xref: /linux/kernel/dma/swiotlb.c (revision 24ce659dcc02c21f8d6c0a7589c3320a4dfa8152)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-noncoherent.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/mem_encrypt.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 
43 #include <asm/io.h>
44 #include <asm/dma.h>
45 
46 #include <linux/init.h>
47 #include <linux/memblock.h>
48 #include <linux/iommu-helper.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/swiotlb.h>
52 
53 #define OFFSET(val,align) ((unsigned long)	\
54 	                   ( (val) & ( (align) - 1)))
55 
56 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
57 
58 /*
59  * Minimum IO TLB size to bother booting with.  Systems with mainly
60  * 64bit capable cards will only lightly use the swiotlb.  If we can't
61  * allocate a contiguous 1MB, we're probably in trouble anyway.
62  */
63 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
64 
65 enum swiotlb_force swiotlb_force;
66 
67 /*
68  * Used to do a quick range check in swiotlb_tbl_unmap_single and
69  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
70  * API.
71  */
72 phys_addr_t io_tlb_start, io_tlb_end;
73 
74 /*
75  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
76  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
77  */
78 static unsigned long io_tlb_nslabs;
79 
80 /*
81  * The number of used IO TLB block
82  */
83 static unsigned long io_tlb_used;
84 
85 /*
86  * This is a free list describing the number of free entries available from
87  * each index
88  */
89 static unsigned int *io_tlb_list;
90 static unsigned int io_tlb_index;
91 
92 /*
93  * Max segment that we can provide which (if pages are contingous) will
94  * not be bounced (unless SWIOTLB_FORCE is set).
95  */
96 unsigned int max_segment;
97 
98 /*
99  * We need to save away the original address corresponding to a mapped entry
100  * for the sync operations.
101  */
102 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
103 static phys_addr_t *io_tlb_orig_addr;
104 
105 /*
106  * Protect the above data structures in the map and unmap calls
107  */
108 static DEFINE_SPINLOCK(io_tlb_lock);
109 
110 static int late_alloc;
111 
112 static int __init
113 setup_io_tlb_npages(char *str)
114 {
115 	if (isdigit(*str)) {
116 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
117 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
118 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
119 	}
120 	if (*str == ',')
121 		++str;
122 	if (!strcmp(str, "force")) {
123 		swiotlb_force = SWIOTLB_FORCE;
124 	} else if (!strcmp(str, "noforce")) {
125 		swiotlb_force = SWIOTLB_NO_FORCE;
126 		io_tlb_nslabs = 1;
127 	}
128 
129 	return 0;
130 }
131 early_param("swiotlb", setup_io_tlb_npages);
132 
133 static bool no_iotlb_memory;
134 
135 unsigned long swiotlb_nr_tbl(void)
136 {
137 	return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
138 }
139 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
140 
141 unsigned int swiotlb_max_segment(void)
142 {
143 	return unlikely(no_iotlb_memory) ? 0 : max_segment;
144 }
145 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
146 
147 void swiotlb_set_max_segment(unsigned int val)
148 {
149 	if (swiotlb_force == SWIOTLB_FORCE)
150 		max_segment = 1;
151 	else
152 		max_segment = rounddown(val, PAGE_SIZE);
153 }
154 
155 /* default to 64MB */
156 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
157 unsigned long swiotlb_size_or_default(void)
158 {
159 	unsigned long size;
160 
161 	size = io_tlb_nslabs << IO_TLB_SHIFT;
162 
163 	return size ? size : (IO_TLB_DEFAULT_SIZE);
164 }
165 
166 void swiotlb_print_info(void)
167 {
168 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
169 
170 	if (no_iotlb_memory) {
171 		pr_warn("No low mem\n");
172 		return;
173 	}
174 
175 	pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
176 	       (unsigned long long)io_tlb_start,
177 	       (unsigned long long)io_tlb_end,
178 	       bytes >> 20);
179 }
180 
181 /*
182  * Early SWIOTLB allocation may be too early to allow an architecture to
183  * perform the desired operations.  This function allows the architecture to
184  * call SWIOTLB when the operations are possible.  It needs to be called
185  * before the SWIOTLB memory is used.
