xref: /linux/kernel/dma/mapping.c (revision 170aafe35cb98e0f3fbacb446ea86389fbce22ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/kmsan.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include "debug.h"
18 #include "direct.h"
19 
20 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
21 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
22 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
23 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
24 #endif
25 
26 /*
27  * Managed DMA API
28  */
29 struct dma_devres {
30 	size_t		size;
31 	void		*vaddr;
32 	dma_addr_t	dma_handle;
33 	unsigned long	attrs;
34 };
35 
36 static void dmam_release(struct device *dev, void *res)
37 {
38 	struct dma_devres *this = res;
39 
40 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
41 			this->attrs);
42 }
43 
44 static int dmam_match(struct device *dev, void *res, void *match_data)
45 {
46 	struct dma_devres *this = res, *match = match_data;
47 
48 	if (this->vaddr == match->vaddr) {
49 		WARN_ON(this->size != match->size ||
50 			this->dma_handle != match->dma_handle);
51 		return 1;
52 	}
53 	return 0;
54 }
55 
56 /**
57  * dmam_free_coherent - Managed dma_free_coherent()
58  * @dev: Device to free coherent memory for
59  * @size: Size of allocation
60  * @vaddr: Virtual address of the memory to free
61  * @dma_handle: DMA handle of the memory to free
62  *
63  * Managed dma_free_coherent().
64  */
65 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
66 			dma_addr_t dma_handle)
67 {
68 	struct dma_devres match_data = { size, vaddr, dma_handle };
69 
70 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
71 	dma_free_coherent(dev, size, vaddr, dma_handle);
72 }
73 EXPORT_SYMBOL(dmam_free_coherent);
74 
75 /**
76  * dmam_alloc_attrs - Managed dma_alloc_attrs()
77  * @dev: Device to allocate non_coherent memory for
78  * @size: Size of allocation
79  * @dma_handle: Out argument for allocated DMA handle
80  * @gfp: Allocation flags
81  * @attrs: Flags in the DMA_ATTR_* namespace.
82  *
83  * Managed dma_alloc_attrs().  Memory allocated using this function will be
84  * automatically released on driver detach.
85  *
86  * RETURNS:
87  * Pointer to allocated memory on success, NULL on failure.
88  */
89 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
90 		gfp_t gfp, unsigned long attrs)
91 {
92 	struct dma_devres *dr;
93 	void *vaddr;
94 
95 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
96 	if (!dr)
97 		return NULL;
98 
99 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100 	if (!vaddr) {
101 		devres_free(dr);
102 		return NULL;
103 	}
104 
105 	dr->vaddr = vaddr;
106 	dr->dma_handle = *dma_handle;
107 	dr->size = size;
108 	dr->attrs = attrs;
109 
110 	devres_add(dev, dr);
111 
112 	return vaddr;
113 }
114 EXPORT_SYMBOL(dmam_alloc_attrs);
115 
116 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117 		const struct dma_map_ops *ops)
118 {
119 	if (likely(!ops))
120 		return true;
121 #ifdef CONFIG_DMA_OPS_BYPASS
122 	if (dev->dma_ops_bypass)
123 		return min_not_zero(mask, dev->bus_dma_limit) >=
124 			    dma_direct_get_required_mask(dev);
125 #endif
126 	return false;
127 }
128 
129 
130 /*
131  * Check if the devices uses a direct mapping for streaming DMA operations.
132  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133  * enough.
