xref: /linux/kernel/dma/mapping.c (revision 33dcb37cef741294b481f4d889a465b8091f11bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page;
116 	int ret;
117 
118 	if (!dev_is_dma_coherent(dev)) {
119 		unsigned long pfn;
120 
121 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 			return -ENXIO;
123 
124 		/* If the PFN is not valid, we do not have a struct page */
125 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 		if (!pfn_valid(pfn))
127 			return -ENXIO;
128 		page = pfn_to_page(pfn);
129 	} else {
130 		page = virt_to_page(cpu_addr);
131 	}
132 
133 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 	if (!ret)
135 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 	return ret;
137 }
138 
139 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
140 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
141 		unsigned long attrs)
142 {
143 	const struct dma_map_ops *ops = get_dma_ops(dev);
144 
145 	if (!dma_is_direct(ops) && ops->get_sgtable)
146 		return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
147 					attrs);
148 	return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
149 			attrs);
150 }
151 EXPORT_SYMBOL(dma_get_sgtable_attrs);
152 
153 #ifdef CONFIG_MMU
154 /*
155  * Return the page attributes used for mapping dma_alloc_* memory, either in
156  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
157  */
158 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
159 {
160 	if (dev_is_dma_coherent(dev) ||
161 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
162              (attrs & DMA_ATTR_NON_CONSISTENT)))
163 		return prot;
164 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_MMAP_PGPROT))
165 		return arch_dma_mmap_pgprot(dev, prot, attrs);
166 	return pgprot_noncached(prot);
167 }
168 #endif /* CONFIG_MMU */
169 
170 /*
171  * Create userspace mapping for the DMA-coherent memory.
172  */
173 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
174 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
175 		unsigned long attrs)
176 {
177 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
178 	unsigned long user_count = vma_pages(vma);
179 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
180 	unsigned long off = vma->vm_pgoff;
181 	unsigned long pfn;
182 	int ret = -ENXIO;
183 
184 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
185 
186 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
187 		return ret;
188 
189 	if (off >= count || user_count > count - off)
190 		return -ENXIO;
191 
192 	if (!dev_is_dma_coherent(dev)) {
193 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
194 			return -ENXIO;
195 
196 		/* If the PFN is not valid, we do not have a struct page */
197 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
198 		if (!pfn_valid(pfn))
199 			return -ENXIO;
200 	} else {
201 		pfn = page_to_pfn(virt_to_page(cpu_addr));
202 	}
203 
204 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
205 			user_count << PAGE_SHIFT, vma->vm_page_prot);
206 #else
207 	return -ENXIO;
208 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
209 }
210 
211 /**
212  * dma_mmap_attrs - map a coherent DMA allocation into user space
213  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
214  * @vma: vm_area_struct describing requested user mapping
215  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
216  * @dma_addr: device-view address returned from dma_alloc_attrs
217  * @size: size of memory originally requested in dma_alloc_attrs
218  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
219  *
220  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
221  * space.  The coherent DMA buffer must not be freed by the driver until the
222  * user space mapping has been released.
223  */
224 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
225 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
226 		unsigned long attrs)
227 {
228 	const struct dma_map_ops *ops = get_dma_ops(dev);
229 
230 	if (!dma_is_direct(ops) && ops->mmap)
231 		return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
232 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
233 }
234 EXPORT_SYMBOL(dma_mmap_attrs);
235 
236 static u64 dma_default_get_required_mask(struct device *dev)
237 {
238 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
239 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
240 	u64 mask;
241 
242 	if (!high_totalram) {
243 		/* convert to mask just covering totalram */
244 		low_totalram = (1 << (fls(low_totalram) - 1));
245 		low_totalram += low_totalram - 1;
246 		mask = low_totalram;
247 	} else {
248 		high_totalram = (1 << (fls(high_totalram) - 1));
249 		high_totalram += high_totalram - 1;
250 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
251 	}
252 	return mask;
253 }
254 
255 u64 dma_get_required_mask(struct device *dev)
256 {
257 	const struct dma_map_ops *ops = get_dma_ops(dev);
258 
259 	if (dma_is_direct(ops))
260 		return dma_direct_get_required_mask(dev);
261 	if (ops->get_required_mask)
262 		return ops->get_required_mask(dev);
263 	return dma_default_get_required_mask(dev);
264 }
265 EXPORT_SYMBOL_GPL(dma_get_required_mask);
266 
267 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
268 		gfp_t flag, unsigned long attrs)
269 {
270 	const struct dma_map_ops *ops = get_dma_ops(dev);
271 	void *cpu_addr;
272 
273 	WARN_ON_ONCE(!dev->coherent_dma_mask);
274 
275 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
276 		return cpu_addr;
277 
278 	/* let the implementation decide on the zone to allocate from: */
279 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
280 
281 	if (dma_is_direct(ops))
282 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
283 	else if (ops->alloc)
284 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
285 	else
286 		return NULL;
287 
288 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
289 	return cpu_addr;
290 }
291 EXPORT_SYMBOL(dma_alloc_attrs);
292 
293 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
294 		dma_addr_t dma_handle, unsigned long attrs)
295 {
296 	const struct dma_map_ops *ops = get_dma_ops(dev);
297 
298 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
299 		return;
300 	/*
301 	 * On non-coherent platforms which implement DMA-coherent buffers via
302 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
303 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
304 	 * sleep on some machines, and b) an indication that the driver is
305 	 * probably misusing the coherent API anyway.
