 * value must be correct. If we're before, it doesn't matter since 2966 * perf_event_context_sched_in() will program the counter. 2967 * 2968 * However, this hinges on the remote context switch having observed 2969 * our task->perf_event_ctxp[] store, such that it will in fact take 2970 * ctx::lock in perf_event_context_sched_in(). 2971 * 2972 * We do this by task_function_call(), if the IPI fails to hit the task 2973 * we know any future context switch of task must see the 2974 * perf_event_ctpx[] store. 2975 */ 2976 2977 /* 2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2979 * task_cpu() load, such that if the IPI then does not find the task 2980 * running, a future context switch of that task must observe the 2981 * store. 2982 */ 2983 smp_mb(); 2984 again: 2985 if (!task_function_call(task, __perf_install_in_context, event)) 2986 return; 2987 2988 raw_spin_lock_irq(&ctx->lock); 2989 task = ctx->task; 2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2991 /* 2992 * Cannot happen because we already checked above (which also 2993 * cannot happen), and we hold ctx->mutex, which serializes us 2994 * against perf_event_exit_task_context(). 2995 */ 2996 raw_spin_unlock_irq(&ctx->lock); 2997 return; 2998 } 2999 /* 3000 * If the task is not running, ctx->lock will avoid it becoming so, 3001 * thus we can safely install the event. 3002 */ 3003 if (task_curr(task)) { 3004 raw_spin_unlock_irq(&ctx->lock); 3005 goto again; 3006 } 3007 add_event_to_ctx(event, ctx); 3008 raw_spin_unlock_irq(&ctx->lock); 3009 } 3010 3011 /* 3012 * Cross CPU call to enable a performance event 3013 */ 3014 static void __perf_event_enable(struct perf_event *event, 3015 struct perf_cpu_context *cpuctx, 3016 struct perf_event_context *ctx, 3017 void *info) 3018 { 3019 struct perf_event *leader = event->group_leader; 3020 struct perf_event_context *task_ctx; 3021 3022 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3023 event->state <= PERF_EVENT_STATE_ERROR) 3024 return; 3025 3026 ctx_time_freeze(cpuctx, ctx); 3027 3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3029 perf_cgroup_event_enable(event, ctx); 3030 3031 if (!ctx->is_active) 3032 return; 3033 3034 if (!event_filter_match(event)) 3035 return; 3036 3037 /* 3038 * If the event is in a group and isn't the group leader, 3039 * then don't put it on unless the group is on. 3040 */ 3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3042 return; 3043 3044 task_ctx = cpuctx->task_ctx; 3045 if (ctx->task) 3046 WARN_ON_ONCE(task_ctx != ctx); 3047 3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3049 } 3050 3051 /* 3052 * Enable an event. 3053 * 3054 * If event->ctx is a cloned context, callers must make sure that 3055 * every task struct that event->ctx->task could possibly point to 3056 * remains valid. This condition is satisfied when called through 3057 * perf_event_for_each_child or perf_event_for_each as described 3058 * for perf_event_disable. 3059 */ 3060 static void _perf_event_enable(struct perf_event *event) 3061 { 3062 struct perf_event_context *ctx = event->ctx; 3063 3064 raw_spin_lock_irq(&ctx->lock); 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state < PERF_EVENT_STATE_ERROR) { 3067 out: 3068 raw_spin_unlock_irq(&ctx->lock); 3069 return; 3070 } 3071 3072 /* 3073 * If the event is in error state, clear that first. 3074 * 3075 * That way, if we see the event in error state below, we know that it 3076 * has gone back into error state, as distinct from the task having 3077 * been scheduled away before the cross-call arrived. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_ERROR) { 3080 /* 3081 * Detached SIBLING events cannot leave ERROR state. 3082 */ 3083 if (event->event_caps & PERF_EV_CAP_SIBLING && 3084 event->group_leader == event) 3085 goto out; 3086 3087 event->state = PERF_EVENT_STATE_OFF; 3088 } 3089 raw_spin_unlock_irq(&ctx->lock); 3090 3091 event_function_call(event, __perf_event_enable, NULL); 3092 } 3093 3094 /* 3095 * See perf_event_disable(); 3096 */ 3097 void perf_event_enable(struct perf_event *event) 3098 { 3099 struct perf_event_context *ctx; 3100 3101 ctx = perf_event_ctx_lock(event); 3102 _perf_event_enable(event); 3103 perf_event_ctx_unlock(event, ctx); 3104 } 3105 EXPORT_SYMBOL_GPL(perf_event_enable); 3106 3107 struct stop_event_data { 3108 struct perf_event *event; 3109 unsigned int restart; 3110 }; 3111 3112 static int __perf_event_stop(void *info) 3113 { 3114 struct stop_event_data *sd = info; 3115 struct perf_event *event = sd->event; 3116 3117 /* if it's already INACTIVE, do nothing */ 3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3119 return 0; 3120 3121 /* matches smp_wmb() in event_sched_in() */ 3122 smp_rmb(); 3123 3124 /* 3125 * There is a window with interrupts enabled before we get here, 3126 * so we need to check again lest we try to stop another CPU's event. 3127 */ 3128 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3129 return -EAGAIN; 3130 3131 event->pmu->stop(event, PERF_EF_UPDATE); 3132 3133 /* 3134 * May race with the actual stop (through perf_pmu_output_stop()), 3135 * but it is only used for events with AUX ring buffer, and such 3136 * events will refuse to restart because of rb::aux_mmap_count==0, 3137 * see comments in perf_aux_output_begin(). 3138 * 3139 * Since this is happening on an event-local CPU, no trace is lost 3140 * while restarting. 3141 */ 3142 if (sd->restart) 3143 event->pmu->start(event, 0); 3144 3145 return 0; 3146 } 3147 3148 static int perf_event_stop(struct perf_event *event, int restart) 3149 { 3150 struct stop_event_data sd = { 3151 .event = event, 3152 .restart = restart, 3153 }; 3154 int ret = 0; 3155 3156 do { 3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3158 return 0; 3159 3160 /* matches smp_wmb() in event_sched_in() */ 3161 smp_rmb(); 3162 3163 /* 3164 * We only want to restart ACTIVE events, so if the event goes 3165 * inactive here (event->oncpu==-1), there's nothing more to do; 3166 * fall through with ret==-ENXIO. 3167 */ 3168 ret = cpu_function_call(READ_ONCE(event->oncpu), 3169 __perf_event_stop, &sd); 3170 } while (ret == -EAGAIN); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * In order to contain the amount of racy and tricky in the address filter 3177 * configuration management, it is a two part process: 3178 * 3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3180 * we update the addresses of corresponding vmas in 3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3182 * (p2) when an event is scheduled in (pmu::add), it calls 3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3184 * if the generation has changed since the previous call. 3185 * 3186 * If (p1) happens while the event is active, we restart it to force (p2). 3187 * 3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3190 * ioctl; 3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3193 * for reading; 3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3195 * of exec. 3196 */ 3197 void perf_event_addr_filters_sync(struct perf_event *event) 3198 { 3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3200 3201 if (!has_addr_filter(event)) 3202 return; 3203 3204 raw_spin_lock(&ifh->lock); 3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3206 event->pmu->addr_filters_sync(event); 3207 event->hw.addr_filters_gen = event->addr_filters_gen; 3208 } 3209 raw_spin_unlock(&ifh->lock); 3210 } 3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3212 3213 static int _perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 /* 3216 * not supported on inherited events 3217 */ 3218 if (event->attr.inherit || !is_sampling_event(event)) 3219 return -EINVAL; 3220 3221 atomic_add(refresh, &event->event_limit); 3222 _perf_event_enable(event); 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * See perf_event_disable() 3229 */ 3230 int perf_event_refresh(struct perf_event *event, int refresh) 3231 { 3232 struct perf_event_context *ctx; 3233 int ret; 3234 3235 ctx = perf_event_ctx_lock(event); 3236 ret = _perf_event_refresh(event, refresh); 3237 perf_event_ctx_unlock(event, ctx); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(perf_event_refresh); 3242 3243 static int perf_event_modify_breakpoint(struct perf_event *bp, 3244 struct perf_event_attr *attr) 3245 { 3246 int err; 3247 3248 _perf_event_disable(bp); 3249 3250 err = modify_user_hw_breakpoint_check(bp, attr, true); 3251 3252 if (!bp->attr.disabled) 3253 _perf_event_enable(bp); 3254 3255 return err; 3256 } 3257 3258 /* 3259 * Copy event-type-independent attributes that may be modified. 3260 */ 3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3262 const struct perf_event_attr *from) 3263 { 3264 to->sig_data = from->sig_data; 3265 } 3266 3267 static int perf_event_modify_attr(struct perf_event *event, 3268 struct perf_event_attr *attr) 3269 { 3270 int (*func)(struct perf_event *, struct perf_event_attr *); 3271 struct perf_event *child; 3272 int err; 3273 3274 if (event->attr.type != attr->type) 3275 return -EINVAL; 3276 3277 switch (event->attr.type) { 3278 case PERF_TYPE_BREAKPOINT: 3279 func = perf_event_modify_breakpoint; 3280 break; 3281 default: 3282 /* Place holder for future additions. */ 3283 return -EOPNOTSUPP; 3284 } 3285 3286 WARN_ON_ONCE(event->ctx->parent_ctx); 3287 3288 mutex_lock(&event->child_mutex); 3289 /* 3290 * Event-type-independent attributes must be copied before event-type 3291 * modification, which will validate that final attributes match the 3292 * source attributes after all relevant attributes have been copied. 3293 */ 3294 perf_event_modify_copy_attr(&event->attr, attr); 3295 err = func(event, attr); 3296 if (err) 3297 goto out; 3298 list_for_each_entry(child, &event->child_list, child_list) { 3299 perf_event_modify_copy_attr(&child->attr, attr); 3300 err = func(child, attr); 3301 if (err) 3302 goto out; 3303 } 3304 out: 3305 mutex_unlock(&event->child_mutex); 3306 return err; 3307 } 3308 3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3310 enum event_type_t event_type) 3311 { 3312 struct perf_event_context *ctx = pmu_ctx->ctx; 3313 struct perf_event *event, *tmp; 3314 struct pmu *pmu = pmu_ctx->pmu; 3315 3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3317 struct perf_cpu_pmu_context *cpc; 3318 3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3321 cpc->task_epc = NULL; 3322 } 3323 3324 if (!(event_type & EVENT_ALL)) 3325 return; 3326 3327 perf_pmu_disable(pmu); 3328 if (event_type & EVENT_PINNED) { 3329 list_for_each_entry_safe(event, tmp, 3330 &pmu_ctx->pinned_active, 3331 active_list) 3332 group_sched_out(event, ctx); 3333 } 3334 3335 if (event_type & EVENT_FLEXIBLE) { 3336 list_for_each_entry_safe(event, tmp, 3337 &pmu_ctx->flexible_active, 3338 active_list) 3339 group_sched_out(event, ctx); 3340 /* 3341 * Since we cleared EVENT_FLEXIBLE, also clear 3342 * rotate_necessary, is will be reset by 3343 * ctx_flexible_sched_in() when needed. 3344 */ 3345 pmu_ctx->rotate_necessary = 0; 3346 } 3347 perf_pmu_enable(pmu); 3348 } 3349 3350 /* 3351 * Be very careful with the @pmu argument since this will change ctx state. 3352 * The @pmu argument works for ctx_resched(), because that is symmetric in 3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3354 * 3355 * However, if you were to be asymmetrical, you could end up with messed up 3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3357 * be active. 3358 */ 3359 static void 3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3361 { 3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3363 struct perf_event_pmu_context *pmu_ctx; 3364 int is_active = ctx->is_active; 3365 bool cgroup = event_type & EVENT_CGROUP; 3366 3367 event_type &= ~EVENT_CGROUP; 3368 3369 lockdep_assert_held(&ctx->lock); 3370 3371 if (likely(!ctx->nr_events)) { 3372 /* 3373 * See __perf_remove_from_context(). 3374 */ 3375 WARN_ON_ONCE(ctx->is_active); 3376 if (ctx->task) 3377 WARN_ON_ONCE(cpuctx->task_ctx); 3378 return; 3379 } 3380 3381 /* 3382 * Always update time if it was set; not only when it changes. 3383 * Otherwise we can 'forget' to update time for any but the last 3384 * context we sched out. For example: 3385 * 3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3387 * ctx_sched_out(.event_type = EVENT_PINNED) 3388 * 3389 * would only update time for the pinned events. 3390 */ 3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3392 3393 /* 3394 * CPU-release for the below ->is_active store, 3395 * see __load_acquire() in perf_event_time_now() 3396 */ 3397 barrier(); 3398 ctx->is_active &= ~event_type; 3399 3400 if (!(ctx->is_active & EVENT_ALL)) { 3401 /* 3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3403 * does not observe a hole. perf_ctx_unlock() will clean up. 3404 */ 3405 if (ctx->is_active & EVENT_FROZEN) 3406 ctx->is_active &= EVENT_TIME_FROZEN; 3407 else 3408 ctx->is_active = 0; 3409 } 3410 3411 if (ctx->task) { 3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3413 if (!(ctx->is_active & EVENT_ALL)) 3414 cpuctx->task_ctx = NULL; 3415 } 3416 3417 is_active ^= ctx->is_active; /* changed bits */ 3418 3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3420 __pmu_ctx_sched_out(pmu_ctx, is_active); 3421 } 3422 3423 /* 3424 * Test whether two contexts are equivalent, i.e. whether they have both been 3425 * cloned from the same version of the same context. 3426 * 3427 * Equivalence is measured using a generation number in the context that is 3428 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3429 * and list_del_event(). 3430 */ 3431 static int context_equiv(struct perf_event_context *ctx1, 3432 struct perf_event_context *ctx2) 3433 { 3434 lockdep_assert_held(&ctx1->lock); 3435 lockdep_assert_held(&ctx2->lock); 3436 3437 /* Pinning disables the swap optimization */ 3438 if (ctx1->pin_count || ctx2->pin_count) 3439 return 0; 3440 3441 /* If ctx1 is the parent of ctx2 */ 3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3443 return 1; 3444 3445 /* If ctx2 is the parent of ctx1 */ 3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3447 return 1; 3448 3449 /* 3450 * If ctx1 and ctx2 have the same parent; we flatten the parent 3451 * hierarchy, see perf_event_init_context(). 3452 */ 3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3454 ctx1->parent_gen == ctx2->parent_gen) 3455 return 1; 3456 3457 /* Unmatched */ 3458 return 0; 3459 } 3460 3461 static void __perf_event_sync_stat(struct perf_event *event, 3462 struct perf_event *next_event) 3463 { 3464 u64 value; 3465 3466 if (!event->attr.inherit_stat) 3467 return; 3468 3469 /* 3470 * Update the event value, we cannot use perf_event_read() 3471 * because we're in the middle of a context switch and have IRQs 3472 * disabled, which upsets smp_call_function_single(), however 3473 * we know the event must be on the current CPU, therefore we 3474 * don't need to use it. 3475 */ 3476 if (event->state == PERF_EVENT_STATE_ACTIVE) 3477 event->pmu->read(event); 3478 3479 perf_event_update_time(event); 3480 3481 /* 3482 * In order to keep per-task stats reliable we need to flip the event 3483 * values when we flip the contexts. 3484 */ 3485 value = local64_read(&next_event->count); 3486 value = local64_xchg(&event->count, value); 3487 local64_set(&next_event->count, value); 3488 3489 swap(event->total_time_enabled, next_event->total_time_enabled); 3490 swap(event->total_time_running, next_event->total_time_running); 3491 3492 /* 3493 * Since we swizzled the values, update the user visible data too. 3494 */ 3495 perf_event_update_userpage(event); 3496 perf_event_update_userpage(next_event); 3497 } 3498 3499 static void perf_event_sync_stat(struct perf_event_context *ctx, 3500 struct perf_event_context *next_ctx) 3501 { 3502 struct perf_event *event, *next_event; 3503 3504 if (!ctx->nr_stat) 3505 return; 3506 3507 update_context_time(ctx); 3508 3509 event = list_first_entry(&ctx->event_list, 3510 struct perf_event, event_entry); 3511 3512 next_event = list_first_entry(&next_ctx->event_list, 3513 struct perf_event, event_entry); 3514 3515 while (&event->event_entry != &ctx->event_list && 3516 &next_event->event_entry != &next_ctx->event_list) { 3517 3518 __perf_event_sync_stat(event, next_event); 3519 3520 event = list_next_entry(event, event_entry); 3521 next_event = list_next_entry(next_event, event_entry); 3522 } 3523 } 3524 3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3528 !list_entry_is_head(pos1, head1, member) && \ 3529 !list_entry_is_head(pos2, head2, member); \ 3530 pos1 = list_next_entry(pos1, member), \ 3531 pos2 = list_next_entry(pos2, member)) 3532 3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3534 struct perf_event_context *next_ctx) 3535 { 3536 struct perf_event_pmu_context *prev_epc, *next_epc; 3537 3538 if (!prev_ctx->nr_task_data) 3539 return; 3540 3541 double_list_for_each_entry(prev_epc, next_epc, 3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3543 pmu_ctx_entry) { 3544 3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3546 continue; 3547 3548 /* 3549 * PMU specific parts of task perf context can require 3550 * additional synchronization. As an example of such 3551 * synchronization see implementation details of Intel 3552 * LBR call stack data profiling; 3553 */ 3554 if (prev_epc->pmu->swap_task_ctx) 3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3556 else 3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3558 } 3559 } 3560 3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3562 { 3563 struct perf_event_pmu_context *pmu_ctx; 3564 struct perf_cpu_pmu_context *cpc; 3565 3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3568 3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3571 } 3572 } 3573 3574 static void 3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3576 { 3577 struct perf_event_context *ctx = task->perf_event_ctxp; 3578 struct perf_event_context *next_ctx; 3579 struct perf_event_context *parent, *next_parent; 3580 int do_switch = 1; 3581 3582 if (likely(!ctx)) 3583 return; 3584 3585 rcu_read_lock(); 3586 next_ctx = rcu_dereference(next->perf_event_ctxp); 3587 if (!next_ctx) 3588 goto unlock; 3589 3590 parent = rcu_dereference(ctx->parent_ctx); 3591 next_parent = rcu_dereference(next_ctx->parent_ctx); 3592 3593 /* If neither context have a parent context; they cannot be clones. */ 3594 if (!parent && !next_parent) 3595 goto unlock; 3596 3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3598 /* 3599 * Looks like the two contexts are clones, so we might be 3600 * able to optimize the context switch. We lock both 3601 * contexts and check that they are clones under the 3602 * lock (including re-checking that neither has been 3603 * uncloned in the meantime). It doesn't matter which 3604 * order we take the locks because no other cpu could 3605 * be trying to lock both of these tasks. 3606 */ 3607 raw_spin_lock(&ctx->lock); 3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3609 if (context_equiv(ctx, next_ctx)) { 3610 3611 perf_ctx_disable(ctx, false); 3612 3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3614 if (local_read(&ctx->nr_no_switch_fast) || 3615 local_read(&next_ctx->nr_no_switch_fast)) { 3616 /* 3617 * Must not swap out ctx when there's pending 3618 * events that rely on the ctx->task relation. 3619 * 3620 * Likewise, when a context contains inherit + 3621 * SAMPLE_READ events they should be switched 3622 * out using the slow path so that they are 3623 * treated as if they were distinct contexts. 3624 */ 3625 raw_spin_unlock(&next_ctx->lock); 3626 rcu_read_unlock(); 3627 goto inside_switch; 3628 } 3629 3630 WRITE_ONCE(ctx->task, next); 3631 WRITE_ONCE(next_ctx->task, task); 3632 3633 perf_ctx_sched_task_cb(ctx, false); 3634 perf_event_swap_task_ctx_data(ctx, next_ctx); 3635 3636 perf_ctx_enable(ctx, false); 3637 3638 /* 3639 * RCU_INIT_POINTER here is safe because we've not 3640 * modified the ctx and the above modification of 3641 * ctx->task and ctx->task_ctx_data are immaterial 3642 * since those values are always verified under 3643 * ctx->lock which we're now holding. 3644 */ 3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3647 3648 do_switch = 0; 3649 3650 perf_event_sync_stat(ctx, next_ctx); 3651 } 3652 raw_spin_unlock(&next_ctx->lock); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 unlock: 3656 rcu_read_unlock(); 3657 3658 if (do_switch) { 3659 raw_spin_lock(&ctx->lock); 3660 perf_ctx_disable(ctx, false); 3661 3662 inside_switch: 3663 perf_ctx_sched_task_cb(ctx, false); 3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3665 3666 perf_ctx_enable(ctx, false); 3667 raw_spin_unlock(&ctx->lock); 3668 } 3669 } 3670 3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3673 3674 void perf_sched_cb_dec(struct pmu *pmu) 3675 { 3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3677 3678 this_cpu_dec(perf_sched_cb_usages); 3679 barrier(); 3680 3681 if (!--cpc->sched_cb_usage) 3682 list_del(&cpc->sched_cb_entry); 3683 } 3684 3685 3686 void perf_sched_cb_inc(struct pmu *pmu) 3687 { 3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3689 3690 if (!cpc->sched_cb_usage++) 3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3692 3693 barrier(); 3694 this_cpu_inc(perf_sched_cb_usages); 3695 } 3696 3697 /* 3698 * This function provides the context switch callback to the lower code 3699 * layer. It is invoked ONLY when the context switch callback is enabled. 3700 * 3701 * This callback is relevant even to per-cpu events; for example multi event 3702 * PEBS requires this to provide PID/TID information. This requires we flush 3703 * all queued PEBS records before we context switch to a new task. 3704 */ 3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3706 { 3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 struct pmu *pmu; 3709 3710 pmu = cpc->epc.pmu; 3711 3712 /* software PMUs will not have sched_task */ 3713 if (WARN_ON_ONCE(!pmu->sched_task)) 3714 return; 3715 3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3717 perf_pmu_disable(pmu); 3718 3719 pmu->sched_task(cpc->task_epc, sched_in); 3720 3721 perf_pmu_enable(pmu); 3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3723 } 3724 3725 static void perf_pmu_sched_task(struct task_struct *prev, 3726 struct task_struct *next, 3727 bool sched_in) 3728 { 3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3730 struct perf_cpu_pmu_context *cpc; 3731 3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3733 if (prev == next || cpuctx->task_ctx) 3734 return; 3735 3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3737 __perf_pmu_sched_task(cpc, sched_in); 3738 } 3739 3740 static void perf_event_switch(struct task_struct *task, 3741 struct task_struct *next_prev, bool sched_in); 3742 3743 /* 3744 * Called from scheduler to remove the events of the current task, 3745 * with interrupts disabled. 3746 * 3747 * We stop each event and update the event value in event->count. 3748 * 3749 * This does not protect us against NMI, but disable() 3750 * sets the disabled bit in the control field of event _before_ 3751 * accessing the event control register. If a NMI hits, then it will 3752 * not restart the event. 3753 */ 3754 void __perf_event_task_sched_out(struct task_struct *task, 3755 struct task_struct *next) 3756 { 3757 if (__this_cpu_read(perf_sched_cb_usages)) 3758 perf_pmu_sched_task(task, next, false); 3759 3760 if (atomic_read(&nr_switch_events)) 3761 perf_event_switch(task, next, false); 3762 3763 perf_event_context_sched_out(task, next); 3764 3765 /* 3766 * if cgroup events exist on this CPU, then we need 3767 * to check if we have to switch out PMU state. 3768 * cgroup event are system-wide mode only 3769 */ 3770 perf_cgroup_switch(next); 3771 } 3772 3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3774 { 3775 const struct perf_event *le = *(const struct perf_event **)l; 3776 const struct perf_event *re = *(const struct perf_event **)r; 3777 3778 return le->group_index < re->group_index; 3779 } 3780 3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3782 3783 static const struct min_heap_callbacks perf_min_heap = { 3784 .less = perf_less_group_idx, 3785 .swp = NULL, 3786 }; 3787 3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3789 { 3790 struct perf_event **itrs = heap->data; 3791 3792 if (event) { 3793 itrs[heap->nr] = event; 3794 heap->nr++; 3795 } 3796 } 3797 3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3799 { 3800 struct perf_cpu_pmu_context *cpc; 3801 3802 if (!pmu_ctx->ctx->task) 3803 return; 3804 3805 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3806 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3807 cpc->task_epc = pmu_ctx; 3808 } 3809 3810 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3811 struct perf_event_groups *groups, int cpu, 3812 struct pmu *pmu, 3813 int (*func)(struct perf_event *, void *), 3814 void *data) 3815 { 3816 #ifdef CONFIG_CGROUP_PERF 3817 struct cgroup_subsys_state *css = NULL; 3818 #endif 3819 struct perf_cpu_context *cpuctx = NULL; 3820 /* Space for per CPU and/or any CPU event iterators. */ 3821 struct perf_event *itrs[2]; 3822 struct perf_event_min_heap event_heap; 3823 struct perf_event **evt; 3824 int ret; 3825 3826 if (pmu->filter && pmu->filter(pmu, cpu)) 3827 return 0; 3828 3829 if (!ctx->task) { 3830 cpuctx = this_cpu_ptr(&perf_cpu_context); 3831 event_heap = (struct perf_event_min_heap){ 3832 .data = cpuctx->heap, 3833 .nr = 0, 3834 .size = cpuctx->heap_size, 3835 }; 3836 3837 lockdep_assert_held(&cpuctx->ctx.lock); 3838 3839 #ifdef CONFIG_CGROUP_PERF 3840 if (cpuctx->cgrp) 3841 css = &cpuctx->cgrp->css; 3842 #endif 3843 } else { 3844 event_heap = (struct perf_event_min_heap){ 3845 .data = itrs, 3846 .nr = 0, 3847 .size = ARRAY_SIZE(itrs), 3848 }; 3849 /* Events not within a CPU context may be on any CPU. */ 3850 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3851 } 3852 evt = event_heap.data; 3853 3854 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3855 3856 #ifdef CONFIG_CGROUP_PERF 3857 for (; css; css = css->parent) 3858 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3859 #endif 3860 3861 if (event_heap.nr) { 3862 __link_epc((*evt)->pmu_ctx); 3863 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3864 } 3865 3866 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3867 3868 while (event_heap.nr) { 3869 ret = func(*evt, data); 3870 if (ret) 3871 return ret; 3872 3873 *evt = perf_event_groups_next(*evt, pmu); 3874 if (*evt) 3875 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3876 else 3877 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3878 } 3879 3880 return 0; 3881 } 3882 3883 /* 3884 * Because the userpage is strictly per-event (there is no concept of context, 3885 * so there cannot be a context indirection), every userpage must be updated 3886 * when context time starts :-( 3887 * 3888 * IOW, we must not miss EVENT_TIME edges. 3889 */ 3890 static inline bool event_update_userpage(struct perf_event *event) 3891 { 3892 if (likely(!atomic_read(&event->mmap_count))) 3893 return false; 3894 3895 perf_event_update_time(event); 3896 perf_event_update_userpage(event); 3897 3898 return true; 3899 } 3900 3901 static inline void group_update_userpage(struct perf_event *group_event) 3902 { 3903 struct perf_event *event; 3904 3905 if (!event_update_userpage(group_event)) 3906 return; 3907 3908 for_each_sibling_event(event, group_event) 3909 event_update_userpage(event); 3910 } 3911 3912 static int merge_sched_in(struct perf_event *event, void *data) 3913 { 3914 struct perf_event_context *ctx = event->ctx; 3915 int *can_add_hw = data; 3916 3917 if (event->state <= PERF_EVENT_STATE_OFF) 3918 return 0; 3919 3920 if (!event_filter_match(event)) 3921 return 0; 3922 3923 if (group_can_go_on(event, *can_add_hw)) { 3924 if (!group_sched_in(event, ctx)) 3925 list_add_tail(&event->active_list, get_event_list(event)); 3926 } 3927 3928 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3929 *can_add_hw = 0; 3930 if (event->attr.pinned) { 3931 perf_cgroup_event_disable(event, ctx); 3932 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3933 } else { 3934 struct perf_cpu_pmu_context *cpc; 3935 3936 event->pmu_ctx->rotate_necessary = 1; 3937 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3938 perf_mux_hrtimer_restart(cpc); 3939 group_update_userpage(event); 3940 } 3941 } 3942 3943 return 0; 3944 } 3945 3946 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3947 struct perf_event_groups *groups, 3948 struct pmu *pmu) 3949 { 3950 int can_add_hw = 1; 3951 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3952 merge_sched_in, &can_add_hw); 3953 } 3954 3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3956 enum event_type_t event_type) 3957 { 3958 struct perf_event_context *ctx = pmu_ctx->ctx; 3959 3960 if (event_type & EVENT_PINNED) 3961 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3962 if (event_type & EVENT_FLEXIBLE) 3963 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3964 } 3965 3966 static void 3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3968 { 3969 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3970 struct perf_event_pmu_context *pmu_ctx; 3971 int is_active = ctx->is_active; 3972 bool cgroup = event_type & EVENT_CGROUP; 3973 3974 event_type &= ~EVENT_CGROUP; 3975 3976 lockdep_assert_held(&ctx->lock); 3977 3978 if (likely(!ctx->nr_events)) 3979 return; 3980 3981 if (!(is_active & EVENT_TIME)) { 3982 /* start ctx time */ 3983 __update_context_time(ctx, false); 3984 perf_cgroup_set_timestamp(cpuctx); 3985 /* 3986 * CPU-release for the below ->is_active store, 3987 * see __load_acquire() in perf_event_time_now() 3988 */ 3989 barrier(); 3990 } 3991 3992 ctx->is_active |= (event_type | EVENT_TIME); 3993 if (ctx->task) { 3994 if (!(is_active & EVENT_ALL)) 3995 cpuctx->task_ctx = ctx; 3996 else 3997 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3998 } 3999 4000 is_active ^= ctx->is_active; /* changed bits */ 4001 4002 /* 4003 * First go through the list and put on any pinned groups 4004 * in order to give them the best chance of going on. 4005 */ 4006 if (is_active & EVENT_PINNED) { 4007 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4008 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4009 } 4010 4011 /* Then walk through the lower prio flexible groups */ 4012 if (is_active & EVENT_FLEXIBLE) { 4013 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4014 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4015 } 4016 } 4017 4018 static void perf_event_context_sched_in(struct task_struct *task) 4019 { 4020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4021 struct perf_event_context *ctx; 4022 4023 rcu_read_lock(); 4024 ctx = rcu_dereference(task->perf_event_ctxp); 4025 if (!ctx) 4026 goto rcu_unlock; 4027 4028 if (cpuctx->task_ctx == ctx) { 4029 perf_ctx_lock(cpuctx, ctx); 4030 perf_ctx_disable(ctx, false); 4031 4032 perf_ctx_sched_task_cb(ctx, true); 4033 4034 perf_ctx_enable(ctx, false); 4035 perf_ctx_unlock(cpuctx, ctx); 4036 goto rcu_unlock; 4037 } 4038 4039 perf_ctx_lock(cpuctx, ctx); 4040 /* 4041 * We must check ctx->nr_events while holding ctx->lock, such 4042 * that we serialize against perf_install_in_context(). 4043 */ 4044 if (!ctx->nr_events) 4045 goto unlock; 4046 4047 perf_ctx_disable(ctx, false); 4048 /* 4049 * We want to keep the following priority order: 4050 * cpu pinned (that don't need to move), task pinned, 4051 * cpu flexible, task flexible. 4052 * 4053 * However, if task's ctx is not carrying any pinned 4054 * events, no need to flip the cpuctx's events around. 4055 */ 4056 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4057 perf_ctx_disable(&cpuctx->ctx, false); 4058 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4059 } 4060 4061 perf_event_sched_in(cpuctx, ctx, NULL); 4062 4063 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4064 4065 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4066 perf_ctx_enable(&cpuctx->ctx, false); 4067 4068 perf_ctx_enable(ctx, false); 4069 4070 unlock: 4071 perf_ctx_unlock(cpuctx, ctx); 4072 rcu_unlock: 4073 rcu_read_unlock(); 4074 } 4075 4076 /* 4077 * Called from scheduler to add the events of the current task 4078 * with interrupts disabled. 4079 * 4080 * We restore the event value and then enable it. 4081 * 4082 * This does not protect us against NMI, but enable() 4083 * sets the enabled bit in the control field of event _before_ 4084 * accessing the event control register. If a NMI hits, then it will 4085 * keep the event running. 4086 */ 4087 void __perf_event_task_sched_in(struct task_struct *prev, 4088 struct task_struct *task) 4089 { 4090 perf_event_context_sched_in(task); 4091 4092 if (atomic_read(&nr_switch_events)) 4093 perf_event_switch(task, prev, true); 4094 4095 if (__this_cpu_read(perf_sched_cb_usages)) 4096 perf_pmu_sched_task(prev, task, true); 4097 } 4098 4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4100 { 4101 u64 frequency = event->attr.sample_freq; 4102 u64 sec = NSEC_PER_SEC; 4103 u64 divisor, dividend; 4104 4105 int count_fls, nsec_fls, frequency_fls, sec_fls; 4106 4107 count_fls = fls64(count); 4108 nsec_fls = fls64(nsec); 4109 frequency_fls = fls64(frequency); 4110 sec_fls = 30; 4111 4112 /* 4113 * We got @count in @nsec, with a target of sample_freq HZ 4114 * the target period becomes: 4115 * 4116 * @count * 10^9 4117 * period = ------------------- 4118 * @nsec * sample_freq 4119 * 4120 */ 4121 4122 /* 4123 * Reduce accuracy by one bit such that @a and @b converge 4124 * to a similar magnitude. 4125 */ 4126 #define REDUCE_FLS(a, b) \ 4127 do { \ 4128 if (a##_fls > b##_fls) { \ 4129 a >>= 1; \ 4130 a##_fls--; \ 4131 } else { \ 4132 b >>= 1; \ 4133 b##_fls--; \ 4134 } \ 4135 } while (0) 4136 4137 /* 4138 * Reduce accuracy until either term fits in a u64, then proceed with 4139 * the other, so that finally we can do a u64/u64 division. 4140 */ 4141 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4142 REDUCE_FLS(nsec, frequency); 4143 REDUCE_FLS(sec, count); 4144 } 4145 4146 if (count_fls + sec_fls > 64) { 4147 divisor = nsec * frequency; 4148 4149 while (count_fls + sec_fls > 64) { 4150 REDUCE_FLS(count, sec); 4151 divisor >>= 1; 4152 } 4153 4154 dividend = count * sec; 4155 } else { 4156 dividend = count * sec; 4157 4158 while (nsec_fls + frequency_fls > 64) { 4159 REDUCE_FLS(nsec, frequency); 4160 dividend >>= 1; 4161 } 4162 4163 divisor = nsec * frequency; 4164 } 4165 4166 if (!divisor) 4167 return dividend; 4168 4169 return div64_u64(dividend, divisor); 4170 } 4171 4172 static DEFINE_PER_CPU(int, perf_throttled_count); 4173 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4174 4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4176 { 4177 struct hw_perf_event *hwc = &event->hw; 4178 s64 period, sample_period; 4179 s64 delta; 4180 4181 period = perf_calculate_period(event, nsec, count); 4182 4183 delta = (s64)(period - hwc->sample_period); 4184 if (delta >= 0) 4185 delta += 7; 4186 else 4187 delta -= 7; 4188 delta /= 8; /* low pass filter */ 4189 4190 sample_period = hwc->sample_period + delta; 4191 4192 if (!sample_period) 4193 sample_period = 1; 4194 4195 hwc->sample_period = sample_period; 4196 4197 if (local64_read(&hwc->period_left) > 8*sample_period) { 4198 if (disable) 4199 event->pmu->stop(event, PERF_EF_UPDATE); 4200 4201 local64_set(&hwc->period_left, 0); 4202 4203 if (disable) 4204 event->pmu->start(event, PERF_EF_RELOAD); 4205 } 4206 } 4207 4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4209 { 4210 struct perf_event *event; 4211 struct hw_perf_event *hwc; 4212 u64 now, period = TICK_NSEC; 4213 s64 delta; 4214 4215 list_for_each_entry(event, event_list, active_list) { 4216 if (event->state != PERF_EVENT_STATE_ACTIVE) 4217 continue; 4218 4219 // XXX use visit thingy to avoid the -1,cpu match 4220 if (!event_filter_match(event)) 4221 continue; 4222 4223 hwc = &event->hw; 4224 4225 if (hwc->interrupts == MAX_INTERRUPTS) { 4226 hwc->interrupts = 0; 4227 perf_log_throttle(event, 1); 4228 if (!event->attr.freq || !event->attr.sample_freq) 4229 event->pmu->start(event, 0); 4230 } 4231 4232 if (!event->attr.freq || !event->attr.sample_freq) 4233 continue; 4234 4235 /* 4236 * stop the event and update event->count 4237 */ 4238 event->pmu->stop(event, PERF_EF_UPDATE); 4239 4240 now = local64_read(&event->count); 4241 delta = now - hwc->freq_count_stamp; 4242 hwc->freq_count_stamp = now; 4243 4244 /* 4245 * restart the event 4246 * reload only if value has changed 4247 * we have stopped the event so tell that 4248 * to perf_adjust_period() to avoid stopping it 4249 * twice. 4250 */ 4251 if (delta > 0) 4252 perf_adjust_period(event, period, delta, false); 4253 4254 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4255 } 4256 } 4257 4258 /* 4259 * combine freq adjustment with unthrottling to avoid two passes over the 4260 * events. At the same time, make sure, having freq events does not change 4261 * the rate of unthrottling as that would introduce bias. 4262 */ 4263 static void 4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4265 { 4266 struct perf_event_pmu_context *pmu_ctx; 4267 4268 /* 4269 * only need to iterate over all events iff: 4270 * - context have events in frequency mode (needs freq adjust) 4271 * - there are events to unthrottle on this cpu 4272 */ 4273 if (!(ctx->nr_freq || unthrottle)) 4274 return; 4275 4276 raw_spin_lock(&ctx->lock); 4277 4278 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4279 if (!(pmu_ctx->nr_freq || unthrottle)) 4280 continue; 4281 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4282 continue; 4283 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4284 continue; 4285 4286 perf_pmu_disable(pmu_ctx->pmu); 4287 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4288 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4289 perf_pmu_enable(pmu_ctx->pmu); 4290 } 4291 4292 raw_spin_unlock(&ctx->lock); 4293 } 4294 4295 /* 4296 * Move @event to the tail of the @ctx's elegible events. 4297 */ 4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4299 { 4300 /* 4301 * Rotate the first entry last of non-pinned groups. Rotation might be 4302 * disabled by the inheritance code. 4303 */ 4304 if (ctx->rotate_disable) 4305 return; 4306 4307 perf_event_groups_delete(&ctx->flexible_groups, event); 4308 perf_event_groups_insert(&ctx->flexible_groups, event); 4309 } 4310 4311 /* pick an event from the flexible_groups to rotate */ 4312 static inline struct perf_event * 4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4314 { 4315 struct perf_event *event; 4316 struct rb_node *node; 4317 struct rb_root *tree; 4318 struct __group_key key = { 4319 .pmu = pmu_ctx->pmu, 4320 }; 4321 4322 /* pick the first active flexible event */ 4323 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4324 struct perf_event, active_list); 4325 if (event) 4326 goto out; 4327 4328 /* if no active flexible event, pick the first event */ 4329 tree = &pmu_ctx->ctx->flexible_groups.tree; 4330 4331 if (!pmu_ctx->ctx->task) { 4332 key.cpu = smp_processor_id(); 4333 4334 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4335 if (node) 4336 event = __node_2_pe(node); 4337 goto out; 4338 } 4339 4340 key.cpu = -1; 4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4342 if (node) { 4343 event = __node_2_pe(node); 4344 goto out; 4345 } 4346 4347 key.cpu = smp_processor_id(); 4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4349 if (node) 4350 event = __node_2_pe(node); 4351 4352 out: 4353 /* 4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4355 * finds there are unschedulable events, it will set it again. 