xref: /linux/kernel/dma/mapping.c (revision f4bd0b4a9b21c609ede28cee2dcd16824c0489a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 /*
20  * Managed DMA API
21  */
22 struct dma_devres {
23 	size_t		size;
24 	void		*vaddr;
25 	dma_addr_t	dma_handle;
26 	unsigned long	attrs;
27 };
28 
29 static void dmam_release(struct device *dev, void *res)
30 {
31 	struct dma_devres *this = res;
32 
33 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
34 			this->attrs);
35 }
36 
37 static int dmam_match(struct device *dev, void *res, void *match_data)
38 {
39 	struct dma_devres *this = res, *match = match_data;
40 
41 	if (this->vaddr == match->vaddr) {
42 		WARN_ON(this->size != match->size ||
43 			this->dma_handle != match->dma_handle);
44 		return 1;
45 	}
46 	return 0;
47 }
48 
49 /**
50  * dmam_free_coherent - Managed dma_free_coherent()
51  * @dev: Device to free coherent memory for
52  * @size: Size of allocation
53  * @vaddr: Virtual address of the memory to free
54  * @dma_handle: DMA handle of the memory to free
55  *
56  * Managed dma_free_coherent().
57  */
58 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
59 			dma_addr_t dma_handle)
60 {
61 	struct dma_devres match_data = { size, vaddr, dma_handle };
62 
63 	dma_free_coherent(dev, size, vaddr, dma_handle);
64 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
65 }
66 EXPORT_SYMBOL(dmam_free_coherent);
67 
68 /**
69  * dmam_alloc_attrs - Managed dma_alloc_attrs()
70  * @dev: Device to allocate non_coherent memory for
71  * @size: Size of allocation
72  * @dma_handle: Out argument for allocated DMA handle
73  * @gfp: Allocation flags
74  * @attrs: Flags in the DMA_ATTR_* namespace.
75  *
76  * Managed dma_alloc_attrs().  Memory allocated using this function will be
77  * automatically released on driver detach.
78  *
79  * RETURNS:
80  * Pointer to allocated memory on success, NULL on failure.
81  */
82 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
83 		gfp_t gfp, unsigned long attrs)
84 {
85 	struct dma_devres *dr;
86 	void *vaddr;
87 
88 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
89 	if (!dr)
90 		return NULL;
91 
92 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
93 	if (!vaddr) {
94 		devres_free(dr);
95 		return NULL;
96 	}
97 
98 	dr->vaddr = vaddr;
99 	dr->dma_handle = *dma_handle;
100 	dr->size = size;
101 	dr->attrs = attrs;
102 
103 	devres_add(dev, dr);
104 
105 	return vaddr;
106 }
107 EXPORT_SYMBOL(dmam_alloc_attrs);
108 
109 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
110 		const struct dma_map_ops *ops)
111 {
112 	if (likely(!ops))
113 		return true;
114 #ifdef CONFIG_DMA_OPS_BYPASS
115 	if (dev->dma_ops_bypass)
116 		return min_not_zero(mask, dev->bus_dma_limit) >=
117 			    dma_direct_get_required_mask(dev);
118 #endif
119 	return false;
120 }
121 
122 
123 /*
124  * Check if the devices uses a direct mapping for streaming DMA operations.
125  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
126  * enough.
