xref: /linux/kernel/dma/swiotlb.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/rculist.h>
39 #include <linux/scatterlist.h>
40 #include <linux/set_memory.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/swiotlb.h>
44 #include <linux/types.h>
45 #ifdef CONFIG_DMA_RESTRICTED_POOL
46 #include <linux/of.h>
47 #include <linux/of_fdt.h>
48 #include <linux/of_reserved_mem.h>
49 #include <linux/slab.h>
50 #endif
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/swiotlb.h>
54 
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56 
57 /*
58  * Minimum IO TLB size to bother booting with.  Systems with mainly
59  * 64bit capable cards will only lightly use the swiotlb.  If we can't
60  * allocate a contiguous 1MB, we're probably in trouble anyway.
61  */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63 
64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65 
66 /**
67  * struct io_tlb_slot - IO TLB slot descriptor
68  * @orig_addr:	The original address corresponding to a mapped entry.
69  * @alloc_size:	Size of the allocated buffer.
70  * @list:	The free list describing the number of free entries available
71  *		from each index.
72  */
73 struct io_tlb_slot {
74 	phys_addr_t orig_addr;
75 	size_t alloc_size;
76 	unsigned int list;
77 };
78 
79 static bool swiotlb_force_bounce;
80 static bool swiotlb_force_disable;
81 
82 #ifdef CONFIG_SWIOTLB_DYNAMIC
83 
84 static void swiotlb_dyn_alloc(struct work_struct *work);
85 
86 static struct io_tlb_mem io_tlb_default_mem = {
87 	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
88 	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
89 	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
90 					swiotlb_dyn_alloc),
91 };
92 
93 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
94 
95 static struct io_tlb_mem io_tlb_default_mem;
96 
97 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
98 
99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
100 static unsigned long default_nareas;
101 
102 /**
103  * struct io_tlb_area - IO TLB memory area descriptor
104  *
105  * This is a single area with a single lock.
106  *
107  * @used:	The number of used IO TLB block.
108  * @index:	The slot index to start searching in this area for next round.
109  * @lock:	The lock to protect the above data structures in the map and
110  *		unmap calls.
111  */
112 struct io_tlb_area {
113 	unsigned long used;
114 	unsigned int index;
115 	spinlock_t lock;
116 };
117 
118 /*
119  * Round up number of slabs to the next power of 2. The last area is going
120  * be smaller than the rest if default_nslabs is not power of two.
121  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
122  * otherwise a segment may span two or more areas. It conflicts with free
123  * contiguous slots tracking: free slots are treated contiguous no matter
124  * whether they cross an area boundary.
125  *
126  * Return true if default_nslabs is rounded up.
127  */
128 static bool round_up_default_nslabs(void)
129 {
130 	if (!default_nareas)
131 		return false;
132 
133 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
134 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
135 	else if (is_power_of_2(default_nslabs))
136 		return false;
137 	default_nslabs = roundup_pow_of_two(default_nslabs);
138 	return true;
139 }
140 
141 /**
142  * swiotlb_adjust_nareas() - adjust the number of areas and slots
143  * @nareas:	Desired number of areas. Zero is treated as 1.
144  *
145  * Adjust the default number of areas in a memory pool.
146  * The default size of the memory pool may also change to meet minimum area
147  * size requirements.
148  */
149 static void swiotlb_adjust_nareas(unsigned int nareas)
150 {
151 	if (!nareas)
152 		nareas = 1;
153 	else if (!is_power_of_2(nareas))
154 		nareas = roundup_pow_of_two(nareas);
155 
156 	default_nareas = nareas;
157 
158 	pr_info("area num %d.\n", nareas);
159 	if (round_up_default_nslabs())
160 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
161 			(default_nslabs << IO_TLB_SHIFT) >> 20);
162 }
163 
164 /**
165  * limit_nareas() - get the maximum number of areas for a given memory pool size
166  * @nareas:	Desired number of areas.
167  * @nslots:	Total number of slots in the memory pool.
168  *
169  * Limit the number of areas to the maximum possible number of areas in
170  * a memory pool of the given size.
171  *
172  * Return: Maximum possible number of areas.
173  */
174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
175 {
176 	if (nslots < nareas * IO_TLB_SEGSIZE)
177 		return nslots / IO_TLB_SEGSIZE;
178 	return nareas;
179 }
180 
181 static int __init
182 setup_io_tlb_npages(char *str)
183 {
184 	if (isdigit(*str)) {
185 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
186 		default_nslabs =
187 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
188 	}
189 	if (*str == ',')
190 		++str;
191 	if (isdigit(*str))
192 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
193 	if (*str == ',')
194 		++str;
195 	if (!strcmp(str, "force"))
196 		swiotlb_force_bounce = true;
197 	else if (!strcmp(str, "noforce"))
198 		swiotlb_force_disable = true;
199 
200 	return 0;
201 }
202 early_param("swiotlb", setup_io_tlb_npages);
203 
204 unsigned long swiotlb_size_or_default(void)
205 {
206 	return default_nslabs << IO_TLB_SHIFT;
207 }
208 
209 void __init swiotlb_adjust_size(unsigned long size)
210 {
211 	/*
212 	 * If swiotlb parameter has not been specified, give a chance to
213 	 * architectures such as those supporting memory encryption to
214 	 * adjust/expand SWIOTLB size for their use.
215 	 */
216 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
217 		return;
218 
219 	size = ALIGN(size, IO_TLB_SIZE);
220 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
221 	if (round_up_default_nslabs())
222 		size = default_nslabs << IO_TLB_SHIFT;
223 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
224 }
225 
226 void swiotlb_print_info(void)
227 {
228 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
229 
230 	if (!mem->nslabs) {
231 		pr_warn("No low mem\n");
232 		return;
233 	}
234 
235 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
236 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
237 }
238 
239 static inline unsigned long io_tlb_offset(unsigned long val)
240 {
241 	return val & (IO_TLB_SEGSIZE - 1);
242 }
243 
244 static inline unsigned long nr_slots(u64 val)
245 {
246 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
247 }
248 
249 /*
250  * Early SWIOTLB allocation may be too early to allow an architecture to
251  * perform the desired operations.  This function allows the architecture to
252  * call SWIOTLB when the operations are possible.  It needs to be called
253  * before the SWIOTLB memory is used.
