xref: /linux/kernel/dma/swiotlb.c (revision f69e98a91a01fd7c5755dd710e94a17d6e9f583f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 enum swiotlb_force swiotlb_force;
66 
67 struct io_tlb_mem io_tlb_default_mem;
68 
69 phys_addr_t swiotlb_unencrypted_base;
70 
71 /*
72  * Max segment that we can provide which (if pages are contingous) will
73  * not be bounced (unless SWIOTLB_FORCE is set).
74  */
75 static unsigned int max_segment;
76 
77 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
78 
79 static int __init
80 setup_io_tlb_npages(char *str)
81 {
82 	if (isdigit(*str)) {
83 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
84 		default_nslabs =
85 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
86 	}
87 	if (*str == ',')
88 		++str;
89 	if (!strcmp(str, "force"))
90 		swiotlb_force = SWIOTLB_FORCE;
91 	else if (!strcmp(str, "noforce"))
92 		swiotlb_force = SWIOTLB_NO_FORCE;
93 
94 	return 0;
95 }
96 early_param("swiotlb", setup_io_tlb_npages);
97 
98 unsigned int swiotlb_max_segment(void)
99 {
100 	return io_tlb_default_mem.nslabs ? max_segment : 0;
101 }
102 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
103 
104 void swiotlb_set_max_segment(unsigned int val)
105 {
106 	if (swiotlb_force == SWIOTLB_FORCE)
107 		max_segment = 1;
108 	else
109 		max_segment = rounddown(val, PAGE_SIZE);
110 }
111 
112 unsigned long swiotlb_size_or_default(void)
113 {
114 	return default_nslabs << IO_TLB_SHIFT;
115 }
116 
117 void __init swiotlb_adjust_size(unsigned long size)
118 {
119 	/*
120 	 * If swiotlb parameter has not been specified, give a chance to
121 	 * architectures such as those supporting memory encryption to
122 	 * adjust/expand SWIOTLB size for their use.
123 	 */
124 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
125 		return;
126 	size = ALIGN(size, IO_TLB_SIZE);
127 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
128 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
129 }
130 
131 void swiotlb_print_info(void)
132 {
133 	struct io_tlb_mem *mem = &io_tlb_default_mem;
134 
135 	if (!mem->nslabs) {
136 		pr_warn("No low mem\n");
137 		return;
138 	}
139 
140 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
141 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
142 }
143 
144 static inline unsigned long io_tlb_offset(unsigned long val)
145 {
146 	return val & (IO_TLB_SEGSIZE - 1);
147 }
148 
149 static inline unsigned long nr_slots(u64 val)
150 {
151 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
152 }
153 
154 /*
155  * Remap swioltb memory in the unencrypted physical address space
156  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
157  * Isolation VMs).
158  */
159 #ifdef CONFIG_HAS_IOMEM
160 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
161 {
162 	void *vaddr = NULL;
163 
164 	if (swiotlb_unencrypted_base) {
165 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
166 
167 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
168 		if (!vaddr)
169 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
170 			       &paddr, bytes);
171 	}
172 
173 	return vaddr;
174 }
175 #else
176 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
177 {
178 	return NULL;
179 }
180 #endif
181 
182 /*
183  * Early SWIOTLB allocation may be too early to allow an architecture to
184  * perform the desired operations.  This function allows the architecture to
185  * call SWIOTLB when the operations are possible.  It needs to be called
186  * before the SWIOTLB memory is used.
187  */
188 void __init swiotlb_update_mem_attributes(void)
189 {
190 	struct io_tlb_mem *mem = &io_tlb_default_mem;
191 	void *vaddr;
192 	unsigned long bytes;
193 
194 	if (!mem->nslabs || mem->late_alloc)
195 		return;
196 	vaddr = phys_to_virt(mem->start);
197 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
198 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
199 
200 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
201 	if (!mem->vaddr)
202 		mem->vaddr = vaddr;
203 }
204 
205 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
206 				    unsigned long nslabs, bool late_alloc)
207 {
208 	void *vaddr = phys_to_virt(start);
209 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
210 
211 	mem->nslabs = nslabs;
212 	mem->start = start;
213 	mem->end = mem->start + bytes;
214 	mem->index = 0;
215 	mem->late_alloc = late_alloc;
216 
217 	if (swiotlb_force == SWIOTLB_FORCE)
218 		mem->force_bounce = true;
219 
220 	spin_lock_init(&mem->lock);
221 	for (i = 0; i < mem->nslabs; i++) {
222 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
223 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
224 		mem->slots[i].alloc_size = 0;
225 	}
226 
227 	/*
228 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
229 	 * be remapped and cleared in swiotlb_update_mem_attributes.
