xref: /linux/kernel/dma/swiotlb.c (revision 1a2ac6d7ecdcde74a4e16f31de64124160fc7237)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 struct io_tlb_slot {
66 	phys_addr_t orig_addr;
67 	size_t alloc_size;
68 	unsigned int list;
69 };
70 
71 static bool swiotlb_force_bounce;
72 static bool swiotlb_force_disable;
73 
74 struct io_tlb_mem io_tlb_default_mem;
75 
76 phys_addr_t swiotlb_unencrypted_base;
77 
78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
79 static unsigned long default_nareas;
80 
81 /**
82  * struct io_tlb_area - IO TLB memory area descriptor
83  *
84  * This is a single area with a single lock.
85  *
86  * @used:	The number of used IO TLB block.
87  * @index:	The slot index to start searching in this area for next round.
88  * @lock:	The lock to protect the above data structures in the map and
89  *		unmap calls.
90  */
91 struct io_tlb_area {
92 	unsigned long used;
93 	unsigned int index;
94 	spinlock_t lock;
95 };
96 
97 /*
98  * Round up number of slabs to the next power of 2. The last area is going
99  * be smaller than the rest if default_nslabs is not power of two.
100  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
101  * otherwise a segment may span two or more areas. It conflicts with free
102  * contiguous slots tracking: free slots are treated contiguous no matter
103  * whether they cross an area boundary.
104  *
105  * Return true if default_nslabs is rounded up.
106  */
107 static bool round_up_default_nslabs(void)
108 {
109 	if (!default_nareas)
110 		return false;
111 
112 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
113 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
114 	else if (is_power_of_2(default_nslabs))
115 		return false;
116 	default_nslabs = roundup_pow_of_two(default_nslabs);
117 	return true;
118 }
119 
120 static void swiotlb_adjust_nareas(unsigned int nareas)
121 {
122 	/* use a single area when non is specified */
123 	if (!nareas)
124 		nareas = 1;
125 	else if (!is_power_of_2(nareas))
126 		nareas = roundup_pow_of_two(nareas);
127 
128 	default_nareas = nareas;
129 
130 	pr_info("area num %d.\n", nareas);
131 	if (round_up_default_nslabs())
132 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
133 			(default_nslabs << IO_TLB_SHIFT) >> 20);
134 }
135 
136 static int __init
137 setup_io_tlb_npages(char *str)
138 {
139 	if (isdigit(*str)) {
140 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
141 		default_nslabs =
142 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
143 	}
144 	if (*str == ',')
145 		++str;
146 	if (isdigit(*str))
147 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
148 	if (*str == ',')
149 		++str;
150 	if (!strcmp(str, "force"))
151 		swiotlb_force_bounce = true;
152 	else if (!strcmp(str, "noforce"))
153 		swiotlb_force_disable = true;
154 
155 	return 0;
156 }
157 early_param("swiotlb", setup_io_tlb_npages);
158 
159 unsigned long swiotlb_size_or_default(void)
160 {
161 	return default_nslabs << IO_TLB_SHIFT;
162 }
163 
164 void __init swiotlb_adjust_size(unsigned long size)
165 {
166 	/*
167 	 * If swiotlb parameter has not been specified, give a chance to
168 	 * architectures such as those supporting memory encryption to
169 	 * adjust/expand SWIOTLB size for their use.
170 	 */
171 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
172 		return;
173 
174 	size = ALIGN(size, IO_TLB_SIZE);
175 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
176 	if (round_up_default_nslabs())
177 		size = default_nslabs << IO_TLB_SHIFT;
178 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
179 }
180 
181 void swiotlb_print_info(void)
182 {
183 	struct io_tlb_mem *mem = &io_tlb_default_mem;
184 
185 	if (!mem->nslabs) {
186 		pr_warn("No low mem\n");
187 		return;
188 	}
189 
190 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
191 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
192 }
193 
194 static inline unsigned long io_tlb_offset(unsigned long val)
195 {
196 	return val & (IO_TLB_SEGSIZE - 1);
197 }
198 
199 static inline unsigned long nr_slots(u64 val)
200 {
201 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
202 }
203 
204 /*
205  * Remap swioltb memory in the unencrypted physical address space
206  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
207  * Isolation VMs).
