xref: /linux/kernel/dma/direct.c (revision a9c9a6f741cdaa2fa9ba24a790db8d07295761e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79 		gfp_t gfp)
80 {
81 	int node = dev_to_node(dev);
82 	struct page *page = NULL;
83 	u64 phys_limit;
84 
85 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
86 
87 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
88 					   &phys_limit);
89 	page = dma_alloc_contiguous(dev, size, gfp);
90 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91 		dma_free_contiguous(dev, page, size);
92 		page = NULL;
93 	}
94 again:
95 	if (!page)
96 		page = alloc_pages_node(node, gfp, get_order(size));
97 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
98 		dma_free_contiguous(dev, page, size);
99 		page = NULL;
100 
101 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102 		    phys_limit < DMA_BIT_MASK(64) &&
103 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
104 			gfp |= GFP_DMA32;
105 			goto again;
106 		}
107 
108 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110 			goto again;
111 		}
112 	}
113 
114 	return page;
115 }
116 
117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118 		dma_addr_t *dma_handle, gfp_t gfp)
119 {
120 	struct page *page;
121 	u64 phys_mask;
122 	void *ret;
123 
124 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125 					   &phys_mask);
126 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127 	if (!page)
128 		return NULL;
129 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130 	return ret;
131 }
132 
133 void *dma_direct_alloc(struct device *dev, size_t size,
134 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136 	struct page *page;
137 	void *ret;
138 	int err;
139 
140 	size = PAGE_ALIGN(size);
141 	if (attrs & DMA_ATTR_NO_WARN)
142 		gfp |= __GFP_NOWARN;
143 
144 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145 	    !force_dma_unencrypted(dev)) {
146 		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147 		if (!page)
148 			return NULL;
149 		/* remove any dirty cache lines on the kernel alias */
150 		if (!PageHighMem(page))
151 			arch_dma_prep_coherent(page, size);
152 		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153 		/* return the page pointer as the opaque cookie */
154 		return page;
155 	}
156 
157 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
160 	    !dev_is_dma_coherent(dev))
161 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
162 
163 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
164 	    !dev_is_dma_coherent(dev))
165 		return dma_alloc_from_global_coherent(dev, size, dma_handle);
166 
167 	/*
168 	 * Remapping or decrypting memory may block. If either is required and
169 	 * we can't block, allocate the memory from the atomic pools.
170 	 */
171 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
172 	    !gfpflags_allow_blocking(gfp) &&
173 	    (force_dma_unencrypted(dev) ||
174 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
175 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
176 
177 	/* we always manually zero the memory once we are done */
178 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
179 	if (!page)
180 		return NULL;
181 
182 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
183 	     !dev_is_dma_coherent(dev)) ||
184 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
185 		/* remove any dirty cache lines on the kernel alias */
186 		arch_dma_prep_coherent(page, size);
187 
188 		/* create a coherent mapping */
189 		ret = dma_common_contiguous_remap(page, size,
190 				dma_pgprot(dev, PAGE_KERNEL, attrs),
191 				__builtin_return_address(0));
192 		if (!ret)
193 			goto out_free_pages;
194 		if (force_dma_unencrypted(dev)) {
195 			err = set_memory_decrypted((unsigned long)ret,
196 						   1 << get_order(size));
197 			if (err)
198 				goto out_free_pages;
199 		}
200 		memset(ret, 0, size);
201 		goto done;
202 	}
203 
204 	if (PageHighMem(page)) {
205 		/*
206 		 * Depending on the cma= arguments and per-arch setup
207 		 * dma_alloc_contiguous could return highmem pages.
208 		 * Without remapping there is no way to return them here,
209 		 * so log an error and fail.