127  */
128 static inline bool dma_alloc_direct(struct device *dev,
129 		const struct dma_map_ops *ops)
130 {
131 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
132 }
133 
134 static inline bool dma_map_direct(struct device *dev,
135 		const struct dma_map_ops *ops)
136 {
137 	return dma_go_direct(dev, *dev->dma_mask, ops);
138 }
139 
140 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
141 		size_t offset, size_t size, enum dma_data_direction dir,
142 		unsigned long attrs)
143 {
144 	const struct dma_map_ops *ops = get_dma_ops(dev);
145 	dma_addr_t addr;
146 
147 	BUG_ON(!valid_dma_direction(dir));
148 
149 	if (WARN_ON_ONCE(!dev->dma_mask))
150 		return DMA_MAPPING_ERROR;
151 
152 	if (dma_map_direct(dev, ops))
153 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
154 	else
155 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
156 	debug_dma_map_page(dev, page, offset, size, dir, addr);
157 
158 	return addr;
159 }
160 EXPORT_SYMBOL(dma_map_page_attrs);
161 
162 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
163 		enum dma_data_direction dir, unsigned long attrs)
164 {
165 	const struct dma_map_ops *ops = get_dma_ops(dev);
166 
167 	BUG_ON(!valid_dma_direction(dir));
168 	if (dma_map_direct(dev, ops))
169 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
170 	else if (ops->unmap_page)
171 		ops->unmap_page(dev, addr, size, dir, attrs);
172 	debug_dma_unmap_page(dev, addr, size, dir);
173 }
174 EXPORT_SYMBOL(dma_unmap_page_attrs);
175 
176 /*
177  * dma_maps_sg_attrs returns 0 on error and > 0 on success.
178  * It should never return a value < 0.
179  */
180 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
181 		enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops))
192 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
193 	else
194 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
195 	BUG_ON(ents < 0);
196 	debug_dma_map_sg(dev, sg, nents, ents, dir);
197 
198 	return ents;
199 }
200 EXPORT_SYMBOL(dma_map_sg_attrs);
201 
202 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
203 				      int nents, enum dma_data_direction dir,
204 				      unsigned long attrs)
205 {
206 	const struct dma_map_ops *ops = get_dma_ops(dev);
207 
208 	BUG_ON(!valid_dma_direction(dir));
209 	debug_dma_unmap_sg(dev, sg, nents, dir);
210 	if (dma_map_direct(dev, ops))
211 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
212 	else if (ops->unmap_sg)
213 		ops->unmap_sg(dev, sg, nents, dir, attrs);
214 }
215 EXPORT_SYMBOL(dma_unmap_sg_attrs);
216 
217 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
218 		size_t size, enum dma_data_direction dir, unsigned long attrs)
219 {
220 	const struct dma_map_ops *ops = get_dma_ops(dev);
221 	dma_addr_t addr = DMA_MAPPING_ERROR;
222 
223 	BUG_ON(!valid_dma_direction(dir));
224 
225 	if (WARN_ON_ONCE(!dev->dma_mask))
226 		return DMA_MAPPING_ERROR;
227 
228 	/* Don't allow RAM to be mapped */
229 	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
230 		return DMA_MAPPING_ERROR;
231 
232 	if (dma_map_direct(dev, ops))
233 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
234 	else if (ops->map_resource)
235 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
236 
237 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
238 	return addr;
239 }
240 EXPORT_SYMBOL(dma_map_resource);
241 
242 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
243 		enum dma_data_direction dir, unsigned long attrs)
244 {
245 	const struct dma_map_ops *ops = get_dma_ops(dev);
246 
247 	BUG_ON(!valid_dma_direction(dir));
248 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
249 		ops->unmap_resource(dev, addr, size, dir, attrs);
250 	debug_dma_unmap_resource(dev, addr, size, dir);
251 }
252 EXPORT_SYMBOL(dma_unmap_resource);
253 
254 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
255 		enum dma_data_direction dir)
256 {
257 	const struct dma_map_ops *ops = get_dma_ops(dev);
258 
259 	BUG_ON(!valid_dma_direction(dir));
260 	if (dma_map_direct(dev, ops))
261 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
262 	else if (ops->sync_single_for_cpu)
263 		ops->sync_single_for_cpu(dev, addr, size, dir);
264 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
265 }
266 EXPORT_SYMBOL(dma_sync_single_for_cpu);
267 
268 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
