xref: /linux/kernel/dma/mapping.c (revision 4f3c8320c78cdd11c8fdd23c33787407f719322e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 /*
20  * Managed DMA API
21  */
22 struct dma_devres {
23 	size_t		size;
24 	void		*vaddr;
25 	dma_addr_t	dma_handle;
26 	unsigned long	attrs;
27 };
28 
29 static void dmam_release(struct device *dev, void *res)
30 {
31 	struct dma_devres *this = res;
32 
33 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
34 			this->attrs);
35 }
36 
37 static int dmam_match(struct device *dev, void *res, void *match_data)
38 {
39 	struct dma_devres *this = res, *match = match_data;
40 
41 	if (this->vaddr == match->vaddr) {
42 		WARN_ON(this->size != match->size ||
43 			this->dma_handle != match->dma_handle);
44 		return 1;
45 	}
46 	return 0;
47 }
48 
49 /**
50  * dmam_free_coherent - Managed dma_free_coherent()
51  * @dev: Device to free coherent memory for
52  * @size: Size of allocation
53  * @vaddr: Virtual address of the memory to free
54  * @dma_handle: DMA handle of the memory to free
55  *
56  * Managed dma_free_coherent().
57  */
58 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
59 			dma_addr_t dma_handle)
60 {
61 	struct dma_devres match_data = { size, vaddr, dma_handle };
62 
63 	dma_free_coherent(dev, size, vaddr, dma_handle);
64 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
65 }
66 EXPORT_SYMBOL(dmam_free_coherent);
67 
68 /**
69  * dmam_alloc_attrs - Managed dma_alloc_attrs()
70  * @dev: Device to allocate non_coherent memory for
71  * @size: Size of allocation
72  * @dma_handle: Out argument for allocated DMA handle
73  * @gfp: Allocation flags
74  * @attrs: Flags in the DMA_ATTR_* namespace.
75  *
76  * Managed dma_alloc_attrs().  Memory allocated using this function will be
77  * automatically released on driver detach.
78  *
79  * RETURNS:
80  * Pointer to allocated memory on success, NULL on failure.
81  */
82 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
83 		gfp_t gfp, unsigned long attrs)
84 {
85 	struct dma_devres *dr;
86 	void *vaddr;
87 
88 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
89 	if (!dr)
90 		return NULL;
91 
92 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
93 	if (!vaddr) {
94 		devres_free(dr);
95 		return NULL;
96 	}
97 
98 	dr->vaddr = vaddr;
99 	dr->dma_handle = *dma_handle;
100 	dr->size = size;
101 	dr->attrs = attrs;
102 
103 	devres_add(dev, dr);
104 
105 	return vaddr;
106 }
107 EXPORT_SYMBOL(dmam_alloc_attrs);
108 
109 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
110 		const struct dma_map_ops *ops)
111 {
112 	if (likely(!ops))
113 		return true;
114 #ifdef CONFIG_DMA_OPS_BYPASS
115 	if (dev->dma_ops_bypass)
116 		return min_not_zero(mask, dev->bus_dma_limit) >=
117 			    dma_direct_get_required_mask(dev);
118 #endif
119 	return false;
120 }
121 
122 
123 /*
124  * Check if the devices uses a direct mapping for streaming DMA operations.
125  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
126  * enough.
