1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/of_device.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include "debug.h" 17 #include "direct.h" 18 19 bool dma_default_coherent; 20 21 /* 22 * Managed DMA API 23 */ 24 struct dma_devres { 25 size_t size; 26 void *vaddr; 27 dma_addr_t dma_handle; 28 unsigned long attrs; 29 }; 30 31 static void dmam_release(struct device *dev, void *res) 32 { 33 struct dma_devres *this = res; 34 35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 36 this->attrs); 37 } 38 39 static int dmam_match(struct device *dev, void *res, void *match_data) 40 { 41 struct dma_devres *this = res, *match = match_data; 42 43 if (this->vaddr == match->vaddr) { 44 WARN_ON(this->size != match->size || 45 this->dma_handle != match->dma_handle); 46 return 1; 47 } 48 return 0; 49 } 50 51 /** 52 * dmam_free_coherent - Managed dma_free_coherent() 53 * @dev: Device to free coherent memory for 54 * @size: Size of allocation 55 * @vaddr: Virtual address of the memory to free 56 * @dma_handle: DMA handle of the memory to free 57 * 58 * Managed dma_free_coherent(). 59 */ 60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 61 dma_addr_t dma_handle) 62 { 63 struct dma_devres match_data = { size, vaddr, dma_handle }; 64 65 dma_free_coherent(dev, size, vaddr, dma_handle); 66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 67 } 68 EXPORT_SYMBOL(dmam_free_coherent); 69 70 /** 71 * dmam_alloc_attrs - Managed dma_alloc_attrs() 72 * @dev: Device to allocate non_coherent memory for 73 * @size: Size of allocation 74 * @dma_handle: Out argument for allocated DMA handle 75 * @gfp: Allocation flags 76 * @attrs: Flags in the DMA_ATTR_* namespace. 77 * 78 * Managed dma_alloc_attrs(). Memory allocated using this function will be 79 * automatically released on driver detach. 80 * 81 * RETURNS: 82 * Pointer to allocated memory on success, NULL on failure. 83 */ 84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 85 gfp_t gfp, unsigned long attrs) 86 { 87 struct dma_devres *dr; 88 void *vaddr; 89 90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 91 if (!dr) 92 return NULL; 93 94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 95 if (!vaddr) { 96 devres_free(dr); 97 return NULL; 98 } 99 100 dr->vaddr = vaddr; 101 dr->dma_handle = *dma_handle; 102 dr->size = size; 103 dr->attrs = attrs; 104 105 devres_add(dev, dr); 106 107 return vaddr; 108 } 109 EXPORT_SYMBOL(dmam_alloc_attrs); 110 111 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 112 const struct dma_map_ops *ops) 113 { 114 if (likely(!ops)) 115 return true; 116 #ifdef CONFIG_DMA_OPS_BYPASS 117 if (dev->dma_ops_bypass) 118 return min_not_zero(mask, dev->bus_dma_limit) >= 119 dma_direct_get_required_mask(dev); 120 #endif 121 return false; 122 } 123 124 125 /* 126 * Check if the devices uses a direct mapping for streaming DMA operations. 127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 128 * enough. 129 */ 130 static inline bool dma_alloc_direct(struct device *dev, 131 const struct dma_map_ops *ops) 132 { 133 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 134 } 135 136 static inline bool dma_map_direct(struct device *dev, 137 const struct dma_map_ops *ops) 138 { 139 return dma_go_direct(dev, *dev->dma_mask, ops); 140 } 141 142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 143 size_t offset, size_t size, enum dma_data_direction dir, 144 unsigned long attrs) 145 { 146 const struct dma_map_ops *ops = get_dma_ops(dev); 147 dma_addr_t addr; 148 149 BUG_ON(!valid_dma_direction(dir)); 150 151 if (WARN_ON_ONCE(!dev->dma_mask)) 152 return DMA_MAPPING_ERROR; 153 154 if (dma_map_direct(dev, ops) || 155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 157 else 158 addr = ops->map_page(dev, page, offset, size, dir, attrs); 159 debug_dma_map_page(dev, page, offset, size, dir, addr); 160 161 return addr; 162 } 163 EXPORT_SYMBOL(dma_map_page_attrs); 164 165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 166 enum dma_data_direction dir, unsigned long attrs) 167 { 168 const struct dma_map_ops *ops = get_dma_ops(dev); 169 170 BUG_ON(!valid_dma_direction(dir)); 171 if (dma_map_direct(dev, ops) || 172 arch_dma_unmap_page_direct(dev, addr + size)) 173 dma_direct_unmap_page(dev, addr, size, dir, attrs); 174 else if (ops->unmap_page) 175 ops->unmap_page(dev, addr, size, dir, attrs); 176 debug_dma_unmap_page(dev, addr, size, dir); 177 } 178 EXPORT_SYMBOL(dma_unmap_page_attrs); 179 180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 181 int nents, enum dma_data_direction dir, unsigned long attrs) 182 { 183 const struct dma_map_ops *ops = get_dma_ops(dev); 184 int ents; 185 186 BUG_ON(!valid_dma_direction(dir)); 187 188 if (WARN_ON_ONCE(!dev->dma_mask)) 189 return 0; 190 191 if (dma_map_direct(dev, ops) || 192 arch_dma_map_sg_direct(dev, sg, nents)) 193 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 194 else 195 ents = ops->map_sg(dev, sg, nents, dir, attrs); 196 197 if (ents > 0) 198 debug_dma_map_sg(dev, sg, nents, ents, dir); 199 else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 200 ents != -EIO)) 201 return -EIO; 202 203 return ents; 204 } 205 206 /** 207 * dma_map_sg_attrs - Map the given buffer for DMA 208 * @dev: The device for which to perform the DMA operation 209 * @sg: The sg_table object describing the buffer 210 * @nents: Number of entries to map 211 * @dir: DMA direction 212 * @attrs: Optional DMA attributes for the map operation 213 * 214 * Maps a buffer described by a scatterlist passed in the sg argument with 215 * nents segments for the @dir DMA operation by the @dev device. 216 * 217 * Returns the number of mapped entries (which can be less than nents) 218 * on success. Zero is returned for any error. 219 * 220 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 221 * original sg and original nents (not the value returned by this funciton). 222 */ 223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 224 int nents, enum dma_data_direction dir, unsigned long attrs) 225 { 226 int ret; 227 228 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 229 if (ret < 0) 230 return 0; 231 return ret; 232 } 233 EXPORT_SYMBOL(dma_map_sg_attrs); 234 235 /** 236 * dma_map_sgtable - Map the given buffer for DMA 237 * @dev: The device for which to perform the DMA operation 238 * @sgt: The sg_table object describing the buffer 239 * @dir: DMA direction 240 * @attrs: Optional DMA attributes for the map operation 241 * 242 * Maps a buffer described by a scatterlist stored in the given sg_table 243 * object for the @dir DMA operation by the @dev device. After success, the 244 * ownership for the buffer is transferred to the DMA domain. One has to 245 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 246 * ownership of the buffer back to the CPU domain before touching the 247 * buffer by the CPU. 248 * 249 * Returns 0 on success or a negative error code on error. The following 250 * error codes are supported with the given meaning: 251 * 252 * -EINVAL - An invalid argument, unaligned access or other error 253 * in usage. Will not succeed if retried. 254 * -ENOMEM - Insufficient resources (like memory or IOVA space) to 255 * complete the mapping. Should succeed if retried later. 256 * -EIO - Legacy error code with an unknown meaning. eg. this is 257 * returned if a lower level call returned DMA_MAPPING_ERROR. 258 */ 259 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 260 enum dma_data_direction dir, unsigned long attrs) 261 { 262 int nents; 263 264 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 265 if (nents < 0) 266 return nents; 267 sgt->nents = nents; 268 return 0; 269 } 270 EXPORT_SYMBOL_GPL(dma_map_sgtable); 271 272 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 273 int nents, enum dma_data_direction dir, 274 unsigned long attrs) 275 { 276 const struct dma_map_ops *ops = get_dma_ops(dev); 277 278 BUG_ON(!valid_dma_direction(dir)); 279 debug_dma_unmap_sg(dev, sg, nents, dir); 280 if (dma_map_direct(dev, ops) || 281 arch_dma_unmap_sg_direct(dev, sg, nents)) 282 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 283 else if (ops->unmap_sg) 284 ops->unmap_sg(dev, sg, nents, dir, attrs); 285 } 286 EXPORT_SYMBOL(dma_unmap_sg_attrs); 287 288 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 