xref: /linux/kernel/dma/direct.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80 	if (!force_dma_unencrypted(dev))
81 		return 0;
82 	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
83 }
84 
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87 	int ret;
88 
89 	if (!force_dma_unencrypted(dev))
90 		return 0;
91 	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
92 	if (ret)
93 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94 	return ret;
95 }
96 
97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
98 				    size_t size)
99 {
100 	if (swiotlb_free(dev, page, size))
101 		return;
102 	dma_free_contiguous(dev, page, size);
103 }
104 
105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106 {
107 	struct page *page = swiotlb_alloc(dev, size);
108 
109 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 		swiotlb_free(dev, page, size);
111 		return NULL;
112 	}
113 
114 	return page;
115 }
116 
117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118 		gfp_t gfp, bool allow_highmem)
119 {
120 	int node = dev_to_node(dev);
121 	struct page *page = NULL;
122 	u64 phys_limit;
123 
124 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
125 
126 	if (is_swiotlb_for_alloc(dev))
127 		return dma_direct_alloc_swiotlb(dev, size);
128 
129 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130 					   &phys_limit);
131 	page = dma_alloc_contiguous(dev, size, gfp);
132 	if (page) {
133 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 		    (!allow_highmem && PageHighMem(page))) {
135 			dma_free_contiguous(dev, page, size);
136 			page = NULL;
137 		}
138 	}
139 again:
140 	if (!page)
141 		page = alloc_pages_node(node, gfp, get_order(size));
142 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143 		dma_free_contiguous(dev, page, size);
144 		page = NULL;
145 
146 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147 		    phys_limit < DMA_BIT_MASK(64) &&
148 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 			gfp |= GFP_DMA32;
150 			goto again;
151 		}
152 
153 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 			goto again;
156 		}
157 	}
158 
159 	return page;
160 }
161 
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170 
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 		dma_addr_t *dma_handle, gfp_t gfp)
173 {
174 	struct page *page;
175 	u64 phys_mask;
176 	void *ret;
177 
178 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 		return NULL;
180 
181 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
182 					   &phys_mask);
183 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184 	if (!page)
185 		return NULL;
186 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187 	return ret;
188 }
189 
190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191 		dma_addr_t *dma_handle, gfp_t gfp)
192 {
193 	struct page *page;
194 
195 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196 	if (!page)
197 		return NULL;
198 
199 	/* remove any dirty cache lines on the kernel alias */
200 	if (!PageHighMem(page))
201 		arch_dma_prep_coherent(page, size);
202 
203 	/* return the page pointer as the opaque cookie */
204 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205 	return page;
206 }
207 
208 void *dma_direct_alloc(struct device *dev, size_t size,
209 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210 {
211 	bool remap = false, set_uncached = false;
212 	struct page *page;
213 	void *ret;
214 
215 	size = PAGE_ALIGN(size);
216 	if (attrs & DMA_ATTR_NO_WARN)
217 		gfp |= __GFP_NOWARN;
218 
219 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222 
223 	if (!dev_is_dma_coherent(dev)) {
224 		/*
225 		 * Fallback to the arch handler if it exists.  This should
226 		 * eventually go away.
227 		 */
228 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
229 		    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230 		    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
231 		    !is_swiotlb_for_alloc(dev))
232 			return arch_dma_alloc(dev, size, dma_handle, gfp,
233 					      attrs);
234 
235 		/*
236 		 * If there is a global pool, always allocate from it for
237 		 * non-coherent devices.
238 		 */
239 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
240 			return dma_alloc_from_global_coherent(dev, size,
241 					dma_handle);
242 
243 		/*
244 		 * Otherwise remap if the architecture is asking for it.  But
245 		 * given that remapping memory is a blocking operation we'll
246 		 * instead have to dip into the atomic pools.
247 		 */
248 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
249 		if (remap) {
250 			if (dma_direct_use_pool(dev, gfp))
251 				return dma_direct_alloc_from_pool(dev, size,
252 						dma_handle, gfp);
253 		} else {
254 			if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
255 				return NULL;
256 			set_uncached = true;
257 		}
258 	}
259 
260 	/*
261 	 * Decrypting memory may block, so allocate the memory from the atomic
262 	 * pools if we can't block.
263 	 */
264 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
265 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
266 
267 	/* we always manually zero the memory once we are done */
268 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
269 	if (!page)
270 		return NULL;
271 
272 	/*
273 	 * dma_alloc_contiguous can return highmem pages depending on a
274 	 * combination the cma= arguments and per-arch setup.  These need to be
275 	 * remapped to return a kernel virtual address.
