1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 60 #include "internal.h" 61 62 #include <asm/irq_regs.h> 63 64 typedef int (*remote_function_f)(void *); 65 66 struct remote_function_call { 67 struct task_struct *p; 68 remote_function_f func; 69 void *info; 70 int ret; 71 }; 72 73 static void remote_function(void *data) 74 { 75 struct remote_function_call *tfc = data; 76 struct task_struct *p = tfc->p; 77 78 if (p) { 79 /* -EAGAIN */ 80 if (task_cpu(p) != smp_processor_id()) 81 return; 82 83 /* 84 * Now that we're on right CPU with IRQs disabled, we can test 85 * if we hit the right task without races. 86 */ 87 88 tfc->ret = -ESRCH; /* No such (running) process */ 89 if (p != current) 90 return; 91 } 92 93 tfc->ret = tfc->func(tfc->info); 94 } 95 96 /** 97 * task_function_call - call a function on the cpu on which a task runs 98 * @p: the task to evaluate 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func when the task is currently running. This might 103 * be on the current CPU, which just calls the function directly. This will 104 * retry due to any failures in smp_call_function_single(), such as if the 105 * task_cpu() goes offline concurrently. 106 * 107 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 108 */ 109 static int 110 task_function_call(struct task_struct *p, remote_function_f func, void *info) 111 { 112 struct remote_function_call data = { 113 .p = p, 114 .func = func, 115 .info = info, 116 .ret = -EAGAIN, 117 }; 118 int ret; 119 120 for (;;) { 121 ret = smp_call_function_single(task_cpu(p), remote_function, 122 &data, 1); 123 if (!ret) 124 ret = data.ret; 125 126 if (ret != -EAGAIN) 127 break; 128 129 cond_resched(); 130 } 131 132 return ret; 133 } 134 135 /** 136 * cpu_function_call - call a function on the cpu 137 * @cpu: target cpu to queue this function 138 * @func: the function to be called 139 * @info: the function call argument 140 * 141 * Calls the function @func on the remote cpu. 142 * 143 * returns: @func return value or -ENXIO when the cpu is offline 144 */ 145 static int cpu_function_call(int cpu, remote_function_f func, void *info) 146 { 147 struct remote_function_call data = { 148 .p = NULL, 149 .func = func, 150 .info = info, 151 .ret = -ENXIO, /* No such CPU */ 152 }; 153 154 smp_call_function_single(cpu, remote_function, &data, 1); 155 156 return data.ret; 157 } 158 159 enum event_type_t { 160 EVENT_FLEXIBLE = 0x01, 161 EVENT_PINNED = 0x02, 162 EVENT_TIME = 0x04, 163 EVENT_FROZEN = 0x08, 164 /* see ctx_resched() for details */ 165 EVENT_CPU = 0x10, 166 EVENT_CGROUP = 0x20, 167 168 /* compound helpers */ 169 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 170 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 171 }; 172 173 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 174 { 175 raw_spin_lock(&ctx->lock); 176 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 177 } 178 179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 180 struct perf_event_context *ctx) 181 { 182 __perf_ctx_lock(&cpuctx->ctx); 183 if (ctx) 184 __perf_ctx_lock(ctx); 185 } 186 187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 188 { 189 /* 190 * If ctx_sched_in() didn't again set any ALL flags, clean up 191 * after ctx_sched_out() by clearing is_active. 192 */ 193 if (ctx->is_active & EVENT_FROZEN) { 194 if (!(ctx->is_active & EVENT_ALL)) 195 ctx->is_active = 0; 196 else 197 ctx->is_active &= ~EVENT_FROZEN; 198 } 199 raw_spin_unlock(&ctx->lock); 200 } 201 202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 203 struct perf_event_context *ctx) 204 { 205 if (ctx) 206 __perf_ctx_unlock(ctx); 207 __perf_ctx_unlock(&cpuctx->ctx); 208 } 209 210 typedef struct { 211 struct perf_cpu_context *cpuctx; 212 struct perf_event_context *ctx; 213 } class_perf_ctx_lock_t; 214 215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) 216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); } 217 218 static inline class_perf_ctx_lock_t 219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, 220 struct perf_event_context *ctx) 221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } 222 223 #define TASK_TOMBSTONE ((void *)-1L) 224 225 static bool is_kernel_event(struct perf_event *event) 226 { 227 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 228 } 229 230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 231 232 struct perf_event_context *perf_cpu_task_ctx(void) 233 { 234 lockdep_assert_irqs_disabled(); 235 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 236 } 237 238 /* 239 * On task ctx scheduling... 240 * 241 * When !ctx->nr_events a task context will not be scheduled. This means 242 * we can disable the scheduler hooks (for performance) without leaving 243 * pending task ctx state. 244 * 245 * This however results in two special cases: 246 * 247 * - removing the last event from a task ctx; this is relatively straight 248 * forward and is done in __perf_remove_from_context. 249 * 250 * - adding the first event to a task ctx; this is tricky because we cannot 251 * rely on ctx->is_active and therefore cannot use event_function_call(). 252 * See perf_install_in_context(). 253 * 254 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 255 */ 256 257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 258 struct perf_event_context *, void *); 259 260 struct event_function_struct { 261 struct perf_event *event; 262 event_f func; 263 void *data; 264 }; 265 266 static int event_function(void *info) 267 { 268 struct event_function_struct *efs = info; 269 struct perf_event *event = efs->event; 270 struct perf_event_context *ctx = event->ctx; 271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 272 struct perf_event_context *task_ctx = cpuctx->task_ctx; 273 int ret = 0; 274 275 lockdep_assert_irqs_disabled(); 276 277 perf_ctx_lock(cpuctx, task_ctx); 278 /* 279 * Since we do the IPI call without holding ctx->lock things can have 280 * changed, double check we hit the task we set out to hit. 281 */ 282 if (ctx->task) { 283 if (ctx->task != current) { 284 ret = -ESRCH; 285 goto unlock; 286 } 287 288 /* 289 * We only use event_function_call() on established contexts, 290 * and event_function() is only ever called when active (or 291 * rather, we'll have bailed in task_function_call() or the 292 * above ctx->task != current test), therefore we must have 293 * ctx->is_active here. 294 */ 295 WARN_ON_ONCE(!ctx->is_active); 296 /* 297 * And since we have ctx->is_active, cpuctx->task_ctx must 298 * match. 299 */ 300 WARN_ON_ONCE(task_ctx != ctx); 301 } else { 302 WARN_ON_ONCE(&cpuctx->ctx != ctx); 303 } 304 305 efs->func(event, cpuctx, ctx, efs->data); 306 unlock: 307 perf_ctx_unlock(cpuctx, task_ctx); 308 309 return ret; 310 } 311 312 static void event_function_call(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 316 struct perf_cpu_context *cpuctx; 317 struct event_function_struct efs = { 318 .event = event, 319 .func = func, 320 .data = data, 321 }; 322 323 if (!event->parent) { 324 /* 325 * If this is a !child event, we must hold ctx::mutex to 326 * stabilize the event->ctx relation. See 327 * perf_event_ctx_lock(). 328 */ 329 lockdep_assert_held(&ctx->mutex); 330 } 331 332 if (!task) { 333 cpu_function_call(event->cpu, event_function, &efs); 334 return; 335 } 336 337 if (task == TASK_TOMBSTONE) 338 return; 339 340 again: 341 if (!task_function_call(task, event_function, &efs)) 342 return; 343 344 local_irq_disable(); 345 cpuctx = this_cpu_ptr(&perf_cpu_context); 346 perf_ctx_lock(cpuctx, ctx); 347 /* 348 * Reload the task pointer, it might have been changed by 349 * a concurrent perf_event_context_sched_out(). 350 */ 351 task = ctx->task; 352 if (task == TASK_TOMBSTONE) 353 goto unlock; 354 if (ctx->is_active) { 355 perf_ctx_unlock(cpuctx, ctx); 356 local_irq_enable(); 357 goto again; 358 } 359 func(event, NULL, ctx, data); 360 unlock: 361 perf_ctx_unlock(cpuctx, ctx); 362 local_irq_enable(); 363 } 364 365 /* 366 * Similar to event_function_call() + event_function(), but hard assumes IRQs 367 * are already disabled and we're on the right CPU. 368 */ 369 static void event_function_local(struct perf_event *event, event_f func, void *data) 370 { 371 struct perf_event_context *ctx = event->ctx; 372 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 373 struct task_struct *task = READ_ONCE(ctx->task); 374 struct perf_event_context *task_ctx = NULL; 375 376 lockdep_assert_irqs_disabled(); 377 378 if (task) { 379 if (task == TASK_TOMBSTONE) 380 return; 381 382 task_ctx = ctx; 383 } 384 385 perf_ctx_lock(cpuctx, task_ctx); 386 387 task = ctx->task; 388 if (task == TASK_TOMBSTONE) 389 goto unlock; 390 391 if (task) { 392 /* 393 * We must be either inactive or active and the right task, 394 * otherwise we're screwed, since we cannot IPI to somewhere 395 * else. 396 */ 397 if (ctx->is_active) { 398 if (WARN_ON_ONCE(task != current)) 399 goto unlock; 400 401 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 402 goto unlock; 403 } 404 } else { 405 WARN_ON_ONCE(&cpuctx->ctx != ctx); 406 } 407 408 func(event, cpuctx, ctx, data); 409 unlock: 410 perf_ctx_unlock(cpuctx, task_ctx); 411 } 412 413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 414 PERF_FLAG_FD_OUTPUT |\ 415 PERF_FLAG_PID_CGROUP |\ 416 PERF_FLAG_FD_CLOEXEC) 417 418 /* 419 * branch priv levels that need permission checks 420 */ 421 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 422 (PERF_SAMPLE_BRANCH_KERNEL |\ 423 PERF_SAMPLE_BRANCH_HV) 424 425 /* 426 * perf_sched_events : >0 events exist 427 */ 428 429 static void perf_sched_delayed(struct work_struct *work); 430 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 432 static DEFINE_MUTEX(perf_sched_mutex); 433 static atomic_t perf_sched_count; 434 435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 436 437 static atomic_t nr_mmap_events __read_mostly; 438 static atomic_t nr_comm_events __read_mostly; 439 static atomic_t nr_namespaces_events __read_mostly; 440 static atomic_t nr_task_events __read_mostly; 441 static atomic_t nr_freq_events __read_mostly; 442 static atomic_t nr_switch_events __read_mostly; 443 static atomic_t nr_ksymbol_events __read_mostly; 444 static atomic_t nr_bpf_events __read_mostly; 445 static atomic_t nr_cgroup_events __read_mostly; 446 static atomic_t nr_text_poke_events __read_mostly; 447 static atomic_t nr_build_id_events __read_mostly; 448 449 static LIST_HEAD(pmus); 450 static DEFINE_MUTEX(pmus_lock); 451 static struct srcu_struct pmus_srcu; 452 static cpumask_var_t perf_online_mask; 453 static cpumask_var_t perf_online_core_mask; 454 static cpumask_var_t perf_online_die_mask; 455 static cpumask_var_t perf_online_cluster_mask; 456 static cpumask_var_t perf_online_pkg_mask; 457 static cpumask_var_t perf_online_sys_mask; 458 static struct kmem_cache *perf_event_cache; 459 460 /* 461 * perf event paranoia level: 462 * -1 - not paranoid at all 463 * 0 - disallow raw tracepoint access for unpriv 464 * 1 - disallow cpu events for unpriv 465 * 2 - disallow kernel profiling for unpriv 466 */ 467 int sysctl_perf_event_paranoid __read_mostly = 2; 468 469 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 470 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 471 472 /* 473 * max perf event sample rate 474 */ 475 #define DEFAULT_MAX_SAMPLE_RATE 100000 476 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 477 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 478 479 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 480 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 481 482 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 483 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 484 485 static int perf_sample_allowed_ns __read_mostly = 486 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 487 488 static void update_perf_cpu_limits(void) 489 { 490 u64 tmp = perf_sample_period_ns; 491 492 tmp *= sysctl_perf_cpu_time_max_percent; 493 tmp = div_u64(tmp, 100); 494 if (!tmp) 495 tmp = 1; 496 497 WRITE_ONCE(perf_sample_allowed_ns, tmp); 498 } 499 500 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 501 502 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 503 void *buffer, size_t *lenp, loff_t *ppos) 504 { 505 int ret; 506 int perf_cpu = sysctl_perf_cpu_time_max_percent; 507 /* 508 * If throttling is disabled don't allow the write: 509 */ 510 if (write && (perf_cpu == 100 || perf_cpu == 0)) 511 return -EINVAL; 512 513 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 514 if (ret || !write) 515 return ret; 516 517 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 518 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 519 update_perf_cpu_limits(); 520 521 return 0; 522 } 523 524 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 525 void *buffer, size_t *lenp, loff_t *ppos) 526 { 527 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 528 529 if (ret || !write) 530 return ret; 531 532 if (sysctl_perf_cpu_time_max_percent == 100 || 533 sysctl_perf_cpu_time_max_percent == 0) { 534 printk(KERN_WARNING 535 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 536 WRITE_ONCE(perf_sample_allowed_ns, 0); 537 } else { 538 update_perf_cpu_limits(); 539 } 540 541 return 0; 542 } 543 544 static const struct ctl_table events_core_sysctl_table[] = { 545 /* 546 * User-space relies on this file as a feature check for 547 * perf_events being enabled. It's an ABI, do not remove! 548 */ 549 { 550 .procname = "perf_event_paranoid", 551 .data = &sysctl_perf_event_paranoid, 552 .maxlen = sizeof(sysctl_perf_event_paranoid), 553 .mode = 0644, 554 .proc_handler = proc_dointvec, 555 }, 556 { 557 .procname = "perf_event_mlock_kb", 558 .data = &sysctl_perf_event_mlock, 559 .maxlen = sizeof(sysctl_perf_event_mlock), 560 .mode = 0644, 561 .proc_handler = proc_dointvec, 562 }, 563 { 564 .procname = "perf_event_max_sample_rate", 565 .data = &sysctl_perf_event_sample_rate, 566 .maxlen = sizeof(sysctl_perf_event_sample_rate), 567 .mode = 0644, 568 .proc_handler = perf_event_max_sample_rate_handler, 569 .extra1 = SYSCTL_ONE, 570 }, 571 { 572 .procname = "perf_cpu_time_max_percent", 573 .data = &sysctl_perf_cpu_time_max_percent, 574 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 575 .mode = 0644, 576 .proc_handler = perf_cpu_time_max_percent_handler, 577 .extra1 = SYSCTL_ZERO, 578 .extra2 = SYSCTL_ONE_HUNDRED, 579 }, 580 }; 581 582 static int __init init_events_core_sysctls(void) 583 { 584 register_sysctl_init("kernel", events_core_sysctl_table); 585 return 0; 586 } 587 core_initcall(init_events_core_sysctls); 588 589 590 /* 591 * perf samples are done in some very critical code paths (NMIs). 592 * If they take too much CPU time, the system can lock up and not 593 * get any real work done. This will drop the sample rate when 594 * we detect that events are taking too long. 595 */ 596 #define NR_ACCUMULATED_SAMPLES 128 597 static DEFINE_PER_CPU(u64, running_sample_length); 598 599 static u64 __report_avg; 600 static u64 __report_allowed; 601 602 static void perf_duration_warn(struct irq_work *w) 603 { 604 printk_ratelimited(KERN_INFO 605 "perf: interrupt took too long (%lld > %lld), lowering " 606 "kernel.perf_event_max_sample_rate to %d\n", 607 __report_avg, __report_allowed, 608 sysctl_perf_event_sample_rate); 609 } 610 611 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 612 613 void perf_sample_event_took(u64 sample_len_ns) 614 { 615 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 616 u64 running_len; 617 u64 avg_len; 618 u32 max; 619 620 if (max_len == 0) 621 return; 622 623 /* Decay the counter by 1 average sample. */ 624 running_len = __this_cpu_read(running_sample_length); 625 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 626 running_len += sample_len_ns; 627 __this_cpu_write(running_sample_length, running_len); 628 629 /* 630 * Note: this will be biased artificially low until we have 631 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 632 * from having to maintain a count. 633 */ 634 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 635 if (avg_len <= max_len) 636 return; 637 638 __report_avg = avg_len; 639 __report_allowed = max_len; 640 641 /* 642 * Compute a throttle threshold 25% below the current duration. 643 */ 644 avg_len += avg_len / 4; 645 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 646 if (avg_len < max) 647 max /= (u32)avg_len; 648 else 649 max = 1; 650 651 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 652 WRITE_ONCE(max_samples_per_tick, max); 653 654 sysctl_perf_event_sample_rate = max * HZ; 655 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 656 657 if (!irq_work_queue(&perf_duration_work)) { 658 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 659 "kernel.perf_event_max_sample_rate to %d\n", 660 __report_avg, __report_allowed, 661 sysctl_perf_event_sample_rate); 662 } 663 } 664 665 static atomic64_t perf_event_id; 666 667 static void update_context_time(struct perf_event_context *ctx); 668 static u64 perf_event_time(struct perf_event *event); 669 670 void __weak perf_event_print_debug(void) { } 671 672 static inline u64 perf_clock(void) 673 { 674 return local_clock(); 675 } 676 677 static inline u64 perf_event_clock(struct perf_event *event) 678 { 679 return event->clock(); 680 } 681 682 /* 683 * State based event timekeeping... 684 * 685 * The basic idea is to use event->state to determine which (if any) time 686 * fields to increment with the current delta. This means we only need to 687 * update timestamps when we change state or when they are explicitly requested 688 * (read). 689 * 690 * Event groups make things a little more complicated, but not terribly so. The 691 * rules for a group are that if the group leader is OFF the entire group is 692 * OFF, irrespective of what the group member states are. This results in 693 * __perf_effective_state(). 694 * 695 * A further ramification is that when a group leader flips between OFF and 696 * !OFF, we need to update all group member times. 697 * 698 * 699 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 700 * need to make sure the relevant context time is updated before we try and 701 * update our timestamps. 702 */ 703 704 static __always_inline enum perf_event_state 705 __perf_effective_state(struct perf_event *event) 706 { 707 struct perf_event *leader = event->group_leader; 708 709 if (leader->state <= PERF_EVENT_STATE_OFF) 710 return leader->state; 711 712 return event->state; 713 } 714 715 static __always_inline void 716 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 717 { 718 enum perf_event_state state = __perf_effective_state(event); 719 u64 delta = now - event->tstamp; 720 721 *enabled = event->total_time_enabled; 722 if (state >= PERF_EVENT_STATE_INACTIVE) 723 *enabled += delta; 724 725 *running = event->total_time_running; 726 if (state >= PERF_EVENT_STATE_ACTIVE) 727 *running += delta; 728 } 729 730 static void perf_event_update_time(struct perf_event *event) 731 { 732 u64 now = perf_event_time(event); 733 734 __perf_update_times(event, now, &event->total_time_enabled, 735 &event->total_time_running); 736 event->tstamp = now; 737 } 738 739 static void perf_event_update_sibling_time(struct perf_event *leader) 740 { 741 struct perf_event *sibling; 742 743 for_each_sibling_event(sibling, leader) 744 perf_event_update_time(sibling); 745 } 746 747 static void 748 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 749 { 750 if (event->state == state) 751 return; 752 753 perf_event_update_time(event); 754 /* 755 * If a group leader gets enabled/disabled all its siblings 756 * are affected too. 757 */ 758 if ((event->state < 0) ^ (state < 0)) 759 perf_event_update_sibling_time(event); 760 761 WRITE_ONCE(event->state, state); 762 } 763 764 /* 765 * UP store-release, load-acquire 766 */ 767 768 #define __store_release(ptr, val) \ 769 do { \ 770 barrier(); \ 771 WRITE_ONCE(*(ptr), (val)); \ 772 } while (0) 773 774 #define __load_acquire(ptr) \ 775 ({ \ 776 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 777 barrier(); \ 778 ___p; \ 779 }) 780 781 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 782 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 783 if (_cgroup && !_epc->nr_cgroups) \ 784 continue; \ 785 else if (_pmu && _epc->pmu != _pmu) \ 786 continue; \ 787 else 788 789 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 790 { 791 struct perf_event_pmu_context *pmu_ctx; 792 793 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 794 perf_pmu_disable(pmu_ctx->pmu); 795 } 796 797 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 798 { 799 struct perf_event_pmu_context *pmu_ctx; 800 801 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 802 perf_pmu_enable(pmu_ctx->pmu); 803 } 804 805 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 806 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 807 808 #ifdef CONFIG_CGROUP_PERF 809 810 static inline bool 811 perf_cgroup_match(struct perf_event *event) 812 { 813 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 814 815 /* @event doesn't care about cgroup */ 816 if (!event->cgrp) 817 return true; 818 819 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 820 if (!cpuctx->cgrp) 821 return false; 822 823 /* 824 * Cgroup scoping is recursive. An event enabled for a cgroup is 825 * also enabled for all its descendant cgroups. If @cpuctx's 826 * cgroup is a descendant of @event's (the test covers identity 827 * case), it's a match. 828 */ 829 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 830 event->cgrp->css.cgroup); 831 } 832 833 static inline void perf_detach_cgroup(struct perf_event *event) 834 { 835 css_put(&event->cgrp->css); 836 event->cgrp = NULL; 837 } 838 839 static inline int is_cgroup_event(struct perf_event *event) 840 { 841 return event->cgrp != NULL; 842 } 843 844 static inline u64 perf_cgroup_event_time(struct perf_event *event) 845 { 846 struct perf_cgroup_info *t; 847 848 t = per_cpu_ptr(event->cgrp->info, event->cpu); 849 return t->time; 850 } 851 852 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 853 { 854 struct perf_cgroup_info *t; 855 856 t = per_cpu_ptr(event->cgrp->info, event->cpu); 857 if (!__load_acquire(&t->active)) 858 return t->time; 859 now += READ_ONCE(t->timeoffset); 860 return now; 861 } 862 863 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 864 { 865 if (adv) 866 info->time += now - info->timestamp; 867 info->timestamp = now; 868 /* 869 * see update_context_time() 870 */ 871 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 872 } 873 874 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 875 { 876 struct perf_cgroup *cgrp = cpuctx->cgrp; 877 struct cgroup_subsys_state *css; 878 struct perf_cgroup_info *info; 879 880 if (cgrp) { 881 u64 now = perf_clock(); 882 883 for (css = &cgrp->css; css; css = css->parent) { 884 cgrp = container_of(css, struct perf_cgroup, css); 885 info = this_cpu_ptr(cgrp->info); 886 887 __update_cgrp_time(info, now, true); 888 if (final) 889 __store_release(&info->active, 0); 890 } 891 } 892 } 893 894 static inline void update_cgrp_time_from_event(struct perf_event *event) 895 { 896 struct perf_cgroup_info *info; 897 898 /* 899 * ensure we access cgroup data only when needed and 900 * when we know the cgroup is pinned (css_get) 901 */ 902 if (!is_cgroup_event(event)) 903 return; 904 905 info = this_cpu_ptr(event->cgrp->info); 906 /* 907 * Do not update time when cgroup is not active 908 */ 909 if (info->active) 910 __update_cgrp_time(info, perf_clock(), true); 911 } 912 913 static inline void 914 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 915 { 916 struct perf_event_context *ctx = &cpuctx->ctx; 917 struct perf_cgroup *cgrp = cpuctx->cgrp; 918 struct perf_cgroup_info *info; 919 struct cgroup_subsys_state *css; 920 921 /* 922 * ctx->lock held by caller 923 * ensure we do not access cgroup data 924 * unless we have the cgroup pinned (css_get) 925 */ 926 if (!cgrp) 927 return; 928 929 WARN_ON_ONCE(!ctx->nr_cgroups); 930 931 for (css = &cgrp->css; css; css = css->parent) { 932 cgrp = container_of(css, struct perf_cgroup, css); 933 info = this_cpu_ptr(cgrp->info); 934 __update_cgrp_time(info, ctx->timestamp, false); 935 __store_release(&info->active, 1); 936 } 937 } 938 939 /* 940 * reschedule events based on the cgroup constraint of task. 941 */ 942 static void perf_cgroup_switch(struct task_struct *task) 943 { 944 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 945 struct perf_cgroup *cgrp; 946 947 /* 948 * cpuctx->cgrp is set when the first cgroup event enabled, 949 * and is cleared when the last cgroup event disabled. 950 */ 951 if (READ_ONCE(cpuctx->cgrp) == NULL) 952 return; 953 954 cgrp = perf_cgroup_from_task(task, NULL); 955 if (READ_ONCE(cpuctx->cgrp) == cgrp) 956 return; 957 958 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 959 /* 960 * Re-check, could've raced vs perf_remove_from_context(). 961 */ 962 if (READ_ONCE(cpuctx->cgrp) == NULL) 963 return; 964 965 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 966 967 perf_ctx_disable(&cpuctx->ctx, true); 968 969 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 970 /* 971 * must not be done before ctxswout due 972 * to update_cgrp_time_from_cpuctx() in 973 * ctx_sched_out() 974 */ 975 cpuctx->cgrp = cgrp; 976 /* 977 * set cgrp before ctxsw in to allow 978 * perf_cgroup_set_timestamp() in ctx_sched_in() 979 * to not have to pass task around 980 */ 981 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 982 983 perf_ctx_enable(&cpuctx->ctx, true); 984 } 985 986 static int perf_cgroup_ensure_storage(struct perf_event *event, 987 struct cgroup_subsys_state *css) 988 { 989 struct perf_cpu_context *cpuctx; 990 struct perf_event **storage; 991 int cpu, heap_size, ret = 0; 992 993 /* 994 * Allow storage to have sufficient space for an iterator for each 995 * possibly nested cgroup plus an iterator for events with no cgroup. 996 */ 997 for (heap_size = 1; css; css = css->parent) 998 heap_size++; 999 1000 for_each_possible_cpu(cpu) { 1001 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 1002 if (heap_size <= cpuctx->heap_size) 1003 continue; 1004 1005 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 1006 GFP_KERNEL, cpu_to_node(cpu)); 1007 if (!storage) { 1008 ret = -ENOMEM; 1009 break; 1010 } 1011 1012 raw_spin_lock_irq(&cpuctx->ctx.lock); 1013 if (cpuctx->heap_size < heap_size) { 1014 swap(cpuctx->heap, storage); 1015 if (storage == cpuctx->heap_default) 1016 storage = NULL; 1017 cpuctx->heap_size = heap_size; 1018 } 1019 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1020 1021 kfree(storage); 1022 } 1023 1024 return ret; 1025 } 1026 1027 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1028 struct perf_event_attr *attr, 1029 struct perf_event *group_leader) 1030 { 1031 struct perf_cgroup *cgrp; 1032 struct cgroup_subsys_state *css; 1033 CLASS(fd, f)(fd); 1034 int ret = 0; 1035 1036 if (fd_empty(f)) 1037 return -EBADF; 1038 1039 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1040 &perf_event_cgrp_subsys); 1041 if (IS_ERR(css)) 1042 return PTR_ERR(css); 1043 1044 ret = perf_cgroup_ensure_storage(event, css); 1045 if (ret) 1046 return ret; 1047 1048 cgrp = container_of(css, struct perf_cgroup, css); 1049 event->cgrp = cgrp; 1050 1051 /* 1052 * all events in a group must monitor 1053 * the same cgroup because a task belongs 1054 * to only one perf cgroup at a time 1055 */ 1056 if (group_leader && group_leader->cgrp != cgrp) { 1057 perf_detach_cgroup(event); 1058 ret = -EINVAL; 1059 } 1060 return ret; 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 1068 if (!is_cgroup_event(event)) 1069 return; 1070 1071 event->pmu_ctx->nr_cgroups++; 1072 1073 /* 1074 * Because cgroup events are always per-cpu events, 1075 * @ctx == &cpuctx->ctx. 1076 */ 1077 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1078 1079 if (ctx->nr_cgroups++) 1080 return; 1081 1082 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1083 } 1084 1085 static inline void 1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1087 { 1088 struct perf_cpu_context *cpuctx; 1089 1090 if (!is_cgroup_event(event)) 1091 return; 1092 1093 event->pmu_ctx->nr_cgroups--; 1094 1095 /* 1096 * Because cgroup events are always per-cpu events, 1097 * @ctx == &cpuctx->ctx. 1098 */ 1099 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1100 1101 if (--ctx->nr_cgroups) 1102 return; 1103 1104 cpuctx->cgrp = NULL; 1105 } 1106 1107 #else /* !CONFIG_CGROUP_PERF */ 1108 1109 static inline bool 1110 perf_cgroup_match(struct perf_event *event) 1111 { 1112 return true; 1113 } 1114 1115 static inline void perf_detach_cgroup(struct perf_event *event) 1116 {} 1117 1118 static inline int is_cgroup_event(struct perf_event *event) 1119 { 1120 return 0; 1121 } 1122 1123 static inline void update_cgrp_time_from_event(struct perf_event *event) 1124 { 1125 } 1126 1127 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1128 bool final) 1129 { 1130 } 1131 1132 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1133 struct perf_event_attr *attr, 1134 struct perf_event *group_leader) 1135 { 1136 return -EINVAL; 1137 } 1138 1139 static inline void 1140 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1141 { 1142 } 1143 1144 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1145 { 1146 return 0; 1147 } 1148 1149 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1150 { 1151 return 0; 1152 } 1153 1154 static inline void 1155 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1156 { 1157 } 1158 1159 static inline void 1160 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1161 { 1162 } 1163 1164 static void perf_cgroup_switch(struct task_struct *task) 1165 { 1166 } 1167 #endif 1168 1169 /* 1170 * set default to be dependent on timer tick just 1171 * like original code 1172 */ 1173 #define PERF_CPU_HRTIMER (1000 / HZ) 1174 /* 1175 * function must be called with interrupts disabled 1176 */ 1177 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1178 { 1179 struct perf_cpu_pmu_context *cpc; 1180 bool rotations; 1181 1182 lockdep_assert_irqs_disabled(); 1183 1184 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1185 rotations = perf_rotate_context(cpc); 1186 1187 raw_spin_lock(&cpc->hrtimer_lock); 1188 if (rotations) 1189 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1190 else 1191 cpc->hrtimer_active = 0; 1192 raw_spin_unlock(&cpc->hrtimer_lock); 1193 1194 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1195 } 1196 1197 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1198 { 1199 struct hrtimer *timer = &cpc->hrtimer; 1200 struct pmu *pmu = cpc->epc.pmu; 1201 u64 interval; 1202 1203 /* 1204 * check default is sane, if not set then force to 1205 * default interval (1/tick) 1206 */ 1207 interval = pmu->hrtimer_interval_ms; 1208 if (interval < 1) 1209 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1210 1211 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1212 1213 raw_spin_lock_init(&cpc->hrtimer_lock); 1214 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1215 HRTIMER_MODE_ABS_PINNED_HARD); 1216 } 1217 1218 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1219 { 1220 struct hrtimer *timer = &cpc->hrtimer; 1221 unsigned long flags; 1222 1223 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1224 if (!cpc->hrtimer_active) { 1225 cpc->hrtimer_active = 1; 1226 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1227 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1228 } 1229 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1230 1231 return 0; 1232 } 1233 1234 static int perf_mux_hrtimer_restart_ipi(void *arg) 1235 { 1236 return perf_mux_hrtimer_restart(arg); 1237 } 1238 1239 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1240 { 1241 return *this_cpu_ptr(pmu->cpu_pmu_context); 1242 } 1243 1244 void perf_pmu_disable(struct pmu *pmu) 1245 { 1246 int *count = &this_cpc(pmu)->pmu_disable_count; 1247 if (!(*count)++) 1248 pmu->pmu_disable(pmu); 1249 } 1250 1251 void perf_pmu_enable(struct pmu *pmu) 1252 { 1253 int *count = &this_cpc(pmu)->pmu_disable_count; 1254 if (!--(*count)) 1255 pmu->pmu_enable(pmu); 1256 } 1257 1258 static void perf_assert_pmu_disabled(struct pmu *pmu) 1259 { 1260 int *count = &this_cpc(pmu)->pmu_disable_count; 1261 WARN_ON_ONCE(*count == 0); 1262 } 1263 1264 static inline void perf_pmu_read(struct perf_event *event) 1265 { 1266 if (event->state == PERF_EVENT_STATE_ACTIVE) 1267 event->pmu->read(event); 1268 } 1269 1270 static void get_ctx(struct perf_event_context *ctx) 1271 { 1272 refcount_inc(&ctx->refcount); 1273 } 1274 1275 static void free_ctx(struct rcu_head *head) 1276 { 1277 struct perf_event_context *ctx; 1278 1279 ctx = container_of(head, struct perf_event_context, rcu_head); 1280 kfree(ctx); 1281 } 1282 1283 static void put_ctx(struct perf_event_context *ctx) 1284 { 1285 if (refcount_dec_and_test(&ctx->refcount)) { 1286 if (ctx->parent_ctx) 1287 put_ctx(ctx->parent_ctx); 1288 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1289 put_task_struct(ctx->task); 1290 call_rcu(&ctx->rcu_head, free_ctx); 1291 } else { 1292 smp_mb__after_atomic(); /* pairs with wait_var_event() */ 1293 if (ctx->task == TASK_TOMBSTONE) 1294 wake_up_var(&ctx->refcount); 1295 } 1296 } 1297 1298 /* 1299 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1300 * perf_pmu_migrate_context() we need some magic. 1301 * 1302 * Those places that change perf_event::ctx will hold both 1303 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1304 * 1305 * Lock ordering is by mutex address. There are two other sites where 1306 * perf_event_context::mutex nests and those are: 1307 * 1308 * - perf_event_exit_task_context() [ child , 0 ] 1309 * perf_event_exit_event() 1310 * put_event() [ parent, 1 ] 1311 * 1312 * - perf_event_init_context() [ parent, 0 ] 1313 * inherit_task_group() 1314 * inherit_group() 1315 * inherit_event() 1316 * perf_event_alloc() 1317 * perf_init_event() 1318 * perf_try_init_event() [ child , 1 ] 1319 * 1320 * While it appears there is an obvious deadlock here -- the parent and child 1321 * nesting levels are inverted between the two. This is in fact safe because 1322 * life-time rules separate them. That is an exiting task cannot fork, and a 1323 * spawning task cannot (yet) exit. 1324 * 1325 * But remember that these are parent<->child context relations, and 1326 * migration does not affect children, therefore these two orderings should not 1327 * interact. 1328 * 1329 * The change in perf_event::ctx does not affect children (as claimed above) 1330 * because the sys_perf_event_open() case will install a new event and break 1331 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1332 * concerned with cpuctx and that doesn't have children. 1333 * 1334 * The places that change perf_event::ctx will issue: 1335 * 1336 * perf_remove_from_context(); 1337 * synchronize_rcu(); 1338 * perf_install_in_context(); 1339 * 1340 * to affect the change. The remove_from_context() + synchronize_rcu() should 1341 * quiesce the event, after which we can install it in the new location. This 1342 * means that only external vectors (perf_fops, prctl) can perturb the event 1343 * while in transit. Therefore all such accessors should also acquire 1344 * perf_event_context::mutex to serialize against this. 1345 * 1346 * However; because event->ctx can change while we're waiting to acquire 1347 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1348 * function. 1349 * 1350 * Lock order: 1351 * exec_update_lock 1352 * task_struct::perf_event_mutex 1353 * perf_event_context::mutex 1354 * perf_event::child_mutex; 1355 * perf_event_context::lock 1356 * mmap_lock 1357 * perf_event::mmap_mutex 1358 * perf_buffer::aux_mutex 1359 * perf_addr_filters_head::lock 1360 * 1361 * cpu_hotplug_lock 1362 * pmus_lock 1363 * cpuctx->mutex / perf_event_context::mutex 1364 */ 1365 static struct perf_event_context * 1366 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 again: 1371 rcu_read_lock(); 1372 ctx = READ_ONCE(event->ctx); 1373 if (!refcount_inc_not_zero(&ctx->refcount)) { 1374 rcu_read_unlock(); 1375 goto again; 1376 } 1377 rcu_read_unlock(); 1378 1379 mutex_lock_nested(&ctx->mutex, nesting); 1380 if (event->ctx != ctx) { 1381 mutex_unlock(&ctx->mutex); 1382 put_ctx(ctx); 1383 goto again; 1384 } 1385 1386 return ctx; 1387 } 1388 1389 static inline struct perf_event_context * 1390 perf_event_ctx_lock(struct perf_event *event) 1391 { 1392 return perf_event_ctx_lock_nested(event, 0); 1393 } 1394 1395 static void perf_event_ctx_unlock(struct perf_event *event, 1396 struct perf_event_context *ctx) 1397 { 1398 mutex_unlock(&ctx->mutex); 1399 put_ctx(ctx); 1400 } 1401 1402 /* 1403 * This must be done under the ctx->lock, such as to serialize against 1404 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1405 * calling scheduler related locks and ctx->lock nests inside those. 1406 */ 1407 static __must_check struct perf_event_context * 1408 unclone_ctx(struct perf_event_context *ctx) 1409 { 1410 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1411 1412 lockdep_assert_held(&ctx->lock); 1413 1414 if (parent_ctx) 1415 ctx->parent_ctx = NULL; 1416 ctx->generation++; 1417 1418 return parent_ctx; 1419 } 1420 1421 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1422 enum pid_type type) 1423 { 1424 u32 nr; 1425 /* 1426 * only top level events have the pid namespace they were created in 1427 */ 1428 if (event->parent) 1429 event = event->parent; 1430 1431 nr = __task_pid_nr_ns(p, type, event->ns); 1432 /* avoid -1 if it is idle thread or runs in another ns */ 1433 if (!nr && !pid_alive(p)) 1434 nr = -1; 1435 return nr; 1436 } 1437 1438 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1439 { 1440 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1441 } 1442 1443 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1444 { 1445 return perf_event_pid_type(event, p, PIDTYPE_PID); 1446 } 1447 1448 /* 1449 * If we inherit events we want to return the parent event id 1450 * to userspace. 1451 */ 1452 static u64 primary_event_id(struct perf_event *event) 1453 { 1454 u64 id = event->id; 1455 1456 if (event->parent) 1457 id = event->parent->id; 1458 1459 return id; 1460 } 1461 1462 /* 1463 * Get the perf_event_context for a task and lock it. 1464 * 1465 * This has to cope with the fact that until it is locked, 1466 * the context could get moved to another task. 1467 */ 1468 static struct perf_event_context * 1469 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1470 { 1471 struct perf_event_context *ctx; 1472 1473 retry: 1474 /* 1475 * One of the few rules of preemptible RCU is that one cannot do 1476 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1477 * part of the read side critical section was irqs-enabled -- see 1478 * rcu_read_unlock_special(). 1479 * 1480 * Since ctx->lock nests under rq->lock we must ensure the entire read 1481 * side critical section has interrupts disabled. 1482 */ 1483 local_irq_save(*flags); 1484 rcu_read_lock(); 1485 ctx = rcu_dereference(task->perf_event_ctxp); 1486 if (ctx) { 1487 /* 1488 * If this context is a clone of another, it might 1489 * get swapped for another underneath us by 1490 * perf_event_task_sched_out, though the 1491 * rcu_read_lock() protects us from any context 1492 * getting freed. Lock the context and check if it 1493 * got swapped before we could get the lock, and retry 1494 * if so. If we locked the right context, then it 1495 * can't get swapped on us any more. 1496 */ 1497 raw_spin_lock(&ctx->lock); 1498 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1499 raw_spin_unlock(&ctx->lock); 1500 rcu_read_unlock(); 1501 local_irq_restore(*flags); 1502 goto retry; 1503 } 1504 1505 if (ctx->task == TASK_TOMBSTONE || 1506 !refcount_inc_not_zero(&ctx->refcount)) { 1507 raw_spin_unlock(&ctx->lock); 1508 ctx = NULL; 1509 } else { 1510 WARN_ON_ONCE(ctx->task != task); 1511 } 1512 } 1513 rcu_read_unlock(); 1514 if (!ctx) 1515 local_irq_restore(*flags); 1516 return ctx; 1517 } 1518 1519 /* 1520 * Get the context for a task and increment its pin_count so it 1521 * can't get swapped to another task. This also increments its 1522 * reference count so that the context can't get freed. 1523 */ 1524 static struct perf_event_context * 1525 perf_pin_task_context(struct task_struct *task) 1526 { 1527 struct perf_event_context *ctx; 1528 unsigned long flags; 1529 1530 ctx = perf_lock_task_context(task, &flags); 1531 if (ctx) { 1532 ++ctx->pin_count; 1533 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1534 } 1535 return ctx; 1536 } 1537 1538 static void perf_unpin_context(struct perf_event_context *ctx) 1539 { 1540 unsigned long flags; 1541 1542 raw_spin_lock_irqsave(&ctx->lock, flags); 1543 --ctx->pin_count; 1544 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1545 } 1546 1547 /* 1548 * Update the record of the current time in a context. 1549 */ 1550 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1551 { 1552 u64 now = perf_clock(); 1553 1554 lockdep_assert_held(&ctx->lock); 1555 1556 if (adv) 1557 ctx->time += now - ctx->timestamp; 1558 ctx->timestamp = now; 1559 1560 /* 1561 * The above: time' = time + (now - timestamp), can be re-arranged 1562 * into: time` = now + (time - timestamp), which gives a single value 1563 * offset to compute future time without locks on. 1564 * 1565 * See perf_event_time_now(), which can be used from NMI context where 1566 * it's (obviously) not possible to acquire ctx->lock in order to read 1567 * both the above values in a consistent manner. 1568 */ 1569 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1570 } 1571 1572 static void update_context_time(struct perf_event_context *ctx) 1573 { 1574 __update_context_time(ctx, true); 1575 } 1576 1577 static u64 perf_event_time(struct perf_event *event) 1578 { 1579 struct perf_event_context *ctx = event->ctx; 1580 1581 if (unlikely(!ctx)) 1582 return 0; 1583 1584 if (is_cgroup_event(event)) 1585 return perf_cgroup_event_time(event); 1586 1587 return ctx->time; 1588 } 1589 1590 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1591 { 1592 struct perf_event_context *ctx = event->ctx; 1593 1594 if (unlikely(!ctx)) 1595 return 0; 1596 1597 if (is_cgroup_event(event)) 1598 return perf_cgroup_event_time_now(event, now); 1599 1600 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1601 return ctx->time; 1602 1603 now += READ_ONCE(ctx->timeoffset); 1604 return now; 1605 } 1606 1607 static enum event_type_t get_event_type(struct perf_event *event) 1608 { 1609 struct perf_event_context *ctx = event->ctx; 1610 enum event_type_t event_type; 1611 1612 lockdep_assert_held(&ctx->lock); 1613 1614 /* 1615 * It's 'group type', really, because if our group leader is 1616 * pinned, so are we. 1617 */ 1618 if (event->group_leader != event) 1619 event = event->group_leader; 1620 1621 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1622 if (!ctx->task) 1623 event_type |= EVENT_CPU; 1624 1625 return event_type; 1626 } 1627 1628 /* 1629 * Helper function to initialize event group nodes. 1630 */ 1631 static void init_event_group(struct perf_event *event) 1632 { 1633 RB_CLEAR_NODE(&event->group_node); 1634 event->group_index = 0; 1635 } 1636 1637 /* 1638 * Extract pinned or flexible groups from the context 1639 * based on event attrs bits. 1640 */ 1641 static struct perf_event_groups * 1642 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1643 { 1644 if (event->attr.pinned) 1645 return &ctx->pinned_groups; 1646 else 1647 return &ctx->flexible_groups; 1648 } 1649 1650 /* 1651 * Helper function to initializes perf_event_group trees. 1652 */ 1653 static void perf_event_groups_init(struct perf_event_groups *groups) 1654 { 1655 groups->tree = RB_ROOT; 1656 groups->index = 0; 1657 } 1658 1659 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1660 { 1661 struct cgroup *cgroup = NULL; 1662 1663 #ifdef CONFIG_CGROUP_PERF 1664 if (event->cgrp) 1665 cgroup = event->cgrp->css.cgroup; 1666 #endif 1667 1668 return cgroup; 1669 } 1670 1671 /* 1672 * Compare function for event groups; 1673 * 1674 * Implements complex key that first sorts by CPU and then by virtual index 1675 * which provides ordering when rotating groups for the same CPU. 1676 */ 1677 static __always_inline int 1678 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1679 const struct cgroup *left_cgroup, const u64 left_group_index, 1680 const struct perf_event *right) 1681 { 1682 if (left_cpu < right->cpu) 1683 return -1; 1684 if (left_cpu > right->cpu) 1685 return 1; 1686 1687 if (left_pmu) { 1688 if (left_pmu < right->pmu_ctx->pmu) 1689 return -1; 1690 if (left_pmu > right->pmu_ctx->pmu) 1691 return 1; 1692 } 1693 1694 #ifdef CONFIG_CGROUP_PERF 1695 { 1696 const struct cgroup *right_cgroup = event_cgroup(right); 1697 1698 if (left_cgroup != right_cgroup) { 1699 if (!left_cgroup) { 1700 /* 1701 * Left has no cgroup but right does, no 1702 * cgroups come first. 1703 */ 1704 return -1; 1705 } 1706 if (!right_cgroup) { 1707 /* 1708 * Right has no cgroup but left does, no 1709 * cgroups come first. 1710 */ 1711 return 1; 1712 } 1713 /* Two dissimilar cgroups, order by id. */ 1714 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1715 return -1; 1716 1717 return 1; 1718 } 1719 } 1720 #endif 1721 1722 if (left_group_index < right->group_index) 1723 return -1; 1724 if (left_group_index > right->group_index) 1725 return 1; 1726 1727 return 0; 1728 } 1729 1730 #define __node_2_pe(node) \ 1731 rb_entry((node), struct perf_event, group_node) 1732 1733 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1734 { 1735 struct perf_event *e = __node_2_pe(a); 1736 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1737 e->group_index, __node_2_pe(b)) < 0; 1738 } 1739 1740 struct __group_key { 1741 int cpu; 1742 struct pmu *pmu; 1743 struct cgroup *cgroup; 1744 }; 1745 1746 static inline int __group_cmp(const void *key, const struct rb_node *node) 1747 { 1748 const struct __group_key *a = key; 1749 const struct perf_event *b = __node_2_pe(node); 1750 1751 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1752 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1753 } 1754 1755 static inline int 1756 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1757 { 1758 const struct __group_key *a = key; 1759 const struct perf_event *b = __node_2_pe(node); 1760 1761 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1762 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1763 b->group_index, b); 1764 } 1765 1766 /* 1767 * Insert @event into @groups' tree; using 1768 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1769 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1770 */ 1771 static void 1772 perf_event_groups_insert(struct perf_event_groups *groups, 1773 struct perf_event *event) 1774 { 1775 event->group_index = ++groups->index; 1776 1777 rb_add(&event->group_node, &groups->tree, __group_less); 1778 } 1779 1780 /* 1781 * Helper function to insert event into the pinned or flexible groups. 1782 */ 1783 static void 1784 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1785 { 1786 struct perf_event_groups *groups; 1787 1788 groups = get_event_groups(event, ctx); 1789 perf_event_groups_insert(groups, event); 1790 } 1791 1792 /* 1793 * Delete a group from a tree. 1794 */ 1795 static void 1796 perf_event_groups_delete(struct perf_event_groups *groups, 1797 struct perf_event *event) 1798 { 1799 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1800 RB_EMPTY_ROOT(&groups->tree)); 1801 1802 rb_erase(&event->group_node, &groups->tree); 1803 init_event_group(event); 1804 } 1805 1806 /* 1807 * Helper function to delete event from its groups. 1808 */ 1809 static void 1810 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1811 { 1812 struct perf_event_groups *groups; 1813 1814 groups = get_event_groups(event, ctx); 1815 perf_event_groups_delete(groups, event); 1816 } 1817 1818 /* 1819 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1820 */ 1821 static struct perf_event * 1822 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1823 struct pmu *pmu, struct cgroup *cgrp) 1824 { 1825 struct __group_key key = { 1826 .cpu = cpu, 1827 .pmu = pmu, 1828 .cgroup = cgrp, 1829 }; 1830 struct rb_node *node; 1831 1832 node = rb_find_first(&key, &groups->tree, __group_cmp); 1833 if (node) 1834 return __node_2_pe(node); 1835 1836 return NULL; 1837 } 1838 1839 static struct perf_event * 1840 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1841 { 1842 struct __group_key key = { 1843 .cpu = event->cpu, 1844 .pmu = pmu, 1845 .cgroup = event_cgroup(event), 1846 }; 1847 struct rb_node *next; 1848 1849 next = rb_next_match(&key, &event->group_node, __group_cmp); 1850 if (next) 1851 return __node_2_pe(next); 1852 1853 return NULL; 1854 } 1855 1856 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1857 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1858 event; event = perf_event_groups_next(event, pmu)) 1859 1860 /* 1861 * Iterate through the whole groups tree. 1862 */ 1863 #define perf_event_groups_for_each(event, groups) \ 1864 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1865 typeof(*event), group_node); event; \ 1866 event = rb_entry_safe(rb_next(&event->group_node), \ 1867 typeof(*event), group_node)) 1868 1869 /* 1870 * Does the event attribute request inherit with PERF_SAMPLE_READ 1871 */ 1872 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1873 { 1874 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1875 } 1876 1877 /* 1878 * Add an event from the lists for its context. 1879 * Must be called with ctx->mutex and ctx->lock held. 1880 */ 1881 static void 1882 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1883 { 1884 lockdep_assert_held(&ctx->lock); 1885 1886 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1887 event->attach_state |= PERF_ATTACH_CONTEXT; 1888 1889 event->tstamp = perf_event_time(event); 1890 1891 /* 1892 * If we're a stand alone event or group leader, we go to the context 1893 * list, group events are kept attached to the group so that 1894 * perf_group_detach can, at all times, locate all siblings. 1895 */ 1896 if (event->group_leader == event) { 1897 event->group_caps = event->event_caps; 1898 add_event_to_groups(event, ctx); 1899 } 1900 1901 list_add_rcu(&event->event_entry, &ctx->event_list); 1902 ctx->nr_events++; 1903 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1904 ctx->nr_user++; 1905 if (event->attr.inherit_stat) 1906 ctx->nr_stat++; 1907 if (has_inherit_and_sample_read(&event->attr)) 1908 local_inc(&ctx->nr_no_switch_fast); 1909 1910 if (event->state > PERF_EVENT_STATE_OFF) 1911 perf_cgroup_event_enable(event, ctx); 1912 1913 ctx->generation++; 1914 event->pmu_ctx->nr_events++; 1915 } 1916 1917 /* 1918 * Initialize event state based on the perf_event_attr::disabled. 1919 */ 1920 static inline void perf_event__state_init(struct perf_event *event) 1921 { 1922 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1923 PERF_EVENT_STATE_INACTIVE; 1924 } 1925 1926 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1927 { 1928 int entry = sizeof(u64); /* value */ 1929 int size = 0; 1930 int nr = 1; 1931 1932 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1933 size += sizeof(u64); 1934 1935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1936 size += sizeof(u64); 1937 1938 if (read_format & PERF_FORMAT_ID) 1939 entry += sizeof(u64); 1940 1941 if (read_format & PERF_FORMAT_LOST) 1942 entry += sizeof(u64); 1943 1944 if (read_format & PERF_FORMAT_GROUP) { 1945 nr += nr_siblings; 1946 size += sizeof(u64); 1947 } 1948 1949 /* 1950 * Since perf_event_validate_size() limits this to 16k and inhibits 1951 * adding more siblings, this will never overflow. 