289 size_t size, enum dma_data_direction dir, unsigned long attrs) 290 { 291 const struct dma_map_ops *ops = get_dma_ops(dev); 292 dma_addr_t addr = DMA_MAPPING_ERROR; 293 294 BUG_ON(!valid_dma_direction(dir)); 295 296 if (WARN_ON_ONCE(!dev->dma_mask)) 297 return DMA_MAPPING_ERROR; 298 299 /* Don't allow RAM to be mapped */ 300 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) 301 return DMA_MAPPING_ERROR; 302 303 if (dma_map_direct(dev, ops)) 304 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 305 else if (ops->map_resource) 306 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 307 308 debug_dma_map_resource(dev, phys_addr, size, dir, addr); 309 return addr; 310 } 311 EXPORT_SYMBOL(dma_map_resource); 312 313 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 314 enum dma_data_direction dir, unsigned long attrs) 315 { 316 const struct dma_map_ops *ops = get_dma_ops(dev); 317 318 BUG_ON(!valid_dma_direction(dir)); 319 if (!dma_map_direct(dev, ops) && ops->unmap_resource) 320 ops->unmap_resource(dev, addr, size, dir, attrs); 321 debug_dma_unmap_resource(dev, addr, size, dir); 322 } 323 EXPORT_SYMBOL(dma_unmap_resource); 324 325 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 326 enum dma_data_direction dir) 327 { 328 const struct dma_map_ops *ops = get_dma_ops(dev); 329 330 BUG_ON(!valid_dma_direction(dir)); 331 if (dma_map_direct(dev, ops)) 332 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 333 else if (ops->sync_single_for_cpu) 334 ops->sync_single_for_cpu(dev, addr, size, dir); 335 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 336 } 337 EXPORT_SYMBOL(dma_sync_single_for_cpu); 338 339 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 340 size_t size, enum dma_data_direction dir) 341 { 342 const struct dma_map_ops *ops = get_dma_ops(dev); 343 344 BUG_ON(!valid_dma_direction(dir)); 345 if (dma_map_direct(dev, ops)) 346 dma_direct_sync_single_for_device(dev, addr, size, dir); 347 else if (ops->sync_single_for_device) 348 ops->sync_single_for_device(dev, addr, size, dir); 349 debug_dma_sync_single_for_device(dev, addr, size, dir); 350 } 351 EXPORT_SYMBOL(dma_sync_single_for_device); 352 353 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 354 int nelems, enum dma_data_direction dir) 355 { 356 const struct dma_map_ops *ops = get_dma_ops(dev); 357 358 BUG_ON(!valid_dma_direction(dir)); 359 if (dma_map_direct(dev, ops)) 360 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 361 else if (ops->sync_sg_for_cpu) 362 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 363 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 364 } 365 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 366 367 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 368 int nelems, enum dma_data_direction dir) 369 { 370 const struct dma_map_ops *ops = get_dma_ops(dev); 371 372 BUG_ON(!valid_dma_direction(dir)); 373 if (dma_map_direct(dev, ops)) 374 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 375 else if (ops->sync_sg_for_device) 376 ops->sync_sg_for_device(dev, sg, nelems, dir); 377 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 378 } 379 EXPORT_SYMBOL(dma_sync_sg_for_device); 380 381 /* 382 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 383 * that the intention is to allow exporting memory allocated via the 384 * coherent DMA APIs through the dma_buf API, which only accepts a 385 * scattertable. This presents a couple of problems: 386 * 1. Not all memory allocated via the coherent DMA APIs is backed by 387 * a struct page 388 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 389 * as we will try to flush the memory through a different alias to that 390 * actually being used (and the flushes are redundant.) 