1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/iommu-dma.h> 14 #include <linux/kmsan.h> 15 #include <linux/of_device.h> 16 #include <linux/slab.h> 17 #include <linux/vmalloc.h> 18 #include "debug.h" 19 #include "direct.h" 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/dma.h> 23 24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT); 28 #endif 29 30 /* 31 * Managed DMA API 32 */ 33 struct dma_devres { 34 size_t size; 35 void *vaddr; 36 dma_addr_t dma_handle; 37 unsigned long attrs; 38 }; 39 40 static void dmam_release(struct device *dev, void *res) 41 { 42 struct dma_devres *this = res; 43 44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 45 this->attrs); 46 } 47 48 static int dmam_match(struct device *dev, void *res, void *match_data) 49 { 50 struct dma_devres *this = res, *match = match_data; 51 52 if (this->vaddr == match->vaddr) { 53 WARN_ON(this->size != match->size || 54 this->dma_handle != match->dma_handle); 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * dmam_free_coherent - Managed dma_free_coherent() 62 * @dev: Device to free coherent memory for 63 * @size: Size of allocation 64 * @vaddr: Virtual address of the memory to free 65 * @dma_handle: DMA handle of the memory to free 66 * 67 * Managed dma_free_coherent(). 68 */ 69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 70 dma_addr_t dma_handle) 71 { 72 struct dma_devres match_data = { size, vaddr, dma_handle }; 73 74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 75 dma_free_coherent(dev, size, vaddr, dma_handle); 76 } 77 EXPORT_SYMBOL(dmam_free_coherent); 78 79 /** 80 * dmam_alloc_attrs - Managed dma_alloc_attrs() 81 * @dev: Device to allocate non_coherent memory for 82 * @size: Size of allocation 83 * @dma_handle: Out argument for allocated DMA handle 84 * @gfp: Allocation flags 85 * @attrs: Flags in the DMA_ATTR_* namespace. 86 * 87 * Managed dma_alloc_attrs(). Memory allocated using this function will be 88 * automatically released on driver detach. 89 * 90 * RETURNS: 91 * Pointer to allocated memory on success, NULL on failure. 92 */ 93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 94 gfp_t gfp, unsigned long attrs) 95 { 96 struct dma_devres *dr; 97 void *vaddr; 98 99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 100 if (!dr) 101 return NULL; 102 103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 104 if (!vaddr) { 105 devres_free(dr); 106 return NULL; 107 } 108 109 dr->vaddr = vaddr; 110 dr->dma_handle = *dma_handle; 111 dr->size = size; 112 dr->attrs = attrs; 113 114 devres_add(dev, dr); 115 116 return vaddr; 117 } 118 EXPORT_SYMBOL(dmam_alloc_attrs); 119 120 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 121 const struct dma_map_ops *ops) 122 { 123 if (use_dma_iommu(dev)) 124 return false; 125 126 if (likely(!ops)) 127 return true; 128 129 #ifdef CONFIG_DMA_OPS_BYPASS 130 if (dev->dma_ops_bypass) 131 return min_not_zero(mask, dev->bus_dma_limit) >= 132 dma_direct_get_required_mask(dev); 133 #endif 134 return false; 135 } 136 137 138 /* 139 * Check if the devices uses a direct mapping for streaming DMA operations. 140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 141 * enough. 142 */ 143 static inline bool dma_alloc_direct(struct device *dev, 144 const struct dma_map_ops *ops) 145 { 146 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 147 } 148 149 static inline bool dma_map_direct(struct device *dev, 150 const struct dma_map_ops *ops) 151 { 152 return dma_go_direct(dev, *dev->dma_mask, ops); 153 } 154 155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 156 size_t offset, size_t size, enum dma_data_direction dir, 157 unsigned long attrs) 158 { 159 const struct dma_map_ops *ops = get_dma_ops(dev); 160 dma_addr_t addr; 161 162 BUG_ON(!valid_dma_direction(dir)); 163 164 if (WARN_ON_ONCE(!dev->dma_mask)) 165 return DMA_MAPPING_ERROR; 166 167 if (dma_map_direct(dev, ops) || 168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 170 else if (use_dma_iommu(dev)) 171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs); 172 else 173 addr = ops->map_page(dev, page, offset, size, dir, attrs); 174 kmsan_handle_dma(page, offset, size, dir); 175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir, 176 attrs); 177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); 178 179 return addr; 180 } 181 EXPORT_SYMBOL(dma_map_page_attrs); 182 