xref: /linux/kernel/dma/mapping.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 bool dma_default_coherent;
20 
21 /*
22  * Managed DMA API
23  */
24 struct dma_devres {
25 	size_t		size;
26 	void		*vaddr;
27 	dma_addr_t	dma_handle;
28 	unsigned long	attrs;
29 };
30 
31 static void dmam_release(struct device *dev, void *res)
32 {
33 	struct dma_devres *this = res;
34 
35 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 			this->attrs);
37 }
38 
39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_free_coherent - Managed dma_free_coherent()
53  * @dev: Device to free coherent memory for
54  * @size: Size of allocation
55  * @vaddr: Virtual address of the memory to free
56  * @dma_handle: DMA handle of the memory to free
57  *
58  * Managed dma_free_coherent().
59  */
60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 			dma_addr_t dma_handle)
62 {
63 	struct dma_devres match_data = { size, vaddr, dma_handle };
64 
65 	dma_free_coherent(dev, size, vaddr, dma_handle);
66 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67 }
68 EXPORT_SYMBOL(dmam_free_coherent);
69 
70 /**
71  * dmam_alloc_attrs - Managed dma_alloc_attrs()
72  * @dev: Device to allocate non_coherent memory for
73  * @size: Size of allocation
74  * @dma_handle: Out argument for allocated DMA handle
75  * @gfp: Allocation flags
76  * @attrs: Flags in the DMA_ATTR_* namespace.
77  *
78  * Managed dma_alloc_attrs().  Memory allocated using this function will be
79  * automatically released on driver detach.
80  *
81  * RETURNS:
82  * Pointer to allocated memory on success, NULL on failure.
83  */
84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 		gfp_t gfp, unsigned long attrs)
86 {
87 	struct dma_devres *dr;
88 	void *vaddr;
89 
90 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 	if (!dr)
92 		return NULL;
93 
94 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 	if (!vaddr) {
96 		devres_free(dr);
97 		return NULL;
98 	}
99 
100 	dr->vaddr = vaddr;
101 	dr->dma_handle = *dma_handle;
102 	dr->size = size;
103 	dr->attrs = attrs;
104 
105 	devres_add(dev, dr);
106 
107 	return vaddr;
108 }
109 EXPORT_SYMBOL(dmam_alloc_attrs);
110 
111 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 		const struct dma_map_ops *ops)
113 {
114 	if (likely(!ops))
115 		return true;
116 #ifdef CONFIG_DMA_OPS_BYPASS
117 	if (dev->dma_ops_bypass)
118 		return min_not_zero(mask, dev->bus_dma_limit) >=
119 			    dma_direct_get_required_mask(dev);
120 #endif
121 	return false;
122 }
123 
124 
125 /*
126  * Check if the devices uses a direct mapping for streaming DMA operations.
127  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128  * enough.