269 		size_t size, enum dma_data_direction dir)
270 {
271 	const struct dma_map_ops *ops = get_dma_ops(dev);
272 
273 	BUG_ON(!valid_dma_direction(dir));
274 	if (dma_map_direct(dev, ops))
275 		dma_direct_sync_single_for_device(dev, addr, size, dir);
276 	else if (ops->sync_single_for_device)
277 		ops->sync_single_for_device(dev, addr, size, dir);
278 	debug_dma_sync_single_for_device(dev, addr, size, dir);
279 }
280 EXPORT_SYMBOL(dma_sync_single_for_device);
281 
282 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
283 		    int nelems, enum dma_data_direction dir)
284 {
285 	const struct dma_map_ops *ops = get_dma_ops(dev);
286 
287 	BUG_ON(!valid_dma_direction(dir));
288 	if (dma_map_direct(dev, ops))
289 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
290 	else if (ops->sync_sg_for_cpu)
291 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
292 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
293 }
294 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
295 
296 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
297 		       int nelems, enum dma_data_direction dir)
298 {
299 	const struct dma_map_ops *ops = get_dma_ops(dev);
300 
301 	BUG_ON(!valid_dma_direction(dir));
302 	if (dma_map_direct(dev, ops))
303 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
304 	else if (ops->sync_sg_for_device)
305 		ops->sync_sg_for_device(dev, sg, nelems, dir);
306 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
307 }
308 EXPORT_SYMBOL(dma_sync_sg_for_device);
309 
310 /*
311  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
312  * that the intention is to allow exporting memory allocated via the
313  * coherent DMA APIs through the dma_buf API, which only accepts a
314  * scattertable.  This presents a couple of problems:
315  * 1. Not all memory allocated via the coherent DMA APIs is backed by
316  *    a struct page
317  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
318  *    as we will try to flush the memory through a different alias to that
319  *    actually being used (and the flushes are redundant.)
320  */
321 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
322 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
323 		unsigned long attrs)
324 {
325 	const struct dma_map_ops *ops = get_dma_ops(dev);
326 
327 	if (dma_alloc_direct(dev, ops))
328 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
329 				size, attrs);
330 	if (!ops->get_sgtable)
331 		return -ENXIO;
332 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
333 }
334 EXPORT_SYMBOL(dma_get_sgtable_attrs);
335 
336 #ifdef CONFIG_MMU
337 /*
338  * Return the page attributes used for mapping dma_alloc_* memory, either in
339  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
340  */
341 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
342 {
343 	if (force_dma_unencrypted(dev))
344 		prot = pgprot_decrypted(prot);
345 	if (dev_is_dma_coherent(dev))
346 		return prot;
347 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
348 	if (attrs & DMA_ATTR_WRITE_COMBINE)
349 		return pgprot_writecombine(prot);
350 #endif
351 	return pgprot_dmacoherent(prot);
352 }
353 #endif /* CONFIG_MMU */
354 
355 /**
356  * dma_can_mmap - check if a given device supports dma_mmap_*
357  * @dev: device to check
358  *
359  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
360  * map DMA allocations to userspace.
361  */
362 bool dma_can_mmap(struct device *dev)
363 {
364 	const struct dma_map_ops *ops = get_dma_ops(dev);
365 
366 	if (dma_alloc_direct(dev, ops))
367 		return dma_direct_can_mmap(dev);
368 	return ops->mmap != NULL;
369 }
370 EXPORT_SYMBOL_GPL(dma_can_mmap);
371 
372 /**
373  * dma_mmap_attrs - map a coherent DMA allocation into user space
374  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
375  * @vma: vm_area_struct describing requested user mapping
376  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
377  * @dma_addr: device-view address returned from dma_alloc_attrs
378  * @size: size of memory originally requested in dma_alloc_attrs
379  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
380  *
381  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
382  * space.  The coherent DMA buffer must not be freed by the driver until the
383  * user space mapping has been released.