210 		 */
211 		dev_info(dev, "Rejecting highmem page from CMA.\n");
212 		goto out_free_pages;
213 	}
214 
215 	ret = page_address(page);
216 	if (force_dma_unencrypted(dev)) {
217 		err = set_memory_decrypted((unsigned long)ret,
218 					   1 << get_order(size));
219 		if (err)
220 			goto out_free_pages;
221 	}
222 
223 	memset(ret, 0, size);
224 
225 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
226 	    !dev_is_dma_coherent(dev)) {
227 		arch_dma_prep_coherent(page, size);
228 		ret = arch_dma_set_uncached(ret, size);
229 		if (IS_ERR(ret))
230 			goto out_encrypt_pages;
231 	}
232 done:
233 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
234 	return ret;
235 
236 out_encrypt_pages:
237 	if (force_dma_unencrypted(dev)) {
238 		err = set_memory_encrypted((unsigned long)page_address(page),
239 					   1 << get_order(size));
240 		/* If memory cannot be re-encrypted, it must be leaked */
241 		if (err)
242 			return NULL;
243 	}
244 out_free_pages:
245 	dma_free_contiguous(dev, page, size);
246 	return NULL;
247 }
248 
249 void dma_direct_free(struct device *dev, size_t size,
250 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
251 {
252 	unsigned int page_order = get_order(size);
253 
254 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
255 	    !force_dma_unencrypted(dev)) {
256 		/* cpu_addr is a struct page cookie, not a kernel address */
257 		dma_free_contiguous(dev, cpu_addr, size);
258 		return;
259 	}
260 
261 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
262 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
263 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
264 	    !dev_is_dma_coherent(dev)) {
265 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
266 		return;
267 	}
268 
269 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
270 	    !dev_is_dma_coherent(dev)) {
271 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
272 			WARN_ON_ONCE(1);
273 		return;
274 	}
275 
276 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
277 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
278 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
279 		return;
280 
281 	if (force_dma_unencrypted(dev))
282 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
283 
284 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
285 		vunmap(cpu_addr);
286 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
287 		arch_dma_clear_uncached(cpu_addr, size);
288 
289 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
290 }
291 
292 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
293 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
294 {
295 	struct page *page;
296 	void *ret;
297 
298 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
299 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
300 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
301 
302 	page = __dma_direct_alloc_pages(dev, size, gfp);
303 	if (!page)
304 		return NULL;
305 	if (PageHighMem(page)) {
306 		/*
307 		 * Depending on the cma= arguments and per-arch setup
308 		 * dma_alloc_contiguous could return highmem pages.
309 		 * Without remapping there is no way to return them here,
310 		 * so log an error and fail.
311 		 */
312 		dev_info(dev, "Rejecting highmem page from CMA.\n");
313 		goto out_free_pages;
314 	}
315 
316 	ret = page_address(page);
317 	if (force_dma_unencrypted(dev)) {
318 		if (set_memory_decrypted((unsigned long)ret,
319 				1 << get_order(size)))
320 			goto out_free_pages;
321 	}
322 	memset(ret, 0, size);
323 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
324 	return page;
325 out_free_pages:
326 	dma_free_contiguous(dev, page, size);
327 	return NULL;
328 }
329 
330 void dma_direct_free_pages(struct device *dev, size_t size,
331 		struct page *page, dma_addr_t dma_addr,
332 		enum dma_data_direction dir)
333 {
334 	unsigned int page_order = get_order(size);
335 	void *vaddr = page_address(page);
336 
337 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
338 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
339 	    dma_free_from_pool(dev, vaddr, size))
340 		return;
341 
342 	if (force_dma_unencrypted(dev))
343 		set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
344 
345 	dma_free_contiguous(dev, page, size);
346 }
347 
348 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
349     defined(CONFIG_SWIOTLB)
350 void dma_direct_sync_sg_for_device(struct device *dev,
351 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
352 {
353 	struct scatterlist *sg;
354 	int i;
355 
356 	for_each_sg(sgl, sg, nents, i) {
357 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
358 
359 		if (unlikely(is_swiotlb_buffer(paddr)))
360 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
361 						       dir);
362 
363 		if (!dev_is_dma_coherent(dev))
364 			arch_sync_dma_for_device(paddr, sg->length,
365 					dir);
366 	}
367 }
368 #endif
369 
370 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
371     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
372     defined(CONFIG_SWIOTLB)
373 void dma_direct_sync_sg_for_cpu(struct device *dev,
374 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
375 {
376 	struct scatterlist *sg;
377 	int i;
378 
379 	for_each_sg(sgl, sg, nents, i) {
380 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
381 
382 		if (!dev_is_dma_coherent(dev))
383 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
384 
385 		if (unlikely(is_swiotlb_buffer(paddr)))
