1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/rculist.h> 39 #include <linux/scatterlist.h> 40 #include <linux/set_memory.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/swiotlb.h> 44 #include <linux/types.h> 45 #ifdef CONFIG_DMA_RESTRICTED_POOL 46 #include <linux/of.h> 47 #include <linux/of_fdt.h> 48 #include <linux/of_reserved_mem.h> 49 #include <linux/slab.h> 50 #endif 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/swiotlb.h> 54 55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 56 57 /* 58 * Minimum IO TLB size to bother booting with. Systems with mainly 59 * 64bit capable cards will only lightly use the swiotlb. If we can't 60 * allocate a contiguous 1MB, we're probably in trouble anyway. 61 */ 62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 63 64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 65 66 /** 67 * struct io_tlb_slot - IO TLB slot descriptor 68 * @orig_addr: The original address corresponding to a mapped entry. 69 * @alloc_size: Size of the allocated buffer. 70 * @list: The free list describing the number of free entries available 71 * from each index. 72 */ 73 struct io_tlb_slot { 74 phys_addr_t orig_addr; 75 size_t alloc_size; 76 unsigned int list; 77 }; 78 79 static bool swiotlb_force_bounce; 80 static bool swiotlb_force_disable; 81 82 #ifdef CONFIG_SWIOTLB_DYNAMIC 83 84 static void swiotlb_dyn_alloc(struct work_struct *work); 85 86 static struct io_tlb_mem io_tlb_default_mem = { 87 .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock), 88 .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools), 89 .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc, 90 swiotlb_dyn_alloc), 91 }; 92 93 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 94 95 static struct io_tlb_mem io_tlb_default_mem; 96 97 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 98 99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 100 static unsigned long default_nareas; 101 102 /** 103 * struct io_tlb_area - IO TLB memory area descriptor 104 * 105 * This is a single area with a single lock. 106 * 107 * @used: The number of used IO TLB block. 108 * @index: The slot index to start searching in this area for next round. 109 * @lock: The lock to protect the above data structures in the map and 110 * unmap calls. 111 */ 112 struct io_tlb_area { 113 unsigned long used; 114 unsigned int index; 115 spinlock_t lock; 116 }; 117 118 /* 119 * Round up number of slabs to the next power of 2. The last area is going 120 * be smaller than the rest if default_nslabs is not power of two. 121 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 122 * otherwise a segment may span two or more areas. It conflicts with free 123 * contiguous slots tracking: free slots are treated contiguous no matter 124 * whether they cross an area boundary. 125 * 126 * Return true if default_nslabs is rounded up. 127 */ 128 static bool round_up_default_nslabs(void) 129 { 130 if (!default_nareas) 131 return false; 132 133 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 134 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 135 else if (is_power_of_2(default_nslabs)) 136 return false; 137 default_nslabs = roundup_pow_of_two(default_nslabs); 138 return true; 139 } 140 141 /** 142 * swiotlb_adjust_nareas() - adjust the number of areas and slots 143 * @nareas: Desired number of areas. Zero is treated as 1. 144 * 145 * Adjust the default number of areas in a memory pool. 146 * The default size of the memory pool may also change to meet minimum area 147 * size requirements. 148 */ 149 static void swiotlb_adjust_nareas(unsigned int nareas) 150 { 151 if (!nareas) 152 nareas = 1; 153 else if (!is_power_of_2(nareas)) 154 nareas = roundup_pow_of_two(nareas); 155 156 default_nareas = nareas; 157 158 pr_info("area num %d.\n", nareas); 159 if (round_up_default_nslabs()) 160 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 161 (default_nslabs << IO_TLB_SHIFT) >> 20); 162 } 163 164 /** 165 * limit_nareas() - get the maximum number of areas for a given memory pool size 166 * @nareas: Desired number of areas. 167 * @nslots: Total number of slots in the memory pool. 168 * 169 * Limit the number of areas to the maximum possible number of areas in 170 * a memory pool of the given size. 171 * 172 * Return: Maximum possible number of areas. 173 */ 174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots) 175 { 176 if (nslots < nareas * IO_TLB_SEGSIZE) 177 return nslots / IO_TLB_SEGSIZE; 178 return nareas; 179 } 180 181 static int __init 182 setup_io_tlb_npages(char *str) 183 { 184 if (isdigit(*str)) { 185 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 186 default_nslabs = 187 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 188 } 189 if (*str == ',') 190 ++str; 191 if (isdigit(*str)) 192 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 193 if (*str == ',') 194 ++str; 195 if (!strcmp(str, "force")) 196 swiotlb_force_bounce = true; 197 else if (!strcmp(str, "noforce")) 198 swiotlb_force_disable = true; 199 200 return 0; 201 } 202 early_param("swiotlb", setup_io_tlb_npages); 203 204 unsigned long swiotlb_size_or_default(void) 205 { 206 return default_nslabs << IO_TLB_SHIFT; 207 } 208 209 void __init swiotlb_adjust_size(unsigned long size) 210 { 211 /* 212 * If swiotlb parameter has not been specified, give a chance to 213 * architectures such as those supporting memory encryption to 214 * adjust/expand SWIOTLB size for their use. 215 */ 216 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 217 return; 218 219 size = ALIGN(size, IO_TLB_SIZE); 220 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 221 if (round_up_default_nslabs()) 222 size = default_nslabs << IO_TLB_SHIFT; 223 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 224 } 225 226 void swiotlb_print_info(void) 227 { 228 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 229 230 if (!mem->nslabs) { 231 pr_warn("No low mem\n"); 232 return; 233 } 234 235 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 236 (mem->nslabs << IO_TLB_SHIFT) >> 20); 237 } 238 239 static inline unsigned long io_tlb_offset(unsigned long val) 240 { 241 return val & (IO_TLB_SEGSIZE - 1); 242 } 243 244 static inline unsigned long nr_slots(u64 val) 245 { 246 return DIV_ROUND_UP(val, IO_TLB_SIZE); 247 } 248 249 /* 250 * Early SWIOTLB allocation may be too early to allow an architecture to 251 * perform the desired operations. This function allows the architecture to 252 * call SWIOTLB when the operations are possible. It needs to be called 253 * before the SWIOTLB memory is used. 254 */ 255 void __init swiotlb_update_mem_attributes(void) 256 { 257 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 258 unsigned long bytes; 259 260 if (!mem->nslabs || mem->late_alloc) 261 return; 262 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 263 set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT); 264 } 265 266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start, 267 unsigned long nslabs, bool late_alloc, unsigned int nareas) 268 { 269 void *vaddr = phys_to_virt(start); 270 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 271 272 mem->nslabs = nslabs; 273 mem->start = start; 274 mem->end = mem->start + bytes; 275 mem->late_alloc = late_alloc; 276 mem->nareas = nareas; 277 mem->area_nslabs = nslabs / mem->nareas; 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i), 287 mem->nslabs - i); 288 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 289 mem->slots[i].alloc_size = 0; 290 } 291 292 memset(vaddr, 0, bytes); 293 mem->vaddr = vaddr; 294 return; 295 } 296 297 /** 298 * add_mem_pool() - add a memory pool to the allocator 299 * @mem: Software IO TLB allocator. 