1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #define pr_fmt(fmt) "software IO TLB: " fmt 21 22 #include <linux/cache.h> 23 #include <linux/dma-direct.h> 24 #include <linux/mm.h> 25 #include <linux/export.h> 26 #include <linux/spinlock.h> 27 #include <linux/string.h> 28 #include <linux/swiotlb.h> 29 #include <linux/pfn.h> 30 #include <linux/types.h> 31 #include <linux/ctype.h> 32 #include <linux/highmem.h> 33 #include <linux/gfp.h> 34 #include <linux/scatterlist.h> 35 #include <linux/mem_encrypt.h> 36 #include <linux/set_memory.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <linux/init.h> 42 #include <linux/memblock.h> 43 #include <linux/iommu-helper.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/swiotlb.h> 47 48 #define OFFSET(val,align) ((unsigned long) \ 49 ( (val) & ( (align) - 1))) 50 51 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 52 53 /* 54 * Minimum IO TLB size to bother booting with. Systems with mainly 55 * 64bit capable cards will only lightly use the swiotlb. If we can't 56 * allocate a contiguous 1MB, we're probably in trouble anyway. 57 */ 58 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 59 60 enum swiotlb_force swiotlb_force; 61 62 /* 63 * Used to do a quick range check in swiotlb_tbl_unmap_single and 64 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 65 * API. 66 */ 67 phys_addr_t io_tlb_start, io_tlb_end; 68 69 /* 70 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 72 */ 73 static unsigned long io_tlb_nslabs; 74 75 /* 76 * This is a free list describing the number of free entries available from 77 * each index 78 */ 79 static unsigned int *io_tlb_list; 80 static unsigned int io_tlb_index; 81 82 /* 83 * Max segment that we can provide which (if pages are contingous) will 84 * not be bounced (unless SWIOTLB_FORCE is set). 85 */ 86 unsigned int max_segment; 87 88 /* 89 * We need to save away the original address corresponding to a mapped entry 90 * for the sync operations. 91 */ 92 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 93 static phys_addr_t *io_tlb_orig_addr; 94 95 /* 96 * Protect the above data structures in the map and unmap calls 97 */ 98 static DEFINE_SPINLOCK(io_tlb_lock); 99 100 static int late_alloc; 101 102 static int __init 103 setup_io_tlb_npages(char *str) 104 { 105 if (isdigit(*str)) { 106 io_tlb_nslabs = simple_strtoul(str, &str, 0); 107 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 108 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 109 } 110 if (*str == ',') 111 ++str; 112 if (!strcmp(str, "force")) { 113 swiotlb_force = SWIOTLB_FORCE; 114 } else if (!strcmp(str, "noforce")) { 115 swiotlb_force = SWIOTLB_NO_FORCE; 116 io_tlb_nslabs = 1; 117 } 118 119 return 0; 120 } 121 early_param("swiotlb", setup_io_tlb_npages); 122 123 unsigned long swiotlb_nr_tbl(void) 124 { 125 return io_tlb_nslabs; 126 } 127 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 128 129 unsigned int swiotlb_max_segment(void) 130 { 131 return max_segment; 132 } 133 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 134 135 void swiotlb_set_max_segment(unsigned int val) 136 { 137 if (swiotlb_force == SWIOTLB_FORCE) 138 max_segment = 1; 139 else 140 max_segment = rounddown(val, PAGE_SIZE); 141 } 142 143 /* default to 64MB */ 144 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 145 unsigned long swiotlb_size_or_default(void) 146 { 147 unsigned long size; 148 149 size = io_tlb_nslabs << IO_TLB_SHIFT; 150 151 return size ? size : (IO_TLB_DEFAULT_SIZE); 152 } 153 154 static bool no_iotlb_memory; 155 156 void swiotlb_print_info(void) 157 { 158 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 159 160 if (no_iotlb_memory) { 161 pr_warn("No low mem\n"); 162 return; 163 } 164 165 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 166 (unsigned long long)io_tlb_start, 167 (unsigned long long)io_tlb_end, 168 bytes >> 20); 169 } 170 171 /* 172 * Early SWIOTLB allocation may be too early to allow an architecture to 173 * perform the desired operations. This function allows the architecture to 174 * call SWIOTLB when the operations are possible. It needs to be called 175 * before the SWIOTLB memory is used. 176 */ 177 void __init swiotlb_update_mem_attributes(void) 178 { 179 void *vaddr; 180 unsigned long bytes; 181 182 if (no_iotlb_memory || late_alloc) 183 return; 184 185 vaddr = phys_to_virt(io_tlb_start); 186 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 187 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 188 memset(vaddr, 0, bytes); 189 } 190 191 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 192 { 193 unsigned long i, bytes; 194 195 bytes = nslabs << IO_TLB_SHIFT; 196 197 io_tlb_nslabs = nslabs; 198 io_tlb_start = __pa(tlb); 199 io_tlb_end = io_tlb_start + bytes; 200 201 /* 202 * Allocate and initialize the free list array. This array is used 203 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 204 * between io_tlb_start and io_tlb_end. 205 */ 206 io_tlb_list = memblock_alloc( 207 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), 208 PAGE_SIZE); 209 io_tlb_orig_addr = memblock_alloc( 210 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), 211 PAGE_SIZE); 212 for (i = 0; i < io_tlb_nslabs; i++) { 213 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 214 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 215 } 216 io_tlb_index = 0; 217 218 if (verbose) 219 swiotlb_print_info(); 220 221 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 222 return 0; 223 } 224 225 /* 226 * Statically reserve bounce buffer space and initialize bounce buffer data 227 * structures for the software IO TLB used to implement the DMA API. 228 */ 229 void __init 230 swiotlb_init(int verbose) 231 { 232 size_t default_size = IO_TLB_DEFAULT_SIZE; 233 unsigned char *vstart; 234 unsigned long bytes; 235 236 if (!io_tlb_nslabs) { 237 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 238 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 239 } 240 241 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 242 243 /* Get IO TLB memory from the low pages */ 244 vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); 245 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 246 return; 247 248 if (io_tlb_start) 249 memblock_free_early(io_tlb_start, 250 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 251 pr_warn("Cannot allocate buffer"); 252 no_iotlb_memory = true; 253 } 254 255 /* 256 * Systems with larger DMA zones (those that don't support ISA) can 257 * initialize the swiotlb later using the slab allocator if needed. 258 * This should be just like above, but with some error catching. 259 */ 260 int 261 swiotlb_late_init_with_default_size(size_t default_size) 262 { 263 unsigned long bytes, req_nslabs = io_tlb_nslabs; 264 unsigned char *vstart = NULL; 265 unsigned int order; 266 int rc = 0; 267 268 if (!io_tlb_nslabs) { 269 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 270 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 271 } 272 273 /* 274 * Get IO TLB memory from the low pages 275 */ 276 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 277 io_tlb_nslabs = SLABS_PER_PAGE << order; 278 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 279 280 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 281 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 282 order); 283 if (vstart) 284 break; 285 order--; 286 } 287 288 if (!vstart) { 289 io_tlb_nslabs = req_nslabs; 290 return -ENOMEM; 291 } 292 if (order != get_order(bytes)) { 293 pr_warn("only able to allocate %ld MB\n", 294 (PAGE_SIZE << order) >> 20); 295 io_tlb_nslabs = SLABS_PER_PAGE << order; 296 } 297 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 298 if (rc) 299 free_pages((unsigned long)vstart, order); 300 301 return rc; 302 } 303 304 int 305 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 306 { 307 unsigned long i, bytes; 308 309 bytes = nslabs << IO_TLB_SHIFT; 310 311 io_tlb_nslabs = nslabs; 312 io_tlb_start = virt_to_phys(tlb); 313 io_tlb_end = io_tlb_start + bytes; 314 315 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 316 memset(tlb, 0, bytes); 317 318 /* 319 * Allocate and initialize the free list array. This array is used 320 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 321 * between io_tlb_start and io_tlb_end. 322 */ 323 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 324 get_order(io_tlb_nslabs * sizeof(int))); 325 if (!io_tlb_list) 326 goto cleanup3; 327 328 io_tlb_orig_addr = (phys_addr_t *) 329 __get_free_pages(GFP_KERNEL, 330 get_order(io_tlb_nslabs * 331 sizeof(phys_addr_t))); 332 if (!io_tlb_orig_addr) 333 goto cleanup4; 334 335 for (i = 0; i < io_tlb_nslabs; i++) { 336 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 337 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 338 } 339 io_tlb_index = 0; 340 341 swiotlb_print_info(); 342 343 late_alloc = 1; 344 345 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 346 347 return 0; 348 349 cleanup4: 350 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 351 sizeof(int))); 352 io_tlb_list = NULL; 353 cleanup3: 354 io_tlb_end = 0; 355 io_tlb_start = 0; 356 io_tlb_nslabs = 0; 357 max_segment = 0; 358 