xref: /linux/kernel/dma/swiotlb.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/rculist.h>
39 #include <linux/scatterlist.h>
40 #include <linux/set_memory.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/swiotlb.h>
44 #include <linux/types.h>
45 #ifdef CONFIG_DMA_RESTRICTED_POOL
46 #include <linux/of.h>
47 #include <linux/of_fdt.h>
48 #include <linux/of_reserved_mem.h>
49 #include <linux/slab.h>
50 #endif
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/swiotlb.h>
54 
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56 
57 /*
58  * Minimum IO TLB size to bother booting with.  Systems with mainly
59  * 64bit capable cards will only lightly use the swiotlb.  If we can't
60  * allocate a contiguous 1MB, we're probably in trouble anyway.
61  */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63 
64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65 
66 /**
67  * struct io_tlb_slot - IO TLB slot descriptor
68  * @orig_addr:	The original address corresponding to a mapped entry.
69  * @alloc_size:	Size of the allocated buffer.
70  * @list:	The free list describing the number of free entries available
71  *		from each index.
72  */
73 struct io_tlb_slot {
74 	phys_addr_t orig_addr;
75 	size_t alloc_size;
76 	unsigned int list;
77 };
78 
79 static bool swiotlb_force_bounce;
80 static bool swiotlb_force_disable;
81 
82 #ifdef CONFIG_SWIOTLB_DYNAMIC
83 
84 static void swiotlb_dyn_alloc(struct work_struct *work);
85 
86 static struct io_tlb_mem io_tlb_default_mem = {
87 	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
88 	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
89 	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
90 					swiotlb_dyn_alloc),
91 };
92 
93 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
94 
95 static struct io_tlb_mem io_tlb_default_mem;
96 
97 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
98 
99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
100 static unsigned long default_nareas;
101 
102 /**
103  * struct io_tlb_area - IO TLB memory area descriptor
104  *
105  * This is a single area with a single lock.
106  *
107  * @used:	The number of used IO TLB block.
108  * @index:	The slot index to start searching in this area for next round.
109  * @lock:	The lock to protect the above data structures in the map and
110  *		unmap calls.
111  */
112 struct io_tlb_area {
113 	unsigned long used;
114 	unsigned int index;
115 	spinlock_t lock;
116 };
117 
118 /*
119  * Round up number of slabs to the next power of 2. The last area is going
120  * be smaller than the rest if default_nslabs is not power of two.
121  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
122  * otherwise a segment may span two or more areas. It conflicts with free
123  * contiguous slots tracking: free slots are treated contiguous no matter
124  * whether they cross an area boundary.
125  *
126  * Return true if default_nslabs is rounded up.
127  */
128 static bool round_up_default_nslabs(void)
129 {
130 	if (!default_nareas)
131 		return false;
132 
133 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
134 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
135 	else if (is_power_of_2(default_nslabs))
136 		return false;
137 	default_nslabs = roundup_pow_of_two(default_nslabs);
138 	return true;
139 }
140 
141 /**
142  * swiotlb_adjust_nareas() - adjust the number of areas and slots
143  * @nareas:	Desired number of areas. Zero is treated as 1.
144  *
145  * Adjust the default number of areas in a memory pool.
146  * The default size of the memory pool may also change to meet minimum area
147  * size requirements.
148  */
149 static void swiotlb_adjust_nareas(unsigned int nareas)
150 {
151 	if (!nareas)
152 		nareas = 1;
153 	else if (!is_power_of_2(nareas))
154 		nareas = roundup_pow_of_two(nareas);
155 
156 	default_nareas = nareas;
157 
158 	pr_info("area num %d.\n", nareas);
159 	if (round_up_default_nslabs())
160 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
161 			(default_nslabs << IO_TLB_SHIFT) >> 20);
162 }
163 
164 /**
165  * limit_nareas() - get the maximum number of areas for a given memory pool size
166  * @nareas:	Desired number of areas.
167  * @nslots:	Total number of slots in the memory pool.
168  *
169  * Limit the number of areas to the maximum possible number of areas in
170  * a memory pool of the given size.
171  *
172  * Return: Maximum possible number of areas.
173  */
174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
175 {
176 	if (nslots < nareas * IO_TLB_SEGSIZE)
177 		return nslots / IO_TLB_SEGSIZE;
178 	return nareas;
179 }
180 
181 static int __init
182 setup_io_tlb_npages(char *str)
183 {
184 	if (isdigit(*str)) {
185 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
186 		default_nslabs =
187 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
188 	}
189 	if (*str == ',')
190 		++str;
191 	if (isdigit(*str))
192 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
193 	if (*str == ',')
194 		++str;
195 	if (!strcmp(str, "force"))
196 		swiotlb_force_bounce = true;
197 	else if (!strcmp(str, "noforce"))
198 		swiotlb_force_disable = true;
199 
200 	return 0;
201 }
202 early_param("swiotlb", setup_io_tlb_npages);
203 
204 unsigned long swiotlb_size_or_default(void)
205 {
206 	return default_nslabs << IO_TLB_SHIFT;
207 }
208 
209 void __init swiotlb_adjust_size(unsigned long size)
210 {
211 	/*
212 	 * If swiotlb parameter has not been specified, give a chance to
213 	 * architectures such as those supporting memory encryption to
214 	 * adjust/expand SWIOTLB size for their use.
215 	 */
216 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
217 		return;
218 
219 	size = ALIGN(size, IO_TLB_SIZE);
220 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
221 	if (round_up_default_nslabs())
222 		size = default_nslabs << IO_TLB_SHIFT;
223 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
224 }
225 
226 void swiotlb_print_info(void)
227 {
228 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
229 
230 	if (!mem->nslabs) {
231 		pr_warn("No low mem\n");
232 		return;
233 	}
234 
235 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
236 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
237 }
238 
239 static inline unsigned long io_tlb_offset(unsigned long val)
240 {
241 	return val & (IO_TLB_SEGSIZE - 1);
242 }
243 
244 static inline unsigned long nr_slots(u64 val)
245 {
246 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
247 }
248 
249 /*
250  * Early SWIOTLB allocation may be too early to allow an architecture to
251  * perform the desired operations.  This function allows the architecture to
252  * call SWIOTLB when the operations are possible.  It needs to be called
253  * before the SWIOTLB memory is used.