183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 184 enum dma_data_direction dir, unsigned long attrs) 185 { 186 const struct dma_map_ops *ops = get_dma_ops(dev); 187 188 BUG_ON(!valid_dma_direction(dir)); 189 if (dma_map_direct(dev, ops) || 190 arch_dma_unmap_page_direct(dev, addr + size)) 191 dma_direct_unmap_page(dev, addr, size, dir, attrs); 192 else if (use_dma_iommu(dev)) 193 iommu_dma_unmap_page(dev, addr, size, dir, attrs); 194 else 195 ops->unmap_page(dev, addr, size, dir, attrs); 196 trace_dma_unmap_page(dev, addr, size, dir, attrs); 197 debug_dma_unmap_page(dev, addr, size, dir); 198 } 199 EXPORT_SYMBOL(dma_unmap_page_attrs); 200 201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 202 int nents, enum dma_data_direction dir, unsigned long attrs) 203 { 204 const struct dma_map_ops *ops = get_dma_ops(dev); 205 int ents; 206 207 BUG_ON(!valid_dma_direction(dir)); 208 209 if (WARN_ON_ONCE(!dev->dma_mask)) 210 return 0; 211 212 if (dma_map_direct(dev, ops) || 213 arch_dma_map_sg_direct(dev, sg, nents)) 214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 215 else if (use_dma_iommu(dev)) 216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs); 217 else 218 ents = ops->map_sg(dev, sg, nents, dir, attrs); 219 220 if (ents > 0) { 221 kmsan_handle_dma_sg(sg, nents, dir); 222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs); 223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); 224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 225 ents != -EIO && ents != -EREMOTEIO)) { 226 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs); 227 return -EIO; 228 } 229 230 return ents; 231 } 232 233 /** 234 * dma_map_sg_attrs - Map the given buffer for DMA 235 * @dev: The device for which to perform the DMA operation 236 * @sg: The sg_table object describing the buffer 237 * @nents: Number of entries to map 238 * @dir: DMA direction 239 * @attrs: Optional DMA attributes for the map operation 240 * 241 * Maps a buffer described by a scatterlist passed in the sg argument with 242 * nents segments for the @dir DMA operation by the @dev device. 243 * 244 * Returns the number of mapped entries (which can be less than nents) 245 * on success. Zero is returned for any error. 246 * 247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 248 * original sg and original nents (not the value returned by this funciton). 249 */ 250 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 251 int nents, enum dma_data_direction dir, unsigned long attrs) 252 { 253 int ret; 254 255 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 256 if (ret < 0) 257 return 0; 258 return ret; 259 } 260 EXPORT_SYMBOL(dma_map_sg_attrs); 261 262 /** 263 * dma_map_sgtable - Map the given buffer for DMA 264 * @dev: The device for which to perform the DMA operation 265 * @sgt: The sg_table object describing the buffer 266 * @dir: DMA direction 267 * @attrs: Optional DMA attributes for the map operation 268 * 269 * Maps a buffer described by a scatterlist stored in the given sg_table 270 * object for the @dir DMA operation by the @dev device. After success, the 271 * ownership for the buffer is transferred to the DMA domain. One has to 272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 273 * ownership of the buffer back to the CPU domain before touching the 274 * buffer by the CPU. 275 * 276 * Returns 0 on success or a negative error code on error. The following 277 * error codes are supported with the given meaning: 278 * 279 * -EINVAL An invalid argument, unaligned access or other error 280 * in usage. Will not succeed if retried. 281 * -ENOMEM Insufficient resources (like memory or IOVA space) to 282 * complete the mapping. Should succeed if retried later. 283 * -EIO Legacy error code with an unknown meaning. eg. this is 284 * returned if a lower level call returned 285 * DMA_MAPPING_ERROR. 286 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified 287 * in the sg_table. This will not succeed if retried. 