xref: /linux/kernel/dma/mapping.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 bool dma_default_coherent;
20 
21 /*
22  * Managed DMA API
23  */
24 struct dma_devres {
25 	size_t		size;
26 	void		*vaddr;
27 	dma_addr_t	dma_handle;
28 	unsigned long	attrs;
29 };
30 
31 static void dmam_release(struct device *dev, void *res)
32 {
33 	struct dma_devres *this = res;
34 
35 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 			this->attrs);
37 }
38 
39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_free_coherent - Managed dma_free_coherent()
53  * @dev: Device to free coherent memory for
54  * @size: Size of allocation
55  * @vaddr: Virtual address of the memory to free
56  * @dma_handle: DMA handle of the memory to free
57  *
58  * Managed dma_free_coherent().
59  */
60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 			dma_addr_t dma_handle)
62 {
63 	struct dma_devres match_data = { size, vaddr, dma_handle };
64 
65 	dma_free_coherent(dev, size, vaddr, dma_handle);
66 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67 }
68 EXPORT_SYMBOL(dmam_free_coherent);
69 
70 /**
71  * dmam_alloc_attrs - Managed dma_alloc_attrs()
72  * @dev: Device to allocate non_coherent memory for
73  * @size: Size of allocation
74  * @dma_handle: Out argument for allocated DMA handle
75  * @gfp: Allocation flags
76  * @attrs: Flags in the DMA_ATTR_* namespace.
77  *
78  * Managed dma_alloc_attrs().  Memory allocated using this function will be
79  * automatically released on driver detach.
80  *
81  * RETURNS:
82  * Pointer to allocated memory on success, NULL on failure.
83  */
84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 		gfp_t gfp, unsigned long attrs)
86 {
87 	struct dma_devres *dr;
88 	void *vaddr;
89 
90 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 	if (!dr)
92 		return NULL;
93 
94 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 	if (!vaddr) {
96 		devres_free(dr);
97 		return NULL;
98 	}
99 
100 	dr->vaddr = vaddr;
101 	dr->dma_handle = *dma_handle;
102 	dr->size = size;
103 	dr->attrs = attrs;
104 
105 	devres_add(dev, dr);
106 
107 	return vaddr;
108 }
109 EXPORT_SYMBOL(dmam_alloc_attrs);
110 
111 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 		const struct dma_map_ops *ops)
113 {
114 	if (likely(!ops))
115 		return true;
116 #ifdef CONFIG_DMA_OPS_BYPASS
117 	if (dev->dma_ops_bypass)
118 		return min_not_zero(mask, dev->bus_dma_limit) >=
119 			    dma_direct_get_required_mask(dev);
120 #endif
121 	return false;
122 }
123 
124 
125 /*
126  * Check if the devices uses a direct mapping for streaming DMA operations.
127  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128  * enough.