1952 */ 1953 return size + nr * entry; 1954 } 1955 1956 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1957 { 1958 struct perf_sample_data *data; 1959 u16 size = 0; 1960 1961 if (sample_type & PERF_SAMPLE_IP) 1962 size += sizeof(data->ip); 1963 1964 if (sample_type & PERF_SAMPLE_ADDR) 1965 size += sizeof(data->addr); 1966 1967 if (sample_type & PERF_SAMPLE_PERIOD) 1968 size += sizeof(data->period); 1969 1970 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1971 size += sizeof(data->weight.full); 1972 1973 if (sample_type & PERF_SAMPLE_READ) 1974 size += event->read_size; 1975 1976 if (sample_type & PERF_SAMPLE_DATA_SRC) 1977 size += sizeof(data->data_src.val); 1978 1979 if (sample_type & PERF_SAMPLE_TRANSACTION) 1980 size += sizeof(data->txn); 1981 1982 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1983 size += sizeof(data->phys_addr); 1984 1985 if (sample_type & PERF_SAMPLE_CGROUP) 1986 size += sizeof(data->cgroup); 1987 1988 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1989 size += sizeof(data->data_page_size); 1990 1991 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1992 size += sizeof(data->code_page_size); 1993 1994 event->header_size = size; 1995 } 1996 1997 /* 1998 * Called at perf_event creation and when events are attached/detached from a 1999 * group. 2000 */ 2001 static void perf_event__header_size(struct perf_event *event) 2002 { 2003 event->read_size = 2004 __perf_event_read_size(event->attr.read_format, 2005 event->group_leader->nr_siblings); 2006 __perf_event_header_size(event, event->attr.sample_type); 2007 } 2008 2009 static void perf_event__id_header_size(struct perf_event *event) 2010 { 2011 struct perf_sample_data *data; 2012 u64 sample_type = event->attr.sample_type; 2013 u16 size = 0; 2014 2015 if (sample_type & PERF_SAMPLE_TID) 2016 size += sizeof(data->tid_entry); 2017 2018 if (sample_type & PERF_SAMPLE_TIME) 2019 size += sizeof(data->time); 2020 2021 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2022 size += sizeof(data->id); 2023 2024 if (sample_type & PERF_SAMPLE_ID) 2025 size += sizeof(data->id); 2026 2027 if (sample_type & PERF_SAMPLE_STREAM_ID) 2028 size += sizeof(data->stream_id); 2029 2030 if (sample_type & PERF_SAMPLE_CPU) 2031 size += sizeof(data->cpu_entry); 2032 2033 event->id_header_size = size; 2034 } 2035 2036 /* 2037 * Check that adding an event to the group does not result in anybody 2038 * overflowing the 64k event limit imposed by the output buffer. 2039 * 2040 * Specifically, check that the read_size for the event does not exceed 16k, 2041 * read_size being the one term that grows with groups size. Since read_size 2042 * depends on per-event read_format, also (re)check the existing events. 2043 * 2044 * This leaves 48k for the constant size fields and things like callchains, 2045 * branch stacks and register sets. 2046 */ 2047 static bool perf_event_validate_size(struct perf_event *event) 2048 { 2049 struct perf_event *sibling, *group_leader = event->group_leader; 2050 2051 if (__perf_event_read_size(event->attr.read_format, 2052 group_leader->nr_siblings + 1) > 16*1024) 2053 return false; 2054 2055 if (__perf_event_read_size(group_leader->attr.read_format, 2056 group_leader->nr_siblings + 1) > 16*1024) 2057 return false; 2058 2059 /* 2060 * When creating a new group leader, group_leader->ctx is initialized 2061 * after the size has been validated, but we cannot safely use 2062 * for_each_sibling_event() until group_leader->ctx is set. A new group 2063 * leader cannot have any siblings yet, so we can safely skip checking 2064 * the non-existent siblings. 2065 */ 2066 if (event == group_leader) 2067 return true; 2068 2069 for_each_sibling_event(sibling, group_leader) { 2070 if (__perf_event_read_size(sibling->attr.read_format, 2071 group_leader->nr_siblings + 1) > 16*1024) 2072 return false; 2073 } 2074 2075 return true; 2076 } 2077 2078 static void perf_group_attach(struct perf_event *event) 2079 { 2080 struct perf_event *group_leader = event->group_leader, *pos; 2081 2082 lockdep_assert_held(&event->ctx->lock); 2083 2084 /* 2085 * We can have double attach due to group movement (move_group) in 2086 * perf_event_open(). 2087 */ 2088 if (event->attach_state & PERF_ATTACH_GROUP) 2089 return; 2090 2091 event->attach_state |= PERF_ATTACH_GROUP; 2092 2093 if (group_leader == event) 2094 return; 2095 2096 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2097 2098 group_leader->group_caps &= event->event_caps; 2099 2100 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2101 group_leader->nr_siblings++; 2102 group_leader->group_generation++; 2103 2104 perf_event__header_size(group_leader); 2105 2106 for_each_sibling_event(pos, group_leader) 2107 perf_event__header_size(pos); 2108 } 2109 2110 /* 2111 * Remove an event from the lists for its context. 2112 * Must be called with ctx->mutex and ctx->lock held. 2113 */ 2114 static void 2115 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2116 { 2117 WARN_ON_ONCE(event->ctx != ctx); 2118 lockdep_assert_held(&ctx->lock); 2119 2120 /* 2121 * We can have double detach due to exit/hot-unplug + close. 2122 */ 2123 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2124 return; 2125 2126 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2127 2128 ctx->nr_events--; 2129 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2130 ctx->nr_user--; 2131 if (event->attr.inherit_stat) 2132 ctx->nr_stat--; 2133 if (has_inherit_and_sample_read(&event->attr)) 2134 local_dec(&ctx->nr_no_switch_fast); 2135 2136 list_del_rcu(&event->event_entry); 2137 2138 if (event->group_leader == event) 2139 del_event_from_groups(event, ctx); 2140 2141 ctx->generation++; 2142 event->pmu_ctx->nr_events--; 2143 } 2144 2145 static int 2146 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2147 { 2148 if (!has_aux(aux_event)) 2149 return 0; 2150 2151 if (!event->pmu->aux_output_match) 2152 return 0; 2153 2154 return event->pmu->aux_output_match(aux_event); 2155 } 2156 2157 static void put_event(struct perf_event *event); 2158 static void __event_disable(struct perf_event *event, 2159 struct perf_event_context *ctx, 2160 enum perf_event_state state); 2161 2162 static void perf_put_aux_event(struct perf_event *event) 2163 { 2164 struct perf_event_context *ctx = event->ctx; 2165 struct perf_event *iter; 2166 2167 /* 2168 * If event uses aux_event tear down the link 2169 */ 2170 if (event->aux_event) { 2171 iter = event->aux_event; 2172 event->aux_event = NULL; 2173 put_event(iter); 2174 return; 2175 } 2176 2177 /* 2178 * If the event is an aux_event, tear down all links to 2179 * it from other events. 2180 */ 2181 for_each_sibling_event(iter, event) { 2182 if (iter->aux_event != event) 2183 continue; 2184 2185 iter->aux_event = NULL; 2186 put_event(event); 2187 2188 /* 2189 * If it's ACTIVE, schedule it out and put it into ERROR 2190 * state so that we don't try to schedule it again. Note 2191 * that perf_event_enable() will clear the ERROR status. 2192 */ 2193 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); 2194 } 2195 } 2196 2197 static bool perf_need_aux_event(struct perf_event *event) 2198 { 2199 return event->attr.aux_output || has_aux_action(event); 2200 } 2201 2202 static int perf_get_aux_event(struct perf_event *event, 2203 struct perf_event *group_leader) 2204 { 2205 /* 2206 * Our group leader must be an aux event if we want to be 2207 * an aux_output. This way, the aux event will precede its 2208 * aux_output events in the group, and therefore will always 2209 * schedule first. 2210 */ 2211 if (!group_leader) 2212 return 0; 2213 2214 /* 2215 * aux_output and aux_sample_size are mutually exclusive. 2216 */ 2217 if (event->attr.aux_output && event->attr.aux_sample_size) 2218 return 0; 2219 2220 if (event->attr.aux_output && 2221 !perf_aux_output_match(event, group_leader)) 2222 return 0; 2223 2224 if ((event->attr.aux_pause || event->attr.aux_resume) && 2225 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2226 return 0; 2227 2228 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2229 return 0; 2230 2231 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2232 return 0; 2233 2234 /* 2235 * Link aux_outputs to their aux event; this is undone in 2236 * perf_group_detach() by perf_put_aux_event(). When the 2237 * group in torn down, the aux_output events loose their 2238 * link to the aux_event and can't schedule any more. 2239 */ 2240 event->aux_event = group_leader; 2241 2242 return 1; 2243 } 2244 2245 static inline struct list_head *get_event_list(struct perf_event *event) 2246 { 2247 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2248 &event->pmu_ctx->flexible_active; 2249 } 2250 2251 static void perf_group_detach(struct perf_event *event) 2252 { 2253 struct perf_event *leader = event->group_leader; 2254 struct perf_event *sibling, *tmp; 2255 struct perf_event_context *ctx = event->ctx; 2256 2257 lockdep_assert_held(&ctx->lock); 2258 2259 /* 2260 * We can have double detach due to exit/hot-unplug + close. 2261 */ 2262 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2263 return; 2264 2265 event->attach_state &= ~PERF_ATTACH_GROUP; 2266 2267 perf_put_aux_event(event); 2268 2269 /* 2270 * If this is a sibling, remove it from its group. 2271 */ 2272 if (leader != event) { 2273 list_del_init(&event->sibling_list); 2274 event->group_leader->nr_siblings--; 2275 event->group_leader->group_generation++; 2276 goto out; 2277 } 2278 2279 /* 2280 * If this was a group event with sibling events then 2281 * upgrade the siblings to singleton events by adding them 2282 * to whatever list we are on. 2283 */ 2284 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2285 2286 /* 2287 * Events that have PERF_EV_CAP_SIBLING require being part of 2288 * a group and cannot exist on their own, schedule them out 2289 * and move them into the ERROR state. Also see 2290 * _perf_event_enable(), it will not be able to recover this 2291 * ERROR state. 2292 */ 2293 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2294 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); 2295 2296 sibling->group_leader = sibling; 2297 list_del_init(&sibling->sibling_list); 2298 2299 /* Inherit group flags from the previous leader */ 2300 sibling->group_caps = event->group_caps; 2301 2302 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2303 add_event_to_groups(sibling, event->ctx); 2304 2305 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2306 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2307 } 2308 2309 WARN_ON_ONCE(sibling->ctx != event->ctx); 2310 } 2311 2312 out: 2313 for_each_sibling_event(tmp, leader) 2314 perf_event__header_size(tmp); 2315 2316 perf_event__header_size(leader); 2317 } 2318 2319 static void sync_child_event(struct perf_event *child_event); 2320 2321 static void perf_child_detach(struct perf_event *event) 2322 { 2323 struct perf_event *parent_event = event->parent; 2324 2325 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2326 return; 2327 2328 event->attach_state &= ~PERF_ATTACH_CHILD; 2329 2330 if (WARN_ON_ONCE(!parent_event)) 2331 return; 2332 2333 /* 2334 * Can't check this from an IPI, the holder is likey another CPU. 2335 * 2336 lockdep_assert_held(&parent_event->child_mutex); 2337 */ 2338 2339 sync_child_event(event); 2340 list_del_init(&event->child_list); 2341 } 2342 2343 static bool is_orphaned_event(struct perf_event *event) 2344 { 2345 return event->state == PERF_EVENT_STATE_DEAD; 2346 } 2347 2348 static inline int 2349 event_filter_match(struct perf_event *event) 2350 { 2351 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2352 perf_cgroup_match(event); 2353 } 2354 2355 static inline bool is_event_in_freq_mode(struct perf_event *event) 2356 { 2357 return event->attr.freq && event->attr.sample_freq; 2358 } 2359 2360 static void 2361 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2362 { 2363 struct perf_event_pmu_context *epc = event->pmu_ctx; 2364 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2365 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2366 2367 // XXX cpc serialization, probably per-cpu IRQ disabled 2368 2369 WARN_ON_ONCE(event->ctx != ctx); 2370 lockdep_assert_held(&ctx->lock); 2371 2372 if (event->state != PERF_EVENT_STATE_ACTIVE) 2373 return; 2374 2375 /* 2376 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2377 * we can schedule events _OUT_ individually through things like 2378 * __perf_remove_from_context(). 2379 */ 2380 list_del_init(&event->active_list); 2381 2382 perf_pmu_disable(event->pmu); 2383 2384 event->pmu->del(event, 0); 2385 event->oncpu = -1; 2386 2387 if (event->pending_disable) { 2388 event->pending_disable = 0; 2389 perf_cgroup_event_disable(event, ctx); 2390 state = PERF_EVENT_STATE_OFF; 2391 } 2392 2393 perf_event_set_state(event, state); 2394 2395 if (!is_software_event(event)) 2396 cpc->active_oncpu--; 2397 if (is_event_in_freq_mode(event)) { 2398 ctx->nr_freq--; 2399 epc->nr_freq--; 2400 } 2401 if (event->attr.exclusive || !cpc->active_oncpu) 2402 cpc->exclusive = 0; 2403 2404 perf_pmu_enable(event->pmu); 2405 } 2406 2407 static void 2408 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2409 { 2410 struct perf_event *event; 2411 2412 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2413 return; 2414 2415 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2416 2417 event_sched_out(group_event, ctx); 2418 2419 /* 2420 * Schedule out siblings (if any): 2421 */ 2422 for_each_sibling_event(event, group_event) 2423 event_sched_out(event, ctx); 2424 } 2425 2426 static inline void 2427 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2428 { 2429 if (ctx->is_active & EVENT_TIME) { 2430 if (ctx->is_active & EVENT_FROZEN) 2431 return; 2432 update_context_time(ctx); 2433 update_cgrp_time_from_cpuctx(cpuctx, final); 2434 } 2435 } 2436 2437 static inline void 2438 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2439 { 2440 __ctx_time_update(cpuctx, ctx, false); 2441 } 2442 2443 /* 2444 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2445 */ 2446 static inline void 2447 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2448 { 2449 ctx_time_update(cpuctx, ctx); 2450 if (ctx->is_active & EVENT_TIME) 2451 ctx->is_active |= EVENT_FROZEN; 2452 } 2453 2454 static inline void 2455 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2456 { 2457 if (ctx->is_active & EVENT_TIME) { 2458 if (ctx->is_active & EVENT_FROZEN) 2459 return; 2460 update_context_time(ctx); 2461 update_cgrp_time_from_event(event); 2462 } 2463 } 2464 2465 #define DETACH_GROUP 0x01UL 2466 #define DETACH_CHILD 0x02UL 2467 #define DETACH_EXIT 0x04UL 2468 #define DETACH_REVOKE 0x08UL 2469 #define DETACH_DEAD 0x10UL 2470 2471 /* 2472 * Cross CPU call to remove a performance event 2473 * 2474 * We disable the event on the hardware level first. After that we 2475 * remove it from the context list. 2476 */ 2477 static void 2478 __perf_remove_from_context(struct perf_event *event, 2479 struct perf_cpu_context *cpuctx, 2480 struct perf_event_context *ctx, 2481 void *info) 2482 { 2483 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2484 enum perf_event_state state = PERF_EVENT_STATE_OFF; 2485 unsigned long flags = (unsigned long)info; 2486 2487 ctx_time_update(cpuctx, ctx); 2488 2489 /* 2490 * Ensure event_sched_out() switches to OFF, at the very least 2491 * this avoids raising perf_pending_task() at this time. 2492 */ 2493 if (flags & DETACH_EXIT) 2494 state = PERF_EVENT_STATE_EXIT; 2495 if (flags & DETACH_REVOKE) 2496 state = PERF_EVENT_STATE_REVOKED; 2497 if (flags & DETACH_DEAD) 2498 state = PERF_EVENT_STATE_DEAD; 2499 2500 event_sched_out(event, ctx); 2501 2502 if (event->state > PERF_EVENT_STATE_OFF) 2503 perf_cgroup_event_disable(event, ctx); 2504 2505 perf_event_set_state(event, min(event->state, state)); 2506 2507 if (flags & DETACH_GROUP) 2508 perf_group_detach(event); 2509 if (flags & DETACH_CHILD) 2510 perf_child_detach(event); 2511 list_del_event(event, ctx); 2512 2513 if (!pmu_ctx->nr_events) { 2514 pmu_ctx->rotate_necessary = 0; 2515 2516 if (ctx->task && ctx->is_active) { 2517 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2518 2519 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2520 cpc->task_epc = NULL; 2521 } 2522 } 2523 2524 if (!ctx->nr_events && ctx->is_active) { 2525 if (ctx == &cpuctx->ctx) 2526 update_cgrp_time_from_cpuctx(cpuctx, true); 2527 2528 ctx->is_active = 0; 2529 if (ctx->task) { 2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2531 cpuctx->task_ctx = NULL; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * Remove the event from a task's (or a CPU's) list of events. 2538 * 2539 * If event->ctx is a cloned context, callers must make sure that 2540 * every task struct that event->ctx->task could possibly point to 2541 * remains valid. This is OK when called from perf_release since 2542 * that only calls us on the top-level context, which can't be a clone. 2543 * When called from perf_event_exit_task, it's OK because the 2544 * context has been detached from its task. 2545 */ 2546 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2547 { 2548 struct perf_event_context *ctx = event->ctx; 2549 2550 lockdep_assert_held(&ctx->mutex); 2551 2552 /* 2553 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2554 * to work in the face of TASK_TOMBSTONE, unlike every other 2555 * event_function_call() user. 2556 */ 2557 raw_spin_lock_irq(&ctx->lock); 2558 if (!ctx->is_active) { 2559 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2560 ctx, (void *)flags); 2561 raw_spin_unlock_irq(&ctx->lock); 2562 return; 2563 } 2564 raw_spin_unlock_irq(&ctx->lock); 2565 2566 event_function_call(event, __perf_remove_from_context, (void *)flags); 2567 } 2568 2569 static void __event_disable(struct perf_event *event, 2570 struct perf_event_context *ctx, 2571 enum perf_event_state state) 2572 { 2573 event_sched_out(event, ctx); 2574 perf_cgroup_event_disable(event, ctx); 2575 perf_event_set_state(event, state); 2576 } 2577 2578 /* 2579 * Cross CPU call to disable a performance event 2580 */ 2581 static void __perf_event_disable(struct perf_event *event, 2582 struct perf_cpu_context *cpuctx, 2583 struct perf_event_context *ctx, 2584 void *info) 2585 { 2586 if (event->state < PERF_EVENT_STATE_INACTIVE) 2587 return; 2588 2589 perf_pmu_disable(event->pmu_ctx->pmu); 2590 ctx_time_update_event(ctx, event); 2591 2592 /* 2593 * When disabling a group leader, the whole group becomes ineligible 2594 * to run, so schedule out the full group. 2595 */ 2596 if (event == event->group_leader) 2597 group_sched_out(event, ctx); 2598 2599 /* 2600 * But only mark the leader OFF; the siblings will remain 2601 * INACTIVE. 2602 */ 2603 __event_disable(event, ctx, PERF_EVENT_STATE_OFF); 2604 2605 perf_pmu_enable(event->pmu_ctx->pmu); 2606 } 2607 2608 /* 2609 * Disable an event. 2610 * 2611 * If event->ctx is a cloned context, callers must make sure that 2612 * every task struct that event->ctx->task could possibly point to 2613 * remains valid. This condition is satisfied when called through 2614 * perf_event_for_each_child or perf_event_for_each because they 2615 * hold the top-level event's child_mutex, so any descendant that 2616 * goes to exit will block in perf_event_exit_event(). 2617 * 2618 * When called from perf_pending_disable it's OK because event->ctx 2619 * is the current context on this CPU and preemption is disabled, 2620 * hence we can't get into perf_event_task_sched_out for this context. 2621 */ 2622 static void _perf_event_disable(struct perf_event *event) 2623 { 2624 struct perf_event_context *ctx = event->ctx; 2625 2626 raw_spin_lock_irq(&ctx->lock); 2627 if (event->state <= PERF_EVENT_STATE_OFF) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 return; 2630 } 2631 raw_spin_unlock_irq(&ctx->lock); 2632 2633 event_function_call(event, __perf_event_disable, NULL); 2634 } 2635 2636 void perf_event_disable_local(struct perf_event *event) 2637 { 2638 event_function_local(event, __perf_event_disable, NULL); 2639 } 2640 2641 /* 2642 * Strictly speaking kernel users cannot create groups and therefore this 2643 * interface does not need the perf_event_ctx_lock() magic. 2644 */ 2645 void perf_event_disable(struct perf_event *event) 2646 { 2647 struct perf_event_context *ctx; 2648 2649 ctx = perf_event_ctx_lock(event); 2650 _perf_event_disable(event); 2651 perf_event_ctx_unlock(event, ctx); 2652 } 2653 EXPORT_SYMBOL_GPL(perf_event_disable); 2654 2655 void perf_event_disable_inatomic(struct perf_event *event) 2656 { 2657 event->pending_disable = 1; 2658 irq_work_queue(&event->pending_disable_irq); 2659 } 2660 2661 #define MAX_INTERRUPTS (~0ULL) 2662 2663 static void perf_log_throttle(struct perf_event *event, int enable); 2664 static void perf_log_itrace_start(struct perf_event *event); 2665 2666 static void perf_event_unthrottle(struct perf_event *event, bool start) 2667 { 2668 if (event->state != PERF_EVENT_STATE_ACTIVE) 2669 return; 2670 2671 event->hw.interrupts = 0; 2672 if (start) 2673 event->pmu->start(event, 0); 2674 if (event == event->group_leader) 2675 perf_log_throttle(event, 1); 2676 } 2677 2678 static void perf_event_throttle(struct perf_event *event) 2679 { 2680 if (event->state != PERF_EVENT_STATE_ACTIVE) 2681 return; 2682 2683 event->hw.interrupts = MAX_INTERRUPTS; 2684 event->pmu->stop(event, 0); 2685 if (event == event->group_leader) 2686 perf_log_throttle(event, 0); 2687 } 2688 2689 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) 2690 { 2691 struct perf_event *sibling, *leader = event->group_leader; 2692 2693 perf_event_unthrottle(leader, skip_start_event ? leader != event : true); 2694 for_each_sibling_event(sibling, leader) 2695 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); 2696 } 2697 2698 static void perf_event_throttle_group(struct perf_event *event) 2699 { 2700 struct perf_event *sibling, *leader = event->group_leader; 2701 2702 perf_event_throttle(leader); 2703 for_each_sibling_event(sibling, leader) 2704 perf_event_throttle(sibling); 2705 } 2706 2707 static int 2708 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2709 { 2710 struct perf_event_pmu_context *epc = event->pmu_ctx; 2711 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2712 int ret = 0; 2713 2714 WARN_ON_ONCE(event->ctx != ctx); 2715 2716 lockdep_assert_held(&ctx->lock); 2717 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 return 0; 2720 2721 WRITE_ONCE(event->oncpu, smp_processor_id()); 2722 /* 2723 * Order event::oncpu write to happen before the ACTIVE state is 2724 * visible. This allows perf_event_{stop,read}() to observe the correct 2725 * ->oncpu if it sees ACTIVE. 2726 */ 2727 smp_wmb(); 2728 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2729 2730 /* 2731 * Unthrottle events, since we scheduled we might have missed several 2732 * ticks already, also for a heavily scheduling task there is little 2733 * guarantee it'll get a tick in a timely manner. 2734 */ 2735 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) 2736 perf_event_unthrottle(event, false); 2737 2738 perf_pmu_disable(event->pmu); 2739 2740 perf_log_itrace_start(event); 2741 2742 if (event->pmu->add(event, PERF_EF_START)) { 2743 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2744 event->oncpu = -1; 2745 ret = -EAGAIN; 2746 goto out; 2747 } 2748 2749 if (!is_software_event(event)) 2750 cpc->active_oncpu++; 2751 if (is_event_in_freq_mode(event)) { 2752 ctx->nr_freq++; 2753 epc->nr_freq++; 2754 } 2755 if (event->attr.exclusive) 2756 cpc->exclusive = 1; 2757 2758 out: 2759 perf_pmu_enable(event->pmu); 2760 2761 return ret; 2762 } 2763 2764 static int 2765 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2766 { 2767 struct perf_event *event, *partial_group = NULL; 2768 struct pmu *pmu = group_event->pmu_ctx->pmu; 2769 2770 if (group_event->state == PERF_EVENT_STATE_OFF) 2771 return 0; 2772 2773 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2774 2775 if (event_sched_in(group_event, ctx)) 2776 goto error; 2777 2778 /* 2779 * Schedule in siblings as one group (if any): 2780 */ 2781 for_each_sibling_event(event, group_event) { 2782 if (event_sched_in(event, ctx)) { 2783 partial_group = event; 2784 goto group_error; 2785 } 2786 } 2787 2788 if (!pmu->commit_txn(pmu)) 2789 return 0; 2790 2791 group_error: 2792 /* 2793 * Groups can be scheduled in as one unit only, so undo any 2794 * partial group before returning: 2795 * The events up to the failed event are scheduled out normally. 2796 */ 2797 for_each_sibling_event(event, group_event) { 2798 if (event == partial_group) 2799 break; 2800 2801 event_sched_out(event, ctx); 2802 } 2803 event_sched_out(group_event, ctx); 2804 2805 error: 2806 pmu->cancel_txn(pmu); 2807 return -EAGAIN; 2808 } 2809 2810 /* 2811 * Work out whether we can put this event group on the CPU now. 2812 */ 2813 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2814 { 2815 struct perf_event_pmu_context *epc = event->pmu_ctx; 2816 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2817 2818 /* 2819 * Groups consisting entirely of software events can always go on. 2820 */ 2821 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2822 return 1; 2823 /* 2824 * If an exclusive group is already on, no other hardware 2825 * events can go on. 2826 */ 2827 if (cpc->exclusive) 2828 return 0; 2829 /* 2830 * If this group is exclusive and there are already 2831 * events on the CPU, it can't go on. 2832 */ 2833 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2834 return 0; 2835 /* 2836 * Otherwise, try to add it if all previous groups were able 2837 * to go on. 2838 */ 2839 return can_add_hw; 2840 } 2841 2842 static void add_event_to_ctx(struct perf_event *event, 2843 struct perf_event_context *ctx) 2844 { 2845 list_add_event(event, ctx); 2846 perf_group_attach(event); 2847 } 2848 2849 static void task_ctx_sched_out(struct perf_event_context *ctx, 2850 struct pmu *pmu, 2851 enum event_type_t event_type) 2852 { 2853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2854 2855 if (!cpuctx->task_ctx) 2856 return; 2857 2858 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2859 return; 2860 2861 ctx_sched_out(ctx, pmu, event_type); 2862 } 2863 2864 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2865 struct perf_event_context *ctx, 2866 struct pmu *pmu) 2867 { 2868 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2869 if (ctx) 2870 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2871 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2872 if (ctx) 2873 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2874 } 2875 2876 /* 2877 * We want to maintain the following priority of scheduling: 2878 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2879 * - task pinned (EVENT_PINNED) 2880 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2881 * - task flexible (EVENT_FLEXIBLE). 2882 * 2883 * In order to avoid unscheduling and scheduling back in everything every 2884 * time an event is added, only do it for the groups of equal priority and 2885 * below. 2886 * 2887 * This can be called after a batch operation on task events, in which case 2888 * event_type is a bit mask of the types of events involved. For CPU events, 2889 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2890 */ 2891 static void ctx_resched(struct perf_cpu_context *cpuctx, 2892 struct perf_event_context *task_ctx, 2893 struct pmu *pmu, enum event_type_t event_type) 2894 { 2895 bool cpu_event = !!(event_type & EVENT_CPU); 2896 struct perf_event_pmu_context *epc; 2897 2898 /* 2899 * If pinned groups are involved, flexible groups also need to be 2900 * scheduled out. 2901 */ 2902 if (event_type & EVENT_PINNED) 2903 event_type |= EVENT_FLEXIBLE; 2904 2905 event_type &= EVENT_ALL; 2906 2907 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2908 perf_pmu_disable(epc->pmu); 2909 2910 if (task_ctx) { 2911 for_each_epc(epc, task_ctx, pmu, false) 2912 perf_pmu_disable(epc->pmu); 2913 2914 task_ctx_sched_out(task_ctx, pmu, event_type); 2915 } 2916 2917 /* 2918 * Decide which cpu ctx groups to schedule out based on the types 2919 * of events that caused rescheduling: 2920 * - EVENT_CPU: schedule out corresponding groups; 2921 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2922 * - otherwise, do nothing more. 2923 */ 2924 if (cpu_event) 2925 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2926 else if (event_type & EVENT_PINNED) 2927 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2928 2929 perf_event_sched_in(cpuctx, task_ctx, pmu); 2930 2931 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2932 perf_pmu_enable(epc->pmu); 2933 2934 if (task_ctx) { 2935 for_each_epc(epc, task_ctx, pmu, false) 2936 perf_pmu_enable(epc->pmu); 2937 } 2938 } 2939 2940 void perf_pmu_resched(struct pmu *pmu) 2941 { 2942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2943 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2944 2945 perf_ctx_lock(cpuctx, task_ctx); 2946 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2947 perf_ctx_unlock(cpuctx, task_ctx); 2948 } 2949 2950 /* 2951 * Cross CPU call to install and enable a performance event 2952 * 2953 * Very similar to remote_function() + event_function() but cannot assume that 2954 * things like ctx->is_active and cpuctx->task_ctx are set. 2955 */ 2956 static int __perf_install_in_context(void *info) 2957 { 2958 struct perf_event *event = info; 2959 struct perf_event_context *ctx = event->ctx; 2960 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2961 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2962 bool reprogram = true; 2963 int ret = 0; 2964 2965 raw_spin_lock(&cpuctx->ctx.lock); 2966 if (ctx->task) { 2967 raw_spin_lock(&ctx->lock); 2968 task_ctx = ctx; 2969 2970 reprogram = (ctx->task == current); 2971 2972 /* 2973 * If the task is running, it must be running on this CPU, 2974 * otherwise we cannot reprogram things. 2975 * 2976 * If its not running, we don't care, ctx->lock will 2977 * serialize against it becoming runnable. 2978 */ 2979 if (task_curr(ctx->task) && !reprogram) { 2980 ret = -ESRCH; 2981 goto unlock; 2982 } 2983 2984 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2985 } else if (task_ctx) { 2986 raw_spin_lock(&task_ctx->lock); 2987 } 2988 2989 #ifdef CONFIG_CGROUP_PERF 2990 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2991 /* 2992 * If the current cgroup doesn't match the event's 2993 * cgroup, we should not try to schedule it. 2994 */ 2995 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2996 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2997 event->cgrp->css.cgroup); 2998 } 2999 #endif 3000 3001 if (reprogram) { 3002 ctx_time_freeze(cpuctx, ctx); 3003 add_event_to_ctx(event, ctx); 3004 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 3005 get_event_type(event)); 3006 } else { 3007 add_event_to_ctx(event, ctx); 3008 } 3009 3010 unlock: 3011 perf_ctx_unlock(cpuctx, task_ctx); 3012 3013 return ret; 3014 } 3015 3016 static bool exclusive_event_installable(struct perf_event *event, 3017 struct perf_event_context *ctx); 3018 3019 /* 3020 * Attach a performance event to a context. 3021 * 3022 * Very similar to event_function_call, see comment there. 3023 */ 3024 static void 3025 perf_install_in_context(struct perf_event_context *ctx, 3026 struct perf_event *event, 3027 int cpu) 3028 { 3029 struct task_struct *task = READ_ONCE(ctx->task); 3030 3031 lockdep_assert_held(&ctx->mutex); 3032 3033 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 3034 3035 if (event->cpu != -1) 3036 WARN_ON_ONCE(event->cpu != cpu); 3037 3038 /* 3039 * Ensures that if we can observe event->ctx, both the event and ctx 3040 * will be 'complete'. See perf_iterate_sb_cpu(). 3041 */ 3042 smp_store_release(&event->ctx, ctx); 3043 3044 /* 3045 * perf_event_attr::disabled events will not run and can be initialized 3046 * without IPI. Except when this is the first event for the context, in 3047 * that case we need the magic of the IPI to set ctx->is_active. 3048 * 3049 * The IOC_ENABLE that is sure to follow the creation of a disabled 3050 * event will issue the IPI and reprogram the hardware. 3051 */ 3052 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 3053 ctx->nr_events && !is_cgroup_event(event)) { 3054 raw_spin_lock_irq(&ctx->lock); 3055 if (ctx->task == TASK_TOMBSTONE) { 3056 raw_spin_unlock_irq(&ctx->lock); 3057 return; 3058 } 3059 add_event_to_ctx(event, ctx); 3060 raw_spin_unlock_irq(&ctx->lock); 3061 return; 3062 } 3063 3064 if (!task) { 3065 cpu_function_call(cpu, __perf_install_in_context, event); 3066 return; 3067 } 3068 3069 /* 3070 * Should not happen, we validate the ctx is still alive before calling. 3071 */ 3072 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 3073 return; 3074 3075 /* 3076 * Installing events is tricky because we cannot rely on ctx->is_active 3077 * to be set in case this is the nr_events 0 -> 1 transition. 3078 * 3079 * Instead we use task_curr(), which tells us if the task is running. 3080 * However, since we use task_curr() outside of rq::lock, we can race 3081 * against the actual state. This means the result can be wrong. 3082 * 3083 * If we get a false positive, we retry, this is harmless. 3084 * 3085 * If we get a false negative, things are complicated. If we are after 3086 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3087 * value must be correct. If we're before, it doesn't matter since 3088 * perf_event_context_sched_in() will program the counter. 3089 * 3090 * However, this hinges on the remote context switch having observed 3091 * our task->perf_event_ctxp[] store, such that it will in fact take 3092 * ctx::lock in perf_event_context_sched_in(). 3093 * 3094 * We do this by task_function_call(), if the IPI fails to hit the task 3095 * we know any future context switch of task must see the 3096 * perf_event_ctpx[] store. 3097 */ 3098 3099 /* 3100 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3101 * task_cpu() load, such that if the IPI then does not find the task 3102 * running, a future context switch of that task must observe the 3103 * store. 3104 */ 3105 smp_mb(); 3106 again: 3107 if (!task_function_call(task, __perf_install_in_context, event)) 3108 return; 3109 3110 raw_spin_lock_irq(&ctx->lock); 3111 task = ctx->task; 3112 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3113 /* 3114 * Cannot happen because we already checked above (which also 3115 * cannot happen), and we hold ctx->mutex, which serializes us 3116 * against perf_event_exit_task_context(). 3117 */ 3118 raw_spin_unlock_irq(&ctx->lock); 3119 return; 3120 } 3121 /* 3122 * If the task is not running, ctx->lock will avoid it becoming so, 3123 * thus we can safely install the event. 3124 */ 3125 if (task_curr(task)) { 3126 raw_spin_unlock_irq(&ctx->lock); 3127 goto again; 3128 } 3129 add_event_to_ctx(event, ctx); 3130 raw_spin_unlock_irq(&ctx->lock); 3131 } 3132 3133 /* 3134 * Cross CPU call to enable a performance event 3135 */ 3136 static void __perf_event_enable(struct perf_event *event, 3137 struct perf_cpu_context *cpuctx, 3138 struct perf_event_context *ctx, 3139 void *info) 3140 { 3141 struct perf_event *leader = event->group_leader; 3142 struct perf_event_context *task_ctx; 3143 3144 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3145 event->state <= PERF_EVENT_STATE_ERROR) 3146 return; 3147 3148 ctx_time_freeze(cpuctx, ctx); 3149 3150 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3151 perf_cgroup_event_enable(event, ctx); 3152 3153 if (!ctx->is_active) 3154 return; 3155 3156 if (!event_filter_match(event)) 3157 return; 3158 3159 /* 3160 * If the event is in a group and isn't the group leader, 3161 * then don't put it on unless the group is on. 3162 */ 3163 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3164 return; 3165 3166 task_ctx = cpuctx->task_ctx; 3167 if (ctx->task) 3168 WARN_ON_ONCE(task_ctx != ctx); 3169 3170 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3171 } 3172 3173 /* 3174 * Enable an event. 3175 * 3176 * If event->ctx is a cloned context, callers must make sure that 3177 * every task struct that event->ctx->task could possibly point to 3178 * remains valid. This condition is satisfied when called through 3179 * perf_event_for_each_child or perf_event_for_each as described 3180 * for perf_event_disable. 3181 */ 3182 static void _perf_event_enable(struct perf_event *event) 3183 { 3184 struct perf_event_context *ctx = event->ctx; 3185 3186 raw_spin_lock_irq(&ctx->lock); 3187 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3188 event->state < PERF_EVENT_STATE_ERROR) { 3189 out: 3190 raw_spin_unlock_irq(&ctx->lock); 3191 return; 3192 } 3193 3194 /* 3195 * If the event is in error state, clear that first. 3196 * 3197 * That way, if we see the event in error state below, we know that it 3198 * has gone back into error state, as distinct from the task having 3199 * been scheduled away before the cross-call arrived. 3200 */ 3201 if (event->state == PERF_EVENT_STATE_ERROR) { 3202 /* 3203 * Detached SIBLING events cannot leave ERROR state. 3204 */ 3205 if (event->event_caps & PERF_EV_CAP_SIBLING && 3206 event->group_leader == event) 3207 goto out; 3208 3209 event->state = PERF_EVENT_STATE_OFF; 3210 } 3211 raw_spin_unlock_irq(&ctx->lock); 3212 3213 event_function_call(event, __perf_event_enable, NULL); 3214 } 3215 3216 /* 3217 * See perf_event_disable(); 3218 */ 3219 void perf_event_enable(struct perf_event *event) 3220 { 3221 struct perf_event_context *ctx; 3222 3223 ctx = perf_event_ctx_lock(event); 3224 _perf_event_enable(event); 3225 perf_event_ctx_unlock(event, ctx); 3226 } 3227 EXPORT_SYMBOL_GPL(perf_event_enable); 3228 3229 struct stop_event_data { 3230 struct perf_event *event; 3231 unsigned int restart; 3232 }; 3233 3234 static int __perf_event_stop(void *info) 3235 { 3236 struct stop_event_data *sd = info; 3237 struct perf_event *event = sd->event; 3238 3239 /* if it's already INACTIVE, do nothing */ 3240 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3241 return 0; 3242 3243 /* matches smp_wmb() in event_sched_in() */ 3244 smp_rmb(); 3245 3246 /* 3247 * There is a window with interrupts enabled before we get here, 3248 * so we need to check again lest we try to stop another CPU's event. 3249 */ 3250 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3251 return -EAGAIN; 3252 3253 event->pmu->stop(event, PERF_EF_UPDATE); 3254 3255 /* 3256 * May race with the actual stop (through perf_pmu_output_stop()), 3257 * but it is only used for events with AUX ring buffer, and such 3258 * events will refuse to restart because of rb::aux_mmap_count==0, 3259 * see comments in perf_aux_output_begin(). 3260 * 3261 * Since this is happening on an event-local CPU, no trace is lost 3262 * while restarting. 3263 */ 3264 if (sd->restart) 3265 event->pmu->start(event, 0); 3266 3267 return 0; 3268 } 3269 3270 static int perf_event_stop(struct perf_event *event, int restart) 3271 { 3272 struct stop_event_data sd = { 3273 .event = event, 3274 .restart = restart, 3275 }; 3276 int ret = 0; 3277 3278 do { 3279 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3280 return 0; 3281 3282 /* matches smp_wmb() in event_sched_in() */ 3283 smp_rmb(); 3284 3285 /* 3286 * We only want to restart ACTIVE events, so if the event goes 3287 * inactive here (event->oncpu==-1), there's nothing more to do; 3288 * fall through with ret==-ENXIO. 3289 */ 3290 ret = cpu_function_call(READ_ONCE(event->oncpu), 3291 __perf_event_stop, &sd); 3292 } while (ret == -EAGAIN); 3293 3294 return ret; 3295 } 3296 3297 /* 3298 * In order to contain the amount of racy and tricky in the address filter 3299 * configuration management, it is a two part process: 3300 * 3301 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3302 * we update the addresses of corresponding vmas in 3303 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3304 * (p2) when an event is scheduled in (pmu::add), it calls 3305 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3306 * if the generation has changed since the previous call. 3307 * 3308 * If (p1) happens while the event is active, we restart it to force (p2). 3309 * 3310 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3311 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3312 * ioctl; 3313 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3314 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3315 * for reading; 3316 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3317 * of exec. 3318 */ 3319 void perf_event_addr_filters_sync(struct perf_event *event) 3320 { 3321 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3322 3323 if (!has_addr_filter(event)) 3324 return; 3325 3326 raw_spin_lock(&ifh->lock); 3327 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3328 event->pmu->addr_filters_sync(event); 3329 event->hw.addr_filters_gen = event->addr_filters_gen; 3330 } 3331 raw_spin_unlock(&ifh->lock); 3332 } 3333 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3334 3335 static int _perf_event_refresh(struct perf_event *event, int refresh) 3336 { 3337 /* 3338 * not supported on inherited events 3339 */ 3340 if (event->attr.inherit || !is_sampling_event(event)) 3341 return -EINVAL; 3342 3343 atomic_add(refresh, &event->event_limit); 3344 _perf_event_enable(event); 3345 3346 return 0; 3347 } 3348 3349 /* 3350 * See perf_event_disable() 3351 */ 3352 int perf_event_refresh(struct perf_event *event, int refresh) 3353 { 3354 struct perf_event_context *ctx; 3355 int ret; 3356 3357 ctx = perf_event_ctx_lock(event); 3358 ret = _perf_event_refresh(event, refresh); 3359 perf_event_ctx_unlock(event, ctx); 3360 3361 return ret; 3362 } 3363 EXPORT_SYMBOL_GPL(perf_event_refresh); 3364 3365 static int perf_event_modify_breakpoint(struct perf_event *bp, 3366 struct perf_event_attr *attr) 3367 { 3368 int err; 3369 3370 _perf_event_disable(bp); 3371 3372 err = modify_user_hw_breakpoint_check(bp, attr, true); 3373 3374 if (!bp->attr.disabled) 3375 _perf_event_enable(bp); 3376 3377 return err; 3378 } 3379 3380 /* 3381 * Copy event-type-independent attributes that may be modified. 3382 */ 3383 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3384 const struct perf_event_attr *from) 3385 { 3386 to->sig_data = from->sig_data; 3387 } 3388 3389 static int perf_event_modify_attr(struct perf_event *event, 3390 struct perf_event_attr *attr) 3391 { 3392 int (*func)(struct perf_event *, struct perf_event_attr *); 3393 struct perf_event *child; 3394 int err; 3395 3396 if (event->attr.type != attr->type) 3397 return -EINVAL; 3398 3399 switch (event->attr.type) { 3400 case PERF_TYPE_BREAKPOINT: 3401 func = perf_event_modify_breakpoint; 3402 break; 3403 default: 3404 /* Place holder for future additions. */ 3405 return -EOPNOTSUPP; 3406 } 3407 3408 WARN_ON_ONCE(event->ctx->parent_ctx); 3409 3410 mutex_lock(&event->child_mutex); 3411 /* 3412 * Event-type-independent attributes must be copied before event-type 3413 * modification, which will validate that final attributes match the 3414 * source attributes after all relevant attributes have been copied. 3415 */ 3416 perf_event_modify_copy_attr(&event->attr, attr); 3417 err = func(event, attr); 3418 if (err) 3419 goto out; 3420 list_for_each_entry(child, &event->child_list, child_list) { 3421 perf_event_modify_copy_attr(&child->attr, attr); 3422 err = func(child, attr); 3423 if (err) 3424 goto out; 3425 } 3426 out: 3427 mutex_unlock(&event->child_mutex); 3428 return err; 3429 } 3430 3431 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3432 enum event_type_t event_type) 3433 { 3434 struct perf_event_context *ctx = pmu_ctx->ctx; 3435 struct perf_event *event, *tmp; 3436 struct pmu *pmu = pmu_ctx->pmu; 3437 3438 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3439 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3440 3441 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3442 cpc->task_epc = NULL; 3443 } 3444 3445 if (!(event_type & EVENT_ALL)) 3446 return; 3447 3448 perf_pmu_disable(pmu); 3449 if (event_type & EVENT_PINNED) { 3450 list_for_each_entry_safe(event, tmp, 3451 &pmu_ctx->pinned_active, 3452 active_list) 3453 group_sched_out(event, ctx); 3454 } 3455 3456 if (event_type & EVENT_FLEXIBLE) { 3457 list_for_each_entry_safe(event, tmp, 3458 &pmu_ctx->flexible_active, 3459 active_list) 3460 group_sched_out(event, ctx); 3461 /* 3462 * Since we cleared EVENT_FLEXIBLE, also clear 3463 * rotate_necessary, is will be reset by 3464 * ctx_flexible_sched_in() when needed. 3465 */ 3466 pmu_ctx->rotate_necessary = 0; 3467 } 3468 perf_pmu_enable(pmu); 3469 } 3470 3471 /* 3472 * Be very careful with the @pmu argument since this will change ctx state. 3473 * The @pmu argument works for ctx_resched(), because that is symmetric in 3474 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3475 * 3476 * However, if you were to be asymmetrical, you could end up with messed up 3477 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3478 * be active. 3479 */ 3480 static void 3481 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3482 { 3483 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3484 struct perf_event_pmu_context *pmu_ctx; 3485 int is_active = ctx->is_active; 3486 bool cgroup = event_type & EVENT_CGROUP; 3487 3488 event_type &= ~EVENT_CGROUP; 3489 3490 lockdep_assert_held(&ctx->lock); 3491 3492 if (likely(!ctx->nr_events)) { 3493 /* 3494 * See __perf_remove_from_context(). 3495 */ 3496 WARN_ON_ONCE(ctx->is_active); 3497 if (ctx->task) 3498 WARN_ON_ONCE(cpuctx->task_ctx); 3499 return; 3500 } 3501 3502 /* 3503 * Always update time if it was set; not only when it changes. 3504 * Otherwise we can 'forget' to update time for any but the last 3505 * context we sched out. For example: 3506 * 3507 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3508 * ctx_sched_out(.event_type = EVENT_PINNED) 3509 * 3510 * would only update time for the pinned events. 3511 */ 3512 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3513 3514 /* 3515 * CPU-release for the below ->is_active store, 3516 * see __load_acquire() in perf_event_time_now() 3517 */ 3518 barrier(); 3519 ctx->is_active &= ~event_type; 3520 3521 if (!(ctx->is_active & EVENT_ALL)) { 3522 /* 3523 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3524 * does not observe a hole. perf_ctx_unlock() will clean up. 3525 */ 3526 if (ctx->is_active & EVENT_FROZEN) 3527 ctx->is_active &= EVENT_TIME_FROZEN; 3528 else 3529 ctx->is_active = 0; 3530 } 3531 3532 if (ctx->task) { 3533 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3534 if (!(ctx->is_active & EVENT_ALL)) 3535 cpuctx->task_ctx = NULL; 3536 } 3537 3538 is_active ^= ctx->is_active; /* changed bits */ 3539 3540 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3541 __pmu_ctx_sched_out(pmu_ctx, is_active); 3542 } 3543 3544 /* 3545 * Test whether two contexts are equivalent, i.e. whether they have both been 3546 * cloned from the same version of the same context. 3547 * 3548 * Equivalence is measured using a generation number in the context that is 3549 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3550 * and list_del_event(). 3551 */ 3552 static int context_equiv(struct perf_event_context *ctx1, 3553 struct perf_event_context *ctx2) 3554 { 3555 lockdep_assert_held(&ctx1->lock); 3556 lockdep_assert_held(&ctx2->lock); 3557 3558 /* Pinning disables the swap optimization */ 3559 if (ctx1->pin_count || ctx2->pin_count) 3560 return 0; 3561 3562 /* If ctx1 is the parent of ctx2 */ 3563 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3564 return 1; 3565 3566 /* If ctx2 is the parent of ctx1 */ 3567 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3568 return 1; 3569 3570 /* 3571 * If ctx1 and ctx2 have the same parent; we flatten the parent 3572 * hierarchy, see perf_event_init_context(). 3573 */ 3574 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3575 ctx1->parent_gen == ctx2->parent_gen) 3576 return 1; 3577 3578 /* Unmatched */ 3579 return 0; 3580 } 3581 3582 static void __perf_event_sync_stat(struct perf_event *event, 3583 struct perf_event *next_event) 3584 { 3585 u64 value; 3586 3587 if (!event->attr.inherit_stat) 3588 return; 3589 3590 /* 3591 * Update the event value, we cannot use perf_event_read() 3592 * because we're in the middle of a context switch and have IRQs 3593 * disabled, which upsets smp_call_function_single(), however 3594 * we know the event must be on the current CPU, therefore we 3595 * don't need to use it. 3596 */ 3597 perf_pmu_read(event); 3598 3599 perf_event_update_time(event); 3600 3601 /* 3602 * In order to keep per-task stats reliable we need to flip the event 3603 * values when we flip the contexts. 3604 */ 3605 value = local64_read(&next_event->count); 3606 value = local64_xchg(&event->count, value); 3607 local64_set(&next_event->count, value); 3608 3609 swap(event->total_time_enabled, next_event->total_time_enabled); 3610 swap(event->total_time_running, next_event->total_time_running); 3611 3612 /* 3613 * Since we swizzled the values, update the user visible data too. 3614 */ 3615 perf_event_update_userpage(event); 3616 perf_event_update_userpage(next_event); 3617 } 3618 3619 static void perf_event_sync_stat(struct perf_event_context *ctx, 3620 struct perf_event_context *next_ctx) 3621 { 3622 struct perf_event *event, *next_event; 3623 3624 if (!ctx->nr_stat) 3625 return; 3626 3627 update_context_time(ctx); 3628 3629 event = list_first_entry(&ctx->event_list, 3630 struct perf_event, event_entry); 3631 3632 next_event = list_first_entry(&next_ctx->event_list, 3633 struct perf_event, event_entry); 3634 3635 while (&event->event_entry != &ctx->event_list && 3636 &next_event->event_entry != &next_ctx->event_list) { 3637 3638 __perf_event_sync_stat(event, next_event); 3639 3640 event = list_next_entry(event, event_entry); 3641 next_event = list_next_entry(next_event, event_entry); 3642 } 3643 } 3644 3645 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3646 struct task_struct *task, bool sched_in) 3647 { 3648 struct perf_event_pmu_context *pmu_ctx; 3649 struct perf_cpu_pmu_context *cpc; 3650 3651 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3652 cpc = this_cpc(pmu_ctx->pmu); 3653 3654 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3655 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3656 } 3657 } 3658 3659 static void 3660 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3661 { 3662 struct perf_event_context *ctx = task->perf_event_ctxp; 3663 struct perf_event_context *next_ctx; 3664 struct perf_event_context *parent, *next_parent; 3665 int do_switch = 1; 3666 3667 if (likely(!ctx)) 3668 return; 3669 3670 rcu_read_lock(); 3671 next_ctx = rcu_dereference(next->perf_event_ctxp); 3672 if (!next_ctx) 3673 goto unlock; 3674 3675 parent = rcu_dereference(ctx->parent_ctx); 3676 next_parent = rcu_dereference(next_ctx->parent_ctx); 3677 3678 /* If neither context have a parent context; they cannot be clones. */ 3679 if (!parent && !next_parent) 3680 goto unlock; 3681 3682 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3683 /* 3684 * Looks like the two contexts are clones, so we might be 3685 * able to optimize the context switch. We lock both 3686 * contexts and check that they are clones under the 3687 * lock (including re-checking that neither has been 3688 * uncloned in the meantime). It doesn't matter which 3689 * order we take the locks because no other cpu could 3690 * be trying to lock both of these tasks. 3691 */ 3692 raw_spin_lock(&ctx->lock); 3693 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3694 if (context_equiv(ctx, next_ctx)) { 3695 3696 perf_ctx_disable(ctx, false); 3697 3698 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3699 if (local_read(&ctx->nr_no_switch_fast) || 3700 local_read(&next_ctx->nr_no_switch_fast)) { 3701 /* 3702 * Must not swap out ctx when there's pending 3703 * events that rely on the ctx->task relation. 3704 * 3705 * Likewise, when a context contains inherit + 3706 * SAMPLE_READ events they should be switched 3707 * out using the slow path so that they are 3708 * treated as if they were distinct contexts. 