208  */
209 #ifdef CONFIG_HAS_IOMEM
210 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
211 {
212 	void *vaddr = NULL;
213 
214 	if (swiotlb_unencrypted_base) {
215 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
216 
217 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
218 		if (!vaddr)
219 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
220 			       &paddr, bytes);
221 	}
222 
223 	return vaddr;
224 }
225 #else
226 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
227 {
228 	return NULL;
229 }
230 #endif
231 
232 /*
233  * Early SWIOTLB allocation may be too early to allow an architecture to
234  * perform the desired operations.  This function allows the architecture to
235  * call SWIOTLB when the operations are possible.  It needs to be called
236  * before the SWIOTLB memory is used.
237  */
238 void __init swiotlb_update_mem_attributes(void)
239 {
240 	struct io_tlb_mem *mem = &io_tlb_default_mem;
241 	void *vaddr;
242 	unsigned long bytes;
243 
244 	if (!mem->nslabs || mem->late_alloc)
245 		return;
246 	vaddr = phys_to_virt(mem->start);
247 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
248 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
249 
250 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
251 	if (!mem->vaddr)
252 		mem->vaddr = vaddr;
253 }
254 
255 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
256 		unsigned long nslabs, unsigned int flags,
257 		bool late_alloc, unsigned int nareas)
258 {
259 	void *vaddr = phys_to_virt(start);
260 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
261 
262 	mem->nslabs = nslabs;
263 	mem->start = start;
264 	mem->end = mem->start + bytes;
265 	mem->late_alloc = late_alloc;
266 	mem->nareas = nareas;
267 	mem->area_nslabs = nslabs / mem->nareas;
268 
269 	mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
270 
271 	for (i = 0; i < mem->nareas; i++) {
272 		spin_lock_init(&mem->areas[i].lock);
273 		mem->areas[i].index = 0;
274 		mem->areas[i].used = 0;
275 	}
276 
277 	for (i = 0; i < mem->nslabs; i++) {
278 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
279 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
280 		mem->slots[i].alloc_size = 0;
281 	}
282 
283 	/*
284 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
285 	 * be remapped and cleared in swiotlb_update_mem_attributes.
286 	 */
287 	if (swiotlb_unencrypted_base)
288 		return;
289 
290 	memset(vaddr, 0, bytes);
291 	mem->vaddr = vaddr;
292 	return;
293 }
294 
295 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
296 		unsigned int flags,
297 		int (*remap)(void *tlb, unsigned long nslabs))
298 {
299 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
300 	void *tlb;
301 
302 	/*
303 	 * By default allocate the bounce buffer memory from low memory, but
304 	 * allow to pick a location everywhere for hypervisors with guest
305 	 * memory encryption.
306 	 */
307 	if (flags & SWIOTLB_ANY)
308 		tlb = memblock_alloc(bytes, PAGE_SIZE);
309 	else
310 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
311 
312 	if (!tlb) {
313 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
314 			__func__, bytes);
315 		return NULL;
316 	}
317 
318 	if (remap && remap(tlb, nslabs) < 0) {
319 		memblock_free(tlb, PAGE_ALIGN(bytes));
320 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
321 		return NULL;
322 	}
323 
324 	return tlb;
325 }
326 
327 /*
328  * Statically reserve bounce buffer space and initialize bounce buffer data
329  * structures for the software IO TLB used to implement the DMA API.
330  */
331 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
332 		int (*remap)(void *tlb, unsigned long nslabs))
333 {
334 	struct io_tlb_mem *mem = &io_tlb_default_mem;
335 	unsigned long nslabs;
336 	size_t alloc_size;
337 	void *tlb;
338 
339 	if (!addressing_limit && !swiotlb_force_bounce)
340 		return;
341 	if (swiotlb_force_disable)
342 		return;
343 
344 	/*
345 	 * default_nslabs maybe changed when adjust area number.
346 	 * So allocate bounce buffer after adjusting area number.
