1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, 48 u64 *phys_limit) 49 { 50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); 51 52 /* 53 * Optimistically try the zone that the physical address mask falls 54 * into first. If that returns memory that isn't actually addressable 55 * we will fallback to the next lower zone and try again. 56 * 57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 58 * zones. 59 */ 60 *phys_limit = dma_to_phys(dev, dma_limit); 61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 62 return GFP_DMA; 63 if (*phys_limit <= DMA_BIT_MASK(32)) 64 return GFP_DMA32; 65 return 0; 66 } 67 68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 69 { 70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 71 72 if (dma_addr == DMA_MAPPING_ERROR) 73 return false; 74 return dma_addr + size - 1 <= 75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 76 } 77 78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 79 gfp_t gfp) 80 { 81 int node = dev_to_node(dev); 82 struct page *page = NULL; 83 u64 phys_limit; 84 85 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 86 87 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 88 &phys_limit); 89 page = dma_alloc_contiguous(dev, size, gfp); 90 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 91 dma_free_contiguous(dev, page, size); 92 page = NULL; 93 } 94 again: 95 if (!page) 96 page = alloc_pages_node(node, gfp, get_order(size)); 97 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 98 dma_free_contiguous(dev, page, size); 99 page = NULL; 100 101 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 102 phys_limit < DMA_BIT_MASK(64) && 103 !(gfp & (GFP_DMA32 | GFP_DMA))) { 104 gfp |= GFP_DMA32; 105 goto again; 106 } 107 108 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 109 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 110 goto again; 111 } 112 } 113 114 return page; 115 } 116 117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 118 dma_addr_t *dma_handle, gfp_t gfp) 119 { 120 struct page *page; 121 u64 phys_mask; 122 void *ret; 123 124 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 125 &phys_mask); 126 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 127 if (!page) 128 return NULL; 129 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 130 return ret; 131 } 132 133 void *dma_direct_alloc(struct device *dev, size_t size, 134 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 135 { 136 struct page *page; 137 void *ret; 138 int err; 139 140 size = PAGE_ALIGN(size); 141 if (attrs & DMA_ATTR_NO_WARN) 142 gfp |= __GFP_NOWARN; 143 144 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 145 !force_dma_unencrypted(dev)) { 146 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 147 if (!page) 148 return NULL; 149 /* remove any dirty cache lines on the kernel alias */ 150 if (!PageHighMem(page)) 151 arch_dma_prep_coherent(page, size); 152 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 153 /* return the page pointer as the opaque cookie */ 154 return page; 155 } 156 157 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 158 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 159 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 160 !dev_is_dma_coherent(dev)) 161 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); 162 163 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 164 !dev_is_dma_coherent(dev)) 165 return dma_alloc_from_global_coherent(dev, size, dma_handle); 166 167 /* 168 * Remapping or decrypting memory may block. If either is required and 169 * we can't block, allocate the memory from the atomic pools. 170 */ 171 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 172 !gfpflags_allow_blocking(gfp) && 173 (force_dma_unencrypted(dev) || 174 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) 175 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 176 177 /* we always manually zero the memory once we are done */ 178 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 179 if (!page) 180 return NULL; 181 182 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 183 !dev_is_dma_coherent(dev)) || 184 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { 185 /* remove any dirty cache lines on the kernel alias */ 186 arch_dma_prep_coherent(page, size); 187 188 /* create a coherent mapping */ 189 ret = dma_common_contiguous_remap(page, size, 190 dma_pgprot(dev, PAGE_KERNEL, attrs), 191 __builtin_return_address(0)); 192 if (!ret) 193 goto out_free_pages; 194 if (force_dma_unencrypted(dev)) { 195 err = set_memory_decrypted((unsigned long)ret, 196 1 << get_order(size)); 197 if (err) 198 goto out_free_pages; 199 } 200 memset(ret, 0, size); 201 goto done; 202 } 203 204 if (PageHighMem(page)) { 205 /* 206 * Depending on the cma= arguments and per-arch setup 207 * dma_alloc_contiguous could return highmem pages. 208 * Without remapping there is no way to return them here, 209 * so log an error and fail. 210 */ 211 dev_info(dev, "Rejecting highmem page from CMA.