300 * @pool: Memory pool to be added. 301 */ 302 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool) 303 { 304 #ifdef CONFIG_SWIOTLB_DYNAMIC 305 spin_lock(&mem->lock); 306 list_add_rcu(&pool->node, &mem->pools); 307 mem->nslabs += pool->nslabs; 308 spin_unlock(&mem->lock); 309 #else 310 mem->nslabs = pool->nslabs; 311 #endif 312 } 313 314 static void __init *swiotlb_memblock_alloc(unsigned long nslabs, 315 unsigned int flags, 316 int (*remap)(void *tlb, unsigned long nslabs)) 317 { 318 size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 319 void *tlb; 320 321 /* 322 * By default allocate the bounce buffer memory from low memory, but 323 * allow to pick a location everywhere for hypervisors with guest 324 * memory encryption. 325 */ 326 if (flags & SWIOTLB_ANY) 327 tlb = memblock_alloc(bytes, PAGE_SIZE); 328 else 329 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 330 331 if (!tlb) { 332 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", 333 __func__, bytes); 334 return NULL; 335 } 336 337 if (remap && remap(tlb, nslabs) < 0) { 338 memblock_free(tlb, PAGE_ALIGN(bytes)); 339 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); 340 return NULL; 341 } 342 343 return tlb; 344 } 345 346 /* 347 * Statically reserve bounce buffer space and initialize bounce buffer data 348 * structures for the software IO TLB used to implement the DMA API. 349 */ 350 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 351 int (*remap)(void *tlb, unsigned long nslabs)) 352 { 353 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 354 unsigned long nslabs; 355 unsigned int nareas; 356 size_t alloc_size; 357 void *tlb; 358 359 if (!addressing_limit && !swiotlb_force_bounce) 360 return; 361 if (swiotlb_force_disable) 362 return; 363 364 io_tlb_default_mem.force_bounce = 365 swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 366 367 #ifdef CONFIG_SWIOTLB_DYNAMIC 368 if (!remap) 369 io_tlb_default_mem.can_grow = true; 370 if (flags & SWIOTLB_ANY) 371 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 372 else 373 io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT; 374 #endif 375 376 if (!default_nareas) 377 swiotlb_adjust_nareas(num_possible_cpus()); 378 379 nslabs = default_nslabs; 380 nareas = limit_nareas(default_nareas, nslabs); 381 while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) { 382 if (nslabs <= IO_TLB_MIN_SLABS) 383 return; 384 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 385 nareas = limit_nareas(nareas, nslabs); 386 } 387 388 if (default_nslabs != nslabs) { 389 pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs", 390 default_nslabs, nslabs); 391 default_nslabs = nslabs; 392 } 393 394 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 395 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 396 if (!mem->slots) { 397 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", 398 __func__, alloc_size, PAGE_SIZE); 399 return; 400 } 401 402 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 403 nareas), SMP_CACHE_BYTES); 404 if (!mem->areas) { 405 pr_warn("%s: Failed to allocate mem->areas.\n", __func__); 406 return; 407 } 408 409 swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas); 410 add_mem_pool(&io_tlb_default_mem, mem); 411 412 if (flags & SWIOTLB_VERBOSE) 413 swiotlb_print_info(); 414 } 415 416 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 417 { 418 swiotlb_init_remap(addressing_limit, flags, NULL); 419 } 420 421 /* 422 * Systems with larger DMA zones (those that don't support ISA) can 423 * initialize the swiotlb later using the slab allocator if needed. 424 * This should be just like above, but with some error catching. 425 */ 426 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 427 int (*remap)(void *tlb, unsigned long nslabs)) 428 { 429 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 430 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 431 unsigned int nareas; 432 unsigned char *vstart = NULL; 433 unsigned int order, area_order; 434 bool retried = false; 435 int rc = 0; 436 437 if (io_tlb_default_mem.nslabs) 438 return 0; 439 440 if (swiotlb_force_disable) 441 return 0; 442 443 io_tlb_default_mem.force_bounce = swiotlb_force_bounce; 444 445 #ifdef CONFIG_SWIOTLB_DYNAMIC 446 if (!remap) 447 io_tlb_default_mem.can_grow = true; 448 if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA)) 449 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits); 450 else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32)) 451 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32); 452 else 453 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 454 #endif 455 456 if (!default_nareas) 457 swiotlb_adjust_nareas(num_possible_cpus()); 458 459 retry: 460 order = get_order(nslabs << IO_TLB_SHIFT); 461 nslabs = SLABS_PER_PAGE << order; 462 463 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 464 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 465 order); 466 if (vstart) 467 break; 468 order--; 469 nslabs = SLABS_PER_PAGE << order; 470 retried = true; 471 } 472 473 if (!vstart) 474 return -ENOMEM; 475 476 if (remap) 477 rc = remap(vstart, nslabs); 478 if (rc) { 479 free_pages((unsigned long)vstart, order); 480 481 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 482 if (nslabs < IO_TLB_MIN_SLABS) 483 return rc; 484 retried = true; 485 goto retry; 486 } 487 488 if (retried) { 489 pr_warn("only able to allocate %ld MB\n", 490 (PAGE_SIZE << order) >> 20); 491 } 492 493 nareas = limit_nareas(default_nareas, nslabs); 494 area_order = get_order(array_size(sizeof(*mem->areas), nareas)); 495 mem->areas = (struct io_tlb_area *) 496 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 497 if (!mem->areas) 498 goto error_area; 499 500 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 