xref: /linux/kernel/dma/mapping.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23 
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29 
30 /*
31  * Managed DMA API
32  */
33 struct dma_devres {
34 	size_t		size;
35 	void		*vaddr;
36 	dma_addr_t	dma_handle;
37 	unsigned long	attrs;
38 };
39 
40 static void dmam_release(struct device *dev, void *res)
41 {
42 	struct dma_devres *this = res;
43 
44 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 			this->attrs);
46 }
47 
48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 	struct dma_devres *this = res, *match = match_data;
51 
52 	if (this->vaddr == match->vaddr) {
53 		WARN_ON(this->size != match->size ||
54 			this->dma_handle != match->dma_handle);
55 		return 1;
56 	}
57 	return 0;
58 }
59 
60 /**
61  * dmam_free_coherent - Managed dma_free_coherent()
62  * @dev: Device to free coherent memory for
63  * @size: Size of allocation
64  * @vaddr: Virtual address of the memory to free
65  * @dma_handle: DMA handle of the memory to free
66  *
67  * Managed dma_free_coherent().
68  */
69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 			dma_addr_t dma_handle)
71 {
72 	struct dma_devres match_data = { size, vaddr, dma_handle };
73 
74 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 	dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78 
79 /**
80  * dmam_alloc_attrs - Managed dma_alloc_attrs()
81  * @dev: Device to allocate non_coherent memory for
82  * @size: Size of allocation
83  * @dma_handle: Out argument for allocated DMA handle
84  * @gfp: Allocation flags
85  * @attrs: Flags in the DMA_ATTR_* namespace.
86  *
87  * Managed dma_alloc_attrs().  Memory allocated using this function will be
88  * automatically released on driver detach.
89  *
90  * RETURNS:
91  * Pointer to allocated memory on success, NULL on failure.
92  */
93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 		gfp_t gfp, unsigned long attrs)
95 {
96 	struct dma_devres *dr;
97 	void *vaddr;
98 
99 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 	if (!dr)
101 		return NULL;
102 
103 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 	if (!vaddr) {
105 		devres_free(dr);
106 		return NULL;
107 	}
108 
109 	dr->vaddr = vaddr;
110 	dr->dma_handle = *dma_handle;
111 	dr->size = size;
112 	dr->attrs = attrs;
113 
114 	devres_add(dev, dr);
115 
116 	return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119 
120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 		const struct dma_map_ops *ops)
122 {
123 	if (use_dma_iommu(dev))
124 		return false;
125 
126 	if (likely(!ops))
127 		return true;
128 
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 	if (dev->dma_ops_bypass)
131 		return min_not_zero(mask, dev->bus_dma_limit) >=
132 			    dma_direct_get_required_mask(dev);
133 #endif
134 	return false;
135 }
136 
137 
138 /*
139  * Check if the devices uses a direct mapping for streaming DMA operations.
140  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141  * enough.
142  */
143 static inline bool dma_alloc_direct(struct device *dev,
144 		const struct dma_map_ops *ops)
145 {
146 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148 
149 static inline bool dma_map_direct(struct device *dev,
150 		const struct dma_map_ops *ops)
151 {
152 	return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154 
155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 		size_t offset, size_t size, enum dma_data_direction dir,
157 		unsigned long attrs)
158 {
159 	const struct dma_map_ops *ops = get_dma_ops(dev);
160 	dma_addr_t addr;
161 
162 	BUG_ON(!valid_dma_direction(dir));
163 
164 	if (WARN_ON_ONCE(!dev->dma_mask))
165 		return DMA_MAPPING_ERROR;
166 
167 	if (dma_map_direct(dev, ops) ||
168 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 	else if (use_dma_iommu(dev))
171 		addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 	else
173 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 	kmsan_handle_dma(page, offset, size, dir);
175 	trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 			   attrs);
