xref: /linux/kernel/dma/mapping.c (revision 7856a565416e0cf091f825b0e25c7a1b7abb650e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23 
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29 
30 /*
31  * Managed DMA API
32  */
33 struct dma_devres {
34 	size_t		size;
35 	void		*vaddr;
36 	dma_addr_t	dma_handle;
37 	unsigned long	attrs;
38 };
39 
40 static void dmam_release(struct device *dev, void *res)
41 {
42 	struct dma_devres *this = res;
43 
44 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 			this->attrs);
46 }
47 
48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 	struct dma_devres *this = res, *match = match_data;
51 
52 	if (this->vaddr == match->vaddr) {
53 		WARN_ON(this->size != match->size ||
54 			this->dma_handle != match->dma_handle);
55 		return 1;
56 	}
57 	return 0;
58 }
59 
60 /**
61  * dmam_free_coherent - Managed dma_free_coherent()
62  * @dev: Device to free coherent memory for
63  * @size: Size of allocation
64  * @vaddr: Virtual address of the memory to free
65  * @dma_handle: DMA handle of the memory to free
66  *
67  * Managed dma_free_coherent().
68  */
69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 			dma_addr_t dma_handle)
71 {
72 	struct dma_devres match_data = { size, vaddr, dma_handle };
73 
74 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 	dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78 
79 /**
80  * dmam_alloc_attrs - Managed dma_alloc_attrs()
81  * @dev: Device to allocate non_coherent memory for
82  * @size: Size of allocation
83  * @dma_handle: Out argument for allocated DMA handle
84  * @gfp: Allocation flags
85  * @attrs: Flags in the DMA_ATTR_* namespace.
86  *
87  * Managed dma_alloc_attrs().  Memory allocated using this function will be
88  * automatically released on driver detach.
89  *
90  * RETURNS:
91  * Pointer to allocated memory on success, NULL on failure.
92  */
93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 		gfp_t gfp, unsigned long attrs)
95 {
96 	struct dma_devres *dr;
97 	void *vaddr;
98 
99 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 	if (!dr)
101 		return NULL;
102 
103 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 	if (!vaddr) {
105 		devres_free(dr);
106 		return NULL;
107 	}
108 
109 	dr->vaddr = vaddr;
110 	dr->dma_handle = *dma_handle;
111 	dr->size = size;
112 	dr->attrs = attrs;
113 
114 	devres_add(dev, dr);
115 
116 	return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119 
120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 		const struct dma_map_ops *ops)
122 {
123 	if (use_dma_iommu(dev))
124 		return false;
125 
126 	if (likely(!ops))
127 		return true;
128 
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 	if (dev->dma_ops_bypass)
131 		return min_not_zero(mask, dev->bus_dma_limit) >=
132 			    dma_direct_get_required_mask(dev);
133 #endif
134 	return false;
135 }
136 
137 
138 /*
139  * Check if the devices uses a direct mapping for streaming DMA operations.
140  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141  * enough.
142  */
143 static inline bool dma_alloc_direct(struct device *dev,
144 		const struct dma_map_ops *ops)
145 {
146 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148 
149 static inline bool dma_map_direct(struct device *dev,
150 		const struct dma_map_ops *ops)
151 {
152 	return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154 
155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 		size_t offset, size_t size, enum dma_data_direction dir,
157 		unsigned long attrs)
158 {
159 	const struct dma_map_ops *ops = get_dma_ops(dev);
160 	dma_addr_t addr;
161 
162 	BUG_ON(!valid_dma_direction(dir));
163 
164 	if (WARN_ON_ONCE(!dev->dma_mask))
165 		return DMA_MAPPING_ERROR;
166 
167 	if (dma_map_direct(dev, ops) ||
168 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 	else if (use_dma_iommu(dev))
171 		addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 	else
173 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 	kmsan_handle_dma(page, offset, size, dir);