129  */
130 static inline bool dma_alloc_direct(struct device *dev,
131 		const struct dma_map_ops *ops)
132 {
133 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134 }
135 
136 static inline bool dma_map_direct(struct device *dev,
137 		const struct dma_map_ops *ops)
138 {
139 	return dma_go_direct(dev, *dev->dma_mask, ops);
140 }
141 
142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 		size_t offset, size_t size, enum dma_data_direction dir,
144 		unsigned long attrs)
145 {
146 	const struct dma_map_ops *ops = get_dma_ops(dev);
147 	dma_addr_t addr;
148 
149 	BUG_ON(!valid_dma_direction(dir));
150 
151 	if (WARN_ON_ONCE(!dev->dma_mask))
152 		return DMA_MAPPING_ERROR;
153 
154 	if (dma_map_direct(dev, ops) ||
155 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 	else
158 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
160 
161 	return addr;
162 }
163 EXPORT_SYMBOL(dma_map_page_attrs);
164 
165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 		enum dma_data_direction dir, unsigned long attrs)
167 {
168 	const struct dma_map_ops *ops = get_dma_ops(dev);
169 
170 	BUG_ON(!valid_dma_direction(dir));
171 	if (dma_map_direct(dev, ops) ||
172 	    arch_dma_unmap_page_direct(dev, addr + size))
173 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 	else if (ops->unmap_page)
175 		ops->unmap_page(dev, addr, size, dir, attrs);
176 	debug_dma_unmap_page(dev, addr, size, dir);
177 }
178 EXPORT_SYMBOL(dma_unmap_page_attrs);
179 
180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
181 	 int nents, enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops) ||
192 	    arch_dma_map_sg_direct(dev, sg, nents))
193 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
194 	else
195 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
196 
197 	if (ents > 0)
198 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
199 	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
200 			      ents != -EIO))
201 		return -EIO;
202 
203 	return ents;
204 }
205 
206 /**
207  * dma_map_sg_attrs - Map the given buffer for DMA
208  * @dev:	The device for which to perform the DMA operation
209  * @sg:		The sg_table object describing the buffer
210  * @nents:	Number of entries to map
211  * @dir:	DMA direction
212  * @attrs:	Optional DMA attributes for the map operation
213  *
214  * Maps a buffer described by a scatterlist passed in the sg argument with
215  * nents segments for the @dir DMA operation by the @dev device.
216  *
217  * Returns the number of mapped entries (which can be less than nents)
218  * on success. Zero is returned for any error.
219  *
220  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
221  * original sg and original nents (not the value returned by this funciton).
222  */
223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
224 		    int nents, enum dma_data_direction dir, unsigned long attrs)
225 {
226 	int ret;
227 
228 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
229 	if (ret < 0)
230 		return 0;
231 	return ret;
232 }
233 EXPORT_SYMBOL(dma_map_sg_attrs);
234 
235 /**
236  * dma_map_sgtable - Map the given buffer for DMA
237  * @dev:	The device for which to perform the DMA operation
238  * @sgt:	The sg_table object describing the buffer
239  * @dir:	DMA direction
240  * @attrs:	Optional DMA attributes for the map operation
241  *
242  * Maps a buffer described by a scatterlist stored in the given sg_table
243  * object for the @dir DMA operation by the @dev device. After success, the
244  * ownership for the buffer is transferred to the DMA domain.  One has to
245  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
246  * ownership of the buffer back to the CPU domain before touching the
247  * buffer by the CPU.
248  *
249  * Returns 0 on success or a negative error code on error. The following
250  * error codes are supported with the given meaning:
251  *
252  *   -EINVAL	An invalid argument, unaligned access or other error
253  *		in usage. Will not succeed if retried.
254  *   -ENOMEM	Insufficient resources (like memory or IOVA space) to
255  *		complete the mapping. Should succeed if retried later.
256  *   -EIO	Legacy error code with an unknown meaning. eg. this is
257  *		returned if a lower level call returned DMA_MAPPING_ERROR.