4356 */ 4357 pmu_ctx->rotate_necessary = 0; 4358 4359 return event; 4360 } 4361 4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4363 { 4364 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4365 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4366 struct perf_event *cpu_event = NULL, *task_event = NULL; 4367 int cpu_rotate, task_rotate; 4368 struct pmu *pmu; 4369 4370 /* 4371 * Since we run this from IRQ context, nobody can install new 4372 * events, thus the event count values are stable. 4373 */ 4374 4375 cpu_epc = &cpc->epc; 4376 pmu = cpu_epc->pmu; 4377 task_epc = cpc->task_epc; 4378 4379 cpu_rotate = cpu_epc->rotate_necessary; 4380 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4381 4382 if (!(cpu_rotate || task_rotate)) 4383 return false; 4384 4385 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4386 perf_pmu_disable(pmu); 4387 4388 if (task_rotate) 4389 task_event = ctx_event_to_rotate(task_epc); 4390 if (cpu_rotate) 4391 cpu_event = ctx_event_to_rotate(cpu_epc); 4392 4393 /* 4394 * As per the order given at ctx_resched() first 'pop' task flexible 4395 * and then, if needed CPU flexible. 4396 */ 4397 if (task_event || (task_epc && cpu_event)) { 4398 update_context_time(task_epc->ctx); 4399 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4400 } 4401 4402 if (cpu_event) { 4403 update_context_time(&cpuctx->ctx); 4404 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4405 rotate_ctx(&cpuctx->ctx, cpu_event); 4406 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4407 } 4408 4409 if (task_event) 4410 rotate_ctx(task_epc->ctx, task_event); 4411 4412 if (task_event || (task_epc && cpu_event)) 4413 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4414 4415 perf_pmu_enable(pmu); 4416 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4417 4418 return true; 4419 } 4420 4421 void perf_event_task_tick(void) 4422 { 4423 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4424 struct perf_event_context *ctx; 4425 int throttled; 4426 4427 lockdep_assert_irqs_disabled(); 4428 4429 __this_cpu_inc(perf_throttled_seq); 4430 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4432 4433 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4434 4435 rcu_read_lock(); 4436 ctx = rcu_dereference(current->perf_event_ctxp); 4437 if (ctx) 4438 perf_adjust_freq_unthr_context(ctx, !!throttled); 4439 rcu_read_unlock(); 4440 } 4441 4442 static int event_enable_on_exec(struct perf_event *event, 4443 struct perf_event_context *ctx) 4444 { 4445 if (!event->attr.enable_on_exec) 4446 return 0; 4447 4448 event->attr.enable_on_exec = 0; 4449 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4450 return 0; 4451 4452 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4453 4454 return 1; 4455 } 4456 4457 /* 4458 * Enable all of a task's events that have been marked enable-on-exec. 4459 * This expects task == current. 4460 */ 4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4462 { 4463 struct perf_event_context *clone_ctx = NULL; 4464 enum event_type_t event_type = 0; 4465 struct perf_cpu_context *cpuctx; 4466 struct perf_event *event; 4467 unsigned long flags; 4468 int enabled = 0; 4469 4470 local_irq_save(flags); 4471 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4472 goto out; 4473 4474 if (!ctx->nr_events) 4475 goto out; 4476 4477 cpuctx = this_cpu_ptr(&perf_cpu_context); 4478 perf_ctx_lock(cpuctx, ctx); 4479 ctx_time_freeze(cpuctx, ctx); 4480 4481 list_for_each_entry(event, &ctx->event_list, event_entry) { 4482 enabled |= event_enable_on_exec(event, ctx); 4483 event_type |= get_event_type(event); 4484 } 4485 4486 /* 4487 * Unclone and reschedule this context if we enabled any event. 4488 */ 4489 if (enabled) { 4490 clone_ctx = unclone_ctx(ctx); 4491 ctx_resched(cpuctx, ctx, NULL, event_type); 4492 } 4493 perf_ctx_unlock(cpuctx, ctx); 4494 4495 out: 4496 local_irq_restore(flags); 4497 4498 if (clone_ctx) 4499 put_ctx(clone_ctx); 4500 } 4501 4502 static void perf_remove_from_owner(struct perf_event *event); 4503 static void perf_event_exit_event(struct perf_event *event, 4504 struct perf_event_context *ctx); 4505 4506 /* 4507 * Removes all events from the current task that have been marked 4508 * remove-on-exec, and feeds their values back to parent events. 4509 */ 4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4511 { 4512 struct perf_event_context *clone_ctx = NULL; 4513 struct perf_event *event, *next; 4514 unsigned long flags; 4515 bool modified = false; 4516 4517 mutex_lock(&ctx->mutex); 4518 4519 if (WARN_ON_ONCE(ctx->task != current)) 4520 goto unlock; 4521 4522 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4523 if (!event->attr.remove_on_exec) 4524 continue; 4525 4526 if (!is_kernel_event(event)) 4527 perf_remove_from_owner(event); 4528 4529 modified = true; 4530 4531 perf_event_exit_event(event, ctx); 4532 } 4533 4534 raw_spin_lock_irqsave(&ctx->lock, flags); 4535 if (modified) 4536 clone_ctx = unclone_ctx(ctx); 4537 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4538 4539 unlock: 4540 mutex_unlock(&ctx->mutex); 4541 4542 if (clone_ctx) 4543 put_ctx(clone_ctx); 4544 } 4545 4546 struct perf_read_data { 4547 struct perf_event *event; 4548 bool group; 4549 int ret; 4550 }; 4551 4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4553 4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4555 { 4556 int local_cpu = smp_processor_id(); 4557 u16 local_pkg, event_pkg; 4558 4559 if ((unsigned)event_cpu >= nr_cpu_ids) 4560 return event_cpu; 4561 4562 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4563 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4564 4565 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4566 return local_cpu; 4567 } 4568 4569 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4570 event_pkg = topology_physical_package_id(event_cpu); 4571 local_pkg = topology_physical_package_id(local_cpu); 4572 4573 if (event_pkg == local_pkg) 4574 return local_cpu; 4575 } 4576 4577 return event_cpu; 4578 } 4579 4580 /* 4581 * Cross CPU call to read the hardware event 4582 */ 4583 static void __perf_event_read(void *info) 4584 { 4585 struct perf_read_data *data = info; 4586 struct perf_event *sub, *event = data->event; 4587 struct perf_event_context *ctx = event->ctx; 4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4589 struct pmu *pmu = event->pmu; 4590 4591 /* 4592 * If this is a task context, we need to check whether it is 4593 * the current task context of this cpu. If not it has been 4594 * scheduled out before the smp call arrived. In that case 4595 * event->count would have been updated to a recent sample 4596 * when the event was scheduled out. 4597 */ 4598 if (ctx->task && cpuctx->task_ctx != ctx) 4599 return; 4600 4601 raw_spin_lock(&ctx->lock); 4602 ctx_time_update_event(ctx, event); 4603 4604 perf_event_update_time(event); 4605 if (data->group) 4606 perf_event_update_sibling_time(event); 4607 4608 if (event->state != PERF_EVENT_STATE_ACTIVE) 4609 goto unlock; 4610 4611 if (!data->group) { 4612 pmu->read(event); 4613 data->ret = 0; 4614 goto unlock; 4615 } 4616 4617 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4618 4619 pmu->read(event); 4620 4621 for_each_sibling_event(sub, event) { 4622 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4623 /* 4624 * Use sibling's PMU rather than @event's since 4625 * sibling could be on different (eg: software) PMU. 4626 */ 4627 sub->pmu->read(sub); 4628 } 4629 } 4630 4631 data->ret = pmu->commit_txn(pmu); 4632 4633 unlock: 4634 raw_spin_unlock(&ctx->lock); 4635 } 4636 4637 static inline u64 perf_event_count(struct perf_event *event, bool self) 4638 { 4639 if (self) 4640 return local64_read(&event->count); 4641 4642 return local64_read(&event->count) + atomic64_read(&event->child_count); 4643 } 4644 4645 static void calc_timer_values(struct perf_event *event, 4646 u64 *now, 4647 u64 *enabled, 4648 u64 *running) 4649 { 4650 u64 ctx_time; 4651 4652 *now = perf_clock(); 4653 ctx_time = perf_event_time_now(event, *now); 4654 __perf_update_times(event, ctx_time, enabled, running); 4655 } 4656 4657 /* 4658 * NMI-safe method to read a local event, that is an event that 4659 * is: 4660 * - either for the current task, or for this CPU 4661 * - does not have inherit set, for inherited task events 4662 * will not be local and we cannot read them atomically 4663 * - must not have a pmu::count method 4664 */ 4665 int perf_event_read_local(struct perf_event *event, u64 *value, 4666 u64 *enabled, u64 *running) 4667 { 4668 unsigned long flags; 4669 int event_oncpu; 4670 int event_cpu; 4671 int ret = 0; 4672 4673 /* 4674 * Disabling interrupts avoids all counter scheduling (context 4675 * switches, timer based rotation and IPIs). 4676 */ 4677 local_irq_save(flags); 4678 4679 /* 4680 * It must not be an event with inherit set, we cannot read 4681 * all child counters from atomic context. 4682 */ 4683 if (event->attr.inherit) { 4684 ret = -EOPNOTSUPP; 4685 goto out; 4686 } 4687 4688 /* If this is a per-task event, it must be for current */ 4689 if ((event->attach_state & PERF_ATTACH_TASK) && 4690 event->hw.target != current) { 4691 ret = -EINVAL; 4692 goto out; 4693 } 4694 4695 /* 4696 * Get the event CPU numbers, and adjust them to local if the event is 4697 * a per-package event that can be read locally 4698 */ 4699 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4700 event_cpu = __perf_event_read_cpu(event, event->cpu); 4701 4702 /* If this is a per-CPU event, it must be for this CPU */ 4703 if (!(event->attach_state & PERF_ATTACH_TASK) && 4704 event_cpu != smp_processor_id()) { 4705 ret = -EINVAL; 4706 goto out; 4707 } 4708 4709 /* If this is a pinned event it must be running on this CPU */ 4710 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4711 ret = -EBUSY; 4712 goto out; 4713 } 4714 4715 /* 4716 * If the event is currently on this CPU, its either a per-task event, 4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4718 * oncpu == -1). 4719 */ 4720 if (event_oncpu == smp_processor_id()) 4721 event->pmu->read(event); 4722 4723 *value = local64_read(&event->count); 4724 if (enabled || running) { 4725 u64 __enabled, __running, __now; 4726 4727 calc_timer_values(event, &__now, &__enabled, &__running); 4728 if (enabled) 4729 *enabled = __enabled; 4730 if (running) 4731 *running = __running; 4732 } 4733 out: 4734 local_irq_restore(flags); 4735 4736 return ret; 4737 } 4738 4739 static int perf_event_read(struct perf_event *event, bool group) 4740 { 4741 enum perf_event_state state = READ_ONCE(event->state); 4742 int event_cpu, ret = 0; 4743 4744 /* 4745 * If event is enabled and currently active on a CPU, update the 4746 * value in the event structure: 4747 */ 4748 again: 4749 if (state == PERF_EVENT_STATE_ACTIVE) { 4750 struct perf_read_data data; 4751 4752 /* 4753 * Orders the ->state and ->oncpu loads such that if we see 4754 * ACTIVE we must also see the right ->oncpu. 4755 * 4756 * Matches the smp_wmb() from event_sched_in(). 4757 */ 4758 smp_rmb(); 4759 4760 event_cpu = READ_ONCE(event->oncpu); 4761 if ((unsigned)event_cpu >= nr_cpu_ids) 4762 return 0; 4763 4764 data = (struct perf_read_data){ 4765 .event = event, 4766 .group = group, 4767 .ret = 0, 4768 }; 4769 4770 preempt_disable(); 4771 event_cpu = __perf_event_read_cpu(event, event_cpu); 4772 4773 /* 4774 * Purposely ignore the smp_call_function_single() return 4775 * value. 4776 * 4777 * If event_cpu isn't a valid CPU it means the event got 4778 * scheduled out and that will have updated the event count. 4779 * 4780 * Therefore, either way, we'll have an up-to-date event count 4781 * after this. 4782 */ 4783 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4784 preempt_enable(); 4785 ret = data.ret; 4786 4787 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4788 struct perf_event_context *ctx = event->ctx; 4789 unsigned long flags; 4790 4791 raw_spin_lock_irqsave(&ctx->lock, flags); 4792 state = event->state; 4793 if (state != PERF_EVENT_STATE_INACTIVE) { 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 goto again; 4796 } 4797 4798 /* 4799 * May read while context is not active (e.g., thread is 4800 * blocked), in that case we cannot update context time 4801 */ 4802 ctx_time_update_event(ctx, event); 4803 4804 perf_event_update_time(event); 4805 if (group) 4806 perf_event_update_sibling_time(event); 4807 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4808 } 4809 4810 return ret; 4811 } 4812 4813 /* 4814 * Initialize the perf_event context in a task_struct: 4815 */ 4816 static void __perf_event_init_context(struct perf_event_context *ctx) 4817 { 4818 raw_spin_lock_init(&ctx->lock); 4819 mutex_init(&ctx->mutex); 4820 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4821 perf_event_groups_init(&ctx->pinned_groups); 4822 perf_event_groups_init(&ctx->flexible_groups); 4823 INIT_LIST_HEAD(&ctx->event_list); 4824 refcount_set(&ctx->refcount, 1); 4825 } 4826 4827 static void 4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4829 { 4830 epc->pmu = pmu; 4831 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4832 INIT_LIST_HEAD(&epc->pinned_active); 4833 INIT_LIST_HEAD(&epc->flexible_active); 4834 atomic_set(&epc->refcount, 1); 4835 } 4836 4837 static struct perf_event_context * 4838 alloc_perf_context(struct task_struct *task) 4839 { 4840 struct perf_event_context *ctx; 4841 4842 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4843 if (!ctx) 4844 return NULL; 4845 4846 __perf_event_init_context(ctx); 4847 if (task) 4848 ctx->task = get_task_struct(task); 4849 4850 return ctx; 4851 } 4852 4853 static struct task_struct * 4854 find_lively_task_by_vpid(pid_t vpid) 4855 { 4856 struct task_struct *task; 4857 4858 rcu_read_lock(); 4859 if (!vpid) 4860 task = current; 4861 else 4862 task = find_task_by_vpid(vpid); 4863 if (task) 4864 get_task_struct(task); 4865 rcu_read_unlock(); 4866 4867 if (!task) 4868 return ERR_PTR(-ESRCH); 4869 4870 return task; 4871 } 4872 4873 /* 4874 * Returns a matching context with refcount and pincount. 4875 */ 4876 static struct perf_event_context * 4877 find_get_context(struct task_struct *task, struct perf_event *event) 4878 { 4879 struct perf_event_context *ctx, *clone_ctx = NULL; 4880 struct perf_cpu_context *cpuctx; 4881 unsigned long flags; 4882 int err; 4883 4884 if (!task) { 4885 /* Must be root to operate on a CPU event: */ 4886 err = perf_allow_cpu(&event->attr); 4887 if (err) 4888 return ERR_PTR(err); 4889 4890 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4891 ctx = &cpuctx->ctx; 4892 get_ctx(ctx); 4893 raw_spin_lock_irqsave(&ctx->lock, flags); 4894 ++ctx->pin_count; 4895 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4896 4897 return ctx; 4898 } 4899 4900 err = -EINVAL; 4901 retry: 4902 ctx = perf_lock_task_context(task, &flags); 4903 if (ctx) { 4904 clone_ctx = unclone_ctx(ctx); 4905 ++ctx->pin_count; 4906 4907 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4908 4909 if (clone_ctx) 4910 put_ctx(clone_ctx); 4911 } else { 4912 ctx = alloc_perf_context(task); 4913 err = -ENOMEM; 4914 if (!ctx) 4915 goto errout; 4916 4917 err = 0; 4918 mutex_lock(&task->perf_event_mutex); 4919 /* 4920 * If it has already passed perf_event_exit_task(). 4921 * we must see PF_EXITING, it takes this mutex too. 4922 */ 4923 if (task->flags & PF_EXITING) 4924 err = -ESRCH; 4925 else if (task->perf_event_ctxp) 4926 err = -EAGAIN; 4927 else { 4928 get_ctx(ctx); 4929 ++ctx->pin_count; 4930 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4931 } 4932 mutex_unlock(&task->perf_event_mutex); 4933 4934 if (unlikely(err)) { 4935 put_ctx(ctx); 4936 4937 if (err == -EAGAIN) 4938 goto retry; 4939 goto errout; 4940 } 4941 } 4942 4943 return ctx; 4944 4945 errout: 4946 return ERR_PTR(err); 4947 } 4948 4949 static struct perf_event_pmu_context * 4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4951 struct perf_event *event) 4952 { 4953 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 4954 void *task_ctx_data = NULL; 4955 4956 if (!ctx->task) { 4957 /* 4958 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4959 * relies on the fact that find_get_pmu_context() cannot fail 4960 * for CPU contexts. 4961 */ 4962 struct perf_cpu_pmu_context *cpc; 4963 4964 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4965 epc = &cpc->epc; 4966 raw_spin_lock_irq(&ctx->lock); 4967 if (!epc->ctx) { 4968 atomic_set(&epc->refcount, 1); 4969 epc->embedded = 1; 4970 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4971 epc->ctx = ctx; 4972 } else { 4973 WARN_ON_ONCE(epc->ctx != ctx); 4974 atomic_inc(&epc->refcount); 4975 } 4976 raw_spin_unlock_irq(&ctx->lock); 4977 return epc; 4978 } 4979 4980 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4981 if (!new) 4982 return ERR_PTR(-ENOMEM); 4983 4984 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4985 task_ctx_data = alloc_task_ctx_data(pmu); 4986 if (!task_ctx_data) { 4987 kfree(new); 4988 return ERR_PTR(-ENOMEM); 4989 } 4990 } 4991 4992 __perf_init_event_pmu_context(new, pmu); 4993 4994 /* 4995 * XXX 4996 * 4997 * lockdep_assert_held(&ctx->mutex); 4998 * 4999 * can't because perf_event_init_task() doesn't actually hold the 5000 * child_ctx->mutex. 5001 */ 5002 5003 raw_spin_lock_irq(&ctx->lock); 5004 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5005 if (epc->pmu == pmu) { 5006 WARN_ON_ONCE(epc->ctx != ctx); 5007 atomic_inc(&epc->refcount); 5008 goto found_epc; 5009 } 5010 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5011 if (!pos && epc->pmu->type > pmu->type) 5012 pos = epc; 5013 } 5014 5015 epc = new; 5016 new = NULL; 5017 5018 if (!pos) 5019 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5020 else 5021 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5022 5023 epc->ctx = ctx; 5024 5025 found_epc: 5026 if (task_ctx_data && !epc->task_ctx_data) { 5027 epc->task_ctx_data = task_ctx_data; 5028 task_ctx_data = NULL; 5029 ctx->nr_task_data++; 5030 } 5031 raw_spin_unlock_irq(&ctx->lock); 5032 5033 free_task_ctx_data(pmu, task_ctx_data); 5034 kfree(new); 5035 5036 return epc; 5037 } 5038 5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5040 { 5041 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5042 } 5043 5044 static void free_epc_rcu(struct rcu_head *head) 5045 { 5046 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5047 5048 kfree(epc->task_ctx_data); 5049 kfree(epc); 5050 } 5051 5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5053 { 5054 struct perf_event_context *ctx = epc->ctx; 5055 unsigned long flags; 5056 5057 /* 5058 * XXX 5059 * 5060 * lockdep_assert_held(&ctx->mutex); 5061 * 5062 * can't because of the call-site in _free_event()/put_event() 5063 * which isn't always called under ctx->mutex. 5064 */ 5065 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5066 return; 5067 5068 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5069 5070 list_del_init(&epc->pmu_ctx_entry); 5071 epc->ctx = NULL; 5072 5073 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5074 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5075 5076 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5077 5078 if (epc->embedded) 5079 return; 5080 5081 call_rcu(&epc->rcu_head, free_epc_rcu); 5082 } 5083 5084 static void perf_event_free_filter(struct perf_event *event); 5085 5086 static void free_event_rcu(struct rcu_head *head) 5087 { 5088 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5089 5090 if (event->ns) 5091 put_pid_ns(event->ns); 5092 perf_event_free_filter(event); 5093 kmem_cache_free(perf_event_cache, event); 5094 } 5095 5096 static void ring_buffer_attach(struct perf_event *event, 5097 struct perf_buffer *rb); 5098 5099 static void detach_sb_event(struct perf_event *event) 5100 { 5101 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5102 5103 raw_spin_lock(&pel->lock); 5104 list_del_rcu(&event->sb_list); 5105 raw_spin_unlock(&pel->lock); 5106 } 5107 5108 static bool is_sb_event(struct perf_event *event) 5109 { 5110 struct perf_event_attr *attr = &event->attr; 5111 5112 if (event->parent) 5113 return false; 5114 5115 if (event->attach_state & PERF_ATTACH_TASK) 5116 return false; 5117 5118 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5119 attr->comm || attr->comm_exec || 5120 attr->task || attr->ksymbol || 5121 attr->context_switch || attr->text_poke || 5122 attr->bpf_event) 5123 return true; 5124 return false; 5125 } 5126 5127 static void unaccount_pmu_sb_event(struct perf_event *event) 5128 { 5129 if (is_sb_event(event)) 5130 detach_sb_event(event); 5131 } 5132 5133 #ifdef CONFIG_NO_HZ_FULL 5134 static DEFINE_SPINLOCK(nr_freq_lock); 5135 #endif 5136 5137 static void unaccount_freq_event_nohz(void) 5138 { 5139 #ifdef CONFIG_NO_HZ_FULL 5140 spin_lock(&nr_freq_lock); 5141 if (atomic_dec_and_test(&nr_freq_events)) 5142 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5143 spin_unlock(&nr_freq_lock); 5144 #endif 5145 } 5146 5147 static void unaccount_freq_event(void) 5148 { 5149 if (tick_nohz_full_enabled()) 5150 unaccount_freq_event_nohz(); 5151 else 5152 atomic_dec(&nr_freq_events); 5153 } 5154 5155 static void unaccount_event(struct perf_event *event) 5156 { 5157 bool dec = false; 5158 5159 if (event->parent) 5160 return; 5161 5162 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5163 dec = true; 5164 if (event->attr.mmap || event->attr.mmap_data) 5165 atomic_dec(&nr_mmap_events); 5166 if (event->attr.build_id) 5167 atomic_dec(&nr_build_id_events); 5168 if (event->attr.comm) 5169 atomic_dec(&nr_comm_events); 5170 if (event->attr.namespaces) 5171 atomic_dec(&nr_namespaces_events); 5172 if (event->attr.cgroup) 5173 atomic_dec(&nr_cgroup_events); 5174 if (event->attr.task) 5175 atomic_dec(&nr_task_events); 5176 if (event->attr.freq) 5177 unaccount_freq_event(); 5178 if (event->attr.context_switch) { 5179 dec = true; 5180 atomic_dec(&nr_switch_events); 5181 } 5182 if (is_cgroup_event(event)) 5183 dec = true; 5184 if (has_branch_stack(event)) 5185 dec = true; 5186 if (event->attr.ksymbol) 5187 atomic_dec(&nr_ksymbol_events); 5188 if (event->attr.bpf_event) 5189 atomic_dec(&nr_bpf_events); 5190 if (event->attr.text_poke) 5191 atomic_dec(&nr_text_poke_events); 5192 5193 if (dec) { 5194 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5195 schedule_delayed_work(&perf_sched_work, HZ); 5196 } 5197 5198 unaccount_pmu_sb_event(event); 5199 } 5200 5201 static void perf_sched_delayed(struct work_struct *work) 5202 { 5203 mutex_lock(&perf_sched_mutex); 5204 if (atomic_dec_and_test(&perf_sched_count)) 5205 static_branch_disable(&perf_sched_events); 5206 mutex_unlock(&perf_sched_mutex); 5207 } 5208 5209 /* 5210 * The following implement mutual exclusion of events on "exclusive" pmus 5211 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5212 * at a time, so we disallow creating events that might conflict, namely: 5213 * 5214 * 1) cpu-wide events in the presence of per-task events, 5215 * 2) per-task events in the presence of cpu-wide events, 5216 * 3) two matching events on the same perf_event_context. 5217 * 5218 * The former two cases are handled in the allocation path (perf_event_alloc(), 5219 * _free_event()), the latter -- before the first perf_install_in_context(). 5220 */ 5221 static int exclusive_event_init(struct perf_event *event) 5222 { 5223 struct pmu *pmu = event->pmu; 5224 5225 if (!is_exclusive_pmu(pmu)) 5226 return 0; 5227 5228 /* 5229 * Prevent co-existence of per-task and cpu-wide events on the 5230 * same exclusive pmu. 5231 * 5232 * Negative pmu::exclusive_cnt means there are cpu-wide 5233 * events on this "exclusive" pmu, positive means there are 5234 * per-task events. 5235 * 5236 * Since this is called in perf_event_alloc() path, event::ctx 5237 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5238 * to mean "per-task event", because unlike other attach states it 5239 * never gets cleared. 5240 */ 5241 if (event->attach_state & PERF_ATTACH_TASK) { 5242 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5243 return -EBUSY; 5244 } else { 5245 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5246 return -EBUSY; 5247 } 5248 5249 return 0; 5250 } 5251 5252 static void exclusive_event_destroy(struct perf_event *event) 5253 { 5254 struct pmu *pmu = event->pmu; 5255 5256 if (!is_exclusive_pmu(pmu)) 5257 return; 5258 5259 /* see comment in exclusive_event_init() */ 5260 if (event->attach_state & PERF_ATTACH_TASK) 5261 atomic_dec(&pmu->exclusive_cnt); 5262 else 5263 atomic_inc(&pmu->exclusive_cnt); 5264 } 5265 5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5267 { 5268 if ((e1->pmu == e2->pmu) && 5269 (e1->cpu == e2->cpu || 5270 e1->cpu == -1 || 5271 e2->cpu == -1)) 5272 return true; 5273 return false; 5274 } 5275 5276 static bool exclusive_event_installable(struct perf_event *event, 5277 struct perf_event_context *ctx) 5278 { 5279 struct perf_event *iter_event; 5280 struct pmu *pmu = event->pmu; 5281 5282 lockdep_assert_held(&ctx->mutex); 5283 5284 if (!is_exclusive_pmu(pmu)) 5285 return true; 5286 5287 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5288 if (exclusive_event_match(iter_event, event)) 5289 return false; 5290 } 5291 5292 return true; 5293 } 5294 5295 static void perf_addr_filters_splice(struct perf_event *event, 5296 struct list_head *head); 5297 5298 static void perf_pending_task_sync(struct perf_event *event) 5299 { 5300 struct callback_head *head = &event->pending_task; 5301 5302 if (!event->pending_work) 5303 return; 5304 /* 5305 * If the task is queued to the current task's queue, we 5306 * obviously can't wait for it to complete. Simply cancel it. 5307 */ 5308 if (task_work_cancel(current, head)) { 5309 event->pending_work = 0; 5310 local_dec(&event->ctx->nr_no_switch_fast); 5311 return; 5312 } 5313 5314 /* 5315 * All accesses related to the event are within the same RCU section in 5316 * perf_pending_task(). The RCU grace period before the event is freed 5317 * will make sure all those accesses are complete by then. 5318 */ 5319 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5320 } 5321 5322 static void _free_event(struct perf_event *event) 5323 { 5324 irq_work_sync(&event->pending_irq); 5325 irq_work_sync(&event->pending_disable_irq); 5326 perf_pending_task_sync(event); 5327 5328 unaccount_event(event); 5329 5330 security_perf_event_free(event); 5331 5332 if (event->rb) { 5333 /* 5334 * Can happen when we close an event with re-directed output. 5335 * 5336 * Since we have a 0 refcount, perf_mmap_close() will skip 5337 * over us; possibly making our ring_buffer_put() the last. 5338 */ 5339 mutex_lock(&event->mmap_mutex); 5340 ring_buffer_attach(event, NULL); 5341 mutex_unlock(&event->mmap_mutex); 5342 } 5343 5344 if (is_cgroup_event(event)) 5345 perf_detach_cgroup(event); 5346 5347 if (!event->parent) { 5348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5349 put_callchain_buffers(); 5350 } 5351 5352 perf_event_free_bpf_prog(event); 5353 perf_addr_filters_splice(event, NULL); 5354 kfree(event->addr_filter_ranges); 5355 5356 if (event->destroy) 5357 event->destroy(event); 5358 5359 /* 5360 * Must be after ->destroy(), due to uprobe_perf_close() using 5361 * hw.target. 5362 */ 5363 if (event->hw.target) 5364 put_task_struct(event->hw.target); 5365 5366 if (event->pmu_ctx) 5367 put_pmu_ctx(event->pmu_ctx); 5368 5369 /* 5370 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5371 * all task references must be cleaned up. 5372 */ 5373 if (event->ctx) 5374 put_ctx(event->ctx); 5375 5376 exclusive_event_destroy(event); 5377 module_put(event->pmu->module); 5378 5379 call_rcu(&event->rcu_head, free_event_rcu); 5380 } 5381 5382 /* 5383 * Used to free events which have a known refcount of 1, such as in error paths 5384 * where the event isn't exposed yet and inherited events. 5385 */ 5386 static void free_event(struct perf_event *event) 5387 { 5388 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5389 "unexpected event refcount: %ld; ptr=%p\n", 5390 atomic_long_read(&event->refcount), event)) { 5391 /* leak to avoid use-after-free */ 5392 return; 5393 } 5394 5395 _free_event(event); 5396 } 5397 5398 /* 5399 * Remove user event from the owner task. 5400 */ 5401 static void perf_remove_from_owner(struct perf_event *event) 5402 { 5403 struct task_struct *owner; 5404 5405 rcu_read_lock(); 5406 /* 5407 * Matches the smp_store_release() in perf_event_exit_task(). If we 5408 * observe !owner it means the list deletion is complete and we can 5409 * indeed free this event, otherwise we need to serialize on 5410 * owner->perf_event_mutex. 5411 */ 5412 owner = READ_ONCE(event->owner); 5413 if (owner) { 5414 /* 5415 * Since delayed_put_task_struct() also drops the last 5416 * task reference we can safely take a new reference 5417 * while holding the rcu_read_lock(). 5418 */ 5419 get_task_struct(owner); 5420 } 5421 rcu_read_unlock(); 5422 5423 if (owner) { 5424 /* 5425 * If we're here through perf_event_exit_task() we're already 5426 * holding ctx->mutex which would be an inversion wrt. the 5427 * normal lock order. 5428 * 5429 * However we can safely take this lock because its the child 5430 * ctx->mutex. 5431 */ 5432 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5433 5434 /* 5435 * We have to re-check the event->owner field, if it is cleared 5436 * we raced with perf_event_exit_task(), acquiring the mutex 5437 * ensured they're done, and we can proceed with freeing the 5438 * event. 5439 */ 5440 if (event->owner) { 5441 list_del_init(&event->owner_entry); 5442 smp_store_release(&event->owner, NULL); 5443 } 5444 mutex_unlock(&owner->perf_event_mutex); 5445 put_task_struct(owner); 5446 } 5447 } 5448 5449 static void put_event(struct perf_event *event) 5450 { 5451 if (!atomic_long_dec_and_test(&event->refcount)) 5452 return; 5453 5454 _free_event(event); 5455 } 5456 5457 /* 5458 * Kill an event dead; while event:refcount will preserve the event 5459 * object, it will not preserve its functionality. Once the last 'user' 5460 * gives up the object, we'll destroy the thing. 5461 */ 5462 int perf_event_release_kernel(struct perf_event *event) 5463 { 5464 struct perf_event_context *ctx = event->ctx; 5465 struct perf_event *child, *tmp; 5466 LIST_HEAD(free_list); 5467 5468 /* 5469 * If we got here through err_alloc: free_event(event); we will not 5470 * have attached to a context yet. 5471 */ 5472 if (!ctx) { 5473 WARN_ON_ONCE(event->attach_state & 5474 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5475 goto no_ctx; 5476 } 5477 5478 if (!is_kernel_event(event)) 5479 perf_remove_from_owner(event); 5480 5481 ctx = perf_event_ctx_lock(event); 5482 WARN_ON_ONCE(ctx->parent_ctx); 5483 5484 /* 5485 * Mark this event as STATE_DEAD, there is no external reference to it 5486 * anymore. 5487 * 5488 * Anybody acquiring event->child_mutex after the below loop _must_ 5489 * also see this, most importantly inherit_event() which will avoid 5490 * placing more children on the list. 5491 * 5492 * Thus this guarantees that we will in fact observe and kill _ALL_ 5493 * child events. 5494 */ 5495 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5496 5497 perf_event_ctx_unlock(event, ctx); 5498 5499 again: 5500 mutex_lock(&event->child_mutex); 5501 list_for_each_entry(child, &event->child_list, child_list) { 5502 void *var = NULL; 5503 5504 /* 5505 * Cannot change, child events are not migrated, see the 5506 * comment with perf_event_ctx_lock_nested(). 5507 */ 5508 ctx = READ_ONCE(child->ctx); 5509 /* 5510 * Since child_mutex nests inside ctx::mutex, we must jump 5511 * through hoops. We start by grabbing a reference on the ctx. 5512 * 5513 * Since the event cannot get freed while we hold the 5514 * child_mutex, the context must also exist and have a !0 5515 * reference count. 5516 */ 5517 get_ctx(ctx); 5518 5519 /* 5520 * Now that we have a ctx ref, we can drop child_mutex, and 5521 * acquire ctx::mutex without fear of it going away. Then we 5522 * can re-acquire child_mutex. 5523 */ 5524 mutex_unlock(&event->child_mutex); 5525 mutex_lock(&ctx->mutex); 5526 mutex_lock(&event->child_mutex); 5527 5528 /* 5529 * Now that we hold ctx::mutex and child_mutex, revalidate our 5530 * state, if child is still the first entry, it didn't get freed 5531 * and we can continue doing so. 5532 */ 5533 tmp = list_first_entry_or_null(&event->child_list, 5534 struct perf_event, child_list); 5535 if (tmp == child) { 5536 perf_remove_from_context(child, DETACH_GROUP); 5537 list_move(&child->child_list, &free_list); 5538 /* 5539 * This matches the refcount bump in inherit_event(); 5540 * this can't be the last reference. 5541 */ 5542 put_event(event); 5543 } else { 5544 var = &ctx->refcount; 5545 } 5546 5547 mutex_unlock(&event->child_mutex); 5548 mutex_unlock(&ctx->mutex); 5549 put_ctx(ctx); 5550 5551 if (var) { 5552 /* 5553 * If perf_event_free_task() has deleted all events from the 5554 * ctx while the child_mutex got released above, make sure to 5555 * notify about the preceding put_ctx(). 5556 */ 5557 smp_mb(); /* pairs with wait_var_event() */ 5558 wake_up_var(var); 5559 } 5560 goto again; 5561 } 5562 mutex_unlock(&event->child_mutex); 5563 5564 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5565 void *var = &child->ctx->refcount; 5566 5567 list_del(&child->child_list); 5568 free_event(child); 5569 5570 /* 5571 * Wake any perf_event_free_task() waiting for this event to be 5572 * freed. 5573 */ 5574 smp_mb(); /* pairs with wait_var_event() */ 5575 wake_up_var(var); 5576 } 5577 5578 no_ctx: 5579 put_event(event); /* Must be the 'last' reference */ 5580 return 0; 5581 } 5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5583 5584 /* 5585 * Called when the last reference to the file is gone. 5586 */ 5587 static int perf_release(struct inode *inode, struct file *file) 5588 { 5589 perf_event_release_kernel(file->private_data); 5590 return 0; 5591 } 5592 5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5594 { 5595 struct perf_event *child; 5596 u64 total = 0; 5597 5598 *enabled = 0; 5599 *running = 0; 5600 5601 mutex_lock(&event->child_mutex); 5602 5603 (void)perf_event_read(event, false); 5604 total += perf_event_count(event, false); 5605 5606 *enabled += event->total_time_enabled + 5607 atomic64_read(&event->child_total_time_enabled); 5608 *running += event->total_time_running + 5609 atomic64_read(&event->child_total_time_running); 5610 5611 list_for_each_entry(child, &event->child_list, child_list) { 5612 (void)perf_event_read(child, false); 5613 total += perf_event_count(child, false); 5614 *enabled += child->total_time_enabled; 5615 *running += child->total_time_running; 5616 } 5617 mutex_unlock(&event->child_mutex); 5618 5619 return total; 5620 } 5621 5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5623 { 5624 struct perf_event_context *ctx; 5625 u64 count; 5626 5627 ctx = perf_event_ctx_lock(event); 5628 count = __perf_event_read_value(event, enabled, running); 5629 perf_event_ctx_unlock(event, ctx); 5630 5631 return count; 5632 } 5633 EXPORT_SYMBOL_GPL(perf_event_read_value); 5634 5635 static int __perf_read_group_add(struct perf_event *leader, 5636 u64 read_format, u64 *values) 5637 { 5638 struct perf_event_context *ctx = leader->ctx; 5639 struct perf_event *sub, *parent; 5640 unsigned long flags; 5641 int n = 1; /* skip @nr */ 5642 int ret; 5643 5644 ret = perf_event_read(leader, true); 5645 if (ret) 5646 return ret; 5647 5648 raw_spin_lock_irqsave(&ctx->lock, flags); 5649 /* 5650 * Verify the grouping between the parent and child (inherited) 5651 * events is still in tact. 5652 * 5653 * Specifically: 5654 * - leader->ctx->lock pins leader->sibling_list 5655 * - parent->child_mutex pins parent->child_list 5656 * - parent->ctx->mutex pins parent->sibling_list 5657 * 5658 * Because parent->ctx != leader->ctx (and child_list nests inside 5659 * ctx->mutex), group destruction is not atomic between children, also 5660 * see perf_event_release_kernel(). Additionally, parent can grow the 5661 * group. 5662 * 5663 * Therefore it is possible to have parent and child groups in a 5664 * different configuration and summing over such a beast makes no sense 5665 * what so ever. 5666 * 5667 * Reject this. 5668 */ 5669 parent = leader->parent; 5670 if (parent && 5671 (parent->group_generation != leader->group_generation || 5672 parent->nr_siblings != leader->nr_siblings)) { 5673 ret = -ECHILD; 5674 goto unlock; 5675 } 5676 5677 /* 5678 * Since we co-schedule groups, {enabled,running} times of siblings 5679 * will be identical to those of the leader, so we only publish one 5680 * set. 5681 */ 5682 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5683 values[n++] += leader->total_time_enabled + 5684 atomic64_read(&leader->child_total_time_enabled); 5685 } 5686 5687 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5688 values[n++] += leader->total_time_running + 5689 atomic64_read(&leader->child_total_time_running); 5690 } 5691 5692 /* 5693 * Write {count,id} tuples for every sibling. 5694 */ 5695 values[n++] += perf_event_count(leader, false); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(leader); 5698 if (read_format & PERF_FORMAT_LOST) 5699 values[n++] = atomic64_read(&leader->lost_samples); 5700 5701 for_each_sibling_event(sub, leader) { 5702 values[n++] += perf_event_count(sub, false); 5703 if (read_format & PERF_FORMAT_ID) 5704 values[n++] = primary_event_id(sub); 5705 if (read_format & PERF_FORMAT_LOST) 5706 values[n++] = atomic64_read(&sub->lost_samples); 5707 } 5708 5709 unlock: 5710 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5711 return ret; 5712 } 5713 5714 static int perf_read_group(struct perf_event *event, 5715 u64 read_format, char __user *buf) 5716 { 5717 struct perf_event *leader = event->group_leader, *child; 5718 struct perf_event_context *ctx = leader->ctx; 5719 int ret; 5720 u64 *values; 5721 5722 lockdep_assert_held(&ctx->mutex); 5723 5724 values = kzalloc(event->read_size, GFP_KERNEL); 5725 if (!values) 5726 return -ENOMEM; 5727 5728 values[0] = 1 + leader->nr_siblings; 5729 5730 mutex_lock(&leader->child_mutex); 5731 5732 ret = __perf_read_group_add(leader, read_format, values); 5733 if (ret) 5734 goto unlock; 5735 5736 list_for_each_entry(child, &leader->child_list, child_list) { 5737 ret = __perf_read_group_add(child, read_format, values); 5738 if (ret) 5739 goto unlock; 5740 } 5741 5742 mutex_unlock(&leader->child_mutex); 5743 5744 ret = event->read_size; 5745 if (copy_to_user(buf, values, event->read_size)) 5746 ret = -EFAULT; 5747 goto out; 5748 5749 unlock: 5750 mutex_unlock(&leader->child_mutex); 5751 out: 5752 kfree(values); 5753 return ret; 5754 } 5755 5756 static int perf_read_one(struct perf_event *event, 5757 u64 read_format, char __user *buf) 5758 { 5759 u64 enabled, running; 5760 u64 values[5]; 5761 int n = 0; 5762 5763 values[n++] = __perf_event_read_value(event, &enabled, &running); 5764 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5765 values[n++] = enabled; 5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5767 values[n++] = running; 5768 if (read_format & PERF_FORMAT_ID) 5769 values[n++] = primary_event_id(event); 5770 if (read_format & PERF_FORMAT_LOST) 5771 values[n++] = atomic64_read(&event->lost_samples); 5772 5773 if (copy_to_user(buf, values, n * sizeof(u64))) 5774 return -EFAULT; 5775 5776 return n * sizeof(u64); 5777 } 5778 5779 static bool is_event_hup(struct perf_event *event) 5780 { 5781 bool no_children; 5782 5783 if (event->state > PERF_EVENT_STATE_EXIT) 5784 return false; 5785 5786 mutex_lock(&event->child_mutex); 5787 no_children = list_empty(&event->child_list); 5788 mutex_unlock(&event->child_mutex); 5789 return no_children; 5790 } 5791 5792 /* 5793 * Read the performance event - simple non blocking version for now 5794 */ 5795 static ssize_t 5796 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5797 { 5798 u64 read_format = event->attr.read_format; 5799 int ret; 5800 5801 /* 5802 * Return end-of-file for a read on an event that is in 5803 * error state (i.e. because it was pinned but it couldn't be 5804 * scheduled on to the CPU at some point). 