175 	trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 			   attrs);
177 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178 
179 	return addr;
180 }
181 EXPORT_SYMBOL(dma_map_page_attrs);
182 
183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 		enum dma_data_direction dir, unsigned long attrs)
185 {
186 	const struct dma_map_ops *ops = get_dma_ops(dev);
187 
188 	BUG_ON(!valid_dma_direction(dir));
189 	if (dma_map_direct(dev, ops) ||
190 	    arch_dma_unmap_page_direct(dev, addr + size))
191 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 	else if (use_dma_iommu(dev))
193 		iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 	else
195 		ops->unmap_page(dev, addr, size, dir, attrs);
196 	trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 	debug_dma_unmap_page(dev, addr, size, dir);
198 }
199 EXPORT_SYMBOL(dma_unmap_page_attrs);
200 
201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 	 int nents, enum dma_data_direction dir, unsigned long attrs)
203 {
204 	const struct dma_map_ops *ops = get_dma_ops(dev);
205 	int ents;
206 
207 	BUG_ON(!valid_dma_direction(dir));
208 
209 	if (WARN_ON_ONCE(!dev->dma_mask))
210 		return 0;
211 
212 	if (dma_map_direct(dev, ops) ||
213 	    arch_dma_map_sg_direct(dev, sg, nents))
214 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 	else if (use_dma_iommu(dev))
216 		ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 	else
218 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
219 
220 	if (ents > 0) {
221 		kmsan_handle_dma_sg(sg, nents, dir);
222 		trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 				ents != -EIO && ents != -EREMOTEIO)) {
226 		return -EIO;
227 	}
228 
229 	return ents;
230 }
231 
232 /**
233  * dma_map_sg_attrs - Map the given buffer for DMA
234  * @dev:	The device for which to perform the DMA operation
235  * @sg:		The sg_table object describing the buffer
236  * @nents:	Number of entries to map
237  * @dir:	DMA direction
238  * @attrs:	Optional DMA attributes for the map operation
239  *
240  * Maps a buffer described by a scatterlist passed in the sg argument with
241  * nents segments for the @dir DMA operation by the @dev device.
242  *
243  * Returns the number of mapped entries (which can be less than nents)
244  * on success. Zero is returned for any error.
245  *
246  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
247  * original sg and original nents (not the value returned by this funciton).
248  */
249 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
250 		    int nents, enum dma_data_direction dir, unsigned long attrs)
251 {
252 	int ret;
253 
254 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
255 	if (ret < 0)
256 		return 0;
257 	return ret;
258 }
259 EXPORT_SYMBOL(dma_map_sg_attrs);
260 
261 /**
262  * dma_map_sgtable - Map the given buffer for DMA
263  * @dev:	The device for which to perform the DMA operation
264  * @sgt:	The sg_table object describing the buffer
265  * @dir:	DMA direction
266  * @attrs:	Optional DMA attributes for the map operation
267  *
268  * Maps a buffer described by a scatterlist stored in the given sg_table
269  * object for the @dir DMA operation by the @dev device. After success, the
270  * ownership for the buffer is transferred to the DMA domain.  One has to
271  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
272  * ownership of the buffer back to the CPU domain before touching the
273  * buffer by the CPU.
274  *
275  * Returns 0 on success or a negative error code on error. The following
276  * error codes are supported with the given meaning:
277  *
278  *   -EINVAL		An invalid argument, unaligned access or other error
279  *			in usage. Will not succeed if retried.
280  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
281  *			complete the mapping. Should succeed if retried later.
282  *   -EIO		Legacy error code with an unknown meaning. eg. this is
283  *			returned if a lower level call returned
284  *			DMA_MAPPING_ERROR.
285  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
286  *			in the sg_table. This will not succeed if retried.