347 	 */
348 	if (!default_nareas)
349 		swiotlb_adjust_nareas(num_possible_cpus());
350 
351 	nslabs = default_nslabs;
352 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
353 		if (nslabs <= IO_TLB_MIN_SLABS)
354 			return;
355 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
356 	}
357 
358 	if (default_nslabs != nslabs) {
359 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
360 			default_nslabs, nslabs);
361 		default_nslabs = nslabs;
362 	}
363 
364 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
365 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
366 	if (!mem->slots) {
367 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
368 			__func__, alloc_size, PAGE_SIZE);
369 		return;
370 	}
371 
372 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
373 		default_nareas), SMP_CACHE_BYTES);
374 	if (!mem->areas) {
375 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
376 		return;
377 	}
378 
379 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false,
380 				default_nareas);
381 
382 	if (flags & SWIOTLB_VERBOSE)
383 		swiotlb_print_info();
384 }
385 
386 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
387 {
388 	swiotlb_init_remap(addressing_limit, flags, NULL);
389 }
390 
391 /*
392  * Systems with larger DMA zones (those that don't support ISA) can
393  * initialize the swiotlb later using the slab allocator if needed.
394  * This should be just like above, but with some error catching.
395  */
396 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
397 		int (*remap)(void *tlb, unsigned long nslabs))
398 {
399 	struct io_tlb_mem *mem = &io_tlb_default_mem;
400 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
401 	unsigned char *vstart = NULL;
402 	unsigned int order, area_order;
403 	bool retried = false;
404 	int rc = 0;
405 
406 	if (swiotlb_force_disable)
407 		return 0;
408 
409 retry:
410 	order = get_order(nslabs << IO_TLB_SHIFT);
411 	nslabs = SLABS_PER_PAGE << order;
412 
413 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
414 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
415 						  order);
416 		if (vstart)
417 			break;
418 		order--;
419 		nslabs = SLABS_PER_PAGE << order;
420 		retried = true;
421 	}
422 
423 	if (!vstart)
424 		return -ENOMEM;
425 
426 	if (remap)
427 		rc = remap(vstart, nslabs);
428 	if (rc) {
429 		free_pages((unsigned long)vstart, order);
430 
431 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
432 		if (nslabs < IO_TLB_MIN_SLABS)
433 			return rc;
434 		retried = true;
435 		goto retry;
436 	}
437 
438 	if (retried) {
439 		pr_warn("only able to allocate %ld MB\n",
440 			(PAGE_SIZE << order) >> 20);
441 	}
442 
443 	if (!default_nareas)
444 		swiotlb_adjust_nareas(num_possible_cpus());
445 
446 	area_order = get_order(array_size(sizeof(*mem->areas),
447 		default_nareas));
448 	mem->areas = (struct io_tlb_area *)
449 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
450 	if (!mem->areas)
451 		goto error_area;
452 
453 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
454 		get_order(array_size(sizeof(*mem->slots), nslabs)));
455 	if (!mem->slots)
456 		goto error_slots;
457 
458 	set_memory_decrypted((unsigned long)vstart,
459 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
460 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true,
461 				default_nareas);
462 
463 	swiotlb_print_info();
464 	return 0;
465 
466 error_slots:
467 	free_pages((unsigned long)mem->areas, area_order);
468 error_area:
469 	free_pages((unsigned long)vstart, order);
470 	return -ENOMEM;
471 }
472 
473 void __init swiotlb_exit(void)
474 {
475 	struct io_tlb_mem *mem = &io_tlb_default_mem;
476 	unsigned long tbl_vaddr;
477 	size_t tbl_size, slots_size;
478 	unsigned int area_order;
479 
480 	if (swiotlb_force_bounce)
481 		return;
482 
483 	if (!mem->nslabs)
484 		return;
485 
486 	pr_info("tearing down default memory pool\n");
487 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
488 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
489 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
490 
491 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
492 	if (mem->late_alloc) {
493 		area_order = get_order(array_size(sizeof(*mem->areas),
494 			mem->nareas));
495 		free_pages((unsigned long)mem->areas, area_order);
496 		free_pages(tbl_vaddr, get_order(tbl_size));
497 		free_pages((unsigned long)mem->slots, get_order(slots_size));
498 	} else {
499 		memblock_free_late(__pa(mem->areas),
500 			array_size(sizeof(*mem->areas), mem->nareas));
501 		memblock_free_late(mem->start, tbl_size);
502 		memblock_free_late(__pa(mem->slots), slots_size);
503 	}
504 
505 	memset(mem, 0, sizeof(*mem));
506 }
507 
508 /*
509  * Return the offset into a iotlb slot required to keep the device happy.