501 get_order(array_size(sizeof(*mem->slots), nslabs))); 502 if (!mem->slots) 503 goto error_slots; 504 505 set_memory_decrypted((unsigned long)vstart, 506 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 507 swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true, 508 nareas); 509 add_mem_pool(&io_tlb_default_mem, mem); 510 511 swiotlb_print_info(); 512 return 0; 513 514 error_slots: 515 free_pages((unsigned long)mem->areas, area_order); 516 error_area: 517 free_pages((unsigned long)vstart, order); 518 return -ENOMEM; 519 } 520 521 void __init swiotlb_exit(void) 522 { 523 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 524 unsigned long tbl_vaddr; 525 size_t tbl_size, slots_size; 526 unsigned int area_order; 527 528 if (swiotlb_force_bounce) 529 return; 530 531 if (!mem->nslabs) 532 return; 533 534 pr_info("tearing down default memory pool\n"); 535 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 536 tbl_size = PAGE_ALIGN(mem->end - mem->start); 537 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 538 539 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 540 if (mem->late_alloc) { 541 area_order = get_order(array_size(sizeof(*mem->areas), 542 mem->nareas)); 543 free_pages((unsigned long)mem->areas, area_order); 544 free_pages(tbl_vaddr, get_order(tbl_size)); 545 free_pages((unsigned long)mem->slots, get_order(slots_size)); 546 } else { 547 memblock_free_late(__pa(mem->areas), 548 array_size(sizeof(*mem->areas), mem->nareas)); 549 memblock_free_late(mem->start, tbl_size); 550 memblock_free_late(__pa(mem->slots), slots_size); 551 } 552 553 memset(mem, 0, sizeof(*mem)); 554 } 555 556 #ifdef CONFIG_SWIOTLB_DYNAMIC 557 558 /** 559 * alloc_dma_pages() - allocate pages to be used for DMA 560 * @gfp: GFP flags for the allocation. 561 * @bytes: Size of the buffer. 562 * @phys_limit: Maximum allowed physical address of the buffer. 563 * 564 * Allocate pages from the buddy allocator. If successful, make the allocated 565 * pages decrypted that they can be used for DMA. 566 * 567 * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN) 568 * if the allocated physical address was above @phys_limit. 569 */ 570 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit) 571 { 572 unsigned int order = get_order(bytes); 573 struct page *page; 574 phys_addr_t paddr; 575 void *vaddr; 576 577 page = alloc_pages(gfp, order); 578 if (!page) 579 return NULL; 580 581 paddr = page_to_phys(page); 582 if (paddr + bytes - 1 > phys_limit) { 583 __free_pages(page, order); 584 return ERR_PTR(-EAGAIN); 585 } 586 587 vaddr = phys_to_virt(paddr); 588 if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes))) 589 goto error; 590 return page; 591 592 error: 593 /* Intentional leak if pages cannot be encrypted again. */ 594 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 595 __free_pages(page, order); 596 return NULL; 597 } 598 599 /** 600 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer 601 * @dev: Device for which a memory pool is allocated. 602 * @bytes: Size of the buffer. 603 * @phys_limit: Maximum allowed physical address of the buffer. 604 * @gfp: GFP flags for the allocation. 605 * 606 * Return: Allocated pages, or %NULL on allocation failure. 607 */ 608 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes, 609 u64 phys_limit, gfp_t gfp) 610 { 611 struct page *page; 612 613 /* 614 * Allocate from the atomic pools if memory is encrypted and 615 * the allocation is atomic, because decrypting may block. 616 */ 617 if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) { 618 void *vaddr; 619 620 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 621 return NULL; 622 623 return dma_alloc_from_pool(dev, bytes, &vaddr, gfp, 624 dma_coherent_ok); 625 } 626 627 gfp &= ~GFP_ZONEMASK; 628 if (phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 629 gfp |= __GFP_DMA; 630 else if (phys_limit <= DMA_BIT_MASK(32)) 631 gfp |= __GFP_DMA32; 632 633 while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) { 634 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 635 phys_limit < DMA_BIT_MASK(64) && 636 !(gfp & (__GFP_DMA32 | __GFP_DMA))) 637 gfp |= __GFP_DMA32; 638 else if (IS_ENABLED(CONFIG_ZONE_DMA) && 639 !(gfp & __GFP_DMA)) 640 gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA; 641 else 642 return NULL; 643 } 644 645 return page; 646 } 647 648 /** 649 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer 650 * @vaddr: Virtual address of the buffer. 651 * @bytes: Size of the buffer. 652 */ 653 static void swiotlb_free_tlb(void *vaddr, size_t bytes) 654 { 655 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 656 dma_free_from_pool(NULL, vaddr, bytes)) 657 return; 658 659 /* Intentional leak if pages cannot be encrypted again. */ 660 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 661 __free_pages(virt_to_page(vaddr), get_order(bytes)); 662 } 663 664 /** 665 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool 666 * @dev: Device for which a memory pool is allocated. 667 * @minslabs: Minimum number of slabs. 668 * @nslabs: Desired (maximum) number of slabs. 669 * @nareas: Number of areas. 670 * @phys_limit: Maximum DMA buffer physical address. 671 * @gfp: GFP flags for the allocations. 672 * 673 * Allocate and initialize a new IO TLB memory pool. The actual number of 674 * slabs may be reduced if allocation of @nslabs fails. If even 675 * @minslabs cannot be allocated, this function fails. 676 * 677 * Return: New memory pool, or %NULL on allocation failure. 678 */ 679 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev, 680 unsigned long minslabs, unsigned long nslabs, 681 unsigned int nareas, u64 phys_limit, gfp_t gfp) 682 { 683 struct io_tlb_pool *pool; 684 unsigned int slot_order; 685 struct page *tlb; 686 size_t pool_size; 687 size_t tlb_size; 688 689 if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) { 690 nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER; 691 nareas = limit_nareas(nareas, nslabs); 692 } 693 694 pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas); 695 pool = kzalloc(pool_size, gfp); 696 if (!pool) 697 goto error; 698 pool->areas = (void *)pool + sizeof(*pool); 699 700 tlb_size = nslabs << IO_TLB_SHIFT; 701 while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) { 702 if (nslabs <= minslabs) 703 goto error_tlb; 704 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 705 nareas = limit_nareas(nareas, nslabs); 706 tlb_size = nslabs << IO_TLB_SHIFT; 707 } 708 709 slot_order = get_order(array_size(sizeof(*pool->slots), nslabs)); 710 pool->slots = (struct io_tlb_slot *) 711 __get_free_pages(gfp, slot_order); 712 if (!pool->slots) 713 goto error_slots; 714 715 swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas); 716 return