xref: /linux/kernel/dma/swiotlb.c (revision 3e0bc2855b573bcffa2a52955a878f537f5ac0cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/rculist.h>
39 #include <linux/scatterlist.h>
40 #include <linux/set_memory.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/swiotlb.h>
44 #include <linux/types.h>
45 #ifdef CONFIG_DMA_RESTRICTED_POOL
46 #include <linux/of.h>
47 #include <linux/of_fdt.h>
48 #include <linux/of_reserved_mem.h>
49 #include <linux/slab.h>
50 #endif
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/swiotlb.h>
54 
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56 
57 /*
58  * Minimum IO TLB size to bother booting with.  Systems with mainly
59  * 64bit capable cards will only lightly use the swiotlb.  If we can't
60  * allocate a contiguous 1MB, we're probably in trouble anyway.
61  */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63 
64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65 
66 /**
67  * struct io_tlb_slot - IO TLB slot descriptor
68  * @orig_addr:	The original address corresponding to a mapped entry.
69  * @alloc_size:	Size of the allocated buffer.
70  * @list:	The free list describing the number of free entries available
71  *		from each index.
72  */
73 struct io_tlb_slot {
74 	phys_addr_t orig_addr;
75 	size_t alloc_size;
76 	unsigned int list;
77 };
78 
79 static bool swiotlb_force_bounce;
80 static bool swiotlb_force_disable;
81 
82 #ifdef CONFIG_SWIOTLB_DYNAMIC
83 
84 static void swiotlb_dyn_alloc(struct work_struct *work);
85 
86 static struct io_tlb_mem io_tlb_default_mem = {
87 	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
88 	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
89 	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
90 					swiotlb_dyn_alloc),
91 };
92 
93 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
94 
95 static struct io_tlb_mem io_tlb_default_mem;
96 
97 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
98 
99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
100 static unsigned long default_nareas;
101 
102 /**
103  * struct io_tlb_area - IO TLB memory area descriptor
104  *
105  * This is a single area with a single lock.
106  *
107  * @used:	The number of used IO TLB block.
108  * @index:	The slot index to start searching in this area for next round.
109  * @lock:	The lock to protect the above data structures in the map and
110  *		unmap calls.
111  */
112 struct io_tlb_area {
113 	unsigned long used;
114 	unsigned int index;
115 	spinlock_t lock;
116 };
117 
118 /*
119  * Round up number of slabs to the next power of 2. The last area is going
120  * be smaller than the rest if default_nslabs is not power of two.
121  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
122  * otherwise a segment may span two or more areas. It conflicts with free
123  * contiguous slots tracking: free slots are treated contiguous no matter
124  * whether they cross an area boundary.
125  *
126  * Return true if default_nslabs is rounded up.
127  */
128 static bool round_up_default_nslabs(void)
129 {
130 	if (!default_nareas)
131 		return false;
132 
133 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
134 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
135 	else if (is_power_of_2(default_nslabs))
136 		return false;
137 	default_nslabs = roundup_pow_of_two(default_nslabs);
138 	return true;
139 }
140 
141 /**
142  * swiotlb_adjust_nareas() - adjust the number of areas and slots
143  * @nareas:	Desired number of areas. Zero is treated as 1.
144  *
145  * Adjust the default number of areas in a memory pool.
146  * The default size of the memory pool may also change to meet minimum area
147  * size requirements.
148  */
149 static void swiotlb_adjust_nareas(unsigned int nareas)
150 {
151 	if (!nareas)
152 		nareas = 1;
153 	else if (!is_power_of_2(nareas))
154 		nareas = roundup_pow_of_two(nareas);
155 
156 	default_nareas = nareas;
157 
158 	pr_info("area num %d.\n", nareas);
159 	if (round_up_default_nslabs())
160 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
161 			(default_nslabs << IO_TLB_SHIFT) >> 20);
162 }
163 
164 /**
165  * limit_nareas() - get the maximum number of areas for a given memory pool size
166  * @nareas:	Desired number of areas.
167  * @nslots:	Total number of slots in the memory pool.
168  *
169  * Limit the number of areas to the maximum possible number of areas in
170  * a memory pool of the given size.
171  *
172  * Return: Maximum possible number of areas.
173  */
174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
175 {
176 	if (nslots < nareas * IO_TLB_SEGSIZE)
177 		return nslots / IO_TLB_SEGSIZE;
178 	return nareas;
179 }
180 
181 static int __init
182 setup_io_tlb_npages(char *str)
183 {
184 	if (isdigit(*str)) {
185 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
186 		default_nslabs =
187 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
188 	}
189 	if (*str == ',')
190 		++str;
191 	if (isdigit(*str))
192 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
193 	if (*str == ',')
194 		++str;
195 	if (!strcmp(str, "force"))
196 		swiotlb_force_bounce = true;
197 	else if (!strcmp(str, "noforce"))
198 		swiotlb_force_disable = true;
199 
200 	return 0;
201 }
202 early_param("swiotlb", setup_io_tlb_npages);
203 
204 unsigned long swiotlb_size_or_default(void)
205 {
206 	return default_nslabs << IO_TLB_SHIFT;
207 }
208 
209 void __init swiotlb_adjust_size(unsigned long size)
210 {
211 	/*
212 	 * If swiotlb parameter has not been specified, give a chance to
213 	 * architectures such as those supporting memory encryption to
214 	 * adjust/expand SWIOTLB size for their use.
215 	 */
216 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
217 		return;
218 
219 	size = ALIGN(size, IO_TLB_SIZE);
220 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
221 	if (round_up_default_nslabs())
222 		size = default_nslabs << IO_TLB_SHIFT;
223 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
224 }
225 
226 void swiotlb_print_info(void)
227 {
228 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
229 
230 	if (!mem->nslabs) {
231 		pr_warn("No low mem\n");
232 		return;
233 	}
234 
235 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
236 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
237 }
238 
239 static inline unsigned long io_tlb_offset(unsigned long val)
240 {
241 	return val & (IO_TLB_SEGSIZE - 1);
242 }
243 
244 static inline unsigned long nr_slots(u64 val)
245 {
246 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
247 }
248 
249 /*
250  * Early SWIOTLB allocation may be too early to allow an architecture to
251  * perform the desired operations.  This function allows the architecture to
252  * call SWIOTLB when the operations are possible.  It needs to be called
253  * before the SWIOTLB memory is used.