258  */
259 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
260 		    enum dma_data_direction dir, unsigned long attrs)
261 {
262 	int nents;
263 
264 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
265 	if (nents < 0)
266 		return nents;
267 	sgt->nents = nents;
268 	return 0;
269 }
270 EXPORT_SYMBOL_GPL(dma_map_sgtable);
271 
272 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
273 				      int nents, enum dma_data_direction dir,
274 				      unsigned long attrs)
275 {
276 	const struct dma_map_ops *ops = get_dma_ops(dev);
277 
278 	BUG_ON(!valid_dma_direction(dir));
279 	debug_dma_unmap_sg(dev, sg, nents, dir);
280 	if (dma_map_direct(dev, ops) ||
281 	    arch_dma_unmap_sg_direct(dev, sg, nents))
282 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
283 	else if (ops->unmap_sg)
284 		ops->unmap_sg(dev, sg, nents, dir, attrs);
285 }
286 EXPORT_SYMBOL(dma_unmap_sg_attrs);
287 
288 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
289 		size_t size, enum dma_data_direction dir, unsigned long attrs)
290 {
291 	const struct dma_map_ops *ops = get_dma_ops(dev);
292 	dma_addr_t addr = DMA_MAPPING_ERROR;
293 
294 	BUG_ON(!valid_dma_direction(dir));
295 
296 	if (WARN_ON_ONCE(!dev->dma_mask))
297 		return DMA_MAPPING_ERROR;
298 
299 	if (dma_map_direct(dev, ops))
300 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
301 	else if (ops->map_resource)
302 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
303 
304 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
305 	return addr;
306 }
307 EXPORT_SYMBOL(dma_map_resource);
308 
309 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
310 		enum dma_data_direction dir, unsigned long attrs)
311 {
312 	const struct dma_map_ops *ops = get_dma_ops(dev);
313 
314 	BUG_ON(!valid_dma_direction(dir));
315 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
316 		ops->unmap_resource(dev, addr, size, dir, attrs);
317 	debug_dma_unmap_resource(dev, addr, size, dir);
318 }
319 EXPORT_SYMBOL(dma_unmap_resource);
320 
321 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
322 		enum dma_data_direction dir)
323 {
324 	const struct dma_map_ops *ops = get_dma_ops(dev);
325 
326 	BUG_ON(!valid_dma_direction(dir));
327 	if (dma_map_direct(dev, ops))
328 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
329 	else if (ops->sync_single_for_cpu)
330 		ops->sync_single_for_cpu(dev, addr, size, dir);
331 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
332 }
333 EXPORT_SYMBOL(dma_sync_single_for_cpu);
334 
335 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
336 		size_t size, enum dma_data_direction dir)
337 {
338 	const struct dma_map_ops *ops = get_dma_ops(dev);
339 
340 	BUG_ON(!valid_dma_direction(dir));
341 	if (dma_map_direct(dev, ops))
342 		dma_direct_sync_single_for_device(dev, addr, size, dir);
343 	else if (ops->sync_single_for_device)
344 		ops->sync_single_for_device(dev, addr, size, dir);
345 	debug_dma_sync_single_for_device(dev, addr, size, dir);
346 }
347 EXPORT_SYMBOL(dma_sync_single_for_device);
348 
349 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
350 		    int nelems, enum dma_data_direction dir)
351 {
352 	const struct dma_map_ops *ops = get_dma_ops(dev);
353 
354 	BUG_ON(!valid_dma_direction(dir));
355 	if (dma_map_direct(dev, ops))
356 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
357 	else if (ops->sync_sg_for_cpu)
358 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
359 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
360 }
361 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
362 
363 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
364 		       int nelems, enum dma_data_direction dir)
365 {
366 	const struct dma_map_ops *ops = get_dma_ops(dev);
367 
368 	BUG_ON(!valid_dma_direction(dir));
369 	if (dma_map_direct(dev, ops))
370 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
371 	else if (ops->sync_sg_for_device)
372 		ops->sync_sg_for_device(dev, sg, nelems, dir);
373 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
374 }
375 EXPORT_SYMBOL(dma_sync_sg_for_device);
376 
377 /*
378  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
379  * that the intention is to allow exporting memory allocated via the
380  * coherent DMA APIs through the dma_buf API, which only accepts a
381  * scattertable.  This presents a couple of problems:
382  * 1. Not all memory allocated via the coherent DMA APIs is backed by
383  *    a struct page
384  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
385  *    as we will try to flush the memory through a different alias to that
386  *    actually being used (and the flushes are redundant.)
