1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, 48 u64 *phys_limit) 49 { 50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); 51 52 /* 53 * Optimistically try the zone that the physical address mask falls 54 * into first. If that returns memory that isn't actually addressable 55 * we will fallback to the next lower zone and try again. 56 * 57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 58 * zones. 59 */ 60 *phys_limit = dma_to_phys(dev, dma_limit); 61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 62 return GFP_DMA; 63 if (*phys_limit <= DMA_BIT_MASK(32)) 64 return GFP_DMA32; 65 return 0; 66 } 67 68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 69 { 70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 71 72 if (dma_addr == DMA_MAPPING_ERROR) 73 return false; 74 return dma_addr + size - 1 <= 75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 76 } 77 78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) 79 { 80 if (!force_dma_unencrypted(dev)) 81 return 0; 82 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); 83 } 84 85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) 86 { 87 int ret; 88 89 if (!force_dma_unencrypted(dev)) 90 return 0; 91 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); 92 if (ret) 93 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); 94 return ret; 95 } 96 97 static void __dma_direct_free_pages(struct device *dev, struct page *page, 98 size_t size) 99 { 100 if (swiotlb_free(dev, page, size)) 101 return; 102 dma_free_contiguous(dev, page, size); 103 } 104 105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) 106 { 107 struct page *page = swiotlb_alloc(dev, size); 108 109 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 110 swiotlb_free(dev, page, size); 111 return NULL; 112 } 113 114 return page; 115 } 116 117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 118 gfp_t gfp, bool allow_highmem) 119 { 120 int node = dev_to_node(dev); 121 struct page *page = NULL; 122 u64 phys_limit; 123 124 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 125 126 if (is_swiotlb_for_alloc(dev)) 127 return dma_direct_alloc_swiotlb(dev, size); 128 129 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 130 &phys_limit); 131 page = dma_alloc_contiguous(dev, size, gfp); 132 if (page) { 133 if (!dma_coherent_ok(dev, page_to_phys(page), size) || 134 (!allow_highmem && PageHighMem(page))) { 135 dma_free_contiguous(dev, page, size); 136 page = NULL; 137 } 138 } 139 again: 140 if (!page) 141 page = alloc_pages_node(node, gfp, get_order(size)); 142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 143 dma_free_contiguous(dev, page, size); 144 page = NULL; 145 146 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 147 phys_limit < DMA_BIT_MASK(64) && 148 !(gfp & (GFP_DMA32 | GFP_DMA))) { 149 gfp |= GFP_DMA32; 150 goto again; 151 } 152 153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 155 goto again; 156 } 157 } 158 159 return page; 160 } 161 162 /* 163 * Check if a potentially blocking operations needs to dip into the atomic 164 * pools for the given device/gfp. 165 */ 166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) 167 { 168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); 169 } 170 171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 172 dma_addr_t *dma_handle, gfp_t gfp) 173 { 174 struct page *page; 175 u64 phys_mask; 176 void *ret; 177 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) 179 return NULL; 180 181 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 182 &phys_mask); 183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 184 if (!page) 185 return NULL; 186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 187 return ret; 188 } 189 190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, 191 dma_addr_t *dma_handle, gfp_t gfp) 192 { 193 struct page *page; 194 195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 196 if (!page) 197 return NULL; 198 199 /* remove any dirty cache lines on the kernel alias */ 200 if (!PageHighMem(page)) 201 arch_dma_prep_coherent(page, size); 202 203 /* return the page pointer as the opaque cookie */ 204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 205 return page; 206 } 207 208 void *dma_direct_alloc(struct device *dev, size_t size, 209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 210 { 211 bool remap = false, set_uncached = false; 