5805 */ 5806 if (event->state == PERF_EVENT_STATE_ERROR) 5807 return 0; 5808 5809 if (count < event->read_size) 5810 return -ENOSPC; 5811 5812 WARN_ON_ONCE(event->ctx->parent_ctx); 5813 if (read_format & PERF_FORMAT_GROUP) 5814 ret = perf_read_group(event, read_format, buf); 5815 else 5816 ret = perf_read_one(event, read_format, buf); 5817 5818 return ret; 5819 } 5820 5821 static ssize_t 5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5823 { 5824 struct perf_event *event = file->private_data; 5825 struct perf_event_context *ctx; 5826 int ret; 5827 5828 ret = security_perf_event_read(event); 5829 if (ret) 5830 return ret; 5831 5832 ctx = perf_event_ctx_lock(event); 5833 ret = __perf_read(event, buf, count); 5834 perf_event_ctx_unlock(event, ctx); 5835 5836 return ret; 5837 } 5838 5839 static __poll_t perf_poll(struct file *file, poll_table *wait) 5840 { 5841 struct perf_event *event = file->private_data; 5842 struct perf_buffer *rb; 5843 __poll_t events = EPOLLHUP; 5844 5845 poll_wait(file, &event->waitq, wait); 5846 5847 if (is_event_hup(event)) 5848 return events; 5849 5850 /* 5851 * Pin the event->rb by taking event->mmap_mutex; otherwise 5852 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5853 */ 5854 mutex_lock(&event->mmap_mutex); 5855 rb = event->rb; 5856 if (rb) 5857 events = atomic_xchg(&rb->poll, 0); 5858 mutex_unlock(&event->mmap_mutex); 5859 return events; 5860 } 5861 5862 static void _perf_event_reset(struct perf_event *event) 5863 { 5864 (void)perf_event_read(event, false); 5865 local64_set(&event->count, 0); 5866 perf_event_update_userpage(event); 5867 } 5868 5869 /* Assume it's not an event with inherit set. */ 5870 u64 perf_event_pause(struct perf_event *event, bool reset) 5871 { 5872 struct perf_event_context *ctx; 5873 u64 count; 5874 5875 ctx = perf_event_ctx_lock(event); 5876 WARN_ON_ONCE(event->attr.inherit); 5877 _perf_event_disable(event); 5878 count = local64_read(&event->count); 5879 if (reset) 5880 local64_set(&event->count, 0); 5881 perf_event_ctx_unlock(event, ctx); 5882 5883 return count; 5884 } 5885 EXPORT_SYMBOL_GPL(perf_event_pause); 5886 5887 /* 5888 * Holding the top-level event's child_mutex means that any 5889 * descendant process that has inherited this event will block 5890 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5891 * task existence requirements of perf_event_enable/disable. 5892 */ 5893 static void perf_event_for_each_child(struct perf_event *event, 5894 void (*func)(struct perf_event *)) 5895 { 5896 struct perf_event *child; 5897 5898 WARN_ON_ONCE(event->ctx->parent_ctx); 5899 5900 mutex_lock(&event->child_mutex); 5901 func(event); 5902 list_for_each_entry(child, &event->child_list, child_list) 5903 func(child); 5904 mutex_unlock(&event->child_mutex); 5905 } 5906 5907 static void perf_event_for_each(struct perf_event *event, 5908 void (*func)(struct perf_event *)) 5909 { 5910 struct perf_event_context *ctx = event->ctx; 5911 struct perf_event *sibling; 5912 5913 lockdep_assert_held(&ctx->mutex); 5914 5915 event = event->group_leader; 5916 5917 perf_event_for_each_child(event, func); 5918 for_each_sibling_event(sibling, event) 5919 perf_event_for_each_child(sibling, func); 5920 } 5921 5922 static void __perf_event_period(struct perf_event *event, 5923 struct perf_cpu_context *cpuctx, 5924 struct perf_event_context *ctx, 5925 void *info) 5926 { 5927 u64 value = *((u64 *)info); 5928 bool active; 5929 5930 if (event->attr.freq) { 5931 event->attr.sample_freq = value; 5932 } else { 5933 event->attr.sample_period = value; 5934 event->hw.sample_period = value; 5935 } 5936 5937 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5938 if (active) { 5939 perf_pmu_disable(event->pmu); 5940 /* 5941 * We could be throttled; unthrottle now to avoid the tick 5942 * trying to unthrottle while we already re-started the event. 5943 */ 5944 if (event->hw.interrupts == MAX_INTERRUPTS) { 5945 event->hw.interrupts = 0; 5946 perf_log_throttle(event, 1); 5947 } 5948 event->pmu->stop(event, PERF_EF_UPDATE); 5949 } 5950 5951 local64_set(&event->hw.period_left, 0); 5952 5953 if (active) { 5954 event->pmu->start(event, PERF_EF_RELOAD); 5955 perf_pmu_enable(event->pmu); 5956 } 5957 } 5958 5959 static int perf_event_check_period(struct perf_event *event, u64 value) 5960 { 5961 return event->pmu->check_period(event, value); 5962 } 5963 5964 static int _perf_event_period(struct perf_event *event, u64 value) 5965 { 5966 if (!is_sampling_event(event)) 5967 return -EINVAL; 5968 5969 if (!value) 5970 return -EINVAL; 5971 5972 if (event->attr.freq) { 5973 if (value > sysctl_perf_event_sample_rate) 5974 return -EINVAL; 5975 } else { 5976 if (perf_event_check_period(event, value)) 5977 return -EINVAL; 5978 if (value & (1ULL << 63)) 5979 return -EINVAL; 5980 } 5981 5982 event_function_call(event, __perf_event_period, &value); 5983 5984 return 0; 5985 } 5986 5987 int perf_event_period(struct perf_event *event, u64 value) 5988 { 5989 struct perf_event_context *ctx; 5990 int ret; 5991 5992 ctx = perf_event_ctx_lock(event); 5993 ret = _perf_event_period(event, value); 5994 perf_event_ctx_unlock(event, ctx); 5995 5996 return ret; 5997 } 5998 EXPORT_SYMBOL_GPL(perf_event_period); 5999 6000 static const struct file_operations perf_fops; 6001 6002 static inline bool is_perf_file(struct fd f) 6003 { 6004 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6005 } 6006 6007 static int perf_event_set_output(struct perf_event *event, 6008 struct perf_event *output_event); 6009 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6010 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6011 struct perf_event_attr *attr); 6012 6013 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6014 { 6015 void (*func)(struct perf_event *); 6016 u32 flags = arg; 6017 6018 switch (cmd) { 6019 case PERF_EVENT_IOC_ENABLE: 6020 func = _perf_event_enable; 6021 break; 6022 case PERF_EVENT_IOC_DISABLE: 6023 func = _perf_event_disable; 6024 break; 6025 case PERF_EVENT_IOC_RESET: 6026 func = _perf_event_reset; 6027 break; 6028 6029 case PERF_EVENT_IOC_REFRESH: 6030 return _perf_event_refresh(event, arg); 6031 6032 case PERF_EVENT_IOC_PERIOD: 6033 { 6034 u64 value; 6035 6036 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6037 return -EFAULT; 6038 6039 return _perf_event_period(event, value); 6040 } 6041 case PERF_EVENT_IOC_ID: 6042 { 6043 u64 id = primary_event_id(event); 6044 6045 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6046 return -EFAULT; 6047 return 0; 6048 } 6049 6050 case PERF_EVENT_IOC_SET_OUTPUT: 6051 { 6052 CLASS(fd, output)(arg); // arg == -1 => empty 6053 struct perf_event *output_event = NULL; 6054 if (arg != -1) { 6055 if (!is_perf_file(output)) 6056 return -EBADF; 6057 output_event = fd_file(output)->private_data; 6058 } 6059 return perf_event_set_output(event, output_event); 6060 } 6061 6062 case PERF_EVENT_IOC_SET_FILTER: 6063 return perf_event_set_filter(event, (void __user *)arg); 6064 6065 case PERF_EVENT_IOC_SET_BPF: 6066 { 6067 struct bpf_prog *prog; 6068 int err; 6069 6070 prog = bpf_prog_get(arg); 6071 if (IS_ERR(prog)) 6072 return PTR_ERR(prog); 6073 6074 err = perf_event_set_bpf_prog(event, prog, 0); 6075 if (err) { 6076 bpf_prog_put(prog); 6077 return err; 6078 } 6079 6080 return 0; 6081 } 6082 6083 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6084 struct perf_buffer *rb; 6085 6086 rcu_read_lock(); 6087 rb = rcu_dereference(event->rb); 6088 if (!rb || !rb->nr_pages) { 6089 rcu_read_unlock(); 6090 return -EINVAL; 6091 } 6092 rb_toggle_paused(rb, !!arg); 6093 rcu_read_unlock(); 6094 return 0; 6095 } 6096 6097 case PERF_EVENT_IOC_QUERY_BPF: 6098 return perf_event_query_prog_array(event, (void __user *)arg); 6099 6100 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6101 struct perf_event_attr new_attr; 6102 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6103 &new_attr); 6104 6105 if (err) 6106 return err; 6107 6108 return perf_event_modify_attr(event, &new_attr); 6109 } 6110 default: 6111 return -ENOTTY; 6112 } 6113 6114 if (flags & PERF_IOC_FLAG_GROUP) 6115 perf_event_for_each(event, func); 6116 else 6117 perf_event_for_each_child(event, func); 6118 6119 return 0; 6120 } 6121 6122 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6123 { 6124 struct perf_event *event = file->private_data; 6125 struct perf_event_context *ctx; 6126 long ret; 6127 6128 /* Treat ioctl like writes as it is likely a mutating operation. */ 6129 ret = security_perf_event_write(event); 6130 if (ret) 6131 return ret; 6132 6133 ctx = perf_event_ctx_lock(event); 6134 ret = _perf_ioctl(event, cmd, arg); 6135 perf_event_ctx_unlock(event, ctx); 6136 6137 return ret; 6138 } 6139 6140 #ifdef CONFIG_COMPAT 6141 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6142 unsigned long arg) 6143 { 6144 switch (_IOC_NR(cmd)) { 6145 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6146 case _IOC_NR(PERF_EVENT_IOC_ID): 6147 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6148 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6149 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6150 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6151 cmd &= ~IOCSIZE_MASK; 6152 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6153 } 6154 break; 6155 } 6156 return perf_ioctl(file, cmd, arg); 6157 } 6158 #else 6159 # define perf_compat_ioctl NULL 6160 #endif 6161 6162 int perf_event_task_enable(void) 6163 { 6164 struct perf_event_context *ctx; 6165 struct perf_event *event; 6166 6167 mutex_lock(¤t->perf_event_mutex); 6168 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6169 ctx = perf_event_ctx_lock(event); 6170 perf_event_for_each_child(event, _perf_event_enable); 6171 perf_event_ctx_unlock(event, ctx); 6172 } 6173 mutex_unlock(¤t->perf_event_mutex); 6174 6175 return 0; 6176 } 6177 6178 int perf_event_task_disable(void) 6179 { 6180 struct perf_event_context *ctx; 6181 struct perf_event *event; 6182 6183 mutex_lock(¤t->perf_event_mutex); 6184 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6185 ctx = perf_event_ctx_lock(event); 6186 perf_event_for_each_child(event, _perf_event_disable); 6187 perf_event_ctx_unlock(event, ctx); 6188 } 6189 mutex_unlock(¤t->perf_event_mutex); 6190 6191 return 0; 6192 } 6193 6194 static int perf_event_index(struct perf_event *event) 6195 { 6196 if (event->hw.state & PERF_HES_STOPPED) 6197 return 0; 6198 6199 if (event->state != PERF_EVENT_STATE_ACTIVE) 6200 return 0; 6201 6202 return event->pmu->event_idx(event); 6203 } 6204 6205 static void perf_event_init_userpage(struct perf_event *event) 6206 { 6207 struct perf_event_mmap_page *userpg; 6208 struct perf_buffer *rb; 6209 6210 rcu_read_lock(); 6211 rb = rcu_dereference(event->rb); 6212 if (!rb) 6213 goto unlock; 6214 6215 userpg = rb->user_page; 6216 6217 /* Allow new userspace to detect that bit 0 is deprecated */ 6218 userpg->cap_bit0_is_deprecated = 1; 6219 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6220 userpg->data_offset = PAGE_SIZE; 6221 userpg->data_size = perf_data_size(rb); 6222 6223 unlock: 6224 rcu_read_unlock(); 6225 } 6226 6227 void __weak arch_perf_update_userpage( 6228 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6229 { 6230 } 6231 6232 /* 6233 * Callers need to ensure there can be no nesting of this function, otherwise 6234 * the seqlock logic goes bad. We can not serialize this because the arch 6235 * code calls this from NMI context. 6236 */ 6237 void perf_event_update_userpage(struct perf_event *event) 6238 { 6239 struct perf_event_mmap_page *userpg; 6240 struct perf_buffer *rb; 6241 u64 enabled, running, now; 6242 6243 rcu_read_lock(); 6244 rb = rcu_dereference(event->rb); 6245 if (!rb) 6246 goto unlock; 6247 6248 /* 6249 * compute total_time_enabled, total_time_running 6250 * based on snapshot values taken when the event 6251 * was last scheduled in. 6252 * 6253 * we cannot simply called update_context_time() 6254 * because of locking issue as we can be called in 6255 * NMI context 6256 */ 6257 calc_timer_values(event, &now, &enabled, &running); 6258 6259 userpg = rb->user_page; 6260 /* 6261 * Disable preemption to guarantee consistent time stamps are stored to 6262 * the user page. 6263 */ 6264 preempt_disable(); 6265 ++userpg->lock; 6266 barrier(); 6267 userpg->index = perf_event_index(event); 6268 userpg->offset = perf_event_count(event, false); 6269 if (userpg->index) 6270 userpg->offset -= local64_read(&event->hw.prev_count); 6271 6272 userpg->time_enabled = enabled + 6273 atomic64_read(&event->child_total_time_enabled); 6274 6275 userpg->time_running = running + 6276 atomic64_read(&event->child_total_time_running); 6277 6278 arch_perf_update_userpage(event, userpg, now); 6279 6280 barrier(); 6281 ++userpg->lock; 6282 preempt_enable(); 6283 unlock: 6284 rcu_read_unlock(); 6285 } 6286 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6287 6288 static void ring_buffer_attach(struct perf_event *event, 6289 struct perf_buffer *rb) 6290 { 6291 struct perf_buffer *old_rb = NULL; 6292 unsigned long flags; 6293 6294 WARN_ON_ONCE(event->parent); 6295 6296 if (event->rb) { 6297 /* 6298 * Should be impossible, we set this when removing 6299 * event->rb_entry and wait/clear when adding event->rb_entry. 6300 */ 6301 WARN_ON_ONCE(event->rcu_pending); 6302 6303 old_rb = event->rb; 6304 spin_lock_irqsave(&old_rb->event_lock, flags); 6305 list_del_rcu(&event->rb_entry); 6306 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6307 6308 event->rcu_batches = get_state_synchronize_rcu(); 6309 event->rcu_pending = 1; 6310 } 6311 6312 if (rb) { 6313 if (event->rcu_pending) { 6314 cond_synchronize_rcu(event->rcu_batches); 6315 event->rcu_pending = 0; 6316 } 6317 6318 spin_lock_irqsave(&rb->event_lock, flags); 6319 list_add_rcu(&event->rb_entry, &rb->event_list); 6320 spin_unlock_irqrestore(&rb->event_lock, flags); 6321 } 6322 6323 /* 6324 * Avoid racing with perf_mmap_close(AUX): stop the event 6325 * before swizzling the event::rb pointer; if it's getting 6326 * unmapped, its aux_mmap_count will be 0 and it won't 6327 * restart. See the comment in __perf_pmu_output_stop(). 6328 * 6329 * Data will inevitably be lost when set_output is done in 6330 * mid-air, but then again, whoever does it like this is 6331 * not in for the data anyway. 6332 */ 6333 if (has_aux(event)) 6334 perf_event_stop(event, 0); 6335 6336 rcu_assign_pointer(event->rb, rb); 6337 6338 if (old_rb) { 6339 ring_buffer_put(old_rb); 6340 /* 6341 * Since we detached before setting the new rb, so that we 6342 * could attach the new rb, we could have missed a wakeup. 6343 * Provide it now. 6344 */ 6345 wake_up_all(&event->waitq); 6346 } 6347 } 6348 6349 static void ring_buffer_wakeup(struct perf_event *event) 6350 { 6351 struct perf_buffer *rb; 6352 6353 if (event->parent) 6354 event = event->parent; 6355 6356 rcu_read_lock(); 6357 rb = rcu_dereference(event->rb); 6358 if (rb) { 6359 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6360 wake_up_all(&event->waitq); 6361 } 6362 rcu_read_unlock(); 6363 } 6364 6365 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6366 { 6367 struct perf_buffer *rb; 6368 6369 if (event->parent) 6370 event = event->parent; 6371 6372 rcu_read_lock(); 6373 rb = rcu_dereference(event->rb); 6374 if (rb) { 6375 if (!refcount_inc_not_zero(&rb->refcount)) 6376 rb = NULL; 6377 } 6378 rcu_read_unlock(); 6379 6380 return rb; 6381 } 6382 6383 void ring_buffer_put(struct perf_buffer *rb) 6384 { 6385 if (!refcount_dec_and_test(&rb->refcount)) 6386 return; 6387 6388 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6389 6390 call_rcu(&rb->rcu_head, rb_free_rcu); 6391 } 6392 6393 static void perf_mmap_open(struct vm_area_struct *vma) 6394 { 6395 struct perf_event *event = vma->vm_file->private_data; 6396 6397 atomic_inc(&event->mmap_count); 6398 atomic_inc(&event->rb->mmap_count); 6399 6400 if (vma->vm_pgoff) 6401 atomic_inc(&event->rb->aux_mmap_count); 6402 6403 if (event->pmu->event_mapped) 6404 event->pmu->event_mapped(event, vma->vm_mm); 6405 } 6406 6407 static void perf_pmu_output_stop(struct perf_event *event); 6408 6409 /* 6410 * A buffer can be mmap()ed multiple times; either directly through the same 6411 * event, or through other events by use of perf_event_set_output(). 6412 * 6413 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6414 * the buffer here, where we still have a VM context. This means we need 6415 * to detach all events redirecting to us. 6416 */ 6417 static void perf_mmap_close(struct vm_area_struct *vma) 6418 { 6419 struct perf_event *event = vma->vm_file->private_data; 6420 struct perf_buffer *rb = ring_buffer_get(event); 6421 struct user_struct *mmap_user = rb->mmap_user; 6422 int mmap_locked = rb->mmap_locked; 6423 unsigned long size = perf_data_size(rb); 6424 bool detach_rest = false; 6425 6426 if (event->pmu->event_unmapped) 6427 event->pmu->event_unmapped(event, vma->vm_mm); 6428 6429 /* 6430 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6431 * to avoid complications. 6432 */ 6433 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6434 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6435 /* 6436 * Stop all AUX events that are writing to this buffer, 6437 * so that we can free its AUX pages and corresponding PMU 6438 * data. Note that after rb::aux_mmap_count dropped to zero, 6439 * they won't start any more (see perf_aux_output_begin()). 6440 */ 6441 perf_pmu_output_stop(event); 6442 6443 /* now it's safe to free the pages */ 6444 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6445 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6446 6447 /* this has to be the last one */ 6448 rb_free_aux(rb); 6449 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6450 6451 mutex_unlock(&rb->aux_mutex); 6452 } 6453 6454 if (atomic_dec_and_test(&rb->mmap_count)) 6455 detach_rest = true; 6456 6457 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6458 goto out_put; 6459 6460 ring_buffer_attach(event, NULL); 6461 mutex_unlock(&event->mmap_mutex); 6462 6463 /* If there's still other mmap()s of this buffer, we're done. */ 6464 if (!detach_rest) 6465 goto out_put; 6466 6467 /* 6468 * No other mmap()s, detach from all other events that might redirect 6469 * into the now unreachable buffer. Somewhat complicated by the 6470 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6471 */ 6472 again: 6473 rcu_read_lock(); 6474 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6475 if (!atomic_long_inc_not_zero(&event->refcount)) { 6476 /* 6477 * This event is en-route to free_event() which will 6478 * detach it and remove it from the list. 6479 */ 6480 continue; 6481 } 6482 rcu_read_unlock(); 6483 6484 mutex_lock(&event->mmap_mutex); 6485 /* 6486 * Check we didn't race with perf_event_set_output() which can 6487 * swizzle the rb from under us while we were waiting to 6488 * acquire mmap_mutex. 6489 * 6490 * If we find a different rb; ignore this event, a next 6491 * iteration will no longer find it on the list. We have to 6492 * still restart the iteration to make sure we're not now 6493 * iterating the wrong list. 6494 */ 6495 if (event->rb == rb) 6496 ring_buffer_attach(event, NULL); 6497 6498 mutex_unlock(&event->mmap_mutex); 6499 put_event(event); 6500 6501 /* 6502 * Restart the iteration; either we're on the wrong list or 6503 * destroyed its integrity by doing a deletion. 6504 */ 6505 goto again; 6506 } 6507 rcu_read_unlock(); 6508 6509 /* 6510 * It could be there's still a few 0-ref events on the list; they'll 6511 * get cleaned up by free_event() -- they'll also still have their 6512 * ref on the rb and will free it whenever they are done with it. 6513 * 6514 * Aside from that, this buffer is 'fully' detached and unmapped, 6515 * undo the VM accounting. 6516 */ 6517 6518 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6519 &mmap_user->locked_vm); 6520 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6521 free_uid(mmap_user); 6522 6523 out_put: 6524 ring_buffer_put(rb); /* could be last */ 6525 } 6526 6527 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6528 { 6529 /* The first page is the user control page, others are read-only. */ 6530 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6531 } 6532 6533 static const struct vm_operations_struct perf_mmap_vmops = { 6534 .open = perf_mmap_open, 6535 .close = perf_mmap_close, /* non mergeable */ 6536 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6537 }; 6538 6539 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6540 { 6541 unsigned long nr_pages = vma_pages(vma); 6542 int err = 0; 6543 unsigned long pagenum; 6544 6545 /* 6546 * We map this as a VM_PFNMAP VMA. 6547 * 6548 * This is not ideal as this is designed broadly for mappings of PFNs 6549 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6550 * !pfn_valid(pfn). 6551 * 6552 * We are mapping kernel-allocated memory (memory we manage ourselves) 6553 * which would more ideally be mapped using vm_insert_page() or a 6554 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6555 * 6556 * However this won't work here, because: 6557 * 6558 * 1. It uses vma->vm_page_prot, but this field has not been completely 6559 * setup at the point of the f_op->mmp() hook, so we are unable to 6560 * indicate that this should be mapped CoW in order that the 6561 * mkwrite() hook can be invoked to make the first page R/W and the 6562 * rest R/O as desired. 6563 * 6564 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6565 * vm_normal_page() returning a struct page * pointer, which means 6566 * vm_ops->page_mkwrite() will be invoked rather than 6567 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6568 * to work around retry logic in the fault handler, however this 6569 * field is no longer allowed to be used within struct page. 6570 * 6571 * 3. Having a struct page * made available in the fault logic also 6572 * means that the page gets put on the rmap and becomes 6573 * inappropriately accessible and subject to map and ref counting. 6574 * 6575 * Ideally we would have a mechanism that could explicitly express our 6576 * desires, but this is not currently the case, so we instead use 6577 * VM_PFNMAP. 6578 * 6579 * We manage the lifetime of these mappings with internal refcounts (see 6580 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6581 * this mapping is maintained correctly. 6582 */ 6583 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6584 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6585 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6586 6587 if (page == NULL) { 6588 err = -EINVAL; 6589 break; 6590 } 6591 6592 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6593 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6594 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6595 if (err) 6596 break; 6597 } 6598 6599 #ifdef CONFIG_MMU 6600 /* Clear any partial mappings on error. */ 6601 if (err) 6602 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6603 #endif 6604 6605 return err; 6606 } 6607 6608 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6609 { 6610 struct perf_event *event = file->private_data; 6611 unsigned long user_locked, user_lock_limit; 6612 struct user_struct *user = current_user(); 6613 struct mutex *aux_mutex = NULL; 6614 struct perf_buffer *rb = NULL; 6615 unsigned long locked, lock_limit; 6616 unsigned long vma_size; 6617 unsigned long nr_pages; 6618 long user_extra = 0, extra = 0; 6619 int ret = 0, flags = 0; 6620 6621 /* 6622 * Don't allow mmap() of inherited per-task counters. This would 6623 * create a performance issue due to all children writing to the 6624 * same rb. 6625 */ 6626 if (event->cpu == -1 && event->attr.inherit) 6627 return -EINVAL; 6628 6629 if (!(vma->vm_flags & VM_SHARED)) 6630 return -EINVAL; 6631 6632 ret = security_perf_event_read(event); 6633 if (ret) 6634 return ret; 6635 6636 vma_size = vma->vm_end - vma->vm_start; 6637 6638 if (vma->vm_pgoff == 0) { 6639 nr_pages = (vma_size / PAGE_SIZE) - 1; 6640 } else { 6641 /* 6642 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6643 * mapped, all subsequent mappings should have the same size 6644 * and offset. Must be above the normal perf buffer. 6645 */ 6646 u64 aux_offset, aux_size; 6647 6648 if (!event->rb) 6649 return -EINVAL; 6650 6651 nr_pages = vma_size / PAGE_SIZE; 6652 if (nr_pages > INT_MAX) 6653 return -ENOMEM; 6654 6655 mutex_lock(&event->mmap_mutex); 6656 ret = -EINVAL; 6657 6658 rb = event->rb; 6659 if (!rb) 6660 goto aux_unlock; 6661 6662 aux_mutex = &rb->aux_mutex; 6663 mutex_lock(aux_mutex); 6664 6665 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6666 aux_size = READ_ONCE(rb->user_page->aux_size); 6667 6668 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6669 goto aux_unlock; 6670 6671 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6672 goto aux_unlock; 6673 6674 /* already mapped with a different offset */ 6675 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6676 goto aux_unlock; 6677 6678 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6679 goto aux_unlock; 6680 6681 /* already mapped with a different size */ 6682 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6683 goto aux_unlock; 6684 6685 if (!is_power_of_2(nr_pages)) 6686 goto aux_unlock; 6687 6688 if (!atomic_inc_not_zero(&rb->mmap_count)) 6689 goto aux_unlock; 6690 6691 if (rb_has_aux(rb)) { 6692 atomic_inc(&rb->aux_mmap_count); 6693 ret = 0; 6694 goto unlock; 6695 } 6696 6697 atomic_set(&rb->aux_mmap_count, 1); 6698 user_extra = nr_pages; 6699 6700 goto accounting; 6701 } 6702 6703 /* 6704 * If we have rb pages ensure they're a power-of-two number, so we 6705 * can do bitmasks instead of modulo. 6706 */ 6707 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6708 return -EINVAL; 6709 6710 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6711 return -EINVAL; 6712 6713 WARN_ON_ONCE(event->ctx->parent_ctx); 6714 again: 6715 mutex_lock(&event->mmap_mutex); 6716 if (event->rb) { 6717 if (data_page_nr(event->rb) != nr_pages) { 6718 ret = -EINVAL; 6719 goto unlock; 6720 } 6721 6722 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6723 /* 6724 * Raced against perf_mmap_close(); remove the 6725 * event and try again. 6726 */ 6727 ring_buffer_attach(event, NULL); 6728 mutex_unlock(&event->mmap_mutex); 6729 goto again; 6730 } 6731 6732 /* We need the rb to map pages. */ 6733 rb = event->rb; 6734 goto unlock; 6735 } 6736 6737 user_extra = nr_pages + 1; 6738 6739 accounting: 6740 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6741 6742 /* 6743 * Increase the limit linearly with more CPUs: 6744 */ 6745 user_lock_limit *= num_online_cpus(); 6746 6747 user_locked = atomic_long_read(&user->locked_vm); 6748 6749 /* 6750 * sysctl_perf_event_mlock may have changed, so that 6751 * user->locked_vm > user_lock_limit 6752 */ 6753 if (user_locked > user_lock_limit) 6754 user_locked = user_lock_limit; 6755 user_locked += user_extra; 6756 6757 if (user_locked > user_lock_limit) { 6758 /* 6759 * charge locked_vm until it hits user_lock_limit; 6760 * charge the rest from pinned_vm 6761 */ 6762 extra = user_locked - user_lock_limit; 6763 user_extra -= extra; 6764 } 6765 6766 lock_limit = rlimit(RLIMIT_MEMLOCK); 6767 lock_limit >>= PAGE_SHIFT; 6768 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6769 6770 if ((locked > lock_limit) && perf_is_paranoid() && 6771 !capable(CAP_IPC_LOCK)) { 6772 ret = -EPERM; 6773 goto unlock; 6774 } 6775 6776 WARN_ON(!rb && event->rb); 6777 6778 if (vma->vm_flags & VM_WRITE) 6779 flags |= RING_BUFFER_WRITABLE; 6780 6781 if (!rb) { 6782 rb = rb_alloc(nr_pages, 6783 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6784 event->cpu, flags); 6785 6786 if (!rb) { 6787 ret = -ENOMEM; 6788 goto unlock; 6789 } 6790 6791 atomic_set(&rb->mmap_count, 1); 6792 rb->mmap_user = get_current_user(); 6793 rb->mmap_locked = extra; 6794 6795 ring_buffer_attach(event, rb); 6796 6797 perf_event_update_time(event); 6798 perf_event_init_userpage(event); 6799 perf_event_update_userpage(event); 6800 } else { 6801 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6802 event->attr.aux_watermark, flags); 6803 if (!ret) 6804 rb->aux_mmap_locked = extra; 6805 } 6806 6807 unlock: 6808 if (!ret) { 6809 atomic_long_add(user_extra, &user->locked_vm); 6810 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6811 6812 atomic_inc(&event->mmap_count); 6813 } else if (rb) { 6814 atomic_dec(&rb->mmap_count); 6815 } 6816 aux_unlock: 6817 if (aux_mutex) 6818 mutex_unlock(aux_mutex); 6819 mutex_unlock(&event->mmap_mutex); 6820 6821 /* 6822 * Since pinned accounting is per vm we cannot allow fork() to copy our 6823 * vma. 6824 */ 6825 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6826 vma->vm_ops = &perf_mmap_vmops; 6827 6828 if (!ret) 6829 ret = map_range(rb, vma); 6830 6831 if (event->pmu->event_mapped) 6832 event->pmu->event_mapped(event, vma->vm_mm); 6833 6834 return ret; 6835 } 6836 6837 static int perf_fasync(int fd, struct file *filp, int on) 6838 { 6839 struct inode *inode = file_inode(filp); 6840 struct perf_event *event = filp->private_data; 6841 int retval; 6842 6843 inode_lock(inode); 6844 retval = fasync_helper(fd, filp, on, &event->fasync); 6845 inode_unlock(inode); 6846 6847 if (retval < 0) 6848 return retval; 6849 6850 return 0; 6851 } 6852 6853 static const struct file_operations perf_fops = { 6854 .release = perf_release, 6855 .read = perf_read, 6856 .poll = perf_poll, 6857 .unlocked_ioctl = perf_ioctl, 6858 .compat_ioctl = perf_compat_ioctl, 6859 .mmap = perf_mmap, 6860 .fasync = perf_fasync, 6861 }; 6862 6863 /* 6864 * Perf event wakeup 6865 * 6866 * If there's data, ensure we set the poll() state and publish everything 6867 * to user-space before waking everybody up. 6868 */ 6869 6870 void perf_event_wakeup(struct perf_event *event) 6871 { 6872 ring_buffer_wakeup(event); 6873 6874 if (event->pending_kill) { 6875 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6876 event->pending_kill = 0; 6877 } 6878 } 6879 6880 static void perf_sigtrap(struct perf_event *event) 6881 { 6882 /* 6883 * We'd expect this to only occur if the irq_work is delayed and either 6884 * ctx->task or current has changed in the meantime. This can be the 6885 * case on architectures that do not implement arch_irq_work_raise(). 6886 */ 6887 if (WARN_ON_ONCE(event->ctx->task != current)) 6888 return; 6889 6890 /* 6891 * Both perf_pending_task() and perf_pending_irq() can race with the 6892 * task exiting. 6893 */ 6894 if (current->flags & PF_EXITING) 6895 return; 6896 6897 send_sig_perf((void __user *)event->pending_addr, 6898 event->orig_type, event->attr.sig_data); 6899 } 6900 6901 /* 6902 * Deliver the pending work in-event-context or follow the context. 6903 */ 6904 static void __perf_pending_disable(struct perf_event *event) 6905 { 6906 int cpu = READ_ONCE(event->oncpu); 6907 6908 /* 6909 * If the event isn't running; we done. event_sched_out() will have 6910 * taken care of things. 6911 */ 6912 if (cpu < 0) 6913 return; 6914 6915 /* 6916 * Yay, we hit home and are in the context of the event. 6917 */ 6918 if (cpu == smp_processor_id()) { 6919 if (event->pending_disable) { 6920 event->pending_disable = 0; 6921 perf_event_disable_local(event); 6922 } 6923 return; 6924 } 6925 6926 /* 6927 * CPU-A CPU-B 6928 * 6929 * perf_event_disable_inatomic() 6930 * @pending_disable = CPU-A; 6931 * irq_work_queue(); 6932 * 6933 * sched-out 6934 * @pending_disable = -1; 6935 * 6936 * sched-in 6937 * perf_event_disable_inatomic() 6938 * @pending_disable = CPU-B; 6939 * irq_work_queue(); // FAILS 6940 * 6941 * irq_work_run() 6942 * perf_pending_disable() 6943 * 6944 * But the event runs on CPU-B and wants disabling there. 6945 */ 6946 irq_work_queue_on(&event->pending_disable_irq, cpu); 6947 } 6948 6949 static void perf_pending_disable(struct irq_work *entry) 6950 { 6951 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6952 int rctx; 6953 6954 /* 6955 * If we 'fail' here, that's OK, it means recursion is already disabled 6956 * and we won't recurse 'further'. 6957 */ 6958 rctx = perf_swevent_get_recursion_context(); 6959 __perf_pending_disable(event); 6960 if (rctx >= 0) 6961 perf_swevent_put_recursion_context(rctx); 6962 } 6963 6964 static void perf_pending_irq(struct irq_work *entry) 6965 { 6966 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6967 int rctx; 6968 6969 /* 6970 * If we 'fail' here, that's OK, it means recursion is already disabled 6971 * and we won't recurse 'further'. 6972 */ 6973 rctx = perf_swevent_get_recursion_context(); 6974 6975 /* 6976 * The wakeup isn't bound to the context of the event -- it can happen 6977 * irrespective of where the event is. 6978 */ 6979 if (event->pending_wakeup) { 6980 event->pending_wakeup = 0; 6981 perf_event_wakeup(event); 6982 } 6983 6984 if (rctx >= 0) 6985 perf_swevent_put_recursion_context(rctx); 6986 } 6987 6988 static void perf_pending_task(struct callback_head *head) 6989 { 6990 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6991 int rctx; 6992 6993 /* 6994 * All accesses to the event must belong to the same implicit RCU read-side 6995 * critical section as the ->pending_work reset. See comment in 6996 * perf_pending_task_sync(). 6997 */ 6998 rcu_read_lock(); 6999 /* 7000 * If we 'fail' here, that's OK, it means recursion is already disabled 7001 * and we won't recurse 'further'. 7002 */ 7003 rctx = perf_swevent_get_recursion_context(); 7004 7005 if (event->pending_work) { 7006 event->pending_work = 0; 7007 perf_sigtrap(event); 7008 local_dec(&event->ctx->nr_no_switch_fast); 7009 rcuwait_wake_up(&event->pending_work_wait); 7010 } 7011 rcu_read_unlock(); 7012 7013 if (rctx >= 0) 7014 perf_swevent_put_recursion_context(rctx); 7015 } 7016 7017 #ifdef CONFIG_GUEST_PERF_EVENTS 7018 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7019 7020 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7021 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7022 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7023 7024 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7025 { 7026 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7027 return; 7028 7029 rcu_assign_pointer(perf_guest_cbs, cbs); 7030 static_call_update(__perf_guest_state, cbs->state); 7031 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7032 7033 /* Implementing ->handle_intel_pt_intr is optional. */ 7034 if (cbs->handle_intel_pt_intr) 7035 static_call_update(__perf_guest_handle_intel_pt_intr, 7036 cbs->handle_intel_pt_intr); 7037 } 7038 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7039 7040 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7041 { 7042 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7043 return; 7044 7045 rcu_assign_pointer(perf_guest_cbs, NULL); 7046 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7047 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7048 static_call_update(__perf_guest_handle_intel_pt_intr, 7049 (void *)&__static_call_return0); 7050 synchronize_rcu(); 7051 } 7052 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7053 #endif 7054 7055 static bool should_sample_guest(struct perf_event *event) 7056 { 7057 return !event->attr.exclude_guest && perf_guest_state(); 7058 } 7059 7060 unsigned long perf_misc_flags(struct perf_event *event, 7061 struct pt_regs *regs) 7062 { 7063 if (should_sample_guest(event)) 7064 return perf_arch_guest_misc_flags(regs); 7065 7066 return perf_arch_misc_flags(regs); 7067 } 7068 7069 unsigned long perf_instruction_pointer(struct perf_event *event, 7070 struct pt_regs *regs) 7071 { 7072 if (should_sample_guest(event)) 7073 return perf_guest_get_ip(); 7074 7075 return perf_arch_instruction_pointer(regs); 7076 } 7077 7078 static void 7079 perf_output_sample_regs(struct perf_output_handle *handle, 7080 struct pt_regs *regs, u64 mask) 7081 { 7082 int bit; 7083 DECLARE_BITMAP(_mask, 64); 7084 7085 bitmap_from_u64(_mask, mask); 7086 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7087 u64 val; 7088 7089 val = perf_reg_value(regs, bit); 7090 perf_output_put(handle, val); 7091 } 7092 } 7093 7094 static void perf_sample_regs_user(struct perf_regs *regs_user, 7095 struct pt_regs *regs) 7096 { 7097 if (user_mode(regs)) { 7098 regs_user->abi = perf_reg_abi(current); 7099 regs_user->regs = regs; 7100 } else if (!(current->flags & PF_KTHREAD)) { 7101 perf_get_regs_user(regs_user, regs); 7102 } else { 7103 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7104 regs_user->regs = NULL; 7105 } 7106 } 7107 7108 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7109 struct pt_regs *regs) 7110 { 7111 regs_intr->regs = regs; 7112 regs_intr->abi = perf_reg_abi(current); 7113 } 7114 7115 7116 /* 7117 * Get remaining task size from user stack pointer. 7118 * 7119 * It'd be better to take stack vma map and limit this more 7120 * precisely, but there's no way to get it safely under interrupt, 7121 * so using TASK_SIZE as limit. 7122 */ 7123 static u64 perf_ustack_task_size(struct pt_regs *regs) 7124 { 7125 unsigned long addr = perf_user_stack_pointer(regs); 7126 7127 if (!addr || addr >= TASK_SIZE) 7128 return 0; 7129 7130 return TASK_SIZE - addr; 7131 } 7132 7133 static u16 7134 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7135 struct pt_regs *regs) 7136 { 7137 u64 task_size; 7138 7139 /* No regs, no stack pointer, no dump. */ 7140 if (!regs) 7141 return 0; 7142 7143 /* 7144 * Check if we fit in with the requested stack size into the: 7145 * - TASK_SIZE 7146 * If we don't, we limit the size to the TASK_SIZE. 7147 * 7148 * - remaining sample size 7149 * If we don't, we customize the stack size to 7150 * fit in to the remaining sample size. 7151 */ 7152 7153 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7154 stack_size = min(stack_size, (u16) task_size); 7155 7156 /* Current header size plus static size and dynamic size. */ 7157 header_size += 2 * sizeof(u64); 7158 7159 /* Do we fit in with the current stack dump size? */ 7160 if ((u16) (header_size + stack_size) < header_size) { 7161 /* 7162 * If we overflow the maximum size for the sample, 7163 * we customize the stack dump size to fit in. 7164 */ 7165 stack_size = USHRT_MAX - header_size - sizeof(u64); 7166 stack_size = round_up(stack_size, sizeof(u64)); 7167 } 7168 7169 return stack_size; 7170 } 7171 7172 static void 7173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7174 struct pt_regs *regs) 7175 { 7176 /* Case of a kernel thread, nothing to dump */ 7177 if (!regs) { 7178 u64 size = 0; 7179 perf_output_put(handle, size); 7180 } else { 7181 unsigned long sp; 7182 unsigned int rem; 7183 u64 dyn_size; 7184 7185 /* 7186 * We dump: 7187 * static size 7188 * - the size requested by user or the best one we can fit 7189 * in to the sample max size 7190 * data 7191 * - user stack dump data 7192 * dynamic size 7193 * - the actual dumped size 7194 */ 7195 7196 /* Static size. */ 7197 perf_output_put(handle, dump_size); 7198 7199 /* Data. */ 7200 sp = perf_user_stack_pointer(regs); 7201 rem = __output_copy_user(handle, (void *) sp, dump_size); 7202 dyn_size = dump_size - rem; 7203 7204 perf_output_skip(handle, rem); 7205 7206 /* Dynamic size. */ 7207 perf_output_put(handle, dyn_size); 7208 } 7209 } 7210 7211 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7212 struct perf_sample_data *data, 7213 size_t size) 7214 { 7215 struct perf_event *sampler = event->aux_event; 7216 struct perf_buffer *rb; 7217 7218 data->aux_size = 0; 7219 7220 if (!sampler) 7221 goto out; 7222 7223 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7224 goto out; 7225 7226 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7227 goto out; 7228 7229 rb = ring_buffer_get(sampler); 7230 if (!rb) 7231 goto out; 7232 7233 /* 7234 * If this is an NMI hit inside sampling code, don't take 7235 * the sample. See also perf_aux_sample_output(). 