254  */
255 void __init swiotlb_update_mem_attributes(void)
256 {
257 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
258 	unsigned long bytes;
259 
260 	if (!mem->nslabs || mem->late_alloc)
261 		return;
262 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
263 	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
264 }
265 
266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
267 		unsigned long nslabs, bool late_alloc, unsigned int nareas)
268 {
269 	void *vaddr = phys_to_virt(start);
270 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
271 
272 	mem->nslabs = nslabs;
273 	mem->start = start;
274 	mem->end = mem->start + bytes;
275 	mem->late_alloc = late_alloc;
276 	mem->nareas = nareas;
277 	mem->area_nslabs = nslabs / mem->nareas;
278 
279 	for (i = 0; i < mem->nareas; i++) {
280 		spin_lock_init(&mem->areas[i].lock);
281 		mem->areas[i].index = 0;
282 		mem->areas[i].used = 0;
283 	}
284 
285 	for (i = 0; i < mem->nslabs; i++) {
286 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
287 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
288 		mem->slots[i].alloc_size = 0;
289 	}
290 
291 	memset(vaddr, 0, bytes);
292 	mem->vaddr = vaddr;
293 	return;
294 }
295 
296 /**
297  * add_mem_pool() - add a memory pool to the allocator
298  * @mem:	Software IO TLB allocator.
299  * @pool:	Memory pool to be added.
300  */
301 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
302 {
303 #ifdef CONFIG_SWIOTLB_DYNAMIC
304 	spin_lock(&mem->lock);
305 	list_add_rcu(&pool->node, &mem->pools);
306 	mem->nslabs += pool->nslabs;
307 	spin_unlock(&mem->lock);
308 #else
309 	mem->nslabs = pool->nslabs;
310 #endif
311 }
312 
313 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
314 		unsigned int flags,
315 		int (*remap)(void *tlb, unsigned long nslabs))
316 {
317 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
318 	void *tlb;
319 
320 	/*
321 	 * By default allocate the bounce buffer memory from low memory, but
322 	 * allow to pick a location everywhere for hypervisors with guest
323 	 * memory encryption.
324 	 */
325 	if (flags & SWIOTLB_ANY)
326 		tlb = memblock_alloc(bytes, PAGE_SIZE);
327 	else
328 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
329 
330 	if (!tlb) {
331 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
332 			__func__, bytes);
333 		return NULL;
334 	}
335 
336 	if (remap && remap(tlb, nslabs) < 0) {
337 		memblock_free(tlb, PAGE_ALIGN(bytes));
338 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
339 		return NULL;
340 	}
341 
342 	return tlb;
343 }
344 
345 /*
346  * Statically reserve bounce buffer space and initialize bounce buffer data
347  * structures for the software IO TLB used to implement the DMA API.
348  */
349 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
350 		int (*remap)(void *tlb, unsigned long nslabs))
351 {
352 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
353 	unsigned long nslabs;
354 	unsigned int nareas;
355 	size_t alloc_size;
356 	void *tlb;
357 
358 	if (!addressing_limit && !swiotlb_force_bounce)
359 		return;
360 	if (swiotlb_force_disable)
361 		return;
362 
363 	io_tlb_default_mem.force_bounce =
364 		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
365 
366 #ifdef CONFIG_SWIOTLB_DYNAMIC
367 	if (!remap)
368 		io_tlb_default_mem.can_grow = true;
369 	if (flags & SWIOTLB_ANY)
370 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
371 	else
372 		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
373 #endif
374 
375 	if (!default_nareas)
376 		swiotlb_adjust_nareas(num_possible_cpus());
377 
378 	nslabs = default_nslabs;
379 	nareas = limit_nareas(default_nareas, nslabs);
380 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
381 		if (nslabs <= IO_TLB_MIN_SLABS)
382 			return;
383 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
384 		nareas = limit_nareas(nareas, nslabs);
385 	}
386 
387 	if (default_nslabs != nslabs) {
388 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
389 			default_nslabs, nslabs);
390 		default_nslabs = nslabs;
391 	}
392 
393 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
394 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
395 	if (!mem->slots) {
396 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
397 			__func__, alloc_size, PAGE_SIZE);
398 		return;
399 	}
400 
401 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
402 		nareas), SMP_CACHE_BYTES);
403 	if (!mem->areas) {
404 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
405 		return;
406 	}
407 
408 	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
409 	add_mem_pool(&io_tlb_default_mem, mem);
410 
411 	if (flags & SWIOTLB_VERBOSE)
412 		swiotlb_print_info();
413 }
414 
415 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
416 {
417 	swiotlb_init_remap(addressing_limit, flags, NULL);
418 }
419 
420 /*
421  * Systems with larger DMA zones (those that don't support ISA) can
422  * initialize the swiotlb later using the slab allocator if needed.
423  * This should be just like above, but with some error catching.