127  */
128 static inline bool dma_alloc_direct(struct device *dev,
129 		const struct dma_map_ops *ops)
130 {
131 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
132 }
133 
134 static inline bool dma_map_direct(struct device *dev,
135 		const struct dma_map_ops *ops)
136 {
137 	return dma_go_direct(dev, *dev->dma_mask, ops);
138 }
139 
140 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
141 		size_t offset, size_t size, enum dma_data_direction dir,
142 		unsigned long attrs)
143 {
144 	const struct dma_map_ops *ops = get_dma_ops(dev);
145 	dma_addr_t addr;
146 
147 	BUG_ON(!valid_dma_direction(dir));
148 
149 	if (WARN_ON_ONCE(!dev->dma_mask))
150 		return DMA_MAPPING_ERROR;
151 
152 	if (dma_map_direct(dev, ops) ||
153 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
154 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
155 	else
156 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
157 	debug_dma_map_page(dev, page, offset, size, dir, addr);
158 
159 	return addr;
160 }
161 EXPORT_SYMBOL(dma_map_page_attrs);
162 
163 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
164 		enum dma_data_direction dir, unsigned long attrs)
165 {
166 	const struct dma_map_ops *ops = get_dma_ops(dev);
167 
168 	BUG_ON(!valid_dma_direction(dir));
169 	if (dma_map_direct(dev, ops) ||
170 	    arch_dma_unmap_page_direct(dev, addr + size))
171 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
172 	else if (ops->unmap_page)
173 		ops->unmap_page(dev, addr, size, dir, attrs);
174 	debug_dma_unmap_page(dev, addr, size, dir);
175 }
176 EXPORT_SYMBOL(dma_unmap_page_attrs);
177 
178 /*
179  * dma_maps_sg_attrs returns 0 on error and > 0 on success.
180  * It should never return a value < 0.
181  */
182 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
183 		enum dma_data_direction dir, unsigned long attrs)
184 {
185 	const struct dma_map_ops *ops = get_dma_ops(dev);
186 	int ents;
187 
188 	BUG_ON(!valid_dma_direction(dir));
189 
190 	if (WARN_ON_ONCE(!dev->dma_mask))
191 		return 0;
192 
193 	if (dma_map_direct(dev, ops) ||
194 	    arch_dma_map_sg_direct(dev, sg, nents))
195 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 	else
197 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
198 	BUG_ON(ents < 0);
199 	debug_dma_map_sg(dev, sg, nents, ents, dir);
200 
201 	return ents;
202 }
203 EXPORT_SYMBOL(dma_map_sg_attrs);
204 
205 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
206 				      int nents, enum dma_data_direction dir,
207 				      unsigned long attrs)
208 {
209 	const struct dma_map_ops *ops = get_dma_ops(dev);
210 
211 	BUG_ON(!valid_dma_direction(dir));
212 	debug_dma_unmap_sg(dev, sg, nents, dir);
213 	if (dma_map_direct(dev, ops) ||
214 	    arch_dma_unmap_sg_direct(dev, sg, nents))
215 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
216 	else if (ops->unmap_sg)
217 		ops->unmap_sg(dev, sg, nents, dir, attrs);
218 }
219 EXPORT_SYMBOL(dma_unmap_sg_attrs);
220 
221 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
222 		size_t size, enum dma_data_direction dir, unsigned long attrs)
223 {
224 	const struct dma_map_ops *ops = get_dma_ops(dev);
225 	dma_addr_t addr = DMA_MAPPING_ERROR;
226 
227 	BUG_ON(!valid_dma_direction(dir));
228 
229 	if (WARN_ON_ONCE(!dev->dma_mask))
230 		return DMA_MAPPING_ERROR;
231 
232 	/* Don't allow RAM to be mapped */
233 	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
234 		return DMA_MAPPING_ERROR;
235 
236 	if (dma_map_direct(dev, ops))
237 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
238 	else if (ops->map_resource)
239 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
240 
241 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
242 	return addr;
243 }
244 EXPORT_SYMBOL(dma_map_resource);
245 
246 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
247 		enum dma_data_direction dir, unsigned long attrs)
248 {
249 	const struct dma_map_ops *ops = get_dma_ops(dev);
250 
251 	BUG_ON(!valid_dma_direction(dir));
252 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
253 		ops->unmap_resource(dev, addr, size, dir, attrs);
254 	debug_dma_unmap_resource(dev, addr, size, dir);
255 }
256 EXPORT_SYMBOL(dma_unmap_resource);
257 
258 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
259 		enum dma_data_direction dir)
260 {
261 	const struct dma_map_ops *ops = get_dma_ops(dev);
262 
263 	BUG_ON(!valid_dma_direction(dir));
264 	if (dma_map_direct(dev, ops))
265 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
266 	else if (ops->sync_single_for_cpu)