254  */
255 void __init swiotlb_update_mem_attributes(void)
256 {
257 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
258 	unsigned long bytes;
259 
260 	if (!mem->nslabs || mem->late_alloc)
261 		return;
262 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
263 	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
264 }
265 
266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
267 		unsigned long nslabs, bool late_alloc, unsigned int nareas)
268 {
269 	void *vaddr = phys_to_virt(start);
270 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
271 
272 	mem->nslabs = nslabs;
273 	mem->start = start;
274 	mem->end = mem->start + bytes;
275 	mem->late_alloc = late_alloc;
276 	mem->nareas = nareas;
277 	mem->area_nslabs = nslabs / mem->nareas;
278 
279 	for (i = 0; i < mem->nareas; i++) {
280 		spin_lock_init(&mem->areas[i].lock);
281 		mem->areas[i].index = 0;
282 		mem->areas[i].used = 0;
283 	}
284 
285 	for (i = 0; i < mem->nslabs; i++) {
286 		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
287 					 mem->nslabs - i);
288 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
289 		mem->slots[i].alloc_size = 0;
290 	}
291 
292 	memset(vaddr, 0, bytes);
293 	mem->vaddr = vaddr;
294 	return;
295 }
296 
297 /**
298  * add_mem_pool() - add a memory pool to the allocator
299  * @mem:	Software IO TLB allocator.
300  * @pool:	Memory pool to be added.
301  */
302 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
303 {
304 #ifdef CONFIG_SWIOTLB_DYNAMIC
305 	spin_lock(&mem->lock);
306 	list_add_rcu(&pool->node, &mem->pools);
307 	mem->nslabs += pool->nslabs;
308 	spin_unlock(&mem->lock);
309 #else
310 	mem->nslabs = pool->nslabs;
311 #endif
312 }
313 
314 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
315 		unsigned int flags,
316 		int (*remap)(void *tlb, unsigned long nslabs))
317 {
318 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
319 	void *tlb;
320 
321 	/*
322 	 * By default allocate the bounce buffer memory from low memory, but
323 	 * allow to pick a location everywhere for hypervisors with guest
324 	 * memory encryption.
325 	 */
326 	if (flags & SWIOTLB_ANY)
327 		tlb = memblock_alloc(bytes, PAGE_SIZE);
328 	else
329 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
330 
331 	if (!tlb) {
332 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
333 			__func__, bytes);
334 		return NULL;
335 	}
336 
337 	if (remap && remap(tlb, nslabs) < 0) {
338 		memblock_free(tlb, PAGE_ALIGN(bytes));
339 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
340 		return NULL;
341 	}
342 
343 	return tlb;
344 }
345 
346 /*
347  * Statically reserve bounce buffer space and initialize bounce buffer data
348  * structures for the software IO TLB used to implement the DMA API.
349  */
350 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
351 		int (*remap)(void *tlb, unsigned long nslabs))
352 {
353 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
354 	unsigned long nslabs;
355 	unsigned int nareas;
356 	size_t alloc_size;
357 	void *tlb;
358 
359 	if (!addressing_limit && !swiotlb_force_bounce)
360 		return;
361 	if (swiotlb_force_disable)
362 		return;
363 
364 	io_tlb_default_mem.force_bounce =
365 		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
366 
367 #ifdef CONFIG_SWIOTLB_DYNAMIC
368 	if (!remap)
369 		io_tlb_default_mem.can_grow = true;
370 	if (flags & SWIOTLB_ANY)
371 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
372 	else
373 		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
374 #endif
375 
376 	if (!default_nareas)
377 		swiotlb_adjust_nareas(num_possible_cpus());
378 
379 	nslabs = default_nslabs;
380 	nareas = limit_nareas(default_nareas, nslabs);
381 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
382 		if (nslabs <= IO_TLB_MIN_SLABS)
383 			return;
384 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
385 		nareas = limit_nareas(nareas, nslabs);
386 	}
387 
388 	if (default_nslabs != nslabs) {
389 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
390 			default_nslabs, nslabs);
391 		default_nslabs = nslabs;
392 	}
393 
394 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
395 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
396 	if (!mem->slots) {
397 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
398 			__func__, alloc_size, PAGE_SIZE);
399 		return;
400 	}
401 
402 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
403 		nareas), SMP_CACHE_BYTES);
404 	if (!mem->areas) {
405 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
406 		return;
407 	}
408 
409 	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
410 	add_mem_pool(&io_tlb_default_mem, mem);
411 
412 	if (flags & SWIOTLB_VERBOSE)
413 		swiotlb_print_info();
414 }
415 
416 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
417 {
418 	swiotlb_init_remap(addressing_limit, flags, NULL);
419 }
420 
421 /*
422  * Systems with larger DMA zones (those that don't support ISA) can
423  * initialize the swiotlb later using the slab allocator if needed.
424  * This should be just like above, but with some error catching.
425  */
426 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
427 		int (*remap)(void *tlb, unsigned long nslabs))
428 {
429 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
430 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
431 	unsigned int nareas;
432 	unsigned char *vstart = NULL;
433 	unsigned int order, area_order;
434 	bool retried = false;
435 	int rc = 0;
436 
437 	if (io_tlb_default_mem.nslabs)
438 		return 0;
439 
440 	if (swiotlb_force_disable)
441 		return 0;
442 
443 	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
444 
445 #ifdef CONFIG_SWIOTLB_DYNAMIC
446 	if (!remap)
447 		io_tlb_default_mem.can_grow = true;
448 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
449 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
450 	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
451 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
452 	else
453 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
454 #endif
455 
456 	if (!default_nareas)
457 		swiotlb_adjust_nareas(num_possible_cpus());
458 
459 retry:
460 	order = get_order(nslabs << IO_TLB_SHIFT);
461 	nslabs = SLABS_PER_PAGE << order;
462 
463 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
464 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
465 						  order);
466 		if (vstart)
467 			break;
468 		order--;
469 		nslabs = SLABS_PER_PAGE << order;
470 		retried = true;
471 	}
472 
473 	if (!vstart)
474 		return -ENOMEM;
475 
476 	if (remap)
477 		rc = remap(vstart, nslabs);
478 	if (rc) {
479 		free_pages((unsigned long)vstart, order);
480 
481 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
482 		if (nslabs < IO_TLB_MIN_SLABS)
483 			return rc;
484 		retried = true;
485 		goto retry;
486 	}
487 
488 	if (retried) {
489 		pr_warn("only able to allocate %ld MB\n",
490 			(PAGE_SIZE << order) >> 20);
491 	}
492 
493 	nareas = limit_nareas(default_nareas, nslabs);
494 	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
495 	mem->areas = (struct io_tlb_area *)
496 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
497 	if (!mem->areas)
498 		goto error_area;
499 
500 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
501 		get_order(array_size(sizeof(*mem->slots), nslabs)));
502 	if (!mem->slots)
503 		goto error_slots;
504 
505 	set_memory_decrypted((unsigned long)vstart,
506 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
507 	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
508 				 nareas);
509 	add_mem_pool(&io_tlb_default_mem, mem);
510 
511 	swiotlb_print_info();
512 	return 0;
513 
514 error_slots:
515 	free_pages((unsigned long)mem->areas, area_order);
516 error_area:
517 	free_pages((unsigned long)vstart, order);
518 	return -ENOMEM;
519 }
520 
521 void __init swiotlb_exit(void)
522 {
523 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
524 	unsigned long tbl_vaddr;
525 	size_t tbl_size, slots_size;
526 	unsigned int area_order;
527 
528 	if (swiotlb_force_bounce)
529 		return;
530 
531 	if (!mem->nslabs)
532 		return;
533 
534 	pr_info("tearing down default memory pool\n");
535 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
536 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
537 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
538 
539 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
540 	if (mem->late_alloc) {
541 		area_order = get_order(array_size(sizeof(*mem->areas),
542 			mem->nareas));
543 		free_pages((unsigned long)mem->areas, area_order);
544 		free_pages(tbl_vaddr, get_order(tbl_size));
545 		free_pages((unsigned long)mem->slots, get_order(slots_size));
546 	} else {
547 		memblock_free_late(__pa(mem->areas),
548 			array_size(sizeof(*mem->areas), mem->nareas));
549 		memblock_free_late(mem->start, tbl_size);
550 		memblock_free_late(__pa(mem->slots), slots_size);
551 	}
552 
553 	memset(mem, 0, sizeof(*mem));
554 }
555 
556 #ifdef CONFIG_SWIOTLB_DYNAMIC
557 
558 /**
559  * alloc_dma_pages() - allocate pages to be used for DMA
560  * @gfp:	GFP flags for the allocation.