424  */
425 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
426 		int (*remap)(void *tlb, unsigned long nslabs))
427 {
428 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
429 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
430 	unsigned int nareas;
431 	unsigned char *vstart = NULL;
432 	unsigned int order, area_order;
433 	bool retried = false;
434 	int rc = 0;
435 
436 	if (io_tlb_default_mem.nslabs)
437 		return 0;
438 
439 	if (swiotlb_force_disable)
440 		return 0;
441 
442 	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
443 
444 #ifdef CONFIG_SWIOTLB_DYNAMIC
445 	if (!remap)
446 		io_tlb_default_mem.can_grow = true;
447 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
448 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
449 	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
450 		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
451 	else
452 		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
453 #endif
454 
455 	if (!default_nareas)
456 		swiotlb_adjust_nareas(num_possible_cpus());
457 
458 retry:
459 	order = get_order(nslabs << IO_TLB_SHIFT);
460 	nslabs = SLABS_PER_PAGE << order;
461 
462 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
463 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
464 						  order);
465 		if (vstart)
466 			break;
467 		order--;
468 		nslabs = SLABS_PER_PAGE << order;
469 		retried = true;
470 	}
471 
472 	if (!vstart)
473 		return -ENOMEM;
474 
475 	if (remap)
476 		rc = remap(vstart, nslabs);
477 	if (rc) {
478 		free_pages((unsigned long)vstart, order);
479 
480 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
481 		if (nslabs < IO_TLB_MIN_SLABS)
482 			return rc;
483 		retried = true;
484 		goto retry;
485 	}
486 
487 	if (retried) {
488 		pr_warn("only able to allocate %ld MB\n",
489 			(PAGE_SIZE << order) >> 20);
490 	}
491 
492 	nareas = limit_nareas(default_nareas, nslabs);
493 	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
494 	mem->areas = (struct io_tlb_area *)
495 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
496 	if (!mem->areas)
497 		goto error_area;
498 
499 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
500 		get_order(array_size(sizeof(*mem->slots), nslabs)));
501 	if (!mem->slots)
502 		goto error_slots;
503 
504 	set_memory_decrypted((unsigned long)vstart,
505 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
506 	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
507 				 nareas);
508 	add_mem_pool(&io_tlb_default_mem, mem);
509 
510 	swiotlb_print_info();
511 	return 0;
512 
513 error_slots:
514 	free_pages((unsigned long)mem->areas, area_order);
515 error_area:
516 	free_pages((unsigned long)vstart, order);
517 	return -ENOMEM;
518 }
519 
520 void __init swiotlb_exit(void)
521 {
522 	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
523 	unsigned long tbl_vaddr;
524 	size_t tbl_size, slots_size;
525 	unsigned int area_order;
526 
527 	if (swiotlb_force_bounce)
528 		return;
529 
530 	if (!mem->nslabs)
531 		return;
532 
533 	pr_info("tearing down default memory pool\n");
534 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
535 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
536 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
537 
538 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
539 	if (mem->late_alloc) {
540 		area_order = get_order(array_size(sizeof(*mem->areas),
541 			mem->nareas));
542 		free_pages((unsigned long)mem->areas, area_order);
543 		free_pages(tbl_vaddr, get_order(tbl_size));
544 		free_pages((unsigned long)mem->slots, get_order(slots_size));
545 	} else {
546 		memblock_free_late(__pa(mem->areas),
547 			array_size(sizeof(*mem->areas), mem->nareas));
548 		memblock_free_late(mem->start, tbl_size);
549 		memblock_free_late(__pa(mem->slots), slots_size);
550 	}
551 
552 	memset(mem, 0, sizeof(*mem));
553 }
554 
555 #ifdef CONFIG_SWIOTLB_DYNAMIC
556 
557 /**
558  * alloc_dma_pages() - allocate pages to be used for DMA
559  * @gfp:	GFP flags for the allocation.
560  * @bytes:	Size of the buffer.
561  *
562  * Allocate pages from the buddy allocator. If successful, make the allocated
563  * pages decrypted that they can be used for DMA.
564  *
565  * Return: Decrypted pages, or %NULL on failure.
566  */
567 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes)
568 {
569 	unsigned int order = get_order(bytes);
570 	struct page *page;
571 	void *vaddr;
572 
573 	page = alloc_pages(gfp, order);
574 	if (!page)
575 		return NULL;
576 
577 	vaddr = page_address(page);
578 	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
579 		goto error;
580 	return page;
581 
582 error:
583 	__free_pages(page, order);
584 	return NULL;
585 }
586 
587 /**
588  * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
589  * @dev:	Device for which a memory pool is allocated.
590  * @bytes:	Size of the buffer.
591  * @phys_limit:	Maximum allowed physical address of the buffer.
592  * @gfp:	GFP flags for the allocation.
593  *
594  * Return: Allocated pages, or %NULL on allocation failure.
595  */
596 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
597 		u64 phys_limit, gfp_t gfp)
598 {
599 	struct page *page;
600 
601 	/*
602 	 * Allocate from the atomic pools if memory is encrypted and
603 	 * the allocation is atomic, because decrypting may block.
604 	 */
605 	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
606 		void *vaddr;
607 
608 		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
609 			return NULL;
610 
611 		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
612 					   dma_coherent_ok);
613 	}
614 
615 	gfp &= ~GFP_ZONEMASK;
616 	if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
617 		gfp |= __GFP_DMA;
618 	else if (phys_limit <= DMA_BIT_MASK(32))
619 		gfp |= __GFP_DMA32;
620 
621 	while ((page = alloc_dma_pages(gfp, bytes)) &&
622 	       page_to_phys(page) + bytes - 1 > phys_limit) {
623 		/* allocated, but too high */
624 		__free_pages(page, get_order(bytes));
625 
626 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
627 		    phys_limit < DMA_BIT_MASK(64) &&
628 		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
629 			gfp |= __GFP_DMA32;
630 		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
631 			 !(gfp & __GFP_DMA))
632 			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
633 		else
634 			return NULL;
635 	}
636 
637 	return page;
638 }
639 
640 /**
641  * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
642  * @vaddr:	Virtual address of the buffer.
643  * @bytes:	Size of the buffer.
644  */
645 static void swiotlb_free_tlb(void *vaddr, size_t bytes)
646 {
647 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
648 	    dma_free_from_pool(NULL, vaddr, bytes))
649 		return;
650 
651 	/* Intentional leak if pages cannot be encrypted again. */
652 	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
653 		__free_pages(virt_to_page(vaddr), get_order(bytes));
654 }
655 
656 /**
657  * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
658  * @dev:	Device for which a memory pool is allocated.
659  * @minslabs:	Minimum number of slabs.
660  * @nslabs:	Desired (maximum) number of slabs.
661  * @nareas:	Number of areas.
662  * @phys_limit:	Maximum DMA buffer physical address.
663  * @gfp:	GFP flags for the allocations.
664  *
665  * Allocate and initialize a new IO TLB memory pool. The actual number of
666  * slabs may be reduced if allocation of @nslabs fails. If even
667  * @minslabs cannot be allocated, this function fails.
668  *
669  * Return: New memory pool, or %NULL on allocation failure.
