1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/of_device.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include "debug.h" 17 #include "direct.h" 18 19 bool dma_default_coherent; 20 21 /* 22 * Managed DMA API 23 */ 24 struct dma_devres { 25 size_t size; 26 void *vaddr; 27 dma_addr_t dma_handle; 28 unsigned long attrs; 29 }; 30 31 static void dmam_release(struct device *dev, void *res) 32 { 33 struct dma_devres *this = res; 34 35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 36 this->attrs); 37 } 38 39 static int dmam_match(struct device *dev, void *res, void *match_data) 40 { 41 struct dma_devres *this = res, *match = match_data; 42 43 if (this->vaddr == match->vaddr) { 44 WARN_ON(this->size != match->size || 45 this->dma_handle != match->dma_handle); 46 return 1; 47 } 48 return 0; 49 } 50 51 /** 52 * dmam_free_coherent - Managed dma_free_coherent() 53 * @dev: Device to free coherent memory for 54 * @size: Size of allocation 55 * @vaddr: Virtual address of the memory to free 56 * @dma_handle: DMA handle of the memory to free 57 * 58 * Managed dma_free_coherent(). 59 */ 60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 61 dma_addr_t dma_handle) 62 { 63 struct dma_devres match_data = { size, vaddr, dma_handle }; 64 65 dma_free_coherent(dev, size, vaddr, dma_handle); 66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 67 } 68 EXPORT_SYMBOL(dmam_free_coherent); 69 70 /** 71 * dmam_alloc_attrs - Managed dma_alloc_attrs() 72 * @dev: Device to allocate non_coherent memory for 73 * @size: Size of allocation 74 * @dma_handle: Out argument for allocated DMA handle 75 * @gfp: Allocation flags 76 * @attrs: Flags in the DMA_ATTR_* namespace. 77 * 78 * Managed dma_alloc_attrs(). Memory allocated using this function will be 79 * automatically released on driver detach. 80 * 81 * RETURNS: 82 * Pointer to allocated memory on success, NULL on failure. 83 */ 84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 85 gfp_t gfp, unsigned long attrs) 86 { 87 struct dma_devres *dr; 88 void *vaddr; 89 90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 91 if (!dr) 92 return NULL; 93 94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 95 if (!vaddr) { 96 devres_free(dr); 97 return NULL; 98 } 99 100 dr->vaddr = vaddr; 101 dr->dma_handle = *dma_handle; 102 dr->size = size; 103 dr->attrs = attrs; 104 105 devres_add(dev, dr); 106 107 return vaddr; 108 } 109 EXPORT_SYMBOL(dmam_alloc_attrs); 110 111 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 112 const struct dma_map_ops *ops) 113 { 114 if (likely(!ops)) 115 return true; 116 #ifdef CONFIG_DMA_OPS_BYPASS 117 if (dev->dma_ops_bypass) 118 return min_not_zero(mask, dev->bus_dma_limit) >= 119 dma_direct_get_required_mask(dev); 120 #endif 121 return false; 122 } 123 124 125 /* 126 * Check if the devices uses a direct mapping for streaming DMA operations. 127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 128 * enough. 129 */ 130 static inline bool dma_alloc_direct(struct device *dev, 131 const struct dma_map_ops *ops) 132 { 133 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 134 } 135 136 static inline bool dma_map_direct(struct device *dev, 137 const struct dma_map_ops *ops) 138 { 139 return dma_go_direct(dev, *dev->dma_mask, ops); 140 } 141 142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 143 size_t offset, size_t size, enum dma_data_direction dir, 144 unsigned long attrs) 145 { 146 const struct dma_map_ops *ops = get_dma_ops(dev); 147 dma_addr_t addr; 148 149 BUG_ON(!valid_dma_direction(dir)); 150 151 if (WARN_ON_ONCE(!dev->dma_mask)) 152 return DMA_MAPPING_ERROR; 153 154 if (dma_map_direct(dev, ops) || 155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 157 else 158 addr = ops->map_page(dev, page, offset, size, dir, attrs); 159 debug_dma_map_page(dev, page, offset, size, dir, addr); 160 161 return addr; 162 } 163 EXPORT_SYMBOL(dma_map_page_attrs); 164 165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 166 enum dma_data_direction dir, unsigned long attrs) 167 { 168 const struct dma_map_ops *ops = get_dma_ops(dev); 169 170 BUG_ON(!valid_dma_direction(dir)); 171 if (dma_map_direct(dev, ops) || 172 arch_dma_unmap_page_direct(dev, addr + size)) 173 dma_direct_unmap_page(dev, addr, size, dir, attrs); 174 else if (ops->unmap_page) 175 ops->unmap_page(dev, addr, size, dir, attrs); 176 debug_dma_unmap_page(dev, addr, size, dir); 177 } 178 EXPORT_SYMBOL(dma_unmap_page_attrs); 179 180 /* 181 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 182 * It should never return a value < 0. 