186  */
187 void __init swiotlb_update_mem_attributes(void)
188 {
189 	void *vaddr;
190 	unsigned long bytes;
191 
192 	if (no_iotlb_memory || late_alloc)
193 		return;
194 
195 	vaddr = phys_to_virt(io_tlb_start);
196 	bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198 	memset(vaddr, 0, bytes);
199 }
200 
201 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
202 {
203 	unsigned long i, bytes;
204 	size_t alloc_size;
205 
206 	bytes = nslabs << IO_TLB_SHIFT;
207 
208 	io_tlb_nslabs = nslabs;
209 	io_tlb_start = __pa(tlb);
210 	io_tlb_end = io_tlb_start + bytes;
211 
212 	/*
213 	 * Allocate and initialize the free list array.  This array is used
214 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
215 	 * between io_tlb_start and io_tlb_end.
216 	 */
217 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
218 	io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
219 	if (!io_tlb_list)
220 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
221 		      __func__, alloc_size, PAGE_SIZE);
222 
223 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
224 	io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
225 	if (!io_tlb_orig_addr)
226 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
227 		      __func__, alloc_size, PAGE_SIZE);
228 
229 	for (i = 0; i < io_tlb_nslabs; i++) {
230 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
231 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
232 	}
233 	io_tlb_index = 0;
234 
235 	if (verbose)
236 		swiotlb_print_info();
237 
238 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
239 	return 0;
240 }
241 
242 /*
243  * Statically reserve bounce buffer space and initialize bounce buffer data
244  * structures for the software IO TLB used to implement the DMA API.
245  */
246 void  __init
247 swiotlb_init(int verbose)
248 {
249 	size_t default_size = IO_TLB_DEFAULT_SIZE;
250 	unsigned char *vstart;
251 	unsigned long bytes;
252 
253 	if (!io_tlb_nslabs) {
254 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
255 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
256 	}
257 
258 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
259 
260 	/* Get IO TLB memory from the low pages */
261 	vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
262 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
263 		return;
264 
265 	if (io_tlb_start)
266 		memblock_free_early(io_tlb_start,
267 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
268 	pr_warn("Cannot allocate buffer");
269 	no_iotlb_memory = true;
270 }
271 
272 /*
273  * Systems with larger DMA zones (those that don't support ISA) can
274  * initialize the swiotlb later using the slab allocator if needed.
275  * This should be just like above, but with some error catching.
276  */
277 int
278 swiotlb_late_init_with_default_size(size_t default_size)
279 {
280 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
281 	unsigned char *vstart = NULL;
282 	unsigned int order;
283 	int rc = 0;
284 
285 	if (!io_tlb_nslabs) {
286 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
287 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
288 	}
289 
290 	/*
291 	 * Get IO TLB memory from the low pages
292 	 */
293 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
294 	io_tlb_nslabs = SLABS_PER_PAGE << order;
295 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
296 
297 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
298 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
299 						  order);
300 		if (vstart)
301 			break;
302 		order--;
303 	}
304 
305 	if (!vstart) {
306 		io_tlb_nslabs = req_nslabs;
307 		return -ENOMEM;
308 	}
309 	if (order != get_order(bytes)) {
310 		pr_warn("only able to allocate %ld MB\n",
311 			(PAGE_SIZE << order) >> 20);
312 		io_tlb_nslabs = SLABS_PER_PAGE << order;
313 	}
314 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
315 	if (rc)
316 		free_pages((unsigned long)vstart, order);
317 
318 	return rc;
319 }
320 
321 static void swiotlb_cleanup(void)
322 {
323 	io_tlb_end = 0;
324 	io_tlb_start = 0;
325 	io_tlb_nslabs = 0;
326 	max_segment = 0;
327 }
328 
329 int
330 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
331 {
332 	unsigned long i, bytes;
333 
334 	bytes = nslabs << IO_TLB_SHIFT;
335 
336 	io_tlb_nslabs = nslabs;
337 	io_tlb_start = virt_to_phys(tlb);
338 	io_tlb_end = io_tlb_start + bytes;
339 
340 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
341 	memset(tlb, 0, bytes);
342 
343 	/*
344 	 * Allocate and initialize the free list array.  This array is used
345 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
346 	 * between io_tlb_start and io_tlb_end.