3709 */ 3710 raw_spin_unlock(&next_ctx->lock); 3711 rcu_read_unlock(); 3712 goto inside_switch; 3713 } 3714 3715 WRITE_ONCE(ctx->task, next); 3716 WRITE_ONCE(next_ctx->task, task); 3717 3718 perf_ctx_sched_task_cb(ctx, task, false); 3719 3720 perf_ctx_enable(ctx, false); 3721 3722 /* 3723 * RCU_INIT_POINTER here is safe because we've not 3724 * modified the ctx and the above modification of 3725 * ctx->task is immaterial since this value is 3726 * always verified under ctx->lock which we're now 3727 * holding. 3728 */ 3729 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3730 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3731 3732 do_switch = 0; 3733 3734 perf_event_sync_stat(ctx, next_ctx); 3735 } 3736 raw_spin_unlock(&next_ctx->lock); 3737 raw_spin_unlock(&ctx->lock); 3738 } 3739 unlock: 3740 rcu_read_unlock(); 3741 3742 if (do_switch) { 3743 raw_spin_lock(&ctx->lock); 3744 perf_ctx_disable(ctx, false); 3745 3746 inside_switch: 3747 perf_ctx_sched_task_cb(ctx, task, false); 3748 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3749 3750 perf_ctx_enable(ctx, false); 3751 raw_spin_unlock(&ctx->lock); 3752 } 3753 } 3754 3755 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3756 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3757 3758 void perf_sched_cb_dec(struct pmu *pmu) 3759 { 3760 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3761 3762 this_cpu_dec(perf_sched_cb_usages); 3763 barrier(); 3764 3765 if (!--cpc->sched_cb_usage) 3766 list_del(&cpc->sched_cb_entry); 3767 } 3768 3769 3770 void perf_sched_cb_inc(struct pmu *pmu) 3771 { 3772 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3773 3774 if (!cpc->sched_cb_usage++) 3775 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3776 3777 barrier(); 3778 this_cpu_inc(perf_sched_cb_usages); 3779 } 3780 3781 /* 3782 * This function provides the context switch callback to the lower code 3783 * layer. It is invoked ONLY when the context switch callback is enabled. 3784 * 3785 * This callback is relevant even to per-cpu events; for example multi event 3786 * PEBS requires this to provide PID/TID information. This requires we flush 3787 * all queued PEBS records before we context switch to a new task. 3788 */ 3789 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3790 struct task_struct *task, bool sched_in) 3791 { 3792 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3793 struct pmu *pmu; 3794 3795 pmu = cpc->epc.pmu; 3796 3797 /* software PMUs will not have sched_task */ 3798 if (WARN_ON_ONCE(!pmu->sched_task)) 3799 return; 3800 3801 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3802 perf_pmu_disable(pmu); 3803 3804 pmu->sched_task(cpc->task_epc, task, sched_in); 3805 3806 perf_pmu_enable(pmu); 3807 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3808 } 3809 3810 static void perf_pmu_sched_task(struct task_struct *prev, 3811 struct task_struct *next, 3812 bool sched_in) 3813 { 3814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3815 struct perf_cpu_pmu_context *cpc; 3816 3817 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3818 if (prev == next || cpuctx->task_ctx) 3819 return; 3820 3821 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3822 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3823 } 3824 3825 static void perf_event_switch(struct task_struct *task, 3826 struct task_struct *next_prev, bool sched_in); 3827 3828 /* 3829 * Called from scheduler to remove the events of the current task, 3830 * with interrupts disabled. 3831 * 3832 * We stop each event and update the event value in event->count. 3833 * 3834 * This does not protect us against NMI, but disable() 3835 * sets the disabled bit in the control field of event _before_ 3836 * accessing the event control register. If a NMI hits, then it will 3837 * not restart the event. 3838 */ 3839 void __perf_event_task_sched_out(struct task_struct *task, 3840 struct task_struct *next) 3841 { 3842 if (__this_cpu_read(perf_sched_cb_usages)) 3843 perf_pmu_sched_task(task, next, false); 3844 3845 if (atomic_read(&nr_switch_events)) 3846 perf_event_switch(task, next, false); 3847 3848 perf_event_context_sched_out(task, next); 3849 3850 /* 3851 * if cgroup events exist on this CPU, then we need 3852 * to check if we have to switch out PMU state. 3853 * cgroup event are system-wide mode only 3854 */ 3855 perf_cgroup_switch(next); 3856 } 3857 3858 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3859 { 3860 const struct perf_event *le = *(const struct perf_event **)l; 3861 const struct perf_event *re = *(const struct perf_event **)r; 3862 3863 return le->group_index < re->group_index; 3864 } 3865 3866 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3867 3868 static const struct min_heap_callbacks perf_min_heap = { 3869 .less = perf_less_group_idx, 3870 .swp = NULL, 3871 }; 3872 3873 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3874 { 3875 struct perf_event **itrs = heap->data; 3876 3877 if (event) { 3878 itrs[heap->nr] = event; 3879 heap->nr++; 3880 } 3881 } 3882 3883 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3884 { 3885 struct perf_cpu_pmu_context *cpc; 3886 3887 if (!pmu_ctx->ctx->task) 3888 return; 3889 3890 cpc = this_cpc(pmu_ctx->pmu); 3891 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3892 cpc->task_epc = pmu_ctx; 3893 } 3894 3895 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3896 struct perf_event_groups *groups, int cpu, 3897 struct pmu *pmu, 3898 int (*func)(struct perf_event *, void *), 3899 void *data) 3900 { 3901 #ifdef CONFIG_CGROUP_PERF 3902 struct cgroup_subsys_state *css = NULL; 3903 #endif 3904 struct perf_cpu_context *cpuctx = NULL; 3905 /* Space for per CPU and/or any CPU event iterators. */ 3906 struct perf_event *itrs[2]; 3907 struct perf_event_min_heap event_heap; 3908 struct perf_event **evt; 3909 int ret; 3910 3911 if (pmu->filter && pmu->filter(pmu, cpu)) 3912 return 0; 3913 3914 if (!ctx->task) { 3915 cpuctx = this_cpu_ptr(&perf_cpu_context); 3916 event_heap = (struct perf_event_min_heap){ 3917 .data = cpuctx->heap, 3918 .nr = 0, 3919 .size = cpuctx->heap_size, 3920 }; 3921 3922 lockdep_assert_held(&cpuctx->ctx.lock); 3923 3924 #ifdef CONFIG_CGROUP_PERF 3925 if (cpuctx->cgrp) 3926 css = &cpuctx->cgrp->css; 3927 #endif 3928 } else { 3929 event_heap = (struct perf_event_min_heap){ 3930 .data = itrs, 3931 .nr = 0, 3932 .size = ARRAY_SIZE(itrs), 3933 }; 3934 /* Events not within a CPU context may be on any CPU. */ 3935 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3936 } 3937 evt = event_heap.data; 3938 3939 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3940 3941 #ifdef CONFIG_CGROUP_PERF 3942 for (; css; css = css->parent) 3943 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3944 #endif 3945 3946 if (event_heap.nr) { 3947 __link_epc((*evt)->pmu_ctx); 3948 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3949 } 3950 3951 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3952 3953 while (event_heap.nr) { 3954 ret = func(*evt, data); 3955 if (ret) 3956 return ret; 3957 3958 *evt = perf_event_groups_next(*evt, pmu); 3959 if (*evt) 3960 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3961 else 3962 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3963 } 3964 3965 return 0; 3966 } 3967 3968 /* 3969 * Because the userpage is strictly per-event (there is no concept of context, 3970 * so there cannot be a context indirection), every userpage must be updated 3971 * when context time starts :-( 3972 * 3973 * IOW, we must not miss EVENT_TIME edges. 3974 */ 3975 static inline bool event_update_userpage(struct perf_event *event) 3976 { 3977 if (likely(!atomic_read(&event->mmap_count))) 3978 return false; 3979 3980 perf_event_update_time(event); 3981 perf_event_update_userpage(event); 3982 3983 return true; 3984 } 3985 3986 static inline void group_update_userpage(struct perf_event *group_event) 3987 { 3988 struct perf_event *event; 3989 3990 if (!event_update_userpage(group_event)) 3991 return; 3992 3993 for_each_sibling_event(event, group_event) 3994 event_update_userpage(event); 3995 } 3996 3997 static int merge_sched_in(struct perf_event *event, void *data) 3998 { 3999 struct perf_event_context *ctx = event->ctx; 4000 int *can_add_hw = data; 4001 4002 if (event->state <= PERF_EVENT_STATE_OFF) 4003 return 0; 4004 4005 if (!event_filter_match(event)) 4006 return 0; 4007 4008 if (group_can_go_on(event, *can_add_hw)) { 4009 if (!group_sched_in(event, ctx)) 4010 list_add_tail(&event->active_list, get_event_list(event)); 4011 } 4012 4013 if (event->state == PERF_EVENT_STATE_INACTIVE) { 4014 *can_add_hw = 0; 4015 if (event->attr.pinned) { 4016 perf_cgroup_event_disable(event, ctx); 4017 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 4018 4019 if (*perf_event_fasync(event)) 4020 event->pending_kill = POLL_ERR; 4021 4022 perf_event_wakeup(event); 4023 } else { 4024 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 4025 4026 event->pmu_ctx->rotate_necessary = 1; 4027 perf_mux_hrtimer_restart(cpc); 4028 group_update_userpage(event); 4029 } 4030 } 4031 4032 return 0; 4033 } 4034 4035 static void pmu_groups_sched_in(struct perf_event_context *ctx, 4036 struct perf_event_groups *groups, 4037 struct pmu *pmu) 4038 { 4039 int can_add_hw = 1; 4040 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 4041 merge_sched_in, &can_add_hw); 4042 } 4043 4044 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 4045 enum event_type_t event_type) 4046 { 4047 struct perf_event_context *ctx = pmu_ctx->ctx; 4048 4049 if (event_type & EVENT_PINNED) 4050 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 4051 if (event_type & EVENT_FLEXIBLE) 4052 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 4053 } 4054 4055 static void 4056 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 4057 { 4058 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4059 struct perf_event_pmu_context *pmu_ctx; 4060 int is_active = ctx->is_active; 4061 bool cgroup = event_type & EVENT_CGROUP; 4062 4063 event_type &= ~EVENT_CGROUP; 4064 4065 lockdep_assert_held(&ctx->lock); 4066 4067 if (likely(!ctx->nr_events)) 4068 return; 4069 4070 if (!(is_active & EVENT_TIME)) { 4071 /* start ctx time */ 4072 __update_context_time(ctx, false); 4073 perf_cgroup_set_timestamp(cpuctx); 4074 /* 4075 * CPU-release for the below ->is_active store, 4076 * see __load_acquire() in perf_event_time_now() 4077 */ 4078 barrier(); 4079 } 4080 4081 ctx->is_active |= (event_type | EVENT_TIME); 4082 if (ctx->task) { 4083 if (!(is_active & EVENT_ALL)) 4084 cpuctx->task_ctx = ctx; 4085 else 4086 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4087 } 4088 4089 is_active ^= ctx->is_active; /* changed bits */ 4090 4091 /* 4092 * First go through the list and put on any pinned groups 4093 * in order to give them the best chance of going on. 4094 */ 4095 if (is_active & EVENT_PINNED) { 4096 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4097 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4098 } 4099 4100 /* Then walk through the lower prio flexible groups */ 4101 if (is_active & EVENT_FLEXIBLE) { 4102 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4103 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4104 } 4105 } 4106 4107 static void perf_event_context_sched_in(struct task_struct *task) 4108 { 4109 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4110 struct perf_event_context *ctx; 4111 4112 rcu_read_lock(); 4113 ctx = rcu_dereference(task->perf_event_ctxp); 4114 if (!ctx) 4115 goto rcu_unlock; 4116 4117 if (cpuctx->task_ctx == ctx) { 4118 perf_ctx_lock(cpuctx, ctx); 4119 perf_ctx_disable(ctx, false); 4120 4121 perf_ctx_sched_task_cb(ctx, task, true); 4122 4123 perf_ctx_enable(ctx, false); 4124 perf_ctx_unlock(cpuctx, ctx); 4125 goto rcu_unlock; 4126 } 4127 4128 perf_ctx_lock(cpuctx, ctx); 4129 /* 4130 * We must check ctx->nr_events while holding ctx->lock, such 4131 * that we serialize against perf_install_in_context(). 4132 */ 4133 if (!ctx->nr_events) 4134 goto unlock; 4135 4136 perf_ctx_disable(ctx, false); 4137 /* 4138 * We want to keep the following priority order: 4139 * cpu pinned (that don't need to move), task pinned, 4140 * cpu flexible, task flexible. 4141 * 4142 * However, if task's ctx is not carrying any pinned 4143 * events, no need to flip the cpuctx's events around. 4144 */ 4145 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4146 perf_ctx_disable(&cpuctx->ctx, false); 4147 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4148 } 4149 4150 perf_event_sched_in(cpuctx, ctx, NULL); 4151 4152 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4153 4154 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4155 perf_ctx_enable(&cpuctx->ctx, false); 4156 4157 perf_ctx_enable(ctx, false); 4158 4159 unlock: 4160 perf_ctx_unlock(cpuctx, ctx); 4161 rcu_unlock: 4162 rcu_read_unlock(); 4163 } 4164 4165 /* 4166 * Called from scheduler to add the events of the current task 4167 * with interrupts disabled. 4168 * 4169 * We restore the event value and then enable it. 4170 * 4171 * This does not protect us against NMI, but enable() 4172 * sets the enabled bit in the control field of event _before_ 4173 * accessing the event control register. If a NMI hits, then it will 4174 * keep the event running. 4175 */ 4176 void __perf_event_task_sched_in(struct task_struct *prev, 4177 struct task_struct *task) 4178 { 4179 perf_event_context_sched_in(task); 4180 4181 if (atomic_read(&nr_switch_events)) 4182 perf_event_switch(task, prev, true); 4183 4184 if (__this_cpu_read(perf_sched_cb_usages)) 4185 perf_pmu_sched_task(prev, task, true); 4186 } 4187 4188 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4189 { 4190 u64 frequency = event->attr.sample_freq; 4191 u64 sec = NSEC_PER_SEC; 4192 u64 divisor, dividend; 4193 4194 int count_fls, nsec_fls, frequency_fls, sec_fls; 4195 4196 count_fls = fls64(count); 4197 nsec_fls = fls64(nsec); 4198 frequency_fls = fls64(frequency); 4199 sec_fls = 30; 4200 4201 /* 4202 * We got @count in @nsec, with a target of sample_freq HZ 4203 * the target period becomes: 4204 * 4205 * @count * 10^9 4206 * period = ------------------- 4207 * @nsec * sample_freq 4208 * 4209 */ 4210 4211 /* 4212 * Reduce accuracy by one bit such that @a and @b converge 4213 * to a similar magnitude. 4214 */ 4215 #define REDUCE_FLS(a, b) \ 4216 do { \ 4217 if (a##_fls > b##_fls) { \ 4218 a >>= 1; \ 4219 a##_fls--; \ 4220 } else { \ 4221 b >>= 1; \ 4222 b##_fls--; \ 4223 } \ 4224 } while (0) 4225 4226 /* 4227 * Reduce accuracy until either term fits in a u64, then proceed with 4228 * the other, so that finally we can do a u64/u64 division. 4229 */ 4230 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4231 REDUCE_FLS(nsec, frequency); 4232 REDUCE_FLS(sec, count); 4233 } 4234 4235 if (count_fls + sec_fls > 64) { 4236 divisor = nsec * frequency; 4237 4238 while (count_fls + sec_fls > 64) { 4239 REDUCE_FLS(count, sec); 4240 divisor >>= 1; 4241 } 4242 4243 dividend = count * sec; 4244 } else { 4245 dividend = count * sec; 4246 4247 while (nsec_fls + frequency_fls > 64) { 4248 REDUCE_FLS(nsec, frequency); 4249 dividend >>= 1; 4250 } 4251 4252 divisor = nsec * frequency; 4253 } 4254 4255 if (!divisor) 4256 return dividend; 4257 4258 return div64_u64(dividend, divisor); 4259 } 4260 4261 static DEFINE_PER_CPU(int, perf_throttled_count); 4262 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4263 4264 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4265 { 4266 struct hw_perf_event *hwc = &event->hw; 4267 s64 period, sample_period; 4268 s64 delta; 4269 4270 period = perf_calculate_period(event, nsec, count); 4271 4272 delta = (s64)(period - hwc->sample_period); 4273 if (delta >= 0) 4274 delta += 7; 4275 else 4276 delta -= 7; 4277 delta /= 8; /* low pass filter */ 4278 4279 sample_period = hwc->sample_period + delta; 4280 4281 if (!sample_period) 4282 sample_period = 1; 4283 4284 hwc->sample_period = sample_period; 4285 4286 if (local64_read(&hwc->period_left) > 8*sample_period) { 4287 if (disable) 4288 event->pmu->stop(event, PERF_EF_UPDATE); 4289 4290 local64_set(&hwc->period_left, 0); 4291 4292 if (disable) 4293 event->pmu->start(event, PERF_EF_RELOAD); 4294 } 4295 } 4296 4297 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4298 { 4299 struct perf_event *event; 4300 struct hw_perf_event *hwc; 4301 u64 now, period = TICK_NSEC; 4302 s64 delta; 4303 4304 list_for_each_entry(event, event_list, active_list) { 4305 if (event->state != PERF_EVENT_STATE_ACTIVE) 4306 continue; 4307 4308 // XXX use visit thingy to avoid the -1,cpu match 4309 if (!event_filter_match(event)) 4310 continue; 4311 4312 hwc = &event->hw; 4313 4314 if (hwc->interrupts == MAX_INTERRUPTS) 4315 perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); 4316 4317 if (!is_event_in_freq_mode(event)) 4318 continue; 4319 4320 /* 4321 * stop the event and update event->count 4322 */ 4323 event->pmu->stop(event, PERF_EF_UPDATE); 4324 4325 now = local64_read(&event->count); 4326 delta = now - hwc->freq_count_stamp; 4327 hwc->freq_count_stamp = now; 4328 4329 /* 4330 * restart the event 4331 * reload only if value has changed 4332 * we have stopped the event so tell that 4333 * to perf_adjust_period() to avoid stopping it 4334 * twice. 4335 */ 4336 if (delta > 0) 4337 perf_adjust_period(event, period, delta, false); 4338 4339 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4340 } 4341 } 4342 4343 /* 4344 * combine freq adjustment with unthrottling to avoid two passes over the 4345 * events. At the same time, make sure, having freq events does not change 4346 * the rate of unthrottling as that would introduce bias. 4347 */ 4348 static void 4349 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4350 { 4351 struct perf_event_pmu_context *pmu_ctx; 4352 4353 /* 4354 * only need to iterate over all events iff: 4355 * - context have events in frequency mode (needs freq adjust) 4356 * - there are events to unthrottle on this cpu 4357 */ 4358 if (!(ctx->nr_freq || unthrottle)) 4359 return; 4360 4361 raw_spin_lock(&ctx->lock); 4362 4363 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4364 if (!(pmu_ctx->nr_freq || unthrottle)) 4365 continue; 4366 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4367 continue; 4368 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4369 continue; 4370 4371 perf_pmu_disable(pmu_ctx->pmu); 4372 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4373 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4374 perf_pmu_enable(pmu_ctx->pmu); 4375 } 4376 4377 raw_spin_unlock(&ctx->lock); 4378 } 4379 4380 /* 4381 * Move @event to the tail of the @ctx's elegible events. 4382 */ 4383 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4384 { 4385 /* 4386 * Rotate the first entry last of non-pinned groups. Rotation might be 4387 * disabled by the inheritance code. 4388 */ 4389 if (ctx->rotate_disable) 4390 return; 4391 4392 perf_event_groups_delete(&ctx->flexible_groups, event); 4393 perf_event_groups_insert(&ctx->flexible_groups, event); 4394 } 4395 4396 /* pick an event from the flexible_groups to rotate */ 4397 static inline struct perf_event * 4398 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4399 { 4400 struct perf_event *event; 4401 struct rb_node *node; 4402 struct rb_root *tree; 4403 struct __group_key key = { 4404 .pmu = pmu_ctx->pmu, 4405 }; 4406 4407 /* pick the first active flexible event */ 4408 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4409 struct perf_event, active_list); 4410 if (event) 4411 goto out; 4412 4413 /* if no active flexible event, pick the first event */ 4414 tree = &pmu_ctx->ctx->flexible_groups.tree; 4415 4416 if (!pmu_ctx->ctx->task) { 4417 key.cpu = smp_processor_id(); 4418 4419 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4420 if (node) 4421 event = __node_2_pe(node); 4422 goto out; 4423 } 4424 4425 key.cpu = -1; 4426 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4427 if (node) { 4428 event = __node_2_pe(node); 4429 goto out; 4430 } 4431 4432 key.cpu = smp_processor_id(); 4433 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4434 if (node) 4435 event = __node_2_pe(node); 4436 4437 out: 4438 /* 4439 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4440 * finds there are unschedulable events, it will set it again. 4441 */ 4442 pmu_ctx->rotate_necessary = 0; 4443 4444 return event; 4445 } 4446 4447 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4448 { 4449 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4450 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4451 struct perf_event *cpu_event = NULL, *task_event = NULL; 4452 int cpu_rotate, task_rotate; 4453 struct pmu *pmu; 4454 4455 /* 4456 * Since we run this from IRQ context, nobody can install new 4457 * events, thus the event count values are stable. 4458 */ 4459 4460 cpu_epc = &cpc->epc; 4461 pmu = cpu_epc->pmu; 4462 task_epc = cpc->task_epc; 4463 4464 cpu_rotate = cpu_epc->rotate_necessary; 4465 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4466 4467 if (!(cpu_rotate || task_rotate)) 4468 return false; 4469 4470 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4471 perf_pmu_disable(pmu); 4472 4473 if (task_rotate) 4474 task_event = ctx_event_to_rotate(task_epc); 4475 if (cpu_rotate) 4476 cpu_event = ctx_event_to_rotate(cpu_epc); 4477 4478 /* 4479 * As per the order given at ctx_resched() first 'pop' task flexible 4480 * and then, if needed CPU flexible. 4481 */ 4482 if (task_event || (task_epc && cpu_event)) { 4483 update_context_time(task_epc->ctx); 4484 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4485 } 4486 4487 if (cpu_event) { 4488 update_context_time(&cpuctx->ctx); 4489 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4490 rotate_ctx(&cpuctx->ctx, cpu_event); 4491 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4492 } 4493 4494 if (task_event) 4495 rotate_ctx(task_epc->ctx, task_event); 4496 4497 if (task_event || (task_epc && cpu_event)) 4498 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4499 4500 perf_pmu_enable(pmu); 4501 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4502 4503 return true; 4504 } 4505 4506 void perf_event_task_tick(void) 4507 { 4508 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4509 struct perf_event_context *ctx; 4510 int throttled; 4511 4512 lockdep_assert_irqs_disabled(); 4513 4514 __this_cpu_inc(perf_throttled_seq); 4515 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4516 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4517 4518 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4519 4520 rcu_read_lock(); 4521 ctx = rcu_dereference(current->perf_event_ctxp); 4522 if (ctx) 4523 perf_adjust_freq_unthr_context(ctx, !!throttled); 4524 rcu_read_unlock(); 4525 } 4526 4527 static int event_enable_on_exec(struct perf_event *event, 4528 struct perf_event_context *ctx) 4529 { 4530 if (!event->attr.enable_on_exec) 4531 return 0; 4532 4533 event->attr.enable_on_exec = 0; 4534 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4535 return 0; 4536 4537 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4538 4539 return 1; 4540 } 4541 4542 /* 4543 * Enable all of a task's events that have been marked enable-on-exec. 4544 * This expects task == current. 4545 */ 4546 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4547 { 4548 struct perf_event_context *clone_ctx = NULL; 4549 enum event_type_t event_type = 0; 4550 struct perf_cpu_context *cpuctx; 4551 struct perf_event *event; 4552 unsigned long flags; 4553 int enabled = 0; 4554 4555 local_irq_save(flags); 4556 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4557 goto out; 4558 4559 if (!ctx->nr_events) 4560 goto out; 4561 4562 cpuctx = this_cpu_ptr(&perf_cpu_context); 4563 perf_ctx_lock(cpuctx, ctx); 4564 ctx_time_freeze(cpuctx, ctx); 4565 4566 list_for_each_entry(event, &ctx->event_list, event_entry) { 4567 enabled |= event_enable_on_exec(event, ctx); 4568 event_type |= get_event_type(event); 4569 } 4570 4571 /* 4572 * Unclone and reschedule this context if we enabled any event. 4573 */ 4574 if (enabled) { 4575 clone_ctx = unclone_ctx(ctx); 4576 ctx_resched(cpuctx, ctx, NULL, event_type); 4577 } 4578 perf_ctx_unlock(cpuctx, ctx); 4579 4580 out: 4581 local_irq_restore(flags); 4582 4583 if (clone_ctx) 4584 put_ctx(clone_ctx); 4585 } 4586 4587 static void perf_remove_from_owner(struct perf_event *event); 4588 static void perf_event_exit_event(struct perf_event *event, 4589 struct perf_event_context *ctx, 4590 bool revoke); 4591 4592 /* 4593 * Removes all events from the current task that have been marked 4594 * remove-on-exec, and feeds their values back to parent events. 4595 */ 4596 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4597 { 4598 struct perf_event_context *clone_ctx = NULL; 4599 struct perf_event *event, *next; 4600 unsigned long flags; 4601 bool modified = false; 4602 4603 mutex_lock(&ctx->mutex); 4604 4605 if (WARN_ON_ONCE(ctx->task != current)) 4606 goto unlock; 4607 4608 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4609 if (!event->attr.remove_on_exec) 4610 continue; 4611 4612 if (!is_kernel_event(event)) 4613 perf_remove_from_owner(event); 4614 4615 modified = true; 4616 4617 perf_event_exit_event(event, ctx, false); 4618 } 4619 4620 raw_spin_lock_irqsave(&ctx->lock, flags); 4621 if (modified) 4622 clone_ctx = unclone_ctx(ctx); 4623 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4624 4625 unlock: 4626 mutex_unlock(&ctx->mutex); 4627 4628 if (clone_ctx) 4629 put_ctx(clone_ctx); 4630 } 4631 4632 struct perf_read_data { 4633 struct perf_event *event; 4634 bool group; 4635 int ret; 4636 }; 4637 4638 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4639 4640 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4641 { 4642 int local_cpu = smp_processor_id(); 4643 u16 local_pkg, event_pkg; 4644 4645 if ((unsigned)event_cpu >= nr_cpu_ids) 4646 return event_cpu; 4647 4648 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4649 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4650 4651 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4652 return local_cpu; 4653 } 4654 4655 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4656 event_pkg = topology_physical_package_id(event_cpu); 4657 local_pkg = topology_physical_package_id(local_cpu); 4658 4659 if (event_pkg == local_pkg) 4660 return local_cpu; 4661 } 4662 4663 return event_cpu; 4664 } 4665 4666 /* 4667 * Cross CPU call to read the hardware event 4668 */ 4669 static void __perf_event_read(void *info) 4670 { 4671 struct perf_read_data *data = info; 4672 struct perf_event *sub, *event = data->event; 4673 struct perf_event_context *ctx = event->ctx; 4674 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4675 struct pmu *pmu = event->pmu; 4676 4677 /* 4678 * If this is a task context, we need to check whether it is 4679 * the current task context of this cpu. If not it has been 4680 * scheduled out before the smp call arrived. In that case 4681 * event->count would have been updated to a recent sample 4682 * when the event was scheduled out. 4683 */ 4684 if (ctx->task && cpuctx->task_ctx != ctx) 4685 return; 4686 4687 raw_spin_lock(&ctx->lock); 4688 ctx_time_update_event(ctx, event); 4689 4690 perf_event_update_time(event); 4691 if (data->group) 4692 perf_event_update_sibling_time(event); 4693 4694 if (event->state != PERF_EVENT_STATE_ACTIVE) 4695 goto unlock; 4696 4697 if (!data->group) { 4698 pmu->read(event); 4699 data->ret = 0; 4700 goto unlock; 4701 } 4702 4703 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4704 4705 pmu->read(event); 4706 4707 for_each_sibling_event(sub, event) 4708 perf_pmu_read(sub); 4709 4710 data->ret = pmu->commit_txn(pmu); 4711 4712 unlock: 4713 raw_spin_unlock(&ctx->lock); 4714 } 4715 4716 static inline u64 perf_event_count(struct perf_event *event, bool self) 4717 { 4718 if (self) 4719 return local64_read(&event->count); 4720 4721 return local64_read(&event->count) + atomic64_read(&event->child_count); 4722 } 4723 4724 static void calc_timer_values(struct perf_event *event, 4725 u64 *now, 4726 u64 *enabled, 4727 u64 *running) 4728 { 4729 u64 ctx_time; 4730 4731 *now = perf_clock(); 4732 ctx_time = perf_event_time_now(event, *now); 4733 __perf_update_times(event, ctx_time, enabled, running); 4734 } 4735 4736 /* 4737 * NMI-safe method to read a local event, that is an event that 4738 * is: 4739 * - either for the current task, or for this CPU 4740 * - does not have inherit set, for inherited task events 4741 * will not be local and we cannot read them atomically 4742 * - must not have a pmu::count method 4743 */ 4744 int perf_event_read_local(struct perf_event *event, u64 *value, 4745 u64 *enabled, u64 *running) 4746 { 4747 unsigned long flags; 4748 int event_oncpu; 4749 int event_cpu; 4750 int ret = 0; 4751 4752 /* 4753 * Disabling interrupts avoids all counter scheduling (context 4754 * switches, timer based rotation and IPIs). 4755 */ 4756 local_irq_save(flags); 4757 4758 /* 4759 * It must not be an event with inherit set, we cannot read 4760 * all child counters from atomic context. 4761 */ 4762 if (event->attr.inherit) { 4763 ret = -EOPNOTSUPP; 4764 goto out; 4765 } 4766 4767 /* If this is a per-task event, it must be for current */ 4768 if ((event->attach_state & PERF_ATTACH_TASK) && 4769 event->hw.target != current) { 4770 ret = -EINVAL; 4771 goto out; 4772 } 4773 4774 /* 4775 * Get the event CPU numbers, and adjust them to local if the event is 4776 * a per-package event that can be read locally 4777 */ 4778 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4779 event_cpu = __perf_event_read_cpu(event, event->cpu); 4780 4781 /* If this is a per-CPU event, it must be for this CPU */ 4782 if (!(event->attach_state & PERF_ATTACH_TASK) && 4783 event_cpu != smp_processor_id()) { 4784 ret = -EINVAL; 4785 goto out; 4786 } 4787 4788 /* If this is a pinned event it must be running on this CPU */ 4789 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4790 ret = -EBUSY; 4791 goto out; 4792 } 4793 4794 /* 4795 * If the event is currently on this CPU, its either a per-task event, 4796 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4797 * oncpu == -1). 4798 */ 4799 if (event_oncpu == smp_processor_id()) 4800 event->pmu->read(event); 4801 4802 *value = local64_read(&event->count); 4803 if (enabled || running) { 4804 u64 __enabled, __running, __now; 4805 4806 calc_timer_values(event, &__now, &__enabled, &__running); 4807 if (enabled) 4808 *enabled = __enabled; 4809 if (running) 4810 *running = __running; 4811 } 4812 out: 4813 local_irq_restore(flags); 4814 4815 return ret; 4816 } 4817 4818 static int perf_event_read(struct perf_event *event, bool group) 4819 { 4820 enum perf_event_state state = READ_ONCE(event->state); 4821 int event_cpu, ret = 0; 4822 4823 /* 4824 * If event is enabled and currently active on a CPU, update the 4825 * value in the event structure: 4826 */ 4827 again: 4828 if (state == PERF_EVENT_STATE_ACTIVE) { 4829 struct perf_read_data data; 4830 4831 /* 4832 * Orders the ->state and ->oncpu loads such that if we see 4833 * ACTIVE we must also see the right ->oncpu. 4834 * 4835 * Matches the smp_wmb() from event_sched_in(). 4836 */ 4837 smp_rmb(); 4838 4839 event_cpu = READ_ONCE(event->oncpu); 4840 if ((unsigned)event_cpu >= nr_cpu_ids) 4841 return 0; 4842 4843 data = (struct perf_read_data){ 4844 .event = event, 4845 .group = group, 4846 .ret = 0, 4847 }; 4848 4849 preempt_disable(); 4850 event_cpu = __perf_event_read_cpu(event, event_cpu); 4851 4852 /* 4853 * Purposely ignore the smp_call_function_single() return 4854 * value. 4855 * 4856 * If event_cpu isn't a valid CPU it means the event got 4857 * scheduled out and that will have updated the event count. 4858 * 4859 * Therefore, either way, we'll have an up-to-date event count 4860 * after this. 4861 */ 4862 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4863 preempt_enable(); 4864 ret = data.ret; 4865 4866 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4867 struct perf_event_context *ctx = event->ctx; 4868 unsigned long flags; 4869 4870 raw_spin_lock_irqsave(&ctx->lock, flags); 4871 state = event->state; 4872 if (state != PERF_EVENT_STATE_INACTIVE) { 4873 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4874 goto again; 4875 } 4876 4877 /* 4878 * May read while context is not active (e.g., thread is 4879 * blocked), in that case we cannot update context time 4880 */ 4881 ctx_time_update_event(ctx, event); 4882 4883 perf_event_update_time(event); 4884 if (group) 4885 perf_event_update_sibling_time(event); 4886 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4887 } 4888 4889 return ret; 4890 } 4891 4892 /* 4893 * Initialize the perf_event context in a task_struct: 4894 */ 4895 static void __perf_event_init_context(struct perf_event_context *ctx) 4896 { 4897 raw_spin_lock_init(&ctx->lock); 4898 mutex_init(&ctx->mutex); 4899 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4900 perf_event_groups_init(&ctx->pinned_groups); 4901 perf_event_groups_init(&ctx->flexible_groups); 4902 INIT_LIST_HEAD(&ctx->event_list); 4903 refcount_set(&ctx->refcount, 1); 4904 } 4905 4906 static void 4907 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4908 { 4909 epc->pmu = pmu; 4910 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4911 INIT_LIST_HEAD(&epc->pinned_active); 4912 INIT_LIST_HEAD(&epc->flexible_active); 4913 atomic_set(&epc->refcount, 1); 4914 } 4915 4916 static struct perf_event_context * 4917 alloc_perf_context(struct task_struct *task) 4918 { 4919 struct perf_event_context *ctx; 4920 4921 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4922 if (!ctx) 4923 return NULL; 4924 4925 __perf_event_init_context(ctx); 4926 if (task) 4927 ctx->task = get_task_struct(task); 4928 4929 return ctx; 4930 } 4931 4932 static struct task_struct * 4933 find_lively_task_by_vpid(pid_t vpid) 4934 { 4935 struct task_struct *task; 4936 4937 rcu_read_lock(); 4938 if (!vpid) 4939 task = current; 4940 else 4941 task = find_task_by_vpid(vpid); 4942 if (task) 4943 get_task_struct(task); 4944 rcu_read_unlock(); 4945 4946 if (!task) 4947 return ERR_PTR(-ESRCH); 4948 4949 return task; 4950 } 4951 4952 /* 4953 * Returns a matching context with refcount and pincount. 4954 */ 4955 static struct perf_event_context * 4956 find_get_context(struct task_struct *task, struct perf_event *event) 4957 { 4958 struct perf_event_context *ctx, *clone_ctx = NULL; 4959 struct perf_cpu_context *cpuctx; 4960 unsigned long flags; 4961 int err; 4962 4963 if (!task) { 4964 /* Must be root to operate on a CPU event: */ 4965 err = perf_allow_cpu(); 4966 if (err) 4967 return ERR_PTR(err); 4968 4969 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4970 ctx = &cpuctx->ctx; 4971 get_ctx(ctx); 4972 raw_spin_lock_irqsave(&ctx->lock, flags); 4973 ++ctx->pin_count; 4974 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4975 4976 return ctx; 4977 } 4978 4979 err = -EINVAL; 4980 retry: 4981 ctx = perf_lock_task_context(task, &flags); 4982 if (ctx) { 4983 clone_ctx = unclone_ctx(ctx); 4984 ++ctx->pin_count; 4985 4986 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4987 4988 if (clone_ctx) 4989 put_ctx(clone_ctx); 4990 } else { 4991 ctx = alloc_perf_context(task); 4992 err = -ENOMEM; 4993 if (!ctx) 4994 goto errout; 4995 4996 err = 0; 4997 mutex_lock(&task->perf_event_mutex); 4998 /* 4999 * If it has already passed perf_event_exit_task(). 5000 * we must see PF_EXITING, it takes this mutex too. 5001 */ 5002 if (task->flags & PF_EXITING) 5003 err = -ESRCH; 5004 else if (task->perf_event_ctxp) 5005 err = -EAGAIN; 5006 else { 5007 get_ctx(ctx); 5008 ++ctx->pin_count; 5009 rcu_assign_pointer(task->perf_event_ctxp, ctx); 5010 } 5011 mutex_unlock(&task->perf_event_mutex); 5012 5013 if (unlikely(err)) { 5014 put_ctx(ctx); 5015 5016 if (err == -EAGAIN) 5017 goto retry; 5018 goto errout; 5019 } 5020 } 5021 5022 return ctx; 5023 5024 errout: 5025 return ERR_PTR(err); 5026 } 5027 5028 static struct perf_event_pmu_context * 5029 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 5030 struct perf_event *event) 5031 { 5032 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 5033 5034 if (!ctx->task) { 5035 /* 5036 * perf_pmu_migrate_context() / __perf_pmu_install_event() 5037 * relies on the fact that find_get_pmu_context() cannot fail 5038 * for CPU contexts. 5039 */ 5040 struct perf_cpu_pmu_context *cpc; 5041 5042 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 5043 epc = &cpc->epc; 5044 raw_spin_lock_irq(&ctx->lock); 5045 if (!epc->ctx) { 5046 /* 5047 * One extra reference for the pmu; see perf_pmu_free(). 5048 */ 5049 atomic_set(&epc->refcount, 2); 5050 epc->embedded = 1; 5051 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5052 epc->ctx = ctx; 5053 } else { 5054 WARN_ON_ONCE(epc->ctx != ctx); 5055 atomic_inc(&epc->refcount); 5056 } 5057 raw_spin_unlock_irq(&ctx->lock); 5058 return epc; 5059 } 5060 5061 new = kzalloc(sizeof(*epc), GFP_KERNEL); 5062 if (!new) 5063 return ERR_PTR(-ENOMEM); 5064 5065 __perf_init_event_pmu_context(new, pmu); 5066 5067 /* 5068 * XXX 5069 * 5070 * lockdep_assert_held(&ctx->mutex); 5071 * 5072 * can't because perf_event_init_task() doesn't actually hold the 5073 * child_ctx->mutex. 5074 */ 5075 5076 raw_spin_lock_irq(&ctx->lock); 5077 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5078 if (epc->pmu == pmu) { 5079 WARN_ON_ONCE(epc->ctx != ctx); 5080 atomic_inc(&epc->refcount); 5081 goto found_epc; 5082 } 5083 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5084 if (!pos && epc->pmu->type > pmu->type) 5085 pos = epc; 5086 } 5087 5088 epc = new; 5089 new = NULL; 5090 5091 if (!pos) 5092 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5093 else 5094 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5095 5096 epc->ctx = ctx; 5097 5098 found_epc: 5099 raw_spin_unlock_irq(&ctx->lock); 5100 kfree(new); 5101 5102 return epc; 5103 } 5104 5105 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5106 { 5107 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5108 } 5109 5110 static void free_cpc_rcu(struct rcu_head *head) 5111 { 5112 struct perf_cpu_pmu_context *cpc = 5113 container_of(head, typeof(*cpc), epc.rcu_head); 5114 5115 kfree(cpc); 5116 } 5117 5118 static void free_epc_rcu(struct rcu_head *head) 5119 { 5120 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5121 5122 kfree(epc); 5123 } 5124 5125 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5126 { 5127 struct perf_event_context *ctx = epc->ctx; 5128 unsigned long flags; 5129 5130 /* 5131 * XXX 5132 * 5133 * lockdep_assert_held(&ctx->mutex); 5134 * 5135 * can't because of the call-site in _free_event()/put_event() 5136 * which isn't always called under ctx->mutex. 5137 */ 5138 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5139 return; 5140 5141 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5142 5143 list_del_init(&epc->pmu_ctx_entry); 5144 epc->ctx = NULL; 5145 5146 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5147 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5148 5149 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5150 5151 if (epc->embedded) { 5152 call_rcu(&epc->rcu_head, free_cpc_rcu); 5153 return; 5154 } 5155 5156 call_rcu(&epc->rcu_head, free_epc_rcu); 5157 } 5158 5159 static void perf_event_free_filter(struct perf_event *event); 5160 5161 static void free_event_rcu(struct rcu_head *head) 5162 { 5163 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5164 5165 if (event->ns) 5166 put_pid_ns(event->ns); 5167 perf_event_free_filter(event); 5168 kmem_cache_free(perf_event_cache, event); 5169 } 5170 5171 static void ring_buffer_attach(struct perf_event *event, 5172 struct perf_buffer *rb); 5173 5174 static void detach_sb_event(struct perf_event *event) 5175 { 5176 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5177 5178 raw_spin_lock(&pel->lock); 5179 list_del_rcu(&event->sb_list); 5180 raw_spin_unlock(&pel->lock); 5181 } 5182 5183 static bool is_sb_event(struct perf_event *event) 5184 { 5185 struct perf_event_attr *attr = &event->attr; 5186 5187 if (event->parent) 5188 return false; 5189 5190 if (event->attach_state & PERF_ATTACH_TASK) 5191 return false; 5192 5193 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5194 attr->comm || attr->comm_exec || 5195 attr->task || attr->ksymbol || 5196 attr->context_switch || attr->text_poke || 5197 attr->bpf_event) 5198 return true; 5199 5200 return false; 5201 } 5202 5203 static void unaccount_pmu_sb_event(struct perf_event *event) 5204 { 5205 if (is_sb_event(event)) 5206 detach_sb_event(event); 5207 } 5208 5209 #ifdef CONFIG_NO_HZ_FULL 5210 static DEFINE_SPINLOCK(nr_freq_lock); 5211 #endif 5212 5213 static void unaccount_freq_event_nohz(void) 5214 { 5215 #ifdef CONFIG_NO_HZ_FULL 5216 spin_lock(&nr_freq_lock); 5217 if (atomic_dec_and_test(&nr_freq_events)) 5218 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5219 spin_unlock(&nr_freq_lock); 5220 #endif 5221 } 5222 5223 static void unaccount_freq_event(void) 5224 { 5225 if (tick_nohz_full_enabled()) 5226 unaccount_freq_event_nohz(); 5227 else 5228 atomic_dec(&nr_freq_events); 5229 } 5230 5231 5232 static struct perf_ctx_data * 5233 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5234 { 5235 struct perf_ctx_data *cd; 5236 5237 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5238 if (!cd) 5239 return NULL; 5240 5241 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5242 if (!cd->data) { 5243 kfree(cd); 5244 return NULL; 5245 } 5246 5247 cd->global = global; 5248 cd->ctx_cache = ctx_cache; 5249 refcount_set(&cd->refcount, 1); 5250 5251 return cd; 5252 } 5253 5254 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5255 { 5256 kmem_cache_free(cd->ctx_cache, cd->data); 5257 kfree(cd); 5258 } 5259 5260 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5261 { 5262 struct perf_ctx_data *cd; 5263 5264 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5265 free_perf_ctx_data(cd); 5266 } 5267 5268 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5269 { 5270 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5271 } 5272 5273 static int 5274 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5275 bool global) 5276 { 5277 struct perf_ctx_data *cd, *old = NULL; 5278 5279 cd = alloc_perf_ctx_data(ctx_cache, global); 5280 if (!cd) 5281 return -ENOMEM; 5282 5283 for (;;) { 5284 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { 5285 if (old) 5286 perf_free_ctx_data_rcu(old); 5287 return 0; 5288 } 5289 5290 if (!old) { 5291 /* 5292 * After seeing a dead @old, we raced with 5293 * removal and lost, try again to install @cd. 5294 */ 5295 continue; 5296 } 5297 5298 if (refcount_inc_not_zero(&old->refcount)) { 5299 free_perf_ctx_data(cd); /* unused */ 5300 return 0; 5301 } 5302 5303 /* 5304 * @old is a dead object, refcount==0 is stable, try and 5305 * replace it with @cd. 5306 */ 5307 } 5308 return 0; 5309 } 5310 5311 static void __detach_global_ctx_data(void); 5312 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5313 static refcount_t global_ctx_data_ref; 5314 5315 static int 5316 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5317 { 5318 struct task_struct *g, *p; 5319 struct perf_ctx_data *cd; 5320 int ret; 5321 5322 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5323 return 0; 5324 5325 guard(percpu_write)(&global_ctx_data_rwsem); 5326 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5327 return 0; 5328 again: 5329 /* Allocate everything */ 5330 scoped_guard (rcu) { 5331 for_each_process_thread(g, p) { 5332 cd = rcu_dereference(p->perf_ctx_data); 5333 if (cd && !cd->global) { 5334 cd->global = 1; 5335 if (!refcount_inc_not_zero(&cd->refcount)) 5336 cd = NULL; 5337 } 5338 if (!cd) { 5339 get_task_struct(p); 5340 goto alloc; 5341 } 5342 } 5343 } 5344 5345 refcount_set(&global_ctx_data_ref, 1); 5346 5347 return 0; 5348 alloc: 5349 ret = attach_task_ctx_data(p, ctx_cache, true); 5350 put_task_struct(p); 5351 if (ret) { 5352 __detach_global_ctx_data(); 5353 return ret; 5354 } 5355 goto again; 5356 } 5357 5358 static int 5359 attach_perf_ctx_data(struct perf_event *event) 5360 { 5361 struct task_struct *task = event->hw.target; 5362 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5363 int ret; 5364 5365 if (!ctx_cache) 5366 return -ENOMEM; 5367 5368 if (task) 5369 return attach_task_ctx_data(task, ctx_cache, false); 5370 5371 ret = attach_global_ctx_data(ctx_cache); 5372 if (ret) 5373 return ret; 5374 5375 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5376 return 0; 5377 } 5378 5379 static void 5380 detach_task_ctx_data(struct task_struct *p) 5381 { 5382 struct perf_ctx_data *cd; 5383 5384 scoped_guard (rcu) { 5385 cd = rcu_dereference(p->perf_ctx_data); 5386 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5387 return; 5388 } 5389 5390 /* 5391 * The old ctx_data may be lost because of the race. 5392 * Nothing is required to do for the case. 5393 * See attach_task_ctx_data(). 5394 */ 5395 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5396 perf_free_ctx_data_rcu(cd); 5397 } 5398 5399 static void __detach_global_ctx_data(void) 5400 { 5401 struct task_struct *g, *p; 5402 struct perf_ctx_data *cd; 5403 5404 again: 5405 scoped_guard (rcu) { 5406 for_each_process_thread(g, p) { 5407 cd = rcu_dereference(p->perf_ctx_data); 5408 if (!cd || !cd->global) 5409 continue; 5410 cd->global = 0; 5411 get_task_struct(p); 5412 goto detach; 5413 } 5414 } 5415 return; 5416 detach: 5417 detach_task_ctx_data(p); 5418 put_task_struct(p); 5419 goto again; 5420 } 5421 5422 static void detach_global_ctx_data(void) 5423 { 5424 if (refcount_dec_not_one(&global_ctx_data_ref)) 5425 return; 5426 5427 guard(percpu_write)(&global_ctx_data_rwsem); 5428 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5429 return; 5430 5431 /* remove everything */ 5432 __detach_global_ctx_data(); 5433 } 5434 5435 static void detach_perf_ctx_data(struct perf_event *event) 5436 { 5437 struct task_struct *task = event->hw.target; 5438 5439 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5440 5441 if (task) 5442 return detach_task_ctx_data(task); 5443 5444 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5445 detach_global_ctx_data(); 5446 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5447 } 5448 } 5449 5450 static void unaccount_event(struct perf_event *event) 5451 { 5452 bool dec = false; 5453 5454 if (event->parent) 5455 return; 5456 5457 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5458 dec = true; 5459 if (event->attr.mmap || event->attr.mmap_data) 5460 atomic_dec(&nr_mmap_events); 5461 if (event->attr.build_id) 5462 atomic_dec(&nr_build_id_events); 5463 if (event->attr.comm) 5464 atomic_dec(&nr_comm_events); 5465 if (event->attr.namespaces) 5466 atomic_dec(&nr_namespaces_events); 5467 if (event->attr.cgroup) 5468 atomic_dec(&nr_cgroup_events); 5469 if (event->attr.task) 5470 atomic_dec(&nr_task_events); 5471 if (event->attr.freq) 5472 unaccount_freq_event(); 5473 if (event->attr.context_switch) { 5474 dec = true; 5475 atomic_dec(&nr_switch_events); 5476 } 5477 if (is_cgroup_event(event)) 5478 dec = true; 5479 if (has_branch_stack(event)) 5480 dec = true; 5481 if (event->attr.ksymbol) 5482 atomic_dec(&nr_ksymbol_events); 5483 if (event->attr.bpf_event) 5484 atomic_dec(&nr_bpf_events); 5485 if (event->attr.text_poke) 5486 atomic_dec(&nr_text_poke_events); 5487 5488 if (dec) { 5489 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5490 schedule_delayed_work(&perf_sched_work, HZ); 5491 } 5492 5493 unaccount_pmu_sb_event(event); 5494 } 5495 5496 static void perf_sched_delayed(struct work_struct *work) 5497 { 5498 mutex_lock(&perf_sched_mutex); 5499 if (atomic_dec_and_test(&perf_sched_count)) 5500 static_branch_disable(&perf_sched_events); 5501 mutex_unlock(&perf_sched_mutex); 5502 } 5503 5504 /* 5505 * The following implement mutual exclusion of events on "exclusive" pmus 5506 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5507 * at a time, so we disallow creating events that might conflict, namely: 5508 * 5509 * 1) cpu-wide events in the presence of per-task events, 5510 * 2) per-task events in the presence of cpu-wide events, 5511 * 3) two matching events on the same perf_event_context. 5512 * 5513 * The former two cases are handled in the allocation path (perf_event_alloc(), 5514 * _free_event()), the latter -- before the first perf_install_in_context(). 5515 */ 5516 static int exclusive_event_init(struct perf_event *event) 5517 { 5518 struct pmu *pmu = event->pmu; 5519 5520 if (!is_exclusive_pmu(pmu)) 5521 return 0; 5522 5523 /* 5524 * Prevent co-existence of per-task and cpu-wide events on the 5525 * same exclusive pmu. 5526 * 5527 * Negative pmu::exclusive_cnt means there are cpu-wide 5528 * events on this "exclusive" pmu, positive means there are 5529 * per-task events. 5530 * 5531 * Since this is called in perf_event_alloc() path, event::ctx 5532 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5533 * to mean "per-task event", because unlike other attach states it 5534 * never gets cleared. 5535 */ 5536 if (event->attach_state & PERF_ATTACH_TASK) { 5537 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5538 return -EBUSY; 5539 } else { 5540 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5541 return -EBUSY; 5542 } 5543 5544 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5545 5546 return 0; 5547 } 5548 5549 static void exclusive_event_destroy(struct perf_event *event) 5550 { 5551 struct pmu *pmu = event->pmu; 5552 5553 /* see comment in exclusive_event_init() */ 5554 if (event->attach_state & PERF_ATTACH_TASK) 5555 atomic_dec(&pmu->exclusive_cnt); 5556 else 5557 atomic_inc(&pmu->exclusive_cnt); 5558 5559 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5560 } 5561 5562 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5563 { 5564 if ((e1->pmu == e2->pmu) && 5565 (e1->cpu == e2->cpu || 5566 e1->cpu == -1 || 5567 e2->cpu == -1)) 5568 return true; 5569 return false; 5570 } 5571 5572 static bool exclusive_event_installable(struct perf_event *event, 5573 struct perf_event_context *ctx) 5574 { 5575 struct perf_event *iter_event; 5576 struct pmu *pmu = event->pmu; 5577 5578 lockdep_assert_held(&ctx->mutex); 5579 5580 if (!is_exclusive_pmu(pmu)) 5581 return true; 5582 5583 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5584 if (exclusive_event_match(iter_event, event)) 5585 return false; 5586 } 5587 5588 return true; 5589 } 5590 5591 static void perf_free_addr_filters(struct perf_event *event); 5592 5593 /* vs perf_event_alloc() error */ 5594 static void __free_event(struct perf_event *event) 5595 { 5596 struct pmu *pmu = event->pmu; 5597 5598 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5599 put_callchain_buffers(); 5600 5601 kfree(event->addr_filter_ranges); 5602 5603 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5604 exclusive_event_destroy(event); 5605 5606 if (is_cgroup_event(event)) 5607 perf_detach_cgroup(event); 5608 5609 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5610 detach_perf_ctx_data(event); 5611 5612 if (event->destroy) 5613 event->destroy(event); 5614 5615 /* 5616 * Must be after ->destroy(), due to uprobe_perf_close() using 5617 * hw.target. 