254  */
255 void __init swiotlb_update_mem_attributes(void)
256 {
257 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
258 	unsigned long bytes;
259 
260 	if (!mem->nslabs || mem->late_alloc)
261 		return;
262 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
263 	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
264 }
265 
266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
267 		unsigned long nslabs, bool late_alloc, unsigned int nareas)
268 {
269 	void *vaddr = phys_to_virt(start);
270 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
271 
272 	mem->nslabs = nslabs;
273 	mem->start = start;
274 	mem->end = mem->start + bytes;
275 	mem->late_alloc = late_alloc;
276 	mem->nareas = nareas;
277 	mem->area_nslabs = nslabs / mem->nareas;
278 
279 	for (i = 0; i < mem->nareas; i++) {
280 		spin_lock_init(&mem->areas[i].lock);
281 		mem->areas[i].index = 0;
282 		mem->areas[i].used = 0;
283 	}
284 
285 	for (i = 0; i < mem->nslabs; i++) {
286 		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
287 					 mem->nslabs - i);
288 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
289 		mem->slots[i].alloc_size = 0;
290 	}
291 
292 	memset(vaddr, 0, bytes);
293 	mem->vaddr = vaddr;
294 	return;
295 }
296 
297 /**
298  * add_mem_pool() - add a memory pool to the allocator
299  * @mem:	Software IO TLB allocator.
300  * @pool:	Memory pool to be added.
301  */
302 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
303 {
304 #ifdef CONFIG_SWIOTLB_DYNAMIC
305 	spin_lock(&mem->lock);
306 	list_add_rcu(&pool->node, &mem->pools);
307 	mem->nslabs += pool->nslabs;
308 	spin_unlock(&mem->lock);
309 #else
310 	mem->nslabs = pool->nslabs;
311 #endif
312 }
313 
314 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
315 		unsigned int flags,
316 		int (*remap)(void *tlb, unsigned long nslabs))
317 {
318 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
319 	void *tlb;
320 
321 	/*
322 	 * By default allocate the bounce buffer memory from low memory, but
323 	 * allow to pick a location everywhere for hypervisors with guest
324 	 * memory encryption.
325 	 */
326 	if (flags & SWIOTLB_ANY)
327 		tlb = memblock_alloc(bytes, PAGE_SIZE);
328 	else
329 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
330 
331 	if (!tlb) {
332 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
333 			__func__, bytes);
334 		return NULL;
335 	}
336 
337 	if (remap && remap(tlb, nslabs) < 0) {
338 		memblock_free(tlb, PAGE_ALIGN(bytes));
339 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
340 		return NULL;
341 	}
342 
343 	return tlb;
344 }
345 
346 /*
347  * Statically reserve bounce buffer space and initialize bounce buffer data
348  * structures for the software IO TLB used to implement the DMA API.
349  */
350 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
351 		int (*remap)(void *tlb, unsigned long nslabs))
352 {
353 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
354 	unsigned long nslabs;
355 	unsigned int nareas;
356 	size_t alloc_size;
357 	void *tlb;
358 
359 	if (!addressing_limit && !swiotlb_force_bounce)
360 		return;
361 	if (swiotlb_force_disable)
362 		return;
363 
364 	io_tlb_default_mem.force_bounce =
365 		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
366 
367 #ifdef CONFIG_SWIOTLB_DYNAMIC
368 	if (!remap)
369 		io_tlb_default_mem.can_grow = true;
370 	if (flags & SWIOTLB_ANY)
371 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
372 	else
373 		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
374 #endif
375 
376 	if (!default_nareas)
377 		swiotlb_adjust_nareas(num_possible_cpus());
378 
379 	nslabs = default_nslabs;
380 	nareas = limit_nareas(default_nareas, nslabs);
381 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
382 		if (nslabs <= IO_TLB_MIN_SLABS)
383 			return;
384 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
385 		nareas = limit_nareas(nareas, nslabs);
386 	}
387 
388 	if (default_nslabs != nslabs) {
389 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
390 			default_nslabs, nslabs);
391 		default_nslabs = nslabs;
392 	}
393 
394 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
395 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
396 	if (!mem->slots) {
397 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
398 			__func__, alloc_size, PAGE_SIZE);
399 		return;
400 	}
401 
402 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
403 		nareas), SMP_CACHE_BYTES);
404 	if (!mem->areas) {
405 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
406 		return;
407 	}
408 
409 	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
410 	add_mem_pool(&io_tlb_default_mem, mem);
411 
412 	if (flags & SWIOTLB_VERBOSE)
413 		swiotlb_print_info();
414 }
415 
416 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
417 {
418 	swiotlb_init_remap(addressing_limit, flags, NULL);
419 }
420 
421 /*
422  * Systems with larger DMA zones (those that don't support ISA) can
423  * initialize the swiotlb later using the slab allocator if needed.
424  * This should be just like above, but with some error catching.
