xref: /linux/kernel/dma/swiotlb.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/mem_encrypt.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 
43 #include <asm/io.h>
44 #include <asm/dma.h>
45 
46 #include <linux/init.h>
47 #include <linux/memblock.h>
48 #include <linux/iommu-helper.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/swiotlb.h>
52 
53 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
54 
55 /*
56  * Minimum IO TLB size to bother booting with.  Systems with mainly
57  * 64bit capable cards will only lightly use the swiotlb.  If we can't
58  * allocate a contiguous 1MB, we're probably in trouble anyway.
59  */
60 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
61 
62 enum swiotlb_force swiotlb_force;
63 
64 /*
65  * Used to do a quick range check in swiotlb_tbl_unmap_single and
66  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
67  * API.
68  */
69 phys_addr_t io_tlb_start, io_tlb_end;
70 
71 /*
72  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
73  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
74  */
75 static unsigned long io_tlb_nslabs;
76 
77 /*
78  * The number of used IO TLB block
79  */
80 static unsigned long io_tlb_used;
81 
82 /*
83  * This is a free list describing the number of free entries available from
84  * each index
85  */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88 
89 /*
90  * Max segment that we can provide which (if pages are contingous) will
91  * not be bounced (unless SWIOTLB_FORCE is set).
92  */
93 static unsigned int max_segment;
94 
95 /*
96  * We need to save away the original address corresponding to a mapped entry
97  * for the sync operations.
98  */
99 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
100 static phys_addr_t *io_tlb_orig_addr;
101 
102 /*
103  * The mapped buffer's size should be validated during a sync operation.
104  */
105 static size_t *io_tlb_orig_size;
106 
107 /*
108  * Protect the above data structures in the map and unmap calls
109  */
110 static DEFINE_SPINLOCK(io_tlb_lock);
111 
112 static int late_alloc;
113 
114 static int __init
115 setup_io_tlb_npages(char *str)
116 {
117 	if (isdigit(*str)) {
118 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
119 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
120 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
121 	}
122 	if (*str == ',')
123 		++str;
124 	if (!strcmp(str, "force")) {
125 		swiotlb_force = SWIOTLB_FORCE;
126 	} else if (!strcmp(str, "noforce")) {
127 		swiotlb_force = SWIOTLB_NO_FORCE;
128 		io_tlb_nslabs = 1;
129 	}
130 
131 	return 0;
132 }
133 early_param("swiotlb", setup_io_tlb_npages);
134 
135 static bool no_iotlb_memory;
136 
137 unsigned long swiotlb_nr_tbl(void)
138 {
139 	return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
140 }
141 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
142 
143 unsigned int swiotlb_max_segment(void)
144 {
145 	return unlikely(no_iotlb_memory) ? 0 : max_segment;
146 }
147 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
148 
149 void swiotlb_set_max_segment(unsigned int val)
150 {
151 	if (swiotlb_force == SWIOTLB_FORCE)
152 		max_segment = 1;
153 	else
154 		max_segment = rounddown(val, PAGE_SIZE);
155 }
156 
157 unsigned long swiotlb_size_or_default(void)
158 {
159 	unsigned long size;
160 
161 	size = io_tlb_nslabs << IO_TLB_SHIFT;
162 
163 	return size ? size : (IO_TLB_DEFAULT_SIZE);
164 }
165 
166 void __init swiotlb_adjust_size(unsigned long new_size)
167 {
168 	unsigned long size;
169 
170 	/*
171 	 * If swiotlb parameter has not been specified, give a chance to
172 	 * architectures such as those supporting memory encryption to
173 	 * adjust/expand SWIOTLB size for their use.
174 	 */
175 	if (!io_tlb_nslabs) {
176 		size = ALIGN(new_size, IO_TLB_SIZE);
177 		io_tlb_nslabs = size >> IO_TLB_SHIFT;
178 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
179 
180 		pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
181 	}
182 }
183 
184 void swiotlb_print_info(void)
185 {
186 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
187 
188 	if (no_iotlb_memory) {
189 		pr_warn("No low mem\n");
190 		return;
191 	}
192 
193 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &io_tlb_start, &io_tlb_end,
194 	       bytes >> 20);
195 }
196 
197 static inline unsigned long io_tlb_offset(unsigned long val)
198 {
199 	return val & (IO_TLB_SEGSIZE - 1);
200 }
201 
202 static inline unsigned long nr_slots(u64 val)
203 {
204 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
205 }
206 
207 /*
208  * Early SWIOTLB allocation may be too early to allow an architecture to
209  * perform the desired operations.  This function allows the architecture to
210  * call SWIOTLB when the operations are possible.  It needs to be called
211  * before the SWIOTLB memory is used.