347 	 */
348 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
349 	                              get_order(io_tlb_nslabs * sizeof(int)));
350 	if (!io_tlb_list)
351 		goto cleanup3;
352 
353 	io_tlb_orig_addr = (phys_addr_t *)
354 		__get_free_pages(GFP_KERNEL,
355 				 get_order(io_tlb_nslabs *
356 					   sizeof(phys_addr_t)));
357 	if (!io_tlb_orig_addr)
358 		goto cleanup4;
359 
360 	for (i = 0; i < io_tlb_nslabs; i++) {
361 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
362 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
363 	}
364 	io_tlb_index = 0;
365 
366 	swiotlb_print_info();
367 
368 	late_alloc = 1;
369 
370 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
371 
372 	return 0;
373 
374 cleanup4:
375 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
376 	                                                 sizeof(int)));
377 	io_tlb_list = NULL;
378 cleanup3:
379 	swiotlb_cleanup();
380 	return -ENOMEM;
381 }
382 
383 void __init swiotlb_exit(void)
384 {
385 	if (!io_tlb_orig_addr)
386 		return;
387 
388 	if (late_alloc) {
389 		free_pages((unsigned long)io_tlb_orig_addr,
390 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
391 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
392 								 sizeof(int)));
393 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
394 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
395 	} else {
396 		memblock_free_late(__pa(io_tlb_orig_addr),
397 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
398 		memblock_free_late(__pa(io_tlb_list),
399 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
400 		memblock_free_late(io_tlb_start,
401 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
402 	}
403 	swiotlb_cleanup();
404 }
405 
406 /*
407  * Bounce: copy the swiotlb buffer from or back to the original dma location
408  */
409 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
410 			   size_t size, enum dma_data_direction dir)
411 {
412 	unsigned long pfn = PFN_DOWN(orig_addr);
413 	unsigned char *vaddr = phys_to_virt(tlb_addr);
414 
415 	if (PageHighMem(pfn_to_page(pfn))) {
416 		/* The buffer does not have a mapping.  Map it in and copy */
417 		unsigned int offset = orig_addr & ~PAGE_MASK;
418 		char *buffer;
419 		unsigned int sz = 0;
420 		unsigned long flags;
421 
422 		while (size) {
423 			sz = min_t(size_t, PAGE_SIZE - offset, size);
424 
425 			local_irq_save(flags);
426 			buffer = kmap_atomic(pfn_to_page(pfn));
427 			if (dir == DMA_TO_DEVICE)
428 				memcpy(vaddr, buffer + offset, sz);
429 			else
430 				memcpy(buffer + offset, vaddr, sz);
431 			kunmap_atomic(buffer);
432 			local_irq_restore(flags);
433 
434 			size -= sz;
435 			pfn++;
436 			vaddr += sz;
437 			offset = 0;
438 		}
439 	} else if (dir == DMA_TO_DEVICE) {
440 		memcpy(vaddr, phys_to_virt(orig_addr), size);
441 	} else {
442 		memcpy(phys_to_virt(orig_addr), vaddr, size);
443 	}
444 }
445 
446 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
447 				   dma_addr_t tbl_dma_addr,
448 				   phys_addr_t orig_addr,
449 				   size_t mapping_size,
450 				   size_t alloc_size,
451 				   enum dma_data_direction dir,
452 				   unsigned long attrs)
453 {
454 	unsigned long flags;
455 	phys_addr_t tlb_addr;
456 	unsigned int nslots, stride, index, wrap;
457 	int i;
458 	unsigned long mask;
459 	unsigned long offset_slots;
460 	unsigned long max_slots;
461 	unsigned long tmp_io_tlb_used;
462 
463 	if (no_iotlb_memory)
464 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
465 
466 	if (mem_encrypt_active())
467 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
468 
469 	if (mapping_size > alloc_size) {
470 		dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
471 			      mapping_size, alloc_size);
472 		return (phys_addr_t)DMA_MAPPING_ERROR;
473 	}
474 
475 	mask = dma_get_seg_boundary(hwdev);
476 
477 	tbl_dma_addr &= mask;
478 
479 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
480 
481 	/*
482 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
483 	 */
484 	max_slots = mask + 1
485 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
486 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
487 
488 	/*
489 	 * For mappings greater than or equal to a page, we limit the stride
490 	 * (and hence alignment) to a page size.