5618 */ 5619 if (event->hw.target) 5620 put_task_struct(event->hw.target); 5621 5622 if (event->pmu_ctx) { 5623 /* 5624 * put_pmu_ctx() needs an event->ctx reference, because of 5625 * epc->ctx. 5626 */ 5627 WARN_ON_ONCE(!pmu); 5628 WARN_ON_ONCE(!event->ctx); 5629 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5630 put_pmu_ctx(event->pmu_ctx); 5631 } 5632 5633 /* 5634 * perf_event_free_task() relies on put_ctx() being 'last', in 5635 * particular all task references must be cleaned up. 5636 */ 5637 if (event->ctx) 5638 put_ctx(event->ctx); 5639 5640 if (pmu) { 5641 module_put(pmu->module); 5642 scoped_guard (spinlock, &pmu->events_lock) { 5643 list_del(&event->pmu_list); 5644 wake_up_var(pmu); 5645 } 5646 } 5647 5648 call_rcu(&event->rcu_head, free_event_rcu); 5649 } 5650 5651 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5652 5653 /* vs perf_event_alloc() success */ 5654 static void _free_event(struct perf_event *event) 5655 { 5656 irq_work_sync(&event->pending_irq); 5657 irq_work_sync(&event->pending_disable_irq); 5658 5659 unaccount_event(event); 5660 5661 security_perf_event_free(event); 5662 5663 if (event->rb) { 5664 /* 5665 * Can happen when we close an event with re-directed output. 5666 * 5667 * Since we have a 0 refcount, perf_mmap_close() will skip 5668 * over us; possibly making our ring_buffer_put() the last. 5669 */ 5670 mutex_lock(&event->mmap_mutex); 5671 ring_buffer_attach(event, NULL); 5672 mutex_unlock(&event->mmap_mutex); 5673 } 5674 5675 perf_event_free_bpf_prog(event); 5676 perf_free_addr_filters(event); 5677 5678 __free_event(event); 5679 } 5680 5681 /* 5682 * Used to free events which have a known refcount of 1, such as in error paths 5683 * of inherited events. 5684 */ 5685 static void free_event(struct perf_event *event) 5686 { 5687 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5688 "unexpected event refcount: %ld; ptr=%p\n", 5689 atomic_long_read(&event->refcount), event)) { 5690 /* leak to avoid use-after-free */ 5691 return; 5692 } 5693 5694 _free_event(event); 5695 } 5696 5697 /* 5698 * Remove user event from the owner task. 5699 */ 5700 static void perf_remove_from_owner(struct perf_event *event) 5701 { 5702 struct task_struct *owner; 5703 5704 rcu_read_lock(); 5705 /* 5706 * Matches the smp_store_release() in perf_event_exit_task(). If we 5707 * observe !owner it means the list deletion is complete and we can 5708 * indeed free this event, otherwise we need to serialize on 5709 * owner->perf_event_mutex. 5710 */ 5711 owner = READ_ONCE(event->owner); 5712 if (owner) { 5713 /* 5714 * Since delayed_put_task_struct() also drops the last 5715 * task reference we can safely take a new reference 5716 * while holding the rcu_read_lock(). 5717 */ 5718 get_task_struct(owner); 5719 } 5720 rcu_read_unlock(); 5721 5722 if (owner) { 5723 /* 5724 * If we're here through perf_event_exit_task() we're already 5725 * holding ctx->mutex which would be an inversion wrt. the 5726 * normal lock order. 5727 * 5728 * However we can safely take this lock because its the child 5729 * ctx->mutex. 5730 */ 5731 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5732 5733 /* 5734 * We have to re-check the event->owner field, if it is cleared 5735 * we raced with perf_event_exit_task(), acquiring the mutex 5736 * ensured they're done, and we can proceed with freeing the 5737 * event. 5738 */ 5739 if (event->owner) { 5740 list_del_init(&event->owner_entry); 5741 smp_store_release(&event->owner, NULL); 5742 } 5743 mutex_unlock(&owner->perf_event_mutex); 5744 put_task_struct(owner); 5745 } 5746 } 5747 5748 static void put_event(struct perf_event *event) 5749 { 5750 struct perf_event *parent; 5751 5752 if (!atomic_long_dec_and_test(&event->refcount)) 5753 return; 5754 5755 parent = event->parent; 5756 _free_event(event); 5757 5758 /* Matches the refcount bump in inherit_event() */ 5759 if (parent) 5760 put_event(parent); 5761 } 5762 5763 /* 5764 * Kill an event dead; while event:refcount will preserve the event 5765 * object, it will not preserve its functionality. Once the last 'user' 5766 * gives up the object, we'll destroy the thing. 5767 */ 5768 int perf_event_release_kernel(struct perf_event *event) 5769 { 5770 struct perf_event_context *ctx = event->ctx; 5771 struct perf_event *child, *tmp; 5772 5773 /* 5774 * If we got here through err_alloc: free_event(event); we will not 5775 * have attached to a context yet. 5776 */ 5777 if (!ctx) { 5778 WARN_ON_ONCE(event->attach_state & 5779 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5780 goto no_ctx; 5781 } 5782 5783 if (!is_kernel_event(event)) 5784 perf_remove_from_owner(event); 5785 5786 ctx = perf_event_ctx_lock(event); 5787 WARN_ON_ONCE(ctx->parent_ctx); 5788 5789 /* 5790 * Mark this event as STATE_DEAD, there is no external reference to it 5791 * anymore. 5792 * 5793 * Anybody acquiring event->child_mutex after the below loop _must_ 5794 * also see this, most importantly inherit_event() which will avoid 5795 * placing more children on the list. 5796 * 5797 * Thus this guarantees that we will in fact observe and kill _ALL_ 5798 * child events. 5799 */ 5800 if (event->state > PERF_EVENT_STATE_REVOKED) { 5801 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5802 } else { 5803 event->state = PERF_EVENT_STATE_DEAD; 5804 } 5805 5806 perf_event_ctx_unlock(event, ctx); 5807 5808 again: 5809 mutex_lock(&event->child_mutex); 5810 list_for_each_entry(child, &event->child_list, child_list) { 5811 /* 5812 * Cannot change, child events are not migrated, see the 5813 * comment with perf_event_ctx_lock_nested(). 5814 */ 5815 ctx = READ_ONCE(child->ctx); 5816 /* 5817 * Since child_mutex nests inside ctx::mutex, we must jump 5818 * through hoops. We start by grabbing a reference on the ctx. 5819 * 5820 * Since the event cannot get freed while we hold the 5821 * child_mutex, the context must also exist and have a !0 5822 * reference count. 5823 */ 5824 get_ctx(ctx); 5825 5826 /* 5827 * Now that we have a ctx ref, we can drop child_mutex, and 5828 * acquire ctx::mutex without fear of it going away. Then we 5829 * can re-acquire child_mutex. 5830 */ 5831 mutex_unlock(&event->child_mutex); 5832 mutex_lock(&ctx->mutex); 5833 mutex_lock(&event->child_mutex); 5834 5835 /* 5836 * Now that we hold ctx::mutex and child_mutex, revalidate our 5837 * state, if child is still the first entry, it didn't get freed 5838 * and we can continue doing so. 5839 */ 5840 tmp = list_first_entry_or_null(&event->child_list, 5841 struct perf_event, child_list); 5842 if (tmp == child) { 5843 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); 5844 } else { 5845 child = NULL; 5846 } 5847 5848 mutex_unlock(&event->child_mutex); 5849 mutex_unlock(&ctx->mutex); 5850 5851 if (child) { 5852 /* Last reference unless ->pending_task work is pending */ 5853 put_event(child); 5854 } 5855 put_ctx(ctx); 5856 5857 goto again; 5858 } 5859 mutex_unlock(&event->child_mutex); 5860 5861 no_ctx: 5862 /* 5863 * Last reference unless ->pending_task work is pending on this event 5864 * or any of its children. 5865 */ 5866 put_event(event); 5867 return 0; 5868 } 5869 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5870 5871 /* 5872 * Called when the last reference to the file is gone. 5873 */ 5874 static int perf_release(struct inode *inode, struct file *file) 5875 { 5876 perf_event_release_kernel(file->private_data); 5877 return 0; 5878 } 5879 5880 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5881 { 5882 struct perf_event *child; 5883 u64 total = 0; 5884 5885 *enabled = 0; 5886 *running = 0; 5887 5888 mutex_lock(&event->child_mutex); 5889 5890 (void)perf_event_read(event, false); 5891 total += perf_event_count(event, false); 5892 5893 *enabled += event->total_time_enabled + 5894 atomic64_read(&event->child_total_time_enabled); 5895 *running += event->total_time_running + 5896 atomic64_read(&event->child_total_time_running); 5897 5898 list_for_each_entry(child, &event->child_list, child_list) { 5899 (void)perf_event_read(child, false); 5900 total += perf_event_count(child, false); 5901 *enabled += child->total_time_enabled; 5902 *running += child->total_time_running; 5903 } 5904 mutex_unlock(&event->child_mutex); 5905 5906 return total; 5907 } 5908 5909 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5910 { 5911 struct perf_event_context *ctx; 5912 u64 count; 5913 5914 ctx = perf_event_ctx_lock(event); 5915 count = __perf_event_read_value(event, enabled, running); 5916 perf_event_ctx_unlock(event, ctx); 5917 5918 return count; 5919 } 5920 EXPORT_SYMBOL_GPL(perf_event_read_value); 5921 5922 static int __perf_read_group_add(struct perf_event *leader, 5923 u64 read_format, u64 *values) 5924 { 5925 struct perf_event_context *ctx = leader->ctx; 5926 struct perf_event *sub, *parent; 5927 unsigned long flags; 5928 int n = 1; /* skip @nr */ 5929 int ret; 5930 5931 ret = perf_event_read(leader, true); 5932 if (ret) 5933 return ret; 5934 5935 raw_spin_lock_irqsave(&ctx->lock, flags); 5936 /* 5937 * Verify the grouping between the parent and child (inherited) 5938 * events is still in tact. 5939 * 5940 * Specifically: 5941 * - leader->ctx->lock pins leader->sibling_list 5942 * - parent->child_mutex pins parent->child_list 5943 * - parent->ctx->mutex pins parent->sibling_list 5944 * 5945 * Because parent->ctx != leader->ctx (and child_list nests inside 5946 * ctx->mutex), group destruction is not atomic between children, also 5947 * see perf_event_release_kernel(). Additionally, parent can grow the 5948 * group. 5949 * 5950 * Therefore it is possible to have parent and child groups in a 5951 * different configuration and summing over such a beast makes no sense 5952 * what so ever. 5953 * 5954 * Reject this. 5955 */ 5956 parent = leader->parent; 5957 if (parent && 5958 (parent->group_generation != leader->group_generation || 5959 parent->nr_siblings != leader->nr_siblings)) { 5960 ret = -ECHILD; 5961 goto unlock; 5962 } 5963 5964 /* 5965 * Since we co-schedule groups, {enabled,running} times of siblings 5966 * will be identical to those of the leader, so we only publish one 5967 * set. 5968 */ 5969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5970 values[n++] += leader->total_time_enabled + 5971 atomic64_read(&leader->child_total_time_enabled); 5972 } 5973 5974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5975 values[n++] += leader->total_time_running + 5976 atomic64_read(&leader->child_total_time_running); 5977 } 5978 5979 /* 5980 * Write {count,id} tuples for every sibling. 5981 */ 5982 values[n++] += perf_event_count(leader, false); 5983 if (read_format & PERF_FORMAT_ID) 5984 values[n++] = primary_event_id(leader); 5985 if (read_format & PERF_FORMAT_LOST) 5986 values[n++] = atomic64_read(&leader->lost_samples); 5987 5988 for_each_sibling_event(sub, leader) { 5989 values[n++] += perf_event_count(sub, false); 5990 if (read_format & PERF_FORMAT_ID) 5991 values[n++] = primary_event_id(sub); 5992 if (read_format & PERF_FORMAT_LOST) 5993 values[n++] = atomic64_read(&sub->lost_samples); 5994 } 5995 5996 unlock: 5997 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5998 return ret; 5999 } 6000 6001 static int perf_read_group(struct perf_event *event, 6002 u64 read_format, char __user *buf) 6003 { 6004 struct perf_event *leader = event->group_leader, *child; 6005 struct perf_event_context *ctx = leader->ctx; 6006 int ret; 6007 u64 *values; 6008 6009 lockdep_assert_held(&ctx->mutex); 6010 6011 values = kzalloc(event->read_size, GFP_KERNEL); 6012 if (!values) 6013 return -ENOMEM; 6014 6015 values[0] = 1 + leader->nr_siblings; 6016 6017 mutex_lock(&leader->child_mutex); 6018 6019 ret = __perf_read_group_add(leader, read_format, values); 6020 if (ret) 6021 goto unlock; 6022 6023 list_for_each_entry(child, &leader->child_list, child_list) { 6024 ret = __perf_read_group_add(child, read_format, values); 6025 if (ret) 6026 goto unlock; 6027 } 6028 6029 mutex_unlock(&leader->child_mutex); 6030 6031 ret = event->read_size; 6032 if (copy_to_user(buf, values, event->read_size)) 6033 ret = -EFAULT; 6034 goto out; 6035 6036 unlock: 6037 mutex_unlock(&leader->child_mutex); 6038 out: 6039 kfree(values); 6040 return ret; 6041 } 6042 6043 static int perf_read_one(struct perf_event *event, 6044 u64 read_format, char __user *buf) 6045 { 6046 u64 enabled, running; 6047 u64 values[5]; 6048 int n = 0; 6049 6050 values[n++] = __perf_event_read_value(event, &enabled, &running); 6051 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6052 values[n++] = enabled; 6053 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6054 values[n++] = running; 6055 if (read_format & PERF_FORMAT_ID) 6056 values[n++] = primary_event_id(event); 6057 if (read_format & PERF_FORMAT_LOST) 6058 values[n++] = atomic64_read(&event->lost_samples); 6059 6060 if (copy_to_user(buf, values, n * sizeof(u64))) 6061 return -EFAULT; 6062 6063 return n * sizeof(u64); 6064 } 6065 6066 static bool is_event_hup(struct perf_event *event) 6067 { 6068 bool no_children; 6069 6070 if (event->state > PERF_EVENT_STATE_EXIT) 6071 return false; 6072 6073 mutex_lock(&event->child_mutex); 6074 no_children = list_empty(&event->child_list); 6075 mutex_unlock(&event->child_mutex); 6076 return no_children; 6077 } 6078 6079 /* 6080 * Read the performance event - simple non blocking version for now 6081 */ 6082 static ssize_t 6083 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6084 { 6085 u64 read_format = event->attr.read_format; 6086 int ret; 6087 6088 /* 6089 * Return end-of-file for a read on an event that is in 6090 * error state (i.e. because it was pinned but it couldn't be 6091 * scheduled on to the CPU at some point). 6092 */ 6093 if (event->state == PERF_EVENT_STATE_ERROR) 6094 return 0; 6095 6096 if (count < event->read_size) 6097 return -ENOSPC; 6098 6099 WARN_ON_ONCE(event->ctx->parent_ctx); 6100 if (read_format & PERF_FORMAT_GROUP) 6101 ret = perf_read_group(event, read_format, buf); 6102 else 6103 ret = perf_read_one(event, read_format, buf); 6104 6105 return ret; 6106 } 6107 6108 static ssize_t 6109 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6110 { 6111 struct perf_event *event = file->private_data; 6112 struct perf_event_context *ctx; 6113 int ret; 6114 6115 ret = security_perf_event_read(event); 6116 if (ret) 6117 return ret; 6118 6119 ctx = perf_event_ctx_lock(event); 6120 ret = __perf_read(event, buf, count); 6121 perf_event_ctx_unlock(event, ctx); 6122 6123 return ret; 6124 } 6125 6126 static __poll_t perf_poll(struct file *file, poll_table *wait) 6127 { 6128 struct perf_event *event = file->private_data; 6129 struct perf_buffer *rb; 6130 __poll_t events = EPOLLHUP; 6131 6132 if (event->state <= PERF_EVENT_STATE_REVOKED) 6133 return EPOLLERR; 6134 6135 poll_wait(file, &event->waitq, wait); 6136 6137 if (event->state <= PERF_EVENT_STATE_REVOKED) 6138 return EPOLLERR; 6139 6140 if (is_event_hup(event)) 6141 return events; 6142 6143 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6144 event->attr.pinned)) 6145 return EPOLLERR; 6146 6147 /* 6148 * Pin the event->rb by taking event->mmap_mutex; otherwise 6149 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6150 */ 6151 mutex_lock(&event->mmap_mutex); 6152 rb = event->rb; 6153 if (rb) 6154 events = atomic_xchg(&rb->poll, 0); 6155 mutex_unlock(&event->mmap_mutex); 6156 return events; 6157 } 6158 6159 static void _perf_event_reset(struct perf_event *event) 6160 { 6161 (void)perf_event_read(event, false); 6162 local64_set(&event->count, 0); 6163 perf_event_update_userpage(event); 6164 } 6165 6166 /* Assume it's not an event with inherit set. */ 6167 u64 perf_event_pause(struct perf_event *event, bool reset) 6168 { 6169 struct perf_event_context *ctx; 6170 u64 count; 6171 6172 ctx = perf_event_ctx_lock(event); 6173 WARN_ON_ONCE(event->attr.inherit); 6174 _perf_event_disable(event); 6175 count = local64_read(&event->count); 6176 if (reset) 6177 local64_set(&event->count, 0); 6178 perf_event_ctx_unlock(event, ctx); 6179 6180 return count; 6181 } 6182 EXPORT_SYMBOL_GPL(perf_event_pause); 6183 6184 /* 6185 * Holding the top-level event's child_mutex means that any 6186 * descendant process that has inherited this event will block 6187 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6188 * task existence requirements of perf_event_enable/disable. 6189 */ 6190 static void perf_event_for_each_child(struct perf_event *event, 6191 void (*func)(struct perf_event *)) 6192 { 6193 struct perf_event *child; 6194 6195 WARN_ON_ONCE(event->ctx->parent_ctx); 6196 6197 mutex_lock(&event->child_mutex); 6198 func(event); 6199 list_for_each_entry(child, &event->child_list, child_list) 6200 func(child); 6201 mutex_unlock(&event->child_mutex); 6202 } 6203 6204 static void perf_event_for_each(struct perf_event *event, 6205 void (*func)(struct perf_event *)) 6206 { 6207 struct perf_event_context *ctx = event->ctx; 6208 struct perf_event *sibling; 6209 6210 lockdep_assert_held(&ctx->mutex); 6211 6212 event = event->group_leader; 6213 6214 perf_event_for_each_child(event, func); 6215 for_each_sibling_event(sibling, event) 6216 perf_event_for_each_child(sibling, func); 6217 } 6218 6219 static void __perf_event_period(struct perf_event *event, 6220 struct perf_cpu_context *cpuctx, 6221 struct perf_event_context *ctx, 6222 void *info) 6223 { 6224 u64 value = *((u64 *)info); 6225 bool active; 6226 6227 if (event->attr.freq) { 6228 event->attr.sample_freq = value; 6229 } else { 6230 event->attr.sample_period = value; 6231 event->hw.sample_period = value; 6232 } 6233 6234 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6235 if (active) { 6236 perf_pmu_disable(event->pmu); 6237 event->pmu->stop(event, PERF_EF_UPDATE); 6238 } 6239 6240 local64_set(&event->hw.period_left, 0); 6241 6242 if (active) { 6243 event->pmu->start(event, PERF_EF_RELOAD); 6244 /* 6245 * Once the period is force-reset, the event starts immediately. 6246 * But the event/group could be throttled. Unthrottle the 6247 * event/group now to avoid the next tick trying to unthrottle 6248 * while we already re-started the event/group. 6249 */ 6250 if (event->hw.interrupts == MAX_INTERRUPTS) 6251 perf_event_unthrottle_group(event, true); 6252 perf_pmu_enable(event->pmu); 6253 } 6254 } 6255 6256 static int perf_event_check_period(struct perf_event *event, u64 value) 6257 { 6258 return event->pmu->check_period(event, value); 6259 } 6260 6261 static int _perf_event_period(struct perf_event *event, u64 value) 6262 { 6263 if (!is_sampling_event(event)) 6264 return -EINVAL; 6265 6266 if (!value) 6267 return -EINVAL; 6268 6269 if (event->attr.freq) { 6270 if (value > sysctl_perf_event_sample_rate) 6271 return -EINVAL; 6272 } else { 6273 if (perf_event_check_period(event, value)) 6274 return -EINVAL; 6275 if (value & (1ULL << 63)) 6276 return -EINVAL; 6277 } 6278 6279 event_function_call(event, __perf_event_period, &value); 6280 6281 return 0; 6282 } 6283 6284 int perf_event_period(struct perf_event *event, u64 value) 6285 { 6286 struct perf_event_context *ctx; 6287 int ret; 6288 6289 ctx = perf_event_ctx_lock(event); 6290 ret = _perf_event_period(event, value); 6291 perf_event_ctx_unlock(event, ctx); 6292 6293 return ret; 6294 } 6295 EXPORT_SYMBOL_GPL(perf_event_period); 6296 6297 static const struct file_operations perf_fops; 6298 6299 static inline bool is_perf_file(struct fd f) 6300 { 6301 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6302 } 6303 6304 static int perf_event_set_output(struct perf_event *event, 6305 struct perf_event *output_event); 6306 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6307 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6308 struct perf_event_attr *attr); 6309 static int __perf_event_set_bpf_prog(struct perf_event *event, 6310 struct bpf_prog *prog, 6311 u64 bpf_cookie); 6312 6313 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6314 { 6315 void (*func)(struct perf_event *); 6316 u32 flags = arg; 6317 6318 if (event->state <= PERF_EVENT_STATE_REVOKED) 6319 return -ENODEV; 6320 6321 switch (cmd) { 6322 case PERF_EVENT_IOC_ENABLE: 6323 func = _perf_event_enable; 6324 break; 6325 case PERF_EVENT_IOC_DISABLE: 6326 func = _perf_event_disable; 6327 break; 6328 case PERF_EVENT_IOC_RESET: 6329 func = _perf_event_reset; 6330 break; 6331 6332 case PERF_EVENT_IOC_REFRESH: 6333 return _perf_event_refresh(event, arg); 6334 6335 case PERF_EVENT_IOC_PERIOD: 6336 { 6337 u64 value; 6338 6339 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6340 return -EFAULT; 6341 6342 return _perf_event_period(event, value); 6343 } 6344 case PERF_EVENT_IOC_ID: 6345 { 6346 u64 id = primary_event_id(event); 6347 6348 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6349 return -EFAULT; 6350 return 0; 6351 } 6352 6353 case PERF_EVENT_IOC_SET_OUTPUT: 6354 { 6355 CLASS(fd, output)(arg); // arg == -1 => empty 6356 struct perf_event *output_event = NULL; 6357 if (arg != -1) { 6358 if (!is_perf_file(output)) 6359 return -EBADF; 6360 output_event = fd_file(output)->private_data; 6361 } 6362 return perf_event_set_output(event, output_event); 6363 } 6364 6365 case PERF_EVENT_IOC_SET_FILTER: 6366 return perf_event_set_filter(event, (void __user *)arg); 6367 6368 case PERF_EVENT_IOC_SET_BPF: 6369 { 6370 struct bpf_prog *prog; 6371 int err; 6372 6373 prog = bpf_prog_get(arg); 6374 if (IS_ERR(prog)) 6375 return PTR_ERR(prog); 6376 6377 err = __perf_event_set_bpf_prog(event, prog, 0); 6378 if (err) { 6379 bpf_prog_put(prog); 6380 return err; 6381 } 6382 6383 return 0; 6384 } 6385 6386 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6387 struct perf_buffer *rb; 6388 6389 rcu_read_lock(); 6390 rb = rcu_dereference(event->rb); 6391 if (!rb || !rb->nr_pages) { 6392 rcu_read_unlock(); 6393 return -EINVAL; 6394 } 6395 rb_toggle_paused(rb, !!arg); 6396 rcu_read_unlock(); 6397 return 0; 6398 } 6399 6400 case PERF_EVENT_IOC_QUERY_BPF: 6401 return perf_event_query_prog_array(event, (void __user *)arg); 6402 6403 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6404 struct perf_event_attr new_attr; 6405 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6406 &new_attr); 6407 6408 if (err) 6409 return err; 6410 6411 return perf_event_modify_attr(event, &new_attr); 6412 } 6413 default: 6414 return -ENOTTY; 6415 } 6416 6417 if (flags & PERF_IOC_FLAG_GROUP) 6418 perf_event_for_each(event, func); 6419 else 6420 perf_event_for_each_child(event, func); 6421 6422 return 0; 6423 } 6424 6425 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6426 { 6427 struct perf_event *event = file->private_data; 6428 struct perf_event_context *ctx; 6429 long ret; 6430 6431 /* Treat ioctl like writes as it is likely a mutating operation. */ 6432 ret = security_perf_event_write(event); 6433 if (ret) 6434 return ret; 6435 6436 ctx = perf_event_ctx_lock(event); 6437 ret = _perf_ioctl(event, cmd, arg); 6438 perf_event_ctx_unlock(event, ctx); 6439 6440 return ret; 6441 } 6442 6443 #ifdef CONFIG_COMPAT 6444 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6445 unsigned long arg) 6446 { 6447 switch (_IOC_NR(cmd)) { 6448 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6449 case _IOC_NR(PERF_EVENT_IOC_ID): 6450 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6451 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6452 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6453 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6454 cmd &= ~IOCSIZE_MASK; 6455 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6456 } 6457 break; 6458 } 6459 return perf_ioctl(file, cmd, arg); 6460 } 6461 #else 6462 # define perf_compat_ioctl NULL 6463 #endif 6464 6465 int perf_event_task_enable(void) 6466 { 6467 struct perf_event_context *ctx; 6468 struct perf_event *event; 6469 6470 mutex_lock(¤t->perf_event_mutex); 6471 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6472 ctx = perf_event_ctx_lock(event); 6473 perf_event_for_each_child(event, _perf_event_enable); 6474 perf_event_ctx_unlock(event, ctx); 6475 } 6476 mutex_unlock(¤t->perf_event_mutex); 6477 6478 return 0; 6479 } 6480 6481 int perf_event_task_disable(void) 6482 { 6483 struct perf_event_context *ctx; 6484 struct perf_event *event; 6485 6486 mutex_lock(¤t->perf_event_mutex); 6487 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6488 ctx = perf_event_ctx_lock(event); 6489 perf_event_for_each_child(event, _perf_event_disable); 6490 perf_event_ctx_unlock(event, ctx); 6491 } 6492 mutex_unlock(¤t->perf_event_mutex); 6493 6494 return 0; 6495 } 6496 6497 static int perf_event_index(struct perf_event *event) 6498 { 6499 if (event->hw.state & PERF_HES_STOPPED) 6500 return 0; 6501 6502 if (event->state != PERF_EVENT_STATE_ACTIVE) 6503 return 0; 6504 6505 return event->pmu->event_idx(event); 6506 } 6507 6508 static void perf_event_init_userpage(struct perf_event *event) 6509 { 6510 struct perf_event_mmap_page *userpg; 6511 struct perf_buffer *rb; 6512 6513 rcu_read_lock(); 6514 rb = rcu_dereference(event->rb); 6515 if (!rb) 6516 goto unlock; 6517 6518 userpg = rb->user_page; 6519 6520 /* Allow new userspace to detect that bit 0 is deprecated */ 6521 userpg->cap_bit0_is_deprecated = 1; 6522 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6523 userpg->data_offset = PAGE_SIZE; 6524 userpg->data_size = perf_data_size(rb); 6525 6526 unlock: 6527 rcu_read_unlock(); 6528 } 6529 6530 void __weak arch_perf_update_userpage( 6531 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6532 { 6533 } 6534 6535 /* 6536 * Callers need to ensure there can be no nesting of this function, otherwise 6537 * the seqlock logic goes bad. We can not serialize this because the arch 6538 * code calls this from NMI context. 6539 */ 6540 void perf_event_update_userpage(struct perf_event *event) 6541 { 6542 struct perf_event_mmap_page *userpg; 6543 struct perf_buffer *rb; 6544 u64 enabled, running, now; 6545 6546 rcu_read_lock(); 6547 rb = rcu_dereference(event->rb); 6548 if (!rb) 6549 goto unlock; 6550 6551 /* 6552 * compute total_time_enabled, total_time_running 6553 * based on snapshot values taken when the event 6554 * was last scheduled in. 6555 * 6556 * we cannot simply called update_context_time() 6557 * because of locking issue as we can be called in 6558 * NMI context 6559 */ 6560 calc_timer_values(event, &now, &enabled, &running); 6561 6562 userpg = rb->user_page; 6563 /* 6564 * Disable preemption to guarantee consistent time stamps are stored to 6565 * the user page. 6566 */ 6567 preempt_disable(); 6568 ++userpg->lock; 6569 barrier(); 6570 userpg->index = perf_event_index(event); 6571 userpg->offset = perf_event_count(event, false); 6572 if (userpg->index) 6573 userpg->offset -= local64_read(&event->hw.prev_count); 6574 6575 userpg->time_enabled = enabled + 6576 atomic64_read(&event->child_total_time_enabled); 6577 6578 userpg->time_running = running + 6579 atomic64_read(&event->child_total_time_running); 6580 6581 arch_perf_update_userpage(event, userpg, now); 6582 6583 barrier(); 6584 ++userpg->lock; 6585 preempt_enable(); 6586 unlock: 6587 rcu_read_unlock(); 6588 } 6589 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6590 6591 static void ring_buffer_attach(struct perf_event *event, 6592 struct perf_buffer *rb) 6593 { 6594 struct perf_buffer *old_rb = NULL; 6595 unsigned long flags; 6596 6597 WARN_ON_ONCE(event->parent); 6598 6599 if (event->rb) { 6600 /* 6601 * Should be impossible, we set this when removing 6602 * event->rb_entry and wait/clear when adding event->rb_entry. 6603 */ 6604 WARN_ON_ONCE(event->rcu_pending); 6605 6606 old_rb = event->rb; 6607 spin_lock_irqsave(&old_rb->event_lock, flags); 6608 list_del_rcu(&event->rb_entry); 6609 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6610 6611 event->rcu_batches = get_state_synchronize_rcu(); 6612 event->rcu_pending = 1; 6613 } 6614 6615 if (rb) { 6616 if (event->rcu_pending) { 6617 cond_synchronize_rcu(event->rcu_batches); 6618 event->rcu_pending = 0; 6619 } 6620 6621 spin_lock_irqsave(&rb->event_lock, flags); 6622 list_add_rcu(&event->rb_entry, &rb->event_list); 6623 spin_unlock_irqrestore(&rb->event_lock, flags); 6624 } 6625 6626 /* 6627 * Avoid racing with perf_mmap_close(AUX): stop the event 6628 * before swizzling the event::rb pointer; if it's getting 6629 * unmapped, its aux_mmap_count will be 0 and it won't 6630 * restart. See the comment in __perf_pmu_output_stop(). 6631 * 6632 * Data will inevitably be lost when set_output is done in 6633 * mid-air, but then again, whoever does it like this is 6634 * not in for the data anyway. 6635 */ 6636 if (has_aux(event)) 6637 perf_event_stop(event, 0); 6638 6639 rcu_assign_pointer(event->rb, rb); 6640 6641 if (old_rb) { 6642 ring_buffer_put(old_rb); 6643 /* 6644 * Since we detached before setting the new rb, so that we 6645 * could attach the new rb, we could have missed a wakeup. 6646 * Provide it now. 6647 */ 6648 wake_up_all(&event->waitq); 6649 } 6650 } 6651 6652 static void ring_buffer_wakeup(struct perf_event *event) 6653 { 6654 struct perf_buffer *rb; 6655 6656 if (event->parent) 6657 event = event->parent; 6658 6659 rcu_read_lock(); 6660 rb = rcu_dereference(event->rb); 6661 if (rb) { 6662 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6663 wake_up_all(&event->waitq); 6664 } 6665 rcu_read_unlock(); 6666 } 6667 6668 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6669 { 6670 struct perf_buffer *rb; 6671 6672 if (event->parent) 6673 event = event->parent; 6674 6675 rcu_read_lock(); 6676 rb = rcu_dereference(event->rb); 6677 if (rb) { 6678 if (!refcount_inc_not_zero(&rb->refcount)) 6679 rb = NULL; 6680 } 6681 rcu_read_unlock(); 6682 6683 return rb; 6684 } 6685 6686 void ring_buffer_put(struct perf_buffer *rb) 6687 { 6688 if (!refcount_dec_and_test(&rb->refcount)) 6689 return; 6690 6691 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6692 6693 call_rcu(&rb->rcu_head, rb_free_rcu); 6694 } 6695 6696 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); 6697 6698 #define get_mapped(event, func) \ 6699 ({ struct pmu *pmu; \ 6700 mapped_f f = NULL; \ 6701 guard(rcu)(); \ 6702 pmu = READ_ONCE(event->pmu); \ 6703 if (pmu) \ 6704 f = pmu->func; \ 6705 f; \ 6706 }) 6707 6708 static void perf_mmap_open(struct vm_area_struct *vma) 6709 { 6710 struct perf_event *event = vma->vm_file->private_data; 6711 mapped_f mapped = get_mapped(event, event_mapped); 6712 6713 atomic_inc(&event->mmap_count); 6714 atomic_inc(&event->rb->mmap_count); 6715 6716 if (vma->vm_pgoff) 6717 atomic_inc(&event->rb->aux_mmap_count); 6718 6719 if (mapped) 6720 mapped(event, vma->vm_mm); 6721 } 6722 6723 static void perf_pmu_output_stop(struct perf_event *event); 6724 6725 /* 6726 * A buffer can be mmap()ed multiple times; either directly through the same 6727 * event, or through other events by use of perf_event_set_output(). 6728 * 6729 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6730 * the buffer here, where we still have a VM context. This means we need 6731 * to detach all events redirecting to us. 6732 */ 6733 static void perf_mmap_close(struct vm_area_struct *vma) 6734 { 6735 struct perf_event *event = vma->vm_file->private_data; 6736 mapped_f unmapped = get_mapped(event, event_unmapped); 6737 struct perf_buffer *rb = ring_buffer_get(event); 6738 struct user_struct *mmap_user = rb->mmap_user; 6739 int mmap_locked = rb->mmap_locked; 6740 unsigned long size = perf_data_size(rb); 6741 bool detach_rest = false; 6742 6743 /* FIXIES vs perf_pmu_unregister() */ 6744 if (unmapped) 6745 unmapped(event, vma->vm_mm); 6746 6747 /* 6748 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6749 * to avoid complications. 6750 */ 6751 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6752 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6753 /* 6754 * Stop all AUX events that are writing to this buffer, 6755 * so that we can free its AUX pages and corresponding PMU 6756 * data. Note that after rb::aux_mmap_count dropped to zero, 6757 * they won't start any more (see perf_aux_output_begin()). 6758 */ 6759 perf_pmu_output_stop(event); 6760 6761 /* now it's safe to free the pages */ 6762 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6763 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6764 6765 /* this has to be the last one */ 6766 rb_free_aux(rb); 6767 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6768 6769 mutex_unlock(&rb->aux_mutex); 6770 } 6771 6772 if (atomic_dec_and_test(&rb->mmap_count)) 6773 detach_rest = true; 6774 6775 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6776 goto out_put; 6777 6778 ring_buffer_attach(event, NULL); 6779 mutex_unlock(&event->mmap_mutex); 6780 6781 /* If there's still other mmap()s of this buffer, we're done. */ 6782 if (!detach_rest) 6783 goto out_put; 6784 6785 /* 6786 * No other mmap()s, detach from all other events that might redirect 6787 * into the now unreachable buffer. Somewhat complicated by the 6788 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6789 */ 6790 again: 6791 rcu_read_lock(); 6792 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6793 if (!atomic_long_inc_not_zero(&event->refcount)) { 6794 /* 6795 * This event is en-route to free_event() which will 6796 * detach it and remove it from the list. 6797 */ 6798 continue; 6799 } 6800 rcu_read_unlock(); 6801 6802 mutex_lock(&event->mmap_mutex); 6803 /* 6804 * Check we didn't race with perf_event_set_output() which can 6805 * swizzle the rb from under us while we were waiting to 6806 * acquire mmap_mutex. 6807 * 6808 * If we find a different rb; ignore this event, a next 6809 * iteration will no longer find it on the list. We have to 6810 * still restart the iteration to make sure we're not now 6811 * iterating the wrong list. 6812 */ 6813 if (event->rb == rb) 6814 ring_buffer_attach(event, NULL); 6815 6816 mutex_unlock(&event->mmap_mutex); 6817 put_event(event); 6818 6819 /* 6820 * Restart the iteration; either we're on the wrong list or 6821 * destroyed its integrity by doing a deletion. 6822 */ 6823 goto again; 6824 } 6825 rcu_read_unlock(); 6826 6827 /* 6828 * It could be there's still a few 0-ref events on the list; they'll 6829 * get cleaned up by free_event() -- they'll also still have their 6830 * ref on the rb and will free it whenever they are done with it. 6831 * 6832 * Aside from that, this buffer is 'fully' detached and unmapped, 6833 * undo the VM accounting. 6834 */ 6835 6836 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6837 &mmap_user->locked_vm); 6838 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6839 free_uid(mmap_user); 6840 6841 out_put: 6842 ring_buffer_put(rb); /* could be last */ 6843 } 6844 6845 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6846 { 6847 /* The first page is the user control page, others are read-only. */ 6848 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6849 } 6850 6851 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr) 6852 { 6853 /* 6854 * Forbid splitting perf mappings to prevent refcount leaks due to 6855 * the resulting non-matching offsets and sizes. See open()/close(). 6856 */ 6857 return -EINVAL; 6858 } 6859 6860 static const struct vm_operations_struct perf_mmap_vmops = { 6861 .open = perf_mmap_open, 6862 .close = perf_mmap_close, /* non mergeable */ 6863 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6864 .may_split = perf_mmap_may_split, 6865 }; 6866 6867 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6868 { 6869 unsigned long nr_pages = vma_pages(vma); 6870 int err = 0; 6871 unsigned long pagenum; 6872 6873 /* 6874 * We map this as a VM_PFNMAP VMA. 6875 * 6876 * This is not ideal as this is designed broadly for mappings of PFNs 6877 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6878 * !pfn_valid(pfn). 6879 * 6880 * We are mapping kernel-allocated memory (memory we manage ourselves) 6881 * which would more ideally be mapped using vm_insert_page() or a 6882 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6883 * 6884 * However this won't work here, because: 6885 * 6886 * 1. It uses vma->vm_page_prot, but this field has not been completely 6887 * setup at the point of the f_op->mmp() hook, so we are unable to 6888 * indicate that this should be mapped CoW in order that the 6889 * mkwrite() hook can be invoked to make the first page R/W and the 6890 * rest R/O as desired. 6891 * 6892 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6893 * vm_normal_page() returning a struct page * pointer, which means 6894 * vm_ops->page_mkwrite() will be invoked rather than 6895 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6896 * to work around retry logic in the fault handler, however this 6897 * field is no longer allowed to be used within struct page. 6898 * 6899 * 3. Having a struct page * made available in the fault logic also 6900 * means that the page gets put on the rmap and becomes 6901 * inappropriately accessible and subject to map and ref counting. 6902 * 6903 * Ideally we would have a mechanism that could explicitly express our 6904 * desires, but this is not currently the case, so we instead use 6905 * VM_PFNMAP. 6906 * 6907 * We manage the lifetime of these mappings with internal refcounts (see 6908 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6909 * this mapping is maintained correctly. 6910 */ 6911 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6912 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6913 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6914 6915 if (page == NULL) { 6916 err = -EINVAL; 6917 break; 6918 } 6919 6920 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6921 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6922 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6923 if (err) 6924 break; 6925 } 6926 6927 #ifdef CONFIG_MMU 6928 /* Clear any partial mappings on error. */ 6929 if (err) 6930 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6931 #endif 6932 6933 return err; 6934 } 6935 6936 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6937 { 6938 struct perf_event *event = file->private_data; 6939 unsigned long user_locked, user_lock_limit; 6940 struct user_struct *user = current_user(); 6941 struct mutex *aux_mutex = NULL; 6942 struct perf_buffer *rb = NULL; 6943 unsigned long locked, lock_limit; 6944 unsigned long vma_size; 6945 unsigned long nr_pages; 6946 long user_extra = 0, extra = 0; 6947 int ret, flags = 0; 6948 mapped_f mapped; 6949 6950 /* 6951 * Don't allow mmap() of inherited per-task counters. This would 6952 * create a performance issue due to all children writing to the 6953 * same rb. 6954 */ 6955 if (event->cpu == -1 && event->attr.inherit) 6956 return -EINVAL; 6957 6958 if (!(vma->vm_flags & VM_SHARED)) 6959 return -EINVAL; 6960 6961 ret = security_perf_event_read(event); 6962 if (ret) 6963 return ret; 6964 6965 vma_size = vma->vm_end - vma->vm_start; 6966 nr_pages = vma_size / PAGE_SIZE; 6967 6968 if (nr_pages > INT_MAX) 6969 return -ENOMEM; 6970 6971 if (vma_size != PAGE_SIZE * nr_pages) 6972 return -EINVAL; 6973 6974 user_extra = nr_pages; 6975 6976 mutex_lock(&event->mmap_mutex); 6977 ret = -EINVAL; 6978 6979 /* 6980 * This relies on __pmu_detach_event() taking mmap_mutex after marking 6981 * the event REVOKED. Either we observe the state, or __pmu_detach_event() 6982 * will detach the rb created here. 6983 */ 6984 if (event->state <= PERF_EVENT_STATE_REVOKED) { 6985 ret = -ENODEV; 6986 goto unlock; 6987 } 6988 6989 if (vma->vm_pgoff == 0) { 6990 nr_pages -= 1; 6991 6992 /* 6993 * If we have rb pages ensure they're a power-of-two number, so we 6994 * can do bitmasks instead of modulo. 6995 */ 6996 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6997 goto unlock; 6998 6999 WARN_ON_ONCE(event->ctx->parent_ctx); 7000 7001 if (event->rb) { 7002 if (data_page_nr(event->rb) != nr_pages) 7003 goto unlock; 7004 7005 if (atomic_inc_not_zero(&event->rb->mmap_count)) { 7006 /* 7007 * Success -- managed to mmap() the same buffer 7008 * multiple times. 7009 */ 7010 ret = 0; 7011 /* We need the rb to map pages. */ 7012 rb = event->rb; 7013 goto unlock; 7014 } 7015 7016 /* 7017 * Raced against perf_mmap_close()'s 7018 * atomic_dec_and_mutex_lock() remove the 7019 * event and continue as if !event->rb 7020 */ 7021 ring_buffer_attach(event, NULL); 7022 } 7023 7024 } else { 7025 /* 7026 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 7027 * mapped, all subsequent mappings should have the same size 7028 * and offset. Must be above the normal perf buffer. 7029 */ 7030 u64 aux_offset, aux_size; 7031 7032 rb = event->rb; 7033 if (!rb) 7034 goto aux_unlock; 7035 7036 aux_mutex = &rb->aux_mutex; 7037 mutex_lock(aux_mutex); 7038 7039 aux_offset = READ_ONCE(rb->user_page->aux_offset); 7040 aux_size = READ_ONCE(rb->user_page->aux_size); 7041 7042 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 7043 goto aux_unlock; 7044 7045 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 7046 goto aux_unlock; 7047 7048 /* already mapped with a different offset */ 7049 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 7050 goto aux_unlock; 7051 7052 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 7053 goto aux_unlock; 7054 7055 /* already mapped with a different size */ 7056 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 7057 goto aux_unlock; 7058 7059 if (!is_power_of_2(nr_pages)) 7060 goto aux_unlock; 7061 7062 if (!atomic_inc_not_zero(&rb->mmap_count)) 7063 goto aux_unlock; 7064 7065 if (rb_has_aux(rb)) { 7066 atomic_inc(&rb->aux_mmap_count); 7067 ret = 0; 7068 goto unlock; 7069 } 7070 } 7071 7072 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 7073 7074 /* 7075 * Increase the limit linearly with more CPUs: 7076 */ 7077 user_lock_limit *= num_online_cpus(); 7078 7079 user_locked = atomic_long_read(&user->locked_vm); 7080 7081 /* 7082 * sysctl_perf_event_mlock may have changed, so that 7083 * user->locked_vm > user_lock_limit 7084 */ 7085 if (user_locked > user_lock_limit) 7086 user_locked = user_lock_limit; 7087 user_locked += user_extra; 7088 7089 if (user_locked > user_lock_limit) { 7090 /* 7091 * charge locked_vm until it hits user_lock_limit; 7092 * charge the rest from pinned_vm 7093 */ 7094 extra = user_locked - user_lock_limit; 7095 user_extra -= extra; 7096 } 7097 7098 lock_limit = rlimit(RLIMIT_MEMLOCK); 7099 lock_limit >>= PAGE_SHIFT; 7100 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 7101 7102 if ((locked > lock_limit) && perf_is_paranoid() && 7103 !capable(CAP_IPC_LOCK)) { 7104 ret = -EPERM; 7105 goto unlock; 7106 } 7107 7108 WARN_ON(!rb && event->rb); 7109 7110 if (vma->vm_flags & VM_WRITE) 7111 flags |= RING_BUFFER_WRITABLE; 7112 7113 if (!rb) { 7114 rb = rb_alloc(nr_pages, 7115 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7116 event->cpu, flags); 7117 7118 if (!rb) { 7119 ret = -ENOMEM; 7120 goto unlock; 7121 } 7122 7123 atomic_set(&rb->mmap_count, 1); 7124 rb->mmap_user = get_current_user(); 7125 rb->mmap_locked = extra; 7126 7127 ring_buffer_attach(event, rb); 7128 7129 perf_event_update_time(event); 7130 perf_event_init_userpage(event); 7131 perf_event_update_userpage(event); 7132 ret = 0; 7133 } else { 7134 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7135 event->attr.aux_watermark, flags); 7136 if (!ret) { 7137 atomic_set(&rb->aux_mmap_count, 1); 7138 rb->aux_mmap_locked = extra; 7139 } 7140 } 7141 7142 unlock: 7143 if (!ret) { 7144 atomic_long_add(user_extra, &user->locked_vm); 7145 atomic64_add(extra, &vma->vm_mm->pinned_vm); 7146 7147 atomic_inc(&event->mmap_count); 7148 } else if (rb) { 7149 /* AUX allocation failed */ 7150 atomic_dec(&rb->mmap_count); 7151 } 7152 aux_unlock: 7153 if (aux_mutex) 7154 mutex_unlock(aux_mutex); 7155 mutex_unlock(&event->mmap_mutex); 7156 7157 if (ret) 7158 return ret; 7159 7160 /* 7161 * Since pinned accounting is per vm we cannot allow fork() to copy our 7162 * vma. 7163 */ 7164 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7165 vma->vm_ops = &perf_mmap_vmops; 7166 7167 mapped = get_mapped(event, event_mapped); 7168 if (mapped) 7169 mapped(event, vma->vm_mm); 7170 7171 /* 7172 * Try to map it into the page table. On fail, invoke 7173 * perf_mmap_close() to undo the above, as the callsite expects 7174 * full cleanup in this case and therefore does not invoke 7175 * vmops::close(). 7176 */ 7177 ret = map_range(rb, vma); 7178 if (ret) 7179 perf_mmap_close(vma); 7180 7181 return ret; 7182 } 7183 7184 static int perf_fasync(int fd, struct file *filp, int on) 7185 { 7186 struct inode *inode = file_inode(filp); 7187 struct perf_event *event = filp->private_data; 7188 int retval; 7189 7190 if (event->state <= PERF_EVENT_STATE_REVOKED) 7191 return -ENODEV; 7192 7193 inode_lock(inode); 7194 retval = fasync_helper(fd, filp, on, &event->fasync); 7195 inode_unlock(inode); 7196 7197 if (retval < 0) 7198 return retval; 7199 7200 return 0; 7201 } 7202 7203 static const struct file_operations perf_fops = { 7204 .release = perf_release, 7205 .read = perf_read, 7206 .poll = perf_poll, 7207 .unlocked_ioctl = perf_ioctl, 7208 .compat_ioctl = perf_compat_ioctl, 7209 .mmap = perf_mmap, 7210 .fasync = perf_fasync, 7211 }; 7212 7213 /* 7214 * Perf event wakeup 7215 * 7216 * If there's data, ensure we set the poll() state and publish everything 7217 * to user-space before waking everybody up. 7218 */ 7219 7220 void perf_event_wakeup(struct perf_event *event) 7221 { 7222 ring_buffer_wakeup(event); 7223 7224 if (event->pending_kill) { 7225 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7226 event->pending_kill = 0; 7227 } 7228 } 7229 7230 static void perf_sigtrap(struct perf_event *event) 7231 { 7232 /* 7233 * Both perf_pending_task() and perf_pending_irq() can race with the 7234 * task exiting. 7235 */ 7236 if (current->flags & PF_EXITING) 7237 return; 7238 7239 /* 7240 * We'd expect this to only occur if the irq_work is delayed and either 7241 * ctx->task or current has changed in the meantime. This can be the 7242 * case on architectures that do not implement arch_irq_work_raise(). 7243 */ 7244 if (WARN_ON_ONCE(event->ctx->task != current)) 7245 return; 7246 7247 send_sig_perf((void __user *)event->pending_addr, 7248 event->orig_type, event->attr.sig_data); 7249 } 7250 7251 /* 7252 * Deliver the pending work in-event-context or follow the context. 7253 */ 7254 static void __perf_pending_disable(struct perf_event *event) 7255 { 7256 int cpu = READ_ONCE(event->oncpu); 7257 7258 /* 7259 * If the event isn't running; we done. event_sched_out() will have 7260 * taken care of things. 7261 */ 7262 if (cpu < 0) 7263 return; 7264 7265 /* 7266 * Yay, we hit home and are in the context of the event. 7267 */ 7268 if (cpu == smp_processor_id()) { 7269 if (event->pending_disable) { 7270 event->pending_disable = 0; 7271 perf_event_disable_local(event); 7272 } 7273 return; 7274 } 7275 7276 /* 7277 * CPU-A CPU-B 7278 * 7279 * perf_event_disable_inatomic() 7280 * @pending_disable = 1; 7281 * irq_work_queue(); 7282 * 7283 * sched-out 7284 * @pending_disable = 0; 7285 * 7286 * sched-in 7287 * perf_event_disable_inatomic() 7288 * @pending_disable = 1; 7289 * irq_work_queue(); // FAILS 7290 * 7291 * irq_work_run() 7292 * perf_pending_disable() 7293 * 7294 * But the event runs on CPU-B and wants disabling there. 7295 */ 7296 irq_work_queue_on(&event->pending_disable_irq, cpu); 7297 } 7298 7299 static void perf_pending_disable(struct irq_work *entry) 7300 { 7301 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7302 int rctx; 7303 7304 /* 7305 * If we 'fail' here, that's OK, it means recursion is already disabled 7306 * and we won't recurse 'further'. 7307 */ 7308 rctx = perf_swevent_get_recursion_context(); 7309 __perf_pending_disable(event); 7310 if (rctx >= 0) 7311 perf_swevent_put_recursion_context(rctx); 7312 } 7313 7314 static void perf_pending_irq(struct irq_work *entry) 7315 { 7316 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7317 int rctx; 7318 7319 /* 7320 * If we 'fail' here, that's OK, it means recursion is already disabled 7321 * and we won't recurse 'further'. 7322 */ 7323 rctx = perf_swevent_get_recursion_context(); 7324 7325 /* 7326 * The wakeup isn't bound to the context of the event -- it can happen 7327 * irrespective of where the event is. 7328 */ 7329 if (event->pending_wakeup) { 7330 event->pending_wakeup = 0; 7331 perf_event_wakeup(event); 7332 } 7333 7334 if (rctx >= 0) 7335 perf_swevent_put_recursion_context(rctx); 7336 } 7337 7338 static void perf_pending_task(struct callback_head *head) 7339 { 7340 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7341 int rctx; 7342 7343 /* 7344 * If we 'fail' here, that's OK, it means recursion is already disabled 7345 * and we won't recurse 'further'. 7346 */ 7347 rctx = perf_swevent_get_recursion_context(); 7348 7349 if (event->pending_work) { 7350 event->pending_work = 0; 7351 perf_sigtrap(event); 7352 local_dec(&event->ctx->nr_no_switch_fast); 7353 } 7354 put_event(event); 7355 7356 if (rctx >= 0) 7357 perf_swevent_put_recursion_context(rctx); 7358 } 7359 7360 #ifdef CONFIG_GUEST_PERF_EVENTS 7361 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7362 7363 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7364 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7365 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7366 7367 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7368 { 7369 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7370 return; 7371 7372 rcu_assign_pointer(perf_guest_cbs, cbs); 7373 static_call_update(__perf_guest_state, cbs->state); 7374 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7375 7376 /* Implementing ->handle_intel_pt_intr is optional. */ 7377 if (cbs->handle_intel_pt_intr) 7378 static_call_update(__perf_guest_handle_intel_pt_intr, 7379 cbs->handle_intel_pt_intr); 7380 } 7381 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7382 7383 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7384 { 7385 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7386 return; 7387 7388 rcu_assign_pointer(perf_guest_cbs, NULL); 7389 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7390 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7391 static_call_update(__perf_guest_handle_intel_pt_intr, 7392 (void *)&__static_call_return0); 7393 synchronize_rcu(); 7394 } 7395 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7396 #endif 7397 7398 static bool should_sample_guest(struct perf_event *event) 7399 { 7400 return !event->attr.exclude_guest && perf_guest_state(); 7401 } 7402 7403 unsigned long perf_misc_flags(struct perf_event *event, 7404 struct pt_regs *regs) 7405 { 7406 if (should_sample_guest(event)) 7407 return perf_arch_guest_misc_flags(regs); 7408 7409 return perf_arch_misc_flags(regs); 7410 } 7411 7412 unsigned long perf_instruction_pointer(struct perf_event *event, 7413 struct pt_regs *regs) 7414 { 7415 if (should_sample_guest(event)) 7416 return perf_guest_get_ip(); 7417 7418 return perf_arch_instruction_pointer(regs); 7419 } 7420 7421 static void 7422 perf_output_sample_regs(struct perf_output_handle *handle, 7423 struct pt_regs *regs, u64 mask) 7424 { 7425 int bit; 7426 DECLARE_BITMAP(_mask, 64); 7427 7428 bitmap_from_u64(_mask, mask); 7429 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7430 u64 val; 7431 7432 val = perf_reg_value(regs, bit); 7433 perf_output_put(handle, val); 7434 } 7435 } 7436 7437 static void perf_sample_regs_user(struct perf_regs *regs_user, 7438 struct pt_regs *regs) 7439 { 7440 if (user_mode(regs)) { 7441 regs_user->abi = perf_reg_abi(current); 7442 regs_user->regs = regs; 7443 } else if (!(current->flags & PF_KTHREAD)) { 7444 perf_get_regs_user(regs_user, regs); 7445 } else { 7446 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7447 regs_user->regs = NULL; 7448 } 7449 } 7450 7451 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7452 struct pt_regs *regs) 7453 { 7454 regs_intr->regs = regs; 7455 regs_intr->abi = perf_reg_abi(current); 7456 } 7457 7458 7459 /* 7460 * Get remaining task size from user stack pointer. 7461 * 7462 * It'd be better to take stack vma map and limit this more 7463 * precisely, but there's no way to get it safely under interrupt, 7464 * so using TASK_SIZE as limit. 