288 */ 289 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 290 enum dma_data_direction dir, unsigned long attrs) 291 { 292 int nents; 293 294 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 295 if (nents < 0) 296 return nents; 297 sgt->nents = nents; 298 return 0; 299 } 300 EXPORT_SYMBOL_GPL(dma_map_sgtable); 301 302 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 303 int nents, enum dma_data_direction dir, 304 unsigned long attrs) 305 { 306 const struct dma_map_ops *ops = get_dma_ops(dev); 307 308 BUG_ON(!valid_dma_direction(dir)); 309 trace_dma_unmap_sg(dev, sg, nents, dir, attrs); 310 debug_dma_unmap_sg(dev, sg, nents, dir); 311 if (dma_map_direct(dev, ops) || 312 arch_dma_unmap_sg_direct(dev, sg, nents)) 313 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 314 else if (use_dma_iommu(dev)) 315 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs); 316 else if (ops->unmap_sg) 317 ops->unmap_sg(dev, sg, nents, dir, attrs); 318 } 319 EXPORT_SYMBOL(dma_unmap_sg_attrs); 320 321 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 322 size_t size, enum dma_data_direction dir, unsigned long attrs) 323 { 324 const struct dma_map_ops *ops = get_dma_ops(dev); 325 dma_addr_t addr = DMA_MAPPING_ERROR; 326 327 BUG_ON(!valid_dma_direction(dir)); 328 329 if (WARN_ON_ONCE(!dev->dma_mask)) 330 return DMA_MAPPING_ERROR; 331 332 if (dma_map_direct(dev, ops)) 333 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 334 else if (use_dma_iommu(dev)) 335 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs); 336 else if (ops->map_resource) 337 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 338 339 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs); 340 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); 341 return addr; 342 } 343 EXPORT_SYMBOL(dma_map_resource); 344 345 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 346 enum dma_data_direction dir, unsigned long attrs) 347 { 348 const struct dma_map_ops *ops = get_dma_ops(dev); 349 350 BUG_ON(!valid_dma_direction(dir)); 351 if (dma_map_direct(dev, ops)) 352 ; /* nothing to do: uncached and no swiotlb */ 353 else if (use_dma_iommu(dev)) 354 iommu_dma_unmap_resource(dev, addr, size, dir, attrs); 355 else if (ops->unmap_resource) 356 ops->unmap_resource(dev, addr, size, dir, attrs); 357 trace_dma_unmap_resource(dev, addr, size, dir, attrs); 358 debug_dma_unmap_resource(dev, addr, size, dir); 359 } 360 EXPORT_SYMBOL(dma_unmap_resource); 361 362 #ifdef CONFIG_DMA_NEED_SYNC 363 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 364 enum dma_data_direction dir) 365 { 366 const struct dma_map_ops *ops = get_dma_ops(dev); 367 368 BUG_ON(!valid_dma_direction(dir)); 369 if (dma_map_direct(dev, ops)) 370 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 371 else if (use_dma_iommu(dev)) 372 iommu_dma_sync_single_for_cpu(dev, addr, size, dir); 373 else if (ops->sync_single_for_cpu) 374 ops->sync_single_for_cpu(dev, addr, size, dir); 375 trace_dma_sync_single_for_cpu(dev, addr, size, dir); 376 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 377 } 378 EXPORT_SYMBOL(__dma_sync_single_for_cpu); 379 380 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 381 size_t size, enum dma_data_direction dir) 382 { 383 const struct dma_map_ops *ops = get_dma_ops(dev); 384 385 BUG_ON(!valid_dma_direction(dir)); 386 if (dma_map_direct(dev, ops)) 387 dma_direct_sync_single_for_device(dev, addr, size, dir); 388 else if (use_dma_iommu(dev)) 389 iommu_dma_sync_single_for_device(dev, addr, size, dir); 390 else if (ops->sync_single_for_device) 391 ops->sync_single_for_device(dev, addr, size, dir); 392 trace_dma_sync_single_for_device(dev, addr, size, dir); 393 debug_dma_sync_single_for_device(dev, addr, size, dir); 394 } 395 EXPORT_SYMBOL(__dma_sync_single_for_device); 396 397 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 398 int nelems, enum dma_data_direction dir) 399 { 400 const struct dma_map_ops *ops = get_dma_ops(dev); 401 402 BUG_ON(!valid_dma_direction(dir)); 403 if (dma_map_direct(dev, ops)) 404 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 405 else if (use_dma_iommu(dev)) 406 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 407 else if (ops->sync_sg_for_cpu) 408 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 409 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 410 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 411 } 412 EXPORT_SYMBOL(__dma_sync_sg_for_cpu); 413 414 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 415 int nelems, enum dma_data_direction dir) 416 { 417 const struct dma_map_ops *ops = get_dma_ops(dev); 418 419 BUG_ON(!valid_dma_direction(dir)); 420 if (dma_map_direct(dev, ops)) 421 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 422 else if (use_dma_iommu(dev)) 423 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir); 424 else if (ops->sync_sg_for_device) 425 ops->sync_sg_for_device(dev, sg, nelems, dir); 426 trace_dma_sync_sg_for_device(dev, sg, nelems, dir); 427 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 428 } 429 EXPORT_SYMBOL(__dma_sync_sg_for_device); 430 431 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr) 432 { 433 const struct dma_map_ops *ops = get_dma_ops(dev); 434 435 if (dma_map_direct(dev, ops)) 436 /* 437 * dma_skip_sync could've been reset on first SWIOTLB buffer 438 * mapping, but @dma_addr is not necessary an SWIOTLB buffer. 