287  */
288 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
289 		    enum dma_data_direction dir, unsigned long attrs)
290 {
291 	int nents;
292 
293 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
294 	if (nents < 0)
295 		return nents;
296 	sgt->nents = nents;
297 	return 0;
298 }
299 EXPORT_SYMBOL_GPL(dma_map_sgtable);
300 
301 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
302 				      int nents, enum dma_data_direction dir,
303 				      unsigned long attrs)
304 {
305 	const struct dma_map_ops *ops = get_dma_ops(dev);
306 
307 	BUG_ON(!valid_dma_direction(dir));
308 	trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
309 	debug_dma_unmap_sg(dev, sg, nents, dir);
310 	if (dma_map_direct(dev, ops) ||
311 	    arch_dma_unmap_sg_direct(dev, sg, nents))
312 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
313 	else if (use_dma_iommu(dev))
314 		iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
315 	else if (ops->unmap_sg)
316 		ops->unmap_sg(dev, sg, nents, dir, attrs);
317 }
318 EXPORT_SYMBOL(dma_unmap_sg_attrs);
319 
320 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
321 		size_t size, enum dma_data_direction dir, unsigned long attrs)
322 {
323 	const struct dma_map_ops *ops = get_dma_ops(dev);
324 	dma_addr_t addr = DMA_MAPPING_ERROR;
325 
326 	BUG_ON(!valid_dma_direction(dir));
327 
328 	if (WARN_ON_ONCE(!dev->dma_mask))
329 		return DMA_MAPPING_ERROR;
330 
331 	if (dma_map_direct(dev, ops))
332 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
333 	else if (use_dma_iommu(dev))
334 		addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
335 	else if (ops->map_resource)
336 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
337 
338 	trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
339 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
340 	return addr;
341 }
342 EXPORT_SYMBOL(dma_map_resource);
343 
344 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
345 		enum dma_data_direction dir, unsigned long attrs)
346 {
347 	const struct dma_map_ops *ops = get_dma_ops(dev);
348 
349 	BUG_ON(!valid_dma_direction(dir));
350 	if (dma_map_direct(dev, ops))
351 		; /* nothing to do: uncached and no swiotlb */
352 	else if (use_dma_iommu(dev))
353 		iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
354 	else if (ops->unmap_resource)
355 		ops->unmap_resource(dev, addr, size, dir, attrs);
356 	trace_dma_unmap_resource(dev, addr, size, dir, attrs);
357 	debug_dma_unmap_resource(dev, addr, size, dir);
358 }
359 EXPORT_SYMBOL(dma_unmap_resource);
360 
361 #ifdef CONFIG_DMA_NEED_SYNC
362 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
363 		enum dma_data_direction dir)
364 {
365 	const struct dma_map_ops *ops = get_dma_ops(dev);
366 
367 	BUG_ON(!valid_dma_direction(dir));
368 	if (dma_map_direct(dev, ops))
369 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
370 	else if (use_dma_iommu(dev))
371 		iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
372 	else if (ops->sync_single_for_cpu)
373 		ops->sync_single_for_cpu(dev, addr, size, dir);
374 	trace_dma_sync_single_for_cpu(dev, addr, size, dir);
375 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
376 }
377 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
378 
379 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
380 		size_t size, enum dma_data_direction dir)
381 {
382 	const struct dma_map_ops *ops = get_dma_ops(dev);
383 
384 	BUG_ON(!valid_dma_direction(dir));
385 	if (dma_map_direct(dev, ops))
386 		dma_direct_sync_single_for_device(dev, addr, size, dir);
387 	else if (use_dma_iommu(dev))
388 		iommu_dma_sync_single_for_device(dev, addr, size, dir);
389 	else if (ops->sync_single_for_device)
390 		ops->sync_single_for_device(dev, addr, size, dir);
391 	trace_dma_sync_single_for_device(dev, addr, size, dir);
392 	debug_dma_sync_single_for_device(dev, addr, size, dir);
393 }
394 EXPORT_SYMBOL(__dma_sync_single_for_device);
395 
396 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
397 		    int nelems, enum dma_data_direction dir)
398 {
399 	const struct dma_map_ops *ops = get_dma_ops(dev);
400 
401 	BUG_ON(!valid_dma_direction(dir));
402 	if (dma_map_direct(dev, ops))
403 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
404 	else if (use_dma_iommu(dev))
405 		iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
406 	else if (ops->sync_sg_for_cpu)
407 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
408 	trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
409 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 }
411 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
412 
413 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
414 		       int nelems, enum dma_data_direction dir)
415 {
416 	const struct dma_map_ops *ops = get_dma_ops(dev);
417 
418 	BUG_ON(!valid_dma_direction(dir));
419 	if (dma_map_direct(dev, ops))
420 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
421 	else if (use_dma_iommu(dev))
422 		iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
423 	else if (ops->sync_sg_for_device)
424 		ops->sync_sg_for_device(dev, sg, nelems, dir);
425 	trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
426 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 }
428 EXPORT_SYMBOL(__dma_sync_sg_for_device);
429 
430 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
431 {
432 	const struct dma_map_ops *ops = get_dma_ops(dev);
433 
434 	if (dma_map_direct(dev, ops))
435 		/*
436 		 * dma_skip_sync could've been reset on first SWIOTLB buffer
437 		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
438 		 * In this case, fall back to more granular check.