391 */ 392 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 393 void *cpu_addr, dma_addr_t dma_addr, size_t size, 394 unsigned long attrs) 395 { 396 const struct dma_map_ops *ops = get_dma_ops(dev); 397 398 if (dma_alloc_direct(dev, ops)) 399 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 400 size, attrs); 401 if (!ops->get_sgtable) 402 return -ENXIO; 403 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 404 } 405 EXPORT_SYMBOL(dma_get_sgtable_attrs); 406 407 #ifdef CONFIG_MMU 408 /* 409 * Return the page attributes used for mapping dma_alloc_* memory, either in 410 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 411 */ 412 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 413 { 414 if (force_dma_unencrypted(dev)) 415 prot = pgprot_decrypted(prot); 416 if (dev_is_dma_coherent(dev)) 417 return prot; 418 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 419 if (attrs & DMA_ATTR_WRITE_COMBINE) 420 return pgprot_writecombine(prot); 421 #endif 422 return pgprot_dmacoherent(prot); 423 } 424 #endif /* CONFIG_MMU */ 425 426 /** 427 * dma_can_mmap - check if a given device supports dma_mmap_* 428 * @dev: device to check 429 * 430 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 431 * map DMA allocations to userspace. 432 */ 433 bool dma_can_mmap(struct device *dev) 434 { 435 const struct dma_map_ops *ops = get_dma_ops(dev); 436 437 if (dma_alloc_direct(dev, ops)) 438 return dma_direct_can_mmap(dev); 439 return ops->mmap != NULL; 440 } 441 EXPORT_SYMBOL_GPL(dma_can_mmap); 442 443 /** 444 * dma_mmap_attrs - map a coherent DMA allocation into user space 445 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 446 * @vma: vm_area_struct describing requested user mapping 447 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 448 * @dma_addr: device-view address returned from dma_alloc_attrs 449 * @size: size of memory originally requested in dma_alloc_attrs 450 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 451 * 452 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 453 * space. The coherent DMA buffer must not be freed by the driver until the 454 * user space mapping has been released. 455 */ 456 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 457 void *cpu_addr, dma_addr_t dma_addr, size_t size, 458 unsigned long attrs) 459 { 460 const struct dma_map_ops *ops = get_dma_ops(dev); 461 462 if (dma_alloc_direct(dev, ops)) 463 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 464 attrs); 465 if (!ops->mmap) 466 return -ENXIO; 467 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 468 } 469 EXPORT_SYMBOL(dma_mmap_attrs); 470 471 u64 dma_get_required_mask(struct device *dev) 472 { 473 const struct dma_map_ops *ops = get_dma_ops(dev); 474 475 if (dma_alloc_direct(dev, ops)) 476 return dma_direct_get_required_mask(dev); 477 if (ops->get_required_mask) 478 return ops->get_required_mask(dev); 479 480 /* 481 * We require every DMA ops implementation to at least support a 32-bit 482 * DMA mask (and use bounce buffering if that isn't supported in 483 * hardware). As the direct mapping code has its own routine to 484 * actually report an optimal mask we default to 32-bit here as that 485 * is the right thing for most IOMMUs, and at least not actively 486 * harmful in general. 487 */ 488 return DMA_BIT_MASK(32); 489 } 490 EXPORT_SYMBOL_GPL(dma_get_required_mask); 491 492 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 493 gfp_t flag, unsigned long attrs) 494 { 495 const struct dma_map_ops *ops = get_dma_ops(dev); 496 void *cpu_addr; 497 498 WARN_ON_ONCE(!dev->coherent_dma_mask); 499 500 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 501 return cpu_addr; 502 503 /* let the implementation decide on the zone to allocate from: */ 504 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 505 506 if (dma_alloc_direct(dev, ops)) 507 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 508 else if (ops->alloc) 509 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 510 else 511 return NULL; 512 513 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 514 return cpu_addr; 515 } 516 EXPORT_SYMBOL(dma_alloc_attrs); 517 518 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 519 dma_addr_t dma_handle, unsigned long attrs) 520 { 521 const struct dma_map_ops *ops = get_dma_ops(dev); 522 523 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 524 return; 525 /* 526 * On non-coherent platforms which implement DMA-coherent buffers via 527 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 528 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 529 * sleep on some machines, and b) an indication that the driver is 530 * probably misusing the coherent API anyway. 