1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/kmsan.h> 14 #include <linux/of_device.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 #include "debug.h" 18 #include "direct.h" 19 20 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 21 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 22 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 23 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT); 24 #endif 25 26 /* 27 * Managed DMA API 28 */ 29 struct dma_devres { 30 size_t size; 31 void *vaddr; 32 dma_addr_t dma_handle; 33 unsigned long attrs; 34 }; 35 36 static void dmam_release(struct device *dev, void *res) 37 { 38 struct dma_devres *this = res; 39 40 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 41 this->attrs); 42 } 43 44 static int dmam_match(struct device *dev, void *res, void *match_data) 45 { 46 struct dma_devres *this = res, *match = match_data; 47 48 if (this->vaddr == match->vaddr) { 49 WARN_ON(this->size != match->size || 50 this->dma_handle != match->dma_handle); 51 return 1; 52 } 53 return 0; 54 } 55 56 /** 57 * dmam_free_coherent - Managed dma_free_coherent() 58 * @dev: Device to free coherent memory for 59 * @size: Size of allocation 60 * @vaddr: Virtual address of the memory to free 61 * @dma_handle: DMA handle of the memory to free 62 * 63 * Managed dma_free_coherent(). 64 */ 65 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 66 dma_addr_t dma_handle) 67 { 68 struct dma_devres match_data = { size, vaddr, dma_handle }; 69 70 dma_free_coherent(dev, size, vaddr, dma_handle); 71 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 72 } 73 EXPORT_SYMBOL(dmam_free_coherent); 74 75 /** 76 * dmam_alloc_attrs - Managed dma_alloc_attrs() 77 * @dev: Device to allocate non_coherent memory for 78 * @size: Size of allocation 79 * @dma_handle: Out argument for allocated DMA handle 80 * @gfp: Allocation flags 81 * @attrs: Flags in the DMA_ATTR_* namespace. 82 * 83 * Managed dma_alloc_attrs(). Memory allocated using this function will be 84 * automatically released on driver detach. 85 * 86 * RETURNS: 87 * Pointer to allocated memory on success, NULL on failure. 88 */ 89 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 90 gfp_t gfp, unsigned long attrs) 91 { 92 struct dma_devres *dr; 93 void *vaddr; 94 95 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 96 if (!dr) 97 return NULL; 98 99 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 100 if (!vaddr) { 101 devres_free(dr); 102 return NULL; 103 } 104 105 dr->vaddr = vaddr; 106 dr->dma_handle = *dma_handle; 107 dr->size = size; 108 dr->attrs = attrs; 109 110 devres_add(dev, dr); 111 112 return vaddr; 113 } 114 EXPORT_SYMBOL(dmam_alloc_attrs); 115 116 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 117 const struct dma_map_ops *ops) 118 { 119 if (likely(!ops)) 120 return true; 121 #ifdef CONFIG_DMA_OPS_BYPASS 122 if (dev->dma_ops_bypass) 123 return min_not_zero(mask, dev->bus_dma_limit) >= 124 dma_direct_get_required_mask(dev); 125 #endif 126 return false; 127 } 128 129 130 /* 131 * Check if the devices uses a direct mapping for streaming DMA operations. 132 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 133 * enough. 134 */ 135 static inline bool dma_alloc_direct(struct device *dev, 136 const struct dma_map_ops *ops) 137 { 138 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 139 } 140 141 static inline bool dma_map_direct(struct device *dev, 142 const struct dma_map_ops *ops) 143 { 144 return dma_go_direct(dev, *dev->dma_mask, ops); 145 } 146 147 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 148 size_t offset, size_t size, enum dma_data_direction dir, 149 unsigned long attrs) 150 { 151 const struct dma_map_ops *ops = get_dma_ops(dev); 152 dma_addr_t addr; 153 154 BUG_ON(!valid_dma_direction(dir)); 155 156 if (WARN_ON_ONCE(!dev->dma_mask)) 157 return DMA_MAPPING_ERROR; 158 159 if (dma_map_direct(dev, ops) || 160 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 161 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 162 else 163 addr = ops->map_page(dev, page, offset, size, dir, attrs); 164 kmsan_handle_dma(page, offset, size, dir); 165 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); 166 167 return addr; 168 } 169 EXPORT_SYMBOL(dma_map_page_attrs); 170 171 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 172 enum dma_data_direction dir, unsigned long attrs) 173 { 174 const struct dma_map_ops *ops = get_dma_ops(dev); 175 176 BUG_ON(!valid_dma_direction(dir)); 