1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, 48 u64 *phys_limit) 49 { 50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); 51 52 /* 53 * Optimistically try the zone that the physical address mask falls 54 * into first. If that returns memory that isn't actually addressable 55 * we will fallback to the next lower zone and try again. 56 * 57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 58 * zones. 59 */ 60 *phys_limit = dma_to_phys(dev, dma_limit); 61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 62 return GFP_DMA; 63 if (*phys_limit <= DMA_BIT_MASK(32)) 64 return GFP_DMA32; 65 return 0; 66 } 67 68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 69 { 70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 71 72 if (dma_addr == DMA_MAPPING_ERROR) 73 return false; 74 return dma_addr + size - 1 <= 75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 76 } 77 78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 79 gfp_t gfp) 80 { 81 int node = dev_to_node(dev); 82 struct page *page = NULL; 83 u64 phys_limit; 84 85 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 86 87 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 88 &phys_limit); 89 page = dma_alloc_contiguous(dev, size, gfp); 90 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 91 dma_free_contiguous(dev, page, size); 92 page = NULL; 93 } 94 again: 95 if (!page) 96 page = alloc_pages_node(node, gfp, get_order(size)); 97 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 98 dma_free_contiguous(dev, page, size); 99 page = NULL; 100 101 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 102 phys_limit < DMA_BIT_MASK(64) && 103 !(gfp & (GFP_DMA32 | GFP_DMA))) { 104 gfp |= GFP_DMA32; 105 goto again; 106 } 107 108 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 109 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 110 goto again; 111 } 112 } 113 114 return page; 115 } 116 117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 118 dma_addr_t *dma_handle, gfp_t gfp) 119 { 120 struct page *page; 121 u64 phys_mask; 122 void *ret; 123 124 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 125 &phys_mask); 126 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 127 if (!page) 128 return NULL; 129 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 130 return ret; 131 } 132 133 void *dma_direct_alloc(struct device *dev, size_t size, 134 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 135 { 136 struct page *page; 137 void *ret; 138 int err; 139 140 size = PAGE_ALIGN(size); 141 if (attrs & DMA_ATTR_NO_WARN) 142 gfp |= __GFP_NOWARN; 143 144 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 145 !force_dma_unencrypted(dev)) { 146 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 147 if (!page) 148 return NULL; 149 /* remove any dirty cache lines on the kernel alias */ 150 if (!PageHighMem(page)) 151 arch_dma_prep_coherent(page, size); 152 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 153 /* return the page pointer as the opaque cookie */ 154 return page; 155 } 156 157 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 158 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 159 !dev_is_dma_coherent(dev)) 160 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); 161 162 /* 163 * Remapping or decrypting memory may block. If either is required and 164 * we can't block, allocate the memory from the atomic pools. 165 */ 166 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 167 !gfpflags_allow_blocking(gfp) && 168 (force_dma_unencrypted(dev) || 169 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) 170 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 171 172 /* we always manually zero the memory once we are done */ 173 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 174 if (!page) 175 return NULL; 176 177 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 178 !dev_is_dma_coherent(dev)) || 179 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { 180 /* remove any dirty cache lines on the kernel alias */ 181 arch_dma_prep_coherent(page, size); 182 183 /* create a coherent mapping */ 184 ret = dma_common_contiguous_remap(page, size, 185 dma_pgprot(dev, PAGE_KERNEL, attrs), 186 __builtin_return_address(0)); 187 if (!ret) 188 goto out_free_pages; 189 if (force_dma_unencrypted(dev)) { 190 err = set_memory_decrypted((unsigned long)ret, 191 1 << get_order(size)); 192 if (err) 193 goto out_free_pages; 194 } 195 memset(ret, 0, size); 196 goto done; 197 } 198 199 if (PageHighMem(page)) { 200 /* 201 * Depending on the cma= arguments and per-arch setup 202 * dma_alloc_contiguous could return highmem pages. 203 * Without remapping there is no way to return them here, 204 * so log an error and fail. 205 */ 206 dev_info(dev, "Rejecting highmem page from CMA.