439 * In this case, fall back to more granular check. 440 */ 441 return dma_direct_need_sync(dev, dma_addr); 442 return true; 443 } 444 EXPORT_SYMBOL_GPL(__dma_need_sync); 445 446 static void dma_setup_need_sync(struct device *dev) 447 { 448 const struct dma_map_ops *ops = get_dma_ops(dev); 449 450 if (dma_map_direct(dev, ops) || use_dma_iommu(dev)) 451 /* 452 * dma_skip_sync will be reset to %false on first SWIOTLB buffer 453 * mapping, if any. During the device initialization, it's 454 * enough to check only for the DMA coherence. 455 */ 456 dev->dma_skip_sync = dev_is_dma_coherent(dev); 457 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu && 458 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu) 459 /* 460 * Synchronization is not possible when none of DMA sync ops 461 * is set. 462 */ 463 dev->dma_skip_sync = true; 464 else 465 dev->dma_skip_sync = false; 466 } 467 #else /* !CONFIG_DMA_NEED_SYNC */ 468 static inline void dma_setup_need_sync(struct device *dev) { } 469 #endif /* !CONFIG_DMA_NEED_SYNC */ 470 471 /* 472 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 473 * that the intention is to allow exporting memory allocated via the 474 * coherent DMA APIs through the dma_buf API, which only accepts a 475 * scattertable. This presents a couple of problems: 476 * 1. Not all memory allocated via the coherent DMA APIs is backed by 477 * a struct page 478 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 479 * as we will try to flush the memory through a different alias to that 480 * actually being used (and the flushes are redundant.) 481 */ 482 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 483 void *cpu_addr, dma_addr_t dma_addr, size_t size, 484 unsigned long attrs) 485 { 486 const struct dma_map_ops *ops = get_dma_ops(dev); 487 488 if (dma_alloc_direct(dev, ops)) 489 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 490 size, attrs); 491 if (use_dma_iommu(dev)) 492 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr, 493 size, attrs); 494 if (!ops->get_sgtable) 495 return -ENXIO; 496 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 497 } 498 EXPORT_SYMBOL(dma_get_sgtable_attrs); 499 500 #ifdef CONFIG_MMU 501 /* 502 * Return the page attributes used for mapping dma_alloc_* memory, either in 503 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 504 */ 505 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 506 { 507 if (dev_is_dma_coherent(dev)) 508 return prot; 509 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 510 if (attrs & DMA_ATTR_WRITE_COMBINE) 511 return pgprot_writecombine(prot); 512 #endif 513 return pgprot_dmacoherent(prot); 514 } 515 #endif /* CONFIG_MMU */ 516 517 /** 518 * dma_can_mmap - check if a given device supports dma_mmap_* 519 * @dev: device to check 520 * 521 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 522 * map DMA allocations to userspace. 523 */ 524 bool dma_can_mmap(struct device *dev) 525 { 526 const struct dma_map_ops *ops = get_dma_ops(dev); 527 528 if (dma_alloc_direct(dev, ops)) 529 return dma_direct_can_mmap(dev); 530 if (use_dma_iommu(dev)) 531 return true; 532 return ops->mmap != NULL; 533 } 534 EXPORT_SYMBOL_GPL(dma_can_mmap); 535 536 /** 537 * dma_mmap_attrs - map a coherent DMA allocation into user space 538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 539 * @vma: vm_area_struct describing requested user mapping 540 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 541 * @dma_addr: device-view address returned from dma_alloc_attrs 542 * @size: size of memory originally requested in dma_alloc_attrs 543 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 544 * 545 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 546 * space. The coherent DMA buffer must not be freed by the driver until the 547 * user space mapping has been released. 