425  */
426 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
427 		int (*remap)(void *tlb, unsigned long nslabs))
428 {
429 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
430 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
431 	unsigned int nareas;
432 	unsigned char *vstart = NULL;
433 	unsigned int order, area_order;
434 	bool retried = false;
435 	int rc = 0;
436 
437 	if (io_tlb_default_mem.nslabs)
438 		return 0;
439 
440 	if (swiotlb_force_disable)
441 		return 0;
442 
443 	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
444 
445 #ifdef CONFIG_SWIOTLB_DYNAMIC
446 	if (!remap)
447 		io_tlb_default_mem.can_grow = true;
448 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
449 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
450 	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
451 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
452 	else
453 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
454 #endif
455 
456 	if (!default_nareas)
457 		swiotlb_adjust_nareas(num_possible_cpus());
458 
459 retry:
460 	order = get_order(nslabs << IO_TLB_SHIFT);
461 	nslabs = SLABS_PER_PAGE << order;
462 
463 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
464 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
465 						  order);
466 		if (vstart)
467 			break;
468 		order--;
469 		nslabs = SLABS_PER_PAGE << order;
470 		retried = true;
471 	}
472 
473 	if (!vstart)
474 		return -ENOMEM;
475 
476 	if (remap)
477 		rc = remap(vstart, nslabs);
478 	if (rc) {
479 		free_pages((unsigned long)vstart, order);
480 
481 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
482 		if (nslabs < IO_TLB_MIN_SLABS)
483 			return rc;
484 		retried = true;
485 		goto retry;
486 	}
487 
488 	if (retried) {
489 		pr_warn("only able to allocate %ld MB\n",
490 			(PAGE_SIZE << order) >> 20);
491 	}
492 
493 	nareas = limit_nareas(default_nareas, nslabs);
494 	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
495 	mem->areas = (struct io_tlb_area *)
496 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
497 	if (!mem->areas)
498 		goto error_area;
499 
500 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
501 		get_order(array_size(sizeof(*mem->slots), nslabs)));
502 	if (!mem->slots)
503 		goto error_slots;
504 
505 	set_memory_decrypted((unsigned long)vstart,
506 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
507 	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
508 				 nareas);
509 	add_mem_pool(&io_tlb_default_mem, mem);
510 
511 	swiotlb_print_info();
512 	return 0;
513 
514 error_slots:
515 	free_pages((unsigned long)mem->areas, area_order);
516 error_area:
517 	free_pages((unsigned long)vstart, order);
518 	return -ENOMEM;
519 }
520 
521 void __init swiotlb_exit(void)
522 {
523 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
524 	unsigned long tbl_vaddr;
525 	size_t tbl_size, slots_size;
526 	unsigned int area_order;
527 
528 	if (swiotlb_force_bounce)
529 		return;
530 
531 	if (!mem->nslabs)
532 		return;
533 
534 	pr_info("tearing down default memory pool\n");
535 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
536 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
537 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
538 
539 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
540 	if (mem->late_alloc) {
541 		area_order = get_order(array_size(sizeof(*mem->areas),
542 			mem->nareas));
543 		free_pages((unsigned long)mem->areas, area_order);
544 		free_pages(tbl_vaddr, get_order(tbl_size));
545 		free_pages((unsigned long)mem->slots, get_order(slots_size));
546 	} else {
547 		memblock_free_late(__pa(mem->areas),
548 			array_size(sizeof(*mem->areas), mem->nareas));
549 		memblock_free_late(mem->start, tbl_size);
550 		memblock_free_late(__pa(mem->slots), slots_size);
551 	}
552 
553 	memset(mem, 0, sizeof(*mem));
554 }
555 
556 #ifdef CONFIG_SWIOTLB_DYNAMIC
557 
558 /**
559  * alloc_dma_pages() - allocate pages to be used for DMA
560  * @gfp:	GFP flags for the allocation.
561  * @bytes:	Size of the buffer.
562  * @phys_limit:	Maximum allowed physical address of the buffer.
563  *
564  * Allocate pages from the buddy allocator. If successful, make the allocated
565  * pages decrypted that they can be used for DMA.
566  *
567  * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
568  * if the allocated physical address was above @phys_limit.
569  */
570 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
571 {
572 	unsigned int order = get_order(bytes);
573 	struct page *page;
574 	phys_addr_t paddr;
575 	void *vaddr;
576 
577 	page = alloc_pages(gfp, order);
578 	if (!page)
579 		return NULL;
580 
581 	paddr = page_to_phys(page);
582 	if (paddr + bytes - 1 > phys_limit) {
583 		__free_pages(page, order);
584 		return ERR_PTR(-EAGAIN);
585 	}
586 
587 	vaddr = phys_to_virt(paddr);
588 	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
589 		goto error;
590 	return page;
591 
592 error:
593 	/* Intentional leak if pages cannot be encrypted again. */
594 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
595 		__free_pages(page, order);
596 	return NULL;
597 }
598 
599 /**
600  * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
601  * @dev:	Device for which a memory pool is allocated.
602  * @bytes:	Size of the buffer.
603  * @phys_limit:	Maximum allowed physical address of the buffer.
604  * @gfp:	GFP flags for the allocation.
605  *
606  * Return: Allocated pages, or %NULL on allocation failure.
607  */
608 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
609 		u64 phys_limit, gfp_t gfp)
610 {
611 	struct page *page;
612 
613 	/*
614 	 * Allocate from the atomic pools if memory is encrypted and
615 	 * the allocation is atomic, because decrypting may block.
616 	 */
617 	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
618 		void *vaddr;
619 
620 		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
621 			return NULL;
622 
623 		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
624 					   dma_coherent_ok);
625 	}
626 
627 	gfp &= ~GFP_ZONEMASK;
628 	if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
629 		gfp |= __GFP_DMA;
630 	else if (phys_limit <= DMA_BIT_MASK(32))
631 		gfp |= __GFP_DMA32;
632 
633 	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
634 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
635 		    phys_limit < DMA_BIT_MASK(64) &&
636 		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
637 			gfp |= __GFP_DMA32;
638 		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
639 			 !(gfp & __GFP_DMA))
640 			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
641 		else
642 			return NULL;
643 	}
644 
645 	return page;
646 }
647 
648 /**
649  * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
650  * @vaddr:	Virtual address of the buffer.
651  * @bytes:	Size of the buffer.
652  */
653 static void swiotlb_free_tlb(void *vaddr, size_t bytes)
654 {
655 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
656 	    dma_free_from_pool(NULL, vaddr, bytes))
657 		return;
658 
659 	/* Intentional leak if pages cannot be encrypted again. */
660 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
661 		__free_pages(virt_to_page(vaddr), get_order(bytes));
662 }
663 
664 /**
665  * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
666  * @dev:	Device for which a memory pool is allocated.
667  * @minslabs:	Minimum number of slabs.
668  * @nslabs:	Desired (maximum) number of slabs.
669  * @nareas:	Number of areas.
670  * @phys_limit:	Maximum DMA buffer physical address.
671  * @gfp:	GFP flags for the allocations.
672  *
673  * Allocate and initialize a new IO TLB memory pool. The actual number of
674  * slabs may be reduced if allocation of @nslabs fails. If even
675  * @minslabs cannot be allocated, this function fails.
676  *
677  * Return: New memory pool, or %NULL on allocation failure.