177 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178 
179 	return addr;
180 }
181 EXPORT_SYMBOL(dma_map_page_attrs);
182 
183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 		enum dma_data_direction dir, unsigned long attrs)
185 {
186 	const struct dma_map_ops *ops = get_dma_ops(dev);
187 
188 	BUG_ON(!valid_dma_direction(dir));
189 	if (dma_map_direct(dev, ops) ||
190 	    arch_dma_unmap_page_direct(dev, addr + size))
191 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 	else if (use_dma_iommu(dev))
193 		iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 	else
195 		ops->unmap_page(dev, addr, size, dir, attrs);
196 	trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 	debug_dma_unmap_page(dev, addr, size, dir);
198 }
199 EXPORT_SYMBOL(dma_unmap_page_attrs);
200 
201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 	 int nents, enum dma_data_direction dir, unsigned long attrs)
203 {
204 	const struct dma_map_ops *ops = get_dma_ops(dev);
205 	int ents;
206 
207 	BUG_ON(!valid_dma_direction(dir));
208 
209 	if (WARN_ON_ONCE(!dev->dma_mask))
210 		return 0;
211 
212 	if (dma_map_direct(dev, ops) ||
213 	    arch_dma_map_sg_direct(dev, sg, nents))
214 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 	else if (use_dma_iommu(dev))
216 		ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 	else
218 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
219 
220 	if (ents > 0) {
221 		kmsan_handle_dma_sg(sg, nents, dir);
222 		trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 				ents != -EIO && ents != -EREMOTEIO)) {
226 		trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227 		return -EIO;
228 	}
229 
230 	return ents;
231 }
232 
233 /**
234  * dma_map_sg_attrs - Map the given buffer for DMA
235  * @dev:	The device for which to perform the DMA operation
236  * @sg:		The sg_table object describing the buffer
237  * @nents:	Number of entries to map
238  * @dir:	DMA direction
239  * @attrs:	Optional DMA attributes for the map operation
240  *
241  * Maps a buffer described by a scatterlist passed in the sg argument with
242  * nents segments for the @dir DMA operation by the @dev device.
243  *
244  * Returns the number of mapped entries (which can be less than nents)
245  * on success. Zero is returned for any error.
246  *
247  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248  * original sg and original nents (not the value returned by this funciton).
249  */
250 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251 		    int nents, enum dma_data_direction dir, unsigned long attrs)
252 {
253 	int ret;
254 
255 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256 	if (ret < 0)
257 		return 0;
258 	return ret;
259 }
260 EXPORT_SYMBOL(dma_map_sg_attrs);
261 
262 /**
263  * dma_map_sgtable - Map the given buffer for DMA
264  * @dev:	The device for which to perform the DMA operation
265  * @sgt:	The sg_table object describing the buffer
266  * @dir:	DMA direction
267  * @attrs:	Optional DMA attributes for the map operation
268  *
269  * Maps a buffer described by a scatterlist stored in the given sg_table
270  * object for the @dir DMA operation by the @dev device. After success, the
271  * ownership for the buffer is transferred to the DMA domain.  One has to
272  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273  * ownership of the buffer back to the CPU domain before touching the
274  * buffer by the CPU.
275  *
276  * Returns 0 on success or a negative error code on error. The following
277  * error codes are supported with the given meaning:
278  *
279  *   -EINVAL		An invalid argument, unaligned access or other error
280  *			in usage. Will not succeed if retried.
281  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
282  *			complete the mapping. Should succeed if retried later.
283  *   -EIO		Legacy error code with an unknown meaning. eg. this is
284  *			returned if a lower level call returned
285  *			DMA_MAPPING_ERROR.
286  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
287  *			in the sg_table. This will not succeed if retried.