177 if (dma_map_direct(dev, ops) || 178 arch_dma_unmap_page_direct(dev, addr + size)) 179 dma_direct_unmap_page(dev, addr, size, dir, attrs); 180 else if (ops->unmap_page) 181 ops->unmap_page(dev, addr, size, dir, attrs); 182 debug_dma_unmap_page(dev, addr, size, dir); 183 } 184 EXPORT_SYMBOL(dma_unmap_page_attrs); 185 186 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 187 int nents, enum dma_data_direction dir, unsigned long attrs) 188 { 189 const struct dma_map_ops *ops = get_dma_ops(dev); 190 int ents; 191 192 BUG_ON(!valid_dma_direction(dir)); 193 194 if (WARN_ON_ONCE(!dev->dma_mask)) 195 return 0; 196 197 if (dma_map_direct(dev, ops) || 198 arch_dma_map_sg_direct(dev, sg, nents)) 199 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 200 else 201 ents = ops->map_sg(dev, sg, nents, dir, attrs); 202 203 if (ents > 0) { 204 kmsan_handle_dma_sg(sg, nents, dir); 205 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); 206 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 207 ents != -EIO && ents != -EREMOTEIO)) { 208 return -EIO; 209 } 210 211 return ents; 212 } 213 214 /** 215 * dma_map_sg_attrs - Map the given buffer for DMA 216 * @dev: The device for which to perform the DMA operation 217 * @sg: The sg_table object describing the buffer 218 * @nents: Number of entries to map 219 * @dir: DMA direction 220 * @attrs: Optional DMA attributes for the map operation 221 * 222 * Maps a buffer described by a scatterlist passed in the sg argument with 223 * nents segments for the @dir DMA operation by the @dev device. 224 * 225 * Returns the number of mapped entries (which can be less than nents) 226 * on success. Zero is returned for any error. 227 * 228 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 229 * original sg and original nents (not the value returned by this funciton). 230 */ 231 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 232 int nents, enum dma_data_direction dir, unsigned long attrs) 233 { 234 int ret; 235 236 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 237 if (ret < 0) 238 return 0; 239 return ret; 240 } 241 EXPORT_SYMBOL(dma_map_sg_attrs); 242 243 /** 244 * dma_map_sgtable - Map the given buffer for DMA 245 * @dev: The device for which to perform the DMA operation 246 * @sgt: The sg_table object describing the buffer 247 * @dir: DMA direction 248 * @attrs: Optional DMA attributes for the map operation 249 * 250 * Maps a buffer described by a scatterlist stored in the given sg_table 251 * object for the @dir DMA operation by the @dev device. After success, the 252 * ownership for the buffer is transferred to the DMA domain. One has to 253 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 254 * ownership of the buffer back to the CPU domain before touching the 255 * buffer by the CPU. 256 * 257 * Returns 0 on success or a negative error code on error. The following 258 * error codes are supported with the given meaning: 259 * 260 * -EINVAL An invalid argument, unaligned access or other error 261 * in usage. Will not succeed if retried. 262 * -ENOMEM Insufficient resources (like memory or IOVA space) to 263 * complete the mapping. Should succeed if retried later. 264 * -EIO Legacy error code with an unknown meaning. eg. this is 265 * returned if a lower level call returned 266 * DMA_MAPPING_ERROR. 267 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified 268 * in the sg_table. This will not succeed if retried. 269 */ 270 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 271 enum dma_data_direction dir, unsigned long attrs) 272 { 273 int nents; 274 275 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 276 if (nents < 0) 277 return nents; 278 sgt->nents = nents; 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(dma_map_sgtable); 282 283 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 284 int nents, enum dma_data_direction dir, 285 unsigned long attrs) 286 { 287 const struct dma_map_ops *ops = get_dma_ops(dev); 288 289 BUG_ON(!valid_dma_direction(dir)); 290 debug_dma_unmap_sg(dev, sg, nents, dir); 291 if (dma_map_direct(dev, ops) || 292 arch_dma_unmap_sg_direct(dev, sg, nents)) 293 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 294 else if (ops->unmap_sg) 295 ops->unmap_sg(dev, sg, nents, dir, attrs); 296 } 297 EXPORT_SYMBOL(dma_unmap_sg_attrs); 298 299 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 300 size_t size, enum dma_data_direction dir, unsigned long attrs) 301 { 302 const struct dma_map_ops *ops = get_dma_ops(dev); 303 dma_addr_t addr = DMA_MAPPING_ERROR; 304 305 BUG_ON(!valid_dma_direction(dir)); 306 307 if (WARN_ON_ONCE(!dev->dma_mask)) 308 return DMA_MAPPING_ERROR; 309 310 if (dma_map_direct(dev, ops)) 311 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 312 else if (ops->map_resource) 313 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 314 315 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); 316 return addr; 317 } 318 EXPORT_SYMBOL(dma_map_resource); 319 320 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 321 enum dma_data_direction dir, unsigned long attrs) 322 { 323 const struct dma_map_ops *ops = get_dma_ops(dev); 324 325 BUG_ON(!valid_dma_direction(dir)); 326 if (!dma_map_direct(dev, ops) && ops->unmap_resource) 327 ops->unmap_resource(dev, addr, size, dir, attrs); 328 debug_dma_unmap_resource(dev, addr, size, dir); 329 } 330 EXPORT_SYMBOL(dma_unmap_resource); 331 332 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 333 enum dma_data_direction dir) 334 { 335 const struct dma_map_ops *ops = get_dma_ops(dev); 336 337 BUG_ON(!valid_dma_direction(dir)); 338 if (dma_map_direct(dev, ops)) 339 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 340 else if (ops->sync_single_for_cpu) 341 ops->sync_single_for_cpu(dev, addr, size, dir); 342 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 343 } 344 EXPORT_SYMBOL(dma_sync_single_for_cpu); 345 346 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 347 size_t size, enum dma_data_direction dir) 348 { 349 const struct dma_map_ops *ops = get_dma_ops(dev); 350 351 BUG_ON(!valid_dma_direction(dir)); 352 if (dma_map_direct(dev, ops)) 353 dma_direct_sync_single_for_device(dev, addr, size, dir); 354 else if (ops->sync_single_for_device) 355 ops->sync_single_for_device(dev, addr, size, dir); 356 debug_dma_sync_single_for_device(dev, addr, size, dir); 357 } 358 EXPORT_SYMBOL(dma_sync_single_for_device); 359 360 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 361 int nelems, enum dma_data_direction dir) 362 { 363 const struct dma_map_ops *ops = get_dma_ops(dev); 364 365 BUG_ON(!valid_dma_direction(dir)); 366 if (dma_map_direct(dev, ops)) 367 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 368 else if (ops->sync_sg_for_cpu) 369 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 370 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 371 } 372 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 373 374 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 375 int nelems, enum dma_data_direction dir) 376 { 377 const struct dma_map_ops *ops = get_dma_ops(dev); 378 379 BUG_ON(!valid_dma_direction(dir)); 380 if (dma_map_direct(dev, ops)) 381 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 382 else if (ops->sync_sg_for_device) 383 ops->sync_sg_for_device(dev, sg, nelems, dir); 384 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 385 } 386 EXPORT_SYMBOL(dma_sync_sg_for_device); 387 388 /* 389 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 390 * that the intention is to allow exporting memory allocated via the 391 * coherent DMA APIs through the dma_buf API, which only accepts a 392 * scattertable. This presents a couple of problems: 393 * 1. Not all memory allocated via the coherent DMA APIs is backed by 394 * a struct page 395 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 396 * as we will try to flush the memory through a different alias to that 397 * actually being used (and the flushes are redundant.) 398 */ 399 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 400 void *cpu_addr, dma_addr_t dma_addr, size_t size, 401 unsigned long attrs) 402 { 403 const struct dma_map_ops *ops = get_dma_ops(dev); 404 405 if (dma_alloc_direct(dev, ops)) 406 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 407 size, attrs); 408 if (!ops->get_sgtable) 409 return -ENXIO; 410 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 411 } 412 EXPORT_SYMBOL(dma_get_sgtable_attrs); 413 414 #ifdef CONFIG_MMU 415 /* 416 * Return the page attributes used for mapping dma_alloc_* memory, either in 417 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 418 */ 419 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 420 { 421 if (dev_is_dma_coherent(dev)) 422 return prot; 423 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 424 if (attrs & DMA_ATTR_WRITE_COMBINE) 425 return pgprot_writecombine(prot); 426 #endif 427 return pgprot_dmacoherent(prot); 428 } 429 #endif /* CONFIG_MMU */ 430 431 /** 432 * dma_can_mmap - check if a given device supports dma_mmap_* 433 * @dev: device to check 434 * 435 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 436 * map DMA allocations to userspace. 