510  */
511 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
512 {
513 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
514 }
515 
516 /*
517  * Bounce: copy the swiotlb buffer from or back to the original dma location
518  */
519 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
520 			   enum dma_data_direction dir)
521 {
522 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
523 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
524 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
525 	size_t alloc_size = mem->slots[index].alloc_size;
526 	unsigned long pfn = PFN_DOWN(orig_addr);
527 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
528 	unsigned int tlb_offset, orig_addr_offset;
529 
530 	if (orig_addr == INVALID_PHYS_ADDR)
531 		return;
532 
533 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
534 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
535 	if (tlb_offset < orig_addr_offset) {
536 		dev_WARN_ONCE(dev, 1,
537 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
538 			orig_addr_offset, tlb_offset);
539 		return;
540 	}
541 
542 	tlb_offset -= orig_addr_offset;
543 	if (tlb_offset > alloc_size) {
544 		dev_WARN_ONCE(dev, 1,
545 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
546 			alloc_size, size, tlb_offset);
547 		return;
548 	}
549 
550 	orig_addr += tlb_offset;
551 	alloc_size -= tlb_offset;
552 
553 	if (size > alloc_size) {
554 		dev_WARN_ONCE(dev, 1,
555 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
556 			alloc_size, size);
557 		size = alloc_size;
558 	}
559 
560 	if (PageHighMem(pfn_to_page(pfn))) {
561 		unsigned int offset = orig_addr & ~PAGE_MASK;
562 		struct page *page;
563 		unsigned int sz = 0;
564 		unsigned long flags;
565 
566 		while (size) {
567 			sz = min_t(size_t, PAGE_SIZE - offset, size);
568 
569 			local_irq_save(flags);
570 			page = pfn_to_page(pfn);
571 			if (dir == DMA_TO_DEVICE)
572 				memcpy_from_page(vaddr, page, offset, sz);
573 			else
574 				memcpy_to_page(page, offset, vaddr, sz);
575 			local_irq_restore(flags);
576 
577 			size -= sz;
578 			pfn++;
579 			vaddr += sz;
580 			offset = 0;
581 		}
582 	} else if (dir == DMA_TO_DEVICE) {
583 		memcpy(vaddr, phys_to_virt(orig_addr), size);
584 	} else {
585 		memcpy(phys_to_virt(orig_addr), vaddr, size);
586 	}
587 }
588 
589 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
590 {
591 	return start + (idx << IO_TLB_SHIFT);
592 }
593 
594 /*
595  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
596  */
597 static inline unsigned long get_max_slots(unsigned long boundary_mask)
598 {
599 	if (boundary_mask == ~0UL)
600 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
601 	return nr_slots(boundary_mask + 1);
602 }
603 
604 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index)
605 {
606 	if (index >= mem->area_nslabs)
607 		return 0;
608 	return index;
609 }
610 
611 /*
612  * Find a suitable number of IO TLB entries size that will fit this request and
613  * allocate a buffer from that IO TLB pool.
614  */
615 static int swiotlb_do_find_slots(struct device *dev, int area_index,
616 		phys_addr_t orig_addr, size_t alloc_size,
617 		unsigned int alloc_align_mask)
618 {
619 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
620 	struct io_tlb_area *area = mem->areas + area_index;
621 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
622 	dma_addr_t tbl_dma_addr =
623 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
624 	unsigned long max_slots = get_max_slots(boundary_mask);
625 	unsigned int iotlb_align_mask =
626 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
627 	unsigned int nslots = nr_slots(alloc_size), stride;
628 	unsigned int index, wrap, count = 0, i;
629 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
630 	unsigned long flags;
631 	unsigned int slot_base;
632 	unsigned int slot_index;
633 
634 	BUG_ON(!nslots);
635 	BUG_ON(area_index >= mem->nareas);
636 
637 	/*
638 	 * For mappings with an alignment requirement don't bother looping to
639 	 * unaligned slots once we found an aligned one.  For allocations of
640 	 * PAGE_SIZE or larger only look for page aligned allocations.