288  */
289 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290 		    enum dma_data_direction dir, unsigned long attrs)
291 {
292 	int nents;
293 
294 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295 	if (nents < 0)
296 		return nents;
297 	sgt->nents = nents;
298 	return 0;
299 }
300 EXPORT_SYMBOL_GPL(dma_map_sgtable);
301 
302 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303 				      int nents, enum dma_data_direction dir,
304 				      unsigned long attrs)
305 {
306 	const struct dma_map_ops *ops = get_dma_ops(dev);
307 
308 	BUG_ON(!valid_dma_direction(dir));
309 	trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310 	debug_dma_unmap_sg(dev, sg, nents, dir);
311 	if (dma_map_direct(dev, ops) ||
312 	    arch_dma_unmap_sg_direct(dev, sg, nents))
313 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314 	else if (use_dma_iommu(dev))
315 		iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316 	else if (ops->unmap_sg)
317 		ops->unmap_sg(dev, sg, nents, dir, attrs);
318 }
319 EXPORT_SYMBOL(dma_unmap_sg_attrs);
320 
321 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322 		size_t size, enum dma_data_direction dir, unsigned long attrs)
323 {
324 	const struct dma_map_ops *ops = get_dma_ops(dev);
325 	dma_addr_t addr = DMA_MAPPING_ERROR;
326 
327 	BUG_ON(!valid_dma_direction(dir));
328 
329 	if (WARN_ON_ONCE(!dev->dma_mask))
330 		return DMA_MAPPING_ERROR;
331 
332 	if (dma_map_direct(dev, ops))
333 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334 	else if (use_dma_iommu(dev))
335 		addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336 	else if (ops->map_resource)
337 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338 
339 	trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341 	return addr;
342 }
343 EXPORT_SYMBOL(dma_map_resource);
344 
345 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346 		enum dma_data_direction dir, unsigned long attrs)
347 {
348 	const struct dma_map_ops *ops = get_dma_ops(dev);
349 
350 	BUG_ON(!valid_dma_direction(dir));
351 	if (dma_map_direct(dev, ops))
352 		; /* nothing to do: uncached and no swiotlb */
353 	else if (use_dma_iommu(dev))
354 		iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355 	else if (ops->unmap_resource)
356 		ops->unmap_resource(dev, addr, size, dir, attrs);
357 	trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358 	debug_dma_unmap_resource(dev, addr, size, dir);
359 }
360 EXPORT_SYMBOL(dma_unmap_resource);
361 
362 #ifdef CONFIG_DMA_NEED_SYNC
363 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364 		enum dma_data_direction dir)
365 {
366 	const struct dma_map_ops *ops = get_dma_ops(dev);
367 
368 	BUG_ON(!valid_dma_direction(dir));
369 	if (dma_map_direct(dev, ops))
370 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371 	else if (use_dma_iommu(dev))
372 		iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373 	else if (ops->sync_single_for_cpu)
374 		ops->sync_single_for_cpu(dev, addr, size, dir);
375 	trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377 }
378 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379 
380 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381 		size_t size, enum dma_data_direction dir)
382 {
383 	const struct dma_map_ops *ops = get_dma_ops(dev);
384 
385 	BUG_ON(!valid_dma_direction(dir));
386 	if (dma_map_direct(dev, ops))
387 		dma_direct_sync_single_for_device(dev, addr, size, dir);
388 	else if (use_dma_iommu(dev))
389 		iommu_dma_sync_single_for_device(dev, addr, size, dir);
390 	else if (ops->sync_single_for_device)
391 		ops->sync_single_for_device(dev, addr, size, dir);
392 	trace_dma_sync_single_for_device(dev, addr, size, dir);
393 	debug_dma_sync_single_for_device(dev, addr, size, dir);
394 }
395 EXPORT_SYMBOL(__dma_sync_single_for_device);
396 
397 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398 		    int nelems, enum dma_data_direction dir)
399 {
400 	const struct dma_map_ops *ops = get_dma_ops(dev);
401 
402 	BUG_ON(!valid_dma_direction(dir));
403 	if (dma_map_direct(dev, ops))
404 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405 	else if (use_dma_iommu(dev))
406 		iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407 	else if (ops->sync_sg_for_cpu)
408 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409 	trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411 }
412 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413 
414 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415 		       int nelems, enum dma_data_direction dir)
416 {
417 	const struct dma_map_ops *ops = get_dma_ops(dev);
418 
419 	BUG_ON(!valid_dma_direction(dir));
420 	if (dma_map_direct(dev, ops))
421 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422 	else if (use_dma_iommu(dev))
423 		iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424 	else if (ops->sync_sg_for_device)
425 		ops->sync_sg_for_device(dev, sg, nelems, dir);
426 	trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428 }
429 EXPORT_SYMBOL(__dma_sync_sg_for_device);
430 
431 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432 {
433 	const struct dma_map_ops *ops = get_dma_ops(dev);
434 
435 	if (dma_map_direct(dev, ops))
436 		/*
437 		 * dma_skip_sync could've been reset on first SWIOTLB buffer
438 		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439 		 * In this case, fall back to more granular check.