183 */ 184 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, 185 enum dma_data_direction dir, unsigned long attrs) 186 { 187 const struct dma_map_ops *ops = get_dma_ops(dev); 188 int ents; 189 190 BUG_ON(!valid_dma_direction(dir)); 191 192 if (WARN_ON_ONCE(!dev->dma_mask)) 193 return 0; 194 195 if (dma_map_direct(dev, ops) || 196 arch_dma_map_sg_direct(dev, sg, nents)) 197 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 198 else 199 ents = ops->map_sg(dev, sg, nents, dir, attrs); 200 BUG_ON(ents < 0); 201 debug_dma_map_sg(dev, sg, nents, ents, dir); 202 203 return ents; 204 } 205 EXPORT_SYMBOL(dma_map_sg_attrs); 206 207 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 208 int nents, enum dma_data_direction dir, 209 unsigned long attrs) 210 { 211 const struct dma_map_ops *ops = get_dma_ops(dev); 212 213 BUG_ON(!valid_dma_direction(dir)); 214 debug_dma_unmap_sg(dev, sg, nents, dir); 215 if (dma_map_direct(dev, ops) || 216 arch_dma_unmap_sg_direct(dev, sg, nents)) 217 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 218 else if (ops->unmap_sg) 219 ops->unmap_sg(dev, sg, nents, dir, attrs); 220 } 221 EXPORT_SYMBOL(dma_unmap_sg_attrs); 222 223 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 224 size_t size, enum dma_data_direction dir, unsigned long attrs) 225 { 226 const struct dma_map_ops *ops = get_dma_ops(dev); 227 dma_addr_t addr = DMA_MAPPING_ERROR; 228 229 BUG_ON(!valid_dma_direction(dir)); 230 231 if (WARN_ON_ONCE(!dev->dma_mask)) 232 return DMA_MAPPING_ERROR; 233 234 /* Don't allow RAM to be mapped */ 235 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) 236 return DMA_MAPPING_ERROR; 237 238 if (dma_map_direct(dev, ops)) 239 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 240 else if (ops->map_resource) 241 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 242 243 debug_dma_map_resource(dev, phys_addr, size, dir, addr); 244 return addr; 245 } 246 EXPORT_SYMBOL(dma_map_resource); 247 248 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 249 enum dma_data_direction dir, unsigned long attrs) 250 { 251 const struct dma_map_ops *ops = get_dma_ops(dev); 252 253 BUG_ON(!valid_dma_direction(dir)); 254 if (!dma_map_direct(dev, ops) && ops->unmap_resource) 255 ops->unmap_resource(dev, addr, size, dir, attrs); 256 debug_dma_unmap_resource(dev, addr, size, dir); 257 } 258 EXPORT_SYMBOL(dma_unmap_resource); 259 260 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 261 enum dma_data_direction dir) 262 { 263 const struct dma_map_ops *ops = get_dma_ops(dev); 264 265 BUG_ON(!valid_dma_direction(dir)); 266 if (dma_map_direct(dev, ops)) 267 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 268 else if (ops->sync_single_for_cpu) 269 ops->sync_single_for_cpu(dev, addr, size, dir); 270 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 271 } 272 EXPORT_SYMBOL(dma_sync_single_for_cpu); 273 274 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 275 size_t size, enum dma_data_direction dir) 276 { 277 const struct dma_map_ops *ops = get_dma_ops(dev); 278 279 BUG_ON(!valid_dma_direction(dir)); 280 if (dma_map_direct(dev, ops)) 281 dma_direct_sync_single_for_device(dev, addr, size, dir); 282 else if (ops->sync_single_for_device) 283 ops->sync_single_for_device(dev, addr, size, dir); 284 debug_dma_sync_single_for_device(dev, addr, size, dir); 285 } 286 EXPORT_SYMBOL(dma_sync_single_for_device); 287 288 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 289 int nelems, enum dma_data_direction dir) 290 { 291 const struct dma_map_ops *ops = get_dma_ops(dev); 292 293 BUG_ON(!valid_dma_direction(dir)); 294 if (dma_map_direct(dev, ops)) 295 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 296 else if (ops->sync_sg_for_cpu) 297 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 298 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 299 } 300 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 301 302 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 303 int nelems, enum dma_data_direction dir) 304 { 305 const struct dma_map_ops *ops = get_dma_ops(dev); 306 307 BUG_ON(!valid_dma_direction(dir)); 308 if (dma_map_direct(dev, ops)) 309 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 310 else if (ops->sync_sg_for_device) 311 ops->sync_sg_for_device(dev, sg, nelems, dir); 312 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 313 } 314 EXPORT_SYMBOL(dma_sync_sg_for_device); 315 316 /* 317 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 318 * that the intention is to allow exporting memory allocated via the 319 * coherent DMA APIs through the dma_buf API, which only accepts a 320 * scattertable. This presents a couple of problems: 321 * 1. Not all memory allocated via the coherent DMA APIs is backed by 322 * a struct page 323 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 324 * as we will try to flush the memory through a different alias to that 325 * actually being used (and the flushes are redundant.) 