548 */ 549 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 550 void *cpu_addr, dma_addr_t dma_addr, size_t size, 551 unsigned long attrs) 552 { 553 const struct dma_map_ops *ops = get_dma_ops(dev); 554 555 if (dma_alloc_direct(dev, ops)) 556 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 557 attrs); 558 if (use_dma_iommu(dev)) 559 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size, 560 attrs); 561 if (!ops->mmap) 562 return -ENXIO; 563 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 564 } 565 EXPORT_SYMBOL(dma_mmap_attrs); 566 567 u64 dma_get_required_mask(struct device *dev) 568 { 569 const struct dma_map_ops *ops = get_dma_ops(dev); 570 571 if (dma_alloc_direct(dev, ops)) 572 return dma_direct_get_required_mask(dev); 573 574 if (use_dma_iommu(dev)) 575 return DMA_BIT_MASK(32); 576 577 if (ops->get_required_mask) 578 return ops->get_required_mask(dev); 579 580 /* 581 * We require every DMA ops implementation to at least support a 32-bit 582 * DMA mask (and use bounce buffering if that isn't supported in 583 * hardware). As the direct mapping code has its own routine to 584 * actually report an optimal mask we default to 32-bit here as that 585 * is the right thing for most IOMMUs, and at least not actively 586 * harmful in general. 587 */ 588 return DMA_BIT_MASK(32); 589 } 590 EXPORT_SYMBOL_GPL(dma_get_required_mask); 591 592 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 593 gfp_t flag, unsigned long attrs) 594 { 595 const struct dma_map_ops *ops = get_dma_ops(dev); 596 void *cpu_addr; 597 598 WARN_ON_ONCE(!dev->coherent_dma_mask); 599 600 /* 601 * DMA allocations can never be turned back into a page pointer, so 602 * requesting compound pages doesn't make sense (and can't even be 603 * supported at all by various backends). 604 */ 605 if (WARN_ON_ONCE(flag & __GFP_COMP)) 606 return NULL; 607 608 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) { 609 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, 610 DMA_BIDIRECTIONAL, flag, attrs); 611 return cpu_addr; 612 } 613 614 /* let the implementation decide on the zone to allocate from: */ 615 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 616 617 if (dma_alloc_direct(dev, ops)) { 618 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 619 } else if (use_dma_iommu(dev)) { 620 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs); 621 } else if (ops->alloc) { 622 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 623 } else { 624 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag, 625 attrs); 626 return NULL; 627 } 628 629 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL, 630 flag, attrs); 631 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); 632 return cpu_addr; 633 } 634 EXPORT_SYMBOL(dma_alloc_attrs); 635 636 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 637 dma_addr_t dma_handle, unsigned long attrs) 638 { 639 const struct dma_map_ops *ops = get_dma_ops(dev); 640 641 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 642 return; 643 /* 644 * On non-coherent platforms which implement DMA-coherent buffers via 645 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 646 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 647 * sleep on some machines, and b) an indication that the driver is 648 * probably misusing the coherent API anyway. 649 */ 650 WARN_ON(irqs_disabled()); 651 652 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL, 653 attrs); 654 if (!cpu_addr) 655 return; 656 657 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 658 if (dma_alloc_direct(dev, ops)) 659 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 660 else if (use_dma_iommu(dev)) 661 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs); 662 else if (ops->free) 663 ops->free(dev, size, cpu_addr, dma_handle, attrs); 664 } 665 EXPORT_SYMBOL(dma_free_attrs); 666 667 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 668 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 669 { 670 const struct dma_map_ops *ops = get_dma_ops(dev); 671 672 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 673 return NULL; 674 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 675 return NULL; 676 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 677 return NULL; 678 679 size = PAGE_ALIGN(size); 680 if (dma_alloc_direct(dev, ops)) 681 