306 	 */
307 	WARN_ON(irqs_disabled());
308 
309 	if (!cpu_addr)
310 		return;
311 
312 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
313 	if (dma_is_direct(ops))
314 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
315 	else if (ops->free)
316 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
317 }
318 EXPORT_SYMBOL(dma_free_attrs);
319 
320 static inline void dma_check_mask(struct device *dev, u64 mask)
321 {
322 	if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
323 		dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
324 }
325 
326 int dma_supported(struct device *dev, u64 mask)
327 {
328 	const struct dma_map_ops *ops = get_dma_ops(dev);
329 
330 	if (dma_is_direct(ops))
331 		return dma_direct_supported(dev, mask);
332 	if (!ops->dma_supported)
333 		return 1;
334 	return ops->dma_supported(dev, mask);
335 }
336 EXPORT_SYMBOL(dma_supported);
337 
338 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
339 void arch_dma_set_mask(struct device *dev, u64 mask);
340 #else
341 #define arch_dma_set_mask(dev, mask)	do { } while (0)
342 #endif
343 
344 int dma_set_mask(struct device *dev, u64 mask)
345 {
346 	/*
347 	 * Truncate the mask to the actually supported dma_addr_t width to
348 	 * avoid generating unsupportable addresses.
349 	 */
350 	mask = (dma_addr_t)mask;
351 
352 	if (!dev->dma_mask || !dma_supported(dev, mask))
353 		return -EIO;
354 
355 	arch_dma_set_mask(dev, mask);
356 	dma_check_mask(dev, mask);
357 	*dev->dma_mask = mask;
358 	return 0;
359 }
360 EXPORT_SYMBOL(dma_set_mask);
361 
362 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
363 int dma_set_coherent_mask(struct device *dev, u64 mask)
364 {
365 	/*
366 	 * Truncate the mask to the actually supported dma_addr_t width to
367 	 * avoid generating unsupportable addresses.
368 	 */
369 	mask = (dma_addr_t)mask;
370 
371 	if (!dma_supported(dev, mask))
372 		return -EIO;
373 
374 	dma_check_mask(dev, mask);
375 	dev->coherent_dma_mask = mask;
376 	return 0;
377 }
378 EXPORT_SYMBOL(dma_set_coherent_mask);
379 #endif
380 
381 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
382 		enum dma_data_direction dir)
383 {
384 	const struct dma_map_ops *ops = get_dma_ops(dev);
385 
386 	BUG_ON(!valid_dma_direction(dir));
387 
388 	if (dma_is_direct(ops))
389 		arch_dma_cache_sync(dev, vaddr, size, dir);
390 	else if (ops->cache_sync)
391 		ops->cache_sync(dev, vaddr, size, dir);
392 }
393 EXPORT_SYMBOL(dma_cache_sync);
394 
395 size_t dma_max_mapping_size(struct device *dev)
396 {
397 	const struct dma_map_ops *ops = get_dma_ops(dev);
398 	size_t size = SIZE_MAX;
399 
400 	if (dma_is_direct(ops))
401 		size = dma_direct_max_mapping_size(dev);
402 	else if (ops && ops->max_mapping_size)
403 		size = ops->max_mapping_size(dev);
404 
405 	return size;
406 }
407 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
408