439 		 */
440 		return dma_direct_need_sync(dev, dma_addr);
441 	return true;
442 }
443 EXPORT_SYMBOL_GPL(__dma_need_sync);
444 
445 static void dma_setup_need_sync(struct device *dev)
446 {
447 	const struct dma_map_ops *ops = get_dma_ops(dev);
448 
449 	if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
450 		/*
451 		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
452 		 * mapping, if any. During the device initialization, it's
453 		 * enough to check only for the DMA coherence.
454 		 */
455 		dev->dma_skip_sync = dev_is_dma_coherent(dev);
456 	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
457 		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
458 		/*
459 		 * Synchronization is not possible when none of DMA sync ops
460 		 * is set.
461 		 */
462 		dev->dma_skip_sync = true;
463 	else
464 		dev->dma_skip_sync = false;
465 }
466 #else /* !CONFIG_DMA_NEED_SYNC */
467 static inline void dma_setup_need_sync(struct device *dev) { }
468 #endif /* !CONFIG_DMA_NEED_SYNC */
469 
470 /*
471  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
472  * that the intention is to allow exporting memory allocated via the
473  * coherent DMA APIs through the dma_buf API, which only accepts a
474  * scattertable.  This presents a couple of problems:
475  * 1. Not all memory allocated via the coherent DMA APIs is backed by
476  *    a struct page
477  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
478  *    as we will try to flush the memory through a different alias to that
479  *    actually being used (and the flushes are redundant.)
480  */
481 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
482 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
483 		unsigned long attrs)
484 {
485 	const struct dma_map_ops *ops = get_dma_ops(dev);
486 
487 	if (dma_alloc_direct(dev, ops))
488 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
489 				size, attrs);
490 	if (use_dma_iommu(dev))
491 		return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
492 				size, attrs);
493 	if (!ops->get_sgtable)
494 		return -ENXIO;
495 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
496 }
497 EXPORT_SYMBOL(dma_get_sgtable_attrs);
498 
499 #ifdef CONFIG_MMU
500 /*
501  * Return the page attributes used for mapping dma_alloc_* memory, either in
502  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
503  */
504 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
505 {
506 	if (dev_is_dma_coherent(dev))
507 		return prot;
508 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
509 	if (attrs & DMA_ATTR_WRITE_COMBINE)
510 		return pgprot_writecombine(prot);
511 #endif
512 	return pgprot_dmacoherent(prot);
513 }
514 #endif /* CONFIG_MMU */
515 
516 /**
517  * dma_can_mmap - check if a given device supports dma_mmap_*
518  * @dev: device to check
519  *
520  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
521  * map DMA allocations to userspace.
522  */
523 bool dma_can_mmap(struct device *dev)
524 {
525 	const struct dma_map_ops *ops = get_dma_ops(dev);
526 
527 	if (dma_alloc_direct(dev, ops))
528 		return dma_direct_can_mmap(dev);
529 	if (use_dma_iommu(dev))
530 		return true;
531 	return ops->mmap != NULL;
532 }
533 EXPORT_SYMBOL_GPL(dma_can_mmap);
534 
535 /**
536  * dma_mmap_attrs - map a coherent DMA allocation into user space
537  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
538  * @vma: vm_area_struct describing requested user mapping
539  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
540  * @dma_addr: device-view address returned from dma_alloc_attrs
541  * @size: size of memory originally requested in dma_alloc_attrs
542  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
543  *
544  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
545  * space.  The coherent DMA buffer must not be freed by the driver until the
546  * user space mapping has been released.