134  */
135 static inline bool dma_alloc_direct(struct device *dev,
136 		const struct dma_map_ops *ops)
137 {
138 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139 }
140 
141 static inline bool dma_map_direct(struct device *dev,
142 		const struct dma_map_ops *ops)
143 {
144 	return dma_go_direct(dev, *dev->dma_mask, ops);
145 }
146 
147 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148 		size_t offset, size_t size, enum dma_data_direction dir,
149 		unsigned long attrs)
150 {
151 	const struct dma_map_ops *ops = get_dma_ops(dev);
152 	dma_addr_t addr;
153 
154 	BUG_ON(!valid_dma_direction(dir));
155 
156 	if (WARN_ON_ONCE(!dev->dma_mask))
157 		return DMA_MAPPING_ERROR;
158 
159 	if (dma_map_direct(dev, ops) ||
160 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162 	else
163 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
164 	kmsan_handle_dma(page, offset, size, dir);
165 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166 
167 	return addr;
168 }
169 EXPORT_SYMBOL(dma_map_page_attrs);
170 
171 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172 		enum dma_data_direction dir, unsigned long attrs)
173 {
174 	const struct dma_map_ops *ops = get_dma_ops(dev);
175 
176 	BUG_ON(!valid_dma_direction(dir));
177 	if (dma_map_direct(dev, ops) ||
178 	    arch_dma_unmap_page_direct(dev, addr + size))
179 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
180 	else if (ops->unmap_page)
181 		ops->unmap_page(dev, addr, size, dir, attrs);
182 	debug_dma_unmap_page(dev, addr, size, dir);
183 }
184 EXPORT_SYMBOL(dma_unmap_page_attrs);
185 
186 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187 	 int nents, enum dma_data_direction dir, unsigned long attrs)
188 {
189 	const struct dma_map_ops *ops = get_dma_ops(dev);
190 	int ents;
191 
192 	BUG_ON(!valid_dma_direction(dir));
193 
194 	if (WARN_ON_ONCE(!dev->dma_mask))
195 		return 0;
196 
197 	if (dma_map_direct(dev, ops) ||
198 	    arch_dma_map_sg_direct(dev, sg, nents))
199 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200 	else
201 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
202 
203 	if (ents > 0) {
204 		kmsan_handle_dma_sg(sg, nents, dir);
205 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207 				ents != -EIO && ents != -EREMOTEIO)) {
208 		return -EIO;
209 	}
210 
211 	return ents;
212 }
213 
214 /**
215  * dma_map_sg_attrs - Map the given buffer for DMA
216  * @dev:	The device for which to perform the DMA operation
217  * @sg:		The sg_table object describing the buffer
218  * @nents:	Number of entries to map
219  * @dir:	DMA direction
220  * @attrs:	Optional DMA attributes for the map operation
221  *
222  * Maps a buffer described by a scatterlist passed in the sg argument with
223  * nents segments for the @dir DMA operation by the @dev device.
224  *
225  * Returns the number of mapped entries (which can be less than nents)
226  * on success. Zero is returned for any error.
227  *
228  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229  * original sg and original nents (not the value returned by this funciton).
230  */
231 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232 		    int nents, enum dma_data_direction dir, unsigned long attrs)
233 {
234 	int ret;
235 
236 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237 	if (ret < 0)
238 		return 0;
239 	return ret;
240 }
241 EXPORT_SYMBOL(dma_map_sg_attrs);
242 
243 /**
244  * dma_map_sgtable - Map the given buffer for DMA
245  * @dev:	The device for which to perform the DMA operation
246  * @sgt:	The sg_table object describing the buffer
247  * @dir:	DMA direction
248  * @attrs:	Optional DMA attributes for the map operation
249  *
250  * Maps a buffer described by a scatterlist stored in the given sg_table
251  * object for the @dir DMA operation by the @dev device. After success, the
252  * ownership for the buffer is transferred to the DMA domain.  One has to
253  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254  * ownership of the buffer back to the CPU domain before touching the
255  * buffer by the CPU.
256  *
257  * Returns 0 on success or a negative error code on error. The following
258  * error codes are supported with the given meaning:
259  *
260  *   -EINVAL		An invalid argument, unaligned access or other error
261  *			in usage. Will not succeed if retried.
262  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
263  *			complete the mapping. Should succeed if retried later.
264  *   -EIO		Legacy error code with an unknown meaning. eg. this is
265  *			returned if a lower level call returned
266  *			DMA_MAPPING_ERROR.