212  */
213 void __init swiotlb_update_mem_attributes(void)
214 {
215 	void *vaddr;
216 	unsigned long bytes;
217 
218 	if (no_iotlb_memory || late_alloc)
219 		return;
220 
221 	vaddr = phys_to_virt(io_tlb_start);
222 	bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
223 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
224 	memset(vaddr, 0, bytes);
225 }
226 
227 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
228 {
229 	unsigned long i, bytes;
230 	size_t alloc_size;
231 
232 	bytes = nslabs << IO_TLB_SHIFT;
233 
234 	io_tlb_nslabs = nslabs;
235 	io_tlb_start = __pa(tlb);
236 	io_tlb_end = io_tlb_start + bytes;
237 
238 	/*
239 	 * Allocate and initialize the free list array.  This array is used
240 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
241 	 * between io_tlb_start and io_tlb_end.
242 	 */
243 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
244 	io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
245 	if (!io_tlb_list)
246 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
247 		      __func__, alloc_size, PAGE_SIZE);
248 
249 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
250 	io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
251 	if (!io_tlb_orig_addr)
252 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
253 		      __func__, alloc_size, PAGE_SIZE);
254 
255 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t));
256 	io_tlb_orig_size = memblock_alloc(alloc_size, PAGE_SIZE);
257 	if (!io_tlb_orig_size)
258 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
259 		      __func__, alloc_size, PAGE_SIZE);
260 
261 	for (i = 0; i < io_tlb_nslabs; i++) {
262 		io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i);
263 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
264 		io_tlb_orig_size[i] = 0;
265 	}
266 	io_tlb_index = 0;
267 	no_iotlb_memory = false;
268 
269 	if (verbose)
270 		swiotlb_print_info();
271 
272 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
273 	return 0;
274 }
275 
276 /*
277  * Statically reserve bounce buffer space and initialize bounce buffer data
278  * structures for the software IO TLB used to implement the DMA API.
279  */
280 void  __init
281 swiotlb_init(int verbose)
282 {
283 	size_t default_size = IO_TLB_DEFAULT_SIZE;
284 	unsigned char *vstart;
285 	unsigned long bytes;
286 
287 	if (!io_tlb_nslabs) {
288 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
289 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
290 	}
291 
292 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
293 
294 	/* Get IO TLB memory from the low pages */
295 	vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
296 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
297 		return;
298 
299 	if (io_tlb_start) {
300 		memblock_free_early(io_tlb_start,
301 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
302 		io_tlb_start = 0;
303 	}
304 	pr_warn("Cannot allocate buffer");
305 	no_iotlb_memory = true;
306 }
307 
308 /*
309  * Systems with larger DMA zones (those that don't support ISA) can
310  * initialize the swiotlb later using the slab allocator if needed.
311  * This should be just like above, but with some error catching.
312  */
313 int
314 swiotlb_late_init_with_default_size(size_t default_size)
315 {
316 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
317 	unsigned char *vstart = NULL;
318 	unsigned int order;
319 	int rc = 0;
320 
321 	if (!io_tlb_nslabs) {
322 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
323 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
324 	}
325 
326 	/*
327 	 * Get IO TLB memory from the low pages
328 	 */
329 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
330 	io_tlb_nslabs = SLABS_PER_PAGE << order;
331 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
332 
333 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
334 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
335 						  order);
336 		if (vstart)
337 			break;
338 		order--;
339 	}
340 
341 	if (!vstart) {
342 		io_tlb_nslabs = req_nslabs;
343 		return -ENOMEM;
344 	}
345 	if (order != get_order(bytes)) {
346 		pr_warn("only able to allocate %ld MB\n",
347 			(PAGE_SIZE << order) >> 20);
348 		io_tlb_nslabs = SLABS_PER_PAGE << order;
349 	}
350 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
351 	if (rc)
352 		free_pages((unsigned long)vstart, order);
353 
354 	return rc;
355 }
356 
357 static void swiotlb_cleanup(void)
358 {
359 	io_tlb_end = 0;
360 	io_tlb_start = 0;
361 	io_tlb_nslabs = 0;
362 	max_segment = 0;
363 }
364 
365 int
366 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
367 {
368 	unsigned long i, bytes;
369 
370 	bytes = nslabs << IO_TLB_SHIFT;
371 
372 	io_tlb_nslabs = nslabs;
373 	io_tlb_start = virt_to_phys(tlb);
374 	io_tlb_end = io_tlb_start + bytes;
375 
376 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
377 	memset(tlb, 0, bytes);
378 
379 	/*
380 	 * Allocate and initialize the free list array.  This array is used
381 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
382 	 * between io_tlb_start and io_tlb_end.