387  */
388 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
389 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
390 		unsigned long attrs)
391 {
392 	const struct dma_map_ops *ops = get_dma_ops(dev);
393 
394 	if (dma_alloc_direct(dev, ops))
395 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
396 				size, attrs);
397 	if (!ops->get_sgtable)
398 		return -ENXIO;
399 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
400 }
401 EXPORT_SYMBOL(dma_get_sgtable_attrs);
402 
403 #ifdef CONFIG_MMU
404 /*
405  * Return the page attributes used for mapping dma_alloc_* memory, either in
406  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
407  */
408 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
409 {
410 	if (force_dma_unencrypted(dev))
411 		prot = pgprot_decrypted(prot);
412 	if (dev_is_dma_coherent(dev))
413 		return prot;
414 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
415 	if (attrs & DMA_ATTR_WRITE_COMBINE)
416 		return pgprot_writecombine(prot);
417 #endif
418 	return pgprot_dmacoherent(prot);
419 }
420 #endif /* CONFIG_MMU */
421 
422 /**
423  * dma_can_mmap - check if a given device supports dma_mmap_*
424  * @dev: device to check
425  *
426  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
427  * map DMA allocations to userspace.
428  */
429 bool dma_can_mmap(struct device *dev)
430 {
431 	const struct dma_map_ops *ops = get_dma_ops(dev);
432 
433 	if (dma_alloc_direct(dev, ops))
434 		return dma_direct_can_mmap(dev);
435 	return ops->mmap != NULL;
436 }
437 EXPORT_SYMBOL_GPL(dma_can_mmap);
438 
439 /**
440  * dma_mmap_attrs - map a coherent DMA allocation into user space
441  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
442  * @vma: vm_area_struct describing requested user mapping
443  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
444  * @dma_addr: device-view address returned from dma_alloc_attrs
445  * @size: size of memory originally requested in dma_alloc_attrs
446  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
447  *
448  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
449  * space.  The coherent DMA buffer must not be freed by the driver until the
450  * user space mapping has been released.
451  */
452 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
453 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
454 		unsigned long attrs)
455 {
456 	const struct dma_map_ops *ops = get_dma_ops(dev);
457 
458 	if (dma_alloc_direct(dev, ops))
459 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
460 				attrs);
461 	if (!ops->mmap)
462 		return -ENXIO;
463 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
464 }
465 EXPORT_SYMBOL(dma_mmap_attrs);
466 
467 u64 dma_get_required_mask(struct device *dev)
468 {
469 	const struct dma_map_ops *ops = get_dma_ops(dev);
470 
471 	if (dma_alloc_direct(dev, ops))
472 		return dma_direct_get_required_mask(dev);
473 	if (ops->get_required_mask)
474 		return ops->get_required_mask(dev);
475 
476 	/*
477 	 * We require every DMA ops implementation to at least support a 32-bit
478 	 * DMA mask (and use bounce buffering if that isn't supported in
479 	 * hardware).  As the direct mapping code has its own routine to
480 	 * actually report an optimal mask we default to 32-bit here as that
481 	 * is the right thing for most IOMMUs, and at least not actively
482 	 * harmful in general.
483 	 */
484 	return DMA_BIT_MASK(32);
485 }
486 EXPORT_SYMBOL_GPL(dma_get_required_mask);
487 
488 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
489 		gfp_t flag, unsigned long attrs)
490 {
491 	const struct dma_map_ops *ops = get_dma_ops(dev);
492 	void *cpu_addr;
493 
494 	WARN_ON_ONCE(!dev->coherent_dma_mask);
495 
496 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
497 		return cpu_addr;
498 
499 	/* let the implementation decide on the zone to allocate from: */
500 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
501 
502 	if (dma_alloc_direct(dev, ops))
503 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
504 	else if (ops->alloc)
505 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
506 	else
507 		return NULL;
508 
509 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
510 	return cpu_addr;
511 }
512 EXPORT_SYMBOL(dma_alloc_attrs);
513 
514 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
515 		dma_addr_t dma_handle, unsigned long attrs)
516 {
517 	const struct dma_map_ops *ops = get_dma_ops(dev);
518 
519 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
520 		return;
521 	/*
522 	 * On non-coherent platforms which implement DMA-coherent buffers via
523 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
524 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
525 	 * sleep on some machines, and b) an indication that the driver is
526 	 * probably misusing the coherent API anyway.