384  */
385 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
386 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
387 		unsigned long attrs)
388 {
389 	const struct dma_map_ops *ops = get_dma_ops(dev);
390 
391 	if (dma_alloc_direct(dev, ops))
392 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
393 				attrs);
394 	if (!ops->mmap)
395 		return -ENXIO;
396 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
397 }
398 EXPORT_SYMBOL(dma_mmap_attrs);
399 
400 u64 dma_get_required_mask(struct device *dev)
401 {
402 	const struct dma_map_ops *ops = get_dma_ops(dev);
403 
404 	if (dma_alloc_direct(dev, ops))
405 		return dma_direct_get_required_mask(dev);
406 	if (ops->get_required_mask)
407 		return ops->get_required_mask(dev);
408 
409 	/*
410 	 * We require every DMA ops implementation to at least support a 32-bit
411 	 * DMA mask (and use bounce buffering if that isn't supported in
412 	 * hardware).  As the direct mapping code has its own routine to
413 	 * actually report an optimal mask we default to 32-bit here as that
414 	 * is the right thing for most IOMMUs, and at least not actively
415 	 * harmful in general.
416 	 */
417 	return DMA_BIT_MASK(32);
418 }
419 EXPORT_SYMBOL_GPL(dma_get_required_mask);
420 
421 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
422 		gfp_t flag, unsigned long attrs)
423 {
424 	const struct dma_map_ops *ops = get_dma_ops(dev);
425 	void *cpu_addr;
426 
427 	WARN_ON_ONCE(!dev->coherent_dma_mask);
428 
429 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
430 		return cpu_addr;
431 
432 	/* let the implementation decide on the zone to allocate from: */
433 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
434 
435 	if (dma_alloc_direct(dev, ops))
436 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
437 	else if (ops->alloc)
438 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
439 	else
440 		return NULL;
441 
442 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
443 	return cpu_addr;
444 }
445 EXPORT_SYMBOL(dma_alloc_attrs);
446 
447 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
448 		dma_addr_t dma_handle, unsigned long attrs)
449 {
450 	const struct dma_map_ops *ops = get_dma_ops(dev);
451 
452 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
453 		return;
454 	/*
455 	 * On non-coherent platforms which implement DMA-coherent buffers via
456 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
457 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
458 	 * sleep on some machines, and b) an indication that the driver is
459 	 * probably misusing the coherent API anyway.
460 	 */
461 	WARN_ON(irqs_disabled());
462 
463 	if (!cpu_addr)
464 		return;
465 
466 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
467 	if (dma_alloc_direct(dev, ops))
468 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
469 	else if (ops->free)
470 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
471 }
472 EXPORT_SYMBOL(dma_free_attrs);
473 
474 struct page *dma_alloc_pages(struct device *dev, size_t size,
475 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
476 {
477 	const struct dma_map_ops *ops = get_dma_ops(dev);
478 	struct page *page;
479 
480 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
481 		return NULL;
482 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
483 		return NULL;
484 
485 	size = PAGE_ALIGN(size);
486 	if (dma_alloc_direct(dev, ops))
487 		page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
488 	else if (ops->alloc_pages)
489 		page = ops->alloc_pages(dev, size, dma_handle, dir, gfp);
490 	else
491 		return NULL;
492 
493 	debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
494 
495 	return page;
496 }
497 EXPORT_SYMBOL_GPL(dma_alloc_pages);
498 
499 void dma_free_pages(struct device *dev, size_t size, struct page *page,
500 		dma_addr_t dma_handle, enum dma_data_direction dir)
501 {
502 	const struct dma_map_ops *ops = get_dma_ops(dev);
503 
504 	size = PAGE_ALIGN(size);
505 	debug_dma_unmap_page(dev, dma_handle, size, dir);
506 
