xref: /linux/kernel/dma/direct.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25 
26 /*
27  * For AMD SEV all DMA must be to unencrypted addresses.
28  */
29 static inline bool force_dma_unencrypted(void)
30 {
31 	return sev_active();
32 }
33 
34 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
35 {
36 	if (!dev->dma_mask) {
37 		dev_err_once(dev, "DMA map on device without dma_mask\n");
38 	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39 		dev_err_once(dev,
40 			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
42 	}
43 	WARN_ON_ONCE(1);
44 }
45 
46 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47 		phys_addr_t phys)
48 {
49 	if (force_dma_unencrypted())
50 		return __phys_to_dma(dev, phys);
51 	return phys_to_dma(dev, phys);
52 }
53 
54 u64 dma_direct_get_required_mask(struct device *dev)
55 {
56 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57 
58 	if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59 		max_dma = dev->bus_dma_mask;
60 
61 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62 }
63 
64 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65 		u64 *phys_mask)
66 {
67 	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68 		dma_mask = dev->bus_dma_mask;
69 
70 	if (force_dma_unencrypted())
71 		*phys_mask = __dma_to_phys(dev, dma_mask);
72 	else
73 		*phys_mask = dma_to_phys(dev, dma_mask);
74 
75 	/*
76 	 * Optimistically try the zone that the physical address mask falls
77 	 * into first.  If that returns memory that isn't actually addressable
78 	 * we will fallback to the next lower zone and try again.
79 	 *
80 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81 	 * zones.
82 	 */
83 	if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84 		return GFP_DMA;
85 	if (*phys_mask <= DMA_BIT_MASK(32))
86 		return GFP_DMA32;
87 	return 0;
88 }
89 
90 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91 {
92 	return phys_to_dma_direct(dev, phys) + size - 1 <=
93 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
94 }
95 
96 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
97 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
98 {
99 	struct page *page = NULL;
100 	u64 phys_mask;
101 
102 	if (attrs & DMA_ATTR_NO_WARN)
103 		gfp |= __GFP_NOWARN;
104 
105 	/* we always manually zero the memory once we are done: */
106 	gfp &= ~__GFP_ZERO;
107 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
108 			&phys_mask);
109 again:
110 	page = dma_alloc_contiguous(dev, size, gfp);
111 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 		dma_free_contiguous(dev, page, size);
113 		page = NULL;
114 
115 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
116 		    phys_mask < DMA_BIT_MASK(64) &&
117 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
118 			gfp |= GFP_DMA32;
119 			goto again;
120 		}
121 
122 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
123 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
124 			goto again;
125 		}
126 	}
127 
128 	return page;
129 }
130 
131 void *dma_direct_alloc_pages(struct device *dev, size_t size,
132 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
133 {
134 	struct page *page;
135 	void *ret;
136 
137 	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
138 	if (!page)
139 		return NULL;
140 
141 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
142 		/* remove any dirty cache lines on the kernel alias */
143 		if (!PageHighMem(page))
144 			arch_dma_prep_coherent(page, size);
145 		/* return the page pointer as the opaque cookie */
146 		return page;
147 	}
148 
149 	if (PageHighMem(page)) {
150 		/*
151 		 * Depending on the cma= arguments and per-arch setup
152 		 * dma_alloc_contiguous could return highmem pages.
153 		 * Without remapping there is no way to return them here,
154 		 * so log an error and fail.
155 		 */
156 		dev_info(dev, "Rejecting highmem page from CMA.\n");
157 		__dma_direct_free_pages(dev, size, page);
158 		return NULL;
159 	}
160 
161 	ret = page_address(page);
162 	if (force_dma_unencrypted()) {
163 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
164 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
165 	} else {
166 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
167 	}
168 	memset(ret, 0, size);
169 
170 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
171 	    dma_alloc_need_uncached(dev, attrs)) {
172 		arch_dma_prep_coherent(page, size);
173 		ret = uncached_kernel_address(ret);
174 	}
175 
176 	return ret;
177 }
178 
179 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
180 {
181 	dma_free_contiguous(dev, page, size);
182 }
183 
184 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
185 		dma_addr_t dma_addr, unsigned long attrs)
186 {
187 	unsigned int page_order = get_order(size);
188 
189 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
190 		/* cpu_addr is a struct page cookie, not a kernel address */
191 		__dma_direct_free_pages(dev, size, cpu_addr);
192 		return;
193 	}
194 
195 	if (force_dma_unencrypted())
196 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197 
198 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199 	    dma_alloc_need_uncached(dev, attrs))
200 		cpu_addr = cached_kernel_address(cpu_addr);
201 	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202 }
203 
204 void *dma_direct_alloc(struct device *dev, size_t size,
205 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206 {
207 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208 	    dma_alloc_need_uncached(dev, attrs))
209 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211 }
212 
213 void dma_direct_free(struct device *dev, size_t size,
214 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215 {
216 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217 	    dma_alloc_need_uncached(dev, attrs))
218 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219 	else
220 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221 }
222 
223 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224     defined(CONFIG_SWIOTLB)