670  */
671 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
672 		unsigned long minslabs, unsigned long nslabs,
673 		unsigned int nareas, u64 phys_limit, gfp_t gfp)
674 {
675 	struct io_tlb_pool *pool;
676 	unsigned int slot_order;
677 	struct page *tlb;
678 	size_t pool_size;
679 	size_t tlb_size;
680 
681 	if (nslabs > SLABS_PER_PAGE << MAX_ORDER) {
682 		nslabs = SLABS_PER_PAGE << MAX_ORDER;
683 		nareas = limit_nareas(nareas, nslabs);
684 	}
685 
686 	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
687 	pool = kzalloc(pool_size, gfp);
688 	if (!pool)
689 		goto error;
690 	pool->areas = (void *)pool + sizeof(*pool);
691 
692 	tlb_size = nslabs << IO_TLB_SHIFT;
693 	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
694 		if (nslabs <= minslabs)
695 			goto error_tlb;
696 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
697 		nareas = limit_nareas(nareas, nslabs);
698 		tlb_size = nslabs << IO_TLB_SHIFT;
699 	}
700 
701 	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
702 	pool->slots = (struct io_tlb_slot *)
703 		__get_free_pages(gfp, slot_order);
704 	if (!pool->slots)
705 		goto error_slots;
706 
707 	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
708 	return pool;
709 
710 error_slots:
711 	swiotlb_free_tlb(page_address(tlb), tlb_size);
712 error_tlb:
713 	kfree(pool);
714 error:
715 	return NULL;
716 }
717 
718 /**
719  * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
720  * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
721  */
722 static void swiotlb_dyn_alloc(struct work_struct *work)
723 {
724 	struct io_tlb_mem *mem =
725 		container_of(work, struct io_tlb_mem, dyn_alloc);
726 	struct io_tlb_pool *pool;
727 
728 	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
729 				  default_nareas, mem->phys_limit, GFP_KERNEL);
730 	if (!pool) {
731 		pr_warn_ratelimited("Failed to allocate new pool");
732 		return;
733 	}
734 
735 	add_mem_pool(mem, pool);
736 }
737 
738 /**
739  * swiotlb_dyn_free() - RCU callback to free a memory pool
740  * @rcu:	RCU head in the corresponding struct io_tlb_pool.
741  */
742 static void swiotlb_dyn_free(struct rcu_head *rcu)
743 {
744 	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
745 	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
746 	size_t tlb_size = pool->end - pool->start;
747 
748 	free_pages((unsigned long)pool->slots, get_order(slots_size));
749 	swiotlb_free_tlb(pool->vaddr, tlb_size);
750 	kfree(pool);
751 }
752 
753 /**
754  * swiotlb_find_pool() - find the IO TLB pool for a physical address
755  * @dev:        Device which has mapped the DMA buffer.
756  * @paddr:      Physical address within the DMA buffer.
757  *
758  * Find the IO TLB memory pool descriptor which contains the given physical
759  * address, if any.
760  *
761  * Return: Memory pool which contains @paddr, or %NULL if none.
762  */
763 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
764 {
765 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
766 	struct io_tlb_pool *pool;
767 
768 	rcu_read_lock();
769 	list_for_each_entry_rcu(pool, &mem->pools, node) {
770 		if (paddr >= pool->start && paddr < pool->end)
771 			goto out;
772 	}
773 
774 	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
775 		if (paddr >= pool->start && paddr < pool->end)
776 			goto out;
777 	}
778 	pool = NULL;
779 out:
780 	rcu_read_unlock();
781 	return pool;
782 }
783 
784 /**
785  * swiotlb_del_pool() - remove an IO TLB pool from a device
786  * @dev:	Owning device.
787  * @pool:	Memory pool to be removed.
788  */
789 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
790 {
791 	unsigned long flags;
792 
793 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
794 	list_del_rcu(&pool->node);
795 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
796 
797 	call_rcu(&pool->rcu, swiotlb_dyn_free);
798 }
799 
800 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
801 
802 /**
803  * swiotlb_dev_init() - initialize swiotlb fields in &struct device
804  * @dev:	Device to be initialized.
805  */
806 void swiotlb_dev_init(struct device *dev)
807 {
808 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
809 #ifdef CONFIG_SWIOTLB_DYNAMIC
810 	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
811 	spin_lock_init(&dev->dma_io_tlb_lock);
812 	dev->dma_uses_io_tlb = false;
813 #endif
814 }
815 
816 /*
817  * Return the offset into a iotlb slot required to keep the device happy.
818  */
819 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
820 {
821 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
822 }
823 
824 /*
825  * Bounce: copy the swiotlb buffer from or back to the original dma location
826  */
827 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
828 			   enum dma_data_direction dir)
829 {
830 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
831 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
832 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
833 	size_t alloc_size = mem->slots[index].alloc_size;
834 	unsigned long pfn = PFN_DOWN(orig_addr);
835 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
836 	unsigned int tlb_offset, orig_addr_offset;
837 
838 	if (orig_addr == INVALID_PHYS_ADDR)
839 		return;
840 
841 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
842 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
843 	if (tlb_offset < orig_addr_offset) {
844 		dev_WARN_ONCE(dev, 1,
845 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
846 			orig_addr_offset, tlb_offset);
847 		return;
848 	}
849 
850 	tlb_offset -= orig_addr_offset;
851 	if (tlb_offset > alloc_size) {
852 		dev_WARN_ONCE(dev, 1,
853 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
854 			alloc_size, size, tlb_offset);
855 		return;
856 	}
857 
858 	orig_addr += tlb_offset;
859 	alloc_size -= tlb_offset;
860 
861 	if (size > alloc_size) {
862 		dev_WARN_ONCE(dev, 1,
863 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
864 			alloc_size, size);
865 		size = alloc_size;
866 	}
867 
868 	if (PageHighMem(pfn_to_page(pfn))) {
869 		unsigned int offset = orig_addr & ~PAGE_MASK;
870 		struct page *page;
871 		unsigned int sz = 0;
872 		unsigned long flags;
873 
874 		while (size) {
875 			sz = min_t(size_t, PAGE_SIZE - offset, size);
876 
877 			local_irq_save(flags);
878 			page = pfn_to_page(pfn);
879 			if (dir == DMA_TO_DEVICE)
880 				memcpy_from_page(vaddr, page, offset, sz);
881 			else
882 				memcpy_to_page(page, offset, vaddr, sz);
883 			local_irq_restore(flags);
884 
885 			size -= sz;
886 			pfn++;
887 			vaddr += sz;
888 			offset = 0;
889 		}
890 	} else if (dir == DMA_TO_DEVICE) {
891 		memcpy(vaddr, phys_to_virt(orig_addr), size);
892 	} else {
893 		memcpy(phys_to_virt(orig_addr), vaddr, size);
894 	}
895 }
896 
897 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
898 {
899 	return start + (idx << IO_TLB_SHIFT);
900 }
901 
902 /*
903  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
904  */
905 static inline unsigned long get_max_slots(unsigned long boundary_mask)
906 {
907 	return (boundary_mask >> IO_TLB_SHIFT) + 1;
908 }
909 
910 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
911 {
912 	if (index >= mem->area_nslabs)
913 		return 0;
914 	return index;
915 }
916 
917 /*
918  * Track the total used slots with a global atomic value in order to have
919  * correct information to determine the high water mark. The mem_used()
920  * function gives imprecise results because there's no locking across
921  * multiple areas.