7236 */ 7237 if (READ_ONCE(rb->aux_in_sampling)) { 7238 data->aux_size = 0; 7239 } else { 7240 size = min_t(size_t, size, perf_aux_size(rb)); 7241 data->aux_size = ALIGN(size, sizeof(u64)); 7242 } 7243 ring_buffer_put(rb); 7244 7245 out: 7246 return data->aux_size; 7247 } 7248 7249 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7250 struct perf_event *event, 7251 struct perf_output_handle *handle, 7252 unsigned long size) 7253 { 7254 unsigned long flags; 7255 long ret; 7256 7257 /* 7258 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7259 * paths. If we start calling them in NMI context, they may race with 7260 * the IRQ ones, that is, for example, re-starting an event that's just 7261 * been stopped, which is why we're using a separate callback that 7262 * doesn't change the event state. 7263 * 7264 * IRQs need to be disabled to prevent IPIs from racing with us. 7265 */ 7266 local_irq_save(flags); 7267 /* 7268 * Guard against NMI hits inside the critical section; 7269 * see also perf_prepare_sample_aux(). 7270 */ 7271 WRITE_ONCE(rb->aux_in_sampling, 1); 7272 barrier(); 7273 7274 ret = event->pmu->snapshot_aux(event, handle, size); 7275 7276 barrier(); 7277 WRITE_ONCE(rb->aux_in_sampling, 0); 7278 local_irq_restore(flags); 7279 7280 return ret; 7281 } 7282 7283 static void perf_aux_sample_output(struct perf_event *event, 7284 struct perf_output_handle *handle, 7285 struct perf_sample_data *data) 7286 { 7287 struct perf_event *sampler = event->aux_event; 7288 struct perf_buffer *rb; 7289 unsigned long pad; 7290 long size; 7291 7292 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7293 return; 7294 7295 rb = ring_buffer_get(sampler); 7296 if (!rb) 7297 return; 7298 7299 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7300 7301 /* 7302 * An error here means that perf_output_copy() failed (returned a 7303 * non-zero surplus that it didn't copy), which in its current 7304 * enlightened implementation is not possible. If that changes, we'd 7305 * like to know. 7306 */ 7307 if (WARN_ON_ONCE(size < 0)) 7308 goto out_put; 7309 7310 /* 7311 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7312 * perf_prepare_sample_aux(), so should not be more than that. 7313 */ 7314 pad = data->aux_size - size; 7315 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7316 pad = 8; 7317 7318 if (pad) { 7319 u64 zero = 0; 7320 perf_output_copy(handle, &zero, pad); 7321 } 7322 7323 out_put: 7324 ring_buffer_put(rb); 7325 } 7326 7327 /* 7328 * A set of common sample data types saved even for non-sample records 7329 * when event->attr.sample_id_all is set. 7330 */ 7331 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7332 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7333 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7334 7335 static void __perf_event_header__init_id(struct perf_sample_data *data, 7336 struct perf_event *event, 7337 u64 sample_type) 7338 { 7339 data->type = event->attr.sample_type; 7340 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7341 7342 if (sample_type & PERF_SAMPLE_TID) { 7343 /* namespace issues */ 7344 data->tid_entry.pid = perf_event_pid(event, current); 7345 data->tid_entry.tid = perf_event_tid(event, current); 7346 } 7347 7348 if (sample_type & PERF_SAMPLE_TIME) 7349 data->time = perf_event_clock(event); 7350 7351 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7352 data->id = primary_event_id(event); 7353 7354 if (sample_type & PERF_SAMPLE_STREAM_ID) 7355 data->stream_id = event->id; 7356 7357 if (sample_type & PERF_SAMPLE_CPU) { 7358 data->cpu_entry.cpu = raw_smp_processor_id(); 7359 data->cpu_entry.reserved = 0; 7360 } 7361 } 7362 7363 void perf_event_header__init_id(struct perf_event_header *header, 7364 struct perf_sample_data *data, 7365 struct perf_event *event) 7366 { 7367 if (event->attr.sample_id_all) { 7368 header->size += event->id_header_size; 7369 __perf_event_header__init_id(data, event, event->attr.sample_type); 7370 } 7371 } 7372 7373 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7374 struct perf_sample_data *data) 7375 { 7376 u64 sample_type = data->type; 7377 7378 if (sample_type & PERF_SAMPLE_TID) 7379 perf_output_put(handle, data->tid_entry); 7380 7381 if (sample_type & PERF_SAMPLE_TIME) 7382 perf_output_put(handle, data->time); 7383 7384 if (sample_type & PERF_SAMPLE_ID) 7385 perf_output_put(handle, data->id); 7386 7387 if (sample_type & PERF_SAMPLE_STREAM_ID) 7388 perf_output_put(handle, data->stream_id); 7389 7390 if (sample_type & PERF_SAMPLE_CPU) 7391 perf_output_put(handle, data->cpu_entry); 7392 7393 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7394 perf_output_put(handle, data->id); 7395 } 7396 7397 void perf_event__output_id_sample(struct perf_event *event, 7398 struct perf_output_handle *handle, 7399 struct perf_sample_data *sample) 7400 { 7401 if (event->attr.sample_id_all) 7402 __perf_event__output_id_sample(handle, sample); 7403 } 7404 7405 static void perf_output_read_one(struct perf_output_handle *handle, 7406 struct perf_event *event, 7407 u64 enabled, u64 running) 7408 { 7409 u64 read_format = event->attr.read_format; 7410 u64 values[5]; 7411 int n = 0; 7412 7413 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7415 values[n++] = enabled + 7416 atomic64_read(&event->child_total_time_enabled); 7417 } 7418 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7419 values[n++] = running + 7420 atomic64_read(&event->child_total_time_running); 7421 } 7422 if (read_format & PERF_FORMAT_ID) 7423 values[n++] = primary_event_id(event); 7424 if (read_format & PERF_FORMAT_LOST) 7425 values[n++] = atomic64_read(&event->lost_samples); 7426 7427 __output_copy(handle, values, n * sizeof(u64)); 7428 } 7429 7430 static void perf_output_read_group(struct perf_output_handle *handle, 7431 struct perf_event *event, 7432 u64 enabled, u64 running) 7433 { 7434 struct perf_event *leader = event->group_leader, *sub; 7435 u64 read_format = event->attr.read_format; 7436 unsigned long flags; 7437 u64 values[6]; 7438 int n = 0; 7439 bool self = has_inherit_and_sample_read(&event->attr); 7440 7441 /* 7442 * Disabling interrupts avoids all counter scheduling 7443 * (context switches, timer based rotation and IPIs). 7444 */ 7445 local_irq_save(flags); 7446 7447 values[n++] = 1 + leader->nr_siblings; 7448 7449 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7450 values[n++] = enabled; 7451 7452 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7453 values[n++] = running; 7454 7455 if ((leader != event) && 7456 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7457 leader->pmu->read(leader); 7458 7459 values[n++] = perf_event_count(leader, self); 7460 if (read_format & PERF_FORMAT_ID) 7461 values[n++] = primary_event_id(leader); 7462 if (read_format & PERF_FORMAT_LOST) 7463 values[n++] = atomic64_read(&leader->lost_samples); 7464 7465 __output_copy(handle, values, n * sizeof(u64)); 7466 7467 for_each_sibling_event(sub, leader) { 7468 n = 0; 7469 7470 if ((sub != event) && 7471 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7472 sub->pmu->read(sub); 7473 7474 values[n++] = perf_event_count(sub, self); 7475 if (read_format & PERF_FORMAT_ID) 7476 values[n++] = primary_event_id(sub); 7477 if (read_format & PERF_FORMAT_LOST) 7478 values[n++] = atomic64_read(&sub->lost_samples); 7479 7480 __output_copy(handle, values, n * sizeof(u64)); 7481 } 7482 7483 local_irq_restore(flags); 7484 } 7485 7486 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7487 PERF_FORMAT_TOTAL_TIME_RUNNING) 7488 7489 /* 7490 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7491 * 7492 * The problem is that its both hard and excessively expensive to iterate the 7493 * child list, not to mention that its impossible to IPI the children running 7494 * on another CPU, from interrupt/NMI context. 7495 * 7496 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7497 * counts rather than attempting to accumulate some value across all children on 7498 * all cores. 7499 */ 7500 static void perf_output_read(struct perf_output_handle *handle, 7501 struct perf_event *event) 7502 { 7503 u64 enabled = 0, running = 0, now; 7504 u64 read_format = event->attr.read_format; 7505 7506 /* 7507 * compute total_time_enabled, total_time_running 7508 * based on snapshot values taken when the event 7509 * was last scheduled in. 7510 * 7511 * we cannot simply called update_context_time() 7512 * because of locking issue as we are called in 7513 * NMI context 7514 */ 7515 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7516 calc_timer_values(event, &now, &enabled, &running); 7517 7518 if (event->attr.read_format & PERF_FORMAT_GROUP) 7519 perf_output_read_group(handle, event, enabled, running); 7520 else 7521 perf_output_read_one(handle, event, enabled, running); 7522 } 7523 7524 void perf_output_sample(struct perf_output_handle *handle, 7525 struct perf_event_header *header, 7526 struct perf_sample_data *data, 7527 struct perf_event *event) 7528 { 7529 u64 sample_type = data->type; 7530 7531 perf_output_put(handle, *header); 7532 7533 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7534 perf_output_put(handle, data->id); 7535 7536 if (sample_type & PERF_SAMPLE_IP) 7537 perf_output_put(handle, data->ip); 7538 7539 if (sample_type & PERF_SAMPLE_TID) 7540 perf_output_put(handle, data->tid_entry); 7541 7542 if (sample_type & PERF_SAMPLE_TIME) 7543 perf_output_put(handle, data->time); 7544 7545 if (sample_type & PERF_SAMPLE_ADDR) 7546 perf_output_put(handle, data->addr); 7547 7548 if (sample_type & PERF_SAMPLE_ID) 7549 perf_output_put(handle, data->id); 7550 7551 if (sample_type & PERF_SAMPLE_STREAM_ID) 7552 perf_output_put(handle, data->stream_id); 7553 7554 if (sample_type & PERF_SAMPLE_CPU) 7555 perf_output_put(handle, data->cpu_entry); 7556 7557 if (sample_type & PERF_SAMPLE_PERIOD) 7558 perf_output_put(handle, data->period); 7559 7560 if (sample_type & PERF_SAMPLE_READ) 7561 perf_output_read(handle, event); 7562 7563 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7564 int size = 1; 7565 7566 size += data->callchain->nr; 7567 size *= sizeof(u64); 7568 __output_copy(handle, data->callchain, size); 7569 } 7570 7571 if (sample_type & PERF_SAMPLE_RAW) { 7572 struct perf_raw_record *raw = data->raw; 7573 7574 if (raw) { 7575 struct perf_raw_frag *frag = &raw->frag; 7576 7577 perf_output_put(handle, raw->size); 7578 do { 7579 if (frag->copy) { 7580 __output_custom(handle, frag->copy, 7581 frag->data, frag->size); 7582 } else { 7583 __output_copy(handle, frag->data, 7584 frag->size); 7585 } 7586 if (perf_raw_frag_last(frag)) 7587 break; 7588 frag = frag->next; 7589 } while (1); 7590 if (frag->pad) 7591 __output_skip(handle, NULL, frag->pad); 7592 } else { 7593 struct { 7594 u32 size; 7595 u32 data; 7596 } raw = { 7597 .size = sizeof(u32), 7598 .data = 0, 7599 }; 7600 perf_output_put(handle, raw); 7601 } 7602 } 7603 7604 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7605 if (data->br_stack) { 7606 size_t size; 7607 7608 size = data->br_stack->nr 7609 * sizeof(struct perf_branch_entry); 7610 7611 perf_output_put(handle, data->br_stack->nr); 7612 if (branch_sample_hw_index(event)) 7613 perf_output_put(handle, data->br_stack->hw_idx); 7614 perf_output_copy(handle, data->br_stack->entries, size); 7615 /* 7616 * Add the extension space which is appended 7617 * right after the struct perf_branch_stack. 7618 */ 7619 if (data->br_stack_cntr) { 7620 size = data->br_stack->nr * sizeof(u64); 7621 perf_output_copy(handle, data->br_stack_cntr, size); 7622 } 7623 } else { 7624 /* 7625 * we always store at least the value of nr 7626 */ 7627 u64 nr = 0; 7628 perf_output_put(handle, nr); 7629 } 7630 } 7631 7632 if (sample_type & PERF_SAMPLE_REGS_USER) { 7633 u64 abi = data->regs_user.abi; 7634 7635 /* 7636 * If there are no regs to dump, notice it through 7637 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7638 */ 7639 perf_output_put(handle, abi); 7640 7641 if (abi) { 7642 u64 mask = event->attr.sample_regs_user; 7643 perf_output_sample_regs(handle, 7644 data->regs_user.regs, 7645 mask); 7646 } 7647 } 7648 7649 if (sample_type & PERF_SAMPLE_STACK_USER) { 7650 perf_output_sample_ustack(handle, 7651 data->stack_user_size, 7652 data->regs_user.regs); 7653 } 7654 7655 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7656 perf_output_put(handle, data->weight.full); 7657 7658 if (sample_type & PERF_SAMPLE_DATA_SRC) 7659 perf_output_put(handle, data->data_src.val); 7660 7661 if (sample_type & PERF_SAMPLE_TRANSACTION) 7662 perf_output_put(handle, data->txn); 7663 7664 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7665 u64 abi = data->regs_intr.abi; 7666 /* 7667 * If there are no regs to dump, notice it through 7668 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7669 */ 7670 perf_output_put(handle, abi); 7671 7672 if (abi) { 7673 u64 mask = event->attr.sample_regs_intr; 7674 7675 perf_output_sample_regs(handle, 7676 data->regs_intr.regs, 7677 mask); 7678 } 7679 } 7680 7681 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7682 perf_output_put(handle, data->phys_addr); 7683 7684 if (sample_type & PERF_SAMPLE_CGROUP) 7685 perf_output_put(handle, data->cgroup); 7686 7687 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7688 perf_output_put(handle, data->data_page_size); 7689 7690 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7691 perf_output_put(handle, data->code_page_size); 7692 7693 if (sample_type & PERF_SAMPLE_AUX) { 7694 perf_output_put(handle, data->aux_size); 7695 7696 if (data->aux_size) 7697 perf_aux_sample_output(event, handle, data); 7698 } 7699 7700 if (!event->attr.watermark) { 7701 int wakeup_events = event->attr.wakeup_events; 7702 7703 if (wakeup_events) { 7704 struct perf_buffer *rb = handle->rb; 7705 int events = local_inc_return(&rb->events); 7706 7707 if (events >= wakeup_events) { 7708 local_sub(wakeup_events, &rb->events); 7709 local_inc(&rb->wakeup); 7710 } 7711 } 7712 } 7713 } 7714 7715 static u64 perf_virt_to_phys(u64 virt) 7716 { 7717 u64 phys_addr = 0; 7718 7719 if (!virt) 7720 return 0; 7721 7722 if (virt >= TASK_SIZE) { 7723 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7724 if (virt_addr_valid((void *)(uintptr_t)virt) && 7725 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7726 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7727 } else { 7728 /* 7729 * Walking the pages tables for user address. 7730 * Interrupts are disabled, so it prevents any tear down 7731 * of the page tables. 7732 * Try IRQ-safe get_user_page_fast_only first. 7733 * If failed, leave phys_addr as 0. 7734 */ 7735 if (current->mm != NULL) { 7736 struct page *p; 7737 7738 pagefault_disable(); 7739 if (get_user_page_fast_only(virt, 0, &p)) { 7740 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7741 put_page(p); 7742 } 7743 pagefault_enable(); 7744 } 7745 } 7746 7747 return phys_addr; 7748 } 7749 7750 /* 7751 * Return the pagetable size of a given virtual address. 7752 */ 7753 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7754 { 7755 u64 size = 0; 7756 7757 #ifdef CONFIG_HAVE_GUP_FAST 7758 pgd_t *pgdp, pgd; 7759 p4d_t *p4dp, p4d; 7760 pud_t *pudp, pud; 7761 pmd_t *pmdp, pmd; 7762 pte_t *ptep, pte; 7763 7764 pgdp = pgd_offset(mm, addr); 7765 pgd = READ_ONCE(*pgdp); 7766 if (pgd_none(pgd)) 7767 return 0; 7768 7769 if (pgd_leaf(pgd)) 7770 return pgd_leaf_size(pgd); 7771 7772 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7773 p4d = READ_ONCE(*p4dp); 7774 if (!p4d_present(p4d)) 7775 return 0; 7776 7777 if (p4d_leaf(p4d)) 7778 return p4d_leaf_size(p4d); 7779 7780 pudp = pud_offset_lockless(p4dp, p4d, addr); 7781 pud = READ_ONCE(*pudp); 7782 if (!pud_present(pud)) 7783 return 0; 7784 7785 if (pud_leaf(pud)) 7786 return pud_leaf_size(pud); 7787 7788 pmdp = pmd_offset_lockless(pudp, pud, addr); 7789 again: 7790 pmd = pmdp_get_lockless(pmdp); 7791 if (!pmd_present(pmd)) 7792 return 0; 7793 7794 if (pmd_leaf(pmd)) 7795 return pmd_leaf_size(pmd); 7796 7797 ptep = pte_offset_map(&pmd, addr); 7798 if (!ptep) 7799 goto again; 7800 7801 pte = ptep_get_lockless(ptep); 7802 if (pte_present(pte)) 7803 size = __pte_leaf_size(pmd, pte); 7804 pte_unmap(ptep); 7805 #endif /* CONFIG_HAVE_GUP_FAST */ 7806 7807 return size; 7808 } 7809 7810 static u64 perf_get_page_size(unsigned long addr) 7811 { 7812 struct mm_struct *mm; 7813 unsigned long flags; 7814 u64 size; 7815 7816 if (!addr) 7817 return 0; 7818 7819 /* 7820 * Software page-table walkers must disable IRQs, 7821 * which prevents any tear down of the page tables. 7822 */ 7823 local_irq_save(flags); 7824 7825 mm = current->mm; 7826 if (!mm) { 7827 /* 7828 * For kernel threads and the like, use init_mm so that 7829 * we can find kernel memory. 7830 */ 7831 mm = &init_mm; 7832 } 7833 7834 size = perf_get_pgtable_size(mm, addr); 7835 7836 local_irq_restore(flags); 7837 7838 return size; 7839 } 7840 7841 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7842 7843 struct perf_callchain_entry * 7844 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7845 { 7846 bool kernel = !event->attr.exclude_callchain_kernel; 7847 bool user = !event->attr.exclude_callchain_user; 7848 /* Disallow cross-task user callchains. */ 7849 bool crosstask = event->ctx->task && event->ctx->task != current; 7850 const u32 max_stack = event->attr.sample_max_stack; 7851 struct perf_callchain_entry *callchain; 7852 7853 if (!kernel && !user) 7854 return &__empty_callchain; 7855 7856 callchain = get_perf_callchain(regs, 0, kernel, user, 7857 max_stack, crosstask, true); 7858 return callchain ?: &__empty_callchain; 7859 } 7860 7861 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7862 { 7863 return d * !!(flags & s); 7864 } 7865 7866 void perf_prepare_sample(struct perf_sample_data *data, 7867 struct perf_event *event, 7868 struct pt_regs *regs) 7869 { 7870 u64 sample_type = event->attr.sample_type; 7871 u64 filtered_sample_type; 7872 7873 /* 7874 * Add the sample flags that are dependent to others. And clear the 7875 * sample flags that have already been done by the PMU driver. 7876 */ 7877 filtered_sample_type = sample_type; 7878 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7879 PERF_SAMPLE_IP); 7880 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7881 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7882 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7883 PERF_SAMPLE_REGS_USER); 7884 filtered_sample_type &= ~data->sample_flags; 7885 7886 if (filtered_sample_type == 0) { 7887 /* Make sure it has the correct data->type for output */ 7888 data->type = event->attr.sample_type; 7889 return; 7890 } 7891 7892 __perf_event_header__init_id(data, event, filtered_sample_type); 7893 7894 if (filtered_sample_type & PERF_SAMPLE_IP) { 7895 data->ip = perf_instruction_pointer(event, regs); 7896 data->sample_flags |= PERF_SAMPLE_IP; 7897 } 7898 7899 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7900 perf_sample_save_callchain(data, event, regs); 7901 7902 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7903 data->raw = NULL; 7904 data->dyn_size += sizeof(u64); 7905 data->sample_flags |= PERF_SAMPLE_RAW; 7906 } 7907 7908 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7909 data->br_stack = NULL; 7910 data->dyn_size += sizeof(u64); 7911 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7912 } 7913 7914 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7915 perf_sample_regs_user(&data->regs_user, regs); 7916 7917 /* 7918 * It cannot use the filtered_sample_type here as REGS_USER can be set 7919 * by STACK_USER (using __cond_set() above) and we don't want to update 7920 * the dyn_size if it's not requested by users. 7921 */ 7922 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7923 /* regs dump ABI info */ 7924 int size = sizeof(u64); 7925 7926 if (data->regs_user.regs) { 7927 u64 mask = event->attr.sample_regs_user; 7928 size += hweight64(mask) * sizeof(u64); 7929 } 7930 7931 data->dyn_size += size; 7932 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7933 } 7934 7935 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7936 /* 7937 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7938 * processed as the last one or have additional check added 7939 * in case new sample type is added, because we could eat 7940 * up the rest of the sample size. 7941 */ 7942 u16 stack_size = event->attr.sample_stack_user; 7943 u16 header_size = perf_sample_data_size(data, event); 7944 u16 size = sizeof(u64); 7945 7946 stack_size = perf_sample_ustack_size(stack_size, header_size, 7947 data->regs_user.regs); 7948 7949 /* 7950 * If there is something to dump, add space for the dump 7951 * itself and for the field that tells the dynamic size, 7952 * which is how many have been actually dumped. 7953 */ 7954 if (stack_size) 7955 size += sizeof(u64) + stack_size; 7956 7957 data->stack_user_size = stack_size; 7958 data->dyn_size += size; 7959 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7960 } 7961 7962 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7963 data->weight.full = 0; 7964 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7965 } 7966 7967 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7968 data->data_src.val = PERF_MEM_NA; 7969 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7970 } 7971 7972 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7973 data->txn = 0; 7974 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7975 } 7976 7977 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7978 data->addr = 0; 7979 data->sample_flags |= PERF_SAMPLE_ADDR; 7980 } 7981 7982 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7983 /* regs dump ABI info */ 7984 int size = sizeof(u64); 7985 7986 perf_sample_regs_intr(&data->regs_intr, regs); 7987 7988 if (data->regs_intr.regs) { 7989 u64 mask = event->attr.sample_regs_intr; 7990 7991 size += hweight64(mask) * sizeof(u64); 7992 } 7993 7994 data->dyn_size += size; 7995 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7996 } 7997 7998 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7999 data->phys_addr = perf_virt_to_phys(data->addr); 8000 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8001 } 8002 8003 #ifdef CONFIG_CGROUP_PERF 8004 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8005 struct cgroup *cgrp; 8006 8007 /* protected by RCU */ 8008 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8009 data->cgroup = cgroup_id(cgrp); 8010 data->sample_flags |= PERF_SAMPLE_CGROUP; 8011 } 8012 #endif 8013 8014 /* 8015 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8016 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8017 * but the value will not dump to the userspace. 8018 */ 8019 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8020 data->data_page_size = perf_get_page_size(data->addr); 8021 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8022 } 8023 8024 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8025 data->code_page_size = perf_get_page_size(data->ip); 8026 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8027 } 8028 8029 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8030 u64 size; 8031 u16 header_size = perf_sample_data_size(data, event); 8032 8033 header_size += sizeof(u64); /* size */ 8034 8035 /* 8036 * Given the 16bit nature of header::size, an AUX sample can 8037 * easily overflow it, what with all the preceding sample bits. 8038 * Make sure this doesn't happen by using up to U16_MAX bytes 8039 * per sample in total (rounded down to 8 byte boundary). 8040 */ 8041 size = min_t(size_t, U16_MAX - header_size, 8042 event->attr.aux_sample_size); 8043 size = rounddown(size, 8); 8044 size = perf_prepare_sample_aux(event, data, size); 8045 8046 WARN_ON_ONCE(size + header_size > U16_MAX); 8047 data->dyn_size += size + sizeof(u64); /* size above */ 8048 data->sample_flags |= PERF_SAMPLE_AUX; 8049 } 8050 } 8051 8052 void perf_prepare_header(struct perf_event_header *header, 8053 struct perf_sample_data *data, 8054 struct perf_event *event, 8055 struct pt_regs *regs) 8056 { 8057 header->type = PERF_RECORD_SAMPLE; 8058 header->size = perf_sample_data_size(data, event); 8059 header->misc = perf_misc_flags(event, regs); 8060 8061 /* 8062 * If you're adding more sample types here, you likely need to do 8063 * something about the overflowing header::size, like repurpose the 8064 * lowest 3 bits of size, which should be always zero at the moment. 8065 * This raises a more important question, do we really need 512k sized 8066 * samples and why, so good argumentation is in order for whatever you 8067 * do here next. 8068 */ 8069 WARN_ON_ONCE(header->size & 7); 8070 } 8071 8072 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8073 { 8074 if (pause) { 8075 if (!event->hw.aux_paused) { 8076 event->hw.aux_paused = 1; 8077 event->pmu->stop(event, PERF_EF_PAUSE); 8078 } 8079 } else { 8080 if (event->hw.aux_paused) { 8081 event->hw.aux_paused = 0; 8082 event->pmu->start(event, PERF_EF_RESUME); 8083 } 8084 } 8085 } 8086 8087 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8088 { 8089 struct perf_buffer *rb; 8090 8091 if (WARN_ON_ONCE(!event)) 8092 return; 8093 8094 rb = ring_buffer_get(event); 8095 if (!rb) 8096 return; 8097 8098 scoped_guard (irqsave) { 8099 /* 8100 * Guard against self-recursion here. Another event could trip 8101 * this same from NMI context. 8102 */ 8103 if (READ_ONCE(rb->aux_in_pause_resume)) 8104 break; 8105 8106 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8107 barrier(); 8108 __perf_event_aux_pause(event, pause); 8109 barrier(); 8110 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8111 } 8112 ring_buffer_put(rb); 8113 } 8114 8115 static __always_inline int 8116 __perf_event_output(struct perf_event *event, 8117 struct perf_sample_data *data, 8118 struct pt_regs *regs, 8119 int (*output_begin)(struct perf_output_handle *, 8120 struct perf_sample_data *, 8121 struct perf_event *, 8122 unsigned int)) 8123 { 8124 struct perf_output_handle handle; 8125 struct perf_event_header header; 8126 int err; 8127 8128 /* protect the callchain buffers */ 8129 rcu_read_lock(); 8130 8131 perf_prepare_sample(data, event, regs); 8132 perf_prepare_header(&header, data, event, regs); 8133 8134 err = output_begin(&handle, data, event, header.size); 8135 if (err) 8136 goto exit; 8137 8138 perf_output_sample(&handle, &header, data, event); 8139 8140 perf_output_end(&handle); 8141 8142 exit: 8143 rcu_read_unlock(); 8144 return err; 8145 } 8146 8147 void 8148 perf_event_output_forward(struct perf_event *event, 8149 struct perf_sample_data *data, 8150 struct pt_regs *regs) 8151 { 8152 __perf_event_output(event, data, regs, perf_output_begin_forward); 8153 } 8154 8155 void 8156 perf_event_output_backward(struct perf_event *event, 8157 struct perf_sample_data *data, 8158 struct pt_regs *regs) 8159 { 8160 __perf_event_output(event, data, regs, perf_output_begin_backward); 8161 } 8162 8163 int 8164 perf_event_output(struct perf_event *event, 8165 struct perf_sample_data *data, 8166 struct pt_regs *regs) 8167 { 8168 return __perf_event_output(event, data, regs, perf_output_begin); 8169 } 8170 8171 /* 8172 * read event_id 8173 */ 8174 8175 struct perf_read_event { 8176 struct perf_event_header header; 8177 8178 u32 pid; 8179 u32 tid; 8180 }; 8181 8182 static void 8183 perf_event_read_event(struct perf_event *event, 8184 struct task_struct *task) 8185 { 8186 struct perf_output_handle handle; 8187 struct perf_sample_data sample; 8188 struct perf_read_event read_event = { 8189 .header = { 8190 .type = PERF_RECORD_READ, 8191 .misc = 0, 8192 .size = sizeof(read_event) + event->read_size, 8193 }, 8194 .pid = perf_event_pid(event, task), 8195 .tid = perf_event_tid(event, task), 8196 }; 8197 int ret; 8198 8199 perf_event_header__init_id(&read_event.header, &sample, event); 8200 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8201 if (ret) 8202 return; 8203 8204 perf_output_put(&handle, read_event); 8205 perf_output_read(&handle, event); 8206 perf_event__output_id_sample(event, &handle, &sample); 8207 8208 perf_output_end(&handle); 8209 } 8210 8211 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8212 8213 static void 8214 perf_iterate_ctx(struct perf_event_context *ctx, 8215 perf_iterate_f output, 8216 void *data, bool all) 8217 { 8218 struct perf_event *event; 8219 8220 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8221 if (!all) { 8222 if (event->state < PERF_EVENT_STATE_INACTIVE) 8223 continue; 8224 if (!event_filter_match(event)) 8225 continue; 8226 } 8227 8228 output(event, data); 8229 } 8230 } 8231 8232 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8233 { 8234 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8235 struct perf_event *event; 8236 8237 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8238 /* 8239 * Skip events that are not fully formed yet; ensure that 8240 * if we observe event->ctx, both event and ctx will be 8241 * complete enough. See perf_install_in_context(). 8242 */ 8243 if (!smp_load_acquire(&event->ctx)) 8244 continue; 8245 8246 if (event->state < PERF_EVENT_STATE_INACTIVE) 8247 continue; 8248 if (!event_filter_match(event)) 8249 continue; 8250 output(event, data); 8251 } 8252 } 8253 8254 /* 8255 * Iterate all events that need to receive side-band events. 8256 * 8257 * For new callers; ensure that account_pmu_sb_event() includes 8258 * your event, otherwise it might not get delivered. 8259 */ 8260 static void 8261 perf_iterate_sb(perf_iterate_f output, void *data, 8262 struct perf_event_context *task_ctx) 8263 { 8264 struct perf_event_context *ctx; 8265 8266 rcu_read_lock(); 8267 preempt_disable(); 8268 8269 /* 8270 * If we have task_ctx != NULL we only notify the task context itself. 8271 * The task_ctx is set only for EXIT events before releasing task 8272 * context. 8273 */ 8274 if (task_ctx) { 8275 perf_iterate_ctx(task_ctx, output, data, false); 8276 goto done; 8277 } 8278 8279 perf_iterate_sb_cpu(output, data); 8280 8281 ctx = rcu_dereference(current->perf_event_ctxp); 8282 if (ctx) 8283 perf_iterate_ctx(ctx, output, data, false); 8284 done: 8285 preempt_enable(); 8286 rcu_read_unlock(); 8287 } 8288 8289 /* 8290 * Clear all file-based filters at exec, they'll have to be 8291 * re-instated when/if these objects are mmapped again. 8292 */ 8293 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8294 { 8295 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8296 struct perf_addr_filter *filter; 8297 unsigned int restart = 0, count = 0; 8298 unsigned long flags; 8299 8300 if (!has_addr_filter(event)) 8301 return; 8302 8303 raw_spin_lock_irqsave(&ifh->lock, flags); 8304 list_for_each_entry(filter, &ifh->list, entry) { 8305 if (filter->path.dentry) { 8306 event->addr_filter_ranges[count].start = 0; 8307 event->addr_filter_ranges[count].size = 0; 8308 restart++; 8309 } 8310 8311 count++; 8312 } 8313 8314 if (restart) 8315 event->addr_filters_gen++; 8316 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8317 8318 if (restart) 8319 perf_event_stop(event, 1); 8320 } 8321 8322 void perf_event_exec(void) 8323 { 8324 struct perf_event_context *ctx; 8325 8326 ctx = perf_pin_task_context(current); 8327 if (!ctx) 8328 return; 8329 8330 perf_event_enable_on_exec(ctx); 8331 perf_event_remove_on_exec(ctx); 8332 scoped_guard(rcu) 8333 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8334 8335 perf_unpin_context(ctx); 8336 put_ctx(ctx); 8337 } 8338 8339 struct remote_output { 8340 struct perf_buffer *rb; 8341 int err; 8342 }; 8343 8344 static void __perf_event_output_stop(struct perf_event *event, void *data) 8345 { 8346 struct perf_event *parent = event->parent; 8347 struct remote_output *ro = data; 8348 struct perf_buffer *rb = ro->rb; 8349 struct stop_event_data sd = { 8350 .event = event, 8351 }; 8352 8353 if (!has_aux(event)) 8354 return; 8355 8356 if (!parent) 8357 parent = event; 8358 8359 /* 8360 * In case of inheritance, it will be the parent that links to the 8361 * ring-buffer, but it will be the child that's actually using it. 8362 * 8363 * We are using event::rb to determine if the event should be stopped, 8364 * however this may race with ring_buffer_attach() (through set_output), 8365 * which will make us skip the event that actually needs to be stopped. 8366 * So ring_buffer_attach() has to stop an aux event before re-assigning 8367 * its rb pointer. 8368 */ 8369 if (rcu_dereference(parent->rb) == rb) 8370 ro->err = __perf_event_stop(&sd); 8371 } 8372 8373 static int __perf_pmu_output_stop(void *info) 8374 { 8375 struct perf_event *event = info; 8376 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8377 struct remote_output ro = { 8378 .rb = event->rb, 8379 }; 8380 8381 rcu_read_lock(); 8382 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8383 if (cpuctx->task_ctx) 8384 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8385 &ro, false); 8386 rcu_read_unlock(); 8387 8388 return ro.err; 8389 } 8390 8391 static void perf_pmu_output_stop(struct perf_event *event) 8392 { 8393 struct perf_event *iter; 8394 int err, cpu; 8395 8396 restart: 8397 rcu_read_lock(); 8398 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8399 /* 8400 * For per-CPU events, we need to make sure that neither they 8401 * nor their children are running; for cpu==-1 events it's 8402 * sufficient to stop the event itself if it's active, since 8403 * it can't have children. 8404 */ 8405 cpu = iter->cpu; 8406 if (cpu == -1) 8407 cpu = READ_ONCE(iter->oncpu); 8408 8409 if (cpu == -1) 8410 continue; 8411 8412 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8413 if (err == -EAGAIN) { 8414 rcu_read_unlock(); 8415 goto restart; 8416 } 8417 } 8418 rcu_read_unlock(); 8419 } 8420 8421 /* 8422 * task tracking -- fork/exit 8423 * 8424 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8425 */ 8426 8427 struct perf_task_event { 8428 struct task_struct *task; 8429 struct perf_event_context *task_ctx; 8430 8431 struct { 8432 struct perf_event_header header; 8433 8434 u32 pid; 8435 u32 ppid; 8436 u32 tid; 8437 u32 ptid; 8438 u64 time; 8439 } event_id; 8440 }; 8441 8442 static int perf_event_task_match(struct perf_event *event) 8443 { 8444 return event->attr.comm || event->attr.mmap || 8445 event->attr.mmap2 || event->attr.mmap_data || 8446 event->attr.task; 8447 } 8448 8449 static void perf_event_task_output(struct perf_event *event, 8450 void *data) 8451 { 8452 struct perf_task_event *task_event = data; 8453 struct perf_output_handle handle; 8454 struct perf_sample_data sample; 8455 struct task_struct *task = task_event->task; 8456 int ret, size = task_event->event_id.header.size; 8457 8458 if (!perf_event_task_match(event)) 8459 return; 8460 8461 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8462 8463 ret = perf_output_begin(&handle, &sample, event, 8464 task_event->event_id.header.size); 8465 if (ret) 8466 goto out; 8467 8468 task_event->event_id.pid = perf_event_pid(event, task); 8469 task_event->event_id.tid = perf_event_tid(event, task); 8470 8471 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8472 task_event->event_id.ppid = perf_event_pid(event, 8473 task->real_parent); 8474 task_event->event_id.ptid = perf_event_pid(event, 8475 task->real_parent); 8476 } else { /* PERF_RECORD_FORK */ 8477 task_event->event_id.ppid = perf_event_pid(event, current); 8478 task_event->event_id.ptid = perf_event_tid(event, current); 8479 } 8480 8481 task_event->event_id.time = perf_event_clock(event); 8482 8483 perf_output_put(&handle, task_event->event_id); 8484 8485 perf_event__output_id_sample(event, &handle, &sample); 8486 8487 perf_output_end(&handle); 8488 out: 8489 task_event->event_id.header.size = size; 8490 } 8491 8492 static void perf_event_task(struct task_struct *task, 8493 struct perf_event_context *task_ctx, 8494 int new) 8495 { 8496 struct perf_task_event task_event; 8497 8498 if (!atomic_read(&nr_comm_events) && 8499 !atomic_read(&nr_mmap_events) && 8500 !atomic_read(&nr_task_events)) 8501 return; 8502 8503 task_event = (struct perf_task_event){ 8504 .task = task, 8505 .task_ctx = task_ctx, 8506 .event_id = { 8507 .header = { 8508 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8509 .misc = 0, 8510 .size = sizeof(task_event.event_id), 8511 }, 8512 /* .pid */ 8513 /* .ppid */ 8514 /* .tid */ 8515 /* .ptid */ 8516 /* .time */ 8517 }, 8518 }; 8519 8520 perf_iterate_sb(perf_event_task_output, 8521 &task_event, 8522 task_ctx); 8523 } 8524 8525 void perf_event_fork(struct task_struct *task) 8526 { 8527 perf_event_task(task, NULL, 1); 8528 perf_event_namespaces(task); 8529 } 8530 8531 /* 8532 * comm tracking 8533 */ 8534 8535 struct perf_comm_event { 8536 struct task_struct *task; 8537 char *comm; 8538 int comm_size; 8539 8540 struct { 8541 struct perf_event_header header; 8542 8543 u32 pid; 8544 u32 tid; 8545 } event_id; 8546 }; 8547 8548 static int perf_event_comm_match(struct perf_event *event) 8549 { 8550 return event->attr.comm; 8551 } 8552 8553 static void perf_event_comm_output(struct perf_event *event, 8554 void *data) 8555 { 8556 struct perf_comm_event *comm_event = data; 8557 struct perf_output_handle handle; 8558 struct perf_sample_data sample; 8559 int size = comm_event->event_id.header.size; 8560 int ret; 8561 8562 if (!perf_event_comm_match(event)) 8563 return; 8564 8565 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8566 ret = perf_output_begin(&handle, &sample, event, 8567 comm_event->event_id.header.size); 8568 8569 if (ret) 8570 goto out; 8571 8572 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8573 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8574 8575 perf_output_put(&handle, comm_event->event_id); 8576 __output_copy(&handle, comm_event->comm, 8577 comm_event->comm_size); 8578 8579 perf_event__output_id_sample(event, &handle, &sample); 8580 8581 perf_output_end(&handle); 8582 out: 8583 comm_event->event_id.header.size = size; 8584 } 8585 8586 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8587 { 8588 char comm[TASK_COMM_LEN]; 8589 unsigned int size; 8590 8591 memset(comm, 0, sizeof(comm)); 8592 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8593 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8594 8595 comm_event->comm = comm; 8596 comm_event->comm_size = size; 8597 8598 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8599 8600 perf_iterate_sb(perf_event_comm_output, 8601 comm_event, 8602 NULL); 8603 } 8604 8605 void perf_event_comm(struct task_struct *task, bool exec) 8606 { 8607 struct perf_comm_event comm_event; 8608 8609 if (!atomic_read(&nr_comm_events)) 8610 return; 8611 8612 comm_event = (struct perf_comm_event){ 8613 .task = task, 8614 /* .comm */ 8615 /* .comm_size */ 8616 .event_id = { 8617 .header = { 8618 .type = PERF_RECORD_COMM, 8619 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8620 /* .size */ 8621 }, 8622 /* .pid */ 8623 /* .tid */ 8624 }, 8625 }; 8626 8627 perf_event_comm_event(&comm_event); 8628 } 8629 8630 /* 8631 * namespaces tracking 8632 */ 8633 8634 struct perf_namespaces_event { 8635 struct task_struct *task; 8636 8637 struct { 8638 struct perf_event_header header; 8639 8640 u32 pid; 8641 u32 tid; 8642 u64 nr_namespaces; 8643 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8644 } event_id; 8645 }; 8646 8647 static int perf_event_namespaces_match(struct perf_event *event) 8648 { 8649 return event->attr.namespaces; 8650 } 8651 8652 static void perf_event_namespaces_output(struct perf_event *event, 8653 void *data) 8654 { 8655 struct perf_namespaces_event *namespaces_event = data; 8656 struct perf_output_handle handle; 8657 struct perf_sample_data sample; 8658 u16 header_size = namespaces_event->event_id.header.size; 8659 int ret; 8660 8661 if (!perf_event_namespaces_match(event)) 8662 return; 8663 8664 perf_event_header__init_id(&namespaces_event->event_id.header, 8665 &sample, event); 8666 ret = perf_output_begin(&handle, &sample, event, 8667 namespaces_event->event_id.header.size); 8668 if (ret) 8669 goto out; 8670 8671 namespaces_event->event_id.pid = perf_event_pid(event, 8672 namespaces_event->task); 8673 namespaces_event->event_id.tid = perf_event_tid(event, 8674 namespaces_event->task); 8675 8676 perf_output_put(&handle, namespaces_event->event_id); 8677 8678 perf_event__output_id_sample(event, &handle, &sample); 8679 8680 perf_output_end(&handle); 8681 out: 8682 namespaces_event->event_id.header.size = header_size; 8683 } 8684 8685 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8686 struct task_struct *task, 8687 const struct proc_ns_operations *ns_ops) 8688 { 8689 struct path ns_path; 8690 struct inode *ns_inode; 8691 int error; 8692 8693 error = ns_get_path(&ns_path, task, ns_ops); 8694 if (!error) { 8695 ns_inode = ns_path.dentry->d_inode; 8696 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8697 ns_link_info->ino = ns_inode->i_ino; 8698 path_put(&ns_path); 8699 } 8700 } 8701 8702 void perf_event_namespaces(struct task_struct *task) 8703 { 8704 struct perf_namespaces_event namespaces_event; 8705 struct perf_ns_link_info *ns_link_info; 8706 8707 if (!atomic_read(&nr_namespaces_events)) 8708 return; 8709 8710 namespaces_event = (struct perf_namespaces_event){ 8711 .task = task, 8712 .event_id = { 8713 .header = { 8714 .type = PERF_RECORD_NAMESPACES, 8715 .misc = 0, 8716 .size = sizeof(namespaces_event.event_id), 8717 }, 8718 /* .pid */ 8719 /* .tid */ 8720 .nr_namespaces = NR_NAMESPACES, 8721 /* .link_info[NR_NAMESPACES] */ 8722 }, 8723 }; 8724 8725 ns_link_info = namespaces_event.event_id.link_info; 8726 8727 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8728 task, &mntns_operations); 8729 8730 #ifdef CONFIG_USER_NS 8731 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8732 task, &userns_operations); 8733 #endif 8734 #ifdef CONFIG_NET_NS 8735 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8736 task, &netns_operations); 8737 #endif 8738 #ifdef CONFIG_UTS_NS 8739 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8740 task, &utsns_operations); 8741 #endif 8742 #ifdef CONFIG_IPC_NS 8743 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8744 task, &ipcns_operations); 8745 #endif 8746 #ifdef CONFIG_PID_NS 8747 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8748 task, &pidns_operations); 8749 #endif 8750 #ifdef CONFIG_CGROUPS 8751 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8752 task, &cgroupns_operations); 8753 #endif 8754 8755 perf_iterate_sb(perf_event_namespaces_output, 8756 &namespaces_event, 8757 NULL); 8758 } 8759 8760 /* 8761 * cgroup tracking 8762 */ 8763 #ifdef CONFIG_CGROUP_PERF 8764 8765 struct perf_cgroup_event { 8766 char *path; 8767 int path_size; 8768 struct { 8769 struct perf_event_header header; 8770 u64 id; 8771 char path[]; 8772 } event_id; 8773 }; 8774 8775 static int perf_event_cgroup_match(struct perf_event *event) 8776 { 8777 return event->attr.cgroup; 8778 } 8779 8780 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8781 { 8782 struct perf_cgroup_event *cgroup_event = data; 8783 struct perf_output_handle handle; 8784 struct perf_sample_data sample; 8785 u16 header_size = cgroup_event->event_id.header.size; 8786 int ret; 8787 8788 if (!perf_event_cgroup_match(event)) 8789 return; 8790 8791 perf_event_header__init_id(&cgroup_event->event_id.header, 8792 &sample, event); 8793 ret = perf_output_begin(&handle, &sample, event, 8794 cgroup_event->event_id.header.size); 8795 if (ret) 8796 goto out; 8797 8798 perf_output_put(&handle, cgroup_event->event_id); 8799 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8800 8801 perf_event__output_id_sample(event, &handle, &sample); 8802 8803 perf_output_end(&handle); 8804 out: 8805 cgroup_event->event_id.header.size = header_size; 8806 } 8807 8808 static void perf_event_cgroup(struct cgroup *cgrp) 8809 { 8810 struct perf_cgroup_event cgroup_event; 8811 char path_enomem[16] = "//enomem"; 8812 char *pathname; 8813 size_t size; 8814 8815 if (!atomic_read(&nr_cgroup_events)) 8816 return; 8817 8818 cgroup_event = (struct perf_cgroup_event){ 8819 .event_id = { 8820 .header = { 8821 .type = PERF_RECORD_CGROUP, 8822 .misc = 0, 8823 .size = sizeof(cgroup_event.event_id), 8824 }, 8825 .id = cgroup_id(cgrp), 8826 }, 8827 }; 8828 8829 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8830 if (pathname == NULL) { 8831 cgroup_event.path = path_enomem; 8832 } else { 8833 /* just to be sure to have enough space for alignment */ 8834 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8835 cgroup_event.path = pathname; 8836 } 8837 8838 /* 8839 * Since our buffer works in 8 byte units we need to align our string 8840 * size to a multiple of 8. However, we must guarantee the tail end is 8841 * zero'd out to avoid leaking random bits to userspace. 