225 void dma_direct_sync_single_for_device(struct device *dev,
226 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
227 {
228 	phys_addr_t paddr = dma_to_phys(dev, addr);
229 
230 	if (unlikely(is_swiotlb_buffer(paddr)))
231 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232 
233 	if (!dev_is_dma_coherent(dev))
234 		arch_sync_dma_for_device(dev, paddr, size, dir);
235 }
236 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237 
238 void dma_direct_sync_sg_for_device(struct device *dev,
239 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240 {
241 	struct scatterlist *sg;
242 	int i;
243 
244 	for_each_sg(sgl, sg, nents, i) {
245 		if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
246 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
247 					dir, SYNC_FOR_DEVICE);
248 
249 		if (!dev_is_dma_coherent(dev))
250 			arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
251 					dir);
252 	}
253 }
254 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
255 #endif
256 
257 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
258     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
259     defined(CONFIG_SWIOTLB)
260 void dma_direct_sync_single_for_cpu(struct device *dev,
261 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
262 {
263 	phys_addr_t paddr = dma_to_phys(dev, addr);
264 
265 	if (!dev_is_dma_coherent(dev)) {
266 		arch_sync_dma_for_cpu(dev, paddr, size, dir);
267 		arch_sync_dma_for_cpu_all(dev);
268 	}
269 
270 	if (unlikely(is_swiotlb_buffer(paddr)))
271 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
272 }
273 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
274 
275 void dma_direct_sync_sg_for_cpu(struct device *dev,
276 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
277 {
278 	struct scatterlist *sg;
279 	int i;
280 
281 	for_each_sg(sgl, sg, nents, i) {
282 		if (!dev_is_dma_coherent(dev))
283 			arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
284 
285 		if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
286 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
287 					SYNC_FOR_CPU);
288 	}
289 
290 	if (!dev_is_dma_coherent(dev))
291 		arch_sync_dma_for_cpu_all(dev);
292 }
293 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
294 
295 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
296 		size_t size, enum dma_data_direction dir, unsigned long attrs)
297 {
298 	phys_addr_t phys = dma_to_phys(dev, addr);
299 
300 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
301 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
302 
303 	if (unlikely(is_swiotlb_buffer(phys)))
304 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
305 }
306 EXPORT_SYMBOL(dma_direct_unmap_page);
307 
308 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
309 		int nents, enum dma_data_direction dir, unsigned long attrs)
310 {
311 	struct scatterlist *sg;
312 	int i;
313 
314 	for_each_sg(sgl, sg, nents, i)
315 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
316 			     attrs);
317 }
318 EXPORT_SYMBOL(dma_direct_unmap_sg);
319 #endif
320 
321 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
322 		size_t size)
323 {
324 	return swiotlb_force != SWIOTLB_FORCE &&
325 		dma_capable(dev, dma_addr, size);
326 }
327 
328 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
329 		unsigned long offset, size_t size, enum dma_data_direction dir,
330 		unsigned long attrs)
331 {
332 	phys_addr_t phys = page_to_phys(page) + offset;
333 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
334 
335 	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
336 	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
337 		report_addr(dev, dma_addr, size);
338 		return DMA_MAPPING_ERROR;
339 	}
340 
341 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
342 		arch_sync_dma_for_device(dev, phys, size, dir);
343 	return dma_addr;
344 }
345 EXPORT_SYMBOL(dma_direct_map_page);
346 
347 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
348 		enum dma_data_direction dir, unsigned long attrs)
349 {
350 	int i;
351 	struct scatterlist *sg;
352 
353 	for_each_sg(sgl, sg, nents, i) {
354 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
355 				sg->offset, sg->length, dir, attrs);
356 		if (sg->dma_address == DMA_MAPPING_ERROR)
357 			goto out_unmap;
358 		sg_dma_len(sg) = sg->length;
359 	}
360 
361 	return nents;
362 
363 out_unmap:
364 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
365 	return 0;
366 }
367 EXPORT_SYMBOL(dma_direct_map_sg);
368 
369 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
370 		size_t size, enum dma_data_direction dir, unsigned long attrs)
371 {
372 	dma_addr_t dma_addr = paddr;
373 
374 	if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
375 		report_addr(dev, dma_addr, size);
376 		return DMA_MAPPING_ERROR;
377 	}
378 
379 	return dma_addr;
380 }
381 EXPORT_SYMBOL(dma_direct_map_resource);
382 
383 /*
384  * Because 32-bit DMA masks are so common we expect every architecture to be
385  * able to satisfy them - either by not supporting more physical memory, or by
386  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
387  * use an IOMMU instead of the direct mapping.
388  */
389 int dma_direct_supported(struct device *dev, u64 mask)
390 {
391 	u64 min_mask;
392 
393 	if (IS_ENABLED(CONFIG_ZONE_DMA))
394 		min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
395 	else
396 		min_mask = DMA_BIT_MASK(32);
397 
398 	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
399 
400 	/*
401 	 * This check needs to be against the actual bit mask value, so
402 	 * use __phys_to_dma() here so that the SME encryption mask isn't
403 	 * part of the check.
404 	 */
405 	return mask >= __phys_to_dma(dev, min_mask);
406 }
407 
408 size_t dma_direct_max_mapping_size(struct device *dev)
409 {
410 	size_t size = SIZE_MAX;
411 
412 	/* If SWIOTLB is active, use its maximum mapping size */
413 	if (is_swiotlb_active())
414 		size = swiotlb_max_mapping_size(dev);
415 
416 	return size;
417 }
418