437 */ 438 bool dma_can_mmap(struct device *dev) 439 { 440 const struct dma_map_ops *ops = get_dma_ops(dev); 441 442 if (dma_alloc_direct(dev, ops)) 443 return dma_direct_can_mmap(dev); 444 return ops->mmap != NULL; 445 } 446 EXPORT_SYMBOL_GPL(dma_can_mmap); 447 448 /** 449 * dma_mmap_attrs - map a coherent DMA allocation into user space 450 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 451 * @vma: vm_area_struct describing requested user mapping 452 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 453 * @dma_addr: device-view address returned from dma_alloc_attrs 454 * @size: size of memory originally requested in dma_alloc_attrs 455 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 456 * 457 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 458 * space. The coherent DMA buffer must not be freed by the driver until the 459 * user space mapping has been released. 460 */ 461 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 462 void *cpu_addr, dma_addr_t dma_addr, size_t size, 463 unsigned long attrs) 464 { 465 const struct dma_map_ops *ops = get_dma_ops(dev); 466 467 if (dma_alloc_direct(dev, ops)) 468 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 469 attrs); 470 if (!ops->mmap) 471 return -ENXIO; 472 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 473 } 474 EXPORT_SYMBOL(dma_mmap_attrs); 475 476 u64 dma_get_required_mask(struct device *dev) 477 { 478 const struct dma_map_ops *ops = get_dma_ops(dev); 479 480 if (dma_alloc_direct(dev, ops)) 481 return dma_direct_get_required_mask(dev); 482 if (ops->get_required_mask) 483 return ops->get_required_mask(dev); 484 485 /* 486 * We require every DMA ops implementation to at least support a 32-bit 487 * DMA mask (and use bounce buffering if that isn't supported in 488 * hardware). As the direct mapping code has its own routine to 489 * actually report an optimal mask we default to 32-bit here as that 490 * is the right thing for most IOMMUs, and at least not actively 491 * harmful in general. 492 */ 493 return DMA_BIT_MASK(32); 494 } 495 EXPORT_SYMBOL_GPL(dma_get_required_mask); 496 497 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 498 gfp_t flag, unsigned long attrs) 499 { 500 const struct dma_map_ops *ops = get_dma_ops(dev); 501 void *cpu_addr; 502 503 WARN_ON_ONCE(!dev->coherent_dma_mask); 504 505 /* 506 * DMA allocations can never be turned back into a page pointer, so 507 * requesting compound pages doesn't make sense (and can't even be 508 * supported at all by various backends). 509 */ 510 if (WARN_ON_ONCE(flag & __GFP_COMP)) 511 return NULL; 512 513 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 514 return cpu_addr; 515 516 /* let the implementation decide on the zone to allocate from: */ 517 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 518 519 if (dma_alloc_direct(dev, ops)) 520 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 521 else if (ops->alloc) 522 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 523 else 524 return NULL; 525 526 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); 527 return cpu_addr; 528 } 529 EXPORT_SYMBOL(dma_alloc_attrs); 530 531 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 532 dma_addr_t dma_handle, unsigned long attrs) 533 { 534 const struct dma_map_ops *ops = get_dma_ops(dev); 535 536 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 537 return; 538 /* 539 * On non-coherent platforms which implement DMA-coherent buffers via 540 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 541 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 542 * sleep on some machines, and b) an indication that the driver is 543 * probably misusing the coherent API anyway. 