8842 */ 8843 size = strlen(cgroup_event.path) + 1; 8844 while (!IS_ALIGNED(size, sizeof(u64))) 8845 cgroup_event.path[size++] = '\0'; 8846 8847 cgroup_event.event_id.header.size += size; 8848 cgroup_event.path_size = size; 8849 8850 perf_iterate_sb(perf_event_cgroup_output, 8851 &cgroup_event, 8852 NULL); 8853 8854 kfree(pathname); 8855 } 8856 8857 #endif 8858 8859 /* 8860 * mmap tracking 8861 */ 8862 8863 struct perf_mmap_event { 8864 struct vm_area_struct *vma; 8865 8866 const char *file_name; 8867 int file_size; 8868 int maj, min; 8869 u64 ino; 8870 u64 ino_generation; 8871 u32 prot, flags; 8872 u8 build_id[BUILD_ID_SIZE_MAX]; 8873 u32 build_id_size; 8874 8875 struct { 8876 struct perf_event_header header; 8877 8878 u32 pid; 8879 u32 tid; 8880 u64 start; 8881 u64 len; 8882 u64 pgoff; 8883 } event_id; 8884 }; 8885 8886 static int perf_event_mmap_match(struct perf_event *event, 8887 void *data) 8888 { 8889 struct perf_mmap_event *mmap_event = data; 8890 struct vm_area_struct *vma = mmap_event->vma; 8891 int executable = vma->vm_flags & VM_EXEC; 8892 8893 return (!executable && event->attr.mmap_data) || 8894 (executable && (event->attr.mmap || event->attr.mmap2)); 8895 } 8896 8897 static void perf_event_mmap_output(struct perf_event *event, 8898 void *data) 8899 { 8900 struct perf_mmap_event *mmap_event = data; 8901 struct perf_output_handle handle; 8902 struct perf_sample_data sample; 8903 int size = mmap_event->event_id.header.size; 8904 u32 type = mmap_event->event_id.header.type; 8905 bool use_build_id; 8906 int ret; 8907 8908 if (!perf_event_mmap_match(event, data)) 8909 return; 8910 8911 if (event->attr.mmap2) { 8912 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8913 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8914 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8915 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8916 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8917 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8918 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8919 } 8920 8921 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8922 ret = perf_output_begin(&handle, &sample, event, 8923 mmap_event->event_id.header.size); 8924 if (ret) 8925 goto out; 8926 8927 mmap_event->event_id.pid = perf_event_pid(event, current); 8928 mmap_event->event_id.tid = perf_event_tid(event, current); 8929 8930 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8931 8932 if (event->attr.mmap2 && use_build_id) 8933 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8934 8935 perf_output_put(&handle, mmap_event->event_id); 8936 8937 if (event->attr.mmap2) { 8938 if (use_build_id) { 8939 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8940 8941 __output_copy(&handle, size, 4); 8942 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8943 } else { 8944 perf_output_put(&handle, mmap_event->maj); 8945 perf_output_put(&handle, mmap_event->min); 8946 perf_output_put(&handle, mmap_event->ino); 8947 perf_output_put(&handle, mmap_event->ino_generation); 8948 } 8949 perf_output_put(&handle, mmap_event->prot); 8950 perf_output_put(&handle, mmap_event->flags); 8951 } 8952 8953 __output_copy(&handle, mmap_event->file_name, 8954 mmap_event->file_size); 8955 8956 perf_event__output_id_sample(event, &handle, &sample); 8957 8958 perf_output_end(&handle); 8959 out: 8960 mmap_event->event_id.header.size = size; 8961 mmap_event->event_id.header.type = type; 8962 } 8963 8964 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8965 { 8966 struct vm_area_struct *vma = mmap_event->vma; 8967 struct file *file = vma->vm_file; 8968 int maj = 0, min = 0; 8969 u64 ino = 0, gen = 0; 8970 u32 prot = 0, flags = 0; 8971 unsigned int size; 8972 char tmp[16]; 8973 char *buf = NULL; 8974 char *name = NULL; 8975 8976 if (vma->vm_flags & VM_READ) 8977 prot |= PROT_READ; 8978 if (vma->vm_flags & VM_WRITE) 8979 prot |= PROT_WRITE; 8980 if (vma->vm_flags & VM_EXEC) 8981 prot |= PROT_EXEC; 8982 8983 if (vma->vm_flags & VM_MAYSHARE) 8984 flags = MAP_SHARED; 8985 else 8986 flags = MAP_PRIVATE; 8987 8988 if (vma->vm_flags & VM_LOCKED) 8989 flags |= MAP_LOCKED; 8990 if (is_vm_hugetlb_page(vma)) 8991 flags |= MAP_HUGETLB; 8992 8993 if (file) { 8994 struct inode *inode; 8995 dev_t dev; 8996 8997 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8998 if (!buf) { 8999 name = "//enomem"; 9000 goto cpy_name; 9001 } 9002 /* 9003 * d_path() works from the end of the rb backwards, so we 9004 * need to add enough zero bytes after the string to handle 9005 * the 64bit alignment we do later. 9006 */ 9007 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 9008 if (IS_ERR(name)) { 9009 name = "//toolong"; 9010 goto cpy_name; 9011 } 9012 inode = file_inode(vma->vm_file); 9013 dev = inode->i_sb->s_dev; 9014 ino = inode->i_ino; 9015 gen = inode->i_generation; 9016 maj = MAJOR(dev); 9017 min = MINOR(dev); 9018 9019 goto got_name; 9020 } else { 9021 if (vma->vm_ops && vma->vm_ops->name) 9022 name = (char *) vma->vm_ops->name(vma); 9023 if (!name) 9024 name = (char *)arch_vma_name(vma); 9025 if (!name) { 9026 if (vma_is_initial_heap(vma)) 9027 name = "[heap]"; 9028 else if (vma_is_initial_stack(vma)) 9029 name = "[stack]"; 9030 else 9031 name = "//anon"; 9032 } 9033 } 9034 9035 cpy_name: 9036 strscpy(tmp, name, sizeof(tmp)); 9037 name = tmp; 9038 got_name: 9039 /* 9040 * Since our buffer works in 8 byte units we need to align our string 9041 * size to a multiple of 8. However, we must guarantee the tail end is 9042 * zero'd out to avoid leaking random bits to userspace. 9043 */ 9044 size = strlen(name)+1; 9045 while (!IS_ALIGNED(size, sizeof(u64))) 9046 name[size++] = '\0'; 9047 9048 mmap_event->file_name = name; 9049 mmap_event->file_size = size; 9050 mmap_event->maj = maj; 9051 mmap_event->min = min; 9052 mmap_event->ino = ino; 9053 mmap_event->ino_generation = gen; 9054 mmap_event->prot = prot; 9055 mmap_event->flags = flags; 9056 9057 if (!(vma->vm_flags & VM_EXEC)) 9058 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9059 9060 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9061 9062 if (atomic_read(&nr_build_id_events)) 9063 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9064 9065 perf_iterate_sb(perf_event_mmap_output, 9066 mmap_event, 9067 NULL); 9068 9069 kfree(buf); 9070 } 9071 9072 /* 9073 * Check whether inode and address range match filter criteria. 9074 */ 9075 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9076 struct file *file, unsigned long offset, 9077 unsigned long size) 9078 { 9079 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9080 if (!filter->path.dentry) 9081 return false; 9082 9083 if (d_inode(filter->path.dentry) != file_inode(file)) 9084 return false; 9085 9086 if (filter->offset > offset + size) 9087 return false; 9088 9089 if (filter->offset + filter->size < offset) 9090 return false; 9091 9092 return true; 9093 } 9094 9095 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9096 struct vm_area_struct *vma, 9097 struct perf_addr_filter_range *fr) 9098 { 9099 unsigned long vma_size = vma->vm_end - vma->vm_start; 9100 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9101 struct file *file = vma->vm_file; 9102 9103 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9104 return false; 9105 9106 if (filter->offset < off) { 9107 fr->start = vma->vm_start; 9108 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9109 } else { 9110 fr->start = vma->vm_start + filter->offset - off; 9111 fr->size = min(vma->vm_end - fr->start, filter->size); 9112 } 9113 9114 return true; 9115 } 9116 9117 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9118 { 9119 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9120 struct vm_area_struct *vma = data; 9121 struct perf_addr_filter *filter; 9122 unsigned int restart = 0, count = 0; 9123 unsigned long flags; 9124 9125 if (!has_addr_filter(event)) 9126 return; 9127 9128 if (!vma->vm_file) 9129 return; 9130 9131 raw_spin_lock_irqsave(&ifh->lock, flags); 9132 list_for_each_entry(filter, &ifh->list, entry) { 9133 if (perf_addr_filter_vma_adjust(filter, vma, 9134 &event->addr_filter_ranges[count])) 9135 restart++; 9136 9137 count++; 9138 } 9139 9140 if (restart) 9141 event->addr_filters_gen++; 9142 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9143 9144 if (restart) 9145 perf_event_stop(event, 1); 9146 } 9147 9148 /* 9149 * Adjust all task's events' filters to the new vma 9150 */ 9151 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9152 { 9153 struct perf_event_context *ctx; 9154 9155 /* 9156 * Data tracing isn't supported yet and as such there is no need 9157 * to keep track of anything that isn't related to executable code: 9158 */ 9159 if (!(vma->vm_flags & VM_EXEC)) 9160 return; 9161 9162 rcu_read_lock(); 9163 ctx = rcu_dereference(current->perf_event_ctxp); 9164 if (ctx) 9165 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9166 rcu_read_unlock(); 9167 } 9168 9169 void perf_event_mmap(struct vm_area_struct *vma) 9170 { 9171 struct perf_mmap_event mmap_event; 9172 9173 if (!atomic_read(&nr_mmap_events)) 9174 return; 9175 9176 mmap_event = (struct perf_mmap_event){ 9177 .vma = vma, 9178 /* .file_name */ 9179 /* .file_size */ 9180 .event_id = { 9181 .header = { 9182 .type = PERF_RECORD_MMAP, 9183 .misc = PERF_RECORD_MISC_USER, 9184 /* .size */ 9185 }, 9186 /* .pid */ 9187 /* .tid */ 9188 .start = vma->vm_start, 9189 .len = vma->vm_end - vma->vm_start, 9190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9191 }, 9192 /* .maj (attr_mmap2 only) */ 9193 /* .min (attr_mmap2 only) */ 9194 /* .ino (attr_mmap2 only) */ 9195 /* .ino_generation (attr_mmap2 only) */ 9196 /* .prot (attr_mmap2 only) */ 9197 /* .flags (attr_mmap2 only) */ 9198 }; 9199 9200 perf_addr_filters_adjust(vma); 9201 perf_event_mmap_event(&mmap_event); 9202 } 9203 9204 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9205 unsigned long size, u64 flags) 9206 { 9207 struct perf_output_handle handle; 9208 struct perf_sample_data sample; 9209 struct perf_aux_event { 9210 struct perf_event_header header; 9211 u64 offset; 9212 u64 size; 9213 u64 flags; 9214 } rec = { 9215 .header = { 9216 .type = PERF_RECORD_AUX, 9217 .misc = 0, 9218 .size = sizeof(rec), 9219 }, 9220 .offset = head, 9221 .size = size, 9222 .flags = flags, 9223 }; 9224 int ret; 9225 9226 perf_event_header__init_id(&rec.header, &sample, event); 9227 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9228 9229 if (ret) 9230 return; 9231 9232 perf_output_put(&handle, rec); 9233 perf_event__output_id_sample(event, &handle, &sample); 9234 9235 perf_output_end(&handle); 9236 } 9237 9238 /* 9239 * Lost/dropped samples logging 9240 */ 9241 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9242 { 9243 struct perf_output_handle handle; 9244 struct perf_sample_data sample; 9245 int ret; 9246 9247 struct { 9248 struct perf_event_header header; 9249 u64 lost; 9250 } lost_samples_event = { 9251 .header = { 9252 .type = PERF_RECORD_LOST_SAMPLES, 9253 .misc = 0, 9254 .size = sizeof(lost_samples_event), 9255 }, 9256 .lost = lost, 9257 }; 9258 9259 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9260 9261 ret = perf_output_begin(&handle, &sample, event, 9262 lost_samples_event.header.size); 9263 if (ret) 9264 return; 9265 9266 perf_output_put(&handle, lost_samples_event); 9267 perf_event__output_id_sample(event, &handle, &sample); 9268 perf_output_end(&handle); 9269 } 9270 9271 /* 9272 * context_switch tracking 9273 */ 9274 9275 struct perf_switch_event { 9276 struct task_struct *task; 9277 struct task_struct *next_prev; 9278 9279 struct { 9280 struct perf_event_header header; 9281 u32 next_prev_pid; 9282 u32 next_prev_tid; 9283 } event_id; 9284 }; 9285 9286 static int perf_event_switch_match(struct perf_event *event) 9287 { 9288 return event->attr.context_switch; 9289 } 9290 9291 static void perf_event_switch_output(struct perf_event *event, void *data) 9292 { 9293 struct perf_switch_event *se = data; 9294 struct perf_output_handle handle; 9295 struct perf_sample_data sample; 9296 int ret; 9297 9298 if (!perf_event_switch_match(event)) 9299 return; 9300 9301 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9302 if (event->ctx->task) { 9303 se->event_id.header.type = PERF_RECORD_SWITCH; 9304 se->event_id.header.size = sizeof(se->event_id.header); 9305 } else { 9306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9307 se->event_id.header.size = sizeof(se->event_id); 9308 se->event_id.next_prev_pid = 9309 perf_event_pid(event, se->next_prev); 9310 se->event_id.next_prev_tid = 9311 perf_event_tid(event, se->next_prev); 9312 } 9313 9314 perf_event_header__init_id(&se->event_id.header, &sample, event); 9315 9316 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9317 if (ret) 9318 return; 9319 9320 if (event->ctx->task) 9321 perf_output_put(&handle, se->event_id.header); 9322 else 9323 perf_output_put(&handle, se->event_id); 9324 9325 perf_event__output_id_sample(event, &handle, &sample); 9326 9327 perf_output_end(&handle); 9328 } 9329 9330 static void perf_event_switch(struct task_struct *task, 9331 struct task_struct *next_prev, bool sched_in) 9332 { 9333 struct perf_switch_event switch_event; 9334 9335 /* N.B. caller checks nr_switch_events != 0 */ 9336 9337 switch_event = (struct perf_switch_event){ 9338 .task = task, 9339 .next_prev = next_prev, 9340 .event_id = { 9341 .header = { 9342 /* .type */ 9343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9344 /* .size */ 9345 }, 9346 /* .next_prev_pid */ 9347 /* .next_prev_tid */ 9348 }, 9349 }; 9350 9351 if (!sched_in && task_is_runnable(task)) { 9352 switch_event.event_id.header.misc |= 9353 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9354 } 9355 9356 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9357 } 9358 9359 /* 9360 * IRQ throttle logging 9361 */ 9362 9363 static void perf_log_throttle(struct perf_event *event, int enable) 9364 { 9365 struct perf_output_handle handle; 9366 struct perf_sample_data sample; 9367 int ret; 9368 9369 struct { 9370 struct perf_event_header header; 9371 u64 time; 9372 u64 id; 9373 u64 stream_id; 9374 } throttle_event = { 9375 .header = { 9376 .type = PERF_RECORD_THROTTLE, 9377 .misc = 0, 9378 .size = sizeof(throttle_event), 9379 }, 9380 .time = perf_event_clock(event), 9381 .id = primary_event_id(event), 9382 .stream_id = event->id, 9383 }; 9384 9385 if (enable) 9386 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9387 9388 perf_event_header__init_id(&throttle_event.header, &sample, event); 9389 9390 ret = perf_output_begin(&handle, &sample, event, 9391 throttle_event.header.size); 9392 if (ret) 9393 return; 9394 9395 perf_output_put(&handle, throttle_event); 9396 perf_event__output_id_sample(event, &handle, &sample); 9397 perf_output_end(&handle); 9398 } 9399 9400 /* 9401 * ksymbol register/unregister tracking 9402 */ 9403 9404 struct perf_ksymbol_event { 9405 const char *name; 9406 int name_len; 9407 struct { 9408 struct perf_event_header header; 9409 u64 addr; 9410 u32 len; 9411 u16 ksym_type; 9412 u16 flags; 9413 } event_id; 9414 }; 9415 9416 static int perf_event_ksymbol_match(struct perf_event *event) 9417 { 9418 return event->attr.ksymbol; 9419 } 9420 9421 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9422 { 9423 struct perf_ksymbol_event *ksymbol_event = data; 9424 struct perf_output_handle handle; 9425 struct perf_sample_data sample; 9426 int ret; 9427 9428 if (!perf_event_ksymbol_match(event)) 9429 return; 9430 9431 perf_event_header__init_id(&ksymbol_event->event_id.header, 9432 &sample, event); 9433 ret = perf_output_begin(&handle, &sample, event, 9434 ksymbol_event->event_id.header.size); 9435 if (ret) 9436 return; 9437 9438 perf_output_put(&handle, ksymbol_event->event_id); 9439 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9440 perf_event__output_id_sample(event, &handle, &sample); 9441 9442 perf_output_end(&handle); 9443 } 9444 9445 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9446 const char *sym) 9447 { 9448 struct perf_ksymbol_event ksymbol_event; 9449 char name[KSYM_NAME_LEN]; 9450 u16 flags = 0; 9451 int name_len; 9452 9453 if (!atomic_read(&nr_ksymbol_events)) 9454 return; 9455 9456 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9457 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9458 goto err; 9459 9460 strscpy(name, sym, KSYM_NAME_LEN); 9461 name_len = strlen(name) + 1; 9462 while (!IS_ALIGNED(name_len, sizeof(u64))) 9463 name[name_len++] = '\0'; 9464 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9465 9466 if (unregister) 9467 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9468 9469 ksymbol_event = (struct perf_ksymbol_event){ 9470 .name = name, 9471 .name_len = name_len, 9472 .event_id = { 9473 .header = { 9474 .type = PERF_RECORD_KSYMBOL, 9475 .size = sizeof(ksymbol_event.event_id) + 9476 name_len, 9477 }, 9478 .addr = addr, 9479 .len = len, 9480 .ksym_type = ksym_type, 9481 .flags = flags, 9482 }, 9483 }; 9484 9485 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9486 return; 9487 err: 9488 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9489 } 9490 9491 /* 9492 * bpf program load/unload tracking 9493 */ 9494 9495 struct perf_bpf_event { 9496 struct bpf_prog *prog; 9497 struct { 9498 struct perf_event_header header; 9499 u16 type; 9500 u16 flags; 9501 u32 id; 9502 u8 tag[BPF_TAG_SIZE]; 9503 } event_id; 9504 }; 9505 9506 static int perf_event_bpf_match(struct perf_event *event) 9507 { 9508 return event->attr.bpf_event; 9509 } 9510 9511 static void perf_event_bpf_output(struct perf_event *event, void *data) 9512 { 9513 struct perf_bpf_event *bpf_event = data; 9514 struct perf_output_handle handle; 9515 struct perf_sample_data sample; 9516 int ret; 9517 9518 if (!perf_event_bpf_match(event)) 9519 return; 9520 9521 perf_event_header__init_id(&bpf_event->event_id.header, 9522 &sample, event); 9523 ret = perf_output_begin(&handle, &sample, event, 9524 bpf_event->event_id.header.size); 9525 if (ret) 9526 return; 9527 9528 perf_output_put(&handle, bpf_event->event_id); 9529 perf_event__output_id_sample(event, &handle, &sample); 9530 9531 perf_output_end(&handle); 9532 } 9533 9534 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9535 enum perf_bpf_event_type type) 9536 { 9537 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9538 int i; 9539 9540 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9541 (u64)(unsigned long)prog->bpf_func, 9542 prog->jited_len, unregister, 9543 prog->aux->ksym.name); 9544 9545 for (i = 1; i < prog->aux->func_cnt; i++) { 9546 struct bpf_prog *subprog = prog->aux->func[i]; 9547 9548 perf_event_ksymbol( 9549 PERF_RECORD_KSYMBOL_TYPE_BPF, 9550 (u64)(unsigned long)subprog->bpf_func, 9551 subprog->jited_len, unregister, 9552 subprog->aux->ksym.name); 9553 } 9554 } 9555 9556 void perf_event_bpf_event(struct bpf_prog *prog, 9557 enum perf_bpf_event_type type, 9558 u16 flags) 9559 { 9560 struct perf_bpf_event bpf_event; 9561 9562 switch (type) { 9563 case PERF_BPF_EVENT_PROG_LOAD: 9564 case PERF_BPF_EVENT_PROG_UNLOAD: 9565 if (atomic_read(&nr_ksymbol_events)) 9566 perf_event_bpf_emit_ksymbols(prog, type); 9567 break; 9568 default: 9569 return; 9570 } 9571 9572 if (!atomic_read(&nr_bpf_events)) 9573 return; 9574 9575 bpf_event = (struct perf_bpf_event){ 9576 .prog = prog, 9577 .event_id = { 9578 .header = { 9579 .type = PERF_RECORD_BPF_EVENT, 9580 .size = sizeof(bpf_event.event_id), 9581 }, 9582 .type = type, 9583 .flags = flags, 9584 .id = prog->aux->id, 9585 }, 9586 }; 9587 9588 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9589 9590 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9591 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9592 } 9593 9594 struct perf_text_poke_event { 9595 const void *old_bytes; 9596 const void *new_bytes; 9597 size_t pad; 9598 u16 old_len; 9599 u16 new_len; 9600 9601 struct { 9602 struct perf_event_header header; 9603 9604 u64 addr; 9605 } event_id; 9606 }; 9607 9608 static int perf_event_text_poke_match(struct perf_event *event) 9609 { 9610 return event->attr.text_poke; 9611 } 9612 9613 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9614 { 9615 struct perf_text_poke_event *text_poke_event = data; 9616 struct perf_output_handle handle; 9617 struct perf_sample_data sample; 9618 u64 padding = 0; 9619 int ret; 9620 9621 if (!perf_event_text_poke_match(event)) 9622 return; 9623 9624 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9625 9626 ret = perf_output_begin(&handle, &sample, event, 9627 text_poke_event->event_id.header.size); 9628 if (ret) 9629 return; 9630 9631 perf_output_put(&handle, text_poke_event->event_id); 9632 perf_output_put(&handle, text_poke_event->old_len); 9633 perf_output_put(&handle, text_poke_event->new_len); 9634 9635 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9636 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9637 9638 if (text_poke_event->pad) 9639 __output_copy(&handle, &padding, text_poke_event->pad); 9640 9641 perf_event__output_id_sample(event, &handle, &sample); 9642 9643 perf_output_end(&handle); 9644 } 9645 9646 void perf_event_text_poke(const void *addr, const void *old_bytes, 9647 size_t old_len, const void *new_bytes, size_t new_len) 9648 { 9649 struct perf_text_poke_event text_poke_event; 9650 size_t tot, pad; 9651 9652 if (!atomic_read(&nr_text_poke_events)) 9653 return; 9654 9655 tot = sizeof(text_poke_event.old_len) + old_len; 9656 tot += sizeof(text_poke_event.new_len) + new_len; 9657 pad = ALIGN(tot, sizeof(u64)) - tot; 9658 9659 text_poke_event = (struct perf_text_poke_event){ 9660 .old_bytes = old_bytes, 9661 .new_bytes = new_bytes, 9662 .pad = pad, 9663 .old_len = old_len, 9664 .new_len = new_len, 9665 .event_id = { 9666 .header = { 9667 .type = PERF_RECORD_TEXT_POKE, 9668 .misc = PERF_RECORD_MISC_KERNEL, 9669 .size = sizeof(text_poke_event.event_id) + tot + pad, 9670 }, 9671 .addr = (unsigned long)addr, 9672 }, 9673 }; 9674 9675 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9676 } 9677 9678 void perf_event_itrace_started(struct perf_event *event) 9679 { 9680 event->attach_state |= PERF_ATTACH_ITRACE; 9681 } 9682 9683 static void perf_log_itrace_start(struct perf_event *event) 9684 { 9685 struct perf_output_handle handle; 9686 struct perf_sample_data sample; 9687 struct perf_aux_event { 9688 struct perf_event_header header; 9689 u32 pid; 9690 u32 tid; 9691 } rec; 9692 int ret; 9693 9694 if (event->parent) 9695 event = event->parent; 9696 9697 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9698 event->attach_state & PERF_ATTACH_ITRACE) 9699 return; 9700 9701 rec.header.type = PERF_RECORD_ITRACE_START; 9702 rec.header.misc = 0; 9703 rec.header.size = sizeof(rec); 9704 rec.pid = perf_event_pid(event, current); 9705 rec.tid = perf_event_tid(event, current); 9706 9707 perf_event_header__init_id(&rec.header, &sample, event); 9708 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9709 9710 if (ret) 9711 return; 9712 9713 perf_output_put(&handle, rec); 9714 perf_event__output_id_sample(event, &handle, &sample); 9715 9716 perf_output_end(&handle); 9717 } 9718 9719 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9720 { 9721 struct perf_output_handle handle; 9722 struct perf_sample_data sample; 9723 struct perf_aux_event { 9724 struct perf_event_header header; 9725 u64 hw_id; 9726 } rec; 9727 int ret; 9728 9729 if (event->parent) 9730 event = event->parent; 9731 9732 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9733 rec.header.misc = 0; 9734 rec.header.size = sizeof(rec); 9735 rec.hw_id = hw_id; 9736 9737 perf_event_header__init_id(&rec.header, &sample, event); 9738 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9739 9740 if (ret) 9741 return; 9742 9743 perf_output_put(&handle, rec); 9744 perf_event__output_id_sample(event, &handle, &sample); 9745 9746 perf_output_end(&handle); 9747 } 9748 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9749 9750 static int 9751 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9752 { 9753 struct hw_perf_event *hwc = &event->hw; 9754 int ret = 0; 9755 u64 seq; 9756 9757 seq = __this_cpu_read(perf_throttled_seq); 9758 if (seq != hwc->interrupts_seq) { 9759 hwc->interrupts_seq = seq; 9760 hwc->interrupts = 1; 9761 } else { 9762 hwc->interrupts++; 9763 if (unlikely(throttle && 9764 hwc->interrupts > max_samples_per_tick)) { 9765 __this_cpu_inc(perf_throttled_count); 9766 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9767 hwc->interrupts = MAX_INTERRUPTS; 9768 perf_log_throttle(event, 0); 9769 ret = 1; 9770 } 9771 } 9772 9773 if (event->attr.freq) { 9774 u64 now = perf_clock(); 9775 s64 delta = now - hwc->freq_time_stamp; 9776 9777 hwc->freq_time_stamp = now; 9778 9779 if (delta > 0 && delta < 2*TICK_NSEC) 9780 perf_adjust_period(event, delta, hwc->last_period, true); 9781 } 9782 9783 return ret; 9784 } 9785 9786 int perf_event_account_interrupt(struct perf_event *event) 9787 { 9788 return __perf_event_account_interrupt(event, 1); 9789 } 9790 9791 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9792 { 9793 /* 9794 * Due to interrupt latency (AKA "skid"), we may enter the 9795 * kernel before taking an overflow, even if the PMU is only 9796 * counting user events. 9797 */ 9798 if (event->attr.exclude_kernel && !user_mode(regs)) 9799 return false; 9800 9801 return true; 9802 } 9803 9804 #ifdef CONFIG_BPF_SYSCALL 9805 static int bpf_overflow_handler(struct perf_event *event, 9806 struct perf_sample_data *data, 9807 struct pt_regs *regs) 9808 { 9809 struct bpf_perf_event_data_kern ctx = { 9810 .data = data, 9811 .event = event, 9812 }; 9813 struct bpf_prog *prog; 9814 int ret = 0; 9815 9816 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9817 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9818 goto out; 9819 rcu_read_lock(); 9820 prog = READ_ONCE(event->prog); 9821 if (prog) { 9822 perf_prepare_sample(data, event, regs); 9823 ret = bpf_prog_run(prog, &ctx); 9824 } 9825 rcu_read_unlock(); 9826 out: 9827 __this_cpu_dec(bpf_prog_active); 9828 9829 return ret; 9830 } 9831 9832 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9833 struct bpf_prog *prog, 9834 u64 bpf_cookie) 9835 { 9836 if (event->overflow_handler_context) 9837 /* hw breakpoint or kernel counter */ 9838 return -EINVAL; 9839 9840 if (event->prog) 9841 return -EEXIST; 9842 9843 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9844 return -EINVAL; 9845 9846 if (event->attr.precise_ip && 9847 prog->call_get_stack && 9848 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9849 event->attr.exclude_callchain_kernel || 9850 event->attr.exclude_callchain_user)) { 9851 /* 9852 * On perf_event with precise_ip, calling bpf_get_stack() 9853 * may trigger unwinder warnings and occasional crashes. 9854 * bpf_get_[stack|stackid] works around this issue by using 9855 * callchain attached to perf_sample_data. If the 9856 * perf_event does not full (kernel and user) callchain 9857 * attached to perf_sample_data, do not allow attaching BPF 9858 * program that calls bpf_get_[stack|stackid]. 9859 */ 9860 return -EPROTO; 9861 } 9862 9863 event->prog = prog; 9864 event->bpf_cookie = bpf_cookie; 9865 return 0; 9866 } 9867 9868 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9869 { 9870 struct bpf_prog *prog = event->prog; 9871 9872 if (!prog) 9873 return; 9874 9875 event->prog = NULL; 9876 bpf_prog_put(prog); 9877 } 9878 #else 9879 static inline int bpf_overflow_handler(struct perf_event *event, 9880 struct perf_sample_data *data, 9881 struct pt_regs *regs) 9882 { 9883 return 1; 9884 } 9885 9886 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9887 struct bpf_prog *prog, 9888 u64 bpf_cookie) 9889 { 9890 return -EOPNOTSUPP; 9891 } 9892 9893 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9894 { 9895 } 9896 #endif 9897 9898 /* 9899 * Generic event overflow handling, sampling. 9900 */ 9901 9902 static int __perf_event_overflow(struct perf_event *event, 9903 int throttle, struct perf_sample_data *data, 9904 struct pt_regs *regs) 9905 { 9906 int events = atomic_read(&event->event_limit); 9907 int ret = 0; 9908 9909 /* 9910 * Non-sampling counters might still use the PMI to fold short 9911 * hardware counters, ignore those. 9912 */ 9913 if (unlikely(!is_sampling_event(event))) 9914 return 0; 9915 9916 ret = __perf_event_account_interrupt(event, throttle); 9917 9918 if (event->attr.aux_pause) 9919 perf_event_aux_pause(event->aux_event, true); 9920 9921 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9922 !bpf_overflow_handler(event, data, regs)) 9923 goto out; 9924 9925 /* 9926 * XXX event_limit might not quite work as expected on inherited 9927 * events 9928 */ 9929 9930 event->pending_kill = POLL_IN; 9931 if (events && atomic_dec_and_test(&event->event_limit)) { 9932 ret = 1; 9933 event->pending_kill = POLL_HUP; 9934 perf_event_disable_inatomic(event); 9935 } 9936 9937 if (event->attr.sigtrap) { 9938 /* 9939 * The desired behaviour of sigtrap vs invalid samples is a bit 9940 * tricky; on the one hand, one should not loose the SIGTRAP if 9941 * it is the first event, on the other hand, we should also not 9942 * trigger the WARN or override the data address. 9943 */ 9944 bool valid_sample = sample_is_allowed(event, regs); 9945 unsigned int pending_id = 1; 9946 enum task_work_notify_mode notify_mode; 9947 9948 if (regs) 9949 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9950 9951 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9952 9953 if (!event->pending_work && 9954 !task_work_add(current, &event->pending_task, notify_mode)) { 9955 event->pending_work = pending_id; 9956 local_inc(&event->ctx->nr_no_switch_fast); 9957 9958 event->pending_addr = 0; 9959 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9960 event->pending_addr = data->addr; 9961 9962 } else if (event->attr.exclude_kernel && valid_sample) { 9963 /* 9964 * Should not be able to return to user space without 9965 * consuming pending_work; with exceptions: 9966 * 9967 * 1. Where !exclude_kernel, events can overflow again 9968 * in the kernel without returning to user space. 9969 * 9970 * 2. Events that can overflow again before the IRQ- 9971 * work without user space progress (e.g. hrtimer). 9972 * To approximate progress (with false negatives), 9973 * check 32-bit hash of the current IP. 9974 */ 9975 WARN_ON_ONCE(event->pending_work != pending_id); 9976 } 9977 } 9978 9979 READ_ONCE(event->overflow_handler)(event, data, regs); 9980 9981 if (*perf_event_fasync(event) && event->pending_kill) { 9982 event->pending_wakeup = 1; 9983 irq_work_queue(&event->pending_irq); 9984 } 9985 out: 9986 if (event->attr.aux_resume) 9987 perf_event_aux_pause(event->aux_event, false); 9988 9989 return ret; 9990 } 9991 9992 int perf_event_overflow(struct perf_event *event, 9993 struct perf_sample_data *data, 9994 struct pt_regs *regs) 9995 { 9996 return __perf_event_overflow(event, 1, data, regs); 9997 } 9998 9999 /* 10000 * Generic software event infrastructure 10001 */ 10002 10003 struct swevent_htable { 10004 struct swevent_hlist *swevent_hlist; 10005 struct mutex hlist_mutex; 10006 int hlist_refcount; 10007 }; 10008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10009 10010 /* 10011 * We directly increment event->count and keep a second value in 10012 * event->hw.period_left to count intervals. This period event 10013 * is kept in the range [-sample_period, 0] so that we can use the 10014 * sign as trigger. 10015 */ 10016 10017 u64 perf_swevent_set_period(struct perf_event *event) 10018 { 10019 struct hw_perf_event *hwc = &event->hw; 10020 u64 period = hwc->last_period; 10021 u64 nr, offset; 10022 s64 old, val; 10023 10024 hwc->last_period = hwc->sample_period; 10025 10026 old = local64_read(&hwc->period_left); 10027 do { 10028 val = old; 10029 if (val < 0) 10030 return 0; 10031 10032 nr = div64_u64(period + val, period); 10033 offset = nr * period; 10034 val -= offset; 10035 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10036 10037 return nr; 10038 } 10039 10040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10041 struct perf_sample_data *data, 10042 struct pt_regs *regs) 10043 { 10044 struct hw_perf_event *hwc = &event->hw; 10045 int throttle = 0; 10046 10047 if (!overflow) 10048 overflow = perf_swevent_set_period(event); 10049 10050 if (hwc->interrupts == MAX_INTERRUPTS) 10051 return; 10052 10053 for (; overflow; overflow--) { 10054 if (__perf_event_overflow(event, throttle, 10055 data, regs)) { 10056 /* 10057 * We inhibit the overflow from happening when 10058 * hwc->interrupts == MAX_INTERRUPTS. 