pool; 717 718 error_slots: 719 swiotlb_free_tlb(page_address(tlb), tlb_size); 720 error_tlb: 721 kfree(pool); 722 error: 723 return NULL; 724 } 725 726 /** 727 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker 728 * @work: Pointer to dyn_alloc in struct io_tlb_mem. 729 */ 730 static void swiotlb_dyn_alloc(struct work_struct *work) 731 { 732 struct io_tlb_mem *mem = 733 container_of(work, struct io_tlb_mem, dyn_alloc); 734 struct io_tlb_pool *pool; 735 736 pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs, 737 default_nareas, mem->phys_limit, GFP_KERNEL); 738 if (!pool) { 739 pr_warn_ratelimited("Failed to allocate new pool"); 740 return; 741 } 742 743 add_mem_pool(mem, pool); 744 } 745 746 /** 747 * swiotlb_dyn_free() - RCU callback to free a memory pool 748 * @rcu: RCU head in the corresponding struct io_tlb_pool. 749 */ 750 static void swiotlb_dyn_free(struct rcu_head *rcu) 751 { 752 struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu); 753 size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs); 754 size_t tlb_size = pool->end - pool->start; 755 756 free_pages((unsigned long)pool->slots, get_order(slots_size)); 757 swiotlb_free_tlb(pool->vaddr, tlb_size); 758 kfree(pool); 759 } 760 761 /** 762 * swiotlb_find_pool() - find the IO TLB pool for a physical address 763 * @dev: Device which has mapped the DMA buffer. 764 * @paddr: Physical address within the DMA buffer. 765 * 766 * Find the IO TLB memory pool descriptor which contains the given physical 767 * address, if any. 768 * 769 * Return: Memory pool which contains @paddr, or %NULL if none. 770 */ 771 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr) 772 { 773 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 774 struct io_tlb_pool *pool; 775 776 rcu_read_lock(); 777 list_for_each_entry_rcu(pool, &mem->pools, node) { 778 if (paddr >= pool->start && paddr < pool->end) 779 goto out; 780 } 781 782 list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) { 783 if (paddr >= pool->start && paddr < pool->end) 784 goto out; 785 } 786 pool = NULL; 787 out: 788 rcu_read_unlock(); 789 return pool; 790 } 791 792 /** 793 * swiotlb_del_pool() - remove an IO TLB pool from a device 794 * @dev: Owning device. 795 * @pool: Memory pool to be removed. 796 */ 797 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool) 798 { 799 unsigned long flags; 800 801 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 802 list_del_rcu(&pool->node); 803 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 804 805 call_rcu(&pool->rcu, swiotlb_dyn_free); 806 } 807 808 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 809 810 /** 811 * swiotlb_dev_init() - initialize swiotlb fields in &struct device 812 * @dev: Device to be initialized. 813 */ 814 void swiotlb_dev_init(struct device *dev) 815 { 816 dev->dma_io_tlb_mem = &io_tlb_default_mem; 817 #ifdef CONFIG_SWIOTLB_DYNAMIC 818 INIT_LIST_HEAD(&dev->dma_io_tlb_pools); 819 spin_lock_init(&dev->dma_io_tlb_lock); 820 dev->dma_uses_io_tlb = false; 821 #endif 822 } 823 824 /* 825 * Return the offset into a iotlb slot required to keep the device happy. 826 */ 827 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 828 { 829 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 830 } 831 832 /* 833 * Bounce: copy the swiotlb buffer from or back to the original dma location 834 */ 835 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 836 enum dma_data_direction dir) 837 { 838 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 839 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 840 phys_addr_t orig_addr = mem->slots[index].orig_addr; 841 size_t alloc_size = mem->slots[index].alloc_size; 842 unsigned long pfn = PFN_DOWN(orig_addr); 843 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 844 unsigned int tlb_offset, orig_addr_offset; 845 846 if (orig_addr == INVALID_PHYS_ADDR) 847 return; 848 849 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 850 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 851 if (tlb_offset < orig_addr_offset) { 852 dev_WARN_ONCE(dev, 1, 853 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 854 orig_addr_offset, tlb_offset); 855 return; 856 } 857 858 tlb_offset -= orig_addr_offset; 859 if (tlb_offset > alloc_size) { 860 dev_WARN_ONCE(dev, 1, 861 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 862 alloc_size, size, tlb_offset); 863 return; 864 } 865 866 orig_addr += tlb_offset; 867 alloc_size -= tlb_offset; 868 869 if (size > alloc_size) { 870 dev_WARN_ONCE(dev, 1, 871 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 872 alloc_size, size); 873 size = alloc_size; 874 } 875 876 if (PageHighMem(pfn_to_page(pfn))) { 877 unsigned int offset = orig_addr & ~PAGE_MASK; 878 struct page *page; 879 unsigned int sz = 0; 880 unsigned long flags; 881 882 while (size) { 883 sz = min_t(size_t, PAGE_SIZE - offset, size); 884 885 local_irq_save(flags); 886 page = pfn_to_page(pfn); 887 if (dir == DMA_TO_DEVICE) 888 memcpy_from_page(vaddr, page, offset, sz); 889 else 890 memcpy_to_page(page, offset, vaddr, sz); 891 local_irq_restore(flags); 892 893 size -= sz; 894 pfn++; 895 vaddr += sz; 896 offset = 0; 897 } 898 } else if (dir == DMA_TO_DEVICE) { 899 memcpy(vaddr, phys_to_virt(orig_addr), size); 900 } else { 901 memcpy(phys_to_virt(orig_addr), vaddr, size); 902 } 903 } 904 905 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 906 { 907 return start + (idx << IO_TLB_SHIFT); 908 } 909 910 /* 911 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 912 */ 913 static inline unsigned long get_max_slots(unsigned long boundary_mask) 914 { 915 return (boundary_mask >> IO_TLB_SHIFT) + 1; 916 } 917 918 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index) 919 { 920 if (index >= mem->area_nslabs) 921 return 0; 922 return index; 923 } 924 925 /* 926 * Track the total used slots with a global atomic value in order to have 927 * correct information to determine the high water mark. The mem_used() 928 * function gives imprecise results because there's no locking across 929 * multiple areas. 