507 	if (dma_alloc_direct(dev, ops))
508 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
509 	else if (ops->free_pages)
510 		ops->free_pages(dev, size, page, dma_handle, dir);
511 }
512 EXPORT_SYMBOL_GPL(dma_free_pages);
513 
514 void *dma_alloc_noncoherent(struct device *dev, size_t size,
515 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
516 {
517 	const struct dma_map_ops *ops = get_dma_ops(dev);
518 	void *vaddr;
519 
520 	if (!ops || !ops->alloc_noncoherent) {
521 		struct page *page;
522 
523 		page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
524 		if (!page)
525 			return NULL;
526 		return page_address(page);
527 	}
528 
529 	size = PAGE_ALIGN(size);
530 	vaddr = ops->alloc_noncoherent(dev, size, dma_handle, dir, gfp);
531 	if (vaddr)
532 		debug_dma_map_page(dev, virt_to_page(vaddr), 0, size, dir,
533 				   *dma_handle);
534 	return vaddr;
535 }
536 EXPORT_SYMBOL_GPL(dma_alloc_noncoherent);
537 
538 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
539 		dma_addr_t dma_handle, enum dma_data_direction dir)
540 {
541 	const struct dma_map_ops *ops = get_dma_ops(dev);
542 
543 	if (!ops || !ops->free_noncoherent) {
544 		dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
545 		return;
546 	}
547 
548 	size = PAGE_ALIGN(size);
549 	debug_dma_unmap_page(dev, dma_handle, size, dir);
550 	ops->free_noncoherent(dev, size, vaddr, dma_handle, dir);
551 }
552 EXPORT_SYMBOL_GPL(dma_free_noncoherent);
553 
554 int dma_supported(struct device *dev, u64 mask)
555 {
556 	const struct dma_map_ops *ops = get_dma_ops(dev);
557 
558 	/*
559 	 * ->dma_supported sets the bypass flag, so we must always call
560 	 * into the method here unless the device is truly direct mapped.
561 	 */
562 	if (!ops)
563 		return dma_direct_supported(dev, mask);
564 	if (!ops->dma_supported)
565 		return 1;
566 	return ops->dma_supported(dev, mask);
567 }
568 EXPORT_SYMBOL(dma_supported);
569 
570 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
571 void arch_dma_set_mask(struct device *dev, u64 mask);
572 #else
573 #define arch_dma_set_mask(dev, mask)	do { } while (0)
574 #endif
575 
576 int dma_set_mask(struct device *dev, u64 mask)
577 {
578 	/*
579 	 * Truncate the mask to the actually supported dma_addr_t width to
580 	 * avoid generating unsupportable addresses.
581 	 */
582 	mask = (dma_addr_t)mask;
583 
584 	if (!dev->dma_mask || !dma_supported(dev, mask))
585 		return -EIO;
586 
587 	arch_dma_set_mask(dev, mask);
588 	*dev->dma_mask = mask;
589 	return 0;
590 }
591 EXPORT_SYMBOL(dma_set_mask);
592 
593 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
594 int dma_set_coherent_mask(struct device *dev, u64 mask)
595 {
596 	/*
597 	 * Truncate the mask to the actually supported dma_addr_t width to
598 	 * avoid generating unsupportable addresses.
599 	 */
600 	mask = (dma_addr_t)mask;
601 
602 	if (!dma_supported(dev, mask))
603 		return -EIO;
604 
605 	dev->coherent_dma_mask = mask;
606 	return 0;
607 }
608 EXPORT_SYMBOL(dma_set_coherent_mask);
609 #endif
610 
611 size_t dma_max_mapping_size(struct device *dev)
612 {
613 	const struct dma_map_ops *ops = get_dma_ops(dev);
614 	size_t size = SIZE_MAX;
615 
616 	if (dma_map_direct(dev, ops))
617 		size = dma_direct_max_mapping_size(dev);
618 	else if (ops && ops->max_mapping_size)
619 		size = ops->max_mapping_size(dev);
620 
621 	return size;
622 }
623 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
624 
625 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
626 {
627 	const struct dma_map_ops *ops = get_dma_ops(dev);
628 
629 	if (dma_map_direct(dev, ops))
630 		return dma_direct_need_sync(dev, dma_addr);
631 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
632 }
633 EXPORT_SYMBOL_GPL(dma_need_sync);
634 
635 unsigned long dma_get_merge_boundary(struct device *dev)
636 {
637 	const struct dma_map_ops *ops = get_dma_ops(dev);
638 
639 	if (!ops || !ops->get_merge_boundary)
640 		return 0;	/* can't merge */
641 
642 	return ops->get_merge_boundary(dev);
643 }
644 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
645