230 	 */
231 	if (swiotlb_unencrypted_base)
232 		return;
233 
234 	memset(vaddr, 0, bytes);
235 	mem->vaddr = vaddr;
236 	return;
237 }
238 
239 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
240 {
241 	struct io_tlb_mem *mem = &io_tlb_default_mem;
242 	size_t alloc_size;
243 
244 	if (swiotlb_force == SWIOTLB_NO_FORCE)
245 		return 0;
246 
247 	/* protect against double initialization */
248 	if (WARN_ON_ONCE(mem->nslabs))
249 		return -ENOMEM;
250 
251 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
252 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
253 	if (!mem->slots)
254 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
255 		      __func__, alloc_size, PAGE_SIZE);
256 
257 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
258 
259 	if (verbose)
260 		swiotlb_print_info();
261 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
262 	return 0;
263 }
264 
265 /*
266  * Statically reserve bounce buffer space and initialize bounce buffer data
267  * structures for the software IO TLB used to implement the DMA API.
268  */
269 void  __init
270 swiotlb_init(int verbose)
271 {
272 	size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
273 	void *tlb;
274 
275 	if (swiotlb_force == SWIOTLB_NO_FORCE)
276 		return;
277 
278 	/* Get IO TLB memory from the low pages */
279 	tlb = memblock_alloc_low(bytes, PAGE_SIZE);
280 	if (!tlb)
281 		goto fail;
282 	if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
283 		goto fail_free_mem;
284 	return;
285 
286 fail_free_mem:
287 	memblock_free(tlb, bytes);
288 fail:
289 	pr_warn("Cannot allocate buffer");
290 }
291 
292 /*
293  * Systems with larger DMA zones (those that don't support ISA) can
294  * initialize the swiotlb later using the slab allocator if needed.
295  * This should be just like above, but with some error catching.
296  */
297 int
298 swiotlb_late_init_with_default_size(size_t default_size)
299 {
300 	unsigned long nslabs =
301 		ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
302 	unsigned long bytes;
303 	unsigned char *vstart = NULL;
304 	unsigned int order;
305 	int rc = 0;
306 
307 	if (swiotlb_force == SWIOTLB_NO_FORCE)
308 		return 0;
309 
310 	/*
311 	 * Get IO TLB memory from the low pages
312 	 */
313 	order = get_order(nslabs << IO_TLB_SHIFT);
314 	nslabs = SLABS_PER_PAGE << order;
315 	bytes = nslabs << IO_TLB_SHIFT;
316 
317 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
318 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
319 						  order);
320 		if (vstart)
321 			break;
322 		order--;
323 	}
324 
325 	if (!vstart)
326 		return -ENOMEM;
327 
328 	if (order != get_order(bytes)) {
329 		pr_warn("only able to allocate %ld MB\n",
330 			(PAGE_SIZE << order) >> 20);
331 		nslabs = SLABS_PER_PAGE << order;
332 	}
333 	rc = swiotlb_late_init_with_tbl(vstart, nslabs);
334 	if (rc)
335 		free_pages((unsigned long)vstart, order);
336 
337 	return rc;
338 }
339 
340 int
341 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
342 {
343 	struct io_tlb_mem *mem = &io_tlb_default_mem;
344 	unsigned long bytes = nslabs << IO_TLB_SHIFT;
345 
346 	if (swiotlb_force == SWIOTLB_NO_FORCE)
347 		return 0;
348 
349 	/* protect against double initialization */
350 	if (WARN_ON_ONCE(mem->nslabs))
351 		return -ENOMEM;
352 
353 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
354 		get_order(array_size(sizeof(*mem->slots), nslabs)));
355 	if (!mem->slots)
356 		return -ENOMEM;
357 
358 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
359 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
360 
361 	swiotlb_print_info();
362 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
363 	return 0;
364 }
365 
366 void __init swiotlb_exit(void)
367 {
368 	struct io_tlb_mem *mem = &io_tlb_default_mem;
369 	unsigned long tbl_vaddr;
370 	size_t tbl_size, slots_size;
371 
372 	if (!mem->nslabs)
373 		return;
374 
375 	pr_info("tearing down default memory pool\n");
376 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
377 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
378 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
379 
380 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
381 	if (mem->late_alloc) {
382 		free_pages(tbl_vaddr, get_order(tbl_size));
383 		free_pages((unsigned long)mem->slots, get_order(slots_size));
384 	} else {
385 		memblock_free_late(mem->start, tbl_size);
386 		memblock_free_late(__pa(mem->slots), slots_size);
387 	}
388 
389 	memset(mem, 0, sizeof(*mem));
390 }
391 
392 /*
393  * Return the offset into a iotlb slot required to keep the device happy.