267 		ops->sync_single_for_cpu(dev, addr, size, dir);
268 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
269 }
270 EXPORT_SYMBOL(dma_sync_single_for_cpu);
271 
272 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
273 		size_t size, enum dma_data_direction dir)
274 {
275 	const struct dma_map_ops *ops = get_dma_ops(dev);
276 
277 	BUG_ON(!valid_dma_direction(dir));
278 	if (dma_map_direct(dev, ops))
279 		dma_direct_sync_single_for_device(dev, addr, size, dir);
280 	else if (ops->sync_single_for_device)
281 		ops->sync_single_for_device(dev, addr, size, dir);
282 	debug_dma_sync_single_for_device(dev, addr, size, dir);
283 }
284 EXPORT_SYMBOL(dma_sync_single_for_device);
285 
286 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
287 		    int nelems, enum dma_data_direction dir)
288 {
289 	const struct dma_map_ops *ops = get_dma_ops(dev);
290 
291 	BUG_ON(!valid_dma_direction(dir));
292 	if (dma_map_direct(dev, ops))
293 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
294 	else if (ops->sync_sg_for_cpu)
295 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
296 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
297 }
298 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
299 
300 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
301 		       int nelems, enum dma_data_direction dir)
302 {
303 	const struct dma_map_ops *ops = get_dma_ops(dev);
304 
305 	BUG_ON(!valid_dma_direction(dir));
306 	if (dma_map_direct(dev, ops))
307 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
308 	else if (ops->sync_sg_for_device)
309 		ops->sync_sg_for_device(dev, sg, nelems, dir);
310 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
311 }
312 EXPORT_SYMBOL(dma_sync_sg_for_device);
313 
314 /*
315  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
316  * that the intention is to allow exporting memory allocated via the
317  * coherent DMA APIs through the dma_buf API, which only accepts a
318  * scattertable.  This presents a couple of problems:
319  * 1. Not all memory allocated via the coherent DMA APIs is backed by
320  *    a struct page
321  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
322  *    as we will try to flush the memory through a different alias to that
323  *    actually being used (and the flushes are redundant.)
324  */
325 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
326 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
327 		unsigned long attrs)
328 {
329 	const struct dma_map_ops *ops = get_dma_ops(dev);
330 
331 	if (dma_alloc_direct(dev, ops))
332 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
333 				size, attrs);
334 	if (!ops->get_sgtable)
335 		return -ENXIO;
336 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
337 }
338 EXPORT_SYMBOL(dma_get_sgtable_attrs);
339 
340 #ifdef CONFIG_MMU
341 /*
342  * Return the page attributes used for mapping dma_alloc_* memory, either in
343  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
344  */
345 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
346 {
347 	if (force_dma_unencrypted(dev))
348 		prot = pgprot_decrypted(prot);
349 	if (dev_is_dma_coherent(dev))
350 		return prot;
351 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
352 	if (attrs & DMA_ATTR_WRITE_COMBINE)
353 		return pgprot_writecombine(prot);
354 #endif
355 	return pgprot_dmacoherent(prot);
356 }
357 #endif /* CONFIG_MMU */
358 
359 /**
360  * dma_can_mmap - check if a given device supports dma_mmap_*
361  * @dev: device to check
362  *
363  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
364  * map DMA allocations to userspace.
365  */
366 bool dma_can_mmap(struct device *dev)
367 {
368 	const struct dma_map_ops *ops = get_dma_ops(dev);
369 
370 	if (dma_alloc_direct(dev, ops))
371 		return dma_direct_can_mmap(dev);
372 	return ops->mmap != NULL;
373 }
374 EXPORT_SYMBOL_GPL(dma_can_mmap);
375 
376 /**
377  * dma_mmap_attrs - map a coherent DMA allocation into user space
378  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
379  * @vma: vm_area_struct describing requested user mapping
380  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
381  * @dma_addr: device-view address returned from dma_alloc_attrs
382  * @size: size of memory originally requested in dma_alloc_attrs
383  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
384  *
385  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
386  * space.  The coherent DMA buffer must not be freed by the driver until the
387  * user space mapping has been released.
