1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-direct.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-contiguous.h> 13 #include <linux/pfn.h> 14 #include <linux/vmalloc.h> 15 #include <linux/set_memory.h> 16 #include <linux/slab.h> 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, 48 u64 *phys_limit) 49 { 50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); 51 52 /* 53 * Optimistically try the zone that the physical address mask falls 54 * into first. If that returns memory that isn't actually addressable 55 * we will fallback to the next lower zone and try again. 56 * 57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 58 * zones. 59 */ 60 *phys_limit = dma_to_phys(dev, dma_limit); 61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 62 return GFP_DMA; 63 if (*phys_limit <= DMA_BIT_MASK(32)) 64 return GFP_DMA32; 65 return 0; 66 } 67 68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 69 { 70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 71 72 if (dma_addr == DMA_MAPPING_ERROR) 73 return false; 74 return dma_addr + size - 1 <= 75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 76 } 77 78 /* 79 * Decrypting memory is allowed to block, so if this device requires 80 * unencrypted memory it must come from atomic pools. 81 */ 82 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp, 83 unsigned long attrs) 84 { 85 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 86 return false; 87 if (gfpflags_allow_blocking(gfp)) 88 return false; 89 if (force_dma_unencrypted(dev)) 90 return true; 91 if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) 92 return false; 93 if (dma_alloc_need_uncached(dev, attrs)) 94 return true; 95 return false; 96 } 97 98 static inline bool dma_should_free_from_pool(struct device *dev, 99 unsigned long attrs) 100 { 101 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 102 return true; 103 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 104 !force_dma_unencrypted(dev)) 105 return false; 106 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) 107 return true; 108 return false; 109 } 110 111 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 112 gfp_t gfp) 113 { 114 int node = dev_to_node(dev); 115 struct page *page = NULL; 116 u64 phys_limit; 117 118 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 119 120 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 121 &phys_limit); 122 page = dma_alloc_contiguous(dev, size, gfp); 123 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 124 dma_free_contiguous(dev, page, size); 125 page = NULL; 126 } 127 again: 128 if (!page) 129 page = alloc_pages_node(node, gfp, get_order(size)); 130 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 131 dma_free_contiguous(dev, page, size); 132 page = NULL; 133 134 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 135 phys_limit < DMA_BIT_MASK(64) && 136 !(gfp & (GFP_DMA32 | GFP_DMA))) { 137 gfp |= GFP_DMA32; 138 goto again; 139 } 140 141 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 142 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 143 goto again; 144 } 145 } 146 147 return page; 148 } 149 150 void *dma_direct_alloc(struct device *dev, size_t size, 151 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 152 { 153 struct page *page; 154 void *ret; 155 int err; 156 157 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 158 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 159 dma_alloc_need_uncached(dev, attrs)) 160 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); 161 162 size = PAGE_ALIGN(size); 163 if (attrs & DMA_ATTR_NO_WARN) 164 gfp |= __GFP_NOWARN; 165 166 if (dma_should_alloc_from_pool(dev, gfp, attrs)) { 167 u64 phys_mask; 168 169 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 170 &phys_mask); 171 page = dma_alloc_from_pool(dev, size, &ret, gfp, 172 dma_coherent_ok); 173 if (!page) 174 return NULL; 175 goto done; 176 } 177 178 /* we always manually zero the memory once we are done */ 179 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 180 if (!page) 181 return NULL; 182 183 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 184 !force_dma_unencrypted(dev)) { 185 /* remove any dirty cache lines on the kernel alias */ 186 if (!PageHighMem(page)) 187 arch_dma_prep_coherent(page, size); 188 /* return the page pointer as the opaque cookie */ 189 ret = page; 190 goto done; 191 } 192 193 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 194 dma_alloc_need_uncached(dev, attrs)) || 195 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { 196 /* remove any dirty cache lines on the kernel alias */ 197 arch_dma_prep_coherent(page, size); 198 199 /* create a coherent mapping */ 200 ret = dma_common_contiguous_remap(page, size, 201 dma_pgprot(dev, PAGE_KERNEL, attrs), 202 __builtin_return_address(0)); 203 if (!ret) 204 goto out_free_pages; 205 if (force_dma_unencrypted(dev)) { 206 err = set_memory_decrypted((unsigned long)ret, 207 1 << get_order(size)); 208 if (err) 209 goto out_free_pages; 210 } 211 memset(ret, 0, size); 212 goto done; 213 } 214 215 if (PageHighMem(page)) { 216 /* 217 * Depending on the cma= arguments and per-arch setup 218 * dma_alloc_contiguous could return highmem pages. 