440 		 */
441 		return dma_direct_need_sync(dev, dma_addr);
442 	return true;
443 }
444 EXPORT_SYMBOL_GPL(__dma_need_sync);
445 
446 static void dma_setup_need_sync(struct device *dev)
447 {
448 	const struct dma_map_ops *ops = get_dma_ops(dev);
449 
450 	if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
451 		/*
452 		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
453 		 * mapping, if any. During the device initialization, it's
454 		 * enough to check only for the DMA coherence.
455 		 */
456 		dev->dma_skip_sync = dev_is_dma_coherent(dev);
457 	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
458 		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
459 		/*
460 		 * Synchronization is not possible when none of DMA sync ops
461 		 * is set.
462 		 */
463 		dev->dma_skip_sync = true;
464 	else
465 		dev->dma_skip_sync = false;
466 }
467 #else /* !CONFIG_DMA_NEED_SYNC */
468 static inline void dma_setup_need_sync(struct device *dev) { }
469 #endif /* !CONFIG_DMA_NEED_SYNC */
470 
471 /*
472  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
473  * that the intention is to allow exporting memory allocated via the
474  * coherent DMA APIs through the dma_buf API, which only accepts a
475  * scattertable.  This presents a couple of problems:
476  * 1. Not all memory allocated via the coherent DMA APIs is backed by
477  *    a struct page
478  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
479  *    as we will try to flush the memory through a different alias to that
480  *    actually being used (and the flushes are redundant.)
481  */
482 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
483 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
484 		unsigned long attrs)
485 {
486 	const struct dma_map_ops *ops = get_dma_ops(dev);
487 
488 	if (dma_alloc_direct(dev, ops))
489 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
490 				size, attrs);
491 	if (use_dma_iommu(dev))
492 		return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
493 				size, attrs);
494 	if (!ops->get_sgtable)
495 		return -ENXIO;
496 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
497 }
498 EXPORT_SYMBOL(dma_get_sgtable_attrs);
499 
500 #ifdef CONFIG_MMU
501 /*
502  * Return the page attributes used for mapping dma_alloc_* memory, either in
503  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
504  */
505 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
506 {
507 	if (dev_is_dma_coherent(dev))
508 		return prot;
509 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
510 	if (attrs & DMA_ATTR_WRITE_COMBINE)
511 		return pgprot_writecombine(prot);
512 #endif
513 	return pgprot_dmacoherent(prot);
514 }
515 #endif /* CONFIG_MMU */
516 
517 /**
518  * dma_can_mmap - check if a given device supports dma_mmap_*
519  * @dev: device to check
520  *
521  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
522  * map DMA allocations to userspace.
523  */
524 bool dma_can_mmap(struct device *dev)
525 {
526 	const struct dma_map_ops *ops = get_dma_ops(dev);
527 
528 	if (dma_alloc_direct(dev, ops))
529 		return dma_direct_can_mmap(dev);
530 	if (use_dma_iommu(dev))
531 		return true;
532 	return ops->mmap != NULL;
533 }
534 EXPORT_SYMBOL_GPL(dma_can_mmap);
535 
536 /**
537  * dma_mmap_attrs - map a coherent DMA allocation into user space
538  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539  * @vma: vm_area_struct describing requested user mapping
540  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
541  * @dma_addr: device-view address returned from dma_alloc_attrs
542  * @size: size of memory originally requested in dma_alloc_attrs
543  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
544  *
545  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
546  * space.  The coherent DMA buffer must not be freed by the driver until the
547  * user space mapping has been released.