276 	 */
277 	if (PageHighMem(page)) {
278 		remap = true;
279 		set_uncached = false;
280 	}
281 
282 	if (remap) {
283 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
284 
285 		if (force_dma_unencrypted(dev))
286 			prot = pgprot_decrypted(prot);
287 
288 		/* remove any dirty cache lines on the kernel alias */
289 		arch_dma_prep_coherent(page, size);
290 
291 		/* create a coherent mapping */
292 		ret = dma_common_contiguous_remap(page, size, prot,
293 				__builtin_return_address(0));
294 		if (!ret)
295 			goto out_free_pages;
296 	} else {
297 		ret = page_address(page);
298 		if (dma_set_decrypted(dev, ret, size))
299 			goto out_free_pages;
300 	}
301 
302 	memset(ret, 0, size);
303 
304 	if (set_uncached) {
305 		arch_dma_prep_coherent(page, size);
306 		ret = arch_dma_set_uncached(ret, size);
307 		if (IS_ERR(ret))
308 			goto out_encrypt_pages;
309 	}
310 
311 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
312 	return ret;
313 
314 out_encrypt_pages:
315 	if (dma_set_encrypted(dev, page_address(page), size))
316 		return NULL;
317 out_free_pages:
318 	__dma_direct_free_pages(dev, page, size);
319 	return NULL;
320 }
321 
322 void dma_direct_free(struct device *dev, size_t size,
323 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
324 {
325 	unsigned int page_order = get_order(size);
326 
327 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
328 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
329 		/* cpu_addr is a struct page cookie, not a kernel address */
330 		dma_free_contiguous(dev, cpu_addr, size);
331 		return;
332 	}
333 
334 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
335 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
336 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
337 	    !dev_is_dma_coherent(dev) &&
338 	    !is_swiotlb_for_alloc(dev)) {
339 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
340 		return;
341 	}
342 
343 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
344 	    !dev_is_dma_coherent(dev)) {
345 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
346 			WARN_ON_ONCE(1);
347 		return;
348 	}
349 
350 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
351 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
352 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
353 		return;
354 
355 	if (is_vmalloc_addr(cpu_addr)) {
356 		vunmap(cpu_addr);
357 	} else {
358 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
359 			arch_dma_clear_uncached(cpu_addr, size);
360 		if (dma_set_encrypted(dev, cpu_addr, size))
361 			return;
362 	}
363 
364 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
365 }
366 
367 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
368 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369 {
370 	struct page *page;
371 	void *ret;
372 
373 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
374 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
375 
376 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
377 	if (!page)
378 		return NULL;
379 
380 	ret = page_address(page);
381 	if (dma_set_decrypted(dev, ret, size))
382 		goto out_free_pages;
383 	memset(ret, 0, size);
384 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
385 	return page;
386 out_free_pages:
387 	__dma_direct_free_pages(dev, page, size);
388 	return NULL;
389 }
390 
391 void dma_direct_free_pages(struct device *dev, size_t size,
392 		struct page *page, dma_addr_t dma_addr,
393 		enum dma_data_direction dir)
394 {
395 	void *vaddr = page_address(page);
396 
397 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
398 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399 	    dma_free_from_pool(dev, vaddr, size))
400 		return;
401 
402 	if (dma_set_encrypted(dev, vaddr, size))
403 		return;
404 	__dma_direct_free_pages(dev, page, size);
405 }
406 
407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408     defined(CONFIG_SWIOTLB)
409 void dma_direct_sync_sg_for_device(struct device *dev,
410 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411 {
412 	struct scatterlist *sg;
413 	int i;
414 
415 	for_each_sg(sgl, sg, nents, i) {
416 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417 
418 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
419 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
420 						       dir);
421 
422 		if (!dev_is_dma_coherent(dev))
423 			arch_sync_dma_for_device(paddr, sg->length,
424 					dir);
425 	}
426 }
427 #endif
428 
429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431     defined(CONFIG_SWIOTLB)
432 void dma_direct_sync_sg_for_cpu(struct device *dev,
433 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434 {
435 	struct scatterlist *sg;
436 	int i;
437 
438 	for_each_sg(sgl, sg, nents, i) {
439 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440 
441 		if (!dev_is_dma_coherent(dev))
442 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
443 
444 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
445 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446 						    dir);
447 
448 		if (dir == DMA_FROM_DEVICE)
449 			arch_dma_mark_clean(paddr, sg->length);
450 	}
451 
452 	if (!dev_is_dma_coherent(dev))
453 		arch_sync_dma_for_cpu_all();
454 }
455 
456 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