129  */
130 static inline bool dma_alloc_direct(struct device *dev,
131 		const struct dma_map_ops *ops)
132 {
133 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134 }
135 
136 static inline bool dma_map_direct(struct device *dev,
137 		const struct dma_map_ops *ops)
138 {
139 	return dma_go_direct(dev, *dev->dma_mask, ops);
140 }
141 
142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 		size_t offset, size_t size, enum dma_data_direction dir,
144 		unsigned long attrs)
145 {
146 	const struct dma_map_ops *ops = get_dma_ops(dev);
147 	dma_addr_t addr;
148 
149 	BUG_ON(!valid_dma_direction(dir));
150 
151 	if (WARN_ON_ONCE(!dev->dma_mask))
152 		return DMA_MAPPING_ERROR;
153 
154 	if (dma_map_direct(dev, ops) ||
155 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 	else
158 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
160 
161 	return addr;
162 }
163 EXPORT_SYMBOL(dma_map_page_attrs);
164 
165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 		enum dma_data_direction dir, unsigned long attrs)
167 {
168 	const struct dma_map_ops *ops = get_dma_ops(dev);
169 
170 	BUG_ON(!valid_dma_direction(dir));
171 	if (dma_map_direct(dev, ops) ||
172 	    arch_dma_unmap_page_direct(dev, addr + size))
173 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 	else if (ops->unmap_page)
175 		ops->unmap_page(dev, addr, size, dir, attrs);
176 	debug_dma_unmap_page(dev, addr, size, dir);
177 }
178 EXPORT_SYMBOL(dma_unmap_page_attrs);
179 
180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
181 	 int nents, enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops) ||
192 	    arch_dma_map_sg_direct(dev, sg, nents))
193 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
194 	else
195 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
196 
197 	if (ents > 0)
198 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
199 	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
200 			      ents != -EIO))
201 		return -EIO;
202 
203 	return ents;
204 }
205 
206 /**
207  * dma_map_sg_attrs - Map the given buffer for DMA
208  * @dev:	The device for which to perform the DMA operation
209  * @sg:		The sg_table object describing the buffer
210  * @nents:	Number of entries to map
211  * @dir:	DMA direction
212  * @attrs:	Optional DMA attributes for the map operation
213  *
214  * Maps a buffer described by a scatterlist passed in the sg argument with
215  * nents segments for the @dir DMA operation by the @dev device.
216  *
217  * Returns the number of mapped entries (which can be less than nents)
218  * on success. Zero is returned for any error.
219  *
220  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
221  * original sg and original nents (not the value returned by this funciton).
222  */
223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
224 		    int nents, enum dma_data_direction dir, unsigned long attrs)
225 {
226 	int ret;
227 
228 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
229 	if (ret < 0)
230 		return 0;
231 	return ret;
232 }
233 EXPORT_SYMBOL(dma_map_sg_attrs);
234 
235 /**
236  * dma_map_sgtable - Map the given buffer for DMA
237  * @dev:	The device for which to perform the DMA operation
238  * @sgt:	The sg_table object describing the buffer
239  * @dir:	DMA direction
240  * @attrs:	Optional DMA attributes for the map operation
241  *
242  * Maps a buffer described by a scatterlist stored in the given sg_table
243  * object for the @dir DMA operation by the @dev device. After success, the
244  * ownership for the buffer is transferred to the DMA domain.  One has to
245  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
246  * ownership of the buffer back to the CPU domain before touching the
247  * buffer by the CPU.
248  *
249  * Returns 0 on success or a negative error code on error. The following
250  * error codes are supported with the given meaning:
251  *
252  *   -EINVAL	An invalid argument, unaligned access or other error
253  *		in usage. Will not succeed if retried.
254  *   -ENOMEM	Insufficient resources (like memory or IOVA space) to
255  *		complete the mapping. Should succeed if retried later.
256  *   -EIO	Legacy error code with an unknown meaning. eg. this is
257  *		returned if a lower level call returned DMA_MAPPING_ERROR.
