xref: /linux/kernel/dma/direct.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/pfn.h>
14 #include <linux/vmalloc.h>
15 #include <linux/set_memory.h>
16 #include <linux/slab.h>
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 /*
79  * Decrypting memory is allowed to block, so if this device requires
80  * unencrypted memory it must come from atomic pools.
81  */
82 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
83 					      unsigned long attrs)
84 {
85 	if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
86 		return false;
87 	if (gfpflags_allow_blocking(gfp))
88 		return false;
89 	if (force_dma_unencrypted(dev))
90 		return true;
91 	if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
92 		return false;
93 	if (dma_alloc_need_uncached(dev, attrs))
94 		return true;
95 	return false;
96 }
97 
98 static inline bool dma_should_free_from_pool(struct device *dev,
99 					     unsigned long attrs)
100 {
101 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
102 		return true;
103 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
104 	    !force_dma_unencrypted(dev))
105 		return false;
106 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
107 		return true;
108 	return false;
109 }
110 
111 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
112 		gfp_t gfp)
113 {
114 	int node = dev_to_node(dev);
115 	struct page *page = NULL;
116 	u64 phys_limit;
117 
118 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
119 
120 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
121 					   &phys_limit);
122 	page = dma_alloc_contiguous(dev, size, gfp);
123 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
124 		dma_free_contiguous(dev, page, size);
125 		page = NULL;
126 	}
127 again:
128 	if (!page)
129 		page = alloc_pages_node(node, gfp, get_order(size));
130 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
131 		dma_free_contiguous(dev, page, size);
132 		page = NULL;
133 
134 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
135 		    phys_limit < DMA_BIT_MASK(64) &&
136 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
137 			gfp |= GFP_DMA32;
138 			goto again;
139 		}
140 
141 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
142 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
143 			goto again;
144 		}
145 	}
146 
147 	return page;
148 }
149 
150 void *dma_direct_alloc(struct device *dev, size_t size,
151 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
152 {
153 	struct page *page;
154 	void *ret;
155 	int err;
156 
157 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159 	    dma_alloc_need_uncached(dev, attrs))
160 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161 
162 	size = PAGE_ALIGN(size);
163 	if (attrs & DMA_ATTR_NO_WARN)
164 		gfp |= __GFP_NOWARN;
165 
166 	if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
167 		u64 phys_mask;
168 
169 		gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
170 				&phys_mask);
171 		page = dma_alloc_from_pool(dev, size, &ret, gfp,
172 				dma_coherent_ok);
173 		if (!page)
174 			return NULL;
175 		goto done;
176 	}
177 
178 	/* we always manually zero the memory once we are done */
179 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
180 	if (!page)
181 		return NULL;
182 
183 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
184 	    !force_dma_unencrypted(dev)) {
185 		/* remove any dirty cache lines on the kernel alias */
186 		if (!PageHighMem(page))
187 			arch_dma_prep_coherent(page, size);
188 		/* return the page pointer as the opaque cookie */
189 		ret = page;
190 		goto done;
191 	}
192 
193 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
194 	     dma_alloc_need_uncached(dev, attrs)) ||
195 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
196 		/* remove any dirty cache lines on the kernel alias */
197 		arch_dma_prep_coherent(page, size);
198 
199 		/* create a coherent mapping */
200 		ret = dma_common_contiguous_remap(page, size,
201 				dma_pgprot(dev, PAGE_KERNEL, attrs),
202 				__builtin_return_address(0));
203 		if (!ret)
204 			goto out_free_pages;
205 		if (force_dma_unencrypted(dev)) {
206 			err = set_memory_decrypted((unsigned long)ret,
207 						   1 << get_order(size));
208 			if (err)
209 				goto out_free_pages;
210 		}
211 		memset(ret, 0, size);
212 		goto done;
213 	}
214 
215 	if (PageHighMem(page)) {
216 		/*
217 		 * Depending on the cma= arguments and per-arch setup
218 		 * dma_alloc_contiguous could return highmem pages.