922  */
923 #ifdef CONFIG_DEBUG_FS
924 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
925 {
926 	unsigned long old_hiwater, new_used;
927 
928 	new_used = atomic_long_add_return(nslots, &mem->total_used);
929 	old_hiwater = atomic_long_read(&mem->used_hiwater);
930 	do {
931 		if (new_used <= old_hiwater)
932 			break;
933 	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
934 					  &old_hiwater, new_used));
935 }
936 
937 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
938 {
939 	atomic_long_sub(nslots, &mem->total_used);
940 }
941 
942 #else /* !CONFIG_DEBUG_FS */
943 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
944 {
945 }
946 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
947 {
948 }
949 #endif /* CONFIG_DEBUG_FS */
950 
951 /**
952  * swiotlb_area_find_slots() - search for slots in one IO TLB memory area
953  * @dev:	Device which maps the buffer.
954  * @pool:	Memory pool to be searched.
955  * @area_index:	Index of the IO TLB memory area to be searched.
956  * @orig_addr:	Original (non-bounced) IO buffer address.
957  * @alloc_size: Total requested size of the bounce buffer,
958  *		including initial alignment padding.
959  * @alloc_align_mask:	Required alignment of the allocated buffer.
960  *
961  * Find a suitable sequence of IO TLB entries for the request and allocate
962  * a buffer from the given IO TLB memory area.
963  * This function takes care of locking.
964  *
965  * Return: Index of the first allocated slot, or -1 on error.
966  */
967 static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool,
968 		int area_index, phys_addr_t orig_addr, size_t alloc_size,
969 		unsigned int alloc_align_mask)
970 {
971 	struct io_tlb_area *area = pool->areas + area_index;
972 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
973 	dma_addr_t tbl_dma_addr =
974 		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
975 	unsigned long max_slots = get_max_slots(boundary_mask);
976 	unsigned int iotlb_align_mask =
977 		dma_get_min_align_mask(dev) | alloc_align_mask;
978 	unsigned int nslots = nr_slots(alloc_size), stride;
979 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
980 	unsigned int index, slots_checked, count = 0, i;
981 	unsigned long flags;
982 	unsigned int slot_base;
983 	unsigned int slot_index;
984 
985 	BUG_ON(!nslots);
986 	BUG_ON(area_index >= pool->nareas);
987 
988 	/*
989 	 * For allocations of PAGE_SIZE or larger only look for page aligned
990 	 * allocations.
991 	 */
992 	if (alloc_size >= PAGE_SIZE)
993 		iotlb_align_mask |= ~PAGE_MASK;
994 	iotlb_align_mask &= ~(IO_TLB_SIZE - 1);
995 
996 	/*
997 	 * For mappings with an alignment requirement don't bother looping to
998 	 * unaligned slots once we found an aligned one.
999 	 */
1000 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
1001 
1002 	spin_lock_irqsave(&area->lock, flags);
1003 	if (unlikely(nslots > pool->area_nslabs - area->used))
1004 		goto not_found;
1005 
1006 	slot_base = area_index * pool->area_nslabs;
1007 	index = area->index;
1008 
1009 	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1010 		slot_index = slot_base + index;
1011 
1012 		if (orig_addr &&
1013 		    (slot_addr(tbl_dma_addr, slot_index) &
1014 		     iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
1015 			index = wrap_area_index(pool, index + 1);
1016 			slots_checked++;
1017 			continue;
1018 		}
1019 
1020 		if (!iommu_is_span_boundary(slot_index, nslots,
1021 					    nr_slots(tbl_dma_addr),
1022 					    max_slots)) {
1023 			if (pool->slots[slot_index].list >= nslots)
1024 				goto found;
1025 		}
1026 		index = wrap_area_index(pool, index + stride);
1027 		slots_checked += stride;
1028 	}
1029 
1030 not_found:
1031 	spin_unlock_irqrestore(&area->lock, flags);
1032 	return -1;
1033 
1034 found:
1035 	/*
1036 	 * If we find a slot that indicates we have 'nslots' number of
1037 	 * contiguous buffers, we allocate the buffers from that slot onwards
1038 	 * and set the list of free entries to '0' indicating unavailable.
1039 	 */
1040 	for (i = slot_index; i < slot_index + nslots; i++) {
1041 		pool->slots[i].list = 0;
1042 		pool->slots[i].alloc_size = alloc_size - (offset +
1043 				((i - slot_index) << IO_TLB_SHIFT));
1044 	}
1045 	for (i = slot_index - 1;
1046 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1047 	     pool->slots[i].list; i--)
1048 		pool->slots[i].list = ++count;
1049 
1050 	/*
1051 	 * Update the indices to avoid searching in the next round.
1052 	 */
1053 	area->index = wrap_area_index(pool, index + nslots);
1054 	area->used += nslots;
1055 	spin_unlock_irqrestore(&area->lock, flags);
1056 
1057 	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1058 	return slot_index;
1059 }
1060 
1061 /**
1062  * swiotlb_pool_find_slots() - search for slots in one memory pool
1063  * @dev:	Device which maps the buffer.
1064  * @pool:	Memory pool to be searched.
1065  * @orig_addr:	Original (non-bounced) IO buffer address.
1066  * @alloc_size: Total requested size of the bounce buffer,
1067  *		including initial alignment padding.
1068  * @alloc_align_mask:	Required alignment of the allocated buffer.
1069  *
1070  * Search through one memory pool to find a sequence of slots that match the
1071  * allocation constraints.
1072  *
1073  * Return: Index of the first allocated slot, or -1 on error.
1074  */
1075 static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool,
1076 		phys_addr_t orig_addr, size_t alloc_size,
1077 		unsigned int alloc_align_mask)
1078 {
1079 	int start = raw_smp_processor_id() & (pool->nareas - 1);
1080 	int i = start, index;
1081 
1082 	do {
1083 		index = swiotlb_area_find_slots(dev, pool, i, orig_addr,
1084 						alloc_size, alloc_align_mask);
1085 		if (index >= 0)
1086 			return index;
1087 		if (++i >= pool->nareas)
1088 			i = 0;
1089 	} while (i != start);
1090 
1091 	return -1;
1092 }
1093 
1094 #ifdef CONFIG_SWIOTLB_DYNAMIC
1095 
1096 /**
1097  * swiotlb_find_slots() - search for slots in the whole swiotlb
1098  * @dev:	Device which maps the buffer.
