1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #define pr_fmt(fmt) "software IO TLB: " fmt 21 22 #include <linux/cache.h> 23 #include <linux/dma-direct.h> 24 #include <linux/mm.h> 25 #include <linux/export.h> 26 #include <linux/spinlock.h> 27 #include <linux/string.h> 28 #include <linux/swiotlb.h> 29 #include <linux/pfn.h> 30 #include <linux/types.h> 31 #include <linux/ctype.h> 32 #include <linux/highmem.h> 33 #include <linux/gfp.h> 34 #include <linux/scatterlist.h> 35 #include <linux/mem_encrypt.h> 36 #include <linux/set_memory.h> 37 #ifdef CONFIG_DEBUG_FS 38 #include <linux/debugfs.h> 39 #endif 40 41 #include <asm/io.h> 42 #include <asm/dma.h> 43 44 #include <linux/init.h> 45 #include <linux/memblock.h> 46 #include <linux/iommu-helper.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/swiotlb.h> 50 51 #define OFFSET(val,align) ((unsigned long) \ 52 ( (val) & ( (align) - 1))) 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 enum swiotlb_force swiotlb_force; 64 65 /* 66 * Used to do a quick range check in swiotlb_tbl_unmap_single and 67 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 68 * API. 69 */ 70 phys_addr_t io_tlb_start, io_tlb_end; 71 72 /* 73 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 74 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 75 */ 76 static unsigned long io_tlb_nslabs; 77 78 /* 79 * The number of used IO TLB block 80 */ 81 static unsigned long io_tlb_used; 82 83 /* 84 * This is a free list describing the number of free entries available from 85 * each index 86 */ 87 static unsigned int *io_tlb_list; 88 static unsigned int io_tlb_index; 89 90 /* 91 * Max segment that we can provide which (if pages are contingous) will 92 * not be bounced (unless SWIOTLB_FORCE is set). 93 */ 94 unsigned int max_segment; 95 96 /* 97 * We need to save away the original address corresponding to a mapped entry 98 * for the sync operations. 99 */ 100 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 101 static phys_addr_t *io_tlb_orig_addr; 102 103 /* 104 * Protect the above data structures in the map and unmap calls 105 */ 106 static DEFINE_SPINLOCK(io_tlb_lock); 107 108 static int late_alloc; 109 110 static int __init 111 setup_io_tlb_npages(char *str) 112 { 113 if (isdigit(*str)) { 114 io_tlb_nslabs = simple_strtoul(str, &str, 0); 115 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 116 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 117 } 118 if (*str == ',') 119 ++str; 120 if (!strcmp(str, "force")) { 121 swiotlb_force = SWIOTLB_FORCE; 122 } else if (!strcmp(str, "noforce")) { 123 swiotlb_force = SWIOTLB_NO_FORCE; 124 io_tlb_nslabs = 1; 125 } 126 127 return 0; 128 } 129 early_param("swiotlb", setup_io_tlb_npages); 130 131 unsigned long swiotlb_nr_tbl(void) 132 { 133 return io_tlb_nslabs; 134 } 135 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 136 137 unsigned int swiotlb_max_segment(void) 138 { 139 return max_segment; 140 } 141 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 142 143 void swiotlb_set_max_segment(unsigned int val) 144 { 145 if (swiotlb_force == SWIOTLB_FORCE) 146 max_segment = 1; 147 else 148 max_segment = rounddown(val, PAGE_SIZE); 149 } 150 151 /* default to 64MB */ 152 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 153 unsigned long swiotlb_size_or_default(void) 154 { 155 unsigned long size; 156 157 size = io_tlb_nslabs << IO_TLB_SHIFT; 158 159 return size ? size : (IO_TLB_DEFAULT_SIZE); 160 } 161 162 static bool no_iotlb_memory; 163 164 void swiotlb_print_info(void) 165 { 166 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 167 168 if (no_iotlb_memory) { 169 pr_warn("No low mem\n"); 170 return; 171 } 172 173 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 174 (unsigned long long)io_tlb_start, 175 (unsigned long long)io_tlb_end, 176 bytes >> 20); 177 } 178 179 /* 180 * Early SWIOTLB allocation may be too early to allow an architecture to 181 * perform the desired operations. This function allows the architecture to 182 * call SWIOTLB when the operations are possible. It needs to be called 183 * before the SWIOTLB memory is used. 184 */ 185 void __init swiotlb_update_mem_attributes(void) 186 { 187 void *vaddr; 188 unsigned long bytes; 189 190 if (no_iotlb_memory || late_alloc) 191 return; 192 193 vaddr = phys_to_virt(io_tlb_start); 194 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 195 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 196 memset(vaddr, 0, bytes); 197 } 198 199 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 200 { 201 unsigned long i, bytes; 202 size_t alloc_size; 203 204 bytes = nslabs << IO_TLB_SHIFT; 205 206 io_tlb_nslabs = nslabs; 207 io_tlb_start = __pa(tlb); 208 io_tlb_end = io_tlb_start + bytes; 209 210 /* 211 * Allocate and initialize the free list array. This array is used 212 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 213 * between io_tlb_start and io_tlb_end. 214 */ 215 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int)); 216 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE); 217 if (!io_tlb_list) 218 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 219 __func__, alloc_size, PAGE_SIZE); 220 221 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); 222 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); 223 if (!io_tlb_orig_addr) 224 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 225 __func__, alloc_size, PAGE_SIZE); 226 227 for (i = 0; i < io_tlb_nslabs; i++) { 228 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 229 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 230 } 231 io_tlb_index = 0; 232 233 if (verbose) 234 swiotlb_print_info(); 235 236 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 237 return 0; 238 } 239 240 /* 241 * Statically reserve bounce buffer space and initialize bounce buffer data 242 * structures for the software IO TLB used to implement the DMA API. 243 */ 244 void __init 245 swiotlb_init(int verbose) 246 { 247 size_t default_size = IO_TLB_DEFAULT_SIZE; 248 unsigned char *vstart; 249 unsigned long bytes; 250 251 if (!io_tlb_nslabs) { 252 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 253 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 254 } 255 256 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 257 258 /* Get IO TLB memory from the low pages */ 259 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); 260 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 261 return; 262 263 if (io_tlb_start) 264 memblock_free_early(io_tlb_start, 265 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 266 pr_warn("Cannot allocate buffer"); 267 no_iotlb_memory = true; 268 } 269 270 /* 271 * Systems with larger DMA zones (those that don't support ISA) can 272 * initialize the swiotlb later using the slab allocator if needed. 273 * This should be just like above, but with some error catching. 274 */ 275 int 276 swiotlb_late_init_with_default_size(size_t default_size) 277 { 278 unsigned long bytes, req_nslabs = io_tlb_nslabs; 279 unsigned char *vstart = NULL; 280 unsigned int order; 281 int rc = 0; 282 283 if (!io_tlb_nslabs) { 284 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 285 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 286 } 287 288 /* 289 * Get IO TLB memory from the low pages 290 */ 291 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 292 io_tlb_nslabs = SLABS_PER_PAGE << order; 293 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 294 295 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 296 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 297 order); 298 if (vstart) 299 break; 300 order--; 301 } 302 303 if (!vstart) { 304 io_tlb_nslabs = req_nslabs; 305 return -ENOMEM; 306 } 307 if (order != get_order(bytes)) { 308 pr_warn("only able to allocate %ld MB\n", 309 (PAGE_SIZE << order) >> 20); 310 io_tlb_nslabs = SLABS_PER_PAGE << order; 311 } 312 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 313 if (rc) 314 free_pages((unsigned long)vstart, order); 315 316 return rc; 317 } 318 319 int 320 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 321 { 322 unsigned long i, bytes; 323 324 bytes = nslabs << IO_TLB_SHIFT; 325 326 io_tlb_nslabs = nslabs; 327 io_tlb_start = virt_to_phys(tlb); 328 io_tlb_end = io_tlb_start + bytes; 329 330 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 331 memset(tlb, 0, bytes); 332 333 /* 334 * Allocate and initialize the free list array. This array is used 335 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 336 * between io_tlb_start and io_tlb_end. 337 */ 338 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 339 get_order(io_tlb_nslabs * sizeof(int))); 340 if (!io_tlb_list) 341 goto cleanup3; 342 343 io_tlb_orig_addr = (phys_addr_t *) 344 __get_free_pages(GFP_KERNEL, 345 get_order(io_tlb_nslabs * 346 sizeof(phys_addr_t))); 347 if (!io_tlb_orig_addr) 348 goto cleanup4; 349 350 for (i = 0; i < io_tlb_nslabs; i++) { 351 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 352 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 353 } 354 io_tlb_index = 0; 355 356 swiotlb_print_info(); 357 358 late_alloc = 1; 359 360 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 361 362 return 0; 363 364 cleanup4: 365 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 366 sizeof(int))); 367 io_tlb_list = NULL; 368 cleanup3: 369 io_tlb_end = 0; 370 io_tlb_start = 0; 371 io_tlb_nslabs = 0; 372 max_segment = 0; 373 return -ENOMEM; 374 } 375 376 void __init swiotlb_exit(void) 377 { 378 if (!io_tlb_orig_addr) 379 return; 380 381 if (late_alloc) { 382 free_pages((unsigned long)io_tlb_orig_addr, 383 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 384 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 385 sizeof(int))); 386 free_pages((unsigned