\n"); 207 goto out_free_pages; 208 } 209 210 ret = page_address(page); 211 if (force_dma_unencrypted(dev)) { 212 err = set_memory_decrypted((unsigned long)ret, 213 1 << get_order(size)); 214 if (err) 215 goto out_free_pages; 216 } 217 218 memset(ret, 0, size); 219 220 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 221 !dev_is_dma_coherent(dev)) { 222 arch_dma_prep_coherent(page, size); 223 ret = arch_dma_set_uncached(ret, size); 224 if (IS_ERR(ret)) 225 goto out_encrypt_pages; 226 } 227 done: 228 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 229 return ret; 230 231 out_encrypt_pages: 232 if (force_dma_unencrypted(dev)) { 233 err = set_memory_encrypted((unsigned long)page_address(page), 234 1 << get_order(size)); 235 /* If memory cannot be re-encrypted, it must be leaked */ 236 if (err) 237 return NULL; 238 } 239 out_free_pages: 240 dma_free_contiguous(dev, page, size); 241 return NULL; 242 } 243 244 void dma_direct_free(struct device *dev, size_t size, 245 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 246 { 247 unsigned int page_order = get_order(size); 248 249 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 250 !force_dma_unencrypted(dev)) { 251 /* cpu_addr is a struct page cookie, not a kernel address */ 252 dma_free_contiguous(dev, cpu_addr, size); 253 return; 254 } 255 256 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 257 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 258 !dev_is_dma_coherent(dev)) { 259 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 260 return; 261 } 262 263 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 264 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 265 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 266 return; 267 268 if (force_dma_unencrypted(dev)) 269 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); 270 271 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) 272 vunmap(cpu_addr); 273 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 274 arch_dma_clear_uncached(cpu_addr, size); 275 276 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); 277 } 278 279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 280 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 281 { 282 struct page *page; 283 void *ret; 284 285 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 286 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) 287 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 288 289 page = __dma_direct_alloc_pages(dev, size, gfp); 290 if (!page) 291 return NULL; 292 if (PageHighMem(page)) { 293 /* 294 * Depending on the cma= arguments and per-arch setup 295 * dma_alloc_contiguous could return highmem pages. 296 * Without remapping there is no way to return them here, 297 * so log an error and fail. 298 */ 299 dev_info(dev, "Rejecting highmem page from CMA.\n"); 300 goto out_free_pages; 301 } 302 303 ret = page_address(page); 304 if (force_dma_unencrypted(dev)) { 305 if (set_memory_decrypted((unsigned long)ret, 306 1 << get_order(size))) 307 goto out_free_pages; 308 } 309 memset(ret, 0, size); 310 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 311 return page; 312 out_free_pages: 313 dma_free_contiguous(dev, page, size); 314 return NULL; 315 } 316 317 void dma_direct_free_pages(struct device *dev, size_t size, 318 struct page *page, dma_addr_t dma_addr, 319 enum dma_data_direction dir) 320 { 321 unsigned int page_order = get_order(size); 322 void *vaddr = page_address(page); 323 324 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 325 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 326 dma_free_from_pool(dev, vaddr, size)) 327 return; 328 329 if (force_dma_unencrypted(dev)) 330 set_memory_encrypted((unsigned long)vaddr, 1 << page_order); 331 332 dma_free_contiguous(dev, page, size); 333 } 334 335 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 336 defined(CONFIG_SWIOTLB) 337 void dma_direct_sync_sg_for_device(struct device *dev, 338 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 339 { 340 struct scatterlist *sg; 341 int i; 342 343 for_each_sg(sgl, sg, nents, i) { 344 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 345 346 if (unlikely(is_swiotlb_buffer(paddr))) 347 swiotlb_sync_single_for_device(dev, paddr, sg->length, 348 dir); 349 350 if (!dev_is_dma_coherent(dev)) 351 arch_sync_dma_for_device(paddr, sg->length, 352 dir); 353 } 354 } 355 #endif 356 357 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 358 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 359 defined(CONFIG_SWIOTLB) 360 void dma_direct_sync_sg_for_cpu(struct device *dev, 361 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 362 { 363 struct scatterlist *sg; 364 int i; 365 366 for_each_sg(sgl, sg, nents, i) { 367 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 368 369 if (!dev_is_dma_coherent(dev)) 370 arch_sync_dma_for_cpu(paddr, sg->length, dir); 371 372 if (unlikely(is_swiotlb_buffer(paddr))) 373 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, 374 dir); 375 376 if (dir == DMA_FROM_DEVICE) 377 arch_dma_mark_clean(paddr, sg->length); 378 } 379 380 if (!dev_is_dma_coherent(dev)) 381 arch_sync_dma_for_cpu_all(); 382 } 383 384 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 