678  */
679 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
680 		unsigned long minslabs, unsigned long nslabs,
681 		unsigned int nareas, u64 phys_limit, gfp_t gfp)
682 {
683 	struct io_tlb_pool *pool;
684 	unsigned int slot_order;
685 	struct page *tlb;
686 	size_t pool_size;
687 	size_t tlb_size;
688 
689 	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
690 		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
691 		nareas = limit_nareas(nareas, nslabs);
692 	}
693 
694 	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
695 	pool = kzalloc(pool_size, gfp);
696 	if (!pool)
697 		goto error;
698 	pool->areas = (void *)pool + sizeof(*pool);
699 
700 	tlb_size = nslabs << IO_TLB_SHIFT;
701 	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
702 		if (nslabs <= minslabs)
703 			goto error_tlb;
704 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
705 		nareas = limit_nareas(nareas, nslabs);
706 		tlb_size = nslabs << IO_TLB_SHIFT;
707 	}
708 
709 	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
710 	pool->slots = (struct io_tlb_slot *)
711 		__get_free_pages(gfp, slot_order);
712 	if (!pool->slots)
713 		goto error_slots;
714 
715 	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
716 	return pool;
717 
718 error_slots:
719 	swiotlb_free_tlb(page_address(tlb), tlb_size);
720 error_tlb:
721 	kfree(pool);
722 error:
723 	return NULL;
724 }
725 
726 /**
727  * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
728  * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
729  */
730 static void swiotlb_dyn_alloc(struct work_struct *work)
731 {
732 	struct io_tlb_mem *mem =
733 		container_of(work, struct io_tlb_mem, dyn_alloc);
734 	struct io_tlb_pool *pool;
735 
736 	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
737 				  default_nareas, mem->phys_limit, GFP_KERNEL);
738 	if (!pool) {
739 		pr_warn_ratelimited("Failed to allocate new pool");
740 		return;
741 	}
742 
743 	add_mem_pool(mem, pool);
744 }
745 
746 /**
747  * swiotlb_dyn_free() - RCU callback to free a memory pool
748  * @rcu:	RCU head in the corresponding struct io_tlb_pool.
749  */
750 static void swiotlb_dyn_free(struct rcu_head *rcu)
751 {
752 	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
753 	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
754 	size_t tlb_size = pool->end - pool->start;
755 
756 	free_pages((unsigned long)pool->slots, get_order(slots_size));
757 	swiotlb_free_tlb(pool->vaddr, tlb_size);
758 	kfree(pool);
759 }
760 
761 /**
762  * swiotlb_find_pool() - find the IO TLB pool for a physical address
763  * @dev:        Device which has mapped the DMA buffer.
764  * @paddr:      Physical address within the DMA buffer.
765  *
766  * Find the IO TLB memory pool descriptor which contains the given physical
767  * address, if any.
768  *
769  * Return: Memory pool which contains @paddr, or %NULL if none.
770  */
771 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
772 {
773 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
774 	struct io_tlb_pool *pool;
775 
776 	rcu_read_lock();
777 	list_for_each_entry_rcu(pool, &mem->pools, node) {
778 		if (paddr >= pool->start && paddr < pool->end)
779 			goto out;
780 	}
781 
782 	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
783 		if (paddr >= pool->start && paddr < pool->end)
784 			goto out;
785 	}
786 	pool = NULL;
787 out:
788 	rcu_read_unlock();
789 	return pool;
790 }
791 
792 /**
793  * swiotlb_del_pool() - remove an IO TLB pool from a device
794  * @dev:	Owning device.
795  * @pool:	Memory pool to be removed.
796  */
797 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
798 {
799 	unsigned long flags;
800 
801 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
802 	list_del_rcu(&pool->node);
803 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
804 
805 	call_rcu(&pool->rcu, swiotlb_dyn_free);
806 }
807 
808 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
809 
810 /**
811  * swiotlb_dev_init() - initialize swiotlb fields in &struct device
812  * @dev:	Device to be initialized.
813  */
814 void swiotlb_dev_init(struct device *dev)
815 {
816 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
817 #ifdef CONFIG_SWIOTLB_DYNAMIC
818 	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
819 	spin_lock_init(&dev->dma_io_tlb_lock);
820 	dev->dma_uses_io_tlb = false;
821 #endif
822 }
823 
824 /*
825  * Return the offset into a iotlb slot required to keep the device happy.
826  */
827 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
828 {
829 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
830 }
831 
832 /*
833  * Bounce: copy the swiotlb buffer from or back to the original dma location
834  */
835 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
836 			   enum dma_data_direction dir)
837 {
838 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
839 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
840 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
841 	size_t alloc_size = mem->slots[index].alloc_size;
842 	unsigned long pfn = PFN_DOWN(orig_addr);
843 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
844 	unsigned int tlb_offset, orig_addr_offset;
845 
846 	if (orig_addr == INVALID_PHYS_ADDR)
847 		return;
848 
849 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
850 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
851 	if (tlb_offset < orig_addr_offset) {
852 		dev_WARN_ONCE(dev, 1,
853 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
854 			orig_addr_offset, tlb_offset);
855 		return;
856 	}
857 
858 	tlb_offset -= orig_addr_offset;
859 	if (tlb_offset > alloc_size) {
860 		dev_WARN_ONCE(dev, 1,
861 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
862 			alloc_size, size, tlb_offset);
863 		return;
864 	}
865 
866 	orig_addr += tlb_offset;
867 	alloc_size -= tlb_offset;
868 
869 	if (size > alloc_size) {
870 		dev_WARN_ONCE(dev, 1,
871 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
872 			alloc_size, size);
873 		size = alloc_size;
874 	}
875 
876 	if (PageHighMem(pfn_to_page(pfn))) {
877 		unsigned int offset = orig_addr & ~PAGE_MASK;
878 		struct page *page;
879 		unsigned int sz = 0;
880 		unsigned long flags;
881 
882 		while (size) {
883 			sz = min_t(size_t, PAGE_SIZE - offset, size);
884 
885 			local_irq_save(flags);
886 			page = pfn_to_page(pfn);
887 			if (dir == DMA_TO_DEVICE)
888 				memcpy_from_page(vaddr, page, offset, sz);
889 			else
890 				memcpy_to_page(page, offset, vaddr, sz);
891 			local_irq_restore(flags);
892 
893 			size -= sz;
894 			pfn++;
895 			vaddr += sz;
896 			offset = 0;
897 		}
898 	} else if (dir == DMA_TO_DEVICE) {
899 		memcpy(vaddr, phys_to_virt(orig_addr), size);
900 	} else {
901 		memcpy(phys_to_virt(orig_addr), vaddr, size);
902 	}
903 }
904 
905 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
906 {
907 	return start + (idx << IO_TLB_SHIFT);
908 }
909 
910 /*
911  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
912  */
913 static inline unsigned long get_max_slots(unsigned long boundary_mask)
914 {
915 	return (boundary_mask >> IO_TLB_SHIFT) + 1;
916 }
917 
918 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
919 {
920 	if (index >= mem->area_nslabs)
921 		return 0;
922 	return index;
923 }
924 
925 /*
926  * Track the total used slots with a global atomic value in order to have
927  * correct information to determine the high water mark. The mem_used()
928  * function gives imprecise results because there's no locking across
929  * multiple areas.