561  * @bytes:	Size of the buffer.
562  * @phys_limit:	Maximum allowed physical address of the buffer.
563  *
564  * Allocate pages from the buddy allocator. If successful, make the allocated
565  * pages decrypted that they can be used for DMA.
566  *
567  * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
568  * if the allocated physical address was above @phys_limit.
569  */
570 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
571 {
572 	unsigned int order = get_order(bytes);
573 	struct page *page;
574 	phys_addr_t paddr;
575 	void *vaddr;
576 
577 	page = alloc_pages(gfp, order);
578 	if (!page)
579 		return NULL;
580 
581 	paddr = page_to_phys(page);
582 	if (paddr + bytes - 1 > phys_limit) {
583 		__free_pages(page, order);
584 		return ERR_PTR(-EAGAIN);
585 	}
586 
587 	vaddr = phys_to_virt(paddr);
588 	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
589 		goto error;
590 	return page;
591 
592 error:
593 	/* Intentional leak if pages cannot be encrypted again. */
594 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
595 		__free_pages(page, order);
596 	return NULL;
597 }
598 
599 /**
600  * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
601  * @dev:	Device for which a memory pool is allocated.
602  * @bytes:	Size of the buffer.
603  * @phys_limit:	Maximum allowed physical address of the buffer.
604  * @gfp:	GFP flags for the allocation.
605  *
606  * Return: Allocated pages, or %NULL on allocation failure.
607  */
608 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
609 		u64 phys_limit, gfp_t gfp)
610 {
611 	struct page *page;
612 
613 	/*
614 	 * Allocate from the atomic pools if memory is encrypted and
615 	 * the allocation is atomic, because decrypting may block.
616 	 */
617 	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
618 		void *vaddr;
619 
620 		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
621 			return NULL;
622 
623 		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
624 					   dma_coherent_ok);
625 	}
626 
627 	gfp &= ~GFP_ZONEMASK;
628 	if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
629 		gfp |= __GFP_DMA;
630 	else if (phys_limit <= DMA_BIT_MASK(32))
631 		gfp |= __GFP_DMA32;
632 
633 	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
634 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
635 		    phys_limit < DMA_BIT_MASK(64) &&
636 		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
637 			gfp |= __GFP_DMA32;
638 		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
639 			 !(gfp & __GFP_DMA))
640 			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
641 		else
642 			return NULL;
643 	}
644 
645 	return page;
646 }
647 
648 /**
649  * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
650  * @vaddr:	Virtual address of the buffer.
651  * @bytes:	Size of the buffer.
652  */
653 static void swiotlb_free_tlb(void *vaddr, size_t bytes)
654 {
655 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
656 	    dma_free_from_pool(NULL, vaddr, bytes))
657 		return;
658 
659 	/* Intentional leak if pages cannot be encrypted again. */
660 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
661 		__free_pages(virt_to_page(vaddr), get_order(bytes));
662 }
663 
664 /**
665  * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
666  * @dev:	Device for which a memory pool is allocated.
667  * @minslabs:	Minimum number of slabs.
668  * @nslabs:	Desired (maximum) number of slabs.
669  * @nareas:	Number of areas.
670  * @phys_limit:	Maximum DMA buffer physical address.
671  * @gfp:	GFP flags for the allocations.
672  *
673  * Allocate and initialize a new IO TLB memory pool. The actual number of
674  * slabs may be reduced if allocation of @nslabs fails. If even
675  * @minslabs cannot be allocated, this function fails.
676  *
677  * Return: New memory pool, or %NULL on allocation failure.
678  */
679 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
680 		unsigned long minslabs, unsigned long nslabs,
681 		unsigned int nareas, u64 phys_limit, gfp_t gfp)
682 {
683 	struct io_tlb_pool *pool;
684 	unsigned int slot_order;
685 	struct page *tlb;
686 	size_t pool_size;
687 	size_t tlb_size;
688 
689 	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
690 		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
691 		nareas = limit_nareas(nareas, nslabs);
692 	}
693 
694 	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
695 	pool = kzalloc(pool_size, gfp);
696 	if (!pool)
697 		goto error;
698 	pool->areas = (void *)pool + sizeof(*pool);
699 
700 	tlb_size = nslabs << IO_TLB_SHIFT;
701 	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
702 		if (nslabs <= minslabs)
703 			goto error_tlb;
704 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
705 		nareas = limit_nareas(nareas, nslabs);
706 		tlb_size = nslabs << IO_TLB_SHIFT;
707 	}
708 
709 	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
710 	pool->slots = (struct io_tlb_slot *)
711 		__get_free_pages(gfp, slot_order);
712 	if (!pool->slots)
713 		goto error_slots;
714 
715 	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
716 	return pool;
717 
718 error_slots:
719 	swiotlb_free_tlb(page_address(tlb), tlb_size);
720 error_tlb:
721 	kfree(pool);
722 error:
723 	return NULL;
724 }
725 
726 /**
727  * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
728  * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
729  */
730 static void swiotlb_dyn_alloc(struct work_struct *work)
731 {
732 	struct io_tlb_mem *mem =
733 		container_of(work, struct io_tlb_mem, dyn_alloc);
734 	struct io_tlb_pool *pool;
735 
736 	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
737 				  default_nareas, mem->phys_limit, GFP_KERNEL);
738 	if (!pool) {
739 		pr_warn_ratelimited("Failed to allocate new pool");
740 		return;
741 	}
742 
743 	add_mem_pool(mem, pool);
744 }
745 
746 /**
747  * swiotlb_dyn_free() - RCU callback to free a memory pool
748  * @rcu:	RCU head in the corresponding struct io_tlb_pool.