930 */ 931 #ifdef CONFIG_DEBUG_FS 932 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 933 { 934 unsigned long old_hiwater, new_used; 935 936 new_used = atomic_long_add_return(nslots, &mem->total_used); 937 old_hiwater = atomic_long_read(&mem->used_hiwater); 938 do { 939 if (new_used <= old_hiwater) 940 break; 941 } while (!atomic_long_try_cmpxchg(&mem->used_hiwater, 942 &old_hiwater, new_used)); 943 } 944 945 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 946 { 947 atomic_long_sub(nslots, &mem->total_used); 948 } 949 950 #else /* !CONFIG_DEBUG_FS */ 951 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 952 { 953 } 954 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 955 { 956 } 957 #endif /* CONFIG_DEBUG_FS */ 958 959 #ifdef CONFIG_SWIOTLB_DYNAMIC 960 #ifdef CONFIG_DEBUG_FS 961 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots) 962 { 963 atomic_long_add(nslots, &mem->transient_nslabs); 964 } 965 966 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots) 967 { 968 atomic_long_sub(nslots, &mem->transient_nslabs); 969 } 970 971 #else /* !CONFIG_DEBUG_FS */ 972 static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots) 973 { 974 } 975 static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots) 976 { 977 } 978 #endif /* CONFIG_DEBUG_FS */ 979 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 980 981 /** 982 * swiotlb_search_pool_area() - search one memory area in one pool 983 * @dev: Device which maps the buffer. 984 * @pool: Memory pool to be searched. 985 * @area_index: Index of the IO TLB memory area to be searched. 986 * @orig_addr: Original (non-bounced) IO buffer address. 987 * @alloc_size: Total requested size of the bounce buffer, 988 * including initial alignment padding. 989 * @alloc_align_mask: Required alignment of the allocated buffer. 990 * 991 * Find a suitable sequence of IO TLB entries for the request and allocate 992 * a buffer from the given IO TLB memory area. 993 * This function takes care of locking. 994 * 995 * Return: Index of the first allocated slot, or -1 on error. 996 */ 997 static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool, 998 int area_index, phys_addr_t orig_addr, size_t alloc_size, 999 unsigned int alloc_align_mask) 1000 { 1001 struct io_tlb_area *area = pool->areas + area_index; 1002 unsigned long boundary_mask = dma_get_seg_boundary(dev); 1003 dma_addr_t tbl_dma_addr = 1004 phys_to_dma_unencrypted(dev, pool->start) & boundary_mask; 1005 unsigned long max_slots = get_max_slots(boundary_mask); 1006 unsigned int iotlb_align_mask = dma_get_min_align_mask(dev); 1007 unsigned int nslots = nr_slots(alloc_size), stride; 1008 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 1009 unsigned int index, slots_checked, count = 0, i; 1010 unsigned long flags; 1011 unsigned int slot_base; 1012 unsigned int slot_index; 1013 1014 BUG_ON(!nslots); 1015 BUG_ON(area_index >= pool->nareas); 1016 1017 /* 1018 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be 1019 * page-aligned in the absence of any other alignment requirements. 1020 * 'alloc_align_mask' was later introduced to specify the alignment 1021 * explicitly, however this is passed as zero for streaming mappings 1022 * and so we preserve the old behaviour there in case any drivers are 1023 * relying on it. 1024 */ 1025 if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE) 1026 alloc_align_mask = PAGE_SIZE - 1; 1027 1028 /* 1029 * Ensure that the allocation is at least slot-aligned and update 1030 * 'iotlb_align_mask' to ignore bits that will be preserved when 1031 * offsetting into the allocation. 1032 */ 1033 alloc_align_mask |= (IO_TLB_SIZE - 1); 1034 iotlb_align_mask &= ~alloc_align_mask; 1035 1036 /* 1037 * For mappings with an alignment requirement don't bother looping to 1038 * unaligned slots once we found an aligned one. 1039 */ 1040 stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask)); 1041 1042 spin_lock_irqsave(&area->lock, flags); 1043 if (unlikely(nslots > pool->area_nslabs - area->used)) 1044 goto not_found; 1045 1046 slot_base = area_index * pool->area_nslabs; 1047 index = area->index; 1048 1049 for (slots_checked = 0; slots_checked < pool->area_nslabs; ) { 1050 phys_addr_t tlb_addr; 1051 1052 slot_index = slot_base + index; 1053 tlb_addr = slot_addr(tbl_dma_addr, slot_index); 1054 1055 if ((tlb_addr & alloc_align_mask) || 1056 (orig_addr && (tlb_addr & iotlb_align_mask) != 1057 (orig_addr & iotlb_align_mask))) { 1058 index = wrap_area_index(pool, index + 1); 1059 slots_checked++; 1060 continue; 1061 } 1062 1063 if (!iommu_is_span_boundary(slot_index, nslots, 1064 nr_slots(tbl_dma_addr), 1065 max_slots)) { 1066 if (pool->slots[slot_index].list >= nslots) 1067 goto found; 1068 } 1069 index = wrap_area_index(pool, index + stride); 1070 slots_checked += stride; 1071 } 1072 1073 not_found: 1074 spin_unlock_irqrestore(&area->lock, flags); 1075 return -1; 1076 1077 found: 1078 /* 1079 * If we find a slot that indicates we have 'nslots' number of 1080 * contiguous buffers, we allocate the buffers from that slot onwards 1081 * and set the list of free entries to '0' indicating unavailable. 1082 */ 1083 for (i = slot_index; i < slot_index + nslots; i++) { 1084 pool->slots[i].list = 0; 1085 pool->slots[i].alloc_size = alloc_size - (offset + 1086 ((i - slot_index) << IO_TLB_SHIFT)); 1087 } 1088 for (i = slot_index - 1; 1089 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 1090 pool->slots[i].list; i--) 1091 pool->slots[i].list = ++count; 1092 1093 /* 1094 * Update the indices to avoid searching in the next round. 1095 */ 1096 area->index = wrap_area_index(pool, index + nslots); 1097 area->used += nslots; 1098 spin_unlock_irqrestore(&area->lock, flags); 1099 1100 inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots); 1101 return slot_index; 1102 } 1103 1104 #ifdef CONFIG_SWIOTLB_DYNAMIC 1105 1106 /** 1107 * swiotlb_search_area() - search one memory area in all pools 1108 * @dev: Device which maps the buffer. 1109 * @start_cpu: Start CPU number. 1110 * @cpu_offset: Offset from @start_cpu. 1111 * @orig_addr: Original (non-bounced) IO buffer address. 1112 * @alloc_size: Total requested size of the bounce buffer, 1113 * including initial alignment padding. 1114 * @alloc_align_mask: Required alignment of the allocated buffer. 1115 * @retpool: Used memory pool, updated on return. 1116 * 1117 * Search one memory area in all pools for a sequence of slots that match the 1118 * allocation constraints. 1119 * 1120 * Return: Index of the first allocated slot, or -1 on error. 1121 */ 1122 static int swiotlb_search_area(struct device *dev, int start_cpu, 1123 int cpu_offset, phys_addr_t orig_addr, size_t alloc_size, 1124 unsigned int alloc_align_mask, struct io_tlb_pool **retpool) 1125 { 1126 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1127 struct io_tlb_pool *pool; 1128 int area_index; 1129 int index = -1; 1130 1131 rcu_read_lock(); 1132 list_for_each_entry_rcu(pool, &mem->pools, node) { 1133 if (cpu_offset >= pool->nareas) 1134 continue; 1135 area_index = (start_cpu + cpu_offset) & (pool->nareas - 1); 1136 index = swiotlb_search_pool_area(dev, pool, area_index, 1137 orig_addr, alloc_size, 1138 alloc_align_mask); 1139 if (index >= 0) { 1140 *retpool = pool; 1141 break; 1142 } 1143 } 1144 rcu_read_unlock(); 1145 return index; 1146 } 1147 1148 /** 1149 * swiotlb_find_slots() - search for slots in the whole swiotlb 1150 * @dev: Device which maps the buffer. 