212 struct page *page; 213 void *ret; 214 215 size = PAGE_ALIGN(size); 216 if (attrs & DMA_ATTR_NO_WARN) 217 gfp |= __GFP_NOWARN; 218 219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) 221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); 222 223 if (!dev_is_dma_coherent(dev)) { 224 /* 225 * Fallback to the arch handler if it exists. This should 226 * eventually go away. 227 */ 228 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 229 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 230 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 231 !is_swiotlb_for_alloc(dev)) 232 return arch_dma_alloc(dev, size, dma_handle, gfp, 233 attrs); 234 235 /* 236 * If there is a global pool, always allocate from it for 237 * non-coherent devices. 238 */ 239 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) 240 return dma_alloc_from_global_coherent(dev, size, 241 dma_handle); 242 243 /* 244 * Otherwise remap if the architecture is asking for it. But 245 * given that remapping memory is a blocking operation we'll 246 * instead have to dip into the atomic pools. 247 */ 248 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); 249 if (remap) { 250 if (dma_direct_use_pool(dev, gfp)) 251 return dma_direct_alloc_from_pool(dev, size, 252 dma_handle, gfp); 253 } else { 254 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) 255 return NULL; 256 set_uncached = true; 257 } 258 } 259 260 /* 261 * Decrypting memory may block, so allocate the memory from the atomic 262 * pools if we can't block. 263 */ 264 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 265 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 266 267 /* we always manually zero the memory once we are done */ 268 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 269 if (!page) 270 return NULL; 271 272 /* 273 * dma_alloc_contiguous can return highmem pages depending on a 274 * combination the cma= arguments and per-arch setup. These need to be 275 * remapped to return a kernel virtual address. 276 */ 277 if (PageHighMem(page)) { 278 remap = true; 279 set_uncached = false; 280 } 281 282 if (remap) { 283 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 284 285 if (force_dma_unencrypted(dev)) 286 prot = pgprot_decrypted(prot); 287 288 /* remove any dirty cache lines on the kernel alias */ 289 arch_dma_prep_coherent(page, size); 290 291 /* create a coherent mapping */ 292 ret = dma_common_contiguous_remap(page, size, prot, 293 __builtin_return_address(0)); 294 if (!ret) 295 goto out_free_pages; 296 } else { 297 ret = page_address(page); 298 if (dma_set_decrypted(dev, ret, size)) 299 goto out_free_pages; 300 } 301 302 memset(ret, 0, size); 303 304 if (set_uncached) { 305 arch_dma_prep_coherent(page, size); 306 ret = arch_dma_set_uncached(ret, size); 307 if (IS_ERR(ret)) 308 goto out_encrypt_pages; 309 } 310 311 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 312 return ret; 313 314 out_encrypt_pages: 315 if (dma_set_encrypted(dev, page_address(page), size)) 316 return NULL; 317 out_free_pages: 318 __dma_direct_free_pages(dev, page, size); 319 return NULL; 320 } 321 322 void dma_direct_free(struct device *dev, size_t size, 323 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 324 { 325 unsigned int page_order = get_order(size); 326 327 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 328 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { 329 /* cpu_addr is a struct page cookie, not a kernel address */ 330 dma_free_contiguous(dev, cpu_addr, size); 331 return; 332 } 333 334 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 335 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 336 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 337 !dev_is_dma_coherent(dev) && 338 !is_swiotlb_for_alloc(dev)) { 339 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 340 return; 341 } 342 343 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 344 !dev_is_dma_coherent(dev)) { 345 if (!dma_release_from_global_coherent(page_order, cpu_addr)) 346 WARN_ON_ONCE(1); 347 return; 348 } 349 350 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 351 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 352 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 353 return; 354 355 if (is_vmalloc_addr(cpu_addr)) { 356 vunmap(cpu_addr); 357 } else { 358 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 359 