547  */
548 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
549 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
550 		unsigned long attrs)
551 {
552 	const struct dma_map_ops *ops = get_dma_ops(dev);
553 
554 	if (dma_alloc_direct(dev, ops))
555 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
556 				attrs);
557 	if (use_dma_iommu(dev))
558 		return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
559 				      attrs);
560 	if (!ops->mmap)
561 		return -ENXIO;
562 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
563 }
564 EXPORT_SYMBOL(dma_mmap_attrs);
565 
566 u64 dma_get_required_mask(struct device *dev)
567 {
568 	const struct dma_map_ops *ops = get_dma_ops(dev);
569 
570 	if (dma_alloc_direct(dev, ops))
571 		return dma_direct_get_required_mask(dev);
572 	if (ops->get_required_mask)
573 		return ops->get_required_mask(dev);
574 
575 	/*
576 	 * We require every DMA ops implementation to at least support a 32-bit
577 	 * DMA mask (and use bounce buffering if that isn't supported in
578 	 * hardware).  As the direct mapping code has its own routine to
579 	 * actually report an optimal mask we default to 32-bit here as that
580 	 * is the right thing for most IOMMUs, and at least not actively
581 	 * harmful in general.
582 	 */
583 	return DMA_BIT_MASK(32);
584 }
585 EXPORT_SYMBOL_GPL(dma_get_required_mask);
586 
587 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
588 		gfp_t flag, unsigned long attrs)
589 {
590 	const struct dma_map_ops *ops = get_dma_ops(dev);
591 	void *cpu_addr;
592 
593 	WARN_ON_ONCE(!dev->coherent_dma_mask);
594 
595 	/*
596 	 * DMA allocations can never be turned back into a page pointer, so
597 	 * requesting compound pages doesn't make sense (and can't even be
598 	 * supported at all by various backends).
599 	 */
600 	if (WARN_ON_ONCE(flag & __GFP_COMP))
601 		return NULL;
602 
603 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
604 		return cpu_addr;
605 
606 	/* let the implementation decide on the zone to allocate from: */
607 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
608 
609 	if (dma_alloc_direct(dev, ops))
610 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
611 	else if (use_dma_iommu(dev))
612 		cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
613 	else if (ops->alloc)
614 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
615 	else
616 		return NULL;
617 
618 	trace_dma_alloc(dev, cpu_addr, *dma_handle, size, flag, attrs);
619 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
620 	return cpu_addr;
621 }
622 EXPORT_SYMBOL(dma_alloc_attrs);
623 
624 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
625 		dma_addr_t dma_handle, unsigned long attrs)
626 {
627 	const struct dma_map_ops *ops = get_dma_ops(dev);
628 
629 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
630 		return;
631 	/*
632 	 * On non-coherent platforms which implement DMA-coherent buffers via
633 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
634 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
635 	 * sleep on some machines, and b) an indication that the driver is
636 	 * probably misusing the coherent API anyway.
637 	 */
638 	WARN_ON(irqs_disabled());
639 
640 	if (!cpu_addr)
641 		return;
642 
643 	trace_dma_free(dev, cpu_addr, dma_handle, size, attrs);
644 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
645 	if (dma_alloc_direct(dev, ops))
646 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
647 	else if (use_dma_iommu(dev))
648 		iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
649 	else if (ops->free)
650 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
651 }
652 EXPORT_SYMBOL(dma_free_attrs);
653 
654 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
655 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
656 {
657 	const struct dma_map_ops *ops = get_dma_ops(dev);
658 
659 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
660 		return NULL;
661 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
662 		return NULL;
663 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
664 		return NULL;
665 
666 	size = PAGE_ALIGN(size);
667 	if (dma_alloc_direct(dev, ops))
668 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
669 	if (use_dma_iommu(dev))
670 		return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
671 	if (!ops->alloc_pages_op)
672 		return NULL;
673 	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
674 }
675 
676 struct page *dma_alloc_pages(struct device *dev, size_t size,
677 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
678 {
679 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
680 
681 	if (page) {
682 		trace_dma_map_page(dev, page_to_phys(page), *dma_handle, size,
683 				   dir, 0);
684 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
685 	}
686 	return page;
687 }
688 EXPORT_SYMBOL_GPL(dma_alloc_pages);
689 
690 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
691 		dma_addr_t dma_handle, enum dma_data_direction dir)
692 {
693 	const struct dma_map_ops *ops = get_dma_ops(dev);
694 
695 	size = PAGE_ALIGN(size);
696 	if (dma_alloc_direct(dev, ops))