749  */
750 static void swiotlb_dyn_free(struct rcu_head *rcu)
751 {
752 	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
753 	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
754 	size_t tlb_size = pool->end - pool->start;
755 
756 	free_pages((unsigned long)pool->slots, get_order(slots_size));
757 	swiotlb_free_tlb(pool->vaddr, tlb_size);
758 	kfree(pool);
759 }
760 
761 /**
762  * swiotlb_find_pool() - find the IO TLB pool for a physical address
763  * @dev:        Device which has mapped the DMA buffer.
764  * @paddr:      Physical address within the DMA buffer.
765  *
766  * Find the IO TLB memory pool descriptor which contains the given physical
767  * address, if any.
768  *
769  * Return: Memory pool which contains @paddr, or %NULL if none.
770  */
771 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
772 {
773 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
774 	struct io_tlb_pool *pool;
775 
776 	rcu_read_lock();
777 	list_for_each_entry_rcu(pool, &mem->pools, node) {
778 		if (paddr >= pool->start && paddr < pool->end)
779 			goto out;
780 	}
781 
782 	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
783 		if (paddr >= pool->start && paddr < pool->end)
784 			goto out;
785 	}
786 	pool = NULL;
787 out:
788 	rcu_read_unlock();
789 	return pool;
790 }
791 
792 /**
793  * swiotlb_del_pool() - remove an IO TLB pool from a device
794  * @dev:	Owning device.
795  * @pool:	Memory pool to be removed.
796  */
797 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
798 {
799 	unsigned long flags;
800 
801 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
802 	list_del_rcu(&pool->node);
803 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
804 
805 	call_rcu(&pool->rcu, swiotlb_dyn_free);
806 }
807 
808 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
809 
810 /**
811  * swiotlb_dev_init() - initialize swiotlb fields in &struct device
812  * @dev:	Device to be initialized.
813  */
814 void swiotlb_dev_init(struct device *dev)
815 {
816 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
817 #ifdef CONFIG_SWIOTLB_DYNAMIC
818 	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
819 	spin_lock_init(&dev->dma_io_tlb_lock);
820 	dev->dma_uses_io_tlb = false;
821 #endif
822 }
823 
824 /*
825  * Return the offset into a iotlb slot required to keep the device happy.
826  */
827 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
828 {
829 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
830 }
831 
832 /*
833  * Bounce: copy the swiotlb buffer from or back to the original dma location
834  */
835 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
836 			   enum dma_data_direction dir)
837 {
838 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
839 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
840 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
841 	size_t alloc_size = mem->slots[index].alloc_size;
842 	unsigned long pfn = PFN_DOWN(orig_addr);
843 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
844 	unsigned int tlb_offset, orig_addr_offset;
845 
846 	if (orig_addr == INVALID_PHYS_ADDR)
847 		return;
848 
849 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
850 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
851 	if (tlb_offset < orig_addr_offset) {
852 		dev_WARN_ONCE(dev, 1,
853 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
854 			orig_addr_offset, tlb_offset);
855 		return;
856 	}
857 
858 	tlb_offset -= orig_addr_offset;
859 	if (tlb_offset > alloc_size) {
860 		dev_WARN_ONCE(dev, 1,
861 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
862 			alloc_size, size, tlb_offset);
863 		return;
864 	}
865 
866 	orig_addr += tlb_offset;
867 	alloc_size -= tlb_offset;
868 
869 	if (size > alloc_size) {
870 		dev_WARN_ONCE(dev, 1,
871 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
872 			alloc_size, size);
873 		size = alloc_size;
874 	}
875 
876 	if (PageHighMem(pfn_to_page(pfn))) {
877 		unsigned int offset = orig_addr & ~PAGE_MASK;
878 		struct page *page;
879 		unsigned int sz = 0;
880 		unsigned long flags;
881 
882 		while (size) {
883 			sz = min_t(size_t, PAGE_SIZE - offset, size);
884 
885 			local_irq_save(flags);
886 			page = pfn_to_page(pfn);
887 			if (dir == DMA_TO_DEVICE)
888 				memcpy_from_page(vaddr, page, offset, sz);
889 			else
890 				memcpy_to_page(page, offset, vaddr, sz);
891 			local_irq_restore(flags);
892 
893 			size -= sz;
894 			pfn++;
895 			vaddr += sz;
896 			offset = 0;
897 		}
898 	} else if (dir == DMA_TO_DEVICE) {
899 		memcpy(vaddr, phys_to_virt(orig_addr), size);
900 	} else {
901 		memcpy(phys_to_virt(orig_addr), vaddr, size);
902 	}
903 }
904 
905 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
906 {
907 	return start + (idx << IO_TLB_SHIFT);
908 }
909 
910 /*
911  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
912  */
913 static inline unsigned long get_max_slots(unsigned long boundary_mask)
914 {
915 	return (boundary_mask >> IO_TLB_SHIFT) + 1;
916 }
917 
918 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
919 {
920 	if (index >= mem->area_nslabs)
921 		return 0;
922 	return index;
923 }
924 
925 /*
926  * Track the total used slots with a global atomic value in order to have
927  * correct information to determine the high water mark. The mem_used()
928  * function gives imprecise results because there's no locking across
929  * multiple areas.
930  */
931 #ifdef CONFIG_DEBUG_FS
932 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
933 {
934 	unsigned long old_hiwater, new_used;
935 
936 	new_used = atomic_long_add_return(nslots, &mem->total_used);
937 	old_hiwater = atomic_long_read(&mem->used_hiwater);
938 	do {
939 		if (new_used <= old_hiwater)
940 			break;
941 	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
942 					  &old_hiwater, new_used));
943 }
944 
945 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
946 {
947 	atomic_long_sub(nslots, &mem->total_used);
948 }
949 
950 #else /* !CONFIG_DEBUG_FS */
951 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
952 {
953 }
954 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
955 {
956 }
957 #endif /* CONFIG_DEBUG_FS */
958 
959 #ifdef CONFIG_SWIOTLB_DYNAMIC
960 #ifdef CONFIG_DEBUG_FS
961 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
962 {
963 	atomic_long_add(nslots, &mem->transient_nslabs);
964 }
965 
966 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
967 {
968 	atomic_long_sub(nslots, &mem->transient_nslabs);
969 }
970 
971 #else /* !CONFIG_DEBUG_FS */
972 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
973 {
974 }
975 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
976 {
977 }
978 #endif /* CONFIG_DEBUG_FS */
979 #endif /* CONFIG_SWIOTLB_DYNAMIC */
980 
981 /**
982  * swiotlb_search_pool_area() - search one memory area in one pool
983  * @dev:	Device which maps the buffer.