544 */ 545 WARN_ON(irqs_disabled()); 546 547 if (!cpu_addr) 548 return; 549 550 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 551 if (dma_alloc_direct(dev, ops)) 552 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 553 else if (ops->free) 554 ops->free(dev, size, cpu_addr, dma_handle, attrs); 555 } 556 EXPORT_SYMBOL(dma_free_attrs); 557 558 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 559 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 560 { 561 const struct dma_map_ops *ops = get_dma_ops(dev); 562 563 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 564 return NULL; 565 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 566 return NULL; 567 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 568 return NULL; 569 570 size = PAGE_ALIGN(size); 571 if (dma_alloc_direct(dev, ops)) 572 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 573 if (!ops->alloc_pages_op) 574 return NULL; 575 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp); 576 } 577 578 struct page *dma_alloc_pages(struct device *dev, size_t size, 579 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 580 { 581 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 582 583 if (page) 584 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); 585 return page; 586 } 587 EXPORT_SYMBOL_GPL(dma_alloc_pages); 588 589 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 590 dma_addr_t dma_handle, enum dma_data_direction dir) 591 { 592 const struct dma_map_ops *ops = get_dma_ops(dev); 593 594 size = PAGE_ALIGN(size); 595 if (dma_alloc_direct(dev, ops)) 596 dma_direct_free_pages(dev, size, page, dma_handle, dir); 597 else if (ops->free_pages) 598 ops->free_pages(dev, size, page, dma_handle, dir); 599 } 600 601 void dma_free_pages(struct device *dev, size_t size, struct page *page, 602 dma_addr_t dma_handle, enum dma_data_direction dir) 603 { 604 debug_dma_unmap_page(dev, dma_handle, size, dir); 605 __dma_free_pages(dev, size, page, dma_handle, dir); 606 } 607 EXPORT_SYMBOL_GPL(dma_free_pages); 608 609 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 610 size_t size, struct page *page) 611 { 612 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 613 614 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 615 return -ENXIO; 616 return remap_pfn_range(vma, vma->vm_start, 617 page_to_pfn(page) + vma->vm_pgoff, 618 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 619 } 620 EXPORT_SYMBOL_GPL(dma_mmap_pages); 621 622 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 623 enum dma_data_direction dir, gfp_t gfp) 624 { 625 struct sg_table *sgt; 626 struct page *page; 627 628 sgt = kmalloc(sizeof(*sgt), gfp); 629 if (!sgt) 630 return NULL; 631 if (sg_alloc_table(sgt, 1, gfp)) 632 goto out_free_sgt; 633 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 634 if (!page) 635 goto out_free_table; 636 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 637 sg_dma_len(sgt->sgl) = sgt->sgl->length; 638 return sgt; 639 out_free_table: 640 sg_free_table(sgt); 641 out_free_sgt: 642 kfree(sgt); 643 return NULL; 644 } 645 646 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 647 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 648 { 649 const struct dma_map_ops *ops = get_dma_ops(dev); 650 struct sg_table *sgt; 651 652 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 653 return NULL; 654 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 655 return NULL; 656 657 if (ops && ops->alloc_noncontiguous) 658 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); 659 else 660 sgt = alloc_single_sgt(dev, size, dir, gfp); 661 662 if (sgt) { 663 sgt->nents = 1; 664 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); 665 } 666 return sgt; 667 } 668 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 669 670 static void free_single_sgt(struct device *dev, size_t size, 671 struct sg_table *sgt, enum dma_data_direction dir) 672 { 673 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 674 dir); 675 sg_free_table(sgt); 676 kfree(sgt); 677 } 678 679 void dma_free_noncontiguous(struct device *dev, size_t size, 680 struct sg_table *sgt, enum dma_data_direction dir) 681 { 682 const struct dma_map_ops *ops = get_dma_ops(dev); 683 684 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 685 if (ops && ops->free_noncontiguous) 686 ops->free_noncontiguous(dev, size, sgt, dir); 687 else 688 free_single_sgt(dev, size, sgt, dir); 689 } 690 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 691 692 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 693 struct sg_table *sgt) 694 { 695 const struct dma_map_ops *ops = get_dma_ops(dev); 696 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 697 698 if (ops && ops->alloc_noncontiguous) 699 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 700 return page_address(sg_page(sgt->sgl)); 701 } 702 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 703 704 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 705 { 706 const struct dma_map_ops *ops = get_dma_ops(dev); 707 708 if (ops && ops->alloc_noncontiguous) 709 