383 	 */
384 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
385 				      get_order(io_tlb_nslabs * sizeof(int)));
386 	if (!io_tlb_list)
387 		goto cleanup3;
388 
389 	io_tlb_orig_addr = (phys_addr_t *)
390 		__get_free_pages(GFP_KERNEL,
391 				 get_order(io_tlb_nslabs *
392 					   sizeof(phys_addr_t)));
393 	if (!io_tlb_orig_addr)
394 		goto cleanup4;
395 
396 	io_tlb_orig_size = (size_t *)
397 		__get_free_pages(GFP_KERNEL,
398 				 get_order(io_tlb_nslabs *
399 					   sizeof(size_t)));
400 	if (!io_tlb_orig_size)
401 		goto cleanup5;
402 
403 
404 	for (i = 0; i < io_tlb_nslabs; i++) {
405 		io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i);
406 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
407 		io_tlb_orig_size[i] = 0;
408 	}
409 	io_tlb_index = 0;
410 	no_iotlb_memory = false;
411 
412 	swiotlb_print_info();
413 
414 	late_alloc = 1;
415 
416 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
417 
418 	return 0;
419 
420 cleanup5:
421 	free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
422 							      sizeof(phys_addr_t)));
423 
424 cleanup4:
425 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
426 	                                                 sizeof(int)));
427 	io_tlb_list = NULL;
428 cleanup3:
429 	swiotlb_cleanup();
430 	return -ENOMEM;
431 }
432 
433 void __init swiotlb_exit(void)
434 {
435 	if (!io_tlb_orig_addr)
436 		return;
437 
438 	if (late_alloc) {
439 		free_pages((unsigned long)io_tlb_orig_size,
440 			   get_order(io_tlb_nslabs * sizeof(size_t)));
441 		free_pages((unsigned long)io_tlb_orig_addr,
442 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
443 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
444 								 sizeof(int)));
445 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
446 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
447 	} else {
448 		memblock_free_late(__pa(io_tlb_orig_addr),
449 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
450 		memblock_free_late(__pa(io_tlb_orig_size),
451 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t)));
452 		memblock_free_late(__pa(io_tlb_list),
453 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
454 		memblock_free_late(io_tlb_start,
455 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
456 	}
457 	swiotlb_cleanup();
458 }
459 
460 /*
461  * Bounce: copy the swiotlb buffer from or back to the original dma location
462  */
463 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
464 			   size_t size, enum dma_data_direction dir)
465 {
466 	unsigned long pfn = PFN_DOWN(orig_addr);
467 	unsigned char *vaddr = phys_to_virt(tlb_addr);
468 
469 	if (PageHighMem(pfn_to_page(pfn))) {
470 		/* The buffer does not have a mapping.  Map it in and copy */
471 		unsigned int offset = orig_addr & ~PAGE_MASK;
472 		char *buffer;
473 		unsigned int sz = 0;
474 		unsigned long flags;
475 
476 		while (size) {
477 			sz = min_t(size_t, PAGE_SIZE - offset, size);
478 
479 			local_irq_save(flags);
480 			buffer = kmap_atomic(pfn_to_page(pfn));
481 			if (dir == DMA_TO_DEVICE)
482 				memcpy(vaddr, buffer + offset, sz);
483 			else
484 				memcpy(buffer + offset, vaddr, sz);
485 			kunmap_atomic(buffer);
486 			local_irq_restore(flags);
487 
488 			size -= sz;
489 			pfn++;
490 			vaddr += sz;
491 			offset = 0;
492 		}
493 	} else if (dir == DMA_TO_DEVICE) {
494 		memcpy(vaddr, phys_to_virt(orig_addr), size);
495 	} else {
496 		memcpy(phys_to_virt(orig_addr), vaddr, size);
497 	}
498 }
499 
500 #define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
501 
502 /*
503  * Return the offset into a iotlb slot required to keep the device happy.
504  */
505 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
506 {
507 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
508 }
509 
510 /*
511  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
512  */
513 static inline unsigned long get_max_slots(unsigned long boundary_mask)
514 {
515 	if (boundary_mask == ~0UL)
516 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
517 	return nr_slots(boundary_mask + 1);
518 }
519 
520 static unsigned int wrap_index(unsigned int index)
521 {
522 	if (index >= io_tlb_nslabs)
523 		return 0;
524 	return index;
525 }
526 
527 /*
528  * Find a suitable number of IO TLB entries size that will fit this request and
529  * allocate a buffer from that IO TLB pool.