10059 */ 10060 break; 10061 } 10062 throttle = 1; 10063 } 10064 } 10065 10066 static void perf_swevent_event(struct perf_event *event, u64 nr, 10067 struct perf_sample_data *data, 10068 struct pt_regs *regs) 10069 { 10070 struct hw_perf_event *hwc = &event->hw; 10071 10072 local64_add(nr, &event->count); 10073 10074 if (!regs) 10075 return; 10076 10077 if (!is_sampling_event(event)) 10078 return; 10079 10080 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10081 data->period = nr; 10082 return perf_swevent_overflow(event, 1, data, regs); 10083 } else 10084 data->period = event->hw.last_period; 10085 10086 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10087 return perf_swevent_overflow(event, 1, data, regs); 10088 10089 if (local64_add_negative(nr, &hwc->period_left)) 10090 return; 10091 10092 perf_swevent_overflow(event, 0, data, regs); 10093 } 10094 10095 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10096 { 10097 if (event->hw.state & PERF_HES_STOPPED) 10098 return 1; 10099 10100 if (regs) { 10101 if (event->attr.exclude_user && user_mode(regs)) 10102 return 1; 10103 10104 if (event->attr.exclude_kernel && !user_mode(regs)) 10105 return 1; 10106 } 10107 10108 return 0; 10109 } 10110 10111 static int perf_swevent_match(struct perf_event *event, 10112 enum perf_type_id type, 10113 u32 event_id, 10114 struct perf_sample_data *data, 10115 struct pt_regs *regs) 10116 { 10117 if (event->attr.type != type) 10118 return 0; 10119 10120 if (event->attr.config != event_id) 10121 return 0; 10122 10123 if (perf_exclude_event(event, regs)) 10124 return 0; 10125 10126 return 1; 10127 } 10128 10129 static inline u64 swevent_hash(u64 type, u32 event_id) 10130 { 10131 u64 val = event_id | (type << 32); 10132 10133 return hash_64(val, SWEVENT_HLIST_BITS); 10134 } 10135 10136 static inline struct hlist_head * 10137 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10138 { 10139 u64 hash = swevent_hash(type, event_id); 10140 10141 return &hlist->heads[hash]; 10142 } 10143 10144 /* For the read side: events when they trigger */ 10145 static inline struct hlist_head * 10146 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10147 { 10148 struct swevent_hlist *hlist; 10149 10150 hlist = rcu_dereference(swhash->swevent_hlist); 10151 if (!hlist) 10152 return NULL; 10153 10154 return __find_swevent_head(hlist, type, event_id); 10155 } 10156 10157 /* For the event head insertion and removal in the hlist */ 10158 static inline struct hlist_head * 10159 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10160 { 10161 struct swevent_hlist *hlist; 10162 u32 event_id = event->attr.config; 10163 u64 type = event->attr.type; 10164 10165 /* 10166 * Event scheduling is always serialized against hlist allocation 10167 * and release. Which makes the protected version suitable here. 10168 * The context lock guarantees that. 10169 */ 10170 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10171 lockdep_is_held(&event->ctx->lock)); 10172 if (!hlist) 10173 return NULL; 10174 10175 return __find_swevent_head(hlist, type, event_id); 10176 } 10177 10178 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10179 u64 nr, 10180 struct perf_sample_data *data, 10181 struct pt_regs *regs) 10182 { 10183 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10184 struct perf_event *event; 10185 struct hlist_head *head; 10186 10187 rcu_read_lock(); 10188 head = find_swevent_head_rcu(swhash, type, event_id); 10189 if (!head) 10190 goto end; 10191 10192 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10193 if (perf_swevent_match(event, type, event_id, data, regs)) 10194 perf_swevent_event(event, nr, data, regs); 10195 } 10196 end: 10197 rcu_read_unlock(); 10198 } 10199 10200 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10201 10202 int perf_swevent_get_recursion_context(void) 10203 { 10204 return get_recursion_context(current->perf_recursion); 10205 } 10206 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10207 10208 void perf_swevent_put_recursion_context(int rctx) 10209 { 10210 put_recursion_context(current->perf_recursion, rctx); 10211 } 10212 10213 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10214 { 10215 struct perf_sample_data data; 10216 10217 if (WARN_ON_ONCE(!regs)) 10218 return; 10219 10220 perf_sample_data_init(&data, addr, 0); 10221 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10222 } 10223 10224 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10225 { 10226 int rctx; 10227 10228 preempt_disable_notrace(); 10229 rctx = perf_swevent_get_recursion_context(); 10230 if (unlikely(rctx < 0)) 10231 goto fail; 10232 10233 ___perf_sw_event(event_id, nr, regs, addr); 10234 10235 perf_swevent_put_recursion_context(rctx); 10236 fail: 10237 preempt_enable_notrace(); 10238 } 10239 10240 static void perf_swevent_read(struct perf_event *event) 10241 { 10242 } 10243 10244 static int perf_swevent_add(struct perf_event *event, int flags) 10245 { 10246 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10247 struct hw_perf_event *hwc = &event->hw; 10248 struct hlist_head *head; 10249 10250 if (is_sampling_event(event)) { 10251 hwc->last_period = hwc->sample_period; 10252 perf_swevent_set_period(event); 10253 } 10254 10255 hwc->state = !(flags & PERF_EF_START); 10256 10257 head = find_swevent_head(swhash, event); 10258 if (WARN_ON_ONCE(!head)) 10259 return -EINVAL; 10260 10261 hlist_add_head_rcu(&event->hlist_entry, head); 10262 perf_event_update_userpage(event); 10263 10264 return 0; 10265 } 10266 10267 static void perf_swevent_del(struct perf_event *event, int flags) 10268 { 10269 hlist_del_rcu(&event->hlist_entry); 10270 } 10271 10272 static void perf_swevent_start(struct perf_event *event, int flags) 10273 { 10274 event->hw.state = 0; 10275 } 10276 10277 static void perf_swevent_stop(struct perf_event *event, int flags) 10278 { 10279 event->hw.state = PERF_HES_STOPPED; 10280 } 10281 10282 /* Deref the hlist from the update side */ 10283 static inline struct swevent_hlist * 10284 swevent_hlist_deref(struct swevent_htable *swhash) 10285 { 10286 return rcu_dereference_protected(swhash->swevent_hlist, 10287 lockdep_is_held(&swhash->hlist_mutex)); 10288 } 10289 10290 static void swevent_hlist_release(struct swevent_htable *swhash) 10291 { 10292 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10293 10294 if (!hlist) 10295 return; 10296 10297 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10298 kfree_rcu(hlist, rcu_head); 10299 } 10300 10301 static void swevent_hlist_put_cpu(int cpu) 10302 { 10303 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10304 10305 mutex_lock(&swhash->hlist_mutex); 10306 10307 if (!--swhash->hlist_refcount) 10308 swevent_hlist_release(swhash); 10309 10310 mutex_unlock(&swhash->hlist_mutex); 10311 } 10312 10313 static void swevent_hlist_put(void) 10314 { 10315 int cpu; 10316 10317 for_each_possible_cpu(cpu) 10318 swevent_hlist_put_cpu(cpu); 10319 } 10320 10321 static int swevent_hlist_get_cpu(int cpu) 10322 { 10323 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10324 int err = 0; 10325 10326 mutex_lock(&swhash->hlist_mutex); 10327 if (!swevent_hlist_deref(swhash) && 10328 cpumask_test_cpu(cpu, perf_online_mask)) { 10329 struct swevent_hlist *hlist; 10330 10331 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10332 if (!hlist) { 10333 err = -ENOMEM; 10334 goto exit; 10335 } 10336 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10337 } 10338 swhash->hlist_refcount++; 10339 exit: 10340 mutex_unlock(&swhash->hlist_mutex); 10341 10342 return err; 10343 } 10344 10345 static int swevent_hlist_get(void) 10346 { 10347 int err, cpu, failed_cpu; 10348 10349 mutex_lock(&pmus_lock); 10350 for_each_possible_cpu(cpu) { 10351 err = swevent_hlist_get_cpu(cpu); 10352 if (err) { 10353 failed_cpu = cpu; 10354 goto fail; 10355 } 10356 } 10357 mutex_unlock(&pmus_lock); 10358 return 0; 10359 fail: 10360 for_each_possible_cpu(cpu) { 10361 if (cpu == failed_cpu) 10362 break; 10363 swevent_hlist_put_cpu(cpu); 10364 } 10365 mutex_unlock(&pmus_lock); 10366 return err; 10367 } 10368 10369 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10370 10371 static void sw_perf_event_destroy(struct perf_event *event) 10372 { 10373 u64 event_id = event->attr.config; 10374 10375 WARN_ON(event->parent); 10376 10377 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10378 swevent_hlist_put(); 10379 } 10380 10381 static struct pmu perf_cpu_clock; /* fwd declaration */ 10382 static struct pmu perf_task_clock; 10383 10384 static int perf_swevent_init(struct perf_event *event) 10385 { 10386 u64 event_id = event->attr.config; 10387 10388 if (event->attr.type != PERF_TYPE_SOFTWARE) 10389 return -ENOENT; 10390 10391 /* 10392 * no branch sampling for software events 10393 */ 10394 if (has_branch_stack(event)) 10395 return -EOPNOTSUPP; 10396 10397 switch (event_id) { 10398 case PERF_COUNT_SW_CPU_CLOCK: 10399 event->attr.type = perf_cpu_clock.type; 10400 return -ENOENT; 10401 case PERF_COUNT_SW_TASK_CLOCK: 10402 event->attr.type = perf_task_clock.type; 10403 return -ENOENT; 10404 10405 default: 10406 break; 10407 } 10408 10409 if (event_id >= PERF_COUNT_SW_MAX) 10410 return -ENOENT; 10411 10412 if (!event->parent) { 10413 int err; 10414 10415 err = swevent_hlist_get(); 10416 if (err) 10417 return err; 10418 10419 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10420 event->destroy = sw_perf_event_destroy; 10421 } 10422 10423 return 0; 10424 } 10425 10426 static struct pmu perf_swevent = { 10427 .task_ctx_nr = perf_sw_context, 10428 10429 .capabilities = PERF_PMU_CAP_NO_NMI, 10430 10431 .event_init = perf_swevent_init, 10432 .add = perf_swevent_add, 10433 .del = perf_swevent_del, 10434 .start = perf_swevent_start, 10435 .stop = perf_swevent_stop, 10436 .read = perf_swevent_read, 10437 }; 10438 10439 #ifdef CONFIG_EVENT_TRACING 10440 10441 static void tp_perf_event_destroy(struct perf_event *event) 10442 { 10443 perf_trace_destroy(event); 10444 } 10445 10446 static int perf_tp_event_init(struct perf_event *event) 10447 { 10448 int err; 10449 10450 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10451 return -ENOENT; 10452 10453 /* 10454 * no branch sampling for tracepoint events 10455 */ 10456 if (has_branch_stack(event)) 10457 return -EOPNOTSUPP; 10458 10459 err = perf_trace_init(event); 10460 if (err) 10461 return err; 10462 10463 event->destroy = tp_perf_event_destroy; 10464 10465 return 0; 10466 } 10467 10468 static struct pmu perf_tracepoint = { 10469 .task_ctx_nr = perf_sw_context, 10470 10471 .event_init = perf_tp_event_init, 10472 .add = perf_trace_add, 10473 .del = perf_trace_del, 10474 .start = perf_swevent_start, 10475 .stop = perf_swevent_stop, 10476 .read = perf_swevent_read, 10477 }; 10478 10479 static int perf_tp_filter_match(struct perf_event *event, 10480 struct perf_raw_record *raw) 10481 { 10482 void *record = raw->frag.data; 10483 10484 /* only top level events have filters set */ 10485 if (event->parent) 10486 event = event->parent; 10487 10488 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10489 return 1; 10490 return 0; 10491 } 10492 10493 static int perf_tp_event_match(struct perf_event *event, 10494 struct perf_raw_record *raw, 10495 struct pt_regs *regs) 10496 { 10497 if (event->hw.state & PERF_HES_STOPPED) 10498 return 0; 10499 /* 10500 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10501 */ 10502 if (event->attr.exclude_kernel && !user_mode(regs)) 10503 return 0; 10504 10505 if (!perf_tp_filter_match(event, raw)) 10506 return 0; 10507 10508 return 1; 10509 } 10510 10511 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10512 struct trace_event_call *call, u64 count, 10513 struct pt_regs *regs, struct hlist_head *head, 10514 struct task_struct *task) 10515 { 10516 if (bpf_prog_array_valid(call)) { 10517 *(struct pt_regs **)raw_data = regs; 10518 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10519 perf_swevent_put_recursion_context(rctx); 10520 return; 10521 } 10522 } 10523 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10524 rctx, task); 10525 } 10526 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10527 10528 static void __perf_tp_event_target_task(u64 count, void *record, 10529 struct pt_regs *regs, 10530 struct perf_sample_data *data, 10531 struct perf_raw_record *raw, 10532 struct perf_event *event) 10533 { 10534 struct trace_entry *entry = record; 10535 10536 if (event->attr.config != entry->type) 10537 return; 10538 /* Cannot deliver synchronous signal to other task. */ 10539 if (event->attr.sigtrap) 10540 return; 10541 if (perf_tp_event_match(event, raw, regs)) { 10542 perf_sample_data_init(data, 0, 0); 10543 perf_sample_save_raw_data(data, event, raw); 10544 perf_swevent_event(event, count, data, regs); 10545 } 10546 } 10547 10548 static void perf_tp_event_target_task(u64 count, void *record, 10549 struct pt_regs *regs, 10550 struct perf_sample_data *data, 10551 struct perf_raw_record *raw, 10552 struct perf_event_context *ctx) 10553 { 10554 unsigned int cpu = smp_processor_id(); 10555 struct pmu *pmu = &perf_tracepoint; 10556 struct perf_event *event, *sibling; 10557 10558 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10559 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10560 for_each_sibling_event(sibling, event) 10561 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10562 } 10563 10564 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10565 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10566 for_each_sibling_event(sibling, event) 10567 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10568 } 10569 } 10570 10571 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10572 struct pt_regs *regs, struct hlist_head *head, int rctx, 10573 struct task_struct *task) 10574 { 10575 struct perf_sample_data data; 10576 struct perf_event *event; 10577 10578 struct perf_raw_record raw = { 10579 .frag = { 10580 .size = entry_size, 10581 .data = record, 10582 }, 10583 }; 10584 10585 perf_trace_buf_update(record, event_type); 10586 10587 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10588 if (perf_tp_event_match(event, &raw, regs)) { 10589 /* 10590 * Here use the same on-stack perf_sample_data, 10591 * some members in data are event-specific and 10592 * need to be re-computed for different sweveents. 10593 * Re-initialize data->sample_flags safely to avoid 10594 * the problem that next event skips preparing data 10595 * because data->sample_flags is set. 10596 */ 10597 perf_sample_data_init(&data, 0, 0); 10598 perf_sample_save_raw_data(&data, event, &raw); 10599 perf_swevent_event(event, count, &data, regs); 10600 } 10601 } 10602 10603 /* 10604 * If we got specified a target task, also iterate its context and 10605 * deliver this event there too. 10606 */ 10607 if (task && task != current) { 10608 struct perf_event_context *ctx; 10609 10610 rcu_read_lock(); 10611 ctx = rcu_dereference(task->perf_event_ctxp); 10612 if (!ctx) 10613 goto unlock; 10614 10615 raw_spin_lock(&ctx->lock); 10616 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 10617 raw_spin_unlock(&ctx->lock); 10618 unlock: 10619 rcu_read_unlock(); 10620 } 10621 10622 perf_swevent_put_recursion_context(rctx); 10623 } 10624 EXPORT_SYMBOL_GPL(perf_tp_event); 10625 10626 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10627 /* 10628 * Flags in config, used by dynamic PMU kprobe and uprobe 10629 * The flags should match following PMU_FORMAT_ATTR(). 10630 * 10631 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10632 * if not set, create kprobe/uprobe 10633 * 10634 * The following values specify a reference counter (or semaphore in the 10635 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10636 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10637 * 10638 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10639 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10640 */ 10641 enum perf_probe_config { 10642 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10643 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10644 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10645 }; 10646 10647 PMU_FORMAT_ATTR(retprobe, "config:0"); 10648 #endif 10649 10650 #ifdef CONFIG_KPROBE_EVENTS 10651 static struct attribute *kprobe_attrs[] = { 10652 &format_attr_retprobe.attr, 10653 NULL, 10654 }; 10655 10656 static struct attribute_group kprobe_format_group = { 10657 .name = "format", 10658 .attrs = kprobe_attrs, 10659 }; 10660 10661 static const struct attribute_group *kprobe_attr_groups[] = { 10662 &kprobe_format_group, 10663 NULL, 10664 }; 10665 10666 static int perf_kprobe_event_init(struct perf_event *event); 10667 static struct pmu perf_kprobe = { 10668 .task_ctx_nr = perf_sw_context, 10669 .event_init = perf_kprobe_event_init, 10670 .add = perf_trace_add, 10671 .del = perf_trace_del, 10672 .start = perf_swevent_start, 10673 .stop = perf_swevent_stop, 10674 .read = perf_swevent_read, 10675 .attr_groups = kprobe_attr_groups, 10676 }; 10677 10678 static int perf_kprobe_event_init(struct perf_event *event) 10679 { 10680 int err; 10681 bool is_retprobe; 10682 10683 if (event->attr.type != perf_kprobe.type) 10684 return -ENOENT; 10685 10686 if (!perfmon_capable()) 10687 return -EACCES; 10688 10689 /* 10690 * no branch sampling for probe events 10691 */ 10692 if (has_branch_stack(event)) 10693 return -EOPNOTSUPP; 10694 10695 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10696 err = perf_kprobe_init(event, is_retprobe); 10697 if (err) 10698 return err; 10699 10700 event->destroy = perf_kprobe_destroy; 10701 10702 return 0; 10703 } 10704 #endif /* CONFIG_KPROBE_EVENTS */ 10705 10706 #ifdef CONFIG_UPROBE_EVENTS 10707 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10708 10709 static struct attribute *uprobe_attrs[] = { 10710 &format_attr_retprobe.attr, 10711 &format_attr_ref_ctr_offset.attr, 10712 NULL, 10713 }; 10714 10715 static struct attribute_group uprobe_format_group = { 10716 .name = "format", 10717 .attrs = uprobe_attrs, 10718 }; 10719 10720 static const struct attribute_group *uprobe_attr_groups[] = { 10721 &uprobe_format_group, 10722 NULL, 10723 }; 10724 10725 static int perf_uprobe_event_init(struct perf_event *event); 10726 static struct pmu perf_uprobe = { 10727 .task_ctx_nr = perf_sw_context, 10728 .event_init = perf_uprobe_event_init, 10729 .add = perf_trace_add, 10730 .del = perf_trace_del, 10731 .start = perf_swevent_start, 10732 .stop = perf_swevent_stop, 10733 .read = perf_swevent_read, 10734 .attr_groups = uprobe_attr_groups, 10735 }; 10736 10737 static int perf_uprobe_event_init(struct perf_event *event) 10738 { 10739 int err; 10740 unsigned long ref_ctr_offset; 10741 bool is_retprobe; 10742 10743 if (event->attr.type != perf_uprobe.type) 10744 return -ENOENT; 10745 10746 if (!perfmon_capable()) 10747 return -EACCES; 10748 10749 /* 10750 * no branch sampling for probe events 10751 */ 10752 if (has_branch_stack(event)) 10753 return -EOPNOTSUPP; 10754 10755 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10756 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10757 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10758 if (err) 10759 return err; 10760 10761 event->destroy = perf_uprobe_destroy; 10762 10763 return 0; 10764 } 10765 #endif /* CONFIG_UPROBE_EVENTS */ 10766 10767 static inline void perf_tp_register(void) 10768 { 10769 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10770 #ifdef CONFIG_KPROBE_EVENTS 10771 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10772 #endif 10773 #ifdef CONFIG_UPROBE_EVENTS 10774 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10775 #endif 10776 } 10777 10778 static void perf_event_free_filter(struct perf_event *event) 10779 { 10780 ftrace_profile_free_filter(event); 10781 } 10782 10783 /* 10784 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10785 * with perf_event_open() 10786 */ 10787 static inline bool perf_event_is_tracing(struct perf_event *event) 10788 { 10789 if (event->pmu == &perf_tracepoint) 10790 return true; 10791 #ifdef CONFIG_KPROBE_EVENTS 10792 if (event->pmu == &perf_kprobe) 10793 return true; 10794 #endif 10795 #ifdef CONFIG_UPROBE_EVENTS 10796 if (event->pmu == &perf_uprobe) 10797 return true; 10798 #endif 10799 return false; 10800 } 10801 10802 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10803 u64 bpf_cookie) 10804 { 10805 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10806 10807 if (!perf_event_is_tracing(event)) 10808 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10809 10810 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10811 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10812 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10813 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10814 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10815 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10816 return -EINVAL; 10817 10818 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10819 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10820 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10821 return -EINVAL; 10822 10823 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10824 /* only uprobe programs are allowed to be sleepable */ 10825 return -EINVAL; 10826 10827 /* Kprobe override only works for kprobes, not uprobes. */ 10828 if (prog->kprobe_override && !is_kprobe) 10829 return -EINVAL; 10830 10831 if (is_tracepoint || is_syscall_tp) { 10832 int off = trace_event_get_offsets(event->tp_event); 10833 10834 if (prog->aux->max_ctx_offset > off) 10835 return -EACCES; 10836 } 10837 10838 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10839 } 10840 10841 void perf_event_free_bpf_prog(struct perf_event *event) 10842 { 10843 if (!perf_event_is_tracing(event)) { 10844 perf_event_free_bpf_handler(event); 10845 return; 10846 } 10847 perf_event_detach_bpf_prog(event); 10848 } 10849 10850 #else 10851 10852 static inline void perf_tp_register(void) 10853 { 10854 } 10855 10856 static void perf_event_free_filter(struct perf_event *event) 10857 { 10858 } 10859 10860 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10861 u64 bpf_cookie) 10862 { 10863 return -ENOENT; 10864 } 10865 10866 void perf_event_free_bpf_prog(struct perf_event *event) 10867 { 10868 } 10869 #endif /* CONFIG_EVENT_TRACING */ 10870 10871 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10872 void perf_bp_event(struct perf_event *bp, void *data) 10873 { 10874 struct perf_sample_data sample; 10875 struct pt_regs *regs = data; 10876 10877 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10878 10879 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10880 perf_swevent_event(bp, 1, &sample, regs); 10881 } 10882 #endif 10883 10884 /* 10885 * Allocate a new address filter 10886 */ 10887 static struct perf_addr_filter * 10888 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10889 { 10890 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10891 struct perf_addr_filter *filter; 10892 10893 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10894 if (!filter) 10895 return NULL; 10896 10897 INIT_LIST_HEAD(&filter->entry); 10898 list_add_tail(&filter->entry, filters); 10899 10900 return filter; 10901 } 10902 10903 static void free_filters_list(struct list_head *filters) 10904 { 10905 struct perf_addr_filter *filter, *iter; 10906 10907 list_for_each_entry_safe(filter, iter, filters, entry) { 10908 path_put(&filter->path); 10909 list_del(&filter->entry); 10910 kfree(filter); 10911 } 10912 } 10913 10914 /* 10915 * Free existing address filters and optionally install new ones 10916 */ 10917 static void perf_addr_filters_splice(struct perf_event *event, 10918 struct list_head *head) 10919 { 10920 unsigned long flags; 10921 LIST_HEAD(list); 10922 10923 if (!has_addr_filter(event)) 10924 return; 10925 10926 /* don't bother with children, they don't have their own filters */ 10927 if (event->parent) 10928 return; 10929 10930 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10931 10932 list_splice_init(&event->addr_filters.list, &list); 10933 if (head) 10934 list_splice(head, &event->addr_filters.list); 10935 10936 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10937 10938 free_filters_list(&list); 10939 } 10940 10941 /* 10942 * Scan through mm's vmas and see if one of them matches the 10943 * @filter; if so, adjust filter's address range. 10944 * Called with mm::mmap_lock down for reading. 10945 */ 10946 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10947 struct mm_struct *mm, 10948 struct perf_addr_filter_range *fr) 10949 { 10950 struct vm_area_struct *vma; 10951 VMA_ITERATOR(vmi, mm, 0); 10952 10953 for_each_vma(vmi, vma) { 10954 if (!vma->vm_file) 10955 continue; 10956 10957 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10958 return; 10959 } 10960 } 10961 10962 /* 10963 * Update event's address range filters based on the 10964 * task's existing mappings, if any. 10965 */ 10966 static void perf_event_addr_filters_apply(struct perf_event *event) 10967 { 10968 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10969 struct task_struct *task = READ_ONCE(event->ctx->task); 10970 struct perf_addr_filter *filter; 10971 struct mm_struct *mm = NULL; 10972 unsigned int count = 0; 10973 unsigned long flags; 10974 10975 /* 10976 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10977 * will stop on the parent's child_mutex that our caller is also holding 10978 */ 10979 if (task == TASK_TOMBSTONE) 10980 return; 10981 10982 if (ifh->nr_file_filters) { 10983 mm = get_task_mm(task); 10984 if (!mm) 10985 goto restart; 10986 10987 mmap_read_lock(mm); 10988 } 10989 10990 raw_spin_lock_irqsave(&ifh->lock, flags); 10991 list_for_each_entry(filter, &ifh->list, entry) { 10992 if (filter->path.dentry) { 10993 /* 10994 * Adjust base offset if the filter is associated to a 10995 * binary that needs to be mapped: 10996 */ 10997 event->addr_filter_ranges[count].start = 0; 10998 event->addr_filter_ranges[count].size = 0; 10999 11000 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11001 } else { 11002 event->addr_filter_ranges[count].start = filter->offset; 11003 event->addr_filter_ranges[count].size = filter->size; 11004 } 11005 11006 count++; 11007 } 11008 11009 event->addr_filters_gen++; 11010 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11011 11012 if (ifh->nr_file_filters) { 11013 mmap_read_unlock(mm); 11014 11015 mmput(mm); 11016 } 11017 11018 restart: 11019 perf_event_stop(event, 1); 11020 } 11021 11022 /* 11023 * Address range filtering: limiting the data to certain 11024 * instruction address ranges. Filters are ioctl()ed to us from 11025 * userspace as ascii strings. 11026 * 11027 * Filter string format: 11028 * 11029 * ACTION RANGE_SPEC 11030 * where ACTION is one of the 11031 * * "filter": limit the trace to this region 11032 * * "start": start tracing from this address 11033 * * "stop": stop tracing at this address/region; 11034 * RANGE_SPEC is 11035 * * for kernel addresses: <start address>[/<size>] 11036 * * for object files: <start address>[/<size>]@</path/to/object/file> 11037 * 11038 * if <size> is not specified or is zero, the range is treated as a single 11039 * address; not valid for ACTION=="filter". 11040 */ 11041 enum { 11042 IF_ACT_NONE = -1, 11043 IF_ACT_FILTER, 11044 IF_ACT_START, 11045 IF_ACT_STOP, 11046 IF_SRC_FILE, 11047 IF_SRC_KERNEL, 11048 IF_SRC_FILEADDR, 11049 IF_SRC_KERNELADDR, 11050 }; 11051 11052 enum { 11053 IF_STATE_ACTION = 0, 11054 IF_STATE_SOURCE, 11055 IF_STATE_END, 11056 }; 11057 11058 static const match_table_t if_tokens = { 11059 { IF_ACT_FILTER, "filter" }, 11060 { IF_ACT_START, "start" }, 11061 { IF_ACT_STOP, "stop" }, 11062 { IF_SRC_FILE, "%u/%u@%s" }, 11063 { IF_SRC_KERNEL, "%u/%u" }, 11064 { IF_SRC_FILEADDR, "%u@%s" }, 11065 { IF_SRC_KERNELADDR, "%u" }, 11066 { IF_ACT_NONE, NULL }, 11067 }; 11068 11069 /* 11070 * Address filter string parser 11071 */ 11072 static int 11073 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11074 struct list_head *filters) 11075 { 11076 struct perf_addr_filter *filter = NULL; 11077 char *start, *orig, *filename = NULL; 11078 substring_t args[MAX_OPT_ARGS]; 11079 int state = IF_STATE_ACTION, token; 11080 unsigned int kernel = 0; 11081 int ret = -EINVAL; 11082 11083 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11084 if (!fstr) 11085 return -ENOMEM; 11086 11087 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11088 static const enum perf_addr_filter_action_t actions[] = { 11089 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11090 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11091 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11092 }; 11093 ret = -EINVAL; 11094 11095 if (!*start) 11096 continue; 11097 11098 /* filter definition begins */ 11099 if (state == IF_STATE_ACTION) { 11100 filter = perf_addr_filter_new(event, filters); 11101 if (!filter) 11102 goto fail; 11103 } 11104 11105 token = match_token(start, if_tokens, args); 11106 switch (token) { 11107 case IF_ACT_FILTER: 11108 case IF_ACT_START: 11109 case IF_ACT_STOP: 11110 if (state != IF_STATE_ACTION) 11111 goto fail; 11112 11113 filter->action = actions[token]; 11114 state = IF_STATE_SOURCE; 11115 break; 11116 11117 case IF_SRC_KERNELADDR: 11118 case IF_SRC_KERNEL: 11119 kernel = 1; 11120 fallthrough; 11121 11122 case IF_SRC_FILEADDR: 11123 case IF_SRC_FILE: 11124 if (state != IF_STATE_SOURCE) 11125 goto fail; 11126 11127 *args[0].to = 0; 11128 ret = kstrtoul(args[0].from, 0, &filter->offset); 11129 if (ret) 11130 goto fail; 11131 11132 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11133 *args[1].to = 0; 11134 ret = kstrtoul(args[1].from, 0, &filter->size); 11135 if (ret) 11136 goto fail; 11137 } 11138 11139 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11140 int fpos = token == IF_SRC_FILE ? 2 : 1; 11141 11142 kfree(filename); 11143 filename = match_strdup(&args[fpos]); 11144 if (!filename) { 11145 ret = -ENOMEM; 11146 goto fail; 11147 } 11148 } 11149 11150 state = IF_STATE_END; 11151 break; 11152 11153 default: 11154 goto fail; 11155 } 11156 11157 /* 11158 * Filter definition is fully parsed, validate and install it. 11159 * Make sure that it doesn't contradict itself or the event's 11160 * attribute. 11161 */ 11162 if (state == IF_STATE_END) { 11163 ret = -EINVAL; 11164 11165 /* 11166 * ACTION "filter" must have a non-zero length region 11167 * specified. 11168 */ 11169 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11170 !filter->size) 11171 goto fail; 11172 11173 if (!kernel) { 11174 if (!filename) 11175 goto fail; 11176 11177 /* 11178 * For now, we only support file-based filters 11179 * in per-task events; doing so for CPU-wide 11180 * events requires additional context switching 11181 * trickery, since same object code will be 11182 * mapped at different virtual addresses in 11183 * different processes. 11184 */ 11185 ret = -EOPNOTSUPP; 11186 if (!event->ctx->task) 11187 goto fail; 11188 11189 /* look up the path and grab its inode */ 11190 ret = kern_path(filename, LOOKUP_FOLLOW, 11191 &filter->path); 11192 if (ret) 11193 goto fail; 11194 11195 ret = -EINVAL; 11196 if (!filter->path.dentry || 11197 !S_ISREG(d_inode(filter->path.dentry) 11198 ->i_mode)) 11199 goto fail; 11200 11201 event->addr_filters.nr_file_filters++; 11202 } 11203 11204 /* ready to consume more filters */ 11205 kfree(filename); 11206 filename = NULL; 11207 state = IF_STATE_ACTION; 11208 filter = NULL; 11209 kernel = 0; 11210 } 11211 } 11212 11213 if (state != IF_STATE_ACTION) 11214 goto fail; 11215 11216 kfree(filename); 11217 kfree(orig); 11218 11219 return 0; 11220 11221 fail: 11222 kfree(filename); 11223 free_filters_list(filters); 11224 kfree(orig); 11225 11226 return ret; 11227 } 11228 11229 static int 11230 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11231 { 11232 LIST_HEAD(filters); 11233 int ret; 11234 11235 /* 11236 * Since this is called in perf_ioctl() path, we're already holding 11237 * ctx::mutex. 11238 */ 11239 lockdep_assert_held(&event->ctx->mutex); 11240 11241 if (WARN_ON_ONCE(event->parent)) 11242 return -EINVAL; 11243 11244 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11245 if (ret) 11246 goto fail_clear_files; 11247 11248 ret = event->pmu->addr_filters_validate(&filters); 11249 if (ret) 11250 goto fail_free_filters; 11251 11252 /* remove existing filters, if any */ 11253 perf_addr_filters_splice(event, &filters); 11254 11255 /* install new filters */ 11256 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11257 11258 return ret; 11259 11260 fail_free_filters: 11261 free_filters_list(&filters); 11262 11263 fail_clear_files: 11264 event->addr_filters.nr_file_filters = 0; 11265 11266 return ret; 11267 } 11268 11269 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11270 { 11271 int ret = -EINVAL; 11272 char *filter_str; 11273 11274 filter_str = strndup_user(arg, PAGE_SIZE); 11275 if (IS_ERR(filter_str)) 11276 return PTR_ERR(filter_str); 11277 11278 #ifdef CONFIG_EVENT_TRACING 11279 if (perf_event_is_tracing(event)) { 11280 struct perf_event_context *ctx = event->ctx; 11281 11282 /* 11283 * Beware, here be dragons!! 11284 * 11285 * the tracepoint muck will deadlock against ctx->mutex, but 11286 * the tracepoint stuff does not actually need it. So 11287 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11288 * already have a reference on ctx. 11289 * 11290 * This can result in event getting moved to a different ctx, 11291 * but that does not affect the tracepoint state. 11292 */ 11293 mutex_unlock(&ctx->mutex); 11294 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11295 mutex_lock(&ctx->mutex); 11296 } else 11297 #endif 11298 if (has_addr_filter(event)) 11299 ret = perf_event_set_addr_filter(event, filter_str); 11300 11301 kfree(filter_str); 11302 return ret; 11303 } 11304 11305 /* 11306 * hrtimer based swevent callback 11307 */ 11308 11309 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11310 { 11311 enum hrtimer_restart ret = HRTIMER_RESTART; 11312 struct perf_sample_data data; 11313 struct pt_regs *regs; 11314 struct perf_event *event; 11315 u64 period; 11316 11317 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11318 11319 if (event->state != PERF_EVENT_STATE_ACTIVE) 11320 return HRTIMER_NORESTART; 11321 11322 event->pmu->read(event); 11323 11324 perf_sample_data_init(&data, 0, event->hw.last_period); 11325 regs = get_irq_regs(); 11326 11327 if (regs && !perf_exclude_event(event, regs)) { 11328 if (!(event->attr.exclude_idle && is_idle_task(current))) 11329 if (__perf_event_overflow(event, 1, &data, regs)) 11330 ret = HRTIMER_NORESTART; 11331 } 11332 11333 period = max_t(u64, 10000, event->hw.sample_period); 11334 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11335 11336 return ret; 11337 } 11338 11339 static void perf_swevent_start_hrtimer(struct perf_event *event) 11340 { 11341 struct hw_perf_event *hwc = &event->hw; 11342 s64 period; 11343 11344 if (!is_sampling_event(event)) 11345 return; 11346 11347 period = local64_read(&hwc->period_left); 11348 if (period) { 11349 if (period < 0) 11350 period = 10000; 11351 11352 local64_set(&hwc->period_left, 0); 11353 } else { 11354 period = max_t(u64, 10000, hwc->sample_period); 11355 } 11356 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11357 HRTIMER_MODE_REL_PINNED_HARD); 11358 } 11359 11360 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11361 { 11362 struct hw_perf_event *hwc = &event->hw; 11363 11364 if (is_sampling_event(event)) { 11365 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11366 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11367 11368 hrtimer_cancel(&hwc->hrtimer); 11369 } 11370 } 11371 11372 static void perf_swevent_init_hrtimer(struct perf_event *event) 11373 { 11374 struct hw_perf_event *hwc = &event->hw; 11375 11376 if (!is_sampling_event(event)) 11377 return; 11378 11379 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11380 hwc->hrtimer.function = perf_swevent_hrtimer; 11381 11382 /* 11383 * Since hrtimers have a fixed rate, we can do a static freq->period 11384 * mapping and avoid the whole period adjust feedback stuff. 