vunmap(vaddr); 710 } 711 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 712 713 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 714 size_t size, struct sg_table *sgt) 715 { 716 const struct dma_map_ops *ops = get_dma_ops(dev); 717 718 if (ops && ops->alloc_noncontiguous) { 719 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 720 721 if (vma->vm_pgoff >= count || 722 vma_pages(vma) > count - vma->vm_pgoff) 723 return -ENXIO; 724 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 725 } 726 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 727 } 728 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 729 730 static int dma_supported(struct device *dev, u64 mask) 731 { 732 const struct dma_map_ops *ops = get_dma_ops(dev); 733 734 /* 735 * ->dma_supported sets the bypass flag, so we must always call 736 * into the method here unless the device is truly direct mapped. 737 */ 738 if (!ops) 739 return dma_direct_supported(dev, mask); 740 if (!ops->dma_supported) 741 return 1; 742 return ops->dma_supported(dev, mask); 743 } 744 745 bool dma_pci_p2pdma_supported(struct device *dev) 746 { 747 const struct dma_map_ops *ops = get_dma_ops(dev); 748 749 /* if ops is not set, dma direct will be used which supports P2PDMA */ 750 if (!ops) 751 return true; 752 753 /* 754 * Note: dma_ops_bypass is not checked here because P2PDMA should 755 * not be used with dma mapping ops that do not have support even 756 * if the specific device is bypassing them. 757 */ 758 759 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED; 760 } 761 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); 762 763 int dma_set_mask(struct device *dev, u64 mask) 764 { 765 /* 766 * Truncate the mask to the actually supported dma_addr_t width to 767 * avoid generating unsupportable addresses. 768 */ 769 mask = (dma_addr_t)mask; 770 771 if (!dev->dma_mask || !dma_supported(dev, mask)) 772 return -EIO; 773 774 arch_dma_set_mask(dev, mask); 775 *dev->dma_mask = mask; 776 return 0; 777 } 778 EXPORT_SYMBOL(dma_set_mask); 779 780 int dma_set_coherent_mask(struct device *dev, u64 mask) 781 { 782 /* 783 * Truncate the mask to the actually supported dma_addr_t width to 784 * avoid generating unsupportable addresses. 785 */ 786 mask = (dma_addr_t)mask; 787 788 if (!dma_supported(dev, mask)) 789 return -EIO; 790 791 dev->coherent_dma_mask = mask; 792 return 0; 793 } 794 EXPORT_SYMBOL(dma_set_coherent_mask); 795 796 /** 797 * dma_addressing_limited - return if the device is addressing limited 798 * @dev: device to check 799 * 800 * Return %true if the devices DMA mask is too small to address all memory in 801 * the system, else %false. Lack of addressing bits is the prime reason for 802 * bounce buffering, but might not be the only one. 803 */ 804 bool dma_addressing_limited(struct device *dev) 805 { 806 const struct dma_map_ops *ops = get_dma_ops(dev); 807 808 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < 809 dma_get_required_mask(dev)) 810 return true; 811 812 if (unlikely(ops)) 813 return false; 814 return !dma_direct_all_ram_mapped(dev); 815 } 816 EXPORT_SYMBOL_GPL(dma_addressing_limited); 817 818 size_t dma_max_mapping_size(struct device *dev) 819 { 820 const struct dma_map_ops *ops = get_dma_ops(dev); 821 size_t size = SIZE_MAX; 822 823 if (dma_map_direct(dev, ops)) 824 size = dma_direct_max_mapping_size(dev); 825 else if (ops && ops->max_mapping_size) 826 size = ops->max_mapping_size(dev); 827 828 return size; 829 } 830 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 831 832 size_t dma_opt_mapping_size(struct device *dev) 833 { 834 const struct dma_map_ops *ops = get_dma_ops(dev); 835 size_t size = SIZE_MAX; 836 837 if (ops && ops->opt_mapping_size) 838 size = ops->opt_mapping_size(); 839 840 return min(dma_max_mapping_size(dev), size); 841 } 842 EXPORT_SYMBOL_GPL(dma_opt_mapping_size); 843 844 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 845 { 846 const struct dma_map_ops *ops = get_dma_ops(dev); 847 848 if (dma_map_direct(dev, ops)) 849 return dma_direct_need_sync(dev, dma_addr); 850 return ops->sync_single_for_cpu || ops->sync_single_for_device; 851 } 852 EXPORT_SYMBOL_GPL(dma_need_sync); 853 854 unsigned long dma_get_merge_boundary(struct device *dev) 855 { 856 const struct dma_map_ops *ops = get_dma_ops(dev); 857 858 if (!ops || !ops->get_merge_boundary) 859 return 0; /* can't merge */ 860 861 return ops->get_merge_boundary(dev); 862 } 863 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 864