394  */
395 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
396 {
397 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
398 }
399 
400 /*
401  * Bounce: copy the swiotlb buffer from or back to the original dma location
402  */
403 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
404 			   enum dma_data_direction dir)
405 {
406 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
407 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
408 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
409 	size_t alloc_size = mem->slots[index].alloc_size;
410 	unsigned long pfn = PFN_DOWN(orig_addr);
411 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
412 	unsigned int tlb_offset, orig_addr_offset;
413 
414 	if (orig_addr == INVALID_PHYS_ADDR)
415 		return;
416 
417 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
418 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
419 	if (tlb_offset < orig_addr_offset) {
420 		dev_WARN_ONCE(dev, 1,
421 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
422 			orig_addr_offset, tlb_offset);
423 		return;
424 	}
425 
426 	tlb_offset -= orig_addr_offset;
427 	if (tlb_offset > alloc_size) {
428 		dev_WARN_ONCE(dev, 1,
429 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
430 			alloc_size, size, tlb_offset);
431 		return;
432 	}
433 
434 	orig_addr += tlb_offset;
435 	alloc_size -= tlb_offset;
436 
437 	if (size > alloc_size) {
438 		dev_WARN_ONCE(dev, 1,
439 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
440 			alloc_size, size);
441 		size = alloc_size;
442 	}
443 
444 	if (PageHighMem(pfn_to_page(pfn))) {
445 		/* The buffer does not have a mapping.  Map it in and copy */
446 		unsigned int offset = orig_addr & ~PAGE_MASK;
447 		char *buffer;
448 		unsigned int sz = 0;
449 		unsigned long flags;
450 
451 		while (size) {
452 			sz = min_t(size_t, PAGE_SIZE - offset, size);
453 
454 			local_irq_save(flags);
455 			buffer = kmap_atomic(pfn_to_page(pfn));
456 			if (dir == DMA_TO_DEVICE)
457 				memcpy(vaddr, buffer + offset, sz);
458 			else
459 				memcpy(buffer + offset, vaddr, sz);
460 			kunmap_atomic(buffer);
461 			local_irq_restore(flags);
462 
463 			size -= sz;
464 			pfn++;
465 			vaddr += sz;
466 			offset = 0;
467 		}
468 	} else if (dir == DMA_TO_DEVICE) {
469 		memcpy(vaddr, phys_to_virt(orig_addr), size);
470 	} else {
471 		memcpy(phys_to_virt(orig_addr), vaddr, size);
472 	}
473 }
474 
475 #define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
476 
477 /*
478  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
479  */
480 static inline unsigned long get_max_slots(unsigned long boundary_mask)
481 {
482 	if (boundary_mask == ~0UL)
483 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
484 	return nr_slots(boundary_mask + 1);
485 }
486 
487 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
488 {
489 	if (index >= mem->nslabs)
490 		return 0;
491 	return index;
492 }
493 
494 /*
495  * Find a suitable number of IO TLB entries size that will fit this request and
496  * allocate a buffer from that IO TLB pool.
497  */
498 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
499 			      size_t alloc_size, unsigned int alloc_align_mask)
500 {
501 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
502 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
503 	dma_addr_t tbl_dma_addr =
504 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
505 	unsigned long max_slots = get_max_slots(boundary_mask);
506 	unsigned int iotlb_align_mask =
507 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
508 	unsigned int nslots = nr_slots(alloc_size), stride;
509 	unsigned int index, wrap, count = 0, i;
510 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
511 	unsigned long flags;
512 
513 	BUG_ON(!nslots);
514 
515 	/*
516 	 * For mappings with an alignment requirement don't bother looping to
517 	 * unaligned slots once we found an aligned one.  For allocations of
518 	 * PAGE_SIZE or larger only look for page aligned allocations.
519 	 */
520 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
521 	if (alloc_size >= PAGE_SIZE)
522 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
523 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
524 
525 	spin_lock_irqsave(&mem->lock, flags);
526 	if (unlikely(nslots > mem->nslabs - mem->used))
527 		goto not_found;
528 
529 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
530 	do {
531 		if (orig_addr &&
532 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
533 			    (orig_addr & iotlb_align_mask)) {
534 			index = wrap_index(mem, index + 1);
535 			continue;
536 		}
537 
538 		/*
539 		 * If we find a slot that indicates we have 'nslots' number of
540 		 * contiguous buffers, we allocate the buffers from that slot
541 		 * and mark the entries as '0' indicating unavailable.