457 		int nents, enum dma_data_direction dir, unsigned long attrs)
458 {
459 	struct scatterlist *sg;
460 	int i;
461 
462 	for_each_sg(sgl, sg, nents, i)
463 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
464 			     attrs);
465 }
466 #endif
467 
468 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
469 		enum dma_data_direction dir, unsigned long attrs)
470 {
471 	int i;
472 	struct scatterlist *sg;
473 
474 	for_each_sg(sgl, sg, nents, i) {
475 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
476 				sg->offset, sg->length, dir, attrs);
477 		if (sg->dma_address == DMA_MAPPING_ERROR)
478 			goto out_unmap;
479 		sg_dma_len(sg) = sg->length;
480 	}
481 
482 	return nents;
483 
484 out_unmap:
485 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
486 	return -EIO;
487 }
488 
489 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
490 		size_t size, enum dma_data_direction dir, unsigned long attrs)
491 {
492 	dma_addr_t dma_addr = paddr;
493 
494 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
495 		dev_err_once(dev,
496 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
497 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
498 		WARN_ON_ONCE(1);
499 		return DMA_MAPPING_ERROR;
500 	}
501 
502 	return dma_addr;
503 }
504 
505 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
506 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
507 		unsigned long attrs)
508 {
509 	struct page *page = dma_direct_to_page(dev, dma_addr);
510 	int ret;
511 
512 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
513 	if (!ret)
514 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
515 	return ret;
516 }
517 
518 bool dma_direct_can_mmap(struct device *dev)
519 {
520 	return dev_is_dma_coherent(dev) ||
521 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
522 }
523 
524 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
525 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
526 		unsigned long attrs)
527 {
528 	unsigned long user_count = vma_pages(vma);
529 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
530 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
531 	int ret = -ENXIO;
532 
533 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
534 	if (force_dma_unencrypted(dev))
535 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
536 
537 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
538 		return ret;
539 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
540 		return ret;
541 
542 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
543 		return -ENXIO;
544 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
545 			user_count << PAGE_SHIFT, vma->vm_page_prot);
546 }
547 
548 int dma_direct_supported(struct device *dev, u64 mask)
549 {
550 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
551 
552 	/*
553 	 * Because 32-bit DMA masks are so common we expect every architecture
554 	 * to be able to satisfy them - either by not supporting more physical
555 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
556 	 * architecture needs to use an IOMMU instead of the direct mapping.
557 	 */
558 	if (mask >= DMA_BIT_MASK(32))
559 		return 1;
560 
561 	/*
562 	 * This check needs to be against the actual bit mask value, so use
563 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
564 	 * part of the check.
565 	 */
566 	if (IS_ENABLED(CONFIG_ZONE_DMA))
567 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
568 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
569 }
570 
571 size_t dma_direct_max_mapping_size(struct device *dev)
572 {
573 	/* If SWIOTLB is active, use its maximum mapping size */
574 	if (is_swiotlb_active(dev) &&
575 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
576 		return swiotlb_max_mapping_size(dev);
577 	return SIZE_MAX;
578 }
579 
580 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
581 {
582 	return !dev_is_dma_coherent(dev) ||
583 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
584 }
585 
586 /**
587  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
588  * @dev:	device pointer; needed to "own" the alloced memory.
589  * @cpu_start:  beginning of memory region covered by this offset.
590  * @dma_start:  beginning of DMA/PCI region covered by this offset.
591  * @size:	size of the region.
592  *
593  * This is for the simple case of a uniform offset which cannot
594  * be discovered by "dma-ranges".
595  *
596  * It returns -ENOMEM if out of memory, -EINVAL if a map
597  * already exists, 0 otherwise.
598  *
599  * Note: any call to this from a driver is a bug.  The mapping needs
600  * to be described by the device tree or other firmware interfaces.
601  */
602 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
603 			 dma_addr_t dma_start, u64 size)
604 {
605 	struct bus_dma_region *map;
606 	u64 offset = (u64)cpu_start - (u64)dma_start;
607 
608 	if (dev->dma_range_map) {
609 		dev_err(dev, "attempt to add DMA range to existing map\n");
610 		return -EINVAL;
611 	}
612 
613 	if (!offset)
614 		return 0;
615 
616 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
617 	if (!map)
618 		return -ENOMEM;
619 	map[0].cpu_start = cpu_start;
620 	map[0].dma_start = dma_start;
621 	map[0].offset = offset;
622 	map[0].size = size;
623 	dev->dma_range_map = map;
624 	return 0;
625 }
626