527 	 */
528 	WARN_ON(irqs_disabled());
529 
530 	if (!cpu_addr)
531 		return;
532 
533 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
534 	if (dma_alloc_direct(dev, ops))
535 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
536 	else if (ops->free)
537 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
538 }
539 EXPORT_SYMBOL(dma_free_attrs);
540 
541 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
542 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
543 {
544 	const struct dma_map_ops *ops = get_dma_ops(dev);
545 
546 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
547 		return NULL;
548 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
549 		return NULL;
550 
551 	size = PAGE_ALIGN(size);
552 	if (dma_alloc_direct(dev, ops))
553 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
554 	if (!ops->alloc_pages)
555 		return NULL;
556 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
557 }
558 
559 struct page *dma_alloc_pages(struct device *dev, size_t size,
560 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
561 {
562 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
563 
564 	if (page)
565 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
566 	return page;
567 }
568 EXPORT_SYMBOL_GPL(dma_alloc_pages);
569 
570 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
571 		dma_addr_t dma_handle, enum dma_data_direction dir)
572 {
573 	const struct dma_map_ops *ops = get_dma_ops(dev);
574 
575 	size = PAGE_ALIGN(size);
576 	if (dma_alloc_direct(dev, ops))
577 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
578 	else if (ops->free_pages)
579 		ops->free_pages(dev, size, page, dma_handle, dir);
580 }
581 
582 void dma_free_pages(struct device *dev, size_t size, struct page *page,
583 		dma_addr_t dma_handle, enum dma_data_direction dir)
584 {
585 	debug_dma_unmap_page(dev, dma_handle, size, dir);
586 	__dma_free_pages(dev, size, page, dma_handle, dir);
587 }
588 EXPORT_SYMBOL_GPL(dma_free_pages);
589 
590 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
591 		size_t size, struct page *page)
592 {
593 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
594 
595 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
596 		return -ENXIO;
597 	return remap_pfn_range(vma, vma->vm_start,
598 			       page_to_pfn(page) + vma->vm_pgoff,
599 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
600 }
601 EXPORT_SYMBOL_GPL(dma_mmap_pages);
602 
603 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
604 		enum dma_data_direction dir, gfp_t gfp)
605 {
606 	struct sg_table *sgt;
607 	struct page *page;
608 
609 	sgt = kmalloc(sizeof(*sgt), gfp);
610 	if (!sgt)
611 		return NULL;
612 	if (sg_alloc_table(sgt, 1, gfp))
613 		goto out_free_sgt;
614 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
615 	if (!page)
616 		goto out_free_table;
617 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
618 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
619 	return sgt;
620 out_free_table:
621 	sg_free_table(sgt);
622 out_free_sgt:
623 	kfree(sgt);
624 	return NULL;
625 }
626 
627 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
628 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
629 {
630 	const struct dma_map_ops *ops = get_dma_ops(dev);
631 	struct sg_table *sgt;
632 
633 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
634 		return NULL;
635 
636 	if (ops && ops->alloc_noncontiguous)
637 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
638 	else
639 		sgt = alloc_single_sgt(dev, size, dir, gfp);
640 
641 	if (sgt) {
642 		sgt->nents = 1;
643 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
644 	}
645 	return sgt;
646 }
647 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
648 
649 static void free_single_sgt(struct device *dev, size_t size,
650 		struct sg_table *sgt, enum dma_data_direction dir)
651 {
652 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
653 			 dir);
654 	sg_free_table(sgt);
655 	kfree(sgt);
656 }
657 
658 void dma_free_noncontiguous(struct device *dev, size_t size,
659 		struct sg_table *sgt, enum dma_data_direction dir)
660 {
661 	const struct dma_map_ops *ops = get_dma_ops(dev);