7465 */ 7466 static u64 perf_ustack_task_size(struct pt_regs *regs) 7467 { 7468 unsigned long addr = perf_user_stack_pointer(regs); 7469 7470 if (!addr || addr >= TASK_SIZE) 7471 return 0; 7472 7473 return TASK_SIZE - addr; 7474 } 7475 7476 static u16 7477 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7478 struct pt_regs *regs) 7479 { 7480 u64 task_size; 7481 7482 /* No regs, no stack pointer, no dump. */ 7483 if (!regs) 7484 return 0; 7485 7486 /* No mm, no stack, no dump. */ 7487 if (!current->mm) 7488 return 0; 7489 7490 /* 7491 * Check if we fit in with the requested stack size into the: 7492 * - TASK_SIZE 7493 * If we don't, we limit the size to the TASK_SIZE. 7494 * 7495 * - remaining sample size 7496 * If we don't, we customize the stack size to 7497 * fit in to the remaining sample size. 7498 */ 7499 7500 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7501 stack_size = min(stack_size, (u16) task_size); 7502 7503 /* Current header size plus static size and dynamic size. */ 7504 header_size += 2 * sizeof(u64); 7505 7506 /* Do we fit in with the current stack dump size? */ 7507 if ((u16) (header_size + stack_size) < header_size) { 7508 /* 7509 * If we overflow the maximum size for the sample, 7510 * we customize the stack dump size to fit in. 7511 */ 7512 stack_size = USHRT_MAX - header_size - sizeof(u64); 7513 stack_size = round_up(stack_size, sizeof(u64)); 7514 } 7515 7516 return stack_size; 7517 } 7518 7519 static void 7520 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7521 struct pt_regs *regs) 7522 { 7523 /* Case of a kernel thread, nothing to dump */ 7524 if (!regs) { 7525 u64 size = 0; 7526 perf_output_put(handle, size); 7527 } else { 7528 unsigned long sp; 7529 unsigned int rem; 7530 u64 dyn_size; 7531 7532 /* 7533 * We dump: 7534 * static size 7535 * - the size requested by user or the best one we can fit 7536 * in to the sample max size 7537 * data 7538 * - user stack dump data 7539 * dynamic size 7540 * - the actual dumped size 7541 */ 7542 7543 /* Static size. */ 7544 perf_output_put(handle, dump_size); 7545 7546 /* Data. */ 7547 sp = perf_user_stack_pointer(regs); 7548 rem = __output_copy_user(handle, (void *) sp, dump_size); 7549 dyn_size = dump_size - rem; 7550 7551 perf_output_skip(handle, rem); 7552 7553 /* Dynamic size. */ 7554 perf_output_put(handle, dyn_size); 7555 } 7556 } 7557 7558 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7559 struct perf_sample_data *data, 7560 size_t size) 7561 { 7562 struct perf_event *sampler = event->aux_event; 7563 struct perf_buffer *rb; 7564 7565 data->aux_size = 0; 7566 7567 if (!sampler) 7568 goto out; 7569 7570 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7571 goto out; 7572 7573 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7574 goto out; 7575 7576 rb = ring_buffer_get(sampler); 7577 if (!rb) 7578 goto out; 7579 7580 /* 7581 * If this is an NMI hit inside sampling code, don't take 7582 * the sample. See also perf_aux_sample_output(). 7583 */ 7584 if (READ_ONCE(rb->aux_in_sampling)) { 7585 data->aux_size = 0; 7586 } else { 7587 size = min_t(size_t, size, perf_aux_size(rb)); 7588 data->aux_size = ALIGN(size, sizeof(u64)); 7589 } 7590 ring_buffer_put(rb); 7591 7592 out: 7593 return data->aux_size; 7594 } 7595 7596 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7597 struct perf_event *event, 7598 struct perf_output_handle *handle, 7599 unsigned long size) 7600 { 7601 unsigned long flags; 7602 long ret; 7603 7604 /* 7605 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7606 * paths. If we start calling them in NMI context, they may race with 7607 * the IRQ ones, that is, for example, re-starting an event that's just 7608 * been stopped, which is why we're using a separate callback that 7609 * doesn't change the event state. 7610 * 7611 * IRQs need to be disabled to prevent IPIs from racing with us. 7612 */ 7613 local_irq_save(flags); 7614 /* 7615 * Guard against NMI hits inside the critical section; 7616 * see also perf_prepare_sample_aux(). 7617 */ 7618 WRITE_ONCE(rb->aux_in_sampling, 1); 7619 barrier(); 7620 7621 ret = event->pmu->snapshot_aux(event, handle, size); 7622 7623 barrier(); 7624 WRITE_ONCE(rb->aux_in_sampling, 0); 7625 local_irq_restore(flags); 7626 7627 return ret; 7628 } 7629 7630 static void perf_aux_sample_output(struct perf_event *event, 7631 struct perf_output_handle *handle, 7632 struct perf_sample_data *data) 7633 { 7634 struct perf_event *sampler = event->aux_event; 7635 struct perf_buffer *rb; 7636 unsigned long pad; 7637 long size; 7638 7639 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7640 return; 7641 7642 rb = ring_buffer_get(sampler); 7643 if (!rb) 7644 return; 7645 7646 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7647 7648 /* 7649 * An error here means that perf_output_copy() failed (returned a 7650 * non-zero surplus that it didn't copy), which in its current 7651 * enlightened implementation is not possible. If that changes, we'd 7652 * like to know. 7653 */ 7654 if (WARN_ON_ONCE(size < 0)) 7655 goto out_put; 7656 7657 /* 7658 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7659 * perf_prepare_sample_aux(), so should not be more than that. 7660 */ 7661 pad = data->aux_size - size; 7662 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7663 pad = 8; 7664 7665 if (pad) { 7666 u64 zero = 0; 7667 perf_output_copy(handle, &zero, pad); 7668 } 7669 7670 out_put: 7671 ring_buffer_put(rb); 7672 } 7673 7674 /* 7675 * A set of common sample data types saved even for non-sample records 7676 * when event->attr.sample_id_all is set. 7677 */ 7678 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7679 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7680 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7681 7682 static void __perf_event_header__init_id(struct perf_sample_data *data, 7683 struct perf_event *event, 7684 u64 sample_type) 7685 { 7686 data->type = event->attr.sample_type; 7687 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7688 7689 if (sample_type & PERF_SAMPLE_TID) { 7690 /* namespace issues */ 7691 data->tid_entry.pid = perf_event_pid(event, current); 7692 data->tid_entry.tid = perf_event_tid(event, current); 7693 } 7694 7695 if (sample_type & PERF_SAMPLE_TIME) 7696 data->time = perf_event_clock(event); 7697 7698 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7699 data->id = primary_event_id(event); 7700 7701 if (sample_type & PERF_SAMPLE_STREAM_ID) 7702 data->stream_id = event->id; 7703 7704 if (sample_type & PERF_SAMPLE_CPU) { 7705 data->cpu_entry.cpu = raw_smp_processor_id(); 7706 data->cpu_entry.reserved = 0; 7707 } 7708 } 7709 7710 void perf_event_header__init_id(struct perf_event_header *header, 7711 struct perf_sample_data *data, 7712 struct perf_event *event) 7713 { 7714 if (event->attr.sample_id_all) { 7715 header->size += event->id_header_size; 7716 __perf_event_header__init_id(data, event, event->attr.sample_type); 7717 } 7718 } 7719 7720 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7721 struct perf_sample_data *data) 7722 { 7723 u64 sample_type = data->type; 7724 7725 if (sample_type & PERF_SAMPLE_TID) 7726 perf_output_put(handle, data->tid_entry); 7727 7728 if (sample_type & PERF_SAMPLE_TIME) 7729 perf_output_put(handle, data->time); 7730 7731 if (sample_type & PERF_SAMPLE_ID) 7732 perf_output_put(handle, data->id); 7733 7734 if (sample_type & PERF_SAMPLE_STREAM_ID) 7735 perf_output_put(handle, data->stream_id); 7736 7737 if (sample_type & PERF_SAMPLE_CPU) 7738 perf_output_put(handle, data->cpu_entry); 7739 7740 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7741 perf_output_put(handle, data->id); 7742 } 7743 7744 void perf_event__output_id_sample(struct perf_event *event, 7745 struct perf_output_handle *handle, 7746 struct perf_sample_data *sample) 7747 { 7748 if (event->attr.sample_id_all) 7749 __perf_event__output_id_sample(handle, sample); 7750 } 7751 7752 static void perf_output_read_one(struct perf_output_handle *handle, 7753 struct perf_event *event, 7754 u64 enabled, u64 running) 7755 { 7756 u64 read_format = event->attr.read_format; 7757 u64 values[5]; 7758 int n = 0; 7759 7760 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7761 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7762 values[n++] = enabled + 7763 atomic64_read(&event->child_total_time_enabled); 7764 } 7765 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7766 values[n++] = running + 7767 atomic64_read(&event->child_total_time_running); 7768 } 7769 if (read_format & PERF_FORMAT_ID) 7770 values[n++] = primary_event_id(event); 7771 if (read_format & PERF_FORMAT_LOST) 7772 values[n++] = atomic64_read(&event->lost_samples); 7773 7774 __output_copy(handle, values, n * sizeof(u64)); 7775 } 7776 7777 static void perf_output_read_group(struct perf_output_handle *handle, 7778 struct perf_event *event, 7779 u64 enabled, u64 running) 7780 { 7781 struct perf_event *leader = event->group_leader, *sub; 7782 u64 read_format = event->attr.read_format; 7783 unsigned long flags; 7784 u64 values[6]; 7785 int n = 0; 7786 bool self = has_inherit_and_sample_read(&event->attr); 7787 7788 /* 7789 * Disabling interrupts avoids all counter scheduling 7790 * (context switches, timer based rotation and IPIs). 7791 */ 7792 local_irq_save(flags); 7793 7794 values[n++] = 1 + leader->nr_siblings; 7795 7796 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7797 values[n++] = enabled; 7798 7799 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7800 values[n++] = running; 7801 7802 if ((leader != event) && !handle->skip_read) 7803 perf_pmu_read(leader); 7804 7805 values[n++] = perf_event_count(leader, self); 7806 if (read_format & PERF_FORMAT_ID) 7807 values[n++] = primary_event_id(leader); 7808 if (read_format & PERF_FORMAT_LOST) 7809 values[n++] = atomic64_read(&leader->lost_samples); 7810 7811 __output_copy(handle, values, n * sizeof(u64)); 7812 7813 for_each_sibling_event(sub, leader) { 7814 n = 0; 7815 7816 if ((sub != event) && !handle->skip_read) 7817 perf_pmu_read(sub); 7818 7819 values[n++] = perf_event_count(sub, self); 7820 if (read_format & PERF_FORMAT_ID) 7821 values[n++] = primary_event_id(sub); 7822 if (read_format & PERF_FORMAT_LOST) 7823 values[n++] = atomic64_read(&sub->lost_samples); 7824 7825 __output_copy(handle, values, n * sizeof(u64)); 7826 } 7827 7828 local_irq_restore(flags); 7829 } 7830 7831 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7832 PERF_FORMAT_TOTAL_TIME_RUNNING) 7833 7834 /* 7835 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7836 * 7837 * The problem is that its both hard and excessively expensive to iterate the 7838 * child list, not to mention that its impossible to IPI the children running 7839 * on another CPU, from interrupt/NMI context. 7840 * 7841 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7842 * counts rather than attempting to accumulate some value across all children on 7843 * all cores. 7844 */ 7845 static void perf_output_read(struct perf_output_handle *handle, 7846 struct perf_event *event) 7847 { 7848 u64 enabled = 0, running = 0, now; 7849 u64 read_format = event->attr.read_format; 7850 7851 /* 7852 * compute total_time_enabled, total_time_running 7853 * based on snapshot values taken when the event 7854 * was last scheduled in. 7855 * 7856 * we cannot simply called update_context_time() 7857 * because of locking issue as we are called in 7858 * NMI context 7859 */ 7860 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7861 calc_timer_values(event, &now, &enabled, &running); 7862 7863 if (event->attr.read_format & PERF_FORMAT_GROUP) 7864 perf_output_read_group(handle, event, enabled, running); 7865 else 7866 perf_output_read_one(handle, event, enabled, running); 7867 } 7868 7869 void perf_output_sample(struct perf_output_handle *handle, 7870 struct perf_event_header *header, 7871 struct perf_sample_data *data, 7872 struct perf_event *event) 7873 { 7874 u64 sample_type = data->type; 7875 7876 if (data->sample_flags & PERF_SAMPLE_READ) 7877 handle->skip_read = 1; 7878 7879 perf_output_put(handle, *header); 7880 7881 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7882 perf_output_put(handle, data->id); 7883 7884 if (sample_type & PERF_SAMPLE_IP) 7885 perf_output_put(handle, data->ip); 7886 7887 if (sample_type & PERF_SAMPLE_TID) 7888 perf_output_put(handle, data->tid_entry); 7889 7890 if (sample_type & PERF_SAMPLE_TIME) 7891 perf_output_put(handle, data->time); 7892 7893 if (sample_type & PERF_SAMPLE_ADDR) 7894 perf_output_put(handle, data->addr); 7895 7896 if (sample_type & PERF_SAMPLE_ID) 7897 perf_output_put(handle, data->id); 7898 7899 if (sample_type & PERF_SAMPLE_STREAM_ID) 7900 perf_output_put(handle, data->stream_id); 7901 7902 if (sample_type & PERF_SAMPLE_CPU) 7903 perf_output_put(handle, data->cpu_entry); 7904 7905 if (sample_type & PERF_SAMPLE_PERIOD) 7906 perf_output_put(handle, data->period); 7907 7908 if (sample_type & PERF_SAMPLE_READ) 7909 perf_output_read(handle, event); 7910 7911 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7912 int size = 1; 7913 7914 size += data->callchain->nr; 7915 size *= sizeof(u64); 7916 __output_copy(handle, data->callchain, size); 7917 } 7918 7919 if (sample_type & PERF_SAMPLE_RAW) { 7920 struct perf_raw_record *raw = data->raw; 7921 7922 if (raw) { 7923 struct perf_raw_frag *frag = &raw->frag; 7924 7925 perf_output_put(handle, raw->size); 7926 do { 7927 if (frag->copy) { 7928 __output_custom(handle, frag->copy, 7929 frag->data, frag->size); 7930 } else { 7931 __output_copy(handle, frag->data, 7932 frag->size); 7933 } 7934 if (perf_raw_frag_last(frag)) 7935 break; 7936 frag = frag->next; 7937 } while (1); 7938 if (frag->pad) 7939 __output_skip(handle, NULL, frag->pad); 7940 } else { 7941 struct { 7942 u32 size; 7943 u32 data; 7944 } raw = { 7945 .size = sizeof(u32), 7946 .data = 0, 7947 }; 7948 perf_output_put(handle, raw); 7949 } 7950 } 7951 7952 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7953 if (data->br_stack) { 7954 size_t size; 7955 7956 size = data->br_stack->nr 7957 * sizeof(struct perf_branch_entry); 7958 7959 perf_output_put(handle, data->br_stack->nr); 7960 if (branch_sample_hw_index(event)) 7961 perf_output_put(handle, data->br_stack->hw_idx); 7962 perf_output_copy(handle, data->br_stack->entries, size); 7963 /* 7964 * Add the extension space which is appended 7965 * right after the struct perf_branch_stack. 7966 */ 7967 if (data->br_stack_cntr) { 7968 size = data->br_stack->nr * sizeof(u64); 7969 perf_output_copy(handle, data->br_stack_cntr, size); 7970 } 7971 } else { 7972 /* 7973 * we always store at least the value of nr 7974 */ 7975 u64 nr = 0; 7976 perf_output_put(handle, nr); 7977 } 7978 } 7979 7980 if (sample_type & PERF_SAMPLE_REGS_USER) { 7981 u64 abi = data->regs_user.abi; 7982 7983 /* 7984 * If there are no regs to dump, notice it through 7985 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7986 */ 7987 perf_output_put(handle, abi); 7988 7989 if (abi) { 7990 u64 mask = event->attr.sample_regs_user; 7991 perf_output_sample_regs(handle, 7992 data->regs_user.regs, 7993 mask); 7994 } 7995 } 7996 7997 if (sample_type & PERF_SAMPLE_STACK_USER) { 7998 perf_output_sample_ustack(handle, 7999 data->stack_user_size, 8000 data->regs_user.regs); 8001 } 8002 8003 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 8004 perf_output_put(handle, data->weight.full); 8005 8006 if (sample_type & PERF_SAMPLE_DATA_SRC) 8007 perf_output_put(handle, data->data_src.val); 8008 8009 if (sample_type & PERF_SAMPLE_TRANSACTION) 8010 perf_output_put(handle, data->txn); 8011 8012 if (sample_type & PERF_SAMPLE_REGS_INTR) { 8013 u64 abi = data->regs_intr.abi; 8014 /* 8015 * If there are no regs to dump, notice it through 8016 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8017 */ 8018 perf_output_put(handle, abi); 8019 8020 if (abi) { 8021 u64 mask = event->attr.sample_regs_intr; 8022 8023 perf_output_sample_regs(handle, 8024 data->regs_intr.regs, 8025 mask); 8026 } 8027 } 8028 8029 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 8030 perf_output_put(handle, data->phys_addr); 8031 8032 if (sample_type & PERF_SAMPLE_CGROUP) 8033 perf_output_put(handle, data->cgroup); 8034 8035 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 8036 perf_output_put(handle, data->data_page_size); 8037 8038 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 8039 perf_output_put(handle, data->code_page_size); 8040 8041 if (sample_type & PERF_SAMPLE_AUX) { 8042 perf_output_put(handle, data->aux_size); 8043 8044 if (data->aux_size) 8045 perf_aux_sample_output(event, handle, data); 8046 } 8047 8048 if (!event->attr.watermark) { 8049 int wakeup_events = event->attr.wakeup_events; 8050 8051 if (wakeup_events) { 8052 struct perf_buffer *rb = handle->rb; 8053 int events = local_inc_return(&rb->events); 8054 8055 if (events >= wakeup_events) { 8056 local_sub(wakeup_events, &rb->events); 8057 local_inc(&rb->wakeup); 8058 } 8059 } 8060 } 8061 } 8062 8063 static u64 perf_virt_to_phys(u64 virt) 8064 { 8065 u64 phys_addr = 0; 8066 8067 if (!virt) 8068 return 0; 8069 8070 if (virt >= TASK_SIZE) { 8071 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 8072 if (virt_addr_valid((void *)(uintptr_t)virt) && 8073 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 8074 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 8075 } else { 8076 /* 8077 * Walking the pages tables for user address. 8078 * Interrupts are disabled, so it prevents any tear down 8079 * of the page tables. 8080 * Try IRQ-safe get_user_page_fast_only first. 8081 * If failed, leave phys_addr as 0. 8082 */ 8083 if (current->mm != NULL) { 8084 struct page *p; 8085 8086 pagefault_disable(); 8087 if (get_user_page_fast_only(virt, 0, &p)) { 8088 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 8089 put_page(p); 8090 } 8091 pagefault_enable(); 8092 } 8093 } 8094 8095 return phys_addr; 8096 } 8097 8098 /* 8099 * Return the pagetable size of a given virtual address. 8100 */ 8101 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 8102 { 8103 u64 size = 0; 8104 8105 #ifdef CONFIG_HAVE_GUP_FAST 8106 pgd_t *pgdp, pgd; 8107 p4d_t *p4dp, p4d; 8108 pud_t *pudp, pud; 8109 pmd_t *pmdp, pmd; 8110 pte_t *ptep, pte; 8111 8112 pgdp = pgd_offset(mm, addr); 8113 pgd = READ_ONCE(*pgdp); 8114 if (pgd_none(pgd)) 8115 return 0; 8116 8117 if (pgd_leaf(pgd)) 8118 return pgd_leaf_size(pgd); 8119 8120 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8121 p4d = READ_ONCE(*p4dp); 8122 if (!p4d_present(p4d)) 8123 return 0; 8124 8125 if (p4d_leaf(p4d)) 8126 return p4d_leaf_size(p4d); 8127 8128 pudp = pud_offset_lockless(p4dp, p4d, addr); 8129 pud = READ_ONCE(*pudp); 8130 if (!pud_present(pud)) 8131 return 0; 8132 8133 if (pud_leaf(pud)) 8134 return pud_leaf_size(pud); 8135 8136 pmdp = pmd_offset_lockless(pudp, pud, addr); 8137 again: 8138 pmd = pmdp_get_lockless(pmdp); 8139 if (!pmd_present(pmd)) 8140 return 0; 8141 8142 if (pmd_leaf(pmd)) 8143 return pmd_leaf_size(pmd); 8144 8145 ptep = pte_offset_map(&pmd, addr); 8146 if (!ptep) 8147 goto again; 8148 8149 pte = ptep_get_lockless(ptep); 8150 if (pte_present(pte)) 8151 size = __pte_leaf_size(pmd, pte); 8152 pte_unmap(ptep); 8153 #endif /* CONFIG_HAVE_GUP_FAST */ 8154 8155 return size; 8156 } 8157 8158 static u64 perf_get_page_size(unsigned long addr) 8159 { 8160 struct mm_struct *mm; 8161 unsigned long flags; 8162 u64 size; 8163 8164 if (!addr) 8165 return 0; 8166 8167 /* 8168 * Software page-table walkers must disable IRQs, 8169 * which prevents any tear down of the page tables. 8170 */ 8171 local_irq_save(flags); 8172 8173 mm = current->mm; 8174 if (!mm) { 8175 /* 8176 * For kernel threads and the like, use init_mm so that 8177 * we can find kernel memory. 8178 */ 8179 mm = &init_mm; 8180 } 8181 8182 size = perf_get_pgtable_size(mm, addr); 8183 8184 local_irq_restore(flags); 8185 8186 return size; 8187 } 8188 8189 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8190 8191 struct perf_callchain_entry * 8192 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8193 { 8194 bool kernel = !event->attr.exclude_callchain_kernel; 8195 bool user = !event->attr.exclude_callchain_user; 8196 /* Disallow cross-task user callchains. */ 8197 bool crosstask = event->ctx->task && event->ctx->task != current; 8198 const u32 max_stack = event->attr.sample_max_stack; 8199 struct perf_callchain_entry *callchain; 8200 8201 if (!current->mm) 8202 user = false; 8203 8204 if (!kernel && !user) 8205 return &__empty_callchain; 8206 8207 callchain = get_perf_callchain(regs, 0, kernel, user, 8208 max_stack, crosstask, true); 8209 return callchain ?: &__empty_callchain; 8210 } 8211 8212 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8213 { 8214 return d * !!(flags & s); 8215 } 8216 8217 void perf_prepare_sample(struct perf_sample_data *data, 8218 struct perf_event *event, 8219 struct pt_regs *regs) 8220 { 8221 u64 sample_type = event->attr.sample_type; 8222 u64 filtered_sample_type; 8223 8224 /* 8225 * Add the sample flags that are dependent to others. And clear the 8226 * sample flags that have already been done by the PMU driver. 8227 */ 8228 filtered_sample_type = sample_type; 8229 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8230 PERF_SAMPLE_IP); 8231 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8232 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8233 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8234 PERF_SAMPLE_REGS_USER); 8235 filtered_sample_type &= ~data->sample_flags; 8236 8237 if (filtered_sample_type == 0) { 8238 /* Make sure it has the correct data->type for output */ 8239 data->type = event->attr.sample_type; 8240 return; 8241 } 8242 8243 __perf_event_header__init_id(data, event, filtered_sample_type); 8244 8245 if (filtered_sample_type & PERF_SAMPLE_IP) { 8246 data->ip = perf_instruction_pointer(event, regs); 8247 data->sample_flags |= PERF_SAMPLE_IP; 8248 } 8249 8250 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8251 perf_sample_save_callchain(data, event, regs); 8252 8253 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8254 data->raw = NULL; 8255 data->dyn_size += sizeof(u64); 8256 data->sample_flags |= PERF_SAMPLE_RAW; 8257 } 8258 8259 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8260 data->br_stack = NULL; 8261 data->dyn_size += sizeof(u64); 8262 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8263 } 8264 8265 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8266 perf_sample_regs_user(&data->regs_user, regs); 8267 8268 /* 8269 * It cannot use the filtered_sample_type here as REGS_USER can be set 8270 * by STACK_USER (using __cond_set() above) and we don't want to update 8271 * the dyn_size if it's not requested by users. 8272 */ 8273 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8274 /* regs dump ABI info */ 8275 int size = sizeof(u64); 8276 8277 if (data->regs_user.regs) { 8278 u64 mask = event->attr.sample_regs_user; 8279 size += hweight64(mask) * sizeof(u64); 8280 } 8281 8282 data->dyn_size += size; 8283 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8284 } 8285 8286 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8287 /* 8288 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8289 * processed as the last one or have additional check added 8290 * in case new sample type is added, because we could eat 8291 * up the rest of the sample size. 8292 */ 8293 u16 stack_size = event->attr.sample_stack_user; 8294 u16 header_size = perf_sample_data_size(data, event); 8295 u16 size = sizeof(u64); 8296 8297 stack_size = perf_sample_ustack_size(stack_size, header_size, 8298 data->regs_user.regs); 8299 8300 /* 8301 * If there is something to dump, add space for the dump 8302 * itself and for the field that tells the dynamic size, 8303 * which is how many have been actually dumped. 8304 */ 8305 if (stack_size) 8306 size += sizeof(u64) + stack_size; 8307 8308 data->stack_user_size = stack_size; 8309 data->dyn_size += size; 8310 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8311 } 8312 8313 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8314 data->weight.full = 0; 8315 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8316 } 8317 8318 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8319 data->data_src.val = PERF_MEM_NA; 8320 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8321 } 8322 8323 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8324 data->txn = 0; 8325 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8326 } 8327 8328 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8329 data->addr = 0; 8330 data->sample_flags |= PERF_SAMPLE_ADDR; 8331 } 8332 8333 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8334 /* regs dump ABI info */ 8335 int size = sizeof(u64); 8336 8337 perf_sample_regs_intr(&data->regs_intr, regs); 8338 8339 if (data->regs_intr.regs) { 8340 u64 mask = event->attr.sample_regs_intr; 8341 8342 size += hweight64(mask) * sizeof(u64); 8343 } 8344 8345 data->dyn_size += size; 8346 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8347 } 8348 8349 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8350 data->phys_addr = perf_virt_to_phys(data->addr); 8351 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8352 } 8353 8354 #ifdef CONFIG_CGROUP_PERF 8355 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8356 struct cgroup *cgrp; 8357 8358 /* protected by RCU */ 8359 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8360 data->cgroup = cgroup_id(cgrp); 8361 data->sample_flags |= PERF_SAMPLE_CGROUP; 8362 } 8363 #endif 8364 8365 /* 8366 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8367 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8368 * but the value will not dump to the userspace. 8369 */ 8370 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8371 data->data_page_size = perf_get_page_size(data->addr); 8372 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8373 } 8374 8375 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8376 data->code_page_size = perf_get_page_size(data->ip); 8377 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8378 } 8379 8380 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8381 u64 size; 8382 u16 header_size = perf_sample_data_size(data, event); 8383 8384 header_size += sizeof(u64); /* size */ 8385 8386 /* 8387 * Given the 16bit nature of header::size, an AUX sample can 8388 * easily overflow it, what with all the preceding sample bits. 8389 * Make sure this doesn't happen by using up to U16_MAX bytes 8390 * per sample in total (rounded down to 8 byte boundary). 8391 */ 8392 size = min_t(size_t, U16_MAX - header_size, 8393 event->attr.aux_sample_size); 8394 size = rounddown(size, 8); 8395 size = perf_prepare_sample_aux(event, data, size); 8396 8397 WARN_ON_ONCE(size + header_size > U16_MAX); 8398 data->dyn_size += size + sizeof(u64); /* size above */ 8399 data->sample_flags |= PERF_SAMPLE_AUX; 8400 } 8401 } 8402 8403 void perf_prepare_header(struct perf_event_header *header, 8404 struct perf_sample_data *data, 8405 struct perf_event *event, 8406 struct pt_regs *regs) 8407 { 8408 header->type = PERF_RECORD_SAMPLE; 8409 header->size = perf_sample_data_size(data, event); 8410 header->misc = perf_misc_flags(event, regs); 8411 8412 /* 8413 * If you're adding more sample types here, you likely need to do 8414 * something about the overflowing header::size, like repurpose the 8415 * lowest 3 bits of size, which should be always zero at the moment. 8416 * This raises a more important question, do we really need 512k sized 8417 * samples and why, so good argumentation is in order for whatever you 8418 * do here next. 8419 */ 8420 WARN_ON_ONCE(header->size & 7); 8421 } 8422 8423 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8424 { 8425 if (pause) { 8426 if (!event->hw.aux_paused) { 8427 event->hw.aux_paused = 1; 8428 event->pmu->stop(event, PERF_EF_PAUSE); 8429 } 8430 } else { 8431 if (event->hw.aux_paused) { 8432 event->hw.aux_paused = 0; 8433 event->pmu->start(event, PERF_EF_RESUME); 8434 } 8435 } 8436 } 8437 8438 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8439 { 8440 struct perf_buffer *rb; 8441 8442 if (WARN_ON_ONCE(!event)) 8443 return; 8444 8445 rb = ring_buffer_get(event); 8446 if (!rb) 8447 return; 8448 8449 scoped_guard (irqsave) { 8450 /* 8451 * Guard against self-recursion here. Another event could trip 8452 * this same from NMI context. 8453 */ 8454 if (READ_ONCE(rb->aux_in_pause_resume)) 8455 break; 8456 8457 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8458 barrier(); 8459 __perf_event_aux_pause(event, pause); 8460 barrier(); 8461 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8462 } 8463 ring_buffer_put(rb); 8464 } 8465 8466 static __always_inline int 8467 __perf_event_output(struct perf_event *event, 8468 struct perf_sample_data *data, 8469 struct pt_regs *regs, 8470 int (*output_begin)(struct perf_output_handle *, 8471 struct perf_sample_data *, 8472 struct perf_event *, 8473 unsigned int)) 8474 { 8475 struct perf_output_handle handle; 8476 struct perf_event_header header; 8477 int err; 8478 8479 /* protect the callchain buffers */ 8480 rcu_read_lock(); 8481 8482 perf_prepare_sample(data, event, regs); 8483 perf_prepare_header(&header, data, event, regs); 8484 8485 err = output_begin(&handle, data, event, header.size); 8486 if (err) 8487 goto exit; 8488 8489 perf_output_sample(&handle, &header, data, event); 8490 8491 perf_output_end(&handle); 8492 8493 exit: 8494 rcu_read_unlock(); 8495 return err; 8496 } 8497 8498 void 8499 perf_event_output_forward(struct perf_event *event, 8500 struct perf_sample_data *data, 8501 struct pt_regs *regs) 8502 { 8503 __perf_event_output(event, data, regs, perf_output_begin_forward); 8504 } 8505 8506 void 8507 perf_event_output_backward(struct perf_event *event, 8508 struct perf_sample_data *data, 8509 struct pt_regs *regs) 8510 { 8511 __perf_event_output(event, data, regs, perf_output_begin_backward); 8512 } 8513 8514 int 8515 perf_event_output(struct perf_event *event, 8516 struct perf_sample_data *data, 8517 struct pt_regs *regs) 8518 { 8519 return __perf_event_output(event, data, regs, perf_output_begin); 8520 } 8521 8522 /* 8523 * read event_id 8524 */ 8525 8526 struct perf_read_event { 8527 struct perf_event_header header; 8528 8529 u32 pid; 8530 u32 tid; 8531 }; 8532 8533 static void 8534 perf_event_read_event(struct perf_event *event, 8535 struct task_struct *task) 8536 { 8537 struct perf_output_handle handle; 8538 struct perf_sample_data sample; 8539 struct perf_read_event read_event = { 8540 .header = { 8541 .type = PERF_RECORD_READ, 8542 .misc = 0, 8543 .size = sizeof(read_event) + event->read_size, 8544 }, 8545 .pid = perf_event_pid(event, task), 8546 .tid = perf_event_tid(event, task), 8547 }; 8548 int ret; 8549 8550 perf_event_header__init_id(&read_event.header, &sample, event); 8551 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8552 if (ret) 8553 return; 8554 8555 perf_output_put(&handle, read_event); 8556 perf_output_read(&handle, event); 8557 perf_event__output_id_sample(event, &handle, &sample); 8558 8559 perf_output_end(&handle); 8560 } 8561 8562 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8563 8564 static void 8565 perf_iterate_ctx(struct perf_event_context *ctx, 8566 perf_iterate_f output, 8567 void *data, bool all) 8568 { 8569 struct perf_event *event; 8570 8571 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8572 if (!all) { 8573 if (event->state < PERF_EVENT_STATE_INACTIVE) 8574 continue; 8575 if (!event_filter_match(event)) 8576 continue; 8577 } 8578 8579 output(event, data); 8580 } 8581 } 8582 8583 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8584 { 8585 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8586 struct perf_event *event; 8587 8588 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8589 /* 8590 * Skip events that are not fully formed yet; ensure that 8591 * if we observe event->ctx, both event and ctx will be 8592 * complete enough. See perf_install_in_context(). 8593 */ 8594 if (!smp_load_acquire(&event->ctx)) 8595 continue; 8596 8597 if (event->state < PERF_EVENT_STATE_INACTIVE) 8598 continue; 8599 if (!event_filter_match(event)) 8600 continue; 8601 output(event, data); 8602 } 8603 } 8604 8605 /* 8606 * Iterate all events that need to receive side-band events. 8607 * 8608 * For new callers; ensure that account_pmu_sb_event() includes 8609 * your event, otherwise it might not get delivered. 8610 */ 8611 static void 8612 perf_iterate_sb(perf_iterate_f output, void *data, 8613 struct perf_event_context *task_ctx) 8614 { 8615 struct perf_event_context *ctx; 8616 8617 rcu_read_lock(); 8618 preempt_disable(); 8619 8620 /* 8621 * If we have task_ctx != NULL we only notify the task context itself. 8622 * The task_ctx is set only for EXIT events before releasing task 8623 * context. 8624 */ 8625 if (task_ctx) { 8626 perf_iterate_ctx(task_ctx, output, data, false); 8627 goto done; 8628 } 8629 8630 perf_iterate_sb_cpu(output, data); 8631 8632 ctx = rcu_dereference(current->perf_event_ctxp); 8633 if (ctx) 8634 perf_iterate_ctx(ctx, output, data, false); 8635 done: 8636 preempt_enable(); 8637 rcu_read_unlock(); 8638 } 8639 8640 /* 8641 * Clear all file-based filters at exec, they'll have to be 8642 * re-instated when/if these objects are mmapped again. 8643 */ 8644 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8645 { 8646 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8647 struct perf_addr_filter *filter; 8648 unsigned int restart = 0, count = 0; 8649 unsigned long flags; 8650 8651 if (!has_addr_filter(event)) 8652 return; 8653 8654 raw_spin_lock_irqsave(&ifh->lock, flags); 8655 list_for_each_entry(filter, &ifh->list, entry) { 8656 if (filter->path.dentry) { 8657 event->addr_filter_ranges[count].start = 0; 8658 event->addr_filter_ranges[count].size = 0; 8659 restart++; 8660 } 8661 8662 count++; 8663 } 8664 8665 if (restart) 8666 event->addr_filters_gen++; 8667 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8668 8669 if (restart) 8670 perf_event_stop(event, 1); 8671 } 8672 8673 void perf_event_exec(void) 8674 { 8675 struct perf_event_context *ctx; 8676 8677 ctx = perf_pin_task_context(current); 8678 if (!ctx) 8679 return; 8680 8681 perf_event_enable_on_exec(ctx); 8682 perf_event_remove_on_exec(ctx); 8683 scoped_guard(rcu) 8684 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8685 8686 perf_unpin_context(ctx); 8687 put_ctx(ctx); 8688 } 8689 8690 struct remote_output { 8691 struct perf_buffer *rb; 8692 int err; 8693 }; 8694 8695 static void __perf_event_output_stop(struct perf_event *event, void *data) 8696 { 8697 struct perf_event *parent = event->parent; 8698 struct remote_output *ro = data; 8699 struct perf_buffer *rb = ro->rb; 8700 struct stop_event_data sd = { 8701 .event = event, 8702 }; 8703 8704 if (!has_aux(event)) 8705 return; 8706 8707 if (!parent) 8708 parent = event; 8709 8710 /* 8711 * In case of inheritance, it will be the parent that links to the 8712 * ring-buffer, but it will be the child that's actually using it. 8713 * 8714 * We are using event::rb to determine if the event should be stopped, 8715 * however this may race with ring_buffer_attach() (through set_output), 8716 * which will make us skip the event that actually needs to be stopped. 8717 * So ring_buffer_attach() has to stop an aux event before re-assigning 8718 * its rb pointer. 8719 */ 8720 if (rcu_dereference(parent->rb) == rb) 8721 ro->err = __perf_event_stop(&sd); 8722 } 8723 8724 static int __perf_pmu_output_stop(void *info) 8725 { 8726 struct perf_event *event = info; 8727 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8728 struct remote_output ro = { 8729 .rb = event->rb, 8730 }; 8731 8732 rcu_read_lock(); 8733 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8734 if (cpuctx->task_ctx) 8735 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8736 &ro, false); 8737 rcu_read_unlock(); 8738 8739 return ro.err; 8740 } 8741 8742 static void perf_pmu_output_stop(struct perf_event *event) 8743 { 8744 struct perf_event *iter; 8745 int err, cpu; 8746 8747 restart: 8748 rcu_read_lock(); 8749 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8750 /* 8751 * For per-CPU events, we need to make sure that neither they 8752 * nor their children are running; for cpu==-1 events it's 8753 * sufficient to stop the event itself if it's active, since 8754 * it can't have children. 8755 */ 8756 cpu = iter->cpu; 8757 if (cpu == -1) 8758 cpu = READ_ONCE(iter->oncpu); 8759 8760 if (cpu == -1) 8761 continue; 8762 8763 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8764 if (err == -EAGAIN) { 8765 rcu_read_unlock(); 8766 goto restart; 8767 } 8768 } 8769 rcu_read_unlock(); 8770 } 8771 8772 /* 8773 * task tracking -- fork/exit 8774 * 8775 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8776 */ 8777 8778 struct perf_task_event { 8779 struct task_struct *task; 8780 struct perf_event_context *task_ctx; 8781 8782 struct { 8783 struct perf_event_header header; 8784 8785 u32 pid; 8786 u32 ppid; 8787 u32 tid; 8788 u32 ptid; 8789 u64 time; 8790 } event_id; 8791 }; 8792 8793 static int perf_event_task_match(struct perf_event *event) 8794 { 8795 return event->attr.comm || event->attr.mmap || 8796 event->attr.mmap2 || event->attr.mmap_data || 8797 event->attr.task; 8798 } 8799 8800 static void perf_event_task_output(struct perf_event *event, 8801 void *data) 8802 { 8803 struct perf_task_event *task_event = data; 8804 struct perf_output_handle handle; 8805 struct perf_sample_data sample; 8806 struct task_struct *task = task_event->task; 8807 int ret, size = task_event->event_id.header.size; 8808 8809 if (!perf_event_task_match(event)) 8810 return; 8811 8812 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8813 8814 ret = perf_output_begin(&handle, &sample, event, 8815 task_event->event_id.header.size); 8816 if (ret) 8817 goto out; 8818 8819 task_event->event_id.pid = perf_event_pid(event, task); 8820 task_event->event_id.tid = perf_event_tid(event, task); 8821 8822 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8823 task_event->event_id.ppid = perf_event_pid(event, 8824 task->real_parent); 8825 task_event->event_id.ptid = perf_event_pid(event, 8826 task->real_parent); 8827 } else { /* PERF_RECORD_FORK */ 8828 task_event->event_id.ppid = perf_event_pid(event, current); 8829 task_event->event_id.ptid = perf_event_tid(event, current); 8830 } 8831 8832 task_event->event_id.time = perf_event_clock(event); 8833 8834 perf_output_put(&handle, task_event->event_id); 8835 8836 perf_event__output_id_sample(event, &handle, &sample); 8837 8838 perf_output_end(&handle); 8839 out: 8840 task_event->event_id.header.size = size; 8841 } 8842 8843 static void perf_event_task(struct task_struct *task, 8844 struct perf_event_context *task_ctx, 8845 int new) 8846 { 8847 struct perf_task_event task_event; 8848 8849 if (!atomic_read(&nr_comm_events) && 8850 !atomic_read(&nr_mmap_events) && 8851 !atomic_read(&nr_task_events)) 8852 return; 8853 8854 task_event = (struct perf_task_event){ 8855 .task = task, 8856 .task_ctx = task_ctx, 8857 .event_id = { 8858 .header = { 8859 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8860 .misc = 0, 8861 .size = sizeof(task_event.event_id), 8862 }, 8863 /* .pid */ 8864 /* .ppid */ 8865 /* .tid */ 8866 /* .ptid */ 8867 /* .time */ 8868 }, 8869 }; 8870 8871 perf_iterate_sb(perf_event_task_output, 8872 &task_event, 8873 task_ctx); 8874 } 8875 8876 /* 8877 * Allocate data for a new task when profiling system-wide 8878 * events which require PMU specific data 8879 */ 8880 static void 8881 perf_event_alloc_task_data(struct task_struct *child, 8882 struct task_struct *parent) 8883 { 8884 struct kmem_cache *ctx_cache = NULL; 8885 struct perf_ctx_data *cd; 8886 8887 if (!refcount_read(&global_ctx_data_ref)) 8888 return; 8889 8890 scoped_guard (rcu) { 8891 cd = rcu_dereference(parent->perf_ctx_data); 8892 if (cd) 8893 ctx_cache = cd->ctx_cache; 8894 } 8895 8896 if (!ctx_cache) 8897 return; 8898 8899 guard(percpu_read)(&global_ctx_data_rwsem); 8900 scoped_guard (rcu) { 8901 cd = rcu_dereference(child->perf_ctx_data); 8902 if (!cd) { 8903 /* 8904 * A system-wide event may be unaccount, 8905 * when attaching the perf_ctx_data. 8906 */ 8907 if (!refcount_read(&global_ctx_data_ref)) 8908 return; 8909 goto attach; 8910 } 8911 8912 if (!cd->global) { 8913 cd->global = 1; 8914 refcount_inc(&cd->refcount); 8915 } 8916 } 8917 8918 return; 8919 attach: 8920 attach_task_ctx_data(child, ctx_cache, true); 8921 } 8922 8923 void perf_event_fork(struct task_struct *task) 8924 { 8925 perf_event_task(task, NULL, 1); 8926 perf_event_namespaces(task); 8927 perf_event_alloc_task_data(task, current); 8928 } 8929 8930 /* 8931 * comm tracking 8932 */ 8933 8934 struct perf_comm_event { 8935 struct task_struct *task; 8936 char *comm; 8937 int comm_size; 8938 8939 struct { 8940 struct perf_event_header header; 8941 8942 u32 pid; 8943 u32 tid; 8944 } event_id; 8945 }; 8946 8947 static int perf_event_comm_match(struct perf_event *event) 8948 { 8949 return event->attr.comm; 8950 } 8951 8952 static void perf_event_comm_output(struct perf_event *event, 8953 void *data) 8954 { 8955 struct perf_comm_event *comm_event = data; 8956 struct perf_output_handle handle; 8957 struct perf_sample_data sample; 8958 int size = comm_event->event_id.header.size; 8959 int ret; 8960 8961 if (!perf_event_comm_match(event)) 8962 return; 8963 8964 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8965 ret = perf_output_begin(&handle, &sample, event, 8966 comm_event->event_id.header.size); 8967 8968 if (ret) 8969 goto out; 8970 8971 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8972 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8973 8974 perf_output_put(&handle, comm_event->event_id); 8975 __output_copy(&handle, comm_event->comm, 8976 comm_event->comm_size); 8977 8978 perf_event__output_id_sample(event, &handle, &sample); 8979 8980 perf_output_end(&handle); 8981 out: 8982 comm_event->event_id.header.size = size; 8983 } 8984 8985 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8986 { 8987 char comm[TASK_COMM_LEN]; 8988 unsigned int size; 8989 8990 memset(comm, 0, sizeof(comm)); 8991 strscpy(comm, comm_event->task->comm); 8992 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8993 8994 comm_event->comm = comm; 8995 comm_event->comm_size = size; 8996 8997 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8998 8999 perf_iterate_sb(perf_event_comm_output, 9000 comm_event, 9001 NULL); 9002 } 9003 9004 void perf_event_comm(struct task_struct *task, bool exec) 9005 { 9006 struct perf_comm_event comm_event; 9007 9008 if (!atomic_read(&nr_comm_events)) 9009 return; 9010 9011 comm_event = (struct perf_comm_event){ 9012 .task = task, 9013 /* .comm */ 9014 /* .comm_size */ 9015 .event_id = { 9016 .header = { 9017 .type = PERF_RECORD_COMM, 9018 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 9019 /* .size */ 9020 }, 9021 /* .pid */ 9022 /* .tid */ 9023 }, 9024 }; 9025 9026 perf_event_comm_event(&comm_event); 9027 } 9028 9029 /* 9030 * namespaces tracking 9031 */ 9032 9033 struct perf_namespaces_event { 9034 struct task_struct *task; 9035 9036 struct { 9037 struct perf_event_header header; 9038 9039 u32 pid; 9040 u32 tid; 9041 u64 nr_namespaces; 9042 struct perf_ns_link_info link_info[NR_NAMESPACES]; 9043 } event_id; 9044 }; 9045 9046 static int perf_event_namespaces_match(struct perf_event *event) 9047 { 9048 return event->attr.namespaces; 9049 } 9050 9051 static void perf_event_namespaces_output(struct perf_event *event, 9052 void *data) 9053 { 9054 struct perf_namespaces_event *namespaces_event = data; 9055 struct perf_output_handle handle; 9056 struct perf_sample_data sample; 9057 u16 header_size = namespaces_event->event_id.header.size; 9058 int ret; 9059 9060 if (!perf_event_namespaces_match(event)) 9061 return; 9062 9063 perf_event_header__init_id(&namespaces_event->event_id.header, 9064 &sample, event); 9065 ret = perf_output_begin(&handle, &sample, event, 9066 namespaces_event->event_id.header.size); 9067 if (ret) 9068 goto out; 9069 9070 namespaces_event->event_id.pid = perf_event_pid(event, 9071 namespaces_event->task); 9072 namespaces_event->event_id.tid = perf_event_tid(event, 9073 namespaces_event->task); 9074 9075 perf_output_put(&handle, namespaces_event->event_id); 9076 9077 perf_event__output_id_sample(event, &handle, &sample); 9078 9079 perf_output_end(&handle); 9080 out: 9081 namespaces_event->event_id.header.size = header_size; 9082 } 9083 9084 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 9085 struct task_struct *task, 9086 const struct proc_ns_operations *ns_ops) 9087 { 9088 struct path ns_path; 9089 struct inode *ns_inode; 9090 int error; 9091 9092 error = ns_get_path(&ns_path, task, ns_ops); 9093 if (!error) { 9094 ns_inode = ns_path.dentry->d_inode; 9095 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 9096 ns_link_info->ino = ns_inode->i_ino; 9097 path_put(&ns_path); 9098 } 9099 } 9100 9101 void perf_event_namespaces(struct task_struct *task) 9102 { 9103 struct perf_namespaces_event namespaces_event; 9104 struct perf_ns_link_info *ns_link_info; 9105 9106 if (!atomic_read(&nr_namespaces_events)) 9107 return; 9108 9109 namespaces_event = (struct perf_namespaces_event){ 9110 .task = task, 9111 .event_id = { 9112 .header = { 9113 .type = PERF_RECORD_NAMESPACES, 9114 .misc = 0, 9115 .size = sizeof(namespaces_event.event_id), 9116 }, 9117 /* .pid */ 9118 /* .tid */ 9119 .nr_namespaces = NR_NAMESPACES, 9120 /* .link_info[NR_NAMESPACES] */ 9121 }, 9122 }; 9123 9124 ns_link_info = namespaces_event.event_id.link_info; 9125 9126 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9127 task, &mntns_operations); 9128 9129 #ifdef CONFIG_USER_NS 9130 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9131 task, &userns_operations); 9132 #endif 9133 #ifdef CONFIG_NET_NS 9134 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9135 task, &netns_operations); 9136 #endif 9137 #ifdef CONFIG_UTS_NS 9138 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9139 task, &utsns_operations); 9140 #endif 9141 #ifdef CONFIG_IPC_NS 9142 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9143 task, &ipcns_operations); 9144 #endif 9145 #ifdef CONFIG_PID_NS 9146 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9147 task, &pidns_operations); 9148 #endif 9149 #ifdef CONFIG_CGROUPS 9150 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9151 task, &cgroupns_operations); 9152 #endif 9153 9154 perf_iterate_sb(perf_event_namespaces_output, 9155 &namespaces_event, 9156 NULL); 9157 } 9158 9159 /* 9160 * cgroup tracking 9161 */ 9162 #ifdef CONFIG_CGROUP_PERF 9163 9164 struct perf_cgroup_event { 9165 char *path; 9166 int path_size; 9167 struct { 9168 struct perf_event_header header; 9169 u64 id; 9170 char path[]; 9171 } event_id; 9172 }; 9173 9174 static int perf_event_cgroup_match(struct perf_event *event) 9175 { 9176 return event->attr.cgroup; 9177 } 9178 9179 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9180 { 9181 struct perf_cgroup_event *cgroup_event = data; 9182 struct perf_output_handle handle; 9183 struct perf_sample_data sample; 9184 u16 header_size = cgroup_event->event_id.header.size; 9185 int ret; 9186 9187 if (!perf_event_cgroup_match(event)) 9188 return; 9189 9190 perf_event_header__init_id(&cgroup_event->event_id.header, 9191 &sample, event); 9192 ret = perf_output_begin(&handle, &sample, event, 9193 cgroup_event->event_id.header.size); 9194 if (ret) 9195 goto out; 9196 9197 perf_output_put(&handle, cgroup_event->event_id); 9198 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9199 9200 perf_event__output_id_sample(event, &handle, &sample); 9201 9202 perf_output_end(&handle); 9203 out: 9204 cgroup_event->event_id.header.size = header_size; 9205 } 9206 9207 static void perf_event_cgroup(struct cgroup *cgrp) 9208 { 9209 struct perf_cgroup_event cgroup_event; 9210 char path_enomem[16] = "//enomem"; 9211 char *pathname; 9212 size_t size; 9213 9214 if (!atomic_read(&nr_cgroup_events)) 9215 return; 9216 9217 cgroup_event = (struct perf_cgroup_event){ 9218 .event_id = { 9219 .header = { 9220 .type = PERF_RECORD_CGROUP, 9221 .misc = 0, 9222 .size = sizeof(cgroup_event.event_id), 9223 }, 9224 .id = cgroup_id(cgrp), 9225 }, 9226 }; 9227 9228 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9229 if (pathname == NULL) { 9230 cgroup_event.path = path_enomem; 9231 } else { 9232 /* just to be sure to have enough space for alignment */ 9233 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9234 cgroup_event.path = pathname; 9235 } 9236 9237 /* 9238 * Since our buffer works in 8 byte units we need to align our string 9239 * size to a multiple of 8. However, we must guarantee the tail end is 9240 * zero'd out to avoid leaking random bits to userspace. 9241 */ 9242 size = strlen(cgroup_event.path) + 1; 9243 while (!IS_ALIGNED(size, sizeof(u64))) 9244 cgroup_event.path[size++] = '\0'; 9245 9246 cgroup_event.event_id.header.size += size; 9247 cgroup_event.path_size = size; 9248 9249 perf_iterate_sb(perf_event_cgroup_output, 9250 &cgroup_event, 9251 NULL); 9252 9253 kfree(pathname); 9254 } 9255 9256 #endif 9257 9258 /* 9259 * mmap tracking 9260 */ 9261 9262 struct perf_mmap_event { 9263 struct vm_area_struct *vma; 9264 9265 const char *file_name; 9266 int file_size; 9267 int maj, min; 9268 u64 ino; 9269 u64 ino_generation; 9270 u32 prot, flags; 9271 u8 build_id[BUILD_ID_SIZE_MAX]; 9272 u32 build_id_size; 9273 9274 struct { 9275 struct perf_event_header header; 9276 9277 u32 pid; 9278 u32 tid; 9279 u64 start; 9280 u64 len; 9281 u64 pgoff; 9282 } event_id; 9283 }; 9284 9285 static int perf_event_mmap_match(struct perf_event *event, 9286 void *data) 9287 { 9288 struct perf_mmap_event *mmap_event = data; 9289 struct vm_area_struct *vma = mmap_event->vma; 9290 int executable = vma->vm_flags & VM_EXEC; 9291 9292 return (!executable && event->attr.mmap_data) || 9293 (executable && (event->attr.mmap || event->attr.mmap2)); 9294 } 9295 9296 static void perf_event_mmap_output(struct perf_event *event, 9297 void *data) 9298 { 9299 struct perf_mmap_event *mmap_event = data; 9300 struct perf_output_handle handle; 9301 struct perf_sample_data sample; 9302 int size = mmap_event->event_id.header.size; 9303 u32 type = mmap_event->event_id.header.type; 9304 bool use_build_id; 9305 int ret; 9306 9307 if (!perf_event_mmap_match(event, data)) 9308 return; 9309 9310 if (event->attr.mmap2) { 9311 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9312 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9313 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9314 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9315 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9316 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9317 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9318 } 9319 9320 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9321 ret = perf_output_begin(&handle, &sample, event, 9322 mmap_event->event_id.header.size); 9323 if (ret) 9324 goto out; 9325 9326 mmap_event->event_id.pid = perf_event_pid(event, current); 9327 mmap_event->event_id.tid = perf_event_tid(event, current); 9328 9329 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9330 9331 if (event->attr.mmap2 && use_build_id) 9332 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9333 9334 perf_output_put(&handle, mmap_event->event_id); 9335 9336 if (event->attr.mmap2) { 9337 if (use_build_id) { 9338 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9339 9340 __output_copy(&handle, size, 4); 9341 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9342 } else { 9343 perf_output_put(&handle, mmap_event->maj); 9344 perf_output_put(&handle, mmap_event->min); 9345 perf_output_put(&handle, mmap_event->ino); 9346 perf_output_put(&handle, mmap_event->ino_generation); 9347 } 9348 perf_output_put(&handle, mmap_event->prot); 9349 perf_output_put(&handle, mmap_event->flags); 9350 } 9351 9352 __output_copy(&handle, mmap_event->file_name, 9353 mmap_event->file_size); 9354 9355 perf_event__output_id_sample(event, &handle, &sample); 9356 9357 perf_output_end(&handle); 9358 out: 9359 mmap_event->event_id.header.size = size; 9360 mmap_event->event_id.header.type = type; 9361 } 9362 9363 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9364 { 9365 struct vm_area_struct *vma = mmap_event->vma; 9366 struct file *file = vma->vm_file; 9367 int maj = 0, min = 0; 9368 u64 ino = 0, gen = 0; 9369 u32 prot = 0, flags = 0; 9370 unsigned int size; 9371 char tmp[16]; 9372 char *buf = NULL; 9373 char *name = NULL; 9374 9375 if (vma->vm_flags & VM_READ) 9376 prot |= PROT_READ; 9377 if (vma->vm_flags & VM_WRITE) 9378 prot |= PROT_WRITE; 9379 if (vma->vm_flags & VM_EXEC) 9380 prot |= PROT_EXEC; 9381 9382 if (vma->vm_flags & VM_MAYSHARE) 9383 flags = MAP_SHARED; 9384 else 9385 flags = MAP_PRIVATE; 9386 9387 if (vma->vm_flags & VM_LOCKED) 9388 flags |= MAP_LOCKED; 9389 if (is_vm_hugetlb_page(vma)) 9390 flags |= MAP_HUGETLB; 9391 9392 if (file) { 9393 struct inode *inode; 9394 dev_t dev; 9395 9396 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9397 if (!buf) { 9398 name = "//enomem"; 9399 goto cpy_name; 9400 } 9401 /* 9402 * d_path() works from the end of the rb backwards, so we 9403 * need to add enough zero bytes after the string to handle 9404 * the 64bit alignment we do later. 