641 	 */
642 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
643 	if (alloc_size >= PAGE_SIZE)
644 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
645 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
646 
647 	spin_lock_irqsave(&area->lock, flags);
648 	if (unlikely(nslots > mem->area_nslabs - area->used))
649 		goto not_found;
650 
651 	slot_base = area_index * mem->area_nslabs;
652 	index = wrap = wrap_area_index(mem, ALIGN(area->index, stride));
653 
654 	do {
655 		slot_index = slot_base + index;
656 
657 		if (orig_addr &&
658 		    (slot_addr(tbl_dma_addr, slot_index) &
659 		     iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
660 			index = wrap_area_index(mem, index + 1);
661 			continue;
662 		}
663 
664 		/*
665 		 * If we find a slot that indicates we have 'nslots' number of
666 		 * contiguous buffers, we allocate the buffers from that slot
667 		 * and mark the entries as '0' indicating unavailable.
668 		 */
669 		if (!iommu_is_span_boundary(slot_index, nslots,
670 					    nr_slots(tbl_dma_addr),
671 					    max_slots)) {
672 			if (mem->slots[slot_index].list >= nslots)
673 				goto found;
674 		}
675 		index = wrap_area_index(mem, index + stride);
676 	} while (index != wrap);
677 
678 not_found:
679 	spin_unlock_irqrestore(&area->lock, flags);
680 	return -1;
681 
682 found:
683 	for (i = slot_index; i < slot_index + nslots; i++) {
684 		mem->slots[i].list = 0;
685 		mem->slots[i].alloc_size = alloc_size - (offset +
686 				((i - slot_index) << IO_TLB_SHIFT));
687 	}
688 	for (i = slot_index - 1;
689 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
690 	     mem->slots[i].list; i--)
691 		mem->slots[i].list = ++count;
692 
693 	/*
694 	 * Update the indices to avoid searching in the next round.
695 	 */
696 	if (index + nslots < mem->area_nslabs)
697 		area->index = index + nslots;
698 	else
699 		area->index = 0;
700 	area->used += nslots;
701 	spin_unlock_irqrestore(&area->lock, flags);
702 	return slot_index;
703 }
704 
705 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
706 		size_t alloc_size, unsigned int alloc_align_mask)
707 {
708 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
709 	int start = raw_smp_processor_id() & (mem->nareas - 1);
710 	int i = start, index;
711 
712 	do {
713 		index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size,
714 					      alloc_align_mask);
715 		if (index >= 0)
716 			return index;
717 		if (++i >= mem->nareas)
718 			i = 0;
719 	} while (i != start);
720 
721 	return -1;
722 }
723 
724 static unsigned long mem_used(struct io_tlb_mem *mem)
725 {
726 	int i;
727 	unsigned long used = 0;
728 
729 	for (i = 0; i < mem->nareas; i++)
730 		used += mem->areas[i].used;
731 	return used;
732 }
733 
734 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
735 		size_t mapping_size, size_t alloc_size,
736 		unsigned int alloc_align_mask, enum dma_data_direction dir,
737 		unsigned long attrs)
738 {
739 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
740 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
741 	unsigned int i;
742 	int index;
743 	phys_addr_t tlb_addr;
744 
745 	if (!mem || !mem->nslabs) {
746 		dev_warn_ratelimited(dev,
747 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
748 		return (phys_addr_t)DMA_MAPPING_ERROR;
749 	}
750 
751 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
752 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
753 
754 	if (mapping_size > alloc_size) {
755 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
756 			      mapping_size, alloc_size);
757 		return (phys_addr_t)DMA_MAPPING_ERROR;
758 	}
759 
760 	index = swiotlb_find_slots(dev, orig_addr,
761 				   alloc_size + offset, alloc_align_mask);
762 	if (index == -1) {
763 		if (!(attrs & DMA_ATTR_NO_WARN))
764 			dev_warn_ratelimited(dev,
765 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
766 				 alloc_size, mem->nslabs, mem_used(mem));
767 		return (phys_addr_t)DMA_MAPPING_ERROR;
768 	}
769 
770 	/*
771 	 * Save away the mapping from the original address to the DMA address.