984  * @pool:	Memory pool to be searched.
985  * @area_index:	Index of the IO TLB memory area to be searched.
986  * @orig_addr:	Original (non-bounced) IO buffer address.
987  * @alloc_size: Total requested size of the bounce buffer,
988  *		including initial alignment padding.
989  * @alloc_align_mask:	Required alignment of the allocated buffer.
990  *
991  * Find a suitable sequence of IO TLB entries for the request and allocate
992  * a buffer from the given IO TLB memory area.
993  * This function takes care of locking.
994  *
995  * Return: Index of the first allocated slot, or -1 on error.
996  */
997 static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
998 		int area_index, phys_addr_t orig_addr, size_t alloc_size,
999 		unsigned int alloc_align_mask)
1000 {
1001 	struct io_tlb_area *area = pool->areas + area_index;
1002 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
1003 	dma_addr_t tbl_dma_addr =
1004 		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
1005 	unsigned long max_slots = get_max_slots(boundary_mask);
1006 	unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
1007 	unsigned int nslots = nr_slots(alloc_size), stride;
1008 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
1009 	unsigned int index, slots_checked, count = 0, i;
1010 	unsigned long flags;
1011 	unsigned int slot_base;
1012 	unsigned int slot_index;
1013 
1014 	BUG_ON(!nslots);
1015 	BUG_ON(area_index >= pool->nareas);
1016 
1017 	/*
1018 	 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
1019 	 * page-aligned in the absence of any other alignment requirements.
1020 	 * 'alloc_align_mask' was later introduced to specify the alignment
1021 	 * explicitly, however this is passed as zero for streaming mappings
1022 	 * and so we preserve the old behaviour there in case any drivers are
1023 	 * relying on it.
1024 	 */
1025 	if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
1026 		alloc_align_mask = PAGE_SIZE - 1;
1027 
1028 	/*
1029 	 * Ensure that the allocation is at least slot-aligned and update
1030 	 * 'iotlb_align_mask' to ignore bits that will be preserved when
1031 	 * offsetting into the allocation.
1032 	 */
1033 	alloc_align_mask |= (IO_TLB_SIZE - 1);
1034 	iotlb_align_mask &= ~alloc_align_mask;
1035 
1036 	/*
1037 	 * For mappings with an alignment requirement don't bother looping to
1038 	 * unaligned slots once we found an aligned one.
1039 	 */
1040 	stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));
1041 
1042 	spin_lock_irqsave(&area->lock, flags);
1043 	if (unlikely(nslots > pool->area_nslabs - area->used))
1044 		goto not_found;
1045 
1046 	slot_base = area_index * pool->area_nslabs;
1047 	index = area->index;
1048 
1049 	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1050 		phys_addr_t tlb_addr;
1051 
1052 		slot_index = slot_base + index;
1053 		tlb_addr = slot_addr(tbl_dma_addr, slot_index);
1054 
1055 		if ((tlb_addr & alloc_align_mask) ||
1056 		    (orig_addr && (tlb_addr & iotlb_align_mask) !=
1057 				  (orig_addr & iotlb_align_mask))) {
1058 			index = wrap_area_index(pool, index + 1);
1059 			slots_checked++;
1060 			continue;
1061 		}
1062 
1063 		if (!iommu_is_span_boundary(slot_index, nslots,
1064 					    nr_slots(tbl_dma_addr),
1065 					    max_slots)) {
1066 			if (pool->slots[slot_index].list >= nslots)
1067 				goto found;
1068 		}
1069 		index = wrap_area_index(pool, index + stride);
1070 		slots_checked += stride;
1071 	}
1072 
1073 not_found:
1074 	spin_unlock_irqrestore(&area->lock, flags);
1075 	return -1;
1076 
1077 found:
1078 	/*
1079 	 * If we find a slot that indicates we have 'nslots' number of
1080 	 * contiguous buffers, we allocate the buffers from that slot onwards
1081 	 * and set the list of free entries to '0' indicating unavailable.
1082 	 */
1083 	for (i = slot_index; i < slot_index + nslots; i++) {
1084 		pool->slots[i].list = 0;
1085 		pool->slots[i].alloc_size = alloc_size - (offset +
1086 				((i - slot_index) << IO_TLB_SHIFT));
1087 	}
1088 	for (i = slot_index - 1;
1089 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1090 	     pool->slots[i].list; i--)
1091 		pool->slots[i].list = ++count;
1092 
1093 	/*
1094 	 * Update the indices to avoid searching in the next round.
1095 	 */
1096 	area->index = wrap_area_index(pool, index + nslots);
1097 	area->used += nslots;
1098 	spin_unlock_irqrestore(&area->lock, flags);
1099 
1100 	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1101 	return slot_index;
1102 }
1103 
1104 #ifdef CONFIG_SWIOTLB_DYNAMIC
1105 
1106 /**
1107  * swiotlb_search_area() - search one memory area in all pools
1108  * @dev:	Device which maps the buffer.
1109  * @start_cpu:	Start CPU number.
1110  * @cpu_offset:	Offset from @start_cpu.
1111  * @orig_addr:	Original (non-bounced) IO buffer address.
1112  * @alloc_size: Total requested size of the bounce buffer,
1113  *		including initial alignment padding.
1114  * @alloc_align_mask:	Required alignment of the allocated buffer.
1115  * @retpool:	Used memory pool, updated on return.
1116  *
1117  * Search one memory area in all pools for a sequence of slots that match the
1118  * allocation constraints.
1119  *
1120  * Return: Index of the first allocated slot, or -1 on error.
1121  */
1122 static int swiotlb_search_area(struct device *dev, int start_cpu,
1123 		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
1124 		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
1125 {
1126 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1127 	struct io_tlb_pool *pool;
1128 	int area_index;
1129 	int index = -1;
1130 
1131 	rcu_read_lock();
1132 	list_for_each_entry_rcu(pool, &mem->pools, node) {
1133 		if (cpu_offset >= pool->nareas)
1134 			continue;
1135 		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
1136 		index = swiotlb_search_pool_area(dev, pool, area_index,
1137 						 orig_addr, alloc_size,
1138 						 alloc_align_mask);
1139 		if (index >= 0) {
1140 			*retpool = pool;
1141 			break;
1142 		}
1143 	}
1144 	rcu_read_unlock();
1145 	return index;
1146 }
1147 
1148 /**
1149  * swiotlb_find_slots() - search for slots in the whole swiotlb
1150  * @dev:	Device which maps the buffer.