326 */ 327 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 328 void *cpu_addr, dma_addr_t dma_addr, size_t size, 329 unsigned long attrs) 330 { 331 const struct dma_map_ops *ops = get_dma_ops(dev); 332 333 if (dma_alloc_direct(dev, ops)) 334 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 335 size, attrs); 336 if (!ops->get_sgtable) 337 return -ENXIO; 338 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 339 } 340 EXPORT_SYMBOL(dma_get_sgtable_attrs); 341 342 #ifdef CONFIG_MMU 343 /* 344 * Return the page attributes used for mapping dma_alloc_* memory, either in 345 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 346 */ 347 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 348 { 349 if (force_dma_unencrypted(dev)) 350 prot = pgprot_decrypted(prot); 351 if (dev_is_dma_coherent(dev)) 352 return prot; 353 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 354 if (attrs & DMA_ATTR_WRITE_COMBINE) 355 return pgprot_writecombine(prot); 356 #endif 357 return pgprot_dmacoherent(prot); 358 } 359 #endif /* CONFIG_MMU */ 360 361 /** 362 * dma_can_mmap - check if a given device supports dma_mmap_* 363 * @dev: device to check 364 * 365 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 366 * map DMA allocations to userspace. 367 */ 368 bool dma_can_mmap(struct device *dev) 369 { 370 const struct dma_map_ops *ops = get_dma_ops(dev); 371 372 if (dma_alloc_direct(dev, ops)) 373 return dma_direct_can_mmap(dev); 374 return ops->mmap != NULL; 375 } 376 EXPORT_SYMBOL_GPL(dma_can_mmap); 377 378 /** 379 * dma_mmap_attrs - map a coherent DMA allocation into user space 380 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 381 * @vma: vm_area_struct describing requested user mapping 382 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 383 * @dma_addr: device-view address returned from dma_alloc_attrs 384 * @size: size of memory originally requested in dma_alloc_attrs 385 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 386 * 387 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 388 * space. The coherent DMA buffer must not be freed by the driver until the 389 * user space mapping has been released. 390 */ 391 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 392 void *cpu_addr, dma_addr_t dma_addr, size_t size, 393 unsigned long attrs) 394 { 395 const struct dma_map_ops *ops = get_dma_ops(dev); 396 397 if (dma_alloc_direct(dev, ops)) 398 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 399 attrs); 400 if (!ops->mmap) 401 return -ENXIO; 402 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 403 } 404 EXPORT_SYMBOL(dma_mmap_attrs); 405 406 u64 dma_get_required_mask(struct device *dev) 407 { 408 const struct dma_map_ops *ops = get_dma_ops(dev); 409 410 if (dma_alloc_direct(dev, ops)) 411 return dma_direct_get_required_mask(dev); 412 if (ops->get_required_mask) 413 return ops->get_required_mask(dev); 414 415 /* 416 * We require every DMA ops implementation to at least support a 32-bit 417 * DMA mask (and use bounce buffering if that isn't supported in 418 * hardware). As the direct mapping code has its own routine to 419 * actually report an optimal mask we default to 32-bit here as that 420 * is the right thing for most IOMMUs, and at least not actively 421 * harmful in general. 