772 	 * This is needed when we sync the memory.  Then we sync the buffer if
773 	 * needed.
774 	 */
775 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
776 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
777 	tlb_addr = slot_addr(mem->start, index) + offset;
778 	/*
779 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
780 	 * to the tlb buffer, if we knew for sure the device will
781 	 * overwrite the entire current content. But we don't. Thus
782 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
783 	 * kernel memory) to user-space.
784 	 */
785 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
786 	return tlb_addr;
787 }
788 
789 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
790 {
791 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
792 	unsigned long flags;
793 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
794 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
795 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
796 	int aindex = index / mem->area_nslabs;
797 	struct io_tlb_area *area = &mem->areas[aindex];
798 	int count, i;
799 
800 	/*
801 	 * Return the buffer to the free list by setting the corresponding
802 	 * entries to indicate the number of contiguous entries available.
803 	 * While returning the entries to the free list, we merge the entries
804 	 * with slots below and above the pool being returned.
805 	 */
806 	BUG_ON(aindex >= mem->nareas);
807 
808 	spin_lock_irqsave(&area->lock, flags);
809 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
810 		count = mem->slots[index + nslots].list;
811 	else
812 		count = 0;
813 
814 	/*
815 	 * Step 1: return the slots to the free list, merging the slots with
816 	 * superceeding slots
817 	 */
818 	for (i = index + nslots - 1; i >= index; i--) {
819 		mem->slots[i].list = ++count;
820 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
821 		mem->slots[i].alloc_size = 0;
822 	}
823 
824 	/*
825 	 * Step 2: merge the returned slots with the preceding slots, if
826 	 * available (non zero)
827 	 */
828 	for (i = index - 1;
829 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
830 	     i--)
831 		mem->slots[i].list = ++count;
832 	area->used -= nslots;
833 	spin_unlock_irqrestore(&area->lock, flags);
834 }
835 
836 /*
837  * tlb_addr is the physical address of the bounce buffer to unmap.
838  */
839 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
840 			      size_t mapping_size, enum dma_data_direction dir,
841 			      unsigned long attrs)
842 {
843 	/*
844 	 * First, sync the memory before unmapping the entry
845 	 */
846 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
847 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
848 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
849 
850 	swiotlb_release_slots(dev, tlb_addr);
851 }
852 
853 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
854 		size_t size, enum dma_data_direction dir)
855 {
856 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
857 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
858 	else
859 		BUG_ON(dir != DMA_FROM_DEVICE);
860 }
861 
862 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
863 		size_t size, enum dma_data_direction dir)
864 {
865 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
866 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
867 	else
868 		BUG_ON(dir != DMA_TO_DEVICE);
869 }
870 
871 /*
872  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
873  * to the device copy the data into it as well.
874  */
875 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
876 		enum dma_data_direction dir, unsigned long attrs)
877 {
878 	phys_addr_t swiotlb_addr;
879 	dma_addr_t dma_addr;
880 
881 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
882 
883 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
884 			attrs);
885 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
886 		return DMA_MAPPING_ERROR;
887 
888 	/* Ensure that the address returned is DMA'ble */
889 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
890 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
891 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
892 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
893 		dev_WARN_ONCE(dev, 1,
894 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
895 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
896 		return DMA_MAPPING_ERROR;
897 	}
898 
899 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
900 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
901 	return dma_addr;
902 }
903 
904 size_t swiotlb_max_mapping_size(struct device *dev)
905 {
906 	int min_align_mask = dma_get_min_align_mask(dev);
907 	int min_align = 0;
908 
909 	/*
910 	 * swiotlb_find_slots() skips slots according to
911 	 * min align mask. This affects max mapping size.