1151 * @orig_addr: Original (non-bounced) IO buffer address. 1152 * @alloc_size: Total requested size of the bounce buffer, 1153 * including initial alignment padding. 1154 * @alloc_align_mask: Required alignment of the allocated buffer. 1155 * @retpool: Used memory pool, updated on return. 1156 * 1157 * Search through the whole software IO TLB to find a sequence of slots that 1158 * match the allocation constraints. 1159 * 1160 * Return: Index of the first allocated slot, or -1 on error. 1161 */ 1162 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1163 size_t alloc_size, unsigned int alloc_align_mask, 1164 struct io_tlb_pool **retpool) 1165 { 1166 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1167 struct io_tlb_pool *pool; 1168 unsigned long nslabs; 1169 unsigned long flags; 1170 u64 phys_limit; 1171 int cpu, i; 1172 int index; 1173 1174 if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE) 1175 return -1; 1176 1177 cpu = raw_smp_processor_id(); 1178 for (i = 0; i < default_nareas; ++i) { 1179 index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size, 1180 alloc_align_mask, &pool); 1181 if (index >= 0) 1182 goto found; 1183 } 1184 1185 if (!mem->can_grow) 1186 return -1; 1187 1188 schedule_work(&mem->dyn_alloc); 1189 1190 nslabs = nr_slots(alloc_size); 1191 phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit); 1192 pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit, 1193 GFP_NOWAIT | __GFP_NOWARN); 1194 if (!pool) 1195 return -1; 1196 1197 index = swiotlb_search_pool_area(dev, pool, 0, orig_addr, 1198 alloc_size, alloc_align_mask); 1199 if (index < 0) { 1200 swiotlb_dyn_free(&pool->rcu); 1201 return -1; 1202 } 1203 1204 pool->transient = true; 1205 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 1206 list_add_rcu(&pool->node, &dev->dma_io_tlb_pools); 1207 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 1208 inc_transient_used(mem, pool->nslabs); 1209 1210 found: 1211 WRITE_ONCE(dev->dma_uses_io_tlb, true); 1212 1213 /* 1214 * The general barrier orders reads and writes against a presumed store 1215 * of the SWIOTLB buffer address by a device driver (to a driver private 1216 * data structure). It serves two purposes. 1217 * 1218 * First, the store to dev->dma_uses_io_tlb must be ordered before the 1219 * presumed store. This guarantees that the returned buffer address 1220 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb. 1221 * 1222 * Second, the load from mem->pools must be ordered before the same 1223 * presumed store. This guarantees that the returned buffer address 1224 * cannot be observed by another CPU before an update of the RCU list 1225 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy 1226 * atomicity). 1227 * 1228 * See also the comment in is_swiotlb_buffer(). 1229 */ 1230 smp_mb(); 1231 1232 *retpool = pool; 1233 return index; 1234 } 1235 1236 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1237 1238 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1239 size_t alloc_size, unsigned int alloc_align_mask, 1240 struct io_tlb_pool **retpool) 1241 { 1242 struct io_tlb_pool *pool; 1243 int start, i; 1244 int index; 1245 1246 *retpool = pool = &dev->dma_io_tlb_mem->defpool; 1247 i = start = raw_smp_processor_id() & (pool->nareas - 1); 1248 do { 1249 index = swiotlb_search_pool_area(dev, pool, i, orig_addr, 1250 alloc_size, alloc_align_mask); 1251 if (index >= 0) 1252 return index; 1253 if (++i >= pool->nareas) 1254 i = 0; 1255 } while (i != start); 1256 return -1; 1257 } 1258 1259 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1260 1261 #ifdef CONFIG_DEBUG_FS 1262 1263 /** 1264 * mem_used() - get number of used slots in an allocator 1265 * @mem: Software IO TLB allocator. 1266 * 1267 * The result is accurate in this version of the function, because an atomic 1268 * counter is available if CONFIG_DEBUG_FS is set. 1269 * 1270 * Return: Number of used slots. 1271 */ 1272 static unsigned long mem_used(struct io_tlb_mem *mem) 1273 { 1274 return atomic_long_read(&mem->total_used); 1275 } 1276 1277 #else /* !CONFIG_DEBUG_FS */ 1278 1279 /** 1280 * mem_pool_used() - get number of used slots in a memory pool 1281 * @pool: Software IO TLB memory pool. 1282 * 1283 * The result is not accurate, see mem_used(). 1284 * 1285 * Return: Approximate number of used slots. 1286 */ 1287 static unsigned long mem_pool_used(struct io_tlb_pool *pool) 1288 { 1289 int i; 1290 unsigned long used = 0; 1291 1292 for (i = 0; i < pool->nareas; i++) 1293 used += pool->areas[i].used; 1294 return used; 1295 } 1296 1297 /** 1298 * mem_used() - get number of used slots in an allocator 1299 * @mem: Software IO TLB allocator. 1300 * 1301 * The result is not accurate, because there is no locking of individual 1302 * areas. 1303 * 1304 * Return: Approximate number of used slots. 1305 */ 1306 static unsigned long mem_used(struct io_tlb_mem *mem) 1307 { 1308 #ifdef CONFIG_SWIOTLB_DYNAMIC 1309 struct io_tlb_pool *pool; 1310 unsigned long used = 0; 1311 1312 rcu_read_lock(); 1313 list_for_each_entry_rcu(pool, &mem->pools, node) 1314 used += mem_pool_used(pool); 1315 rcu_read_unlock(); 1316 1317 return used; 1318 #else 1319 return mem_pool_used(&mem->defpool); 1320 #endif 1321 } 1322 1323 #endif /* CONFIG_DEBUG_FS */ 1324 1325 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 1326 size_t mapping_size, size_t alloc_size, 1327 unsigned int alloc_align_mask, enum dma_data_direction dir, 1328 unsigned long attrs) 1329 { 1330 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1331 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 1332 struct io_tlb_pool *pool; 1333 unsigned int i; 1334 int index; 1335 phys_addr_t tlb_addr; 1336 1337 if (!mem || !mem->nslabs) { 1338 dev_warn_ratelimited(dev, 1339 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 1340 return (phys_addr_t)DMA_MAPPING_ERROR; 1341 } 1342 1343 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 1344 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 1345 1346 if (mapping_size > alloc_size) { 1347 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 1348 mapping_size, alloc_size); 1349 return (phys_addr_t)DMA_MAPPING_ERROR; 1350 } 1351 1352 index = swiotlb_find_slots(dev, orig_addr, 1353 alloc_size + offset, alloc_align_mask, &pool); 1354 if (index == -1) { 1355 if (!(attrs & DMA_ATTR_NO_WARN)) 1356 dev_warn_ratelimited(dev, 1357 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 1358 alloc_size, mem->nslabs, mem_used(mem)); 1359 return (phys_addr_t)DMA_MAPPING_ERROR; 1360 } 1361 1362 /* 1363 * Save away the mapping from the original address to the DMA address. 1364 * This is needed when we sync the memory. Then we sync the buffer if 1365 * needed. 