530  */
531 static int find_slots(struct device *dev, phys_addr_t orig_addr,
532 		size_t alloc_size)
533 {
534 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
535 	dma_addr_t tbl_dma_addr =
536 		phys_to_dma_unencrypted(dev, io_tlb_start) & boundary_mask;
537 	unsigned long max_slots = get_max_slots(boundary_mask);
538 	unsigned int iotlb_align_mask =
539 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
540 	unsigned int nslots = nr_slots(alloc_size), stride;
541 	unsigned int index, wrap, count = 0, i;
542 	unsigned long flags;
543 
544 	BUG_ON(!nslots);
545 
546 	/*
547 	 * For mappings with an alignment requirement don't bother looping to
548 	 * unaligned slots once we found an aligned one.  For allocations of
549 	 * PAGE_SIZE or larger only look for page aligned allocations.
550 	 */
551 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
552 	if (alloc_size >= PAGE_SIZE)
553 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
554 
555 	spin_lock_irqsave(&io_tlb_lock, flags);
556 	if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
557 		goto not_found;
558 
559 	index = wrap = wrap_index(ALIGN(io_tlb_index, stride));
560 	do {
561 		if ((slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
562 		    (orig_addr & iotlb_align_mask)) {
563 			index = wrap_index(index + 1);
564 			continue;
565 		}
566 
567 		/*
568 		 * If we find a slot that indicates we have 'nslots' number of
569 		 * contiguous buffers, we allocate the buffers from that slot
570 		 * and mark the entries as '0' indicating unavailable.
571 		 */
572 		if (!iommu_is_span_boundary(index, nslots,
573 					    nr_slots(tbl_dma_addr),
574 					    max_slots)) {
575 			if (io_tlb_list[index] >= nslots)
576 				goto found;
577 		}
578 		index = wrap_index(index + stride);
579 	} while (index != wrap);
580 
581 not_found:
582 	spin_unlock_irqrestore(&io_tlb_lock, flags);
583 	return -1;
584 
585 found:
586 	for (i = index; i < index + nslots; i++)
587 		io_tlb_list[i] = 0;
588 	for (i = index - 1;
589 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
590 	     io_tlb_list[i]; i--)
591 		io_tlb_list[i] = ++count;
592 
593 	/*
594 	 * Update the indices to avoid searching in the next round.
595 	 */
596 	if (index + nslots < io_tlb_nslabs)
597 		io_tlb_index = index + nslots;
598 	else
599 		io_tlb_index = 0;
600 	io_tlb_used += nslots;
601 
602 	spin_unlock_irqrestore(&io_tlb_lock, flags);
603 	return index;
604 }
605 
606 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
607 		size_t mapping_size, size_t alloc_size,
608 		enum dma_data_direction dir, unsigned long attrs)
609 {
610 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
611 	unsigned int index, i;
612 	phys_addr_t tlb_addr;
613 
614 	if (no_iotlb_memory)
615 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
616 
617 	if (mem_encrypt_active())
618 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
619 
620 	if (mapping_size > alloc_size) {
621 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
622 			      mapping_size, alloc_size);
623 		return (phys_addr_t)DMA_MAPPING_ERROR;
624 	}
625 
626 	index = find_slots(dev, orig_addr, alloc_size + offset);
627 	if (index == -1) {
628 		if (!(attrs & DMA_ATTR_NO_WARN))
629 			dev_warn_ratelimited(dev,
630 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
631 				 alloc_size, io_tlb_nslabs, io_tlb_used);
632 		return (phys_addr_t)DMA_MAPPING_ERROR;
633 	}
634 
635 	/*
636 	 * Save away the mapping from the original address to the DMA address.
637 	 * This is needed when we sync the memory.  Then we sync the buffer if
638 	 * needed.
639 	 */
640 	for (i = 0; i < nr_slots(alloc_size + offset); i++) {
641 		io_tlb_orig_addr[index + i] = slot_addr(orig_addr, i);
642 		io_tlb_orig_size[index+i] = alloc_size - (i << IO_TLB_SHIFT);
643 	}
644 	tlb_addr = slot_addr(io_tlb_start, index) + offset;
645 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
646 	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
647 		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE);
648 	return tlb_addr;
649 }
650 
651 static void validate_sync_size_and_truncate(struct device *hwdev, size_t orig_size, size_t *size)
652 {
653 	if (*size > orig_size) {
654 		/* Warn and truncate mapping_size */
655 		dev_WARN_ONCE(hwdev, 1,
656 			"Attempt for buffer overflow. Original size: %zu. Mapping size: %zu.\n",
657 			orig_size, *size);
658 		*size = orig_size;
659 	}
660 }
661 
662 /*
663  * tlb_addr is the physical address of the bounce buffer to unmap.