\n"); 212 goto out_free_pages; 213 } 214 215 ret = page_address(page); 216 if (force_dma_unencrypted(dev)) { 217 err = set_memory_decrypted((unsigned long)ret, 218 1 << get_order(size)); 219 if (err) 220 goto out_free_pages; 221 } 222 223 memset(ret, 0, size); 224 225 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 226 !dev_is_dma_coherent(dev)) { 227 arch_dma_prep_coherent(page, size); 228 ret = arch_dma_set_uncached(ret, size); 229 if (IS_ERR(ret)) 230 goto out_encrypt_pages; 231 } 232 done: 233 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 234 return ret; 235 236 out_encrypt_pages: 237 if (force_dma_unencrypted(dev)) { 238 err = set_memory_encrypted((unsigned long)page_address(page), 239 1 << get_order(size)); 240 /* If memory cannot be re-encrypted, it must be leaked */ 241 if (err) 242 return NULL; 243 } 244 out_free_pages: 245 dma_free_contiguous(dev, page, size); 246 return NULL; 247 } 248 249 void dma_direct_free(struct device *dev, size_t size, 250 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 251 { 252 unsigned int page_order = get_order(size); 253 254 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 255 !force_dma_unencrypted(dev)) { 256 /* cpu_addr is a struct page cookie, not a kernel address */ 257 dma_free_contiguous(dev, cpu_addr, size); 258 return; 259 } 260 261 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 262 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 263 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 264 !dev_is_dma_coherent(dev)) { 265 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 266 return; 267 } 268 269 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 270 !dev_is_dma_coherent(dev)) { 271 if (!dma_release_from_global_coherent(page_order, cpu_addr)) 272 WARN_ON_ONCE(1); 273 return; 274 } 275 276 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 277 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 278 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 279 return; 280 281 if (force_dma_unencrypted(dev)) 282 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); 283 284 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) 285 vunmap(cpu_addr); 286 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 287 arch_dma_clear_uncached(cpu_addr, size); 288 289 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); 290 } 291 292 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 293 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 294 { 295 struct page *page; 296 void *ret; 297 298 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 299 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) 300 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 301 302 page = __dma_direct_alloc_pages(dev, size, gfp); 303 if (!page) 304 return NULL; 305 if (PageHighMem(page)) { 306 /* 307 * Depending on the cma= arguments and per-arch setup 308 * dma_alloc_contiguous could return highmem pages. 309 * Without remapping there is no way to return them here, 310 * so log an error and fail. 311 */ 312 dev_info(dev, "Rejecting highmem page from CMA.\n"); 313 goto out_free_pages; 314 } 315 316 ret = page_address(page); 317 if (force_dma_unencrypted(dev)) { 318 if (set_memory_decrypted((unsigned long)ret, 319 1 << get_order(size))) 320 goto out_free_pages; 321 } 322 memset(ret, 0, size); 323 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 324 return page; 325 out_free_pages: 326 dma_free_contiguous(dev, page, size); 327 return NULL; 328 } 329 330 void dma_direct_free_pages(struct device *dev, size_t size, 331 struct page *page, dma_addr_t dma_addr, 332 enum dma_data_direction dir) 333 { 334 unsigned int page_order = get_order(size); 335 void *vaddr = page_address(page); 336 337 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 338 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 339 dma_free_from_pool(dev, vaddr, size)) 340 return; 341 342 if (force_dma_unencrypted(dev)) 343 set_memory_encrypted((unsigned long)vaddr, 1 << page_order); 344 345 dma_free_contiguous(dev, page, size); 346 } 347 348 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 349 defined(CONFIG_SWIOTLB) 350 void dma_direct_sync_sg_for_device(struct device *dev, 351 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 352 { 353 struct scatterlist *sg; 354 int i; 355 356 for_each_sg(sgl, sg, nents, i) { 357 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 358 359 if (unlikely(is_swiotlb_buffer(paddr))) 360 swiotlb_sync_single_for_device(dev, paddr, sg->length, 361 dir); 362 363 if (!dev_is_dma_coherent(dev)) 364 arch_sync_dma_for_device(paddr, sg->length, 365 dir); 366 } 367 } 368 #endif 369 370 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 371 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 372 defined(CONFIG_SWIOTLB) 373 void dma_direct_sync_sg_for_cpu(struct device *dev, 374 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 375 { 376 struct scatterlist *sg; 377 int i; 378 379 for_each_sg(sgl, sg, nents, i) { 380 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 381 382 if (!dev_is_dma_coherent(dev)) 383 arch_sync_dma_for_cpu(paddr, sg->length, dir); 384 385 if (unlikely(is_swiotlb_buffer(paddr))) 386 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, 387 dir); 388 389 if (dir == DMA_FROM_DEVICE) 390 arch_dma_mark_clean(paddr, sg->length); 391 } 392 393 if (!dev_is_dma_coherent(dev)) 394 arch_sync_dma_for_cpu_all(); 395 } 396 397 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 398 int nents, enum dma_data_direction dir, unsigned long attrs) 399 { 400 struct scatterlist *sg; 401 int i; 402 403 for_each_sg(sgl, sg, nents, i) 404 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, 405 attrs); 406 } 407 #endif 408 409 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 410 enum dma_data_direction dir, unsigned long attrs) 411 { 412 int i; 413 struct scatterlist *sg; 414 415 for_each_sg(sgl, sg, nents, i) { 416 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 417 sg->offset, sg->length, dir, attrs); 418 if (sg->dma_address == DMA_MAPPING_ERROR) 419 goto out_unmap; 420 sg_dma_len(sg) = sg->length; 421 } 422 423 return nents; 424 425 out_unmap: 426 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 427 return -EIO; 428 } 429 430 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 431 size_t size, enum dma_data_direction dir, unsigned long attrs) 432 { 433 dma_addr_t dma_addr = paddr; 434 435 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 436 dev_err_once(dev, 437 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 438 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 439 WARN_ON_ONCE(1); 440 return DMA_MAPPING_ERROR; 441 } 442 443 return dma_addr; 444 } 445 446 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 447 void *cpu_addr, dma_addr_t dma_addr, size_t size, 448 unsigned long attrs) 449 { 450 struct page *page = dma_direct_to_page(dev, dma_addr); 451 int ret; 452 453 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 454 if (!ret) 455 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 456 return ret; 457 } 458 459 bool dma_direct_can_mmap(struct device *dev) 460 { 461 return dev_is_dma_coherent(dev) || 462 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 463 } 464 465 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 466 void *cpu_addr, dma_addr_t dma_addr, size_t size, 467 unsigned long attrs) 468 { 469 unsigned long user_count = vma_pages(vma); 470 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 471 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 472 int ret = -ENXIO; 473 474 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 475 476 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 477 return ret; 478 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) 479 return ret; 480 481 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 482 return -ENXIO; 483 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 484 user_count << PAGE_SHIFT, vma->vm_page_prot); 485 } 486 487 int dma_direct_supported(struct device *dev, u64 mask) 488 { 489 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 490 491 /* 492 * Because 32-bit DMA masks are so common we expect every architecture 493 * to be able to satisfy them - either by not supporting more physical 494 * memory, or by providing a ZONE_DMA32. If neither is the case, the 495 * architecture needs to use an IOMMU instead of the direct mapping. 496 */ 497 if (mask >= DMA_BIT_MASK(32)) 498 return 1; 499 500 /* 501 * This check needs to be against the actual bit mask value, so use 502 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 503 * part of the check. 504 */ 505 if (IS_ENABLED(CONFIG_ZONE_DMA)) 506 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 507 return mask >= phys_to_dma_unencrypted(dev, min_mask); 508 } 509 510 size_t dma_direct_max_mapping_size(struct device *dev) 511 { 512 /* If SWIOTLB is active, use its maximum mapping size */ 513 if (is_swiotlb_active() && 514 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) 515 return swiotlb_max_mapping_size(dev); 516 return SIZE_MAX; 517 } 518 519 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 520 { 521 return !dev_is_dma_coherent(dev) || 522 is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); 523 } 524 525 /** 526 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 527 * @dev: device pointer; needed to "own" the alloced memory. 528 * @cpu_start: beginning of memory region covered by this offset. 529 * @dma_start: beginning of DMA/PCI region covered by this offset. 530 * @size: size of the region. 531 * 532 * This is for the simple case of a uniform offset which cannot 533 * be discovered by "dma-ranges". 534 * 535 * It returns -ENOMEM if out of memory, -EINVAL if a map 536 * already exists, 0 otherwise. 537 * 538 * Note: any call to this from a driver is a bug. The mapping needs 539 * to be described by the device tree or other firmware interfaces. 540 */ 541 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 542 dma_addr_t dma_start, u64 size) 543 { 544 struct bus_dma_region *map; 545 u64 offset = (u64)cpu_start - (u64)dma_start; 546 547 if (dev->dma_range_map) { 548 dev_err(dev, "attempt to add DMA range to existing map\n"); 549 return -EINVAL; 550 } 551 552 if (!offset) 553 return 0; 554 555 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 556 if (!map) 557 return -ENOMEM; 558 map[0].cpu_start = cpu_start; 559 map[0].dma_start = dma_start; 560 map[0].offset = offset; 561 map[0].size = size; 562 dev->dma_range_map = map; 563 return 0; 564 } 565