386 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
387 						    dir);
388 
389 		if (dir == DMA_FROM_DEVICE)
390 			arch_dma_mark_clean(paddr, sg->length);
391 	}
392 
393 	if (!dev_is_dma_coherent(dev))
394 		arch_sync_dma_for_cpu_all();
395 }
396 
397 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
398 		int nents, enum dma_data_direction dir, unsigned long attrs)
399 {
400 	struct scatterlist *sg;
401 	int i;
402 
403 	for_each_sg(sgl, sg, nents, i)
404 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
405 			     attrs);
406 }
407 #endif
408 
409 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
410 		enum dma_data_direction dir, unsigned long attrs)
411 {
412 	int i;
413 	struct scatterlist *sg;
414 
415 	for_each_sg(sgl, sg, nents, i) {
416 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
417 				sg->offset, sg->length, dir, attrs);
418 		if (sg->dma_address == DMA_MAPPING_ERROR)
419 			goto out_unmap;
420 		sg_dma_len(sg) = sg->length;
421 	}
422 
423 	return nents;
424 
425 out_unmap:
426 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
427 	return -EIO;
428 }
429 
430 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
431 		size_t size, enum dma_data_direction dir, unsigned long attrs)
432 {
433 	dma_addr_t dma_addr = paddr;
434 
435 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
436 		dev_err_once(dev,
437 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
438 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
439 		WARN_ON_ONCE(1);
440 		return DMA_MAPPING_ERROR;
441 	}
442 
443 	return dma_addr;
444 }
445 
446 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
447 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
448 		unsigned long attrs)
449 {
450 	struct page *page = dma_direct_to_page(dev, dma_addr);
451 	int ret;
452 
453 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
454 	if (!ret)
455 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
456 	return ret;
457 }
458 
459 bool dma_direct_can_mmap(struct device *dev)
460 {
461 	return dev_is_dma_coherent(dev) ||
462 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
463 }
464 
465 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
466 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
467 		unsigned long attrs)
468 {
469 	unsigned long user_count = vma_pages(vma);
470 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
471 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
472 	int ret = -ENXIO;
473 
474 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
475 
476 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
477 		return ret;
478 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
479 		return ret;
480 
481 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
482 		return -ENXIO;
483 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
484 			user_count << PAGE_SHIFT, vma->vm_page_prot);
485 }
486 
487 int dma_direct_supported(struct device *dev, u64 mask)
488 {
489 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
490 
491 	/*
492 	 * Because 32-bit DMA masks are so common we expect every architecture
493 	 * to be able to satisfy them - either by not supporting more physical
494 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
495 	 * architecture needs to use an IOMMU instead of the direct mapping.
496 	 */
497 	if (mask >= DMA_BIT_MASK(32))
498 		return 1;
499 
500 	/*
501 	 * This check needs to be against the actual bit mask value, so use
502 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
503 	 * part of the check.
504 	 */
505 	if (IS_ENABLED(CONFIG_ZONE_DMA))
506 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
507 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
508 }
509 
510 size_t dma_direct_max_mapping_size(struct device *dev)
511 {
512 	/* If SWIOTLB is active, use its maximum mapping size */
513 	if (is_swiotlb_active() &&
514 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
515 		return swiotlb_max_mapping_size(dev);
516 	return SIZE_MAX;
517 }
518 
519 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
520 {
521 	return !dev_is_dma_coherent(dev) ||
522 		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
523 }
524 
525 /**
526  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
527  * @dev:	device pointer; needed to "own" the alloced memory.
528  * @cpu_start:  beginning of memory region covered by this offset.
529  * @dma_start:  beginning of DMA/PCI region covered by this offset.
530  * @size:	size of the region.
531  *
532  * This is for the simple case of a uniform offset which cannot
533  * be discovered by "dma-ranges".
534  *
535  * It returns -ENOMEM if out of memory, -EINVAL if a map
536  * already exists, 0 otherwise.
537  *
538  * Note: any call to this from a driver is a bug.  The mapping needs
539  * to be described by the device tree or other firmware interfaces.
540  */
541 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
542 			 dma_addr_t dma_start, u64 size)
543 {
544 	struct bus_dma_region *map;
545 	u64 offset = (u64)cpu_start - (u64)dma_start;
546 
547 	if (dev->dma_range_map) {
548 		dev_err(dev, "attempt to add DMA range to existing map\n");
549 		return -EINVAL;
550 	}
551 
552 	if (!offset)
553 		return 0;
554 
555 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
556 	if (!map)
557 		return -ENOMEM;
558 	map[0].cpu_start = cpu_start;
559 	map[0].dma_start = dma_start;
560 	map[0].offset = offset;
561 	map[0].size = size;
562 	dev->dma_range_map = map;
563 	return 0;
564 }
565