1099  * @orig_addr:	Original (non-bounced) IO buffer address.
1100  * @alloc_size: Total requested size of the bounce buffer,
1101  *		including initial alignment padding.
1102  * @alloc_align_mask:	Required alignment of the allocated buffer.
1103  * @retpool:	Used memory pool, updated on return.
1104  *
1105  * Search through the whole software IO TLB to find a sequence of slots that
1106  * match the allocation constraints.
1107  *
1108  * Return: Index of the first allocated slot, or -1 on error.
1109  */
1110 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1111 		size_t alloc_size, unsigned int alloc_align_mask,
1112 		struct io_tlb_pool **retpool)
1113 {
1114 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1115 	struct io_tlb_pool *pool;
1116 	unsigned long nslabs;
1117 	unsigned long flags;
1118 	u64 phys_limit;
1119 	int index;
1120 
1121 	rcu_read_lock();
1122 	list_for_each_entry_rcu(pool, &mem->pools, node) {
1123 		index = swiotlb_pool_find_slots(dev, pool, orig_addr,
1124 						alloc_size, alloc_align_mask);
1125 		if (index >= 0) {
1126 			rcu_read_unlock();
1127 			goto found;
1128 		}
1129 	}
1130 	rcu_read_unlock();
1131 	if (!mem->can_grow)
1132 		return -1;
1133 
1134 	schedule_work(&mem->dyn_alloc);
1135 
1136 	nslabs = nr_slots(alloc_size);
1137 	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1138 	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1139 				  GFP_NOWAIT | __GFP_NOWARN);
1140 	if (!pool)
1141 		return -1;
1142 
1143 	index = swiotlb_pool_find_slots(dev, pool, orig_addr,
1144 					alloc_size, alloc_align_mask);
1145 	if (index < 0) {
1146 		swiotlb_dyn_free(&pool->rcu);
1147 		return -1;
1148 	}
1149 
1150 	pool->transient = true;
1151 	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1152 	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1153 	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1154 
1155 found:
1156 	WRITE_ONCE(dev->dma_uses_io_tlb, true);
1157 
1158 	/*
1159 	 * The general barrier orders reads and writes against a presumed store
1160 	 * of the SWIOTLB buffer address by a device driver (to a driver private
1161 	 * data structure). It serves two purposes.
1162 	 *
1163 	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1164 	 * presumed store. This guarantees that the returned buffer address
1165 	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1166 	 *
1167 	 * Second, the load from mem->pools must be ordered before the same
1168 	 * presumed store. This guarantees that the returned buffer address
1169 	 * cannot be observed by another CPU before an update of the RCU list
1170 	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1171 	 * atomicity).
1172 	 *
1173 	 * See also the comment in is_swiotlb_buffer().
1174 	 */
1175 	smp_mb();
1176 
1177 	*retpool = pool;
1178 	return index;
1179 }
1180 
1181 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1182 
1183 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1184 		size_t alloc_size, unsigned int alloc_align_mask,
1185 		struct io_tlb_pool **retpool)
1186 {
1187 	*retpool = &dev->dma_io_tlb_mem->defpool;
1188 	return swiotlb_pool_find_slots(dev, *retpool,
1189 				       orig_addr, alloc_size, alloc_align_mask);
1190 }
1191 
1192 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1193 
1194 #ifdef CONFIG_DEBUG_FS
1195 
1196 /**
1197  * mem_used() - get number of used slots in an allocator
1198  * @mem:	Software IO TLB allocator.
1199  *
1200  * The result is accurate in this version of the function, because an atomic
1201  * counter is available if CONFIG_DEBUG_FS is set.
1202  *
1203  * Return: Number of used slots.
1204  */
1205 static unsigned long mem_used(struct io_tlb_mem *mem)
1206 {
1207 	return atomic_long_read(&mem->total_used);
1208 }
1209 
1210 #else /* !CONFIG_DEBUG_FS */
1211 
1212 /**
1213  * mem_pool_used() - get number of used slots in a memory pool
1214  * @pool:	Software IO TLB memory pool.
1215  *
1216  * The result is not accurate, see mem_used().
1217  *
1218  * Return: Approximate number of used slots.
1219  */
1220 static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1221 {
1222 	int i;
1223 	unsigned long used = 0;
1224 
1225 	for (i = 0; i < pool->nareas; i++)
1226 		used += pool->areas[i].used;
1227 	return used;
1228 }
1229 
1230 /**
1231  * mem_used() - get number of used slots in an allocator
1232  * @mem:	Software IO TLB allocator.
1233  *
1234  * The result is not accurate, because there is no locking of individual
1235  * areas.
1236  *
1237  * Return: Approximate number of used slots.
1238  */
1239 static unsigned long mem_used(struct io_tlb_mem *mem)
1240 {
1241 #ifdef CONFIG_SWIOTLB_DYNAMIC
1242 	struct io_tlb_pool *pool;
1243 	unsigned long used = 0;
1244 
1245 	rcu_read_lock();
1246 	list_for_each_entry_rcu(pool, &mem->pools, node)
1247 		used += mem_pool_used(pool);
1248 	rcu_read_unlock();
1249 
1250 	return used;
1251 #else
1252 	return mem_pool_used(&mem->defpool);
1253 #endif
1254 }
1255 
1256 #endif /* CONFIG_DEBUG_FS */
1257 
1258 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1259 		size_t mapping_size, size_t alloc_size,
1260 		unsigned int alloc_align_mask, enum dma_data_direction dir,
1261 		unsigned long attrs)
1262 {
1263 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1264 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
1265 	struct io_tlb_pool *pool;
1266 	unsigned int i;
1267 	int index;
1268 	phys_addr_t tlb_addr;
1269 
1270 	if (!mem || !mem->nslabs) {
1271 		dev_warn_ratelimited(dev,
1272 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1273 		return (phys_addr_t)DMA_MAPPING_ERROR;
1274 	}
1275 
1276 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1277 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1278 
1279 	if (mapping_size > alloc_size) {
1280 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
1281 			      mapping_size, alloc_size);
1282 		return (phys_addr_t)DMA_MAPPING_ERROR;
1283 	}
1284 
1285 	index = swiotlb_find_slots(dev, orig_addr,
1286 				   alloc_size + offset, alloc_align_mask, &pool);
1287 	if (index == -1) {
1288 		if (!(attrs & DMA_ATTR_NO_WARN))
1289 			dev_warn_ratelimited(dev,
1290 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1291 				 alloc_size, mem->nslabs, mem_used(mem));
1292 		return (phys_addr_t)DMA_MAPPING_ERROR;
1293 	}
1294 
1295 	/*
1296 	 * Save away the mapping from the original address to the DMA address.