long)phys_to_virt(io_tlb_start), 387 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 388 } else { 389 memblock_free_late(__pa(io_tlb_orig_addr), 390 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 391 memblock_free_late(__pa(io_tlb_list), 392 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 393 memblock_free_late(io_tlb_start, 394 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 395 } 396 io_tlb_start = 0; 397 io_tlb_end = 0; 398 io_tlb_nslabs = 0; 399 max_segment = 0; 400 } 401 402 /* 403 * Bounce: copy the swiotlb buffer from or back to the original dma location 404 */ 405 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 406 size_t size, enum dma_data_direction dir) 407 { 408 unsigned long pfn = PFN_DOWN(orig_addr); 409 unsigned char *vaddr = phys_to_virt(tlb_addr); 410 411 if (PageHighMem(pfn_to_page(pfn))) { 412 /* The buffer does not have a mapping. Map it in and copy */ 413 unsigned int offset = orig_addr & ~PAGE_MASK; 414 char *buffer; 415 unsigned int sz = 0; 416 unsigned long flags; 417 418 while (size) { 419 sz = min_t(size_t, PAGE_SIZE - offset, size); 420 421 local_irq_save(flags); 422 buffer = kmap_atomic(pfn_to_page(pfn)); 423 if (dir == DMA_TO_DEVICE) 424 memcpy(vaddr, buffer + offset, sz); 425 else 426 memcpy(buffer + offset, vaddr, sz); 427 kunmap_atomic(buffer); 428 local_irq_restore(flags); 429 430 size -= sz; 431 pfn++; 432 vaddr += sz; 433 offset = 0; 434 } 435 } else if (dir == DMA_TO_DEVICE) { 436 memcpy(vaddr, phys_to_virt(orig_addr), size); 437 } else { 438 memcpy(phys_to_virt(orig_addr), vaddr, size); 439 } 440 } 441 442 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 443 dma_addr_t tbl_dma_addr, 444 phys_addr_t orig_addr, size_t size, 445 enum dma_data_direction dir, 446 unsigned long attrs) 447 { 448 unsigned long flags; 449 phys_addr_t tlb_addr; 450 unsigned int nslots, stride, index, wrap; 451 int i; 452 unsigned long mask; 453 unsigned long offset_slots; 454 unsigned long max_slots; 455 unsigned long tmp_io_tlb_used; 456 457 if (no_iotlb_memory) 458 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 459 460 if (mem_encrypt_active()) 461 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 462 sme_active() ? "SME" : "SEV"); 463 464 mask = dma_get_seg_boundary(hwdev); 465 466 tbl_dma_addr &= mask; 467 468 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 469 470 /* 471 * Carefully handle integer overflow which can occur when mask == ~0UL. 472 */ 473 max_slots = mask + 1 474 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 475 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 476 477 /* 478 * For mappings greater than or equal to a page, we limit the stride 479 * (and hence alignment) to a page size. 480 */ 481 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 482 if (size >= PAGE_SIZE) 483 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 484 else 485 stride = 1; 486 487 BUG_ON(!nslots); 488 489 /* 490 * Find suitable number of IO TLB entries size that will fit this 491 * request and allocate a buffer from that IO TLB pool. 492 */ 493 spin_lock_irqsave(&io_tlb_lock, flags); 494 495 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) 496 goto not_found; 497 498 index = ALIGN(io_tlb_index, stride); 499 if (index >= io_tlb_nslabs) 500 index = 0; 501 wrap = index; 502 503 do { 504 while (iommu_is_span_boundary(index, nslots, offset_slots, 505 max_slots)) { 506 index += stride; 507 if (index >= io_tlb_nslabs) 508 index = 0; 509 if (index == wrap) 510 goto not_found; 511 } 512 513 /* 514 * If we find a slot that indicates we have 'nslots' number of 515 * contiguous buffers, we allocate the buffers from that slot 516 * and mark the entries as '0' indicating unavailable. 517 */ 518 if (io_tlb_list[index] >= nslots) { 519 int count = 0; 520 521 for (i = index; i < (int) (index + nslots); i++) 522 io_tlb_list[i] = 0; 523 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 524 io_tlb_list[i] = ++count; 525 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 526 527 /* 528 * Update the indices to avoid searching in the next 529 * round. 530 */ 531 io_tlb_index = ((index + nslots) < io_tlb_nslabs 532 ? (index + nslots) : 0); 533 534 goto found; 535 } 536 index += stride; 537 if (index >= io_tlb_nslabs) 538 index = 0; 539 } while (index != wrap); 540 541 not_found: 542 tmp_io_tlb_used = io_tlb_used; 543 544 spin_unlock_irqrestore(&io_tlb_lock, flags); 545 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 546 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 547 size, io_tlb_nslabs, tmp_io_tlb_used); 548 return DMA_MAPPING_ERROR; 549 found: 550 io_tlb_used += nslots; 551 spin_unlock_irqrestore(&io_tlb_lock, flags); 552 553 /* 554 * Save away the mapping from the original address to the DMA address. 555 * This is needed when we sync the memory. Then we sync the buffer if 556 * needed. 