arch_dma_clear_uncached(cpu_addr, size); 360 if (dma_set_encrypted(dev, cpu_addr, size)) 361 return; 362 } 363 364 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); 365 } 366 367 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 368 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 369 { 370 struct page *page; 371 void *ret; 372 373 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 374 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 375 376 page = __dma_direct_alloc_pages(dev, size, gfp, false); 377 if (!page) 378 return NULL; 379 380 ret = page_address(page); 381 if (dma_set_decrypted(dev, ret, size)) 382 goto out_free_pages; 383 memset(ret, 0, size); 384 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 385 return page; 386 out_free_pages: 387 __dma_direct_free_pages(dev, page, size); 388 return NULL; 389 } 390 391 void dma_direct_free_pages(struct device *dev, size_t size, 392 struct page *page, dma_addr_t dma_addr, 393 enum dma_data_direction dir) 394 { 395 void *vaddr = page_address(page); 396 397 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 398 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 399 dma_free_from_pool(dev, vaddr, size)) 400 return; 401 402 if (dma_set_encrypted(dev, vaddr, size)) 403 return; 404 __dma_direct_free_pages(dev, page, size); 405 } 406 407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 408 defined(CONFIG_SWIOTLB) 409 void dma_direct_sync_sg_for_device(struct device *dev, 410 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 411 { 412 struct scatterlist *sg; 413 int i; 414 415 for_each_sg(sgl, sg, nents, i) { 416 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 417 418 if (unlikely(is_swiotlb_buffer(dev, paddr))) 419 swiotlb_sync_single_for_device(dev, paddr, sg->length, 420 dir); 421 422 if (!dev_is_dma_coherent(dev)) 423 arch_sync_dma_for_device(paddr, sg->length, 424 dir); 425 } 426 } 427 #endif 428 429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 430 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 431 defined(CONFIG_SWIOTLB) 432 void dma_direct_sync_sg_for_cpu(struct device *dev, 433 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 434 { 435 struct scatterlist *sg; 436 int i; 437 438 for_each_sg(sgl, sg, nents, i) { 439 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 440 441 if (!dev_is_dma_coherent(dev)) 442 arch_sync_dma_for_cpu(paddr, sg->length, dir); 443 444 if (unlikely(is_swiotlb_buffer(dev, paddr))) 445 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, 446 dir); 447 448 if (dir == DMA_FROM_DEVICE) 449 arch_dma_mark_clean(paddr, sg->length); 450 } 451 452 if (!dev_is_dma_coherent(dev)) 453 arch_sync_dma_for_cpu_all(); 454 } 455 456 /* 457 * Unmaps segments, except for ones marked as pci_p2pdma which do not 458 * require any further action as they contain a bus address. 459 */ 460 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 461 int nents, enum dma_data_direction dir, unsigned long attrs) 462 { 463 struct scatterlist *sg; 464 int i; 465 466 for_each_sg(sgl, sg, nents, i) { 467 if (sg_is_dma_bus_address(sg)) 468 sg_dma_unmark_bus_address(sg); 469 else 470 dma_direct_unmap_page(dev, sg->dma_address, 471 sg_dma_len(sg), dir, attrs); 472 } 473 } 474 #endif 475 476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 477 enum dma_data_direction dir, unsigned long attrs) 478 { 479 struct pci_p2pdma_map_state p2pdma_state = {}; 480 enum pci_p2pdma_map_type map; 481 struct scatterlist *sg; 482 int i, ret; 483 484 for_each_sg(sgl, sg, nents, i) { 485 if (is_pci_p2pdma_page(sg_page(sg))) { 486 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); 487 switch (map) { 488 case PCI_P2PDMA_MAP_BUS_ADDR: 489 continue; 490 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 491 /* 492 * Any P2P mapping that traverses the PCI 493 * host bridge must be mapped with CPU physical 494 * address and not PCI bus addresses. This is 495 * done with dma_direct_map_page() below. 