697 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
698 	else if (use_dma_iommu(dev))
699 		dma_common_free_pages(dev, size, page, dma_handle, dir);
700 	else if (ops->free_pages)
701 		ops->free_pages(dev, size, page, dma_handle, dir);
702 }
703 
704 void dma_free_pages(struct device *dev, size_t size, struct page *page,
705 		dma_addr_t dma_handle, enum dma_data_direction dir)
706 {
707 	trace_dma_unmap_page(dev, dma_handle, size, dir, 0);
708 	debug_dma_unmap_page(dev, dma_handle, size, dir);
709 	__dma_free_pages(dev, size, page, dma_handle, dir);
710 }
711 EXPORT_SYMBOL_GPL(dma_free_pages);
712 
713 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
714 		size_t size, struct page *page)
715 {
716 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
717 
718 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
719 		return -ENXIO;
720 	return remap_pfn_range(vma, vma->vm_start,
721 			       page_to_pfn(page) + vma->vm_pgoff,
722 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
723 }
724 EXPORT_SYMBOL_GPL(dma_mmap_pages);
725 
726 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
727 		enum dma_data_direction dir, gfp_t gfp)
728 {
729 	struct sg_table *sgt;
730 	struct page *page;
731 
732 	sgt = kmalloc(sizeof(*sgt), gfp);
733 	if (!sgt)
734 		return NULL;
735 	if (sg_alloc_table(sgt, 1, gfp))
736 		goto out_free_sgt;
737 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
738 	if (!page)
739 		goto out_free_table;
740 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
741 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
742 	return sgt;
743 out_free_table:
744 	sg_free_table(sgt);
745 out_free_sgt:
746 	kfree(sgt);
747 	return NULL;
748 }
749 
750 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
751 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
752 {
753 	const struct dma_map_ops *ops = get_dma_ops(dev);
754 	struct sg_table *sgt;
755 
756 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
757 		return NULL;
758 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
759 		return NULL;
760 
761 	if (ops && ops->alloc_noncontiguous)
762 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
763 	else if (use_dma_iommu(dev))
764 		sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
765 	else
766 		sgt = alloc_single_sgt(dev, size, dir, gfp);
767 
768 	if (sgt) {
769 		sgt->nents = 1;
770 		trace_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
771 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
772 	}
773 	return sgt;
774 }
775 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
776 
777 static void free_single_sgt(struct device *dev, size_t size,
778 		struct sg_table *sgt, enum dma_data_direction dir)
779 {
780 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
781 			 dir);
782 	sg_free_table(sgt);
783 	kfree(sgt);
784 }
785 
786 void dma_free_noncontiguous(struct device *dev, size_t size,
787 		struct sg_table *sgt, enum dma_data_direction dir)
788 {
789 	const struct dma_map_ops *ops = get_dma_ops(dev);
790 
791 	trace_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir, 0);
792 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
793 	if (ops && ops->free_noncontiguous)
794 		ops->free_noncontiguous(dev, size, sgt, dir);
795 	else if (use_dma_iommu(dev))
796 		iommu_dma_free_noncontiguous(dev, size, sgt, dir);
797 	else
798 		free_single_sgt(dev, size, sgt, dir);
799 }
800 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
801 
802 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
803 		struct sg_table *sgt)
804 {
805 	const struct dma_map_ops *ops = get_dma_ops(dev);
806 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
807 
808 	if (ops && ops->alloc_noncontiguous)
809 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
810 	return page_address(sg_page(sgt->sgl));
811 }
812 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
813 
814 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
815 {
816 	const struct dma_map_ops *ops = get_dma_ops(dev);
817 
818 	if (ops && ops->alloc_noncontiguous)
819 		vunmap(vaddr);
820 }
821 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
822 
823 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
824 		size_t size, struct sg_table *sgt)
825 {
826 	const struct dma_map_ops *ops = get_dma_ops(dev);
827 
828 	if (ops && ops->alloc_noncontiguous) {
829 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
830 
831 		if (vma->vm_pgoff >= count ||
832 		    vma_pages(vma) > count - vma->vm_pgoff)
833 			return -ENXIO;
834 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
835 	}
836 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837 }
838 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839 
840 static int dma_supported(struct device *dev, u64 mask)
841 {
842 	const struct dma_map_ops *ops = get_dma_ops(dev);
843 
844 	if (use_dma_iommu(dev)) {
845 		if (WARN_ON(ops))
846 			return false;
847 		return true;
848 	}
849 
850 	/*
851 	 * ->dma_supported sets and clears the bypass flag, so ignore it here
852 	 * and always call into the method if there is one.