9405 */ 9406 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 9407 if (IS_ERR(name)) { 9408 name = "//toolong"; 9409 goto cpy_name; 9410 } 9411 inode = file_inode(vma->vm_file); 9412 dev = inode->i_sb->s_dev; 9413 ino = inode->i_ino; 9414 gen = inode->i_generation; 9415 maj = MAJOR(dev); 9416 min = MINOR(dev); 9417 9418 goto got_name; 9419 } else { 9420 if (vma->vm_ops && vma->vm_ops->name) 9421 name = (char *) vma->vm_ops->name(vma); 9422 if (!name) 9423 name = (char *)arch_vma_name(vma); 9424 if (!name) { 9425 if (vma_is_initial_heap(vma)) 9426 name = "[heap]"; 9427 else if (vma_is_initial_stack(vma)) 9428 name = "[stack]"; 9429 else 9430 name = "//anon"; 9431 } 9432 } 9433 9434 cpy_name: 9435 strscpy(tmp, name); 9436 name = tmp; 9437 got_name: 9438 /* 9439 * Since our buffer works in 8 byte units we need to align our string 9440 * size to a multiple of 8. However, we must guarantee the tail end is 9441 * zero'd out to avoid leaking random bits to userspace. 9442 */ 9443 size = strlen(name)+1; 9444 while (!IS_ALIGNED(size, sizeof(u64))) 9445 name[size++] = '\0'; 9446 9447 mmap_event->file_name = name; 9448 mmap_event->file_size = size; 9449 mmap_event->maj = maj; 9450 mmap_event->min = min; 9451 mmap_event->ino = ino; 9452 mmap_event->ino_generation = gen; 9453 mmap_event->prot = prot; 9454 mmap_event->flags = flags; 9455 9456 if (!(vma->vm_flags & VM_EXEC)) 9457 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9458 9459 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9460 9461 if (atomic_read(&nr_build_id_events)) 9462 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9463 9464 perf_iterate_sb(perf_event_mmap_output, 9465 mmap_event, 9466 NULL); 9467 9468 kfree(buf); 9469 } 9470 9471 /* 9472 * Check whether inode and address range match filter criteria. 9473 */ 9474 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9475 struct file *file, unsigned long offset, 9476 unsigned long size) 9477 { 9478 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9479 if (!filter->path.dentry) 9480 return false; 9481 9482 if (d_inode(filter->path.dentry) != file_inode(file)) 9483 return false; 9484 9485 if (filter->offset > offset + size) 9486 return false; 9487 9488 if (filter->offset + filter->size < offset) 9489 return false; 9490 9491 return true; 9492 } 9493 9494 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9495 struct vm_area_struct *vma, 9496 struct perf_addr_filter_range *fr) 9497 { 9498 unsigned long vma_size = vma->vm_end - vma->vm_start; 9499 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9500 struct file *file = vma->vm_file; 9501 9502 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9503 return false; 9504 9505 if (filter->offset < off) { 9506 fr->start = vma->vm_start; 9507 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9508 } else { 9509 fr->start = vma->vm_start + filter->offset - off; 9510 fr->size = min(vma->vm_end - fr->start, filter->size); 9511 } 9512 9513 return true; 9514 } 9515 9516 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9517 { 9518 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9519 struct vm_area_struct *vma = data; 9520 struct perf_addr_filter *filter; 9521 unsigned int restart = 0, count = 0; 9522 unsigned long flags; 9523 9524 if (!has_addr_filter(event)) 9525 return; 9526 9527 if (!vma->vm_file) 9528 return; 9529 9530 raw_spin_lock_irqsave(&ifh->lock, flags); 9531 list_for_each_entry(filter, &ifh->list, entry) { 9532 if (perf_addr_filter_vma_adjust(filter, vma, 9533 &event->addr_filter_ranges[count])) 9534 restart++; 9535 9536 count++; 9537 } 9538 9539 if (restart) 9540 event->addr_filters_gen++; 9541 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9542 9543 if (restart) 9544 perf_event_stop(event, 1); 9545 } 9546 9547 /* 9548 * Adjust all task's events' filters to the new vma 9549 */ 9550 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9551 { 9552 struct perf_event_context *ctx; 9553 9554 /* 9555 * Data tracing isn't supported yet and as such there is no need 9556 * to keep track of anything that isn't related to executable code: 9557 */ 9558 if (!(vma->vm_flags & VM_EXEC)) 9559 return; 9560 9561 rcu_read_lock(); 9562 ctx = rcu_dereference(current->perf_event_ctxp); 9563 if (ctx) 9564 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9565 rcu_read_unlock(); 9566 } 9567 9568 void perf_event_mmap(struct vm_area_struct *vma) 9569 { 9570 struct perf_mmap_event mmap_event; 9571 9572 if (!atomic_read(&nr_mmap_events)) 9573 return; 9574 9575 mmap_event = (struct perf_mmap_event){ 9576 .vma = vma, 9577 /* .file_name */ 9578 /* .file_size */ 9579 .event_id = { 9580 .header = { 9581 .type = PERF_RECORD_MMAP, 9582 .misc = PERF_RECORD_MISC_USER, 9583 /* .size */ 9584 }, 9585 /* .pid */ 9586 /* .tid */ 9587 .start = vma->vm_start, 9588 .len = vma->vm_end - vma->vm_start, 9589 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9590 }, 9591 /* .maj (attr_mmap2 only) */ 9592 /* .min (attr_mmap2 only) */ 9593 /* .ino (attr_mmap2 only) */ 9594 /* .ino_generation (attr_mmap2 only) */ 9595 /* .prot (attr_mmap2 only) */ 9596 /* .flags (attr_mmap2 only) */ 9597 }; 9598 9599 perf_addr_filters_adjust(vma); 9600 perf_event_mmap_event(&mmap_event); 9601 } 9602 9603 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9604 unsigned long size, u64 flags) 9605 { 9606 struct perf_output_handle handle; 9607 struct perf_sample_data sample; 9608 struct perf_aux_event { 9609 struct perf_event_header header; 9610 u64 offset; 9611 u64 size; 9612 u64 flags; 9613 } rec = { 9614 .header = { 9615 .type = PERF_RECORD_AUX, 9616 .misc = 0, 9617 .size = sizeof(rec), 9618 }, 9619 .offset = head, 9620 .size = size, 9621 .flags = flags, 9622 }; 9623 int ret; 9624 9625 perf_event_header__init_id(&rec.header, &sample, event); 9626 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9627 9628 if (ret) 9629 return; 9630 9631 perf_output_put(&handle, rec); 9632 perf_event__output_id_sample(event, &handle, &sample); 9633 9634 perf_output_end(&handle); 9635 } 9636 9637 /* 9638 * Lost/dropped samples logging 9639 */ 9640 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9641 { 9642 struct perf_output_handle handle; 9643 struct perf_sample_data sample; 9644 int ret; 9645 9646 struct { 9647 struct perf_event_header header; 9648 u64 lost; 9649 } lost_samples_event = { 9650 .header = { 9651 .type = PERF_RECORD_LOST_SAMPLES, 9652 .misc = 0, 9653 .size = sizeof(lost_samples_event), 9654 }, 9655 .lost = lost, 9656 }; 9657 9658 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9659 9660 ret = perf_output_begin(&handle, &sample, event, 9661 lost_samples_event.header.size); 9662 if (ret) 9663 return; 9664 9665 perf_output_put(&handle, lost_samples_event); 9666 perf_event__output_id_sample(event, &handle, &sample); 9667 perf_output_end(&handle); 9668 } 9669 9670 /* 9671 * context_switch tracking 9672 */ 9673 9674 struct perf_switch_event { 9675 struct task_struct *task; 9676 struct task_struct *next_prev; 9677 9678 struct { 9679 struct perf_event_header header; 9680 u32 next_prev_pid; 9681 u32 next_prev_tid; 9682 } event_id; 9683 }; 9684 9685 static int perf_event_switch_match(struct perf_event *event) 9686 { 9687 return event->attr.context_switch; 9688 } 9689 9690 static void perf_event_switch_output(struct perf_event *event, void *data) 9691 { 9692 struct perf_switch_event *se = data; 9693 struct perf_output_handle handle; 9694 struct perf_sample_data sample; 9695 int ret; 9696 9697 if (!perf_event_switch_match(event)) 9698 return; 9699 9700 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9701 if (event->ctx->task) { 9702 se->event_id.header.type = PERF_RECORD_SWITCH; 9703 se->event_id.header.size = sizeof(se->event_id.header); 9704 } else { 9705 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9706 se->event_id.header.size = sizeof(se->event_id); 9707 se->event_id.next_prev_pid = 9708 perf_event_pid(event, se->next_prev); 9709 se->event_id.next_prev_tid = 9710 perf_event_tid(event, se->next_prev); 9711 } 9712 9713 perf_event_header__init_id(&se->event_id.header, &sample, event); 9714 9715 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9716 if (ret) 9717 return; 9718 9719 if (event->ctx->task) 9720 perf_output_put(&handle, se->event_id.header); 9721 else 9722 perf_output_put(&handle, se->event_id); 9723 9724 perf_event__output_id_sample(event, &handle, &sample); 9725 9726 perf_output_end(&handle); 9727 } 9728 9729 static void perf_event_switch(struct task_struct *task, 9730 struct task_struct *next_prev, bool sched_in) 9731 { 9732 struct perf_switch_event switch_event; 9733 9734 /* N.B. caller checks nr_switch_events != 0 */ 9735 9736 switch_event = (struct perf_switch_event){ 9737 .task = task, 9738 .next_prev = next_prev, 9739 .event_id = { 9740 .header = { 9741 /* .type */ 9742 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9743 /* .size */ 9744 }, 9745 /* .next_prev_pid */ 9746 /* .next_prev_tid */ 9747 }, 9748 }; 9749 9750 if (!sched_in && task_is_runnable(task)) { 9751 switch_event.event_id.header.misc |= 9752 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9753 } 9754 9755 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9756 } 9757 9758 /* 9759 * IRQ throttle logging 9760 */ 9761 9762 static void perf_log_throttle(struct perf_event *event, int enable) 9763 { 9764 struct perf_output_handle handle; 9765 struct perf_sample_data sample; 9766 int ret; 9767 9768 struct { 9769 struct perf_event_header header; 9770 u64 time; 9771 u64 id; 9772 u64 stream_id; 9773 } throttle_event = { 9774 .header = { 9775 .type = PERF_RECORD_THROTTLE, 9776 .misc = 0, 9777 .size = sizeof(throttle_event), 9778 }, 9779 .time = perf_event_clock(event), 9780 .id = primary_event_id(event), 9781 .stream_id = event->id, 9782 }; 9783 9784 if (enable) 9785 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9786 9787 perf_event_header__init_id(&throttle_event.header, &sample, event); 9788 9789 ret = perf_output_begin(&handle, &sample, event, 9790 throttle_event.header.size); 9791 if (ret) 9792 return; 9793 9794 perf_output_put(&handle, throttle_event); 9795 perf_event__output_id_sample(event, &handle, &sample); 9796 perf_output_end(&handle); 9797 } 9798 9799 /* 9800 * ksymbol register/unregister tracking 9801 */ 9802 9803 struct perf_ksymbol_event { 9804 const char *name; 9805 int name_len; 9806 struct { 9807 struct perf_event_header header; 9808 u64 addr; 9809 u32 len; 9810 u16 ksym_type; 9811 u16 flags; 9812 } event_id; 9813 }; 9814 9815 static int perf_event_ksymbol_match(struct perf_event *event) 9816 { 9817 return event->attr.ksymbol; 9818 } 9819 9820 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9821 { 9822 struct perf_ksymbol_event *ksymbol_event = data; 9823 struct perf_output_handle handle; 9824 struct perf_sample_data sample; 9825 int ret; 9826 9827 if (!perf_event_ksymbol_match(event)) 9828 return; 9829 9830 perf_event_header__init_id(&ksymbol_event->event_id.header, 9831 &sample, event); 9832 ret = perf_output_begin(&handle, &sample, event, 9833 ksymbol_event->event_id.header.size); 9834 if (ret) 9835 return; 9836 9837 perf_output_put(&handle, ksymbol_event->event_id); 9838 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9839 perf_event__output_id_sample(event, &handle, &sample); 9840 9841 perf_output_end(&handle); 9842 } 9843 9844 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9845 const char *sym) 9846 { 9847 struct perf_ksymbol_event ksymbol_event; 9848 char name[KSYM_NAME_LEN]; 9849 u16 flags = 0; 9850 int name_len; 9851 9852 if (!atomic_read(&nr_ksymbol_events)) 9853 return; 9854 9855 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9856 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9857 goto err; 9858 9859 strscpy(name, sym); 9860 name_len = strlen(name) + 1; 9861 while (!IS_ALIGNED(name_len, sizeof(u64))) 9862 name[name_len++] = '\0'; 9863 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9864 9865 if (unregister) 9866 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9867 9868 ksymbol_event = (struct perf_ksymbol_event){ 9869 .name = name, 9870 .name_len = name_len, 9871 .event_id = { 9872 .header = { 9873 .type = PERF_RECORD_KSYMBOL, 9874 .size = sizeof(ksymbol_event.event_id) + 9875 name_len, 9876 }, 9877 .addr = addr, 9878 .len = len, 9879 .ksym_type = ksym_type, 9880 .flags = flags, 9881 }, 9882 }; 9883 9884 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9885 return; 9886 err: 9887 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9888 } 9889 9890 /* 9891 * bpf program load/unload tracking 9892 */ 9893 9894 struct perf_bpf_event { 9895 struct bpf_prog *prog; 9896 struct { 9897 struct perf_event_header header; 9898 u16 type; 9899 u16 flags; 9900 u32 id; 9901 u8 tag[BPF_TAG_SIZE]; 9902 } event_id; 9903 }; 9904 9905 static int perf_event_bpf_match(struct perf_event *event) 9906 { 9907 return event->attr.bpf_event; 9908 } 9909 9910 static void perf_event_bpf_output(struct perf_event *event, void *data) 9911 { 9912 struct perf_bpf_event *bpf_event = data; 9913 struct perf_output_handle handle; 9914 struct perf_sample_data sample; 9915 int ret; 9916 9917 if (!perf_event_bpf_match(event)) 9918 return; 9919 9920 perf_event_header__init_id(&bpf_event->event_id.header, 9921 &sample, event); 9922 ret = perf_output_begin(&handle, &sample, event, 9923 bpf_event->event_id.header.size); 9924 if (ret) 9925 return; 9926 9927 perf_output_put(&handle, bpf_event->event_id); 9928 perf_event__output_id_sample(event, &handle, &sample); 9929 9930 perf_output_end(&handle); 9931 } 9932 9933 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9934 enum perf_bpf_event_type type) 9935 { 9936 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9937 int i; 9938 9939 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9940 (u64)(unsigned long)prog->bpf_func, 9941 prog->jited_len, unregister, 9942 prog->aux->ksym.name); 9943 9944 for (i = 1; i < prog->aux->func_cnt; i++) { 9945 struct bpf_prog *subprog = prog->aux->func[i]; 9946 9947 perf_event_ksymbol( 9948 PERF_RECORD_KSYMBOL_TYPE_BPF, 9949 (u64)(unsigned long)subprog->bpf_func, 9950 subprog->jited_len, unregister, 9951 subprog->aux->ksym.name); 9952 } 9953 } 9954 9955 void perf_event_bpf_event(struct bpf_prog *prog, 9956 enum perf_bpf_event_type type, 9957 u16 flags) 9958 { 9959 struct perf_bpf_event bpf_event; 9960 9961 switch (type) { 9962 case PERF_BPF_EVENT_PROG_LOAD: 9963 case PERF_BPF_EVENT_PROG_UNLOAD: 9964 if (atomic_read(&nr_ksymbol_events)) 9965 perf_event_bpf_emit_ksymbols(prog, type); 9966 break; 9967 default: 9968 return; 9969 } 9970 9971 if (!atomic_read(&nr_bpf_events)) 9972 return; 9973 9974 bpf_event = (struct perf_bpf_event){ 9975 .prog = prog, 9976 .event_id = { 9977 .header = { 9978 .type = PERF_RECORD_BPF_EVENT, 9979 .size = sizeof(bpf_event.event_id), 9980 }, 9981 .type = type, 9982 .flags = flags, 9983 .id = prog->aux->id, 9984 }, 9985 }; 9986 9987 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9988 9989 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9990 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9991 } 9992 9993 struct perf_text_poke_event { 9994 const void *old_bytes; 9995 const void *new_bytes; 9996 size_t pad; 9997 u16 old_len; 9998 u16 new_len; 9999 10000 struct { 10001 struct perf_event_header header; 10002 10003 u64 addr; 10004 } event_id; 10005 }; 10006 10007 static int perf_event_text_poke_match(struct perf_event *event) 10008 { 10009 return event->attr.text_poke; 10010 } 10011 10012 static void perf_event_text_poke_output(struct perf_event *event, void *data) 10013 { 10014 struct perf_text_poke_event *text_poke_event = data; 10015 struct perf_output_handle handle; 10016 struct perf_sample_data sample; 10017 u64 padding = 0; 10018 int ret; 10019 10020 if (!perf_event_text_poke_match(event)) 10021 return; 10022 10023 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 10024 10025 ret = perf_output_begin(&handle, &sample, event, 10026 text_poke_event->event_id.header.size); 10027 if (ret) 10028 return; 10029 10030 perf_output_put(&handle, text_poke_event->event_id); 10031 perf_output_put(&handle, text_poke_event->old_len); 10032 perf_output_put(&handle, text_poke_event->new_len); 10033 10034 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 10035 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 10036 10037 if (text_poke_event->pad) 10038 __output_copy(&handle, &padding, text_poke_event->pad); 10039 10040 perf_event__output_id_sample(event, &handle, &sample); 10041 10042 perf_output_end(&handle); 10043 } 10044 10045 void perf_event_text_poke(const void *addr, const void *old_bytes, 10046 size_t old_len, const void *new_bytes, size_t new_len) 10047 { 10048 struct perf_text_poke_event text_poke_event; 10049 size_t tot, pad; 10050 10051 if (!atomic_read(&nr_text_poke_events)) 10052 return; 10053 10054 tot = sizeof(text_poke_event.old_len) + old_len; 10055 tot += sizeof(text_poke_event.new_len) + new_len; 10056 pad = ALIGN(tot, sizeof(u64)) - tot; 10057 10058 text_poke_event = (struct perf_text_poke_event){ 10059 .old_bytes = old_bytes, 10060 .new_bytes = new_bytes, 10061 .pad = pad, 10062 .old_len = old_len, 10063 .new_len = new_len, 10064 .event_id = { 10065 .header = { 10066 .type = PERF_RECORD_TEXT_POKE, 10067 .misc = PERF_RECORD_MISC_KERNEL, 10068 .size = sizeof(text_poke_event.event_id) + tot + pad, 10069 }, 10070 .addr = (unsigned long)addr, 10071 }, 10072 }; 10073 10074 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 10075 } 10076 10077 void perf_event_itrace_started(struct perf_event *event) 10078 { 10079 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); 10080 } 10081 10082 static void perf_log_itrace_start(struct perf_event *event) 10083 { 10084 struct perf_output_handle handle; 10085 struct perf_sample_data sample; 10086 struct perf_aux_event { 10087 struct perf_event_header header; 10088 u32 pid; 10089 u32 tid; 10090 } rec; 10091 int ret; 10092 10093 if (event->parent) 10094 event = event->parent; 10095 10096 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 10097 event->attach_state & PERF_ATTACH_ITRACE) 10098 return; 10099 10100 rec.header.type = PERF_RECORD_ITRACE_START; 10101 rec.header.misc = 0; 10102 rec.header.size = sizeof(rec); 10103 rec.pid = perf_event_pid(event, current); 10104 rec.tid = perf_event_tid(event, current); 10105 10106 perf_event_header__init_id(&rec.header, &sample, event); 10107 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10108 10109 if (ret) 10110 return; 10111 10112 perf_output_put(&handle, rec); 10113 perf_event__output_id_sample(event, &handle, &sample); 10114 10115 perf_output_end(&handle); 10116 } 10117 10118 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10119 { 10120 struct perf_output_handle handle; 10121 struct perf_sample_data sample; 10122 struct perf_aux_event { 10123 struct perf_event_header header; 10124 u64 hw_id; 10125 } rec; 10126 int ret; 10127 10128 if (event->parent) 10129 event = event->parent; 10130 10131 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10132 rec.header.misc = 0; 10133 rec.header.size = sizeof(rec); 10134 rec.hw_id = hw_id; 10135 10136 perf_event_header__init_id(&rec.header, &sample, event); 10137 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10138 10139 if (ret) 10140 return; 10141 10142 perf_output_put(&handle, rec); 10143 perf_event__output_id_sample(event, &handle, &sample); 10144 10145 perf_output_end(&handle); 10146 } 10147 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10148 10149 static int 10150 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10151 { 10152 struct hw_perf_event *hwc = &event->hw; 10153 int ret = 0; 10154 u64 seq; 10155 10156 seq = __this_cpu_read(perf_throttled_seq); 10157 if (seq != hwc->interrupts_seq) { 10158 hwc->interrupts_seq = seq; 10159 hwc->interrupts = 1; 10160 } else { 10161 hwc->interrupts++; 10162 } 10163 10164 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { 10165 __this_cpu_inc(perf_throttled_count); 10166 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10167 perf_event_throttle_group(event); 10168 ret = 1; 10169 } 10170 10171 if (event->attr.freq) { 10172 u64 now = perf_clock(); 10173 s64 delta = now - hwc->freq_time_stamp; 10174 10175 hwc->freq_time_stamp = now; 10176 10177 if (delta > 0 && delta < 2*TICK_NSEC) 10178 perf_adjust_period(event, delta, hwc->last_period, true); 10179 } 10180 10181 return ret; 10182 } 10183 10184 int perf_event_account_interrupt(struct perf_event *event) 10185 { 10186 return __perf_event_account_interrupt(event, 1); 10187 } 10188 10189 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10190 { 10191 /* 10192 * Due to interrupt latency (AKA "skid"), we may enter the 10193 * kernel before taking an overflow, even if the PMU is only 10194 * counting user events. 10195 */ 10196 if (event->attr.exclude_kernel && !user_mode(regs)) 10197 return false; 10198 10199 return true; 10200 } 10201 10202 #ifdef CONFIG_BPF_SYSCALL 10203 static int bpf_overflow_handler(struct perf_event *event, 10204 struct perf_sample_data *data, 10205 struct pt_regs *regs) 10206 { 10207 struct bpf_perf_event_data_kern ctx = { 10208 .data = data, 10209 .event = event, 10210 }; 10211 struct bpf_prog *prog; 10212 int ret = 0; 10213 10214 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10215 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10216 goto out; 10217 rcu_read_lock(); 10218 prog = READ_ONCE(event->prog); 10219 if (prog) { 10220 perf_prepare_sample(data, event, regs); 10221 ret = bpf_prog_run(prog, &ctx); 10222 } 10223 rcu_read_unlock(); 10224 out: 10225 __this_cpu_dec(bpf_prog_active); 10226 10227 return ret; 10228 } 10229 10230 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10231 struct bpf_prog *prog, 10232 u64 bpf_cookie) 10233 { 10234 if (event->overflow_handler_context) 10235 /* hw breakpoint or kernel counter */ 10236 return -EINVAL; 10237 10238 if (event->prog) 10239 return -EEXIST; 10240 10241 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10242 return -EINVAL; 10243 10244 if (event->attr.precise_ip && 10245 prog->call_get_stack && 10246 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10247 event->attr.exclude_callchain_kernel || 10248 event->attr.exclude_callchain_user)) { 10249 /* 10250 * On perf_event with precise_ip, calling bpf_get_stack() 10251 * may trigger unwinder warnings and occasional crashes. 10252 * bpf_get_[stack|stackid] works around this issue by using 10253 * callchain attached to perf_sample_data. If the 10254 * perf_event does not full (kernel and user) callchain 10255 * attached to perf_sample_data, do not allow attaching BPF 10256 * program that calls bpf_get_[stack|stackid]. 10257 */ 10258 return -EPROTO; 10259 } 10260 10261 event->prog = prog; 10262 event->bpf_cookie = bpf_cookie; 10263 return 0; 10264 } 10265 10266 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10267 { 10268 struct bpf_prog *prog = event->prog; 10269 10270 if (!prog) 10271 return; 10272 10273 event->prog = NULL; 10274 bpf_prog_put(prog); 10275 } 10276 #else 10277 static inline int bpf_overflow_handler(struct perf_event *event, 10278 struct perf_sample_data *data, 10279 struct pt_regs *regs) 10280 { 10281 return 1; 10282 } 10283 10284 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10285 struct bpf_prog *prog, 10286 u64 bpf_cookie) 10287 { 10288 return -EOPNOTSUPP; 10289 } 10290 10291 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10292 { 10293 } 10294 #endif 10295 10296 /* 10297 * Generic event overflow handling, sampling. 10298 */ 10299 10300 static int __perf_event_overflow(struct perf_event *event, 10301 int throttle, struct perf_sample_data *data, 10302 struct pt_regs *regs) 10303 { 10304 int events = atomic_read(&event->event_limit); 10305 int ret = 0; 10306 10307 /* 10308 * Non-sampling counters might still use the PMI to fold short 10309 * hardware counters, ignore those. 10310 */ 10311 if (unlikely(!is_sampling_event(event))) 10312 return 0; 10313 10314 ret = __perf_event_account_interrupt(event, throttle); 10315 10316 if (event->attr.aux_pause) 10317 perf_event_aux_pause(event->aux_event, true); 10318 10319 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10320 !bpf_overflow_handler(event, data, regs)) 10321 goto out; 10322 10323 /* 10324 * XXX event_limit might not quite work as expected on inherited 10325 * events 10326 */ 10327 10328 event->pending_kill = POLL_IN; 10329 if (events && atomic_dec_and_test(&event->event_limit)) { 10330 ret = 1; 10331 event->pending_kill = POLL_HUP; 10332 perf_event_disable_inatomic(event); 10333 } 10334 10335 if (event->attr.sigtrap) { 10336 /* 10337 * The desired behaviour of sigtrap vs invalid samples is a bit 10338 * tricky; on the one hand, one should not loose the SIGTRAP if 10339 * it is the first event, on the other hand, we should also not 10340 * trigger the WARN or override the data address. 10341 */ 10342 bool valid_sample = sample_is_allowed(event, regs); 10343 unsigned int pending_id = 1; 10344 enum task_work_notify_mode notify_mode; 10345 10346 if (regs) 10347 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10348 10349 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10350 10351 if (!event->pending_work && 10352 !task_work_add(current, &event->pending_task, notify_mode)) { 10353 event->pending_work = pending_id; 10354 local_inc(&event->ctx->nr_no_switch_fast); 10355 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 10356 10357 event->pending_addr = 0; 10358 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10359 event->pending_addr = data->addr; 10360 10361 } else if (event->attr.exclude_kernel && valid_sample) { 10362 /* 10363 * Should not be able to return to user space without 10364 * consuming pending_work; with exceptions: 10365 * 10366 * 1. Where !exclude_kernel, events can overflow again 10367 * in the kernel without returning to user space. 10368 * 10369 * 2. Events that can overflow again before the IRQ- 10370 * work without user space progress (e.g. hrtimer). 10371 * To approximate progress (with false negatives), 10372 * check 32-bit hash of the current IP. 10373 */ 10374 WARN_ON_ONCE(event->pending_work != pending_id); 10375 } 10376 } 10377 10378 READ_ONCE(event->overflow_handler)(event, data, regs); 10379 10380 if (*perf_event_fasync(event) && event->pending_kill) { 10381 event->pending_wakeup = 1; 10382 irq_work_queue(&event->pending_irq); 10383 } 10384 out: 10385 if (event->attr.aux_resume) 10386 perf_event_aux_pause(event->aux_event, false); 10387 10388 return ret; 10389 } 10390 10391 int perf_event_overflow(struct perf_event *event, 10392 struct perf_sample_data *data, 10393 struct pt_regs *regs) 10394 { 10395 return __perf_event_overflow(event, 1, data, regs); 10396 } 10397 10398 /* 10399 * Generic software event infrastructure 10400 */ 10401 10402 struct swevent_htable { 10403 struct swevent_hlist *swevent_hlist; 10404 struct mutex hlist_mutex; 10405 int hlist_refcount; 10406 }; 10407 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10408 10409 /* 10410 * We directly increment event->count and keep a second value in 10411 * event->hw.period_left to count intervals. This period event 10412 * is kept in the range [-sample_period, 0] so that we can use the 10413 * sign as trigger. 10414 */ 10415 10416 u64 perf_swevent_set_period(struct perf_event *event) 10417 { 10418 struct hw_perf_event *hwc = &event->hw; 10419 u64 period = hwc->last_period; 10420 u64 nr, offset; 10421 s64 old, val; 10422 10423 hwc->last_period = hwc->sample_period; 10424 10425 old = local64_read(&hwc->period_left); 10426 do { 10427 val = old; 10428 if (val < 0) 10429 return 0; 10430 10431 nr = div64_u64(period + val, period); 10432 offset = nr * period; 10433 val -= offset; 10434 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10435 10436 return nr; 10437 } 10438 10439 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10440 struct perf_sample_data *data, 10441 struct pt_regs *regs) 10442 { 10443 struct hw_perf_event *hwc = &event->hw; 10444 int throttle = 0; 10445 10446 if (!overflow) 10447 overflow = perf_swevent_set_period(event); 10448 10449 if (hwc->interrupts == MAX_INTERRUPTS) 10450 return; 10451 10452 for (; overflow; overflow--) { 10453 if (__perf_event_overflow(event, throttle, 10454 data, regs)) { 10455 /* 10456 * We inhibit the overflow from happening when 10457 * hwc->interrupts == MAX_INTERRUPTS. 10458 */ 10459 break; 10460 } 10461 throttle = 1; 10462 } 10463 } 10464 10465 static void perf_swevent_event(struct perf_event *event, u64 nr, 10466 struct perf_sample_data *data, 10467 struct pt_regs *regs) 10468 { 10469 struct hw_perf_event *hwc = &event->hw; 10470 10471 local64_add(nr, &event->count); 10472 10473 if (!regs) 10474 return; 10475 10476 if (!is_sampling_event(event)) 10477 return; 10478 10479 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10480 data->period = nr; 10481 return perf_swevent_overflow(event, 1, data, regs); 10482 } else 10483 data->period = event->hw.last_period; 10484 10485 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10486 return perf_swevent_overflow(event, 1, data, regs); 10487 10488 if (local64_add_negative(nr, &hwc->period_left)) 10489 return; 10490 10491 perf_swevent_overflow(event, 0, data, regs); 10492 } 10493 10494 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10495 { 10496 if (event->hw.state & PERF_HES_STOPPED) 10497 return 1; 10498 10499 if (regs) { 10500 if (event->attr.exclude_user && user_mode(regs)) 10501 return 1; 10502 10503 if (event->attr.exclude_kernel && !user_mode(regs)) 10504 return 1; 10505 } 10506 10507 return 0; 10508 } 10509 10510 static int perf_swevent_match(struct perf_event *event, 10511 enum perf_type_id type, 10512 u32 event_id, 10513 struct perf_sample_data *data, 10514 struct pt_regs *regs) 10515 { 10516 if (event->attr.type != type) 10517 return 0; 10518 10519 if (event->attr.config != event_id) 10520 return 0; 10521 10522 if (perf_exclude_event(event, regs)) 10523 return 0; 10524 10525 return 1; 10526 } 10527 10528 static inline u64 swevent_hash(u64 type, u32 event_id) 10529 { 10530 u64 val = event_id | (type << 32); 10531 10532 return hash_64(val, SWEVENT_HLIST_BITS); 10533 } 10534 10535 static inline struct hlist_head * 10536 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10537 { 10538 u64 hash = swevent_hash(type, event_id); 10539 10540 return &hlist->heads[hash]; 10541 } 10542 10543 /* For the read side: events when they trigger */ 10544 static inline struct hlist_head * 10545 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10546 { 10547 struct swevent_hlist *hlist; 10548 10549 hlist = rcu_dereference(swhash->swevent_hlist); 10550 if (!hlist) 10551 return NULL; 10552 10553 return __find_swevent_head(hlist, type, event_id); 10554 } 10555 10556 /* For the event head insertion and removal in the hlist */ 10557 static inline struct hlist_head * 10558 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10559 { 10560 struct swevent_hlist *hlist; 10561 u32 event_id = event->attr.config; 10562 u64 type = event->attr.type; 10563 10564 /* 10565 * Event scheduling is always serialized against hlist allocation 10566 * and release. Which makes the protected version suitable here. 10567 * The context lock guarantees that. 10568 */ 10569 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10570 lockdep_is_held(&event->ctx->lock)); 10571 if (!hlist) 10572 return NULL; 10573 10574 return __find_swevent_head(hlist, type, event_id); 10575 } 10576 10577 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10578 u64 nr, 10579 struct perf_sample_data *data, 10580 struct pt_regs *regs) 10581 { 10582 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10583 struct perf_event *event; 10584 struct hlist_head *head; 10585 10586 rcu_read_lock(); 10587 head = find_swevent_head_rcu(swhash, type, event_id); 10588 if (!head) 10589 goto end; 10590 10591 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10592 if (perf_swevent_match(event, type, event_id, data, regs)) 10593 perf_swevent_event(event, nr, data, regs); 10594 } 10595 end: 10596 rcu_read_unlock(); 10597 } 10598 10599 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10600 10601 int perf_swevent_get_recursion_context(void) 10602 { 10603 return get_recursion_context(current->perf_recursion); 10604 } 10605 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10606 10607 void perf_swevent_put_recursion_context(int rctx) 10608 { 10609 put_recursion_context(current->perf_recursion, rctx); 10610 } 10611 10612 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10613 { 10614 struct perf_sample_data data; 10615 10616 if (WARN_ON_ONCE(!regs)) 10617 return; 10618 10619 perf_sample_data_init(&data, addr, 0); 10620 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10621 } 10622 10623 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10624 { 10625 int rctx; 10626 10627 preempt_disable_notrace(); 10628 rctx = perf_swevent_get_recursion_context(); 10629 if (unlikely(rctx < 0)) 10630 goto fail; 10631 10632 ___perf_sw_event(event_id, nr, regs, addr); 10633 10634 perf_swevent_put_recursion_context(rctx); 10635 fail: 10636 preempt_enable_notrace(); 10637 } 10638 10639 static void perf_swevent_read(struct perf_event *event) 10640 { 10641 } 10642 10643 static int perf_swevent_add(struct perf_event *event, int flags) 10644 { 10645 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10646 struct hw_perf_event *hwc = &event->hw; 10647 struct hlist_head *head; 10648 10649 if (is_sampling_event(event)) { 10650 hwc->last_period = hwc->sample_period; 10651 perf_swevent_set_period(event); 10652 } 10653 10654 hwc->state = !(flags & PERF_EF_START); 10655 10656 head = find_swevent_head(swhash, event); 10657 if (WARN_ON_ONCE(!head)) 10658 return -EINVAL; 10659 10660 hlist_add_head_rcu(&event->hlist_entry, head); 10661 perf_event_update_userpage(event); 10662 10663 return 0; 10664 } 10665 10666 static void perf_swevent_del(struct perf_event *event, int flags) 10667 { 10668 hlist_del_rcu(&event->hlist_entry); 10669 } 10670 10671 static void perf_swevent_start(struct perf_event *event, int flags) 10672 { 10673 event->hw.state = 0; 10674 } 10675 10676 static void perf_swevent_stop(struct perf_event *event, int flags) 10677 { 10678 event->hw.state = PERF_HES_STOPPED; 10679 } 10680 10681 /* Deref the hlist from the update side */ 10682 static inline struct swevent_hlist * 10683 swevent_hlist_deref(struct swevent_htable *swhash) 10684 { 10685 return rcu_dereference_protected(swhash->swevent_hlist, 10686 lockdep_is_held(&swhash->hlist_mutex)); 10687 } 10688 10689 static void swevent_hlist_release(struct swevent_htable *swhash) 10690 { 10691 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10692 10693 if (!hlist) 10694 return; 10695 10696 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10697 kfree_rcu(hlist, rcu_head); 10698 } 10699 10700 static void swevent_hlist_put_cpu(int cpu) 10701 { 10702 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10703 10704 mutex_lock(&swhash->hlist_mutex); 10705 10706 if (!--swhash->hlist_refcount) 10707 swevent_hlist_release(swhash); 10708 10709 mutex_unlock(&swhash->hlist_mutex); 10710 } 10711 10712 static void swevent_hlist_put(void) 10713 { 10714 int cpu; 10715 10716 for_each_possible_cpu(cpu) 10717 swevent_hlist_put_cpu(cpu); 10718 } 10719 10720 static int swevent_hlist_get_cpu(int cpu) 10721 { 10722 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10723 int err = 0; 10724 10725 mutex_lock(&swhash->hlist_mutex); 10726 if (!swevent_hlist_deref(swhash) && 10727 cpumask_test_cpu(cpu, perf_online_mask)) { 10728 struct swevent_hlist *hlist; 10729 10730 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10731 if (!hlist) { 10732 err = -ENOMEM; 10733 goto exit; 10734 } 10735 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10736 } 10737 swhash->hlist_refcount++; 10738 exit: 10739 mutex_unlock(&swhash->hlist_mutex); 10740 10741 return err; 10742 } 10743 10744 static int swevent_hlist_get(void) 10745 { 10746 int err, cpu, failed_cpu; 10747 10748 mutex_lock(&pmus_lock); 10749 for_each_possible_cpu(cpu) { 10750 err = swevent_hlist_get_cpu(cpu); 10751 if (err) { 10752 failed_cpu = cpu; 10753 goto fail; 10754 } 10755 } 10756 mutex_unlock(&pmus_lock); 10757 return 0; 10758 fail: 10759 for_each_possible_cpu(cpu) { 10760 if (cpu == failed_cpu) 10761 break; 10762 swevent_hlist_put_cpu(cpu); 10763 } 10764 mutex_unlock(&pmus_lock); 10765 return err; 10766 } 10767 10768 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10769 10770 static void sw_perf_event_destroy(struct perf_event *event) 10771 { 10772 u64 event_id = event->attr.config; 10773 10774 WARN_ON(event->parent); 10775 10776 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10777 swevent_hlist_put(); 10778 } 10779 10780 static struct pmu perf_cpu_clock; /* fwd declaration */ 10781 static struct pmu perf_task_clock; 10782 10783 static int perf_swevent_init(struct perf_event *event) 10784 { 10785 u64 event_id = event->attr.config; 10786 10787 if (event->attr.type != PERF_TYPE_SOFTWARE) 10788 return -ENOENT; 10789 10790 /* 10791 * no branch sampling for software events 10792 */ 10793 if (has_branch_stack(event)) 10794 return -EOPNOTSUPP; 10795 10796 switch (event_id) { 10797 case PERF_COUNT_SW_CPU_CLOCK: 10798 event->attr.type = perf_cpu_clock.type; 10799 return -ENOENT; 10800 case PERF_COUNT_SW_TASK_CLOCK: 10801 event->attr.type = perf_task_clock.type; 10802 return -ENOENT; 10803 10804 default: 10805 break; 10806 } 10807 10808 if (event_id >= PERF_COUNT_SW_MAX) 10809 return -ENOENT; 10810 10811 if (!event->parent) { 10812 int err; 10813 10814 err = swevent_hlist_get(); 10815 if (err) 10816 return err; 10817 10818 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10819 event->destroy = sw_perf_event_destroy; 10820 } 10821 10822 return 0; 10823 } 10824 10825 static struct pmu perf_swevent = { 10826 .task_ctx_nr = perf_sw_context, 10827 10828 .capabilities = PERF_PMU_CAP_NO_NMI, 10829 10830 .event_init = perf_swevent_init, 10831 .add = perf_swevent_add, 10832 .del = perf_swevent_del, 10833 .start = perf_swevent_start, 10834 .stop = perf_swevent_stop, 10835 .read = perf_swevent_read, 10836 }; 10837 10838 #ifdef CONFIG_EVENT_TRACING 10839 10840 static void tp_perf_event_destroy(struct perf_event *event) 10841 { 10842 perf_trace_destroy(event); 10843 } 10844 10845 static int perf_tp_event_init(struct perf_event *event) 10846 { 10847 int err; 10848 10849 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10850 return -ENOENT; 10851 10852 /* 10853 * no branch sampling for tracepoint events 10854 */ 10855 if (has_branch_stack(event)) 10856 return -EOPNOTSUPP; 10857 10858 err = perf_trace_init(event); 10859 if (err) 10860 return err; 10861 10862 event->destroy = tp_perf_event_destroy; 10863 10864 return 0; 10865 } 10866 10867 static struct pmu perf_tracepoint = { 10868 .task_ctx_nr = perf_sw_context, 10869 10870 .event_init = perf_tp_event_init, 10871 .add = perf_trace_add, 10872 .del = perf_trace_del, 10873 .start = perf_swevent_start, 10874 .stop = perf_swevent_stop, 10875 .read = perf_swevent_read, 10876 }; 10877 10878 static int perf_tp_filter_match(struct perf_event *event, 10879 struct perf_raw_record *raw) 10880 { 10881 void *record = raw->frag.data; 10882 10883 /* only top level events have filters set */ 10884 if (event->parent) 10885 event = event->parent; 10886 10887 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10888 return 1; 10889 return 0; 10890 } 10891 10892 static int perf_tp_event_match(struct perf_event *event, 10893 struct perf_raw_record *raw, 10894 struct pt_regs *regs) 10895 { 10896 if (event->hw.state & PERF_HES_STOPPED) 10897 return 0; 10898 /* 10899 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10900 */ 10901 if (event->attr.exclude_kernel && !user_mode(regs)) 10902 return 0; 10903 10904 if (!perf_tp_filter_match(event, raw)) 10905 return 0; 10906 10907 return 1; 10908 } 10909 10910 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10911 struct trace_event_call *call, u64 count, 10912 struct pt_regs *regs, struct hlist_head *head, 10913 struct task_struct *task) 10914 { 10915 if (bpf_prog_array_valid(call)) { 10916 *(struct pt_regs **)raw_data = regs; 10917 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10918 perf_swevent_put_recursion_context(rctx); 10919 return; 10920 } 10921 } 10922 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10923 rctx, task); 10924 } 10925 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10926 10927 static void __perf_tp_event_target_task(u64 count, void *record, 10928 struct pt_regs *regs, 10929 struct perf_sample_data *data, 10930 struct perf_raw_record *raw, 10931 struct perf_event *event) 10932 { 10933 struct trace_entry *entry = record; 10934 10935 if (event->attr.config != entry->type) 10936 return; 10937 /* Cannot deliver synchronous signal to other task. */ 10938 if (event->attr.sigtrap) 10939 return; 10940 if (perf_tp_event_match(event, raw, regs)) { 10941 perf_sample_data_init(data, 0, 0); 10942 perf_sample_save_raw_data(data, event, raw); 10943 perf_swevent_event(event, count, data, regs); 10944 } 10945 } 10946 10947 static void perf_tp_event_target_task(u64 count, void *record, 10948 struct pt_regs *regs, 10949 struct perf_sample_data *data, 10950 struct perf_raw_record *raw, 10951 struct perf_event_context *ctx) 10952 { 10953 unsigned int cpu = smp_processor_id(); 10954 struct pmu *pmu = &perf_tracepoint; 10955 struct perf_event *event, *sibling; 10956 10957 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10958 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10959 for_each_sibling_event(sibling, event) 10960 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10961 } 10962 10963 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10964 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10965 for_each_sibling_event(sibling, event) 10966 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10967 } 10968 } 10969 10970 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10971 struct pt_regs *regs, struct hlist_head *head, int rctx, 10972 struct task_struct *task) 10973 { 10974 struct perf_sample_data data; 10975 struct perf_event *event; 10976 10977 struct perf_raw_record raw = { 10978 .frag = { 10979 .size = entry_size, 10980 .data = record, 10981 }, 10982 }; 10983 10984 perf_trace_buf_update(record, event_type); 10985 10986 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10987 if (perf_tp_event_match(event, &raw, regs)) { 10988 /* 10989 * Here use the same on-stack perf_sample_data, 10990 * some members in data are event-specific and 10991 * need to be re-computed for different sweveents. 10992 * Re-initialize data->sample_flags safely to avoid 10993 * the problem that next event skips preparing data 10994 * because data->sample_flags is set. 10995 */ 10996 perf_sample_data_init(&data, 0, 0); 10997 perf_sample_save_raw_data(&data, event, &raw); 10998 perf_swevent_event(event, count, &data, regs); 10999 } 11000 } 11001 11002 /* 11003 * If we got specified a target task, also iterate its context and 11004 * deliver this event there too. 11005 */ 11006 if (task && task != current) { 11007 struct perf_event_context *ctx; 11008 11009 rcu_read_lock(); 11010 ctx = rcu_dereference(task->perf_event_ctxp); 11011 if (!ctx) 11012 goto unlock; 11013 11014 raw_spin_lock(&ctx->lock); 11015 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 11016 raw_spin_unlock(&ctx->lock); 11017 unlock: 11018 rcu_read_unlock(); 11019 } 11020 11021 perf_swevent_put_recursion_context(rctx); 11022 } 11023 EXPORT_SYMBOL_GPL(perf_tp_event); 11024 11025 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 11026 /* 11027 * Flags in config, used by dynamic PMU kprobe and uprobe 11028 * The flags should match following PMU_FORMAT_ATTR(). 11029 * 11030 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 11031 * if not set, create kprobe/uprobe 11032 * 11033 * The following values specify a reference counter (or semaphore in the 11034 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 11035 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 11036 * 11037 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 11038 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 11039 */ 11040 enum perf_probe_config { 11041 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 11042 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 11043 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 11044 }; 11045 11046 PMU_FORMAT_ATTR(retprobe, "config:0"); 11047 #endif 11048 11049 #ifdef CONFIG_KPROBE_EVENTS 11050 static struct attribute *kprobe_attrs[] = { 11051 &format_attr_retprobe.attr, 11052 NULL, 11053 }; 11054 11055 static struct attribute_group kprobe_format_group = { 11056 .name = "format", 11057 .attrs = kprobe_attrs, 11058 }; 11059 11060 static const struct attribute_group *kprobe_attr_groups[] = { 11061 &kprobe_format_group, 11062 NULL, 11063 }; 11064 11065 static int perf_kprobe_event_init(struct perf_event *event); 11066 static struct pmu perf_kprobe = { 11067 .task_ctx_nr = perf_sw_context, 11068 .event_init = perf_kprobe_event_init, 11069 .add = perf_trace_add, 11070 .del = perf_trace_del, 11071 .start = perf_swevent_start, 11072 .stop = perf_swevent_stop, 11073 .read = perf_swevent_read, 11074 .attr_groups = kprobe_attr_groups, 11075 }; 11076 11077 static int perf_kprobe_event_init(struct perf_event *event) 11078 { 11079 int err; 11080 bool is_retprobe; 11081 11082 if (event->attr.type != perf_kprobe.type) 11083 return -ENOENT; 11084 11085 if (!perfmon_capable()) 11086 return -EACCES; 11087 11088 /* 11089 * no branch sampling for probe events 11090 */ 11091 if (has_branch_stack(event)) 11092 return -EOPNOTSUPP; 11093 11094 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11095 err = perf_kprobe_init(event, is_retprobe); 11096 if (err) 11097 return err; 11098 11099 event->destroy = perf_kprobe_destroy; 11100 11101 return 0; 11102 } 11103 #endif /* CONFIG_KPROBE_EVENTS */ 11104 11105 #ifdef CONFIG_UPROBE_EVENTS 11106 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 11107 11108 static struct attribute *uprobe_attrs[] = { 11109 &format_attr_retprobe.attr, 11110 &format_attr_ref_ctr_offset.attr, 11111 NULL, 11112 }; 11113 11114 static struct attribute_group uprobe_format_group = { 11115 .name = "format", 11116 .attrs = uprobe_attrs, 11117 }; 11118 11119 static const struct attribute_group *uprobe_attr_groups[] = { 11120 &uprobe_format_group, 11121 NULL, 11122 }; 11123 11124 static int perf_uprobe_event_init(struct perf_event *event); 11125 static struct pmu perf_uprobe = { 11126 .task_ctx_nr = perf_sw_context, 11127 .event_init = perf_uprobe_event_init, 11128 .add = perf_trace_add, 11129 .del = perf_trace_del, 11130 .start = perf_swevent_start, 11131 .stop = perf_swevent_stop, 11132 .read = perf_swevent_read, 11133 .attr_groups = uprobe_attr_groups, 11134 }; 11135 11136 static int perf_uprobe_event_init(struct perf_event *event) 11137 { 11138 int err; 11139 unsigned long ref_ctr_offset; 11140 bool is_retprobe; 11141 11142 if (event->attr.type != perf_uprobe.type) 11143 return -ENOENT; 11144 11145 if (!capable(CAP_SYS_ADMIN)) 11146 return -EACCES; 11147 11148 /* 11149 * no branch sampling for probe events 11150 */ 11151 if (has_branch_stack(event)) 11152 return -EOPNOTSUPP; 11153 11154 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11155 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11156 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11157 if (err) 11158 return err; 11159 11160 event->destroy = perf_uprobe_destroy; 11161 11162 return 0; 11163 } 11164 #endif /* CONFIG_UPROBE_EVENTS */ 11165 11166 static inline void perf_tp_register(void) 11167 { 11168 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11169 #ifdef CONFIG_KPROBE_EVENTS 11170 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11171 #endif 11172 #ifdef CONFIG_UPROBE_EVENTS 11173 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11174 #endif 11175 } 11176 11177 static void perf_event_free_filter(struct perf_event *event) 11178 { 11179 ftrace_profile_free_filter(event); 11180 } 11181 11182 /* 11183 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11184 * with perf_event_open() 11185 */ 11186 static inline bool perf_event_is_tracing(struct perf_event *event) 11187 { 11188 if (event->pmu == &perf_tracepoint) 11189 return true; 11190 #ifdef CONFIG_KPROBE_EVENTS 11191 if (event->pmu == &perf_kprobe) 11192 return true; 11193 #endif 11194 #ifdef CONFIG_UPROBE_EVENTS 11195 if (event->pmu == &perf_uprobe) 11196 return true; 11197 #endif 11198 return false; 11199 } 11200 11201 static int __perf_event_set_bpf_prog(struct perf_event *event, 11202 struct bpf_prog *prog, 11203 u64 bpf_cookie) 11204 { 11205 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11206 11207 if (event->state <= PERF_EVENT_STATE_REVOKED) 11208 return -ENODEV; 11209 11210 if (!perf_event_is_tracing(event)) 11211 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11212 11213 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11214 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11215 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11216 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11217 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11218 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11219 return -EINVAL; 11220 11221 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11222 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11223 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11224 return -EINVAL; 11225 11226 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11227 /* only uprobe programs are allowed to be sleepable */ 11228 return -EINVAL; 11229 11230 /* Kprobe override only works for kprobes, not uprobes. */ 11231 if (prog->kprobe_override && !is_kprobe) 11232 return -EINVAL; 11233 11234 if (is_tracepoint || is_syscall_tp) { 11235 int off = trace_event_get_offsets(event->tp_event); 11236 11237 if (prog->aux->max_ctx_offset > off) 11238 return -EACCES; 11239 } 11240 11241 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11242 } 11243 11244 int perf_event_set_bpf_prog(struct perf_event *event, 11245 struct bpf_prog *prog, 11246 u64 bpf_cookie) 11247 { 11248 struct perf_event_context *ctx; 11249 int ret; 11250 11251 ctx = perf_event_ctx_lock(event); 11252 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); 11253 perf_event_ctx_unlock(event, ctx); 11254 11255 return ret; 11256 } 11257 11258 void perf_event_free_bpf_prog(struct perf_event *event) 11259 { 11260 if (!event->prog) 11261 return; 11262 11263 if (!perf_event_is_tracing(event)) { 11264 perf_event_free_bpf_handler(event); 11265 return; 11266 } 11267 perf_event_detach_bpf_prog(event); 11268 } 11269 11270 #else 11271 11272 static inline void perf_tp_register(void) 11273 { 11274 } 11275 11276 static void perf_event_free_filter(struct perf_event *event) 11277 { 11278 } 11279 11280 static int __perf_event_set_bpf_prog(struct perf_event *event, 11281 struct bpf_prog *prog, 11282 u64 bpf_cookie) 11283 { 11284 return -ENOENT; 11285 } 11286 11287 int perf_event_set_bpf_prog(struct perf_event *event, 11288 struct bpf_prog *prog, 11289 u64 bpf_cookie) 11290 { 11291 return -ENOENT; 11292 } 11293 11294 void perf_event_free_bpf_prog(struct perf_event *event) 11295 { 11296 } 11297 #endif /* CONFIG_EVENT_TRACING */ 11298 11299 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11300 void perf_bp_event(struct perf_event *bp, void *data) 11301 { 11302 struct perf_sample_data sample; 11303 struct pt_regs *regs = data; 11304 11305 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11306 11307 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11308 perf_swevent_event(bp, 1, &sample, regs); 11309 } 11310 #endif 11311 11312 /* 11313 * Allocate a new address filter 11314 */ 11315 static struct perf_addr_filter * 11316 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11317 { 11318 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11319 struct perf_addr_filter *filter; 11320 11321 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11322 if (!filter) 11323 return NULL; 11324 11325 INIT_LIST_HEAD(&filter->entry); 11326 list_add_tail(&filter->entry, filters); 11327 11328 return filter; 11329 } 11330 11331 static void free_filters_list(struct list_head *filters) 11332 { 11333 struct perf_addr_filter *filter, *iter; 11334 11335 list_for_each_entry_safe(filter, iter, filters, entry) { 11336 path_put(&filter->path); 11337 list_del(&filter->entry); 11338 kfree(filter); 11339 } 11340 } 11341 11342 /* 11343 * Free existing address filters and optionally install new ones 11344 */ 11345 static void perf_addr_filters_splice(struct perf_event *event, 11346 struct list_head *head) 11347 { 11348 unsigned long flags; 11349 LIST_HEAD(list); 11350 11351 if (!has_addr_filter(event)) 11352 return; 11353 11354 /* don't bother with children, they don't have their own filters */ 11355 if (event->parent) 11356 return; 11357 11358 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11359 11360 list_splice_init(&event->addr_filters.list, &list); 11361 if (head) 11362 list_splice(head, &event->addr_filters.list); 11363 11364 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11365 11366 free_filters_list(&list); 11367 } 11368 11369 static void perf_free_addr_filters(struct perf_event *event) 11370 { 11371 /* 11372 * Used during free paths, there is no concurrency. 