557 */ 558 for (i = 0; i < nslots; i++) 559 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 560 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 561 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 562 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 563 564 return tlb_addr; 565 } 566 567 /* 568 * tlb_addr is the physical address of the bounce buffer to unmap. 569 */ 570 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 571 size_t size, enum dma_data_direction dir, 572 unsigned long attrs) 573 { 574 unsigned long flags; 575 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 576 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 577 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 578 579 /* 580 * First, sync the memory before unmapping the entry 581 */ 582 if (orig_addr != INVALID_PHYS_ADDR && 583 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 584 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 585 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 586 587 /* 588 * Return the buffer to the free list by setting the corresponding 589 * entries to indicate the number of contiguous entries available. 590 * While returning the entries to the free list, we merge the entries 591 * with slots below and above the pool being returned. 592 */ 593 spin_lock_irqsave(&io_tlb_lock, flags); 594 { 595 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 596 io_tlb_list[index + nslots] : 0); 597 /* 598 * Step 1: return the slots to the free list, merging the 599 * slots with superceeding slots 600 */ 601 for (i = index + nslots - 1; i >= index; i--) { 602 io_tlb_list[i] = ++count; 603 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 604 } 605 /* 606 * Step 2: merge the returned slots with the preceding slots, 607 * if available (non zero) 608 */ 609 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 610 io_tlb_list[i] = ++count; 611 612 io_tlb_used -= nslots; 613 } 614 spin_unlock_irqrestore(&io_tlb_lock, flags); 615 } 616 617 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 618 size_t size, enum dma_data_direction dir, 619 enum dma_sync_target target) 620 { 621 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 622 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 623 624 if (orig_addr == INVALID_PHYS_ADDR) 625 return; 626 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 627 628 switch (target) { 629 case SYNC_FOR_CPU: 630 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 631 swiotlb_bounce(orig_addr, tlb_addr, 632 size, DMA_FROM_DEVICE); 633 else 634 BUG_ON(dir != DMA_TO_DEVICE); 635 break; 636 case SYNC_FOR_DEVICE: 637 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 638 swiotlb_bounce(orig_addr, tlb_addr, 639 size, DMA_TO_DEVICE); 640 else 641 BUG_ON(dir != DMA_FROM_DEVICE); 642 break; 643 default: 644 BUG(); 645 } 646 } 647 648 /* 649 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing 650 * to the device copy the data into it as well. 651 */ 652 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, 653 size_t size, enum dma_data_direction dir, unsigned long attrs) 654 { 655 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force); 656 657 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { 658 dev_warn_ratelimited(dev, 659 "Cannot do DMA to address %pa\n", phys); 660 return false; 661 } 662 663 /* Oh well, have to allocate and map a bounce buffer. */ 664 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), 665 *phys, size, dir, attrs); 666 if (*phys == DMA_MAPPING_ERROR) 667 return false; 668 669 /* Ensure that the address returned is DMA'ble */ 670 *dma_addr = __phys_to_dma(dev, *phys); 671 if (unlikely(!dma_capable(dev, *dma_addr, size))) { 672 swiotlb_tbl_unmap_single(dev, *phys, size, dir, 673 attrs | DMA_ATTR_SKIP_CPU_SYNC); 674 return false; 675 } 676 677 return true; 678 } 679 680 size_t swiotlb_max_mapping_size(struct device *dev) 681 { 682 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; 683 } 684 685 bool is_swiotlb_active(void) 686 { 687 /* 688 * When SWIOTLB is initialized, even if io_tlb_start points to physical 689 * address zero, io_tlb_end surely doesn't. 690 */ 691 return io_tlb_end != 0; 692 } 693 694 #ifdef CONFIG_DEBUG_FS 695 696 static int __init swiotlb_create_debugfs(void) 697 { 698 struct dentry *d_swiotlb_usage; 699 struct dentry *ent; 700 701 d_swiotlb_usage = debugfs_create_dir("swiotlb", NULL); 702 703 if (!d_swiotlb_usage) 704 return -ENOMEM; 705 706 ent = debugfs_create_ulong("io_tlb_nslabs", 0400, 707 d_swiotlb_usage, &io_tlb_nslabs); 708 if (!ent) 709 goto fail; 710 711 ent = debugfs_create_ulong("io_tlb_used", 0400, 712 d_swiotlb_usage, &io_tlb_used); 713 if (!ent) 714 goto fail; 715 716 return 0; 717 718 fail: 719 debugfs_remove_recursive(d_swiotlb_usage); 720 return -ENOMEM; 721 } 722 723 late_initcall(swiotlb_create_debugfs); 724 725 #endif 726