385 int nents, enum dma_data_direction dir, unsigned long attrs) 386 { 387 struct scatterlist *sg; 388 int i; 389 390 for_each_sg(sgl, sg, nents, i) 391 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, 392 attrs); 393 } 394 #endif 395 396 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 397 enum dma_data_direction dir, unsigned long attrs) 398 { 399 int i; 400 struct scatterlist *sg; 401 402 for_each_sg(sgl, sg, nents, i) { 403 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 404 sg->offset, sg->length, dir, attrs); 405 if (sg->dma_address == DMA_MAPPING_ERROR) 406 goto out_unmap; 407 sg_dma_len(sg) = sg->length; 408 } 409 410 return nents; 411 412 out_unmap: 413 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 414 return 0; 415 } 416 417 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 418 size_t size, enum dma_data_direction dir, unsigned long attrs) 419 { 420 dma_addr_t dma_addr = paddr; 421 422 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 423 dev_err_once(dev, 424 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 425 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 426 WARN_ON_ONCE(1); 427 return DMA_MAPPING_ERROR; 428 } 429 430 return dma_addr; 431 } 432 433 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 434 void *cpu_addr, dma_addr_t dma_addr, size_t size, 435 unsigned long attrs) 436 { 437 struct page *page = dma_direct_to_page(dev, dma_addr); 438 int ret; 439 440 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 441 if (!ret) 442 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 443 return ret; 444 } 445 446 bool dma_direct_can_mmap(struct device *dev) 447 { 448 return dev_is_dma_coherent(dev) || 449 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 450 } 451 452 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 453 void *cpu_addr, dma_addr_t dma_addr, size_t size, 454 unsigned long attrs) 455 { 456 unsigned long user_count = vma_pages(vma); 457 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 458 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 459 int ret = -ENXIO; 460 461 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 462 463 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 464 return ret; 465 466 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 467 return -ENXIO; 468 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 469 user_count << PAGE_SHIFT, vma->vm_page_prot); 470 } 471 472 int dma_direct_supported(struct device *dev, u64 mask) 473 { 474 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 475 476 /* 477 * Because 32-bit DMA masks are so common we expect every architecture 478 * to be able to satisfy them - either by not supporting more physical 479 * memory, or by providing a ZONE_DMA32. If neither is the case, the 480 * architecture needs to use an IOMMU instead of the direct mapping. 481 */ 482 if (mask >= DMA_BIT_MASK(32)) 483 return 1; 484 485 /* 486 * This check needs to be against the actual bit mask value, so use 487 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 488 * part of the check. 489 */ 490 if (IS_ENABLED(CONFIG_ZONE_DMA)) 491 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 492 return mask >= phys_to_dma_unencrypted(dev, min_mask); 493 } 494 495 size_t dma_direct_max_mapping_size(struct device *dev) 496 { 497 /* If SWIOTLB is active, use its maximum mapping size */ 498 if (is_swiotlb_active() && 499 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) 500 return swiotlb_max_mapping_size(dev); 501 return SIZE_MAX; 502 } 503 504 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 505 { 506 return !dev_is_dma_coherent(dev) || 507 is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); 508 } 509 510 /** 511 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 512 * @dev: device pointer; needed to "own" the alloced memory. 513 * @cpu_start: beginning of memory region covered by this offset. 514 * @dma_start: beginning of DMA/PCI region covered by this offset. 515 * @size: size of the region. 516 * 517 * This is for the simple case of a uniform offset which cannot 518 * be discovered by "dma-ranges". 519 * 520 * It returns -ENOMEM if out of memory, -EINVAL if a map 521 * already exists, 0 otherwise. 522 * 523 * Note: any call to this from a driver is a bug. The mapping needs 524 * to be described by the device tree or other firmware interfaces. 525 */ 526 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 527 dma_addr_t dma_start, u64 size) 528 { 529 struct bus_dma_region *map; 530 u64 offset = (u64)cpu_start - (u64)dma_start; 531 532 if (dev->dma_range_map) { 533 dev_err(dev, "attempt to add DMA range to existing map\n"); 534 return -EINVAL; 535 } 536 537 if (!offset) 538 return 0; 539 540 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 541 if (!map) 542 return -ENOMEM; 543 map[0].cpu_start = cpu_start; 544 map[0].dma_start = dma_start; 545 map[0].offset = offset; 546 map[0].size = size; 547 dev->dma_range_map = map; 548 return 0; 549 } 550