11373 */ 11374 if (list_empty(&event->addr_filters.list)) 11375 return; 11376 11377 perf_addr_filters_splice(event, NULL); 11378 } 11379 11380 /* 11381 * Scan through mm's vmas and see if one of them matches the 11382 * @filter; if so, adjust filter's address range. 11383 * Called with mm::mmap_lock down for reading. 11384 */ 11385 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11386 struct mm_struct *mm, 11387 struct perf_addr_filter_range *fr) 11388 { 11389 struct vm_area_struct *vma; 11390 VMA_ITERATOR(vmi, mm, 0); 11391 11392 for_each_vma(vmi, vma) { 11393 if (!vma->vm_file) 11394 continue; 11395 11396 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11397 return; 11398 } 11399 } 11400 11401 /* 11402 * Update event's address range filters based on the 11403 * task's existing mappings, if any. 11404 */ 11405 static void perf_event_addr_filters_apply(struct perf_event *event) 11406 { 11407 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11408 struct task_struct *task = READ_ONCE(event->ctx->task); 11409 struct perf_addr_filter *filter; 11410 struct mm_struct *mm = NULL; 11411 unsigned int count = 0; 11412 unsigned long flags; 11413 11414 /* 11415 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11416 * will stop on the parent's child_mutex that our caller is also holding 11417 */ 11418 if (task == TASK_TOMBSTONE) 11419 return; 11420 11421 if (ifh->nr_file_filters) { 11422 mm = get_task_mm(task); 11423 if (!mm) 11424 goto restart; 11425 11426 mmap_read_lock(mm); 11427 } 11428 11429 raw_spin_lock_irqsave(&ifh->lock, flags); 11430 list_for_each_entry(filter, &ifh->list, entry) { 11431 if (filter->path.dentry) { 11432 /* 11433 * Adjust base offset if the filter is associated to a 11434 * binary that needs to be mapped: 11435 */ 11436 event->addr_filter_ranges[count].start = 0; 11437 event->addr_filter_ranges[count].size = 0; 11438 11439 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11440 } else { 11441 event->addr_filter_ranges[count].start = filter->offset; 11442 event->addr_filter_ranges[count].size = filter->size; 11443 } 11444 11445 count++; 11446 } 11447 11448 event->addr_filters_gen++; 11449 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11450 11451 if (ifh->nr_file_filters) { 11452 mmap_read_unlock(mm); 11453 11454 mmput(mm); 11455 } 11456 11457 restart: 11458 perf_event_stop(event, 1); 11459 } 11460 11461 /* 11462 * Address range filtering: limiting the data to certain 11463 * instruction address ranges. Filters are ioctl()ed to us from 11464 * userspace as ascii strings. 11465 * 11466 * Filter string format: 11467 * 11468 * ACTION RANGE_SPEC 11469 * where ACTION is one of the 11470 * * "filter": limit the trace to this region 11471 * * "start": start tracing from this address 11472 * * "stop": stop tracing at this address/region; 11473 * RANGE_SPEC is 11474 * * for kernel addresses: <start address>[/<size>] 11475 * * for object files: <start address>[/<size>]@</path/to/object/file> 11476 * 11477 * if <size> is not specified or is zero, the range is treated as a single 11478 * address; not valid for ACTION=="filter". 11479 */ 11480 enum { 11481 IF_ACT_NONE = -1, 11482 IF_ACT_FILTER, 11483 IF_ACT_START, 11484 IF_ACT_STOP, 11485 IF_SRC_FILE, 11486 IF_SRC_KERNEL, 11487 IF_SRC_FILEADDR, 11488 IF_SRC_KERNELADDR, 11489 }; 11490 11491 enum { 11492 IF_STATE_ACTION = 0, 11493 IF_STATE_SOURCE, 11494 IF_STATE_END, 11495 }; 11496 11497 static const match_table_t if_tokens = { 11498 { IF_ACT_FILTER, "filter" }, 11499 { IF_ACT_START, "start" }, 11500 { IF_ACT_STOP, "stop" }, 11501 { IF_SRC_FILE, "%u/%u@%s" }, 11502 { IF_SRC_KERNEL, "%u/%u" }, 11503 { IF_SRC_FILEADDR, "%u@%s" }, 11504 { IF_SRC_KERNELADDR, "%u" }, 11505 { IF_ACT_NONE, NULL }, 11506 }; 11507 11508 /* 11509 * Address filter string parser 11510 */ 11511 static int 11512 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11513 struct list_head *filters) 11514 { 11515 struct perf_addr_filter *filter = NULL; 11516 char *start, *orig, *filename = NULL; 11517 substring_t args[MAX_OPT_ARGS]; 11518 int state = IF_STATE_ACTION, token; 11519 unsigned int kernel = 0; 11520 int ret = -EINVAL; 11521 11522 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11523 if (!fstr) 11524 return -ENOMEM; 11525 11526 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11527 static const enum perf_addr_filter_action_t actions[] = { 11528 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11529 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11530 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11531 }; 11532 ret = -EINVAL; 11533 11534 if (!*start) 11535 continue; 11536 11537 /* filter definition begins */ 11538 if (state == IF_STATE_ACTION) { 11539 filter = perf_addr_filter_new(event, filters); 11540 if (!filter) 11541 goto fail; 11542 } 11543 11544 token = match_token(start, if_tokens, args); 11545 switch (token) { 11546 case IF_ACT_FILTER: 11547 case IF_ACT_START: 11548 case IF_ACT_STOP: 11549 if (state != IF_STATE_ACTION) 11550 goto fail; 11551 11552 filter->action = actions[token]; 11553 state = IF_STATE_SOURCE; 11554 break; 11555 11556 case IF_SRC_KERNELADDR: 11557 case IF_SRC_KERNEL: 11558 kernel = 1; 11559 fallthrough; 11560 11561 case IF_SRC_FILEADDR: 11562 case IF_SRC_FILE: 11563 if (state != IF_STATE_SOURCE) 11564 goto fail; 11565 11566 *args[0].to = 0; 11567 ret = kstrtoul(args[0].from, 0, &filter->offset); 11568 if (ret) 11569 goto fail; 11570 11571 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11572 *args[1].to = 0; 11573 ret = kstrtoul(args[1].from, 0, &filter->size); 11574 if (ret) 11575 goto fail; 11576 } 11577 11578 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11579 int fpos = token == IF_SRC_FILE ? 2 : 1; 11580 11581 kfree(filename); 11582 filename = match_strdup(&args[fpos]); 11583 if (!filename) { 11584 ret = -ENOMEM; 11585 goto fail; 11586 } 11587 } 11588 11589 state = IF_STATE_END; 11590 break; 11591 11592 default: 11593 goto fail; 11594 } 11595 11596 /* 11597 * Filter definition is fully parsed, validate and install it. 11598 * Make sure that it doesn't contradict itself or the event's 11599 * attribute. 11600 */ 11601 if (state == IF_STATE_END) { 11602 ret = -EINVAL; 11603 11604 /* 11605 * ACTION "filter" must have a non-zero length region 11606 * specified. 11607 */ 11608 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11609 !filter->size) 11610 goto fail; 11611 11612 if (!kernel) { 11613 if (!filename) 11614 goto fail; 11615 11616 /* 11617 * For now, we only support file-based filters 11618 * in per-task events; doing so for CPU-wide 11619 * events requires additional context switching 11620 * trickery, since same object code will be 11621 * mapped at different virtual addresses in 11622 * different processes. 11623 */ 11624 ret = -EOPNOTSUPP; 11625 if (!event->ctx->task) 11626 goto fail; 11627 11628 /* look up the path and grab its inode */ 11629 ret = kern_path(filename, LOOKUP_FOLLOW, 11630 &filter->path); 11631 if (ret) 11632 goto fail; 11633 11634 ret = -EINVAL; 11635 if (!filter->path.dentry || 11636 !S_ISREG(d_inode(filter->path.dentry) 11637 ->i_mode)) 11638 goto fail; 11639 11640 event->addr_filters.nr_file_filters++; 11641 } 11642 11643 /* ready to consume more filters */ 11644 kfree(filename); 11645 filename = NULL; 11646 state = IF_STATE_ACTION; 11647 filter = NULL; 11648 kernel = 0; 11649 } 11650 } 11651 11652 if (state != IF_STATE_ACTION) 11653 goto fail; 11654 11655 kfree(filename); 11656 kfree(orig); 11657 11658 return 0; 11659 11660 fail: 11661 kfree(filename); 11662 free_filters_list(filters); 11663 kfree(orig); 11664 11665 return ret; 11666 } 11667 11668 static int 11669 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11670 { 11671 LIST_HEAD(filters); 11672 int ret; 11673 11674 /* 11675 * Since this is called in perf_ioctl() path, we're already holding 11676 * ctx::mutex. 11677 */ 11678 lockdep_assert_held(&event->ctx->mutex); 11679 11680 if (WARN_ON_ONCE(event->parent)) 11681 return -EINVAL; 11682 11683 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11684 if (ret) 11685 goto fail_clear_files; 11686 11687 ret = event->pmu->addr_filters_validate(&filters); 11688 if (ret) 11689 goto fail_free_filters; 11690 11691 /* remove existing filters, if any */ 11692 perf_addr_filters_splice(event, &filters); 11693 11694 /* install new filters */ 11695 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11696 11697 return ret; 11698 11699 fail_free_filters: 11700 free_filters_list(&filters); 11701 11702 fail_clear_files: 11703 event->addr_filters.nr_file_filters = 0; 11704 11705 return ret; 11706 } 11707 11708 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11709 { 11710 int ret = -EINVAL; 11711 char *filter_str; 11712 11713 filter_str = strndup_user(arg, PAGE_SIZE); 11714 if (IS_ERR(filter_str)) 11715 return PTR_ERR(filter_str); 11716 11717 #ifdef CONFIG_EVENT_TRACING 11718 if (perf_event_is_tracing(event)) { 11719 struct perf_event_context *ctx = event->ctx; 11720 11721 /* 11722 * Beware, here be dragons!! 11723 * 11724 * the tracepoint muck will deadlock against ctx->mutex, but 11725 * the tracepoint stuff does not actually need it. So 11726 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11727 * already have a reference on ctx. 11728 * 11729 * This can result in event getting moved to a different ctx, 11730 * but that does not affect the tracepoint state. 11731 */ 11732 mutex_unlock(&ctx->mutex); 11733 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11734 mutex_lock(&ctx->mutex); 11735 } else 11736 #endif 11737 if (has_addr_filter(event)) 11738 ret = perf_event_set_addr_filter(event, filter_str); 11739 11740 kfree(filter_str); 11741 return ret; 11742 } 11743 11744 /* 11745 * hrtimer based swevent callback 11746 */ 11747 11748 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11749 { 11750 enum hrtimer_restart ret = HRTIMER_RESTART; 11751 struct perf_sample_data data; 11752 struct pt_regs *regs; 11753 struct perf_event *event; 11754 u64 period; 11755 11756 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11757 11758 if (event->state != PERF_EVENT_STATE_ACTIVE) 11759 return HRTIMER_NORESTART; 11760 11761 event->pmu->read(event); 11762 11763 perf_sample_data_init(&data, 0, event->hw.last_period); 11764 regs = get_irq_regs(); 11765 11766 if (regs && !perf_exclude_event(event, regs)) { 11767 if (!(event->attr.exclude_idle && is_idle_task(current))) 11768 if (__perf_event_overflow(event, 1, &data, regs)) 11769 ret = HRTIMER_NORESTART; 11770 } 11771 11772 period = max_t(u64, 10000, event->hw.sample_period); 11773 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11774 11775 return ret; 11776 } 11777 11778 static void perf_swevent_start_hrtimer(struct perf_event *event) 11779 { 11780 struct hw_perf_event *hwc = &event->hw; 11781 s64 period; 11782 11783 if (!is_sampling_event(event)) 11784 return; 11785 11786 period = local64_read(&hwc->period_left); 11787 if (period) { 11788 if (period < 0) 11789 period = 10000; 11790 11791 local64_set(&hwc->period_left, 0); 11792 } else { 11793 period = max_t(u64, 10000, hwc->sample_period); 11794 } 11795 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11796 HRTIMER_MODE_REL_PINNED_HARD); 11797 } 11798 11799 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11800 { 11801 struct hw_perf_event *hwc = &event->hw; 11802 11803 /* 11804 * The throttle can be triggered in the hrtimer handler. 11805 * The HRTIMER_NORESTART should be used to stop the timer, 11806 * rather than hrtimer_cancel(). See perf_swevent_hrtimer() 11807 */ 11808 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { 11809 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11810 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11811 11812 hrtimer_cancel(&hwc->hrtimer); 11813 } 11814 } 11815 11816 static void perf_swevent_init_hrtimer(struct perf_event *event) 11817 { 11818 struct hw_perf_event *hwc = &event->hw; 11819 11820 if (!is_sampling_event(event)) 11821 return; 11822 11823 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11824 11825 /* 11826 * Since hrtimers have a fixed rate, we can do a static freq->period 11827 * mapping and avoid the whole period adjust feedback stuff. 11828 */ 11829 if (event->attr.freq) { 11830 long freq = event->attr.sample_freq; 11831 11832 event->attr.sample_period = NSEC_PER_SEC / freq; 11833 hwc->sample_period = event->attr.sample_period; 11834 local64_set(&hwc->period_left, hwc->sample_period); 11835 hwc->last_period = hwc->sample_period; 11836 event->attr.freq = 0; 11837 } 11838 } 11839 11840 /* 11841 * Software event: cpu wall time clock 11842 */ 11843 11844 static void cpu_clock_event_update(struct perf_event *event) 11845 { 11846 s64 prev; 11847 u64 now; 11848 11849 now = local_clock(); 11850 prev = local64_xchg(&event->hw.prev_count, now); 11851 local64_add(now - prev, &event->count); 11852 } 11853 11854 static void cpu_clock_event_start(struct perf_event *event, int flags) 11855 { 11856 local64_set(&event->hw.prev_count, local_clock()); 11857 perf_swevent_start_hrtimer(event); 11858 } 11859 11860 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11861 { 11862 perf_swevent_cancel_hrtimer(event); 11863 if (flags & PERF_EF_UPDATE) 11864 cpu_clock_event_update(event); 11865 } 11866 11867 static int cpu_clock_event_add(struct perf_event *event, int flags) 11868 { 11869 if (flags & PERF_EF_START) 11870 cpu_clock_event_start(event, flags); 11871 perf_event_update_userpage(event); 11872 11873 return 0; 11874 } 11875 11876 static void cpu_clock_event_del(struct perf_event *event, int flags) 11877 { 11878 cpu_clock_event_stop(event, flags); 11879 } 11880 11881 static void cpu_clock_event_read(struct perf_event *event) 11882 { 11883 cpu_clock_event_update(event); 11884 } 11885 11886 static int cpu_clock_event_init(struct perf_event *event) 11887 { 11888 if (event->attr.type != perf_cpu_clock.type) 11889 return -ENOENT; 11890 11891 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11892 return -ENOENT; 11893 11894 /* 11895 * no branch sampling for software events 11896 */ 11897 if (has_branch_stack(event)) 11898 return -EOPNOTSUPP; 11899 11900 perf_swevent_init_hrtimer(event); 11901 11902 return 0; 11903 } 11904 11905 static struct pmu perf_cpu_clock = { 11906 .task_ctx_nr = perf_sw_context, 11907 11908 .capabilities = PERF_PMU_CAP_NO_NMI, 11909 .dev = PMU_NULL_DEV, 11910 11911 .event_init = cpu_clock_event_init, 11912 .add = cpu_clock_event_add, 11913 .del = cpu_clock_event_del, 11914 .start = cpu_clock_event_start, 11915 .stop = cpu_clock_event_stop, 11916 .read = cpu_clock_event_read, 11917 }; 11918 11919 /* 11920 * Software event: task time clock 11921 */ 11922 11923 static void task_clock_event_update(struct perf_event *event, u64 now) 11924 { 11925 u64 prev; 11926 s64 delta; 11927 11928 prev = local64_xchg(&event->hw.prev_count, now); 11929 delta = now - prev; 11930 local64_add(delta, &event->count); 11931 } 11932 11933 static void task_clock_event_start(struct perf_event *event, int flags) 11934 { 11935 local64_set(&event->hw.prev_count, event->ctx->time); 11936 perf_swevent_start_hrtimer(event); 11937 } 11938 11939 static void task_clock_event_stop(struct perf_event *event, int flags) 11940 { 11941 perf_swevent_cancel_hrtimer(event); 11942 if (flags & PERF_EF_UPDATE) 11943 task_clock_event_update(event, event->ctx->time); 11944 } 11945 11946 static int task_clock_event_add(struct perf_event *event, int flags) 11947 { 11948 if (flags & PERF_EF_START) 11949 task_clock_event_start(event, flags); 11950 perf_event_update_userpage(event); 11951 11952 return 0; 11953 } 11954 11955 static void task_clock_event_del(struct perf_event *event, int flags) 11956 { 11957 task_clock_event_stop(event, PERF_EF_UPDATE); 11958 } 11959 11960 static void task_clock_event_read(struct perf_event *event) 11961 { 11962 u64 now = perf_clock(); 11963 u64 delta = now - event->ctx->timestamp; 11964 u64 time = event->ctx->time + delta; 11965 11966 task_clock_event_update(event, time); 11967 } 11968 11969 static int task_clock_event_init(struct perf_event *event) 11970 { 11971 if (event->attr.type != perf_task_clock.type) 11972 return -ENOENT; 11973 11974 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11975 return -ENOENT; 11976 11977 /* 11978 * no branch sampling for software events 11979 */ 11980 if (has_branch_stack(event)) 11981 return -EOPNOTSUPP; 11982 11983 perf_swevent_init_hrtimer(event); 11984 11985 return 0; 11986 } 11987 11988 static struct pmu perf_task_clock = { 11989 .task_ctx_nr = perf_sw_context, 11990 11991 .capabilities = PERF_PMU_CAP_NO_NMI, 11992 .dev = PMU_NULL_DEV, 11993 11994 .event_init = task_clock_event_init, 11995 .add = task_clock_event_add, 11996 .del = task_clock_event_del, 11997 .start = task_clock_event_start, 11998 .stop = task_clock_event_stop, 11999 .read = task_clock_event_read, 12000 }; 12001 12002 static void perf_pmu_nop_void(struct pmu *pmu) 12003 { 12004 } 12005 12006 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 12007 { 12008 } 12009 12010 static int perf_pmu_nop_int(struct pmu *pmu) 12011 { 12012 return 0; 12013 } 12014 12015 static int perf_event_nop_int(struct perf_event *event, u64 value) 12016 { 12017 return 0; 12018 } 12019 12020 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 12021 12022 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 12023 { 12024 __this_cpu_write(nop_txn_flags, flags); 12025 12026 if (flags & ~PERF_PMU_TXN_ADD) 12027 return; 12028 12029 perf_pmu_disable(pmu); 12030 } 12031 12032 static int perf_pmu_commit_txn(struct pmu *pmu) 12033 { 12034 unsigned int flags = __this_cpu_read(nop_txn_flags); 12035 12036 __this_cpu_write(nop_txn_flags, 0); 12037 12038 if (flags & ~PERF_PMU_TXN_ADD) 12039 return 0; 12040 12041 perf_pmu_enable(pmu); 12042 return 0; 12043 } 12044 12045 static void perf_pmu_cancel_txn(struct pmu *pmu) 12046 { 12047 unsigned int flags = __this_cpu_read(nop_txn_flags); 12048 12049 __this_cpu_write(nop_txn_flags, 0); 12050 12051 if (flags & ~PERF_PMU_TXN_ADD) 12052 return; 12053 12054 perf_pmu_enable(pmu); 12055 } 12056 12057 static int perf_event_idx_default(struct perf_event *event) 12058 { 12059 return 0; 12060 } 12061 12062 /* 12063 * Let userspace know that this PMU supports address range filtering: 12064 */ 12065 static ssize_t nr_addr_filters_show(struct device *dev, 12066 struct device_attribute *attr, 12067 char *page) 12068 { 12069 struct pmu *pmu = dev_get_drvdata(dev); 12070 12071 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 12072 } 12073 DEVICE_ATTR_RO(nr_addr_filters); 12074 12075 static struct idr pmu_idr; 12076 12077 static ssize_t 12078 type_show(struct device *dev, struct device_attribute *attr, char *page) 12079 { 12080 struct pmu *pmu = dev_get_drvdata(dev); 12081 12082 return sysfs_emit(page, "%d\n", pmu->type); 12083 } 12084 static DEVICE_ATTR_RO(type); 12085 12086 static ssize_t 12087 perf_event_mux_interval_ms_show(struct device *dev, 12088 struct device_attribute *attr, 12089 char *page) 12090 { 12091 struct pmu *pmu = dev_get_drvdata(dev); 12092 12093 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 12094 } 12095 12096 static DEFINE_MUTEX(mux_interval_mutex); 12097 12098 static ssize_t 12099 perf_event_mux_interval_ms_store(struct device *dev, 12100 struct device_attribute *attr, 12101 const char *buf, size_t count) 12102 { 12103 struct pmu *pmu = dev_get_drvdata(dev); 12104 int timer, cpu, ret; 12105 12106 ret = kstrtoint(buf, 0, &timer); 12107 if (ret) 12108 return ret; 12109 12110 if (timer < 1) 12111 return -EINVAL; 12112 12113 /* same value, noting to do */ 12114 if (timer == pmu->hrtimer_interval_ms) 12115 return count; 12116 12117 mutex_lock(&mux_interval_mutex); 12118 pmu->hrtimer_interval_ms = timer; 12119 12120 /* update all cpuctx for this PMU */ 12121 cpus_read_lock(); 12122 for_each_online_cpu(cpu) { 12123 struct perf_cpu_pmu_context *cpc; 12124 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12125 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 12126 12127 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 12128 } 12129 cpus_read_unlock(); 12130 mutex_unlock(&mux_interval_mutex); 12131 12132 return count; 12133 } 12134 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 12135 12136 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 12137 { 12138 switch (scope) { 12139 case PERF_PMU_SCOPE_CORE: 12140 return topology_sibling_cpumask(cpu); 12141 case PERF_PMU_SCOPE_DIE: 12142 return topology_die_cpumask(cpu); 12143 case PERF_PMU_SCOPE_CLUSTER: 12144 return topology_cluster_cpumask(cpu); 12145 case PERF_PMU_SCOPE_PKG: 12146 return topology_core_cpumask(cpu); 12147 case PERF_PMU_SCOPE_SYS_WIDE: 12148 return cpu_online_mask; 12149 } 12150 12151 return NULL; 12152 } 12153 12154 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12155 { 12156 switch (scope) { 12157 case PERF_PMU_SCOPE_CORE: 12158 return perf_online_core_mask; 12159 case PERF_PMU_SCOPE_DIE: 12160 return perf_online_die_mask; 12161 case PERF_PMU_SCOPE_CLUSTER: 12162 return perf_online_cluster_mask; 12163 case PERF_PMU_SCOPE_PKG: 12164 return perf_online_pkg_mask; 12165 case PERF_PMU_SCOPE_SYS_WIDE: 12166 return perf_online_sys_mask; 12167 } 12168 12169 return NULL; 12170 } 12171 12172 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12173 char *buf) 12174 { 12175 struct pmu *pmu = dev_get_drvdata(dev); 12176 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12177 12178 if (mask) 12179 return cpumap_print_to_pagebuf(true, buf, mask); 12180 return 0; 12181 } 12182 12183 static DEVICE_ATTR_RO(cpumask); 12184 12185 static struct attribute *pmu_dev_attrs[] = { 12186 &dev_attr_type.attr, 12187 &dev_attr_perf_event_mux_interval_ms.attr, 12188 &dev_attr_nr_addr_filters.attr, 12189 &dev_attr_cpumask.attr, 12190 NULL, 12191 }; 12192 12193 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12194 { 12195 struct device *dev = kobj_to_dev(kobj); 12196 struct pmu *pmu = dev_get_drvdata(dev); 12197 12198 if (n == 2 && !pmu->nr_addr_filters) 12199 return 0; 12200 12201 /* cpumask */ 12202 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12203 return 0; 12204 12205 return a->mode; 12206 } 12207 12208 static struct attribute_group pmu_dev_attr_group = { 12209 .is_visible = pmu_dev_is_visible, 12210 .attrs = pmu_dev_attrs, 12211 }; 12212 12213 static const struct attribute_group *pmu_dev_groups[] = { 12214 &pmu_dev_attr_group, 12215 NULL, 12216 }; 12217 12218 static int pmu_bus_running; 12219 static struct bus_type pmu_bus = { 12220 .name = "event_source", 12221 .dev_groups = pmu_dev_groups, 12222 }; 12223 12224 static void pmu_dev_release(struct device *dev) 12225 { 12226 kfree(dev); 12227 } 12228 12229 static int pmu_dev_alloc(struct pmu *pmu) 12230 { 12231 int ret = -ENOMEM; 12232 12233 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12234 if (!pmu->dev) 12235 goto out; 12236 12237 pmu->dev->groups = pmu->attr_groups; 12238 device_initialize(pmu->dev); 12239 12240 dev_set_drvdata(pmu->dev, pmu); 12241 pmu->dev->bus = &pmu_bus; 12242 pmu->dev->parent = pmu->parent; 12243 pmu->dev->release = pmu_dev_release; 12244 12245 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12246 if (ret) 12247 goto free_dev; 12248 12249 ret = device_add(pmu->dev); 12250 if (ret) 12251 goto free_dev; 12252 12253 if (pmu->attr_update) { 12254 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12255 if (ret) 12256 goto del_dev; 12257 } 12258 12259 out: 12260 return ret; 12261 12262 del_dev: 12263 device_del(pmu->dev); 12264 12265 free_dev: 12266 put_device(pmu->dev); 12267 pmu->dev = NULL; 12268 goto out; 12269 } 12270 12271 static struct lock_class_key cpuctx_mutex; 12272 static struct lock_class_key cpuctx_lock; 12273 12274 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12275 { 12276 void *tmp, *val = idr_find(idr, id); 12277 12278 if (val != old) 12279 return false; 12280 12281 tmp = idr_replace(idr, new, id); 12282 if (IS_ERR(tmp)) 12283 return false; 12284 12285 WARN_ON_ONCE(tmp != val); 12286 return true; 12287 } 12288 12289 static void perf_pmu_free(struct pmu *pmu) 12290 { 12291 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12292 if (pmu->nr_addr_filters) 12293 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12294 device_del(pmu->dev); 12295 put_device(pmu->dev); 12296 } 12297 12298 if (pmu->cpu_pmu_context) { 12299 int cpu; 12300 12301 for_each_possible_cpu(cpu) { 12302 struct perf_cpu_pmu_context *cpc; 12303 12304 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12305 if (!cpc) 12306 continue; 12307 if (cpc->epc.embedded) { 12308 /* refcount managed */ 12309 put_pmu_ctx(&cpc->epc); 12310 continue; 12311 } 12312 kfree(cpc); 12313 } 12314 free_percpu(pmu->cpu_pmu_context); 12315 } 12316 } 12317 12318 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12319 12320 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12321 { 12322 int cpu, max = PERF_TYPE_MAX; 12323 12324 struct pmu *pmu __free(pmu_unregister) = _pmu; 12325 guard(mutex)(&pmus_lock); 12326 12327 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12328 return -EINVAL; 12329 12330 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12331 "Can not register a pmu with an invalid scope.\n")) 12332 return -EINVAL; 12333 12334 pmu->name = name; 12335 12336 if (type >= 0) 12337 max = type; 12338 12339 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12340 if (pmu_type.id < 0) 12341 return pmu_type.id; 12342 12343 WARN_ON(type >= 0 && pmu_type.id != type); 12344 12345 pmu->type = pmu_type.id; 12346 atomic_set(&pmu->exclusive_cnt, 0); 12347 12348 if (pmu_bus_running && !pmu->dev) { 12349 int ret = pmu_dev_alloc(pmu); 12350 if (ret) 12351 return ret; 12352 } 12353 12354 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12355 if (!pmu->cpu_pmu_context) 12356 return -ENOMEM; 12357 12358 for_each_possible_cpu(cpu) { 12359 struct perf_cpu_pmu_context *cpc = 12360 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12361 GFP_KERNEL | __GFP_ZERO, 12362 cpu_to_node(cpu)); 12363 12364 if (!cpc) 12365 return -ENOMEM; 12366 12367 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12368 __perf_init_event_pmu_context(&cpc->epc, pmu); 12369 __perf_mux_hrtimer_init(cpc, cpu); 12370 } 12371 12372 if (!pmu->start_txn) { 12373 if (pmu->pmu_enable) { 12374 /* 12375 * If we have pmu_enable/pmu_disable calls, install 12376 * transaction stubs that use that to try and batch 12377 * hardware accesses. 12378 */ 12379 pmu->start_txn = perf_pmu_start_txn; 12380 pmu->commit_txn = perf_pmu_commit_txn; 12381 pmu->cancel_txn = perf_pmu_cancel_txn; 12382 } else { 12383 pmu->start_txn = perf_pmu_nop_txn; 12384 pmu->commit_txn = perf_pmu_nop_int; 12385 pmu->cancel_txn = perf_pmu_nop_void; 12386 } 12387 } 12388 12389 if (!pmu->pmu_enable) { 12390 pmu->pmu_enable = perf_pmu_nop_void; 12391 pmu->pmu_disable = perf_pmu_nop_void; 12392 } 12393 12394 if (!pmu->check_period) 12395 pmu->check_period = perf_event_nop_int; 12396 12397 if (!pmu->event_idx) 12398 pmu->event_idx = perf_event_idx_default; 12399 12400 INIT_LIST_HEAD(&pmu->events); 12401 spin_lock_init(&pmu->events_lock); 12402 12403 /* 12404 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12405 */ 12406 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12407 return -EINVAL; 12408 list_add_rcu(&pmu->entry, &pmus); 12409 12410 take_idr_id(pmu_type); 12411 _pmu = no_free_ptr(pmu); // let it rip 12412 return 0; 12413 } 12414 EXPORT_SYMBOL_GPL(perf_pmu_register); 12415 12416 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, 12417 struct perf_event_context *ctx) 12418 { 12419 /* 12420 * De-schedule the event and mark it REVOKED. 12421 */ 12422 perf_event_exit_event(event, ctx, true); 12423 12424 /* 12425 * All _free_event() bits that rely on event->pmu: 12426 * 12427 * Notably, perf_mmap() relies on the ordering here. 12428 */ 12429 scoped_guard (mutex, &event->mmap_mutex) { 12430 WARN_ON_ONCE(pmu->event_unmapped); 12431 /* 12432 * Mostly an empty lock sequence, such that perf_mmap(), which 12433 * relies on mmap_mutex, is sure to observe the state change. 12434 */ 12435 } 12436 12437 perf_event_free_bpf_prog(event); 12438 perf_free_addr_filters(event); 12439 12440 if (event->destroy) { 12441 event->destroy(event); 12442 event->destroy = NULL; 12443 } 12444 12445 if (event->pmu_ctx) { 12446 put_pmu_ctx(event->pmu_ctx); 12447 event->pmu_ctx = NULL; 12448 } 12449 12450 exclusive_event_destroy(event); 12451 module_put(pmu->module); 12452 12453 event->pmu = NULL; /* force fault instead of UAF */ 12454 } 12455 12456 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) 12457 { 12458 struct perf_event_context *ctx; 12459 12460 ctx = perf_event_ctx_lock(event); 12461 __pmu_detach_event(pmu, event, ctx); 12462 perf_event_ctx_unlock(event, ctx); 12463 12464 scoped_guard (spinlock, &pmu->events_lock) 12465 list_del(&event->pmu_list); 12466 } 12467 12468 static struct perf_event *pmu_get_event(struct pmu *pmu) 12469 { 12470 struct perf_event *event; 12471 12472 guard(spinlock)(&pmu->events_lock); 12473 list_for_each_entry(event, &pmu->events, pmu_list) { 12474 if (atomic_long_inc_not_zero(&event->refcount)) 12475 return event; 12476 } 12477 12478 return NULL; 12479 } 12480 12481 static bool pmu_empty(struct pmu *pmu) 12482 { 12483 guard(spinlock)(&pmu->events_lock); 12484 return list_empty(&pmu->events); 12485 } 12486 12487 static void pmu_detach_events(struct pmu *pmu) 12488 { 12489 struct perf_event *event; 12490 12491 for (;;) { 12492 event = pmu_get_event(pmu); 12493 if (!event) 12494 break; 12495 12496 pmu_detach_event(pmu, event); 12497 put_event(event); 12498 } 12499 12500 /* 12501 * wait for pending _free_event()s 12502 */ 12503 wait_var_event(pmu, pmu_empty(pmu)); 12504 } 12505 12506 int perf_pmu_unregister(struct pmu *pmu) 12507 { 12508 scoped_guard (mutex, &pmus_lock) { 12509 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) 12510 return -EINVAL; 12511 12512 list_del_rcu(&pmu->entry); 12513 } 12514 12515 /* 12516 * We dereference the pmu list under both SRCU and regular RCU, so 12517 * synchronize against both of those. 12518 * 12519 * Notably, the entirety of event creation, from perf_init_event() 12520 * (which will now fail, because of the above) until 12521 * perf_install_in_context() should be under SRCU such that 12522 * this synchronizes against event creation. This avoids trying to 12523 * detach events that are not fully formed. 12524 */ 12525 synchronize_srcu(&pmus_srcu); 12526 synchronize_rcu(); 12527 12528 if (pmu->event_unmapped && !pmu_empty(pmu)) { 12529 /* 12530 * Can't force remove events when pmu::event_unmapped() 12531 * is used in perf_mmap_close(). 12532 */ 12533 guard(mutex)(&pmus_lock); 12534 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); 12535 list_add_rcu(&pmu->entry, &pmus); 12536 return -EBUSY; 12537 } 12538 12539 scoped_guard (mutex, &pmus_lock) 12540 idr_remove(&pmu_idr, pmu->type); 12541 12542 /* 12543 * PMU is removed from the pmus list, so no new events will 12544 * be created, now take care of the existing ones. 12545 */ 12546 pmu_detach_events(pmu); 12547 12548 /* 12549 * PMU is unused, make it go away. 12550 */ 12551 perf_pmu_free(pmu); 12552 return 0; 12553 } 12554 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12555 12556 static inline bool has_extended_regs(struct perf_event *event) 12557 { 12558 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12559 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12560 } 12561 12562 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12563 { 12564 struct perf_event_context *ctx = NULL; 12565 int ret; 12566 12567 if (!try_module_get(pmu->module)) 12568 return -ENODEV; 12569 12570 /* 12571 * A number of pmu->event_init() methods iterate the sibling_list to, 12572 * for example, validate if the group fits on the PMU. Therefore, 12573 * if this is a sibling event, acquire the ctx->mutex to protect 12574 * the sibling_list. 12575 */ 12576 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12577 /* 12578 * This ctx->mutex can nest when we're called through 12579 * inheritance. See the perf_event_ctx_lock_nested() comment. 12580 */ 12581 ctx = perf_event_ctx_lock_nested(event->group_leader, 12582 SINGLE_DEPTH_NESTING); 12583 BUG_ON(!ctx); 12584 } 12585 12586 event->pmu = pmu; 12587 ret = pmu->event_init(event); 12588 12589 if (ctx) 12590 perf_event_ctx_unlock(event->group_leader, ctx); 12591 12592 if (ret) 12593 goto err_pmu; 12594 12595 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12596 has_extended_regs(event)) { 12597 ret = -EOPNOTSUPP; 12598 goto err_destroy; 12599 } 12600 12601 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12602 event_has_any_exclude_flag(event)) { 12603 ret = -EINVAL; 12604 goto err_destroy; 12605 } 12606 12607 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12608 const struct cpumask *cpumask; 12609 struct cpumask *pmu_cpumask; 12610 int cpu; 12611 12612 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12613 pmu_cpumask = perf_scope_cpumask(pmu->scope); 12614 12615 ret = -ENODEV; 12616 if (!pmu_cpumask || !cpumask) 12617 goto err_destroy; 12618 12619 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12620 if (cpu >= nr_cpu_ids) 12621 goto err_destroy; 12622 12623 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12624 } 12625 12626 return 0; 12627 12628 err_destroy: 12629 if (event->destroy) { 12630 event->destroy(event); 12631 event->destroy = NULL; 12632 } 12633 12634 err_pmu: 12635 event->pmu = NULL; 12636 module_put(pmu->module); 12637 return ret; 12638 } 12639 12640 static struct pmu *perf_init_event(struct perf_event *event) 12641 { 12642 bool extended_type = false; 12643 struct pmu *pmu; 12644 int type, ret; 12645 12646 guard(srcu)(&pmus_srcu); /* pmu idr/list access */ 12647 12648 /* 12649 * Save original type before calling pmu->event_init() since certain 12650 * pmus overwrites event->attr.type to forward event to another pmu. 12651 */ 12652 event->orig_type = event->attr.type; 12653 12654 /* Try parent's PMU first: */ 12655 if (event->parent && event->parent->pmu) { 12656 pmu = event->parent->pmu; 12657 ret = perf_try_init_event(pmu, event); 12658 if (!ret) 12659 return pmu; 12660 } 12661 12662 /* 12663 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12664 * are often aliases for PERF_TYPE_RAW. 12665 */ 12666 type = event->attr.type; 12667 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12668 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12669 if (!type) { 12670 type = PERF_TYPE_RAW; 12671 } else { 12672 extended_type = true; 12673 event->attr.config &= PERF_HW_EVENT_MASK; 12674 } 12675 } 12676 12677 again: 12678 scoped_guard (rcu) 12679 pmu = idr_find(&pmu_idr, type); 12680 if (pmu) { 12681 if (event->attr.type != type && type != PERF_TYPE_RAW && 12682 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12683 return ERR_PTR(-ENOENT); 12684 12685 ret = perf_try_init_event(pmu, event); 12686 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12687 type = event->attr.type; 12688 goto again; 12689 } 12690 12691 if (ret) 12692 return ERR_PTR(ret); 12693 12694 return pmu; 12695 } 12696 12697 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12698 ret = perf_try_init_event(pmu, event); 12699 if (!ret) 12700 return pmu; 12701 12702 if (ret != -ENOENT) 12703 return ERR_PTR(ret); 12704 } 12705 12706 return ERR_PTR(-ENOENT); 12707 } 12708 12709 static void attach_sb_event(struct perf_event *event) 12710 { 12711 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12712 12713 raw_spin_lock(&pel->lock); 12714 list_add_rcu(&event->sb_list, &pel->list); 12715 raw_spin_unlock(&pel->lock); 12716 } 12717 12718 /* 12719 * We keep a list of all !task (and therefore per-cpu) events 12720 * that need to receive side-band records. 12721 * 12722 * This avoids having to scan all the various PMU per-cpu contexts 12723 * looking for them. 12724 */ 12725 static void account_pmu_sb_event(struct perf_event *event) 12726 { 12727 if (is_sb_event(event)) 12728 attach_sb_event(event); 12729 } 12730 12731 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12732 static void account_freq_event_nohz(void) 12733 { 12734 #ifdef CONFIG_NO_HZ_FULL 12735 /* Lock so we don't race with concurrent unaccount */ 12736 spin_lock(&nr_freq_lock); 12737 if (atomic_inc_return(&nr_freq_events) == 1) 12738 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12739 spin_unlock(&nr_freq_lock); 12740 #endif 12741 } 12742 12743 static void account_freq_event(void) 12744 { 12745 if (tick_nohz_full_enabled()) 12746 account_freq_event_nohz(); 12747 else 12748 atomic_inc(&nr_freq_events); 12749 } 12750 12751 12752 static void account_event(struct perf_event *event) 12753 { 12754 bool inc = false; 12755 12756 if (event->parent) 12757 return; 12758 12759 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12760 inc = true; 12761 if (event->attr.mmap || event->attr.mmap_data) 12762 atomic_inc(&nr_mmap_events); 12763 if (event->attr.build_id) 12764 atomic_inc(&nr_build_id_events); 12765 if (event->attr.comm) 12766 atomic_inc(&nr_comm_events); 12767 if (event->attr.namespaces) 12768 atomic_inc(&nr_namespaces_events); 12769 if (event->attr.cgroup) 12770 atomic_inc(&nr_cgroup_events); 12771 if (event->attr.task) 12772 atomic_inc(&nr_task_events); 12773 if (event->attr.freq) 12774 account_freq_event(); 12775 if (event->attr.context_switch) { 12776 atomic_inc(&nr_switch_events); 12777 inc = true; 12778 } 12779 if (has_branch_stack(event)) 12780 inc = true; 12781 if (is_cgroup_event(event)) 12782 inc = true; 12783 if (event->attr.ksymbol) 12784 atomic_inc(&nr_ksymbol_events); 12785 if (event->attr.bpf_event) 12786 atomic_inc(&nr_bpf_events); 12787 if (event->attr.text_poke) 12788 atomic_inc(&nr_text_poke_events); 12789 12790 if (inc) { 12791 /* 12792 * We need the mutex here because static_branch_enable() 12793 * must complete *before* the perf_sched_count increment 12794 * becomes visible. 12795 */ 12796 if (atomic_inc_not_zero(&perf_sched_count)) 12797 goto enabled; 12798 12799 mutex_lock(&perf_sched_mutex); 12800 if (!atomic_read(&perf_sched_count)) { 12801 static_branch_enable(&perf_sched_events); 12802 /* 12803 * Guarantee that all CPUs observe they key change and 12804 * call the perf scheduling hooks before proceeding to 12805 * install events that need them. 12806 */ 12807 synchronize_rcu(); 12808 } 12809 /* 12810 * Now that we have waited for the sync_sched(), allow further 12811 * increments to by-pass the mutex. 12812 */ 12813 atomic_inc(&perf_sched_count); 12814 mutex_unlock(&perf_sched_mutex); 12815 } 12816 enabled: 12817 12818 account_pmu_sb_event(event); 12819 } 12820 12821 /* 12822 * Allocate and initialize an event structure 12823 */ 12824 static struct perf_event * 12825 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12826 struct task_struct *task, 12827 struct perf_event *group_leader, 12828 struct perf_event *parent_event, 12829 perf_overflow_handler_t overflow_handler, 12830 void *context, int cgroup_fd) 12831 { 12832 struct pmu *pmu; 12833 struct hw_perf_event *hwc; 12834 long err = -EINVAL; 12835 int node; 12836 12837 if ((unsigned)cpu >= nr_cpu_ids) { 12838 if (!task || cpu != -1) 12839 return ERR_PTR(-EINVAL); 12840 } 12841 if (attr->sigtrap && !task) { 12842 /* Requires a task: avoid signalling random tasks. */ 12843 return ERR_PTR(-EINVAL); 12844 } 12845 12846 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12847 struct perf_event *event __free(__free_event) = 12848 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 12849 if (!event) 12850 return ERR_PTR(-ENOMEM); 12851 12852 /* 12853 * Single events are their own group leaders, with an 12854 * empty sibling list: 12855 */ 12856 if (!group_leader) 12857 group_leader = event; 12858 12859 mutex_init(&event->child_mutex); 12860 INIT_LIST_HEAD(&event->child_list); 12861 12862 INIT_LIST_HEAD(&event->event_entry); 12863 INIT_LIST_HEAD(&event->sibling_list); 12864 INIT_LIST_HEAD(&event->active_list); 12865 init_event_group(event); 12866 INIT_LIST_HEAD(&event->rb_entry); 12867 INIT_LIST_HEAD(&event->active_entry); 12868 INIT_LIST_HEAD(&event->addr_filters.list); 12869 INIT_HLIST_NODE(&event->hlist_entry); 12870 INIT_LIST_HEAD(&event->pmu_list); 12871 12872 12873 init_waitqueue_head(&event->waitq); 12874 init_irq_work(&event->pending_irq, perf_pending_irq); 12875 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12876 init_task_work(&event->pending_task, perf_pending_task); 12877 12878 mutex_init(&event->mmap_mutex); 12879 raw_spin_lock_init(&event->addr_filters.lock); 12880 12881 atomic_long_set(&event->refcount, 1); 12882 event->cpu = cpu; 12883 event->attr = *attr; 12884 event->group_leader = group_leader; 12885 event->pmu = NULL; 12886 event->oncpu = -1; 12887 12888 event->parent = parent_event; 12889 12890 event->ns = get_pid_ns(task_active_pid_ns(current)); 12891 event->id = atomic64_inc_return(&perf_event_id); 12892 12893 event->state = PERF_EVENT_STATE_INACTIVE; 12894 12895 if (parent_event) 12896 event->event_caps = parent_event->event_caps; 12897 12898 if (task) { 12899 event->attach_state = PERF_ATTACH_TASK; 12900 /* 12901 * XXX pmu::event_init needs to know what task to account to 12902 * and we cannot use the ctx information because we need the 12903 * pmu before we get a ctx. 12904 */ 12905 event->hw.target = get_task_struct(task); 12906 } 12907 12908 event->clock = &local_clock; 12909 if (parent_event) 12910 event->clock = parent_event->clock; 12911 12912 if (!overflow_handler && parent_event) { 12913 overflow_handler = parent_event->overflow_handler; 12914 context = parent_event->overflow_handler_context; 12915 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12916 if (parent_event->prog) { 12917 struct bpf_prog *prog = parent_event->prog; 12918 12919 bpf_prog_inc(prog); 12920 event->prog = prog; 12921 } 12922 #endif 12923 } 12924 12925 if (overflow_handler) { 12926 event->overflow_handler = overflow_handler; 12927 event->overflow_handler_context = context; 12928 } else if (is_write_backward(event)){ 12929 event->overflow_handler = perf_event_output_backward; 12930 event->overflow_handler_context = NULL; 12931 } else { 12932 event->overflow_handler = perf_event_output_forward; 12933 event->overflow_handler_context = NULL; 12934 } 12935 12936 perf_event__state_init(event); 12937 12938 pmu = NULL; 12939 12940 hwc = &event->hw; 12941 hwc->sample_period = attr->sample_period; 12942 if (is_event_in_freq_mode(event)) 12943 hwc->sample_period = 1; 12944 hwc->last_period = hwc->sample_period; 12945 12946 local64_set(&hwc->period_left, hwc->sample_period); 12947 12948 /* 12949 * We do not support PERF_SAMPLE_READ on inherited events unless 12950 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12951 * collect per-thread samples. 12952 * See perf_output_read(). 12953 */ 12954 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12955 return ERR_PTR(-EINVAL); 12956 12957 if (!has_branch_stack(event)) 12958 event->attr.branch_sample_type = 0; 12959 12960 pmu = perf_init_event(event); 12961 if (IS_ERR(pmu)) 12962 return (void*)pmu; 12963 12964 /* 12965 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 12966 * The attach should be right after the perf_init_event(). 12967 * Otherwise, the __free_event() would mistakenly detach the non-exist 12968 * perf_ctx_data because of the other errors between them. 12969 */ 12970 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 12971 err = attach_perf_ctx_data(event); 12972 if (err) 12973 return ERR_PTR(err); 12974 } 12975 12976 /* 12977 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12978 * events (they don't make sense as the cgroup will be different 12979 * on other CPUs in the uncore mask). 12980 */ 12981 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 12982 return ERR_PTR(-EINVAL); 12983 12984 if (event->attr.aux_output && 12985 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12986 event->attr.aux_pause || event->attr.aux_resume)) 12987 return ERR_PTR(-EOPNOTSUPP); 12988 12989 if (event->attr.aux_pause && event->attr.aux_resume) 12990 return ERR_PTR(-EINVAL); 12991 12992 if (event->attr.aux_start_paused) { 12993 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 12994 return ERR_PTR(-EOPNOTSUPP); 12995 event->hw.aux_paused = 1; 12996 } 12997 12998 if (cgroup_fd != -1) { 12999 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 13000 if (err) 13001 return ERR_PTR(err); 13002 } 13003 13004 err = exclusive_event_init(event); 13005 if (err) 13006 return ERR_PTR(err); 13007 13008 if (has_addr_filter(event)) { 13009 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 13010 sizeof(struct perf_addr_filter_range), 13011 GFP_KERNEL); 13012 if (!event->addr_filter_ranges) 13013 return ERR_PTR(-ENOMEM); 13014 13015 /* 13016 * Clone the parent's vma offsets: they are valid until exec() 13017 * even if the mm is not shared with the parent. 13018 */ 13019 if (event->parent) { 13020 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 13021 13022 raw_spin_lock_irq(&ifh->lock); 13023 memcpy(event->addr_filter_ranges, 13024 event->parent->addr_filter_ranges, 13025 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 13026 raw_spin_unlock_irq(&ifh->lock); 13027 } 13028 13029 /* force hw sync on the address filters */ 13030 event->addr_filters_gen = 1; 13031 } 13032 13033 if (!event->parent) { 13034 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 13035 err = get_callchain_buffers(attr->sample_max_stack); 13036 if (err) 13037 return ERR_PTR(err); 13038 event->attach_state |= PERF_ATTACH_CALLCHAIN; 13039 } 13040 } 13041 13042 err = security_perf_event_alloc(event); 13043 if (err) 13044 return ERR_PTR(err); 13045 13046 /* symmetric to unaccount_event() in _free_event() */ 13047 account_event(event); 13048 13049 /* 13050 * Event creation should be under SRCU, see perf_pmu_unregister(). 13051 */ 13052 lockdep_assert_held(&pmus_srcu); 13053 scoped_guard (spinlock, &pmu->events_lock) 13054 list_add(&event->pmu_list, &pmu->events); 13055 13056 return_ptr(event); 13057 } 13058 13059 static int perf_copy_attr(struct perf_event_attr __user *uattr, 13060 struct perf_event_attr *attr) 13061 { 13062 u32 size; 13063 int ret; 13064 13065 /* Zero the full structure, so that a short copy will be nice. */ 13066 memset(attr, 0, sizeof(*attr)); 13067 13068 ret = get_user(size, &uattr->size); 13069 if (ret) 13070 return ret; 13071 13072 /* ABI compatibility quirk: */ 13073 if (!size) 13074 size = PERF_ATTR_SIZE_VER0; 13075 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 13076 goto err_size; 13077 13078 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 13079 if (ret) { 13080 if (ret == -E2BIG) 13081 goto err_size; 13082 return ret; 13083 } 13084 13085 attr->size = size; 13086 13087 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 13088 return -EINVAL; 13089 13090 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 13091 return -EINVAL; 13092 13093 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 13094 return -EINVAL; 13095 13096 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 13097 u64 mask = attr->branch_sample_type; 13098 13099 /* only using defined bits */ 13100 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 13101 return -EINVAL; 13102 13103 /* at least one branch bit must be set */ 13104 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 13105 return -EINVAL; 13106 13107 /* propagate priv level, when not set for branch */ 13108 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 13109 13110 /* exclude_kernel checked on syscall entry */ 13111 if (!attr->exclude_kernel) 13112 mask |= PERF_SAMPLE_BRANCH_KERNEL; 13113 13114 if (!attr->exclude_user) 13115 mask |= PERF_SAMPLE_BRANCH_USER; 13116 13117 if (!attr->exclude_hv) 13118 mask |= PERF_SAMPLE_BRANCH_HV; 13119 /* 13120 * adjust user setting (for HW filter setup) 13121 */ 13122 attr->branch_sample_type = mask; 13123 } 13124 /* privileged levels capture (kernel, hv): check permissions */ 13125 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 13126 ret = perf_allow_kernel(); 13127 if (ret) 13128 return ret; 13129 } 13130 } 13131 13132 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 13133 ret = perf_reg_validate(attr->sample_regs_user); 13134 if (ret) 13135 return ret; 13136 } 13137 13138 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 13139 if (!arch_perf_have_user_stack_dump()) 13140 return -ENOSYS; 13141 13142 /* 13143 * We have __u32 type for the size, but so far 13144 * we can only use __u16 as maximum due to the 13145 * __u16 sample size limit. 