662 
663 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
664 	if (ops && ops->free_noncontiguous)
665 		ops->free_noncontiguous(dev, size, sgt, dir);
666 	else
667 		free_single_sgt(dev, size, sgt, dir);
668 }
669 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
670 
671 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
672 		struct sg_table *sgt)
673 {
674 	const struct dma_map_ops *ops = get_dma_ops(dev);
675 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
676 
677 	if (ops && ops->alloc_noncontiguous)
678 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
679 	return page_address(sg_page(sgt->sgl));
680 }
681 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
682 
683 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
684 {
685 	const struct dma_map_ops *ops = get_dma_ops(dev);
686 
687 	if (ops && ops->alloc_noncontiguous)
688 		vunmap(vaddr);
689 }
690 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
691 
692 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
693 		size_t size, struct sg_table *sgt)
694 {
695 	const struct dma_map_ops *ops = get_dma_ops(dev);
696 
697 	if (ops && ops->alloc_noncontiguous) {
698 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
699 
700 		if (vma->vm_pgoff >= count ||
701 		    vma_pages(vma) > count - vma->vm_pgoff)
702 			return -ENXIO;
703 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
704 	}
705 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
706 }
707 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
708 
709 int dma_supported(struct device *dev, u64 mask)
710 {
711 	const struct dma_map_ops *ops = get_dma_ops(dev);
712 
713 	/*
714 	 * ->dma_supported sets the bypass flag, so we must always call
715 	 * into the method here unless the device is truly direct mapped.
716 	 */
717 	if (!ops)
718 		return dma_direct_supported(dev, mask);
719 	if (!ops->dma_supported)
720 		return 1;
721 	return ops->dma_supported(dev, mask);
722 }
723 EXPORT_SYMBOL(dma_supported);
724 
725 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
726 void arch_dma_set_mask(struct device *dev, u64 mask);
727 #else
728 #define arch_dma_set_mask(dev, mask)	do { } while (0)
729 #endif
730 
731 int dma_set_mask(struct device *dev, u64 mask)
732 {
733 	/*
734 	 * Truncate the mask to the actually supported dma_addr_t width to
735 	 * avoid generating unsupportable addresses.
736 	 */
737 	mask = (dma_addr_t)mask;
738 
739 	if (!dev->dma_mask || !dma_supported(dev, mask))
740 		return -EIO;
741 
742 	arch_dma_set_mask(dev, mask);
743 	*dev->dma_mask = mask;
744 	return 0;
745 }
746 EXPORT_SYMBOL(dma_set_mask);
747 
748 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
749 int dma_set_coherent_mask(struct device *dev, u64 mask)
750 {
751 	/*
752 	 * Truncate the mask to the actually supported dma_addr_t width to
753 	 * avoid generating unsupportable addresses.
754 	 */
755 	mask = (dma_addr_t)mask;
756 
757 	if (!dma_supported(dev, mask))
758 		return -EIO;
759 
760 	dev->coherent_dma_mask = mask;
761 	return 0;
762 }
763 EXPORT_SYMBOL(dma_set_coherent_mask);
764 #endif
765 
766 size_t dma_max_mapping_size(struct device *dev)
767 {
768 	const struct dma_map_ops *ops = get_dma_ops(dev);
769 	size_t size = SIZE_MAX;
770 
771 	if (dma_map_direct(dev, ops))
772 		size = dma_direct_max_mapping_size(dev);
773 	else if (ops && ops->max_mapping_size)
774 		size = ops->max_mapping_size(dev);
775 
776 	return size;
777 }
778 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
779 
780 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
781 {
782 	const struct dma_map_ops *ops = get_dma_ops(dev);
783 
784 	if (dma_map_direct(dev, ops))
785 		return dma_direct_need_sync(dev, dma_addr);
786 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
787 }
788 EXPORT_SYMBOL_GPL(dma_need_sync);
789 
790 unsigned long dma_get_merge_boundary(struct device *dev)
791 {
792 	const struct dma_map_ops *ops = get_dma_ops(dev);
793 
794 	if (!ops || !ops->get_merge_boundary)
795 		return 0;	/* can't merge */
796 
797 	return ops->get_merge_boundary(dev);
798 }
799 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
800