267  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
268  *			in the sg_table. This will not succeed if retried.
269  */
270 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271 		    enum dma_data_direction dir, unsigned long attrs)
272 {
273 	int nents;
274 
275 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276 	if (nents < 0)
277 		return nents;
278 	sgt->nents = nents;
279 	return 0;
280 }
281 EXPORT_SYMBOL_GPL(dma_map_sgtable);
282 
283 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284 				      int nents, enum dma_data_direction dir,
285 				      unsigned long attrs)
286 {
287 	const struct dma_map_ops *ops = get_dma_ops(dev);
288 
289 	BUG_ON(!valid_dma_direction(dir));
290 	debug_dma_unmap_sg(dev, sg, nents, dir);
291 	if (dma_map_direct(dev, ops) ||
292 	    arch_dma_unmap_sg_direct(dev, sg, nents))
293 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294 	else if (ops->unmap_sg)
295 		ops->unmap_sg(dev, sg, nents, dir, attrs);
296 }
297 EXPORT_SYMBOL(dma_unmap_sg_attrs);
298 
299 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300 		size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302 	const struct dma_map_ops *ops = get_dma_ops(dev);
303 	dma_addr_t addr = DMA_MAPPING_ERROR;
304 
305 	BUG_ON(!valid_dma_direction(dir));
306 
307 	if (WARN_ON_ONCE(!dev->dma_mask))
308 		return DMA_MAPPING_ERROR;
309 
310 	if (dma_map_direct(dev, ops))
311 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312 	else if (ops->map_resource)
313 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314 
315 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316 	return addr;
317 }
318 EXPORT_SYMBOL(dma_map_resource);
319 
320 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321 		enum dma_data_direction dir, unsigned long attrs)
322 {
323 	const struct dma_map_ops *ops = get_dma_ops(dev);
324 
325 	BUG_ON(!valid_dma_direction(dir));
326 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327 		ops->unmap_resource(dev, addr, size, dir, attrs);
328 	debug_dma_unmap_resource(dev, addr, size, dir);
329 }
330 EXPORT_SYMBOL(dma_unmap_resource);
331 
332 #ifdef CONFIG_DMA_NEED_SYNC
333 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
334 		enum dma_data_direction dir)
335 {
336 	const struct dma_map_ops *ops = get_dma_ops(dev);
337 
338 	BUG_ON(!valid_dma_direction(dir));
339 	if (dma_map_direct(dev, ops))
340 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
341 	else if (ops->sync_single_for_cpu)
342 		ops->sync_single_for_cpu(dev, addr, size, dir);
343 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
344 }
345 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
346 
347 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
348 		size_t size, enum dma_data_direction dir)
349 {
350 	const struct dma_map_ops *ops = get_dma_ops(dev);
351 
352 	BUG_ON(!valid_dma_direction(dir));
353 	if (dma_map_direct(dev, ops))
354 		dma_direct_sync_single_for_device(dev, addr, size, dir);
355 	else if (ops->sync_single_for_device)
356 		ops->sync_single_for_device(dev, addr, size, dir);
357 	debug_dma_sync_single_for_device(dev, addr, size, dir);
358 }
359 EXPORT_SYMBOL(__dma_sync_single_for_device);
360 
361 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
362 		    int nelems, enum dma_data_direction dir)
363 {
364 	const struct dma_map_ops *ops = get_dma_ops(dev);
365 
366 	BUG_ON(!valid_dma_direction(dir));
367 	if (dma_map_direct(dev, ops))
368 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
369 	else if (ops->sync_sg_for_cpu)
370 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
371 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
372 }
373 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
374 
375 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
376 		       int nelems, enum dma_data_direction dir)
377 {
378 	const struct dma_map_ops *ops = get_dma_ops(dev);
379 
380 	BUG_ON(!valid_dma_direction(dir));
381 	if (dma_map_direct(dev, ops))
382 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
383 	else if (ops->sync_sg_for_device)
384 		ops->sync_sg_for_device(dev, sg, nelems, dir);
385 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
386 }
387 EXPORT_SYMBOL(__dma_sync_sg_for_device);
388 
389 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
390 {
391 	const struct dma_map_ops *ops = get_dma_ops(dev);
392 
393 	if (dma_map_direct(dev, ops))
394 		/*
395 		 * dma_skip_sync could've been reset on first SWIOTLB buffer
396 		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
397 		 * In this case, fall back to more granular check.