542 		 */
543 		if (!iommu_is_span_boundary(index, nslots,
544 					    nr_slots(tbl_dma_addr),
545 					    max_slots)) {
546 			if (mem->slots[index].list >= nslots)
547 				goto found;
548 		}
549 		index = wrap_index(mem, index + stride);
550 	} while (index != wrap);
551 
552 not_found:
553 	spin_unlock_irqrestore(&mem->lock, flags);
554 	return -1;
555 
556 found:
557 	for (i = index; i < index + nslots; i++) {
558 		mem->slots[i].list = 0;
559 		mem->slots[i].alloc_size =
560 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
561 	}
562 	for (i = index - 1;
563 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
564 	     mem->slots[i].list; i--)
565 		mem->slots[i].list = ++count;
566 
567 	/*
568 	 * Update the indices to avoid searching in the next round.
569 	 */
570 	if (index + nslots < mem->nslabs)
571 		mem->index = index + nslots;
572 	else
573 		mem->index = 0;
574 	mem->used += nslots;
575 
576 	spin_unlock_irqrestore(&mem->lock, flags);
577 	return index;
578 }
579 
580 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
581 		size_t mapping_size, size_t alloc_size,
582 		unsigned int alloc_align_mask, enum dma_data_direction dir,
583 		unsigned long attrs)
584 {
585 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
586 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
587 	unsigned int i;
588 	int index;
589 	phys_addr_t tlb_addr;
590 
591 	if (!mem)
592 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
593 
594 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
595 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
596 
597 	if (mapping_size > alloc_size) {
598 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
599 			      mapping_size, alloc_size);
600 		return (phys_addr_t)DMA_MAPPING_ERROR;
601 	}
602 
603 	index = swiotlb_find_slots(dev, orig_addr,
604 				   alloc_size + offset, alloc_align_mask);
605 	if (index == -1) {
606 		if (!(attrs & DMA_ATTR_NO_WARN))
607 			dev_warn_ratelimited(dev,
608 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
609 				 alloc_size, mem->nslabs, mem->used);
610 		return (phys_addr_t)DMA_MAPPING_ERROR;
611 	}
612 
613 	/*
614 	 * Save away the mapping from the original address to the DMA address.
615 	 * This is needed when we sync the memory.  Then we sync the buffer if
616 	 * needed.
617 	 */
618 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
619 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
620 	tlb_addr = slot_addr(mem->start, index) + offset;
621 	/*
622 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
623 	 * to the tlb buffer, if we knew for sure the device will
624 	 * overwirte the entire current content. But we don't. Thus
625 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
626 	 * kernel memory) to user-space.
627 	 */
628 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
629 	return tlb_addr;
630 }
631 
632 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
633 {
634 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
635 	unsigned long flags;
636 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
637 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
638 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
639 	int count, i;
640 
641 	/*
642 	 * Return the buffer to the free list by setting the corresponding
643 	 * entries to indicate the number of contiguous entries available.
644 	 * While returning the entries to the free list, we merge the entries
645 	 * with slots below and above the pool being returned.
646 	 */
647 	spin_lock_irqsave(&mem->lock, flags);
648 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
649 		count = mem->slots[index + nslots].list;
650 	else
651 		count = 0;
652 
653 	/*
654 	 * Step 1: return the slots to the free list, merging the slots with
655 	 * superceeding slots
656 	 */
657 	for (i = index + nslots - 1; i >= index; i--) {
658 		mem->slots[i].list = ++count;
659 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
660 		mem->slots[i].alloc_size = 0;
661 	}
662 
663 	/*
664 	 * Step 2: merge the returned slots with the preceding slots, if
665 	 * available (non zero)
666 	 */
667 	for (i = index - 1;
668 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
669 	     i--)
670 		mem->slots[i].list = ++count;
671 	mem->used -= nslots;
672 	spin_unlock_irqrestore(&mem->lock, flags);
673 }
674 
675 /*
676  * tlb_addr is the physical address of the bounce buffer to unmap.