219 		 * Without remapping there is no way to return them here,
220 		 * so log an error and fail.
221 		 */
222 		dev_info(dev, "Rejecting highmem page from CMA.\n");
223 		goto out_free_pages;
224 	}
225 
226 	ret = page_address(page);
227 	if (force_dma_unencrypted(dev)) {
228 		err = set_memory_decrypted((unsigned long)ret,
229 					   1 << get_order(size));
230 		if (err)
231 			goto out_free_pages;
232 	}
233 
234 	memset(ret, 0, size);
235 
236 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
237 	    dma_alloc_need_uncached(dev, attrs)) {
238 		arch_dma_prep_coherent(page, size);
239 		ret = arch_dma_set_uncached(ret, size);
240 		if (IS_ERR(ret))
241 			goto out_encrypt_pages;
242 	}
243 done:
244 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
245 	return ret;
246 
247 out_encrypt_pages:
248 	if (force_dma_unencrypted(dev)) {
249 		err = set_memory_encrypted((unsigned long)page_address(page),
250 					   1 << get_order(size));
251 		/* If memory cannot be re-encrypted, it must be leaked */
252 		if (err)
253 			return NULL;
254 	}
255 out_free_pages:
256 	dma_free_contiguous(dev, page, size);
257 	return NULL;
258 }
259 
260 void dma_direct_free(struct device *dev, size_t size,
261 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
262 {
263 	unsigned int page_order = get_order(size);
264 
265 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
266 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
267 	    dma_alloc_need_uncached(dev, attrs)) {
268 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
269 		return;
270 	}
271 
272 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
273 	if (dma_should_free_from_pool(dev, attrs) &&
274 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
275 		return;
276 
277 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
278 	    !force_dma_unencrypted(dev)) {
279 		/* cpu_addr is a struct page cookie, not a kernel address */
280 		dma_free_contiguous(dev, cpu_addr, size);
281 		return;
282 	}
283 
284 	if (force_dma_unencrypted(dev))
285 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
286 
287 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
288 		vunmap(cpu_addr);
289 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
290 		arch_dma_clear_uncached(cpu_addr, size);
291 
292 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
293 }
294 
295 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
296     defined(CONFIG_SWIOTLB)
297 void dma_direct_sync_sg_for_device(struct device *dev,
298 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
299 {
300 	struct scatterlist *sg;
301 	int i;
302 
303 	for_each_sg(sgl, sg, nents, i) {
304 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
305 
306 		if (unlikely(is_swiotlb_buffer(paddr)))
307 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
308 					dir, SYNC_FOR_DEVICE);
309 
310 		if (!dev_is_dma_coherent(dev))
311 			arch_sync_dma_for_device(paddr, sg->length,
312 					dir);
313 	}
314 }
315 #endif
316 
317 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
318     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
319     defined(CONFIG_SWIOTLB)
320 void dma_direct_sync_sg_for_cpu(struct device *dev,
321 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
322 {
323 	struct scatterlist *sg;
324 	int i;
325 
326 	for_each_sg(sgl, sg, nents, i) {
327 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
328 
329 		if (!dev_is_dma_coherent(dev))
330 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
331 
332 		if (unlikely(is_swiotlb_buffer(paddr)))
333 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
334 					SYNC_FOR_CPU);
335 
336 		if (dir == DMA_FROM_DEVICE)
337 			arch_dma_mark_clean(paddr, sg->length);
338 	}
339 
340 	if (!dev_is_dma_coherent(dev))
341 		arch_sync_dma_for_cpu_all();
342 }
343 
344 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
345 		int nents, enum dma_data_direction dir, unsigned long attrs)
346 {
347 	struct scatterlist *sg;
348 	int i;
349 
350 	for_each_sg(sgl, sg, nents, i)
351 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
352 			     attrs);
353 }
354 #endif
355 
356 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
357 		enum dma_data_direction dir, unsigned long attrs)
358 {
359 	int i;
360 	struct scatterlist *sg;
361 
362 	for_each_sg(sgl, sg, nents, i) {
363 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
364 				sg->offset, sg->length, dir, attrs);
365 		if (sg->dma_address == DMA_MAPPING_ERROR)
366 			goto out_unmap;