930  */
931 #ifdef CONFIG_DEBUG_FS
932 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
933 {
934 	unsigned long old_hiwater, new_used;
935 
936 	new_used = atomic_long_add_return(nslots, &mem->total_used);
937 	old_hiwater = atomic_long_read(&mem->used_hiwater);
938 	do {
939 		if (new_used <= old_hiwater)
940 			break;
941 	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
942 					  &old_hiwater, new_used));
943 }
944 
945 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
946 {
947 	atomic_long_sub(nslots, &mem->total_used);
948 }
949 
950 #else /* !CONFIG_DEBUG_FS */
951 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
952 {
953 }
954 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
955 {
956 }
957 #endif /* CONFIG_DEBUG_FS */
958 
959 /**
960  * swiotlb_search_pool_area() - search one memory area in one pool
961  * @dev:	Device which maps the buffer.
962  * @pool:	Memory pool to be searched.
963  * @area_index:	Index of the IO TLB memory area to be searched.
964  * @orig_addr:	Original (non-bounced) IO buffer address.
965  * @alloc_size: Total requested size of the bounce buffer,
966  *		including initial alignment padding.
967  * @alloc_align_mask:	Required alignment of the allocated buffer.
968  *
969  * Find a suitable sequence of IO TLB entries for the request and allocate
970  * a buffer from the given IO TLB memory area.
971  * This function takes care of locking.
972  *
973  * Return: Index of the first allocated slot, or -1 on error.
974  */
975 static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
976 		int area_index, phys_addr_t orig_addr, size_t alloc_size,
977 		unsigned int alloc_align_mask)
978 {
979 	struct io_tlb_area *area = pool->areas + area_index;
980 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
981 	dma_addr_t tbl_dma_addr =
982 		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
983 	unsigned long max_slots = get_max_slots(boundary_mask);
984 	unsigned int iotlb_align_mask =
985 		dma_get_min_align_mask(dev) | alloc_align_mask;
986 	unsigned int nslots = nr_slots(alloc_size), stride;
987 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
988 	unsigned int index, slots_checked, count = 0, i;
989 	unsigned long flags;
990 	unsigned int slot_base;
991 	unsigned int slot_index;
992 
993 	BUG_ON(!nslots);
994 	BUG_ON(area_index >= pool->nareas);
995 
996 	/*
997 	 * For allocations of PAGE_SIZE or larger only look for page aligned
998 	 * allocations.
999 	 */
1000 	if (alloc_size >= PAGE_SIZE)
1001 		iotlb_align_mask |= ~PAGE_MASK;
1002 	iotlb_align_mask &= ~(IO_TLB_SIZE - 1);
1003 
1004 	/*
1005 	 * For mappings with an alignment requirement don't bother looping to
1006 	 * unaligned slots once we found an aligned one.
1007 	 */
1008 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
1009 
1010 	spin_lock_irqsave(&area->lock, flags);
1011 	if (unlikely(nslots > pool->area_nslabs - area->used))
1012 		goto not_found;
1013 
1014 	slot_base = area_index * pool->area_nslabs;
1015 	index = area->index;
1016 
1017 	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1018 		slot_index = slot_base + index;
1019 
1020 		if (orig_addr &&
1021 		    (slot_addr(tbl_dma_addr, slot_index) &
1022 		     iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
1023 			index = wrap_area_index(pool, index + 1);
1024 			slots_checked++;
1025 			continue;
1026 		}
1027 
1028 		if (!iommu_is_span_boundary(slot_index, nslots,
1029 					    nr_slots(tbl_dma_addr),
1030 					    max_slots)) {
1031 			if (pool->slots[slot_index].list >= nslots)
1032 				goto found;
1033 		}
1034 		index = wrap_area_index(pool, index + stride);
1035 		slots_checked += stride;
1036 	}
1037 
1038 not_found:
1039 	spin_unlock_irqrestore(&area->lock, flags);
1040 	return -1;
1041 
1042 found:
1043 	/*
1044 	 * If we find a slot that indicates we have 'nslots' number of
1045 	 * contiguous buffers, we allocate the buffers from that slot onwards
1046 	 * and set the list of free entries to '0' indicating unavailable.
1047 	 */
1048 	for (i = slot_index; i < slot_index + nslots; i++) {
1049 		pool->slots[i].list = 0;
1050 		pool->slots[i].alloc_size = alloc_size - (offset +
1051 				((i - slot_index) << IO_TLB_SHIFT));
1052 	}
1053 	for (i = slot_index - 1;
1054 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1055 	     pool->slots[i].list; i--)
1056 		pool->slots[i].list = ++count;
1057 
1058 	/*
1059 	 * Update the indices to avoid searching in the next round.
1060 	 */
1061 	area->index = wrap_area_index(pool, index + nslots);
1062 	area->used += nslots;
1063 	spin_unlock_irqrestore(&area->lock, flags);
1064 
1065 	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1066 	return slot_index;
1067 }
1068 
1069 #ifdef CONFIG_SWIOTLB_DYNAMIC
1070 
1071 /**
1072  * swiotlb_search_area() - search one memory area in all pools
1073  * @dev:	Device which maps the buffer.
1074  * @start_cpu:	Start CPU number.
1075  * @cpu_offset:	Offset from @start_cpu.
1076  * @orig_addr:	Original (non-bounced) IO buffer address.
1077  * @alloc_size: Total requested size of the bounce buffer,
1078  *		including initial alignment padding.
1079  * @alloc_align_mask:	Required alignment of the allocated buffer.
1080  * @retpool:	Used memory pool, updated on return.
1081  *
1082  * Search one memory area in all pools for a sequence of slots that match the
1083  * allocation constraints.
1084  *
1085  * Return: Index of the first allocated slot, or -1 on error.