912 	 * Take it into acount here.
913 	 */
914 	if (min_align_mask)
915 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
916 
917 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
918 }
919 
920 bool is_swiotlb_active(struct device *dev)
921 {
922 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
923 
924 	return mem && mem->nslabs;
925 }
926 EXPORT_SYMBOL_GPL(is_swiotlb_active);
927 
928 static int io_tlb_used_get(void *data, u64 *val)
929 {
930 	*val = mem_used(&io_tlb_default_mem);
931 	return 0;
932 }
933 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
934 
935 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
936 					 const char *dirname)
937 {
938 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
939 	if (!mem->nslabs)
940 		return;
941 
942 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
943 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL,
944 			&fops_io_tlb_used);
945 }
946 
947 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
948 {
949 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
950 	return 0;
951 }
952 
953 #ifdef CONFIG_DEBUG_FS
954 late_initcall(swiotlb_create_default_debugfs);
955 #endif
956 
957 #ifdef CONFIG_DMA_RESTRICTED_POOL
958 
959 struct page *swiotlb_alloc(struct device *dev, size_t size)
960 {
961 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
962 	phys_addr_t tlb_addr;
963 	int index;
964 
965 	if (!mem)
966 		return NULL;
967 
968 	index = swiotlb_find_slots(dev, 0, size, 0);
969 	if (index == -1)
970 		return NULL;
971 
972 	tlb_addr = slot_addr(mem->start, index);
973 
974 	return pfn_to_page(PFN_DOWN(tlb_addr));
975 }
976 
977 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
978 {
979 	phys_addr_t tlb_addr = page_to_phys(page);
980 
981 	if (!is_swiotlb_buffer(dev, tlb_addr))
982 		return false;
983 
984 	swiotlb_release_slots(dev, tlb_addr);
985 
986 	return true;
987 }
988 
989 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
990 				    struct device *dev)
991 {
992 	struct io_tlb_mem *mem = rmem->priv;
993 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
994 
995 	/* Set Per-device io tlb area to one */
996 	unsigned int nareas = 1;
997 
998 	/*
999 	 * Since multiple devices can share the same pool, the private data,
1000 	 * io_tlb_mem struct, will be initialized by the first device attached
1001 	 * to it.
1002 	 */
1003 	if (!mem) {
1004 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1005 		if (!mem)
1006 			return -ENOMEM;
1007 
1008 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
1009 		if (!mem->slots) {
1010 			kfree(mem);
1011 			return -ENOMEM;
1012 		}
1013 
1014 		mem->areas = kcalloc(nareas, sizeof(*mem->areas),
1015 				GFP_KERNEL);
1016 		if (!mem->areas) {
1017 			kfree(mem->slots);
1018 			kfree(mem);
1019 			return -ENOMEM;
1020 		}
1021 
1022 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1023 				     rmem->size >> PAGE_SHIFT);
1024 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
1025 					false, nareas);
1026 		mem->for_alloc = true;
1027 
1028 		rmem->priv = mem;
1029 
1030 		swiotlb_create_debugfs_files(mem, rmem->name);
1031 	}
1032 
1033 	dev->dma_io_tlb_mem = mem;
1034 
1035 	return 0;
1036 }
1037 
1038 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1039 					struct device *dev)
1040 {
1041 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1042 }
1043 
1044 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1045 	.device_init = rmem_swiotlb_device_init,
1046 	.device_release = rmem_swiotlb_device_release,
1047 };
1048 
1049 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1050 {
1051 	unsigned long node = rmem->fdt_node;
1052 
1053 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1054 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1055 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1056 	    of_get_flat_dt_prop(node, "no-map", NULL))
1057 		return -EINVAL;
1058 
1059 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1060 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
1061 		return -EINVAL;
1062 	}
1063 
1064 	rmem->ops = &rmem_swiotlb_ops;
1065 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1066 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1067 	return 0;
1068 }
1069 
1070 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1071 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1072