548  */
549 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
550 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
551 		unsigned long attrs)
552 {
553 	const struct dma_map_ops *ops = get_dma_ops(dev);
554 
555 	if (dma_alloc_direct(dev, ops))
556 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
557 				attrs);
558 	if (use_dma_iommu(dev))
559 		return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
560 				      attrs);
561 	if (!ops->mmap)
562 		return -ENXIO;
563 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
564 }
565 EXPORT_SYMBOL(dma_mmap_attrs);
566 
567 u64 dma_get_required_mask(struct device *dev)
568 {
569 	const struct dma_map_ops *ops = get_dma_ops(dev);
570 
571 	if (dma_alloc_direct(dev, ops))
572 		return dma_direct_get_required_mask(dev);
573 
574 	if (use_dma_iommu(dev))
575 		return DMA_BIT_MASK(32);
576 
577 	if (ops->get_required_mask)
578 		return ops->get_required_mask(dev);
579 
580 	/*
581 	 * We require every DMA ops implementation to at least support a 32-bit
582 	 * DMA mask (and use bounce buffering if that isn't supported in
583 	 * hardware).  As the direct mapping code has its own routine to
584 	 * actually report an optimal mask we default to 32-bit here as that
585 	 * is the right thing for most IOMMUs, and at least not actively
586 	 * harmful in general.
587 	 */
588 	return DMA_BIT_MASK(32);
589 }
590 EXPORT_SYMBOL_GPL(dma_get_required_mask);
591 
592 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
593 		gfp_t flag, unsigned long attrs)
594 {
595 	const struct dma_map_ops *ops = get_dma_ops(dev);
596 	void *cpu_addr;
597 
598 	WARN_ON_ONCE(!dev->coherent_dma_mask);
599 
600 	/*
601 	 * DMA allocations can never be turned back into a page pointer, so
602 	 * requesting compound pages doesn't make sense (and can't even be
603 	 * supported at all by various backends).
604 	 */
605 	if (WARN_ON_ONCE(flag & __GFP_COMP))
606 		return NULL;
607 
608 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
609 		trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
610 				DMA_BIDIRECTIONAL, flag, attrs);
611 		return cpu_addr;
612 	}
613 
614 	/* let the implementation decide on the zone to allocate from: */
615 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
616 
617 	if (dma_alloc_direct(dev, ops)) {
618 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
619 	} else if (use_dma_iommu(dev)) {
620 		cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
621 	} else if (ops->alloc) {
622 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
623 	} else {
624 		trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
625 				attrs);
626 		return NULL;
627 	}
628 
629 	trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
630 			flag, attrs);
631 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
632 	return cpu_addr;
633 }
634 EXPORT_SYMBOL(dma_alloc_attrs);
635 
636 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
637 		dma_addr_t dma_handle, unsigned long attrs)
638 {
639 	const struct dma_map_ops *ops = get_dma_ops(dev);
640 
641 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
642 		return;
643 	/*
644 	 * On non-coherent platforms which implement DMA-coherent buffers via
645 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
646 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
647 	 * sleep on some machines, and b) an indication that the driver is
648 	 * probably misusing the coherent API anyway.
649 	 */
650 	WARN_ON(irqs_disabled());
651 
652 	trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
653 		       attrs);
654 	if (!cpu_addr)
655 		return;
656 
657 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
658 	if (dma_alloc_direct(dev, ops))
659 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
660 	else if (use_dma_iommu(dev))
661 		iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
662 	else if (ops->free)
663 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
664 }
665 EXPORT_SYMBOL(dma_free_attrs);
666 
667 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
668 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
669 {
670 	const struct dma_map_ops *ops = get_dma_ops(dev);
671 
672 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
673 		return NULL;
674 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
675 		return NULL;
676 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
677 		return NULL;
678 
679 	size = PAGE_ALIGN(size);
680 	if (dma_alloc_direct(dev, ops))
681 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
682 	if (use_dma_iommu(dev))
683 		return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
684 	if (!ops->alloc_pages_op)
685 		return NULL;
686 	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
687 }
688 
689 struct page *dma_alloc_pages(struct device *dev, size_t size,
690 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
691 {
692 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
693 
694 	if (page) {
