xref: /linux/kernel/events/callchain.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15 
16 struct callchain_cpus_entries {
17 	struct rcu_head			rcu_head;
18 	struct perf_callchain_entry	*cpu_entries[0];
19 };
20 
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
23 
24 static inline size_t perf_callchain_entry__sizeof(void)
25 {
26 	return (sizeof(struct perf_callchain_entry) +
27 		sizeof(__u64) * (sysctl_perf_event_max_stack +
28 				 sysctl_perf_event_max_contexts_per_stack));
29 }
30 
31 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
32 static atomic_t nr_callchain_events;
33 static DEFINE_MUTEX(callchain_mutex);
34 static struct callchain_cpus_entries *callchain_cpus_entries;
35 
36 
37 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
38 				  struct pt_regs *regs)
39 {
40 }
41 
42 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
43 				struct pt_regs *regs)
44 {
45 }
46 
47 static void release_callchain_buffers_rcu(struct rcu_head *head)
48 {
49 	struct callchain_cpus_entries *entries;
50 	int cpu;
51 
52 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
53 
54 	for_each_possible_cpu(cpu)
55 		kfree(entries->cpu_entries[cpu]);
56 
57 	kfree(entries);
58 }
59 
60 static void release_callchain_buffers(void)
61 {
62 	struct callchain_cpus_entries *entries;
63 
64 	entries = callchain_cpus_entries;
65 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
66 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
67 }
68 
69 static int alloc_callchain_buffers(void)
70 {
71 	int cpu;
72 	int size;
73 	struct callchain_cpus_entries *entries;
74 
75 	/*
76 	 * We can't use the percpu allocation API for data that can be
77 	 * accessed from NMI. Use a temporary manual per cpu allocation
78 	 * until that gets sorted out.
79 	 */
80 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
81 
82 	entries = kzalloc(size, GFP_KERNEL);
83 	if (!entries)
84 		return -ENOMEM;
85 
86 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
87 
88 	for_each_possible_cpu(cpu) {
89 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
90 							 cpu_to_node(cpu));
91 		if (!entries->cpu_entries[cpu])
92 			goto fail;
93 	}
94 
95 	rcu_assign_pointer(callchain_cpus_entries, entries);
96 
97 	return 0;
98 
99 fail:
100 	for_each_possible_cpu(cpu)
101 		kfree(entries->cpu_entries[cpu]);
102 	kfree(entries);
103 
104 	return -ENOMEM;
105 }
106 
107 int get_callchain_buffers(void)
108 {
109 	int err = 0;
110 	int count;
111 
112 	mutex_lock(&callchain_mutex);
113 
114 	count = atomic_inc_return(&nr_callchain_events);
115 	if (WARN_ON_ONCE(count < 1)) {
116 		err = -EINVAL;
117 		goto exit;
118 	}
119 
120 	if (count > 1) {
121 		/* If the allocation failed, give up */
122 		if (!callchain_cpus_entries)
123 			err = -ENOMEM;
124 		goto exit;
125 	}
126 
127 	err = alloc_callchain_buffers();
128 exit:
129 	if (err)
130 		atomic_dec(&nr_callchain_events);
131 
132 	mutex_unlock(&callchain_mutex);
133 
134 	return err;
135 }
136 
137 void put_callchain_buffers(void)
138 {
139 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
140 		release_callchain_buffers();
141 		mutex_unlock(&callchain_mutex);
142 	}
143 }
144 
145 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
146 {
147 	int cpu;
148 	struct callchain_cpus_entries *entries;
149 
150 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
151 	if (*rctx == -1)
152 		return NULL;
153 
154 	entries = rcu_dereference(callchain_cpus_entries);
155 	if (!entries)
156 		return NULL;
157 
158 	cpu = smp_processor_id();
159 
160 	return (((void *)entries->cpu_entries[cpu]) +
161 		(*rctx * perf_callchain_entry__sizeof()));
162 }
163 
164 static void
165 put_callchain_entry(int rctx)
166 {
167 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
168 }
169 
170 struct perf_callchain_entry *
171 perf_callchain(struct perf_event *event, struct pt_regs *regs)
172 {
173 	bool kernel = !event->attr.exclude_callchain_kernel;
174 	bool user   = !event->attr.exclude_callchain_user;
175 	/* Disallow cross-task user callchains. */
176 	bool crosstask = event->ctx->task && event->ctx->task != current;
177 
178 	if (!kernel && !user)
179 		return NULL;
180 
181 	return get_perf_callchain(regs, 0, kernel, user, sysctl_perf_event_max_stack, crosstask, true);
182 }
183 
184 struct perf_callchain_entry *
185 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
186 		   u32 max_stack, bool crosstask, bool add_mark)
187 {
188 	struct perf_callchain_entry *entry;
189 	struct perf_callchain_entry_ctx ctx;
190 	int rctx;
191 
192 	entry = get_callchain_entry(&rctx);
193 	if (rctx == -1)
194 		return NULL;
195 
196 	if (!entry)
197 		goto exit_put;
198 
199 	ctx.entry     = entry;
200 	ctx.max_stack = max_stack;
201 	ctx.nr	      = entry->nr = init_nr;
202 	ctx.contexts       = 0;
203 	ctx.contexts_maxed = false;
204 
205 	if (kernel && !user_mode(regs)) {
206 		if (add_mark)
207 			perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
208 		perf_callchain_kernel(&ctx, regs);
209 	}
210 
211 	if (user) {
212 		if (!user_mode(regs)) {
213 			if  (current->mm)
214 				regs = task_pt_regs(current);
215 			else
216 				regs = NULL;
217 		}
218 
219 		if (regs) {
220 			if (crosstask)
221 				goto exit_put;
222 
223 			if (add_mark)
224 				perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
225 			perf_callchain_user(&ctx, regs);
226 		}
227 	}
228 
229 exit_put:
230 	put_callchain_entry(rctx);
231 
232 	return entry;
233 }
234 
235 /*
236  * Used for sysctl_perf_event_max_stack and
237  * sysctl_perf_event_max_contexts_per_stack.
238  */
239 int perf_event_max_stack_handler(struct ctl_table *table, int write,
240 				 void __user *buffer, size_t *lenp, loff_t *ppos)
241 {
242 	int *value = table->data;
243 	int new_value = *value, ret;
244 	struct ctl_table new_table = *table;
245 
246 	new_table.data = &new_value;
247 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
248 	if (ret || !write)
249 		return ret;
250 
251 	mutex_lock(&callchain_mutex);
252 	if (atomic_read(&nr_callchain_events))
253 		ret = -EBUSY;
254 	else
255 		*value = new_value;
256 
257 	mutex_unlock(&callchain_mutex);
258 
259 	return ret;
260 }
261