531 */ 532 WARN_ON(irqs_disabled()); 533 534 if (!cpu_addr) 535 return; 536 537 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 538 if (dma_alloc_direct(dev, ops)) 539 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 540 else if (ops->free) 541 ops->free(dev, size, cpu_addr, dma_handle, attrs); 542 } 543 EXPORT_SYMBOL(dma_free_attrs); 544 545 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 546 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 547 { 548 const struct dma_map_ops *ops = get_dma_ops(dev); 549 550 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 551 return NULL; 552 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 553 return NULL; 554 555 size = PAGE_ALIGN(size); 556 if (dma_alloc_direct(dev, ops)) 557 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 558 if (!ops->alloc_pages) 559 return NULL; 560 return ops->alloc_pages(dev, size, dma_handle, dir, gfp); 561 } 562 563 struct page *dma_alloc_pages(struct device *dev, size_t size, 564 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 565 { 566 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 567 568 if (page) 569 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle); 570 return page; 571 } 572 EXPORT_SYMBOL_GPL(dma_alloc_pages); 573 574 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 575 dma_addr_t dma_handle, enum dma_data_direction dir) 576 { 577 const struct dma_map_ops *ops = get_dma_ops(dev); 578 579 size = PAGE_ALIGN(size); 580 if (dma_alloc_direct(dev, ops)) 581 dma_direct_free_pages(dev, size, page, dma_handle, dir); 582 else if (ops->free_pages) 583 ops->free_pages(dev, size, page, dma_handle, dir); 584 } 585 586 void dma_free_pages(struct device *dev, size_t size, struct page *page, 587 dma_addr_t dma_handle, enum dma_data_direction dir) 588 { 589 debug_dma_unmap_page(dev, dma_handle, size, dir); 590 __dma_free_pages(dev, size, page, dma_handle, dir); 591 } 592 EXPORT_SYMBOL_GPL(dma_free_pages); 593 594 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 595 size_t size, struct page *page) 596 { 597 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 598 599 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 600 return -ENXIO; 601 return remap_pfn_range(vma, vma->vm_start, 602 page_to_pfn(page) + vma->vm_pgoff, 603 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 604 } 605 EXPORT_SYMBOL_GPL(dma_mmap_pages); 606 607 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 608 enum dma_data_direction dir, gfp_t gfp) 609 { 610 struct sg_table *sgt; 611 struct page *page; 612 613 sgt = kmalloc(sizeof(*sgt), gfp); 614 if (!sgt) 615 return NULL; 616 if (sg_alloc_table(sgt, 1, gfp)) 617 goto out_free_sgt; 618 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 619 if (!page) 620 goto out_free_table; 621 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 622 sg_dma_len(sgt->sgl) = sgt->sgl->length; 623 return sgt; 624 out_free_table: 625 sg_free_table(sgt); 626 out_free_sgt: 627 kfree(sgt); 628 return NULL; 629 } 630 631 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 632 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 633 { 634 const struct dma_map_ops *ops = get_dma_ops(dev); 635 struct sg_table *sgt; 636 637 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 638 return NULL; 639 640 if (ops && ops->alloc_noncontiguous) 641 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); 642 else 643 sgt = alloc_single_sgt(dev, size, dir, gfp); 644 645 if (sgt) { 646 sgt->nents = 1; 647 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir); 648 } 649 return sgt; 650 } 651 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 652 653 static void free_single_sgt(struct device *dev, size_t size, 654 struct sg_table *sgt, enum dma_data_direction dir) 655 { 656 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 657 dir); 658 sg_free_table(sgt); 659 kfree(sgt); 660 } 661 662 void dma_free_noncontiguous(struct device *dev, size_t size, 663 struct sg_table *sgt, enum dma_data_direction dir) 664 { 665 const struct dma_map_ops *ops = get_dma_ops(dev); 666 667 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 668 if (ops && ops->free_noncontiguous) 669 ops->free_noncontiguous(dev, size, sgt, dir); 670 else 671 free_single_sgt(dev, size, sgt, dir); 672 } 673 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 674 675 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 676 struct sg_table *sgt) 677 { 678 const struct dma_map_ops *ops = get_dma_ops(dev); 679 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 680 681 if (ops && ops->alloc_noncontiguous) 682 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 683 return page_address(sg_page(sgt->sgl)); 684 } 685 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 686 687 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 688 { 689 const struct dma_map_ops *ops = get_dma_ops(dev); 690 691 if (ops && ops->alloc_noncontiguous) 692 vunmap(vaddr); 693 } 694 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 695 696 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 697 size_t size, struct sg_table *sgt) 698 { 699 const struct dma_map_ops *ops = get_dma_ops(dev); 700 701 if (ops && ops->alloc_noncontiguous) { 702 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 703 704 if (vma->vm_pgoff >= count || 705 vma_pages(vma) > count - vma->vm_pgoff) 706 return -ENXIO; 707 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 708 } 709 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 710 } 711 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 712 713 int dma_supported(struct device *dev, u64 mask) 714 { 715 const struct dma_map_ops *ops = get_dma_ops(dev); 716 717 /* 718 * ->dma_supported sets the bypass flag, so we must always call 719 * into the method here unless the device is truly direct mapped. 720 */ 721 if (!ops) 722 return dma_direct_supported(dev, mask); 723 if (!ops->dma_supported) 724 return 1; 725 return ops->dma_supported(dev, mask); 726 } 727 EXPORT_SYMBOL(dma_supported); 728 729 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK 730 void arch_dma_set_mask(struct device *dev, u64 mask); 731 #else 732 #define arch_dma_set_mask(dev, mask) do { } while (0) 733 #endif 734 735 int dma_set_mask(struct device *dev, u64 mask) 736 { 737 /* 738 * Truncate the mask to the actually supported dma_addr_t width to 739 * avoid generating unsupportable addresses. 740 */ 741 mask = (dma_addr_t)mask; 742 743 if (!dev->dma_mask || !dma_supported(dev, mask)) 744 return -EIO; 745 746 arch_dma_set_mask(dev, mask); 747 *dev->dma_mask = mask; 748 return 0; 749 } 750 EXPORT_SYMBOL(dma_set_mask); 751 752 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 753 int dma_set_coherent_mask(struct device *dev, u64 mask) 754 { 755 /* 756 * Truncate the mask to the actually supported dma_addr_t width to 757 * avoid generating unsupportable addresses. 758 */ 759 mask = (dma_addr_t)mask; 760 761 if (!dma_supported(dev, mask)) 762 return -EIO; 763 764 dev->coherent_dma_mask = mask; 765 return 0; 766 } 767 EXPORT_SYMBOL(dma_set_coherent_mask); 768 #endif 769 770 size_t dma_max_mapping_size(struct device *dev) 771 { 772 const struct dma_map_ops *ops = get_dma_ops(dev); 773 size_t size = SIZE_MAX; 774 775 if (dma_map_direct(dev, ops)) 776 size = dma_direct_max_mapping_size(dev); 777 else if (ops && ops->max_mapping_size) 778 size = ops->max_mapping_size(dev); 779 780 return size; 781 } 782 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 783 784 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 785 { 786 const struct dma_map_ops *ops = get_dma_ops(dev); 787 788 if (dma_map_direct(dev, ops)) 789 return dma_direct_need_sync(dev, dma_addr); 790 return ops->sync_single_for_cpu || ops->sync_single_for_device; 791 } 792 EXPORT_SYMBOL_GPL(dma_need_sync); 793 794 unsigned long dma_get_merge_boundary(struct device *dev) 795 { 796 const struct dma_map_ops *ops = get_dma_ops(dev); 797 798 if (!ops || !ops->get_merge_boundary) 799 return 0; /* can't merge */ 800 801 return ops->get_merge_boundary(dev); 802 } 803 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 804