1151  * @orig_addr:	Original (non-bounced) IO buffer address.
1152  * @alloc_size: Total requested size of the bounce buffer,
1153  *		including initial alignment padding.
1154  * @alloc_align_mask:	Required alignment of the allocated buffer.
1155  * @retpool:	Used memory pool, updated on return.
1156  *
1157  * Search through the whole software IO TLB to find a sequence of slots that
1158  * match the allocation constraints.
1159  *
1160  * Return: Index of the first allocated slot, or -1 on error.
1161  */
1162 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1163 		size_t alloc_size, unsigned int alloc_align_mask,
1164 		struct io_tlb_pool **retpool)
1165 {
1166 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1167 	struct io_tlb_pool *pool;
1168 	unsigned long nslabs;
1169 	unsigned long flags;
1170 	u64 phys_limit;
1171 	int cpu, i;
1172 	int index;
1173 
1174 	if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE)
1175 		return -1;
1176 
1177 	cpu = raw_smp_processor_id();
1178 	for (i = 0; i < default_nareas; ++i) {
1179 		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
1180 					    alloc_align_mask, &pool);
1181 		if (index >= 0)
1182 			goto found;
1183 	}
1184 
1185 	if (!mem->can_grow)
1186 		return -1;
1187 
1188 	schedule_work(&mem->dyn_alloc);
1189 
1190 	nslabs = nr_slots(alloc_size);
1191 	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1192 	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1193 				  GFP_NOWAIT | __GFP_NOWARN);
1194 	if (!pool)
1195 		return -1;
1196 
1197 	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
1198 					 alloc_size, alloc_align_mask);
1199 	if (index < 0) {
1200 		swiotlb_dyn_free(&pool->rcu);
1201 		return -1;
1202 	}
1203 
1204 	pool->transient = true;
1205 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1206 	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1207 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1208 	inc_transient_used(mem, pool->nslabs);
1209 
1210 found:
1211 	WRITE_ONCE(dev->dma_uses_io_tlb, true);
1212 
1213 	/*
1214 	 * The general barrier orders reads and writes against a presumed store
1215 	 * of the SWIOTLB buffer address by a device driver (to a driver private
1216 	 * data structure). It serves two purposes.
1217 	 *
1218 	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1219 	 * presumed store. This guarantees that the returned buffer address
1220 	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1221 	 *
1222 	 * Second, the load from mem->pools must be ordered before the same
1223 	 * presumed store. This guarantees that the returned buffer address
1224 	 * cannot be observed by another CPU before an update of the RCU list
1225 	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1226 	 * atomicity).
1227 	 *
1228 	 * See also the comment in is_swiotlb_buffer().
1229 	 */
1230 	smp_mb();
1231 
1232 	*retpool = pool;
1233 	return index;
1234 }
1235 
1236 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1237 
1238 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1239 		size_t alloc_size, unsigned int alloc_align_mask,
1240 		struct io_tlb_pool **retpool)
1241 {
1242 	struct io_tlb_pool *pool;
1243 	int start, i;
1244 	int index;
1245 
1246 	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
1247 	i = start = raw_smp_processor_id() & (pool->nareas - 1);
1248 	do {
1249 		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
1250 						 alloc_size, alloc_align_mask);
1251 		if (index >= 0)
1252 			return index;
1253 		if (++i >= pool->nareas)
1254 			i = 0;
1255 	} while (i != start);
1256 	return -1;
1257 }
1258 
1259 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1260 
1261 #ifdef CONFIG_DEBUG_FS
1262 
1263 /**
1264  * mem_used() - get number of used slots in an allocator
1265  * @mem:	Software IO TLB allocator.
1266  *
1267  * The result is accurate in this version of the function, because an atomic
1268  * counter is available if CONFIG_DEBUG_FS is set.
1269  *
1270  * Return: Number of used slots.
1271  */
1272 static unsigned long mem_used(struct io_tlb_mem *mem)
1273 {
1274 	return atomic_long_read(&mem->total_used);
1275 }
1276 
1277 #else /* !CONFIG_DEBUG_FS */
1278 
1279 /**
1280  * mem_pool_used() - get number of used slots in a memory pool
1281  * @pool:	Software IO TLB memory pool.
1282  *
1283  * The result is not accurate, see mem_used().
1284  *
1285  * Return: Approximate number of used slots.
1286  */
1287 static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1288 {
1289 	int i;
1290 	unsigned long used = 0;
1291 
1292 	for (i = 0; i < pool->nareas; i++)
1293 		used += pool->areas[i].used;
1294 	return used;
1295 }
1296 
1297 /**
1298  * mem_used() - get number of used slots in an allocator
1299  * @mem:	Software IO TLB allocator.
1300  *
1301  * The result is not accurate, because there is no locking of individual
1302  * areas.
1303  *
1304  * Return: Approximate number of used slots.
1305  */
1306 static unsigned long mem_used(struct io_tlb_mem *mem)
1307 {
1308 #ifdef CONFIG_SWIOTLB_DYNAMIC
1309 	struct io_tlb_pool *pool;
1310 	unsigned long used = 0;
1311 
1312 	rcu_read_lock();
1313 	list_for_each_entry_rcu(pool, &mem->pools, node)
1314 		used += mem_pool_used(pool);
1315 	rcu_read_unlock();
1316 
1317 	return used;
1318 #else
1319 	return mem_pool_used(&mem->defpool);
1320 #endif
1321 }
1322 
1323 #endif /* CONFIG_DEBUG_FS */
1324 
1325 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1326 		size_t mapping_size, size_t alloc_size,
1327 		unsigned int alloc_align_mask, enum dma_data_direction dir,
1328 		unsigned long attrs)
1329 {
1330 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1331 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
1332 	struct io_tlb_pool *pool;
1333 	unsigned int i;
1334 	int index;
1335 	phys_addr_t tlb_addr;
1336 
1337 	if (!mem || !mem->nslabs) {
1338 		dev_warn_ratelimited(dev,
1339 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1340 		return (phys_addr_t)DMA_MAPPING_ERROR;
1341 	}
1342 
1343 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1344 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1345 
1346 	if (mapping_size > alloc_size) {
1347 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
1348 			      mapping_size, alloc_size);
1349 		return (phys_addr_t)DMA_MAPPING_ERROR;
1350 	}
1351 
1352 	index = swiotlb_find_slots(dev, orig_addr,
1353 				   alloc_size + offset, alloc_align_mask, &pool);
1354 	if (index == -1) {
1355 		if (!(attrs & DMA_ATTR_NO_WARN))
1356 			dev_warn_ratelimited(dev,
1357 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1358 				 alloc_size, mem->nslabs, mem_used(mem));
1359 		return (phys_addr_t)DMA_MAPPING_ERROR;
1360 	}
1361 
1362 	/*
1363 	 * Save away the mapping from the original address to the DMA address.