677  */
678 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
679 			      size_t mapping_size, enum dma_data_direction dir,
680 			      unsigned long attrs)
681 {
682 	/*
683 	 * First, sync the memory before unmapping the entry
684 	 */
685 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
686 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
687 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
688 
689 	swiotlb_release_slots(dev, tlb_addr);
690 }
691 
692 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
693 		size_t size, enum dma_data_direction dir)
694 {
695 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
696 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
697 	else
698 		BUG_ON(dir != DMA_FROM_DEVICE);
699 }
700 
701 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
702 		size_t size, enum dma_data_direction dir)
703 {
704 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
705 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
706 	else
707 		BUG_ON(dir != DMA_TO_DEVICE);
708 }
709 
710 /*
711  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
712  * to the device copy the data into it as well.
713  */
714 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
715 		enum dma_data_direction dir, unsigned long attrs)
716 {
717 	phys_addr_t swiotlb_addr;
718 	dma_addr_t dma_addr;
719 
720 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
721 			      swiotlb_force);
722 
723 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
724 			attrs);
725 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
726 		return DMA_MAPPING_ERROR;
727 
728 	/* Ensure that the address returned is DMA'ble */
729 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
730 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
731 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
732 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
733 		dev_WARN_ONCE(dev, 1,
734 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
735 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
736 		return DMA_MAPPING_ERROR;
737 	}
738 
739 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
740 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
741 	return dma_addr;
742 }
743 
744 size_t swiotlb_max_mapping_size(struct device *dev)
745 {
746 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
747 }
748 
749 bool is_swiotlb_active(struct device *dev)
750 {
751 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
752 
753 	return mem && mem->nslabs;
754 }
755 EXPORT_SYMBOL_GPL(is_swiotlb_active);
756 
757 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
758 					 const char *dirname)
759 {
760 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
761 	if (!mem->nslabs)
762 		return;
763 
764 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
765 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
766 }
767 
768 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
769 {
770 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
771 	return 0;
772 }
773 
774 #ifdef CONFIG_DEBUG_FS
775 late_initcall(swiotlb_create_default_debugfs);
776 #endif
777 
778 #ifdef CONFIG_DMA_RESTRICTED_POOL
779 
780 struct page *swiotlb_alloc(struct device *dev, size_t size)
781 {
782 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
783 	phys_addr_t tlb_addr;
784 	int index;
785 
786 	if (!mem)
787 		return NULL;
788 
789 	index = swiotlb_find_slots(dev, 0, size, 0);
790 	if (index == -1)
791 		return NULL;
792 
793 	tlb_addr = slot_addr(mem->start, index);
794 
795 	return pfn_to_page(PFN_DOWN(tlb_addr));
796 }
797 
798 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
799 {
800 	phys_addr_t tlb_addr = page_to_phys(page);
801 
802 	if (!is_swiotlb_buffer(dev, tlb_addr))
803 		return false;
804 
805 	swiotlb_release_slots(dev, tlb_addr);
806 
807 	return true;
808 }
809 
810 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
811 				    struct device *dev)
812 {
813 	struct io_tlb_mem *mem = rmem->priv;
814 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
815 
816 	/*
817 	 * Since multiple devices can share the same pool, the private data,
818 	 * io_tlb_mem struct, will be initialized by the first device attached
819 	 * to it.
820 	 */
821 	if (!mem) {
822 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
823 		if (!mem)
824 			return -ENOMEM;
825 
826 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
827 		if (!mem->slots) {
828 			kfree(mem);
829 			return -ENOMEM;
830 		}
831 
832 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
833 				     rmem->size >> PAGE_SHIFT);
834 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
835 		mem->force_bounce = true;
836 		mem->for_alloc = true;
837 
838 		rmem->priv = mem;
839 
840 		swiotlb_create_debugfs_files(mem, rmem->name);
841 	}
842 
843 	dev->dma_io_tlb_mem = mem;
844 
845 	return 0;
846 }
847 
848 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
849 					struct device *dev)
850 {
851 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
852 }
853 
854 static const struct reserved_mem_ops rmem_swiotlb_ops = {
855 	.device_init = rmem_swiotlb_device_init,
856 	.device_release = rmem_swiotlb_device_release,
857 };
858 
859 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
860 {
861 	unsigned long node = rmem->fdt_node;
862 
863 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
864 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
865 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
866 	    of_get_flat_dt_prop(node, "no-map", NULL))
867 		return -EINVAL;
868 
869 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
870 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
871 		return -EINVAL;
872 	}
873 
874 	rmem->ops = &rmem_swiotlb_ops;
875 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
876 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
877 	return 0;
878 }
879 
880 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
881 #endif /* CONFIG_DMA_RESTRICTED_POOL */
882