367 		sg_dma_len(sg) = sg->length;
368 	}
369 
370 	return nents;
371 
372 out_unmap:
373 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
374 	return 0;
375 }
376 
377 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
378 		size_t size, enum dma_data_direction dir, unsigned long attrs)
379 {
380 	dma_addr_t dma_addr = paddr;
381 
382 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
383 		dev_err_once(dev,
384 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
385 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
386 		WARN_ON_ONCE(1);
387 		return DMA_MAPPING_ERROR;
388 	}
389 
390 	return dma_addr;
391 }
392 
393 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
394 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
395 		unsigned long attrs)
396 {
397 	struct page *page = dma_direct_to_page(dev, dma_addr);
398 	int ret;
399 
400 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
401 	if (!ret)
402 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
403 	return ret;
404 }
405 
406 bool dma_direct_can_mmap(struct device *dev)
407 {
408 	return dev_is_dma_coherent(dev) ||
409 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
410 }
411 
412 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
413 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
414 		unsigned long attrs)
415 {
416 	unsigned long user_count = vma_pages(vma);
417 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
418 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
419 	int ret = -ENXIO;
420 
421 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
422 
423 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
424 		return ret;
425 
426 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
427 		return -ENXIO;
428 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
429 			user_count << PAGE_SHIFT, vma->vm_page_prot);
430 }
431 
432 int dma_direct_supported(struct device *dev, u64 mask)
433 {
434 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
435 
436 	/*
437 	 * Because 32-bit DMA masks are so common we expect every architecture
438 	 * to be able to satisfy them - either by not supporting more physical
439 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
440 	 * architecture needs to use an IOMMU instead of the direct mapping.
441 	 */
442 	if (mask >= DMA_BIT_MASK(32))
443 		return 1;
444 
445 	/*
446 	 * This check needs to be against the actual bit mask value, so use
447 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
448 	 * part of the check.
449 	 */
450 	if (IS_ENABLED(CONFIG_ZONE_DMA))
451 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
452 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
453 }
454 
455 size_t dma_direct_max_mapping_size(struct device *dev)
456 {
457 	/* If SWIOTLB is active, use its maximum mapping size */
458 	if (is_swiotlb_active() &&
459 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
460 		return swiotlb_max_mapping_size(dev);
461 	return SIZE_MAX;
462 }
463 
464 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
465 {
466 	return !dev_is_dma_coherent(dev) ||
467 		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
468 }
469 
470 /**
471  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
472  * @dev:	device pointer; needed to "own" the alloced memory.
473  * @cpu_start:  beginning of memory region covered by this offset.
474  * @dma_start:  beginning of DMA/PCI region covered by this offset.
475  * @size:	size of the region.
476  *
477  * This is for the simple case of a uniform offset which cannot
478  * be discovered by "dma-ranges".
479  *
480  * It returns -ENOMEM if out of memory, -EINVAL if a map
481  * already exists, 0 otherwise.
482  *
483  * Note: any call to this from a driver is a bug.  The mapping needs
484  * to be described by the device tree or other firmware interfaces.
485  */
486 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
487 			 dma_addr_t dma_start, u64 size)
488 {
489 	struct bus_dma_region *map;
490 	u64 offset = (u64)cpu_start - (u64)dma_start;
491 
492 	if (dev->dma_range_map) {
493 		dev_err(dev, "attempt to add DMA range to existing map\n");
494 		return -EINVAL;
495 	}
496 
497 	if (!offset)
498 		return 0;
499 
500 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
501 	if (!map)
502 		return -ENOMEM;
503 	map[0].cpu_start = cpu_start;
504 	map[0].dma_start = dma_start;
505 	map[0].offset = offset;
506 	map[0].size = size;
507 	dev->dma_range_map = map;
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
511