1364 	 * This is needed when we sync the memory.  Then we sync the buffer if
1365 	 * needed.
1366 	 */
1367 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
1368 		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1369 	tlb_addr = slot_addr(pool->start, index) + offset;
1370 	/*
1371 	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
1372 	 * the original buffer to the TLB buffer before initiating DMA in order
1373 	 * to preserve the original's data if the device does a partial write,
1374 	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
1375 	 * the original data, even if it's garbage, is necessary to match
1376 	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
1377 	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
1378 	 */
1379 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
1380 	return tlb_addr;
1381 }
1382 
1383 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
1384 {
1385 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
1386 	unsigned long flags;
1387 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
1388 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1389 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
1390 	int aindex = index / mem->area_nslabs;
1391 	struct io_tlb_area *area = &mem->areas[aindex];
1392 	int count, i;
1393 
1394 	/*
1395 	 * Return the buffer to the free list by setting the corresponding
1396 	 * entries to indicate the number of contiguous entries available.
1397 	 * While returning the entries to the free list, we merge the entries
1398 	 * with slots below and above the pool being returned.
1399 	 */
1400 	BUG_ON(aindex >= mem->nareas);
1401 
1402 	spin_lock_irqsave(&area->lock, flags);
1403 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1404 		count = mem->slots[index + nslots].list;
1405 	else
1406 		count = 0;
1407 
1408 	/*
1409 	 * Step 1: return the slots to the free list, merging the slots with
1410 	 * superceeding slots
1411 	 */
1412 	for (i = index + nslots - 1; i >= index; i--) {
1413 		mem->slots[i].list = ++count;
1414 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1415 		mem->slots[i].alloc_size = 0;
1416 	}
1417 
1418 	/*
1419 	 * Step 2: merge the returned slots with the preceding slots, if
1420 	 * available (non zero)
1421 	 */
1422 	for (i = index - 1;
1423 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1424 	     i--)
1425 		mem->slots[i].list = ++count;
1426 	area->used -= nslots;
1427 	spin_unlock_irqrestore(&area->lock, flags);
1428 
1429 	dec_used(dev->dma_io_tlb_mem, nslots);
1430 }
1431 
1432 #ifdef CONFIG_SWIOTLB_DYNAMIC
1433 
1434 /**
1435  * swiotlb_del_transient() - delete a transient memory pool
1436  * @dev:	Device which mapped the buffer.
1437  * @tlb_addr:	Physical address within a bounce buffer.
1438  *
1439  * Check whether the address belongs to a transient SWIOTLB memory pool.
1440  * If yes, then delete the pool.
1441  *
1442  * Return: %true if @tlb_addr belonged to a transient pool that was released.
1443  */
1444 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
1445 {
1446 	struct io_tlb_pool *pool;
1447 
1448 	pool = swiotlb_find_pool(dev, tlb_addr);
1449 	if (!pool->transient)
1450 		return false;
1451 
1452 	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1453 	swiotlb_del_pool(dev, pool);
1454 	dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs);
1455 	return true;
1456 }
1457 
1458 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1459 
1460 static inline bool swiotlb_del_transient(struct device *dev,
1461 					 phys_addr_t tlb_addr)
1462 {
1463 	return false;
1464 }
1465 
1466 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
1467 
1468 /*
1469  * tlb_addr is the physical address of the bounce buffer to unmap.
1470  */
1471 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1472 			      size_t mapping_size, enum dma_data_direction dir,
1473 			      unsigned long attrs)
1474 {
1475 	/*
1476 	 * First, sync the memory before unmapping the entry
1477 	 */
1478 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1479 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1480 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
1481 
1482 	if (swiotlb_del_transient(dev, tlb_addr))
1483 		return;
1484 	swiotlb_release_slots(dev, tlb_addr);
1485 }
1486 
1487 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1488 		size_t size, enum dma_data_direction dir)
1489 {
1490 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1491 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
1492 	else
1493 		BUG_ON(dir != DMA_FROM_DEVICE);
1494 }
1495 
1496 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1497 		size_t size, enum dma_data_direction dir)
1498 {
1499 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1500 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
1501 	else
1502 		BUG_ON(dir != DMA_TO_DEVICE);
1503 }
1504 
1505 /*
1506  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1507  * to the device copy the data into it as well.
1508  */
1509 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1510 		enum dma_data_direction dir, unsigned long attrs)
1511 {
1512 	phys_addr_t swiotlb_addr;
1513 	dma_addr_t dma_addr;
1514 
1515 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1516 
1517 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
1518 			attrs);
1519 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1520 		return DMA_MAPPING_ERROR;
1521 
1522 	/* Ensure that the address returned is DMA'ble */
1523 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1524 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1525 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1526 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
1527 		dev_WARN_ONCE(dev, 1,
1528 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1529 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1530 		return DMA_MAPPING_ERROR;
1531 	}
1532 
1533 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1534 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
1535 	return dma_addr;
1536 }
1537 
1538 size_t swiotlb_max_mapping_size(struct device *dev)
1539 {
1540 	int min_align_mask = dma_get_min_align_mask(dev);
1541 	int min_align = 0;
1542 
1543 	/*
1544 	 * swiotlb_find_slots() skips slots according to
1545 	 * min align mask. This affects max mapping size.
1546 	 * Take it into acount here.
1547 	 */
1548 	if (min_align_mask)
1549 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
1550 
1551 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1552 }
1553 
1554 /**
1555  * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1556  */
1557 bool is_swiotlb_allocated(void)
1558 {
1559 	return io_tlb_default_mem.nslabs;
1560 }
1561 
1562 bool is_swiotlb_active(struct device *dev)
1563 {
1564 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1565 
1566 	return mem && mem->nslabs;
1567 }
1568 
1569 /**
1570  * default_swiotlb_base() - get the base address of the default SWIOTLB
1571  *
1572  * Get the lowest physical address used by the default software IO TLB pool.
1573  */
1574 phys_addr_t default_swiotlb_base(void)
1575 {
1576 #ifdef CONFIG_SWIOTLB_DYNAMIC
1577 	io_tlb_default_mem.can_grow = false;
1578 #endif
1579 	return io_tlb_default_mem.defpool.start;
1580 }
1581 
1582 /**
1583  * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1584  *
1585  * Get the highest physical address used by the default software IO TLB pool.
