1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events callchain code, extracted from core.c: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/slab.h> 13 #include <linux/sched/task_stack.h> 14 15 #include "internal.h" 16 17 struct callchain_cpus_entries { 18 struct rcu_head rcu_head; 19 struct perf_callchain_entry *cpu_entries[0]; 20 }; 21 22 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH; 23 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK; 24 25 static inline size_t perf_callchain_entry__sizeof(void) 26 { 27 return (sizeof(struct perf_callchain_entry) + 28 sizeof(__u64) * (sysctl_perf_event_max_stack + 29 sysctl_perf_event_max_contexts_per_stack)); 30 } 31 32 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 33 static atomic_t nr_callchain_events; 34 static DEFINE_MUTEX(callchain_mutex); 35 static struct callchain_cpus_entries *callchain_cpus_entries; 36 37 38 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, 39 struct pt_regs *regs) 40 { 41 } 42 43 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry, 44 struct pt_regs *regs) 45 { 46 } 47 48 static void release_callchain_buffers_rcu(struct rcu_head *head) 49 { 50 struct callchain_cpus_entries *entries; 51 int cpu; 52 53 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 54 55 for_each_possible_cpu(cpu) 56 kfree(entries->cpu_entries[cpu]); 57 58 kfree(entries); 59 } 60 61 static void release_callchain_buffers(void) 62 { 63 struct callchain_cpus_entries *entries; 64 65 entries = callchain_cpus_entries; 66 RCU_INIT_POINTER(callchain_cpus_entries, NULL); 67 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 68 } 69 70 static int alloc_callchain_buffers(void) 71 { 72 int cpu; 73 int size; 74 struct callchain_cpus_entries *entries; 75 76 /* 77 * We can't use the percpu allocation API for data that can be 78 * accessed from NMI. Use a temporary manual per cpu allocation 79 * until that gets sorted out. 80 */ 81 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 82 83 entries = kzalloc(size, GFP_KERNEL); 84 if (!entries) 85 return -ENOMEM; 86 87 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS; 88 89 for_each_possible_cpu(cpu) { 90 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 91 cpu_to_node(cpu)); 92 if (!entries->cpu_entries[cpu]) 93 goto fail; 94 } 95 96 rcu_assign_pointer(callchain_cpus_entries, entries); 97 98 return 0; 99 100 fail: 101 for_each_possible_cpu(cpu) 102 kfree(entries->cpu_entries[cpu]); 103 kfree(entries); 104 105 return -ENOMEM; 106 } 107 108 int get_callchain_buffers(int event_max_stack) 109 { 110 int err = 0; 111 int count; 112 113 mutex_lock(&callchain_mutex); 114 115 count = atomic_inc_return(&nr_callchain_events); 116 if (WARN_ON_ONCE(count < 1)) { 117 err = -EINVAL; 118 goto exit; 119 } 120 121 /* 122 * If requesting per event more than the global cap, 123 * return a different error to help userspace figure 124 * this out. 125 * 126 * And also do it here so that we have &callchain_mutex held. 127 */ 128 if (event_max_stack > sysctl_perf_event_max_stack) { 129 err = -EOVERFLOW; 130 goto exit; 131 } 132 133 if (count == 1) 134 err = alloc_callchain_buffers(); 135 exit: 136 if (err) 137 atomic_dec(&nr_callchain_events); 138 139 mutex_unlock(&callchain_mutex); 140 141 return err; 142 } 143 144 void put_callchain_buffers(void) 145 { 146 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 147 release_callchain_buffers(); 148 mutex_unlock(&callchain_mutex); 149 } 150 } 151 152 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 153 { 154 int cpu; 155 struct callchain_cpus_entries *entries; 156 157 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion)); 158 if (*rctx == -1) 159 return NULL; 160 161 entries = rcu_dereference(callchain_cpus_entries); 162 if (!entries) 163 return NULL; 164 165 cpu = smp_processor_id(); 166 167 return (((void *)entries->cpu_entries[cpu]) + 168 (*rctx * perf_callchain_entry__sizeof())); 169 } 170 171 static void 172 put_callchain_entry(int rctx) 173 { 174 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx); 175 } 176 177 struct perf_callchain_entry * 178 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 179 u32 max_stack, bool crosstask, bool add_mark) 180 { 181 struct perf_callchain_entry *entry; 182 struct perf_callchain_entry_ctx ctx; 183 int rctx; 184 185 entry = get_callchain_entry(&rctx); 186 if (rctx == -1) 187 return NULL; 188 189 if (!entry) 190 goto exit_put; 191 192 ctx.entry = entry; 193 ctx.max_stack = max_stack; 194 ctx.nr = entry->nr = init_nr; 195 ctx.contexts = 0; 196 ctx.contexts_maxed = false; 197 198 if (kernel && !user_mode(regs)) { 199 if (add_mark) 200 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL); 201 perf_callchain_kernel(&ctx, regs); 202 } 203 204 if (user) { 205 if (!user_mode(regs)) { 206 if (current->mm) 207 regs = task_pt_regs(current); 208 else 209 regs = NULL; 210 } 211 212 if (regs) { 213 mm_segment_t fs; 214 215 if (crosstask) 216 goto exit_put; 217 218 if (add_mark) 219 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER); 220 221 fs = get_fs(); 222 set_fs(USER_DS); 223 perf_callchain_user(&ctx, regs); 224 set_fs(fs); 225 } 226 } 227 228 exit_put: 229 put_callchain_entry(rctx); 230 231 return entry; 232 } 233 234 /* 235 * Used for sysctl_perf_event_max_stack and 236 * sysctl_perf_event_max_contexts_per_stack. 237 */ 238 int perf_event_max_stack_handler(struct ctl_table *table, int write, 239 void __user *buffer, size_t *lenp, loff_t *ppos) 240 { 241 int *value = table->data; 242 int new_value = *value, ret; 243 struct ctl_table new_table = *table; 244 245 new_table.data = &new_value; 246 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos); 247 if (ret || !write) 248 return ret; 249 250 mutex_lock(&callchain_mutex); 251 if (atomic_read(&nr_callchain_events)) 252 ret = -EBUSY; 253 else 254 *value = new_value; 255 256 mutex_unlock(&callchain_mutex); 257 258 return ret; 259 } 260