398 		 */
399 		return dma_direct_need_sync(dev, dma_addr);
400 	return true;
401 }
402 EXPORT_SYMBOL_GPL(__dma_need_sync);
403 
404 static void dma_setup_need_sync(struct device *dev)
405 {
406 	const struct dma_map_ops *ops = get_dma_ops(dev);
407 
408 	if (dma_map_direct(dev, ops) || (ops->flags & DMA_F_CAN_SKIP_SYNC))
409 		/*
410 		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
411 		 * mapping, if any. During the device initialization, it's
412 		 * enough to check only for the DMA coherence.
413 		 */
414 		dev->dma_skip_sync = dev_is_dma_coherent(dev);
415 	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
416 		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
417 		/*
418 		 * Synchronization is not possible when none of DMA sync ops
419 		 * is set.
420 		 */
421 		dev->dma_skip_sync = true;
422 	else
423 		dev->dma_skip_sync = false;
424 }
425 #else /* !CONFIG_DMA_NEED_SYNC */
426 static inline void dma_setup_need_sync(struct device *dev) { }
427 #endif /* !CONFIG_DMA_NEED_SYNC */
428 
429 /*
430  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
431  * that the intention is to allow exporting memory allocated via the
432  * coherent DMA APIs through the dma_buf API, which only accepts a
433  * scattertable.  This presents a couple of problems:
434  * 1. Not all memory allocated via the coherent DMA APIs is backed by
435  *    a struct page
436  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
437  *    as we will try to flush the memory through a different alias to that
438  *    actually being used (and the flushes are redundant.)
439  */
440 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
441 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
442 		unsigned long attrs)
443 {
444 	const struct dma_map_ops *ops = get_dma_ops(dev);
445 
446 	if (dma_alloc_direct(dev, ops))
447 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
448 				size, attrs);
449 	if (!ops->get_sgtable)
450 		return -ENXIO;
451 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
452 }
453 EXPORT_SYMBOL(dma_get_sgtable_attrs);
454 
455 #ifdef CONFIG_MMU
456 /*
457  * Return the page attributes used for mapping dma_alloc_* memory, either in
458  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
459  */
460 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
461 {
462 	if (dev_is_dma_coherent(dev))
463 		return prot;
464 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
465 	if (attrs & DMA_ATTR_WRITE_COMBINE)
466 		return pgprot_writecombine(prot);
467 #endif
468 	return pgprot_dmacoherent(prot);
469 }
470 #endif /* CONFIG_MMU */
471 
472 /**
473  * dma_can_mmap - check if a given device supports dma_mmap_*
474  * @dev: device to check
475  *
476  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
477  * map DMA allocations to userspace.
478  */
479 bool dma_can_mmap(struct device *dev)
480 {
481 	const struct dma_map_ops *ops = get_dma_ops(dev);
482 
483 	if (dma_alloc_direct(dev, ops))
484 		return dma_direct_can_mmap(dev);
485 	return ops->mmap != NULL;
486 }
487 EXPORT_SYMBOL_GPL(dma_can_mmap);
488 
489 /**
490  * dma_mmap_attrs - map a coherent DMA allocation into user space
491  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
492  * @vma: vm_area_struct describing requested user mapping
493  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
494  * @dma_addr: device-view address returned from dma_alloc_attrs
495  * @size: size of memory originally requested in dma_alloc_attrs
496  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
497  *
498  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
499  * space.  The coherent DMA buffer must not be freed by the driver until the
500  * user space mapping has been released.