219 * Without remapping there is no way to return them here, 220 * so log an error and fail. 221 */ 222 dev_info(dev, "Rejecting highmem page from CMA.\n"); 223 goto out_free_pages; 224 } 225 226 ret = page_address(page); 227 if (force_dma_unencrypted(dev)) { 228 err = set_memory_decrypted((unsigned long)ret, 229 1 << get_order(size)); 230 if (err) 231 goto out_free_pages; 232 } 233 234 memset(ret, 0, size); 235 236 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 237 dma_alloc_need_uncached(dev, attrs)) { 238 arch_dma_prep_coherent(page, size); 239 ret = arch_dma_set_uncached(ret, size); 240 if (IS_ERR(ret)) 241 goto out_encrypt_pages; 242 } 243 done: 244 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 245 return ret; 246 247 out_encrypt_pages: 248 if (force_dma_unencrypted(dev)) { 249 err = set_memory_encrypted((unsigned long)page_address(page), 250 1 << get_order(size)); 251 /* If memory cannot be re-encrypted, it must be leaked */ 252 if (err) 253 return NULL; 254 } 255 out_free_pages: 256 dma_free_contiguous(dev, page, size); 257 return NULL; 258 } 259 260 void dma_direct_free(struct device *dev, size_t size, 261 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 262 { 263 unsigned int page_order = get_order(size); 264 265 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 266 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 267 dma_alloc_need_uncached(dev, attrs)) { 268 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 269 return; 270 } 271 272 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 273 if (dma_should_free_from_pool(dev, attrs) && 274 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 275 return; 276 277 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 278 !force_dma_unencrypted(dev)) { 279 /* cpu_addr is a struct page cookie, not a kernel address */ 280 dma_free_contiguous(dev, cpu_addr, size); 281 return; 282 } 283 284 if (force_dma_unencrypted(dev)) 285 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); 286 287 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) 288 vunmap(cpu_addr); 289 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 290 arch_dma_clear_uncached(cpu_addr, size); 291 292 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); 293 } 294 295 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 296 defined(CONFIG_SWIOTLB) 297 void dma_direct_sync_sg_for_device(struct device *dev, 298 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 299 { 300 struct scatterlist *sg; 301 int i; 302 303 for_each_sg(sgl, sg, nents, i) { 304 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 305 306 if (unlikely(is_swiotlb_buffer(paddr))) 307 swiotlb_tbl_sync_single(dev, paddr, sg->length, 308 dir, SYNC_FOR_DEVICE); 309 310 if (!dev_is_dma_coherent(dev)) 311 arch_sync_dma_for_device(paddr, sg->length, 312 dir); 313 } 314 } 315 #endif 316 317 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 318 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 319 defined(CONFIG_SWIOTLB) 320 void dma_direct_sync_sg_for_cpu(struct device *dev, 321 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 322 { 323 struct scatterlist *sg; 324 int i; 325 326 for_each_sg(sgl, sg, nents, i) { 327 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 328 329 if (!dev_is_dma_coherent(dev)) 330 arch_sync_dma_for_cpu(paddr, sg->length, dir); 331 332 if (unlikely(is_swiotlb_buffer(paddr))) 333 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, 334 SYNC_FOR_CPU); 335 336 if (dir == DMA_FROM_DEVICE) 337 arch_dma_mark_clean(paddr, sg->length); 338 } 339 340 if (!dev_is_dma_coherent(dev)) 341 arch_sync_dma_for_cpu_all(); 342 } 343 344 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 345 int nents, enum dma_data_direction dir, unsigned long attrs) 346 { 347 struct scatterlist *sg; 348 int i; 349 350 for_each_sg(sgl, sg, nents, i) 351 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, 352 attrs); 353 } 354 #endif 355 356 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 357 enum dma_data_direction dir, unsigned long attrs) 358 { 359 int i; 360 struct scatterlist *sg; 361 362 for_each_sg(sgl, sg, nents, i) { 363 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 364 sg->offset, sg->length, dir, attrs); 365 if (sg->dma_address == DMA_MAPPING_ERROR) 366 goto out_unmap; 367 sg_dma_len(sg) = sg->length; 368 } 369 370 return nents; 371 372 out_unmap: 373 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 374 return 0; 375 } 376 377 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 378 size_t size, enum dma_data_direction dir, unsigned long attrs) 379 { 380 dma_addr_t dma_addr = paddr; 381 382 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 383 dev_err_once(dev, 384 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 385 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 386 WARN_ON_ONCE(1); 387 return DMA_MAPPING_ERROR; 388 } 389 390 return dma_addr; 391 } 392 393 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 394 void *cpu_addr, dma_addr_t dma_addr, size_t size, 395 unsigned long attrs) 396 { 397 struct page *page = dma_direct_to_page(dev, dma_addr); 398 int ret; 399 400 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 401 if (!ret) 402 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 403 return ret; 404 } 405 406 bool dma_direct_can_mmap(struct device *dev) 407 { 408 return dev_is_dma_coherent(dev) || 409 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 410 } 411 412 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 413 void *cpu_addr, dma_addr_t dma_addr, size_t size, 414 unsigned long attrs) 415 { 416 unsigned long user_count = vma_pages(vma); 417 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 418 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 419 int ret = -ENXIO; 420 421 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 422 423 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 424 return ret; 425 426 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 427 return -ENXIO; 428 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 429 user_count << PAGE_SHIFT, vma->vm_page_prot); 430 } 431 432 int dma_direct_supported(struct device *dev, u64 mask) 433 { 434 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 435 436 /* 437 * Because 32-bit DMA masks are so common we expect every architecture 438 * to be able to satisfy them - either by not supporting more physical 439 * memory, or by providing a ZONE_DMA32. If neither is the case, the 440 * architecture needs to use an IOMMU instead of the direct mapping. 441 */ 442 if (mask >= DMA_BIT_MASK(32)) 443 return 1; 444 445 /* 446 * This check needs to be against the actual bit mask value, so use 447 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 448 * part of the check. 449 */ 450 if (IS_ENABLED(CONFIG_ZONE_DMA)) 451 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 452 return mask >= phys_to_dma_unencrypted(dev, min_mask); 453 } 454 455 size_t dma_direct_max_mapping_size(struct device *dev) 456 { 457 /* If SWIOTLB is active, use its maximum mapping size */ 458 if (is_swiotlb_active() && 459 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) 460 return swiotlb_max_mapping_size(dev); 461 return SIZE_MAX; 462 } 463 464 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 465 { 466 return !dev_is_dma_coherent(dev) || 467 is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); 468 } 469 470 /** 471 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 472 * @dev: device pointer; needed to "own" the alloced memory. 473 * @cpu_start: beginning of memory region covered by this offset. 474 * @dma_start: beginning of DMA/PCI region covered by this offset. 475 * @size: size of the region. 476 * 477 * This is for the simple case of a uniform offset which cannot 478 * be discovered by "dma-ranges". 479 * 480 * It returns -ENOMEM if out of memory, -EINVAL if a map 481 * already exists, 0 otherwise. 482 * 483 * Note: any call to this from a driver is a bug. The mapping needs 484 * to be described by the device tree or other firmware interfaces. 485 */ 486 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 487 dma_addr_t dma_start, u64 size) 488 { 489 struct bus_dma_region *map; 490 u64 offset = (u64)cpu_start - (u64)dma_start; 491 492 if (dev->dma_range_map) { 493 dev_err(dev, "attempt to add DMA range to existing map\n"); 494 return -EINVAL; 495 } 496 497 if (!offset) 498 return 0; 499 500 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 501 if (!map) 502 return -ENOMEM; 503 map[0].cpu_start = cpu_start; 504 map[0].dma_start = dma_start; 505 map[0].offset = offset; 506 map[0].size = size; 507 dev->dma_range_map = map; 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(dma_direct_set_offset); 511