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 682 if (use_dma_iommu(dev)) 683 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp); 684 if (!ops->alloc_pages_op) 685 return NULL; 686 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp); 687 } 688 689 struct page *dma_alloc_pages(struct device *dev, size_t size, 690 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 691 { 692 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 693 694 if (page) { 695 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle, 696 size, dir, gfp, 0); 697 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); 698 } else { 699 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0); 700 } 701 return page; 702 } 703 EXPORT_SYMBOL_GPL(dma_alloc_pages); 704 705 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 706 dma_addr_t dma_handle, enum dma_data_direction dir) 707 { 708 const struct dma_map_ops *ops = get_dma_ops(dev); 709 710 size = PAGE_ALIGN(size); 711 if (dma_alloc_direct(dev, ops)) 712 dma_direct_free_pages(dev, size, page, dma_handle, dir); 713 else if (use_dma_iommu(dev)) 714 dma_common_free_pages(dev, size, page, dma_handle, dir); 715 else if (ops->free_pages) 716 ops->free_pages(dev, size, page, dma_handle, dir); 717 } 718 719 void dma_free_pages(struct device *dev, size_t size, struct page *page, 720 dma_addr_t dma_handle, enum dma_data_direction dir) 721 { 722 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0); 723 debug_dma_unmap_page(dev, dma_handle, size, dir); 724 __dma_free_pages(dev, size, page, dma_handle, dir); 725 } 726 EXPORT_SYMBOL_GPL(dma_free_pages); 727 728 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 729 size_t size, struct page *page) 730 { 731 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 732 733 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 734 return -ENXIO; 735 return remap_pfn_range(vma, vma->vm_start, 736 page_to_pfn(page) + vma->vm_pgoff, 737 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 738 } 739 EXPORT_SYMBOL_GPL(dma_mmap_pages); 740 741 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 742 enum dma_data_direction dir, gfp_t gfp) 743 { 744 struct sg_table *sgt; 745 struct page *page; 746 747 sgt = kmalloc(sizeof(*sgt), gfp); 748 if (!sgt) 749 return NULL; 750 if (sg_alloc_table(sgt, 1, gfp)) 751 goto out_free_sgt; 752 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 753 if (!page) 754 goto out_free_table; 755 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 756 sg_dma_len(sgt->sgl) = sgt->sgl->length; 757 return sgt; 758 out_free_table: 759 sg_free_table(sgt); 760 out_free_sgt: 761 kfree(sgt); 762 return NULL; 763 } 764 765 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 766 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 767 { 768 struct sg_table *sgt; 769 770 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 771 return NULL; 772 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 773 return NULL; 774 775 if (use_dma_iommu(dev)) 776 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs); 777 else 778 sgt = alloc_single_sgt(dev, size, dir, gfp); 779 780 if (sgt) { 781 sgt->nents = 1; 782 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs); 783 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); 784 } else { 785 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs); 786 } 787 return sgt; 788 } 789 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 790 791 static void free_single_sgt(struct device *dev, size_t size, 792 struct sg_table *sgt, enum dma_data_direction dir) 793 { 794 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 795 dir); 796 sg_free_table(sgt); 797 kfree(sgt); 798 } 799 800 void dma_free_noncontiguous(struct device *dev, size_t size, 801 struct sg_table *sgt, enum dma_data_direction dir) 802 { 803 trace_dma_free_sgt(dev, sgt, size, dir); 804 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 805 806 if (use_dma_iommu(dev)) 807 iommu_dma_free_noncontiguous(dev, size, sgt, dir); 808 else 809 free_single_sgt(dev, size, sgt, dir); 810 } 811 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 812 813 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 814 struct sg_table *sgt) 815 { 816 817 if (use_dma_iommu(dev)) 818 return iommu_dma_vmap_noncontiguous(dev, size, sgt); 819 820 return page_address(sg_page(sgt->sgl)); 821 } 822 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 