388  */
389 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
390 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
391 		unsigned long attrs)
392 {
393 	const struct dma_map_ops *ops = get_dma_ops(dev);
394 
395 	if (dma_alloc_direct(dev, ops))
396 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
397 				attrs);
398 	if (!ops->mmap)
399 		return -ENXIO;
400 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
401 }
402 EXPORT_SYMBOL(dma_mmap_attrs);
403 
404 u64 dma_get_required_mask(struct device *dev)
405 {
406 	const struct dma_map_ops *ops = get_dma_ops(dev);
407 
408 	if (dma_alloc_direct(dev, ops))
409 		return dma_direct_get_required_mask(dev);
410 	if (ops->get_required_mask)
411 		return ops->get_required_mask(dev);
412 
413 	/*
414 	 * We require every DMA ops implementation to at least support a 32-bit
415 	 * DMA mask (and use bounce buffering if that isn't supported in
416 	 * hardware).  As the direct mapping code has its own routine to
417 	 * actually report an optimal mask we default to 32-bit here as that
418 	 * is the right thing for most IOMMUs, and at least not actively
419 	 * harmful in general.
420 	 */
421 	return DMA_BIT_MASK(32);
422 }
423 EXPORT_SYMBOL_GPL(dma_get_required_mask);
424 
425 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
426 		gfp_t flag, unsigned long attrs)
427 {
428 	const struct dma_map_ops *ops = get_dma_ops(dev);
429 	void *cpu_addr;
430 
431 	WARN_ON_ONCE(!dev->coherent_dma_mask);
432 
433 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
434 		return cpu_addr;
435 
436 	/* let the implementation decide on the zone to allocate from: */
437 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
438 
439 	if (dma_alloc_direct(dev, ops))
440 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
441 	else if (ops->alloc)
442 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
443 	else
444 		return NULL;
445 
446 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
447 	return cpu_addr;
448 }
449 EXPORT_SYMBOL(dma_alloc_attrs);
450 
451 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
452 		dma_addr_t dma_handle, unsigned long attrs)
453 {
454 	const struct dma_map_ops *ops = get_dma_ops(dev);
455 
456 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
457 		return;
458 	/*
459 	 * On non-coherent platforms which implement DMA-coherent buffers via
460 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
461 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
462 	 * sleep on some machines, and b) an indication that the driver is
463 	 * probably misusing the coherent API anyway.
464 	 */
465 	WARN_ON(irqs_disabled());
466 
467 	if (!cpu_addr)
468 		return;
469 
470 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
471 	if (dma_alloc_direct(dev, ops))
472 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
473 	else if (ops->free)
474 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
475 }
476 EXPORT_SYMBOL(dma_free_attrs);
477 
478 struct page *dma_alloc_pages(struct device *dev, size_t size,
479 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
480 {
481 	const struct dma_map_ops *ops = get_dma_ops(dev);
482 	struct page *page;
483 
484 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
485 		return NULL;
486 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
487 		return NULL;
488 
489 	size = PAGE_ALIGN(size);
490 	if (dma_alloc_direct(dev, ops))
491 		page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
492 	else if (ops->alloc_pages)
493 		page = ops->alloc_pages(dev, size, dma_handle, dir, gfp);
494 	else
495 		return NULL;
496 
497 	debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
498 
499 	return page;
500 }
501 EXPORT_SYMBOL_GPL(dma_alloc_pages);
502 
503 void dma_free_pages(struct device *dev, size_t size, struct page *page,
504 		dma_addr_t dma_handle, enum dma_data_direction dir)
505 {
506 	const struct dma_map_ops *ops = get_dma_ops(dev);
507 
508 	size = PAGE_ALIGN(size);
509 	debug_dma_unmap_page(dev, dma_handle, size, dir);
510 