853 	 */
854 	if (ops) {
855 		if (!ops->dma_supported)
856 			return true;
857 		return ops->dma_supported(dev, mask);
858 	}
859 
860 	return dma_direct_supported(dev, mask);
861 }
862 
863 bool dma_pci_p2pdma_supported(struct device *dev)
864 {
865 	const struct dma_map_ops *ops = get_dma_ops(dev);
866 
867 	/*
868 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
869 	 * not be used with dma mapping ops that do not have support even
870 	 * if the specific device is bypassing them.
871 	 */
872 
873 	/* if ops is not set, dma direct and default IOMMU support P2PDMA */
874 	return !ops;
875 }
876 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877 
878 int dma_set_mask(struct device *dev, u64 mask)
879 {
880 	/*
881 	 * Truncate the mask to the actually supported dma_addr_t width to
882 	 * avoid generating unsupportable addresses.
883 	 */
884 	mask = (dma_addr_t)mask;
885 
886 	if (!dev->dma_mask || !dma_supported(dev, mask))
887 		return -EIO;
888 
889 	arch_dma_set_mask(dev, mask);
890 	*dev->dma_mask = mask;
891 	dma_setup_need_sync(dev);
892 
893 	return 0;
894 }
895 EXPORT_SYMBOL(dma_set_mask);
896 
897 int dma_set_coherent_mask(struct device *dev, u64 mask)
898 {
899 	/*
900 	 * Truncate the mask to the actually supported dma_addr_t width to
901 	 * avoid generating unsupportable addresses.
902 	 */
903 	mask = (dma_addr_t)mask;
904 
905 	if (!dma_supported(dev, mask))
906 		return -EIO;
907 
908 	dev->coherent_dma_mask = mask;
909 	return 0;
910 }
911 EXPORT_SYMBOL(dma_set_coherent_mask);
912 
913 /**
914  * dma_addressing_limited - return if the device is addressing limited
915  * @dev:	device to check
916  *
917  * Return %true if the devices DMA mask is too small to address all memory in
918  * the system, else %false.  Lack of addressing bits is the prime reason for
919  * bounce buffering, but might not be the only one.
920  */
921 bool dma_addressing_limited(struct device *dev)
922 {
923 	const struct dma_map_ops *ops = get_dma_ops(dev);
924 
925 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926 			 dma_get_required_mask(dev))
927 		return true;
928 
929 	if (unlikely(ops))
930 		return false;
931 	return !dma_direct_all_ram_mapped(dev);
932 }
933 EXPORT_SYMBOL_GPL(dma_addressing_limited);
934 
935 size_t dma_max_mapping_size(struct device *dev)
936 {
937 	const struct dma_map_ops *ops = get_dma_ops(dev);
938 	size_t size = SIZE_MAX;
939 
940 	if (dma_map_direct(dev, ops))
941 		size = dma_direct_max_mapping_size(dev);
942 	else if (use_dma_iommu(dev))
943 		size = iommu_dma_max_mapping_size(dev);
944 	else if (ops && ops->max_mapping_size)
945 		size = ops->max_mapping_size(dev);
946 
947 	return size;
948 }
949 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950 
951 size_t dma_opt_mapping_size(struct device *dev)
952 {
953 	const struct dma_map_ops *ops = get_dma_ops(dev);
954 	size_t size = SIZE_MAX;
955 
956 	if (use_dma_iommu(dev))
957 		size = iommu_dma_opt_mapping_size();
958 	else if (ops && ops->opt_mapping_size)
959 		size = ops->opt_mapping_size();
960 
961 	return min(dma_max_mapping_size(dev), size);
962 }
963 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964 
965 unsigned long dma_get_merge_boundary(struct device *dev)
966 {
967 	const struct dma_map_ops *ops = get_dma_ops(dev);
968 
969 	if (use_dma_iommu(dev))
970 		return iommu_dma_get_merge_boundary(dev);
971 
972 	if (!ops || !ops->get_merge_boundary)
973 		return 0;	/* can't merge */
974 
975 	return ops->get_merge_boundary(dev);
976 }
977 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
978