258  */
259 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
260 		    enum dma_data_direction dir, unsigned long attrs)
261 {
262 	int nents;
263 
264 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
265 	if (nents < 0)
266 		return nents;
267 	sgt->nents = nents;
268 	return 0;
269 }
270 EXPORT_SYMBOL_GPL(dma_map_sgtable);
271 
272 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
273 				      int nents, enum dma_data_direction dir,
274 				      unsigned long attrs)
275 {
276 	const struct dma_map_ops *ops = get_dma_ops(dev);
277 
278 	BUG_ON(!valid_dma_direction(dir));
279 	debug_dma_unmap_sg(dev, sg, nents, dir);
280 	if (dma_map_direct(dev, ops) ||
281 	    arch_dma_unmap_sg_direct(dev, sg, nents))
282 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
283 	else if (ops->unmap_sg)
284 		ops->unmap_sg(dev, sg, nents, dir, attrs);
285 }
286 EXPORT_SYMBOL(dma_unmap_sg_attrs);
287 
288 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
289 		size_t size, enum dma_data_direction dir, unsigned long attrs)
290 {
291 	const struct dma_map_ops *ops = get_dma_ops(dev);
292 	dma_addr_t addr = DMA_MAPPING_ERROR;
293 
294 	BUG_ON(!valid_dma_direction(dir));
295 
296 	if (WARN_ON_ONCE(!dev->dma_mask))
297 		return DMA_MAPPING_ERROR;
298 
299 	if (dma_map_direct(dev, ops))
300 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
301 	else if (ops->map_resource)
302 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
303 
304 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
305 	return addr;
306 }
307 EXPORT_SYMBOL(dma_map_resource);
308 
309 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
310 		enum dma_data_direction dir, unsigned long attrs)
311 {
312 	const struct dma_map_ops *ops = get_dma_ops(dev);
313 
314 	BUG_ON(!valid_dma_direction(dir));
315 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
316 		ops->unmap_resource(dev, addr, size, dir, attrs);
317 	debug_dma_unmap_resource(dev, addr, size, dir);
318 }
319 EXPORT_SYMBOL(dma_unmap_resource);
320 
321 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
322 		enum dma_data_direction dir)
323 {
324 	const struct dma_map_ops *ops = get_dma_ops(dev);
325 
326 	BUG_ON(!valid_dma_direction(dir));
327 	if (dma_map_direct(dev, ops))
328 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
329 	else if (ops->sync_single_for_cpu)
330 		ops->sync_single_for_cpu(dev, addr, size, dir);
331 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
332 }
333 EXPORT_SYMBOL(dma_sync_single_for_cpu);
334 
335 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
336 		size_t size, enum dma_data_direction dir)
337 {
338 	const struct dma_map_ops *ops = get_dma_ops(dev);
339 
340 	BUG_ON(!valid_dma_direction(dir));
341 	if (dma_map_direct(dev, ops))
342 		dma_direct_sync_single_for_device(dev, addr, size, dir);
343 	else if (ops->sync_single_for_device)
344 		ops->sync_single_for_device(dev, addr, size, dir);
345 	debug_dma_sync_single_for_device(dev, addr, size, dir);
346 }
347 EXPORT_SYMBOL(dma_sync_single_for_device);
348 
349 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
350 		    int nelems, enum dma_data_direction dir)
351 {
352 	const struct dma_map_ops *ops = get_dma_ops(dev);
353 
354 	BUG_ON(!valid_dma_direction(dir));
355 	if (dma_map_direct(dev, ops))
356 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
357 	else if (ops->sync_sg_for_cpu)
358 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
359 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
360 }
361 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
362 
363 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
364 		       int nelems, enum dma_data_direction dir)
365 {
366 	const struct dma_map_ops *ops = get_dma_ops(dev);
367 
368 	BUG_ON(!valid_dma_direction(dir));
369 	if (dma_map_direct(dev, ops))
370 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
371 	else if (ops->sync_sg_for_device)
372 		ops->sync_sg_for_device(dev, sg, nelems, dir);
373 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
374 }
375 EXPORT_SYMBOL(dma_sync_sg_for_device);
376 
377 /*
378  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
379  * that the intention is to allow exporting memory allocated via the
380  * coherent DMA APIs through the dma_buf API, which only accepts a
381  * scattertable.  This presents a couple of problems:
382  * 1. Not all memory allocated via the coherent DMA APIs is backed by
383  *    a struct page
384  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
385  *    as we will try to flush the memory through a different alias to that
386  *    actually being used (and the flushes are redundant.)