511 	if (dma_alloc_direct(dev, ops))
512 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
513 	else if (ops->free_pages)
514 		ops->free_pages(dev, size, page, dma_handle, dir);
515 }
516 EXPORT_SYMBOL_GPL(dma_free_pages);
517 
518 void *dma_alloc_noncoherent(struct device *dev, size_t size,
519 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
520 {
521 	const struct dma_map_ops *ops = get_dma_ops(dev);
522 	void *vaddr;
523 
524 	if (!ops || !ops->alloc_noncoherent) {
525 		struct page *page;
526 
527 		page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
528 		if (!page)
529 			return NULL;
530 		return page_address(page);
531 	}
532 
533 	size = PAGE_ALIGN(size);
534 	vaddr = ops->alloc_noncoherent(dev, size, dma_handle, dir, gfp);
535 	if (vaddr)
536 		debug_dma_map_page(dev, virt_to_page(vaddr), 0, size, dir,
537 				   *dma_handle);
538 	return vaddr;
539 }
540 EXPORT_SYMBOL_GPL(dma_alloc_noncoherent);
541 
542 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
543 		dma_addr_t dma_handle, enum dma_data_direction dir)
544 {
545 	const struct dma_map_ops *ops = get_dma_ops(dev);
546 
547 	if (!ops || !ops->free_noncoherent) {
548 		dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
549 		return;
550 	}
551 
552 	size = PAGE_ALIGN(size);
553 	debug_dma_unmap_page(dev, dma_handle, size, dir);
554 	ops->free_noncoherent(dev, size, vaddr, dma_handle, dir);
555 }
556 EXPORT_SYMBOL_GPL(dma_free_noncoherent);
557 
558 int dma_supported(struct device *dev, u64 mask)
559 {
560 	const struct dma_map_ops *ops = get_dma_ops(dev);
561 
562 	/*
563 	 * ->dma_supported sets the bypass flag, so we must always call
564 	 * into the method here unless the device is truly direct mapped.
565 	 */
566 	if (!ops)
567 		return dma_direct_supported(dev, mask);
568 	if (!ops->dma_supported)
569 		return 1;
570 	return ops->dma_supported(dev, mask);
571 }
572 EXPORT_SYMBOL(dma_supported);
573 
574 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
575 void arch_dma_set_mask(struct device *dev, u64 mask);
576 #else
577 #define arch_dma_set_mask(dev, mask)	do { } while (0)
578 #endif
579 
580 int dma_set_mask(struct device *dev, u64 mask)
581 {
582 	/*
583 	 * Truncate the mask to the actually supported dma_addr_t width to
584 	 * avoid generating unsupportable addresses.
585 	 */
586 	mask = (dma_addr_t)mask;
587 
588 	if (!dev->dma_mask || !dma_supported(dev, mask))
589 		return -EIO;
590 
591 	arch_dma_set_mask(dev, mask);
592 	*dev->dma_mask = mask;
593 	return 0;
594 }
595 EXPORT_SYMBOL(dma_set_mask);
596 
597 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
598 int dma_set_coherent_mask(struct device *dev, u64 mask)
599 {
600 	/*
601 	 * Truncate the mask to the actually supported dma_addr_t width to
602 	 * avoid generating unsupportable addresses.
603 	 */
604 	mask = (dma_addr_t)mask;
605 
606 	if (!dma_supported(dev, mask))
607 		return -EIO;
608 
609 	dev->coherent_dma_mask = mask;
610 	return 0;
611 }
612 EXPORT_SYMBOL(dma_set_coherent_mask);
613 #endif
614 
615 size_t dma_max_mapping_size(struct device *dev)
616 {
617 	const struct dma_map_ops *ops = get_dma_ops(dev);
618 	size_t size = SIZE_MAX;
619 
620 	if (dma_map_direct(dev, ops))
621 		size = dma_direct_max_mapping_size(dev);
622 	else if (ops && ops->max_mapping_size)
623 		size = ops->max_mapping_size(dev);
624 
625 	return size;
626 }
627 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
628 
629 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
630 {
631 	const struct dma_map_ops *ops = get_dma_ops(dev);
632 
633 	if (dma_map_direct(dev, ops))
634 		return dma_direct_need_sync(dev, dma_addr);
635 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
636 }
637 EXPORT_SYMBOL_GPL(dma_need_sync);
638 
639 unsigned long dma_get_merge_boundary(struct device *dev)
640 {
641 	const struct dma_map_ops *ops = get_dma_ops(dev);
642 
643 	if (!ops || !ops->get_merge_boundary)
644 		return 0;	/* can't merge */
645 
646 	return ops->get_merge_boundary(dev);
647 }
648 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
649