501  */
502 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
503 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
504 		unsigned long attrs)
505 {
506 	const struct dma_map_ops *ops = get_dma_ops(dev);
507 
508 	if (dma_alloc_direct(dev, ops))
509 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
510 				attrs);
511 	if (!ops->mmap)
512 		return -ENXIO;
513 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
514 }
515 EXPORT_SYMBOL(dma_mmap_attrs);
516 
517 u64 dma_get_required_mask(struct device *dev)
518 {
519 	const struct dma_map_ops *ops = get_dma_ops(dev);
520 
521 	if (dma_alloc_direct(dev, ops))
522 		return dma_direct_get_required_mask(dev);
523 	if (ops->get_required_mask)
524 		return ops->get_required_mask(dev);
525 
526 	/*
527 	 * We require every DMA ops implementation to at least support a 32-bit
528 	 * DMA mask (and use bounce buffering if that isn't supported in
529 	 * hardware).  As the direct mapping code has its own routine to
530 	 * actually report an optimal mask we default to 32-bit here as that
531 	 * is the right thing for most IOMMUs, and at least not actively
532 	 * harmful in general.
533 	 */
534 	return DMA_BIT_MASK(32);
535 }
536 EXPORT_SYMBOL_GPL(dma_get_required_mask);
537 
538 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
539 		gfp_t flag, unsigned long attrs)
540 {
541 	const struct dma_map_ops *ops = get_dma_ops(dev);
542 	void *cpu_addr;
543 
544 	WARN_ON_ONCE(!dev->coherent_dma_mask);
545 
546 	/*
547 	 * DMA allocations can never be turned back into a page pointer, so
548 	 * requesting compound pages doesn't make sense (and can't even be
549 	 * supported at all by various backends).
550 	 */
551 	if (WARN_ON_ONCE(flag & __GFP_COMP))
552 		return NULL;
553 
554 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
555 		return cpu_addr;
556 
557 	/* let the implementation decide on the zone to allocate from: */
558 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
559 
560 	if (dma_alloc_direct(dev, ops))
561 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
562 	else if (ops->alloc)
563 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
564 	else
565 		return NULL;
566 
567 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
568 	return cpu_addr;
569 }
570 EXPORT_SYMBOL(dma_alloc_attrs);
571 
572 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
573 		dma_addr_t dma_handle, unsigned long attrs)
574 {
575 	const struct dma_map_ops *ops = get_dma_ops(dev);
576 
577 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
578 		return;
579 	/*
580 	 * On non-coherent platforms which implement DMA-coherent buffers via
581 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
582 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
583 	 * sleep on some machines, and b) an indication that the driver is
584 	 * probably misusing the coherent API anyway.