695 		trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
696 				      size, dir, gfp, 0);
697 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
698 	} else {
699 		trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
700 	}
701 	return page;
702 }
703 EXPORT_SYMBOL_GPL(dma_alloc_pages);
704 
705 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
706 		dma_addr_t dma_handle, enum dma_data_direction dir)
707 {
708 	const struct dma_map_ops *ops = get_dma_ops(dev);
709 
710 	size = PAGE_ALIGN(size);
711 	if (dma_alloc_direct(dev, ops))
712 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
713 	else if (use_dma_iommu(dev))
714 		dma_common_free_pages(dev, size, page, dma_handle, dir);
715 	else if (ops->free_pages)
716 		ops->free_pages(dev, size, page, dma_handle, dir);
717 }
718 
719 void dma_free_pages(struct device *dev, size_t size, struct page *page,
720 		dma_addr_t dma_handle, enum dma_data_direction dir)
721 {
722 	trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
723 	debug_dma_unmap_page(dev, dma_handle, size, dir);
724 	__dma_free_pages(dev, size, page, dma_handle, dir);
725 }
726 EXPORT_SYMBOL_GPL(dma_free_pages);
727 
728 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
729 		size_t size, struct page *page)
730 {
731 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732 
733 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
734 		return -ENXIO;
735 	return remap_pfn_range(vma, vma->vm_start,
736 			       page_to_pfn(page) + vma->vm_pgoff,
737 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
738 }
739 EXPORT_SYMBOL_GPL(dma_mmap_pages);
740 
741 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
742 		enum dma_data_direction dir, gfp_t gfp)
743 {
744 	struct sg_table *sgt;
745 	struct page *page;
746 
747 	sgt = kmalloc(sizeof(*sgt), gfp);
748 	if (!sgt)
749 		return NULL;
750 	if (sg_alloc_table(sgt, 1, gfp))
751 		goto out_free_sgt;
752 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
753 	if (!page)
754 		goto out_free_table;
755 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
756 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
757 	return sgt;
758 out_free_table:
759 	sg_free_table(sgt);
760 out_free_sgt:
761 	kfree(sgt);
762 	return NULL;
763 }
764 
765 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
766 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
767 {
768 	struct sg_table *sgt;
769 
770 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
771 		return NULL;
772 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
773 		return NULL;
774 
775 	if (use_dma_iommu(dev))
776 		sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
777 	else
778 		sgt = alloc_single_sgt(dev, size, dir, gfp);
779 
780 	if (sgt) {
781 		sgt->nents = 1;
782 		trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
783 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
784 	} else {
785 		trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
786 	}
787 	return sgt;
788 }
789 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
790 
791 static void free_single_sgt(struct device *dev, size_t size,
792 		struct sg_table *sgt, enum dma_data_direction dir)
793 {
794 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
795 			 dir);
796 	sg_free_table(sgt);
797 	kfree(sgt);
798 }
799 
800 void dma_free_noncontiguous(struct device *dev, size_t size,
801 		struct sg_table *sgt, enum dma_data_direction dir)
802 {
803 	trace_dma_free_sgt(dev, sgt, size, dir);
804 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
805 
806 	if (use_dma_iommu(dev))
807 		iommu_dma_free_noncontiguous(dev, size, sgt, dir);
808 	else
809 		free_single_sgt(dev, size, sgt, dir);
810 }
811 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
812 
813 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
814 		struct sg_table *sgt)
815 {
816 
817 	if (use_dma_iommu(dev))
818 		return iommu_dma_vmap_noncontiguous(dev, size, sgt);
819 
820 	return page_address(sg_page(sgt->sgl));
821 }
822 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
823 
824 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
825 {
826 	if (use_dma_iommu(dev))
827 		iommu_dma_vunmap_noncontiguous(dev, vaddr);
828 }
829 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
830 
831 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
832 		size_t size, struct sg_table *sgt)
833 {
834 	if (use_dma_iommu(dev))
835 		return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
836 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837 }
838 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839 
840 static int dma_supported(struct device *dev, u64 mask)
841 {
842 	const struct dma_map_ops *ops = get_dma_ops(dev);
843 
844 	if (use_dma_iommu(dev)) {
845 		if (WARN_ON(ops))
846 			return false;
847 		return true;
848 	}
849 
850 	/*
851 	 * ->dma_supported sets and clears the bypass flag, so ignore it here
852 	 * and always call into the method if there is one.