1586  */
1587 phys_addr_t default_swiotlb_limit(void)
1588 {
1589 #ifdef CONFIG_SWIOTLB_DYNAMIC
1590 	return io_tlb_default_mem.phys_limit;
1591 #else
1592 	return io_tlb_default_mem.defpool.end - 1;
1593 #endif
1594 }
1595 
1596 #ifdef CONFIG_DEBUG_FS
1597 #ifdef CONFIG_SWIOTLB_DYNAMIC
1598 static unsigned long mem_transient_used(struct io_tlb_mem *mem)
1599 {
1600 	return atomic_long_read(&mem->transient_nslabs);
1601 }
1602 
1603 static int io_tlb_transient_used_get(void *data, u64 *val)
1604 {
1605 	struct io_tlb_mem *mem = data;
1606 
1607 	*val = mem_transient_used(mem);
1608 	return 0;
1609 }
1610 
1611 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get,
1612 			 NULL, "%llu\n");
1613 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1614 
1615 static int io_tlb_used_get(void *data, u64 *val)
1616 {
1617 	struct io_tlb_mem *mem = data;
1618 
1619 	*val = mem_used(mem);
1620 	return 0;
1621 }
1622 
1623 static int io_tlb_hiwater_get(void *data, u64 *val)
1624 {
1625 	struct io_tlb_mem *mem = data;
1626 
1627 	*val = atomic_long_read(&mem->used_hiwater);
1628 	return 0;
1629 }
1630 
1631 static int io_tlb_hiwater_set(void *data, u64 val)
1632 {
1633 	struct io_tlb_mem *mem = data;
1634 
1635 	/* Only allow setting to zero */
1636 	if (val != 0)
1637 		return -EINVAL;
1638 
1639 	atomic_long_set(&mem->used_hiwater, val);
1640 	return 0;
1641 }
1642 
1643 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1644 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1645 				io_tlb_hiwater_set, "%llu\n");
1646 
1647 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1648 					 const char *dirname)
1649 {
1650 	atomic_long_set(&mem->total_used, 0);
1651 	atomic_long_set(&mem->used_hiwater, 0);
1652 
1653 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1654 	if (!mem->nslabs)
1655 		return;
1656 
1657 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1658 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1659 			&fops_io_tlb_used);
1660 	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1661 			&fops_io_tlb_hiwater);
1662 #ifdef CONFIG_SWIOTLB_DYNAMIC
1663 	atomic_long_set(&mem->transient_nslabs, 0);
1664 	debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs,
1665 			    mem, &fops_io_tlb_transient_used);
1666 #endif
1667 }
1668 
1669 static int __init swiotlb_create_default_debugfs(void)
1670 {
1671 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1672 	return 0;
1673 }
1674 
1675 late_initcall(swiotlb_create_default_debugfs);
1676 
1677 #else  /* !CONFIG_DEBUG_FS */
1678 
1679 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1680 						const char *dirname)
1681 {
1682 }
1683 
1684 #endif	/* CONFIG_DEBUG_FS */
1685 
1686 #ifdef CONFIG_DMA_RESTRICTED_POOL
1687 
1688 struct page *swiotlb_alloc(struct device *dev, size_t size)
1689 {
1690 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1691 	struct io_tlb_pool *pool;
1692 	phys_addr_t tlb_addr;
1693 	unsigned int align;
1694 	int index;
1695 
1696 	if (!mem)
1697 		return NULL;
1698 
1699 	align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
1700 	index = swiotlb_find_slots(dev, 0, size, align, &pool);
1701 	if (index == -1)
1702 		return NULL;
1703 
1704 	tlb_addr = slot_addr(pool->start, index);
1705 	if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
1706 		dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
1707 			      &tlb_addr);
1708 		swiotlb_release_slots(dev, tlb_addr);
1709 		return NULL;
1710 	}
1711 
1712 	return pfn_to_page(PFN_DOWN(tlb_addr));
1713 }
1714 
1715 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1716 {
1717 	phys_addr_t tlb_addr = page_to_phys(page);
1718 
1719 	if (!is_swiotlb_buffer(dev, tlb_addr))
1720 		return false;
1721 
1722 	swiotlb_release_slots(dev, tlb_addr);
1723 
1724 	return true;
1725 }
1726 
1727 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1728 				    struct device *dev)
1729 {
1730 	struct io_tlb_mem *mem = rmem->priv;
1731 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1732 
1733 	/* Set Per-device io tlb area to one */
1734 	unsigned int nareas = 1;
1735 
1736 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1737 		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1738 		return -EINVAL;
1739 	}
1740 
1741 	/*
1742 	 * Since multiple devices can share the same pool, the private data,
1743 	 * io_tlb_mem struct, will be initialized by the first device attached
1744 	 * to it.
1745 	 */
1746 	if (!mem) {
1747 		struct io_tlb_pool *pool;
1748 
1749 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1750 		if (!mem)
1751 			return -ENOMEM;
1752 		pool = &mem->defpool;
1753 
1754 		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1755 		if (!pool->slots) {
1756 			kfree(mem);
1757 			return -ENOMEM;
1758 		}
1759 
1760 		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1761 				GFP_KERNEL);
1762 		if (!pool->areas) {
1763 			kfree(pool->slots);
1764 			kfree(mem);
1765 			return -ENOMEM;
1766 		}
1767 
1768 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1769 				     rmem->size >> PAGE_SHIFT);
1770 		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1771 					 false, nareas);
1772 		mem->force_bounce = true;
1773 		mem->for_alloc = true;
1774 #ifdef CONFIG_SWIOTLB_DYNAMIC
1775 		spin_lock_init(&mem->lock);
1776 #endif
1777 		add_mem_pool(mem, pool);
1778 
1779 		rmem->priv = mem;
1780 
1781 		swiotlb_create_debugfs_files(mem, rmem->name);
1782 	}
1783 
1784 	dev->dma_io_tlb_mem = mem;
1785 
1786 	return 0;
1787 }
1788 
1789 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1790 					struct device *dev)
1791 {
1792 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1793 }
1794 
1795 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1796 	.device_init = rmem_swiotlb_device_init,
1797 	.device_release = rmem_swiotlb_device_release,
1798 };
1799 
1800 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1801 {
1802 	unsigned long node = rmem->fdt_node;
1803 
1804 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1805 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1806 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1807 	    of_get_flat_dt_prop(node, "no-map", NULL))
1808 		return -EINVAL;
1809 
1810 	rmem->ops = &rmem_swiotlb_ops;
1811 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1812 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1813 	return 0;
1814 }
1815 
1816 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1817 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1818