1086  */
1087 static int swiotlb_search_area(struct device *dev, int start_cpu,
1088 		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
1089 		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
1090 {
1091 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1092 	struct io_tlb_pool *pool;
1093 	int area_index;
1094 	int index = -1;
1095 
1096 	rcu_read_lock();
1097 	list_for_each_entry_rcu(pool, &mem->pools, node) {
1098 		if (cpu_offset >= pool->nareas)
1099 			continue;
1100 		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
1101 		index = swiotlb_search_pool_area(dev, pool, area_index,
1102 						 orig_addr, alloc_size,
1103 						 alloc_align_mask);
1104 		if (index >= 0) {
1105 			*retpool = pool;
1106 			break;
1107 		}
1108 	}
1109 	rcu_read_unlock();
1110 	return index;
1111 }
1112 
1113 /**
1114  * swiotlb_find_slots() - search for slots in the whole swiotlb
1115  * @dev:	Device which maps the buffer.
1116  * @orig_addr:	Original (non-bounced) IO buffer address.
1117  * @alloc_size: Total requested size of the bounce buffer,
1118  *		including initial alignment padding.
1119  * @alloc_align_mask:	Required alignment of the allocated buffer.
1120  * @retpool:	Used memory pool, updated on return.
1121  *
1122  * Search through the whole software IO TLB to find a sequence of slots that
1123  * match the allocation constraints.
1124  *
1125  * Return: Index of the first allocated slot, or -1 on error.
1126  */
1127 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1128 		size_t alloc_size, unsigned int alloc_align_mask,
1129 		struct io_tlb_pool **retpool)
1130 {
1131 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1132 	struct io_tlb_pool *pool;
1133 	unsigned long nslabs;
1134 	unsigned long flags;
1135 	u64 phys_limit;
1136 	int cpu, i;
1137 	int index;
1138 
1139 	cpu = raw_smp_processor_id();
1140 	for (i = 0; i < default_nareas; ++i) {
1141 		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
1142 					    alloc_align_mask, &pool);
1143 		if (index >= 0)
1144 			goto found;
1145 	}
1146 
1147 	if (!mem->can_grow)
1148 		return -1;
1149 
1150 	schedule_work(&mem->dyn_alloc);
1151 
1152 	nslabs = nr_slots(alloc_size);
1153 	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1154 	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1155 				  GFP_NOWAIT | __GFP_NOWARN);
1156 	if (!pool)
1157 		return -1;
1158 
1159 	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
1160 					 alloc_size, alloc_align_mask);
1161 	if (index < 0) {
1162 		swiotlb_dyn_free(&pool->rcu);
1163 		return -1;
1164 	}
1165 
1166 	pool->transient = true;
1167 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1168 	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1169 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1170 
1171 found:
1172 	WRITE_ONCE(dev->dma_uses_io_tlb, true);
1173 
1174 	/*
1175 	 * The general barrier orders reads and writes against a presumed store
1176 	 * of the SWIOTLB buffer address by a device driver (to a driver private
1177 	 * data structure). It serves two purposes.
1178 	 *
1179 	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1180 	 * presumed store. This guarantees that the returned buffer address
1181 	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1182 	 *
1183 	 * Second, the load from mem->pools must be ordered before the same
1184 	 * presumed store. This guarantees that the returned buffer address
1185 	 * cannot be observed by another CPU before an update of the RCU list
1186 	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1187 	 * atomicity).
1188 	 *
1189 	 * See also the comment in is_swiotlb_buffer().
1190 	 */
1191 	smp_mb();
1192 
1193 	*retpool = pool;
1194 	return index;
1195 }
1196 
1197 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1198 
1199 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1200 		size_t alloc_size, unsigned int alloc_align_mask,
1201 		struct io_tlb_pool **retpool)
1202 {
1203 	struct io_tlb_pool *pool;
1204 	int start, i;
1205 	int index;
1206 
1207 	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
1208 	i = start = raw_smp_processor_id() & (pool->nareas - 1);
1209 	do {
1210 		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
1211 						 alloc_size, alloc_align_mask);
1212 		if (index >= 0)
1213 			return index;
1214 		if (++i >= pool->nareas)
1215 			i = 0;
1216 	} while (i != start);
1217 	return -1;
1218 }
1219 
1220 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1221 
1222 #ifdef CONFIG_DEBUG_FS
1223 
1224 /**
1225  * mem_used() - get number of used slots in an allocator
1226  * @mem:	Software IO TLB allocator.
1227  *
1228  * The result is accurate in this version of the function, because an atomic
1229  * counter is available if CONFIG_DEBUG_FS is set.
1230  *
1231  * Return: Number of used slots.
1232  */
1233 static unsigned long mem_used(struct io_tlb_mem *mem)
1234 {
1235 	return atomic_long_read(&mem->total_used);
1236 }
1237 
1238 #else /* !CONFIG_DEBUG_FS */
1239 
1240 /**
1241  * mem_pool_used() - get number of used slots in a memory pool
1242  * @pool:	Software IO TLB memory pool.
1243  *
1244  * The result is not accurate, see mem_used().
1245  *
1246  * Return: Approximate number of used slots.
1247  */
1248 static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1249 {
1250 	int i;
1251 	unsigned long used = 0;
1252 
1253 	for (i = 0; i < pool->nareas; i++)
1254 		used += pool->areas[i].used;
1255 	return used;
1256 }
1257 
1258 /**
1259  * mem_used() - get number of used slots in an allocator
1260  * @mem:	Software IO TLB allocator.
1261  *
1262  * The result is not accurate, because there is no locking of individual
1263  * areas.
1264  *
1265  * Return: Approximate number of used slots.
1266  */
1267 static unsigned long mem_used(struct io_tlb_mem *mem)
1268 {
1269 #ifdef CONFIG_SWIOTLB_DYNAMIC
1270 	struct io_tlb_pool *pool;
1271 	unsigned long used = 0;
1272 
1273 	rcu_read_lock();
1274 	list_for_each_entry_rcu(pool, &mem->pools, node)
1275 		used += mem_pool_used(pool);
1276 	rcu_read_unlock();
1277 
1278 	return used;
1279 #else
1280 	return mem_pool_used(&mem->defpool);
1281 #endif
1282 }
1283 
1284 #endif /* CONFIG_DEBUG_FS */
1285 
1286 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1287 		size_t mapping_size, size_t alloc_size,
1288 		unsigned int alloc_align_mask, enum dma_data_direction dir,
1289 		unsigned long attrs)
1290 {
1291 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1292 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
1293 	struct io_tlb_pool *pool;
1294 	unsigned int i;
1295 	int index;
1296 	phys_addr_t tlb_addr;
1297 
1298 	if (!mem || !mem->nslabs) {
1299 		dev_warn_ratelimited(dev,
1300 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1301 		return (phys_addr_t)DMA_MAPPING_ERROR;
1302 	}
1303 
1304 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1305 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1306 
1307 	if (mapping_size > alloc_size) {
1308 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
1309 			      mapping_size, alloc_size);
1310 		return (phys_addr_t)DMA_MAPPING_ERROR;
1311 	}
1312 
1313 	index = swiotlb_find_slots(dev, orig_addr,
1314 				   alloc_size + offset, alloc_align_mask, &pool);
1315 	if (index == -1) {
1316 		if (!(attrs & DMA_ATTR_NO_WARN))
1317 			dev_warn_ratelimited(dev,
1318 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1319 				 alloc_size, mem->nslabs, mem_used(mem));
1320 		return (phys_addr_t)DMA_MAPPING_ERROR;
1321 	}
1322 
1323 	/*
1324 	 * Save away the mapping from the original address to the DMA address.