491 	 */
492 	nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
493 	if (alloc_size >= PAGE_SIZE)
494 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
495 	else
496 		stride = 1;
497 
498 	BUG_ON(!nslots);
499 
500 	/*
501 	 * Find suitable number of IO TLB entries size that will fit this
502 	 * request and allocate a buffer from that IO TLB pool.
503 	 */
504 	spin_lock_irqsave(&io_tlb_lock, flags);
505 
506 	if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
507 		goto not_found;
508 
509 	index = ALIGN(io_tlb_index, stride);
510 	if (index >= io_tlb_nslabs)
511 		index = 0;
512 	wrap = index;
513 
514 	do {
515 		while (iommu_is_span_boundary(index, nslots, offset_slots,
516 					      max_slots)) {
517 			index += stride;
518 			if (index >= io_tlb_nslabs)
519 				index = 0;
520 			if (index == wrap)
521 				goto not_found;
522 		}
523 
524 		/*
525 		 * If we find a slot that indicates we have 'nslots' number of
526 		 * contiguous buffers, we allocate the buffers from that slot
527 		 * and mark the entries as '0' indicating unavailable.
528 		 */
529 		if (io_tlb_list[index] >= nslots) {
530 			int count = 0;
531 
532 			for (i = index; i < (int) (index + nslots); i++)
533 				io_tlb_list[i] = 0;
534 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
535 				io_tlb_list[i] = ++count;
536 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
537 
538 			/*
539 			 * Update the indices to avoid searching in the next
540 			 * round.
541 			 */
542 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
543 					? (index + nslots) : 0);
544 
545 			goto found;
546 		}
547 		index += stride;
548 		if (index >= io_tlb_nslabs)
549 			index = 0;
550 	} while (index != wrap);
551 
552 not_found:
553 	tmp_io_tlb_used = io_tlb_used;
554 
555 	spin_unlock_irqrestore(&io_tlb_lock, flags);
556 	if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
557 		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
558 			 alloc_size, io_tlb_nslabs, tmp_io_tlb_used);
559 	return (phys_addr_t)DMA_MAPPING_ERROR;
560 found:
561 	io_tlb_used += nslots;
562 	spin_unlock_irqrestore(&io_tlb_lock, flags);
563 
564 	/*
565 	 * Save away the mapping from the original address to the DMA address.
566 	 * This is needed when we sync the memory.  Then we sync the buffer if
567 	 * needed.
568 	 */
569 	for (i = 0; i < nslots; i++)
570 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
571 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
572 	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
573 		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE);
574 
575 	return tlb_addr;
576 }
577 
578 /*
579  * tlb_addr is the physical address of the bounce buffer to unmap.