1366 */ 1367 for (i = 0; i < nr_slots(alloc_size + offset); i++) 1368 pool->slots[index + i].orig_addr = slot_addr(orig_addr, i); 1369 tlb_addr = slot_addr(pool->start, index) + offset; 1370 /* 1371 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy 1372 * the original buffer to the TLB buffer before initiating DMA in order 1373 * to preserve the original's data if the device does a partial write, 1374 * i.e. if the device doesn't overwrite the entire buffer. Preserving 1375 * the original data, even if it's garbage, is necessary to match 1376 * hardware behavior. Use of swiotlb is supposed to be transparent, 1377 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes. 1378 */ 1379 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 1380 return tlb_addr; 1381 } 1382 1383 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 1384 { 1385 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 1386 unsigned long flags; 1387 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 1388 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 1389 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 1390 int aindex = index / mem->area_nslabs; 1391 struct io_tlb_area *area = &mem->areas[aindex]; 1392 int count, i; 1393 1394 /* 1395 * Return the buffer to the free list by setting the corresponding 1396 * entries to indicate the number of contiguous entries available. 1397 * While returning the entries to the free list, we merge the entries 1398 * with slots below and above the pool being returned. 1399 */ 1400 BUG_ON(aindex >= mem->nareas); 1401 1402 spin_lock_irqsave(&area->lock, flags); 1403 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 1404 count = mem->slots[index + nslots].list; 1405 else 1406 count = 0; 1407 1408 /* 1409 * Step 1: return the slots to the free list, merging the slots with 1410 * superceeding slots 1411 */ 1412 for (i = index + nslots - 1; i >= index; i--) { 1413 mem->slots[i].list = ++count; 1414 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 1415 mem->slots[i].alloc_size = 0; 1416 } 1417 1418 /* 1419 * Step 2: merge the returned slots with the preceding slots, if 1420 * available (non zero) 1421 */ 1422 for (i = index - 1; 1423 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 1424 i--) 1425 mem->slots[i].list = ++count; 1426 area->used -= nslots; 1427 spin_unlock_irqrestore(&area->lock, flags); 1428 1429 dec_used(dev->dma_io_tlb_mem, nslots); 1430 } 1431 1432 #ifdef CONFIG_SWIOTLB_DYNAMIC 1433 1434 /** 1435 * swiotlb_del_transient() - delete a transient memory pool 1436 * @dev: Device which mapped the buffer. 1437 * @tlb_addr: Physical address within a bounce buffer. 1438 * 1439 * Check whether the address belongs to a transient SWIOTLB memory pool. 1440 * If yes, then delete the pool. 1441 * 1442 * Return: %true if @tlb_addr belonged to a transient pool that was released. 1443 */ 1444 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr) 1445 { 1446 struct io_tlb_pool *pool; 1447 1448 pool = swiotlb_find_pool(dev, tlb_addr); 1449 if (!pool->transient) 1450 return false; 1451 1452 dec_used(dev->dma_io_tlb_mem, pool->nslabs); 1453 swiotlb_del_pool(dev, pool); 1454 dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs); 1455 return true; 1456 } 1457 1458 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1459 1460 static inline bool swiotlb_del_transient(struct device *dev, 1461 phys_addr_t tlb_addr) 1462 { 1463 return false; 1464 } 1465 1466 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1467 1468 /* 1469 * tlb_addr is the physical address of the bounce buffer to unmap. 1470 */ 1471 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 1472 size_t mapping_size, enum dma_data_direction dir, 1473 unsigned long attrs) 1474 { 1475 /* 1476 * First, sync the memory before unmapping the entry 1477 */ 1478 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1479 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 1480 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 1481 1482 if (swiotlb_del_transient(dev, tlb_addr)) 1483 return; 1484 swiotlb_release_slots(dev, tlb_addr); 1485 } 1486 1487 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 1488 size_t size, enum dma_data_direction dir) 1489 { 1490 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 1491 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 1492 else 1493 BUG_ON(dir != DMA_FROM_DEVICE); 1494 } 1495 1496 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 1497 size_t size, enum dma_data_direction dir) 1498 { 1499 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 1500 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 1501 else 1502 BUG_ON(dir != DMA_TO_DEVICE); 1503 } 1504 1505 /* 1506 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 1507 * to the device copy the data into it as well. 1508 */ 1509 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 1510 enum dma_data_direction dir, unsigned long attrs) 1511 { 1512 phys_addr_t swiotlb_addr; 1513 dma_addr_t dma_addr; 1514 1515 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 1516 1517 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 1518 attrs); 1519 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 1520 return DMA_MAPPING_ERROR; 1521 1522 /* Ensure that the address returned is DMA'ble */ 1523 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 1524 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 1525 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 1526 attrs | DMA_ATTR_SKIP_CPU_SYNC); 1527 dev_WARN_ONCE(dev, 1, 1528 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 1529 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 1530 return DMA_MAPPING_ERROR; 1531 } 1532 1533 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1534 arch_sync_dma_for_device(swiotlb_addr, size, dir); 1535 return dma_addr; 1536 } 1537 1538 size_t swiotlb_max_mapping_size(struct device *dev) 1539 { 1540 int min_align_mask = dma_get_min_align_mask(dev); 1541 int min_align = 0; 1542 1543 /* 1544 * swiotlb_find_slots() skips slots according to 1545 * min align mask. This affects max mapping size. 1546 * Take it into acount here. 1547 */ 1548 if (min_align_mask) 1549 min_align = roundup(min_align_mask, IO_TLB_SIZE); 1550 1551 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 1552 } 1553 1554 /** 1555 * is_swiotlb_allocated() - check if the default software IO TLB is initialized 1556 */ 1557 bool is_swiotlb_allocated(void) 1558 { 1559 return io_tlb_default_mem.nslabs; 1560 } 1561 1562 bool is_swiotlb_active(struct device *dev) 1563 { 1564 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1565 1566 return mem && mem->nslabs; 1567 } 1568 1569 /** 1570 * default_swiotlb_base() - get the base address of the default SWIOTLB 1571 * 1572 * Get