11385 */ 11386 if (event->attr.freq) { 11387 long freq = event->attr.sample_freq; 11388 11389 event->attr.sample_period = NSEC_PER_SEC / freq; 11390 hwc->sample_period = event->attr.sample_period; 11391 local64_set(&hwc->period_left, hwc->sample_period); 11392 hwc->last_period = hwc->sample_period; 11393 event->attr.freq = 0; 11394 } 11395 } 11396 11397 /* 11398 * Software event: cpu wall time clock 11399 */ 11400 11401 static void cpu_clock_event_update(struct perf_event *event) 11402 { 11403 s64 prev; 11404 u64 now; 11405 11406 now = local_clock(); 11407 prev = local64_xchg(&event->hw.prev_count, now); 11408 local64_add(now - prev, &event->count); 11409 } 11410 11411 static void cpu_clock_event_start(struct perf_event *event, int flags) 11412 { 11413 local64_set(&event->hw.prev_count, local_clock()); 11414 perf_swevent_start_hrtimer(event); 11415 } 11416 11417 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11418 { 11419 perf_swevent_cancel_hrtimer(event); 11420 cpu_clock_event_update(event); 11421 } 11422 11423 static int cpu_clock_event_add(struct perf_event *event, int flags) 11424 { 11425 if (flags & PERF_EF_START) 11426 cpu_clock_event_start(event, flags); 11427 perf_event_update_userpage(event); 11428 11429 return 0; 11430 } 11431 11432 static void cpu_clock_event_del(struct perf_event *event, int flags) 11433 { 11434 cpu_clock_event_stop(event, flags); 11435 } 11436 11437 static void cpu_clock_event_read(struct perf_event *event) 11438 { 11439 cpu_clock_event_update(event); 11440 } 11441 11442 static int cpu_clock_event_init(struct perf_event *event) 11443 { 11444 if (event->attr.type != perf_cpu_clock.type) 11445 return -ENOENT; 11446 11447 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11448 return -ENOENT; 11449 11450 /* 11451 * no branch sampling for software events 11452 */ 11453 if (has_branch_stack(event)) 11454 return -EOPNOTSUPP; 11455 11456 perf_swevent_init_hrtimer(event); 11457 11458 return 0; 11459 } 11460 11461 static struct pmu perf_cpu_clock = { 11462 .task_ctx_nr = perf_sw_context, 11463 11464 .capabilities = PERF_PMU_CAP_NO_NMI, 11465 .dev = PMU_NULL_DEV, 11466 11467 .event_init = cpu_clock_event_init, 11468 .add = cpu_clock_event_add, 11469 .del = cpu_clock_event_del, 11470 .start = cpu_clock_event_start, 11471 .stop = cpu_clock_event_stop, 11472 .read = cpu_clock_event_read, 11473 }; 11474 11475 /* 11476 * Software event: task time clock 11477 */ 11478 11479 static void task_clock_event_update(struct perf_event *event, u64 now) 11480 { 11481 u64 prev; 11482 s64 delta; 11483 11484 prev = local64_xchg(&event->hw.prev_count, now); 11485 delta = now - prev; 11486 local64_add(delta, &event->count); 11487 } 11488 11489 static void task_clock_event_start(struct perf_event *event, int flags) 11490 { 11491 local64_set(&event->hw.prev_count, event->ctx->time); 11492 perf_swevent_start_hrtimer(event); 11493 } 11494 11495 static void task_clock_event_stop(struct perf_event *event, int flags) 11496 { 11497 perf_swevent_cancel_hrtimer(event); 11498 task_clock_event_update(event, event->ctx->time); 11499 } 11500 11501 static int task_clock_event_add(struct perf_event *event, int flags) 11502 { 11503 if (flags & PERF_EF_START) 11504 task_clock_event_start(event, flags); 11505 perf_event_update_userpage(event); 11506 11507 return 0; 11508 } 11509 11510 static void task_clock_event_del(struct perf_event *event, int flags) 11511 { 11512 task_clock_event_stop(event, PERF_EF_UPDATE); 11513 } 11514 11515 static void task_clock_event_read(struct perf_event *event) 11516 { 11517 u64 now = perf_clock(); 11518 u64 delta = now - event->ctx->timestamp; 11519 u64 time = event->ctx->time + delta; 11520 11521 task_clock_event_update(event, time); 11522 } 11523 11524 static int task_clock_event_init(struct perf_event *event) 11525 { 11526 if (event->attr.type != perf_task_clock.type) 11527 return -ENOENT; 11528 11529 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11530 return -ENOENT; 11531 11532 /* 11533 * no branch sampling for software events 11534 */ 11535 if (has_branch_stack(event)) 11536 return -EOPNOTSUPP; 11537 11538 perf_swevent_init_hrtimer(event); 11539 11540 return 0; 11541 } 11542 11543 static struct pmu perf_task_clock = { 11544 .task_ctx_nr = perf_sw_context, 11545 11546 .capabilities = PERF_PMU_CAP_NO_NMI, 11547 .dev = PMU_NULL_DEV, 11548 11549 .event_init = task_clock_event_init, 11550 .add = task_clock_event_add, 11551 .del = task_clock_event_del, 11552 .start = task_clock_event_start, 11553 .stop = task_clock_event_stop, 11554 .read = task_clock_event_read, 11555 }; 11556 11557 static void perf_pmu_nop_void(struct pmu *pmu) 11558 { 11559 } 11560 11561 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11562 { 11563 } 11564 11565 static int perf_pmu_nop_int(struct pmu *pmu) 11566 { 11567 return 0; 11568 } 11569 11570 static int perf_event_nop_int(struct perf_event *event, u64 value) 11571 { 11572 return 0; 11573 } 11574 11575 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11576 11577 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11578 { 11579 __this_cpu_write(nop_txn_flags, flags); 11580 11581 if (flags & ~PERF_PMU_TXN_ADD) 11582 return; 11583 11584 perf_pmu_disable(pmu); 11585 } 11586 11587 static int perf_pmu_commit_txn(struct pmu *pmu) 11588 { 11589 unsigned int flags = __this_cpu_read(nop_txn_flags); 11590 11591 __this_cpu_write(nop_txn_flags, 0); 11592 11593 if (flags & ~PERF_PMU_TXN_ADD) 11594 return 0; 11595 11596 perf_pmu_enable(pmu); 11597 return 0; 11598 } 11599 11600 static void perf_pmu_cancel_txn(struct pmu *pmu) 11601 { 11602 unsigned int flags = __this_cpu_read(nop_txn_flags); 11603 11604 __this_cpu_write(nop_txn_flags, 0); 11605 11606 if (flags & ~PERF_PMU_TXN_ADD) 11607 return; 11608 11609 perf_pmu_enable(pmu); 11610 } 11611 11612 static int perf_event_idx_default(struct perf_event *event) 11613 { 11614 return 0; 11615 } 11616 11617 static void free_pmu_context(struct pmu *pmu) 11618 { 11619 free_percpu(pmu->cpu_pmu_context); 11620 } 11621 11622 /* 11623 * Let userspace know that this PMU supports address range filtering: 11624 */ 11625 static ssize_t nr_addr_filters_show(struct device *dev, 11626 struct device_attribute *attr, 11627 char *page) 11628 { 11629 struct pmu *pmu = dev_get_drvdata(dev); 11630 11631 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11632 } 11633 DEVICE_ATTR_RO(nr_addr_filters); 11634 11635 static struct idr pmu_idr; 11636 11637 static ssize_t 11638 type_show(struct device *dev, struct device_attribute *attr, char *page) 11639 { 11640 struct pmu *pmu = dev_get_drvdata(dev); 11641 11642 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11643 } 11644 static DEVICE_ATTR_RO(type); 11645 11646 static ssize_t 11647 perf_event_mux_interval_ms_show(struct device *dev, 11648 struct device_attribute *attr, 11649 char *page) 11650 { 11651 struct pmu *pmu = dev_get_drvdata(dev); 11652 11653 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11654 } 11655 11656 static DEFINE_MUTEX(mux_interval_mutex); 11657 11658 static ssize_t 11659 perf_event_mux_interval_ms_store(struct device *dev, 11660 struct device_attribute *attr, 11661 const char *buf, size_t count) 11662 { 11663 struct pmu *pmu = dev_get_drvdata(dev); 11664 int timer, cpu, ret; 11665 11666 ret = kstrtoint(buf, 0, &timer); 11667 if (ret) 11668 return ret; 11669 11670 if (timer < 1) 11671 return -EINVAL; 11672 11673 /* same value, noting to do */ 11674 if (timer == pmu->hrtimer_interval_ms) 11675 return count; 11676 11677 mutex_lock(&mux_interval_mutex); 11678 pmu->hrtimer_interval_ms = timer; 11679 11680 /* update all cpuctx for this PMU */ 11681 cpus_read_lock(); 11682 for_each_online_cpu(cpu) { 11683 struct perf_cpu_pmu_context *cpc; 11684 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11685 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11686 11687 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11688 } 11689 cpus_read_unlock(); 11690 mutex_unlock(&mux_interval_mutex); 11691 11692 return count; 11693 } 11694 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11695 11696 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11697 { 11698 switch (scope) { 11699 case PERF_PMU_SCOPE_CORE: 11700 return topology_sibling_cpumask(cpu); 11701 case PERF_PMU_SCOPE_DIE: 11702 return topology_die_cpumask(cpu); 11703 case PERF_PMU_SCOPE_CLUSTER: 11704 return topology_cluster_cpumask(cpu); 11705 case PERF_PMU_SCOPE_PKG: 11706 return topology_core_cpumask(cpu); 11707 case PERF_PMU_SCOPE_SYS_WIDE: 11708 return cpu_online_mask; 11709 } 11710 11711 return NULL; 11712 } 11713 11714 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11715 { 11716 switch (scope) { 11717 case PERF_PMU_SCOPE_CORE: 11718 return perf_online_core_mask; 11719 case PERF_PMU_SCOPE_DIE: 11720 return perf_online_die_mask; 11721 case PERF_PMU_SCOPE_CLUSTER: 11722 return perf_online_cluster_mask; 11723 case PERF_PMU_SCOPE_PKG: 11724 return perf_online_pkg_mask; 11725 case PERF_PMU_SCOPE_SYS_WIDE: 11726 return perf_online_sys_mask; 11727 } 11728 11729 return NULL; 11730 } 11731 11732 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11733 char *buf) 11734 { 11735 struct pmu *pmu = dev_get_drvdata(dev); 11736 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11737 11738 if (mask) 11739 return cpumap_print_to_pagebuf(true, buf, mask); 11740 return 0; 11741 } 11742 11743 static DEVICE_ATTR_RO(cpumask); 11744 11745 static struct attribute *pmu_dev_attrs[] = { 11746 &dev_attr_type.attr, 11747 &dev_attr_perf_event_mux_interval_ms.attr, 11748 &dev_attr_nr_addr_filters.attr, 11749 &dev_attr_cpumask.attr, 11750 NULL, 11751 }; 11752 11753 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11754 { 11755 struct device *dev = kobj_to_dev(kobj); 11756 struct pmu *pmu = dev_get_drvdata(dev); 11757 11758 if (n == 2 && !pmu->nr_addr_filters) 11759 return 0; 11760 11761 /* cpumask */ 11762 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11763 return 0; 11764 11765 return a->mode; 11766 } 11767 11768 static struct attribute_group pmu_dev_attr_group = { 11769 .is_visible = pmu_dev_is_visible, 11770 .attrs = pmu_dev_attrs, 11771 }; 11772 11773 static const struct attribute_group *pmu_dev_groups[] = { 11774 &pmu_dev_attr_group, 11775 NULL, 11776 }; 11777 11778 static int pmu_bus_running; 11779 static struct bus_type pmu_bus = { 11780 .name = "event_source", 11781 .dev_groups = pmu_dev_groups, 11782 }; 11783 11784 static void pmu_dev_release(struct device *dev) 11785 { 11786 kfree(dev); 11787 } 11788 11789 static int pmu_dev_alloc(struct pmu *pmu) 11790 { 11791 int ret = -ENOMEM; 11792 11793 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11794 if (!pmu->dev) 11795 goto out; 11796 11797 pmu->dev->groups = pmu->attr_groups; 11798 device_initialize(pmu->dev); 11799 11800 dev_set_drvdata(pmu->dev, pmu); 11801 pmu->dev->bus = &pmu_bus; 11802 pmu->dev->parent = pmu->parent; 11803 pmu->dev->release = pmu_dev_release; 11804 11805 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11806 if (ret) 11807 goto free_dev; 11808 11809 ret = device_add(pmu->dev); 11810 if (ret) 11811 goto free_dev; 11812 11813 if (pmu->attr_update) { 11814 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11815 if (ret) 11816 goto del_dev; 11817 } 11818 11819 out: 11820 return ret; 11821 11822 del_dev: 11823 device_del(pmu->dev); 11824 11825 free_dev: 11826 put_device(pmu->dev); 11827 goto out; 11828 } 11829 11830 static struct lock_class_key cpuctx_mutex; 11831 static struct lock_class_key cpuctx_lock; 11832 11833 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 11834 { 11835 void *tmp, *val = idr_find(idr, id); 11836 11837 if (val != old) 11838 return false; 11839 11840 tmp = idr_replace(idr, new, id); 11841 if (IS_ERR(tmp)) 11842 return false; 11843 11844 WARN_ON_ONCE(tmp != val); 11845 return true; 11846 } 11847 11848 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11849 { 11850 int cpu, ret, max = PERF_TYPE_MAX; 11851 11852 mutex_lock(&pmus_lock); 11853 ret = -ENOMEM; 11854 pmu->pmu_disable_count = alloc_percpu(int); 11855 if (!pmu->pmu_disable_count) 11856 goto unlock; 11857 11858 pmu->type = -1; 11859 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11860 ret = -EINVAL; 11861 goto free_pdc; 11862 } 11863 11864 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11865 ret = -EINVAL; 11866 goto free_pdc; 11867 } 11868 11869 pmu->name = name; 11870 11871 if (type >= 0) 11872 max = type; 11873 11874 ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL); 11875 if (ret < 0) 11876 goto free_pdc; 11877 11878 WARN_ON(type >= 0 && ret != type); 11879 11880 type = ret; 11881 pmu->type = type; 11882 atomic_set(&pmu->exclusive_cnt, 0); 11883 11884 if (pmu_bus_running && !pmu->dev) { 11885 ret = pmu_dev_alloc(pmu); 11886 if (ret) 11887 goto free_idr; 11888 } 11889 11890 ret = -ENOMEM; 11891 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11892 if (!pmu->cpu_pmu_context) 11893 goto free_dev; 11894 11895 for_each_possible_cpu(cpu) { 11896 struct perf_cpu_pmu_context *cpc; 11897 11898 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11899 __perf_init_event_pmu_context(&cpc->epc, pmu); 11900 __perf_mux_hrtimer_init(cpc, cpu); 11901 } 11902 11903 if (!pmu->start_txn) { 11904 if (pmu->pmu_enable) { 11905 /* 11906 * If we have pmu_enable/pmu_disable calls, install 11907 * transaction stubs that use that to try and batch 11908 * hardware accesses. 11909 */ 11910 pmu->start_txn = perf_pmu_start_txn; 11911 pmu->commit_txn = perf_pmu_commit_txn; 11912 pmu->cancel_txn = perf_pmu_cancel_txn; 11913 } else { 11914 pmu->start_txn = perf_pmu_nop_txn; 11915 pmu->commit_txn = perf_pmu_nop_int; 11916 pmu->cancel_txn = perf_pmu_nop_void; 11917 } 11918 } 11919 11920 if (!pmu->pmu_enable) { 11921 pmu->pmu_enable = perf_pmu_nop_void; 11922 pmu->pmu_disable = perf_pmu_nop_void; 11923 } 11924 11925 if (!pmu->check_period) 11926 pmu->check_period = perf_event_nop_int; 11927 11928 if (!pmu->event_idx) 11929 pmu->event_idx = perf_event_idx_default; 11930 11931 /* 11932 * Now that the PMU is complete, make it visible to perf_try_init_event(). 11933 */ 11934 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 11935 goto free_context; 11936 list_add_rcu(&pmu->entry, &pmus); 11937 11938 ret = 0; 11939 unlock: 11940 mutex_unlock(&pmus_lock); 11941 11942 return ret; 11943 11944 free_context: 11945 free_percpu(pmu->cpu_pmu_context); 11946 11947 free_dev: 11948 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11949 device_del(pmu->dev); 11950 put_device(pmu->dev); 11951 } 11952 11953 free_idr: 11954 idr_remove(&pmu_idr, pmu->type); 11955 11956 free_pdc: 11957 free_percpu(pmu->pmu_disable_count); 11958 goto unlock; 11959 } 11960 EXPORT_SYMBOL_GPL(perf_pmu_register); 11961 11962 void perf_pmu_unregister(struct pmu *pmu) 11963 { 11964 mutex_lock(&pmus_lock); 11965 list_del_rcu(&pmu->entry); 11966 idr_remove(&pmu_idr, pmu->type); 11967 mutex_unlock(&pmus_lock); 11968 11969 /* 11970 * We dereference the pmu list under both SRCU and regular RCU, so 11971 * synchronize against both of those. 11972 */ 11973 synchronize_srcu(&pmus_srcu); 11974 synchronize_rcu(); 11975 11976 free_percpu(pmu->pmu_disable_count); 11977 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11978 if (pmu->nr_addr_filters) 11979 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11980 device_del(pmu->dev); 11981 put_device(pmu->dev); 11982 } 11983 free_pmu_context(pmu); 11984 } 11985 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11986 11987 static inline bool has_extended_regs(struct perf_event *event) 11988 { 11989 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11990 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11991 } 11992 11993 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11994 { 11995 struct perf_event_context *ctx = NULL; 11996 int ret; 11997 11998 if (!try_module_get(pmu->module)) 11999 return -ENODEV; 12000 12001 /* 12002 * A number of pmu->event_init() methods iterate the sibling_list to, 12003 * for example, validate if the group fits on the PMU. Therefore, 12004 * if this is a sibling event, acquire the ctx->mutex to protect 12005 * the sibling_list. 12006 */ 12007 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12008 /* 12009 * This ctx->mutex can nest when we're called through 12010 * inheritance. See the perf_event_ctx_lock_nested() comment. 12011 */ 12012 ctx = perf_event_ctx_lock_nested(event->group_leader, 12013 SINGLE_DEPTH_NESTING); 12014 BUG_ON(!ctx); 12015 } 12016 12017 event->pmu = pmu; 12018 ret = pmu->event_init(event); 12019 12020 if (ctx) 12021 perf_event_ctx_unlock(event->group_leader, ctx); 12022 12023 if (!ret) { 12024 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12025 has_extended_regs(event)) 12026 ret = -EOPNOTSUPP; 12027 12028 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12029 event_has_any_exclude_flag(event)) 12030 ret = -EINVAL; 12031 12032 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12033 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12034 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 12035 int cpu; 12036 12037 if (pmu_cpumask && cpumask) { 12038 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12039 if (cpu >= nr_cpu_ids) 12040 ret = -ENODEV; 12041 else 12042 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12043 } else { 12044 ret = -ENODEV; 12045 } 12046 } 12047 12048 if (ret && event->destroy) 12049 event->destroy(event); 12050 } 12051 12052 if (ret) 12053 module_put(pmu->module); 12054 12055 return ret; 12056 } 12057 12058 static struct pmu *perf_init_event(struct perf_event *event) 12059 { 12060 bool extended_type = false; 12061 int idx, type, ret; 12062 struct pmu *pmu; 12063 12064 idx = srcu_read_lock(&pmus_srcu); 12065 12066 /* 12067 * Save original type before calling pmu->event_init() since certain 12068 * pmus overwrites event->attr.type to forward event to another pmu. 12069 */ 12070 event->orig_type = event->attr.type; 12071 12072 /* Try parent's PMU first: */ 12073 if (event->parent && event->parent->pmu) { 12074 pmu = event->parent->pmu; 12075 ret = perf_try_init_event(pmu, event); 12076 if (!ret) 12077 goto unlock; 12078 } 12079 12080 /* 12081 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12082 * are often aliases for PERF_TYPE_RAW. 12083 */ 12084 type = event->attr.type; 12085 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12086 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12087 if (!type) { 12088 type = PERF_TYPE_RAW; 12089 } else { 12090 extended_type = true; 12091 event->attr.config &= PERF_HW_EVENT_MASK; 12092 } 12093 } 12094 12095 again: 12096 rcu_read_lock(); 12097 pmu = idr_find(&pmu_idr, type); 12098 rcu_read_unlock(); 12099 if (pmu) { 12100 if (event->attr.type != type && type != PERF_TYPE_RAW && 12101 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12102 goto fail; 12103 12104 ret = perf_try_init_event(pmu, event); 12105 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12106 type = event->attr.type; 12107 goto again; 12108 } 12109 12110 if (ret) 12111 pmu = ERR_PTR(ret); 12112 12113 goto unlock; 12114 } 12115 12116 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12117 ret = perf_try_init_event(pmu, event); 12118 if (!ret) 12119 goto unlock; 12120 12121 if (ret != -ENOENT) { 12122 pmu = ERR_PTR(ret); 12123 goto unlock; 12124 } 12125 } 12126 fail: 12127 pmu = ERR_PTR(-ENOENT); 12128 unlock: 12129 srcu_read_unlock(&pmus_srcu, idx); 12130 12131 return pmu; 12132 } 12133 12134 static void attach_sb_event(struct perf_event *event) 12135 { 12136 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12137 12138 raw_spin_lock(&pel->lock); 12139 list_add_rcu(&event->sb_list, &pel->list); 12140 raw_spin_unlock(&pel->lock); 12141 } 12142 12143 /* 12144 * We keep a list of all !task (and therefore per-cpu) events 12145 * that need to receive side-band records. 12146 * 12147 * This avoids having to scan all the various PMU per-cpu contexts 12148 * looking for them. 12149 */ 12150 static void account_pmu_sb_event(struct perf_event *event) 12151 { 12152 if (is_sb_event(event)) 12153 attach_sb_event(event); 12154 } 12155 12156 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12157 static void account_freq_event_nohz(void) 12158 { 12159 #ifdef CONFIG_NO_HZ_FULL 12160 /* Lock so we don't race with concurrent unaccount */ 12161 spin_lock(&nr_freq_lock); 12162 if (atomic_inc_return(&nr_freq_events) == 1) 12163 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12164 spin_unlock(&nr_freq_lock); 12165 #endif 12166 } 12167 12168 static void account_freq_event(void) 12169 { 12170 if (tick_nohz_full_enabled()) 12171 account_freq_event_nohz(); 12172 else 12173 atomic_inc(&nr_freq_events); 12174 } 12175 12176 12177 static void account_event(struct perf_event *event) 12178 { 12179 bool inc = false; 12180 12181 if (event->parent) 12182 return; 12183 12184 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12185 inc = true; 12186 if (event->attr.mmap || event->attr.mmap_data) 12187 atomic_inc(&nr_mmap_events); 12188 if (event->attr.build_id) 12189 atomic_inc(&nr_build_id_events); 12190 if (event->attr.comm) 12191 atomic_inc(&nr_comm_events); 12192 if (event->attr.namespaces) 12193 atomic_inc(&nr_namespaces_events); 12194 if (event->attr.cgroup) 12195 atomic_inc(&nr_cgroup_events); 12196 if (event->attr.task) 12197 atomic_inc(&nr_task_events); 12198 if (event->attr.freq) 12199 account_freq_event(); 12200 if (event->attr.context_switch) { 12201 atomic_inc(&nr_switch_events); 12202 inc = true; 12203 } 12204 if (has_branch_stack(event)) 12205 inc = true; 12206 if (is_cgroup_event(event)) 12207 inc = true; 12208 if (event->attr.ksymbol) 12209 atomic_inc(&nr_ksymbol_events); 12210 if (event->attr.bpf_event) 12211 atomic_inc(&nr_bpf_events); 12212 if (event->attr.text_poke) 12213 atomic_inc(&nr_text_poke_events); 12214 12215 if (inc) { 12216 /* 12217 * We need the mutex here because static_branch_enable() 12218 * must complete *before* the perf_sched_count increment 12219 * becomes visible. 12220 */ 12221 if (atomic_inc_not_zero(&perf_sched_count)) 12222 goto enabled; 12223 12224 mutex_lock(&perf_sched_mutex); 12225 if (!atomic_read(&perf_sched_count)) { 12226 static_branch_enable(&perf_sched_events); 12227 /* 12228 * Guarantee that all CPUs observe they key change and 12229 * call the perf scheduling hooks before proceeding to 12230 * install events that need them. 12231 */ 12232 synchronize_rcu(); 12233 } 12234 /* 12235 * Now that we have waited for the sync_sched(), allow further 12236 * increments to by-pass the mutex. 12237 */ 12238 atomic_inc(&perf_sched_count); 12239 mutex_unlock(&perf_sched_mutex); 12240 } 12241 enabled: 12242 12243 account_pmu_sb_event(event); 12244 } 12245 12246 /* 12247 * Allocate and initialize an event structure 12248 */ 12249 static struct perf_event * 12250 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12251 struct task_struct *task, 12252 struct perf_event *group_leader, 12253 struct perf_event *parent_event, 12254 perf_overflow_handler_t overflow_handler, 12255 void *context, int cgroup_fd) 12256 { 12257 struct pmu *pmu; 12258 struct perf_event *event; 12259 struct hw_perf_event *hwc; 12260 long err = -EINVAL; 12261 int node; 12262 12263 if ((unsigned)cpu >= nr_cpu_ids) { 12264 if (!task || cpu != -1) 12265 return ERR_PTR(-EINVAL); 12266 } 12267 if (attr->sigtrap && !task) { 12268 /* Requires a task: avoid signalling random tasks. */ 12269 return ERR_PTR(-EINVAL); 12270 } 12271 12272 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12273 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12274 node); 12275 if (!event) 12276 return ERR_PTR(-ENOMEM); 12277 12278 /* 12279 * Single events are their own group leaders, with an 12280 * empty sibling list: 12281 */ 12282 if (!group_leader) 12283 group_leader = event; 12284 12285 mutex_init(&event->child_mutex); 12286 INIT_LIST_HEAD(&event->child_list); 12287 12288 INIT_LIST_HEAD(&event->event_entry); 12289 INIT_LIST_HEAD(&event->sibling_list); 12290 INIT_LIST_HEAD(&event->active_list); 12291 init_event_group(event); 12292 INIT_LIST_HEAD(&event->rb_entry); 12293 INIT_LIST_HEAD(&event->active_entry); 12294 INIT_LIST_HEAD(&event->addr_filters.list); 12295 INIT_HLIST_NODE(&event->hlist_entry); 12296 12297 12298 init_waitqueue_head(&event->waitq); 12299 init_irq_work(&event->pending_irq, perf_pending_irq); 12300 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12301 init_task_work(&event->pending_task, perf_pending_task); 12302 rcuwait_init(&event->pending_work_wait); 12303 12304 mutex_init(&event->mmap_mutex); 12305 raw_spin_lock_init(&event->addr_filters.lock); 12306 12307 atomic_long_set(&event->refcount, 1); 12308 event->cpu = cpu; 12309 event->attr = *attr; 12310 event->group_leader = group_leader; 12311 event->pmu = NULL; 12312 event->oncpu = -1; 12313 12314 event->parent = parent_event; 12315 12316 event->ns = get_pid_ns(task_active_pid_ns(current)); 12317 event->id = atomic64_inc_return(&perf_event_id); 12318 12319 event->state = PERF_EVENT_STATE_INACTIVE; 12320 12321 if (parent_event) 12322 event->event_caps = parent_event->event_caps; 12323 12324 if (task) { 12325 event->attach_state = PERF_ATTACH_TASK; 12326 /* 12327 * XXX pmu::event_init needs to know what task to account to 12328 * and we cannot use the ctx information because we need the 12329 * pmu before we get a ctx. 12330 */ 12331 event->hw.target = get_task_struct(task); 12332 } 12333 12334 event->clock = &local_clock; 12335 if (parent_event) 12336 event->clock = parent_event->clock; 12337 12338 if (!overflow_handler && parent_event) { 12339 overflow_handler = parent_event->overflow_handler; 12340 context = parent_event->overflow_handler_context; 12341 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12342 if (parent_event->prog) { 12343 struct bpf_prog *prog = parent_event->prog; 12344 12345 bpf_prog_inc(prog); 12346 event->prog = prog; 12347 } 12348 #endif 12349 } 12350 12351 if (overflow_handler) { 12352 event->overflow_handler = overflow_handler; 12353 event->overflow_handler_context = context; 12354 } else if (is_write_backward(event)){ 12355 event->overflow_handler = perf_event_output_backward; 12356 event->overflow_handler_context = NULL; 12357 } else { 12358 event->overflow_handler = perf_event_output_forward; 12359 event->overflow_handler_context = NULL; 12360 } 12361 12362 perf_event__state_init(event); 12363 12364 pmu = NULL; 12365 12366 hwc = &event->hw; 12367 hwc->sample_period = attr->sample_period; 12368 if (attr->freq && attr->sample_freq) 12369 hwc->sample_period = 1; 12370 hwc->last_period = hwc->sample_period; 12371 12372 local64_set(&hwc->period_left, hwc->sample_period); 12373 12374 /* 12375 * We do not support PERF_SAMPLE_READ on inherited events unless 12376 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12377 * collect per-thread samples. 12378 * See perf_output_read(). 12379 */ 12380 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12381 goto err_ns; 12382 12383 if (!has_branch_stack(event)) 12384 event->attr.branch_sample_type = 0; 12385 12386 pmu = perf_init_event(event); 12387 if (IS_ERR(pmu)) { 12388 err = PTR_ERR(pmu); 12389 goto err_ns; 12390 } 12391 12392 /* 12393 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12394 * events (they don't make sense as the cgroup will be different 12395 * on other CPUs in the uncore mask). 12396 */ 12397 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12398 err = -EINVAL; 12399 goto err_pmu; 12400 } 12401 12402 if (event->attr.aux_output && 12403 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12404 event->attr.aux_pause || event->attr.aux_resume)) { 12405 err = -EOPNOTSUPP; 12406 goto err_pmu; 12407 } 12408 12409 if (event->attr.aux_pause && event->attr.aux_resume) { 12410 err = -EINVAL; 12411 goto err_pmu; 12412 } 12413 12414 if (event->attr.aux_start_paused) { 12415 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) { 12416 err = -EOPNOTSUPP; 12417 goto err_pmu; 12418 } 12419 event->hw.aux_paused = 1; 12420 } 12421 12422 if (cgroup_fd != -1) { 12423 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12424 if (err) 12425 goto err_pmu; 12426 } 12427 12428 err = exclusive_event_init(event); 12429 if (err) 12430 goto err_pmu; 12431 12432 if (has_addr_filter(event)) { 12433 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12434 sizeof(struct perf_addr_filter_range), 12435 GFP_KERNEL); 12436 if (!event->addr_filter_ranges) { 12437 err = -ENOMEM; 12438 goto err_per_task; 12439 } 12440 12441 /* 12442 * Clone the parent's vma offsets: they are valid until exec() 12443 * even if the mm is not shared with the parent. 12444 */ 12445 if (event->parent) { 12446 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12447 12448 raw_spin_lock_irq(&ifh->lock); 12449 memcpy(event->addr_filter_ranges, 12450 event->parent->addr_filter_ranges, 12451 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12452 raw_spin_unlock_irq(&ifh->lock); 12453 } 12454 12455 /* force hw sync on the address filters */ 12456 event->addr_filters_gen = 1; 12457 } 12458 12459 if (!event->parent) { 12460 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12461 err = get_callchain_buffers(attr->sample_max_stack); 12462 if (err) 12463 goto err_addr_filters; 12464 } 12465 } 12466 12467 err = security_perf_event_alloc(event); 12468 if (err) 12469 goto err_callchain_buffer; 12470 12471 /* symmetric to unaccount_event() in _free_event() */ 12472 account_event(event); 12473 12474 return event; 12475 12476 err_callchain_buffer: 12477 if (!event->parent) { 12478 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12479 put_callchain_buffers(); 12480 } 12481 err_addr_filters: 12482 kfree(event->addr_filter_ranges); 12483 12484 err_per_task: 12485 exclusive_event_destroy(event); 12486 12487 err_pmu: 12488 if (is_cgroup_event(event)) 12489 perf_detach_cgroup(event); 12490 if (event->destroy) 12491 event->destroy(event); 12492 module_put(pmu->module); 12493 err_ns: 12494 if (event->hw.target) 12495 put_task_struct(event->hw.target); 12496 call_rcu(&event->rcu_head, free_event_rcu); 12497 12498 return ERR_PTR(err); 12499 } 12500 12501 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12502 struct perf_event_attr *attr) 12503 { 12504 u32 size; 12505 int ret; 12506 12507 /* Zero the full structure, so that a short copy will be nice. */ 12508 memset(attr, 0, sizeof(*attr)); 12509 12510 ret = get_user(size, &uattr->size); 12511 if (ret) 12512 return ret; 12513 12514 /* ABI compatibility quirk: */ 12515 if (!size) 12516 size = PERF_ATTR_SIZE_VER0; 12517 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12518 goto err_size; 12519 12520 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12521 if (ret) { 12522 if (ret == -E2BIG) 12523 goto err_size; 12524 return ret; 12525 } 12526 12527 attr->size = size; 12528 12529 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12530 return -EINVAL; 12531 12532 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12533 return -EINVAL; 12534 12535 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12536 return -EINVAL; 12537 12538 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12539 u64 mask = attr->branch_sample_type; 12540 12541 /* only using defined bits */ 12542 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12543 return -EINVAL; 12544 12545 /* at least one branch bit must be set */ 12546 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12547 return -EINVAL; 12548 12549 /* propagate priv level, when not set for branch */ 12550 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12551 12552 /* exclude_kernel checked on syscall entry */ 12553 if (!attr->exclude_kernel) 12554 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12555 12556 if (!attr->exclude_user) 12557 mask |= PERF_SAMPLE_BRANCH_USER; 12558 12559 if (!attr->exclude_hv) 12560 mask |= PERF_SAMPLE_BRANCH_HV; 12561 /* 12562 * adjust user setting (for HW filter setup) 12563 */ 12564 attr->branch_sample_type = mask; 12565 } 12566 /* privileged levels capture (kernel, hv): check permissions */ 12567 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12568 ret = perf_allow_kernel(attr); 12569 if (ret) 12570 return ret; 12571 } 12572 } 12573 12574 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12575 ret = perf_reg_validate(attr->sample_regs_user); 12576 if (ret) 12577 return ret; 12578 } 12579 12580 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12581 if (!arch_perf_have_user_stack_dump()) 12582 return -ENOSYS; 12583 12584 /* 12585 * We have __u32 type for the size, but so far 12586 * we can only use __u16 as maximum due to the 12587 * __u16 sample size limit. 12588 */ 12589 if (attr->sample_stack_user >= USHRT_MAX) 12590 return -EINVAL; 12591 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12592 return -EINVAL; 12593 } 12594 12595 if (!attr->sample_max_stack) 12596 attr->sample_max_stack = sysctl_perf_event_max_stack; 12597 12598 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12599 ret = perf_reg_validate(attr->sample_regs_intr); 12600 12601 #ifndef CONFIG_CGROUP_PERF 12602 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12603 return -EINVAL; 12604 #endif 12605 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12606 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12607 return -EINVAL; 12608 12609 if (!attr->inherit && attr->inherit_thread) 12610 return -EINVAL; 12611 12612 if (attr->remove_on_exec && attr->enable_on_exec) 12613 return -EINVAL; 12614 12615 if (attr->sigtrap && !attr->remove_on_exec) 12616 return -EINVAL; 12617 12618 out: 12619 return ret; 12620 12621 err_size: 12622 put_user(sizeof(*attr), &uattr->size); 12623 ret = -E2BIG; 12624 goto out; 12625 } 12626 12627 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12628 { 12629 if (b < a) 12630 swap(a, b); 12631 12632 mutex_lock(a); 12633 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12634 } 12635 12636 static int 12637 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12638 { 12639 struct perf_buffer *rb = NULL; 12640 int ret = -EINVAL; 12641 12642 if (!output_event) { 12643 mutex_lock(&event->mmap_mutex); 12644 goto set; 12645 } 12646 12647 /* don't allow circular references */ 12648 if (event == output_event) 12649 goto out; 12650 12651 /* 12652 * Don't allow cross-cpu buffers 12653 */ 12654 if (output_event->cpu != event->cpu) 12655 goto out; 12656 12657 /* 12658 * If its not a per-cpu rb, it must be the same task. 12659 */ 12660 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12661 goto out; 12662 12663 /* 12664 * Mixing clocks in the same buffer is trouble you don't need. 12665 */ 12666 if (output_event->clock != event->clock) 12667 goto out; 12668 12669 /* 12670 * Either writing ring buffer from beginning or from end. 12671 * Mixing is not allowed. 12672 */ 12673 if (is_write_backward(output_event) != is_write_backward(event)) 12674 goto out; 12675 12676 /* 12677 * If both events generate aux data, they must be on the same PMU 12678 */ 12679 if (has_aux(event) && has_aux(output_event) && 12680 event->pmu != output_event->pmu) 12681 goto out; 12682 12683 /* 12684 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12685 * output_event is already on rb->event_list, and the list iteration 12686 * restarts after every removal, it is guaranteed this new event is 12687 * observed *OR* if output_event is already removed, it's guaranteed we 12688 * observe !rb->mmap_count. 12689 */ 12690 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12691 set: 12692 /* Can't redirect output if we've got an active mmap() */ 12693 if (atomic_read(&event->mmap_count)) 12694 goto unlock; 12695 12696 if (output_event) { 12697 /* get the rb we want to redirect to */ 12698 rb = ring_buffer_get(output_event); 12699 if (!rb) 12700 goto unlock; 12701 12702 /* did we race against perf_mmap_close() */ 12703 if (!atomic_read(&rb->mmap_count)) { 12704 ring_buffer_put(rb); 12705 goto unlock; 12706 } 12707 } 12708 12709 ring_buffer_attach(event, rb); 12710 12711 ret = 0; 12712 unlock: 12713 mutex_unlock(&event->mmap_mutex); 12714 if (output_event) 12715 mutex_unlock(&output_event->mmap_mutex); 12716 12717 out: 12718 return ret; 12719 } 12720 12721 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12722 { 12723 bool nmi_safe = false; 12724 12725 switch (clk_id) { 12726 case CLOCK_MONOTONIC: 12727 event->clock = &ktime_get_mono_fast_ns; 12728 nmi_safe = true; 12729 break; 12730 12731 case CLOCK_MONOTONIC_RAW: 12732 event->clock = &ktime_get_raw_fast_ns; 12733 nmi_safe = true; 12734 break; 12735 12736 case CLOCK_REALTIME: 12737 event->clock = &ktime_get_real_ns; 12738 break; 12739 12740 case CLOCK_BOOTTIME: 12741 event->clock = &ktime_get_boottime_ns; 12742 break; 12743 12744 case CLOCK_TAI: 12745 event->clock = &ktime_get_clocktai_ns; 12746 break; 12747 12748 default: 12749 return -EINVAL; 12750 } 12751 12752 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12753 return -EINVAL; 12754 12755 return 0; 12756 } 12757 12758 static bool 12759 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12760 { 12761 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12762 bool is_capable = perfmon_capable(); 12763 12764 if (attr->sigtrap) { 12765 /* 12766 * perf_event_attr::sigtrap sends signals to the other task. 12767 * Require the current task to also have CAP_KILL. 12768 */ 12769 rcu_read_lock(); 12770 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12771 rcu_read_unlock(); 12772 12773 /* 12774 * If the required capabilities aren't available, checks for 12775 * ptrace permissions: upgrade to ATTACH, since sending signals 12776 * can effectively change the target task. 12777 */ 12778 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12779 } 12780 12781 /* 12782 * Preserve ptrace permission check for backwards compatibility. The 12783 * ptrace check also includes checks that the current task and other 12784 * task have matching uids, and is therefore not done here explicitly. 12785 */ 12786 return is_capable || ptrace_may_access(task, ptrace_mode); 12787 } 12788 12789 /** 12790 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12791 * 12792 * @attr_uptr: event_id type attributes for monitoring/sampling 12793 * @pid: target pid 12794 * @cpu: target cpu 12795 * @group_fd: group leader event fd 12796 * @flags: perf event open flags 12797 */ 12798 SYSCALL_DEFINE5(perf_event_open, 12799 struct perf_event_attr __user *, attr_uptr, 12800 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12801 { 12802 struct perf_event *group_leader = NULL, *output_event = NULL; 12803 struct perf_event_pmu_context *pmu_ctx; 12804 struct perf_event *event, *sibling; 12805 struct perf_event_attr attr; 12806 struct perf_event_context *ctx; 12807 struct file *event_file = NULL; 12808 struct task_struct *task = NULL; 12809 struct pmu *pmu; 12810 int event_fd; 12811 int move_group = 0; 12812 int err; 12813 int f_flags = O_RDWR; 12814 int cgroup_fd = -1; 12815 12816 /* for future expandability... */ 12817 if (flags & ~PERF_FLAG_ALL) 12818 return -EINVAL; 12819 12820 err = perf_copy_attr(attr_uptr, &attr); 12821 if (err) 12822 return err; 12823 12824 /* Do we allow access to perf_event_open(2) ? */ 12825 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12826 if (err) 12827 return err; 12828 12829 if (!attr.exclude_kernel) { 12830 err = perf_allow_kernel(&attr); 12831 if (err) 12832 return err; 12833 } 12834 12835 if (attr.namespaces) { 12836 if (!perfmon_capable()) 12837 return -EACCES; 12838 } 12839 12840 if (attr.freq) { 12841 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12842 return -EINVAL; 12843 } else { 12844 if (attr.sample_period & (1ULL << 63)) 12845 return -EINVAL; 12846 } 12847 12848 /* Only privileged users can get physical addresses */ 12849 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12850 err = perf_allow_kernel(&attr); 12851 if (err) 12852 return err; 12853 } 12854 12855 /* REGS_INTR can leak data, lockdown must prevent this */ 12856 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12857 err = security_locked_down(LOCKDOWN_PERF); 12858 if (err) 12859 return err; 12860 } 12861 12862 /* 12863 * In cgroup mode, the pid argument is used to pass the fd 12864 * opened to the cgroup directory in cgroupfs. The cpu argument 12865 * designates the cpu on which to monitor threads from that 12866 * cgroup. 12867 */ 12868 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12869 return -EINVAL; 12870 12871 if (flags & PERF_FLAG_FD_CLOEXEC) 12872 f_flags |= O_CLOEXEC; 12873 12874 event_fd = get_unused_fd_flags(f_flags); 12875 if (event_fd < 0) 12876 return event_fd; 12877 12878 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 12879 if (group_fd != -1) { 12880 if (!is_perf_file(group)) { 12881 err = -EBADF; 12882 goto err_fd; 12883 } 12884 group_leader = fd_file(group)->private_data; 12885 if (flags & PERF_FLAG_FD_OUTPUT) 12886 output_event = group_leader; 12887 if (flags & PERF_FLAG_FD_NO_GROUP) 12888 group_leader = NULL; 12889 } 12890 12891 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12892 task = find_lively_task_by_vpid(pid); 12893 if (IS_ERR(task)) { 12894 err = PTR_ERR(task); 12895 goto err_fd; 12896 } 12897 } 12898 12899 if (task && group_leader && 12900 group_leader->attr.inherit != attr.inherit) { 12901 err = -EINVAL; 12902 goto err_task; 12903 } 12904 12905 if (flags & PERF_FLAG_PID_CGROUP) 12906 cgroup_fd = pid; 12907 12908 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12909 NULL, NULL, cgroup_fd); 12910 if (IS_ERR(event)) { 12911 err = PTR_ERR(event); 12912 goto err_task; 12913 } 12914 12915 if (is_sampling_event(event)) { 12916 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12917 err = -EOPNOTSUPP; 12918 goto err_alloc; 12919 } 12920 } 12921 12922 /* 12923 * Special case software events and allow them to be part of 12924 * any hardware group. 12925 */ 12926 pmu = event->pmu; 12927 12928 if (attr.use_clockid) { 12929 err = perf_event_set_clock(event, attr.clockid); 12930 if (err) 12931 goto err_alloc; 12932 } 12933 12934 if (pmu->task_ctx_nr == perf_sw_context) 12935 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12936 12937 if (task) { 12938 err = down_read_interruptible(&task->signal->exec_update_lock); 12939 if (err) 12940 goto err_alloc; 12941 12942 /* 12943 * We must hold exec_update_lock across this and any potential 12944 * perf_install_in_context() call for this new event to 12945 * serialize against exec() altering our credentials (and the 12946 * perf_event_exit_task() that could imply). 12947 */ 12948 err = -EACCES; 12949 if (!perf_check_permission(&attr, task)) 12950 goto err_cred; 12951 } 12952 12953 /* 12954 * Get the target context (task or percpu): 12955 */ 12956 ctx = find_get_context(task, event); 12957 if (IS_ERR(ctx)) { 12958 err = PTR_ERR(ctx); 12959 goto err_cred; 12960 } 12961 12962 mutex_lock(&ctx->mutex); 12963 12964 if (ctx->task == TASK_TOMBSTONE) { 12965 err = -ESRCH; 12966 goto err_locked; 12967 } 12968 12969 if (!task) { 12970 /* 12971 * Check if the @cpu we're creating an event for is online. 12972 * 12973 * We use the perf_cpu_context::ctx::mutex to serialize against 12974 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12975 */ 12976 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12977 12978 if (!cpuctx->online) { 12979 err = -ENODEV; 12980 goto err_locked; 12981 } 12982 } 12983 12984 if (group_leader) { 12985 err = -EINVAL; 12986 12987 /* 12988 * Do not allow a recursive hierarchy (this new sibling 12989 * becoming part of another group-sibling): 12990 */ 12991 if (group_leader->group_leader != group_leader) 12992 goto err_locked; 12993 12994 /* All events in a group should have the same clock */ 12995 if (group_leader->clock != event->clock) 12996 goto err_locked; 12997 12998 /* 12999 * Make sure we're both events for the same CPU; 13000 * grouping events for different CPUs is broken; since 13001 * you can never concurrently schedule them anyhow. 13002 */ 13003 if (group_leader->cpu != event->cpu) 13004 goto err_locked; 13005 13006 /* 13007 * Make sure we're both on the same context; either task or cpu. 13008 */ 13009 if (group_leader->ctx != ctx) 13010 goto err_locked; 13011 13012 /* 13013 * Only a group leader can be exclusive or pinned 13014 */ 13015 if (attr.exclusive || attr.pinned) 13016 goto err_locked; 13017 13018 if (is_software_event(event) && 13019 !in_software_context(group_leader)) { 13020 /* 13021 * If the event is a sw event, but the group_leader 13022 * is on hw context. 13023 * 13024 * Allow the addition of software events to hw 13025 * groups, this is safe because software events 13026 * never fail to schedule. 13027 * 13028 * Note the comment that goes with struct 13029 * perf_event_pmu_context. 13030 */ 13031 pmu = group_leader->pmu_ctx->pmu; 13032 } else if (!is_software_event(event)) { 13033 if (is_software_event(group_leader) && 13034 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13035 /* 13036 * In case the group is a pure software group, and we 13037 * try to add a hardware event, move the whole group to 13038 * the hardware context. 