1297 	 * This is needed when we sync the memory.  Then we sync the buffer if
1298 	 * needed.
1299 	 */
1300 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
1301 		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1302 	tlb_addr = slot_addr(pool->start, index) + offset;
1303 	/*
1304 	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
1305 	 * the original buffer to the TLB buffer before initiating DMA in order
1306 	 * to preserve the original's data if the device does a partial write,
1307 	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
1308 	 * the original data, even if it's garbage, is necessary to match
1309 	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
1310 	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
1311 	 */
1312 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
1313 	return tlb_addr;
1314 }
1315 
1316 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
1317 {
1318 	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
1319 	unsigned long flags;
1320 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
1321 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1322 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
1323 	int aindex = index / mem->area_nslabs;
1324 	struct io_tlb_area *area = &mem->areas[aindex];
1325 	int count, i;
1326 
1327 	/*
1328 	 * Return the buffer to the free list by setting the corresponding
1329 	 * entries to indicate the number of contiguous entries available.
1330 	 * While returning the entries to the free list, we merge the entries
1331 	 * with slots below and above the pool being returned.
1332 	 */
1333 	BUG_ON(aindex >= mem->nareas);
1334 
1335 	spin_lock_irqsave(&area->lock, flags);
1336 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1337 		count = mem->slots[index + nslots].list;
1338 	else
1339 		count = 0;
1340 
1341 	/*
1342 	 * Step 1: return the slots to the free list, merging the slots with
1343 	 * superceeding slots
1344 	 */
1345 	for (i = index + nslots - 1; i >= index; i--) {
1346 		mem->slots[i].list = ++count;
1347 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1348 		mem->slots[i].alloc_size = 0;
1349 	}
1350 
1351 	/*
1352 	 * Step 2: merge the returned slots with the preceding slots, if
1353 	 * available (non zero)
1354 	 */
1355 	for (i = index - 1;
1356 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1357 	     i--)
1358 		mem->slots[i].list = ++count;
1359 	area->used -= nslots;
1360 	spin_unlock_irqrestore(&area->lock, flags);
1361 
1362 	dec_used(dev->dma_io_tlb_mem, nslots);
1363 }
1364 
1365 #ifdef CONFIG_SWIOTLB_DYNAMIC
1366 
1367 /**
1368  * swiotlb_del_transient() - delete a transient memory pool
1369  * @dev:	Device which mapped the buffer.
1370  * @tlb_addr:	Physical address within a bounce buffer.
1371  *
1372  * Check whether the address belongs to a transient SWIOTLB memory pool.
1373  * If yes, then delete the pool.
1374  *
1375  * Return: %true if @tlb_addr belonged to a transient pool that was released.
1376  */
1377 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
1378 {
1379 	struct io_tlb_pool *pool;
1380 
1381 	pool = swiotlb_find_pool(dev, tlb_addr);
1382 	if (!pool->transient)
1383 		return false;
1384 
1385 	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1386 	swiotlb_del_pool(dev, pool);
1387 	return true;
1388 }
1389 
1390 #else  /* !CONFIG_SWIOTLB_DYNAMIC */
1391 
1392 static inline bool swiotlb_del_transient(struct device *dev,
1393 					 phys_addr_t tlb_addr)
1394 {
1395 	return false;
1396 }
1397 
1398 #endif	/* CONFIG_SWIOTLB_DYNAMIC */
1399 
1400 /*
1401  * tlb_addr is the physical address of the bounce buffer to unmap.
1402  */
1403 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1404 			      size_t mapping_size, enum dma_data_direction dir,
1405 			      unsigned long attrs)
1406 {
1407 	/*
1408 	 * First, sync the memory before unmapping the entry
1409 	 */
1410 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1411 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1412 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
1413 
1414 	if (swiotlb_del_transient(dev, tlb_addr))
1415 		return;
1416 	swiotlb_release_slots(dev, tlb_addr);
1417 }
1418 
1419 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1420 		size_t size, enum dma_data_direction dir)
1421 {
1422 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1423 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
1424 	else
1425 		BUG_ON(dir != DMA_FROM_DEVICE);
1426 }
1427 
1428 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1429 		size_t size, enum dma_data_direction dir)
1430 {
1431 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1432 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
1433 	else
1434 		BUG_ON(dir != DMA_TO_DEVICE);
1435 }
1436 
1437 /*
1438  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1439  * to the device copy the data into it as well.
1440  */
1441 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1442 		enum dma_data_direction dir, unsigned long attrs)
1443 {
1444 	phys_addr_t swiotlb_addr;
1445 	dma_addr_t dma_addr;
1446 
1447 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1448 
1449 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
1450 			attrs);
1451 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1452 		return DMA_MAPPING_ERROR;
1453 
1454 	/* Ensure that the address returned is DMA'ble */
1455 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1456 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1457 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1458 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
1459 		dev_WARN_ONCE(dev, 1,
1460 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1461 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1462 		return DMA_MAPPING_ERROR;
1463 	}
1464 
1465 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1466 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
1467 	return dma_addr;
1468 }
1469 
1470 size_t swiotlb_max_mapping_size(struct device *dev)
1471 {
1472 	int min_align_mask = dma_get_min_align_mask(dev);
1473 	int min_align = 0;
1474 
1475 	/*
1476 	 * swiotlb_find_slots() skips slots according to
1477 	 * min align mask. This affects max mapping size.
1478 	 * Take it into acount here.