the lowest physical address used by the default software IO TLB pool. 1573 */ 1574 phys_addr_t default_swiotlb_base(void) 1575 { 1576 #ifdef CONFIG_SWIOTLB_DYNAMIC 1577 io_tlb_default_mem.can_grow = false; 1578 #endif 1579 return io_tlb_default_mem.defpool.start; 1580 } 1581 1582 /** 1583 * default_swiotlb_limit() - get the address limit of the default SWIOTLB 1584 * 1585 * Get the highest physical address used by the default software IO TLB pool. 1586 */ 1587 phys_addr_t default_swiotlb_limit(void) 1588 { 1589 #ifdef CONFIG_SWIOTLB_DYNAMIC 1590 return io_tlb_default_mem.phys_limit; 1591 #else 1592 return io_tlb_default_mem.defpool.end - 1; 1593 #endif 1594 } 1595 1596 #ifdef CONFIG_DEBUG_FS 1597 #ifdef CONFIG_SWIOTLB_DYNAMIC 1598 static unsigned long mem_transient_used(struct io_tlb_mem *mem) 1599 { 1600 return atomic_long_read(&mem->transient_nslabs); 1601 } 1602 1603 static int io_tlb_transient_used_get(void *data, u64 *val) 1604 { 1605 struct io_tlb_mem *mem = data; 1606 1607 *val = mem_transient_used(mem); 1608 return 0; 1609 } 1610 1611 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get, 1612 NULL, "%llu\n"); 1613 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1614 1615 static int io_tlb_used_get(void *data, u64 *val) 1616 { 1617 struct io_tlb_mem *mem = data; 1618 1619 *val = mem_used(mem); 1620 return 0; 1621 } 1622 1623 static int io_tlb_hiwater_get(void *data, u64 *val) 1624 { 1625 struct io_tlb_mem *mem = data; 1626 1627 *val = atomic_long_read(&mem->used_hiwater); 1628 return 0; 1629 } 1630 1631 static int io_tlb_hiwater_set(void *data, u64 val) 1632 { 1633 struct io_tlb_mem *mem = data; 1634 1635 /* Only allow setting to zero */ 1636 if (val != 0) 1637 return -EINVAL; 1638 1639 atomic_long_set(&mem->used_hiwater, val); 1640 return 0; 1641 } 1642 1643 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 1644 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get, 1645 io_tlb_hiwater_set, "%llu\n"); 1646 1647 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1648 const char *dirname) 1649 { 1650 atomic_long_set(&mem->total_used, 0); 1651 atomic_long_set(&mem->used_hiwater, 0); 1652 1653 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 1654 if (!mem->nslabs) 1655 return; 1656 1657 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 1658 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem, 1659 &fops_io_tlb_used); 1660 debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem, 1661 &fops_io_tlb_hiwater); 1662 #ifdef CONFIG_SWIOTLB_DYNAMIC 1663 atomic_long_set(&mem->transient_nslabs, 0); 1664 debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs, 1665 mem, &fops_io_tlb_transient_used); 1666 #endif 1667 } 1668 1669 static int __init swiotlb_create_default_debugfs(void) 1670 { 1671 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 1672 return 0; 1673 } 1674 1675 late_initcall(swiotlb_create_default_debugfs); 1676 1677 #else /* !CONFIG_DEBUG_FS */ 1678 1679 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1680 const char *dirname) 1681 { 1682 } 1683 1684 #endif /* CONFIG_DEBUG_FS */ 1685 1686 #ifdef CONFIG_DMA_RESTRICTED_POOL 1687 1688 struct page *swiotlb_alloc(struct device *dev, size_t size) 1689 { 1690 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1691 struct io_tlb_pool *pool; 1692 phys_addr_t tlb_addr; 1693 unsigned int align; 1694 int index; 1695 1696 if (!mem) 1697 return NULL; 1698 1699 align = (1 << (get_order(size) + PAGE_SHIFT)) - 1; 1700 index = swiotlb_find_slots(dev, 0, size, align, &pool); 1701 if (index == -1) 1702 return NULL; 1703 1704 tlb_addr = slot_addr(pool->start, index); 1705 if (unlikely(!PAGE_ALIGNED(tlb_addr))) { 1706 dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n", 1707 &tlb_addr); 1708 swiotlb_release_slots(dev, tlb_addr); 1709 return NULL; 1710 } 1711 1712 return pfn_to_page(PFN_DOWN(tlb_addr)); 1713 } 1714 1715 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 1716 { 1717 phys_addr_t tlb_addr = page_to_phys(page); 1718 1719 if (!is_swiotlb_buffer(dev, tlb_addr)) 1720 return false; 1721 1722 swiotlb_release_slots(dev, tlb_addr); 1723 1724 return true; 1725 } 1726 1727 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 1728 struct device *dev) 1729 { 1730 struct io_tlb_mem *mem = rmem->priv; 1731 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 1732 1733 /* Set Per-device io tlb area to one */ 1734 unsigned int nareas = 1; 1735 1736 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1737 dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping."); 1738 return -EINVAL; 1739 } 1740 1741 /* 1742 * Since multiple devices can share the same pool, the private data, 1743 * io_tlb_mem struct, will be initialized by the first device attached 1744 * to it. 1745 */ 1746 if (!mem) { 1747 struct io_tlb_pool *pool; 1748 1749 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1750 if (!mem) 1751 return -ENOMEM; 1752 pool = &mem->defpool; 1753 1754 pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL); 1755 if (!pool->slots) { 1756 kfree(mem); 1757 return -ENOMEM; 1758 } 1759 1760 pool->areas = kcalloc(nareas, sizeof(*pool->areas), 1761 GFP_KERNEL); 1762 if (!pool->areas) { 1763 kfree(pool->slots); 1764 kfree(mem); 1765 return -ENOMEM; 1766 } 1767 1768 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1769 rmem->size >> PAGE_SHIFT); 1770 swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs, 1771 false, nareas); 1772 mem->force_bounce = true; 1773 mem->for_alloc = true; 1774 #ifdef CONFIG_SWIOTLB_DYNAMIC 1775 spin_lock_init(&mem->lock); 1776 #endif 1777 add_mem_pool(mem, pool); 1778 1779 rmem->priv = mem; 1780 1781 swiotlb_create_debugfs_files(mem, rmem->name); 1782 } 1783 1784 dev->dma_io_tlb_mem = mem; 1785 1786 return 0; 1787 } 1788 1789 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1790 struct device *dev) 1791 { 1792 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1793 } 1794 1795 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1796 .device_init = rmem_swiotlb_device_init, 1797 .device_release = rmem_swiotlb_device_release, 1798 }; 1799 1800 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1801 { 1802 unsigned long node = rmem->fdt_node; 1803 1804 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1805 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1806 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1807 of_get_flat_dt_prop(node, "no-map", NULL)) 1808 return -EINVAL; 1809 1810 rmem->ops = &rmem_swiotlb_ops; 1811 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1812 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1813 return 0; 1814 } 1815 1816 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1817 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1818