585 	 */
586 	WARN_ON(irqs_disabled());
587 
588 	if (!cpu_addr)
589 		return;
590 
591 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
592 	if (dma_alloc_direct(dev, ops))
593 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
594 	else if (ops->free)
595 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
596 }
597 EXPORT_SYMBOL(dma_free_attrs);
598 
599 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
600 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
601 {
602 	const struct dma_map_ops *ops = get_dma_ops(dev);
603 
604 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
605 		return NULL;
606 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
607 		return NULL;
608 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
609 		return NULL;
610 
611 	size = PAGE_ALIGN(size);
612 	if (dma_alloc_direct(dev, ops))
613 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
614 	if (!ops->alloc_pages_op)
615 		return NULL;
616 	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
617 }
618 
619 struct page *dma_alloc_pages(struct device *dev, size_t size,
620 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
621 {
622 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
623 
624 	if (page)
625 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
626 	return page;
627 }
628 EXPORT_SYMBOL_GPL(dma_alloc_pages);
629 
630 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
631 		dma_addr_t dma_handle, enum dma_data_direction dir)
632 {
633 	const struct dma_map_ops *ops = get_dma_ops(dev);
634 
635 	size = PAGE_ALIGN(size);
636 	if (dma_alloc_direct(dev, ops))
637 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
638 	else if (ops->free_pages)
639 		ops->free_pages(dev, size, page, dma_handle, dir);
640 }
641 
642 void dma_free_pages(struct device *dev, size_t size, struct page *page,
643 		dma_addr_t dma_handle, enum dma_data_direction dir)
644 {
645 	debug_dma_unmap_page(dev, dma_handle, size, dir);
646 	__dma_free_pages(dev, size, page, dma_handle, dir);
647 }
648 EXPORT_SYMBOL_GPL(dma_free_pages);
649 
650 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
651 		size_t size, struct page *page)
652 {
653 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
654 
655 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
656 		return -ENXIO;
657 	return remap_pfn_range(vma, vma->vm_start,
658 			       page_to_pfn(page) + vma->vm_pgoff,
659 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
660 }
661 EXPORT_SYMBOL_GPL(dma_mmap_pages);
662 
663 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
664 		enum dma_data_direction dir, gfp_t gfp)
665 {
666 	struct sg_table *sgt;
667 	struct page *page;
668 
669 	sgt = kmalloc(sizeof(*sgt), gfp);
670 	if (!sgt)
671 		return NULL;
672 	if (sg_alloc_table(sgt, 1, gfp))
673 		goto out_free_sgt;
674 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
675 	if (!page)
676 		goto out_free_table;
677 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
678 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
679 	return sgt;
680 out_free_table:
681 	sg_free_table(sgt);
682 out_free_sgt:
683 	kfree(sgt);
684 	return NULL;
685 }
686 
687 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
688 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
689 {
690 	const struct dma_map_ops *ops = get_dma_ops(dev);
691 	struct sg_table *sgt;
692 
693 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
694 		return NULL;
695 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
696 		return NULL;
697 
698 	if (ops && ops->alloc_noncontiguous)
699 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
700 	else
701 		sgt = alloc_single_sgt(dev, size, dir, gfp);
702 
703 	if (sgt) {
704 		sgt->nents = 1;
705 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
706 	}
707 	return sgt;
708 }
709 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
710 
711 static void free_single_sgt(struct device *dev, size_t size,
712 		struct sg_table *sgt, enum dma_data_direction dir)
713 {
714 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
715 			 dir);
716 	sg_free_table(sgt);
717 	kfree(sgt);
718 }
719 
720 void dma_free_noncontiguous(struct device *dev, size_t size,
721 		struct sg_table *sgt, enum dma_data_direction dir)
722 {
723 	const struct dma_map_ops *ops = get_dma_ops(dev);
724 
725 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
726 	if (ops && ops->free_noncontiguous)
727 		ops->free_noncontiguous(dev, size, sgt, dir);
728 	else
729 		free_single_sgt(dev, size, sgt, dir);
730 }
731 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
732 
733 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
734 		struct sg_table *sgt)
735 {
736 	const struct dma_map_ops *ops = get_dma_ops(dev);
737 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
738 
739 	if (ops && ops->alloc_noncontiguous)
740 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
741 	return page_address(sg_page(sgt->sgl));
742 }
743 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
744 
745 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
746 {
747 	const struct dma_map_ops *ops = get_dma_ops(dev);
748 
749 	if (ops && ops->alloc_noncontiguous)
750 		vunmap(vaddr);
751 }
752 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
753 
754 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
755 		size_t size, struct sg_table *sgt)
756 {
757 	const struct dma_map_ops *ops = get_dma_ops(dev);
758 
759 	if (ops && ops->alloc_noncontiguous) {
760 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
761 
762 		if (vma->vm_pgoff >= count ||
763 		    vma_pages(vma) > count - vma->vm_pgoff)
764 			return -ENXIO;
765 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
766 	}
767 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
768 }
769 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
770 
771 static int dma_supported(struct device *dev, u64 mask)
772 {
773 	const struct dma_map_ops *ops = get_dma_ops(dev);
774 
775 	/*
776 	 * ->dma_supported sets the bypass flag, so we must always call
777 	 * into the method here unless the device is truly direct mapped.