1479 	 */
1480 	if (min_align_mask)
1481 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
1482 
1483 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1484 }
1485 
1486 /**
1487  * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1488  */
1489 bool is_swiotlb_allocated(void)
1490 {
1491 	return io_tlb_default_mem.nslabs;
1492 }
1493 
1494 bool is_swiotlb_active(struct device *dev)
1495 {
1496 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1497 
1498 	return mem && mem->nslabs;
1499 }
1500 
1501 /**
1502  * default_swiotlb_base() - get the base address of the default SWIOTLB
1503  *
1504  * Get the lowest physical address used by the default software IO TLB pool.
1505  */
1506 phys_addr_t default_swiotlb_base(void)
1507 {
1508 #ifdef CONFIG_SWIOTLB_DYNAMIC
1509 	io_tlb_default_mem.can_grow = false;
1510 #endif
1511 	return io_tlb_default_mem.defpool.start;
1512 }
1513 
1514 /**
1515  * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1516  *
1517  * Get the highest physical address used by the default software IO TLB pool.
1518  */
1519 phys_addr_t default_swiotlb_limit(void)
1520 {
1521 #ifdef CONFIG_SWIOTLB_DYNAMIC
1522 	return io_tlb_default_mem.phys_limit;
1523 #else
1524 	return io_tlb_default_mem.defpool.end - 1;
1525 #endif
1526 }
1527 
1528 #ifdef CONFIG_DEBUG_FS
1529 
1530 static int io_tlb_used_get(void *data, u64 *val)
1531 {
1532 	struct io_tlb_mem *mem = data;
1533 
1534 	*val = mem_used(mem);
1535 	return 0;
1536 }
1537 
1538 static int io_tlb_hiwater_get(void *data, u64 *val)
1539 {
1540 	struct io_tlb_mem *mem = data;
1541 
1542 	*val = atomic_long_read(&mem->used_hiwater);
1543 	return 0;
1544 }
1545 
1546 static int io_tlb_hiwater_set(void *data, u64 val)
1547 {
1548 	struct io_tlb_mem *mem = data;
1549 
1550 	/* Only allow setting to zero */
1551 	if (val != 0)
1552 		return -EINVAL;
1553 
1554 	atomic_long_set(&mem->used_hiwater, val);
1555 	return 0;
1556 }
1557 
1558 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1559 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1560 				io_tlb_hiwater_set, "%llu\n");
1561 
1562 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1563 					 const char *dirname)
1564 {
1565 	atomic_long_set(&mem->total_used, 0);
1566 	atomic_long_set(&mem->used_hiwater, 0);
1567 
1568 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1569 	if (!mem->nslabs)
1570 		return;
1571 
1572 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1573 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1574 			&fops_io_tlb_used);
1575 	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1576 			&fops_io_tlb_hiwater);
1577 }
1578 
1579 static int __init swiotlb_create_default_debugfs(void)
1580 {
1581 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1582 	return 0;
1583 }
1584 
1585 late_initcall(swiotlb_create_default_debugfs);
1586 
1587 #else  /* !CONFIG_DEBUG_FS */
1588 
1589 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1590 						const char *dirname)
1591 {
1592 }
1593 
1594 #endif	/* CONFIG_DEBUG_FS */
1595 
1596 #ifdef CONFIG_DMA_RESTRICTED_POOL
1597 
1598 struct page *swiotlb_alloc(struct device *dev, size_t size)
1599 {
1600 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1601 	struct io_tlb_pool *pool;
1602 	phys_addr_t tlb_addr;
1603 	int index;
1604 
1605 	if (!mem)
1606 		return NULL;
1607 
1608 	index = swiotlb_find_slots(dev, 0, size, 0, &pool);
1609 	if (index == -1)
1610 		return NULL;
1611 
1612 	tlb_addr = slot_addr(pool->start, index);
1613 
1614 	return pfn_to_page(PFN_DOWN(tlb_addr));
1615 }
1616 
1617 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1618 {
1619 	phys_addr_t tlb_addr = page_to_phys(page);
1620 
1621 	if (!is_swiotlb_buffer(dev, tlb_addr))
1622 		return false;
1623 
1624 	swiotlb_release_slots(dev, tlb_addr);
1625 
1626 	return true;
1627 }
1628 
1629 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1630 				    struct device *dev)
1631 {
1632 	struct io_tlb_mem *mem = rmem->priv;
1633 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1634 
1635 	/* Set Per-device io tlb area to one */
1636 	unsigned int nareas = 1;
1637 
1638 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1639 		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1640 		return -EINVAL;
1641 	}
1642 
1643 	/*
1644 	 * Since multiple devices can share the same pool, the private data,
1645 	 * io_tlb_mem struct, will be initialized by the first device attached
1646 	 * to it.
1647 	 */
1648 	if (!mem) {
1649 		struct io_tlb_pool *pool;
1650 
1651 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1652 		if (!mem)
1653 			return -ENOMEM;
1654 		pool = &mem->defpool;
1655 
1656 		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1657 		if (!pool->slots) {
1658 			kfree(mem);
1659 			return -ENOMEM;
1660 		}
1661 
1662 		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1663 				GFP_KERNEL);
1664 		if (!pool->areas) {
1665 			kfree(pool->slots);
1666 			kfree(mem);
1667 			return -ENOMEM;
1668 		}
1669 
1670 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1671 				     rmem->size >> PAGE_SHIFT);
1672 		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1673 					 false, nareas);
1674 		mem->force_bounce = true;
1675 		mem->for_alloc = true;
1676 #ifdef CONFIG_SWIOTLB_DYNAMIC
1677 		spin_lock_init(&mem->lock);
1678 #endif
1679 		add_mem_pool(mem, pool);
1680 
1681 		rmem->priv = mem;
1682 
1683 		swiotlb_create_debugfs_files(mem, rmem->name);
1684 	}
1685 
1686 	dev->dma_io_tlb_mem = mem;
1687 
1688 	return 0;
1689 }
1690 
1691 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1692 					struct device *dev)
1693 {
1694 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1695 }
1696 
1697 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1698 	.device_init = rmem_swiotlb_device_init,
1699 	.device_release = rmem_swiotlb_device_release,
1700 };
1701 
1702 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1703 {
1704 	unsigned long node = rmem->fdt_node;
1705 
1706 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1707 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1708 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1709 	    of_get_flat_dt_prop(node, "no-map", NULL))
1710 		return -EINVAL;
1711 
1712 	rmem->ops = &rmem_swiotlb_ops;
1713 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1714 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1715 	return 0;
1716 }
1717 
1718 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1719 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1720