422 */ 423 return DMA_BIT_MASK(32); 424 } 425 EXPORT_SYMBOL_GPL(dma_get_required_mask); 426 427 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 428 gfp_t flag, unsigned long attrs) 429 { 430 const struct dma_map_ops *ops = get_dma_ops(dev); 431 void *cpu_addr; 432 433 WARN_ON_ONCE(!dev->coherent_dma_mask); 434 435 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 436 return cpu_addr; 437 438 /* let the implementation decide on the zone to allocate from: */ 439 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 440 441 if (dma_alloc_direct(dev, ops)) 442 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 443 else if (ops->alloc) 444 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 445 else 446 return NULL; 447 448 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 449 return cpu_addr; 450 } 451 EXPORT_SYMBOL(dma_alloc_attrs); 452 453 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 454 dma_addr_t dma_handle, unsigned long attrs) 455 { 456 const struct dma_map_ops *ops = get_dma_ops(dev); 457 458 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 459 return; 460 /* 461 * On non-coherent platforms which implement DMA-coherent buffers via 462 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 463 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 464 * sleep on some machines, and b) an indication that the driver is 465 * probably misusing the coherent API anyway. 466 */ 467 WARN_ON(irqs_disabled()); 468 469 if (!cpu_addr) 470 return; 471 472 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 473 if (dma_alloc_direct(dev, ops)) 474 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 475 else if (ops->free) 476 ops->free(dev, size, cpu_addr, dma_handle, attrs); 477 } 478 EXPORT_SYMBOL(dma_free_attrs); 479 480 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 481 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 482 { 483 const struct dma_map_ops *ops = get_dma_ops(dev); 484 485 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 486 return NULL; 487 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 488 return NULL; 489 490 size = PAGE_ALIGN(size); 491 if (dma_alloc_direct(dev, ops)) 492 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 493 if (!ops->alloc_pages) 494 return NULL; 495 return ops->alloc_pages(dev, size, dma_handle, dir, gfp); 496 } 497 498 struct page *dma_alloc_pages(struct device *dev, size_t size, 499 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 500 { 501 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 502 503 if (page) 504 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle); 505 return page; 506 } 507 EXPORT_SYMBOL_GPL(dma_alloc_pages); 508 509 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 510 dma_addr_t dma_handle, enum dma_data_direction dir) 511 { 512 const struct dma_map_ops *ops = get_dma_ops(dev); 513 514 size = PAGE_ALIGN(size); 515 if (dma_alloc_direct(dev, ops)) 516 dma_direct_free_pages(dev, size, page, dma_handle, dir); 517 else if (ops->free_pages) 518 ops->free_pages(dev, size, page, dma_handle, dir); 519 } 520 521 void dma_free_pages(struct device *dev, size_t size, struct page *page, 522 dma_addr_t dma_handle, enum dma_data_direction dir) 523 { 524 debug_dma_unmap_page(dev, dma_handle, size, dir); 525 __dma_free_pages(dev, size, page, dma_handle, dir); 526 } 527 EXPORT_SYMBOL_GPL(dma_free_pages); 528 529 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 530 size_t size, struct page *page) 531 { 532 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 533 534 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 535 return -ENXIO; 536 return remap_pfn_range(vma, vma->vm_start, 537 page_to_pfn(page) + vma->vm_pgoff, 538 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 539 } 540 EXPORT_SYMBOL_GPL(dma_mmap_pages); 541 542 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 543 enum dma_data_direction dir, gfp_t gfp) 544 { 545 struct sg_table *sgt; 546 struct page *page; 547 548 sgt = kmalloc(sizeof(*sgt), gfp); 549 if (!sgt) 550 return NULL; 551 if (sg_alloc_table(sgt, 1, gfp)) 552 goto out_free_sgt; 553 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 554 if (!page) 555 goto out_free_table; 556 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 557 sg_dma_len(sgt->sgl) = sgt->sgl->length; 558 return sgt; 559 out_free_table: 560 sg_free_table(sgt); 561 out_free_sgt: 562 kfree(sgt); 563 return NULL; 564 } 565 566 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 567 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 568 { 569 const struct dma_map_ops *ops = get_dma_ops(dev); 570 struct sg_table *sgt; 571 572 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 573 return NULL; 574 575 if (ops && ops->alloc_noncontiguous) 576 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); 577 else 578 sgt = alloc_single_sgt(dev, size, dir, gfp); 579 580 if (sgt) { 581 sgt->nents = 1; 582 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir); 583 } 584 return sgt; 585 } 586 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 587 588 