496 */ 497 break; 498 default: 499 ret = -EREMOTEIO; 500 goto out_unmap; 501 } 502 } 503 504 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 505 sg->offset, sg->length, dir, attrs); 506 if (sg->dma_address == DMA_MAPPING_ERROR) { 507 ret = -EIO; 508 goto out_unmap; 509 } 510 sg_dma_len(sg) = sg->length; 511 } 512 513 return nents; 514 515 out_unmap: 516 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 517 return ret; 518 } 519 520 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 521 size_t size, enum dma_data_direction dir, unsigned long attrs) 522 { 523 dma_addr_t dma_addr = paddr; 524 525 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 526 dev_err_once(dev, 527 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 528 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 529 WARN_ON_ONCE(1); 530 return DMA_MAPPING_ERROR; 531 } 532 533 return dma_addr; 534 } 535 536 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 537 void *cpu_addr, dma_addr_t dma_addr, size_t size, 538 unsigned long attrs) 539 { 540 struct page *page = dma_direct_to_page(dev, dma_addr); 541 int ret; 542 543 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 544 if (!ret) 545 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 546 return ret; 547 } 548 549 bool dma_direct_can_mmap(struct device *dev) 550 { 551 return dev_is_dma_coherent(dev) || 552 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 553 } 554 555 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 556 void *cpu_addr, dma_addr_t dma_addr, size_t size, 557 unsigned long attrs) 558 { 559 unsigned long user_count = vma_pages(vma); 560 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 561 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 562 int ret = -ENXIO; 563 564 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 565 if (force_dma_unencrypted(dev)) 566 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 567 568 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 569 return ret; 570 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) 571 return ret; 572 573 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 574 return -ENXIO; 575 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 576 user_count << PAGE_SHIFT, vma->vm_page_prot); 577 } 578 579 int dma_direct_supported(struct device *dev, u64 mask) 580 { 581 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 582 583 /* 584 * Because 32-bit DMA masks are so common we expect every architecture 585 * to be able to satisfy them - either by not supporting more physical 586 * memory, or by providing a ZONE_DMA32. If neither is the case, the 587 * architecture needs to use an IOMMU instead of the direct mapping. 588 */ 589 if (mask >= DMA_BIT_MASK(32)) 590 return 1; 591 592 /* 593 * This check needs to be against the actual bit mask value, so use 594 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 595 * part of the check. 596 */ 597 if (IS_ENABLED(CONFIG_ZONE_DMA)) 598 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 599 return mask >= phys_to_dma_unencrypted(dev, min_mask); 600 } 601 602 size_t dma_direct_max_mapping_size(struct device *dev) 603 { 604 /* If SWIOTLB is active, use its maximum mapping size */ 605 if (is_swiotlb_active(dev) && 606 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) 607 return swiotlb_max_mapping_size(dev); 608 return SIZE_MAX; 609 } 610 611 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 612 { 613 return !dev_is_dma_coherent(dev) || 614 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); 615 } 616 617 /** 618 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 619 * @dev: device pointer; needed to "own" the alloced memory. 620 * @cpu_start: beginning of memory region covered by this offset. 621 * @dma_start: beginning of DMA/PCI region covered by this offset. 622 * @size: size of the region. 623 * 624 * This is for the simple case of a uniform offset which cannot 625 * be discovered by "dma-ranges". 626 * 627 * It returns -ENOMEM if out of memory, -EINVAL if a map 628 * already exists, 0 otherwise. 629 * 630 * Note: any call to this from a driver is a bug. The mapping needs 631 * to be described by the device tree or other firmware interfaces. 632 */ 633 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 634 dma_addr_t dma_start, u64 size) 635 { 636 struct bus_dma_region *map; 637 u64 offset = (u64)cpu_start - (u64)dma_start; 638 639 if (dev->dma_range_map) { 640 dev_err(dev, "attempt to add DMA range to existing map\n"); 641 return -EINVAL; 642 } 643 644 if (!offset) 645 return 0; 646 647 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 648 if (!map) 649 return -ENOMEM; 650 map[0].cpu_start = cpu_start; 651 map[0].dma_start = dma_start; 652 map[0].offset = offset; 653 map[0].size = size; 654 dev->dma_range_map = map; 655 return 0; 656 } 657