return -ENOMEM; 359 } 360 361 void __init swiotlb_exit(void) 362 { 363 if (!io_tlb_orig_addr) 364 return; 365 366 if (late_alloc) { 367 free_pages((unsigned long)io_tlb_orig_addr, 368 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 369 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 370 sizeof(int))); 371 free_pages((unsigned long)phys_to_virt(io_tlb_start), 372 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 373 } else { 374 memblock_free_late(__pa(io_tlb_orig_addr), 375 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 376 memblock_free_late(__pa(io_tlb_list), 377 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 378 memblock_free_late(io_tlb_start, 379 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 380 } 381 io_tlb_start = 0; 382 io_tlb_end = 0; 383 io_tlb_nslabs = 0; 384 max_segment = 0; 385 } 386 387 /* 388 * Bounce: copy the swiotlb buffer back to the original dma location 389 */ 390 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 391 size_t size, enum dma_data_direction dir) 392 { 393 unsigned long pfn = PFN_DOWN(orig_addr); 394 unsigned char *vaddr = phys_to_virt(tlb_addr); 395 396 if (PageHighMem(pfn_to_page(pfn))) { 397 /* The buffer does not have a mapping. Map it in and copy */ 398 unsigned int offset = orig_addr & ~PAGE_MASK; 399 char *buffer; 400 unsigned int sz = 0; 401 unsigned long flags; 402 403 while (size) { 404 sz = min_t(size_t, PAGE_SIZE - offset, size); 405 406 local_irq_save(flags); 407 buffer = kmap_atomic(pfn_to_page(pfn)); 408 if (dir == DMA_TO_DEVICE) 409 memcpy(vaddr, buffer + offset, sz); 410 else 411 memcpy(buffer + offset, vaddr, sz); 412 kunmap_atomic(buffer); 413 local_irq_restore(flags); 414 415 size -= sz; 416 pfn++; 417 vaddr += sz; 418 offset = 0; 419 } 420 } else if (dir == DMA_TO_DEVICE) { 421 memcpy(vaddr, phys_to_virt(orig_addr), size); 422 } else { 423 memcpy(phys_to_virt(orig_addr), vaddr, size); 424 } 425 } 426 427 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 428 dma_addr_t tbl_dma_addr, 429 phys_addr_t orig_addr, size_t size, 430 enum dma_data_direction dir, 431 unsigned long attrs) 432 { 433 unsigned long flags; 434 phys_addr_t tlb_addr; 435 unsigned int nslots, stride, index, wrap; 436 int i; 437 unsigned long mask; 438 unsigned long offset_slots; 439 unsigned long max_slots; 440 441 if (no_iotlb_memory) 442 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 443 444 if (mem_encrypt_active()) 445 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 446 sme_active() ? "SME" : "SEV"); 447 448 mask = dma_get_seg_boundary(hwdev); 449 450 tbl_dma_addr &= mask; 451 452 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 453 454 /* 455 * Carefully handle integer overflow which can occur when mask == ~0UL. 456 */ 457 max_slots = mask + 1 458 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 459 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 460 461 /* 462 * For mappings greater than or equal to a page, we limit the stride 463 * (and hence alignment) to a page size. 464 */ 465 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 466 if (size >= PAGE_SIZE) 467 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 468 else 469 stride = 1; 470 471 BUG_ON(!nslots); 472 473 /* 474 * Find suitable number of IO TLB entries size that will fit this 475 * request and allocate a buffer from that IO TLB pool. 476 */ 477 spin_lock_irqsave(&io_tlb_lock, flags); 478 index = ALIGN(io_tlb_index, stride); 479 if (index >= io_tlb_nslabs) 480 index = 0; 481 wrap = index; 482 483 do { 484 while (iommu_is_span_boundary(index, nslots, offset_slots, 485 max_slots)) { 486 index += stride; 487 if (index >= io_tlb_nslabs) 488 index = 0; 489 if (index == wrap) 490 goto not_found; 491 } 492 493 /* 494 * If we find a slot that indicates we have 'nslots' number of 495 * contiguous buffers, we allocate the buffers from that slot 496 * and mark the entries as '0' indicating unavailable. 497 */ 498 if (io_tlb_list[index] >= nslots) { 499 int count = 0; 500 501 for (i = index; i < (int) (index + nslots); i++) 502 io_tlb_list[i] = 0; 503 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 504 io_tlb_list[i] = ++count; 505 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 506 507 /* 508 * Update the indices to avoid searching in the next 509 * round. 