static void free_single_sgt(struct device *dev, size_t size, 589 struct sg_table *sgt, enum dma_data_direction dir) 590 { 591 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 592 dir); 593 sg_free_table(sgt); 594 kfree(sgt); 595 } 596 597 void dma_free_noncontiguous(struct device *dev, size_t size, 598 struct sg_table *sgt, enum dma_data_direction dir) 599 { 600 const struct dma_map_ops *ops = get_dma_ops(dev); 601 602 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 603 if (ops && ops->free_noncontiguous) 604 ops->free_noncontiguous(dev, size, sgt, dir); 605 else 606 free_single_sgt(dev, size, sgt, dir); 607 } 608 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 609 610 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 611 struct sg_table *sgt) 612 { 613 const struct dma_map_ops *ops = get_dma_ops(dev); 614 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 615 616 if (ops && ops->alloc_noncontiguous) 617 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 618 return page_address(sg_page(sgt->sgl)); 619 } 620 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 621 622 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 623 { 624 const struct dma_map_ops *ops = get_dma_ops(dev); 625 626 if (ops && ops->alloc_noncontiguous) 627 vunmap(vaddr); 628 } 629 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 630 631 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 632 size_t size, struct sg_table *sgt) 633 { 634 const struct dma_map_ops *ops = get_dma_ops(dev); 635 636 if (ops && ops->alloc_noncontiguous) { 637 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 638 639 if (vma->vm_pgoff >= count || 640 vma_pages(vma) > count - vma->vm_pgoff) 641 return -ENXIO; 642 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 643 } 644 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 645 } 646 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 647 648 int dma_supported(struct device *dev, u64 mask) 649 { 650 const struct dma_map_ops *ops = get_dma_ops(dev); 651 652 /* 653 * ->dma_supported sets the bypass flag, so we must always call 654 * into the method here unless the device is truly direct mapped. 655 */ 656 if (!ops) 657 return dma_direct_supported(dev, mask); 658 if (!ops->dma_supported) 659 return 1; 660 return ops->dma_supported(dev, mask); 661 } 662 EXPORT_SYMBOL(dma_supported); 663 664 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK 665 void arch_dma_set_mask(struct device *dev, u64 mask); 666 #else 667 #define arch_dma_set_mask(dev, mask) do { } while (0) 668 #endif 669 670 int dma_set_mask(struct device *dev, u64 mask) 671 { 672 /* 673 * Truncate the mask to the actually supported dma_addr_t width to 674 * avoid generating unsupportable addresses. 675 */ 676 mask = (dma_addr_t)mask; 677 678 if (!dev->dma_mask || !dma_supported(dev, mask)) 679 return -EIO; 680 681 arch_dma_set_mask(dev, mask); 682 *dev->dma_mask = mask; 683 return 0; 684 } 685 EXPORT_SYMBOL(dma_set_mask); 686 687 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 688 int dma_set_coherent_mask(struct device *dev, u64 mask) 689 { 690 /* 691 * Truncate the mask to the actually supported dma_addr_t width to 692 * avoid generating unsupportable addresses. 693 */ 694 mask = (dma_addr_t)mask; 695 696 if (!dma_supported(dev, mask)) 697 return -EIO; 698 699 dev->coherent_dma_mask = mask; 700 return 0; 701 } 702 EXPORT_SYMBOL(dma_set_coherent_mask); 703 #endif 704 705 size_t dma_max_mapping_size(struct device *dev) 706 { 707 const struct dma_map_ops *ops = get_dma_ops(dev); 708 size_t size = SIZE_MAX; 709 710 if (dma_map_direct(dev, ops)) 711 size = dma_direct_max_mapping_size(dev); 712 else if (ops && ops->max_mapping_size) 713 size = ops->max_mapping_size(dev); 714 715 return size; 716 } 717 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 718 719 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 720 { 721 const struct dma_map_ops *ops = get_dma_ops(dev); 722 723 if (dma_map_direct(dev, ops)) 724 return dma_direct_need_sync(dev, dma_addr); 725 return ops->sync_single_for_cpu || ops->sync_single_for_device; 726 } 727 EXPORT_SYMBOL_GPL(dma_need_sync); 728 729 unsigned long dma_get_merge_boundary(struct device *dev) 730 { 731 const struct dma_map_ops *ops = get_dma_ops(dev); 732 733 if (!ops || !ops->get_merge_boundary) 734 return 0; /* can't merge */ 735 736 return ops->get_merge_boundary(dev); 737 } 738 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 739