387  */
388 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
389 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
390 		unsigned long attrs)
391 {
392 	const struct dma_map_ops *ops = get_dma_ops(dev);
393 
394 	if (dma_alloc_direct(dev, ops))
395 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
396 				size, attrs);
397 	if (!ops->get_sgtable)
398 		return -ENXIO;
399 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
400 }
401 EXPORT_SYMBOL(dma_get_sgtable_attrs);
402 
403 #ifdef CONFIG_MMU
404 /*
405  * Return the page attributes used for mapping dma_alloc_* memory, either in
406  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
407  */
408 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
409 {
410 	if (dev_is_dma_coherent(dev))
411 		return prot;
412 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
413 	if (attrs & DMA_ATTR_WRITE_COMBINE)
414 		return pgprot_writecombine(prot);
415 #endif
416 	return pgprot_dmacoherent(prot);
417 }
418 #endif /* CONFIG_MMU */
419 
420 /**
421  * dma_can_mmap - check if a given device supports dma_mmap_*
422  * @dev: device to check
423  *
424  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
425  * map DMA allocations to userspace.
426  */
427 bool dma_can_mmap(struct device *dev)
428 {
429 	const struct dma_map_ops *ops = get_dma_ops(dev);
430 
431 	if (dma_alloc_direct(dev, ops))
432 		return dma_direct_can_mmap(dev);
433 	return ops->mmap != NULL;
434 }
435 EXPORT_SYMBOL_GPL(dma_can_mmap);
436 
437 /**
438  * dma_mmap_attrs - map a coherent DMA allocation into user space
439  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
440  * @vma: vm_area_struct describing requested user mapping
441  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
442  * @dma_addr: device-view address returned from dma_alloc_attrs
443  * @size: size of memory originally requested in dma_alloc_attrs
444  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
445  *
446  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
447  * space.  The coherent DMA buffer must not be freed by the driver until the
448  * user space mapping has been released.
449  */
450 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
451 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
452 		unsigned long attrs)
453 {
454 	const struct dma_map_ops *ops = get_dma_ops(dev);
455 
456 	if (dma_alloc_direct(dev, ops))
457 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
458 				attrs);
459 	if (!ops->mmap)
460 		return -ENXIO;
461 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
462 }
463 EXPORT_SYMBOL(dma_mmap_attrs);
464 
465 u64 dma_get_required_mask(struct device *dev)
466 {
467 	const struct dma_map_ops *ops = get_dma_ops(dev);
468 
469 	if (dma_alloc_direct(dev, ops))
470 		return dma_direct_get_required_mask(dev);
471 	if (ops->get_required_mask)
472 		return ops->get_required_mask(dev);
473 
474 	/*
475 	 * We require every DMA ops implementation to at least support a 32-bit
476 	 * DMA mask (and use bounce buffering if that isn't supported in
477 	 * hardware).  As the direct mapping code has its own routine to
478 	 * actually report an optimal mask we default to 32-bit here as that
479 	 * is the right thing for most IOMMUs, and at least not actively
480 	 * harmful in general.
481 	 */
482 	return DMA_BIT_MASK(32);
483 }
484 EXPORT_SYMBOL_GPL(dma_get_required_mask);
485 
486 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
487 		gfp_t flag, unsigned long attrs)
488 {
489 	const struct dma_map_ops *ops = get_dma_ops(dev);
490 	void *cpu_addr;
491 
492 	WARN_ON_ONCE(!dev->coherent_dma_mask);
493 
494 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
495 		return cpu_addr;
496 
497 	/* let the implementation decide on the zone to allocate from: */
498 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
499 
500 	if (dma_alloc_direct(dev, ops))
501 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
502 	else if (ops->alloc)
503 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
504 	else
505 		return NULL;
506 
507 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
508 	return cpu_addr;
509 }
510 EXPORT_SYMBOL(dma_alloc_attrs);
511 
512 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
513 		dma_addr_t dma_handle, unsigned long attrs)
514 {
515 	const struct dma_map_ops *ops = get_dma_ops(dev);
516 
517 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
518 		return;
519 	/*
520 	 * On non-coherent platforms which implement DMA-coherent buffers via
521 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
522 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
523 	 * sleep on some machines, and b) an indication that the driver is
524 	 * probably misusing the coherent API anyway.