1325 	 * This is needed when we sync the memory.  Then we sync the buffer if
1326 	 * needed.
1327 	 */
1328 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
1329 		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1330 	tlb_addr = slot_addr(pool->start, index) + offset;
1331 	/*
1332 	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
1333 	 * the original buffer to the TLB buffer before initiating DMA in order
1334 	 * to preserve the original's data if the device does a partial write,
1335 	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
1336 	 * the original data, even if it's garbage, is necessary to match
1337 	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
1338 	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
1339 	 */
1340 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
1341 	return tlb_addr;
1342 }
1343 
1344 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
1345 {
1346 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
1347 	unsigned long flags;
1348 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
1349 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1350 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
1351 	int aindex = index / mem->area_nslabs;
1352 	struct io_tlb_area *area = &mem->areas[aindex];
1353 	int count, i;
1354 
1355 	/*
1356 	 * Return the buffer to the free list by setting the corresponding
1357 	 * entries to indicate the number of contiguous entries available.
1358 	 * While returning the entries to the free list, we merge the entries
1359 	 * with slots below and above the pool being returned.
1360 	 */
1361 	BUG_ON(aindex >= mem->nareas);
1362 
1363 	spin_lock_irqsave(&area->lock, flags);
1364 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1365 		count = mem->slots[index + nslots].list;
1366 	else
1367 		count = 0;
1368 
1369 	/*
1370 	 * Step 1: return the slots to the free list, merging the slots with
1371 	 * superceeding slots
1372 	 */
1373 	for (i = index + nslots - 1; i >= index; i--) {
1374 		mem->slots[i].list = ++count;
1375 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1376 		mem->slots[i].alloc_size = 0;
1377 	}
1378 
1379 	/*
1380 	 * Step 2: merge the returned slots with the preceding slots, if
1381 	 * available (non zero)
1382 	 */
1383 	for (i = index - 1;
1384 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1385 	     i--)
1386 		mem->slots[i].list = ++count;
1387 	area->used -= nslots;
1388 	spin_unlock_irqrestore(&area->lock, flags);
1389 
1390 	dec_used(dev->dma_io_tlb_mem, nslots);
1391 }
1392 
1393 #ifdef CONFIG_SWIOTLB_DYNAMIC
1394 
1395 /**
1396  * swiotlb_del_transient() - delete a transient memory pool
1397  * @dev:	Device which mapped the buffer.
1398  * @tlb_addr:	Physical address within a bounce buffer.
1399  *
1400  * Check whether the address belongs to a transient SWIOTLB memory pool.
1401  * If yes, then delete the pool.
1402  *
1403  * Return: %true if @tlb_addr belonged to a transient pool that was released.
1404  */
1405 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
1406 {
1407 	struct io_tlb_pool *pool;
1408 
1409 	pool = swiotlb_find_pool(dev, tlb_addr);
1410 	if (!pool->transient)
1411 		return false;
1412 
1413 	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1414 	swiotlb_del_pool(dev, pool);
1415 	return true;
1416 }
1417 
1418 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1419 
1420 static inline bool swiotlb_del_transient(struct device *dev,
1421 					 phys_addr_t tlb_addr)
1422 {
1423 	return false;
1424 }
1425 
1426 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
1427 
1428 /*
1429  * tlb_addr is the physical address of the bounce buffer to unmap.
1430  */
1431 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1432 			      size_t mapping_size, enum dma_data_direction dir,
1433 			      unsigned long attrs)
1434 {
1435 	/*
1436 	 * First, sync the memory before unmapping the entry
1437 	 */
1438 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1439 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1440 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
1441 
1442 	if (swiotlb_del_transient(dev, tlb_addr))
1443 		return;
1444 	swiotlb_release_slots(dev, tlb_addr);
1445 }
1446 
1447 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1448 		size_t size, enum dma_data_direction dir)
1449 {
1450 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1451 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
1452 	else
1453 		BUG_ON(dir != DMA_FROM_DEVICE);
1454 }
1455 
1456 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1457 		size_t size, enum dma_data_direction dir)
1458 {
1459 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1460 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
1461 	else
1462 		BUG_ON(dir != DMA_TO_DEVICE);
1463 }
1464 
1465 /*
1466  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1467  * to the device copy the data into it as well.
1468  */
1469 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1470 		enum dma_data_direction dir, unsigned long attrs)
1471 {
1472 	phys_addr_t swiotlb_addr;
1473 	dma_addr_t dma_addr;
1474 
1475 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1476 
1477 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
1478 			attrs);
1479 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1480 		return DMA_MAPPING_ERROR;
1481 
1482 	/* Ensure that the address returned is DMA'ble */
1483 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1484 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1485 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1486 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
1487 		dev_WARN_ONCE(dev, 1,
1488 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1489 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1490 		return DMA_MAPPING_ERROR;
1491 	}
1492 
1493 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1494 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
1495 	return dma_addr;
1496 }
1497 
1498 size_t swiotlb_max_mapping_size(struct device *dev)
1499 {
1500 	int min_align_mask = dma_get_min_align_mask(dev);
1501 	int min_align = 0;
1502 
1503 	/*
1504 	 * swiotlb_find_slots() skips slots according to
1505 	 * min align mask. This affects max mapping size.
1506 	 * Take it into acount here.