853 	 */
854 	if (ops) {
855 		if (!ops->dma_supported)
856 			return true;
857 		return ops->dma_supported(dev, mask);
858 	}
859 
860 	return dma_direct_supported(dev, mask);
861 }
862 
863 bool dma_pci_p2pdma_supported(struct device *dev)
864 {
865 	const struct dma_map_ops *ops = get_dma_ops(dev);
866 
867 	/*
868 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
869 	 * not be used with dma mapping ops that do not have support even
870 	 * if the specific device is bypassing them.
871 	 */
872 
873 	/* if ops is not set, dma direct and default IOMMU support P2PDMA */
874 	return !ops;
875 }
876 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877 
878 int dma_set_mask(struct device *dev, u64 mask)
879 {
880 	/*
881 	 * Truncate the mask to the actually supported dma_addr_t width to
882 	 * avoid generating unsupportable addresses.
883 	 */
884 	mask = (dma_addr_t)mask;
885 
886 	if (!dev->dma_mask || !dma_supported(dev, mask))
887 		return -EIO;
888 
889 	arch_dma_set_mask(dev, mask);
890 	*dev->dma_mask = mask;
891 	dma_setup_need_sync(dev);
892 
893 	return 0;
894 }
895 EXPORT_SYMBOL(dma_set_mask);
896 
897 int dma_set_coherent_mask(struct device *dev, u64 mask)
898 {
899 	/*
900 	 * Truncate the mask to the actually supported dma_addr_t width to
901 	 * avoid generating unsupportable addresses.
902 	 */
903 	mask = (dma_addr_t)mask;
904 
905 	if (!dma_supported(dev, mask))
906 		return -EIO;
907 
908 	dev->coherent_dma_mask = mask;
909 	return 0;
910 }
911 EXPORT_SYMBOL(dma_set_coherent_mask);
912 
913 /**
914  * dma_addressing_limited - return if the device is addressing limited
915  * @dev:	device to check
916  *
917  * Return %true if the devices DMA mask is too small to address all memory in
918  * the system, else %false.  Lack of addressing bits is the prime reason for
919  * bounce buffering, but might not be the only one.
920  */
921 bool dma_addressing_limited(struct device *dev)
922 {
923 	const struct dma_map_ops *ops = get_dma_ops(dev);
924 
925 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926 			 dma_get_required_mask(dev))
927 		return true;
928 
929 	if (unlikely(ops) || use_dma_iommu(dev))
930 		return false;
931 	return !dma_direct_all_ram_mapped(dev);
932 }
933 EXPORT_SYMBOL_GPL(dma_addressing_limited);
934 
935 size_t dma_max_mapping_size(struct device *dev)
936 {
937 	const struct dma_map_ops *ops = get_dma_ops(dev);
938 	size_t size = SIZE_MAX;
939 
940 	if (dma_map_direct(dev, ops))
941 		size = dma_direct_max_mapping_size(dev);
942 	else if (use_dma_iommu(dev))
943 		size = iommu_dma_max_mapping_size(dev);
944 	else if (ops && ops->max_mapping_size)
945 		size = ops->max_mapping_size(dev);
946 
947 	return size;
948 }
949 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950 
951 size_t dma_opt_mapping_size(struct device *dev)
952 {
953 	const struct dma_map_ops *ops = get_dma_ops(dev);
954 	size_t size = SIZE_MAX;
955 
956 	if (use_dma_iommu(dev))
957 		size = iommu_dma_opt_mapping_size();
958 	else if (ops && ops->opt_mapping_size)
959 		size = ops->opt_mapping_size();
960 
961 	return min(dma_max_mapping_size(dev), size);
962 }
963 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964 
965 unsigned long dma_get_merge_boundary(struct device *dev)
966 {
967 	const struct dma_map_ops *ops = get_dma_ops(dev);
968 
969 	if (use_dma_iommu(dev))
970 		return iommu_dma_get_merge_boundary(dev);
971 
972 	if (!ops || !ops->get_merge_boundary)
973 		return 0;	/* can't merge */
974 
975 	return ops->get_merge_boundary(dev);
976 }
977 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
978