525 	 */
526 	WARN_ON(irqs_disabled());
527 
528 	if (!cpu_addr)
529 		return;
530 
531 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
532 	if (dma_alloc_direct(dev, ops))
533 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
534 	else if (ops->free)
535 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
536 }
537 EXPORT_SYMBOL(dma_free_attrs);
538 
539 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
540 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
541 {
542 	const struct dma_map_ops *ops = get_dma_ops(dev);
543 
544 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
545 		return NULL;
546 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
547 		return NULL;
548 
549 	size = PAGE_ALIGN(size);
550 	if (dma_alloc_direct(dev, ops))
551 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
552 	if (!ops->alloc_pages)
553 		return NULL;
554 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
555 }
556 
557 struct page *dma_alloc_pages(struct device *dev, size_t size,
558 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
559 {
560 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
561 
562 	if (page)
563 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
564 	return page;
565 }
566 EXPORT_SYMBOL_GPL(dma_alloc_pages);
567 
568 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
569 		dma_addr_t dma_handle, enum dma_data_direction dir)
570 {
571 	const struct dma_map_ops *ops = get_dma_ops(dev);
572 
573 	size = PAGE_ALIGN(size);
574 	if (dma_alloc_direct(dev, ops))
575 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
576 	else if (ops->free_pages)
577 		ops->free_pages(dev, size, page, dma_handle, dir);
578 }
579 
580 void dma_free_pages(struct device *dev, size_t size, struct page *page,
581 		dma_addr_t dma_handle, enum dma_data_direction dir)
582 {
583 	debug_dma_unmap_page(dev, dma_handle, size, dir);
584 	__dma_free_pages(dev, size, page, dma_handle, dir);
585 }
586 EXPORT_SYMBOL_GPL(dma_free_pages);
587 
588 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
589 		size_t size, struct page *page)
590 {
591 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
592 
593 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
594 		return -ENXIO;
595 	return remap_pfn_range(vma, vma->vm_start,
596 			       page_to_pfn(page) + vma->vm_pgoff,
597 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
598 }
599 EXPORT_SYMBOL_GPL(dma_mmap_pages);
600 
601 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
602 		enum dma_data_direction dir, gfp_t gfp)
603 {
604 	struct sg_table *sgt;
605 	struct page *page;
606 
607 	sgt = kmalloc(sizeof(*sgt), gfp);
608 	if (!sgt)
609 		return NULL;
610 	if (sg_alloc_table(sgt, 1, gfp))
611 		goto out_free_sgt;
612 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
613 	if (!page)
614 		goto out_free_table;
615 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
616 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
617 	return sgt;
618 out_free_table:
619 	sg_free_table(sgt);
620 out_free_sgt:
621 	kfree(sgt);
622 	return NULL;
623 }
624 
625 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
626 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
627 {
628 	const struct dma_map_ops *ops = get_dma_ops(dev);
629 	struct sg_table *sgt;
630 
631 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
632 		return NULL;
633 
634 	if (ops && ops->alloc_noncontiguous)
635 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
636 	else
637 		sgt = alloc_single_sgt(dev, size, dir, gfp);
638 
639 	if (sgt) {
640 		sgt->nents = 1;
641 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
642 	}
643 	return sgt;
644 }
645 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
646 
647 static void free_single_sgt(struct device *dev, size_t size,
648 		struct sg_table *sgt, enum dma_data_direction dir)
649 {
650 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
651 			 dir);
652 	sg_free_table(sgt);
653 	kfree(sgt);
654 }
655 
656 void dma_free_noncontiguous(struct device *dev, size_t size,
657 		struct sg_table *sgt, enum dma_data_direction dir)
658 {