1507 	 */
1508 	if (min_align_mask)
1509 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
1510 
1511 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1512 }
1513 
1514 /**
1515  * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1516  */
1517 bool is_swiotlb_allocated(void)
1518 {
1519 	return io_tlb_default_mem.nslabs;
1520 }
1521 
1522 bool is_swiotlb_active(struct device *dev)
1523 {
1524 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1525 
1526 	return mem && mem->nslabs;
1527 }
1528 
1529 /**
1530  * default_swiotlb_base() - get the base address of the default SWIOTLB
1531  *
1532  * Get the lowest physical address used by the default software IO TLB pool.
1533  */
1534 phys_addr_t default_swiotlb_base(void)
1535 {
1536 #ifdef CONFIG_SWIOTLB_DYNAMIC
1537 	io_tlb_default_mem.can_grow = false;
1538 #endif
1539 	return io_tlb_default_mem.defpool.start;
1540 }
1541 
1542 /**
1543  * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1544  *
1545  * Get the highest physical address used by the default software IO TLB pool.
1546  */
1547 phys_addr_t default_swiotlb_limit(void)
1548 {
1549 #ifdef CONFIG_SWIOTLB_DYNAMIC
1550 	return io_tlb_default_mem.phys_limit;
1551 #else
1552 	return io_tlb_default_mem.defpool.end - 1;
1553 #endif
1554 }
1555 
1556 #ifdef CONFIG_DEBUG_FS
1557 
1558 static int io_tlb_used_get(void *data, u64 *val)
1559 {
1560 	struct io_tlb_mem *mem = data;
1561 
1562 	*val = mem_used(mem);
1563 	return 0;
1564 }
1565 
1566 static int io_tlb_hiwater_get(void *data, u64 *val)
1567 {
1568 	struct io_tlb_mem *mem = data;
1569 
1570 	*val = atomic_long_read(&mem->used_hiwater);
1571 	return 0;
1572 }
1573 
1574 static int io_tlb_hiwater_set(void *data, u64 val)
1575 {
1576 	struct io_tlb_mem *mem = data;
1577 
1578 	/* Only allow setting to zero */
1579 	if (val != 0)
1580 		return -EINVAL;
1581 
1582 	atomic_long_set(&mem->used_hiwater, val);
1583 	return 0;
1584 }
1585 
1586 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1587 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1588 				io_tlb_hiwater_set, "%llu\n");
1589 
1590 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1591 					 const char *dirname)
1592 {
1593 	atomic_long_set(&mem->total_used, 0);
1594 	atomic_long_set(&mem->used_hiwater, 0);
1595 
1596 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1597 	if (!mem->nslabs)
1598 		return;
1599 
1600 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1601 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1602 			&fops_io_tlb_used);
1603 	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1604 			&fops_io_tlb_hiwater);
1605 }
1606 
1607 static int __init swiotlb_create_default_debugfs(void)
1608 {
1609 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1610 	return 0;
1611 }
1612 
1613 late_initcall(swiotlb_create_default_debugfs);
1614 
1615 #else  /* !CONFIG_DEBUG_FS */
1616 
1617 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1618 						const char *dirname)
1619 {
1620 }
1621 
1622 #endif	/* CONFIG_DEBUG_FS */
1623 
1624 #ifdef CONFIG_DMA_RESTRICTED_POOL
1625 
1626 struct page *swiotlb_alloc(struct device *dev, size_t size)
1627 {
1628 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1629 	struct io_tlb_pool *pool;
1630 	phys_addr_t tlb_addr;
1631 	int index;
1632 
1633 	if (!mem)
1634 		return NULL;
1635 
1636 	index = swiotlb_find_slots(dev, 0, size, 0, &pool);
1637 	if (index == -1)
1638 		return NULL;
1639 
1640 	tlb_addr = slot_addr(pool->start, index);
1641 
1642 	return pfn_to_page(PFN_DOWN(tlb_addr));
1643 }
1644 
1645 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1646 {
1647 	phys_addr_t tlb_addr = page_to_phys(page);
1648 
1649 	if (!is_swiotlb_buffer(dev, tlb_addr))
1650 		return false;
1651 
1652 	swiotlb_release_slots(dev, tlb_addr);
1653 
1654 	return true;
1655 }
1656 
1657 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1658 				    struct device *dev)
1659 {
1660 	struct io_tlb_mem *mem = rmem->priv;
1661 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1662 
1663 	/* Set Per-device io tlb area to one */
1664 	unsigned int nareas = 1;
1665 
1666 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1667 		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1668 		return -EINVAL;
1669 	}
1670 
1671 	/*
1672 	 * Since multiple devices can share the same pool, the private data,
1673 	 * io_tlb_mem struct, will be initialized by the first device attached
1674 	 * to it.
1675 	 */
1676 	if (!mem) {
1677 		struct io_tlb_pool *pool;
1678 
1679 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1680 		if (!mem)
1681 			return -ENOMEM;
1682 		pool = &mem->defpool;
1683 
1684 		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1685 		if (!pool->slots) {
1686 			kfree(mem);
1687 			return -ENOMEM;
1688 		}
1689 
1690 		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1691 				GFP_KERNEL);
1692 		if (!pool->areas) {
1693 			kfree(pool->slots);
1694 			kfree(mem);
1695 			return -ENOMEM;
1696 		}
1697 
1698 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1699 				     rmem->size >> PAGE_SHIFT);
1700 		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1701 					 false, nareas);
1702 		mem->force_bounce = true;
1703 		mem->for_alloc = true;
1704 #ifdef CONFIG_SWIOTLB_DYNAMIC
1705 		spin_lock_init(&mem->lock);
1706 #endif
1707 		add_mem_pool(mem, pool);
1708 
1709 		rmem->priv = mem;
1710 
1711 		swiotlb_create_debugfs_files(mem, rmem->name);
1712 	}
1713 
1714 	dev->dma_io_tlb_mem = mem;
1715 
1716 	return 0;
1717 }
1718 
1719 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1720 					struct device *dev)
1721 {
1722 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1723 }
1724 
1725 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1726 	.device_init = rmem_swiotlb_device_init,
1727 	.device_release = rmem_swiotlb_device_release,
1728 };
1729 
1730 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1731 {
1732 	unsigned long node = rmem->fdt_node;
1733 
1734 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1735 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1736 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1737 	    of_get_flat_dt_prop(node, "no-map", NULL))
1738 		return -EINVAL;
1739 
1740 	rmem->ops = &rmem_swiotlb_ops;
1741 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1742 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1743 	return 0;
1744 }
1745 
1746 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1747 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1748