778 	 */
779 	if (!ops)
780 		return dma_direct_supported(dev, mask);
781 	if (!ops->dma_supported)
782 		return 1;
783 	return ops->dma_supported(dev, mask);
784 }
785 
786 bool dma_pci_p2pdma_supported(struct device *dev)
787 {
788 	const struct dma_map_ops *ops = get_dma_ops(dev);
789 
790 	/* if ops is not set, dma direct will be used which supports P2PDMA */
791 	if (!ops)
792 		return true;
793 
794 	/*
795 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
796 	 * not be used with dma mapping ops that do not have support even
797 	 * if the specific device is bypassing them.
798 	 */
799 
800 	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
801 }
802 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
803 
804 int dma_set_mask(struct device *dev, u64 mask)
805 {
806 	/*
807 	 * Truncate the mask to the actually supported dma_addr_t width to
808 	 * avoid generating unsupportable addresses.
809 	 */
810 	mask = (dma_addr_t)mask;
811 
812 	if (!dev->dma_mask || !dma_supported(dev, mask))
813 		return -EIO;
814 
815 	arch_dma_set_mask(dev, mask);
816 	*dev->dma_mask = mask;
817 	dma_setup_need_sync(dev);
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL(dma_set_mask);
822 
823 int dma_set_coherent_mask(struct device *dev, u64 mask)
824 {
825 	/*
826 	 * Truncate the mask to the actually supported dma_addr_t width to
827 	 * avoid generating unsupportable addresses.
828 	 */
829 	mask = (dma_addr_t)mask;
830 
831 	if (!dma_supported(dev, mask))
832 		return -EIO;
833 
834 	dev->coherent_dma_mask = mask;
835 	return 0;
836 }
837 EXPORT_SYMBOL(dma_set_coherent_mask);
838 
839 /**
840  * dma_addressing_limited - return if the device is addressing limited
841  * @dev:	device to check
842  *
843  * Return %true if the devices DMA mask is too small to address all memory in
844  * the system, else %false.  Lack of addressing bits is the prime reason for
845  * bounce buffering, but might not be the only one.
846  */
847 bool dma_addressing_limited(struct device *dev)
848 {
849 	const struct dma_map_ops *ops = get_dma_ops(dev);
850 
851 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
852 			 dma_get_required_mask(dev))
853 		return true;
854 
855 	if (unlikely(ops))
856 		return false;
857 	return !dma_direct_all_ram_mapped(dev);
858 }
859 EXPORT_SYMBOL_GPL(dma_addressing_limited);
860 
861 size_t dma_max_mapping_size(struct device *dev)
862 {
863 	const struct dma_map_ops *ops = get_dma_ops(dev);
864 	size_t size = SIZE_MAX;
865 
866 	if (dma_map_direct(dev, ops))
867 		size = dma_direct_max_mapping_size(dev);
868 	else if (ops && ops->max_mapping_size)
869 		size = ops->max_mapping_size(dev);
870 
871 	return size;
872 }
873 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
874 
875 size_t dma_opt_mapping_size(struct device *dev)
876 {
877 	const struct dma_map_ops *ops = get_dma_ops(dev);
878 	size_t size = SIZE_MAX;
879 
880 	if (ops && ops->opt_mapping_size)
881 		size = ops->opt_mapping_size();
882 
883 	return min(dma_max_mapping_size(dev), size);
884 }
885 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
886 
887 unsigned long dma_get_merge_boundary(struct device *dev)
888 {
889 	const struct dma_map_ops *ops = get_dma_ops(dev);
890 
891 	if (!ops || !ops->get_merge_boundary)
892 		return 0;	/* can't merge */
893 
894 	return ops->get_merge_boundary(dev);
895 }
896 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
897