659 	const struct dma_map_ops *ops = get_dma_ops(dev);
660 
661 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
662 	if (ops && ops->free_noncontiguous)
663 		ops->free_noncontiguous(dev, size, sgt, dir);
664 	else
665 		free_single_sgt(dev, size, sgt, dir);
666 }
667 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
668 
669 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
670 		struct sg_table *sgt)
671 {
672 	const struct dma_map_ops *ops = get_dma_ops(dev);
673 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
674 
675 	if (ops && ops->alloc_noncontiguous)
676 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
677 	return page_address(sg_page(sgt->sgl));
678 }
679 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
680 
681 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
682 {
683 	const struct dma_map_ops *ops = get_dma_ops(dev);
684 
685 	if (ops && ops->alloc_noncontiguous)
686 		vunmap(vaddr);
687 }
688 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
689 
690 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
691 		size_t size, struct sg_table *sgt)
692 {
693 	const struct dma_map_ops *ops = get_dma_ops(dev);
694 
695 	if (ops && ops->alloc_noncontiguous) {
696 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 
698 		if (vma->vm_pgoff >= count ||
699 		    vma_pages(vma) > count - vma->vm_pgoff)
700 			return -ENXIO;
701 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
702 	}
703 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
704 }
705 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
706 
707 int dma_supported(struct device *dev, u64 mask)
708 {
709 	const struct dma_map_ops *ops = get_dma_ops(dev);
710 
711 	/*
712 	 * ->dma_supported sets the bypass flag, so we must always call
713 	 * into the method here unless the device is truly direct mapped.
714 	 */
715 	if (!ops)
716 		return dma_direct_supported(dev, mask);
717 	if (!ops->dma_supported)
718 		return 1;
719 	return ops->dma_supported(dev, mask);
720 }
721 EXPORT_SYMBOL(dma_supported);
722 
723 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
724 void arch_dma_set_mask(struct device *dev, u64 mask);
725 #else
726 #define arch_dma_set_mask(dev, mask)	do { } while (0)
727 #endif
728 
729 int dma_set_mask(struct device *dev, u64 mask)
730 {
731 	/*
732 	 * Truncate the mask to the actually supported dma_addr_t width to
733 	 * avoid generating unsupportable addresses.
734 	 */
735 	mask = (dma_addr_t)mask;
736 
737 	if (!dev->dma_mask || !dma_supported(dev, mask))
738 		return -EIO;
739 
740 	arch_dma_set_mask(dev, mask);
741 	*dev->dma_mask = mask;
742 	return 0;
743 }
744 EXPORT_SYMBOL(dma_set_mask);
745 
746 int dma_set_coherent_mask(struct device *dev, u64 mask)
747 {
748 	/*
749 	 * Truncate the mask to the actually supported dma_addr_t width to
750 	 * avoid generating unsupportable addresses.
751 	 */
752 	mask = (dma_addr_t)mask;
753 
754 	if (!dma_supported(dev, mask))
755 		return -EIO;
756 
757 	dev->coherent_dma_mask = mask;
758 	return 0;
759 }
760 EXPORT_SYMBOL(dma_set_coherent_mask);
761 
762 size_t dma_max_mapping_size(struct device *dev)
763 {
764 	const struct dma_map_ops *ops = get_dma_ops(dev);
765 	size_t size = SIZE_MAX;
766 
767 	if (dma_map_direct(dev, ops))
768 		size = dma_direct_max_mapping_size(dev);
769 	else if (ops && ops->max_mapping_size)
770 		size = ops->max_mapping_size(dev);
771 
772 	return size;
773 }
774 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
775 
776 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
777 {
778 	const struct dma_map_ops *ops = get_dma_ops(dev);
779 
780 	if (dma_map_direct(dev, ops))
781 		return dma_direct_need_sync(dev, dma_addr);
782 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
783 }
784 EXPORT_SYMBOL_GPL(dma_need_sync);
785 
786 unsigned long dma_get_merge_boundary(struct device *dev)
787 {
788 	const struct dma_map_ops *ops = get_dma_ops(dev);
789 
790 	if (!ops || !ops->get_merge_boundary)
791 		return 0;	/* can't merge */
792 
793 	return ops->get_merge_boundary(dev);
794 }
795 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
796