664  */
665 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
666 			      size_t mapping_size, size_t alloc_size,
667 			      enum dma_data_direction dir, unsigned long attrs)
668 {
669 	unsigned long flags;
670 	unsigned int offset = swiotlb_align_offset(hwdev, tlb_addr);
671 	int i, count, nslots = nr_slots(alloc_size + offset);
672 	int index = (tlb_addr - offset - io_tlb_start) >> IO_TLB_SHIFT;
673 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
674 
675 	validate_sync_size_and_truncate(hwdev, io_tlb_orig_size[index], &mapping_size);
676 
677 	/*
678 	 * First, sync the memory before unmapping the entry
679 	 */
680 	if (orig_addr != INVALID_PHYS_ADDR &&
681 	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
682 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
683 		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
684 
685 	/*
686 	 * Return the buffer to the free list by setting the corresponding
687 	 * entries to indicate the number of contiguous entries available.
688 	 * While returning the entries to the free list, we merge the entries
689 	 * with slots below and above the pool being returned.
690 	 */
691 	spin_lock_irqsave(&io_tlb_lock, flags);
692 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
693 		count = io_tlb_list[index + nslots];
694 	else
695 		count = 0;
696 
697 	/*
698 	 * Step 1: return the slots to the free list, merging the slots with
699 	 * superceeding slots
700 	 */
701 	for (i = index + nslots - 1; i >= index; i--) {
702 		io_tlb_list[i] = ++count;
703 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
704 		io_tlb_orig_size[i] = 0;
705 	}
706 
707 	/*
708 	 * Step 2: merge the returned slots with the preceding slots, if
709 	 * available (non zero)
710 	 */
711 	for (i = index - 1;
712 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && io_tlb_list[i];
713 	     i--)
714 		io_tlb_list[i] = ++count;
715 	io_tlb_used -= nslots;
716 	spin_unlock_irqrestore(&io_tlb_lock, flags);
717 }
718 
719 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
720 			     size_t size, enum dma_data_direction dir,
721 			     enum dma_sync_target target)
722 {
723 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
724 	size_t orig_size = io_tlb_orig_size[index];
725 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
726 
727 	if (orig_addr == INVALID_PHYS_ADDR)
728 		return;
729 
730 	validate_sync_size_and_truncate(hwdev, orig_size, &size);
731 
732 	switch (target) {
733 	case SYNC_FOR_CPU:
734 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
735 			swiotlb_bounce(orig_addr, tlb_addr,
736 				       size, DMA_FROM_DEVICE);
737 		else
738 			BUG_ON(dir != DMA_TO_DEVICE);
739 		break;
740 	case SYNC_FOR_DEVICE:
741 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
742 			swiotlb_bounce(orig_addr, tlb_addr,
743 				       size, DMA_TO_DEVICE);
744 		else
745 			BUG_ON(dir != DMA_FROM_DEVICE);
746 		break;
747 	default:
748 		BUG();
749 	}
750 }
751 
752 /*
753  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
754  * to the device copy the data into it as well.
755  */
756 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
757 		enum dma_data_direction dir, unsigned long attrs)
758 {
759 	phys_addr_t swiotlb_addr;
760 	dma_addr_t dma_addr;
761 
762 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
763 			      swiotlb_force);
764 
765 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir,
766 			attrs);
767 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
768 		return DMA_MAPPING_ERROR;
769 
770 	/* Ensure that the address returned is DMA'ble */
771 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
772 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
773 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir,
774 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
775 		dev_WARN_ONCE(dev, 1,
776 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
777 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
778 		return DMA_MAPPING_ERROR;
779 	}
780 
781 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
782 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
783 	return dma_addr;
784 }
785 
786 size_t swiotlb_max_mapping_size(struct device *dev)
787 {
788 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
789 }
790 
791 bool is_swiotlb_active(void)
792 {
793 	/*
794 	 * When SWIOTLB is initialized, even if io_tlb_start points to physical
795 	 * address zero, io_tlb_end surely doesn't.
796 	 */
797 	return io_tlb_end != 0;
798 }
799 
800 #ifdef CONFIG_DEBUG_FS
801 
802 static int __init swiotlb_create_debugfs(void)
803 {
804 	struct dentry *root;
805 
806 	root = debugfs_create_dir("swiotlb", NULL);
807 	debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
808 	debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
809 	return 0;
810 }
811 
812 late_initcall(swiotlb_create_debugfs);
813 
814 #endif
815