13146 */ 13147 if (attr->sample_stack_user >= USHRT_MAX) 13148 return -EINVAL; 13149 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 13150 return -EINVAL; 13151 } 13152 13153 if (!attr->sample_max_stack) 13154 attr->sample_max_stack = sysctl_perf_event_max_stack; 13155 13156 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 13157 ret = perf_reg_validate(attr->sample_regs_intr); 13158 13159 #ifndef CONFIG_CGROUP_PERF 13160 if (attr->sample_type & PERF_SAMPLE_CGROUP) 13161 return -EINVAL; 13162 #endif 13163 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 13164 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 13165 return -EINVAL; 13166 13167 if (!attr->inherit && attr->inherit_thread) 13168 return -EINVAL; 13169 13170 if (attr->remove_on_exec && attr->enable_on_exec) 13171 return -EINVAL; 13172 13173 if (attr->sigtrap && !attr->remove_on_exec) 13174 return -EINVAL; 13175 13176 out: 13177 return ret; 13178 13179 err_size: 13180 put_user(sizeof(*attr), &uattr->size); 13181 ret = -E2BIG; 13182 goto out; 13183 } 13184 13185 static void mutex_lock_double(struct mutex *a, struct mutex *b) 13186 { 13187 if (b < a) 13188 swap(a, b); 13189 13190 mutex_lock(a); 13191 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 13192 } 13193 13194 static int 13195 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 13196 { 13197 struct perf_buffer *rb = NULL; 13198 int ret = -EINVAL; 13199 13200 if (!output_event) { 13201 mutex_lock(&event->mmap_mutex); 13202 goto set; 13203 } 13204 13205 /* don't allow circular references */ 13206 if (event == output_event) 13207 goto out; 13208 13209 /* 13210 * Don't allow cross-cpu buffers 13211 */ 13212 if (output_event->cpu != event->cpu) 13213 goto out; 13214 13215 /* 13216 * If its not a per-cpu rb, it must be the same task. 13217 */ 13218 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 13219 goto out; 13220 13221 /* 13222 * Mixing clocks in the same buffer is trouble you don't need. 13223 */ 13224 if (output_event->clock != event->clock) 13225 goto out; 13226 13227 /* 13228 * Either writing ring buffer from beginning or from end. 13229 * Mixing is not allowed. 13230 */ 13231 if (is_write_backward(output_event) != is_write_backward(event)) 13232 goto out; 13233 13234 /* 13235 * If both events generate aux data, they must be on the same PMU 13236 */ 13237 if (has_aux(event) && has_aux(output_event) && 13238 event->pmu != output_event->pmu) 13239 goto out; 13240 13241 /* 13242 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 13243 * output_event is already on rb->event_list, and the list iteration 13244 * restarts after every removal, it is guaranteed this new event is 13245 * observed *OR* if output_event is already removed, it's guaranteed we 13246 * observe !rb->mmap_count. 13247 */ 13248 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 13249 set: 13250 /* Can't redirect output if we've got an active mmap() */ 13251 if (atomic_read(&event->mmap_count)) 13252 goto unlock; 13253 13254 if (output_event) { 13255 if (output_event->state <= PERF_EVENT_STATE_REVOKED) 13256 goto unlock; 13257 13258 /* get the rb we want to redirect to */ 13259 rb = ring_buffer_get(output_event); 13260 if (!rb) 13261 goto unlock; 13262 13263 /* did we race against perf_mmap_close() */ 13264 if (!atomic_read(&rb->mmap_count)) { 13265 ring_buffer_put(rb); 13266 goto unlock; 13267 } 13268 } 13269 13270 ring_buffer_attach(event, rb); 13271 13272 ret = 0; 13273 unlock: 13274 mutex_unlock(&event->mmap_mutex); 13275 if (output_event) 13276 mutex_unlock(&output_event->mmap_mutex); 13277 13278 out: 13279 return ret; 13280 } 13281 13282 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13283 { 13284 bool nmi_safe = false; 13285 13286 switch (clk_id) { 13287 case CLOCK_MONOTONIC: 13288 event->clock = &ktime_get_mono_fast_ns; 13289 nmi_safe = true; 13290 break; 13291 13292 case CLOCK_MONOTONIC_RAW: 13293 event->clock = &ktime_get_raw_fast_ns; 13294 nmi_safe = true; 13295 break; 13296 13297 case CLOCK_REALTIME: 13298 event->clock = &ktime_get_real_ns; 13299 break; 13300 13301 case CLOCK_BOOTTIME: 13302 event->clock = &ktime_get_boottime_ns; 13303 break; 13304 13305 case CLOCK_TAI: 13306 event->clock = &ktime_get_clocktai_ns; 13307 break; 13308 13309 default: 13310 return -EINVAL; 13311 } 13312 13313 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13314 return -EINVAL; 13315 13316 return 0; 13317 } 13318 13319 static bool 13320 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13321 { 13322 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13323 bool is_capable = perfmon_capable(); 13324 13325 if (attr->sigtrap) { 13326 /* 13327 * perf_event_attr::sigtrap sends signals to the other task. 13328 * Require the current task to also have CAP_KILL. 13329 */ 13330 rcu_read_lock(); 13331 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13332 rcu_read_unlock(); 13333 13334 /* 13335 * If the required capabilities aren't available, checks for 13336 * ptrace permissions: upgrade to ATTACH, since sending signals 13337 * can effectively change the target task. 13338 */ 13339 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13340 } 13341 13342 /* 13343 * Preserve ptrace permission check for backwards compatibility. The 13344 * ptrace check also includes checks that the current task and other 13345 * task have matching uids, and is therefore not done here explicitly. 13346 */ 13347 return is_capable || ptrace_may_access(task, ptrace_mode); 13348 } 13349 13350 /** 13351 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13352 * 13353 * @attr_uptr: event_id type attributes for monitoring/sampling 13354 * @pid: target pid 13355 * @cpu: target cpu 13356 * @group_fd: group leader event fd 13357 * @flags: perf event open flags 13358 */ 13359 SYSCALL_DEFINE5(perf_event_open, 13360 struct perf_event_attr __user *, attr_uptr, 13361 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13362 { 13363 struct perf_event *group_leader = NULL, *output_event = NULL; 13364 struct perf_event_pmu_context *pmu_ctx; 13365 struct perf_event *event, *sibling; 13366 struct perf_event_attr attr; 13367 struct perf_event_context *ctx; 13368 struct file *event_file = NULL; 13369 struct task_struct *task = NULL; 13370 struct pmu *pmu; 13371 int event_fd; 13372 int move_group = 0; 13373 int err; 13374 int f_flags = O_RDWR; 13375 int cgroup_fd = -1; 13376 13377 /* for future expandability... */ 13378 if (flags & ~PERF_FLAG_ALL) 13379 return -EINVAL; 13380 13381 err = perf_copy_attr(attr_uptr, &attr); 13382 if (err) 13383 return err; 13384 13385 /* Do we allow access to perf_event_open(2) ? */ 13386 err = security_perf_event_open(PERF_SECURITY_OPEN); 13387 if (err) 13388 return err; 13389 13390 if (!attr.exclude_kernel) { 13391 err = perf_allow_kernel(); 13392 if (err) 13393 return err; 13394 } 13395 13396 if (attr.namespaces) { 13397 if (!perfmon_capable()) 13398 return -EACCES; 13399 } 13400 13401 if (attr.freq) { 13402 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13403 return -EINVAL; 13404 } else { 13405 if (attr.sample_period & (1ULL << 63)) 13406 return -EINVAL; 13407 } 13408 13409 /* Only privileged users can get physical addresses */ 13410 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13411 err = perf_allow_kernel(); 13412 if (err) 13413 return err; 13414 } 13415 13416 /* REGS_INTR can leak data, lockdown must prevent this */ 13417 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13418 err = security_locked_down(LOCKDOWN_PERF); 13419 if (err) 13420 return err; 13421 } 13422 13423 /* 13424 * In cgroup mode, the pid argument is used to pass the fd 13425 * opened to the cgroup directory in cgroupfs. The cpu argument 13426 * designates the cpu on which to monitor threads from that 13427 * cgroup. 13428 */ 13429 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13430 return -EINVAL; 13431 13432 if (flags & PERF_FLAG_FD_CLOEXEC) 13433 f_flags |= O_CLOEXEC; 13434 13435 event_fd = get_unused_fd_flags(f_flags); 13436 if (event_fd < 0) 13437 return event_fd; 13438 13439 /* 13440 * Event creation should be under SRCU, see perf_pmu_unregister(). 13441 */ 13442 guard(srcu)(&pmus_srcu); 13443 13444 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13445 if (group_fd != -1) { 13446 if (!is_perf_file(group)) { 13447 err = -EBADF; 13448 goto err_fd; 13449 } 13450 group_leader = fd_file(group)->private_data; 13451 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { 13452 err = -ENODEV; 13453 goto err_fd; 13454 } 13455 if (flags & PERF_FLAG_FD_OUTPUT) 13456 output_event = group_leader; 13457 if (flags & PERF_FLAG_FD_NO_GROUP) 13458 group_leader = NULL; 13459 } 13460 13461 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13462 task = find_lively_task_by_vpid(pid); 13463 if (IS_ERR(task)) { 13464 err = PTR_ERR(task); 13465 goto err_fd; 13466 } 13467 } 13468 13469 if (task && group_leader && 13470 group_leader->attr.inherit != attr.inherit) { 13471 err = -EINVAL; 13472 goto err_task; 13473 } 13474 13475 if (flags & PERF_FLAG_PID_CGROUP) 13476 cgroup_fd = pid; 13477 13478 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13479 NULL, NULL, cgroup_fd); 13480 if (IS_ERR(event)) { 13481 err = PTR_ERR(event); 13482 goto err_task; 13483 } 13484 13485 if (is_sampling_event(event)) { 13486 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13487 err = -EOPNOTSUPP; 13488 goto err_alloc; 13489 } 13490 } 13491 13492 /* 13493 * Special case software events and allow them to be part of 13494 * any hardware group. 13495 */ 13496 pmu = event->pmu; 13497 13498 if (attr.use_clockid) { 13499 err = perf_event_set_clock(event, attr.clockid); 13500 if (err) 13501 goto err_alloc; 13502 } 13503 13504 if (pmu->task_ctx_nr == perf_sw_context) 13505 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13506 13507 if (task) { 13508 err = down_read_interruptible(&task->signal->exec_update_lock); 13509 if (err) 13510 goto err_alloc; 13511 13512 /* 13513 * We must hold exec_update_lock across this and any potential 13514 * perf_install_in_context() call for this new event to 13515 * serialize against exec() altering our credentials (and the 13516 * perf_event_exit_task() that could imply). 13517 */ 13518 err = -EACCES; 13519 if (!perf_check_permission(&attr, task)) 13520 goto err_cred; 13521 } 13522 13523 /* 13524 * Get the target context (task or percpu): 13525 */ 13526 ctx = find_get_context(task, event); 13527 if (IS_ERR(ctx)) { 13528 err = PTR_ERR(ctx); 13529 goto err_cred; 13530 } 13531 13532 mutex_lock(&ctx->mutex); 13533 13534 if (ctx->task == TASK_TOMBSTONE) { 13535 err = -ESRCH; 13536 goto err_locked; 13537 } 13538 13539 if (!task) { 13540 /* 13541 * Check if the @cpu we're creating an event for is online. 13542 * 13543 * We use the perf_cpu_context::ctx::mutex to serialize against 13544 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13545 */ 13546 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13547 13548 if (!cpuctx->online) { 13549 err = -ENODEV; 13550 goto err_locked; 13551 } 13552 } 13553 13554 if (group_leader) { 13555 err = -EINVAL; 13556 13557 /* 13558 * Do not allow a recursive hierarchy (this new sibling 13559 * becoming part of another group-sibling): 13560 */ 13561 if (group_leader->group_leader != group_leader) 13562 goto err_locked; 13563 13564 /* All events in a group should have the same clock */ 13565 if (group_leader->clock != event->clock) 13566 goto err_locked; 13567 13568 /* 13569 * Make sure we're both events for the same CPU; 13570 * grouping events for different CPUs is broken; since 13571 * you can never concurrently schedule them anyhow. 13572 */ 13573 if (group_leader->cpu != event->cpu) 13574 goto err_locked; 13575 13576 /* 13577 * Make sure we're both on the same context; either task or cpu. 13578 */ 13579 if (group_leader->ctx != ctx) 13580 goto err_locked; 13581 13582 /* 13583 * Only a group leader can be exclusive or pinned 13584 */ 13585 if (attr.exclusive || attr.pinned) 13586 goto err_locked; 13587 13588 if (is_software_event(event) && 13589 !in_software_context(group_leader)) { 13590 /* 13591 * If the event is a sw event, but the group_leader 13592 * is on hw context. 13593 * 13594 * Allow the addition of software events to hw 13595 * groups, this is safe because software events 13596 * never fail to schedule. 13597 * 13598 * Note the comment that goes with struct 13599 * perf_event_pmu_context. 13600 */ 13601 pmu = group_leader->pmu_ctx->pmu; 13602 } else if (!is_software_event(event)) { 13603 if (is_software_event(group_leader) && 13604 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13605 /* 13606 * In case the group is a pure software group, and we 13607 * try to add a hardware event, move the whole group to 13608 * the hardware context. 13609 */ 13610 move_group = 1; 13611 } 13612 13613 /* Don't allow group of multiple hw events from different pmus */ 13614 if (!in_software_context(group_leader) && 13615 group_leader->pmu_ctx->pmu != pmu) 13616 goto err_locked; 13617 } 13618 } 13619 13620 /* 13621 * Now that we're certain of the pmu; find the pmu_ctx. 13622 */ 13623 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13624 if (IS_ERR(pmu_ctx)) { 13625 err = PTR_ERR(pmu_ctx); 13626 goto err_locked; 13627 } 13628 event->pmu_ctx = pmu_ctx; 13629 13630 if (output_event) { 13631 err = perf_event_set_output(event, output_event); 13632 if (err) 13633 goto err_context; 13634 } 13635 13636 if (!perf_event_validate_size(event)) { 13637 err = -E2BIG; 13638 goto err_context; 13639 } 13640 13641 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13642 err = -EINVAL; 13643 goto err_context; 13644 } 13645 13646 /* 13647 * Must be under the same ctx::mutex as perf_install_in_context(), 13648 * because we need to serialize with concurrent event creation. 13649 */ 13650 if (!exclusive_event_installable(event, ctx)) { 13651 err = -EBUSY; 13652 goto err_context; 13653 } 13654 13655 WARN_ON_ONCE(ctx->parent_ctx); 13656 13657 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13658 if (IS_ERR(event_file)) { 13659 err = PTR_ERR(event_file); 13660 event_file = NULL; 13661 goto err_context; 13662 } 13663 13664 /* 13665 * This is the point on no return; we cannot fail hereafter. This is 13666 * where we start modifying current state. 13667 */ 13668 13669 if (move_group) { 13670 perf_remove_from_context(group_leader, 0); 13671 put_pmu_ctx(group_leader->pmu_ctx); 13672 13673 for_each_sibling_event(sibling, group_leader) { 13674 perf_remove_from_context(sibling, 0); 13675 put_pmu_ctx(sibling->pmu_ctx); 13676 } 13677 13678 /* 13679 * Install the group siblings before the group leader. 13680 * 13681 * Because a group leader will try and install the entire group 13682 * (through the sibling list, which is still in-tact), we can 13683 * end up with siblings installed in the wrong context. 13684 * 13685 * By installing siblings first we NO-OP because they're not 13686 * reachable through the group lists. 13687 */ 13688 for_each_sibling_event(sibling, group_leader) { 13689 sibling->pmu_ctx = pmu_ctx; 13690 get_pmu_ctx(pmu_ctx); 13691 perf_event__state_init(sibling); 13692 perf_install_in_context(ctx, sibling, sibling->cpu); 13693 } 13694 13695 /* 13696 * Removing from the context ends up with disabled 13697 * event. What we want here is event in the initial 13698 * startup state, ready to be add into new context. 13699 */ 13700 group_leader->pmu_ctx = pmu_ctx; 13701 get_pmu_ctx(pmu_ctx); 13702 perf_event__state_init(group_leader); 13703 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13704 } 13705 13706 /* 13707 * Precalculate sample_data sizes; do while holding ctx::mutex such 13708 * that we're serialized against further additions and before 13709 * perf_install_in_context() which is the point the event is active and 13710 * can use these values. 13711 */ 13712 perf_event__header_size(event); 13713 perf_event__id_header_size(event); 13714 13715 event->owner = current; 13716 13717 perf_install_in_context(ctx, event, event->cpu); 13718 perf_unpin_context(ctx); 13719 13720 mutex_unlock(&ctx->mutex); 13721 13722 if (task) { 13723 up_read(&task->signal->exec_update_lock); 13724 put_task_struct(task); 13725 } 13726 13727 mutex_lock(¤t->perf_event_mutex); 13728 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13729 mutex_unlock(¤t->perf_event_mutex); 13730 13731 /* 13732 * File reference in group guarantees that group_leader has been 13733 * kept alive until we place the new event on the sibling_list. 13734 * This ensures destruction of the group leader will find 13735 * the pointer to itself in perf_group_detach(). 13736 */ 13737 fd_install(event_fd, event_file); 13738 return event_fd; 13739 13740 err_context: 13741 put_pmu_ctx(event->pmu_ctx); 13742 event->pmu_ctx = NULL; /* _free_event() */ 13743 err_locked: 13744 mutex_unlock(&ctx->mutex); 13745 perf_unpin_context(ctx); 13746 put_ctx(ctx); 13747 err_cred: 13748 if (task) 13749 up_read(&task->signal->exec_update_lock); 13750 err_alloc: 13751 put_event(event); 13752 err_task: 13753 if (task) 13754 put_task_struct(task); 13755 err_fd: 13756 put_unused_fd(event_fd); 13757 return err; 13758 } 13759 13760 /** 13761 * perf_event_create_kernel_counter 13762 * 13763 * @attr: attributes of the counter to create 13764 * @cpu: cpu in which the counter is bound 13765 * @task: task to profile (NULL for percpu) 13766 * @overflow_handler: callback to trigger when we hit the event 13767 * @context: context data could be used in overflow_handler callback 13768 */ 13769 struct perf_event * 13770 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13771 struct task_struct *task, 13772 perf_overflow_handler_t overflow_handler, 13773 void *context) 13774 { 13775 struct perf_event_pmu_context *pmu_ctx; 13776 struct perf_event_context *ctx; 13777 struct perf_event *event; 13778 struct pmu *pmu; 13779 int err; 13780 13781 /* 13782 * Grouping is not supported for kernel events, neither is 'AUX', 13783 * make sure the caller's intentions are adjusted. 13784 */ 13785 if (attr->aux_output || attr->aux_action) 13786 return ERR_PTR(-EINVAL); 13787 13788 /* 13789 * Event creation should be under SRCU, see perf_pmu_unregister(). 13790 */ 13791 guard(srcu)(&pmus_srcu); 13792 13793 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13794 overflow_handler, context, -1); 13795 if (IS_ERR(event)) { 13796 err = PTR_ERR(event); 13797 goto err; 13798 } 13799 13800 /* Mark owner so we could distinguish it from user events. */ 13801 event->owner = TASK_TOMBSTONE; 13802 pmu = event->pmu; 13803 13804 if (pmu->task_ctx_nr == perf_sw_context) 13805 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13806 13807 /* 13808 * Get the target context (task or percpu): 13809 */ 13810 ctx = find_get_context(task, event); 13811 if (IS_ERR(ctx)) { 13812 err = PTR_ERR(ctx); 13813 goto err_alloc; 13814 } 13815 13816 WARN_ON_ONCE(ctx->parent_ctx); 13817 mutex_lock(&ctx->mutex); 13818 if (ctx->task == TASK_TOMBSTONE) { 13819 err = -ESRCH; 13820 goto err_unlock; 13821 } 13822 13823 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13824 if (IS_ERR(pmu_ctx)) { 13825 err = PTR_ERR(pmu_ctx); 13826 goto err_unlock; 13827 } 13828 event->pmu_ctx = pmu_ctx; 13829 13830 if (!task) { 13831 /* 13832 * Check if the @cpu we're creating an event for is online. 13833 * 13834 * We use the perf_cpu_context::ctx::mutex to serialize against 13835 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13836 */ 13837 struct perf_cpu_context *cpuctx = 13838 container_of(ctx, struct perf_cpu_context, ctx); 13839 if (!cpuctx->online) { 13840 err = -ENODEV; 13841 goto err_pmu_ctx; 13842 } 13843 } 13844 13845 if (!exclusive_event_installable(event, ctx)) { 13846 err = -EBUSY; 13847 goto err_pmu_ctx; 13848 } 13849 13850 perf_install_in_context(ctx, event, event->cpu); 13851 perf_unpin_context(ctx); 13852 mutex_unlock(&ctx->mutex); 13853 13854 return event; 13855 13856 err_pmu_ctx: 13857 put_pmu_ctx(pmu_ctx); 13858 event->pmu_ctx = NULL; /* _free_event() */ 13859 err_unlock: 13860 mutex_unlock(&ctx->mutex); 13861 perf_unpin_context(ctx); 13862 put_ctx(ctx); 13863 err_alloc: 13864 put_event(event); 13865 err: 13866 return ERR_PTR(err); 13867 } 13868 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13869 13870 static void __perf_pmu_remove(struct perf_event_context *ctx, 13871 int cpu, struct pmu *pmu, 13872 struct perf_event_groups *groups, 13873 struct list_head *events) 13874 { 13875 struct perf_event *event, *sibling; 13876 13877 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13878 perf_remove_from_context(event, 0); 13879 put_pmu_ctx(event->pmu_ctx); 13880 list_add(&event->migrate_entry, events); 13881 13882 for_each_sibling_event(sibling, event) { 13883 perf_remove_from_context(sibling, 0); 13884 put_pmu_ctx(sibling->pmu_ctx); 13885 list_add(&sibling->migrate_entry, events); 13886 } 13887 } 13888 } 13889 13890 static void __perf_pmu_install_event(struct pmu *pmu, 13891 struct perf_event_context *ctx, 13892 int cpu, struct perf_event *event) 13893 { 13894 struct perf_event_pmu_context *epc; 13895 struct perf_event_context *old_ctx = event->ctx; 13896 13897 get_ctx(ctx); /* normally find_get_context() */ 13898 13899 event->cpu = cpu; 13900 epc = find_get_pmu_context(pmu, ctx, event); 13901 event->pmu_ctx = epc; 13902 13903 if (event->state >= PERF_EVENT_STATE_OFF) 13904 event->state = PERF_EVENT_STATE_INACTIVE; 13905 perf_install_in_context(ctx, event, cpu); 13906 13907 /* 13908 * Now that event->ctx is updated and visible, put the old ctx. 13909 */ 13910 put_ctx(old_ctx); 13911 } 13912 13913 static void __perf_pmu_install(struct perf_event_context *ctx, 13914 int cpu, struct pmu *pmu, struct list_head *events) 13915 { 13916 struct perf_event *event, *tmp; 13917 13918 /* 13919 * Re-instate events in 2 passes. 13920 * 13921 * Skip over group leaders and only install siblings on this first 13922 * pass, siblings will not get enabled without a leader, however a 13923 * leader will enable its siblings, even if those are still on the old 13924 * context. 13925 */ 13926 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13927 if (event->group_leader == event) 13928 continue; 13929 13930 list_del(&event->migrate_entry); 13931 __perf_pmu_install_event(pmu, ctx, cpu, event); 13932 } 13933 13934 /* 13935 * Once all the siblings are setup properly, install the group leaders 13936 * to make it go. 13937 */ 13938 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13939 list_del(&event->migrate_entry); 13940 __perf_pmu_install_event(pmu, ctx, cpu, event); 13941 } 13942 } 13943 13944 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13945 { 13946 struct perf_event_context *src_ctx, *dst_ctx; 13947 LIST_HEAD(events); 13948 13949 /* 13950 * Since per-cpu context is persistent, no need to grab an extra 13951 * reference. 13952 */ 13953 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13954 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13955 13956 /* 13957 * See perf_event_ctx_lock() for comments on the details 13958 * of swizzling perf_event::ctx. 13959 */ 13960 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13961 13962 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13963 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13964 13965 if (!list_empty(&events)) { 13966 /* 13967 * Wait for the events to quiesce before re-instating them. 13968 */ 13969 synchronize_rcu(); 13970 13971 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13972 } 13973 13974 mutex_unlock(&dst_ctx->mutex); 13975 mutex_unlock(&src_ctx->mutex); 13976 } 13977 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13978 13979 static void sync_child_event(struct perf_event *child_event) 13980 { 13981 struct perf_event *parent_event = child_event->parent; 13982 u64 child_val; 13983 13984 if (child_event->attr.inherit_stat) { 13985 struct task_struct *task = child_event->ctx->task; 13986 13987 if (task && task != TASK_TOMBSTONE) 13988 perf_event_read_event(child_event, task); 13989 } 13990 13991 child_val = perf_event_count(child_event, false); 13992 13993 /* 13994 * Add back the child's count to the parent's count: 13995 */ 13996 atomic64_add(child_val, &parent_event->child_count); 13997 atomic64_add(child_event->total_time_enabled, 13998 &parent_event->child_total_time_enabled); 13999 atomic64_add(child_event->total_time_running, 14000 &parent_event->child_total_time_running); 14001 } 14002 14003 static void 14004 perf_event_exit_event(struct perf_event *event, 14005 struct perf_event_context *ctx, bool revoke) 14006 { 14007 struct perf_event *parent_event = event->parent; 14008 unsigned long detach_flags = DETACH_EXIT; 14009 unsigned int attach_state; 14010 14011 if (parent_event) { 14012 /* 14013 * Do not destroy the 'original' grouping; because of the 14014 * context switch optimization the original events could've 14015 * ended up in a random child task. 14016 * 14017 * If we were to destroy the original group, all group related 14018 * operations would cease to function properly after this 14019 * random child dies. 14020 * 14021 * Do destroy all inherited groups, we don't care about those 14022 * and being thorough is better. 14023 */ 14024 detach_flags |= DETACH_GROUP | DETACH_CHILD; 14025 mutex_lock(&parent_event->child_mutex); 14026 /* PERF_ATTACH_ITRACE might be set concurrently */ 14027 attach_state = READ_ONCE(event->attach_state); 14028 } 14029 14030 if (revoke) 14031 detach_flags |= DETACH_GROUP | DETACH_REVOKE; 14032 14033 perf_remove_from_context(event, detach_flags); 14034 /* 14035 * Child events can be freed. 14036 */ 14037 if (parent_event) { 14038 mutex_unlock(&parent_event->child_mutex); 14039 14040 /* 14041 * Match the refcount initialization. Make sure it doesn't happen 14042 * twice if pmu_detach_event() calls it on an already exited task. 14043 */ 14044 if (attach_state & PERF_ATTACH_CHILD) { 14045 /* 14046 * Kick perf_poll() for is_event_hup(); 14047 */ 14048 perf_event_wakeup(parent_event); 14049 /* 14050 * pmu_detach_event() will have an extra refcount. 14051 * perf_pending_task() might have one too. 14052 */ 14053 put_event(event); 14054 } 14055 14056 return; 14057 } 14058 14059 /* 14060 * Parent events are governed by their filedesc, retain them. 14061 */ 14062 perf_event_wakeup(event); 14063 } 14064 14065 static void perf_event_exit_task_context(struct task_struct *task, bool exit) 14066 { 14067 struct perf_event_context *ctx, *clone_ctx = NULL; 14068 struct perf_event *child_event, *next; 14069 14070 ctx = perf_pin_task_context(task); 14071 if (!ctx) 14072 return; 14073 14074 /* 14075 * In order to reduce the amount of tricky in ctx tear-down, we hold 14076 * ctx::mutex over the entire thing. This serializes against almost 14077 * everything that wants to access the ctx. 14078 * 14079 * The exception is sys_perf_event_open() / 14080 * perf_event_create_kernel_count() which does find_get_context() 14081 * without ctx::mutex (it cannot because of the move_group double mutex 14082 * lock thing). See the comments in perf_install_in_context(). 14083 */ 14084 mutex_lock(&ctx->mutex); 14085 14086 /* 14087 * In a single ctx::lock section, de-schedule the events and detach the 14088 * context from the task such that we cannot ever get it scheduled back 14089 * in. 14090 */ 14091 raw_spin_lock_irq(&ctx->lock); 14092 if (exit) 14093 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 14094 14095 /* 14096 * Now that the context is inactive, destroy the task <-> ctx relation 14097 * and mark the context dead. 14098 */ 14099 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 14100 put_ctx(ctx); /* cannot be last */ 14101 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 14102 put_task_struct(task); /* cannot be last */ 14103 14104 clone_ctx = unclone_ctx(ctx); 14105 raw_spin_unlock_irq(&ctx->lock); 14106 14107 if (clone_ctx) 14108 put_ctx(clone_ctx); 14109 14110 /* 14111 * Report the task dead after unscheduling the events so that we 14112 * won't get any samples after PERF_RECORD_EXIT. We can however still 14113 * get a few PERF_RECORD_READ events. 14114 */ 14115 if (exit) 14116 perf_event_task(task, ctx, 0); 14117 14118 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) 14119 perf_event_exit_event(child_event, ctx, false); 14120 14121 mutex_unlock(&ctx->mutex); 14122 14123 if (!exit) { 14124 /* 14125 * perf_event_release_kernel() could still have a reference on 14126 * this context. In that case we must wait for these events to 14127 * have been freed (in particular all their references to this 14128 * task must've been dropped). 14129 * 14130 * Without this copy_process() will unconditionally free this 14131 * task (irrespective of its reference count) and 14132 * _free_event()'s put_task_struct(event->hw.target) will be a 14133 * use-after-free. 14134 * 14135 * Wait for all events to drop their context reference. 14136 */ 14137 wait_var_event(&ctx->refcount, 14138 refcount_read(&ctx->refcount) == 1); 14139 } 14140 put_ctx(ctx); 14141 } 14142 14143 /* 14144 * When a task exits, feed back event values to parent events. 14145 * 14146 * Can be called with exec_update_lock held when called from 14147 * setup_new_exec(). 14148 */ 14149 void perf_event_exit_task(struct task_struct *task) 14150 { 14151 struct perf_event *event, *tmp; 14152 14153 WARN_ON_ONCE(task != current); 14154 14155 mutex_lock(&task->perf_event_mutex); 14156 list_for_each_entry_safe(event, tmp, &task->perf_event_list, 14157 owner_entry) { 14158 list_del_init(&event->owner_entry); 14159 14160 /* 14161 * Ensure the list deletion is visible before we clear 14162 * the owner, closes a race against perf_release() where 14163 * we need to serialize on the owner->perf_event_mutex. 14164 */ 14165 smp_store_release(&event->owner, NULL); 14166 } 14167 mutex_unlock(&task->perf_event_mutex); 14168 14169 perf_event_exit_task_context(task, true); 14170 14171 /* 14172 * The perf_event_exit_task_context calls perf_event_task 14173 * with task's task_ctx, which generates EXIT events for 14174 * task contexts and sets task->perf_event_ctxp[] to NULL. 14175 * At this point we need to send EXIT events to cpu contexts. 14176 */ 14177 perf_event_task(task, NULL, 0); 14178 14179 /* 14180 * Detach the perf_ctx_data for the system-wide event. 14181 */ 14182 guard(percpu_read)(&global_ctx_data_rwsem); 14183 detach_task_ctx_data(task); 14184 } 14185 14186 /* 14187 * Free a context as created by inheritance by perf_event_init_task() below, 14188 * used by fork() in case of fail. 14189 * 14190 * Even though the task has never lived, the context and events have been 14191 * exposed through the child_list, so we must take care tearing it all down. 14192 */ 14193 void perf_event_free_task(struct task_struct *task) 14194 { 14195 perf_event_exit_task_context(task, false); 14196 } 14197 14198 void perf_event_delayed_put(struct task_struct *task) 14199 { 14200 WARN_ON_ONCE(task->perf_event_ctxp); 14201 } 14202 14203 struct file *perf_event_get(unsigned int fd) 14204 { 14205 struct file *file = fget(fd); 14206 if (!file) 14207 return ERR_PTR(-EBADF); 14208 14209 if (file->f_op != &perf_fops) { 14210 fput(file); 14211 return ERR_PTR(-EBADF); 14212 } 14213 14214 return file; 14215 } 14216 14217 const struct perf_event *perf_get_event(struct file *file) 14218 { 14219 if (file->f_op != &perf_fops) 14220 return ERR_PTR(-EINVAL); 14221 14222 return file->private_data; 14223 } 14224 14225 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 14226 { 14227 if (!event) 14228 return ERR_PTR(-EINVAL); 14229 14230 return &event->attr; 14231 } 14232 14233 int perf_allow_kernel(void) 14234 { 14235 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 14236 return -EACCES; 14237 14238 return security_perf_event_open(PERF_SECURITY_KERNEL); 14239 } 14240 EXPORT_SYMBOL_GPL(perf_allow_kernel); 14241 14242 /* 14243 * Inherit an event from parent task to child task. 14244 * 14245 * Returns: 14246 * - valid pointer on success 14247 * - NULL for orphaned events 14248 * - IS_ERR() on error 14249 */ 14250 static struct perf_event * 14251 inherit_event(struct perf_event *parent_event, 14252 struct task_struct *parent, 14253 struct perf_event_context *parent_ctx, 14254 struct task_struct *child, 14255 struct perf_event *group_leader, 14256 struct perf_event_context *child_ctx) 14257 { 14258 enum perf_event_state parent_state = parent_event->state; 14259 struct perf_event_pmu_context *pmu_ctx; 14260 struct perf_event *child_event; 14261 unsigned long flags; 14262 14263 /* 14264 * Instead of creating recursive hierarchies of events, 14265 * we link inherited events back to the original parent, 14266 * which has a filp for sure, which we use as the reference 14267 * count: 14268 */ 14269 if (parent_event->parent) 14270 parent_event = parent_event->parent; 14271 14272 if (parent_event->state <= PERF_EVENT_STATE_REVOKED) 14273 return NULL; 14274 14275 /* 14276 * Event creation should be under SRCU, see perf_pmu_unregister(). 14277 */ 14278 guard(srcu)(&pmus_srcu); 14279 14280 child_event = perf_event_alloc(&parent_event->attr, 14281 parent_event->cpu, 14282 child, 14283 group_leader, parent_event, 14284 NULL, NULL, -1); 14285 if (IS_ERR(child_event)) 14286 return child_event; 14287 14288 get_ctx(child_ctx); 14289 child_event->ctx = child_ctx; 14290 14291 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14292 if (IS_ERR(pmu_ctx)) { 14293 free_event(child_event); 14294 return ERR_CAST(pmu_ctx); 14295 } 14296 child_event->pmu_ctx = pmu_ctx; 14297 14298 /* 14299 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14300 * must be under the same lock in order to serialize against 14301 * perf_event_release_kernel(), such that either we must observe 14302 * is_orphaned_event() or they will observe us on the child_list. 14303 */ 14304 mutex_lock(&parent_event->child_mutex); 14305 if (is_orphaned_event(parent_event) || 14306 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14307 mutex_unlock(&parent_event->child_mutex); 14308 free_event(child_event); 14309 return NULL; 14310 } 14311 14312 /* 14313 * Make the child state follow the state of the parent event, 14314 * not its attr.disabled bit. We hold the parent's mutex, 14315 * so we won't race with perf_event_{en, dis}able_family. 14316 */ 14317 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14318 child_event->state = PERF_EVENT_STATE_INACTIVE; 14319 else 14320 child_event->state = PERF_EVENT_STATE_OFF; 14321 14322 if (parent_event->attr.freq) { 14323 u64 sample_period = parent_event->hw.sample_period; 14324 struct hw_perf_event *hwc = &child_event->hw; 14325 14326 hwc->sample_period = sample_period; 14327 hwc->last_period = sample_period; 14328 14329 local64_set(&hwc->period_left, sample_period); 14330 } 14331 14332 child_event->overflow_handler = parent_event->overflow_handler; 14333 child_event->overflow_handler_context 14334 = parent_event->overflow_handler_context; 14335 14336 /* 14337 * Precalculate sample_data sizes 14338 */ 14339 perf_event__header_size(child_event); 14340 perf_event__id_header_size(child_event); 14341 14342 /* 14343 * Link it up in the child's context: 14344 */ 14345 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14346 add_event_to_ctx(child_event, child_ctx); 14347 child_event->attach_state |= PERF_ATTACH_CHILD; 14348 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14349 14350 /* 14351 * Link this into the parent event's child list 14352 */ 14353 list_add_tail(&child_event->child_list, &parent_event->child_list); 14354 mutex_unlock(&parent_event->child_mutex); 14355 14356 return child_event; 14357 } 14358 14359 /* 14360 * Inherits an event group. 14361 * 14362 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14363 * This matches with perf_event_release_kernel() removing all child events. 14364 * 14365 * Returns: 14366 * - 0 on success 14367 * - <0 on error 14368 */ 14369 static int inherit_group(struct perf_event *parent_event, 14370 struct task_struct *parent, 14371 struct perf_event_context *parent_ctx, 14372 struct task_struct *child, 14373 struct perf_event_context *child_ctx) 14374 { 14375 struct perf_event *leader; 14376 struct perf_event *sub; 14377 struct perf_event *child_ctr; 14378 14379 leader = inherit_event(parent_event, parent, parent_ctx, 14380 child, NULL, child_ctx); 14381 if (IS_ERR(leader)) 14382 return PTR_ERR(leader); 14383 /* 14384 * @leader can be NULL here because of is_orphaned_event(). In this 14385 * case inherit_event() will create individual events, similar to what 14386 * perf_group_detach() would do anyway. 14387 */ 14388 for_each_sibling_event(sub, parent_event) { 14389 child_ctr = inherit_event(sub, parent, parent_ctx, 14390 child, leader, child_ctx); 14391 if (IS_ERR(child_ctr)) 14392 return PTR_ERR(child_ctr); 14393 14394 if (sub->aux_event == parent_event && child_ctr && 14395 !perf_get_aux_event(child_ctr, leader)) 14396 return -EINVAL; 14397 } 14398 if (leader) 14399 leader->group_generation = parent_event->group_generation; 14400 return 0; 14401 } 14402 14403 /* 14404 * Creates the child task context and tries to inherit the event-group. 14405 * 14406 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14407 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14408 * consistent with perf_event_release_kernel() removing all child events. 14409 * 14410 * Returns: 14411 * - 0 on success 14412 * - <0 on error 14413 */ 14414 static int 14415 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14416 struct perf_event_context *parent_ctx, 14417 struct task_struct *child, 14418 u64 clone_flags, int *inherited_all) 14419 { 14420 struct perf_event_context *child_ctx; 14421 int ret; 14422 14423 if (!event->attr.inherit || 14424 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14425 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14426 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14427 *inherited_all = 0; 14428 return 0; 14429 } 14430 14431 child_ctx = child->perf_event_ctxp; 14432 if (!child_ctx) { 14433 /* 14434 * This is executed from the parent task context, so 14435 * inherit events that have been marked for cloning. 14436 * First allocate and initialize a context for the 14437 * child. 14438 */ 14439 child_ctx = alloc_perf_context(child); 14440 if (!child_ctx) 14441 return -ENOMEM; 14442 14443 child->perf_event_ctxp = child_ctx; 14444 } 14445 14446 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14447 if (ret) 14448 *inherited_all = 0; 14449 14450 return ret; 14451 } 14452 14453 /* 14454 * Initialize the perf_event context in task_struct 14455 */ 14456 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14457 { 14458 struct perf_event_context *child_ctx, *parent_ctx; 14459 struct perf_event_context *cloned_ctx; 14460 struct perf_event *event; 14461 struct task_struct *parent = current; 14462 int inherited_all = 1; 14463 unsigned long flags; 14464 int ret = 0; 14465 14466 if (likely(!parent->perf_event_ctxp)) 14467 return 0; 14468 14469 /* 14470 * If the parent's context is a clone, pin it so it won't get 14471 * swapped under us. 14472 */ 14473 parent_ctx = perf_pin_task_context(parent); 14474 if (!parent_ctx) 14475 return 0; 14476 14477 /* 14478 * No need to check if parent_ctx != NULL here; since we saw 14479 * it non-NULL earlier, the only reason for it to become NULL 14480 * is if we exit, and since we're currently in the middle of 14481 * a fork we can't be exiting at the same time. 14482 */ 14483 14484 /* 14485 * Lock the parent list. No need to lock the child - not PID 14486 * hashed yet and not running, so nobody can access it. 14487 */ 14488 mutex_lock(&parent_ctx->mutex); 14489 14490 /* 14491 * We dont have to disable NMIs - we are only looking at 14492 * the list, not manipulating it: 14493 */ 14494 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14495 ret = inherit_task_group(event, parent, parent_ctx, 14496 child, clone_flags, &inherited_all); 14497 if (ret) 14498 goto out_unlock; 14499 } 14500 14501 /* 14502 * We can't hold ctx->lock when iterating the ->flexible_group list due 14503 * to allocations, but we need to prevent rotation because 14504 * rotate_ctx() will change the list from interrupt context. 14505 */ 14506 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14507 parent_ctx->rotate_disable = 1; 14508 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14509 14510 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14511 ret = inherit_task_group(event, parent, parent_ctx, 14512 child, clone_flags, &inherited_all); 14513 if (ret) 14514 goto out_unlock; 14515 } 14516 14517 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14518 parent_ctx->rotate_disable = 0; 14519 14520 child_ctx = child->perf_event_ctxp; 14521 14522 if (child_ctx && inherited_all) { 14523 /* 14524 * Mark the child context as a clone of the parent 14525 * context, or of whatever the parent is a clone of. 14526 * 14527 * Note that if the parent is a clone, the holding of 14528 * parent_ctx->lock avoids it from being uncloned. 14529 */ 14530 cloned_ctx = parent_ctx->parent_ctx; 14531 if (cloned_ctx) { 14532 child_ctx->parent_ctx = cloned_ctx; 14533 child_ctx->parent_gen = parent_ctx->parent_gen; 14534 } else { 14535 child_ctx->parent_ctx = parent_ctx; 14536 child_ctx->parent_gen = parent_ctx->generation; 14537 } 14538 get_ctx(child_ctx->parent_ctx); 14539 } 14540 14541 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14542 out_unlock: 14543 mutex_unlock(&parent_ctx->mutex); 14544 14545 perf_unpin_context(parent_ctx); 14546 put_ctx(parent_ctx); 14547 14548 return ret; 14549 } 14550 14551 /* 14552 * Initialize the perf_event context in task_struct 14553 */ 14554 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14555 { 14556 int ret; 14557 14558 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14559 child->perf_event_ctxp = NULL; 14560 mutex_init(&child->perf_event_mutex); 14561 INIT_LIST_HEAD(&child->perf_event_list); 14562 child->perf_ctx_data = NULL; 14563 14564 ret = perf_event_init_context(child, clone_flags); 14565 if (ret) { 14566 perf_event_free_task(child); 14567 return ret; 14568 } 14569 14570 return 0; 14571 } 14572 14573 static void __init perf_event_init_all_cpus(void) 14574 { 14575 struct swevent_htable *swhash; 14576 struct perf_cpu_context *cpuctx; 14577 int cpu; 14578 14579 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14580 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14581 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14582 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14583 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14584 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14585 14586 14587 for_each_possible_cpu(cpu) { 14588 swhash = &per_cpu(swevent_htable, cpu); 14589 mutex_init(&swhash->hlist_mutex); 14590 14591 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14592 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14593 14594 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14595 14596 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14597 __perf_event_init_context(&cpuctx->ctx); 14598 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14599 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14600 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14601 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14602 cpuctx->heap = cpuctx->heap_default; 14603 } 14604 } 14605 14606 static void perf_swevent_init_cpu(unsigned int cpu) 14607 { 14608 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14609 14610 mutex_lock(&swhash->hlist_mutex); 14611 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14612 struct swevent_hlist *hlist; 14613 14614 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14615 WARN_ON(!hlist); 14616 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14617 } 14618 mutex_unlock(&swhash->hlist_mutex); 14619 } 14620 14621 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14622 static void __perf_event_exit_context(void *__info) 14623 { 14624 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14625 struct perf_event_context *ctx = __info; 14626 struct perf_event *event; 14627 14628 raw_spin_lock(&ctx->lock); 14629 ctx_sched_out(ctx, NULL, EVENT_TIME); 14630 list_for_each_entry(event, &ctx->event_list, event_entry) 14631 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14632 raw_spin_unlock(&ctx->lock); 14633 } 14634 14635 static void perf_event_clear_cpumask(unsigned int cpu) 14636 { 14637 int target[PERF_PMU_MAX_SCOPE]; 14638 unsigned int scope; 14639 struct pmu *pmu; 14640 14641 cpumask_clear_cpu(cpu, perf_online_mask); 14642 14643 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14644 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14645 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14646 14647 target[scope] = -1; 14648 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14649 continue; 14650 14651 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14652 continue; 14653 target[scope] = cpumask_any_but(cpumask, cpu); 14654 if (target[scope] < nr_cpu_ids) 14655 cpumask_set_cpu(target[scope], pmu_cpumask); 14656 } 14657 14658 /* migrate */ 14659 list_for_each_entry(pmu, &pmus, entry) { 14660 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14661 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14662 continue; 14663 14664 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14665 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14666 } 14667 } 14668 14669 static void perf_event_exit_cpu_context(int cpu) 14670 { 14671 struct perf_cpu_context *cpuctx; 14672 struct perf_event_context *ctx; 14673 14674 // XXX simplify cpuctx->online 14675 mutex_lock(&pmus_lock); 14676 /* 14677 * Clear the cpumasks, and migrate to other CPUs if possible. 14678 * Must be invoked before the __perf_event_exit_context. 14679 */ 14680 perf_event_clear_cpumask(cpu); 14681 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14682 ctx = &cpuctx->ctx; 14683 14684 mutex_lock(&ctx->mutex); 14685 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14686 cpuctx->online = 0; 14687 mutex_unlock(&ctx->mutex); 14688 mutex_unlock(&pmus_lock); 14689 } 14690 #else 14691 14692 static void perf_event_exit_cpu_context(int cpu) { } 14693 14694 #endif 14695 14696 static void perf_event_setup_cpumask(unsigned int cpu) 14697 { 14698 struct cpumask *pmu_cpumask; 14699 unsigned int scope; 14700 14701 /* 14702 * Early boot stage, the cpumask hasn't been set yet. 14703 * The perf_online_<domain>_masks includes the first CPU of each domain. 14704 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14705 */ 14706 if (cpumask_empty(perf_online_mask)) { 14707 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14708 pmu_cpumask = perf_scope_cpumask(scope); 14709 if (WARN_ON_ONCE(!pmu_cpumask)) 14710 continue; 14711 cpumask_set_cpu(cpu, pmu_cpumask); 14712 } 14713 goto end; 14714 } 14715 14716 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14717 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14718 14719 pmu_cpumask = perf_scope_cpumask(scope); 14720 14721 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14722 continue; 14723 14724 if (!cpumask_empty(cpumask) && 14725 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14726 cpumask_set_cpu(cpu, pmu_cpumask); 14727 } 14728 end: 14729 cpumask_set_cpu(cpu, perf_online_mask); 14730 } 14731 14732 int perf_event_init_cpu(unsigned int cpu) 14733 { 14734 struct perf_cpu_context *cpuctx; 14735 struct perf_event_context *ctx; 14736 14737 perf_swevent_init_cpu(cpu); 14738 14739 mutex_lock(&pmus_lock); 14740 perf_event_setup_cpumask(cpu); 14741 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14742 ctx = &cpuctx->ctx; 14743 14744 mutex_lock(&ctx->mutex); 14745 cpuctx->online = 1; 14746 mutex_unlock(&ctx->mutex); 14747 mutex_unlock(&pmus_lock); 14748 14749 return 0; 14750 } 14751 14752 int perf_event_exit_cpu(unsigned int cpu) 14753 { 14754 perf_event_exit_cpu_context(cpu); 14755 return 0; 14756 } 14757 14758 static int 14759 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14760 { 14761 int cpu; 14762 14763 for_each_online_cpu(cpu) 14764 perf_event_exit_cpu(cpu); 14765 14766 return NOTIFY_OK; 14767 } 14768 14769 /* 14770 * Run the perf reboot notifier at the very last possible moment so that 14771 * the generic watchdog code runs as long as possible. 14772 */ 14773 static struct notifier_block perf_reboot_notifier = { 14774 .notifier_call = perf_reboot, 14775 .priority = INT_MIN, 14776 }; 14777 14778 void __init perf_event_init(void) 14779 { 14780 int ret; 14781 14782 idr_init(&pmu_idr); 14783 14784 perf_event_init_all_cpus(); 14785 init_srcu_struct(&pmus_srcu); 14786 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14787 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14788 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14789 perf_tp_register(); 14790 perf_event_init_cpu(smp_processor_id()); 14791 register_reboot_notifier(&perf_reboot_notifier); 14792 14793 ret = init_hw_breakpoint(); 14794 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14795 14796 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14797 14798 /* 14799 * Build time assertion that we keep the data_head at the intended 14800 * location. IOW, validation we got the __reserved[] size right. 14801 */ 14802 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14803 != 1024); 14804 } 14805 14806 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14807 char *page) 14808 { 14809 struct perf_pmu_events_attr *pmu_attr = 14810 container_of(attr, struct perf_pmu_events_attr, attr); 14811 14812 if (pmu_attr->event_str) 14813 return sprintf(page, "%s\n", pmu_attr->event_str); 14814 14815 return 0; 14816 } 14817 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14818 14819 static int __init perf_event_sysfs_init(void) 14820 { 14821 struct pmu *pmu; 14822 int ret; 14823 14824 mutex_lock(&pmus_lock); 14825 14826 ret = bus_register(&pmu_bus); 14827 if (ret) 14828 goto unlock; 14829 14830 list_for_each_entry(pmu, &pmus, entry) { 14831 if (pmu->dev) 14832 continue; 14833 14834 ret = pmu_dev_alloc(pmu); 14835 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14836 } 14837 pmu_bus_running = 1; 14838 ret = 0; 14839 14840 unlock: 14841 mutex_unlock(&pmus_lock); 14842 14843 return ret; 14844 } 14845 device_initcall(perf_event_sysfs_init); 14846 14847 #ifdef CONFIG_CGROUP_PERF 14848 static struct cgroup_subsys_state * 14849 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14850 { 14851 struct perf_cgroup *jc; 14852 14853 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14854 if (!jc) 14855 return ERR_PTR(-ENOMEM); 14856 14857 jc->info = alloc_percpu(struct perf_cgroup_info); 14858 if (!jc->info) { 14859 kfree(jc); 14860 return ERR_PTR(-ENOMEM); 14861 } 14862 14863 return &jc->css; 14864 } 14865 14866 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14867 { 14868 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14869 14870 free_percpu(jc->info); 14871 kfree(jc); 14872 } 14873 14874 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14875 { 14876 perf_event_cgroup(css->cgroup); 14877 return 0; 14878 } 14879 14880 static int __perf_cgroup_move(void *info) 14881 { 14882 struct task_struct *task = info; 14883 14884 preempt_disable(); 14885 perf_cgroup_switch(task); 14886 preempt_enable(); 14887 14888 return 0; 14889 } 14890 14891 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14892 { 14893 struct task_struct *task; 14894 struct cgroup_subsys_state *css; 14895 14896 cgroup_taskset_for_each(task, css, tset) 14897 task_function_call(task, __perf_cgroup_move, task); 14898 } 14899 14900 struct cgroup_subsys perf_event_cgrp_subsys = { 14901 .css_alloc = perf_cgroup_css_alloc, 14902 .css_free = perf_cgroup_css_free, 14903 .css_online = perf_cgroup_css_online, 14904 .attach = perf_cgroup_attach, 14905 /* 14906 * Implicitly enable on dfl hierarchy so that perf events can 14907 * always be filtered by cgroup2 path as long as perf_event 14908 * controller is not mounted on a legacy hierarchy. 14909 */ 14910 .implicit_on_dfl = true, 14911 .threaded = true, 14912 }; 14913 #endif /* CONFIG_CGROUP_PERF */ 14914 14915 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14916