510 */ 511 io_tlb_index = ((index + nslots) < io_tlb_nslabs 512 ? (index + nslots) : 0); 513 514 goto found; 515 } 516 index += stride; 517 if (index >= io_tlb_nslabs) 518 index = 0; 519 } while (index != wrap); 520 521 not_found: 522 spin_unlock_irqrestore(&io_tlb_lock, flags); 523 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 524 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); 525 return DMA_MAPPING_ERROR; 526 found: 527 spin_unlock_irqrestore(&io_tlb_lock, flags); 528 529 /* 530 * Save away the mapping from the original address to the DMA address. 531 * This is needed when we sync the memory. Then we sync the buffer if 532 * needed. 533 */ 534 for (i = 0; i < nslots; i++) 535 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 536 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 537 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 538 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 539 540 return tlb_addr; 541 } 542 543 /* 544 * tlb_addr is the physical address of the bounce buffer to unmap. 545 */ 546 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 547 size_t size, enum dma_data_direction dir, 548 unsigned long attrs) 549 { 550 unsigned long flags; 551 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 552 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 553 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 554 555 /* 556 * First, sync the memory before unmapping the entry 557 */ 558 if (orig_addr != INVALID_PHYS_ADDR && 559 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 560 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 561 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 562 563 /* 564 * Return the buffer to the free list by setting the corresponding 565 * entries to indicate the number of contiguous entries available. 566 * While returning the entries to the free list, we merge the entries 567 * with slots below and above the pool being returned. 568 */ 569 spin_lock_irqsave(&io_tlb_lock, flags); 570 { 571 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 572 io_tlb_list[index + nslots] : 0); 573 /* 574 * Step 1: return the slots to the free list, merging the 575 * slots with superceeding slots 576 */ 577 for (i = index + nslots - 1; i >= index; i--) { 578 io_tlb_list[i] = ++count; 579 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 580 } 581 /* 582 * Step 2: merge the returned slots with the preceding slots, 583 * if available (non zero) 584 */ 585 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 586 io_tlb_list[i] = ++count; 587 } 588 spin_unlock_irqrestore(&io_tlb_lock, flags); 589 } 590 591 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 592 size_t size, enum dma_data_direction dir, 593 enum dma_sync_target target) 594 { 595 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 596 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 597 598 if (orig_addr == INVALID_PHYS_ADDR) 599 return; 600 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 601 602 switch (target) { 603 case SYNC_FOR_CPU: 604 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 605 swiotlb_bounce(orig_addr, tlb_addr, 606 size, DMA_FROM_DEVICE); 607 else 608 BUG_ON(dir != DMA_TO_DEVICE); 609 break; 610 case SYNC_FOR_DEVICE: 611 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 612 swiotlb_bounce(orig_addr, tlb_addr, 613 size, DMA_TO_DEVICE); 614 else 615 BUG_ON(dir != DMA_FROM_DEVICE); 616 break; 617 default: 618 BUG(); 619 } 620 } 621 622 /* 623 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing 624 * to the device copy the data into it as well. 625 */ 626 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, 627 size_t size, enum dma_data_direction dir, unsigned long attrs) 628 { 629 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force); 630 631 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { 632 dev_warn_ratelimited(dev, 633 "Cannot do DMA to address %pa\n", phys); 634 return false; 635 } 636 637 /* Oh well, have to allocate and map a bounce buffer. */ 638 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), 639 *phys, size, dir, attrs); 640 if (*phys == DMA_MAPPING_ERROR) 641 return false; 642 643 /* Ensure that the address returned is DMA'ble */ 644 *dma_addr = __phys_to_dma(dev, *phys); 645 if (unlikely(!dma_capable(dev, *dma_addr, size))) { 646 swiotlb_tbl_unmap_single(dev, *phys, size, dir, 647 attrs | DMA_ATTR_SKIP_CPU_SYNC); 648 return false; 649 } 650 651 return true; 652 } 653 654 /* 655 * Return whether the given device DMA address mask can be supported 656 * properly. For example, if your device can only drive the low 24-bits 657 * during bus mastering, then you would pass 0x00ffffff as the mask to 658 * this function. 659 */ 660 int 661 swiotlb_dma_supported(struct device *hwdev, u64 mask) 662 { 663 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; 664 } 665