13039 */ 13040 move_group = 1; 13041 } 13042 13043 /* Don't allow group of multiple hw events from different pmus */ 13044 if (!in_software_context(group_leader) && 13045 group_leader->pmu_ctx->pmu != pmu) 13046 goto err_locked; 13047 } 13048 } 13049 13050 /* 13051 * Now that we're certain of the pmu; find the pmu_ctx. 13052 */ 13053 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13054 if (IS_ERR(pmu_ctx)) { 13055 err = PTR_ERR(pmu_ctx); 13056 goto err_locked; 13057 } 13058 event->pmu_ctx = pmu_ctx; 13059 13060 if (output_event) { 13061 err = perf_event_set_output(event, output_event); 13062 if (err) 13063 goto err_context; 13064 } 13065 13066 if (!perf_event_validate_size(event)) { 13067 err = -E2BIG; 13068 goto err_context; 13069 } 13070 13071 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13072 err = -EINVAL; 13073 goto err_context; 13074 } 13075 13076 /* 13077 * Must be under the same ctx::mutex as perf_install_in_context(), 13078 * because we need to serialize with concurrent event creation. 13079 */ 13080 if (!exclusive_event_installable(event, ctx)) { 13081 err = -EBUSY; 13082 goto err_context; 13083 } 13084 13085 WARN_ON_ONCE(ctx->parent_ctx); 13086 13087 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13088 if (IS_ERR(event_file)) { 13089 err = PTR_ERR(event_file); 13090 event_file = NULL; 13091 goto err_context; 13092 } 13093 13094 /* 13095 * This is the point on no return; we cannot fail hereafter. This is 13096 * where we start modifying current state. 13097 */ 13098 13099 if (move_group) { 13100 perf_remove_from_context(group_leader, 0); 13101 put_pmu_ctx(group_leader->pmu_ctx); 13102 13103 for_each_sibling_event(sibling, group_leader) { 13104 perf_remove_from_context(sibling, 0); 13105 put_pmu_ctx(sibling->pmu_ctx); 13106 } 13107 13108 /* 13109 * Install the group siblings before the group leader. 13110 * 13111 * Because a group leader will try and install the entire group 13112 * (through the sibling list, which is still in-tact), we can 13113 * end up with siblings installed in the wrong context. 13114 * 13115 * By installing siblings first we NO-OP because they're not 13116 * reachable through the group lists. 13117 */ 13118 for_each_sibling_event(sibling, group_leader) { 13119 sibling->pmu_ctx = pmu_ctx; 13120 get_pmu_ctx(pmu_ctx); 13121 perf_event__state_init(sibling); 13122 perf_install_in_context(ctx, sibling, sibling->cpu); 13123 } 13124 13125 /* 13126 * Removing from the context ends up with disabled 13127 * event. What we want here is event in the initial 13128 * startup state, ready to be add into new context. 13129 */ 13130 group_leader->pmu_ctx = pmu_ctx; 13131 get_pmu_ctx(pmu_ctx); 13132 perf_event__state_init(group_leader); 13133 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13134 } 13135 13136 /* 13137 * Precalculate sample_data sizes; do while holding ctx::mutex such 13138 * that we're serialized against further additions and before 13139 * perf_install_in_context() which is the point the event is active and 13140 * can use these values. 13141 */ 13142 perf_event__header_size(event); 13143 perf_event__id_header_size(event); 13144 13145 event->owner = current; 13146 13147 perf_install_in_context(ctx, event, event->cpu); 13148 perf_unpin_context(ctx); 13149 13150 mutex_unlock(&ctx->mutex); 13151 13152 if (task) { 13153 up_read(&task->signal->exec_update_lock); 13154 put_task_struct(task); 13155 } 13156 13157 mutex_lock(¤t->perf_event_mutex); 13158 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13159 mutex_unlock(¤t->perf_event_mutex); 13160 13161 /* 13162 * File reference in group guarantees that group_leader has been 13163 * kept alive until we place the new event on the sibling_list. 13164 * This ensures destruction of the group leader will find 13165 * the pointer to itself in perf_group_detach(). 13166 */ 13167 fd_install(event_fd, event_file); 13168 return event_fd; 13169 13170 err_context: 13171 put_pmu_ctx(event->pmu_ctx); 13172 event->pmu_ctx = NULL; /* _free_event() */ 13173 err_locked: 13174 mutex_unlock(&ctx->mutex); 13175 perf_unpin_context(ctx); 13176 put_ctx(ctx); 13177 err_cred: 13178 if (task) 13179 up_read(&task->signal->exec_update_lock); 13180 err_alloc: 13181 free_event(event); 13182 err_task: 13183 if (task) 13184 put_task_struct(task); 13185 err_fd: 13186 put_unused_fd(event_fd); 13187 return err; 13188 } 13189 13190 /** 13191 * perf_event_create_kernel_counter 13192 * 13193 * @attr: attributes of the counter to create 13194 * @cpu: cpu in which the counter is bound 13195 * @task: task to profile (NULL for percpu) 13196 * @overflow_handler: callback to trigger when we hit the event 13197 * @context: context data could be used in overflow_handler callback 13198 */ 13199 struct perf_event * 13200 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13201 struct task_struct *task, 13202 perf_overflow_handler_t overflow_handler, 13203 void *context) 13204 { 13205 struct perf_event_pmu_context *pmu_ctx; 13206 struct perf_event_context *ctx; 13207 struct perf_event *event; 13208 struct pmu *pmu; 13209 int err; 13210 13211 /* 13212 * Grouping is not supported for kernel events, neither is 'AUX', 13213 * make sure the caller's intentions are adjusted. 13214 */ 13215 if (attr->aux_output || attr->aux_action) 13216 return ERR_PTR(-EINVAL); 13217 13218 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13219 overflow_handler, context, -1); 13220 if (IS_ERR(event)) { 13221 err = PTR_ERR(event); 13222 goto err; 13223 } 13224 13225 /* Mark owner so we could distinguish it from user events. */ 13226 event->owner = TASK_TOMBSTONE; 13227 pmu = event->pmu; 13228 13229 if (pmu->task_ctx_nr == perf_sw_context) 13230 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13231 13232 /* 13233 * Get the target context (task or percpu): 13234 */ 13235 ctx = find_get_context(task, event); 13236 if (IS_ERR(ctx)) { 13237 err = PTR_ERR(ctx); 13238 goto err_alloc; 13239 } 13240 13241 WARN_ON_ONCE(ctx->parent_ctx); 13242 mutex_lock(&ctx->mutex); 13243 if (ctx->task == TASK_TOMBSTONE) { 13244 err = -ESRCH; 13245 goto err_unlock; 13246 } 13247 13248 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13249 if (IS_ERR(pmu_ctx)) { 13250 err = PTR_ERR(pmu_ctx); 13251 goto err_unlock; 13252 } 13253 event->pmu_ctx = pmu_ctx; 13254 13255 if (!task) { 13256 /* 13257 * Check if the @cpu we're creating an event for is online. 13258 * 13259 * We use the perf_cpu_context::ctx::mutex to serialize against 13260 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13261 */ 13262 struct perf_cpu_context *cpuctx = 13263 container_of(ctx, struct perf_cpu_context, ctx); 13264 if (!cpuctx->online) { 13265 err = -ENODEV; 13266 goto err_pmu_ctx; 13267 } 13268 } 13269 13270 if (!exclusive_event_installable(event, ctx)) { 13271 err = -EBUSY; 13272 goto err_pmu_ctx; 13273 } 13274 13275 perf_install_in_context(ctx, event, event->cpu); 13276 perf_unpin_context(ctx); 13277 mutex_unlock(&ctx->mutex); 13278 13279 return event; 13280 13281 err_pmu_ctx: 13282 put_pmu_ctx(pmu_ctx); 13283 event->pmu_ctx = NULL; /* _free_event() */ 13284 err_unlock: 13285 mutex_unlock(&ctx->mutex); 13286 perf_unpin_context(ctx); 13287 put_ctx(ctx); 13288 err_alloc: 13289 free_event(event); 13290 err: 13291 return ERR_PTR(err); 13292 } 13293 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13294 13295 static void __perf_pmu_remove(struct perf_event_context *ctx, 13296 int cpu, struct pmu *pmu, 13297 struct perf_event_groups *groups, 13298 struct list_head *events) 13299 { 13300 struct perf_event *event, *sibling; 13301 13302 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13303 perf_remove_from_context(event, 0); 13304 put_pmu_ctx(event->pmu_ctx); 13305 list_add(&event->migrate_entry, events); 13306 13307 for_each_sibling_event(sibling, event) { 13308 perf_remove_from_context(sibling, 0); 13309 put_pmu_ctx(sibling->pmu_ctx); 13310 list_add(&sibling->migrate_entry, events); 13311 } 13312 } 13313 } 13314 13315 static void __perf_pmu_install_event(struct pmu *pmu, 13316 struct perf_event_context *ctx, 13317 int cpu, struct perf_event *event) 13318 { 13319 struct perf_event_pmu_context *epc; 13320 struct perf_event_context *old_ctx = event->ctx; 13321 13322 get_ctx(ctx); /* normally find_get_context() */ 13323 13324 event->cpu = cpu; 13325 epc = find_get_pmu_context(pmu, ctx, event); 13326 event->pmu_ctx = epc; 13327 13328 if (event->state >= PERF_EVENT_STATE_OFF) 13329 event->state = PERF_EVENT_STATE_INACTIVE; 13330 perf_install_in_context(ctx, event, cpu); 13331 13332 /* 13333 * Now that event->ctx is updated and visible, put the old ctx. 13334 */ 13335 put_ctx(old_ctx); 13336 } 13337 13338 static void __perf_pmu_install(struct perf_event_context *ctx, 13339 int cpu, struct pmu *pmu, struct list_head *events) 13340 { 13341 struct perf_event *event, *tmp; 13342 13343 /* 13344 * Re-instate events in 2 passes. 13345 * 13346 * Skip over group leaders and only install siblings on this first 13347 * pass, siblings will not get enabled without a leader, however a 13348 * leader will enable its siblings, even if those are still on the old 13349 * context. 13350 */ 13351 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13352 if (event->group_leader == event) 13353 continue; 13354 13355 list_del(&event->migrate_entry); 13356 __perf_pmu_install_event(pmu, ctx, cpu, event); 13357 } 13358 13359 /* 13360 * Once all the siblings are setup properly, install the group leaders 13361 * to make it go. 13362 */ 13363 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13364 list_del(&event->migrate_entry); 13365 __perf_pmu_install_event(pmu, ctx, cpu, event); 13366 } 13367 } 13368 13369 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13370 { 13371 struct perf_event_context *src_ctx, *dst_ctx; 13372 LIST_HEAD(events); 13373 13374 /* 13375 * Since per-cpu context is persistent, no need to grab an extra 13376 * reference. 13377 */ 13378 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13379 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13380 13381 /* 13382 * See perf_event_ctx_lock() for comments on the details 13383 * of swizzling perf_event::ctx. 13384 */ 13385 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13386 13387 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13388 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13389 13390 if (!list_empty(&events)) { 13391 /* 13392 * Wait for the events to quiesce before re-instating them. 13393 */ 13394 synchronize_rcu(); 13395 13396 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13397 } 13398 13399 mutex_unlock(&dst_ctx->mutex); 13400 mutex_unlock(&src_ctx->mutex); 13401 } 13402 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13403 13404 static void sync_child_event(struct perf_event *child_event) 13405 { 13406 struct perf_event *parent_event = child_event->parent; 13407 u64 child_val; 13408 13409 if (child_event->attr.inherit_stat) { 13410 struct task_struct *task = child_event->ctx->task; 13411 13412 if (task && task != TASK_TOMBSTONE) 13413 perf_event_read_event(child_event, task); 13414 } 13415 13416 child_val = perf_event_count(child_event, false); 13417 13418 /* 13419 * Add back the child's count to the parent's count: 13420 */ 13421 atomic64_add(child_val, &parent_event->child_count); 13422 atomic64_add(child_event->total_time_enabled, 13423 &parent_event->child_total_time_enabled); 13424 atomic64_add(child_event->total_time_running, 13425 &parent_event->child_total_time_running); 13426 } 13427 13428 static void 13429 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13430 { 13431 struct perf_event *parent_event = event->parent; 13432 unsigned long detach_flags = 0; 13433 13434 if (parent_event) { 13435 /* 13436 * Do not destroy the 'original' grouping; because of the 13437 * context switch optimization the original events could've 13438 * ended up in a random child task. 13439 * 13440 * If we were to destroy the original group, all group related 13441 * operations would cease to function properly after this 13442 * random child dies. 13443 * 13444 * Do destroy all inherited groups, we don't care about those 13445 * and being thorough is better. 13446 */ 13447 detach_flags = DETACH_GROUP | DETACH_CHILD; 13448 mutex_lock(&parent_event->child_mutex); 13449 } 13450 13451 perf_remove_from_context(event, detach_flags); 13452 13453 raw_spin_lock_irq(&ctx->lock); 13454 if (event->state > PERF_EVENT_STATE_EXIT) 13455 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13456 raw_spin_unlock_irq(&ctx->lock); 13457 13458 /* 13459 * Child events can be freed. 13460 */ 13461 if (parent_event) { 13462 mutex_unlock(&parent_event->child_mutex); 13463 /* 13464 * Kick perf_poll() for is_event_hup(); 13465 */ 13466 perf_event_wakeup(parent_event); 13467 free_event(event); 13468 put_event(parent_event); 13469 return; 13470 } 13471 13472 /* 13473 * Parent events are governed by their filedesc, retain them. 13474 */ 13475 perf_event_wakeup(event); 13476 } 13477 13478 static void perf_event_exit_task_context(struct task_struct *child) 13479 { 13480 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13481 struct perf_event *child_event, *next; 13482 13483 WARN_ON_ONCE(child != current); 13484 13485 child_ctx = perf_pin_task_context(child); 13486 if (!child_ctx) 13487 return; 13488 13489 /* 13490 * In order to reduce the amount of tricky in ctx tear-down, we hold 13491 * ctx::mutex over the entire thing. This serializes against almost 13492 * everything that wants to access the ctx. 13493 * 13494 * The exception is sys_perf_event_open() / 13495 * perf_event_create_kernel_count() which does find_get_context() 13496 * without ctx::mutex (it cannot because of the move_group double mutex 13497 * lock thing). See the comments in perf_install_in_context(). 13498 */ 13499 mutex_lock(&child_ctx->mutex); 13500 13501 /* 13502 * In a single ctx::lock section, de-schedule the events and detach the 13503 * context from the task such that we cannot ever get it scheduled back 13504 * in. 13505 */ 13506 raw_spin_lock_irq(&child_ctx->lock); 13507 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13508 13509 /* 13510 * Now that the context is inactive, destroy the task <-> ctx relation 13511 * and mark the context dead. 13512 */ 13513 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13514 put_ctx(child_ctx); /* cannot be last */ 13515 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13516 put_task_struct(current); /* cannot be last */ 13517 13518 clone_ctx = unclone_ctx(child_ctx); 13519 raw_spin_unlock_irq(&child_ctx->lock); 13520 13521 if (clone_ctx) 13522 put_ctx(clone_ctx); 13523 13524 /* 13525 * Report the task dead after unscheduling the events so that we 13526 * won't get any samples after PERF_RECORD_EXIT. We can however still 13527 * get a few PERF_RECORD_READ events. 13528 */ 13529 perf_event_task(child, child_ctx, 0); 13530 13531 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13532 perf_event_exit_event(child_event, child_ctx); 13533 13534 mutex_unlock(&child_ctx->mutex); 13535 13536 put_ctx(child_ctx); 13537 } 13538 13539 /* 13540 * When a child task exits, feed back event values to parent events. 13541 * 13542 * Can be called with exec_update_lock held when called from 13543 * setup_new_exec(). 13544 */ 13545 void perf_event_exit_task(struct task_struct *child) 13546 { 13547 struct perf_event *event, *tmp; 13548 13549 mutex_lock(&child->perf_event_mutex); 13550 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13551 owner_entry) { 13552 list_del_init(&event->owner_entry); 13553 13554 /* 13555 * Ensure the list deletion is visible before we clear 13556 * the owner, closes a race against perf_release() where 13557 * we need to serialize on the owner->perf_event_mutex. 13558 */ 13559 smp_store_release(&event->owner, NULL); 13560 } 13561 mutex_unlock(&child->perf_event_mutex); 13562 13563 perf_event_exit_task_context(child); 13564 13565 /* 13566 * The perf_event_exit_task_context calls perf_event_task 13567 * with child's task_ctx, which generates EXIT events for 13568 * child contexts and sets child->perf_event_ctxp[] to NULL. 13569 * At this point we need to send EXIT events to cpu contexts. 13570 */ 13571 perf_event_task(child, NULL, 0); 13572 } 13573 13574 static void perf_free_event(struct perf_event *event, 13575 struct perf_event_context *ctx) 13576 { 13577 struct perf_event *parent = event->parent; 13578 13579 if (WARN_ON_ONCE(!parent)) 13580 return; 13581 13582 mutex_lock(&parent->child_mutex); 13583 list_del_init(&event->child_list); 13584 mutex_unlock(&parent->child_mutex); 13585 13586 put_event(parent); 13587 13588 raw_spin_lock_irq(&ctx->lock); 13589 perf_group_detach(event); 13590 list_del_event(event, ctx); 13591 raw_spin_unlock_irq(&ctx->lock); 13592 free_event(event); 13593 } 13594 13595 /* 13596 * Free a context as created by inheritance by perf_event_init_task() below, 13597 * used by fork() in case of fail. 13598 * 13599 * Even though the task has never lived, the context and events have been 13600 * exposed through the child_list, so we must take care tearing it all down. 13601 */ 13602 void perf_event_free_task(struct task_struct *task) 13603 { 13604 struct perf_event_context *ctx; 13605 struct perf_event *event, *tmp; 13606 13607 ctx = rcu_access_pointer(task->perf_event_ctxp); 13608 if (!ctx) 13609 return; 13610 13611 mutex_lock(&ctx->mutex); 13612 raw_spin_lock_irq(&ctx->lock); 13613 /* 13614 * Destroy the task <-> ctx relation and mark the context dead. 13615 * 13616 * This is important because even though the task hasn't been 13617 * exposed yet the context has been (through child_list). 13618 */ 13619 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13620 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13621 put_task_struct(task); /* cannot be last */ 13622 raw_spin_unlock_irq(&ctx->lock); 13623 13624 13625 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13626 perf_free_event(event, ctx); 13627 13628 mutex_unlock(&ctx->mutex); 13629 13630 /* 13631 * perf_event_release_kernel() could've stolen some of our 13632 * child events and still have them on its free_list. In that 13633 * case we must wait for these events to have been freed (in 13634 * particular all their references to this task must've been 13635 * dropped). 13636 * 13637 * Without this copy_process() will unconditionally free this 13638 * task (irrespective of its reference count) and 13639 * _free_event()'s put_task_struct(event->hw.target) will be a 13640 * use-after-free. 13641 * 13642 * Wait for all events to drop their context reference. 13643 */ 13644 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13645 put_ctx(ctx); /* must be last */ 13646 } 13647 13648 void perf_event_delayed_put(struct task_struct *task) 13649 { 13650 WARN_ON_ONCE(task->perf_event_ctxp); 13651 } 13652 13653 struct file *perf_event_get(unsigned int fd) 13654 { 13655 struct file *file = fget(fd); 13656 if (!file) 13657 return ERR_PTR(-EBADF); 13658 13659 if (file->f_op != &perf_fops) { 13660 fput(file); 13661 return ERR_PTR(-EBADF); 13662 } 13663 13664 return file; 13665 } 13666 13667 const struct perf_event *perf_get_event(struct file *file) 13668 { 13669 if (file->f_op != &perf_fops) 13670 return ERR_PTR(-EINVAL); 13671 13672 return file->private_data; 13673 } 13674 13675 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13676 { 13677 if (!event) 13678 return ERR_PTR(-EINVAL); 13679 13680 return &event->attr; 13681 } 13682 13683 int perf_allow_kernel(struct perf_event_attr *attr) 13684 { 13685 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13686 return -EACCES; 13687 13688 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13689 } 13690 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13691 13692 /* 13693 * Inherit an event from parent task to child task. 13694 * 13695 * Returns: 13696 * - valid pointer on success 13697 * - NULL for orphaned events 13698 * - IS_ERR() on error 13699 */ 13700 static struct perf_event * 13701 inherit_event(struct perf_event *parent_event, 13702 struct task_struct *parent, 13703 struct perf_event_context *parent_ctx, 13704 struct task_struct *child, 13705 struct perf_event *group_leader, 13706 struct perf_event_context *child_ctx) 13707 { 13708 enum perf_event_state parent_state = parent_event->state; 13709 struct perf_event_pmu_context *pmu_ctx; 13710 struct perf_event *child_event; 13711 unsigned long flags; 13712 13713 /* 13714 * Instead of creating recursive hierarchies of events, 13715 * we link inherited events back to the original parent, 13716 * which has a filp for sure, which we use as the reference 13717 * count: 13718 */ 13719 if (parent_event->parent) 13720 parent_event = parent_event->parent; 13721 13722 child_event = perf_event_alloc(&parent_event->attr, 13723 parent_event->cpu, 13724 child, 13725 group_leader, parent_event, 13726 NULL, NULL, -1); 13727 if (IS_ERR(child_event)) 13728 return child_event; 13729 13730 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13731 if (IS_ERR(pmu_ctx)) { 13732 free_event(child_event); 13733 return ERR_CAST(pmu_ctx); 13734 } 13735 child_event->pmu_ctx = pmu_ctx; 13736 13737 /* 13738 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13739 * must be under the same lock in order to serialize against 13740 * perf_event_release_kernel(), such that either we must observe 13741 * is_orphaned_event() or they will observe us on the child_list. 13742 */ 13743 mutex_lock(&parent_event->child_mutex); 13744 if (is_orphaned_event(parent_event) || 13745 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13746 mutex_unlock(&parent_event->child_mutex); 13747 /* task_ctx_data is freed with child_ctx */ 13748 free_event(child_event); 13749 return NULL; 13750 } 13751 13752 get_ctx(child_ctx); 13753 13754 /* 13755 * Make the child state follow the state of the parent event, 13756 * not its attr.disabled bit. We hold the parent's mutex, 13757 * so we won't race with perf_event_{en, dis}able_family. 13758 */ 13759 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13760 child_event->state = PERF_EVENT_STATE_INACTIVE; 13761 else 13762 child_event->state = PERF_EVENT_STATE_OFF; 13763 13764 if (parent_event->attr.freq) { 13765 u64 sample_period = parent_event->hw.sample_period; 13766 struct hw_perf_event *hwc = &child_event->hw; 13767 13768 hwc->sample_period = sample_period; 13769 hwc->last_period = sample_period; 13770 13771 local64_set(&hwc->period_left, sample_period); 13772 } 13773 13774 child_event->ctx = child_ctx; 13775 child_event->overflow_handler = parent_event->overflow_handler; 13776 child_event->overflow_handler_context 13777 = parent_event->overflow_handler_context; 13778 13779 /* 13780 * Precalculate sample_data sizes 13781 */ 13782 perf_event__header_size(child_event); 13783 perf_event__id_header_size(child_event); 13784 13785 /* 13786 * Link it up in the child's context: 13787 */ 13788 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13789 add_event_to_ctx(child_event, child_ctx); 13790 child_event->attach_state |= PERF_ATTACH_CHILD; 13791 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13792 13793 /* 13794 * Link this into the parent event's child list 13795 */ 13796 list_add_tail(&child_event->child_list, &parent_event->child_list); 13797 mutex_unlock(&parent_event->child_mutex); 13798 13799 return child_event; 13800 } 13801 13802 /* 13803 * Inherits an event group. 13804 * 13805 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13806 * This matches with perf_event_release_kernel() removing all child events. 13807 * 13808 * Returns: 13809 * - 0 on success 13810 * - <0 on error 13811 */ 13812 static int inherit_group(struct perf_event *parent_event, 13813 struct task_struct *parent, 13814 struct perf_event_context *parent_ctx, 13815 struct task_struct *child, 13816 struct perf_event_context *child_ctx) 13817 { 13818 struct perf_event *leader; 13819 struct perf_event *sub; 13820 struct perf_event *child_ctr; 13821 13822 leader = inherit_event(parent_event, parent, parent_ctx, 13823 child, NULL, child_ctx); 13824 if (IS_ERR(leader)) 13825 return PTR_ERR(leader); 13826 /* 13827 * @leader can be NULL here because of is_orphaned_event(). In this 13828 * case inherit_event() will create individual events, similar to what 13829 * perf_group_detach() would do anyway. 13830 */ 13831 for_each_sibling_event(sub, parent_event) { 13832 child_ctr = inherit_event(sub, parent, parent_ctx, 13833 child, leader, child_ctx); 13834 if (IS_ERR(child_ctr)) 13835 return PTR_ERR(child_ctr); 13836 13837 if (sub->aux_event == parent_event && child_ctr && 13838 !perf_get_aux_event(child_ctr, leader)) 13839 return -EINVAL; 13840 } 13841 if (leader) 13842 leader->group_generation = parent_event->group_generation; 13843 return 0; 13844 } 13845 13846 /* 13847 * Creates the child task context and tries to inherit the event-group. 13848 * 13849 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13850 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13851 * consistent with perf_event_release_kernel() removing all child events. 13852 * 13853 * Returns: 13854 * - 0 on success 13855 * - <0 on error 13856 */ 13857 static int 13858 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13859 struct perf_event_context *parent_ctx, 13860 struct task_struct *child, 13861 u64 clone_flags, int *inherited_all) 13862 { 13863 struct perf_event_context *child_ctx; 13864 int ret; 13865 13866 if (!event->attr.inherit || 13867 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13868 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13869 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13870 *inherited_all = 0; 13871 return 0; 13872 } 13873 13874 child_ctx = child->perf_event_ctxp; 13875 if (!child_ctx) { 13876 /* 13877 * This is executed from the parent task context, so 13878 * inherit events that have been marked for cloning. 13879 * First allocate and initialize a context for the 13880 * child. 13881 */ 13882 child_ctx = alloc_perf_context(child); 13883 if (!child_ctx) 13884 return -ENOMEM; 13885 13886 child->perf_event_ctxp = child_ctx; 13887 } 13888 13889 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13890 if (ret) 13891 *inherited_all = 0; 13892 13893 return ret; 13894 } 13895 13896 /* 13897 * Initialize the perf_event context in task_struct 13898 */ 13899 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13900 { 13901 struct perf_event_context *child_ctx, *parent_ctx; 13902 struct perf_event_context *cloned_ctx; 13903 struct perf_event *event; 13904 struct task_struct *parent = current; 13905 int inherited_all = 1; 13906 unsigned long flags; 13907 int ret = 0; 13908 13909 if (likely(!parent->perf_event_ctxp)) 13910 return 0; 13911 13912 /* 13913 * If the parent's context is a clone, pin it so it won't get 13914 * swapped under us. 13915 */ 13916 parent_ctx = perf_pin_task_context(parent); 13917 if (!parent_ctx) 13918 return 0; 13919 13920 /* 13921 * No need to check if parent_ctx != NULL here; since we saw 13922 * it non-NULL earlier, the only reason for it to become NULL 13923 * is if we exit, and since we're currently in the middle of 13924 * a fork we can't be exiting at the same time. 13925 */ 13926 13927 /* 13928 * Lock the parent list. No need to lock the child - not PID 13929 * hashed yet and not running, so nobody can access it. 13930 */ 13931 mutex_lock(&parent_ctx->mutex); 13932 13933 /* 13934 * We dont have to disable NMIs - we are only looking at 13935 * the list, not manipulating it: 13936 */ 13937 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13938 ret = inherit_task_group(event, parent, parent_ctx, 13939 child, clone_flags, &inherited_all); 13940 if (ret) 13941 goto out_unlock; 13942 } 13943 13944 /* 13945 * We can't hold ctx->lock when iterating the ->flexible_group list due 13946 * to allocations, but we need to prevent rotation because 13947 * rotate_ctx() will change the list from interrupt context. 13948 */ 13949 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13950 parent_ctx->rotate_disable = 1; 13951 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13952 13953 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13954 ret = inherit_task_group(event, parent, parent_ctx, 13955 child, clone_flags, &inherited_all); 13956 if (ret) 13957 goto out_unlock; 13958 } 13959 13960 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13961 parent_ctx->rotate_disable = 0; 13962 13963 child_ctx = child->perf_event_ctxp; 13964 13965 if (child_ctx && inherited_all) { 13966 /* 13967 * Mark the child context as a clone of the parent 13968 * context, or of whatever the parent is a clone of. 13969 * 13970 * Note that if the parent is a clone, the holding of 13971 * parent_ctx->lock avoids it from being uncloned. 13972 */ 13973 cloned_ctx = parent_ctx->parent_ctx; 13974 if (cloned_ctx) { 13975 child_ctx->parent_ctx = cloned_ctx; 13976 child_ctx->parent_gen = parent_ctx->parent_gen; 13977 } else { 13978 child_ctx->parent_ctx = parent_ctx; 13979 child_ctx->parent_gen = parent_ctx->generation; 13980 } 13981 get_ctx(child_ctx->parent_ctx); 13982 } 13983 13984 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13985 out_unlock: 13986 mutex_unlock(&parent_ctx->mutex); 13987 13988 perf_unpin_context(parent_ctx); 13989 put_ctx(parent_ctx); 13990 13991 return ret; 13992 } 13993 13994 /* 13995 * Initialize the perf_event context in task_struct 13996 */ 13997 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13998 { 13999 int ret; 14000 14001 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14002 child->perf_event_ctxp = NULL; 14003 mutex_init(&child->perf_event_mutex); 14004 INIT_LIST_HEAD(&child->perf_event_list); 14005 14006 ret = perf_event_init_context(child, clone_flags); 14007 if (ret) { 14008 perf_event_free_task(child); 14009 return ret; 14010 } 14011 14012 return 0; 14013 } 14014 14015 static void __init perf_event_init_all_cpus(void) 14016 { 14017 struct swevent_htable *swhash; 14018 struct perf_cpu_context *cpuctx; 14019 int cpu; 14020 14021 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14022 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14023 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14024 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14025 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14026 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14027 14028 14029 for_each_possible_cpu(cpu) { 14030 swhash = &per_cpu(swevent_htable, cpu); 14031 mutex_init(&swhash->hlist_mutex); 14032 14033 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14034 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14035 14036 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14037 14038 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14039 __perf_event_init_context(&cpuctx->ctx); 14040 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14041 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14042 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14043 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14044 cpuctx->heap = cpuctx->heap_default; 14045 } 14046 } 14047 14048 static void perf_swevent_init_cpu(unsigned int cpu) 14049 { 14050 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14051 14052 mutex_lock(&swhash->hlist_mutex); 14053 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14054 struct swevent_hlist *hlist; 14055 14056 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14057 WARN_ON(!hlist); 14058 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14059 } 14060 mutex_unlock(&swhash->hlist_mutex); 14061 } 14062 14063 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14064 static void __perf_event_exit_context(void *__info) 14065 { 14066 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14067 struct perf_event_context *ctx = __info; 14068 struct perf_event *event; 14069 14070 raw_spin_lock(&ctx->lock); 14071 ctx_sched_out(ctx, NULL, EVENT_TIME); 14072 list_for_each_entry(event, &ctx->event_list, event_entry) 14073 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14074 raw_spin_unlock(&ctx->lock); 14075 } 14076 14077 static void perf_event_clear_cpumask(unsigned int cpu) 14078 { 14079 int target[PERF_PMU_MAX_SCOPE]; 14080 unsigned int scope; 14081 struct pmu *pmu; 14082 14083 cpumask_clear_cpu(cpu, perf_online_mask); 14084 14085 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14086 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14087 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14088 14089 target[scope] = -1; 14090 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14091 continue; 14092 14093 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14094 continue; 14095 target[scope] = cpumask_any_but(cpumask, cpu); 14096 if (target[scope] < nr_cpu_ids) 14097 cpumask_set_cpu(target[scope], pmu_cpumask); 14098 } 14099 14100 /* migrate */ 14101 list_for_each_entry(pmu, &pmus, entry) { 14102 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14103 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14104 continue; 14105 14106 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14107 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14108 } 14109 } 14110 14111 static void perf_event_exit_cpu_context(int cpu) 14112 { 14113 struct perf_cpu_context *cpuctx; 14114 struct perf_event_context *ctx; 14115 14116 // XXX simplify cpuctx->online 14117 mutex_lock(&pmus_lock); 14118 /* 14119 * Clear the cpumasks, and migrate to other CPUs if possible. 14120 * Must be invoked before the __perf_event_exit_context. 14121 */ 14122 perf_event_clear_cpumask(cpu); 14123 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14124 ctx = &cpuctx->ctx; 14125 14126 mutex_lock(&ctx->mutex); 14127 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14128 cpuctx->online = 0; 14129 mutex_unlock(&ctx->mutex); 14130 mutex_unlock(&pmus_lock); 14131 } 14132 #else 14133 14134 static void perf_event_exit_cpu_context(int cpu) { } 14135 14136 #endif 14137 14138 static void perf_event_setup_cpumask(unsigned int cpu) 14139 { 14140 struct cpumask *pmu_cpumask; 14141 unsigned int scope; 14142 14143 /* 14144 * Early boot stage, the cpumask hasn't been set yet. 14145 * The perf_online_<domain>_masks includes the first CPU of each domain. 14146 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14147 */ 14148 if (cpumask_empty(perf_online_mask)) { 14149 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14150 pmu_cpumask = perf_scope_cpumask(scope); 14151 if (WARN_ON_ONCE(!pmu_cpumask)) 14152 continue; 14153 cpumask_set_cpu(cpu, pmu_cpumask); 14154 } 14155 goto end; 14156 } 14157 14158 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14159 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14160 14161 pmu_cpumask = perf_scope_cpumask(scope); 14162 14163 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14164 continue; 14165 14166 if (!cpumask_empty(cpumask) && 14167 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14168 cpumask_set_cpu(cpu, pmu_cpumask); 14169 } 14170 end: 14171 cpumask_set_cpu(cpu, perf_online_mask); 14172 } 14173 14174 int perf_event_init_cpu(unsigned int cpu) 14175 { 14176 struct perf_cpu_context *cpuctx; 14177 struct perf_event_context *ctx; 14178 14179 perf_swevent_init_cpu(cpu); 14180 14181 mutex_lock(&pmus_lock); 14182 perf_event_setup_cpumask(cpu); 14183 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14184 ctx = &cpuctx->ctx; 14185 14186 mutex_lock(&ctx->mutex); 14187 cpuctx->online = 1; 14188 mutex_unlock(&ctx->mutex); 14189 mutex_unlock(&pmus_lock); 14190 14191 return 0; 14192 } 14193 14194 int perf_event_exit_cpu(unsigned int cpu) 14195 { 14196 perf_event_exit_cpu_context(cpu); 14197 return 0; 14198 } 14199 14200 static int 14201 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14202 { 14203 int cpu; 14204 14205 for_each_online_cpu(cpu) 14206 perf_event_exit_cpu(cpu); 14207 14208 return NOTIFY_OK; 14209 } 14210 14211 /* 14212 * Run the perf reboot notifier at the very last possible moment so that 14213 * the generic watchdog code runs as long as possible. 14214 */ 14215 static struct notifier_block perf_reboot_notifier = { 14216 .notifier_call = perf_reboot, 14217 .priority = INT_MIN, 14218 }; 14219 14220 void __init perf_event_init(void) 14221 { 14222 int ret; 14223 14224 idr_init(&pmu_idr); 14225 14226 perf_event_init_all_cpus(); 14227 init_srcu_struct(&pmus_srcu); 14228 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14229 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14230 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14231 perf_tp_register(); 14232 perf_event_init_cpu(smp_processor_id()); 14233 register_reboot_notifier(&perf_reboot_notifier); 14234 14235 ret = init_hw_breakpoint(); 14236 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14237 14238 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14239 14240 /* 14241 * Build time assertion that we keep the data_head at the intended 14242 * location. IOW, validation we got the __reserved[] size right. 14243 */ 14244 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14245 != 1024); 14246 } 14247 14248 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14249 char *page) 14250 { 14251 struct perf_pmu_events_attr *pmu_attr = 14252 container_of(attr, struct perf_pmu_events_attr, attr); 14253 14254 if (pmu_attr->event_str) 14255 return sprintf(page, "%s\n", pmu_attr->event_str); 14256 14257 return 0; 14258 } 14259 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14260 14261 static int __init perf_event_sysfs_init(void) 14262 { 14263 struct pmu *pmu; 14264 int ret; 14265 14266 mutex_lock(&pmus_lock); 14267 14268 ret = bus_register(&pmu_bus); 14269 if (ret) 14270 goto unlock; 14271 14272 list_for_each_entry(pmu, &pmus, entry) { 14273 if (pmu->dev) 14274 continue; 14275 14276 ret = pmu_dev_alloc(pmu); 14277 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14278 } 14279 pmu_bus_running = 1; 14280 ret = 0; 14281 14282 unlock: 14283 mutex_unlock(&pmus_lock); 14284 14285 return ret; 14286 } 14287 device_initcall(perf_event_sysfs_init); 14288 14289 #ifdef CONFIG_CGROUP_PERF 14290 static struct cgroup_subsys_state * 14291 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14292 { 14293 struct perf_cgroup *jc; 14294 14295 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14296 if (!jc) 14297 return ERR_PTR(-ENOMEM); 14298 14299 jc->info = alloc_percpu(struct perf_cgroup_info); 14300 if (!jc->info) { 14301 kfree(jc); 14302 return ERR_PTR(-ENOMEM); 14303 } 14304 14305 return &jc->css; 14306 } 14307 14308 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14309 { 14310 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14311 14312 free_percpu(jc->info); 14313 kfree(jc); 14314 } 14315 14316 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14317 { 14318 perf_event_cgroup(css->cgroup); 14319 return 0; 14320 } 14321 14322 static int __perf_cgroup_move(void *info) 14323 { 14324 struct task_struct *task = info; 14325 14326 preempt_disable(); 14327 perf_cgroup_switch(task); 14328 preempt_enable(); 14329 14330 return 0; 14331 } 14332 14333 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14334 { 14335 struct task_struct *task; 14336 struct cgroup_subsys_state *css; 14337 14338 cgroup_taskset_for_each(task, css, tset) 14339 task_function_call(task, __perf_cgroup_move, task); 14340 } 14341 14342 struct cgroup_subsys perf_event_cgrp_subsys = { 14343 .css_alloc = perf_cgroup_css_alloc, 14344 .css_free = perf_cgroup_css_free, 14345 .css_online = perf_cgroup_css_online, 14346 .attach = perf_cgroup_attach, 14347 /* 14348 * Implicitly enable on dfl hierarchy so that perf events can 14349 * always be filtered by cgroup2 path as long as perf_event 14350 * controller is not mounted on a legacy hierarchy. 14351 */ 14352 .implicit_on_dfl = true, 14353 .threaded = true, 14354 }; 14355 #endif /* CONFIG_CGROUP_PERF */ 14356 14357 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14358