823 824 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 825 { 826 if (use_dma_iommu(dev)) 827 iommu_dma_vunmap_noncontiguous(dev, vaddr); 828 } 829 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 830 831 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 832 size_t size, struct sg_table *sgt) 833 { 834 if (use_dma_iommu(dev)) 835 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt); 836 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 837 } 838 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 839 840 static int dma_supported(struct device *dev, u64 mask) 841 { 842 const struct dma_map_ops *ops = get_dma_ops(dev); 843 844 if (use_dma_iommu(dev)) { 845 if (WARN_ON(ops)) 846 return false; 847 return true; 848 } 849 850 /* 851 * ->dma_supported sets and clears the bypass flag, so ignore it here 852 * and always call into the method if there is one. 853 */ 854 if (ops) { 855 if (!ops->dma_supported) 856 return true; 857 return ops->dma_supported(dev, mask); 858 } 859 860 return dma_direct_supported(dev, mask); 861 } 862 863 bool dma_pci_p2pdma_supported(struct device *dev) 864 { 865 const struct dma_map_ops *ops = get_dma_ops(dev); 866 867 /* 868 * Note: dma_ops_bypass is not checked here because P2PDMA should 869 * not be used with dma mapping ops that do not have support even 870 * if the specific device is bypassing them. 871 */ 872 873 /* if ops is not set, dma direct and default IOMMU support P2PDMA */ 874 return !ops; 875 } 876 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); 877 878 int dma_set_mask(struct device *dev, u64 mask) 879 { 880 /* 881 * Truncate the mask to the actually supported dma_addr_t width to 882 * avoid generating unsupportable addresses. 883 */ 884 mask = (dma_addr_t)mask; 885 886 if (!dev->dma_mask || !dma_supported(dev, mask)) 887 return -EIO; 888 889 arch_dma_set_mask(dev, mask); 890 *dev->dma_mask = mask; 891 dma_setup_need_sync(dev); 892 893 return 0; 894 } 895 EXPORT_SYMBOL(dma_set_mask); 896 897 int dma_set_coherent_mask(struct device *dev, u64 mask) 898 { 899 /* 900 * Truncate the mask to the actually supported dma_addr_t width to 901 * avoid generating unsupportable addresses. 902 */ 903 mask = (dma_addr_t)mask; 904 905 if (!dma_supported(dev, mask)) 906 return -EIO; 907 908 dev->coherent_dma_mask = mask; 909 return 0; 910 } 911 EXPORT_SYMBOL(dma_set_coherent_mask); 912 913 /** 914 * dma_addressing_limited - return if the device is addressing limited 915 * @dev: device to check 916 * 917 * Return %true if the devices DMA mask is too small to address all memory in 918 * the system, else %false. Lack of addressing bits is the prime reason for 919 * bounce buffering, but might not be the only one. 920 */ 921 bool dma_addressing_limited(struct device *dev) 922 { 923 const struct dma_map_ops *ops = get_dma_ops(dev); 924 925 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < 926 dma_get_required_mask(dev)) 927 return true; 928 929 if (unlikely(ops) || use_dma_iommu(dev)) 930 return false; 931 return !dma_direct_all_ram_mapped(dev); 932 } 933 EXPORT_SYMBOL_GPL(dma_addressing_limited); 934 935 size_t dma_max_mapping_size(struct device *dev) 936 { 937 const struct dma_map_ops *ops = get_dma_ops(dev); 938 size_t size = SIZE_MAX; 939 940 if (dma_map_direct(dev, ops)) 941 size = dma_direct_max_mapping_size(dev); 942 else if (use_dma_iommu(dev)) 943 size = iommu_dma_max_mapping_size(dev); 944 else if (ops && ops->max_mapping_size) 945 size = ops->max_mapping_size(dev); 946 947 return size; 948 } 949 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 950 951 size_t dma_opt_mapping_size(struct device *dev) 952 { 953 const struct dma_map_ops *ops = get_dma_ops(dev); 954 size_t size = SIZE_MAX; 955 956 if (use_dma_iommu(dev)) 957 size = iommu_dma_opt_mapping_size(); 958 else if (ops && ops->opt_mapping_size) 959 size = ops->opt_mapping_size(); 960 961 return min(dma_max_mapping_size(dev), size); 962 } 963 EXPORT_SYMBOL_GPL(dma_opt_mapping_size); 964 965 unsigned long dma_get_merge_boundary(struct device *dev) 966 { 967 const struct dma_map_ops *ops = get_dma_ops(dev); 968 969 if (use_dma_iommu(dev)) 970 return iommu_dma_get_merge_boundary(dev); 971 972 if (!ops || !ops->get_merge_boundary) 973 return 0; /* can't merge */ 974 975 return ops->get_merge_boundary(dev); 976 } 977 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 978