580  */
581 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
582 			      size_t mapping_size, size_t alloc_size,
583 			      enum dma_data_direction dir, unsigned long attrs)
584 {
585 	unsigned long flags;
586 	int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
587 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
588 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
589 
590 	/*
591 	 * First, sync the memory before unmapping the entry
592 	 */
593 	if (orig_addr != INVALID_PHYS_ADDR &&
594 	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
595 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
596 		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
597 
598 	/*
599 	 * Return the buffer to the free list by setting the corresponding
600 	 * entries to indicate the number of contiguous entries available.
601 	 * While returning the entries to the free list, we merge the entries
602 	 * with slots below and above the pool being returned.
603 	 */
604 	spin_lock_irqsave(&io_tlb_lock, flags);
605 	{
606 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
607 			 io_tlb_list[index + nslots] : 0);
608 		/*
609 		 * Step 1: return the slots to the free list, merging the
610 		 * slots with superceeding slots
611 		 */
612 		for (i = index + nslots - 1; i >= index; i--) {
613 			io_tlb_list[i] = ++count;
614 			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
615 		}
616 		/*
617 		 * Step 2: merge the returned slots with the preceding slots,
618 		 * if available (non zero)
619 		 */
620 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
621 			io_tlb_list[i] = ++count;
622 
623 		io_tlb_used -= nslots;
624 	}
625 	spin_unlock_irqrestore(&io_tlb_lock, flags);
626 }
627 
628 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
629 			     size_t size, enum dma_data_direction dir,
630 			     enum dma_sync_target target)
631 {
632 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
633 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
634 
635 	if (orig_addr == INVALID_PHYS_ADDR)
636 		return;
637 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
638 
639 	switch (target) {
640 	case SYNC_FOR_CPU:
641 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
642 			swiotlb_bounce(orig_addr, tlb_addr,
643 				       size, DMA_FROM_DEVICE);
644 		else
645 			BUG_ON(dir != DMA_TO_DEVICE);
646 		break;
647 	case SYNC_FOR_DEVICE:
648 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
649 			swiotlb_bounce(orig_addr, tlb_addr,
650 				       size, DMA_TO_DEVICE);
651 		else
652 			BUG_ON(dir != DMA_FROM_DEVICE);
653 		break;
654 	default:
655 		BUG();
656 	}
657 }
658 
659 /*
660  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
661  * to the device copy the data into it as well.
662  */
663 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
664 		enum dma_data_direction dir, unsigned long attrs)
665 {
666 	phys_addr_t swiotlb_addr;
667 	dma_addr_t dma_addr;
668 
669 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
670 			      swiotlb_force);
671 
672 	swiotlb_addr = swiotlb_tbl_map_single(dev,
673 			__phys_to_dma(dev, io_tlb_start),
674 			paddr, size, size, dir, attrs);
675 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
676 		return DMA_MAPPING_ERROR;
677 
678 	/* Ensure that the address returned is DMA'ble */
679 	dma_addr = __phys_to_dma(dev, swiotlb_addr);
680 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
681 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir,
682 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
683 		dev_WARN_ONCE(dev, 1,
684 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
685 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
686 		return DMA_MAPPING_ERROR;
687 	}
688 
689 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
690 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
691 	return dma_addr;
692 }
693 
694 size_t swiotlb_max_mapping_size(struct device *dev)
695 {
696 	return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
697 }
698 
699 bool is_swiotlb_active(void)
700 {
701 	/*
702 	 * When SWIOTLB is initialized, even if io_tlb_start points to physical
703 	 * address zero, io_tlb_end surely doesn't.
704 	 */
705 	return io_tlb_end != 0;
706 }
707 
708 #ifdef CONFIG_DEBUG_FS
709 
710 static int __init swiotlb_create_debugfs(void)
711 {
712 	struct dentry *root;
713 
714 	root = debugfs_create_dir("swiotlb", NULL);
715 	debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
716 	debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
717 	return 0;
718 }
719 
720 late_initcall(swiotlb_create_debugfs);
721 
722 #endif
723